
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Precision RTK GNSS for low-cost robotic systems

A dissertation submitted by

Simon Castles

In fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Mechatronics)

Submitted: October, 2021

Abstract

The agriculture industry has been under increasing pressure to do more with less; increase

efficiency and productivity while minimising cost and environmental impacts. Advanced tech-

nology has become an essential part of farming and with improvements in GNSS, robotics and

geospatial software, so has the potential for improving accuracy and control of farming practices.

Real-time kinematic (RTK) GNSS offers centimetre level accuracy using a base station sit-

uated at a known location providing correction data to one or more rover stations within a 10

km range. In agronomy, RTK GNSS enables more sustainable and profitable management prac-

tices, such as tractor guidance, and more recently precision application of herbicides. However,

the capital investment in establishing an RTK network to gain precise localisation benefits often

erode the profitability of the system when compared to a less accurate, cheaper system with

reduced benefits. The aim of this project is to design a low cost RTK GNSS sub-system for an

autonomous robotic system and evaluate the accuracy of the system in an agricultural setting.

A system was designed and built using ArduSimple RTK receiver boards (based on the Ublox

ZED-F9P receiver module), Xbee radio modules and an STM32 microcontroller to provide both

position and heading data. To verify the accuracy of the designed system, a testing procedure

based on ISO 12188-1 was developed, which involved the design and production of a drive

system on a non-metallic track so that the actual path traversed could be accurately recorded.

The data from the RTK receiver was then analysed to calculate cross-track error and therefore

the accuracy of the system, finding that centimetre level accuracy is achievable with low-cost

receivers, with the system estimated to have a relative cross-track accuracy of 12.13 mm and a

heading accuracy of 0.45°.

Keywords: Precision agriculture, robotics, localisation, GNSS, RTK, accuracy.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility

for the truth, accuracy or completeness of material contained within or associated with this

dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the

overall education within the student’s chosen degree program. This document, the associated

hardware, software, drawings, and other material set out in the associated appendices should

not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out

in this dissertation are entirely my own effort, except where otherwise indicated and acknowl-

edged.

I further certify that the work is original and has not been previously submitted for assess-

ment in any other course or institution, except where specifically stated.

S. Castles

Acknowledgments

The author would like to sincerely thank the following people for their help and support during

the project:

I want to thank my supervisor, Dr Craig Lobsey, for his support to take this project in this

direction, continued guidance and the original idea of the topic.

I would also like to thank and acknowledge my wife for her constant love and support, solving

problems together and allowing me to spread electronics and acrylic all over the house.

S. Castles

Contents

List of Figures v

List of Tables vii

Nonenclature and Acronyms viii

1 Introduction 1

1.1 Background . 1

1.2 Project Aim and objectives . 2

1.3 Implications and Ethics . 3

1.3.1 Benefits to agriculture . 3

1.3.2 Ethical considerations . 3

1.4 Overview of the dissertation . 3

2 Relevant Literature 5

2.1 Chapter Overview . 5

2.2 Precision Agriculture . 5

2.3 Satellite Based Localisation . 6

2.3.1 Real-time kinematic GNSS . 7

2.3.2 ArduSimple ZED-F9P GNSS receiver . 8

2.3.3 Evaluating agriculture localisation systems 9

i

2.3.4 The UBX message protocol . 10

3 Design Methodology 11

3.1 Chapter Overview . 11

3.2 Project Methodology . 11

3.2.1 Proposed testing methodology . 11

3.2.2 Method . 13

3.2.3 Limitations . 13

3.3 System concept design . 13

3.3.1 Static base station . 14

3.3.2 Rover station . 14

3.4 System design requirements . 14

3.5 System preliminary design . 17

4 Hardware Implementation 20

4.1 Chapter Overview . 20

4.2 The Test Rig . 20

4.2.1 The Drive Mechanism . 21

4.2.2 Power . 23

4.3 The Microcontroller . 23

4.3.1 Peripherals . 24

4.3.2 GPIO interrupt . 24

4.4 Raspberry Pi . 24

5 Software Development 27

5.1 Chapter Overview . 27

CONTENTS ii

5.2 RTOS Tasks . 27

5.2.1 Processing UBX messages . 27

5.2.2 Data Logging Task . 29

5.2.3 RTC update task . 29

6 Results 32

6.1 Results . 32

6.1.1 Collection of data . 32

6.1.2 Relative Cross-track Accuracy . 33

6.1.3 Heading Accuracy . 37

6.1.4 Errors and Bias of Results . 38

7 Discussion 41

7.1 Discussion . 41

8 Conclusions and Further Work 43

8.1 Conclusions . 43

8.2 Recommendations and Further Work . 43

References 45

A Project specification 48

B Project Management 50

B.1 Project Schedule . 50

B.2 Resource Requirements . 53

B.2.1 Hardware requirements . 53

B.2.2 Software requirements . 53

CONTENTS iii

B.2.3 Addition time/space resources . 54

B.3 Risk management . 54

C Wiring diagrams 60

D Microcontroller Source Code - C 64

D.1 Main C Program . 64

E MATLAB Analysis Code 94

CONTENTS iv

List of Figures

2.1 Improve GNSS accuracies through differential services 7

2.2 SimpleRTK2b V1 (left) and V3 (right) evaluation boards. Source: ArduSimple

(2021) . 8

2.3 The UBX message frame (NAV PVT fields shown as example) 10

3.1 Test track layout . 12

3.2 Base station prototype . 15

3.3 Base station deployed . 16

3.4 High level system design . 19

4.1 The test rig concept design. 21

4.2 An exploded view of a straight track section. 22

4.3 A view of the completed track. 22

4.4 A view of the completed drive system on the track. 23

4.5 The cut slot at the end of straight track segment. 25

4.6 The final test rig. 26

5.1 The UBX processing task flow chart . 28

5.2 Segger Systemview of the data logging task with priority over the UBX processing

task . 29

5.3 The data logging task flow chart . 30

v

5.4 The RTC update task flow chart . 31

6.1 Trajectory data points. 32

6.2 Adjusted trajectory. 33

6.3 Heading data plots . 33

6.4 Adjusted localised GNSS data of southwest segment 34

6.5 Adjusted localised GNSS data of northeast segment 35

6.6 Adjusted localised GNSS data of northeast segment (close up view) 36

6.7 Mean and standard deviation of unsigned errors for each segment and overall. . . 37

6.8 Mean and standard deviation of unsigned heading errors for each segment and

overall. 38

6.9 Signed heading errors for each straight segment. 39

6.10 Signed heading errors for each straight segment. 39

6.11 Signed heading errors for each straight segment. 40

B.1 Project schedule . 52

LIST OF FIGURES vi

List of Tables

2.1 GNSS frequencies based on Ublox (2020a) . 6

3.1 Static base station design requirements . 17

3.2 Rover station design requirements . 18

6.1 Heading data . 37

B.1 Phase breakdown . 51

B.2 Project system resource requirements . 53

B.3 Project test rig resource requirements . 53

vii

Nomenclature and Acronyms

BLDC Brushless DC

CEP Circular error probability

CTPCO Critical Technologies Policy Coordination Office

DGPS Differential GPS

GNSS Global navigation satellite system

GPIO General purpose input/output

GPS Global Positioning System

MCU Microcontroller

PVT Position,velocity and time

RMS Root mean square

ROS2 Robotic operating system 2

RTC Real time clock

RTK Real time kinematic

RTOS Real time operating system

SBC Single board computer

SSM Site specific management

UART Universal asynchronous receiver-transmitter

viii

Chapter 1

Introduction

1.1 Background

The agriculture industry has been under increasing pressure to do more with less; increase

efficiency and productivity while minimising cost and environmental impacts. Advanced tech-

nology has become an essential part of farming and with improvements in Global navigation

satellite systems (GNSS), robotics and geospatial software, so has the potential for improv-

ing accuracy and control of existing farming practices and developing new methods of farming

through the use of robotics and automation.

Until recently, precision agriculture has been out of reach for many small scale producers due

to cost. Innovation in the Australian agriculture industry is low (Department of the Prime Min-

ister and Cabinet 2021), with some farmers hesitant to introduce new technology due to capital

cost outweighing benefits. However, the affordability and availability of precise GNSS has the

potential to make sustainable practices more widely implemented. The Critical Technologies

Policy Coordination Office (CTPCO) has identified GNSS augmentation and autonomous vehi-

cles as two of the eight critical technologies that are essential for securing the nation’s economic

prosperity (Department of the Prime Minister and Cabinet 2021). This project evaluates a

low-cost GNSS receiver for use as a localisation module for an autonomous agricultural robotic

system.

Real-time kinematic (RTK) GNSS offers centimetre level accuracy using a base station sit-

uated at a known location providing correction data to one or more rover stations within a

10 km range. In agronomy, RTK GNSS enables more sustainable and profitable management

practices, such as tractor guidance, and more recently precision application of herbicides (Ry-

backi et al. 2021). For more than two decades, precision agriculture has been on the verge of

transforming production agriculture, with the potential for increasing yields while maintaining

or reducing inputs (Thompson et al. 2019).

1

However, the capital investment in establishing an RTK network to gain precise localisation

benefits often erode the profitability of the system when compared to a less accurate, cheaper

system with reduced benefits (Knight & Malcolm 2009). Several recent studies have found

adoption rates for precision agriculture struggles to exceed fifty percent of farmers/producers

or planted acers (Thompson et al. 2019). These studies tend to focus on large scale produc-

ers (greater than 1000 crop acres), which have higher adoption rates of precision agriculture.

Moreover, cost-savings was considered more beneficial than yield improvements or convenience

(Thompson et al. 2019). This suggests developing a low-cost system could make precision

agriculture more accessible to small scale producers.

This report will outline the project’s aims, objectives and research methodology for evalu-

ating a low-cost GNSS board for integration into an agricultural robotic system. It will also

outline the the resources required, project planning and risks involved. Finally, this report will

highlight areas for further development and future research.

1.2 Project Aim and objectives

The aim of this project is to design a low cost RTK GNSS sub-system for an autonomous robotic

system and evaluate the accuracy of the system in an agricultural setting. In order to achieve

the aim of the project, the following objectives were to be achieved:

� Design and build a RTK GNSS receiver base station which transmits differential correction

data to one or more rover stations, and

� Design and build a RTK GNSS rover station capable of providing accurate position,

heading and speed to a mobile robotic system.

� Evaluate the built system in line with relevant standards.

A major consideration of the design is that it will be a module of a larger, more com-

plex robotic system with the potential for development/integration into a commercial product.

Therefore, the output of the the rover station must be able to be integrated with the larger

system, which will be achieved through implementing robotic operating system 2 (ROS2) on

the software stack of the design. In addition to designing the RTK GNSS system, a test rig

has been designed and built; and test procedures developed in line with the requirements of

relevant standards to ensure the functionality of the RTK GNSS system.

Further detail on the aim and objectives of the project are outlined in the Project Specifi-

cation (Appendix A).

CHAPTER 1. INTRODUCTION 2

1.3 Implications and Ethics

1.3.1 Benefits to agriculture

By designing a low cost RTK-GNSS localisation system, it is believed that numerous smaller,

multi-purpose autonomous vehicles can be developed to replace large agriculture vehicles. Hav-

ing lightweight vehicles combined with centimetre level precision from an RTK system, one

major benefit to an agriculture business is reduced soil compaction due to the reduced loads

and repeatability of vehicle movement. Additionally, improvements in efficiency, cost-savings

and yield could have positive impacts on the wellbeing of farmers.

1.3.2 Ethical considerations

Low cost electronics can lead to the belief that the product is for short term use and lead to

a build up of e-waste and unsustainable use of finite resources. Reliability for long term use

of the RTK GNSS system should be incorporated into the design, as well as ease of use so

that the system is not discarded due to complexity in integration to a farming system. Open-

source programming can also allow for wider technical support to the operator if maintenance

is required rather than the system requiring proprietary tools for servicing.

1.4 Overview of the dissertation

A summary of the chapters within this dissertation is provided below:

Chapter 2 - Outlines the literature review that occurred to support the development of the

methodology implemented as well has the design choices made in developing system hardware

and software to achieve the project’s aims and objectives.

Chapter 3 - Outlines the development of the evaluation methodology from the standards and

the system concept design to be evaluated.

Chapter 4 - Outlines the hardware selected for the testing rig and the system under evaluation.

Chapter 5 - Outlines the software development that occurred in order to capture GNSS data

for evaluation.

Chapter 6 - Outlines the results obtained during testing of the designed system.

Chapter 7 - Discusses the interpretation of the results and

CHAPTER 1. INTRODUCTION 3

Chapter 8 - Concludes the dissertation and proposes further work to be conducted to build

upon this project in evaluating the accuracy of low-cost RTK GNSS receivers and their use.

CHAPTER 1. INTRODUCTION 4

Chapter 2

Relevant Literature

2.1 Chapter Overview

This chapter examines the trends in precision agriculture and the relationship to localisation sys-

tems and the growing need for ever increasing accuracy in systems. It will also give an overview

of a low cost satellite based localisation development board, the ArduSimple SimpleRTK2b,

which is based around Ublox’s ZED-F9P GNSS receiver.

2.2 Precision Agriculture

Precision agriculture has introduced technologies that greatly enhances productivity. Through

the use of data collection from all types of sensors from the atmosphere, the plants and even the

soil, farmers can see much more efficient production and a reduced impact on the environment

(Wolfert et al. 2017, Tzounis et al. 2017). Often though, to get the most out of the data collected,

precise GNSS receivers are required to achieve the precise dosage of nutrients, fertilizers and

pesticides (if still required) to the precise location it is needed (Perez-Ruiz & Upadhyaya 2012).

Site specific management (SSM) is an area of precision agriculture which largely focuses on

crop nutrient levels and delivering variable fertilizer doses based on localised soil sample data.

Over the last century, research on the soil sampling density has consistently suggested reduc-

ing crop management zone resolution, with advances in modern sensor technologies recognising

variability under a meter (Zhang 2016). This has required ever increasing accuracy of localisa-

tion systems, down to centimetre level, which can be achieved through laser and satellite based

systems (Williams et al. 2020). But this increased accuracy also poses new challenges, such as

increased cost in man power and money to collect and analyse ever increasing data. One possible

solution to this new challenge is the deployment of fleets of small autonomous vehicles to collect

5

data on crop nutrients, yield measurement as well as pest and weed management (Shamshiri

et al. 2018). This reinforces the requirement for low cost, precise localisation systems if small

unmanned vehicles are going to be operating in fleets and probably along side humans.

2.3 Satellite Based Localisation

Satellite based GNSS is the main form of localisation for humans and machines in outdoor

conditions in our modern era. Many countries have deployed their own GNSS constellations

such as GPS by the USA, GLONASS by Russia, Galileo by the European Union and BeiDou

by China. GNSS receivers made today are often multi-band receivers, capable of using multiple

GNSS constellations to calculate position, velocity and heading (PVT) (Pini et al. 2020). Table

2.1 outlines the frequencies used by each constellation for the bands that the receiver module

being evaluated operates on.

Table 2.1: GNSS frequencies based on Ublox (2020a)

Constellation Band Freq (MHz)

GPS L1C/A 1575.42
L2C 1227.6

GLONASS L1OF 1598.0625-1609.3125
L2OF 1242.9375-1251.6875

Galileo E1-B/C 1575.42
E5b 1207.14

BeiDou B1l 1561.098
B2l 1207.14

The most common means of a GNSS receiver to transmit PVT data in a usable form is

through the use of the National Marine Electronics Association (NMEA) 0183 interface standard

(NMEA-0183). The NMEA-0183 protocol uses simple ASCII sentence strings and can be used

on many types of serial interfaces such as I2C, SPI or UART. All NMEA sentence frames begin

with a $ and will be followed by a five character address field, a data field, checksum and

end sequence (Ublox 2020b). The recommended minimum NMEA sentence is RMC, with an

example presented below:

$GPRMC, 123456, A, 1234.567, S, 12345.789,W, 123.4, 123.4, 123456, 123.4, E ∗ 6A

Where $GPRMC represents a GPS RMC sentence address, with each element in the payload,

separated by a comma, represent the UTC, status, latitude, north/south, longitude, east/west,

speed, heading, date, magnetic variation and east/west; then ending in the checksum *6A

(Trimble 2021a).

CHAPTER 2. RELEVANT LITERATURE 6

2.3.1 Real-time kinematic GNSS

Whilst a hand-held GNSS receiver common on mobile phones and other personal devices have

accuracies in the ten’s of meters, there are methods of improving the accuracy of a GNSS

receiver. Differential GPS (DGPS) and RTK are real-time methods to achieve sub-meter and

centimetre level accuracies respectably by having base stations transmit correction messages

(RTCM) over radio to the GNSS receiver as depicted in figure 2.1 (Perez-Ruiz & Upadhyaya

2012, Zhang et al. 2002).

Figure 2.1: Improve GNSS accuracies through differential services

Whilst DGPS public radio transmitters provide reliable coverage over large areas, often for

free, the increased accuracies in RTK systems is gained through the requirement of having a

base station located within 10 km of the receiver. This generally requires a capital investment

by private entities to establish their own RTK network, increasing the cost of a RTK system

significantly (Perez-Ruiz & Upadhyaya 2012). With commercial RTK systems costing over

$50,000, Knight & Malcolm (2009) found that the benefits to an agricultural business from

using such a system was not as profitable as using a less accurate system with reduced benefits.

Similarly, Thompson et al. (2019) found cost-saving was the key benefit of precision agriculture

as highlighted by producers compared to yield and convenience.

CHAPTER 2. RELEVANT LITERATURE 7

2.3.2 ArduSimple ZED-F9P GNSS receiver

The ArduSimple SimpleRKT2b evaluation boards shown in figure 2.2 is representative of low-

cost,multi-band RTK GNSS receivers that are available on the market today. A single receiver

is available for purchase in Australia for less than $300 (Mouser 2021a) and a long range radio

kit complete with two receivers, antennas and UHF radios for around $1000 (Mouser 2021b),

allowing for a RTK based system to be deployed at a fraction of the cost of commercially

developed systems.

Figure 2.2: SimpleRTK2b V1 (left) and V3 (right) evaluation boards. Source: ArduSimple
(2021)

At the heart of the SimpleRTK2b boards is the Ublox ZED-F9P GNSS receiver module.

The ZED-F9P module is a multi-band receiver (using GPS, GLONASS, Galileo and BeiDou),

capable of 1 cm positional accuracy, heading accuracy as small as 0.3° and a RTK navigational

update rate as high as 20 Hz (Ublox 2020a). In additional to outputting navigational data

in standard NMEA0183 messages (version 4.10), the ZED-F9P module is fully configurable

through the use of Ublox’s UBX protocol and achieves RTK correction messages through the

use of RTCM 3.x protocol (Ublox 2020b).

A characteristic of the SimpleRKT2b boards, which simplifies deployment, is the inclusion

of Arduino and Xbee form-factor header rails. This allows easy integration with many micro-

controller development boards, including STM32, as well as Xbee’s range of wireless boards.

Often bundled with the ArduSimple kits to allow RTK communication between base station

and rover station are the Xbee Pro SX long range radio, capable of transmitting up to 105 km

(line of site) at data rates up to 250 kb/s (Digi 2020).

CHAPTER 2. RELEVANT LITERATURE 8

2.3.3 Evaluating agriculture localisation systems

The ZED-F9P receiver module has previously been evaluated in studies for positional accuracy.

Hamza et al. (2020) evaluated positional quality and identified the range of displacements that

could be detected. Whilst their study was looking at comparing a low-cost RTK system with

commercial receivers, it was focused on geodetic use, and as such, focused on static tests of

the ZED-F9P, where the only dynamic testing was carried out over a 15 cm test distance.

Translation of the accuracy data for dynamic farming practices is limited, as the testing did

not simulate the real-time dynamic requirements of an agricultural vehicle.

Prior to 2010, there was a lack of standards for evaluating dynamic systems that relied upon

GNSS for localisation (ISO 2010), with many GNSS systems evaluated under static conditions

which did not reflect how the systems were being used (Cole et al. 2004). This led to the In-

ternational Standards Organisation (ISO) setting out a framework for evaluating and reporting

dynamic systems in ISO 12188.

Part 1 of ISO 12188 sets out two types of tests to be conducted: a horizontal positioning test

and a dynamic signal reacquisition test. Both test require the GNSS system under evaluation

to be run a travel course, where the precise location of the tested system can be measured at

one order of magnitude more accurate than the system itself. The travel course is to include

two straight segments of 90 meters and a U-turn segment with a radius of between 5-10 meters

(ISO 2010). In developing the standard, Stombaugh et al. (2008) used a motorised cart system

on a I-beam track to evaluated a sub-meter class GNSS receiver and a low-cost receiver with

2-5 meter accuracy simultaneously. However, since this publication, there has been included

in the standard, that there shall be no metallic objects within 50 meters of the course due to

multipath interference (ISO 2010), which may preclude the use of an I-beam track to evaluate

the ZED-F9P in this project.

The horizontal position test involves conducting 24 test runs of one hour duration over a

25 hour period and at speeds ranging from 0.1 to 5.0 m/s. During each test run, the recorded

positions from the GNSS system on the straight segments are converted to localised Cartesian

coordinates and compared to the recorded travel course positioning in order to report positioning

accuracies (ISO 2010).

The dynamic signal reacquisition test involves blocking the satellite signal to the receiver

during the U-turn segment of the travel course and recording the elapsed time until valid

position data is transmitted once the satellite signal is unblocked. Three one-hour dynamic

signal reacquisition tests are to be conducted, with a three hour pause between tests, within a

total of 13 hours (ISO 2010).

CHAPTER 2. RELEVANT LITERATURE 9

2.3.4 The UBX message protocol

Ublox use their own messaging protocol, called UBX, which is a variable length payload frame

protocol protected by a 8 bit Fletcher checksum. Any UBX packet (illustrated in figure 2.3)

begins with a two byte preamble of 0xb5, 0x62 (ISO 8859-1 for µb) followed by four bytes

identifying the message class, ID and payload length. The payload will consist of a number

of 8-32 bit signed and unsigned integers or flag bit fields which represent data fields and are

decoded based on their placement in the payload. Depicted in figure 2.3 are the fields of a

NAV(class)-PVT(ID) message, which has a payload length of 92 bytes, where the first four

bytes of the payload represent a 32 bit unsigned integer for the GPS time of week. Latitude and

logitude are represented by 32 bit signed integers and there are other bytes within the payload

where individual bits represent flags within the message (Ublox 2020b).

Figure 2.3: The UBX message frame (NAV PVT fields shown as example)

For this project, only a limited number of message types were used. Within the navigation

class (NAV), the position velocity time (PVT) message provided all critical GNSS data for later

analysis, whilst heading to the moving base was provided by the relative position (RELPOS)

message. In addition. the TIMUTC message was used to get the UTC time solution in order

to update the real time clock (RTC) and some config (CFG) messages were used to program

the GNSS receiver during operation.

CHAPTER 2. RELEVANT LITERATURE 10

Chapter 3

Design Methodology

3.1 Chapter Overview

The evaluation method developed during this project is adapted from ISO 12188-1:2010, which

outlines what tests should be conducted and how to generally calculate accuracy of satellite

based localisation systems. This chapter will outline how the testing methodology was developed

from the standards and the development of the concept system design to be assessed.

3.2 Project Methodology

This project used an simulated research design to test an RTK GNSS system under controlled

real-world conditions to predict accuracy. To achieve the stated aims and objectives, this

required the development of:

� A RTK GNSS system to provide localisation data to a robotics system.

� A testing procedure to ensure validity of the produced system.

� A method of analysing the data and report on the accuracy of the system.

3.2.1 Proposed testing methodology

To verify the accuracy of the designed system, a testing procedure based on the framework

outlined in ISO 12188-1 but within the limitations outlined has been developed. A simple test

track consisting of two straight segments 6.4 meters long and two u-turns with a nominal 5

11

meters diameter as shown in figure 3.1 was be used to assess the PVT accuracy of the ZED-F9P

receiver module.

Figure 3.1: Test track layout

The track was made out of acrylic so as not to induce GNSS signal interference and incor-

porate a gear rack profile in order to provide a means of motorisation and accurate reference

position data. Recording of the actual path traversed by the rover receiver was to be achieved by

recording the distance through the use of a rotary encoder (CUI AMT-102) on a pinion which

recorded the traverse distance along the outer track’s rack. A photo-interrupter switch was

originally designed to record the passing of the reference points A-D n figure 3.1 to indicate the

start and end of each straight run of the travel course, but this was not able to be implemented

on the day of testing.

The data from the GNSS rover reciever was converted to localised linear data points using

the conversion factors calculated from equations 3.1 and 3.2, where a and b were the WGS84

semi-major and semi-minor axis of the ellipsoid, φ was the test site latitude and h was the

average height above the ellipsoid (ISO 2010).

Flon =
π

180◦

(
a2√

a2cos2φ+ b2sin2φ
+ h

)
cosφ (3.1)

Flat ==
π

180◦

(
a2b2

(a2cos2φ+ b2sin2φ)
3
2

+ h

)
(3.2)

This converted the GNSS data into local Cartesian coordinates measured in meters, for which

errors and ultimately accuracy could be estimated. Without a surveyed reference track, relative

cross track error was calculated by comparing the data recorded for each pass of the GNSS

receiver through the straight segment, calculating a theoretical reference line and measuring

CHAPTER 3. DESIGN METHODOLOGY 12

the variation in position data for each pass similar to the methods used by Rounsaville et al.

(2016).

3.2.2 Method

The scheduling for each phase is detailed in section B.1.

3.2.3 Limitations

Resources in the form of manufacturing and time were constrained to implement the full scale

test procedures outlined in ISO 12188. In developing the standards, both Cole et al. (2004) and

Stombaugh et al. (2008) were evaluating GNSS receivers with accuracies of several meters or sub-

meter capability, whilst this project aims to evaluate a centimetre level receiver. Therefore, it is

considered reasonable that the travel course can be reduced in size to allow for the limitations

yet still produce significant data. However, the reduction of the track straight segment to

6.4 meters was well below an originally planned 20 meters, which limited the amount of data

available on the straight segments in order to calculate cross track error. Manufacturing times

combined with poor weather on the day of testing also prevented multiple test runs at different

speeds as originally planned. In the end, only a single test run was able to be conducted where

data was recorded, at a speed of 0.63 m/s. Further tests will be required at longer track lengths,

varying speeds and longer test times in order to gain more beneficial data to be analysed in the

future.

The four reference points marked A-D were originally planned to be surveyed, to provide

the reference start and end mark for each straight segment (A-B and C-D) over which the

horizontal position errors were to be calculated in combination with the encoder data using the

outside track as a reference track. This would have allowed calculating an absolute accuracy of

the system, rather than a relative cross track error.

Additional tests were also planned to be conducted with increased baseline distance between

the base station and rover station to evaluate the effectiveness of the Xbee radio to maintain

centimetre accuracy of the rover station of ranges up to 10 km.

3.3 System concept design

In order to evaluate the ability of the SimpleRTK2b evaluation board to provide accurate

positional data for the requirements of an agricultural robotic system, the system to be designed

will consist of two major sub-systems: a static base station and a rover station.

CHAPTER 3. DESIGN METHODOLOGY 13

3.3.1 Static base station

The static base station’s primary purpose is to provide differential GNSS service messages

(RTCM 3.2) to the rover station via an Xbee Pro SX long range radio (using the industrial, sci-

entific and medical (ISM) frequency band, 918-926 MHz, (Australian Radiofrequency Spectrum

Plan 2017 (Cwlth) 2017)).

The base station will be able to operate in two modes of operation, survey-in mode and

statically defined mode. In survey-in mode, the base station can be placed in any location prior

to switching on, then when it is turn on, the base station will survey itself in with a minimum

specified time and accuracy. In the statically defined mode, the base station will be positioned

over a pre surveyed marker, with the positional data programmed into the ZED-F9P receiver.

The base station is to be powered by either battery or external DC source in order to allow

flexibility in use in either a fixed position or in a field location. An LCD will display the status of

the base station for quick reference to ensure it is operational during the evaluation and should

display the status of the ZED-F9P receiver, battery and RTCM output. A microcontroller shall

provide configuration of the ZED-F9P receiver, monitor power input and drive the LCD display.

A prototype of the base station is presented in figures 3.2 and 3.3, consisting of a Sim-

pleRKT2b ver1 board, Xbee Pro SX radio, Arduino Uno microcontroller, LCD screen with I2C

driver and powered by a 5 V power bank.

3.3.2 Rover station

The rover station’s primary purpose is to provide positional data to an integrated agricultural

robotic system.

The rover station will make use of two ZED-F9P modules so as to provide both PVT data,

but also accurate heading. It will receive RTCM messages from the base station in order to

provide accurate, real time positional and heading data.

3.4 System design requirements

The design requirements of the system have been broken down into two tables, one for the

base station subsystem (table 3.1) and one for the rover station subsystem (table 3.2). Each

requirement has been described as either essential or desirable for the purpose of the project,

where desirable requirements are requirements which support future development of an agri-

cultural robotics system and essential requirements are ones that must be met to evaluate the

SimpleRKT2b board. Requirements highlighted in bold form the major criteria for evaluation

CHAPTER 3. DESIGN METHODOLOGY 14

Figure 3.2: Base station prototype

CHAPTER 3. DESIGN METHODOLOGY 15

Figure 3.3: Base station deployed

CHAPTER 3. DESIGN METHODOLOGY 16

of the system as a low-cost RTK GNSS system.

Table 3.1: Static base station design requirements

Serial Requirement E/D

General requirements

BS-G-01 The system shall use a ZED-F9P configured as a RTK base station. E

BS-G-02 The system will transmit RTCM messages to one or more rover stations E
using Xbee Prox SX radio in an agricultural setting to a range of 20 km
(to be evaluated).

BS-G-03 The system transmits RTCM 1004, 1005 messages, and relative MSM4 E
or MSM7 messages for GPS, GLONASS and Galileo constellations.

BS-G-04 The system is able to be configured to conduct a self-survey-in when D
a pre-surveyed position is not available.

Electrical requirements

BS-E-01 The system is powered by either an external DC voltage or battery E
source.

BS-E-02 Battery system shall be designed to provide 25 hours of continuous D
operation. To ensure continuous RTCM correction data during testing
(ISO12188). Some short intervals allow for battery change.

BS-E-03 The system shall have 5 V regulation for powering subsystems. E

Hardware requirements

BS-H-01 The system hardware is protected by a water resistant enclosure with E
external power and communications ports.

BS-H-02 The antenna system is mountable on a suitable tripod system for field E
use or has the ability to be placed in a fixed position.

Software requirements

BS-S-01 The ZED-F9P is able to be flashed with configuration file in the field. E
Bare minimum to achieve requirements

BS-S-02 User can configure ZED-F9P with the MCU using UBX messages over D
a serial connection. Can be accomplished with either integrated button
system or external connection.

BS-S-03 MCU monitors battery status and provides indication to user. Either E
through LCD or LED indicators or external communication protocol.

BS-S-04 MCU monitors ZED-F9P to ensure base station functionality and E
provide indication to user. Either through LCD or LED indicators or
external communication protocol.

3.5 System preliminary design

Figure 3.4 below outlines the major subsystems of both the static base station and the rover

station. It outlines the communications connections, protocols and speeds that will be used

and the major message types and their direction in order to achieve centimetre level position

accuracy. Wiring diagrams for the base station and rover station design are detailed in Appendix

C.

CHAPTER 3. DESIGN METHODOLOGY 17

Table 3.2: Rover station design requirements

Serial Requirement E/D

General requirements

RS-G-01 The system shall use a ZED-F9P receiver configured as a moving base E
station to provide positional data.

RS-G-02 The system shall use a second ZED-F9P receiver configured as a heading E
module to provide relative position data to the moving base station.

RS-G-03 The system will receive RTCM messages from the static base station E
Xbee Pro SX radio in an agricultural setting at a range of 20 km.

RS-G-04 The system will provide 2 cm accuracy in position data D
(to be evaluated).

RS-G-05 The system will provide 0.4° accuracy in heading data D
(to be evaluated).

RS-G-06 The system has organic data logging capability. E

Hardware requirements

RS-E-01 The system is powered by an external 5 VDC regulated source. E

RS-E-02 The heading ZED-F9P receiver and associated antenna and connectivity D
physically separated from remainder of the system with wireless
connection to moving base for relative position and RTCM messages.

Hardware requirements

RS-H-01 The system hardware is protected by a water-resistant enclosure with E
Eexternal power and communications ports.

RS-H-02 The GNSS antenna system will be designed to have a minimum of one E
meter separation between moving base and heading antennas, in either
an in-line configuration or perpendicular to travel configuration.

RS-H-03 Each GNSS antenna shall have a ground plane. E

Software requirements

RS-S-01 The ZED-F9P is able to be flashed with configuration file in the field. E
Bare minimum to achieve requirements.

RS-S-02 User can configure ZED-F9P with the MCU using UBX messages over a D
serial connection from an external MPU.

RS-S-03 NMEA messages are parsed to provide date, time, position, elevation, E
geoidal separation, course over ground, number of visible satellites,
correction status and satellite constellation configuration.

RS-S-04 Positional data from requirement RS-S-03 is stored on SD card through E
internal data logger.

RS-S-05 The MCU is designed as a ROS2 node providing positional data D
as a service.

RS-S-06 Requirement RS-S-03 is achieved with UBX messages in addition to D
NMEA messages.

RS-S-07 User can select mode of GNSS heading antenna configuration E
(in-line or perpendicular).

RS-S-08 User can configure position reference point for the overall D
robotics system.

RS-S-09 The system is able to provide positional data update at a rate of D
up to 10 Hz.

CHAPTER 3. DESIGN METHODOLOGY 18

Figure 3.4: High level system design

CHAPTER 3. DESIGN METHODOLOGY 19

Chapter 4

Hardware Implementation

4.1 Chapter Overview

This chapter will outline the hardware development that occurred during the project to develop

both a testing rig to conduct an evaluation and the system to be evaluated.

4.2 The Test Rig

In order to evaluate the RTK GNSS rover system’s accuracy, a test rig was designed to provide

a reference track and drive system, so continuous repeatable test runs could be conducted. The

system illustrated in figure 4.1 was designed where an acrylic track (in order to reduce RF

interference) with a gear profile provides an accurate means of measuring the systems distance

around the track.

The track itself was designed to be a modular sandwich construction, with the 6 mm thick

rack pinned between two 3 mm thick guide rails, providing a grove for the v-slot wheels of the

rolling elements of the drive mechanism. An exploded view of a straight section of track is

shown in figure 4.2. For modularity, section lengths were determined to allow cutting of the

gear tooth profile on either end to be symmetrical, resulting in straight sections being 402 mm

long each, an outer track pitch diameter of 5.4 m and an inner track pitch diameter of 4.68

m (this allowed each curved section to span 10° of the curved segment). The completed track

layout for the duration of the test is shown in figures 4.3 - 4.4.

20

Figure 4.1: The test rig concept design.

4.2.1 The Drive Mechanism

In order to provide continuous controlled movement around the track, a brushless DC (BLDC)

motor was selected to provide direct drive of a pinion, using the inbuilt gear profile of the

track to provide locomotion. An open source motor controller board, the ODrive 3.6, was

selected for speed control of the BLDC motor, which provided multiple motor control modes,

quadrature encoder integration for closed-loop control and multiple communication interfaces

(ODrive 2021).

To maintain traction, spring loaded 3D printed bogies with v-slot wheels clamped the drive

mechanism to the track, with the springs mounted on the inner track side in order to keep the

outer, reference track side at a fixed distance from the track. The final test rig drive system is

shown in figure 4.6.

CHAPTER 4. HARDWARE IMPLEMENTATION 21

Figure 4.2: An exploded view of a straight track section.

Figure 4.3: A view of the completed track.

CHAPTER 4. HARDWARE IMPLEMENTATION 22

Figure 4.4: A view of the completed drive system on the track.

4.2.2 Power

Power to the BLDC motor was provided by a 3S LiPo battery (11.1-12.6 V, 3.3 Ah), whilst a

separate 5 V, 10 Ah power bank was used to provide power to the remainder of the electronics.

4.3 The Microcontroller

The ST Nucleo-F767ZI microcontroller (MCU) development board was selected to provide a

real-time system to log GNSS data and to log distance around the track for reference when

analysing the data. The STM32F767ZI can operate up to 216 MHz frequency, has inbuilt

hardware peripherals such as timers (with encoder mode support), RTC, hardware interrupts

and universal asynchronous receiver-transmitter (UART) which has been used in this project

(STMicroelectronics 2021). In addition, as a future integration of the RTK GNSS system for

use as a localisation subsystem of an autonomous agricultural robot, the STM32F767ZI is also

supported by Micro-ROS, a ROS2 implementation for microcontrollers.

CHAPTER 4. HARDWARE IMPLEMENTATION 23

4.3.1 Peripherals

Timers

A second quadrature encoder was mounted on the axel of the BLDC motor with the output

connected to a 32-bit hardware timer on the MCU configured in encoder mode. This allowed

the distance around the reference course to be tracked by the MCU without using processor

resources, with the count value retrieved by the data logging software task when it was required.

UART

Two UART serial interfaces were used on the MCU, both configured for 115200 bps and using

receive interrupts. UART2 was connected to the rover GNSS receiver for transmitting configu-

ration messages and receiving GNSS data. UART3, which is converted to a USB virtual com

port by the Nucleo development boards in-built ST-Link, was connected to the Raspberry Pi

for the transmission of data to be logged and receiving user input.

4.3.2 GPIO interrupt

In addition to the dedicated hardware peripherals, a general purpose input/output (GPIO)

interrupt was configured and connected to a photo interrupter, which detected when the test

rig entered and exit straight segments of the reference course through the use of slots cut into

the track (see figure 4.5). When the interrupt was triggered, the encoder timer count would

be reset and the track segment variable incremented or reset after a complete loop through the

reference course.

4.4 Raspberry Pi

A Raspberry Pi single board computer (SBC) was used to provide wireless control of the entire

system and to log the data to file. Control and monitoring of the ODrive motor controller

was achieved through the use of a python program specifically designed for the ODrive when

connected by USB. As the MCU constantly transmitted data logging information when there

was GNSS data available, a python script was executed on the Raspberry Pi to write all data

received from the MCU to a log file when a test serial was occurring. Figure 4.6 shows the final

test rig with all components connected ready for testing.

CHAPTER 4. HARDWARE IMPLEMENTATION 24

Figure 4.5: The cut slot at the end of straight track segment.

CHAPTER 4. HARDWARE IMPLEMENTATION 25

Figure 4.6: The final test rig.

CHAPTER 4. HARDWARE IMPLEMENTATION 26

Chapter 5

Software Development

5.1 Chapter Overview

This chapter will outline the design of the MCU, which used the FreeRTOS kernal to manage a

number of tasks to accept user input, process the UBX messages, log all data, handle interrupts

and update the RTC. Whilst this chapter will focus on the real time operating system (RTOS)

tasks and key functions, the full source code listings used during data capture is provided in

Appendix D.

5.2 RTOS Tasks

An open source RTOS called FreeRTOS was implemented on the MCU to execute independent

tasks which handle user input, processing UBX messages and logging data in a timely and

deterministic manner. FreeRTOS provides inbuilt functions such as queues and semaphores for

intertask communication and to maintain the ability for multitasking to occur (Amazon Web

Services n.d.). The use of FreeRTOS allows each task to be written as it’s own program, with

the primary tasks used in this project described below.

5.2.1 Processing UBX messages

Due to the variable length of UBX messages, each byte had to processed, as it was received, to

determine message type and length. Whilst the MCU UART hardware handled the reception of

bytes from the GNSS received, a FreeRTOS queue was implemented to store bytes for the UBX

processing task. This task, depicted in figure 5.1, would only be scheduled if there was data

in the queue to be processed, where each byte would be stored in a temporary buffer until the

27

message type and length could be determined and separate buffers created to store the message

data. Once a complete message had been received and the checksum verified, if the message

was a PVT message, a semaphore would be raised to enable the data logging task, which has

a higher priority, to be immediately scheduled in order to capture the PVT data in a timely

manner.

Figure 5.1: The UBX processing task flow chart

The use of the FreeRTOS queue allows the the UBX processing task to be suspended, to allow

the data logging task to be executed, without dropping packets. This is because the hardware

UART continues to store each subsequent byte within the queue and the UBX processing task

is then able to continue once the data logging task has completed. This is illustrated in figure

5.2, where Segger Systemview was used to analyse the ability of the MCU to process the data

logging task in time and for the queue system to maintain UBX processing.

CHAPTER 5. SOFTWARE DEVELOPMENT 28

Figure 5.2: Segger Systemview of the data logging task with priority over the UBX processing
task

5.2.2 Data Logging Task

In order to construct a data log line with all relevant information captured in a timely manner,

the data log task was given high priority, but would only be scheduled when a semaphore was

raised in the receiving of a PVT message. On execution of this task, the encoder timer count

variable (which measures distance around the track), segment variable (recording which segment

is currently being traversed) and the heading data were captured and combined the PVT data

to create a message to be transmitted to the Raspberry Pi for actual logging (as shown in figure

5.3)

5.2.3 RTC update task

The RTC update (depeicted in figure 5.4) task executes on system startup or when a user sends

a command to execute through dynamic creation and deletion. When this task is created, it will

transmit a UBX message over UART to the GNSS receiver to send back a UTC time message

in order to update the internal RTC of the MCU. This task will then wait for a semaphore to

be raised to indicate that the UTC time message has been received, at which point, the MCU

RTC will be updated with the current calendar and time data and then the task will delete

itself to stop running.

CHAPTER 5. SOFTWARE DEVELOPMENT 29

Figure 5.3: The data logging task flow chart

CHAPTER 5. SOFTWARE DEVELOPMENT 30

Figure 5.4: The RTC update task flow chart

CHAPTER 5. SOFTWARE DEVELOPMENT 31

Chapter 6

Results

6.1 Results

6.1.1 Collection of data

A total of 17.6 minutes of data was collected during the successful test run around the travel

course, resulting in the capture of 5280 data points for the UTC time, distance encoder value,

heading, latitude, longitude, height, number of satellites in view and the fix type. This data

was processed in MATLAB, with the code listing provided in appendix E. Initially, the latitude

and longitude data has been plotted (figure 6.1).

Figure 6.1: Trajectory data points.

The latitude and longitude coordinates were projected into a localised coordinate system

so that error and therefore accuracy could be calculated using the method outlined in ISO

12188-1:2010 and section 3.2.1. This adjusted trajectory is shown in figure 6.2.

32

Figure 6.2: Adjusted trajectory.

In order to determine relative cross track error in a pass-to-pass manner, the heading data

was plotted (figure 6.3a) to determine when the test trolly was on the straight segments. The

start and end of the straight segments were determined from this plot by examining where the

heading levelled out at 50° and 230° (figure 6.3b). This resulted in a total of 22 passes in each

of the southwest and the northeast direction in which to analyse.

(a) Corrected heading (b) Sample selection windows

Figure 6.3: Heading data plots

6.1.2 Relative Cross-track Accuracy

Adjusted trajectory points from the two straight segments were grouped together (1126 points

in the southwest segment and 1123 points in the northeast segment). For each segment, a linear

regression was conducted to determine a line of best fit which would be used as a reference line

to calculated relative cross-track error (figures 6.4 - 6.6).

CHAPTER 6. RESULTS 33

Figure 6.4: Adjusted localised GNSS data of southwest segment

CHAPTER 6. RESULTS 34

Figure 6.5: Adjusted localised GNSS data of northeast segment

CHAPTER 6. RESULTS 35

Figure 6.6: Adjusted localised GNSS data of northeast segment (close up view)

CHAPTER 6. RESULTS 36

Using the equation for the line of best fit (y = mx+ c) for each segment, the distance (abso-

lute error) of each trajectory point (px, py) from the line of best fit was calculated algebraically

using equation 6.1. The mean and standard deviation of unsigned errors from this reference

line was then used to calculate relative cross track accuracy using equation 6.2 (ISO 2010). The

results of these calculations are shown in figure 6.7, with an overall relative cross-track accuracy

estimated to be 12.13 mm.

d =

∣∣∣∣mpx − py + c√
1 +m2

∣∣∣∣ (6.1)

accuracy =
√

2(x̄+ Sx) (6.2)

Figure 6.7: Mean and standard deviation of unsigned errors for each segment and overall.

6.1.3 Heading Accuracy

The heading data collected in the two straight segments were also collated into two groups,

where table 6.1 shows the mean and standard deviation for each segment. Using the mean

heading along each straight segment, the error from the mean heading for each data point was

used to calculate heading accuracy (x̄+Sx) (ISO 2010), with the results presented in figure 6.8,

showing an overall estimated heading accuracy of 0.45°.

Table 6.1: Heading data

x̄ (deg) Sx (deg)

Southwest Segment 230.4913 0.3743

Northeast Segment 50.8427 0.2479

CHAPTER 6. RESULTS 37

Figure 6.8: Mean and standard deviation of unsigned heading errors for each segment and
overall.

6.1.4 Errors and Bias of Results

In order to check for errors and bias within the data obtained, the signed relative cross track

errors were plotted for each segment and for each pass in figure 6.9, showing a significant pattern

of distribution in the southwest travel when compared to the northeast passes.

Heading

The difference between mean heading and recorded heading were also plotted to check for

patterns that may indicate bias in figures 6.10 (all data sequentially) and 6.11 (overlayed pass

by pass). Again, a clear pattern emerged in the southwest segment, with 22 distinct passes

showing in figure 6.10 indicating that the travel through this segment was not entirely straight.

CHAPTER 6. RESULTS 38

Figure 6.9: Signed heading errors for each straight segment.

Figure 6.10: Signed heading errors for each straight segment.

CHAPTER 6. RESULTS 39

Figure 6.11: Signed heading errors for each straight segment.

CHAPTER 6. RESULTS 40

Chapter 7

Discussion

7.1 Discussion

This project set out to design and test a low-cost RTK GNSS system, including a base station

and rover station, capable of providing accurate position, heading, and speed data for a mobile

robotic system. Given the low uptake of precision agriculture in small scale farming due to

cost (Thompson et al. 2019), developing a low-cost system has the potential to make precision

agriculture more accessible to small scale producers and go some way to reducing impacts of

farming on the environment.

The results indicate that the low-cost RTK GNSS system designed is precise in horizontal

position and heading, with a relative cross track accuracy of 12.13 mm and heading accurate

to 0.45°. This is in line with the manufacturer’s datasheet reporting 0.01 m + 1 ppm CEP

horizontal accuracy and 0.56 degree accuracy (for a rover/moving base baseline of 0.5 m). In

comparison, a high-cost RTK GNSS receiver, such as the Trimble R10, reports a dynamic

horizontal RTK accuracy of 2 cm RMS (Trimble 2021b).

Examining the signed errors and bias within the data (figures 6.9 - 6.11), it can clearly be

seen in the southwest passes that a bias exists, effecting the results. This bias can be explained

by two factors: the window for data point selection for straight segment analysis and the true

straightness of the track itself. By conducting a polynomial regression on the signed errors

for each pass, it appears that the data window selected included trajectory points when the

rover antenna had not yet completed a turn onto the straight segment, as indicated in the first

sample points of each pass in figure 6.9. In addition, local maximum errors around sample 15

and 33 could also indicate that there deviations in the lay of the track around those points to

consistently induce an error when compared to a line of best fit. Therefore, this could suggest

that the system actually has increased relative cross-track and heading accuracy, with the

northeast segment displaying a relative cross-track accuracy of 11.19 mm and heading accuracy

41

0.35°.

However, it should be noted, due to the limited testing conducted and without surveying the

reference course, that the results are only relative accuracies, not absolute. Further accuracy

errors will occur due to the accuracy of the base station which is sending correction data.

Although, if the base station configuration remains the same, the error in absolute position

data will also remain the same. Therefore, the precision of the rover station will remain the

same, it will continue to report the same position data for a given position within the relative

accuracy for a given position in space, it will just have the same absolute error from a global

datum reference.

For use in agricultural robotics and automation, this absolute error can be negated where

precision with accuracy in relation to a global datum reference is not required. By establishing

a permanent base station for a RTK network, there will be a local datum reference, offset from

the global reference by the base stations position error. Any rover station on this RTK network

will have the same error in magnitude and direction, so in an example where there multiple

autonomous robots working as a swarm, either in cooperation or independently, they will still

maintain precise localisation data in relation to each other. Also, in the case of navigating

crop rows, where the cross-track accuracy test is designed for, a vehicle, whether autonomous

or using an auto steering system, is able to make repeatable and consistent travel along any

course, thus reducing the variability of wheel ruts and therefore reducing the spread of soil

compaction.

The overall cost of the RTK GNSS system designed in this project was less than $2,000

using development boards, which could be further reduced by designing custom PCBs around

the ZED-F9P module for the required purpose. At this price point, it is feasible to achieve

centimetre level localisation systems in multiple small autonomous vehicles.

The test track and driven trolley system developed during this project proved successful

in providing a stable system in which to assess GNSS systems. However, further refinement

and development of the system is required. As indicated in the bias in signed errors, data

window selection for straight segments could have been automated and made more precise by

implementing the originally planed photo-interrupter. This would have also allowed the use of

the quadrature encoder count values to measure the actual distance along the straight segment,

where overall position accuracy of the system could have been assessed, rather than just cross-

track accuracy.

CHAPTER 7. DISCUSSION 42

Chapter 8

Conclusions and Further Work

8.1 Conclusions

The key objectives of designing a low-cost RTK GNSS system and evaluating its position and

heading accuracy was met, with limited testing indicating that the system designed was able to

provide precise PVT data in a timely manner. Though many issues encountered limited the full

implementation of the evaluation system, with further work, more data on the low-cost RTK

GNSS system can be acquired to further validate the system for use in robotic localisation.

The ZED-F9P GNSS receiver module displayed promising results to provide a reliable,

accurate and cost effective means for use in small autonomous vehicles, which can be deployed

individually or in fleets to achieve a growing number of precision agriculture tasks such as

acquiring site specific sensor data, weed and pest management.

8.2 Recommendations and Further Work

There were key design features of the testing rig which would have enhanced the quality of

data collected which were not implemented on the day of testing due to time constraints.

By increasing the length of the straight segments, implementing the photo-interrupter circuit,

surveying the reference course and increasing the number and duration of test runs would have

greatly enhanced the results obtained to truly evaluate a low-cost RTK GNSS system.

Additional straight sections were manufactured, which could have provided straight segment

lengths of 20 meters. This would have yielded a higher ratio of data points along the straight

segments, as during the testing that did occur, over half the data points were located on the

curves of the reference track.

43

By implementing the photo-interrupter, data collection can be more streamlined, but also a

reference position along the track can be determined, allowing for the calculating more than just

cross-track and heading accuracy. In addition, the testing that did occur indirectly highlighted

the need to move the photo-interrupter slot away from the transition from straight segment to

curved segment so to insure rover receiver antenna is actually conducting straight travel when

data is collected. This is just a matter of section placement when assembling the track.

Surveying the reference course, as well as the RTK base station, is essential for determining

the absolute accuracy of the system under evaluation. It would provide a ground truth referenced

to a global datum of the path travelled by the GNSS receiver for which to compare the output

and determine errors. Thus providing a more rigorous evaluation of the system.

In addition to the physical changes, it is also recommended to carry out a more thorough

testing methodology by conducting longer tests, at different speeds and over the period of a

whole 24 hour period to capture the differences that receiver velocity and atmospheric conditions

have on the receivers accuracy.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 44

References

Amazon Web Services (n.d.), ‘FreeRTOS’, viewed 12 April 2021, https://www.freertos.org/

index.html.

ArduSimple (2021), ‘SimpleRTK2B OEM RTK receivers’, viewed 20 April 2021, https://www.

ardusimple.com/simplertk2b-receivers/.

Australian Radiofrequency Spectrum Plan 2017 (Cwlth) (2017). viewed 20 April 2021, https:

//www.legislation.gov.au/Details/F2016L02001.

Cole, J. T., Stombaugh, T. S. & Shearer, S. A. (2004), Development of a test track for the

evaluation of gps receiver dynamic performance, in ‘2004 ASAE/CSAE Annual International

Meeting, 1-4 August 2004, Ottawa, Ontario, Canada’.

Department of the Prime Minister and Cabinet (2021), ‘Critical technologies dis-

cussion paper: Agriculture’, Critical Technologies Policy Coordination Office,

viewed 25 May 2021, https://pmc.gov.au/sites/default/files/publications/

ctpco-discussion-paper-agriculture.pdf.

Digi (2020), XBee/XBee-PRO SX radio frequency module – user guide, Digi International.

viewed 12 Aprl 2021, https://www.digi.com/resources/documentation/digidocs/pdfs/

90001477.pdf.

Hamza, V., Stopar, B., Ambrozic, T., Turk, G. & Sterle, O. (2020), ‘Testing multi-frequency

low-cost gnss receivers for geodetic monitoring purposes’, Sensors, Vol. 20(4375).

ISO (2010), ISO 12188-1:2010 - Standard Tractors and machinery for agriculture and forestry –

Test procedures for positioning and guidance systems in agriculture. Part 1: Dynamic testing

of satellite-based positioning devices, ISO.

Knight, B. & Malcolm, B. (2009), ‘A whole-farm investment analysis of some precision agri-

culture technologies’, Australasian Farm Business Management Journal, Vol. 6(1), p. 14.

viewed 21 May 2021, https://cdn.csu.edu.au/__data/assets/pdf_file/0010/109459/

AFBM_Journal_v06_n01_04_Knight_and_Malcolm.pdf.

45

Mouser (2021a), ‘AS-RTK2b-F9P-L1L2-NH-02 ArduSimple | Mouser’, viewed 29 May 2021,

https://au.mouser.com/ProductDetail/780-F9PL1L2NH02.

Mouser (2021b), ‘AS-STARTKIT-LR-L1L2-NANH-00 ArduSimple | Mouser’, viewed 29 May

2021, https://au.mouser.com/ProductDetail/780-TKITLRL1L2NANH00.

ODrive (2021), ‘ODrive robotics’, viewed 12 April 2021, https://odriverobotics.com/.

Perez-Ruiz, M. & Upadhyaya, S. K. (2012), GNSS in Precision Agricultural Op-

erations, IntechOpen. Publication Title: New Approach of Indoor and Out-

door Localization Systems, viewed 30 May 2021, https://www.intechopen.

com/books/new-approach-of-indoor-and-outdoor-localization-systems/

gnss-in-precision-agricultural-operations.

Pini, M., Marucco, G., Falco, G., Nicola, M. & De Wilde, W. (2020), ‘Experimental testbed and

methodology for the assessment of RTK GNSS receivers used in precision agriculture’, IEEE

Access Vol. 8, pp. 14690–14703. viewed 12 April 2021, https://ieeexplore-ieee-org.

ezproxy.usq.edu.au/document/8955794.

Rounsaville, J. D., Dvorak, J. S. & Stombaugh, T. S. (2016), ‘Methods for Calculating Relative

Cross-Track Error for ASABE/ISO Standard 12188-2 from Discrete Measurements’, Trans-

actions of the ASABE 59(6), 1609–1616. viewed 10 October 2021, http://elibrary.asabe.

org/abstract.asp?aid=47588&t=3&dabs=Y&redir=&redirType=.

Rybacki, P., Przygodziński, P., Osuch, A., Blecharczyk, A., Walkowiak, R., Osuch, E. & Kowa-

lik, I. (2021), ‘The Technology of Precise Application of Herbicides in Onion Field Cultiva-

tion’, Agriculture 11(7), 577. viewed 24 August 2021, https://www.mdpi.com/2077-0472/

11/7/577.

Shamshiri, R. R., Hameed, I. A., Balasundram, S. K., Ahmad, D., Weltzien, C. & Yamin, M.

(2018), Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture

in Oil Palm Plantations, IntechOpen. Publication Title: Agricultural Robots - Fundamentals

and Applications, viewed 13 October 2021, https://www.intechopen.com/chapters/63775.

STMicroelectronics (2021), ‘High-performance and dsp with fpu, arm cortex-m7 mcu with 2

mbytes of flash memory, 216 mhz cpu, art accelerator, l1 cache, sdram, tft, jpeg codec, dfsdm’,

viewed 12 April 2021, https://www.st.com/en/microcontrollers-microprocessors/

stm32f767zi.html#overview&secondary=st_description_sec-nav-tab.

Stombaugh, T. S., Sama, M. P., Zandonadi, R. S., Shearer, S. A. & Koostra, B. K. (2008),

Standardized evaluation of dynamic gps performance, in ‘2008 ASABE Annual International

Meeting, 29 June - 2 July 2008, Providence, Rhode Island, USA’.

Thompson, N. M., Bir, C., Widmar, D. A. & Mintert, J. R. (2019), ‘Farmer Perceptions of

Precision Agriculture Technology Benifits’, Journal of Agricultural and Applied Economics

REFERENCES 46

51(1), 142–163. viewed 10 October 2021, https://www.cambridge.org/core/product/

identifier/S1074070818000275/type/journal_article.

Trimble (2021a), ‘NMEA-0183 message: RMC’, viewed 20 May 2021, https://www.trimble.

com/OEM_ReceiverHelp/V4.44/en/NMEA-0183messages_RMC.html.

Trimble (2021b), ‘Trimble r10 model 2 GNSS system datasheet’, viewed 12 Oc-

tober 2021, https://geospatial.trimble.com/sites/geospatial.trimble.com/files/

2021-07/022516-332B_TrimbleR10-2_DS_USL_0721_LR.pdf.

Tzounis, A., Katsoulas, N., Bartzanas, T. & Kittas, C. (2017), ‘Internet of things in agriculture,

recent advances and future challenges’, Biosystems Engineering, Vol. 164, pp. 31–48.

Ublox (2020a), ZED-F9P Datasheet. viewed 12 April 2021, https://www.u-blox.com/sites/

default/files/ZED-F9P_DataSheet_%28UBX-17051259%29.pdf.

Ublox (2020b), ZED-F9P interface description. viewed 12 April 2021, https://www.u-blox.

com/sites/default/files/ZED-F9P_InterfaceDescription_%28UBX-18010854%29.pdf.

Williams, R. D., Lamy, M.-L., Maniatis, G. & Stott, E. (2020), ‘Three-dimensional recon-

struction of fluvial surface sedimentology and topography using personal mobile laser scan-

ning’, Earth Surface Processes and Landforms 45(1), 251–261. viewed 13 October 2021,

http://onlinelibrary.wiley.com/doi/abs/10.1002/esp.4747.

Wolfert, S., Ge, L., Verdouw, C. & Bogaardt, M, J. (2017), ‘Big data in mmart farming: a

review’, Agricultural Systems, Vol. 153, pp. 69–80.

Zhang, N., Wang, M. & Wang, N. (2002), ‘Precision agriculture—a worldwide overview’,

Computers and Electronics in Agriculture Vol. 36(2), pp. 113–132. viewed 28 May 2021,

https://linkinghub.elsevier.com/retrieve/pii/S0168169902000960.

Zhang, Q. (2016), Precision agriculture technology for crop farming, Taylor and Francis, Boca

Raton. viewed 13 October 2021, https://usq.primo.exlibrisgroup.com/view/action/

uresolver.do?operation=resolveService&package_service_id=3390667710004691&

institutionId=4691&customerId=4690.

REFERENCES 47

Appendix A

Project specification

ENG4111/4112 Research Project

Project Specification

For: Simon Castles

Title: Precision RTK GNSS for low-cost robotic system.

Major: Mechatronics engineering

Supervisor: Dr. Craig Lobsey

Enrolment: ENG4111 – ONL S1, 2021

ENG4112 – ONL S2, 2021

Project aim: To design and evaluate a low-cost RTK-GNSS systems that can be used to

make precision agriculture more widely available, and support the

development of low-cost agricultural robotic systems.

Programe: Version 1, 17 March 2021

1. Research background information on precision agriculture and the use of RTK-GNSS.

2. Review methods and standards of evaluating accuracy of localisation systems.

3. Review accuracy requirements for precision agriculture (e.g. guidance) and agricultural

robotics.

4. Design a low-cost RTK-GNSS base station and rover station for an agricultural robotic

system.

5. Design evaluation rigs for rover position and heading accuracy.

6. Evaluate the RTK-GNSS base station for position accuracy using “survey-in” mode vs

survey mark.

48

7. Evaluate rover station benchmarks of position accuracy, heading accuracy and radio range.

If time and resources permit:

8. Conduct a field trial of the RTK-GNSS system mounted on agricultural vehicle.

9. Evaluate heading accuracy of a rover station consisting of two GNSS receivers vs a rover

station consisting of GNSS + INS + compass.

10. Incorporate and evaluate pairing RTK-GNSS system data with an underground soil sensor

receiver.

APPENDIX A. PROJECT SPECIFICATION 49

Appendix B

Project Management

B.1 Project Schedule

The was is planned to be carried out in 5 phases:

� Phase 1: Design and build an RTK GNSS system.

� Phase 2: Design and build position and heading evaluation test rig.

� Phase 3: Conduct evaluation and collect position and heading data of an RTK-GNSS

system.

� Phase 4: Analysis of data.

� Phase 5: Dissertation report.

Each phase has been broken into tasks that will be undertaken to accomplish the project

aim. Table B.1 outlines each task within the phases, which has been further broken down into

the project schedule presented in figure B.1.

50

Table B.1: Phase breakdown

Phase 1 - Design and build an RTK-GNSS system

1.1 Conduct literature review of precision agriculture, localisation and existing
RTK-GNSS systems.

1.2 Design an RTK-GNSS base station with an open-source operating system
allowing a user to input position or use “survey-in” mode.

1.3 Design an RTK-GNSS rover station with an open-source operating system with
the ability to log GNSS data for export and later analysis.

1.4 Acquire additional resources for system assembly.
1.5 Assemble base station.
1.6 Assemble rover station.

Phase 2 – Design and build evaluation test rig

2.1 Design a test rig for evaluation of rover position accuracy.
2.2 Design a test rig for evaluation of rover heading accuracy.
2.3 Acquire additional resources for test rig assembly.
2.4 Assemble test rigs.

Phase 3 - Conduct evaluation of position and heading accuracy of the system

3.1 Conduct evaluation of the base station for position accuracy using “survey-in”
mode vs survey mark.

3.2 Conduct evaluation of rover station position accuracy.
3.3 Conduct evaluation of rover station heading accuracy.
3.4 Conduct evaluation of system radio range.
3.5 Check to ensure results have been recorded for tasks 3.1, 3.2, 3.3 and 3.4.
3.6 Progress report.

Phase 4 – Analysis of data

4.1 Prepare analysis of position data points, compare with calculated.
4.2 Check data for collection faults.
4.3 Prepare results for discussion in dissertation.

Phase 5 – Dissertation report

5.1 Continually write up draft dissertation and submit to supervisor for feedback.
5.2 Present project at ENG4903 conference.
5.3 Finalise dissertation and submit for marking.

APPENDIX B. PROJECT MANAGEMENT 51

F
ig

u
re

B
.1

:
P

ro
je

ct
sc

h
ed

u
le

APPENDIX B. PROJECT MANAGEMENT 52

B.2 Resource Requirements

The resources required for this project have been broken up to hardware requirements, software

requirements and additional time/space resources.

B.2.1 Hardware requirements

As the basis of this project, three SimpleRKT2b boards will be required to form the centre of

the RTK GNSS base station and rover station (a second receiver being used to produce heading

data without addional sensors). In order to achieve wireless transmission of RTCM messages

between the base station and rover station, two Xbee Pro SX radios will be used. So that the

GNSS PVT data can be accessed, readable and recorded, either a microcontroller or system on

a chip (SoC) will also be required to implement either basic data acquisition or ROS2. Table

B.2 outlines the essential hardware requirements for the design system.

Table B.2: Project system resource requirements

Resource item Qty Source Remarks

simpleRTK2B-F9P RTK receiver 3 USQ

Survey GNSS antenna 3 USQ

Xbee Pro SX radio 2 USQ For RTCM messages

Xbee Pro S3B radio 2 Student For heading messages

STM32 Nucleo F767ZI 1 Student FreeRTOS and MicroROS integration

For the travel course cart, propulsion will be achieved through a brushless DC motor (BLDC)

controlled be the ODrive motor controller and STM32 microcontroller which will also function

to record the actual path traversed. Table B.3 outlines the major hardware requirements for

the travel course cart.

Table B.3: Project test rig resource requirements

Resource item Qty Source Remarks

STM32 Nucleo F401RE 1 Student For system control and DAQ

ODrive 3.6 56v motor controller 1 Student For motor control

CUI AMT-102 rotary encoder 2 Student For speed control and distance DAQ

4250 410 Kv BLDC 1 Student For track movement

T-Slot Photo Interrupter 1 USQ For reference point DAQ

B.2.2 Software requirements

For integration of this project into a larger robotics system, ROS2 will be implemented on the

RTK GNSS rover station sub-system. If a microcontroller is used in this sub-system, a slimmed

APPENDIX B. PROJECT MANAGEMENT 53

down version of ROS2 for microcontrollers called micro-ROS will be implemented, which will

also require FreeRTOS to be implemented on the STM32 F746ZG identified above.

B.2.3 Addition time/space resources

For rapid prototyping of the test rig track and cart components, a Trotec Speedy 300 CO2 laser

cutter will be used at the State Library of Queensland (SLQ). For final production of the test

track, USQ’s water-jet cutter will be trialled for suitability as an alternative to SLQ’s resources.

To ensure accurate evaluation of the system, the RTK GNSS base station locations and the

four reference points on the travel course will require to be professionally surveyed by GIS staff

or students from USQ. A large space for the travel course to be located that provides 10° from

horizon clearance to the antenna and is from from metallic objects at a distance of 50 m is also

required for the duration of the evaluation phase of the project.

B.3 Risk management

The safety risk management plan for this project is presented below.

APPENDIX B. PROJECT MANAGEMENT 54

Th
is

do
cu

m
en

t i
s

un
co

nt
ro

lle
d

on
ce

 p
rin

te
d

an
d

m
ay

 n
ot

 b
e

th
e

la
te

st
 v

er
si

on
. A

cc
es

s
th

e
on

lin
e

SR
M

S
fo

r t
he

 la
te

st
 v

er
si

on
. S

af
et

y
Ri

sk
 M

an
ag

em
en

t P
la

n
V1

.1

Appendix C

Wiring diagrams

60

APPENDIX C. WIRING DIAGRAMS 61

APPENDIX C. WIRING DIAGRAMS 63

Appendix D

Microcontroller Source Code - C

D.1 Main C Program

/* USER CODE BEGIN Header */

/**

**

* @f i l e : main . c

* @br ie f : Main program body

**

* @at ten t ioe exn

*

* <h2><center>© ; Copyright (c) 2021 STMicroe lec t ronics .

* Al l r i g h t s r e s e rved .</ center></h2>

*

* This so f tware component i s l i c e n s e d by ST under BSD 3=Clause l i c en s e ,

* the ”License ” ; You may not use t h i s f i l e excep t in compliance wi th the

* License . You may ob ta in a copy o f the License at :

* opensource . org / l i c e n s e s /BSD=3=Clause

*

**

*/

/* USER CODE END Header */

/* Inc l ude s ==*/

#include ”main . h”

#include ” f a t f s . h”

/* Pr iva te i n c l u d e s ==*/

/* USER CODE BEGIN Inc lude s */

64

#include <FreeRTOS . h>

#include <task . h>

#include <semphr . h>

#include <queue . h>

//#inc l ude <SEGGER SYSVIEW. h>

//#inc l ude <Nucleo F767ZI GPIO . h>

//#inc l ude <Nuc leo F767ZI In i t . h>

#include <stm32f7xx hal . h>

#include ”UBX. h”

#include <s t d i o . h>

#include <s t r i n g . h>

#include <s tdarg . h> // f o r v a l i s t var arg f unc t i on s

#include <s tdboo l . h>

/* USER CODE END Inc lude s */

/* Pr iva te t yp ede f ===*/

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Pr iva te d e f i n e ==*/

/* USER CODE BEGIN PD */

#define STACK SIZE 128

/* USER CODE END PD */

/* Pr iva te macro ===*/

/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Pr iva te v a r i a b l e s ===*/

RTC HandleTypeDef hrtc ;

SPI HandleTypeDef hsp i1 ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 65

TIM HandleTypeDef htim2 ;

TIM HandleTypeDef htim3 ;

UART HandleTypeDef huart2 ;

UART HandleTypeDef huart3 ;

UART HandleTypeDef huart6 ;

/* USER CODE BEGIN PV */

char b u f f e r [1 0 0] ; // Buf fer to ho ld SD card v a r i a b l e

u i n t 8 t UART2 rxBuffer [1] = {0} ; //where 2 i s the UART number be ing used f o r GN

SemaphoreHandle t semPtr = NULL; // crea t e s t o rage f o r a po in t e r to a semaphore

SemaphoreHandle t DLsemPtr = NULL; // crea t e s t o rage f o r a po in t e r to a semaphore

SemaphoreHandle t TIMEsemPtr = NULL; // crea t e s t o rage f o r a po in t e r to a getTIME

stat ic QueueHandle t uart2 BytesRece ived = NULL;

stat ic QueueHandle t uart3 BytesRece ived = NULL;

stat ic bool rx InProgre s s = f a l s e ;

u i n t 8 t segment ;

u i n t 3 2 t encoder cnt ;

/* USER CODE END PV */

/* Pr iva te f unc t i on pro to t ype s ===*/

void SystemClock Config (void) ;

stat ic void MX GPIO Init (void) ;

stat ic void MX USART3 UART Init(void) ;

stat ic void MX USART2 UART Init(void) ;

stat ic void MX USB OTG FS USB Init (void) ;

stat ic void MX RTC Init (void) ;

stat ic void MX SPI1 Init (void) ;

stat ic void MX TIM2 Init (void) ;

stat ic void MX TIM3 Init (void) ;

stat ic void MX USART6 UART Init(void) ;

/* USER CODE BEGIN PFP */

void USR GPIO Init (void) ;

void GreenTaskA (void * argument) ;

void BlueTaskB (void* argumet) ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 66

void DataLogTask (void* argumet) ;

void myprintf (const char * fmt , . . .) ;

void ProcessUBXTask (void* NotUsed) ;

void RTC UpdateTask (void* NotUsed) ;

void UserInputTask (void* argument) ;

/* USER CODE END PFP */

/* Pr iva te user code ===*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**

* @br ie f The app l i c a t i o n entry po in t .

* @retva l i n t

*/

int main (void)

{
/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Conf igurat ion==*/

/* Reset o f a l l p e r i phe ra l s , I n i t i a l i z e s the Flash i n t e r f a c e and the Sy s t i c k .

HAL Init () ;

/* USER CODE BEGIN I n i t */

/* USER CODE END In i t */

/* Configure the system c l o c k */

SystemClock Config () ;

/* USER CODE BEGIN Sy s In i t */

/* USER CODE END Sys In i t */

/* I n i t i a l i z e a l l con f i gured p e r i p h e r a l s */

MX GPIO Init () ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 67

MX USART3 UART Init () ;

MX USART2 UART Init () ;

MX USB OTG FS USB Init () ;

MX RTC Init () ;

MX SPI1 Init () ;

MX TIM2 Init () ;

MX TIM3 Init () ;

MX USART6 UART Init () ;

MX FATFS Init () ;

/* USER CODE BEGIN 2 */

USR GPIO Init () ;

UBX Init () ;

// S ta r t t imers

HAL TIM Encoder Start(&htim2 , TIM CHANNEL ALL) ;

//SEGGER SYSVIEW Conf () ;

NVIC SetPriorityGrouping (0) ; // ensure proper p r i o r i t y grouping f o r freeRTOS

// crea t e a semaphore us ing the FreeRTOS Heap

semPtr = xSemaphoreCreateBinary () ;

assert param (semPtr != NULL) ;

DLsemPtr = xSemaphoreCreateBinary () ;

assert param (DLsemPtr != NULL) ;

TIMEsemPtr = xSemaphoreCreateBinary () ;

assert param (DLsemPtr != NULL) ;

i f (xTaskCreate (GreenTaskA , ”GreenTaskA” , STACK SIZE , NULL, tskIDLE PRIORITY +

NULL) != pdPASS){while (1) ; }

i f (xTaskCreate (BlueTaskB , ”BlueTaskB” , STACK SIZE , NULL, tskIDLE PRIORITY + 1

NULL) != pdPASS){while (1) ; }

// crea t e t a s k to carry out data l o g g i n g

assert param (xTaskCreate (DataLogTask , ”DataLogTask” , 256 , NULL, tskIDLE PRIORIT

NULL) == pdPASS) ;

// se tup tasks , making sure they have been prope r l y c rea t ed b e f o r e moving on

uart2 BytesRece ived = xQueueCreate (100 , s izeof (char)) ;

assert param (uart2 BytesRece ived != NULL) ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 68

uart3 BytesRece ived = xQueueCreate (10 , s izeof (char)) ;

assert param (uart3 BytesRece ived != NULL) ;

assert param (xTaskCreate (UserInputTask , ” UserInputTask ” , STACK SIZE , NULL,

tskIDLE PRIORITY + 1 , NULL) == pdPASS) ;

assert param (xTaskCreate (ProcessUBXTask , ”ProcessUBX” , STACK SIZE , NULL,

tskIDLE PRIORITY + 2 , NULL) == pdPASS) ;

assert param (xTaskCreate (RTC UpdateTask , ”RTC Update” , STACK SIZE , NULL,

tskIDLE PRIORITY + 3 , NULL) == pdPASS) ;

// s t a r t the s chedu l e r = shouldn ’ t re turn un l e s s t he r e ’ s a problem

vTaskStartScheduler () ;

// i f you ’ ve wound up here , t h e r e i s l i k e l y an i s s u e wi th overrunning the freeRT

/* USER CODE END 2 */

/* I n f i n i t e loop */

/* USER CODE BEGIN WHILE */

while (1)

{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}
/* USER CODE END 3 */

}

/**

* @br ie f System Clock Conf i gura t ion

* @retva l None

*/

void SystemClock Config (void)

{
RCC OscInitTypeDef RCC OscInitStruct = {0} ;

RCC ClkInitTypeDef RCC ClkInitStruct = {0} ;

RCC PeriphCLKInitTypeDef Per iphClk In i tS t ruc t = {0} ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 69

/** Configure LSE Drive Capab i l i t y

*/

HAL PWR EnableBkUpAccess () ;

HAL RCC LSEDRIVE CONFIG(RCC LSEDRIVE LOW) ;

/** Configure the main i n t e r n a l r e g u l a t o r output v o l t a g e

*/

HAL RCC PWR CLK ENABLE () ;

HAL PWR VOLTAGESCALING CONFIG(PWR REGULATOR VOLTAGE SCALE1) ;

/** I n i t i a l i z e s the RCC Os c i l l a t o r s accord ing to the s p e c i f i e d parameters

* in the RCC OscInitTypeDef s t r u c t u r e .

*/

RCC OscInitStruct . Osc i l l a to rType = RCC OSCILLATORTYPE HSE |RCC OSCILLATORTYPE L

RCC OscInitStruct . HSEState = RCC HSE BYPASS;

RCC OscInitStruct . LSEState = RCC LSE ON;

RCC OscInitStruct .PLL. PLLState = RCC PLL ON;

RCC OscInitStruct .PLL. PLLSource = RCC PLLSOURCE HSE;

RCC OscInitStruct .PLL.PLLM = 4 ;

RCC OscInitStruct .PLL.PLLN = 216 ;

RCC OscInitStruct .PLL.PLLP = RCC PLLP DIV2 ;

RCC OscInitStruct .PLL.PLLQ = 9 ;

RCC OscInitStruct .PLL.PLLR = 2 ;

i f (HAL RCC OscConfig(&RCC OscInitStruct) != HAL OK)

{
Error Handler () ;

}
/** Act i va t e the Over=Drive mode

*/

i f (HAL PWREx EnableOverDrive () != HAL OK)

{
Error Handler () ;

}
/** I n i t i a l i z e s the CPU, AHB and APB buses c l o c k s

*/

RCC ClkInitStruct . ClockType = RCC CLOCKTYPE HCLK |RCC CLOCKTYPE SYSCLK

|RCC CLOCKTYPE PCLK1 |RCC CLOCKTYPE PCLK2;

RCC ClkInitStruct . SYSCLKSource = RCC SYSCLKSOURCE PLLCLK;

RCC ClkInitStruct . AHBCLKDivider = RCC SYSCLK DIV1 ;

RCC ClkInitStruct . APB1CLKDivider = RCC HCLK DIV4 ;

RCC ClkInitStruct . APB2CLKDivider = RCC HCLK DIV2 ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 70

i f (HAL RCC ClockConfig(&RCC ClkInitStruct , FLASH LATENCY 7) != HAL OK)

{
Error Handler () ;

}
Per iphClk In i tS t ruc t . Per iphClockSe l e c t i on = RCC PERIPHCLK RTC |RCC PERIPHCLK USAR

|RCC PERIPHCLK USART3 |RCC PERIPHCLK USART6

|RCC PERIPHCLK CLK48 ;

Per iphClk In i tS t ruc t . RTCClockSelection = RCC RTCCLKSOURCE LSE;

Per iphClk In i tS t ruc t . Usar t2ClockSe l e c t i on = RCC USART2CLKSOURCE PCLK1;

Per iphClk In i tS t ruc t . Usar t3ClockSe l e c t i on = RCC USART3CLKSOURCE PCLK1;

Per iphClk In i tS t ruc t . Usar t6ClockSe l e c t i on = RCC USART6CLKSOURCE PCLK2;

Per iphClk In i tS t ruc t . C lk48ClockSe l ec t ion = RCC CLK48SOURCE PLL;

i f (HAL RCCEx PeriphCLKConfig(& Per iphClk In i tS t ruc t) != HAL OK)

{
Error Handler () ;

}
}

/**

* @br ie f RTC I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX RTC Init (void)

{

/* USER CODE BEGIN RTC Init 0 */

/* USER CODE END RTC Init 0 */

RTC TimeTypeDef sTime = {0} ;

RTC DateTypeDef sDate = {0} ;

/* USER CODE BEGIN RTC Init 1 */

/* USER CODE END RTC Init 1 */

/** I n i t i a l i z e RTC Only

*/

hrtc . In s tance = RTC;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 71

hrtc . I n i t . HourFormat = RTC HOURFORMAT 24;

hrtc . I n i t . AsynchPrediv = 127 ;

hr tc . I n i t . SynchPrediv = 255 ;

hr tc . I n i t . OutPut = RTC OUTPUT DISABLE;

hrtc . I n i t . OutPutPolarity = RTC OUTPUT POLARITY HIGH;

hrtc . I n i t . OutPutType = RTC OUTPUT TYPE OPENDRAIN;

i f (HAL RTC Init(&hrtc) != HAL OK)

{
Error Handler () ;

}

/* USER CODE BEGIN Check RTC BKUP */

/* USER CODE END Check RTC BKUP */

/** I n i t i a l i z e RTC and s e t the Time and Date

*/

sTime . Hours = 0x0 ;

sTime . Minutes = 0x0 ;

sTime . Seconds = 0x0 ;

sTime . DayLightSaving = RTC DAYLIGHTSAVING NONE;

sTime . StoreOperat ion = RTC STOREOPERATION RESET;

i f (HAL RTC SetTime(&hrtc , &sTime , RTC FORMAT BCD) != HAL OK)

{
Error Handler () ;

}
sDate . WeekDay = RTCWEEKDAYMONDAY;

sDate . Month = RTC MONTH JANUARY;

sDate . Date = 0x1 ;

sDate . Year = 0x0 ;

i f (HAL RTC SetDate(&hrtc , &sDate , RTC FORMAT BCD) != HAL OK)

{
Error Handler () ;

}
/* USER CODE BEGIN RTC Init 2 */

/* USER CODE END RTC Init 2 */

}

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 72

/**

* @br ie f SPI1 I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX SPI1 Init (void)

{

/* USER CODE BEGIN SPI1 In i t 0 */

/* USER CODE END SPI1 In i t 0 */

/* USER CODE BEGIN SPI1 In i t 1 */

/* USER CODE END SPI1 In i t 1 */

/* SPI1 parameter c on f i g u r a t i on */

hsp i1 . In s tance = SPI1 ;

hsp i1 . I n i t . Mode = SPI MODE MASTER;

hsp i1 . I n i t . D i r e c t i on = SPI DIRECTION 2LINES ;

hsp i1 . I n i t . DataSize = SPI DATASIZE 8BIT ;

hsp i1 . I n i t . CLKPolarity = SPI POLARITY LOW;

hspi1 . I n i t . CLKPhase = SPI PHASE 1EDGE ;

hsp i1 . I n i t . NSS = SPI NSS SOFT ;

hsp i1 . I n i t . BaudRatePrescaler = SPI BAUDRATEPRESCALER 32;

hsp i1 . I n i t . F i r s t B i t = SPI FIRSTBIT MSB ;

hsp i1 . I n i t . TIMode = SPI TIMODE DISABLE ;

hsp i1 . I n i t . CRCCalculation = SPI CRCCALCULATION DISABLE;

hsp i1 . I n i t . CRCPolynomial = 7 ;

hsp i1 . I n i t . CRCLength = SPI CRC LENGTH DATASIZE ;

hsp i1 . I n i t . NSSPMode = SPI NSS PULSE ENABLE ;

i f (HAL SPI Init(&hspi1) != HAL OK)

{
Error Handler () ;

}
/* USER CODE BEGIN SPI1 In i t 2 */

/* USER CODE END SPI1 In i t 2 */

}

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 73

/**

* @br ie f TIM2 I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX TIM2 Init (void)

{

/* USER CODE BEGIN TIM2 Init 0 */

/* USER CODE END TIM2 Init 0 */

TIM Encoder InitTypeDef sConf ig = {0} ;

TIM MasterConfigTypeDef sMasterConf ig = {0} ;

/* USER CODE BEGIN TIM2 Init 1 */

/* USER CODE END TIM2 Init 1 */

htim2 . Ins tance = TIM2 ;

htim2 . I n i t . P r e s c a l e r = 0 ;

htim2 . I n i t . CounterMode = TIM COUNTERMODE UP;

htim2 . I n i t . Per iod = 4294967295;

htim2 . I n i t . C lockDiv i s ion = TIM CLOCKDIVISION DIV1 ;

htim2 . I n i t . AutoReloadPreload = TIM AUTORELOAD PRELOAD ENABLE;

sConf ig . EncoderMode = TIM ENCODERMODE TI12;

sConf ig . IC1Polar i ty = TIM ICPOLARITY RISING ;

sConf ig . IC1Se l e c t i on = TIM ICSELECTION DIRECTTI ;

sConf ig . IC1Presca l e r = TIM ICPSC DIV1 ;

sConf ig . IC 1F i l t e r = 0 ;

sConf ig . IC2Polar i ty = TIM ICPOLARITY RISING ;

sConf ig . IC2Se l e c t i on = TIM ICSELECTION DIRECTTI ;

sConf ig . IC2Presca l e r = TIM ICPSC DIV1 ;

sConf ig . IC 2F i l t e r = 0 ;

i f (HAL TIM Encoder Init(&htim2 , &sConf ig) != HAL OK)

{
Error Handler () ;

}
sMasterConf ig . MasterOutputTrigger = TIM TRGO RESET;

sMasterConf ig . MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 74

i f (HAL TIMEx MasterConfigSynchronization(&htim2 , &sMasterConf ig) != HAL OK)

{
Error Handler () ;

}
/* USER CODE BEGIN TIM2 Init 2 */

/* USER CODE END TIM2 Init 2 */

}

/**

* @br ie f TIM3 I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX TIM3 Init (void)

{

/* USER CODE BEGIN TIM3 Init 0 */

/* USER CODE END TIM3 Init 0 */

TIM SlaveConfigTypeDef sS laveConf ig = {0} ;

TIM MasterConfigTypeDef sMasterConf ig = {0} ;

/* USER CODE BEGIN TIM3 Init 1 */

/* USER CODE END TIM3 Init 1 */

htim3 . Ins tance = TIM3 ;

htim3 . I n i t . P r e s c a l e r = 0 ;

htim3 . I n i t . CounterMode = TIM COUNTERMODE UP;

htim3 . I n i t . Per iod = 2 ;

htim3 . I n i t . C lockDiv i s ion = TIM CLOCKDIVISION DIV1 ;

htim3 . I n i t . AutoReloadPreload = TIM AUTORELOAD PRELOAD DISABLE;

i f (HAL TIM Base Init(&htim3) != HAL OK)

{
Error Handler () ;

}
sS laveConf ig . SlaveMode = TIM SLAVEMODE EXTERNAL1;

sS laveConf ig . InputTr igger = TIM TS ETRF ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 75

sS laveConf ig . T r i g g e r P o l a r i t y = TIM TRIGGERPOLARITY NONINVERTED;

sS laveConf ig . T r i g g e r P r e s c a l e r = TIM TRIGGERPRESCALER DIV1;

sS laveConf ig . T r i g g e r F i l t e r = 0 ;

i f (HAL TIM SlaveConfigSynchro(&htim3 , &sS laveConf ig) != HAL OK)

{
Error Handler () ;

}
sMasterConf ig . MasterOutputTrigger = TIM TRGO RESET;

sMasterConf ig . MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;

i f (HAL TIMEx MasterConfigSynchronization(&htim3 , &sMasterConf ig) != HAL OK)

{
Error Handler () ;

}
/* USER CODE BEGIN TIM3 Init 2 */

/* USER CODE END TIM3 Init 2 */

}

/**

* @br ie f USART2 I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX USART2 UART Init(void)

{

/* USER CODE BEGIN USART2 Init 0 */

/* USER CODE END USART2 Init 0 */

/* USER CODE BEGIN USART2 Init 1 */

/* USER CODE END USART2 Init 1 */

huart2 . Ins tance = USART2;

huart2 . I n i t . BaudRate = 115200;

huart2 . I n i t . WordLength = UART WORDLENGTH 8B;

huart2 . I n i t . StopBits = UART STOPBITS 1 ;

huart2 . I n i t . Par i ty = UART PARITY NONE;

huart2 . I n i t . Mode = UART MODE TX RX;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 76

huart2 . I n i t . HwFlowCtl = UART HWCONTROL NONE;

huart2 . I n i t . OverSampling = UART OVERSAMPLING 16;

huart2 . I n i t . OneBitSampling = UART ONE BIT SAMPLE DISABLE;

huart2 . AdvancedInit . AdvFeatureInit = UART ADVFEATURE NO INIT;

i f (HAL UART Init(&huart2) != HAL OK)

{
Error Handler () ;

}
/* USER CODE BEGIN USART2 Init 2 */

/* USER CODE END USART2 Init 2 */

}

/**

* @br ie f USART3 I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX USART3 UART Init(void)

{

/* USER CODE BEGIN USART3 Init 0 */

/* USER CODE END USART3 Init 0 */

/* USER CODE BEGIN USART3 Init 1 */

/* USER CODE END USART3 Init 1 */

huart3 . Ins tance = USART3;

huart3 . I n i t . BaudRate = 115200;

huart3 . I n i t . WordLength = UART WORDLENGTH 8B;

huart3 . I n i t . StopBits = UART STOPBITS 1 ;

huart3 . I n i t . Par i ty = UART PARITY NONE;

huart3 . I n i t . Mode = UART MODE TX RX;

huart3 . I n i t . HwFlowCtl = UART HWCONTROL NONE;

huart3 . I n i t . OverSampling = UART OVERSAMPLING 16;

huart3 . I n i t . OneBitSampling = UART ONE BIT SAMPLE DISABLE;

huart3 . AdvancedInit . AdvFeatureInit = UART ADVFEATURE NO INIT;

i f (HAL UART Init(&huart3) != HAL OK)

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 77

{
Error Handler () ;

}
/* USER CODE BEGIN USART3 Init 2 */

/* USER CODE END USART3 Init 2 */

}

/**

* @br ie f USART6 I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX USART6 UART Init(void)

{

/* USER CODE BEGIN USART6 Init 0 */

/* USER CODE END USART6 Init 0 */

/* USER CODE BEGIN USART6 Init 1 */

/* USER CODE END USART6 Init 1 */

huart6 . Ins tance = USART6;

huart6 . I n i t . BaudRate = 115200;

huart6 . I n i t . WordLength = UART WORDLENGTH 8B;

huart6 . I n i t . StopBits = UART STOPBITS 1 ;

huart6 . I n i t . Par i ty = UART PARITY NONE;

huart6 . I n i t . Mode = UART MODE TX RX;

huart6 . I n i t . HwFlowCtl = UART HWCONTROL NONE;

huart6 . I n i t . OverSampling = UART OVERSAMPLING 16;

huart6 . I n i t . OneBitSampling = UART ONE BIT SAMPLE DISABLE;

huart6 . AdvancedInit . AdvFeatureInit = UART ADVFEATURE NO INIT;

i f (HAL UART Init(&huart6) != HAL OK)

{
Error Handler () ;

}
/* USER CODE BEGIN USART6 Init 2 */

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 78

/* USER CODE END USART6 Init 2 */

}

/**

* @br ie f USB OTG FS I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX USB OTG FS USB Init (void)

{

/* USER CODE BEGIN USB OTG FS Init 0 */

/* USER CODE END USB OTG FS Init 0 */

/* USER CODE BEGIN USB OTG FS Init 1 */

/* USER CODE END USB OTG FS Init 1 */

/* USER CODE BEGIN USB OTG FS Init 2 */

/* USER CODE END USB OTG FS Init 2 */

}

/**

* @br ie f GPIO I n i t i a l i z a t i o n Function

* @param None

* @retva l None

*/

stat ic void MX GPIO Init (void)

{
GPIO InitTypeDef GPIO InitStruct = {0} ;

/* GPIO Ports Clock Enable */

HAL RCC GPIOC CLK ENABLE () ;

HAL RCC GPIOH CLK ENABLE () ;

HAL RCC GPIOA CLK ENABLE () ;

HAL RCC GPIOB CLK ENABLE () ;

HAL RCC GPIOD CLK ENABLE () ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 79

HAL RCC GPIOG CLK ENABLE () ;

/*Configure GPIO pin Output Leve l */

HAL GPIO WritePin (SD CS GPIO Port , SD CS Pin , GPIO PIN RESET) ;

/*Configure GPIO pin Output Leve l */

HAL GPIO WritePin (GPIOB, LD1 Pin | LD3 Pin | LD2 Pin , GPIO PIN RESET) ;

/*Configure GPIO pin Output Leve l */

HAL GPIO WritePin (USB PowerSwitchOn GPIO Port , USB PowerSwitchOn Pin ,

GPIO PIN RESET) ;

/*Configure GPIO pin : USER Btn Pin */

GPIO InitStruct . Pin = USER Btn Pin ;

GPIO InitStruct . Mode = GPIO MODE IT RISING ;

GPIO InitStruct . Pul l = GPIO NOPULL;

HAL GPIO Init (USER Btn GPIO Port , &GPIO InitStruct) ;

/*Configure GPIO pin : SD CS Pin */

GPIO InitStruct . Pin = SD CS Pin ;

GPIO InitStruct . Mode = GPIO MODE OUTPUT PP;

GPIO InitStruct . Pul l = GPIO NOPULL;

GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;

HAL GPIO Init (SD CS GPIO Port , &GPIO InitStruct) ;

/*Configure GPIO pins : LD1 Pin LD3 Pin LD2 Pin */

GPIO InitStruct . Pin = LD1 Pin | LD3 Pin | LD2 Pin ;

GPIO InitStruct . Mode = GPIO MODE OUTPUT PP;

GPIO InitStruct . Pul l = GPIO NOPULL;

GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;

HAL GPIO Init (GPIOB, &GPIO InitStruct) ;

/*Configure GPIO pin : RMII TXD1 Pin */

GPIO InitStruct . Pin = RMII TXD1 Pin ;

GPIO InitStruct . Mode = GPIO MODE AF PP;

GPIO InitStruct . Pul l = GPIO NOPULL;

GPIO InitStruct . Speed = GPIO SPEED FREQ VERY HIGH;

GPIO InitStruct . A l te rnate = GPIO AF11 ETH ;

HAL GPIO Init (RMII TXD1 GPIO Port , &GPIO InitStruct) ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 80

/*Configure GPIO pin : USB PowerSwitchOn Pin */

GPIO InitStruct . Pin = USB PowerSwitchOn Pin ;

GPIO InitStruct . Mode = GPIO MODE OUTPUT PP;

GPIO InitStruct . Pul l = GPIO NOPULL;

GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;

HAL GPIO Init (USB PowerSwitchOn GPIO Port , &GPIO InitStruct) ;

/*Configure GPIO pin : USB OverCurrent Pin */

GPIO InitStruct . Pin = USB OverCurrent Pin ;

GPIO InitStruct . Mode = GPIO MODE INPUT;

GPIO InitStruct . Pul l = GPIO NOPULL;

HAL GPIO Init (USB OverCurrent GPIO Port , &GPIO InitStruct) ;

/*Configure GPIO pins : USB SOF Pin USB ID Pin USB DM Pin USB DP Pin */

GPIO InitStruct . Pin = USB SOF Pin |USB ID Pin |USB DM Pin |USB DP Pin ;

GPIO InitStruct . Mode = GPIO MODE AF PP;

GPIO InitStruct . Pul l = GPIO NOPULL;

GPIO InitStruct . Speed = GPIO SPEED FREQ VERY HIGH;

GPIO InitStruct . A l te rnate = GPIO AF10 OTG FS ;

HAL GPIO Init (GPIOA, &GPIO InitStruct) ;

/*Configure GPIO pin : USB VBUS Pin */

GPIO InitStruct . Pin = USB VBUS Pin ;

GPIO InitStruct . Mode = GPIO MODE INPUT;

GPIO InitStruct . Pul l = GPIO NOPULL;

HAL GPIO Init (USB VBUS GPIO Port , &GPIO InitStruct) ;

/*Configure GPIO pins : RMII TX EN Pin RMII TXD0 Pin */

GPIO InitStruct . Pin = RMII TX EN Pin |RMII TXD0 Pin ;

GPIO InitStruct . Mode = GPIO MODE AF PP;

GPIO InitStruct . Pul l = GPIO NOPULL;

GPIO InitStruct . Speed = GPIO SPEED FREQ VERY HIGH;

GPIO InitStruct . A l te rnate = GPIO AF11 ETH ;

HAL GPIO Init (GPIOG, &GPIO InitStruct) ;

/* EXTI i n t e r r u p t i n i t */

HAL NVIC SetPriority (EXTI15 10 IRQn , 6 , 6) ;

HAL NVIC EnableIRQ(EXTI15 10 IRQn) ;

}

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 81

/* USER CODE BEGIN 4 */

/**

* Task A p e r i o d i c a l l y ’ g i v e s ’ semaphorePtr

* NOTES:

* = This semaphore i sn ’ t ” g iven ” to any ta s k s p e c i f i c a l l y

* = g i v i n g the semaphore doesn ’ t prevent taskA from cont inu ing to run .

* Notice the green LED cont inues to b l i n k at a l l t imes

*/

void USR GPIO Init (void)

{
GPIO InitTypeDef GPIO InitStruct = {0} ;

/*Configure GPIO pins : PG2 PG3 */

GPIO InitStruct . Pin = GPIO PIN 2 |GPIO PIN 3 ;

GPIO InitStruct . Mode = GPIO MODE IT RISING ;

GPIO InitStruct . Pul l = GPIO PULLUP;

HAL GPIO Init (GPIOG, &GPIO InitStruct) ;

/* EXTI i n t e r r u p t i n i t */

HAL NVIC SetPriority (EXTI2 IRQn , 0 , 0) ;

HAL NVIC EnableIRQ(EXTI2 IRQn) ;

HAL NVIC SetPriority (EXTI3 IRQn , 0 , 0) ;

HAL NVIC EnableIRQ(EXTI3 IRQn) ;

}

void GreenTaskA (void* argument)

{
u i n t f a s t 8 t count = 0 ;

while (1)

{
// every 5 t imes through the loop , g i v e the semaphore

i f (++count >= 5)

{
count = 0 ;

//SEGGER SYSVIEW PrintfHost (”Task A (green LED) g i v e s sem

xSemaphoreGive (semPtr) ;

}

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 82

HAL GPIO WritePin (LD1 GPIO Port , LD1 Pin , GPIO PIN SET) ;

vTaskDelay (100/portTICK PERIOD MS) ;

HAL GPIO WritePin (LD1 GPIO Port , LD1 Pin , GPIO PIN RESET) ;

vTaskDelay (100/portTICK PERIOD MS) ;

}
}

/**

* wai t to r e c e i v e semPtr and t r i p l e b l i n k the Blue LED

*/

void BlueTaskB (void* argument)

{
while (1)

{
// ’ take ’ the semaphore wi th a r e a l l y long t imeout

//SEGGER SYSVIEW PrintfHost (”Task B (Blue LED) at tempts to take

i f (xSemaphoreTake (semPtr , portMAX DELAY) == pdPASS)

{
//SEGGER SYSVIEW PrintfHost (”Task B (Blue LED) re c e i v ed

// t r i p l e b l i n k the Blue LED

for (u i n t f a s t 8 t i = 0 ; i < 3 ; i++)

{
HAL GPIO WritePin (LD2 GPIO Port , LD2 Pin , GPIO P

vTaskDelay (50/portTICK PERIOD MS) ;

HAL GPIO WritePin (LD2 GPIO Port , LD2 Pin , GPIO P

vTaskDelay (50/portTICK PERIOD MS) ;

}
}

// e l s e

// {
// This i s the code t ha t w i l l be executed i f we time out wa

// the semaphore to be g iven . In the case o f a 1 mS t i c k r

// w i l l on ly prov ide a de lay o f around 50 days .

// Unless ”#de f i n e INCLUDE vTaskSuspend 1” i s con f i gured in

// }
}

}

void DataLogTask (void* argumet)

{

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 83

//RTC DateTypeDef GetDate ; //Get date s t r u c t u r e

//RTC TimeTypeDef GetTime ; //Get time s t r u c t u r e

char buf [1 0 0] = {0} ;

int l en ;

int d i s t anc e ;

int seg ;

i n t 3 2 t heading ;

while (1)

{
i f (xSemaphoreTake (DLsemPtr , portMAX DELAY) == pdPASS)

{
HAL GPIO WritePin (LD3 GPIO Port , LD3 Pin , GPIO PIN SET

// d i s t ance = encoder cnt ;

d i s t anc e = TIM2=>CNT;

seg = segment ;

heading = RELPOS data . re lPosHeading ;

//SEGGER SYSVIEW PrintfHost (”PVT rece i v ed ”) ;

l en = s p r i n t f (buf , ”%i , %i , %l i , %02 i :%02 i :%02 i , %ld , %

seg , d i s tance , heading , PVT Data . hour , PVT Data . min , PVT Data . sec , PVT Data

PVT Data . lon , PVT Data .hMSL, PVT Data .numSV, PVT Data . f ixType) ;

HAL UART Transmit(&huart3 , buf , len , 2 0 0) ;

//SEGGER SYSVIEW PrintfHost (bu f) ;

//HAL Delay (5) ; // Simulate l onger time

HAL GPIO WritePin (LD3 GPIO Port , LD3 Pin , GPIO PIN RESE

}
}

}
void myprintf (const char * fmt , . . .) {

v a l i s t args ;

v a s t a r t (args , fmt) ;

v s n p r i n t f (bu f f e r , s izeof (b u f f e r) , fmt , args) ;

va end (args) ;

int l en = s t r l e n (b u f f e r) ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 84

HAL UART Transmit(&huart3 , (u i n t 8 t *) bu f f e r , len , 1000) ;

}

void ProcessUBXTask (void* NotUsed)

{
char nextByte ;

char buf [5 0] ={0};

s t a r t R e c e i v e I n t () ;

while (1)

{
xQueueReceive (uart2 BytesRece ived , &nextByte , portMAX DELAY) ;

//SEGGER SYSVIEW PrintfHost(”%c ” , nextByte) ;

UBX ProcessBuffer (nextByte , &packetBuf) ;

i f (PVT Data . PVTreceived == 1){
//SEGGER SYSVIEW PrintfHost (”PVT rece i v ed ”) ;

xSemaphoreGive (DLsemPtr) ;

PVT Data . PVTreceived = 0 ; // r e s e t f l a g

}
i f (TIMEUTC data . TIMEUTC received == 1){

//SEGGER SYSVIEW PrintfHost (”TIMEUTC rece i v ed ”) ;

xSemaphoreGive (TIMEsemPtr) ;

TIMEUTC data . TIMEUTC received = 0 ; // r e s e t f l a g

}
i f (RELPOS data . RELPOS received == 1){

//SEGGER SYSVIEW PrintfHost (”RELPOS rece i v ed ”) ;

RELPOS data . RELPOS received = 0 ;

}

}
}
void s t a r t R e c e i v e I n t (void)

{
rx InProgre s s = true ;

USART2=>CR3 |= USART CR3 EIE ; // enab l e er ror i n t e r r u p t s

USART2=>CR1 |= (USART CR1 UE | USART CR1 RXNEIE) ;

// a l l 4 b i t s are f o r preemption p r i o r i t y =

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 85

NVIC SetPrior ity (USART2 IRQn, 6) ;

NVIC EnableIRQ (USART2 IRQn) ;

}
void s t a r t R e c e i v e I n t 3 (void)

{
rx InProgre s s = true ;

USART3=>CR3 |= USART CR3 EIE ; // enab l e er ror i n t e r r u p t s

USART3=>CR1 |= (USART CR1 UE | USART CR1 RXNEIE) ;

// a l l 4 b i t s are f o r preemption p r i o r i t y =

NVIC SetPrior ity (USART3 IRQn, 6) ;

NVIC EnableIRQ (USART3 IRQn) ;

}

void USART2 IRQHandler (void)

{
portBASE TYPE xHigherPriorityTaskWoken = pdFALSE ;

//SEGGER SYSVIEW RecordEnterISR () ;

// f i r s t check f o r e r ro r s

i f (USART2=>ISR & (USART ISR ORE Msk |
USART ISR NE Msk |
USART ISR FE Msk |
USART ISR PE Msk))

{
// c l e a r error f l a g s

USART2=>ICR |= (USART ICR FECF |
USART ICR PECF |
USART ICR NCF |
USART ICR ORECF) ;

}

i f (USART2=>ISR & USART ISR RXNE Msk)

{
// read the data r e g i s t e r uncond i t i ona l l y to c l e a r

// the r e c e i v e not empty i n t e r r u p t i f no r ec ep t i on i s

// in progre s s

u i n t 8 t tempVal = (u i n t 8 t) USART2=>RDR;

i f (rx InProgre s s)

{

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 86

xQueueSendFromISR (uart2 BytesRece ived , &tempVal , &xHighe

}
}
//SEGGER SYSVIEW RecordExitISR () ;

portYIELD FROM ISR(xHigherPriorityTaskWoken) ;

}

void USART3 IRQHandler (void)

{
portBASE TYPE xHigherPriorityTaskWoken = pdFALSE ;

//SEGGER SYSVIEW RecordEnterISR () ;

// f i r s t check f o r e r ro r s

i f (USART3=>ISR & (USART ISR ORE Msk |
USART ISR NE Msk |
USART ISR FE Msk |
USART ISR PE Msk))

{
// c l e a r error f l a g s

USART3=>ICR |= (USART ICR FECF |
USART ICR PECF |
USART ICR NCF |
USART ICR ORECF) ;

}

i f (USART3=>ISR & USART ISR RXNE Msk)

{
// read the data r e g i s t e r uncond i t i ona l l y to c l e a r

// the r e c e i v e not empty i n t e r r u p t i f no r ec ep t i on i s

// in progre s s

u i n t 8 t tempVal = (u i n t 8 t) USART3=>RDR;

i f (rx InProgre s s)

{
xQueueSendFromISR (uart3 BytesRece ived , &tempVal , &xHighe

}
}
//SEGGER SYSVIEW RecordExitISR () ;

portYIELD FROM ISR(xHigherPriorityTaskWoken) ;

}

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 87

/* An attempt to use HAL ins t ead o f low l e v e l code .

vo id ProcessUBXTask (vo id * NotUsed)

{
char nextByte ;

char bu f [5 0] ={0};

HAL UART Receive IT (&huart2 , nextByte , 1) ;

wh i l e (1)

{
xQueueReceive (uart2 BytesRece ived , &nextByte , portMAX DELAY) ;

SEGGER SYSVIEW PrintfHost(”%c ” , nextByte) ;

UBX ProcessBuffer (nextByte , &packetBuf) ;

i f (PVT Data . PVTreceived == 1){
SEGGER SYSVIEW PrintfHost (”PVT rece i v ed ”) ;

xSemaphoreGive (DLsemPtr) ;

PVT Data . PVTreceived = 0; // r e s e t f l a g

}
i f (TIMEUTC data . TIMEUTC received == 1){

SEGGER SYSVIEW PrintfHost (”TIMEUTC rece i v ed ”) ;

xSemaphoreGive (TIMEsemPtr) ;

TIMEUTC data . TIMEUTC received = 0; // r e s e t f l a g

}

}
}
vo id HAL UART RxCpltCallback (UART HandleTypeDef * huart)

{
portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;

SEGGER SYSVIEW RecordEnterISR () ;

HAL UART Receive IT(&huart2 , nextByte , 1) ;

xQueueSendFromISR(uart2 BytesRece ived , &tempVal , &xHigherPriorityTaskWoken) ;

SEGGER SYSVIEW RecordExitISR () ;

portYIELD FROM ISR(xHigherPriorityTaskWoken) ;

}
*/

void RTC UpdateTask (void* argument)

{

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 88

RTC DateTypeDef s d a t e s t r u c t u r e ;

RTC TimeTypeDef s t i m e s t r u c t u r e ;

u i n t 8 t getTIMEUTC[]={0xB5 , 0 x62 , 0 x01 , 0 x21 , 0 x00 , 0 x00 , 0 x22 , 0 x67 } ;

while (1) {

HAL UART Transmit(&huart2 , getTIMEUTC, 8 , 1 0 0) ; //Transmit r e qu

//SEGGER SYSVIEW PrintfHost (” Transmitted getTIME”) ;

i f (xSemaphoreTake (TIMEsemPtr , 2000/portTICK PERIOD MS) == pdPASS

{
//SEGGER SYSVIEW PrintfHost (”TIME rece i v ed ”) ;

//##=1= Configure the Date

s d a t e s t r u c t u r e . Year = (u i n t 8 t) (TIMEUTC data . year = 200

s d a t e s t r u c t u r e . Month = TIMEUTC data . month ;

s d a t e s t r u c t u r e . Date = TIMEUTC data . day ;

i f (HAL RTC SetDate(&hrtc , &sda t e s t ruc tu r e , RTC FORMAT B

{
Error Handler () ;

}

//##=2= Configure the Time

s t i m e s t r u c t u r e . Hours = TIMEUTC data . hour ;

s t i m e s t r u c t u r e . Minutes = TIMEUTC data . min ;

s t i m e s t r u c t u r e . Seconds = TIMEUTC data . s ec ;

s t i m e s t r u c t u r e . TimeFormat = RTC HOURFORMAT 24;

s t i m e s t r u c t u r e . DayLightSaving = RTC DAYLIGHTSAVING NONE

s t i m e s t r u c t u r e . StoreOperat ion = RTC STOREOPERATION RESET

i f (HAL RTC SetTime(&hrtc , &s t imes t ruc ture , RTC FORMAT B

{
Error Handler () ;

}
HAL RTCEx BKUPWrite(&hrtc ,RTC BKP DR0, 0 x32F6) ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 89

HAL RTC GetTime(&hrtc , &s t imes t ruc ture , RTC FORMAT BIN) ;

char buf [30]={0} ;

int l en = s p r i n t f (buf , ”RTC Time : %02d:%02d:%02d\ r \n” , s t i m

s t i m e s t r u c t u r e . Minutes , s t i m e s t r u c t u r e . Seconds) ;

HAL UART Transmit(&huart3 , buf , len , 1 0 0) ;

//SEGGER SYSVIEW PrintfHost (bu f) ;

//SEGGER SYSVIEW PrintfHost (”TIME updated ”) ;

vTaskDelete (NULL) ;

}

vTaskDelay (5000/portTICK PERIOD MS) ;

}
}

// EXTI Line15 Externa l I n t e r rup t ISR Handler CallBackFun

void HAL GPIO EXTI Callback (u i n t 1 6 t GPIO Pin)

{
i f (GPIO Pin == GPIO PIN 13) // I f The INT Source I s EXTI Line15 (B13 Pin)

{
portBASE TYPE xHigherPriorityTaskWoken = pdFALSE ;

//SEGGER SYSVIEW RecordEnterISR () ;

++segment ;

i f (segment >3) segment = 0 ;

//SEGGER SYSVIEW PrintfHost (” Segment : %i ” , segment) ;

TIM2=>CNT = 0 ;

encoder cnt = 0 ;

//SEGGER SYSVIEW RecordExitISR () ;

portYIELD FROM ISR(xHigherPriorityTaskWoken) ;

}
else i f (GPIO Pin == GPIO PIN 2)

{
//++encoder cnt ;

}
else i f (GPIO Pin == GPIO PIN 3)

{
++segment ;

i f (segment >3) segment = 0 ;

encoder cnt = 0 ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 90

TIM2=>CNT = 0 ;

}
}

void UserInputTask (void* argument)

{
char nextByte ;

char buf [5 0] ={0};

s t a r t R e c e i v e I n t 3 () ;

while (1)

{
xQueueReceive (uart3 BytesRece ived , &nextByte , portMAX DELAY) ;

//SEGGER SYSVIEW PrintfHost(”%c ” , nextByte) ;

i f (nextByte == ’ t ’ | | nextByte == ’T ’)

{

int l en = s p r i n t f (buf , ”Updating RTC Clock\ r \n”) ;

HAL UART Transmit(&huart3 , buf , len , 1 0 0) ;

//SEGGER SYSVIEW PrintfHost (” S t a r t i n g RTC ta s k ”) ;

assert param (xTaskCreate (RTC UpdateTask , ”RTC Update” , ST

tskIDLE PRIORITY + 3 , NULL) == pdPASS) ;

}
}

}
/* USER CODE END 4 */

/**

* @br ie f Period e l ap s ed c a l l b a c k in non b l o c k i n g mode

* @note This f unc t i on i s c a l l e d when TIM6 in t e r r u p t took p lace , i n s i d e

* HAL TIM IRQHandler () . I t makes a d i r e c t c a l l to HAL IncTick () to increment

* a g l o b a l v a r i a b l e ”uwTick” used as a pp l i c a t i o n time base .

* @param htim : TIM handle

* @retva l None

*/

void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef *htim)

{
/* USER CODE BEGIN Ca l l back 0 */

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 91

/* USER CODE END Cal l back 0 */

i f (htim=>In s tance == TIM6) {
HAL IncTick () ;

}
/* USER CODE BEGIN Ca l l back 1 */

/* USER CODE END Cal l back 1 */

}

/**

* @br ie f This f unc t i on i s executed in case o f er ror occurrence .

* @retva l None

*/

void Error Handler (void)

{
/* USER CODE BEGIN Error Handler Debug */

/* User can add h i s own implementat ion to repor t the HAL error re turn s t a t e */

d i s a b l e i r q () ;

while (1)

{
}
/* USER CODE END Error Handler Debug */

}

#ifde f USE FULL ASSERT

/**

* @br ie f Reports the name o f the source f i l e and the source l i n e number

* where the asser t param error has occurred .

* @param f i l e : po in t e r to the source f i l e name

* @param l i n e : asser t param error l i n e source number

* @retva l None

*/

void a s s e r t f a i l e d (u i n t 8 t * f i l e , u i n t 3 2 t l i n e)

{
/* USER CODE BEGIN 6 */

/* User can add h i s own implementat ion to repor t the f i l e name and l i n e number

ex : p r i n t f (”Wrong parameters va lue : f i l e %s on l i n e %d\ r\n” , f i l e , l i n e) */

/* USER CODE END 6 */

}
#endif /* USE FULL ASSERT */

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 92

/************************ (C) COPYRIGHT STMicroe lec tronics *****END OF FILE****/

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 93

Appendix E

MATLAB Analysis Code

%% %%

%% %%%%%%%%%%%%%%%%%%%%%% Week 12 Sample Matlab Code %%%%%%%%%%%%%%%%%%%%%%

%% %%

%% Fi l e Name : Ana lys i s .m

%% Authors Name : Simon Cas t l e s

%% Email Address : u1083859@umail . usq . edu . au

%% Environment : Matlab R2021b

%% Log o f Change :2021 S2 , I n i t i a l Version

%% %%

clear ; close a l l ; % c l e a r a l l v a r i a b l e s from workspace & c l o s e a l l f i g u r e s

clc ; % c l e a r command window

f i g c n t = 0 ; % count o f f i g u r e

M=importdata (’ T e s t F i l e . txt ’) ;

encoder = st r2doub l e (M. textdata (: , 2)) ;

heading = st r2doub l e (M. textdata (: , 3)) . / 1 0 0 0 0 0 ;

Lat i tude = M. data (: , 1) . / 1 0 0 0 0 0 0 0 ;

Longitude = M. data (: , 2) . / 1 0 0 0 0 0 0 0 ;

h msl = M. data (: , 3) . / 1 0 0 0 ;

h msl bar = mean(h msl) ;

h = h msl bar + 4 2 . 2 3 1 ;

%WGS84 Conversion f a c t o r s

a = 6378137; %Semi=major ax i s

94

b = 6356752 .3142 ; %Semi=minor ax i s

phi = mean(Lat i tude) ;

F l a t = pi /180 * ((aˆ2 / (sqrt (aˆ2 * (cosd (phi))ˆ2 + bˆ2 * (s ind (phi))ˆ2))) + h

* cosd (phi) ;

F lon = pi /180 * (((aˆ2 * bˆ2) / ((aˆ2 * (cosd (phi))ˆ2 + bˆ2 * (s ind (phi))ˆ2)

)) + h) ;

Lat adj = Lat i tude .* F la t ; %Adjusted l a t i t u d e

Lon adj = Longitude .* F lon ; %Adjusted l o g i t u d e

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

fpr intf (’ P lease s ee Figure %d f o r t r a j e c t o r y \n ’ , f i g c n t) ;

plot (Longitude , Latitude , ’b.= ’) ; grid minor ; axis equal ;

xlabel (’ Longitude (deg) ’) , ylabel (’ Lat i tude (deg) ’)

t i t l e (’ Tra j ec tory ’)

print =deps Tra jec tory

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

fpr intf (’ P lease s ee Figure %d f o r adjusted t r a j e c t o r y \n ’ , f i g c n t) ;

plot (Lon adj , Lat adj , ’b.= ’) ; grid minor ; axis equal ;

xlabel (’ Longitude (m) ’) , ylabel (’ Lat i tude (m) ’)

t i t l e (’ Adjusted t r a j e c t o r y ’)

print =deps A d j u s t e d t r a j e c t o r y

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

fpr intf (’ P lease s ee Figure %d f o r heading data\n ’ , f i g c n t) ;

plot (heading) ;

t i t l e (’ Recorded heading ’)

xlabel (’ Sample ’) ; ylabel (’ Heading (deg) ’)

print =deps Recorded heading

hold on ;

co r r e c t ed head ing = zeros (length (heading) , 1) ;

for k=1: length (heading)

i f heading (k)> 270

APPENDIX E. MATLAB ANALYSIS CODE 95

co r r e c t ed head ing (k) = heading (k) = 270 ;

else

co r r e c t ed head ing (k) = heading (k) + 90 ;

end

end

plot (co r r e c t ed head ing)

time = 0 : 0 . 2 : (length (co r r e c t ed head ing) * 0 . 2) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

plot (time (1 : length (co r r e c t ed head ing)) , c o r r e c t ed head ing) ;

xlabel (’Time (s) ’) ; ylabel (’ Heading (deg) ’)

t i t l e (’ Corrected heading data ’)

print =deps Corrected head ing

x l i n e (9/5=0.2 , ’==r ’) ;

x l i n e (59/5=0.2 , ’==r ’) ;

x l i n e (247/5=0.2 , ’==r ’) ;

x l i n e (297/5=0.2 , ’==r ’) ;

%% Windows

SW1 = 9 : 5 9 ; SW2 = 2 47 : 2 97 ; SW3 = 485 : 535 ; SW4 = 723 : 773 ;

SW5 = 960 :1010 ; SW6 = 1198 :1248 ; SW7 = 1436 :1486 ; SW8 = 1674 :1724 ;

SW9 = 1911 :1962 ; SW10 = 2150 :2200 ; SW11 = 2387 :2437 ; SW12 = 2625 :2675 ;

SW13 = 2862 :2912 ; SW14 = 3099 :3150 ; SW15 = 3337 :3388 ; SW16 = 3575 :3625 ;

SW17 = 3813 :3863 ; SW18 = 4050 :4100 ; SW19 = 4287 :4338 ; SW20 = 4525 :4575 ;

SW21 = 4763 :4813 ; SW22 = 5000 :5050 ;

SW = [SW1,SW2,SW3,SW4,SW5,SW6,SW7,SW8,SW9,SW10,SW11,SW12,SW13,SW14,SW15 , . . .

SW16,SW17,SW18,SW19,SW20,SW21,SW22] ;

NE1 = 128 : 178 ; NE2 = 367 : 417 ; NE3 = 605 : 655 ; NE4 = 842 : 892 ;

NE5 = 1079 :1129 ; NE6 = 1317 :1367 ; NE7 = 1555 :1605 ; NE8 = 1793 :1843 ;

NE9 = 2030 :2080 ; NE10 = 2268 :2318 ; NE11 = 2506 :2556 ; NE12 = 2744 :2794 ;

NE13 = 2981 :3031 ; NE14 = 3218 :3269 ; NE15 = 3456 :3506 ; NE16 = 3694 :3744 ;

NE17 = 3932 :3982 ; NE18 = 4169 :4219 ; NE19 = 4406 :4456 ; NE20 = 4644 :4694 ;

NE21 = 4882 :4932 ; NE22 = 5119 :5169 ;

NE = [NE1,NE2,NE3,NE4,NE5,NE6,NE7,NE8,NE9, NE10 , NE11 , NE12 , NE13 , NE14 , NE15 , . . .

APPENDIX E. MATLAB ANALYSIS CODE 96

NE16 , NE17 , NE18 , NE19 , NE20 , NE21 , NE22] ;

%% Southwest passes

%y = [Lat ad j (9 : 5 9) ; La t ad j (247 : 297) ; La t ad j (4 8 5 : 5 35)] ;

%x = [Lon adj (9 : 5 9) ; Lon adj (247 :297) ; Lon adj (4 85 : 5 3 5)] ;

y = Lat adj (SW) ;

x = Lon adj (SW) ;

[p , S] = polyf it (x , y , 1) ;

[y f i t , d e l t a] = polyval (p , x , S) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

plot (x , y , ’b . ’)

hold on

plot (x , y f i t , ’ r= ’)

plot (x , y f i t +2*de l ta , ’m== ’ , x , y f i t =2*de l ta , ’m== ’)

t i t l e (’ Southwest pas s e s GNSS Data ’)

legend (’GNSS data po in t s ’ , ’ L inear Fi t ’ , ’95% P e r c e n t i l e ’)

xlabel (’ Adjusted l a t i t u d e (m) ’) ; ylabel (’ Adjusted l ong i tude (m) ’) ;

grid minor ; axis square ;

print =deps SW1

m = p (1) ;

c = p (2) ;

txt = [’ y = ’ num2str(m) ’ x ’ num2str(c)] ;

text (16838128 ,=2725330 , txt) ;

d=(m.* x=y+c)/ sqrt (1+mˆ 2) ;

r count = 0 ;

l c o u n t = 0 ;

ze ro count = 0 ;

for k=1: length (d)

i f d(k)<0

r count = r count + 1 ;

e l s e i f d(k) > 0

l c o u n t = l c o u n t + 1 ;

e l s e i f d(k) == 0

zero count = zero count +1;

APPENDIX E. MATLAB ANALYSIS CODE 97

end

end

l c o u n t ;

r count ;

z e ro count ;

d abs SW = abs ((m.* x=y+c)/ sqrt (1+mˆ 2)) ;

d mean SW = mean(d abs SW) ;

d std SW = std (d abs SW) ;

d max SW = max(d abs SW) ;

d 95 SW = p r c t i l e (d abs SW , 9 5) ;

ACC SW = sqrt (2)* (d mean SW + d std SW) ;

fpr intf (’SW pass l e f t count : %u , r i g h t count : %u , zero count : %u\n ’ , . . .

l count , r count , z e ro count)

fpr intf (’SW pass accuracy (mm) : %f \n ’ ,ACC SW*1000)

%% Northeast Passes

y = Lat adj (NE) ;

x = Lon adj (NE) ;

[p , S] = polyf it (x , y , 1) ;

[y f i t , d e l t a] = polyval (p , x , S) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

plot (x , y , ’b . ’)

hold on

plot (x , y f i t , ’ r= ’)

plot (x , y f i t +2*de l ta , ’m== ’ , x , y f i t =2*de l ta , ’m== ’)

t i t l e (’ Northeast pases GNSS Data ’)

legend (’GNSS data po in t s ’ , ’ L inear Fi t ’ , ’95% P e r c e n t i l e ’)

xlabel (’ Adjusted l a t i t u d e (m) ’) ; ylabel (’ Adjusted l ong i tude (m) ’) ;

grid minor ; axis square ;

print =deps NE1

APPENDIX E. MATLAB ANALYSIS CODE 98

m = p (1) ;

c = p (2) ;

txt = [’ y = ’ num2str(m) ’ x ’ num2str(c)] ;

text (16838125 , =2725325.5 , txt) ;

d=(m.* x=y+c)/ sqrt (1+mˆ 2) ;

r count = 0 ;

l c o u n t = 0 ;

ze ro count = 0 ;

for k=1: length (d)

i f d(k)<0

r count = r count + 1 ;

e l s e i f d(k) > 0

l c o u n t = l c o u n t + 1 ;

e l s e i f d(k) == 0

zero count = zero count +1;

end

end

l c o u n t ;

r count ;

z e ro count ;

d abs NE = abs ((m.* x=y+c)/ sqrt (1+mˆ 2)) ;

d mean NE = mean(d abs NE) ;

d std NE = std (d abs NE) ;

d max NE = max(d abs NE) ;

d 95 NE = p r c t i l e (d abs NE , 9 5) ;

ACC NE = sqrt (2)* (d mean NE + d std NE) ;

fpr intf (’NE pass l e f t count : %u , r i g h t count : %u , zero count : %u\n ’ , . . .

l count , r count , z e ro count)

fpr intf (’NE pass accuracy (mm) : %f \n ’ ,ACC NE*1000)

%% Overa l l r e l a t i v e p o s i t i o n accuracy

d = [d abs SW ; d abs NE] ;

d mean = mean(d) ;

d s td = std (d) ;

APPENDIX E. MATLAB ANALYSIS CODE 99

d max = max(d) ;

d 95 = p r c t i l e (d , 9 5) ;

ACC = sqrt (2) * (d mean + d std) ;

fpr intf (’ Total r e l a t i v e cros s=t rack accuracy (mm) : %f \n ’ ,ACC*1000)

RMSE = sqrt (mean(d . ˆ 2)) ;

%% Speed ana l y s i s

speed = zeros (length (encoder) =1 ,1) ;

for k=1:(length (encoder)=1)

speed (k) = (encoder (k+1)=encoder (k)) / 0 .2 * pi * 0 .04 / 8192 ;

end

time = 0 : 0 . 2 : (length (speed) * 0 . 2) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

t = time (1 : length (speed)) ;

plot (t , speed , ’b . ’)

grid minor ;

t i t l e (’ Speed ’)

xlabel (’ time (s) ’) ; ylabel (’ speed (m/ s) ’) ; axis ([0 1055 0 1 . 2]) ;

[p , S] = polyf it (t , speed , 1) ;

[y f i t , d e l t a] = polyval (p , t , S) ;

hold on

plot (t , y f i t , ’ r= ’)

plot (t , y f i t +2*de l ta , ’m== ’ , t , y f i t =2*de l ta , ’m== ’)

legend (’ c a l c u l a t e d speed ’ , ’ l i n e a r f i t ’ , ’ 95 th p e r c e n t i l e ’)

print =deps Speed1

s mean = mean(speed) ;

s s t d = std (speed) ;

s d e l t a = abs (speed=s mean) ;

% y l i n e (s mean , ’ r ’)

% y l i n e (s mean+2* s s t d ,’==r ’)

% y l i n e (s mean=2* s s t d ,’==r ’)

t2 = 1 : 5 : length (encoder) ;

s2 = zeros (length (t2) =1 ,1) ;

APPENDIX E. MATLAB ANALYSIS CODE 100

for k=1:(length (t2)=1)

s2 (k) = (encoder (t2 (k+1))=encoder (t2 (k))) * pi * 0 .04 / 8192 ;

end

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

subplot (2 , 1 , 1) ;

plot (0 : length (s2)=1 , s2 , ’b= ’)

t i t l e (’ Average speed ’)

xlabel (’ time (s) ’) ; ylabel (’ speed (m/ s) ’) ; axis ([0 1055 0 1 . 2]) ;

y l i n e (0 . 6283 , ’ r= ’)

legend (’ Derived encoder speed ’ , ’Commanded speed (0 . 628 m/ s) ’)

sc = 0 . 6 2 8 3 ;

s e r r o r = sc = s2 ;

s e r r o r a b s = abs (s e r r o r) ;

subplot (2 , 1 , 2) ;

plot (0 : length (s e r r o r)=1 , s e r r o r)

t i t l e (’ Speed e r r o r ’)

xlabel (’ time (s) ’) ; ylabel (’ e r r o r (m/ s) ’) ; axis ([0 1055 =0.1 0 . 1]) ;

s e r ror mean = mean(s e r r o r a b s) ;

s e r r o r s t d = std (s e r r o r a b s) ;

print =deps Speed2

%%

time = 0 : 0 . 2 : (length (Lat adj) * 0 . 2) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

yyax i s l e f t

plot (time (1 : length (Lat adj)) , Lat adj)

ylabel (’ Lat i tude (m) ’) ;

yyax i s r i g h t

plot (time (1 : length (Lat adj)) , Lon adj)

xlabel (’ time (s) ’)

ylabel (’ Longitude (m) ’)

%% Southwest pass by pass error

x=[Lon adj (SW1) , Lon adj (SW2) , Lon adj (SW3) , Lon adj (SW4) , Lon adj (SW5) , . . .

Lon adj (SW6) , Lon adj (SW7) , Lon adj (SW8) , Lon adj (SW10) , Lon adj (SW11) , . . .

Lon adj (SW12) , Lon adj (SW13) , Lon adj (SW16) , Lon adj (SW17) , Lon adj (SW18) . . .

APPENDIX E. MATLAB ANALYSIS CODE 101

, Lon adj (SW20) , Lon adj (SW21) , Lon adj (SW22)] ;

y=[Lat adj (SW1) , Lat adj (SW2) , Lat adj (SW3) , Lat adj (SW4) , Lat adj (SW5) , . . .

Lat adj (SW6) , Lat adj (SW7) , Lat adj (SW8) , Lat adj (SW10) , Lat adj (SW11) , . . .

Lat adj (SW12) , Lat adj (SW13) , Lat adj (SW16) , Lat adj (SW17) , Lat adj (SW18) . . .

, Lat adj (SW20) , Lat adj (SW21) , Lat adj (SW22)] ;

p = polyf it (x , y , 1) ;

d2=(p (1) . * x=y+p (2)) / sqrt (1+p (1) ˆ 2) ;

d2 mean = mean(d2 ’) ’ ;

d2 std = std (d2) ;

% [p , S] = p o l y f i t (1 : l e n g t h (d2 mean) , d2 mean , 5) ;

% [f , D] = po l y v a l (p , 1 : l e n g t h (d2 mean) ,S) ;

d2 sample = [(1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , . . .

(1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5

[p , S] = polyf it (d2 sample , d2 , 5) ;

[f , D] = polyval (p , 1 : length (d2 mean) , S) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

subplot (2 , 1 , 1) ;

plot (d2 , ’ .= ’)

hold on

y l i n e (0)

p1 = plot (f , ’ r ’) ;

p2 = plot (f+D*2 , ’ r== ’) ;

plot (f=D*2 , ’ r== ’)

t i t l e (’ D i s t r i b u t i o n o f GNSS data e r r o r s f o r each southwest pass ’)

legend ([p1 p2] , ’ 5 th order polynomial f i t ’ , ’ 95 th p e r c e n t i l e ’)

xlabel (’ Sample ’) ; ylabel (’ Distance from l i n e a r f i t (m) ’) ;

grid minor ; axis ([0 52 =0.025 0 . 0 2 5]) ;

d3 abs mean = mean(mean(abs (d2=d2 mean))) ;

d3 abs s td = mean(std (abs (d2=d2 mean))) ;

d3 acc = sqrt (2) * (d3 abs mean + d3 abs s td) * 1000 ;

d4 mean = mean(mean(abs (d2=f ’))) ;

d4 std = mean(std (abs (d2=f ’))) ;

d4 acc = sqrt (2) * (d4 mean + d4 std) * 1000 ;

APPENDIX E. MATLAB ANALYSIS CODE 102

%% Northeast pass by pass error

x=[Lon adj (NE1) , Lon adj (NE2) , Lon adj (NE3) , Lon adj (NE4) , Lon adj (NE5) , . . .

Lon adj (NE6) , Lon adj (NE7) , Lon adj (NE8) , Lon adj (NE10) , Lon adj (NE11) , . . .

Lon adj (NE12) , Lon adj (NE13) , Lon adj (NE16) , Lon adj (NE17) , Lon adj (NE18) . . .

, Lon adj (NE20) , Lon adj (NE21) , Lon adj (NE22)] ;

y=[Lat adj (NE1) , Lat adj (NE2) , Lat adj (NE3) , Lat adj (NE4) , Lat adj (NE5) , . . .

Lat adj (NE6) , Lat adj (NE7) , Lat adj (NE8) , Lat adj (NE10) , Lat adj (NE11) , . . .

Lat adj (NE12) , Lat adj (NE13) , Lat adj (NE16) , Lat adj (NE17) , Lat adj (NE18) . . .

, Lat adj (NE20) , Lat adj (NE21) , Lat adj (NE22)] ;

p = polyf it (x , y , 1) ;

d2=(p (1) . * x=y+p (2)) / sqrt (1+p (1) ˆ 2) ;

d2 mean = mean(d2 ’) ’ ;

d2 std = std (d2) ;

% [p , S] = p o l y f i t (1 : l e n g t h (d2 mean) , d2 mean , 5) ;

% [f , D] = po l y v a l (p , 1 : l e n g t h (d2 mean) ,S) ;

d2 sample = [(1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , . . .

(1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5 1) ’ , (1 : 5

[p , S] = polyf it (d2 sample , d2 , 5) ;

[f , D] = polyval (p , 1 : length (d2 mean) , S) ;

%f i g c n t=f i g c n t +1;

%f i g u r e (f i g c n t) ;

subplot (2 , 1 , 2) ;

plot (d2 , ’ .= ’)

hold on

y l i n e (0)

p1 = plot (f , ’ r ’) ;

p2 = plot (f+D*2 , ’ r== ’) ;

plot (f=D*2 , ’ r== ’)

t i t l e (’ D i s t r i b u t i o n o f GNSS data e r r o r s f o r each nor theas t pass ’)

legend ([p1 p2] , ’ 5 th order polynomial f i t ’ , ’ 95 th p e r c e n t i l e ’)

xlabel (’ Sample ’) ; ylabel (’ Distance from l i n e a r f i t (m) ’) ;

grid minor ; axis ([0 52 =0.025 0 . 0 2 5]) ;

print =deps Error

APPENDIX E. MATLAB ANALYSIS CODE 103

d3 abs mean = mean(mean(abs (d2=d2 mean))) ;

d3 abs s td = mean(std (abs (d2=d2 mean))) ;

d3 acc = sqrt (2) * (d3 abs mean + d3 abs s td) * 1000 ;

d4 mean = mean(mean(abs (d2=f ’))) ;

d4 std = mean(std (abs (d2=f ’))) ;

d4 acc = sqrt (2) * (d4 mean + d4 std) * 1000 ;

%% Southwest passes

%y = [Lat ad j (9 : 5 9) ; La t ad j (247 : 297) ; La t ad j (4 8 5 : 5 35)] ;

%x = [Lon adj (9 : 5 9) ; Lon adj (247 :297) ; Lon adj (4 85 : 5 3 5)] ;

y = Lat adj (SW) = Lat adj (SW(end)) ;

x = Lon adj (SW) = Lon adj (SW(end)) ;

[p , S] = polyf it (x , y , 1) ;

[y f i t , d e l t a] = polyval (p , x , S) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

plot (x , y , ’b . ’)

hold on

plot (x , y f i t , ’ r= ’)

plot (x , y f i t +2*de l ta , ’m== ’ , x , y f i t =2*de l ta , ’m== ’)

t i t l e (’ Southwest pas s e s GNSS Data ’)

legend (’GNSS data po in t s ’ , ’ L inear Fi t ’ , ’95% P e r c e n t i l e ’)

xlabel (’ Adjusted l o c a l l a t i t u d e (m) ’) ; ylabel (’ Adjusted l o c a l l ong i tude (m) ’) ;

grid minor ; axis equal ;

print =deps SW2

m = p (1) ;

c = p (2) ;

txt = [’ y = ’ num2str(m) ’ x ’ num2str(c)] ;

text (2 , 1 , txt) ;

d=(m.* x=y+c)/ sqrt (1+mˆ 2) ;

r count = 0 ;

l c o u n t = 0 ;

ze ro count = 0 ;

for k=1: length (d)

APPENDIX E. MATLAB ANALYSIS CODE 104

i f d(k)<0

r count = r count + 1 ;

e l s e i f d(k) > 0

l c o u n t = l c o u n t + 1 ;

e l s e i f d(k) == 0

zero count = zero count +1;

end

end

l c o u n t ;

r count ;

z e ro count ;

d abs SW = abs ((m.* x=y+c)/ sqrt (1+mˆ 2)) ;

d mean SW = mean(d abs SW) ;

d std SW = std (d abs SW) ;

d max SW = max(d abs SW) ;

d 95 SW = p r c t i l e (d abs SW , 9 5) ;

ACC SW = sqrt (2)* (d mean SW + d std SW) ;

fpr intf (’SW pass l e f t count : %u , r i g h t count : %u , zero count : %u\n ’ , . . .

l count , r count , z e ro count)

fpr intf (’SW pass accuracy (mm) : %f \n ’ ,ACC SW*1000)

%% Northeast Passes

y = Lat adj (NE) = Lat adj (NE(1)) ;

x = Lon adj (NE) = Lon adj (NE(1)) ;

[p , S] = polyf it (x , y , 1) ;

[y f i t , d e l t a] = polyval (p , x , S) ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

plot (x , y , ’b . ’)

hold on

plot (x , y f i t , ’ r= ’)

plot (x , y f i t +2*de l ta , ’m== ’ , x , y f i t =2*de l ta , ’m== ’)

APPENDIX E. MATLAB ANALYSIS CODE 105

t i t l e (’ Northeast pases GNSS Data ’)

legend (’GNSS data po in t s ’ , ’ L inear Fi t ’ , ’95% P e r c e n t i l e ’)

xlabel (’ Adjusted l o c a l l a t i t u d e (m) ’) ; ylabel (’ Adjusted l o c a l l ong i tude (m) ’) ;

grid minor ; axis equal ;

print =deps NE2

m = p (1) ;

c = p (2) ;

txt = [’ y = ’ num2str(m) ’ x ’ num2str(c)] ;

text (2 , 1 , txt) ;

d=(m.* x=y+c)/ sqrt (1+mˆ 2) ;

r count = 0 ;

l c o u n t = 0 ;

ze ro count = 0 ;

for k=1: length (d)

i f d(k)<0

r count = r count + 1 ;

e l s e i f d(k) > 0

l c o u n t = l c o u n t + 1 ;

e l s e i f d(k) == 0

zero count = zero count +1;

end

end

l c o u n t ;

r count ;

z e ro count ;

d abs NE = abs ((m.* x=y+c)/ sqrt (1+mˆ 2)) ;

d mean NE = mean(d abs NE) ;

d std NE = std (d abs NE) ;

d max NE = max(d abs NE) ;

d 95 NE = p r c t i l e (d abs NE , 9 5) ;

ACC NE = sqrt (2)* (d mean NE + d std NE) ;

fpr intf (’NE pass l e f t count : %u , r i g h t count : %u , zero count : %u\n ’ , . . .

l count , r count , z e ro count)

APPENDIX E. MATLAB ANALYSIS CODE 106

fpr intf (’NE pass accuracy (mm) : %f \n ’ ,ACC NE*1000)

%% Bar graphs

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

groups = c a t e g o r i c a l ({ ’SW segment ’ , ’NE segment ’ , ’ Combined segments ’ }) ;

groups = r e o r d e r c a t s (groups ,{ ’SW segment ’ , ’NE segment ’ , ’ Combined segments ’ }) ;

data = [d mean SW d std SW ACC SW; d mean NE d std NE ACC NE; d mean d std ACC] ;

b = bar (groups , data) ;

grid minor ;

ylabel (’ Error / Accuracy (m) ’)

t i t l e (’Mean unsigned er ror , standard dev i a t i on o f e r r o r and accuracy ’)

legend (’Mean o f e r r o r ’ , ’ Standard dev i a t i on o f e r r o r ’ , ’ Re l a t i v e cros s=t rack acc

legend (’ Locat ion ’ , ’ s outhout s ide ’)

x t i p s1 = b (1) . XEndPoints ;

y t i p s1 = b (1) . YEndPoints ;

l a b e l s 1 = s t r i n g (b (1) . YData) ;

text (xt ips1 , yt ips1 , l a b e l s 1 , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

’ Vert i ca lAl ignment ’ , ’ bottom ’)

x t i p s2 = b (2) . XEndPoints ;

y t i p s2 = b (2) . YEndPoints ;

l a b e l s 2 = s t r i n g (b (2) . YData) ;

text (xt ips2 , yt ips2 , l a b e l s 2 , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

’ Vert i ca lAl ignment ’ , ’ bottom ’)

x t i p s3 = b (3) . XEndPoints ;

y t i p s3 = b (3) . YEndPoints ;

l a b e l s 3 = s t r i n g (b (3) . YData) ;

text (xt ips3 , yt ips3 , l a b e l s 3 , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

’ Vert i ca lAl ignment ’ , ’ bottom ’)

%% heading accuracy

heading sw = heading (SW) ;

heading sw m = mean(heading sw) ;

head ing sw std = std (heading sw) ;

head ing sw er ro r = heading sw = heading sw m ;

APPENDIX E. MATLAB ANALYSIS CODE 107

heading sw error m = mean(abs (head ing sw er ro r)) ;

h e a d i n g s w e r r o r s t d = std (abs (head ing sw er ro r)) ;

h e ad i ng sw e r ro r a c c = heading sw error m + h e a d i n g s w e r r o r s t d ;

heading ne = heading (NE) ;

heading ne m = mean(heading ne) ;

head ing ne s td = std (heading ne) ;

h e a d i n g n e e r r o r = heading ne = heading ne m ;

head ing ne er ror m = mean(abs (h e a d i n g n e e r r o r)) ;

h e a d i n g n e e r r o r s t d = std (abs (h e a d i n g n e e r r o r)) ;

h e a d i n g n e e r r o r a c c = head ing ne er ror m + h e a d i n g n e e r r o r s t d ;

h ead ing e r r o r = [head ing sw er ro r ; h e a d i n g n e e r r o r] ;

head ing error m = mean(abs (he ad ing e r r o r)) ;

h e a d i n g e r r o r s t d = std (abs (h ead ing e r r o r)) ;

h e a d i n g e r r o r a c c = head ing error m + h e a d i n g e r r o r s t d ;

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

subplot (2 , 1 , 1)

plot (head ing sw er ro r)

xlabel (’ Sample ’) ; ylabel (’ Error (deg) ’) ; t i t l e (’ Heading e r r o r during southwest s t r

subplot (2 , 1 , 2)

plot (h e a d i n g n e e r r o r)

xlabel (’ Sample ’) ; ylabel (’ Error (deg) ’) ; t i t l e (’ Heading e r r o r during nor theas t s t r

f i g c n t=f i g c n t +1;

f igure (f i g c n t) ;

groups = c a t e g o r i c a l ({ ’SW segment ’ , ’NE segment ’ , ’ Combined segments ’ }) ;

groups = r e o r d e r c a t s (groups ,{ ’SW segment ’ , ’NE segment ’ , ’ Combined segments ’ }) ;

data = [heading sw error m h e a d i n g s w e r r o r s t d he ad i ng sw e r ro r a c c ; head ing ne

h e a d i n g n e e r r o r s t d h e a d i n g n e e r r o r a c c ; head ing error m h e a d i n g e r r o r s t d

b = bar (groups , data) ;

grid minor ;

ylabel (’ Error / Accuracy (deg) ’)

t i t l e (’Mean unsigned er ror , standard dev i a t i on o f e r r o r and accuracy ’)

legend (’Mean ’ , ’ Standard dev i a t i on ’ , ’ Accuracy ’) ;

APPENDIX E. MATLAB ANALYSIS CODE 108

legend (’ Locat ion ’ , ’ s outhout s ide ’)

x t i p s1 = b (1) . XEndPoints ;

y t i p s1 = b (1) . YEndPoints ;

l a b e l s 1 = s t r i n g (b (1) . YData) ;

text (xt ips1 , yt ips1 , l a b e l s 1 , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

’ Vert i ca lAl ignment ’ , ’ bottom ’)

x t i p s2 = b (2) . XEndPoints ;

y t i p s2 = b (2) . YEndPoints ;

l a b e l s 2 = s t r i n g (b (2) . YData) ;

text (xt ips2 , yt ips2 , l a b e l s 2 , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

’ Vert i ca lAl ignment ’ , ’ bottom ’)

x t i p s3 = b (3) . XEndPoints ;

y t i p s3 = b (3) . YEndPoints ;

l a b e l s 3 = s t r i n g (b (3) . YData) ;

text (xt ips3 , yt ips3 , l a b e l s 3 , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

’ Vert i ca lAl ignment ’ , ’ bottom ’)

%% Heading e r ro r s

heading sw = heading (SW) ;

heading sw m = mean(heading sw) ;

heading sw p = [heading (SW1) , heading (SW2) , heading (SW3) , heading (SW4) , heading (SW5)

heading (SW7) , heading (SW8) , heading (SW10) , heading (SW11) , heading (SW12) , heading (S

heading (SW17) , heading (SW18) , heading (SW20) , heading (SW21) , heading (SW22)] ;

head ing sw per ro r = heading sw p = heading sw m ;

subplot (2 , 1 , 1)

plot (head ing sw per ro r) ;

t i t l e (’ D i s t r i b u t i o n o f GNSS heading e r r o r s f o r each southwest pass ’)

%legend ([p1 p2] , ’ 5 th order po lynomia l f i t ’ , ’95 th p e r c en t i l e ’)

xlabel (’ Sample ’) ; ylabel (’ Error from mean heading (deg) ’) ;

grid minor ; axis ([0 52 =1.5 1]) ;

heading ne = heading (NE) ;

heading ne m = mean(heading ne) ;

heading ne p = [heading (NE1) , heading (NE2) , heading (NE3) , heading (NE4) , heading (NE5)

heading (NE7) , heading (NE8) , heading (NE9) , heading (NE10) , heading (NE11) , heading (N

APPENDIX E. MATLAB ANALYSIS CODE 109

heading (NE15) , heading (NE16) , heading (NE17) , heading (NE18) , heading (NE19) , headin

heading (NE22)] ;

h ead ing ne pe r ro r = heading ne p = heading ne m ;

subplot (2 , 1 , 2)

plot (head ing ne pe r ro r) ;

t i t l e (’ D i s t r i b u t i o n o f GNSS heading e r r o r s f o r each nor theas t pass ’)

%legend ([p1 p2] , ’ 5 th order po lynomia l f i t ’ , ’95 th p e r c en t i l e ’)

xlabel (’ Sample ’) ; ylabel (’ Error from mean heading (deg) ’) ;

grid minor ; axis ([0 52 =1.5 1]) ;

APPENDIX E. MATLAB ANALYSIS CODE 110

