University of Southern Queensland

Faculty of Health, Engineering & Sciences

Precision RTK GNSS for low-cost robotic systems

A dissertation submitted by

Simon Castles

In fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Mechatronics)

Submitted: October, 2021

Abstract

The agriculture industry has been under increasing pressure to do more with less; increase
efficiency and productivity while minimising cost and environmental impacts. Advanced tech-
nology has become an essential part of farming and with improvements in GNSS, robotics and

geospatial software, so has the potential for improving accuracy and control of farming practices.

Real-time kinematic (RTK) GNSS offers centimetre level accuracy using a base station sit-
uated at a known location providing correction data to one or more rover stations within a 10
km range. In agronomy, RTK GNSS enables more sustainable and profitable management prac-
tices, such as tractor guidance, and more recently precision application of herbicides. However,
the capital investment in establishing an RTK network to gain precise localisation benefits often
erode the profitability of the system when compared to a less accurate, cheaper system with
reduced benefits. The aim of this project is to design a low cost RTK GNSS sub-system for an

autonomous robotic system and evaluate the accuracy of the system in an agricultural setting.

A system was designed and built using ArduSimple RTK receiver boards (based on the Ublox
ZED-F9P receiver module), Xbee radio modules and an STM32 microcontroller to provide both
position and heading data. To verify the accuracy of the designed system, a testing procedure
based on ISO 12188-1 was developed, which involved the design and production of a drive
system on a non-metallic track so that the actual path traversed could be accurately recorded.
The data from the RTK receiver was then analysed to calculate cross-track error and therefore
the accuracy of the system, finding that centimetre level accuracy is achievable with low-cost
receivers, with the system estimated to have a relative cross-track accuracy of 12.13 mm and a

heading accuracy of 0.45°.

Keywords: Precision agriculture, robotics, localisation, GNSS, RTK, accuracy.

University of Southern Queensland
Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering &
Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility
for the truth, accuracy or completeness of material contained within or associated with this

dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of
the Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the
overall education within the student’s chosen degree program. This document, the associated
hardware, software, drawings, and other material set out in the associated appendices should

not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out

in this dissertation are entirely my own effort, except where otherwise indicated and acknowl-

edged.

I further certify that the work is original and has not been previously submitted for assess-

ment in any other course or institution, except where specifically stated.

S. Castles

Acknowledgments

The author would like to sincerely thank the following people for their help and support during
the project:

I want to thank my supervisor, Dr Craig Lobsey, for his support to take this project in this

direction, continued guidance and the original idea of the topic.

I would also like to thank and acknowledge my wife for her constant love and support, solving

problems together and allowing me to spread electronics and acrylic all over the house.

S. Castles

Contents

List of Figures v
List of Tables vii
Nonenclature and Acronyms viii
1 Introduction 1
1.1 Background L e 1
1.2 Project Aim and objectives Lo 2
1.3 Implications and Ethics o o 3
1.3.1 Benefits to agriculture o oL 3

1.3.2 Ethical considerations o 3

1.4 Overview of the dissertation 3

2 Relevant Literature 5
2.1 Chapter Overview 5
2.2 Precision Agricultureo o 5
2.3 Satellite Based Localisation 6
2.3.1 Real-time kinematic GNSS oo 7

2.3.2 ArduSimple ZED-F9P GNSS receiver 8

2.3.3 Evaluating agriculture localisation systems 9

2.3.4 The UBX message protocol

3 Design Methodology

3.1 Chapter Overview

3.2 Project Methodology
3.2.1 Proposed testing methodology
3.2.2 Method

3.2.3 Limitations

3.3 System concept design Lo
3.3.1 Static base station
3.3.2 Roverstation

3.4 System design requirementso e e

3.5 System preliminary design

4.1 Chapter Overview

Hardware Implementation

4.2 The Test Rig o
4.2.1 The Drive Mechanism
4.2.2 Power e

4.3 The Microcontroller

4.3.1 Peripherals

4.3.2 GPIO interrupt

4.4 Raspberry Pi . . .

5 Software Development

5.1 Chapter Overview

11

11

11

11

13

13

13

14

14

14

17

20

20

20

21

23

23

24

24

24

27

27

CONTENTS

ii

52 RTOS Tasks o . o 27
5.2.1 Processing UBX messages o oo 27

5.2.2 Data Logging Task 29

5.2.3 RTCupdatetask 29

6 Results 32
6.1 Results. o e 32
6.1.1 Collection of data L 32

6.1.2 Relative Cross-track Accuracy, 33

6.1.3 Heading Accuracy e 37

6.1.4 Errorsand Biasof Results 38

7 Discussion 41
7.1 Discussion e 41

8 Conclusions and Further Work 43
8.1 Conclusions e e 43
8.2 Recommendations and Further Work 0000 43
References 45
A Project specification 48
B Project Management 50
B.1 Project Schedule 50
B.2 Resource Requirements L oo 53
B.2.1 Hardware requirements L oo 53

B.2.2 Software requirements oL 53
CONTENTS iii

B.2.3 Addition time/space resources 54

B.3 Risk management L L oL 54

C Wiring diagrams 60
D Microcontroller Source Code - C 64
D.1 Main C Program e 64

E MATLAB Analysis Code 94
CONTENTS iv

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

Improve GNSS accuracies through differential services 7

SimpleRTK2b V1 (left) and V3 (right) evaluation boards. Source: ArduSimple

(2021) 8
The UBX message frame (NAV PVT fields shown as example) 10
Test track layout L 12
Base station prototype oo 15
Base station deployed L oo 16
High level system design L o 19
The test rig concept design. L Lo L L 21
An exploded view of a straight track section. 22
A view of the completed track. o L 22
A view of the completed drive system on the track. 23
The cut slot at the end of straight track segment. 25
The final test rig. L L 26
The UBX processing task flow chart 28

Segger Systemview of the data logging task with priority over the UBX processing
task ..o 29

The data logging task flow chart 0. 30

5.4 The RTC update task flow chart 31

6.1 Trajectory data points. 32
6.2 Adjusted trajectory. e e 33
6.3 Heading data plots 33
6.4 Adjusted localised GNSS data of southwest segment 34
6.5 Adjusted localised GNSS data of northeast segment 35
6.6 Adjusted localised GNSS data of northeast segment (close up view) 36
6.7 Mean and standard deviation of unsigned errors for each segment and overall. . . 37

6.8 Mean and standard deviation of unsigned heading errors for each segment and

overall.o L 38
6.9 Signed heading errors for each straight segment.. 39
6.10 Signed heading errors for each straight segment.. 39
6.11 Signed heading errors for each straight segment.. 40
B.1 Project schedule 52

LIST OF FIGURES vi

List of Tables

2.1 GNSS frequencies based on Ublox (2020a) 6
3.1 Static base station design requirements oL 17
3.2 Rover station design requirements L L Lo 18
6.1 Heading data 37
B.1 Phase breakdown 51
B.2 Project system resource requirementso 53
B.3 Project test rig resource requirements 53

vii

Nomenclature and Acronyms

BLDC
CEP
CTPCO
DGPS
GNSS
GPIO
GPS
MCU
PVT
RMS
ROS2
RTC
RTK
RTOS
SBC
SSM
UART

Brushless DC

Circular error probability

Critical Technologies Policy Coordination Office
Differential GPS

Global navigation satellite system
General purpose input/output
Global Positioning System
Microcontroller

Position,velocity and time

Root mean square

Robotic operating system 2

Real time clock

Real time kinematic

Real time operating system
Single board computer

Site specific management

Universal asynchronous receiver-transmitter

viii

Chapter 1

Introduction

1.1 Background

The agriculture industry has been under increasing pressure to do more with less; increase
efficiency and productivity while minimising cost and environmental impacts. Advanced tech-
nology has become an essential part of farming and with improvements in Global navigation
satellite systems (GNSS), robotics and geospatial software, so has the potential for improv-
ing accuracy and control of existing farming practices and developing new methods of farming

through the use of robotics and automation.

Until recently, precision agriculture has been out of reach for many small scale producers due
to cost. Innovation in the Australian agriculture industry is low (Department of the Prime Min-
ister and Cabinet 2021), with some farmers hesitant to introduce new technology due to capital
cost outweighing benefits. However, the affordability and availability of precise GNSS has the
potential to make sustainable practices more widely implemented. The Critical Technologies
Policy Coordination Office (CTPCO) has identified GNSS augmentation and autonomous vehi-
cles as two of the eight critical technologies that are essential for securing the nation’s economic
prosperity (Department of the Prime Minister and Cabinet 2021). This project evaluates a
low-cost GNSS receiver for use as a localisation module for an autonomous agricultural robotic

system.

Real-time kinematic (RTK) GNSS offers centimetre level accuracy using a base station sit-
uated at a known location providing correction data to one or more rover stations within a
10 km range. In agronomy, RTK GNSS enables more sustainable and profitable management
practices, such as tractor guidance, and more recently precision application of herbicides (Ry-
backi et al. 2021). For more than two decades, precision agriculture has been on the verge of
transforming production agriculture, with the potential for increasing yields while maintaining

or reducing inputs (Thompson et al. 2019).

However, the capital investment in establishing an RTK network to gain precise localisation
benefits often erode the profitability of the system when compared to a less accurate, cheaper
system with reduced benefits (Knight & Malcolm 2009). Several recent studies have found
adoption rates for precision agriculture struggles to exceed fifty percent of farmers/producers
or planted acers (Thompson et al. 2019). These studies tend to focus on large scale produc-
ers (greater than 1000 crop acres), which have higher adoption rates of precision agriculture.
Moreover, cost-savings was considered more beneficial than yield improvements or convenience
(Thompson et al. 2019). This suggests developing a low-cost system could make precision

agriculture more accessible to small scale producers.

This report will outline the project’s aims, objectives and research methodology for evalu-
ating a low-cost GNSS board for integration into an agricultural robotic system. It will also
outline the the resources required, project planning and risks involved. Finally, this report will

highlight areas for further development and future research.

1.2 Project Aim and objectives

The aim of this project is to design a low cost RTK GNSS sub-system for an autonomous robotic
system and evaluate the accuracy of the system in an agricultural setting. In order to achieve

the aim of the project, the following objectives were to be achieved:

e Design and build a RTK GNSS receiver base station which transmits differential correction

data to one or more rover stations, and

e Design and build a RTK GNSS rover station capable of providing accurate position,

heading and speed to a mobile robotic system.

e Evaluate the built system in line with relevant standards.

A major consideration of the design is that it will be a module of a larger, more com-
plex robotic system with the potential for development /integration into a commercial product.
Therefore, the output of the the rover station must be able to be integrated with the larger
system, which will be achieved through implementing robotic operating system 2 (ROS2) on
the software stack of the design. In addition to designing the RTK GNSS system, a test rig
has been designed and built; and test procedures developed in line with the requirements of

relevant standards to ensure the functionality of the RTK GNSS system.

Further detail on the aim and objectives of the project are outlined in the Project Specifi-

cation (Appendix A).

CHAPTER 1. INTRODUCTION 2

1.3 Implications and Ethics

1.3.1 Benefits to agriculture

By designing a low cost RTK-GNSS localisation system, it is believed that numerous smaller,
multi-purpose autonomous vehicles can be developed to replace large agriculture vehicles. Hav-
ing lightweight vehicles combined with centimetre level precision from an RTK system, one
major benefit to an agriculture business is reduced soil compaction due to the reduced loads
and repeatability of vehicle movement. Additionally, improvements in efficiency, cost-savings

and yield could have positive impacts on the wellbeing of farmers.

1.3.2 Ethical considerations

Low cost electronics can lead to the belief that the product is for short term use and lead to
a build up of e-waste and unsustainable use of finite resources. Reliability for long term use
of the RTK GNSS system should be incorporated into the design, as well as ease of use so
that the system is not discarded due to complexity in integration to a farming system. Open-
source programming can also allow for wider technical support to the operator if maintenance

is required rather than the system requiring proprietary tools for servicing.

1.4 Overview of the dissertation

A summary of the chapters within this dissertation is provided below:

Chapter 2 - Outlines the literature review that occurred to support the development of the
methodology implemented as well has the design choices made in developing system hardware

and software to achieve the project’s aims and objectives.

Chapter 3 - Outlines the development of the evaluation methodology from the standards and

the system concept design to be evaluated.
Chapter 4 - Outlines the hardware selected for the testing rig and the system under evaluation.

Chapter 5 - Outlines the software development that occurred in order to capture GNSS data

for evaluation.
Chapter 6 - Outlines the results obtained during testing of the designed system.

Chapter 7 - Discusses the interpretation of the results and

CHAPTER 1. INTRODUCTION 3

Chapter 8 - Concludes the dissertation and proposes further work to be conducted to build

upon this project in evaluating the accuracy of low-cost RTK GNSS receivers and their use.

CHAPTER 1. INTRODUCTION 4

Chapter 2

Relevant Literature

2.1 Chapter Overview

This chapter examines the trends in precision agriculture and the relationship to localisation sys-
tems and the growing need for ever increasing accuracy in systems. It will also give an overview
of a low cost satellite based localisation development board, the ArduSimple SimpleRTK2b,
which is based around Ublox’s ZED-F9P GNSS receiver.

2.2 Precision Agriculture

Precision agriculture has introduced technologies that greatly enhances productivity. Through
the use of data collection from all types of sensors from the atmosphere, the plants and even the
soil, farmers can see much more efficient production and a reduced impact on the environment
(Wolfert et al. 2017, Tzounis et al. 2017). Often though, to get the most out of the data collected,
precise GNSS receivers are required to achieve the precise dosage of nutrients, fertilizers and

pesticides (if still required) to the precise location it is needed (Perez-Ruiz & Upadhyaya 2012).

Site specific management (SSM) is an area of precision agriculture which largely focuses on
crop nutrient levels and delivering variable fertilizer doses based on localised soil sample data.
Over the last century, research on the soil sampling density has consistently suggested reduc-
ing crop management zone resolution, with advances in modern sensor technologies recognising
variability under a meter (Zhang 2016). This has required ever increasing accuracy of localisa-
tion systems, down to centimetre level, which can be achieved through laser and satellite based
systems (Williams et al. 2020). But this increased accuracy also poses new challenges, such as
increased cost in man power and money to collect and analyse ever increasing data. One possible

solution to this new challenge is the deployment of fleets of small autonomous vehicles to collect

data on crop nutrients, yield measurement as well as pest and weed management (Shamshiri
et al. 2018). This reinforces the requirement for low cost, precise localisation systems if small

unmanned vehicles are going to be operating in fleets and probably along side humans.

2.3 Satellite Based Localisation

Satellite based GNSS is the main form of localisation for humans and machines in outdoor
conditions in our modern era. Many countries have deployed their own GNSS constellations
such as GPS by the USA, GLONASS by Russia, Galileo by the European Union and BeiDou
by China. GNSS receivers made today are often multi-band receivers, capable of using multiple
GNSS constellations to calculate position, velocity and heading (PVT) (Pini et al. 2020). Table
2.1 outlines the frequencies used by each constellation for the bands that the receiver module

being evaluated operates on.

Table 2.1: GNSS frequencies based on Ublox (2020a)

Constellation | Band Freq (MHz)
GPS LIC/A 1575.42
L2C 1227.6

GLONASS L1OF | 1598.0625-1609.3125
L20F | 1242.9375-1251.6875

Galileo E1-B/C 1575.42
E5b 1207.14
BeiDou B1l 1561.098
B2l 1207.14

The most common means of a GNSS receiver to transmit PVT data in a usable form is
through the use of the National Marine Electronics Association (NMEA) 0183 interface standard
(NMEA-0183). The NMEA-0183 protocol uses simple ASCII sentence strings and can be used
on many types of serial interfaces such as 12C, SPI or UART. All NMEA sentence frames begin
with a $ and will be followed by a five character address field, a data field, checksum and
end sequence (Ublox 2020b). The recommended minimum NMEA sentence is RMC, with an

example presented below:
$GPRMC,123456, A,1234.567, S,12345.789, W, 123.4,123.4,123456,123.4, E * 6 A

Where SGPRMC represents a GPS RMC sentence address, with each element in the payload,
separated by a comma, represent the UTC, status, latitude, north/south, longitude, east/west,
speed, heading, date, magnetic variation and east/west; then ending in the checksum *6A
(Trimble 2021aq).

CHAPTER 2. RELEVANT LITERATURE 6

2.3.1 Real-time kinematic GNSS

Whilst a hand-held GNSS receiver common on mobile phones and other personal devices have
accuracies in the ten’s of meters, there are methods of improving the accuracy of a GNSS
receiver. Differential GPS (DGPS) and RTK are real-time methods to achieve sub-meter and
centimetre level accuracies respectably by having base stations transmit correction messages
(RTCM) over radio to the GNSS receiver as depicted in figure 2.1 (Perez-Ruiz & Upadhyaya
2012, Zhang et al. 2002).

(GNSS Signals)

Figure 2.1: Improve GNSS accuracies through differential services

Whilst DGPS public radio transmitters provide reliable coverage over large areas, often for
free, the increased accuracies in RTK systems is gained through the requirement of having a
base station located within 10 km of the receiver. This generally requires a capital investment
by private entities to establish their own RTK network, increasing the cost of a RTK system
significantly (Perez-Ruiz & Upadhyaya 2012). With commercial RTK systems costing over
$50,000, Knight & Malcolm (2009) found that the benefits to an agricultural business from
using such a system was not as profitable as using a less accurate system with reduced benefits.
Similarly, Thompson et al. (2019) found cost-saving was the key benefit of precision agriculture

as highlighted by producers compared to yield and convenience.

CHAPTER 2. RELEVANT LITERATURE 7

2.3.2 ArduSimple ZED-F9P GNSS receiver

The ArduSimple SimpleRKT2b evaluation boards shown in figure 2.2 is representative of low-
cost,multi-band RTK GNSS receivers that are available on the market today. A single receiver
is available for purchase in Australia for less than $300 (Mouser 2021a) and a long range radio
kit complete with two receivers, antennas and UHF radios for around $1000 (Mouser 2021b),
allowing for a RTK based system to be deployed at a fraction of the cost of commercially

developed systems.

Figure 2.2: SimpleRTK2b V1 (left) and V3 (right) evaluation boards. Source: ArduSimple
(2021)

At the heart of the SimpleRTK2b boards is the Ublox ZED-FI9P GNSS receiver module.
The ZED-F9P module is a multi-band receiver (using GPS, GLONASS, Galileo and BeiDou),
capable of 1 cm positional accuracy, heading accuracy as small as 0.3° and a RTK navigational
update rate as high as 20 Hz (Ublox 2020a). In additional to outputting navigational data
in standard NMEAQ0183 messages (version 4.10), the ZED-F9P module is fully configurable
through the use of Ublox’s UBX protocol and achieves RTK correction messages through the
use of RTCM 3.x protocol (Ublox 20200).

A characteristic of the SimpleRKT2b boards, which simplifies deployment, is the inclusion
of Arduino and Xbee form-factor header rails. This allows easy integration with many micro-
controller development boards, including STM32, as well as Xbee’s range of wireless boards.
Often bundled with the ArduSimple kits to allow RTK communication between base station
and rover station are the Xbee Pro SX long range radio, capable of transmitting up to 105 km
(line of site) at data rates up to 250 kb/s (Digi 2020).

CHAPTER 2. RELEVANT LITERATURE 8

2.3.3 Evaluating agriculture localisation systems

The ZED-F9P receiver module has previously been evaluated in studies for positional accuracy.
Hamza et al. (2020) evaluated positional quality and identified the range of displacements that
could be detected. Whilst their study was looking at comparing a low-cost RTK system with
commercial receivers, it was focused on geodetic use, and as such, focused on static tests of
the ZED-FI9P, where the only dynamic testing was carried out over a 15 cm test distance.
Translation of the accuracy data for dynamic farming practices is limited, as the testing did

not simulate the real-time dynamic requirements of an agricultural vehicle.

Prior to 2010, there was a lack of standards for evaluating dynamic systems that relied upon
GNSS for localisation (ISO 2010), with many GNSS systems evaluated under static conditions
which did not reflect how the systems were being used (Cole et al. 2004). This led to the In-
ternational Standards Organisation (ISO) setting out a framework for evaluating and reporting

dynamic systems in ISO 12188.

Part 1 of ISO 12188 sets out two types of tests to be conducted: a horizontal positioning test
and a dynamic signal reacquisition test. Both test require the GNSS system under evaluation
to be run a travel course, where the precise location of the tested system can be measured at
one order of magnitude more accurate than the system itself. The travel course is to include
two straight segments of 90 meters and a U-turn segment with a radius of between 5-10 meters
(ISO 2010). In developing the standard, Stombaugh et al. (2008) used a motorised cart system
on a I-beam track to evaluated a sub-meter class GNSS receiver and a low-cost receiver with
2-5 meter accuracy simultaneously. However, since this publication, there has been included
in the standard, that there shall be no metallic objects within 50 meters of the course due to
multipath interference (ISO 2010), which may preclude the use of an I-beam track to evaluate
the ZED-F9P in this project.

The horizontal position test involves conducting 24 test runs of one hour duration over a
25 hour period and at speeds ranging from 0.1 to 5.0 m/s. During each test run, the recorded
positions from the GNSS system on the straight segments are converted to localised Cartesian
coordinates and compared to the recorded travel course positioning in order to report positioning
accuracies (ISO 2010).

The dynamic signal reacquisition test involves blocking the satellite signal to the receiver
during the U-turn segment of the travel course and recording the elapsed time until valid
position data is transmitted once the satellite signal is unblocked. Three one-hour dynamic
signal reacquisition tests are to be conducted, with a three hour pause between tests, within a
total of 13 hours (ISO 2010).

CHAPTER 2. RELEVANT LITERATURE 9

2.3.4 The UBX message protocol

Ublox use their own messaging protocol, called UBX, which is a variable length payload frame
protocol protected by a 8 bit Fletcher checksum. Any UBX packet (illustrated in figure 2.3)
begins with a two byte preamble of 0xb5, 0x62 (ISO 8859-1 for ub) followed by four bytes
identifying the message class, ID and payload length. The payload will consist of a number
of 8-32 bit signed and unsigned integers or flag bit fields which represent data fields and are
decoded based on their placement in the payload. Depicted in figure 2.3 are the fields of a
NAV(class)-PVT(ID) message, which has a payload length of 92 bytes, where the first four
bytes of the payload represent a 32 bit unsigned integer for the GPS time of week. Latitude and
logitude are represented by 32 bit signed integers and there are other bytes within the payload
where individual bits represent flags within the message (Ublox 20200).

PREAMBLE CLASS ID LENGTH PAYLOAD CK CK
(2 Bytes) (1 Byte) | (1 Byte) |(2 Bytes little endian) (2+ Bytes) A B

Time of Week (U4)
Year (U2)
PVT: 92 Bytes Month (U1)
Day (U1)
Sec (U1)
Valid (flags)
Time Accuracy (U4)
NAV PVT Nano secods (14)
| L Fix types (U1)
[Flags
RELPOS Flags2
Number of Satellites (U1)
J Longitude (14)
CFG Latitude (l4)
Height (14)
Height (MSL) (14)
Horizontal Accuracy (U4)
Vertical Accuracy (U4)
North Velocity (I4)
East Velocity (14)
Down Velocity (14)
Ground Speed (14)
Motion Heading (14)
Speed Accuracy (U4)
Heading Accuracy (U4)
PDOP (U2)
Vehicle Heading (14)
Magnetic Declination (12)
Magnetic Declination Accuracy (U2)

TIM ‘

15 26 NAV
Classes Messages

Figure 2.3: The UBX message frame (NAV PVT fields shown as example)

For this project, only a limited number of message types were used. Within the navigation
class (NAV), the position velocity time (PVT) message provided all critical GNSS data for later
analysis, whilst heading to the moving base was provided by the relative position (RELPOS)
message. In addition. the TIMUTC message was used to get the UTC time solution in order
to update the real time clock (RTC) and some config (CFG) messages were used to program

the GNSS receiver during operation.

CHAPTER 2. RELEVANT LITERATURE 10

Chapter 3

Design Methodology

3.1 Chapter Overview

The evaluation method developed during this project is adapted from ISO 12188-1:2010, which
outlines what tests should be conducted and how to generally calculate accuracy of satellite
based localisation systems. This chapter will outline how the testing methodology was developed

from the standards and the development of the concept system design to be assessed.

3.2 Project Methodology

This project used an simulated research design to test an RTK GNSS system under controlled
real-world conditions to predict accuracy. To achieve the stated aims and objectives, this
required the development of:

e A RTK GNSS system to provide localisation data to a robotics system.

e A testing procedure to ensure validity of the produced system.

e A method of analysing the data and report on the accuracy of the system.

3.2.1 Proposed testing methodology

To verify the accuracy of the designed system, a testing procedure based on the framework
outlined in ISO 12188-1 but within the limitations outlined has been developed. A simple test

track consisting of two straight segments 6.4 meters long and two u-turns with a nominal 5

11

meters diameter as shown in figure 3.1 was be used to assess the PVT accuracy of the ZED-F9P

receiver module.

Figure 3.1: Test track layout

The track was made out of acrylic so as not to induce GNSS signal interference and incor-
porate a gear rack profile in order to provide a means of motorisation and accurate reference
position data. Recording of the actual path traversed by the rover receiver was to be achieved by
recording the distance through the use of a rotary encoder (CUI AMT-102) on a pinion which
recorded the traverse distance along the outer track’s rack. A photo-interrupter switch was
originally designed to record the passing of the reference points A-D n figure 3.1 to indicate the
start and end of each straight run of the travel course, but this was not able to be implemented

on the day of testing.

The data from the GNSS rover reciever was converted to localised linear data points using
the conversion factors calculated from equations 3.1 and 3.2, where a and b were the WGS84
semi-major and semi-minor axis of the ellipsoid, ¢ was the test site latitude and h was the
average height above the ellipsoid (ISO 2010).

T a? >
Fion = + h |cos 3.1
l 180° <\/a20052¢> + b2sin2¢ ¢ (8:1)

2b2
Flo == - 5 < e 3+ h‘) (32)
180° \ (a2cos2¢ + b2sin2¢)2

This converted the GNSS data into local Cartesian coordinates measured in meters, for which
errors and ultimately accuracy could be estimated. Without a surveyed reference track, relative
cross track error was calculated by comparing the data recorded for each pass of the GNSS

receiver through the straight segment, calculating a theoretical reference line and measuring

CHAPTER 3. DESIGN METHODOLOGY 12

the variation in position data for each pass similar to the methods used by Rounsaville et al.
(2016).

3.2.2 Method

The scheduling for each phase is detailed in section B.1.

3.2.3 Limitations

Resources in the form of manufacturing and time were constrained to implement the full scale
test procedures outlined in ISO 12188. In developing the standards, both Cole et al. (2004) and
Stombaugh et al. (2008) were evaluating GNSS receivers with accuracies of several meters or sub-
meter capability, whilst this project aims to evaluate a centimetre level receiver. Therefore, it is
considered reasonable that the travel course can be reduced in size to allow for the limitations
yet still produce significant data. However, the reduction of the track straight segment to
6.4 meters was well below an originally planned 20 meters, which limited the amount of data
available on the straight segments in order to calculate cross track error. Manufacturing times
combined with poor weather on the day of testing also prevented multiple test runs at different
speeds as originally planned. In the end, only a single test run was able to be conducted where
data was recorded, at a speed of 0.63 m/s. Further tests will be required at longer track lengths,
varying speeds and longer test times in order to gain more beneficial data to be analysed in the

future.

The four reference points marked A-D were originally planned to be surveyed, to provide
the reference start and end mark for each straight segment (A-B and C-D) over which the
horizontal position errors were to be calculated in combination with the encoder data using the
outside track as a reference track. This would have allowed calculating an absolute accuracy of

the system, rather than a relative cross track error.

Additional tests were also planned to be conducted with increased baseline distance between
the base station and rover station to evaluate the effectiveness of the Xbee radio to maintain

centimetre accuracy of the rover station of ranges up to 10 km.

3.3 System concept design

In order to evaluate the ability of the SimpleRTK2b evaluation board to provide accurate
positional data for the requirements of an agricultural robotic system, the system to be designed

will consist of two major sub-systems: a static base station and a rover station.

CHAPTER 3. DESIGN METHODOLOGY 13

3.3.1 Static base station

The static base station’s primary purpose is to provide differential GNSS service messages
(RTCM 3.2) to the rover station via an Xbee Pro SX long range radio (using the industrial, sci-
entific and medical (ISM) frequency band, 918-926 MHz, (Australian Radiofrequency Spectrum
Plan 2017 (Cwlth) 2017)).

The base station will be able to operate in two modes of operation, survey-in mode and
statically defined mode. In survey-in mode, the base station can be placed in any location prior
to switching on, then when it is turn on, the base station will survey itself in with a minimum
specified time and accuracy. In the statically defined mode, the base station will be positioned

over a pre surveyed marker, with the positional data programmed into the ZED-F9P receiver.

The base station is to be powered by either battery or external DC source in order to allow
flexibility in use in either a fixed position or in a field location. An LCD will display the status of
the base station for quick reference to ensure it is operational during the evaluation and should
display the status of the ZED-FIP receiver, battery and RTCM output. A microcontroller shall
provide configuration of the ZED-FIP receiver, monitor power input and drive the LCD display.

A prototype of the base station is presented in figures 3.2 and 3.3, consisting of a Sim-
pleRKT2b verl board, Xbee Pro SX radio, Arduino Uno microcontroller, LCD screen with 12C
driver and powered by a 5 V power bank.

3.3.2 Rover station

The rover station’s primary purpose is to provide positional data to an integrated agricultural

robotic system.

The rover station will make use of two ZED-FI9P modules so as to provide both PVT data,
but also accurate heading. It will receive RTCM messages from the base station in order to

provide accurate, real time positional and heading data.

3.4 System design requirements

The design requirements of the system have been broken down into two tables, one for the
base station subsystem (table 3.1) and one for the rover station subsystem (table 3.2). Each
requirement has been described as either essential or desirable for the purpose of the project,
where desirable requirements are requirements which support future development of an agri-
cultural robotics system and essential requirements are ones that must be met to evaluate the

SimpleRKT2b board. Requirements highlighted in bold form the major criteria for evaluation

CHAPTER 3. DESIGN METHODOLOGY 14

© TIVERRRRARRY ._I':.J

L]

- 9

Figure 3.2: Base station prototype

CHAPTER 3.

DESIGN METHODOLOGY

15

Figure 3.3: Base station deployed

CHAPTER 3. DESIGN METHODOLOGY

16

of the system as a low-cost RTK GNSS system.

Table 3.1: Static base station design requirements

Serial | Requirement ‘ E/D
General requirements

BS-G-01 | The system shall use a ZED-F9P configured as a RTK base station. E

BS-G-02 | The system will transmit RTCM messages to one or more rover stations | E
using Xbee Prox SX radio in an agricultural setting to a range of 20 km
(to be evaluated).

BS-G-03 | The system transmits RTCM 1004, 1005 messages, and relative MSM4 | E
or MSM7 messages for GPS, GLONASS and Galileo constellations.

BS-G-04 | The system is able to be configured to conduct a self-survey-in when D
a pre-surveyed position is not available.

Electrical requirements

BS-E-01 | The system is powered by either an external DC voltage or battery E
source.

BS-E-02 | Battery system shall be designed to provide 25 hours of continuous D
operation. To ensure continuous RTCM correction data during testing
(ISO12188). Some short intervals allow for battery change.

BS-E-03 | The system shall have 5 V regulation for powering subsystems. E

Hardware requirements

BS-H-01 | The system hardware is protected by a water resistant enclosure with E
external power and communications ports.

BS-H-02 | The antenna system is mountable on a suitable tripod system for field E
use or has the ability to be placed in a fixed position.

Software requirements

BS-S-01 | The ZED-F9P is able to be flashed with configuration file in the field. E
Bare minimum to achieve requirements

BS-S-02 | User can configure ZED-F9P with the MCU using UBX messages over D
a serial connection. Can be accomplished with either integrated button
system or external connection.

BS-5-03 | MCU monitors battery status and provides indication to user. Either E
through LCD or LED indicators or external communication protocol.

BS-S-04 | MCU monitors ZED-F9P to ensure base station functionality and E
provide indication to user. Either through LCD or LED indicators or
external communication protocol.

3.5 System preliminary design

Figure 3.4 below outlines the major subsystems of both the static base station and the rover

station. It outlines the communications connections, protocols and speeds that will be used

and the major message types and their direction in order to achieve centimetre level position

accuracy. Wiring diagrams for the base station and rover station design are detailed in Appendix

C.

CHAPTER 3. DESIGN METHODOLOGY

17

Table 3.2: Rover station design requirements

Serial Requirement ‘ E/D
General requirements

RS-G-01 | The system shall use a ZED-F9P receiver configured as a moving base E
station to provide positional data.

RS-G-02 | The system shall use a second ZED-F9P receiver configured as a heading | E
module to provide relative position data to the moving base station.

RS-G-03 | The system will receive RTCM messages from the static base station E
Xbee Pro SX radio in an agricultural setting at a range of 20 km.

RS-G-04 | The system will provide 2 cm accuracy in position data D
(to be evaluated).

RS-G-05 | The system will provide 0.4° accuracy in heading data D
(to be evaluated).

RS-G-06 | The system has organic data logging capability. E

Hardware requirements

RS-E-01 | The system is powered by an external 5 VDC regulated source. E

RS-E-02 | The heading ZED-F9P receiver and associated antenna and connectivity | D
physically separated from remainder of the system with wireless
connection to moving base for relative position and RTCM messages.

Hardware requirements

RS-H-01 | The system hardware is protected by a water-resistant enclosure with E
Eexternal power and communications ports.

RS-H-02 | The GNSS antenna system will be designed to have a minimum of one E
meter separation between moving base and heading antennas, in either
an in-line configuration or perpendicular to travel configuration.

RS-H-03 | Each GNSS antenna shall have a ground plane. E

Software requirements

RS-S-01 | The ZED-F9P is able to be flashed with configuration file in the field. E
Bare minimum to achieve requirements.

RS-5-02 | User can configure ZED-F9P with the MCU using UBX messages over a | D
serial connection from an external MPU.

RS-S-03 | NMEA messages are parsed to provide date, time, position, elevation, E
geoidal separation, course over ground, number of visible satellites,
correction status and satellite constellation configuration.

RS-S-04 | Positional data from requirement RS-S-03 is stored on SD card through | E
internal data logger.

RS-S-05 | The MCU is designed as a ROS2 node providing positional data D
as a service.

RS-5-06 | Requirement RS-S-03 is achieved with UBX messages in addition to D
NMEA messages.

RS-S-07 | User can select mode of GNSS heading antenna configuration E
(in-line or perpendicular).

RS-5-08 | User can configure position reference point for the overall D
robotics system.

RS-S-09 | The system is able to provide positional data update at a rate of D
up to 10 Hz.

CHAPTER 3. DESIGN METHODOLOGY 18

Static Base Station

E3

Y. VY.
SNT ¢ GPS/GLONASS
A -3 RTCM >
UART1 UART2 UARTRX =Ll
MCU SimpleRKT2b revl Xbee Pro SX
Rover Station
€ RTCM
U BX-NAV-RELPOS/
PVT >
1/ \V Y.V
) E4 E5
% =
& 450 kbgs E
W
AT Xbee S3B Xbee S3B & GHSsS
UART2 UART1
€< RTCM UART ANT
. € Position Data 12€ UART2 RX [
SimpleRKT2b rev3 Xbee Pro SX

SimpleRKT2b rev3
(Heading)

Config =

(Moving Base)

External

€ micro-ROS Service =

STM32 F767ZI

MPU

Figure 3.4: High level system design

CHAPTER 3. DESIGN METHODOLOGY

19

Chapter 4

Hardware Implementation

4.1 Chapter Overview

This chapter will outline the hardware development that occurred during the project to develop

both a testing rig to conduct an evaluation and the system to be evaluated.

4.2 The Test Rig

In order to evaluate the RTK GNSS rover system’s accuracy, a test rig was designed to provide
a reference track and drive system, so continuous repeatable test runs could be conducted. The
system illustrated in figure 4.1 was designed where an acrylic track (in order to reduce RF
interference) with a gear profile provides an accurate means of measuring the systems distance

around the track.

The track itself was designed to be a modular sandwich construction, with the 6 mm thick
rack pinned between two 3 mm thick guide rails, providing a grove for the v-slot wheels of the
rolling elements of the drive mechanism. An exploded view of a straight section of track is
shown in figure 4.2. For modularity, section lengths were determined to allow cutting of the
gear tooth profile on either end to be symmetrical, resulting in straight sections being 402 mm
long each, an outer track pitch diameter of 5.4 m and an inner track pitch diameter of 4.68
m (this allowed each curved section to span 10° of the curved segment). The completed track

layout for the duration of the test is shown in figures 4.3 - 4.4.

20

Spring loaded
bogeys

BLDC (drive)

Gear protiled
track

Figure 4.1: The test rig concept design.

4.2.1 The Drive Mechanism

In order to provide continuous controlled movement around the track, a brushless DC (BLDC)
motor was selected to provide direct drive of a pinion, using the inbuilt gear profile of the
track to provide locomotion. An open source motor controller board, the ODrive 3.6, was
selected for speed control of the BLDC motor, which provided multiple motor control modes,
quadrature encoder integration for closed-loop control and multiple communication interfaces
(ODrive 2021).

To maintain traction, spring loaded 3D printed bogies with v-slot wheels clamped the drive
mechanism to the track, with the springs mounted on the inner track side in order to keep the
outer, reference track side at a fixed distance from the track. The final test rig drive system is

shown in figure 4.6.

CHAPTER 4. HARDWARE IMPLEMENTATION 21

Figure 4.2: An exploded view of a straight track section.

Figure 4.3: A view of the completed track.

CHAPTER 4. HARDWARE IMPLEMENTATION 22

Figure 4.4: A view of the completed drive system on the track.

4.2.2 Power

Power to the BLDC motor was provided by a 3S LiPo battery (11.1-12.6 V, 3.3 Ah), whilst a

separate 5 V, 10 Ah power bank was used to provide power to the remainder of the electronics.

4.3 The Microcontroller

The ST Nucleo-F767ZI microcontroller (MCU) development board was selected to provide a
real-time system to log GNSS data and to log distance around the track for reference when
analysing the data. The STM32F767ZI can operate up to 216 MHz frequency, has inbuilt
hardware peripherals such as timers (with encoder mode support), RTC, hardware interrupts
and universal asynchronous receiver-transmitter (UART) which has been used in this project
(STMicroelectronics 2021). In addition, as a future integration of the RTK GNSS system for
use as a localisation subsystem of an autonomous agricultural robot, the STM32F767Z1 is also

supported by Micro-ROS, a ROS2 implementation for microcontrollers.

CHAPTER 4. HARDWARE IMPLEMENTATION 23

4.3.1 Peripherals
Timers

A second quadrature encoder was mounted on the axel of the BLDC motor with the output
connected to a 32-bit hardware timer on the MCU configured in encoder mode. This allowed
the distance around the reference course to be tracked by the MCU without using processor

resources, with the count value retrieved by the data logging software task when it was required.

UART

Two UART serial interfaces were used on the MCU, both configured for 115200 bps and using
receive interrupts. UART2 was connected to the rover GNSS receiver for transmitting configu-
ration messages and receiving GNSS data. UART3, which is converted to a USB virtual com
port by the Nucleo development boards in-built ST-Link, was connected to the Raspberry Pi

for the transmission of data to be logged and receiving user input.

4.3.2 GPIO interrupt

In addition to the dedicated hardware peripherals, a general purpose input/output (GPIO)
interrupt was configured and connected to a photo interrupter, which detected when the test
rig entered and exit straight segments of the reference course through the use of slots cut into
the track (see figure 4.5). When the interrupt was triggered, the encoder timer count would
be reset and the track segment variable incremented or reset after a complete loop through the

reference course.

4.4 Raspberry Pi

A Raspberry Pi single board computer (SBC) was used to provide wireless control of the entire
system and to log the data to file. Control and monitoring of the ODrive motor controller
was achieved through the use of a python program specifically designed for the ODrive when
connected by USB. As the MCU constantly transmitted data logging information when there
was GNSS data available, a python script was executed on the Raspberry Pi to write all data
received from the MCU to a log file when a test serial was occurring. Figure 4.6 shows the final

test rig with all components connected ready for testing.

CHAPTER 4. HARDWARE IMPLEMENTATION 24

Figure 4.5: The cut slot at the end of straight track segment.

CHAPTER 4. HARDWARE IMPLEMENTATION 25

! e 2 x Quadrature Encoders
: ; BLDC

St
e 1 _

|

|___Receiver

B Moving Base ; A A
Antenna i

Figure 4.6: The final test rig.

CHAPTER 4. HARDWARE IMPLEMENTATION 26

Chapter 5

Software Development

5.1 Chapter Overview

This chapter will outline the design of the MCU, which used the FreeRTOS kernal to manage a
number of tasks to accept user input, process the UBX messages, log all data, handle interrupts
and update the RTC. Whilst this chapter will focus on the real time operating system (RTOS)
tasks and key functions, the full source code listings used during data capture is provided in

Appendix D.

5.2 RTOS Tasks

An open source RTOS called FreeRTOS was implemented on the MCU to execute independent
tasks which handle user input, processing UBX messages and logging data in a timely and
deterministic manner. FreeRTOS provides inbuilt functions such as queues and semaphores for
intertask communication and to maintain the ability for multitasking to occur (Amazon Web
Services n.d.). The use of FreeRTOS allows each task to be written as it’s own program, with

the primary tasks used in this project described below.

5.2.1 Processing UBX messages

Due to the variable length of UBX messages, each byte had to processed, as it was received, to
determine message type and length. Whilst the MCU UART hardware handled the reception of
bytes from the GNSS received, a FreeRTOS queue was implemented to store bytes for the UBX
processing task. This task, depicted in figure 5.1, would only be scheduled if there was data

in the queue to be processed, where each byte would be stored in a temporary buffer until the

27

message type and length could be determined and separate buffers created to store the message
data. Once a complete message had been received and the checksum verified, if the message
was a PVT message, a semaphore would be raised to enable the data logging task, which has
a higher priority, to be immediately scheduled in order to capture the PVT data in a timely

manner.

UART2 Queue
Receive

Process UBX
Mo Byte

PVT Message
recieved

Yes

Give Data
Log
Semaphore

Reset PVT received
flag

Figure 5.1: The UBX processing task flow chart

The use of the FreeRTOS queue allows the the UBX processing task to be suspended, to allow
the data logging task to be executed, without dropping packets. This is because the hardware
UART continues to store each subsequent byte within the queue and the UBX processing task
is then able to continue once the data logging task has completed. This is illustrated in figure
5.2, where Segger Systemview was used to analyse the ability of the MCU to process the data

logging task in time and for the queue system to maintain UBX processing.

CHAPTER 5. SOFTWARE DEVELOPMENT 28

LCCCEETETETECTTTT T |‘||||||||||\||||||||||||| 1

|
[L |
| I‘ NFNRAN ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂtﬂﬂhﬂﬂﬂﬂﬂﬁﬂﬂﬁ ﬂh 1
i |

F== N[L0

Figure 5.2: Segger Systemview of the data logging task with priority over the UBX processing
task

5.2.2 Data Logging Task

In order to construct a data log line with all relevant information captured in a timely manner,
the data log task was given high priority, but would only be scheduled when a semaphore was
raised in the receiving of a PVT message. On execution of this task, the encoder timer count
variable (which measures distance around the track), segment variable (recording which segment
is currently being traversed) and the heading data were captured and combined the PVT data
to create a message to be transmitted to the Raspberry Pi for actual logging (as shown in figure
5.3)

5.2.3 RTC update task

The RTC update (depeicted in figure 5.4) task executes on system startup or when a user sends
a command to execute through dynamic creation and deletion. When this task is created, it will
transmit a UBX message over UART to the GNSS receiver to send back a UTC time message
in order to update the internal RTC of the MCU. This task will then wait for a semaphore to
be raised to indicate that the UTC time message has been received, at which point, the MCU
RTC will be updated with the current calendar and time data and then the task will delete

itself to stop running.

CHAPTER 5. SOFTWARE DEVELOPMENT 29

Data Log
Semaphore

Read
distance
encoder

Read
segment
count

Read RELPDS
data

Print afl data as
message to UART3

Figure 5.3: The data logging task flow chart

CHAPTER 5. SOFTWARE DEVELOPMENT

30

Task created

Transmit get time
message

—Not received

Has UTC time
been rece ived

Yes

Update RTC timer O S ST e A LT |

Task delete

Figure 5.4: The RTC update task flow chart

CHAPTER 5. SOFTWARE DEVELOPMENT

31

Chapter 6

Results

6.1 Results

6.1.1 Collection of data

A total of 17.6 minutes of data was collected during the successful test run around the travel
course, resulting in the capture of 5280 data points for the UTC time, distance encoder value,
heading, latitude, longitude, height, number of satellites in view and the fix type. This data
was processed in MATLAB, with the code listing provided in appendix E. Initially, the latitude
and longitude data has been plotted (figure 6.1).

Teajuctory

Figure 6.1: Trajectory data points.

The latitude and longitude coordinates were projected into a localised coordinate system
so that error and therefore accuracy could be calculated using the method outlined in ISO
12188-1:2010 and section 3.2.1. This adjusted trajectory is shown in figure 6.2.

32

Adjusted trajectory

Figure 6.2: Adjusted trajectory.

In order to determine relative cross track error in a pass-to-pass manner, the heading data
was plotted (figure 6.3a) to determine when the test trolly was on the straight segments. The
start and end of the straight segments were determined from this plot by examining where the
heading levelled out at 50° and 230° (figure 6.3b). This resulted in a total of 22 passes in each

of the southwest and the northeast direction in which to analyse.

PR

Corrected heading data

40 50 60 0

o 10 20 30
Time (s)

(a) Corrected heading (b) Sample selection windows

Figure 6.3: Heading data plots

6.1.2 Relative Cross-track Accuracy

Adjusted trajectory points from the two straight segments were grouped together (1126 points
in the southwest segment and 1123 points in the northeast segment). For each segment, a linear
regression was conducted to determine a line of best fit which would be used as a reference line

to calculated relative cross-track error (figures 6.4 - 6.6).

CHAPTER 6. RESULTS 33

35

25—

Adjusted local longitude (m)

i '// y = 0.64893x-0.0037425 =

Southwest passes GNSS Data
T I

* GNSS data points
Linear Fit
| 95% Percentile |

8" &

o

! 1 1 ! 1 1 ! 1
15 2 25 3 35 4 45 5
Adjusted local latitude (m)

Figure 6.4: Adjusted localised GNSS data of southwest segment

CHAPTER 6. RESULTS

34

Northeast pases GNSS Data
T

= GNSS data points
Linear Fit
95% Percentile |
35 'e‘":
r
f",
3 -"J‘."
/" ;
f’
25 f’f
’f-f'
G ,,,/'
- ,z' g
H e
3 P
g 15— fl"" _
g /,ﬂ""
i ’/ ‘J‘,f y = 0,643734-0.0018558 i
J'
-
05
-
>
0
| 1 1 1 1 |
a 1 2 3 4 5
Adjusted local latitude (m)
Figure 6.5: Adjusted localised GNSS data of northeast segment
CHAPTER 6. RESULTS 35

Northeast pases GNSS Data
T

26

24

22

Adjusted local longitude (m)

08

1 1 1 1
25 3
Adjusted local latitude (m)

Figure 6.6: Adjusted localised GNSS data of northeast segment (close

* GNSS data points |
Linear Fit
95% Percentile

35

up view)

CHAPTER 6. RESULTS

36

Using the equation for the line of best fit (y = mx + ¢) for each segment, the distance (abso-
lute error) of each trajectory point (ps,p,) from the line of best fit was calculated algebraically

using equation 6.1. The mean and standard deviation of unsigned errors from this reference

line was then used to calculate relative cross track accuracy using equation 6.2 (ISO 2010). The

results of these calculations are shown in figure 6.7, with an overall relative cross-track accuracy

estimated to be 12.13 mm.

d_‘mpx—py—i—c

V1+m?

accuracy = V2(& + Sy)

Mean unsigned error, standard deviation of error and accuracy

0.014 | |
0.012985
0.012 0.012128
| 0.011194

— 001
E
&
& 0.008
-
8
< 0.006
E ‘. 0.0044811 0.0047972
W 0040697]

A 0.0034344 0.0037783

0.002

0
SW segment NE segment Combined segments
| I Mean of error

| I Standard deviation of error

| Relative cross-track accuracy

Figure 6.7: Mean and standard deviation of unsigned errors for each segment and overall.

6.1.3 Heading Accuracy

The heading data collected in the two straight segments were also collated into two groups,

where table 6.1 shows the mean and standard deviation for each segment. Using the mean

heading along each straight segment, the error from the mean heading for each data point was

used to calculate heading accuracy (z +S;) (ISO 2010), with the results presented in figure 6.8,

showing an overall estimated heading accuracy of 0.45°.

Table 6.1: Heading data

z (deg) | S, (deg)
Southwest Segment | 230.4913 0.3743
Northeast Segment | 50.8427 0.2479

CHAPTER 6. RESULTS

37

Figure 6.8: Mean and standard deviation of unsigned heading errors for each segment and
overall.

6.1.4 Errors and Bias of Results

In order to check for errors and bias within the data obtained, the signed relative cross track
errors were plotted for each segment and for each pass in figure 6.9, showing a significant pattern

of distribution in the southwest travel when compared to the northeast passes.

Heading

The difference between mean heading and recorded heading were also plotted to check for
patterns that may indicate bias in figures 6.10 (all data sequentially) and 6.11 (overlayed pass
by pass). Again, a clear pattern emerged in the southwest segment, with 22 distinct passes

showing in figure 6.10 indicating that the travel through this segment was not entirely straight.

CHAPTER 6. RESULTS 38

Distribution of GNSS data errors for each southwe st pass
I

o
g

e
2

Distance from linear fit (m)
]
g =

-0.02

0.02
E ;
g oo ‘Q
g s A SN >
T 0T JA"f_‘t%%
2 5 \.ig;‘v‘ ‘?#"#’J" "
001 ! -
z
[=]
-002 -
1 | 1 1] 1 | | 1 1
] & 10 15 20 -] a0 35 40 45 50

Figure 6.9: Signed heading errors for each straight segment.

Emor jdeg)

i rrhﬁmll J ;' N
i ?Iirij fh |w ; ! Jﬂ.“\iuw ll ‘\l, M T
/| |

for

o i
i u,'\;"f;“#" \H»m.rwr»w mnﬁ\'W“JNWWumb‘mr\’““} A

1
o 400 L
Sample

Figure 6.10: Signed heading errors for each straight segment.

CHAPTER 6. RESULTS

39

Figure 6.11:

Signed heading errors for each straight segment.

CHAPTER 6. RESULTS

40

Chapter 7

Discussion

7.1 Discussion

This project set out to design and test a low-cost RTK GNSS system, including a base station
and rover station, capable of providing accurate position, heading, and speed data for a mobile
robotic system. Given the low uptake of precision agriculture in small scale farming due to
cost (Thompson et al. 2019), developing a low-cost system has the potential to make precision
agriculture more accessible to small scale producers and go some way to reducing impacts of

farming on the environment.

The results indicate that the low-cost RTK GNSS system designed is precise in horizontal
position and heading, with a relative cross track accuracy of 12.13 mm and heading accurate
to 0.45°. This is in line with the manufacturer’s datasheet reporting 0.01 m + 1 ppm CEP
horizontal accuracy and 0.56 degree accuracy (for a rover/moving base baseline of 0.5 m). In
comparison, a high-cost RTK GNSS receiver, such as the Trimble R10, reports a dynamic
horizontal RTK accuracy of 2 cm RMS (Trimble 20215b).

Examining the signed errors and bias within the data (figures 6.9 - 6.11), it can clearly be
seen in the southwest passes that a bias exists, effecting the results. This bias can be explained
by two factors: the window for data point selection for straight segment analysis and the true
straightness of the track itself. By conducting a polynomial regression on the signed errors
for each pass, it appears that the data window selected included trajectory points when the
rover antenna had not yet completed a turn onto the straight segment, as indicated in the first
sample points of each pass in figure 6.9. In addition, local maximum errors around sample 15
and 33 could also indicate that there deviations in the lay of the track around those points to
consistently induce an error when compared to a line of best fit. Therefore, this could suggest
that the system actually has increased relative cross-track and heading accuracy, with the

northeast segment displaying a relative cross-track accuracy of 11.19 mm and heading accuracy

41

0.35°.

However, it should be noted, due to the limited testing conducted and without surveying the
reference course, that the results are only relative accuracies, not absolute. Further accuracy
errors will occur due to the accuracy of the base station which is sending correction data.
Although, if the base station configuration remains the same, the error in absolute position
data will also remain the same. Therefore, the precision of the rover station will remain the
same, it will continue to report the same position data for a given position within the relative
accuracy for a given position in space, it will just have the same absolute error from a global

datum reference.

For use in agricultural robotics and automation, this absolute error can be negated where
precision with accuracy in relation to a global datum reference is not required. By establishing
a permanent base station for a RTK network, there will be a local datum reference, offset from
the global reference by the base stations position error. Any rover station on this RTK network
will have the same error in magnitude and direction, so in an example where there multiple
autonomous robots working as a swarm, either in cooperation or independently, they will still
maintain precise localisation data in relation to each other. Also, in the case of navigating
crop rows, where the cross-track accuracy test is designed for, a vehicle, whether autonomous
or using an auto steering system, is able to make repeatable and consistent travel along any
course, thus reducing the variability of wheel ruts and therefore reducing the spread of soil

compaction.

The overall cost of the RTK GNSS system designed in this project was less than $2,000
using development boards, which could be further reduced by designing custom PCBs around
the ZED-F9P module for the required purpose. At this price point, it is feasible to achieve

centimetre level localisation systems in multiple small autonomous vehicles.

The test track and driven trolley system developed during this project proved successful
in providing a stable system in which to assess GNSS systems. However, further refinement
and development of the system is required. As indicated in the bias in signed errors, data
window selection for straight segments could have been automated and made more precise by
implementing the originally planed photo-interrupter. This would have also allowed the use of
the quadrature encoder count values to measure the actual distance along the straight segment,
where overall position accuracy of the system could have been assessed, rather than just cross-

track accuracy.

CHAPTER 7. DISCUSSION 42

Chapter 8

Conclusions and Further Work

8.1 Conclusions

The key objectives of designing a low-cost RTK GNSS system and evaluating its position and
heading accuracy was met, with limited testing indicating that the system designed was able to
provide precise PVT data in a timely manner. Though many issues encountered limited the full
implementation of the evaluation system, with further work, more data on the low-cost RTK

GNSS system can be acquired to further validate the system for use in robotic localisation.

The ZED-F9P GNSS receiver module displayed promising results to provide a reliable,
accurate and cost effective means for use in small autonomous vehicles, which can be deployed
individually or in fleets to achieve a growing number of precision agriculture tasks such as

acquiring site specific sensor data, weed and pest management.

8.2 Recommendations and Further Work

There were key design features of the testing rig which would have enhanced the quality of
data collected which were not implemented on the day of testing due to time constraints.
By increasing the length of the straight segments, implementing the photo-interrupter circuit,
surveying the reference course and increasing the number and duration of test runs would have

greatly enhanced the results obtained to truly evaluate a low-cost RTK GNSS system.

Additional straight sections were manufactured, which could have provided straight segment
lengths of 20 meters. This would have yielded a higher ratio of data points along the straight
segments, as during the testing that did occur, over half the data points were located on the

curves of the reference track.

43

By implementing the photo-interrupter, data collection can be more streamlined, but also a
reference position along the track can be determined, allowing for the calculating more than just
cross-track and heading accuracy. In addition, the testing that did occur indirectly highlighted
the need to move the photo-interrupter slot away from the transition from straight segment to
curved segment so to insure rover receiver antenna is actually conducting straight travel when

data is collected. This is just a matter of section placement when assembling the track.

Surveying the reference course, as well as the RTK base station, is essential for determining
the absolute accuracy of the system under evaluation. It would provide a ground truth referenced
to a global datum of the path travelled by the GNSS receiver for which to compare the output

and determine errors. Thus providing a more rigorous evaluation of the system.

In addition to the physical changes, it is also recommended to carry out a more thorough
testing methodology by conducting longer tests, at different speeds and over the period of a
whole 24 hour period to capture the differences that receiver velocity and atmospheric conditions

have on the receivers accuracy.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 44

References

Amazon Web Services (n.d.), ‘FreeRTOS’, viewed 12 April 2021, https://www.freertos.org/
index.html.

ArduSimple (2021), ‘SimpleRTK2B OEM RTK receivers’, viewed 20 April 2021, https://www.

ardusimple.com/simplertk2b-receivers/.

Australian Radiofrequency Spectrum Plan 2017 (Cwlth) (2017). viewed 20 April 2021, https:
//www.legislation.gov.au/Details/F2016L02001.

Cole, J. T., Stombaugh, T. S. & Shearer, S. A. (2004), Development of a test track for the
evaluation of gps receiver dynamic performance, in ‘2004 ASAE/CSAE Annual International
Meeting, 1-4 August 2004, Ottawa, Ontario, Canada’.

Department of the Prime Minister and Cabinet (2021), ‘Critical technologies dis-
cussion paper: Agriculture’;, Critical Technologies Policy Coordination Office,
viewed 25 May 2021, https://pmc.gov.au/sites/default/files/publications/

ctpco-discussion-paper-agriculture.pdf.

Digi (2020), XBee/XBee-PRO SX radio frequency module — user guide, Digi International.
viewed 12 Aprl 2021, https://www.digi.com/resources/documentation/digidocs/pdfs/
90001477 .pdf.

Hamza, V., Stopar, B., Ambrozic, T., Turk, G. & Sterle, O. (2020), ‘Testing multi-frequency

low-cost gnss receivers for geodetic monitoring purposes’, Sensors, Vol. 20(4375).

ISO (2010), ISO 12188-1:2010 - Standard Tractors and machinery for agriculture and forestry —
Test procedures for positioning and guidance systems in agriculture. Part 1: Dynamic testing

of satellite-based positioning devices, 1SO.

Knight, B. & Malcolm, B. (2009), ‘A whole-farm investment analysis of some precision agri-
culture technologies’, Australasian Farm Business Management Journal, Vol. 6(1), p. 14.
viewed 21 May 2021, https://cdn.csu.edu.au/__data/assets/pdf_£file/0010/109459/
AFBM_Journal_v06_n0O1_04_Knight_and_Malcolm.pdf.

45

Mouser (2021a), ‘AS-RTK2b-F9P-L1L2-NH-02 ArduSimple | Mouser’, viewed 29 May 2021,
https://au.mouser.com/ProductDetail/780-FOPL1L2NHO2.

Mouser (2021b), ‘AS-STARTKIT-LR-L1L2-NANH-00 ArduSimple | Mouser’, viewed 29 May
2021, https://au.mouser.com/ProductDetail/780-TKITLRL1L2NANHOO.

ODrive (2021), ‘ODrive robotics’, viewed 12 April 2021, https://odriverobotics.com/.

Perez-Ruiz, M. & Upadhyaya, S. K. (2012), GNSS in Precision Agricultural Op-
erations, IntechOpen. Publication Title: New Approach of Indoor and Out-
door Localization Systems, viewed 30 May 2021, https://www.intechopen.
com/books/new-approach-of-indoor-and-outdoor-localization-systems/

gnss—-in-precision-agricultural-operations.

Pini, M., Marucco, G., Falco, G., Nicola, M. & De Wilde, W. (2020), ‘Experimental testbed and
methodology for the assessment of RTK GNSS receivers used in precision agriculture’, IEEE
Access Vol. 8, pp. 14690-14703. viewed 12 April 2021, https://ieeexplore-ieee-org.
ezproxy.usq.edu.au/document/8955794.

Rounsaville, J. D., Dvorak, J. S. & Stombaugh, T. S. (2016), ‘Methods for Calculating Relative
Cross-Track Error for ASABE/ISO Standard 12188-2 from Discrete Measurements’, Trans-
actions of the ASABE 59(6), 1609-1616. viewed 10 October 2021, http://elibrary.asabe.
org/abstract.asp?aid=47588&t=3&dabs=Y&redir=&redirType=.

Rybacki, P., Przygodzinski, P., Osuch, A., Blecharczyk, A., Walkowiak, R., Osuch, E. & Kowa-
lik, I. (2021), ‘The Technology of Precise Application of Herbicides in Onion Field Cultiva-
tion’, Agriculture 11(7), 577. viewed 24 August 2021, https://www.mdpi.com/2077-0472/
11/7/577.

Shamshiri, R. R., Hameed, I. A., Balasundram, S. K., Ahmad, D., Weltzien, C. & Yamin, M.
(2018), Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture
in Oil Palm Plantations, IntechOpen. Publication Title: Agricultural Robots - Fundamentals
and Applications, viewed 13 October 2021, https://www.intechopen. com/chapters/63775.

STMicroelectronics (2021), ‘High-performance and dsp with fpu, arm cortex-m7 mcu with 2
mbytes of flash memory, 216 mhz cpu, art accelerator, 11 cache, sdram, tft, jpeg codec, dfsdm’,
viewed 12 April 2021, https://www.st.com/en/microcontrollers-microprocessors/

stm32f767zi.html#overview&secondary=st_description_sec-nav-tab.

Stombaugh, T. S., Sama, M. P., Zandonadi, R. S., Shearer, S. A. & Koostra, B. K. (2008),
Standardized evaluation of dynamic gps performance, in ‘2008 ASABE Annual International
Meeting, 29 June - 2 July 2008, Providence, Rhode Island, USA’.

Thompson, N. M., Bir, C., Widmar, D. A. & Mintert, J. R. (2019), ‘Farmer Perceptions of

Precision Agriculture Technology Benifits’, Journal of Agricultural and Applied Economics

REFERENCES 46

51(1), 142-163. viewed 10 October 2021, https://www.cambridge.org/core/product/
identifier/S1074070818000275/type/journal _article.

Trimble (2021a), ‘NMEA-0183 message: RMC’, viewed 20 May 2021, https://www.trimble.
com/OEM_ReceiverHelp/V4.44/en/NMEA-0183messages_RMC.html.

Trimble (20210), ‘Trimble r10 model 2 GNSS system datasheet’, viewed 12 Oc-
tober 2021, https://geospatial.trimble.com/sites/geospatial.trimble.com/files/
2021-07/022516-332B_TrimbleR10-2_DS_USL_0721_LR.pdf.

Tzounis, A., Katsoulas, N., Bartzanas, T. & Kittas, C. (2017), ‘Internet of things in agriculture,

recent advances and future challenges’, Biosystems Engineering, Vol. 164, pp. 31-48.

Ublox (2020a), ZED-F9P Datasheet. viewed 12 April 2021, https://www.u-blox.com/sites/
default/files/ZED-F9P_DataSheet_%28UBX-17051259%,29.pdf.

Ublox (2020b), ZED-F9P interface description. viewed 12 April 2021, https://www.u-blox.
com/sites/default/files/ZED-F9P_InterfaceDescription_%28UBX-18010854%29.pdf.

Williams, R. D., Lamy, M.-L., Maniatis, G. & Stott, E. (2020), ‘Three-dimensional recon-
struction of fluvial surface sedimentology and topography using personal mobile laser scan-
ning’, Farth Surface Processes and Landforms 45(1), 251-261. viewed 13 October 2021,
http://onlinelibrary.wiley.com/doi/abs/10.1002/esp.474T.

Wolfert, S., Ge, L., Verdouw, C. & Bogaardt, M, J. (2017), ‘Big data in mmart farming: a
review’, Agricultural Systems, Vol. 153, pp. 69-80.

Zhang, N., Wang, M. & Wang, N. (2002), ‘Precision agriculture—a worldwide overview’,
Computers and Electronics in Agriculture Vol. 36(2), pp. 113-132. viewed 28 May 2021,
https://linkinghub.elsevier.com/retrieve/pii/S0168169902000960.

Zhang, Q. (2016), Precision agriculture technology for crop farming, Taylor and Francis, Boca
Raton. viewed 13 October 2021, https://usq.primo.exlibrisgroup.com/view/action/
uresolver.do?operation=resolveService&package_service_id=3390667710004691&
institutionId=4691&customerId=4690.

REFERENCES 47

Appendix A

Project specification

ENG4111/4112 Research Project

Project Specification

For: Simon Castles
Title: Precision RTK GNSS for low-cost robotic system.
Major: Mechatronics engineering

Supervisor: Dr. Craig Lobsey

Enrolment: ~ ENG4111 — ONL S1, 2021
ENG4112 — ONL S2, 2021

Project aim: To design and evaluate a low-cost RTK-GNSS systems that can be used to
make precision agriculture more widely available, and support the
development of low-cost agricultural robotic systems.

Programe: Version 1, 17 March 2021

1. Research background information on precision agriculture and the use of RTK-GNSS.
2. Review methods and standards of evaluating accuracy of localisation systems.

3. Review accuracy requirements for precision agriculture (e.g. guidance) and agricultural

robotics.

4. Design a low-cost RTK-GNSS base station and rover station for an agricultural robotic

system.
5. Design evaluation rigs for rover position and heading accuracy.

6. Evaluate the RTK-GNSS base station for position accuracy using “survey-in” mode vs

survey mark.

48

7. Evaluate rover station benchmarks of position accuracy, heading accuracy and radio range.

If time and resources permit:

8. Conduct a field trial of the RTK-GNSS system mounted on agricultural vehicle.

9. Evaluate heading accuracy of a rover station consisting of two GNSS receivers vs a rover
station consisting of GNSS + INS + compass.

10. Incorporate and evaluate pairing RTK-GNSS system data with an underground soil sensor

receiver.

APPENDIX A. PROJECT SPECIFICATION 49

Appendix B

Project Management

B.1 Project Schedule

The was is planned to be carried out in 5 phases:

Phase 1: Design and build an RTK GNSS system.

Phase 2: Design and build position and heading evaluation test rig.

Phase 3: Conduct evaluation and collect position and heading data of an RTK-GNSS

System.

Phase 4: Analysis of data.

Phase 5: Dissertation report.

Each phase has been broken into tasks that will be undertaken to accomplish the project
aim. Table B.1 outlines each task within the phases, which has been further broken down into

the project schedule presented in figure B.1.

50

Table B.1: Phase breakdown

Phase 1 - Design and build an RTK-GNSS system

1.1 | Conduct literature review of precision agriculture, localisation and existing
RTK-GNSS systems.

1.2 | Design an RTK-GNSS base station with an open-source operating system
allowing a user to input position or use “survey-in” mode.

1.3 | Design an RTK-GNSS rover station with an open-source operating system with
the ability to log GNSS data for export and later analysis.

1.4 | Acquire additional resources for system assembly.

1.5 | Assemble base station.

1.6 | Assemble rover station.

Phase 2 — Design and build evaluation test rig

2.1 | Design a test rig for evaluation of rover position accuracy.
2.2 | Design a test rig for evaluation of rover heading accuracy.
2.3 | Acquire additional resources for test rig assembly.

2.4 | Assemble test rigs.

Phase 3 - Conduct evaluation of position and heading accuracy of the system

3.1 | Conduct evaluation of the base station for position accuracy using “survey-in”
mode vs survey mark.

3.2 | Conduct evaluation of rover station position accuracy.

3.3 | Conduct evaluation of rover station heading accuracy.

3.4 | Conduct evaluation of system radio range.

3.5 | Check to ensure results have been recorded for tasks 3.1, 3.2, 3.3 and 3.4.

3.6 | Progress report.

Phase 4 — Analysis of data

4.1 | Prepare analysis of position data points, compare with calculated.
4.2 | Check data for collection faults.
4.3 | Prepare results for discussion in dissertation.

Phase 5 — Dissertation report

5.1 | Continually write up draft dissertation and submit to supervisor for feedback.
5.2 | Present project at ENG4903 conference.
5.3 | Finalise dissertation and submit for marking.

APPENDIX B. PROJECT MANAGEMENT

o1

oMpPaYPs 309[01J T g 9IS

| abeq
& suolsaN (BWNE] fewuwns jenuepy |] Lewwns anpeu)] Mewwnsg
ssaifioid (enuepy ${5E] [PUIA}N] —)oY e W WS [Enuey U0 2P eU| & oSN _‘N‘_‘WG‘.‘GM ung =218
ssaibolg E fuo-ysuiy fuo-uoneing yse | aupeu| g | 2dy3 10afoig
+ aupeag | fuo-pes |] dselenuepy |] fuewwns palog Asel

oL/sL ¢ T2/0T/ST U4 shepo UQREUSSSIP HuIgns t'q sC

T2Z/60/0T 14 sym g UOREMIBSSIP [BUI4 £q 2

7 /60/0Z Yo shepg S0uBIBJU0D Pa0IJ 'S 9z

1Z/v0/6 V4 sym zz uoIIEVBSSIP IO Tg sz

1 TZ/v0/6 U4 shep 9£T yodal uojieuassiq g w2

_| ﬁmxg\hﬁ anp m-‘mﬁ S UQIEMBSSIP JOJ sHNsad m._mﬂw._n_ £ £z

ﬂ TZ/80/0T 3nL shepg S) ey B1Bp JO4 338D ey e

1 Te/0/0z @1 shep GT ElEp SSND 4O sisAjeuy Ty 12

rz/to/oz @nL shep 5z sishjeue exeg ¥ oz

- T2/S0/vT 14 shep o1 vodai 5538019 9'fg 6L

¢/L0/6T YO Aep 1 3oy e1eq S'E 81

N...hO.,..Nﬁ uowy m>m_u q UOnEN|EAS walshs oipey e Ll

T2/L0/S Vol shep g uonenjeas 3uipesy Jasoy T

4 z/90/8¢ uoy shep g uonen|ens uoiysod Janoy g st

_ 7 /90/%T voln shep g uollen|end UoKEls aseg TE ¥l

L 1 1Z/50/pT 14 shep [y uoienjae pnpuo) € €l

| T2/90/L Yol shepg S3u 1521 9|quIassY v 2l

e — 7/S0/LT volA shep T 532UN0S3 Jay1en €z

1, = 2/50/0T uo shepg wed Juiser udisag e oL

T TZ/50/€ Uo shep g syjoen 3151 udisaq 17 s

—_ TZ/S0/€uon shep O ud|sap uopen|ea3 7 s

& Y 2/90/¥T VO shep 0T UDNES JBNGS BGUIBSSY 91 ¢

T 2 /S0/TE Vol shep 0T UONEIS 958q I|QUIISSY s o

TZ/50/€ VoAl shep 0z 532UN0S3 JaY1en vT s

_ 12/%0/S UoN SHM {7 uiSap UDIEILS JIADY €1 v

T TZ/£0/8 VoAl M udisap uonels sseg 7T E

r 7/20/ZT VO L MBIARI 3Injelsin T ¢

L z/to/zzuon shep 06 udisap waishs T

SC[@ [FF| ¥ [ZC[OQZ[EF][9 [0 [Ec|[OF| 6] C |96 k| & [8¢| ke[PL] £ | WE[P LF[OF| € [9¢| 6L [t | S [6E|2c[Gk] € | b |]St

12. 70| 1z, das | 1z, By | Lz nr | 1z unf| Le fepy | Lz dy | 1z, _ms; tEL uoIeIng BWEp el sg al

52

PROJECT MANAGEMENT

APPENDIX B.

B.2 Resource Requirements

The resources required for this project have been broken up to hardware requirements, software

requirements and additional time/space resources.

B.2.1 Hardware requirements

As the basis of this project, three SimpleRKT2b boards will be required to form the centre of
the RTK GNSS base station and rover station (a second receiver being used to produce heading
data without addional sensors). In order to achieve wireless transmission of RTCM messages
between the base station and rover station, two Xbee Pro SX radios will be used. So that the
GNSS PVT data can be accessed, readable and recorded, either a microcontroller or system on
a chip (SoC) will also be required to implement either basic data acquisition or ROS2. Table

B.2 outlines the essential hardware requirements for the design system.

Table B.2: Project system resource requirements

Resource item Qty | Source Remarks
simpleRTK2B-F9P RTK receiver 3 UsQ
Survey GNSS antenna 3 UsQ
Xbee Pro SX radio 2 UsQ For RTCM messages
Xbee Pro S3B radio 2 Student For heading messages
STM32 Nucleo F7677Z1 1 Student | FreeRTOS and MicroROS integration

For the travel course cart, propulsion will be achieved through a brushless DC motor (BLDC)
controlled be the ODrive motor controller and STM32 microcontroller which will also function
to record the actual path traversed. Table B.3 outlines the major hardware requirements for

the travel course cart.

Table B.3: Project test rig resource requirements

Resource item Qty | Source Remarks
STM32 Nucleo F401RE 1 Student For system control and DAQ
ODrive 3.6 56v motor controller 1 Student For motor control
CUI AMT-102 rotary encoder 2 Student | For speed control and distance DAQ
4250 410 Kv BLDC 1 Student For track movement
T-Slot Photo Interrupter 1 USQ For reference point DAQ

B.2.2 Software requirements

For integration of this project into a larger robotics system, ROS2 will be implemented on the

RTK GNSS rover station sub-system. If a microcontroller is used in this sub-system, a slimmed

APPENDIX B. PROJECT MANAGEMENT 53

down version of ROS2 for microcontrollers called micro-ROS will be implemented, which will
also require FreeRTOS to be implemented on the STM32 F746ZG identified above.

B.2.3 Addition time/space resources

For rapid prototyping of the test rig track and cart components, a Trotec Speedy 300 CO? laser
cutter will be used at the State Library of Queensland (SLQ). For final production of the test

track, USQ’s water-jet cutter will be trialled for suitability as an alternative to SLQ’s resources.

To ensure accurate evaluation of the system, the RTK GNSS base station locations and the
four reference points on the travel course will require to be professionally surveyed by GIS staff
or students from USQ. A large space for the travel course to be located that provides 10° from
horizon clearance to the antenna and is from from metallic objects at a distance of 50 m is also

required for the duration of the evaluation phase of the project.

B.3 Risk management

The safety risk management plan for this project is presented below.

APPENDIX B. PROJECT MANAGEMENT 54

T'TA Ue|d JuawaBeueyy sty AJ3JeS "UOISIIA 153Je| U} 10} SINYS SUIJUO 3Y) SSAIVY "UOISIIA 3S3)e| 3Y} 3q Jou Aew pue pajurid 30UO P3||0JUOIUN S| JUSWNIOP SIYL

:PayNsu0l S1BYIQ

Assqon 3iesD uqg (s)10ssassy

$JudWIssasse ay3 Su1PNPUOd S| OYM - W | JUSBWISSISSY

‘B}ep UO13es]|ed0| SuIpJodal 1S|IyM poliad JNoYy GZ B JAAO S¥20|q JN0Y 3UO {7

Joj Ajsnonuijuod (y/wy 8T) s/w g 03 dn spaads je yoes} W G X 07 e U0 AOW ||IM W)SAS 2130q0d JYS1amiysi| |lews v SR L e U ORI

BYyo

*SUOI}IPUOD J3YIB3M JUBWIOU] UOU J3pun pIaly uado juUaWUOoJIAU]

*s10j0w pasamod D 98e3|OA MO| ‘SpIeO] UOIIEN|BAS ‘S13[|043U0D 0IDIN uawdinb3
(sa)3seD uowiis) Juapnis arenpessiapun X T PAAJOAUL |2UUOSIDd

£SUOIHPUOD [BUIWIOU JBYIO JeYM

V/N (e19e0ydde y1) aweu jeajway) CTTYON3 (e1qe21idde 41) apod 9s1n0)
sndwe) equoomoo] VSN $Pa3onpuod 8ulaq ¥ s IBYM
*193(0ud 1eaA sunouoy jo uona|dwod uj épa1onpuod 3uiaq U st Aym
uawdinba 21U043123|3 4O |1} P|3 PUB UOIINIISUO) éaJanpadoud/y1oafoid /aseyaind/juans sel ayi st 1Ieym
:uonduasaqg
IX3U0)H
1202/90/12 (Xe\ SJea) G):931eQ MAINRY 92ua12s pue Suliaauidul ‘yyeaH jo Aynoeq :(uopas/Aynae4/uoisinig) adejdyiom
1202/90/8¢ :9)e(Q JUDWISSASSY wid)sAs 21300 0. 3S0I-MO| 104 SSNO N1Y UOISIdRId 13931 U WISSASSY

UOISId/\ BUl|HO — ue|d yudwaseue| dysiy A1ajes

‘Ajunpoddo 3541} 3Y3 1B SIAIYS SUIUO Y3 03 Pa.IJSURL] 3Q ISNW 3| “SIHAIIE P[314 UO 1O SEAIR J0WAJ Ul SUDIOM UBYM PUB ‘SUOISSaS Sulljelp pue

Suluue|d 10j pasn aq 03 Ajuo sI pue (dIAY) ue|d Juawadeue|l sy (SINYS) WaISAS Juswadeue|A Sty AlojeS ayl JO UOISIDA 3Ul|4jo 9y} SI SiYy] 910N

wa3sAS Juswagdeue|A dsiy A1ajes DSN ANVISNIIND

N¥FHLNOS 16
ALISYTAININ

PUB|SUIAND UJBYINOS JO AYISIDAIUN

T'TA ue|d Juswasgeuel sty AJ94eS "UOISIDA 1S31e| B} 4O} SIAYS SUIJUO DY SSIIY “UOISIIA 1S33| Y3 ¢ 30U Aew pue pajulid 9IUO P3||0JUOIUN S| JUBWNIOP SIY |

paiinbay juswalels poyla |y HoAN/UBId Juawabeue py jSry — ¥sIy ajelapop=Iy *

uondy
pulj ¢ 33
3PINS UOIJOY P2 puUaW WOIDY
000000 LUt |
ary
000 0L U |
n n N Axyun
W 000L ul'L
A1wssod Anpqeqoag
n ooLury RERLle i ie |
A
zuy
W upLe?) 150Uy
N06Z$ veyy alop N0SZ$N00LS M00L$-Y06$ M0G$ MG G$-0
Yeaq saunfu| snoies juaunesas] pajy piy isi4 Ainfuj oy geqold
olydosyseyed Jolepy ajets2po\ Joulpy juesayiubisu|
< T Do U
3dwnbasuo)

1uy 133

T'TA Ue|d JuawaSeue |y §sIy A12JeS *UOISIaA 15338| Y3 JOJ SINYS dUI|UO 3Y) SRV

‘UOISIAA }5338| 3Y} 2 J0U AW pue pajulid DUO PI||OIJUOIUN S| JUSWNIOP SIY |

|aAa7ys1y] Adjigeqoad] @duanbasuod) [ELES Aypgeqoud
ON J0 S9A| e 199|35 e 3|95 e 32995 ON 10 SaA| ys1y e Pvaas EBWEIETS 22uanbasuod e 329|35|
1ana7 ys1y| Avpigqeqosd| 3ouanbasuod 19A37 Ay|iqeqoud
ON 10 S A e 3|as e 3as e1293S ON 40 SaA| ys1y e P3RS e Paas aduanbasuod e 329|3s
1aAa71ys1y| Adigeqosd| sduanbasuod [ELED Ayjiqeqoud
ON JO S3A e 23|38 e 33s e32313S ON J0 SaA| SIY e P3RS e 33 32uanbasuod e 329|35
1aAa1s1y| Aljigeqosd| eduanbasuod [EXE]] Ayjiqeqosd
ON J0 S e 9|3 e3es EBLETENN ON J0 SaA| siy e P3jes ERRETEIN 2uUanbasuod e 1293
|ana7ys1y| Adjiqeqosd| @duanbasuod [ELE] Ayigeqoud
ON JO S3 A e p3|es e3|es e123eS ON J0 S3A| SIY e P38S e P38s bu:m:s.unioumuub_wm
swuoyjie|d
J130qou
E._Otm_a 10 10 S9|dIYyaA
ease 9J21yaA Jo asn o0} Joud Suluresy a8ewep snouas| SulajoAul
954N02 |3Ae.4 Y3 UlyyMm [puuosiad
SIA MO aley Jolepy Aue 03 uonaNpuU| S 3INPU) ON ERCIET L] APyun \ Co_uus_u:_ dw: wum_QEOU Jofepy 0} m_umm_ :O_m___OU vto\s_u_w_n_
Adijod Juswaleuew andiey FTSIET
‘uiyzop asoo| ‘Ajjiqejieae Ainfur snouas o} spea)| ul pouad
*J3}[3Ys pue Jaiem ‘pooy yum / 3 Anf ‘ Al
SIA| MmO\ aJey 21es2po| 95uN00 [@AR) Je eaue ujwpe ue dn as ON| @3esepoN ARyiun 19}eM 31NSUD 'S)ealq Je|nsay sofew|MNIULIEIY “UOIBIPAYSQ| PIpPUBIX]
S1094)° yjjeay uoJl
wua) 8uo| 03 Buipas|| Bunap|os
S9A Mol aley ajelapow UBJ UOIIR|1U3A JO 3SN OoN Y3 3|q1ss04 19p|Os 33.) ped) JO s aesepoyy| SOWNS J1X0} O} m._smonxu joasn
uoudl
‘Buniap|os uaym (unys/saAs| Buuiap|os
Buiyiop
SO Mo\ ARyiun Jouin 2.quy |eanjeu ‘anaays Suo| Jeap ON| @3es@pon ARyiun asemahad w>_uumuo..n joasn ajesapow 0} :..Sn: >..3_,c_ sasned joasn
3uidieyd 28ewep
asiniadns ‘aa8ieyd Auaneq 10 Aunful snouas 0)f saRneq
0411 @1endosdde asn ‘Suidieyd spea| SuiBieydas Bunp| odi yum
SaA Mo asey Jouln 3|qissod J HININ /PEDIN cua_uﬁﬁ ON| @3esepoN AN uaym :u:on 9485 0dI 40 3sN Jofe 211} sayaied Ewuumm m:_v_..O\S
waishs Wreap/Kaniuj| D (SE J9A0
Appnq ‘uojsiaiadns 3s0jo “Ajuo syse3 *Aojjod JuswaBeuew andpey ‘Suiyiop |euosJad snojJas 03 Supes) sainjesadway)
SIA pow Aayjun| oydossejes| |eruasse ‘sialays apeys Aesodway ON Yy ?|qissod 3500| ‘d|qe|ieAR Ja3em Pa)||Iyd ‘Syea.q Jejnay aiydonseied| uonsSNeYxa/ax0.3s 18aY/s5a.1S 18 u Suppom|
a|dwex3
ou/fsap ou/sap
¢dUVTV | ;PAS1SIY | Auiigeqoad | @ousnbasuo) LAUVIV | ARSI | Aungeqoid
¢aoeyd vy
510J3U00 BURSIX? INOYIM ¢azeid
[2A9] %s1d 33 30Npa. ¢aded piezey ayiAq pasned aq | Ul $j043u0d BUSIXa INOYIM piezey | palauap) §l alow
isjo43uod 03 paJinbas §) s|0u00 |euopippe JAIUT | [2A7 XSy = A)|Iqeqo.d X @duanbasuo) u| ApeaJje aJe Jey $|03u00 usixe ay) aJe JeyM | Ued Jey) waey 3yl siieym | ay3 o) pasodxe j) uaddey uedjeym | Jo T dais wouy
[DUOIIPPD YIIM JUIUWISSISSD YSIY :5]043U02 [DUOCHIPPY 1JUaWISSAsSY ySIY :sjon3uo) bupsixy :23uanbasuo) ySIY YL 1SpIDZOK
v dais € dais qz dais ez dais zdaas

T'TA Ue|d JuawaBeue|A) S1Y A12JeS “UOISIDA 15338| Y} JOJ SINHS UI|UO Y} SSIIJY "UOISIAA 35318| 3y} 3q J0U Aew pue pajulid U0 PIJ|OIJUOIUN S| JUIWNIOP SIY |

‘papinoad aq [|1m pasinbal s321n0saJ 3y} ey} pue 3|qeaide.d A|qeuoseal se Moj Se aJe S)SU 3y} Jey} palysiies we |

SjUBWWOI s, Jan0iddy

Jain)a7 Joluas | :uolysod/a)ul s s9n0iddy

Aasqo 8ies) ug :dweu s san0uddy

SJUIWIWIO) s J9}jelq

1202/S0/L2 :91ep Yeuq

S9|1S€D) UoWIS :aweu s 9yelq

|enoaddy - 9 dais

"91Bp B J3]Ud 0} 43y 21D

‘9}ep e Jajua 0] aiay)olID

"9}ep B J3jud 03 33y }21D

*9}ep e 13jud 03 343y 21D

*9}ep B 133ud 03 343y ¥21D

‘9}ep e Jajua 0] atay }2I|ID

‘9}ep e Jajua 0] atay }IIID

‘9}ep e Jajua 0] atay)IIID

e3.e 954n0J |9Ae4} SuldUD [Quuosiad

1202/90/82 s3|1se) uowis J21q pasedalqd Aue 03 uan3 Ja1iq uoiNpul YIS
J31|3ys pue Ja1em ‘pooj yum
1202/90/82 $9|35€) UoWIS J91eM ‘pooy ‘49)ays Atesodwad) | 9S4N0D [9ABJ] JE BALE UlWpE ue dn 195
s3uiap|os Ino SuiAuied usym
2oeds paje|puaA Ajpadoud ur Suiyio|d
1202/90/1 $9|15€) UOWIS uonels 8ulap|os paje|(iluap 21qlj |eanjeu ‘@nd3|s Suo| Jeap
a|qissod JI HWIN/PEDIN
1202/90/12 S9|1se) uowis sal4911eq HININ/PEDIN Yim saaneq odn anmsqns
121D,
:o:E:me\Q:ﬂ pasodo.d :9|qIsuodsal suosiad 1§321n0SaY :§/0J3U03 [DUOIPPY

(22e)d ui Apeauje jJou sj043U03 10}) ue|d uondy - § dais

T'TA Ue|d JuawaBeue|A) S1Y A12JeS “UOISIDA 15338| Y} JOJ SINHS UI|UO Y} SSIIJY "UOISIAA 35318| 3y} 3q J0U Aew pue pajulid U0 PIJ|OIJUOIUN S| JUIWNIOP SIY |

‘91ep e J9jud
0} a3y 1D

:9)ep
|leaoaddy

:24njeusis s Janosddy

Appendix C

Wiring diagrams

60

APPENDIX C. WIRING DIAGRAMS

61

T T] T g T T 4 T F4 T
1-{01'T'5) PRIy Q'3 pEdIN
| €Y :3z|§
BTN
cua.U)_LQA—‘_n:.— @4
/ R34S
aNo
@
Py $70s
< ISON"TIdS
» 00 0SINTIdS
«m NISFIdS an
o BRETLI R TS N [= it 2 8
oY L2L30704YD e 5 222222222222222
NG Z 5555555555555585
e ey L
pIeY0STIdS
ano o R 377y
42 g Ay
5, 7| F1ad 113d e
£ o7 0704 0¥3d T
I XL79N1830 D———————g{ 64d/XEDINIUS 63d g7
EN X 9N1830 G———————5 B0d /XU UNILS 83d 775
B ISONT1dS G———————¢3-{£0d L3dgrr
i XI§SN9 D—————————{ 904 93d [
T XYSSNY 7| K S3d [
z &M v3d
5% £0d £3d7—
—5-{20d zd m#
o e T3d g
e g Ll 03d T
Zom0 aws 77| 5134/ THISAMD LM STad g
gz Y124/ TISAHO LY wTd gz
—7{£124/18 ETdd ez
ZoN9 | TOND —{z13d 2Tdd e
XUIT3AINA0 s 1IN0 7 712 Frad
XH™3INIHT0 7 0724 OFd gy
<] 62d 64d| e
718 Bdd| e
5L S
ATE+ AGH an 5 WWM ﬁu i
dAg+ A+ o] &
—g] 524/50XH HL S3d T
AT 5571 mﬁ\gxﬁﬁ Mu T
n - e
b zil
—gp{ T24/30WHL3 Tdd e
o] 0% 0dd g
55 5184 ST9d
50| "18d/EM 4T9d (e
27| £184/TOXHII QOXLHLI/ET9d g
“mr{7red 219d e
—o5 Ted NI XLIHL3/T59d 57—
750784 0F9d
—Z7]68d 69— DOSINTdS
T e o
—z{L84/20 NI~01d9785N/£9d [grr- ans
—g 78d 1N07014978SN/99d gy~
ToT| S84 594 T
ano 55 78d 9d e
£o7| C94/0MS £9d e 5] mo
—528d 29d (o T Lnoa
—5{ Fid T9d 1
—5{08d 09d g %07 0
1ZL9L4-49T0TIINK I prT—
5w THd 5 -
S {wvamiaL ul OHd |- o
| Eve/ShL
—§g] T¥¥d/daTesn AG+ AZT+
— ang —g{ FI¥e/WaEsN
OND ~Zo¥] OPve/aIEsn
~Fo|Bva/snexBsn
AG+ an9 —gg{ 8¥4/4057BSN
ans DreTAeus Z0TIMY E L] ﬁu\z;&o LT
yLa/daas L= n an e T THY I Z0 | o
Mg af wd
FETY IN [v TAY TNIL e |
/1 WA - %ﬁ. 2vd
s1y 1953y AIS7TIdS
o g FYd/0I0W HL3 T
o e [s+ 508 gz ¥/ N1 A W3 ol
o/ «._nw.-“nmm z nuA+Hm]A
o [8 IXzu5098
f EERERRR;
A8+
nay-laneg
187

€40T

133HS 4 wiN

ERlaby

a3anssi

To

ON9Ma

ey
3as

533520 Lo WIS

NMYEQ

WYHOYIO DNIHIM NOILYLS3SYE

J.NVT

0.d 23gX
A g

Z2aks

W J 3 X0

X1 SREBEE
X4 o'W -
Zx1 Ry 2t

A LY2[dWIS e

aNo
[&t]
H> QZGL

43401
anNS

LNV SSND

X %05 o
XL S Ao SE
€Y i
[4
] A98
¢ ™ +——O
Tv|
ov| o
%95 74
HACTT
i o = o
DU_\/_ aNoS
e nto L\ l—-\jmm.o o)
s o noa © nw .
£Ag] |
SOBLN o—
hDO[NI
aNo —
vas 15
[20A TT-L
o
rd
O
T
SEBE
A0VdAXOVE dD1 D¢l
MWMHMMGWGLGLWGGJ
AAAHUHHGGGGCUGG
$ m o w M L O BN W B 0~
do1 ¢oxat

63

WIRING DIAGRAMS

APPENDIX C.

Appendix D

Microcontroller Source Code - C

D.1 Main C Program

/* USER CODE BEGIN Header x/
Yz
KA KA KR TR A KR F KA KA TR A KA TR AT AR A KA I A A I A TR A TR KA TR KK F A F KA F KA KA F KA KK KA KK
x Qfile Domain. ¢
* @brief : Main program body
3331131311333 133311333133 3333 I I I I I I I I I I IIIIIIIII I
x @attentioe exn
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
¥ All rights reserved.</center></h2>

¥ This software component is licensed by ST under BSD 3—Clause license ,
¥ the "License”; You may not use this file except in compliance with the
¥ License. You may obtain a copy of the License at:
* opensource.org/licenses /BSD-3—Clause
*
Kok ok ok Ok Kk ok ok 3k Ok Ok ok ok 3k Ok ok ok ok 3k Ok ok ok 3k 3k Ok ok ok 3k K Ok ok ok 3k K Sk ok ok 3k K ok ok ok 3k Kk ok ok ok K Ok ok ok ok K Ok ok ok ok K ok ok ok Kk Ok Sk ok ok ok Ok ok ok ok ok Ok Ok ok ok ok
*/
/* USER CODE END Header %/
/+ Includes * /
#include "main.h”
#include ” fatfs.h”

/* Private includes * /

/#* USER CODE BEGIN Includes */

64

#include <FreeRTOS.h>
#include <task.h>
#include <semphr.h>

#include <queue.h>

//#include <SEGGER.SYSVIEW.h>
//#include <Nucleo_F767ZI_GPIO.h>
J//#include <Nucleo_F767ZI1_Init.h>
#include <stm32f7xx_hal.h>

#include "UBX.h”

#F#include <stdio.h>

#include <string.h>

#include <stdarg.h> //for wva_list var arg functions
#include <stdbool.h>

/*
/*

USER CODE END Includes %/

Private typedef

USER CODE BEGIN PTD x/

USER CODE END PTD x/

Private define

USER CODE BEGIN PD x/

#define STACK.SIZE 128

/*

USER CODE END PD /

Private macro

USER CODE BEGIN PM +/

USER CODE END PM x/

Private wvariables

RTC_HandleTypeDef hrtc;

SPI_HandleTypeDef hspil;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

65

TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;

UART _HandleTypeDef huart2;
UART _HandleTypeDef huart3;
UART _HandleTypeDef huart6 ;

/+ USER CODE BEGIN PV +/
char buffer[100]; //Buffer to hold SD card wvariable
uint8_t UART2_rxBuffer[1] = {0}; //where 2 is the UART number being used for GI

SemaphoreHandle_t semPtr = NULL; //create storage for a pointer to a semaphore
SemaphoreHandle_t DLsemPtr = NULL; //create storage for a pointer to a semaphore

SemaphoreHandle_t TIMEsemPtr = NULL; //create storage for a pointer to a getTIME

static QueueHandle_t uart2_BytesReceived = NULL;
static QueueHandle .t uart3_BytesReceived = NULL;

static bool rxInProgress = false;

uint8_t segment;

uint32_t encoder_cnt;

/+ USER CODE END PV x/

/+ Private function prototypes * /
void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_USART3_.UART Init(void);
static void MX_USART2_UART Init(void);
static void MX_USB_OTG_FS_USB_Init(void);
static void MX_RTC_Init(void);

static void MX_SPII_Init(void);

static void MX_TIM2_Init(void);

static void MX_TIM3_Init(void);

static void MX_USART6_UART Init(void);

/+* USER CODE BEGIN PFP x/

void USR_GPIO_Init(void);

void GreenTaskA (void % argument);

void BlueTaskB(void* argumet);

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 66

void DataLogTask(voidx argumet);
void myprintf(const char *fmt, ...);
void ProcessUBXTask(voidx NotUsed);
void RTC_UpdateTask(voidx NotUsed);
void UserInputTask(void* argument);
/* USER CODE END PFP x/

/* Private user code * /
/* USER CODE BEGIN 0 %/

/+ USER CODE END 0 x/

VX
x @brief The application entry point.

¥ Q@Qretval int

*/

int main(void)

{
/+ USER CODE BEGIN 1 x/
/+* USER CODE END 1 x/

/+ MCU Configuration %/

/* Reset of all peripherals, Initializes the Flash interface and the Systick.
HAL Init ();

/+ USER CODE BEGIN Init +/
/+ USER CODE END Init x/

/* Configure the system clock =/
SystemClock_Config ();

/+ USER CODE BEGIN SysInit %/
/* USER CODE END SysInit %/

/* Initialize all configured peripherals =/
MX_GPIO_Init ();

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 67

MX_USART3_UART Init () ;
MX_USART2_UART Init ();
MX_USB_OTG_FS_USB_Init ();
MX_RTC_Init () ;
MX_SPI1_Init ();
MX_TIM2_Init ();
MX_TIM3_Init ();
MX_USART6_UART Init () ;
MX_FATFS_Init () ;

/#* USER CODE BEGIN 2 «/
USR_GPIO_Init ();

UBX_Init ();

//Start timers
HAL_TIM_Encoder_Start(&htim2, TIM_ CHANNEL_ALL) ;
//SEGGER_SYSVIEW_Conf () ;

NVIC_SetPriorityGrouping (0); //ensure proper priority grouping for freeRTOS

//create a semaphore using the FreeRTOS Heap
semPtr = xSemaphoreCreateBinary ();
assert_param (semPtr != NULL);

DLsemPtr = xSemaphoreCreateBinary ();
assert_param (DLsemPtr != NULL);

TIMEsemPtr = xSemaphoreCreateBinary ();
assert_param (DLsemPtr != NULL);

if (xTaskCreate(GreenTaskA, ”GreenTaskA” , STACKSIZE, NULL, tskIDLE_PRIORITY +
NULL) != pdPASS){while(1);}

if (xTaskCreate (BlueTaskB, ”BlueTaskB”, STACK SIZE, NULL, tskIDLE_ PRIORITY + 1
NULL) != pdPASS){while(1);}

//create task to carry out data logging
assert_param (xTaskCreate (DataLogTask, ”DataLogTask”, 256, NULL, tskIDLE_PRIORIT
NULL) == pdPASS);

//setup tasks, making sure they have been properly created before moving on
uart2_BytesReceived = xQueueCreate (100, sizeof(char));
assert_param (uart2_BytesReceived != NULL);

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 68

uart3_BytesReceived = xQueueCreate (10, sizeof(char));
assert_param (uart3_BytesReceived != NULL);

assert_param (xTaskCreate (UserInputTask, ”UserInputTask”, STACK_SIZE, NULL,
tskIDLE_PRIORITY + 1, NULL) = pdPASS);

assert_param (xTaskCreate (ProcessUBXTask, ”ProcessUBX”, STACK_SIZE, NULL,
tskIDLE_PRIORITY + 2, NULL) = pdPASS);

assert_param (xTaskCreate (RTC_UpdateTask, "RTC_Update” , STACK_SIZE, NULL,
tskIDLE_PRIORITY + 3, NULL) = pdPASS);

//start the scheduler — shouldn 't return wunless there’s a problem

vTaskStartScheduler ();

//if you’'ve wound up here, there is likely an issue with overrunning the freeR’
/* USER CODE END 2 x/

/* Infinite loop x/
/#* USER CODE BEGIN WHILE %/
while (1)
{
/* USER CODE END WHILE */

/% USER CODE BEGIN 3 x/

}
/* USER CODE END 3 x/

VX

x @brief System Clock Configuration

¥ @retval None

*/

void SystemClock_Config(void)

{
RCC_OsclnitTypeDef RCC_OsclnitStruct = {0};
RCC_ClkInitTypeDef RCC_ClklInitStruct = {0};

RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

69

/+x Configure LSE Drive Capability

*/

HAL_PWR_EnableBkUpAccess () ;

_HAL_RCC_LSEDRIVE_CONFIG (RCC_LSEDRIVE LOW) ;

/+x Configure the main internal regulator output voltage

*/

_HAL RCC_PWR_CLK ENABLE () ;

_HAL PWR_VOLTAGESCALING_CONFIG (PWR REGULATOR_.VOLTAGE_SCALE!) ;
Jxx Initializes the RCC Oscillators according to the specified parameters
¥ in the RCC_OscInitTypeDef structure.

*/
RCC_OsclInitStruct . OscillatorType = RCC.OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_L
RCC_OsclnitStruct . HSEState = RCC_HSE_BYPASS;

RCC_OsclnitStruct . LSEState = RCC_LSE_ON;

RCC_OsclnitStruct .PLL. PLLState = RCC_PLL_.ON;

RCC_OsclInitStruct .PLL. PLLSource = RCC_PLLSOURCE_HSE;

RCC_OsclnitStruct .PLL.PLLM = 4;
RCC_OsclInitStruct .PLL.PLLN = 216;
RCC_OsclInitStruct .PLL.PLLP = RCC_PLLP_DIV2;
RCC_OsclInitStruct .PLL.PLLQ = 9;

RCC_OsclnitStruct .PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL.OK)

{
Error_Handler ();
}
/#% Activate the Over—Drive mode
*/
if (HAL_.PWREx_EnableOverDrive() != HAL.OK)
{
Error_Handler ();
}
/#*% Initializes the CPU, AHB and APB buses clocks
*/

RCC_ClkInitStruct . ClockType = RCC.CLOCKTYPEHCLK | RCC_.CLOCKTYPE_SYSCLK

| RCC_.CLOCKTYPE PCLK1 | RCC_.CLOCKTYPE PCLK2;

RCC_ClkInitStruct.
.AHBCLKDivider = RCC_.SYSCLK_DIV1;
.APB1CLKDivider =
.APB2CLKDivider =

RCC_ClkInitStruct
RCC_ClkInitStruct
RCC_ClkInitStruct

SYSCLKSource = RCCSYSCLKSOURCE PLLCLK;

RCC_HCLK_DIV4;
RCC_HCLK_DIV?2;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

70

if (HAL_RCC_ClockConfig(& RCC_ClkInitStruct , FLASH LATENCY_7) != HALOK)

{
Error_Handler ();

}
PeriphClkInitStruct.PeriphClockSelection = RCCPERIPHCLK RTC|RCC_PERIPHCLK USA
| RCC_PERIPHCLK_USART3| RCC_PERIPHCLK_USART6
| RCC_PERIPHCLK _CLK48;
PeriphClkInitStruct . RTCClockSelection = RCCRTCCLKSOURCE_LSE;
PeriphClkInitStruct. Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
PeriphClkInitStruct . Usart3ClockSelection = RCC.USART3CLKSOURCE_PCLK1;
PeriphClkInitStruct . Usart6ClockSelection = RCC_USART6CLKSOURCE_PCLK2;
PeriphClkInitStruct . Clk48ClockSelection = RCC_CLK48SOURCE_PLL;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL.OK)

{
Error_Handler ();

VX
* @brief RTC Initialization Function
* @param None

* @retval None

*/
static void MX_RTC_Init(void)

{

/x USER CODE BEGIN RTC_Init 0 x/
/x USER CODE END RTC_Init 0 x/

RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};

/+ USER CODE BEGIN RTC_Init 1 +/

/#* USER CODE END RTC_Init 1 %/
/*x Initialize RTC Only
*/

hrtc.Instance = RIC;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 71

hrtc. Init . HourFormat = RTC_HOURFORMAT 24;
hrtc.Init.AsynchPrediv = 127;

hrtc.Init.SynchPrediv = 255;

hrtc. Init.OutPut = RTC.OUTPUT DISABLE;
hrtc.Init.OutPutPolarity = RTC.OUTPUT_POLARITY _HIGH;
hrtc.Init.OutPutType = RTC.OUTPUT TYPE.OPENDRAIN;

if (HAL.RTC_Init(&hrtc) != HAL.OK)

{

Error_Handler ();

/+ USER CODE BEGIN Check-RTC_BKUP x/
/+ USER CODE END Check.RTC_BKUP x/

Jxx Initialize RTC and set the Time and Date

*/

sTime. Hours = 0x0;
sTime. Minutes = 0x0;
sTime. Seconds = 0x0;

sTime.DayLightSaving = RTCDAYLIGHTSAVINGNONE;
sTime. StoreOperation = RTC.STOREOPERATION RESET
if (HAL.RTC_ SetTime(&hrte, &sTime, RTCFORMATBCD) != HAL.OK)

{
Error_Handler ();

}
sDate . WeekDay = RTCWEEKDAY MONDAY ;

sDate . Month = RTCMONTH.JANUARY
sDate.Date = 0x1;
sDate.Year = 0x0;

if (HAL_RTC_SetDate(&hrtc, &sDate, RTCFORMATBCD) != HAL.OK)
{

Error_Handler ();

}
/x USER CODE BEGIN RTC_Init 2 x/

/x USER CODE END RTC_Init 2 x/

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

72

VAT

¥ @brief SPI1 Initialization Function

* @param None

¥ @retval None

*/

static void MX_SPI1_Init(void)

{

/+ USER CODE BEGIN SPI1_Init 0 +/

/+ USER CODE END SPI1_Init 0 x/

/+ USER CODE BEGIN SPI1_Init 1 x/

/* USER CODE END SPI1_Init 1 x/
/* SPI1 parameter configurationx/

hspil

hspil.
hspil.
hspil.
hspil.
hspil.
hspil.
hspil.
hspil.
hspil.
hspil.
hspil.
hspil.
hspil.

Init

Init
Init
Init
Init
Init

Init.
. TIMode = SPI.TIMODE_DISABLE;

.CRCCalculation = SPI. CRCCALCULATION DISABLE;
.CRCPolynomial = 7;

.CRCLength = SPI. CRC_LENGTH DATASIZE;
.NSSPMode = SPI.NSS_PULSE_ENABLE;

Init
Init
Init
Init
Init

.Instance = SPI1;

.Mode = SPI.MODE_MASTER;
Init.
.DataSize = SPI.DATASIZE 8BIT;

.CLKPolarity = SPI_POLARITY_LOW

.CLKPhase = SPI.PHASE_1EDGE;

.NSS = SPI_NSS_SOFT;

.BaudRatePrescaler = SPI.BAUDRATEPRESCALER_32;

Direction = SPI_LDIRECTION_2LINES;

FirstBit = SPI_LFIRSTBIT_MSB;

if (HAL_SPI_Init(&hspil) != HAL.OK)

{

Error_Handler ();

}

/x USER CODE BEGIN SPI1_Init 2 x/

/x USER CODE END SPI1_Init 2 x/

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

73

VAT
¥ @brief TIM2 Initialization Function
* @param None
¥ @retval None
*/
static void MX_TIM2_Init(void)

{

/x USER CODE BEGIN TIM2_Init 0 x/
/+ USER CODE END TIM2_Init 0 x/

TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};

/* USER CODE BEGIN TIM2_Init 1 =%/

/* USER CODE END TIM2_Init 1 x/

htim2.Instance = TIMZ2;

htim2. Init.Prescaler = 0;

htim2. Init . CounterMode = TIM_.COUNTERMODE_UP;

htim2. Init.Period = 4294967295;

htim2. Init . ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2. Init . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
sConfig . EncoderMode = TIM_ENCODERMODE TT12;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTT;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;

sConfig.IC2Polarity = TIM_ICPOLARITY _RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTT;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;

if (HAL_TIM_Encoder_Init(&htim2, &sConfig) != HALOK)
{

Error_Handler ();
}
sMasterConfig. MasterOutputTrigger = TIM TRGORESET;
sMasterConfig . MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 74

if (HAL_TIMEx MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL.OK)

{

Error_Handler ();

}
/x USER CODE BEGIN TIM2_Init 2 x/

/x USER CODE END TIM2_Init 2 x/

/*x
* @brief TIMS Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3 Init(void)

{

/* USER CODE BEGIN TIMS3_Init 0 x/
/* USER CODE END TIMS3_Init 0 */

TIM_SlaveConfigTypeDef sSlaveConfig = {0};
TIM _MasterConfigTypeDef sMasterConfig = {0};

/* USER CODE BEGIN TIM3_ Init 1 =/

/* USER CODE END TIMS3 Init 1 x/

htim3.Instance = TIM3;

htim3.Init.Prescaler = 0;

htim3. Init . CounterMode = TIM_.COUNTERMODE_UP;

htim3. Init.Period = 2;

htim3. Init . ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_ AUTORELOAD PRELOAD_DISABLE;
if (HAL_TIM Base_Init(&htim3) != HAL.OK)

{
Error_Handler ();

}
sSlaveConfig.SlaveMode = TIM_SLAVEMODE EXTERNALTI;
sSlaveConfig.InputTrigger = TIM_TS_ETRF;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 75

sSlaveConfig. TriggerPolarity = TIM TRIGGERPOLARITY NONINVERTED;
sSlaveConfig. TriggerPrescaler = TIM.TRIGGERPRESCALER DIV1;
sSlaveConfig. TriggerFilter = 0;

if (HAL_TIM_SlaveConfigSynchro(&htim3, &sSlaveConfig) != HALOK)

{
Error_Handler ();

}

sMasterConfig. MasterOutputTrigger = TIM TRGO_RESET;

sMasterConfig . MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE ;

if (HAL_TIMEx MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL.OK)

{
Error_Handler ();

}
/x USER CODE BEGIN TIM3_Init 2 x/

/x USER CODE END TIM3_Init 2 x/

VX
x @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART Init(void)

{

/x USER CODE BEGIN USART2_Init 0 x/
/x USER CODE END USART2_Init 0 x/
/x USER CODE BEGIN USART2_Init 1 x/

/* USER CODE END USARTZ2_Init 1 */
huart2.Instance = USARTZ2;
huart2.Init.BaudRate = 115200;

huart2.Init . WordLength = UART WORDLENGTH 8B
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART PARITY NONE;
huart2.Init .Mode = UARTMODE TX RX;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 76

huart2.Init . HwFlowCtl = UART HWCONTROLNONE;
huart2.Init.OverSampling = UART_ OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2. AdvancedInit. AdvFeaturelnit = UART_ADVFEATURE_NO_NIT;
if (HAL_UART Init(&huart2) != HALOK)

{

Error_Handler ();

}
/* USER CODE BEGIN USART2_Init 2 x/

/* USER CODE END USARTZ2_Init 2 =/

/#x
¥ @brief USART3 Initialization Function
* @param None
¥ @retval None
*/
static void MX USART3_UART Init(void)

{

/+ USER CODE BEGIN USARTS3_Init 0 x/
/* USER CODE END USARTS_Init 0 x/
/+ USER CODE BEGIN USARTS_Init 1 +/

/+ USER CODE END USARTS3_Init 1 x/

huart3.Instance = USARTS;

huart3.Init .BaudRate = 115200;

huart3.Init . WordLength = UART WORDLENGTH 8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART PARITY NONE;

huart3.Init .Mode = UART MODE.TX RX;

huart3.Init . HwFlowCtl = UART HWCONTROLNONE;
huart3.Init.OverSampling = UART OVERSAMPLING_16;
huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart3. AdvancedInit. AdvFeaturelnit = UART_ADVFEATURE_NO_NIT;
if (HAL.UART Init(&huart3) != HALOK)

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

Error_Handler ();

}

/+ USER CODE BEGIN USARTS_Init 2 +/

/+ USER CODE END USARTS_Init 2 x/

Yz

* @brief USART6 Initialization Function

* @param None

¥ @retval None

*/

static void MX_USART6_UART Init(void)

{

/+ USER CODE BEGIN USARTG6_Init 0 +/

/+ USER CODE END USARTG6_Init 0 +/

/+ USER CODE BEGIN USARTG6_Init 1 x/

/* USER CODE END USARTG_Init 1 =/
Instance = USARTG6;

huart6 .
huart6 .
huart6 .
huart6 .
huart6 .
huart6 .
huart6 .
huart6 .
huart6 .
huart6 .

Init
Init

Init
Init
Init
Init
Init

.BaudRate = 115200;

. WordLength = UART WORDLENGTH 8B;
Init .
.Parity = UART_PARITY NONE;

.Mode = UART MODE_TX RX;

.HwFlowCtl = UART HWCONTROLNONE;

.OverSampling = UART_-OVERSAMPLING_16;
.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
AdvancedlInit. AdvFeaturelnit = UART_ ADVFEATURE_NO_INIT;

StopBits = UART_STOPBITS 1;

if (HAL.UART Init(&huart6) != HAL.OK)

{

Error_Handler ();

}

/+ USER CODE BEGIN USARTG6_Init 2 +/

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

78

/x USER CODE END USART6_Init 2 x/

/#x
x @brief USB.OTG_FS Initialization Function

* @param None

* @retval None

*/
static void MX_USB_OTG_FS_USB_Init(void)

{

/* USER CODE BEGIN USB_-OTG_FS_Init 0 */
/* USER CODE END USB_-OTG-FS_Init 0 x/
/* USER CODE BEGIN USB_-OTG_FS_Init 1 */

/* USER CODE END USB_OTG_FS_Init 1 x/
/+ USER CODE BEGIN USB_OTG_FS_Init 2 x/

/x USER CODE END USB_OTG_FS_Init 2 +/

*

@brief GPIO Initialization Function

@param None

*

* @retval None
*/
static void MX_GPIO_Init(void)

{
GPIO_InitTypeDef GPIO_InitStruct = {0};

/* GPIO Ports Clock Enable %/
_HAL RCC_GPIOC_CLK_ENABLE ();
_HAL RCC_GPIOH_CLK_ENABLE ();
_HAL_RCC_GPIOA_CLK_ENABLE ();
();
()

_HAL_RCC_GPIOB_CLK_ENABLE
HAL RCC_GPIOD_CLK_ENABLE

9

)

APPENDIX D. MICROCONTROLLER SOURCE CODE - C

79

_HAL_RCC_GPIOG_CLK_ENABLE () ;

/*Configure GPIO pin Output Level x/
HAL_GPIO_WritePin (SD_CS_GPIO_Port, SD_CS_Pin, GPIO_PIN_RESET);

/+*Configure GPIO pin Output Level x/
HAL_GPIO_WritePin (GPIOB, LD1_Pin|LD3_Pin|LD2_Pin, GPIO_PIN.RESET);

/*Configure GPIO pin QOutput Level x/
HAL_GPIO_WritePin (USB_PowerSwitchOn_GPIO_Port, USB_PowerSwitchOn_Pin,
GPIO_PIN_RESET);

/*Configure GPIO pin : USER_Btn_Pin x/

GPIO _InitStruct.Pin = USER_Btn_Pin;

GPIO_InitStruct .Mode = GPIO_MODE_IT_RISING;

GPIO _InitStruct.Pull = GPIONOPULL;

HAL_GPIO_Init (USER_Btn_GPIO_Port, &GPIO _InitStruct);

/*Configure GPIO pin : SD_CS_Pin x/

GPIO _InitStruct.Pin = SD_CS_Pin;

GPIO _InitStruct .Mode = GPIOMODE_OUTPUT PP;

GPIO _InitStruct.Pull = GPIONOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED _FREQLOW
HAL_GPIO_Init (SD_CS_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pins : LD1_Pin LD3_Pin LD2_Pin */
GPIO_InitStruct.Pin = LD1_Pin|LD3_Pin|LD2_Pin;
GPIO_InitStruct . Mode = GPIO MODE_OUTPUT_PP;

GPIO _InitStruct.Pull = GPIONOPULL;

GPIO_InitStruct . Speed = GPIO_SPEED_FREQLOW;
HAL_GPIO_Init (GPIOB, &GPIO_InitStruct);

/+*Configure GPIO pin : RMII.TXDI1 Pin x/
GPIO_InitStruct.Pin = RMII_TXD1_Pin;

GPIO_InitStruct . Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIONOPULL;

GPIO _InitStruct.Speed = GPIO_SPEED FREQ_VERY HIGH ;
GPIO_InitStruct. Alternate = GPIO_AF11_ETH;
HAL_GPIO Init (RMII.TXD1_GPIO_Port, &GPIO _InitStruct);

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 80

/*Configure GPIO pin : USB_PowerSwitchOn_Pin x/

GPIO _InitStruct.Pin = USB_PowerSwitchOn_Pin;

GPIO_InitStruct . Mode = GPIO MODE_OUTPUT_PP;

GPIO _InitStruct.Pull = GPIONOPULL;

GPIO_InitStruct . Speed = GPIO_SPEED_FREQLOW

HAL_GPIO_Init (USB_PowerSwitchOn_GPIO_Port , &GPIO _InitStruct);

/+*Configure GPIO pin : USB_OverCurrent_Pin */
GPIO_InitStruct.Pin = USB_OverCurrent_Pin;

GPIO_InitStruct . Mode = GPIO.MODE_INPUT;

GPIO_InitStruct . Pull = GPIONOPULL;

HAL_GPIO Init (USB_OverCurrent_GPIO_Port, &GPIO _InitStruct);

/*Configure GPIO pins : USB_SOF_Pin USB_ID_Pin USB_DM_Pin USB_DP_Pin x/
GPIO _InitStruct.Pin = USB_SOF_Pin|USB_ID_Pin | USB_.DM_Pin| USB_DP _Pin;
GPIO_InitStruct .Mode = GPIOMODE_AF_PP;

GPIO_InitStruct . Pull = GPIONOPULL;

GPIO _InitStruct.Speed = GPIO_SPEED FREQ_VERY _HIGH ;

GPIO_InitStruct. Alternate = GPIO_AF10_.OTG_FS;

HAL_GPIO _Init (GPIOA, &GPIO _InitStruct);

/* Configure GPIO pin : USB_VBUS_Pin x/
GPIO_InitStruct.Pin = USB_VBUS_Pin;

GPIO _InitStruct .Mode = GPIOMODE_INPUT;

GPIO _InitStruct.Pull = GPIO.NOPULL;

HAL_GPIO _Init (USB_VBUS_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pins : RMII.TX EN_Pin RMII_TXD0_Pin */
GPIO_InitStruct.Pin = RMII_.TX_EN_Pin | RMII_TXDO0_Pin;
GPIO_InitStruct . Mode = GPIO_MODE_AF_PP;

GPIO _InitStruct.Pull = GPIONOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

GPIO _InitStruct. Alternate = GPIO_AF11_ETH;
HAL_GPIO_Init (GPIOG, &GPIO_InitStruct);

/* EXTI interrupt initx/
HAL_NVIC_SetPriority (EXTI15_10_.IRQn, 6, 6);
HAL_NVIC_EnableIRQ (EXTI15.10_.IRQn) ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 81

/* USER CODE BEGIN 4 x/

VX

x Task A periodically ’gives
* NOTES:

* — This semaphore isn’t 7given” to any task specifically

* — giving the semaphore doesn’t prevent taskA from continuing to run.

7

semaphorePtr

* Notice the green LED continues to blink at all times
*/
void USR_GPIO _Init(void)

{
GPIO _InitTypeDef GPIO_InitStruct = {0};

/+* Configure GPIO pins : PG2 PG3 x/
GPIO_InitStruct.Pin = GPIO_PIN_2| GPIO_PIN_3;
GPIO_InitStruct .Mode = GPIO_MODE_T_RISING;;
GPIO_InitStruct. Pull = GPIO_PULLUP;
HAL_GPIO_Init (GPIOG, &GPIO_InitStruct);

/+ EXTI interrupt initx*/
HAL_NVIC_SetPriority (EXTI2.IRQn, 0, 0);
HAL_NVIC_EnableIRQ (EXTI2_IRQn) ;

HAL_NVIC_SetPriority (EXTI3.IRQn, 0, 0);
HAL_NVIC_EnableIRQ (EXTI3_IRQn) ;

void GreenTaskA (void* argument)

{

uint _fast8_t count = 0;

while (1)

{
//every 5 times through the loop, give the semaphore
if(++count >= 5)

{
count = 0;
//SEGGER_SYSVIEW_PrintfHost(” Task A (green LED) gives se
xSemaphoreGive (semPtr);

}

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 82

HAL_GPIO_WritePin (LD1_GPIO_Port, LD1 Pin, GPIO_PIN_SET);
vTaskDelay (100 /port TICK_PERIOD_MS) ;

HAL_GPIO_WritePin (LD1_GPIO_Port, LD1 Pin, GPIO_PIN RESET);
vTaskDelay (100 /port TICK_PERIOD_MS) ;

}
}
VT
* wait to receive semPtr and triple blink the Blue LED
*/
void BlueTaskB(void* argument)
{
while (1)
{
// take’ the semaphore with a really long timeout
//SEGGER_SYSVIEW_PrintfHost(” Task B (Blue LED) attempts to take
if (xSemaphoreTake (semPtr, portMAX DELAY) = pdPASS)
{
//SEGGER_SYSVIEW_PrintfHost(” Task B (Blue LED) received
//triple blink the Blue LED
for (uint_fast8_t i = 0; i < 3; i++)
{
HAL_GPIO_WritePin (LD2_GPIO_Port, LD2_Pin, GPIO_F
vTaskDelay (50 /port TICK_PERIOD_MS) ;
HAL_GPIO_WritePin (LD2_GPIO_Port, LD2_Pin, GPIO_P
vTaskDelay (50 /port TICK_PERIOD_MS) ;
}
}
// else
// {
// This is the code that will be executed if we time out we
// the semaphore to be given. In the case of a 1 mS tick 1
// will only provide a delay of around 50 days.
// Unless "#define INCLUDE vTaskSuspend 17 is configured 1in
// }
}
}

void DataLogTask(voidx argumet)

{

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 83

//RTC_DateTypeDef GetDate; //Get date structure
//RTC_TimeTypeDef GetTime; //Get time structure
char buf[100] = {0};

int len;

int distance;

int seg;
int32_t heading;
while (1)
{
if (xSemaphoreTake (DLsemPtr, portMAX DELAY) =— pdPASS)
{
HAL_GPIO_WritePin (LD3_GPIO_Port, LD3_Pin, GPIO_PIN_SET
//distance = encoder_cnt;
distance = TIM2—>CNT;
seg = segment;

heading = RELPOS_data.relPosHeading;

//SEGGER_SYSVIEW_PrintfHost ("PVT received”);

len = sprintf(buf,”%i, %i, %li,_.%021:%021:%021 , %ld , %
seg ,distance , heading ,PVT_Data. hour ,PVT_Data.min,PVT_Data.sec, PVT_Data
PVT Data.lon ,PVT _Data.hMSL,PVT Data.numSV, PVT Data.fixType);

HAL_UART Transmit(&huart3, buf, len, 200);
//SEGGER_SYSVIEW_PrintfHost (buf);

//HAL Delay (5); //Simulate longer time
HAL_GPIO_WritePin (LD3_GPIO_Port, LD3_Pin, GPIO_PIN_RES

}
void myprintf(const char xfmt, ...) {
va_list args;
va_start (args, fmt);
vsnprintf(buffer , sizeof(buffer), fmt, args);
va_end (args);

int len = strlen (buffer);

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 84

HAL_UART Transmit(&huart3, (uint8_t*)buffer, len, 1000);

¥
void ProcessUBXTask(void* NotUsed)
{
char nextByte;
char buf[50] ={0};
startReceivelnt ();
while (1)
{
xQueueReceive (uart2_BytesReceived , &nextByte, portMAX DELAY);
//SEGGER_SYSVIEW_PrintfHost(”%c”, nextByte);
UBX_ProcessBuffer (nextByte , &packetBuf);
if (PVT Data.PVTreceived = 1){
//SEGGER_SYSVIEW_PrintfHost ("PVT received”);
xSemaphoreGive (DLsemPtr) ;
PVT Data.PVTreceived = 0; //reset flag
¥
if (TIMEUTC data. TIMEUTC received = 1){
//SEGGER_SYSVIEW_PrintfHost (”TIMEUTC received”);
xSemaphoreGive (TIMEsemPtr) ;
TIMEUTC_data. TIMEUTC _received = 0; //reset flag
¥
if (RELPOS_data. RELPOS_received =— 1){
//SEGGER_SYSVIEW_PrintfHost (”RELPOS received”);
RELPOS_data. RELPOS_received = 0;
¥
}
}
void startReceivelnt(void)
{
rxInProgress = true;

USART2—>CR3 |= USART_CR3_EIE; //enable error interrupts
USART2>CR1 |= (USART.CR1.UE | USART_CR1RXNEIE);

//all 4 bits are for preemption priority —

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 85

NVIC _SetPriority (USART2IRQn, 6);
NVIC_EnableIRQ (USART2IRQn);

¥

void startReceivelnt3(void)

{
rxInProgress = true;
USART3—>CR3 |= USART_CR3_EIE; //enable error interrupts
USART3—CR1 |= (USART.CR1.UE | USART.CRI1_RXNEIE);
//all 4 bits are for preemption priority —
NVIC_SetPriority (USART3IRQn, 6);
NVIC_EnableIRQ (USART3IRQn) ;

}

void USART2 IRQHandler(void)

{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
//SEGGER_SYSVIEW_RecordEnterISR () ;

//first check for errors

if(USART2—>ISR & (USART_ISR-ORE_Msk |
USART_ISR_.NE_Msk |
USART_ISR_FE_Msk |
USART_ISR_PE_Msk))

{
//clear error flags
USART2 >ICR |= (USARTICR.FECF |
USART_ICR PECF |
USART.ICR.NCF |
USARTICR.ORECF);
}
if (USART2 >ISR & USART_ISR.RXNE_Msk)
{

//read the data register unconditionally to clear
//the receive not empty interrupt if no reception is
//in progress

uint8_t tempVal = (uint8_t) USART2>RDR;

if (rxInProgress)

{

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 86

xQueueSendFromISR (uart2 _BytesReceived , &tempVal, &xHighe

}
//SEGGER_SYSVIEW_RecordEzitISR () ;

portYIELD FROM_ISR (xHigherPriorityTaskWoken);

}
void USART3_IRQHandler(void)
{
portBASE TYPE xHigherPriorityTaskWoken = pdFALSE;
//SEGGER_SYSVIEW_RecordEnterISR () ;
//first check for errors
if(USART3—>ISR & (USART_ISR.-ORE_Msk |
USART_ISR.NE_Msk |
USART_ISR_FE_Msk |
USART_ISR_-PE_Msk))
{
//clear error flags
USART3—>ICR |= (USARTICR.FECF |
USARTICR_PECF |
USART ICR.NCF |
USART_ICR.-ORECF);
}
if(USART3—ISR & USART_ISR_RXNE_Msk)
{
//read the data register unconditionally to clear
//the receive not empty interrupt if no reception is
//in progress
uint8_t tempVal = (uint8_t) USART3—>RDR;
if (rxInProgress)
{
xQueueSendFromISR (uart3_BytesReceived , &tempVal, &xHighe
}
}
//SEGGER_SYSVIEW_RecordEzitISR () ;
portYIELD FROM_ISR (xHigherPriorityTaskWoken);
}

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 87

/* An attempt to use HAL instead of low level code.
void ProcessUBXTask(void* NotUsed)
{

char nextByte;

char buf[50] ={0};

HAL_UART_Receive_IT (&huart2, nextByte, 1);

while (1)
{
rzQueueReceive (uart2_BytesReceived , &nextByte, portMAX DELAY);
SEGGER_SYSVIEW_PrintfHost(”%c”, mextByte);
UBX_ProcessBuffer (nextByte , &packetBuf);
if (PVT_Data. PVTreceived == 1){
SEGGER_SYSVIEW_PrintfHost(”PVT received ”);
zSemaphoreGive (DLsemPtr);
PVT_Data.PVTreceived = 0; //reset flag
}
if (TIMEUTC data. TIMEUTC received == 1){
SEGGER_SYSVIEW_PrintfHost ("TIMEUTC received”);
xSemaphoreGive (TIMEsemPtr) ;
TIMEUTC data. TIMEUTC_received = 0; //reset flag

}

}
void HAL_-UART_-RxzCpltCallback (UART_Handle TypeDef *huart)

{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
SEGGER_SYSVIEW_RecordEnterISR () ;
HAL_UART_Receive_IT(6huart2, nextByte, 1);
rQueueSendFromISR (uart2_BytesReceived , &tempVal, &xHigherPriorityTaskWoken);
SEGGER_SYSVIEW_RecordEzitISR () ;
portYIELD_FROM_ISR (zHigherPriority Task Woken);
}
*/
void RTC_UpdateTask(void* argument)
{

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 88

RTC_DateTypeDef sdatestructure;
RTC_TimeTypeDef stimestructure;

uint8_t getTIMEUTC[]={0xB5,0x62,0x01,0x21,0x00,0x00,0%x22,0x67 };

while (1) {

HAL_UART Transmit(&huart2 , getTIMEUTC, 8, 100); //Transmit requ
//SEGGER_SYSVIEW_PrintfHost(” Transmitted getTIME”);

if (xSemaphoreTake (TIMEsemPtr, 2000/portTICK_PERIOD_MS) = pdPASS
{
//SEGGER_SYSVIEW_PrintfHost ("TIME received”);
//##-1— Configure the Date
sdatestructure.Year = (uint8_t) (TIMEUTC.data.year — 20(
sdatestructure . Month = TIMEUTC _data.month;
sdatestructure .Date = TIMEUTC data.day ;

if (HAL_RTC_SetDate(&hrtc, &sdatestructure , RTC_FORMATI
{

Error_Handler ();

//##2— Configure the Time

stimestructure . Hours = TIMEUTC_data. hour;

stimestructure . Minutes = TIMEUTC _data.min;
stimestructure.Seconds = TIMEUTC_data. sec;

stimestructure . TimeFormat = RTC_HOURFORMAT 24;
stimestructure . DayLightSaving = RTCDAYLIGHTSAVING_NONE
stimestructure . StoreOperation = RTCSTOREOPERATION_RESET

if (HAL_RTC_ SetTime(&hrtc, &stimestructure , RTC_FORMATI

{
Error_Handler ();

}
HAL RTCEx BKUPWrite(&hrtc ,RTC_BKP_DRO0,0x32F6) ;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 89

HAL RTC_GetTime(&hrtc , &stimestructure , RTCFORMAT BIN);

char buf[30]={0};

int len = sprintf(buf,”RTC_Time: .%02d:%02d:%02d\r\n” , sti:
stimestructure.Minutes, stimestructure.Seconds);

HAL _UART Transmit(&huart3, buf, len, 100);

//SEGGER_SYSVIEW_PrintfHost (buf);

//SEGGER_SYSVIEW_PrintfHost (" TIME updated”);
vTaskDelete (NULL);

}

vTaskDelay (5000 /port TICK_PERIOD_MS);

// EXTI Linel5 FEzxternal Interrupt ISR Handler CallBackFun
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)

{
if (GPIO_Pin = GPIO_PIN_13) // If The INT Source Is EXTI Linel5 (B13 Pin)

{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
//SEGGER_SYSVIEW _RecordEnterISR () ;

++segment ;

if (segment >3) segment = 0;

//SEGGER_SYSVIEW _PrintfHost(” Segment: %i”,segment);
TIM2 >CNT = 0;

encoder_cnt = 0;

//SEGGER_SYSVIEW_RecordEzitISR () ;

portYIELD FROM_ISR (xHigherPriorityTaskWoken);

}
else if(GPIO_Pin = GPIO_PIN_2)
{
//++encoder_cnt;
}
else if(GPIO_Pin = GPIO_PIN_3)
{
++segment ;
if (segment >3) segment = 0;
encoder_cnt = 0;

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 90

TIM2->CNT = 0;

}
¥
void UserInputTask(void* argument)
{
char nextByte;
char buf[50] ={0};
startReceivelInt3 ();
while (1)
{
xQueueReceive (uart3_BytesReceived , &nextByte, portMAX DELAY);
//SEGGER_SYSVIEW_PrintfHost(”%c”, nextByte);
if (nextByte = ’t’ || nextByte = ’'T7)
{
int len = sprintf(buf,” Updating RTC_Clock\r\n");
HAL_UART Transmit(&huart3 , buf, len, 100);
//SEGGER_SYSVIEW_PrintfHost(” Starting RTC task”);
assert_param (xTaskCreate (RTC_UpdateTask, ”"RTC_Update” ,
tskIDLE_PRIORITY + 3, NULL) — pdPASS);
}
¥
¥
/* USER CODE END 4 x/
VT
¥ @brief Period elapsed callback in mnon blocking mode
* @note This function is called when TIM6 interrupt took place, inside

* HAL_ TIM_IRQHandler (). It makes a direct call to HAL_IncTick() to increment
¥ a global wvariable "uwTick” used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM _PeriodElapsedCallback (TIM_HandleTypeDef shtim)

{
/+ USER CODE BEGIN Callback 0 +/

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 91

/* USER CODE END Callback 0 %/
if (htim—>Instance — TIM6) {
HAL IncTick ();

}
/# USER CODE BEGIN Callback 1 */

/* USER CODE END Callback 1 %/

Yz
¥ @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler (void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/+ User can add his own implementation to report the HAL error return state #/
__disable_irq ();
while (1)
{

}
/* USER CODE END Error_Handler_Debug */

#ifdef USEFULL_ASSERT
VX
¥ @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed (uint8_t xfile , uint32_t line)
{
/+ USER CODE BEGIN 6 x/
/* User can add his own implementation to report the file name and line number
ex: printf(”Wrong parameters value: file %s on line %d\r\n”, file, line) x/
/* USER CODE END 6 x/

t
#endif /+ USE_FULL.ASSERT +/

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 92

JHrrssskskkrkxxxxxssskssrkxxxx (C) COPYRIGHT STMicroelectronics x##%xEND OF FILExx%x/

APPENDIX D. MICROCONTROLLER SOURCE CODE - C 93

Appendix E

MATLAB Analysis Code

6 T I e R e e e e e e B e e e e e e e e b e e e e e e e e 6 b e e e e e I e e 6 6 6 e e e e T I e e 6 606060677 %
%% T 7R R0 6% %06 % %% %% Week 12 Sample Matlab Code %%%%%%%6%% %% %0676 %% %% %% %%
6 T T R e e e e e e b e e e e e e e e B e e e e e e e 6 b e e e e e e e e 6 6 6 e e e e e T Ve e 6 6060606767 %
%% File Name : Analysis.m

%% Authors Name : Simon Castles

%% Email Address : ul083859Qumail.usq.edu.au

%% Environment : Matlab R2021b

%% Log of Change :2021 S2, Initial Version

6 T I I e e e e e e e B e e e e e e e B e e e e e e e e B e e e e e e e e 6 6 B e e e e T I e e 6 60606060676 %

clear; close all; % clear all variables from workspace & close all figures
cle; % clear command window

figent = 0; % count of figure

M=importdata (' Test_File.txt’);

encoder = str2double (M. textdata (:,2));

heading = str2double (M. textdata (:,3))./100000;
Latitude = M.data(:,1)./10000000;

Longitude = M.data (:,2)./10000000;

h_msl = M.data(:,3)./1000;

h_msl_bar = mean(h_msl);

h = h_msl_bar + 42.231;

%WGS84 Conversion factors
a = 6378137; %Semi—major axis

94

b = 6356752.3142; %Semi—minor azis
phi = mean(Latitude);

F_lat = pi/180 % ((a"2 / (sqrt(a"2 % (cosd(phi))"2 + b"2 x (sind(phi))"2))) + h
x cosd (phi);

F_lon = pi/180 * (((a"2 « b"2) / ((a2 % (cosd(phi))"2 + b"2 % (sind(phi))"2)
))+ h);

Lat_adj = Latitude.xF_lat; %Adjusted latitude
Lon_adj = Longitude.xF _lon; %Adjusted logitude

figent=figent+1;

figure(figent);

fprintf(’_Please_see_Figure %d_for_trajectory\n’, figcent);
plot (Longitude , Latitude ,’b.—’); grid minor; axis equal;
xlabel (’Longitude.(deg)’),ylabel(’Latitude._(deg)’)
title(’Trajectory’)

print —deps Trajectory

figent=figent +1;

figure(figent);

fprintf(’_Please_see_Figure %d._for_adjusted_trajectory\n’ figent);
plot(Lon_adj,Lat_adj,’b.—’); grid minor; axis equal;
xlabel(’Longitude.(m)’),ylabel(’Latitude.(m)’)

title (’Adjusted_trajectory’)

print —deps Adjusted_trajectory

figent=figent +1;

figure (figent);

fprintf(’_Please_see_Figure %d._for_heading.data\n’, figcnt);
plot (heading);

title (’Recorded_heading’)

xlabel(’Sample’); ylabel(’Heading.(deg)’)

print —deps Recorded_heading

hold on;

corrected_heading = zeros(length(heading) ,1);
for k=1:length(heading)
if heading(k)> 270

APPENDIX E. MATLAB ANALYSIS CODE 95

corrected_heading (k) = heading(k) — 270;
else
corrected_heading (k) = heading(k) + 90;
end
end

plot(corrected_heading)

time = 0:0.2:(length(corrected_heading)*0.2);
figent=figent +1;

figure (figent);

plot (time (1:length(corrected_heading)),corrected_heading);
xlabel ('Time.(s)’); ylabel(’Heading.(deg)’)

title (’Corrected _heading._data’)

print —deps Corrected_heading

xline (9/5—-0.2,—r1’);
xline (59/5—-0.2,"—71 ");
xline (247/5—-0.2,—1 7);
xline (297/5—-0.2,—17);

%% Windows

SW1 = 9:59; SW2 = 247:297; SW3 = 485:535; SW4 = 723:773;

SW5 = 960:1010; SW6 = 1198:1248; SW7 = 1436:1486; SW8 = 1674:1724;

SW9 = 1911:1962; SWI10 = 2150:2200; SWI11 = 2387:2437; SWI12 = 2625:2675;
SW13 = 2862:2912; SW14 = 3099:3150; SWI15 = 3337:3388; SWI16 = 3575:3625;
SW17 = 3813:3863; SWI18 = 4050:4100; SWI19 = 4287:4338; SW20 = 4525:4575;
SW21 = 4763:4813; SW22 = 5000:5050;

SW = [SW1,SW2,SW3,SW4,SW5,SW6,SW7,SW8,SW9, SW10,SW11,SW12,SW13,SW14,SW15, . . .
SW16,SW17,SW18,SW19,SW20,SW21,SW22] ;

NEl = 128:178; NE2 = 367:417; NE3 = 605:655; NE4 = 842:892;

NE5 = 1079:1129; NE6 = 1317:1367; NE7 = 1555:1605; NE8 = 1793:1843;
NE9 = 2030:2080; NEI10 = 2268:2318; NE1l = 2506:2556; NEI12 = 2744:2794;
NE13 = 2981:3031; NE14 = 3218:3269; NE15 = 3456:3506; NE16 = 3694:3744;
NE17 = 3932:3982; NEIS = 4169:4219; NE19 = 4406:4456; NE20 = 4644:4694;
NE21 = 4882:4932; NE22 = 5119:5169;

NE = [NE1,NE2,NE3,NE4,NE5,NE6,NE7,NES, NE9, NE10,NE11,NE12,NE13,NE14,NE15 , . . .

APPENDIX E. MATLAB ANALYSIS CODE 96

NE16,NE17,NE18,NE19,NE20, NE21 , NE22] ;
%% Southwest passes

%y = [Lat_adj(9:59); Lat_adj(247:297); Lat_adj (485:535)];
Y%x = [Lon_adj(9:59); Lon_adj (247:297); Lon_adj (485:535)];
y = Lat_adj(SW);
x = Lon_adj(SW);

[p,S] = polyfit(x,y,1);

[y-fit ,delta] = polyval(p,x,S);

figent=figent+1;

figure(figent);

plot(x,y,’b.")

hold on

plot (x,y_fit ,'r—")

plot (x, y_fit+2xdelta , 'm—’ ,x,y_fit —2«delta, 'm—")

title (’Southwest_passes .GNSS_Data)

legend ('GNSS_data_points’,’Linear .Fit’,’95%_Percentile)
xlabel (’Adjusted._latitude.(m)’);ylabel(’Adjusted._longitude.(m)’);
grid minor; axis square;

print —deps SWI1

m = p(1);

¢ =p(2);

txt = [’y.=.’ num2str(m) ’x’ num2str(c)];
text (16838128, 2725330, txt);

d=(m.*x—y+c)/sqrt(l+m”2);

r_count = 0;
l_count = 0;
zero_count = 0;
for k=1:length(d)
if d(k)<o0
r_count = r_count + 1;
elseif d(k) > 0
l_count = l_count + 1;
elseif d(k) = 0

zero_count = zero_count +41;

APPENDIX E. MATLAB ANALYSIS CODE

97

end

end
l_count;
r_count;

zero_count ;

d_abs_SW = abs((m.xx—y+c)/sqrt(1+m”"2));

d_mean_ SW = mean(d_abs_ SW);
d_std_SW = std(d_abs_.SW);

d_max SW = max(d_abs_ SW);
d-95.SW = prctile (d_-abs-SW ,95);

ACCSW = sqrt (2)*(d.mean_ SW + d_std_SW);
fprintf(’'SW.pass_left _count: %u, _right_count: _%u,_zero_count: %u\n’ ,...

l_count ,r_count ,zero_count)

fprintf(’'SW_pass._accuracy . (mm): %f\n’ ,ACCSW%1000)

%% Northeast Passes
y = Lat_adj (NE);
x = Lon_adj(NE);

[p,S] = polyfit(x,y,1);

[y_fit ,delta] = polyval(p,x,S);
figent=figent+1;

figure(figent);

plot(x,y,’b. ")

hold on

plot (x,y_fit , ’r—")

plot (x, y_fit+2xdelta , 'm—’ ,x,y_fit —2«delta, 'm—")

title (’Northeast_pases _GNSS_Data’)

legend ("GNSS_data_points’,’Linear _Fit’,’95%_Percentile)
xlabel (’Adjusted._latitude.(m)’);ylabel(’Adjusted._longitude.(m)’);
grid minor; axis square;

print —deps NE1

APPENDIX E. MATLAB ANALYSIS CODE 98

m=p(l);
c =p(2);
tXt — [? bl))

y.=.’' num2str(m) ’x’ num2str(c)];
text (16838125, 27253255, txt);

d=(m.*x—y+c)/sqrt(l+m"2);
r_count = 0;
l_count = 0;
zero_count = 0;
for k=1:length(d)
if d(k)<0
r_count = r_count + 1;
elseif d(k) 0
l_count = l_count + 1;
elseif d(k) = 0

zero_count = zero_count +1;

V

end

end
l_count;
r_count;

zero_count ;
d_abs NE = abs((m.xx—y+c)/sqrt(1+m~2));

d_mean NE = mean(d_abs NE);
d_std_NE = std(d_abs_NE);

d_.max NE = max(d_abs NE);
d_95_.NE = prctile(d.abs_.NE ,95);

ACCNE = sqrt (2)*(d.mean NE + d_std_NE);

fprintf('NE_pass_left .count: %u,._.right_count: %u,_zero_count: %u\n’ ,...
l_count ,r_count ,zero_count)
fprintf('NE_pass_accuracy.(mm): %f\n’ J/ACCNE*1000)

%% Owverall relative position accuracy

d = [d.abs_.SW;d_abs_NE |;
d_mean = mean(d);

d_std = std(d);

APPENDIX E. MATLAB ANALYSIS CODE 99

d_max = max(d);

d_95 = prctile(d,95);

ACC = sqrt(2) x (d.mean + d_std);
fprintf(’Total_relative._cross—track_accuracy. (mm): %f\n’ ,ACCx1000)

RMSE = sqrt(mean(d."2));
%% Speed analysis

speed = zeros(length(encoder)—1,1);

for k=1:(length(encoder)—1)
speed (k) = (encoder(k+1)—encoder(k)) / 0.2 % pi * 0.04 / 8192;
end
time = 0:0.2:(length(speed)x0.2);
figent=figent +1;
figure (figent);
t = time (1:length(speed));
plot (t,speed,’b. ")
grid minor;
title (’Speed’)
xlabel (’time.(s)’);ylabel(’speed.(m/s)’); axis([0 1055 0 1.2]);

[p, S| = polyfit(t,speed,1);

[y_fit ,delta] = polyval(p,t,S);

hold on

plot (t,y_fit ,’'r—")

plot (t,y_fit+2«delta, 'm—’,t,y_fit —2«delta, 'm—")

legend ('calculated _speed’,’linear_fit ’,’95th_percentile)
print —deps Speedl

s-mean = mean(speed);
s_std = std(speed);
s_delta = abs(speed—s_mean);

% yline (s-mean, 'r’)
% yline (s-mean+2+s_std ,"——r"’

% yline (s-.mean—2+s_std ,——r"’)

t2 = 1:5:length(encoder);
s2 = zeros(length(t2)—-1,1);

APPENDIX E. MATLAB ANALYSIS CODE 100

for k=1:(length(t2)-1)
s2 (k) = (encoder(t2(k+1))—encoder(t2(k))) * pi * 0.04 / 8192;

end

figent=figent +1;

figure (figent);

subplot (2,1 ,1);

plot (0:length(s2)—1,s2, ’b—")

title (’Average._speed’)
xlabel('time.(s)’);ylabel(’speed_(m/s)’); axis([0 1055 0 1.2]);
yline (0.6283, 'r—")

legend ('Derived _encoder._speed’,’Commanded._speed.(0.628 .m/s))
sc = 0.6283;

S_error = sc — s2;

s_error_abs = abs(s_error);

subplot (2,1,2);

plot (0:length(s_error)—1,s_error)

title (’Speed_error’)

xlabel (’time.(s)’);ylabel(’error.(m/s)’); axis([0 1055 —0.1 0.1]);
s_error_mean = mean(s_error_abs);

s_error_std = std(s_error_abs);

print —deps Speed?2

%%

time = 0:0.2:(length(Lat_adj)=*0.2);

figent=figent +1;

figure(figent);

yyaxis left

plot (time (1:length(Lat_adj)),Lat_adj)

ylabel (’Latitude.(m)’);

yyaxis right

plot (time (1:length(Lat_adj)),Lon_adj)

xlabel ("time.(s))

ylabel (’Longitude.(m) ")

%% Southwest pass by pass error

x=[Lon_adj(SW1),Lon_adj(SW2),Lon_adj(SW3),Lon_adj(SW4),Lon_adj(SW5) ,...
Lon_adj(SW6) , Lon_adj (SW7),Lon_adj(SW8),Lon_adj(SWI10),Lon_adj(SW11) ,...
Lon_adj(SWI12),Lon_adj(SW13),Lon_adj(SW16),Lon_adj(SW17),Lon_adj(SWI8)...

APPENDIX E. MATLAB ANALYSIS CODE 101

,Lon_adj (SW20) ,Lon_adj(SW21),Lon_adj(SW22)];

y=[Lat_adj(SW1),Lat_adj(SW2),Lat_adj(SW3),Lat_adj(SW4), Lat_adj(SW5) ,...
Lat_adj(SW6),Lat_adj(SW7),Lat_adj(SW8),Lat_adj(SW10),Lat_adj(SWI11) ,...
Lat_adj(SWI12),Lat_adj(SW13),Lat_adj (SW16),Lat_adj (SW17), Lat_adj (SWI18)...
,Lat_adj (SW20),Lat_adj(SW21),Lat_adj(SW22)];

p = polyfit(x,y,1);

a2=(p (1).xx—y+p(2)) /sqrt (1+p (1) "2):

d2_mean = mean(d2’) ’;

d2_std = std(d2);

% [p, S] = polyfit(1:length(d2-mean),d2-mean,5);

% [f, D] = polyval(p,1:length(d2-mean),S);

d2_sample = [(1:51)’,(1:51),(1:51),(1:51)7,(1:51)7,(1:51)7,(1:51)",(1:51)7,...
(1:51)7,(1:51)7,(1:51)7,(1:51)7,(1:51)",(1:51)",(1:51)",(1:51)",(1:51) ", (1:¢

[p, S| = polyfit(d2_sample,d2,5);

[f, D] = polyval(p,l:length(d2_mean),S);

figent=figent +1;
figure(figent);
subplot (2,1 ,1);
plot (d2,’.— ")
hold on

yline (0)

pl = plot(f,’'r’);
p2 = plot (f+D*2,’'r—");
plot (f-Dx2,’r—")

title (’Distribution._of GNSS_data_errors._for._each_southwest._pass’)
legend ([pl p2],’5th.order_polynomial_fit’, ’95th_percentile’)
xlabel(’Sample’);ylabel(’Distance_from._linear_fit.(m)’);

grid minor; axis ([0 52 —0.025 0.025]);

d3_abs_mean = mean(mean(abs(d2—d2_mean)));
d3_abs_std = mean(std (abs(d2—d2_mean)));
d3_acc = sqrt(2) x (d3_abs_mean + d3_abs_std) = 1000;

d4_mean = mean(mean(abs(d2—f’)));
d4_std = mean(std (abs(d2—f’)));
d4_acc = sqrt(2) * (d4-mean + d4_std) = 1000;

APPENDIX E. MATLAB ANALYSIS CODE 102

%% Northeast pass by pass error

x=[Lon_adj(NE1),Lon_adj(NE2),Lon_adj(NE3),Lon_adj(NE4),Lon_adj(NE5) ,...
Lon_adj(NE6),Lon_adj(NE7),Lon_adj(NE8),Lon_adj(NE10),Lon_adj(NE11) ,...
Lon_adj(NE12),Lon_adj(NE13),Lon_adj(NE16),Lon_adj(NE17),Lon_adj(NE18)...
,Lon_adj (NE20),Lon_adj(NE21),Lon_adj(NE22)];

y=[Lat_adj(NE1),Lat_adj(NE2),Lat_adj(NE3),Lat_adj(NE4),Lat_adj(NE5) ,...
Lat_adj(NE6),Lat_adj(NE7),Lat_adj(NE8),Lat_adj(NE10),Lat_adj(NE11) ,...
Lat_adj (NE12),Lat_adj (NE13),Lat_adj (NE16), Lat_adj (NE17), Lat_adj (NE18). .
,Lat_adj (NE20), Lat_adj (NE21), Lat_adj (NE22)];

p = polyfit(x,y,1);

d2=(p(1).*x—y+p(2))/sart(1+p(1)"2);

d2_mean = mean(d2’)

d2_std = std(d2);

% [p, S] = polyfit(1:length(d2-mean),d2-mean,5);

% [f, D] = polyval(p,1:length(d2-mean),S);

).
’

d2_sample = [(1:51)°,(1:51)7,(1:51),(1:51)",(1:51) " ,(1:51) " ,(1:51)",(1:51)",...
(1:51)7,(1:51)7,(1:51)7,(1:51)",(1:51)",(1:51)",(1:51)",(1:51)",(1:51) ", (1::

[p, S] = polyfit(d2_sample,d2,5);

[f, D] = polyval(p,1l:length(d2_mean),S);

%figent=figent +1;
%figure (figent);
subplot (2,1,2);
plot(d2,’.—7)
hold on

yline (0)

pl = plot(f,’r’);
p2 = plot ({f4D*2, ' r—");
plot (f-Dx2,’r—")

title (’Distribution._of _GNSS_data_errors._for_each_northeast._pass’)
legend ([pl p2],’5th_order_polynomial_fit’, ’95th_percentile’)
xlabel(’Sample’);ylabel(’Distance_from._linear_fit._(m)’);

grid minor; axis ([0 52 —0.025 0.025]);

print —deps Error

APPENDIX E. MATLAB ANALYSIS CODE 103

d3_abs_mean = mean(mean(abs(d2—d2_mean)));
d3_abs_std = mean(std (abs(d2—d2_mean)));
d3_acc = sqrt(2) x (d3_abs_mean + d3_abs_std) = 1000;

d4_mean = mean(mean(abs(d2—f’)));
d4_std = mean(std (abs(d2—f’)));
d4_acc = sqrt(2) * (d4-mean + d4_std) = 1000;

%% Southwest passes

%y = [Lat_adj(9:59); Lat_adj (247:297); Lat_adj (485:535)];
Y%x = [Lon_adj(9:59); Lon_adj (247:297); Lon_adj (485:535)];
y = Lat_adj(SW) — Lat_adj(SW(end));
x = Lon_adj(SW) — Lon_adj(SW(end));

[p,S] = polyfit(x,y,1);

[y_fit ,delta] = polyval(p,x,S);
figent=figent +1;

figure(figent);

plot(x,y,’b. ")

hold on

plot (x,y_fit ,'r—")

plot (x, y_fit+2«delta , 'm—’ ,x, y_fit —2«delta , 'm—")

title (’Southwest_passes _GNSS_Data’)

legend ('GNSS_data_points’,’Linear . Fit’,’95%_Percentile)

xlabel (’Adjusted_local_latitude._(m)’);ylabel(’Adjusted_local_longitude.(m)’);
grid minor; axis equal;

print —deps SW2

m = p(1);
c =p(2);
txt = [’y.=.’ num2str(m) ’x’ num2str(c)];

text (2,1,txt);

d=(m.*xx—y+c)/sqrt(l+m"2);

r_count = 0;
l_count = 0;
zero_count = 0;

for k=1:length(d)

APPENDIX E. MATLAB ANALYSIS CODE 104

if d(k)<0

r_count = r_count + 1;
elseif d(k) > 0

l_count = l_count + 1;
elseif d(k) = 0

zero_count = zero_count +1;

end

end
l_count;
r_count;

zero_count ;

d_abs SW = abs((m.*x—y+c)/sqrt(1+m”~2));

d_mean_ SW = mean(d_abs_ SW);
d_std_SW = std(d_abs_.SW);

d_max SW = max(d_abs_ SW);
d_-95.SW = prctile (d-abs_.SW ,95);

ACCSW = sqrt (2)x*(d-mean SW + d_std_SW);
fprintf(’'SW.pass_left _count: %u,_right_count: _%u,_zero_count: %u\n’ ,...
l_count ,r_count ,zero_count)

fprintf(’'SW_pass._accuracy . (mm): %f\n’ ,ACCSW%1000)

%% Northeast Passes
y = Lat_adj(NE) — Lat_adj(NE(1));
x = Lon_adj(NE) — Lon_adj(NE(1));

[p,S] = polyfit(x,y,1);

[y-fit ,delta] = polyval(p,x,S);
figent=figent +1;
figure(figent);

plot(x,y,’b. ")

hold on

plot (x,y_fit ,'r—")

9

plot (x, y_fit+2xdelta , 'm—’ ,x,y_fit —2«delta, 'm—")

APPENDIX E. MATLAB ANALYSIS CODE 105

title (’Northeast_pases _GNSS_Data’)

legend ('GNSS_data_points’,’Linear _.Fit’,’95%_Percentile)

xlabel (’Adjusted_local_latitude._(m)’);ylabel(’Adjusted_local_longitude.(m)’);
grid minor; axis equal;

print —deps NE2

m = p(1);
¢ =p(2);
txt = [’y.=.’ num2str(m) ’'x’ num2str(c)];

text (2,1,txt);

d=m.*x—y+c)/sqrt(l+m"2);
r_count = 0;
l_count = 0;
zero_count = 0;
for k=1:length(d)
if d(k)<0
r_count = r_count + 1;
elseif d(k) 0
l_count = l_count + 1;
elseif d(k) = 0

zero_count = zero_count +1;

V

end

end
l_count;
r_count;

zero_count ;

d_abs NE = abs((m.xx—y+c)/sqrt(1+m~2));
d_-mean_ NE = mean(d_abs_NE);

d_std_NE = std(d_abs_NE);

d-max_NE = max(d_abs_NE);

d_95_.NE = prctile(d.abs_.NE ,95);

ACCNE = sqrt (2)*(d.mean NE + d_std NE);

fprintf('NE_pass_left .count: %u,._.right_count: %u,_zero_count: %u\n’ ...

l_count ,r_count ,zero_count)

APPENDIX E. MATLAB ANALYSIS CODE 106

fprintf('NE_pass_accuracy . (mm): _%f\n’ ,ACCNE*1000)

%% Bar graphs
figent=figent +1;
figure(figent);

groups = categorical ({ 'SW.segment’, ’'NE_segment’, ’Combined_segments’});

groups = reordercats (groups,{ 'SW.segment’, ’NE_segment’, ’Combined._segments’});

data = [d.mean_SW d_std_SW ACCSW; d.mean NE d_std_NE ACCNE; d.-mean d_std ACC];
b = bar(groups,data);

grid minor;

ylabel (’Error./_Accuracy.(m)’)

title ("Mean_unsigned._error ,_.standard._deviation_of_error_and_accuracy’)

legend ('Mean_of_error’, ’Standard._deviation_of_error

)

, 'Relative_cross—track._acc

legend (’Location’, ’southoutside ’)

xtipsl = b(1).XEndPoints;

ytipsl = b(1).YEndPoints;

labelsl = string(b(1).YData);

text (xtipsl ,ytipsl ,labelsl , ’HorizontalAlignment’,’center’ ...
"VerticalAlignment ’, "bottom)

xtips2 = b(2).XEndPoints;

ytips2 = b(2).YEndPoints;

labels2 = string (b(2).YData);

text (xtips2 ,ytips2 ,labels2 , "HorizontalAlignment ’, ’center

)
PR

"VerticalAlignment ', "bottom ’)

xtips3 = b(3).XEndPoints;

ytips3 = b(3).YEndPoints;

labels3 = string(b(3).YData);

text (xtips3 ,ytips3 ,labels3 , ’HorizontalAlignment’, ’center’ ,...
"VerticalAlignment ’, "bottom)

%% heading accuracy

heading_sw = heading (SW);
heading_sw_m = mean(heading_sw);
heading sw_std = std(heading_sw);

heading_sw_error = heading_sw — heading_sw_m;

APPENDIX E. MATLAB ANALYSIS CODE 107

heading_sw_error_.m = mean(abs(heading_sw_error));
heading_sw_error_std = std(abs(heading_sw_error));

heading_sw_error_acc = heading_sw_error_m + heading_sw_error_std;

heading ne = heading (NE);

heading_ ne.m = mean(heading_ne);

heading_ne_std = std(heading_ne);
heading_ne_error = heading_ne — heading_ne_m;
heading_ne_error.m = mean(abs(heading_ne_error));

heading_ne_error_std = std(abs(heading_ne_error));

heading_ne_error_acc = heading_ne_error.m + heading_ne_error_std;
heading_error = [heading_sw_error;heading_ne_error |;

heading_error_m = mean(abs(heading_error));
heading_error_std = std(abs(heading_error));

heading_error_acc = heading_error.m + heading_error_std;

figent=figent +1;

figure(figent);

subplot (2,1,1)

plot (heading _sw_error)

xlabel (’Sample’);ylabel (’Error.(deg)’); title(’Heading_error_during._southwest_str
subplot (2,1,2)

plot(heading_ne_error)
xlabel(’Sample’);ylabel(’Error_(deg)’);title(’Heading_error_during_northeast._str

figent=figent +1;
figure (figent);

groups = categorical ({ 'SW.segment’, 'NE_segment’, ’Combined_segments’});
groups = reordercats (groups,{ SW.segment’, 'NE_segment’, ’Combined_segments’});
data = [heading_sw_error-m heading_sw_error_std heading_sw_error_acc; heading_ne

heading _ne_error_std heading_ne_error_acc; heading_error_.m heading_error_st
b = bar(groups,data);
grid minor;
ylabel (’Error./_Accuracy.(deg)’)
title ("Mean_unsigned._error ,_.standard._deviation_of_error_and_accuracy ’)

legend ('Mean’, ’Standard._deviation’, ’Accuracy’);

APPENDIX E. MATLAB ANALYSIS CODE 108

legend (’Location’, ’southoutside ”)

xtipsl = b(1).XEndPoints;

ytipsl = b(1).YEndPoints;

labelsl = string(b(1).YData);

text (xtipsl ,ytipsl ,labelsl , ’HorizontalAlignment’,’center’ ...
"VerticalAlignment ', "bottom)

xtips2 = b(2).XEndPoints;

ytips2 = b(2).YEndPoints;

labels2 = string(b(2).YData);

text (xtips2 ,ytips2 ,labels2 , ’HorizontalAlignment’,’center’ ...
"VerticalAlignment ', ’bottom)

xtips3 = b(3).XEndPoints;

ytips3 = b(3).YEndPoints;

labels3 = string(b(3).YData);

text (xtips3 ,ytips3 ,labels3 , ’HorizontalAlignment’,’center’ ...
"VerticalAlignment ’, "bottom)

%% Heading errors
heading sw = heading (SW);

heading sw_m = mean(heading _sw);

heading sw_p = [heading (SW1),heading (SW2), heading (SW3) ,heading (SW4) ,heading (SW5)
heading (SW7) ,heading (SW8) , heading (SW10) , heading (SW11) , heading (SW12) , heading (
heading (SW17) ,heading (SW18) ,heading (SW20) , heading (SW21) , heading (SW22) | ;

heading_sw_perror = heading_sw_p — heading_sw_m;

subplot (2,1,1)

plot (heading_sw_perror);

title (’Distribution.of GNSS_heading._errors._for_each_southwest._pass’)
%legend ([pl p2], 5th order polynomial fit ', ’95th percentile ’)
xlabel(’Sample’);ylabel(’Error._from_mean_heading.(deg)’);

grid minor; axis ([0 52 —1.5 1]);

heading_ne = heading (NE);

heading_ne_.m = mean(heading_ne);

heading_ne_p = [heading(NE1l), heading (NE2), heading (NE3),heading (NE4) ,heading (NE5)
heading (NE7) ,heading (NE8) ,heading (NE9) , heading (NE10) , heading (NE11) ,heading (D

APPENDIX E. MATLAB ANALYSIS CODE 109

heading (NE15) ,heading (NE16) ,heading (NE17) ,heading (NE18) , heading (NE19) , headin
heading (NE22)];

heading_ne_perror = heading_ne_p — heading_ne_m;

subplot (2,1,2)

plot (heading _ne_perror);

title (’Distribution.of GNSS_heading._errors._for_each_northeast._pass’)

%legend ([pl p2], ’5th order polynomial fit ', ’95th percentile ’)

xlabel(’Sample’);ylabel(’Error._from_mean_heading.(deg)’);

grid minor; axis ([0 52 —1.5 1]);

APPENDIX E. MATLAB ANALYSIS CODE 110

