
University of Southern Queensland

Faculty of Health, Engineering & Sciences

SCADA Test Environment for Cybersecurity Analysis of

Critical Infrastructure Systems

A dissertation submitted by

P. Compton

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Computer Systems Engineering

Submitted: October, 2021

Abstract

Critical infrastructure systems around the world are currently being controlled and moni-

tored by out of date computer systems that are running on out of date operating systems,

leaving them vulnerable to various malware attacks. The world we live in is becoming

increasingly “connected” with the rise of technology, combining this with the fact that

there are hundreds of thousands of new malicious programs discovered each day, it is

imperative that we protect our most critical assets from cyber attack.

The primary purpose of this project was to highlight the potential risks that industrial

control systems are exposed to through the design and development of a small scale control

system. It was hoped that many of the issues that are present in industrial settings would

be replicated within a lab environment, providing an insight into the dangers that exist

in these systems and how they can be potentially mitigated.

Throughout history there have been numerous examples of critical systems being brought

down due to malware. Some of these attacks include the infamous Stuxnet attack, Russian

attacks on Ukraine’s Electricity Grid and more recently, attacks on a water treatment

facility in Florida. However, with proper system design and testing, it is possible to

mitigate the risk posed by malicious software and prevent malicious agents from impacting

our critical assets.

There were a broad range of tasks required to accomplish the outcomes of this project. A

functional description was prepared to describe the control system operation and outline

the system equipment. Software, electrical and networking components were then de-

signed and built which included an electrical control panel, PLC programming, SCADA

system interface development, as well as the construction of a physical process that could

be controlled. This system was then tested using standard penetration testing techniques

utilising the Kali Linux operating system distribution to detect and analyse any security

ii

vulnerabilities within the system.

This project has successfully achieved it’s primary purpose. Through the research pro-

vided, many of the security flaws prevalent in industrial systems have been highlighted,

showing the dangers present in these systems and the disastrous consequences that can

occur as a result. Through highlighting these dangers, mitigation factors have also been

identified that can help prevent the attacks from this project; from happening in the real

world.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

P. Compton

Acknowledgments

This thesis was typeset using LATEX 2ε .

I would like to thank my wonderful wife and children for putting up with my study for

the past six years and for allowing me to turn our back room into a control room for this

project. Without their support I would never have got to where I am now.

I would also like to thank by thesis supervisor Dr Tobias Low for his support and guidance

during the course of this project.

P. Compton

Contents

Abstract i

Acknowledgments vii

List of Figures xv

List of Tables xxi

Nomenclature xxii

Chapter 1 Introduction 1

1.1 Project Aims . 2

1.2 Overview of the Dissertation . 4

Chapter 2 Literature Review 5

2.1 The History of Malware . 5

2.2 Stuxnet . 8

2.2.1 How was Stuxnet Different? . 8

2.2.2 Targeting Industrial Controllers . 9

2.2.3 Stuxnet Source Code . 11

2.3 Other Attacks on Critical Infrastructure 13

2.3.1 Russia attacks Ukraine’s electrical grid 13

2.3.2 Water Treatment Plant Attack - Florida 15

2.4 The Need for SCADA Test Environments 15

2.5 Testing Control System Networks . 16

2.5.1 Network Scanning . 16

2.5.2 Vulnerability Scanning . 17

2.5.3 Network Exploitation . 18

2.5.4 Post Exploitation Attacks . 24

Chapter 3 Methodology 27

3.1 Chapter Overview . 27

3.2 Research Questions . 27

3.3 Hypothesis . 28

3.4 Objectives . 28

3.5 Research Methods . 29

Chapter 4 Experiment Design and Setup 31

4.1 Chapter Overview . 31

4.2 Function Design Specification . 31

4.2.1 Overview . 31

4.2.2 Control Strategy . 32

4.3 Electrical Design . 42

4.3.1 Overview . 42

4.3.2 Pump Starter Circuit . 42

4.3.3 Level Transmitter Loop Diagram 44

4.3.4 Level Switch Loop Diagram . 46

4.4 Network Design . 47

4.4.1 Overview . 47

4.5 System Components . 48

4.5.1 Equipment List . 48

4.5.2 Actual System . 49

4.6 Chapter Summary . 54

Chapter 5 Results and Analysis 55

5.1 Chapter Overview . 55

5.2 Network Scanning . 55

5.3 Vulnerability Scanning . 66

5.4 Network Exploitation & Post Exploitation Attacks 72

5.4.1 Overview . 72

5.4.2 Risk Matrix . 73

5.4.3 Network Router . 74

5.4.4 Ethernet Switch . 76

5.4.5 Domain Controller . 78

5.4.6 SCADA Server . 91

5.4.7 SCADA Client . 94

5.4.8 Engineering Machine . 95

5.5 Summary of Results . 99

5.5.1 Mitigation Strategies . 100

Chapter 6 Conclusions and Further Work 103

6.1 Conclusions . 103

6.2 Further Work . 105

References 107

Appendix A Project Specification 111

Appendix B Risk Assessment 115

Appendix C Ethical Clearance 119

Appendix D PLC Code Development 121

D.1 Overview . 122

D.2 Function Block Development . 122

D.2.1 Pump Block . 122

D.2.2 Level Transmitter Block . 123

D.2.3 Level Switch Block . 125

D.3 State Logic Code Development . 126

D.4 Function Block Deployment . 130

D.5 PLC Hardware Configuration . 134

List of Figures

2.1 Annual Total Malware, image from AV-Test 7

2.2 Typical Industrial Control System Architecture 10

2.3 How Stuxnet infected a system . 11

2.4 Available options for Msfvenom payload creator 24

4.1 Control system state diagram . 35

4.2 SCADA system overview display . 38

4.3 Pump popup control window . 39

4.4 Level transmitter popup control window 40

4.5 Level switch popup control window . 41

4.6 Pump starter control circuit . 43

4.7 Level transmitter loop diagram . 45

4.8 Level switch loop diagram . 46

4.9 Network design drawing . 47

4.10 Pump function block written in structured text 49

4.11 Example of pump function block used to control tank pump 50

4.12 Storage tanks with connected piping . 51

4.13 Level switch connections . 51

4.14 Completed electrical control cabinet . 52

4.15 Control room testing area . 53

5.1 Netdiscover command to discover devices 56

5.2 Results from the Netdiscover command 56

5.3 Nmap discovery command . 57

5.4 Typical Nmap scan results . 57

5.5 Legion user interface . 59

5.6 Legion scan configuration . 60

5.7 Typical Legion scan results . 61

5.8 Nessus web interface . 66

5.9 Available scans when using Nessus . 67

5.10 Typical Nessus scan results . 67

5.11 Discover Scripts launch screen . 68

5.12 Discover Scripts scan options . 69

5.13 Typical Discover Scripts scan results . 69

5.14 Summary of most critical vulnerabilities 70

5.15 Bar chart of detected vulnerabilities . 71

5.16 Command used to generate payload with MSFVenom 72

5.17 Details of the payload created with FatRat 72

5.18 Risk matrix for exploit success scoring . 73

5.19 Summary of router exploit testing . 74

5.20 Command used to obtain router credentials 75

5.21 Output of the Routersploit scan . 75

5.22 Router configuration interface . 75

5.23 Summary of switch exploit testing . 76

5.24 Output from network switch exploit . 77

5.25 MS17-010 scan on the domain . 78

5.26 Domain exploitation success . 78

5.27 Hacker user added to the domain . 79

5.28 New hacker user in active directory . 80

5.29 Command to remote desktop into the domain controller 80

5.30 Remote session on the domain controller 81

5.31 Hacker on the domain . 81

5.32 Remote desktop from domain to SCADA 82

5.33 Successful access to SCADA Server . 83

5.34 Taking control of the pumping system . 83

5.35 Pump stop set points modified . 84

5.36 System modified to abnormal state . 85

5.37 Level trends from system take over . 85

5.38 Remote desktop from domain to PLC . 86

5.39 Creating an animation table on the PLC 87

5.40 Completed animation table on the PLC 88

5.41 Stopping the PLC from Kali Linux . 89

5.42 Meterpreter shell opened on the Domain using FatRat 90

5.43 Meterpreter shell opened on the Domain using MSFVenom 90

5.44 Summary of domain controller exploit testing 90

5.45 Meterpreter shell opened on the SCADA Server using FatRat 92

5.46 Discovering users on the SCADA server 92

5.47 Discover users password secrets . 92

5.48 Phishing users credentials . 93

5.49 Phishing popup to steal credentials . 93

5.50 Summary of SCADA server exploit testing 93

5.51 Summary of SCADA client exploit testing 94

5.52 Exploiting the engineering machine using EternalBlue vulnerability 95

5.53 Gathering admin credentials on engineering machine 96

5.54 Remote desktop into the engineering machine 96

5.55 Remote session on engineering machine 97

5.56 Summary of Engineering Machine exploit testing 98

5.57 Chart of exploitations by operating system 99

5.58 Bar chart of system exploitation risk scores 100

B.1 Completed Risk Management Plan . 118

D.1 Tank 1 PLC code configuration . 130

D.2 Tank 2 PLC code configuration . 131

D.3 Pump 1 PLC code configuration . 132

D.4 Pump 2 PLC code configuration . 133

D.5 PLC hardware configuration . 134

List of Tables

1 Table of Nomenclature . xxii

2.1 Differences between traditional malware and Stuxnet 9

2.2 Available commands from open Meterpreter shell 23

4.1 Operator sequence selections . 36

4.2 Process feedback devices . 36

4.3 System adjustable parameters . 36

4.4 Device list . 37

4.5 PLC IO list . 37

4.6 System equipment list . 48

5.1 Summarised table of all scanning results 65

Nomenclature

Term Definition

APT28 Advanced Persistent Threat 28

ARP Address Resolution Protocol

CLI Command Line Interface

DDOS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

HMI Human Machine Interfaces

IDE Integrated Development Environment

IP Internet Protocol

IT Information Technology

LSH High Level Switch Asset

LSL Low Level Switch Asset

LTX Level Transmitter Asset

MAC Media Access Control

NATO North Atlantic Treaty Organization

PLC Programmable Logic Controller

PMP Pump Asset

SCADA Supervisory Control and Data Acquisition

SQL Structured Query Language

UDP User Datagram Protocol

UPS Uninterruptible Power Supply

USB Universal Serial Bus

VPN Virtual Private Network

Table 1: Table of Nomenclature

Chapter 1

Introduction

Critical infrastructure systems around the world are currently being controlled by out of

date, un-secure computer systems that are vulnerable to various malware attacks. There

are many organisations that are still running on old operating systems such as Windows 7,

which as stated by (Microsoft 2020), reached it’s end of life on January 14, 2020. Systems

still running on these operating systems are now more vulnerable to cyber attack as there

will be no new security patches released for any newly found vulnerabilities.

This topic has never been more important, attacks on critical control systems has been a

common occurrence in recent times. One such attack which has been highlighted in the

media was an attack on America’s critical fuel assets. On the 7th May 2021, a United

States fuel pipeline became the victim of a ransomware attack that resulted in the total

shutdown of operations. (Abramsn 2021) writes that the Colonial Pipeline, the United

States largest fuel pipeline has been forced to shut down its operations after falling victim

to a ransomware attack.

According to (Newburger 2021), Colonial Pipeline was forced to shut down their entire

network to prevent the spread of the malware. The economic cost of this attack is quite

astonishing as Colonial transports 2.5 million barrels of fuel each day and provides 45%

of all fuel consumed on the East Coast of America. John Kilduff, a partner at Again

Capital in New York, said the United States will see spot shortages of gasoline, diesel and

jet fuel develop rapidly if the outage persists.

“It appears that it was a ransomware attack, rather than a state actor, but it highlights

2 Introduction

the significant software vulnerability across the industry,” Kilduff said. “If there’s is not

a resumption of operations by tomorrow night or at least some clarity on a resumption,

gasoline prices will skyrocket on the open of trading Sunday night.”

This attack highlights the need for more research into the cyber-security of critical sys-

tems. Organisational IT systems have for a long time been the main focus of cyber-

security, however operational technology (OT) systems have been neglected as they are

somewhat of a specialist system. It seems strange that this is the case as these systems

control many of societies essential resources such as water, waste water, electricity and

gas. This is not a new issue either, there have been many of these attacks throughout

history.

1.1 Project Aims

The primary objective of this project is to design, develop and build a small-scale wa-

ter pumping station that is controlled by a PLC / SCADA system. This project will

examine how vulnerable this “typical” industrial control system is to various common

cyber-attacks, analyse the criticality of these attacks and discover safeguards to prevent

these attacks from occurring in the future. Specific objectives of this project include:

� Critically assess past cyber attacks on critical infrastructure systems and analyse

the impact of these attacks on society. This will provide a basis as to why this

research is important.

� Develop a function specification that provides a system overview, details the in-

strumentation being used and describes how the pumping system is intended to

operate.

� Design and build an electrical control panel that will house the pump control circuits,

PLC equipment, network switch and other required electrical equipment such as

power supplies, wiring, circuit breakers, motor contactors and wire terminals.

� Design the system architecture including network configuration, operating system

selection, number of computers required, virtualisation software and PLC / SCADA

software selection.

1.1 Project Aims 3

� Build the small-scale water pumping system which will include tanks, level switches,

hydrostatic level transmitters and pumps. This will also require all electrical wiring

and plumbing of the system.

� Develop the systems PLC code utilising both structured text and function block

programming techniques. The PLC code will control and operate the pumping

station and will need be written in line with the functional specification.

� Develop a SCADA application to allow for visualisation and operation of the pump-

ing system. The SCADA application will allow for manual control of the system.

This will simulate how operators would typically interact with the system.

� Review and evaluate common methods for exploiting computer systems to develop

a list of exploits that will be attempted on the water pumping system.

� Develop a malicious script that automatically saves itself to the host when a USB

is inserted. The script will be used to provide backdoor access to the system.

� Assess the level of access to the system each exploit provides.

� Develop a scale to measure how critical any successful system exploitations are to

the operation of the system i.e., being able to take control and start / stop pumps

would have an extreme impact.

The overall objective of this project is to build a control system that, as close as possible,

mimics a real world application, then look at how these systems can be exploited and

what the impact of such exploits have on the system.

4 Introduction

1.2 Overview of the Dissertation

This dissertation is organised as follows:

Chapter 2 Literature Review provides detailed background information on why re-

search in this area is important. This chapter will look at past cyber attacks on

critical infrastructure systems and the impact these attacks had on communities

and society in general. This chapter will also review common cyber security testing

methods that can be adopted in this project.

Chapter 3 Methodology discusses the methods this project will utilise in order to

achieve the project objectives. This includes research questions, hypothesised results

as well a detailed methodology outlining the broad range of tasks that will be

conducted to complete the project successful.

Chapter 4 Experiment Design and Setup discusses the design and development of

the industrial control system. This chapter defines the system functional specifi-

cation and then outlines the completed electrical, process, network and software

designs.

Chapter 5 Results and Analysis details the testing that has been utilised for this

project and the results obtained. This section also provides analysis of the data

gathered from testing.

Chapter 6 Conclusions and Further Work concludes the dissertation, discussing the

success of the project in achieving the objectives. Further work in the field that can

enhance this research is also discussed.

Chapter 2

Literature Review

With the rise of technology and the ever more connected world we live in, combined with

the fact that there are hundreds of thousands of new malicious programs discovered each

day, there has never been a more important time to protect ourselves from online cyber

criminals. Since the birth of computing and computer networking, malware has been

an ever present threat, both to organisations and to critical infrastructure such as water

supply and electricity networks. Throughout history there have been numerous examples

of such systems being brought down due to malware. However with proper system design

and testing, it is possible to mitigate the risk posed by malicious software.

2.1 The History of Malware

The term malware gets thrown around all the time, but most computer users aren’t aware

of the dangers malware presents to themselves and the businesses they work within. As

the world continues to become ever more “connected”, criminals are continually looking

for new ways to exploit computer systems. Tools that are making software development

more efficient are also making the development of malware much easier. Hackers and

cyber-criminals take advantage of the fact that most people have no idea how computers

or the internet work and are therefore vulnerable to attack. The field of cyber security

is growing at an exponential rate, however there is no denying that the greatest security

flaw in any system, are the users.

6 Literature Review

Malware is a generalised term that encompasses many types of malicious software. Verma

et al. (Verma, M.S.Rao, A.K.Gupta, Jeberson & Singh 2013) define malware as the

generic name given to any class of computer code that is malicious, including computer

viruses, trojan horses, worms and any other intrusive code. Idika and Mathur (Idika &

Mathur 2007) summarise the various classes of malware as follows:

Computer Viruses are programs that can self replicate by inserting themselves into

other programs. A program that a virus has inserted itself into is said to be “infected”,

and is referred to as the virus host. An important point to note is that a virus needs a

host program in order to function correctly. An example is a virus that is attached to a

spreadsheet tool such as MS Excel, executing the file will run the malicious code that will

then corrupt some other part of the system.

Trojan Horses are a type of malware embedded by its designer into an application

or system. The application or system appears to perform some useful function, but is

actually performing some unauthorised action like capturing user keystrokes or creating a

backdoor to the system. Trojan horses are typically associated with accessing and sending

unauthorised information from its host and as such Trojan Horses are often also classified

as spyware.

Worms are computer programs that are able to self replicate by executing its own code

independent of a host program. This is the primary distinction between a virus and a

worm, the other main difference between the two is their propagation model. Generally,

a virus will attempt to spread through the file system of a single computer, worms on

the other hand will spread via network connections with the primary goal of infecting as

many computer systems as possible.

It often seems that technology has exploded over the past twenty years, but malware is not

a new concept and has been around for nearly as long as computers. (Snyder 2010) states

that the first widely accepted computer virus was developed in 1971 by Bob Thomas,

known as the Creeper Worm. This virus was not developed with any malicious intent,

however it was a self replicating program that copied itself to a remote system where

the message, “I’m the creeper, catch me if you can!” was displayed. Then in 1974 came

the malicious Wabbit Virus. Wabbit was a self-replicating program that made multiple

copies of itself on a computer, drastically reducing system performance until the computer

would eventually crash. In 1986 the first personal computer virus was born, the Brain

Boot Sector Virus. Brain is widely considered to be the very first IBM PC compatible

2.1 The History of Malware 7

virus. It infected the boot sector of MS-DOS systems. The Brain virus is responsible for

the first IBM PC virus epidemic. Highland (Highland 1988) states that the virus was given

the name “Brain” as it wrote that word to the disk label of any floppy disk it attacked.

According to (Snyder 2010) the Brain virus even came with contact information of its

developers as well as a message that notified the user that their machine was infected,

the message displayed would state:

Welcome to the Dungeon Â© 1986 Basit * Amjad (pvt) Ltd. BRAIN COMPUTER SER-

VICES 730 NIZAM BLOCK ALLAMA IQBAL TOWN LAHORE-PAKISTAN PHONE:

430791,443248,280530. Beware of this VIRUS.... Contact us for vaccination...

There was a genuine reason for the development of the Brain virus. It was developed

by two brothers who owned a computer store and were sick of customers making illegal

copies of their software, so they developed Brain, which replaced the boot sector of a

floppy disk with the virus.

It has been a long time since these first computer viruses were developed, and with the

evolution of computing, there has also been an evolution in the complexity of Malware.

Statistics from (AV-Test n.d.) show that on average there are over three hundred thousand

new malware programs discovered each day.

Figure 2.1: Annual Total Malware, image from AV-Test

There have been numerous large scale cyber attacks where critical systems have been

brought to their knees due to malware. Likely the most famous of these attacks was

Stuxnet, a cyber worm that attacked a nuclear facility in Iran.

8 Literature Review

2.2 Stuxnet

There have been numerous large scale cyber attacks where critical systems have been

brought to their knees due to malicious software. Likely the most famous of these at-

tacks was Stuxnet, a cyber worm that attacked a nuclear facility in Iran. According to

(Falco 2012), Stuxnet was first discovered in June 2010 by a Belarusian security company

VirusBlokAda when one of its customers asked for technical help as they kept experienc-

ing unexplainable system reboots. (Chen & Abu-Nimeh 2011) states that on occasion

there is malware that forever changes the security landscape, some examples of this in-

clude the 1988 Morris attack which showed that an aggressive worm could bring down

a large portion of the Arpanet, and the 2003 SQL Slammer attack demonstrated that

a simple UDP based worm could create devastating network congestion. Stuxnet took

malware to a new level, and as such has been studied intensively since its first discovery

with researchers finding that Stuxnet was vastly different to typical malware.

2.2.1 How was Stuxnet Different?

The Stuxnet virus has been labelled as likely the most sophisticated and unusual piece of

software ever created (Farwell & Rohozinski 2011). Unlike traditional malware, Stuxnet

did not attempt to infect as many computers as possible, it instead targeted industrial

control systems and would only deliver its payload under very specific conditions. Stuxnet

was also a larger and much more complex than traditional malware, its file size was

roughly 500 kilobytes and the code was written in multiple programming languages, as

a reference the SQL Slammer attack was only 376 bytes in size (Chen & Abu-Nimeh

2011). Extraordinarily, Stuxnet also contained four zero days vulnerabilities. A zero

day vulnerability is a hardware or software security flaw that is yet to have had a patch

developed (Fruhlinger 2021). Figure 2.1 details the main differences between Stuxnet and

traditional malware.

Based on the complexity of Stuxnet’s code, researches have speculated on its developers

and its purpose. Its immense sophistication suggests that the developers had detailed

knowledge of the Iranian nuclear facility and access to large scale resources, potentially

with government backing. Its choice of targets also suggests a political motive (Chen &

Abu-Nimeh 2011).

2.2 Stuxnet 9

Table 2.1: Differences between traditional malware and Stuxnet

2.2.2 Targeting Industrial Controllers

Stuxnet compromised the Iranian nuclear facility by targeting the sites control system.

These systems are widely used in industrial settings such as factories, power plants and

water treatment plants. (Collins & McCombie 2012) states that Stuxnet, unlike any

malware that came before it, had a very specific target and was designed to achieve real

world outcomes. Stuxnet has challenged common assumptions that environments not

connected to the internet are protected from vulnerabilities in software applications and

has created serious implications for the security of critical infrastructure worldwide.

Stuxnet attacked Windows computers that were running Siemens Simatic WinCC, S7

and PCS7 software applications, these applications are used to configure Siemens Pro-

grammable Logic Controllers (PLCs) and Supervisory Control And Data Acquisition

(SCADA) systems. PLCs are industrial computers that control automated physical pro-

cesses, such as pumps, valves, generators etc. They have sensing devices connected to

inputs such as position switches of valves, temperature measurements of fluids, speed of

motors etc. They then process these inputs in order to control outputs such as valves

and motors, i.e. if the level in a tank is high, then turn on the pump. Stuxnet targets

vulnerable computers that are normally used to program such PLCs. When an infected

computer connects to a Siemens PLC, Stuxnet installs a malicious .dll file, replacing the

PLC’s original .dll file. The malicious file lets Stuxnet monitor and intercept all com-

munication between the PLC and the computer. (Chen & Abu-Nimeh 2011). Figure 2.2

outlines a typical industrial control system architecture similar to what would have been

installed at the Iranian nuclear facility.

(Chen & Abu-Nimeh 2011) states that the main target of the Stuxnet virus was the IR-1

10 Literature Review

Figure 2.2: Typical Industrial Control System Architecture

centrifuges used at the facility to enrich uranium, the speed of which was controlled by

the site PLC’s.

(Fruhlinger 2017) suggests that Stuxnet would alter the PLCs code, causing the cen-

trifuges to spin too quickly for long periods of time, damaging or destroying the cen-

trifuges in the process. While this was happening, the PLCs would still tell the SCADA

system that the system was operating normally, making it difficult to detect or diagnose

that anything was abnormal until it was too late.

2.2 Stuxnet 11

2.2.3 Stuxnet Source Code

It is now widely accepted that Stuxnet was created by a joint task force between intelli-

gence agencies of the United States and Israel; which was given the code name “operation

Olympic Games”. It is believed that Stuxnet was developed as a tool to derail, or at

least delay, the Iranian program to develop nuclear weapons, however at the time of de-

velopment, it wasn’t even clear if such a cyber attack on physical infrastructure was even

possible. Stuxnet was never intended to spread beyond the Iranian nuclear facility at

Natanz. As the facility was not connected to the internet, the only way to penetrate

the system was via USB sticks transported inside by intelligence agents or unknowing

individuals (Fruhlinger 2017). Figure 2.3 outlines the process Stuxnet took to infect and

damage the nuclear facility in Natanz.

Figure 2.3: How Stuxnet infected a system

As stated by (Fruhlinger 2017), Liam O’Murchu, who was the director of the Security

Technology and Response group at Symantec, was on the team that first unravelled

Stuxnet. He stated that Stuxnet was “by far the most complex piece of code that we’ve

looked at — in a completely different league from anything we’d ever seen before.” He

explains that although the original source code has never been released or leaked, the

code for one driver, a very small part of the overall package, has been reconstructed via

reverse engineering which has shed light on the purpose of the malware. “It was pretty

12 Literature Review

obvious from the first time we analysed this app that it was looking for some Siemens

equipment. Eventually, after three to six months of reverse engineering, we were able to

determine, I would say, 99 percent of everything that happens in the code. We could see in

the code that it was looking for eight or ten arrays of 168 frequency converters each. You

can read the International Atomic Energy Association’s documentation online about how

to inspect a uranium enrichment facility, and in that documentation they specify exactly

what you would see in the uranium facility — how many frequency converters there will

be, how many centrifuges there would be. They would be arranged in eight arrays and that

there would be 168 centrifuges in each array. That’s exactly what we were seeing in the

code.”

According to Ralph Langner, a German security expert who has been particularly active

in analysing Stuxnet, the Iranian nuclear program was set back by two years due to

the Stuxnet virus. The virus caused the failure of an estimated 1000 centrifuges, and is

predicted to have infected over 60,000 computers, the majority of those in Iran.

2.3 Other Attacks on Critical Infrastructure 13

2.3 Other Attacks on Critical Infrastructure

2.3.1 Russia attacks Ukraine’s electrical grid

Electricity networks are likely the most critical infrastructure systems in modern society.

Without electricity, life as we know it stops, hospitals go dark, manufacturing processes

stop and business ceases to operate. The risk to life and the economy is immense, which

is why these systems must be secure from cyber attack.

According to (Park & Walstrom 2017), on December 23, 2015, Ukraine had these very

systems attacked. The control centers of three separate electricity distribution companies

were hacked. The malicious actors were able to take control of the electrical networks

SCADA systems and successfully opened the circuit breakers at 30 distribution substa-

tions. The attack caused more than 200,000 customers to lose power in the capital city

of Kiev and the western Ivano-Frankivsk region.

Upon investigation of the malware found in the infected systems, government officials

attributed the attacks to Russia and Russian cyber-criminal groups. In March 2016,

Ukrainian investigators noted that the attackers spoke Russian and claimed that the

attack was likely from the Russian group known as APT28. It is believed that APT28 has

links to the Russian government and has a history of high profile hacks including attacks

on the Pakistani military, Ukrainian Election Commission, and even the U.S. Democratic

National Committee. However, after further investigation, responsibility for the attack

moved away from APT28 and to another high profile Russian cyber criminal group named

the Sandworm Team who had in the past targeted NATO, European governments, and

industrial control systems.

Investigation into the malware found the presence of a trojan named “BlackEnergy3,”

which confirmed that the Sandworm Team was responsible for the attacks. Researches

of the attack believe the attack aligns with the Russian state interests and suggest that

the attack may have been backed by the Russian government however this hasn’t been

confirmed.

(Park & Walstrom 2017) states that the Sandworm Team and their tools have been in

development for a long time. The original version of the BlackEnergy malware was used

as early as 2007 for DDOS attacks. The second version was modified to specifically tar-

14 Literature Review

get HMI’s that monitor and control industrial process systems. The third generation

of BlackEnergy3 is more general and modular because as it contains a diverse range of

plugins. BlackEnergy3 is delivered to the target system through attachments in phishing

emails where it then creates a backdoor to the target system, granting the Sandworm

Team an entry point to steal information and work through further reaches of a network.

BlackEnergy3 was also used to deliver Killdisk malware that wipes files and makes com-

puters unable to reboot. Both have been found in the networks of other companies that

use industrial processes, including a Ukrainian mining company and state owned railway

operator.

It is believed that the attack on the Ukraine began as May 2014 with phishing emails and

reconnaissance. When infected attachments were opened, the Sandworm Team were given

remote access to the network. After gaining access, they began harvesting credentials for

the VPN used by grid operators to access the control centers remotely. With access to

the VPN, they now had full access to the electricity network.

Sometime around 3:30 p.m. on December 23 the Sandworm team entered the SCADA

networks through the hijacked VPNs and sent commands to disable the SCADA system

UPS, removing visibility of the network from the system operators. They then launched a

telephone denial-of-service attack on the electricity supply customer call centers, flooding

the phone lines with thousands of calls in order to prevent legitimate callers from getting

through. They then carried out their plan of opening the circuit breakers and disrupting

the electricity supply to hundreds of thousands of people.

As the Sandworm team working on taking the substations off the grid, they also over-

wrote the firmware on some of the substation serial-to-Ethernet converters with mali-

cious firmware, preventing the equipment from responding to control system commands

and leaving the sites inoperable. The only way to control the site from this point, was

through manual switch operations. The attackers then went on to install malware named

KillDisk on the operator workstations, wiping system files and overwriting the master

boot record, rendering the computers useless.

This attack was first of its kind and sends out an ominous warning for the safety and

security of electricity grids around the world. This attack was relatively short lived and

didn’t result in major damage, however next time we might not be so lucky.

2.4 The Need for SCADA Test Environments 15

2.3.2 Water Treatment Plant Attack - Florida

Attacks on critical infrastructure pose a real threat to the health and safety of people

within the community. This was highlighted when according to (MacColl & Dawda 2021),

an attacker accessed the control systems at a US water treatment plant in Oldsmar,

Florida, and briefly altered the chemical levels of sodium hydroxide in the drinking water.

It is believed that the perpetrator gained remote access to the water treatment plant’s

control systems through a poorly secured software application called TeamViewer, a pro-

gram used by a large number of organisations to manage remote access to IT systems.

Ironically in this case, the plant had stopped using TeamViewer six months prior to the

attack yet left it installed. After remotely gaining accessing the plant’s control systems,

the attacker was able to significantly increase the chemical dosing levels of sodium hy-

droxide, also known as lye or caustic soda. According to (News 2021), sodium hydroxide

is the main ingredient in most common liquid drain cleaners. It is very corrosive and

causes irritation to the skin and eyes, along with temporary loss of hair. Swallowing it

can cause damage to the mouth, throat and stomach and induce vomiting, nausea and

diarrhoea. Luckily for people within the community, a plant operator witnessed the at-

tacker remotely access his computer, moving the cursor around the screen and making

changes, he was then able to reverse the commands. This attack made it apparent to all

just how easily an attack on critical system can be, it was by pure luck that this attack

didn’t result in serious injury or even death to people within the community.

2.4 The Need for SCADA Test Environments

SCADA system networks are growing more and more complex and are often not just

stand alone control systems separated from outside world. It is now common to integrate

industrial control systems into corporate networks in order to have access to system data

for use in business reporting and decision making. Although this provides much business

benefit, it also opens control systems up to a number of vulnerabilities and provides cyber

criminals a gateway into the system if it is not secured properly.

(Krishnan & Wei 2019) argues that within industrial environments, poor communication

between engineering and IT teams results in increased system vulnerabilities and a lack of

cyber security preparedness. This situation most often occurs due to lack of cross domain

16 Literature Review

knowledge between the different design teams. This problem can be addressed by building

cross skilled teams, with a specific focus on defensive security skills, awareness of SCADA

and process control systems, knowledge of engineering designs and IT incident forensics.

One of the most reliable means of ensuring the security of a control system is to test

the live system for security flaws. This highlights gaps in the system design and helps

to identify all of the likely vulnerabilities. (Singh, Garg, Kumar & Saquib 2015) state

that it is often impractical or even impossible to test various cyber attacks and mitigation

strategies on real systems. A test-bed bridges the cyber-physical gap, bringing together

the physical system and the cyber domain, providing a mechanism to test the various

attack scenarios.

2.5 Testing Control System Networks

2.5.1 Network Scanning

Network scanning is the process of scanning a network in order to gain visibility of all

the devices connected to the network. (DNSstuff 2019) states that network scanning is

the process of pinging each device on a network through the use of a scanning tool. The

tool will ping each IP address on the network and then await a response from the devices.

The scanner then reads the returning responses to determine if there are inconsistencies

or vulnerabilities within the system.

The main purpose of network scanning on critical control systems is to obtain information

about the devices connected to the network, especially their IP address, operating systems,

ports that they have open, applications running on open ports and any other useful

information such as device manufacturer and MAC address.

There are a number of network scanning tools available on the market that can be used

to scan control systems, some of the most commonly used tools include:

Netdiscover According to (Weyland 2020), netdiscover is an active/passive ARP re-

connaissance tool, initially developed to gain information about wireless networks

without DHCP servers in wardriving scenarios. It can also be used on switched

networks. Built on top of libnet and libpcap, it can passively detect online hosts or

2.5 Testing Control System Networks 17

search for them by sending ARP requests. Furthermore, it can be used to inspect

your network’s ARP traffic, or find network addresses using auto scan mode, which

will scan for common local networks.

Nmap According to (nmap 2021), Nmap (“Network Mapper”) is an open source tool

for network exploration and security auditing. It was designed to rapidly scan large

networks, although it works fine against single hosts. Nmap uses raw IP packets

in novel ways to determine what hosts are available on the network, what services

those hosts are offering, what operating systems they are running, what type of

packet filters/firewalls are in use, and dozens of other characteristics. While Nmap

is commonly used for security audits, many systems and network administrators

find it useful for routine tasks such as network inventory, managing service upgrade

schedules, and monitoring host or service uptime.

Legion is a small application perfectly designed for small networks. Legion is a fork of

SECFORCE’s Sparta application and utilises the nmap tool to carry out staged

scans of a network, once complete, a number of plugins can be utilised for system

exploitation.

By scanning the network utilising these tools, it should be possible to obtain a good

snapshot of the control system devices. Once all of the devices have been discovered, it

is then possible to perform targeted vulnerability scans on the individual devices to see

if there are any known security flaws in the system that can be taken advantage of.

2.5.2 Vulnerability Scanning

Vulnerability scanning is the process of scanning network devices in an attempt to discover

any known vulnerabilities in the system that may not have been patched by software

updates. It is very common for computers running control systems to not be connected

to the internet and are therefore not automatically patched when security updates are

released. These computers are also often running old operating system that are not

supported any longer putting them at even greater risk as they will likely have a number

of vulnerable services running that have never been patched.

When a vulnerability scanner detects what service is running on a port a long with the

version, it will compare this against a vulnerability database to determine if the port is

18 Literature Review

vulnerable. Some scanners will even attempt to exploit vulnerable ports while others will

just provide a report with the status of each port.

There are a number of vulnerability scanners available on the market, some commonly

used vulnerability scanners include:

Nmap although Nmap was previouly mentioned as a network scanner, it can also be

utilised for vulnerability analysis through the use of nmap scripts. Nmap will search

the network for open ports, and then attempt to discover vulnerabilities in these

open ports. Nmap is a very powerful tool and is widely used as the scanning

component of other network security tools.

Nessus is a commercial grade network scanning tool that runs a large number of test on

a network in order to discover any vulnerabilities that malicious hackers could use

to gain access to computers connected to the network.

Discover scripts is a passive directory tool developed by Lee Baird that combines may

other tools such as goog-mail, metasploit and whois for the purpose of open source

intelligence gathering.

These tools all have the same goal, the detection of vulnerabilities on the network. By

utilising a number of these tools, it will be more likely that all possible vulnerabilities are

detected. It also allows for better analysis of the output from each of the tools.

2.5.3 Network Exploitation

Network exploitation refers to the use of malicious code to gain access to a target system

by targeting known vulnerabilities in the system. It is possible to write these malicious

programs by hand, but this is only really necessary when trying to create a brand new

exploit. For the purpose of testing an existing system, there are a number of exploitation

tools that can be used that make use of existing known exploits, however the most com-

monly used is the Metasploit Framework. Before looking at the details of Metasploit, it

is first necessary to discuss two important components to an exploitation, the exploit and

the payload.

2.5 Testing Control System Networks 19

Exploits and Payloads

When looking at system exploitation utilising the Metasploit Framework, exploits and

payloads are the two most important components to discuss. According to (Firmino 2017)

an exploit is the means by which an attacker takes advantage of a vulnerability within

the system. Common exploits include buffer overflow attacks, SQL injection attacks and

configuration errors.

A payload on the other hand, is custom code that is executed on the target system.

Commonly used payload examples include the reverse shell which is a payload that cre-

ates a connection from the target machine back to the attacking machine as a Windows

command prompt. Another common payload is the bind shell which “binds” a command

prompt to a listening port on the target machine, which the attacker can then connect to.

In general, the exploit opens the door to the target machine through which the payload

can be executed.

Metasploit Framework

The Metasploit framework is likely the most powerful exploitation tool used by both cyber

security testers as well as hackers. (Porup 2019) states that Metasploit is an essential tool

for both attackers and defenders. A major benefit of using Metaploit is that it integrates

seamlessly with Nmap, SNMP scanning and Windows patch enumeration, amongst others.

Once a vulnerability has been discovered, Metasploit’s large and extensible database will

have an exploit that will crack open that chink. As an example, Metalsploit contains the

NSA’s EternalBlue exploit, released by the Shadow Brokers in 2017, which is a reliable

go-to when dealing with unpatched legacy Windows systems.

Not only does Metaploit contain a large database of exploits, it also contains many pay-

loads including the very popular Meterpreter interactive shell. The Meterpreter shell is

deployed using in memory DLL injection. As a result, Meterpreter resides entirely in

memory and writes nothing to disk. Meterpreter doesn’t create any new processes as it

injects itself into the compromised process, from which it can migrate to other running

processes. This results in a very limited the forensic footprint of an attack (Wiki n.d.).

Figure 2.2 details all of the options available to the attacker once they have successfully

20 Literature Review

opened a Meterpreter session.

Command Description

Core Commands

? Help menu

background Backgrounds the current session

bg Alias for background

bgkill Kills a background meterpreter script

bglist Lists running background scripts

bgrun Executes a meterpreter script as a background thread

channel Displays information or control active channels

close Closes a channel

disable unicode encoding Disables encoding of unicode strings

enable unicode encoding Enables encoding of unicode strings

exit Terminate the meterpreter session

get timeouts Get the current session timeout values

guid Get the session GUID

help Help menu

info Displays information about a Post module

irb Open an interactive Ruby shell on the current session

load Load one or more meterpreter extensions

machine id Get the MSF ID of the machine attached to the session

migrate Migrate the server to another process

pivot Manage pivot listeners

pry Open the Pry debugger on the current session

quit Terminate the meterpreter session

read Reads data from a channel

resource Run the commands stored in a file

run Executes a meterpreter script or Post module

secure (Re)Negotiate TLV packet encryption on the session

sessions Quickly switch to another session

set timeouts Set the current session timeout values

sleep Force Meterpreter to go quiet, then re-establish session.

transport Change the current transport mechanism

2.5 Testing Control System Networks 21

Command Description

use Deprecated alias for ”load”

uuid Get the UUID for the current session

write Writes data to a channel

File system Commands

cat Read the contents of a file to the screen

cd Change directory

checksum Retrieve the checksum of a file

cp Copy source to destination

dir List files (alias for ls)

download Download a file or directory

edit Edit a file

getlwd Print local working directory

getwd Print working directory

lcd Change local working directory

lls List local files

lpwd Print local working directory

ls List files

mkdir Make directory

mv Move source to destination

pwd Print working directory

rm Delete the specified file

rmdir Remove directory

search Search for files

show mount List all mount points/logical drives

upload Upload a file or directory

Networking Commands

arp Display the host ARP cache

getproxy Display the current proxy configuration

ifconfig Display interfaces

ipconfig Display interfaces

netstat Display the network connections

portfwd Forward a local port to a remote service

resolve Resolve a set of host names on the target

22 Literature Review

Command Description

route View and modify the routing table

System Commands

clearev Clear the event log

drop token Relinquishes any active impersonation token.

execute Execute a command

getenv Get one or more environment variable values

getpid Get the current process identifier

getprivs Attempt to enable all privileges available to the current

process

getsid Get the SID of the user that the server is running as

getuid Get the user that the server is running as

kill Terminate a process

localtime Displays the target system’s local date and time

pgrep Filter processes by name

pkill Terminate processes by name

ps List running processes

reboot Reboots the remote computer

reg Modify and interact with the remote registry

rev2self Calls RevertToSelf() on the remote machine

shell Drop into a system command shell

shutdown Shuts down the remote computer

steal token Attempts to steal an impersonation token from the target

process

suspend Suspends or resumes a list of processes

sysinfo Gets information about the remote system, such as OS

User interface Commands

enumdesktops List all accessible desktops and window stations

getdesktop Get the current meterpreter desktop

idletime Returns the number of seconds the remote user has been

idle

keyboard send Send keystrokes

keyevent Send key events

keyscan dump Dump the keystroke buffer

2.5 Testing Control System Networks 23

Command Description

keyscan start Start capturing keystrokes

keyscan stop Stop capturing keystrokes

mouse Send mouse events

screenshare Watch the remote user’s desktop in real time

screenshot Grab a screenshot of the interactive desktop

setdesktop Change the meterpreters current desktop

uictl Control some of the user interface components

Webcam Commands

record mic Record audio from the default microphone for X seconds

webcam chat Start a video chat

webcam list List webcams

webcam snap Take a snapshot from the specified webcam

webcam stream Play a video stream from the specified webcam

Audio Output Commands

play play an audio file on target system, nothing written on

disk

Elevate Commands

getsystem Attempt to elevate your privilege to that of local system.

Password database Com-

mands

hashdump Dumps the contents of the SAM database

Timestomp Commands

timestomp Manipulate file MACE attributes

Table 2.2: Outline of all of the commands available from an open Meterpreter shell session.

Creating Payloads With Msfvenom

Msfvenom is a tool for generating payloads. As stated by (Black-Hat 2020), Msfvenom

is a combination of two Metasploit tools, Msfpayload and Msfencode. Msfvenom can be

used to generate payloads and is also able to encode them as well. Fig 2.4 details the

options available for use with Msfvenom.

24 Literature Review

Figure 2.4: Available options for Msfvenom payload creator

2.5.4 Post Exploitation Attacks

Post exploitation refers to the activities that can be carried out once a shell has been

opened on the target machine. (Balapure 2013) explains post exploitation as the phases

of operation conducted once a victim’s system has been compromised. The real value

of exploiting a system is determined by the data stored on the target machine and how

the attacker can make use of it. Post exploitation essentially deals with collecting sensi-

tive information from the target machine such configuration settings, network interfaces,

password files and any other sensitive information.

According to (Hantgore 2021), it is within the post exploitation phase of an attack where

the target is meticulously explored, privileges are escalated and internal networks are

penetrated. The power of Meterpreter makes the post-exploitation process much easier

as it contains many built-in scripts. It is even possible to modify these scripts to suit the

needs of the situation.

There are generally a number of phases conducted during post exploitation with some of

the main phases being:

Acquiring Situation Awareness: Immediately after compromising the host system, it

is important to acquire data about the host, including items such as the hostname,

2.5 Testing Control System Networks 25

interfaces, routes, and services of the host. The main goal is to determine whether

other hosts are reachable from the compromised host and are therefore able to be

compromised as well.

Escalating Privileges: In this phase, an attempt is made to escalate the user privileges

in order to gain full administrator or even system access to the host machine. The

most common and the fastest way of escalating privileges is through the use of Me-

terpreter and its “getsystem” command which attempts many methods to escalate

privileges, if one method fails, it will try another one and will report what technique

succeeded in escalating the privileges.

Maintaining Access: It is important to allow for future access to the target machine.

Since the vulnerability that has been exploited may be patched in the future, this

phase attempts to create new vulnerabilities in the target machine that can be

exploited in the future. This may including opening new ports / backdoor entry

points that can grant access to the machine.

Disabling the Firewall: This is a very important step to attempt, disabling firewall

protection can help to prevent it from interrupting the connection.

Disabling Antivirus: The main purpose for disabling antivirus protection is to prevent

it from identifying / deleting the backdoor ports and to also prevent it detecting

additional payloads. Meterpreter has a script named “killav” which will kill all the

processes related to antivirus software.

Chapter 3

Methodology

3.1 Chapter Overview

This chapter will outline the process in which the experiment will be tested and evaluated.

This includes the questions this project aims to answer, hypothesised results, overall

objectives and finally the research methods being utilised to accomplish the goals of the

project.

3.2 Research Questions

This project aims to address the following questions:

1. Is it possible to gain access into a simple control system and impact the process

that is being controlled?

2. Does utilising older operating systems really increase the vulnerability of a control

system?

3. How much system data is available to computers connected to a control system

network?

4. Can an auto booting malicious usb be use to provide access to a control system

network?

28 Methodology

3.3 Hypothesis

Utilising readily available software applications that come pre-loaded with the Kali Linux

distribution, it will be possible to gain access into the control system network and make

modifications to the system, impacting the process being controlled. As the control system

designed for this experiment is quite small, and there are not many services running on

the computers, it will be more difficult to locate and exploit vulnerabilities.

The computer system running on Windows 7 will be the most likely machine to provide

access to the network as it is an older system that has reached it’s end of life. This means

that is no longer supported by Microsoft and will therefore likely contain un-patched

vulnerabilities.

Once connected to the network, data about all of the devices will be exposed. It will be

possible to view all of the running services and detect any vulnerable ports. Using Kali

Linux, data from every device on the network will be exposed.

It will be possible to create a auto booting malicious usb stick, this will be the attack

that has the highest success rate across the different operating systems.

3.4 Objectives

The primary purpose of this experiment is to highlight the potential risks that industrial

control systems are exposed to. There are often a variety of network controlled devices

connected to an industrial control network, often devices are just added to the system

with no real thought about the security vulnerabilities these devices might contain. By

designing a small scale control system, it is hoped that many of the issues that are present

in industrial environments, can be replicated in the lab. Utilising cyber security testing

techniques such as those mentioned in section 2.5, it is expected that this project will

provide insight into what dangers exist in these systems and how they can be potentially

mitigated. A detailed list of the project objectives can be found in section 1.1.

3.5 Research Methods 29

3.5 Research Methods

There are a broad range of tasks required to accomplish the outcomes of this project. In

order to design and build an operational control system that can be used as a test lab,

a functional requirements document will need to be prepared that describes the control

system operation and outlines all of equipment required for the system. The main purpose

of the functional requirements specification is to:

1. Outline how the system will operate including;

� The modes of operation i.e. Auto / Manual

� Operator controllable parameters such as pump start / stop set points

� Provide process information such as engineering units, min / max values etc.

2. Provides an overview of the software requirements

� How the system needs to operate, including when the pumps should start /

stop and when alarms will occur

� This will be detailed by a system state diagram

3. Details of all the system equipment

� Equipment asset numbers and descriptions

� Equipment makes and models

4. Provide example SCADA graphics to be used in the final system

Based off of the functional requirements document, the software and electrical systems

can be designed and developed. The software system will require PLC programming in

both structured text and function block programming styles within Schneider Electrics

Unity Pro IDE. Programming will be done using a structured approach creating functional

objects for each piece of equipment, figure 4.10 highlights the structured text coding style

utilised and figure 4.11 provides an overview of the resulting pump object function block.

Electrical design will also be carried out to ensure the functional requirements are met.

Electrical design incorporates the circuit design of the pumps, level switches and level

transmitters. The completed design drawings can be viewed in section 4.3, whilst figure

30 Methodology

4.14 shows the completed electrical control. All equipment required for the electrical

design of the system can be viewed in section 4.5.1.

To ensure the system mimics a real world application, network and system architectural

design will be required. There will be a number of components on the computer net-

work including a SCADA server, SCADA client, PLC engineering machine and a domain

controller. The complete system network design can be viewed in section 4.9.

Once the control system has been completed and is functional, security testing can begin.

Testing will involve standard penetration testing techniques that were identified within the

literature, this will include network scanning, vulnerability scanning, network exploitation

and post exploitation attacks. The results from this testing will provide an insight into

the security level of a representative “standard” control system in an attempt to answer

the research questions posed by this project.

Chapter 4

Experiment Design and Setup

4.1 Chapter Overview

This chapter will discuss the design and development of the control system. The system

requirements will be defined from which the software and electrical designs can be created.

The completed designs will be provided as well as an overview of all of the equipment

required to build the system. The chapter will conclude with images of the completed

system including the electrical control panel, water storage tanks and the computer setup.

4.2 Function Design Specification

4.2.1 Overview

This Functional Design Specification describes the operation of the water pumping system.

Due to the nature of this experiment and not wanting to waste water, this system works

as a closed loop. When the water level in tank 1 reaches an operator adjustable value,

water from tank 1 (TNK01) is pumped into Tank 2 (TNK02) via a submersible pump

(PMP01), when the water in tank 2 reaches an operator defined setpoint, water will be

pumped back into tank 1 via another submersible pump (PMP02).

32 Experiment Design and Setup

Process Objective

The circulate water between the two water storage tanks.

Major Equipment

Water Storage Tank No. 1

� Water Storage Tank 1 Transfer Pump (PMP01)

� Water Storage Tank 1 High Level Switch (LSH01)

� Water Storage Tank 1 Low Level Switch (LSL01)

� Water Storage Tank 1 Level Transmitter (LTX01)

Water Storage Tank No. 2

� Water Storage Tank 2 Transfer Pump (PMP02)

� Water Storage Tank 2 High Level Switch (LSH02)

� Water Storage Tank 2 Low Level Switch (LSL02)

� Water Storage Tank 2 Level Transmitter (LTX02)

Sequences

Water Storage Tank Transfer Sequence SQX1001 AUTO / OOS

4.2.2 Control Strategy

The Water Storage Tank Transfer Sequence can be placed into Auto or Out of Service

(OOS) modes. In OOS, the pumps in both tanks are stopped and the system sits idle.

The water level in tank 1 is controlled via a hydro-static level transmitter (LTX01), the

tank 1 pump will start and stop based on operator adjustable set points. If it is determined

4.2 Function Design Specification 33

that the level transmitter has failed, backup pump start (LSH01) and pump stop (LSL01)

level switches will control the tank level.

The water level in tank 2 is controlled via a hydro-static level transmitter (LTX02), the

tank 2 pump will start and stop based on operator adjustable set points. If it is determined

that the level transmitter has failed, backup pump start (LSH02) and pump stop (LSL02)

level switches will control the tank level.

The running status of each pump is monitored, if a pump fails, an alarm will be raised

and its associated tank will go into an unavailable state, the alternate tank will still be

allowed to pump water into the failed tank until the high level setpoint is reached, when

this point is reached the pump will stop and the system will move into an unavailable

state until the alarm is reset.

System Control States

This control system implements a state based design, figure 4.1 shows the state diagram

designed for this control system. The state diagram details the various states and how

the system transitions between these different states.

� State 0 is the idle state of the system. When the PLC is first started, the system

will enter state 0. In this state, both pumps are stopped. The system will also enter

state 0 if both tanks are at a low level or if the sequence has been placed out of

service and then back into auto. If the system has been in an alarm state and then

reset, it will also go back to state 0.

� State 10 will be the active state if only the tank 1 pump is required to run. In this

state the tank 1 pump will run and the tank 2 pump will be stopped.

� State 15 is a pre-alarm state. The system will enter state 15 if the pump in tank 1

fails to run and there is still capacity in tank 1. This is to allow tank 2 to continue

pumping down, once tank 1 reaches high level the system will transition into an

alarm state.

� State 20 will be the active state if both pumps are required to run. In this state

the tank 1 pump will be running and the tank 2 pump will be running.

34 Experiment Design and Setup

� State 30 will be the active state if only the tank 2 pump is required to run. In this

state the tank 2 pump will run and the tank 1 pump will be stopped.

� State 35 is a pre-alarm state. The system will enter state 35 if the pump in tank 2

fails to run and there is still capacity in tank 2. This is to allow tank 1 to continue

pumping down, once tank 2 reaches high level the system will transition into an

alarm state.

� State 40 is a system alarm state, this state is activated if a pump fails and that

pumps associated tank is at high level. In this state, both pumps will be stopped.

� State 50 is the system out of service state. When the system is in state 50, both

pumps are stopped. The out od service state can be activated anytime from a

button on the SCADA page.

4.2 Function Design Specification 35

Figure 4.1: State diagram for the system detailing the states and how the system transitions

between these different states.

36 Experiment Design and Setup

Operator Selections

ID Operator Selections Selections

01 Water Storage Tank Transfer Sequence AUTO / OOS

Table 4.1: Operator sequence selections

Process Feedback

ID Process Feedback Engineering Unit

01 Water Storage Tank No. 1 Level Transmitter %

02 Water Storage Tank No. 2 Level Transmitter %

Table 4.2: Process feedback devices

Adjustable Parameters

ID Description EU Min Max

01 Tank No. 1 Pump Start Setpoint % 0 100

02 Tank No. 1 Pump Stop Setpoint % 0 100

03 Tank No. 1 High Level Alarm Setpoint % 0 100

04 Tank No. 1 Low Level Alarm Setpoint % 0 100

05 Tank No. 1 Level Simulation Value % 0 100

06 Tank No. 2 Pump Start Setpoint % 0 100

07 Tank No. 2 Pump Stop Setpoint % 0 100

08 Tank No. 2 High Level Alarm Setpoint % 0 100

09 Tank No. 2 Low Level Alarm Setpoint % 0 100

10 Tank No. 2 Level Simulation Value % 0 100

Table 4.3: System adjustable parameters

4.2 Function Design Specification 37

Device List

ID Tag Description

ID Tag Description

01 PMP01 Water Storage Tank No.1 Transfer Pump

02 LTX01 Water Storage Tank No.1 Level Transmitter

03 LSH01 Water Storage Tank No.1 High Level Switch

04 LSL01 Water Storage Tank No.1 Low Level Switch

05 PMP02 Water Storage Tank No.2 Transfer Pump

06 LTX02 Water Storage Tank No.2 Level Transmitter

07 LSH02 Water Storage Tank No.2 High Level Switch

08 LSL02 Water Storage Tank No.2 Low Level Switch

Table 4.4: Device list

PLC IO List

ID PLC Tag Type Address Description

01 PMP01 Run ebool %Q0.2.0 Tank No.1 Pump Run Command

02 PMP01 Running ebool %I0.1.2 Tank No.1 Pump Running Feedback

03 TNK01 LSH ebool %I0.1.0 Tank No.1 High Level Switch

04 TNK01 LSL ebool %I0.1.1 Tank No.1 Low Level Switch

05 TNK01 LTX int %IW0.3.0 Tank No.1 Level Transmitter

06 PMP02 Run ebool %Q0.2.1 Tank No.1 Pump Run Command

07 PMP02 Running ebool %I0.1.5 Tank No.1 Pump Running Feedback

08 TNK02 LSH ebool %I0.1.3 Tank No.2 High Level Switch

09 TNK02 LSL ebool %I0.1.4 Tank No.2 Low Level Switch

10 TNK02 LTX int %IW0.3.1 Tank No.2 Level Transmitter

Table 4.5: PLC IO list

38 Experiment Design and Setup

Displays

System Overview

The SCADA overview page has been developed using ClearSCADA and allows for visu-

alisation and control of the water storage system. The system is fully controllable from

the overview page, equipment can be clicked on and popup windows will be displayed to

provide details for that piece of equipment. This page also provides animations to assist

operators to know the status of equipment, as an example, pumps will turn green when

running and level switches will turn red when in alarm.

Figure 4.2: SCADA system overview display

4.2 Function Design Specification 39

Pump Control Popup

This is an operator control window that provides additional functionality for the pumps.This

popup is where operators can change the operating mode of the pumps to run them man-

ually if required. If the mode is changed to manual, start and stop buttons will become

visible in the window that can control the pump. Operators are also able to view the

status of the pump, look at running status trends and also inhibit alarms if required.

Figure 4.3: Pump popup control window

40 Experiment Design and Setup

Level Transmitter Popup

This is an operator control window that provides additional functionality for the level

transmitter such as changing setpoints, viewing trends and simulating values. This popup

is where operators configure the start and stop setpoints for the pumps as well as high and

low level alarms. Operators can also change the operating mode of the transmitter, allow-

ing them to simulate a certain value of place the transmitter out of service all together.

If the transmitter is placed out of service, the level switches will control the tank level.

Operators can also view the current level, view trending data as well as inhibit any alarms.

Figure 4.4: Level transmitter popup control window

4.2 Function Design Specification 41

Level Switch Popup

This is an operator control window that provides additional functionality for the level

switches such as changing the control mode, viewing trends and simulating values. Op-

erators are able to change the operating mode to simulation and change the state of the

level switch if required, they are also able to view trends and inhibit any alarms.

Figure 4.5: Level switch popup control window

42 Experiment Design and Setup

4.3 Electrical Design

4.3.1 Overview

This section outlines the electrical design of the system including the wiring diagrams

for the pumps, level transmitters and the level switches. This section will also detail all

of the components that were required to complete the electrical control system. This

system does utilise dangerous voltage levels and as such, required careful design and

implementation including colour coding of electrical wires, separation of components of

different voltage levels and ensuring correct cable sizing of conductors. This system was

designed and built in accordance with Australian Standards AS/NZS 3000:2018.

4.3.2 Pump Starter Circuit

The storage tank pumps utilised in this system require a 240VAC power source and as

such, the control circuit had to be designed with safety in mind. The control circuit for

the pumps is outlined in figure 4.6 where:

� Q1 - is the pump circuit breaker

� K1 - is the motor contactor, it is energised when the PLC pump start output

energises K2.

� K2 - is the pump start control relay. This relay is used to keep the 240VAC away

from the PLC. The PLC pump start output will energise this relay which in turn

energises the motor contactor, starting the pump.

4.3 Electrical Design 43

24VDC+

2A

0VDC-

Peter Compton U1077579
ENG4112 Research Project

Pump Starter Circuit Rev 1

M

K2

K1

Q1

K1

K2

K1

Pump Start
Pump

Running

A N Control Panel

PM
PX

X-
P1

-A

PM
PX

X-
P1

-N

01

02
10

03
04

05

06

Figure 4.6: Pump starter control circuit

44 Experiment Design and Setup

4.3.3 Level Transmitter Loop Diagram

The level transmitter loop diagram is detailed in figure 4.7. The level transmitter selected

for this project provides requires a 24VDC supply and provides a 4-20mA output signal.

The level tranmitter selected is an ultrasonic type and comes with a 2m cable, as such

a junction box was required to connect the transmitter to the control panel. This level

transmitter has a fixed range of 0-5m however the working range of the tank is only 0-

0.65m, therefore scaling was required in the PLC code to ensure accurate results. The

calculations for analogue scaling is detailed below.

� low raw = 800 = PLC analogue input low raw value

� high raw = 10800 = PLC analogue input high raw value

� raw val = Actual PLC analogue input value

� low eng = 0 = Low engineering value, SCADA adjustable

� high eng = 100 High engineering value, SCADA adjustable

� Instrument Range = 0 - 5000mm

� Tank Range = 0 - 650mm

As the instrument range is much greater than the tank range, a multiplier is required on

the input signal. The required multiplier is calculated in equation 4.1.

multiplier =
5000

650
= 7.69 (4.1)

Equation 4.2 outlines the required calculation to covert the PLC analogue input signal

int a scaled output signal.

scaled val = multiplier ∗ raw val − low raw
high eng − low eng

high raw − low raw
+ low eng (4.2)

4.3 Electrical Design 45

Example Calculation:

raw val * multipier = 6800

scaled val = (6800 − 800)
100 − 0

10800 − 800
+ 0 = 60.0% (4.3)

+
-

Control PanelField Equipment

24VDC+

2A

0VDC-

L

+
-

Peter Compton U1077579
ENG4112 Research Project

Level Transmitter Control Circuit Rev 1

1W

1Bk

1Bk

0V

1W

1Bk

Red

Black

Red

Black

LTXxx-I01

Figure 4.7: Level transmitter loop diagram

46 Experiment Design and Setup

4.3.4 Level Switch Loop Diagram

The level switch loop diagram is detailed in figure 4.8. The level switches used for

this project are float type mounted throught the side wall of the tank. Originally ball

floatswitches were used, but due to the large pivot point of the switches and the small

size of the tank, high and low level switchins was unreliable. These switches were changed

for small hinged switches that have a small float range. As can be seen from the loop

diagram, the level switches have a common 24VDC and then return back to the PLC

input card. As these switches have moulded cables, they are connected to the control

panel wiring via a junction box.

Control PanelField Equipment

24VDC+

2A

High
Level

Low
Level

1W

2W

1Bk

1W

1Bk

2W

High Level
Low Level

Peter Compton U1077579
ENG4112 Research Project

Level Switch Control Circuit Rev 1

LSXxx-C31

Figure 4.8: Level switch loop diagram

48 Experiment Design and Setup

4.5 System Components

4.5.1 Equipment List

ID Quantity Make/Model Description

01 2 Meco 478526 Level transmitter

02 4 Float level switch

03 2 Aqua Pump 35W Submersible pond pump

04 1 Schneider CPS2010 PLC Power Supply

05 1 Schneider P341000 PLC Processor

06 1 Schneider DDI1602 PLC Digital Input Module

07 1 Schneider DDO1602 PLC Digital Output Module

08 1 Schneider AMI0410 PLC Analogue Input Module

09 1 Schneider AMO0210 PLC Analogue Output Module

10 1 Schneider NOC0401 PLC Communications Module

11 1 Etherwan EX78802 Managed Ethernet Switch

12 1 Weidmuller PROeco 240W 48VDC Power Supply

13 1 Weidmuller PROeco 240W 24VDC Power Supply

14 2 Siemens G/150914 Motor Contactor

15 2 Finder EMR 24VDC Control Relay

16 1 Schneider C60N 16A Circuit Breaker

17 6 NHP Din-T 6A Circuit Breaker

18 1 BnR 600 x 600 Enclosure

19 As Req Misc Terminals and wires as required

Table 4.6: System equipment list

4.5 System Components 49

4.5.2 Actual System

PLC Code Examples

The following images offer an example of the PLC code that was utilised for the project.

Figure 4.10 shows the structured text PLC code used to create a ”Pump” function block.

Figure 4.11 then shows how this block has been implemented to control one of the tank

pumps. As can be seen from figure 4.11, the pump is controlled by state logic as detailed

in section 4.2.2. This is just a small example of the PLC code that has been used, the

complete PLC code can be viewed in Appendix ???

Pump Function Block Code

Figure 4.10: Pump function block written in structured text

50 Experiment Design and Setup

Pump Function Block Usage

Figure 4.11: Example of pump function block used to control tank pump

4.5 System Components 51

Images of the Built System

The images below detail the actual system that has been built based on the above design.

Figure 4.12: Storage tanks with connected piping

Figure 4.13: Level switch connections

52 Experiment Design and Setup

Figure 4.14: Completed electrical control cabinet

4.5 System Components 53

Figure 4.15: Control room testing area

54 Experiment Design and Setup

4.6 Chapter Summary

This chapter covered all of the design aspects of this project including the software design,

electrical design and the network design. A large portion of this project has been the

design and development of a real world application, this is to ensure the system reflects

as closely as possible, a system that is found within actual industrial applications. This

adds value to the output of this project, by attacking a real system, the results that come

from this project can provide an insight to the vulnerabilities that exist in these systems.

Chapter 5

Results and Analysis

5.1 Chapter Overview

This chapter will provide an overview of the testing that has been carried out on the

system. The tools utilised for each test will be discussed, followed by the commands used

for each test, followed by the results obtained for each test. Where results are similar

for each device, a generalised screen capture will be provided as an overview of the test

output with the final results summarised in a table at the end of each section.

5.2 Network Scanning

Netdiscover

Netdiscover has been utilised to discover the devices connected to the network. Figure 5.1

shows the terminal command utilised to discover all the network devices. The results of

this scan can be seen in figure 5.2. The Netdiscover command has successfully discovered

all of the connected devices and provided information about the IP address of each device,

the MAC address and the vendor for each particular device. Although this provides some

valuable information, Netdiscover does not provide any details on the services running on

each machine, which ports are open or what operating systems are being utilised. The

benefit of Netdiscover however is that it can very quickly scan large sub nets and discover

devices, this then allows more targeted scans on smaller sub net ranges. In this example,

56 Results and Analysis

Netdiscover was ran on the 192.168.0.0/16 subnet range, this is an extremely large range

however it returned the correct devices in around 20 seconds.

Figure 5.1: Netdiscover command

Figure 5.2: Results from the Netdiscover command

5.2 Network Scanning 57

Nmap

To discover more information about the devices connected to the network, Nmap is one

of the tools that has been utilised. Figure 5.3 details the terminal command used to

discover and scan all of the network devices. The typical results of this scan can be

seen in figure 5.4, a similar output is produced for all devices, a table summarising the

scan results can be viewed in section 5.2. Like Netdiscover, the Nmap command has

successfully discovered all of the connected devices and provided information about the

IP address of each device, the MAC address and the vendor for each particular device.

Nmap however, has provided significantly more data for each device, including open ports,

services running on each port as well as operating system information.

Figure 5.3: Nmap command to discover devices, this command uses -p- to scan all ports, -sS

to perform a TCP SYN Scan and the -O is used to detect the operating system of each device.

Figure 5.4: Typical Nmap output showing open ports and detected services

58 Results and Analysis

Legion

Another tool that has been used on this project to discover detailed information about

the devices connected to the network is Legion. Legion provides similar details to Nmap

and actually uses Nmap as part of it’s scanning process. Legion utilises a range of Nmap

scans in a staged manner to gain information about devices connected to the network.

Legion can also be used for vulnerability detection in addition to simple information

gathering. Legion doesn’t utilise the command line like other applications and provides

a GUI for uses, figure 5.5 provides an overview of the Legion user interface. The scan

configuration utilised to scan the control system network can be seen in figure 5.6. The

typical results output from scanning the network can be seen in figure 5.7, with a summary

of all scan results provided in section 5.2. Like Nmap, Legion has provided significantly

more data for each device, including open ports, services running on each port as well as

operating system information. Legion also provides version information about the running

services, this is an important addition as it can provide a malicious agent information

about vulnerable versions of software that are running.

5.2 Network Scanning 59

Figure 5.5: Legion user interface

60 Results and Analysis

Figure 5.6: Legion scan configuration used to scan the control system

5.2 Network Scanning 61

Figure 5.7: Typical Legion output showing open ports and detected services

62 Results and Analysis

Summarised Network Scanning Results

The results from scanning the control system network has been summarised in figure 5.1,

from these results it is now possible to perform targeted vulnerability scans.

Description Operating System Port Service Version

Router Linux 2.6.xx 21 ftp vsftpd 2.0.8 or later

23 telnet BusyBox telnetd 1.14.0 or

later

80 http TP-LINK TD-W8968 http

admin

139 netbios-ssn Samba smbd 3.X - 4.X

445 microsoft-ds Samba smbd 3.X - 4.X

1900 upnp SDK for UPnP 1.6.19

20005 btx

33344 netusb TRENDnet NetUSB

1.02.47

44906 upnp SDK for UPnP 1.6.19

Ethernet Switch Linux 2.6.xx 22 ssh OpenSSH 3.9

23 telnet

80 http lighttpd

161 snmp SNMPv1 server

199 smux Linux SNMP multiplexer

Domain Windows Server

2012

53 domain Simple DNS Plus

88 kerberos-sec Windows Kerberos

135 msrpc Windows RPC

139 netbios-ssn Windows netbios-ssn

389 ldap Active Directory LDAP

445 microsoft-ds

464 kpasswd5

593 http-rpc-

epmap

Windows RPC

636 Idapssl

5.2 Network Scanning 63

Description Operating System Port Service Version

3268 globalcatLDAP Active Directory LDAP

3269 tcpwrapped

3389 ms-wbt-

server

5985 wsman HTTPAPI httpd 2.0

9389 adws .NET Message Framing

49154 msrpc Windows RPC

49155 msrpc Windows RPC

49157 ncacn http Windows RPC over HTTP

1.0

49158 msrpc Windows RPC

49159 msrpc Windows RPC

49166 msrpc Windows RPC

49167 msrpc Windows RPC

49180 msrpc Windows RPC

49195 msrpc Windows RPC

SCADA Server Windows 10 135 msrpc Windows RPC

137 netbios-ns Windows netbios-ns

139 netbios-ssn Windows netbios-ssn

445 microsoft-ds

5040 unknown

5481 unknown

27700 unknown

27720 unknown

27721 unknown

49664 msrpc Windows RPC

49665 msrpc Windows RPC

49666 msrpc Windows RPC

49667 msrpc Windows RPC

49668 msrpc Windows RPC

49669 msrpc Windows RPC

49670 msrpc Windows RPC

49671 msrpc Windows RPC

64 Results and Analysis

Description Operating System Port Service Version

49673 unknown

SCADA Client Windows 10 85 mit-ml-dev

135 msrpc Windows RPC

137 netbios-ns Windows netbios-ns

139 netbios-ssn Windows netbios-ssn

445 microsoft-ds

3389 ms-wbt-

server

5040 unknown Microsoft Terminal Ser-

vices

7680 pando-pub

27700 unknown

27720 unknown

27721 unknown

49664 msrpc Windows RPC

49665 msrpc Windows RPC

49666 msrpc Windows RPC

49667 msrpc Windows RPC

49668 msrpc Windows RPC

49669 msrpc Windows RPC

49670 msrpc Windows RPC

Eng Machine Windows 7 135 msrpc Windows RPC

137 netbios-ns Windows netbios-ns

139 netbios-ssn Windows netbios-ssn

445 microsoft-ds Windows 7 - 10 microsoft-

ds

3389 ms-wbt-

server

27700 unknown

27720 unknown

27721 unknown

49152 msrpc Windows RPC

49153 msrpc Windows RPC

5.2 Network Scanning 65

Description Operating System Port Service Version

49154 msrpc Windows RPC

49155 msrpc Windows RPC

49167 msrpc Windows RPC

49173 msrpc Windows RPC

PLC NOC Card unknown 21 ftp vxTarget ftpd

80 http Schneider-WEB 2.2.0

161 snmp SNMPv1 server

502 mbap

44818 EtherNetIP-

2

Table 5.1: Summarised table of all scanning results

66 Results and Analysis

5.3 Vulnerability Scanning

Nessus

Nessus is a widely used, commercial grade network security tool. Nessus has been used

within this project to detect vulnerabilities in the network. Figure 5.8 provides an

overview of the Nessus interface, showing the completed scans that have been performed

on the network. Figure 5.9 details all of the available scans that can be performed with

Nessus, for this project the Advanced scan was used for each device. An example of the

output provided by Nessus can be viewed in figure 5.10, as can be seen by the example

output, vulnerabilities are scored with the most critical vulnerabilities given a score of 10.

Nessus provides a very nice output with a lot of detailed information about vulnerabilities

within the system. Section 5.3 provides a summary of the vulnerabilities found within

the system.

Figure 5.8: The web interface provided by Nessus for network security testing

5.3 Vulnerability Scanning 67

Figure 5.9: Overview of the available scans provided by Nessus

Figure 5.10: Typical Nessus output showing detected vulnerabilities within the system

68 Results and Analysis

Discover Scripts

Discover scripts is another tool that has been utilised for vulnerability scanning for this

project. Discover scripts was surprising in the level of information it was able to gather.

The output report from Discover provided all of the same network scanning information

as Nmap, detailing open ports and running services. Discover goes one step further

however, detailing any discovered vulnerabilities detected in the system. Figure 5.11

shows the user menu that is provided when first launching the application. The options

utilised within this project for scanning this network can be viewed in figure 5.12 with

the typical vulnerability section of output report displayed in figure ??. A summary of

the system vulnerabilities can be viewed in section 5.3.

Figure 5.11: Discover Scripts opening window with user scan options

5.3 Vulnerability Scanning 69

Figure 5.12: Discover Scripts scan options utilised for this project

Figure 5.13: Typical Discover Scripts output showing detected vulnerabilities within the

system

70 Results and Analysis

Summarised Vulnerability Scanning Results

The results from performing vulnerability scans on the network have been summarised in

figure 5.14. This table shows only the most critical results as there many configuration

flaws that were listed in the output reports that are not necessarily vulnerabilities. These

figures can be visualised in figure 5.15 which details the vulnerabilities found in each

machine along with the risk score. As can be clearly seen, the “Engineering Machine”

which utilises the Windows 7 operating system, contains the most vulnerabilities whilst

the newer Windows 10 machines had no vulnerabilities detected.

Figure 5.14: Summary table listing the most critical detected vulnerabilities

5.3 Vulnerability Scanning 71

Figure 5.15: Bar chart detailing the most critical detected vulnerabilities

72 Results and Analysis

5.4 Network Exploitation & Post Exploitation Attacks

5.4.1 Overview

This section will detail the network exploitation testing that was carried out on the system.

The main tool utilised for this testing was the Metasploit framework which was detailed

in chapter 2. All of the vulnerabilities detected in the previous section were tested to see

they would provide access to a Meterpreter Shell, tests were also carried out based on

the open ports detected by the network scanners to see if there were other vulnerabilities

not picked up by the scanners. There were some successful exploitations during testing,

each successful exploit was given a risk score based on the severity of the system access

provided. The risk matrix developed to score the exploits can be seen in section 5.4.2.

Attacks on the computers were also attempted utilsing a malicious USB drive that was

infected with a virus. Two separate payloads were created and saved onto the USB, one

using MSFVenom, and the other using the FatRat payload creation tool. If the user was

to open one of these files, it will attempt to open a Meterpreter Shell on the Kali Linux

machine. The details of the commands used to generate these two payloads can be seen

in figure 5.16 and figure 5.17.

Figure 5.16: The command used to generate a malicious payload with MSFVenom

Figure 5.17: The details of the payload created with FatRat

5.4 Network Exploitation & Post Exploitation Attacks 73

5.4.2 Risk Matrix

In order to be able to categorise the severity of any system exploiations, it was necessary to

develop a risk matrix that could be applied to each situation. The risk matrix developed

for this project can be seen in figure 5.18, along with definitions of each category. the risk

matrix takes into account the severity of the consequence, along with the likelihood that

the vulnerability would be discovered and therefore exploited.

Figure 5.18: Risk matrix developed to categorise exploitation system access level

� Catastrophic: Full system access, user can directly manipulate the process control

system and also move through the network to other machines.

� Extreme: Full system access, user can directly manipulate the process control

system but only on the local machine.

� Major: Some access to the system. Can view files and other system information

but cant directly control the system.

� Minor: Can view some system information but cant control the system or access

the file system.

� Low: No access to the system, can see information such as IP and MAC addresses.

74 Results and Analysis

5.4.3 Network Router

Using the information gathered in the previous scanning sections, there were some vul-

nerabilities detected in the router. A number of exploits were attempted on the known

vulnerabilities in order to gain access into the router’s CLI configuration tool. Although

numerous Metasploit modules attempted, they were all unsuccessful, a summary table of

the testing results for the router can been viewed in figure 5.19.

Although it wasn’t possible to exploit the router directly, by utilising a tool called Router-

sploit it was found that the router was still configured with default credentials, meaning

the username and password was never changed from the factory default. Using these

credentials it was possible to gain access to the routers web based configuration interface.

Although this does not allow the user to directly control the process, however they are

able to impact the system by modifying IP addresses, setting up port mirroring to cap-

ture data on the network, setting up remote access just to name a few. This exploit was

categorised as having a major impact and given a risk score of 2.

The command used to scan the router can be seen in figure 5.20 whilst the output of the

scan detailing the default credentials can be seen in figure 5.21. The user interface and

configuration options provided by the router can be viewed in figure 5.22

Figure 5.19: Table summarising the results from the router exploit testing

5.4 Network Exploitation & Post Exploitation Attacks 75

Figure 5.20: The command used to obtain the router default credentials

Figure 5.21: Output of the Routersploit scan detailing the login credentials

Figure 5.22: The web interface for configuration of the network router

76 Results and Analysis

5.4.4 Ethernet Switch

The data obtained so far during testing has indicated that the Ethernet switch is not

vulnerable to attack. A number of tests were still performed to see if it was there were

some undetected vulnerabilities that weren’t discovered in previous stages. There were

indeed no critical vulnerabilities but that was one exploit that succeeded in providing

additional information about the switch including configuration settings, routing settings,

TCP connections and listening ports. This exploitation only provided system information

and couldn’t result in any direct impact to the system, if was therefore categorised as a

minor impact and given a risk score of 4.

The details of the successful exploit used can be seen in figure 5.23 and the output from

this exploit is detailed in figure 5.24.

Figure 5.23: Table summarising the results from the network switch exploit testing

5.4 Network Exploitation & Post Exploitation Attacks 77

Figure 5.24: The system information provided from switch exploit

78 Results and Analysis

5.4.5 Domain Controller

Internal Network Attack

Previous system testing identified a number of possible vulnerabilities in the domain

controller which is running Windows Server 2012 R2. A number of different Metasploit

exploitation modules were attempted on each of the identified vulnerabilities with the

goal of opening a meterpreter shell on the malicious machine. Although most attempts

failed, there was one exploit that proved successful and provided the malicious machine

with a meterpreter shell. This exploit is known as MS17-010 and takes advantage of a

vulnerability in Microsoft Server Message Block 1.0 (SMBv1) which is a protocol used for

remote services. Although this vulnerability was not detected using the scanners, the ms-

wbt-server service was identified as running on port 3389 which is responsible for remote

service management. Running a metasploit scanner on the domain machine, it became

evident that it was indeed vulnerable to MS17-010, this can be seen in figure 5.25.

Figure 5.26 shows the successful execution of the MS17-010 exploit along with the opening

of a meterpreter shell.

Figure 5.25: Scanning the domain controller to see if it is vulnerable to MS17-010

Figure 5.26: Successful exploitation of the Domain Controller

5.4 Network Exploitation & Post Exploitation Attacks 79

Post Exploitation on the Domain

Once the meterpreter session has been opened, the level of impact the exploit will have

on the system can be determined. Using the “getuid” command, the authority level can

be determined, in this case, full system access has been achieved, the highest access level

possible. This can also be seen in the previous section in figure 5.26.

To try and gain control of the process control system, an attempt was made to add a new

domain user that would then be able to log into any machine on the domain. To achieve

this, the running process were listed using the “ps” command, an admin level process can

then be taken over using the meterpreter “steal token” command. With this stolen token,

a new user with the username hacker and password p@55w0rd was created and added to

the domain admins group. This process is detailed in figure 5.27.

Figure 5.27: Process for adding the new hacker user to the domain

To establish that the user has in fact been successfully added to the domain, the active

directory users list was checked, which showed that the user, hacker, had been successfully

added to the domain. This can be seen in figure 5.28

80 Results and Analysis

Figure 5.28: The new hacker user is now in the active directory users list

Now that the new “hacker” user has been added to the domain, an attempt was made to

remote desktop into the domain controller from the Kali Linux malicious machine. Using

the command detailed in figure 5.29, it was possible to gain full access to the domain

controller machine through a remote desktop session, the hacker user now has absolute

control of the system, they can modify group policies, delete users, add new services or

even execute other malicious programs. The malicious user essentially has total control

over the domain configuration. Figure 5.30 and figure 5.31 show the hacker user with a

remote session open on the domain controller.

Figure 5.29: The command used to remote desktop into the domain controller

5.4 Network Exploitation & Post Exploitation Attacks 81

Figure 5.30: Successful remote session into the domain controller

Figure 5.31: The hacker user with access to the domain controller

Since the user has now been added to the domain, it was possible to further explore the

network and create remote sessions to the SCADA machine and to the PLC engineering

machine. Firstly a remote session was created on the SCADA server. Once connected it

82 Results and Analysis

was possible to take full control of the system from the Kali Linux machine. Exploring

the possibilities, the pump in tank one was put into manual mode and stopped, the pump

two stop level was also modified to zero. This caused pump two to continue pumping

even at low level whilst tank one level rose well above the high level set points. This was

just an example of manipulating the process, but it means that the malicious machine

has successfully gained access to the process and manipulated the control system.

The process above can be visualised by figures 5.32 through to figure 5.37

Figure 5.32: Creating a remote session from the domain to the SCADA server

5.4 Network Exploitation & Post Exploitation Attacks 83

Figure 5.33: Full access to the SCADA server has been achieved

Figure 5.34: Pump one being modified from the Kali Linux machine

84 Results and Analysis

Figure 5.35: Pump two stop level changed to zero

5.4 Network Exploitation & Post Exploitation Attacks 85

Figure 5.36: The result of pump modifications, system is in abnormal condition

Figure 5.37: The level trends from the system being manipulated

Creating a remote session on the SCADA server proved successful, an attempt was then

86 Results and Analysis

made to create a remote session on the engineering machine. The remote session was

again successful, providing full access to the engineering machine. In order to view and

modify the PLC signals, an animation table was created and all of the important signals

were added to the table. From the animation table it was possible to force signals to

modified vaules i.e. force the pumps to stop or change the control mode from auto to out

of service. There were a number of activities that could be carried out on the engineering

machine to disturb and modify the system, including stopping the PLC or even wiping the

file stored in the PLC and deleting it from the engineering machine. Again this process

can be visualised by figures 5.38 through to figure 5.41

Figure 5.38: Creating a remote session from the domain to the PLC machine

5.4 Network Exploitation & Post Exploitation Attacks 87

Figure 5.39: Creating an animation table on the PLC machine from Kali machine

88 Results and Analysis

Figure 5.40: Completed animation table on the PLC machine from Kali machine

5.4 Network Exploitation & Post Exploitation Attacks 89

Figure 5.41: Stopping the PLC from Kali Linux

This exploitation provided complete system access to the domain as well as access to

other machines on the network. It resulted in the total compromise of the system as a

whole and highlighted the ease in which critical system can be taken over. This exploit

was therefore categorised as Catastrophic and given the highest possible risk score of 1A.

Malicious USB Attack

When opening the USB drive on the Windows Server 2012 Domain Controller and opening

either of the malicious files, a meterpreter shell was successfully opened back on the

Kali Linux machine. Initially, Admin level access was granted, however, by utilising the

“getsystem” privilege escalation command, it was possible to gain full system authority

to the machine, the highest level possible. This provided all of the same system access

as the internal network attack above and full control over the process control system.

Figure 5.42 shows the Meterpreter shell being opened after running the FatRat payload

executable. The same can be seen for the MSFVenom payload in figure 5.43, the only

was to see the difference is tht the Kali Linux machine was listening on port 5555 for the

VSFVenom payload and port 6666 for the FatRat payload. As can been seen in both of

these images, full system access has been granted to the malicious user, providing total

control over the domain. Again due to the severity of this attack, it would be categorised

as Catastrophic and given the highest possible risk score of 1A.

90 Results and Analysis

Figure 5.42: A Meterpreter shell being opened on the Domain using FatRat payload

Figure 5.43: A Meterpreter shell being opened on the Domain using MSFVenom payload

The details of the domain exploitation testing can be seen in figure 5.44.

Figure 5.44: Table summarising the results from the domain controller exploit testing

5.4 Network Exploitation & Post Exploitation Attacks 91

5.4.6 SCADA Server

Internal Network Attack

The data obtained so far during testing has indicated that the SCADA server has no

known vulnerabilities. A number of tests were still performed to see if it was there

were some undetected vulnerabilities that weren’t discovered in previous stages. After

testing many exploitation modules, there were no successful exploits of the SCADA server

machine.

Malicious USB Attack

When opening the USB drive on the Windows 10 SCADA server and opening either of

the malicious files, a meterpreter shell was successfully opened back on the Kali Linux

machine. Like on the domain controller, initially Admin level access was granted, however,

by utilising the “getsystem” privilege escalation command, it was possible to gain full

system authority to the machine, the highest level possible. This can be seen in figure

5.45.

Once system access was provided, attempts were made to discover the login credentials

for the machine. Using the command in figure 5.46, all of the machine users and their

hashed passwords were discovered. By then using the command in figure 5.47 it was

possible gain an insight into the user passwords through accessing the Windows secret

questions and answers. Unfortunately this did not yield that correct credentials and it

was still not possible to gain direct access into the system. Another attempt was made

to gather the system credentials by running the meterpreter phish windows credentials

post exploitation module, this causes a system popup to be displayed on the machine

under attack, once the user enters their credentials, they are returned to the malicious

user. This is detailed in figures 5.48 and 5.49. Once the credentials have been discovered

it is possible to create a remote session into the SCADA server and take control of the

pumping station as was the case in section 5.4.5

This exploitation did result in a meterpreter shell being established with full system

access, it was then possible to gain direct access to the SCADA server and modify the

pump control system. Based on the severity of this exploitation, it has been categorised

92 Results and Analysis

as Extreme and given a risk score of 1.

The details of the SCADA server exploitation testing can be seen in figure 5.50.

Figure 5.45: A Meterpreter shell being opened on the SCADA Server using FatRat payload

Figure 5.46: Discovering users and hashed passwords on the SCADA server

Figure 5.47: Discovering users secret questions and answers

5.4 Network Exploitation & Post Exploitation Attacks 93

Figure 5.48: Phishing users credentials with metasploit

Figure 5.49: Phishing popup to steal credentials

Figure 5.50: Table summarising the results from the SCADA server exploit testing

94 Results and Analysis

5.4.7 SCADA Client

Internal Network Attack

The SCADA client is essentially the exact same system as the SCADA server, it has the

same operating system and the same programs installed. It therefore was not surprising

that the testing results for the SCADA client were exactly the same as those of the

SCADA server. Like with the SCADA server, there were no successful exploits found on

this machine through internal network attacks.

Malicious USB Attack

The USB attacks on the SCADA client yielded the same results as the SCADA server,

for detailed information on the attacks attempted, see section 5.4.6.

A summarised table with details of the SCADA client exploitation testing can be seen in

figure 5.51.

Figure 5.51: Table summarising the results from the SCADA client exploit testing

5.4 Network Exploitation & Post Exploitation Attacks 95

5.4.8 Engineering Machine

Internal Network Attack

There were a number of system vulnerabilities discovered in the Windows 7 Engineering

Machine during previous network scans. Many different Metasploit exploitation modules

were attempted on each of the identified vulnerabilities with the goal of opening a me-

terpreter shell on the malicious machine. Although most attempts failed, there were two

exploits that proved to be successful and provided the malicious machine with a meter-

preter shell. Both of the successful exploits are based off of the MS17-010 vulnerability,

exploiting the Microsoft Server Message Block 1.0 (SMBv1) which is a protocol used for

remote services. Although this vulnerability was not detected using the scanners, the ms-

wbt-server service was identified as running on port 3389 which is responsible for remote

service management.

Figure 5.52 shows the successful execution of the MS17-010 EthernalBlue exploit along

with the opening of a meterpreter shell with system level authority access.

Figure 5.52: Exploiting the engineering machine using EternalBlue vulnerability

96 Results and Analysis

Post Exploitation on the Engineering Machine

Once the EternlBlue exploit was successful and returned a meterpreter shell, the “getuid”

command was ran which returned that full system access had already been achieved

meaning privilege escalation was not required. Once system access was provided, attempts

were then made to discover the login credentials for the machine. Utilising the metasploit

“sso” post exploitation module, it was possible to gather the administrator credentials

for the engineering machine, and for the domain, this can be seen in figure 5.53.

Figure 5.53: Gathering admin credentials on the engineering machine

Using the discovered credentials, it was then possible to create a remote session on the

engineering machine. The command used to create the remote session can be seen in

figure 5.54 whilst the successful connection can be seen in figure 5.55. As can be seen,

full access to the PLC has been achieved, this means that the process can be directly

modified similar to the attacks in section 5.4.5.

Figure 5.54: Remote desktop into the engineering machine from Kali Linux

5.4 Network Exploitation & Post Exploitation Attacks 97

Figure 5.55: Remote session on engineering machine with system control

This exploitation provided complete access to the engineering machine, resulting in critical

exposure of the system. This exploit also exposed the domain admin credentials, allowing

the user to gain access to any machine on the network including the domain controller

and the SCADA server. This would allow the attacks from section 5.4.5 to be replicated.

This exploit was therefore categorised as Catastrophic and given the highest possible risk

score of 1A.

Malicious USB Attack

Opening the USB drive on the Windows 7 engineering machine and opening either of

the malicious files, a meterpreter shell was successfully opened back on the Kali Linux

machine. Like on the other machines initially Admin level access was granted, however,

unlike the other system, utilising the “getsystem” privilege escalation command failed

and it was not possible to gain full system authority to the machine. Interestingly, even

utilising the many escalation post exploitation modules provided by metasploit, it was

98 Results and Analysis

still not possible to gain system access.

Even though system access wasn’t achieved, a meterpreter shell was still opened, providing

high level exposure to the system including key stroke monitoring, screen sharing and all

of the other options available through the meterpreter shell. Based on this, the exploit

was categorised as Major and given a risk score of 2, as full system access wasn’t achieved.

The details of the engineering machine exploitation testing can be seen in figure 5.56.

Figure 5.56: Table summarising the results from the Engineering Machine exploit testing

5.5 Summary of Results 99

5.5 Summary of Results

Testing of this real world representative industrial control system provided an interesting

insight into the risks present in these systems. Highlighted was the ease in which the

system could be compromised and how once a single machine was exploited, this often

lead to all machines on the network being compromised.

The results of this testing also reinforced the theory that older operating system are more

susceptible to cyber attack with all of the successful internal attacks being on the older

systems. The Windows 10 computers had no successful attacks from within the network.

Figure 5.57 shows a clear correlation between the older operating systems and the number

of exploitations exposed during testing.

Figure 5.57: Chart of exploitations by operating system

The testing of this system followed the methods identified within the literature, ensuring

all aspects of the network were tested in great detail and all of the possible vulnerabilities

were discovered. While this system was quite small with very few running applications,

all of the machines were able to be exploited in some way and the control system was able

to be disrupted. The level of system exploitation can be visualised in figure 5.58 which

details each of the successful exploits by it’s risk rating.

100 Results and Analysis

Figure 5.58: Bar chart summarising the system exploitation risk scores

5.5.1 Mitigation Strategies

Through the testing of this system, many vulnerabilities have been discovered. It has also

been evident through testing as to how these vulnerabilities can be mitigated.

Operating Systems

The testing of this system highlighted where common vulnerabilities are found within a

typical control system. The machines that were the most susceptible to attack were the

older operating systems with unpatched security flaws. The security of industrial control

systems can be greatly enhanced by ensuring that computers are kept up to date and

have the latest security patches installed. As can be seen from figure 5.57, the Windows

10 machines had zero internal network exploitations.

5.5 Summary of Results 101

Antivirus

Having antivirus software installed on computers connected to industrial control systems

can help prevent attacks from probably the most common threat, malicious files. The

payloads used in the USB testing of this project were detected as viruses on all of the

machines by antivirus protection. To carry out these attacks, the antivirus software had

to be disabled. This highlighted the importance of ensuring that the security settings

of control system computers are not weakened, which is commonly done to assist with

device to device communications.

User Policy Settings

Policy settings such as password strength and access authority is another important factor

to consider when attempting to mitigate vulnerabilities in the system. It is important

to ensure that default passwords are changed on networking equipment and that spare

ports are locked. USB attacks are real threat to industrial systems as was shown by this

project, the question needs to be asked whether it is absolutely necessary to allow USB

connections on control system computers, if it is not, then these ports should be disabled

from use.

Chapter 6

Conclusions and Further Work

6.1 Conclusions

This project was successful in delivering all of the objectives that were originally set out.

A complete industrial control system was designed and built that included all electri-

cal, software and networking components as well as a physical water pumping system.

Through this system it was possible to gain an understanding of the threats present in

typical industrial control systems and methods in which they can be mitigated.

The following research questions have been addressed by this project.

Can the controlled procces easily be altered? This project successfully highlighted

the easy in which access to the network could be obtained. Not only could access

to a single machine be provided, but in some circumstances, access to all machines

could be provided. This was seen in section 5.4.5 where access was provided to the

domain. The malicious actor could then create new users with full domain privi-

leges that could then remote desktop into any other machine on the domain. This

allowed the process to be totally controlled from both the SCADA interface as well

as directly via the PLC. This is was just a simple system, but had this been on a

larger scale, the consequences could have been catastrophic.

Are older operating systems more at risk? The data obtained from system testing

clearly finds a correlation between the age of the operating system and the likelihood

that is is vulnerable to attack. All of the successful internal network attacks were

104 Conclusions and Further Work

on the older machines that were running either Windows Server 2012 or Window 7

operating systems. The Windows 10 machines didn’t have any successful network

exploitation’s.

What data is visible on the network? It was very surprising just how much system

information was available over a network connection. Section 5.2 and section 5.3

highlighted the type of information that can be gathered running simple scans from

a Kali Linux machine. Although there is a lot of information available, if the system

is configured correctly with the mitigation strategies discussed in subsection 5.5.1,

this information shouldn’t have any impact on the security of the system.

Can an auto booting malicious USB provide system access? An attempt was made

during this project to develop a USB that would auto boot when installed into a

computer and upload a virus to the machine. All attempts to create this USB failed

as Windows no longer supports auto loading of files from USB drives. In order to

still be able to test the affects of a virus being delivered via a USB, payloads were

saved onto the USB and then manually executed on the target machine. As noted

in section 5.5.1, the antivirus software detected the payload as a virus on all of

the computers and quarantined the file. This highlighted the importance of using

antivirus software whilst also highlighting the difficulties faced by malicious agents

in how they deliver their payloads.

The primary purpose of this experiment was to highlight the potential risks that industrial

control systems are exposed to through the design and development of a small scale control

system. It was hoped that many of the issues that are present in industrial environments

would be replicated within the lab, providing an insight into what dangers exist in these

systems and how they can be potentially mitigated.

This project has successfully achieved it’s primary purpose. Through the research pro-

vided, many of the security flaws prevalent in industrial system have been highlighted,

showing the dangers present in these systems ans the disastrous consequences that can

occur as a result. Through highlighting these dangers, mitigation factors have also been

identified that can help prevent the attacks from this project, from happening in the real

world.

6.2 Further Work 105

6.2 Further Work

This project was limited to testing from within a network. Further work for this project

would be to extend the concepts to remote testing, looking to see if the vulnerabilities that

were discovered in this project, could be exploited from a machine located remotely. It

would also be beneficial to the research to add additional applications onto the computer

systems such as VPN applications, this would open up additional attack vectors and

provide further research opportunities.

References

Abramsn, L. (2021), ‘Largest U.S. Pipeline Shuts Down Operations Af-

ter Ransomware Attack’, https://www-bleepingcomputer-com.cdn.

ampproject.org/c/s/www.bleepingcomputer.com/news/security/

largest-us-pipeline-shuts-down-operations-after-ransomware-attack/

amp/. [Online; accessed May-2021].

AV-Test (n.d.), ‘Malware statistics and trends report’, https://www.av-test.org/en/

statistics/malware/.

Balapure, A. (2013), ‘Learning metasploit exploitation and development’,

https://subscription.packtpub.com/book/networking-and-servers/

9781782163589/7/ch07lvl1sec34/what-is-post-exploitation.

Black-Hat (2020), ‘Msfvenom tutorials for beginners’, https://blackhattutorial.com/

msfvenom-tutorials-for-beginners/.

Chen, T. M. & Abu-Nimeh, S. (2011), ‘Lessons from Stuxnet’, Computer 44(4), 91–93.

Collins, S. & McCombie, S. (2012), ‘Stuxnet: the emergence of a new cyber weapon and its

implications’, Journal of Policing, Intelligence and Counter Terrorism 7(1), 80–91.

Csanyi, E. (2011), ‘How stuxnet (plc virus) spreads’, https://

electrical-engineering-portal.com/how-stuxnet-plc-virus-spreads-part-1.

[Online; accessed May-2021].

DNSstuff (2019), ‘Network scanning how-to guide’, https://www.dnsstuff.com/

network-scanning.

Falco, M. D. (2012), ‘Stuxnet facts report’, NATO Cooperative Cyber Defence Centre of

Excellence .

108 REFERENCES

Farwell, J. P. & Rohozinski, R. (2011), ‘Stuxnet and the Future of Cyber War’, 53(1), 23–

40.

Firmino, L. (2017), ‘What is the difference between exploit,

payload and shellcode?’, https://www.linkedin.com/pulse/

what-difference-between-exploit-payload-shellcode-luiz.

Fruhlinger, J. (2017), ‘What is stuxnet, who created it and how does it work?’, CSO

Australia .

Fruhlinger, J. (2021), ‘Zero days explained: How unknown vulnerabilities become

gateways for attackers’, https://www.csoonline.com/article/3284084/

zero-days-explained-how-unknown-vulnerabilities-become-gateways-for-attackers.

html. [Online; accessed May-2021].

Hantgore, S. (2021), ‘Introduction to post-exploitation phase’, https://www.

geeksforgeeks.org/introduction-to-post-exploitation-phase/.

Highland, H. J. (1988), ‘The brain virus: Fact and fantasy’, Computers and Security 7(4).

Idika, N. & Mathur, A. P. (2007), ‘A survey of malware detection techniques’.

Krishnan, S. & Wei, M. (2019), Scada testbed for vulnerability assessments, penetra-

tion testing and incident forensics, in ‘2019 7th International Symposium on Digital

Forensics and Security (ISDFS)’, pp. 1–6.

Kushneri, D. (2013), ‘The real story of stuxnet’, IEEE Spectrum . [Online; accessed

May-2021].

MacColl, J. & Dawda, S. (2021), ‘Us water plant suffers cyber at-

tack through the front door’, https://rusi.org/commentary/

us-water-plant-suffers-cyber-attack-through-front-door.

Microsoft (2020), ‘Support for Windows 7 has ended’, https://www.microsoft.com/

en-au/microsoft-365/windows/end-of-windows-7-support. [Online; accessed

May-2021].

Newburger, E. (2021), ‘Ransomware Attack Forces Shutdown of Largest

Fuel Pipeline in the U.s’, https://www.cnbc.com/2021/05/08/

colonial-pipeline-shuts-pipeline-operations-after-cyberattack.html.

[Online; accessed May-2021].

News, B. (2021), ‘Hacker tries to poison water supply of florida city’, https://www.bbc.

com/news/world-us-canada-55989843.

nmap (2021), nmap(1) Linux User’s Manual, nmap.org.

Park, D. & Walstrom, M. (2017), ‘Cyberattack on critical infrastructure: Rus-

sia and the ukrainian power grid attacks’, https://jsis.washington.edu/news/

cyberattack-critical-infrastructure-russia-ukrainian-power-grid-attacks/.

Porup, J. M. (2019), ‘What is metasploit? and how to use this pop-

ular hacking tool’, https://www.csoonline.com/article/3379117/

what-is-metasploit-and-how-to-use-this-popular-hacking-tool.html.

Singh, P., Garg, S., Kumar, V. & Saquib, Z. (2015), A testbed for scada cyber security and

intrusion detection, in ‘2015 International Conference on Cyber Security of Smart

Cities, Industrial Control System and Communications (SSIC)’, pp. 1–6.

Snyder, D. (2010), ‘The very first viruses: Creeper, wabbit and brain’.

ubuntu manuals (2014), masscan(8) Linux User’s Manual, ubuntu.

Verma, A., M.S.Rao, A.K.Gupta, Jeberson, W. & Singh, V. (2013), ‘A literature review

on malware and its analysis’, IJCRR 5(16).

Weyland, N. (2020), netdiscover(8) Linux User’s Manual, debian.org.

Wiki, T. S. S. (n.d.), ‘Meterpreter’, https://doubleoctopus.com/security-wiki/

threats-and-tools/meterpreter/.

Zetter, K. (2016), ‘Inside the cunning, unprecedented hack

of ukraine’s power grid’, https://www.wired.com/2016/03/

inside-cunning-unprecedented-hack-ukraines-power-grid/.

110 REFERENCES

Appendix A

Project Specification

ENG4111/4112 Research Project

Project Specification

For: Peter Compton

Title: SCADA Test Environment for Cybersecurity Analysis of Critical Infrastructure

Systems

Major: Computer Engineering

Supervisors: Tobias Low

Enrolment: ENG4111 – EXT S1, 2021 ENG4112 – EXT S2, 2021

Project Aim: To develop and build a small-scale water pumping station that can sim-

ulate a real-world application. Once the system is operational, the intent of this project

is to examine how vulnerable this “typical” system is to various cyber-attacks, determine

the criticality of different attacks and discover safeguards to prevent these attacks from

occurring in the future.

Programme: Version 1, 5th March 2021

1. Critically assess past cyber attacks of critical infrastructure systems and analyse

the impact of these attacks on society.

2. Design and build an electrical control panel that will house the pump control circuits,

PLC equipment, network switch and other required electrical equipment such as

power supplies.

3. Design the system architecture including network configuration, operating system

selection, number of computers required, virtualisation software and PLC / SCADA

software selection.

4. Build a small-scale water pumping system including tanks, level switches, level

transmitters and water pumps.

5. Develop a function description of how the pumping system is intended to operate.

113

6. Develop functional PLC code to operate the pumping station in line with the pre-

pared functional description.

7. Develop a SCADA application to allow for visualisation and operation of the pump-

ing system. The SCADA application will allow for manual control of the system.

8. Review and evaluate common methods for exploiting computer systems to develop

a list of exploits that will be attempted on the water pumping system.

9. Develop a malicious script that automatically saves itself to the host when a USB

is inserted. The script will be used to provide backdoor access to the system.

10. Assess the level of access to the system each exploit provides.

11. Develop a scale to measure how critical any successful system exploitation’s are to

the operation of the system i.e., being able to take control and start / stop pumps

would have an extreme impact.

If time and resources permit:

12. Explore what system settings and safeguards could be put in place to prevent the

selected exploits from occurring.

Appendix B

Risk Assessment

116 Risk Assessment

Risk Management Plan RMP 2021 5560 has been submitted through the USQ Safety

Risk Management System.

University of Southern Queensland Print View

USQ Safety Risk Management System
Version 2.0

Safety Risk Management Plan
Risk Management Plan
ID:

Status Current User: Author: Supervisor: Approver:

Assessment Title:

Assessment Date:

Review Date:

(5 years maximum)
Workplace (Division/Faculty/Sec�on):

Approver
Tobias Low

Supervisor (for no�fica�on of Risk Assessment only)
Tobias Low

Context
DESCRIPTION:

What is the task/event/purchase/project/procedure?

Why is it being conducted?

Where is it being conducted?

Course code (if applicable) Chemical Name (if applicable)

WHAT ARE THE NOMINAL CONDITIONS?

Personnel involved

Equipment

Environment

Other

Briefly explain the procedure/process

Assessment Team - who is conduc�ng the assessment?
Assessor(s)

Others consulted: (eg elected health and safety representa�ve
other personnel exposed to risks)

Risk Matrix
 Consequence

Probability Insignificant Minor Moderate Major Catastrophic
No Injury

0-$5K
First Aid

$5K-$50K
Med Treatment

$50K-$100K
Serious Injury
$100K-$250K

Death
More than $250K

Almost
Certain M H E E E

1 in 2

Likely
M H H E E

1 in 100

Possible
L M H H H

1 in 1 000

Unlikely
L L M M M

1 in 10 000

Rare
L L L L L

1 in 1 000 000
Recommended Ac�on Guide

Extreme: E= Extreme Risk – Task MUST NOT proceed
High: H = High Risk – Special Procedures Required (Contact USQSafe) Approval by VC only
Medium: M= Medium Risk - A Risk Management Plan/Safe Work Method Statement is required
Low:

RMP_2021_5560
Approval Requested 9

ENG4111/41112 Honours Project - Peter Compton 23/05/2021

204050 - School of Agricultural Computa�onal and Environmental Sciences 31/12/2021

SCADA Test Environment for Cybersecurity Analysis of Cri�cal Infrastructure Systems

Engineering Research Project

Home Office

ENG4111/ENG41112

Peter Compton

Home Office - Computer desk chair and electrical apparatus

Home Office & Work office

Develop and build a small scale wastewater pumping sta�on that can be a�acked by malicious so�ware

Peter Compton

118 Risk Assessment

Step 6 – Request Approval
Dra�ers Name: Dra� Date:

Dra�ers Comments:

Assessment Approval

Maximum Residual Risk Level

Document Status:

Step 6 – Approval
Approvers Name: Approvers Posi�on Title:

Approvers Comments:

I am sa�sfied that the risks are as low as reasonably prac�cable and that the resources required will be provided.

Approval Decision: Approve / Reject Date: Document Status:

Peter Compton 23/05/2021

All risks are marked as ALARP 0

Medium - Cat 4 delegate or above Approval Required 2

Approval Requested

Tobias Low

Approval Requested

Figure B.1: Completed Risk Management Plan

Appendix C

Ethical Clearance

120 Ethical Clearance

There are no Ethical Clearances applicable to this project.

Appendix D

PLC Code Development

122 PLC Code Development

D.1 Overview

This appendix details all of the software that was developed as part of this project.

D.2 Function Block Development

D.2.1 Pump Block

1 (* Check the mode value coming from SCADA. If it is outside the

2 permitted range , set the mode to OOS.

3 Mode Values:

4 1 = Auto ,

5 2 = Manual ,

6 3 = Out of Service ,

7 4 = Maintenance

8 *)

9

10 if ModeControl >= 1 and ModeControl <= 10 then

11 Mode.Value := ModeControl;

12 Mode.Auto := false;

13 Mode.Manual := false;

14 Mode.OOS := false;

15 Mode.Maintenance := false;

16 else

17 Mode.Value := 3;

18 end_if;

19

20 case Mode.Value of

21 1: Mode.Auto := true;

22 2: Mode.Manual := true;

23 3: Mode.OOS := true;

24 4: Mode.Maintenance := true;

25 end_case;

26

27 (* Pump Fail Logic *)

28 TON_3 (IN := PumpRunRequest and not AlarmMask and not Running ,

29 PT := StartDelay ,

30 Q => PumpFailed

31);

32

D.2 Function Block Development 123

33 (* Auto Mode*)

34 if Mode.Auto then

35 PumpRunRequest := Start and not PumpFailed;

36 PumpStopRequest := Stop or PumpFailed;

37 end_if;

38

39 (* Manual Mode*)

40 if Mode.Manual then

41 PumpRunRequest := (SCADA_Start or PumpRunRequest) and not

PumpStopRequest;

42 PumpStopRequest := SCADA_Stop or PumpFailed;

43 end_if;

44

45 (* Out of Service Mode*)

46 if Mode.OOS or Mode.Maintenance then

47 PumpRunRequest := False;

48 PumpStopRequest := True;

49 end_if;

D.2.2 Level Transmitter Block

1 (* ScaledValue := (INT_TO_REAL(RawValue) - LowRaw) * (HighEng - LowEng)/(

HighRaw - LowRaw) + LowEng; *)

2

3 (* Check the mode value coming from SCADA. If it is outside the

4 permitted range , set the mode to OOS.

5 Mode Values:

6 1 = Auto ,

7 2 = Out of Service ,

8 3 = Simulate

9 *)

10

11 if ModeControl >= 1 and ModeControl <= 4 then

12 Mode.Value := ModeControl;

13 Mode.Auto := false;

14 Mode.OOS := false;

15 Mode.Simulate := false;

16 else

17 Mode.Value := 3;

18 end_if;

19

20 case Mode.Value of

21 1: Mode.Auto := true;

124 PLC Code Development

22 2: Mode.OOS := true;

23 3: Mode.Simulate := true;

24 end_case;

25

26 (* Deadband timer to slow down analogue update time*)

27 TON_2

28 (IN := not t2_out ,

29 PT := t#1s,

30 Q => t2_out);

31

32 (* Auto Mode*)

33 if Mode.Auto then

34 if t2_out then

35 ScaledValue := (INT_TO_REAL(RawValue) - LowRaw) * (HighEng - LowEng)/(

HighRaw - LowRaw) * 7.69 + LowEng;

36 end_if;

37

38 (* Simulation Mode*)

39 elsif Mode.Simulate then

40 ScaledValue := SimValue;

41

42 elsif Mode.OOS then

43 ScaledValue := -20.0;

44 end_if;

45

46 (* Pump Start Delay *)

47 TON_0

48 (IN := ScaledValue >= PumpStartSP ,

49 PT := PumpStartDelay ,

50 Q => PumpStart);

51

52 (* Pump Stop Delay *)

53 TON_1

54 (IN := ScaledValue <= PumpStopSP ,

55 PT := PumpStopDelay ,

56 Q => PumpStop);

57

58 if AlarmMask <> true then

59 (* Low level alarm if alarm mask is not activated *)

60 TON_3

61 (IN := ScaledValue < LowAlarmSP ,

62 PT := LowAlarmDelay ,

63 Q => LowAlarm);

D.2 Function Block Development 125

64

65 (* High level alarm if alarm mask is not activated *)

66 TON_4

67 (IN := ScaledValue > HighAlarmSP ,

68 PT := HighAlarmDelay ,

69 Q => HighAlarm);

70

71 if ScaledValue <= -10.0 then

72 Health := true;

73 else

74 Health := false;

75 end_if;

76 end_if;

D.2.3 Level Switch Block

1 (* Check the mode value coming from SCADA. If it is outside the

2 permitted range , set the mode to simulate.

3 Mode Values:

4 1 = Auto ,

5 2 = Simulate

6 *)

7

8 if (ModeControl >= 1 and ModeControl <= 10) then

9 Mode.Value := ModeControl;

10 Mode.Auto := false;

11 Mode.Simulate := false;

12 else

13 Mode.Value := 2;

14 end_if;

15

16 (* Assign the mode based on SCADA input *)

17 case Mode.Value of

18 1: Mode.Auto := true;

19 2: Mode.Simulate := true;

20 end_case;

21

22 (* Auto Mode*)

23 if Mode.Auto then

24

25 (* Debounce timer *)

26 TON_0 (IN := RawValue ,

27 PT := Debounce ,

126 PLC Code Development

28 Q => OutputValue

29);

30 else

31 OutputValue := SimValue;

32 end_if;

D.3 State Logic Code Development

1 (* First scan of PLC. Setup initial conditions *)

2 if first_scan then

3 state := 0;

4 end_if;

5

6 (* Create boolean flags based on the value of state *)

7 state_0 := EQ (state , 0);

8 state_10 := EQ (state , 10);

9 state_20 := EQ (state , 20);

10 state_30 := EQ (state , 30);

11 state_40 := EQ (state , 40);

12 state_15 := EQ (state , 15);

13 state_35 := EQ (state , 35);

14 state_50 := EQ (state , 50);

15

16

17 (* State 0 to state 10 transition *)

18 if state_0 and (T1_LTX.PumpStart or T1_PMP.PumpRunRequest or (T1_LTX.

Health and T1_LSH.OutputValue)) then

19 state := 10;

20 end_if;

21

22

23 (* State 10 to state 0 transition *)

24 if state_10 and (T1_LTX.PumpStop or T1_PMP.PumpStopRequest or (T1_LTX.

Health and T1_LSL.OutputValue = false)) then

25 state := 0;

26 end_if;

27

28

29 (* State 0 to state 30 transition *)

30 if state_0 and (T2_LTX.PumpStart or T2_PMP.PumpRunRequest or (T2_LTX.

Health and T2_LSH.OutputValue)) then

31 state := 30;

D.3 State Logic Code Development 127

32 end_if;

33

34

35 (* State 30 to state 0 transition *)

36 if state_30 and (T2_LTX.PumpStop or T2_PMP.PumpStopRequest or (T2_LTX.

Health and T2_LSL.OutputValue = false)) then

37 state := 0;

38 end_if;

39

40

41 (* State 10 to state 20 transition *)

42 if state_10 and (T2_LTX.PumpStart or T2_PMP.PumpRunRequest or (T2_LTX.

Health and T2_LSH.OutputValue)) then

43 state := 20;

44 end_if;

45

46

47 (* State 20 to state 10 transition *)

48 if state_20 and (T2_LTX.PumpStop or T2_PMP.PumpStopRequest or (T2_LTX.

Health and T2_LSL.OutputValue = false)) then

49 state := 10;

50 end_if;

51

52

53 (* State 20 to state 30 transition *)

54 if state_20 and (T1_LTX.PumpStop or T1_PMP.PumpStopRequest or (T1_LTX.

Health and T1_LSL.OutputValue = false)) then

55 state := 30;

56 end_if;

57

58

59 (* State 30 to state 20 transition *)

60 if state_30 and (T1_LTX.PumpStart or T1_PMP.PumpRunRequest or (T1_LTX.

Health and T1_LSH.OutputValue)) then

61 state := 20;

62 end_if;

63

64

65 (* Transition state in case pump 1 has failed but still has capacity in

the tank *)

66 if state_10 and T1_PMP.PumpFailed and (T1_LTX.HighAlarm = false or (T1_LTX

.Health and T1_LSH.OutputValue = false)) then

67 state := 15;

128 PLC Code Development

68 end_if;

69

70

71 (* Transition state in case pump 1 has failed but still has capacity in

the tank *)

72 if state_20 and T1_PMP.PumpFailed and (T1_LTX.HighAlarm = false or (T1_LTX

.Health and T1_LSH.OutputValue = false)) then

73 state := 15;

74 end_if;

75

76

77 (* If in state 15 and the tank is full , go to alarm state *)

78 if state_15 and (T1_LTX.HighAlarm or (T1_LTX.Health and T1_LSH.OutputValue

)) then

79 state := 40;

80 end_if;

81

82

83 (* Transition state in case pump 2 has failed but still has capacity in

the tank *)

84 if state_30 and T2_PMP.PumpFailed and (T2_LTX.HighAlarm = false or (T2_LTX

.Health and T2_LSH.OutputValue = false)) then

85 state := 35;

86 end_if;

87

88

89 (* Transition state in case pump 2 has failed but still has capacity in

the tank *)

90 if state_20 and T2_PMP.PumpFailed and (T2_LTX.HighAlarm = false or (T2_LTX

.Health and T2_LSH.OutputValue = false)) then

91 state := 35;

92 end_if;

93

94

95 (* If in state 35 and the tank is full , go to alarm state *)

96 if state_35 and (T2_LTX.HighAlarm or (T2_LTX.Health and T2_LSH.OutputValue

)) then

97 state := 40;

98 end_if;

99

100 (* If system goes into alarm state latch state until system is healthy and

reset pressed *)

101 if state_40 and T1_PMP.PumpFailed = false and T2_PMP.PumpFailed = false

D.3 State Logic Code Development 129

and State_Reset then

102 state := 0;

103 end_if;

104

105 (* If the sequence is placed OOS , move to state 50 and stop pumps *)

106 if State_OOS then

107 state := 50;

108 end_if;

109

110 (* Move back to state 0 if system is changed from OOS back to auto*)

111 if state_50 and State_OOS = false then

112 state := 0;

113 end_if;

130 PLC Code Development

D.4 Function Block Deployment

Figure D.1: Tank 1 PLC code configuration

D.4 Function Block Deployment 131

Figure D.2: Tank 1 PLC code configuration

132 PLC Code Development

Figure D.3: Pump 1 PLC code configuration

D.4 Function Block Deployment 133

Figure D.4: Pump 2 PLC code configuration

134 PLC Code Development

D.5 PLC Hardware Configuration

Figure D.5: PLC hardware configuration

