
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Optimal fuel cost controller design for a helicopter/twin

rotor system

A dissertation submitted by

A. Coutts

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Electrical & Electronic Engineering

Submitted: October, 2021





Abstract

The TRMS (Twin Rotor Multi-Input-Multi-Output [MIMO] System) 33-949 system is

a small-scale model of a helicopter, exhibiting many similar characteristics, except for

limited degrees of freedom. The non-linearities, as well as cross-couplings between the

inputs and outputs of such a system make the model a useful basis for designing, test-

ing, and deploying a broad range of control algorithm implementations, and allow for

experimentation and exploration of various optimisation techniques.

Many Machine and Deep Learning techniques have been discovered that allow researchers

to optimise control algorithms based on multiple objectives. Research was conducted to

find a method of optimisation that allowed the search of a large space of candidate solu-

tions to minimise an objective function of error and cost. The evolutionary-based genetic

algorithm was suitable, demonstrating good results on the TRMS system. Memetic Al-

gorithms (MA) were discovered to have been applied in system identification, but not yet

applied in finding optimal control parameters for a TRMS system. A MA is of the same

family of algorithms as a Genetic Algorithm (GA), so the performance of the memetic

algorithm is directly comparable to the established research on GA and its application to

the TRMS.

Implementation and testing has revealed that the MA does outperform an equivalent GA

(the same algorithm, with the Local Search removed) in every test case, with typical

fitness value improvements of anywhere from 5% to 120% (and greater improvements are

likely as observed from the results data). Of particular interest was the capability of MA

for finding simultaneous decoupling and control solutions. Test results have indicated

however, that significant cross-couplings still exist, particularly in the pitch-to-yaw path.

Therefore, the MA has been useful for designing a cost/error optimal controller, especially

for Single-Input-Single-Output (SISO) applications, but as with many developments in



ii

AI, it certainly is not without limitations.



University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences





Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

A. Coutts





Acknowledgments

Thanks are in order to my supervisors Prof. Paul Wen and Dr. Bo Song, for their support

and guidance throughout this project.

I would like to specially thank my little brother. The youngest sibling of two who was

undeniably helpful in all ways for the completion and success of this thesis, except that

through his good-hearted, yet questionably helpful discussion, added unnecessary stress

in the final months of completing this thesis. His intentions and actions remained pure,

yet the outcome was a hindrance. Thus, ’twas a burden of love to withhold my fist from

his larynx. Nevertheless, I thank him for his support, and for being a bearable housemate.

In all seriousness, I would like to thank all my friends and family for their unwavering sup-

port, not only through this thesis, but throughout my entire university journey. Thanks

to the uni crew for all the great (and questionably productive) study sessions we had, and

thank you for dragging me away from the studies when I clearly needed it. Thank you to

Jacob, Josh, Kieran, Nathan and Tim - the close friends that I’ve held since primary and

high-school - for always making time to be there for me, even though I may drop off the

map for extended periods of time. Finally, thank you to my family for all the love, help

and support at every single step of the way.

A. Coutts





Contents

Abstract i

Acknowledgments vii

List of Figures xv

List of Tables xix

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Twin Rotor MIMO System . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 TRMS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Project Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Literature Review 7

2.1 Robust Deadbeat Decoupling & Control . . . . . . . . . . . . . . . . . . . 7

2.2 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



2.3 Artificial Intelligence Techniques . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Genetic Algorithms and Control . . . . . . . . . . . . . . . . . . . 17

2.4.3 Memetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Memetic Algorithms and Control . . . . . . . . . . . . . . . . . . . 30

Chapter 3 Methodology 33

3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 The Optimisation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 SISO Optimisation Process . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 MIMO Optimisation Process . . . . . . . . . . . . . . . . . . . . . 36

3.4 Memetic Algorithm Software Design . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Population & Parameter Representation . . . . . . . . . . . . . . . 39

3.4.2 Objective Function and Fitness . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Parent Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 Crossover (Recombination) . . . . . . . . . . . . . . . . . . . . . . 45

3.4.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.6 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.7 Survivor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



3.5.1 Simulation Workstation Specifications . . . . . . . . . . . . . . . . 51

3.5.2 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Testing and Verification . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Project Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Resource Requirements . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4 Results and Discussion 57

4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 SISO Optimisation Results . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 MIMO Optimisation Results . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 Table Summary of Optimisation Results . . . . . . . . . . . . . . . 75

4.1.4 1DOF Testing and Verification . . . . . . . . . . . . . . . . . . . . 75

4.1.5 2DOF Testing and Verification . . . . . . . . . . . . . . . . . . . . 78

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 SISO Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 5 Conclusions and Further Work 87

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References 89



Appendix A Project Specification 95

Appendix B Risk Assessment 99

Appendix C Ethical Clearance 105

Appendix D Main Code and Objective Function 107

D.1 The ma.m Main Memetic Algorithm Script . . . . . . . . . . . . . . . . . . 108

D.2 The objective function.m . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix E Operator Functions 117

E.1 The crossover.m Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 118

E.2 The mutation.m Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E.3 The local search.m Operator . . . . . . . . . . . . . . . . . . . . . . . . 121

E.4 The solis wets LS.m Operator . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix F Helper Functions 125

F.1 The build control system.m Helper Function . . . . . . . . . . . . . . . 126

F.2 The get elites.m Helper Function . . . . . . . . . . . . . . . . . . . . . . 127

F.3 The is solution feasible.m Helper Function . . . . . . . . . . . . . . . 128

F.4 The is system stable.m Helper Function . . . . . . . . . . . . . . . . . . 129

F.5 The parent selection.m Helper Function . . . . . . . . . . . . . . . . . 130

F.6 The pidtest.m Helper Function . . . . . . . . . . . . . . . . . . . . . . . 131

F.7 The rhStabilityCriterion.m Helper Function . . . . . . . . . . . . . . . 132



F.8 The survivor selection.m Helper Function . . . . . . . . . . . . . . . . 135

F.9 The tournament selection.m Helper Function . . . . . . . . . . . . . . . 136

Appendix G Test Scripts & Functions 137

G.1 The TestLinear1DOF.m Script . . . . . . . . . . . . . . . . . . . . . . . . 137

G.2 The TestLinear2DOF.m Script . . . . . . . . . . . . . . . . . . . . . . . . 140

G.3 The build SISO control system.m Script . . . . . . . . . . . . . . . . . . 143

G.4 The build MIMO control system.m Script . . . . . . . . . . . . . . . . . . 144

G.5 The systest MIMO.m Script . . . . . . . . . . . . . . . . . . . . . . . . . . 145

G.6 The systest SISO.m Script . . . . . . . . . . . . . . . . . . . . . . . . . . 150

G.7 The square.m Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153





List of Figures

1.1 The manufacturer’s image of the overall TRMS control system (Feedback

Instruments Ltd. n.d.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The manufacturer’s simplified system schematic of the TRMS control sys-

tem (Feedback Instruments Ltd. n.d.) . . . . . . . . . . . . . . . . . . . . 5

2.1 Typical control loop for a Robust Deadbeat Control System (Wen & Lu 2008) 8

2.2 Final Deadbeat Robust Control MIMO model (Wen & Lu 2008) . . . . . 9

2.3 Basic General Flowchart of a Genetic Algorithm (Albadr et al. 2020) . . . 18

2.4 Shell process oil system overview (Alharbi & Gomm 2017) . . . . . . . . . 21

2.5 Basic General Flowchart of a Memetic Algorithm (Assiroj et al. 2021) . . 28

3.1 Simple Representation of TRMS MIMO System with Transfer Functions . 35

3.2 Simple Representation of TRMS SISO System with Transfer Functions . . 35

3.3 TRMS SISO Control System with added PID controllers . . . . . . . . . . 36

3.4 TRMS MIMO Control System with added PID controllers . . . . . . . . . 37

3.5 Diagrammatic representation of programmatic open-loop subsystem . . . 42

3.6 Diagrammatic representation of programmatic closed-loop subsystem with

PID controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



4.1 Maximum Fitness vs. Generation number for 5 runs of the GA on the

Pitch SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Average Fitness vs. Generation number for 5 runs of the GA on the Pitch

SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Step Response for the fittest individual of run 4 of the GA optimisation on

the Pitch SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Maximum Fitness vs. Generation number for 5 runs of the MA on the

Pitch SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Average Fitness vs. Generation number for 5 runs of the MA on the Pitch

SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Step Response for the fittest individual of run 4 of the GA optimisation on

the Pitch SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw

SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Average Fitness vs. Generation number for 5 runs of the GA on the Yaw

SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.9 Step Response for the fittest individual of run 5 of the GA optimisation on

the Yaw SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.10 Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw

SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Average Fitness vs. Generation number for 5 runs of the MA on the Yaw

SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.12 Step Response for the fittest individual of run 4 of the MA optimisation

on the Yaw SISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.13 Maximum Fitness vs. Generation number for 5 runs of the GA on the

Pitch path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . 67



4.14 Average Fitness vs. Generation number for 5 runs of the GA on the Pitch

path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.15 Step Response for the fittest individual of run 4 of the GA optimisation on

the Pitch path of the MIMO system. The plot on top is the step response

of the pitch path, and the bottom plot shows the pure cross-coupling from

the pitch path into the yaw path (yaw input set to 0). . . . . . . . . . . . 68

4.16 Maximum Fitness vs. Generation number for 5 runs of the MA on the

Pitch path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . 69

4.17 Average Fitness vs. Generation number for 5 runs of the MA on the Pitch

path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.18 Step Response for the fittest individual of run 5 of the MA optimisation on

the Pitch path of the MIMO system. The plot on top is the step response

of the pitch path, and the bottom plot shows the pure cross-coupling from

the pitch path into the yaw path (yaw input set to 0). . . . . . . . . . . . 70

4.19 Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw

path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.20 Average Fitness vs. Generation number for 5 runs of the GA on the Yaw

path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.21 Step Response for the fittest individual of run 4 of the GA optimisation on

the yaw path of the MIMO system. The plot on top is the step response

of the yaw path, and the bottom plot shows the pure cross-coupling from

the yaw path into the pitch path (pitch input set to 0). . . . . . . . . . . 72

4.22 Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw

path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.23 Average Fitness vs. Generation number for 5 runs of the MA on the Yaw

path of the MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . 74



4.24 Step Response for the fittest individual of run 4 of the MA optimisation on

the yaw path of the MIMO system. The plot on top is the step response

of the yaw path, and the bottom plot shows the pure cross-coupling from

the yaw path into the pitch path (pitch input set to 0). . . . . . . . . . . 74

4.25 GA-optimised Pitch 1DOF test results . . . . . . . . . . . . . . . . . . . . 76

4.26 GA-optimised Yaw 1DOF test results . . . . . . . . . . . . . . . . . . . . 77

4.27 MA-optimised Pitch 1DOF test results . . . . . . . . . . . . . . . . . . . . 77

4.28 MA-optimised Yaw 1DOF test results . . . . . . . . . . . . . . . . . . . . 78

4.29 GA-optimised Pitch 1DOF test results . . . . . . . . . . . . . . . . . . . . 79

4.30 GA-optimised Yaw 1DOF test results . . . . . . . . . . . . . . . . . . . . 80

4.31 MA-optimised Pitch 1DOF test results . . . . . . . . . . . . . . . . . . . . 80

4.32 MA-optimised Yaw 1DOF test results . . . . . . . . . . . . . . . . . . . . 81



List of Tables

3.1 Table of different average percentages of stable systems across all genera-

tions and fitness values for different parameter bound settings . . . . . . . 40

3.2 Workstation PC Specifications . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Table of Required Project Resources . . . . . . . . . . . . . . . . . . . . . 56

4.1 Results for 5 runs of the GA on the Pitch SISO system. The highlighted

row is the median performer of the set. . . . . . . . . . . . . . . . . . . . 58

4.2 Results for 5 runs of the MA on the Pitch SISO system. The highlighted

row is the median performer of the set. . . . . . . . . . . . . . . . . . . . 60

4.3 Results for 5 runs of the GA on the Yaw SISO system. The highlighted

row is the median performer of the set. . . . . . . . . . . . . . . . . . . . 62

4.4 Results for 5 runs of the MA on the Yaw SISO system. The highlighted

row is the median performer of the set. . . . . . . . . . . . . . . . . . . . 64

4.5 Results for 5 runs of the GA on the Pitch for the MIMO system configu-

ration. The highlighted row is the median performer of the set. . . . . . 66

4.6 Results for 5 runs of the MA on the Pitch for the MIMO system configu-

ration. The highlighted row is the median performer of the set. . . . . . 68

4.7 Results for 5 runs of the GA on the Yaw for the MIMO system configura-

tion. The highlighted row is the median performer of the set. . . . . . . . 71



4.8 Results for 5 runs of the MA on the Yaw for the MIMO system configura-

tion. The highlighted row is the median performer of the set. . . . . . . . 73

4.9 Table summary of optimisation results for both 1DOF and 2DOF, GA and

MA median runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.10 1DOF rise time, settling time and overshoot testing results. . . . . . . . 75

4.11 Absolute Error and Absolute Control Effort Values for 1DOF Pitch and

Yaw, of both GA and MA runs. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.12 2DOF rise time, settling time and overshoot testing results. . . . . . . . 78

4.13 Absolute Error and Absolute Control Effort Values for 2DOF Pitch and

Yaw, of both GA and MA runs. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 Results obtained by Prasad et al. for the TRMS, using Real-valued GA . 81

4.15 Vertical (pitch) results obtained for TRMS using different GA methods

(Juang et al. 2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.16 Horizontal (yaw) results obtained for TRMS using different GA methods

(Juang et al. 2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.17 2DOF results obtained for TRMS using different GA methods (Juang et al.

2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Chapter 1

Introduction

1.1 Background

The twin rotor aircraft, most commonly known as the Helicopter, has many applications

across various transport, industrial and military operations. Helicopters have an advan-

tage over most fixed-wing aircraft, with the ability to take off, hover, and land vertically.

When compared to fixed-wing counterparts, rotary-wing aircraft operational aerodynamic

environments are often complex, introducing a plethora of issues that have become the

focus of much research (Wilbur et al. 2018).

An optimal flight pitch control system in a rotor-wing aircraft is important to many

operational aspects. High frequency system characteristics and high overshoot can induce

increased wear and damage to the structure of the aircraft and can cause discomfort and

potential harm to passengers. Furthermore, because these characteristics are undesirable,

the energy consumed performing such actions is wasted, thus reducing useful fuel and

increasing operational costs. The conventional PID controller is frequently utilised in

industry for multiple applications due to the simple architecture, and relative simplicity

in tuning for given control objectives. More than 95% of industrial control systems are

PID-based (Serradilla et al. 2020). While the PID is simple and spans many applications,

complications arise when controlling nonlinear dynamical systems, such as the twin rotor

system. Because of the widespread expertise in implementation of the PID controller,

much research has focused on methods to optimise the capability of PID controllers in

regard to nonlinear dynamical systems (Norsahperi & Danapalasingam 2020).



2 Introduction

Sarvart (2001) outlines the design and implementation of control for contemporary sys-

tems such as the twin rotor system. System design and requirements definition, followed

by modelling and analysis are the first two steps within the overarching process. With a

physical system created, and a model derived, a controller can then be designed, analysed

and implemented.

System Design and Requirement, as the name suggests, involves identifying require-

ments and designing the physical system. Often, through this stage, various control

engineers are involved to provide expert input, ensuring the system is compatible with

control techniques to be implemented later in the process. However, it is the task of many

engineers to provide control systems for a physical system or plant which has already been

designed and built.

The next step in the process, Modelling, is often the most difficult, and equally one of

the most important. The model must accurately represent the real-world system, as this

is used as the basis in designing, simulating and implementing the control law. Models

can be obtained either by mathematical modelling of the system’s physical properties, or

through iterative system identification methods.

In the third step, Control Design, the operating conditions of the plant must be deter-

mined, and an appropriate design methodology selected to suit. Many control paradigms

are available, with approaches dependent on plant type, i.e. either Single-Input Single-

Output (SISO) or Multi-Input Multi-Output (MIMO). Classical techniques such as fre-

quency domain methods are typical candidates for SISO systems, whereas modern con-

trol techniques such as state-space approaches are often better suited to MIMO systems.

Control Analysis may also be viewed as the validation phase. This step allows the con-

trol design to be verified against requirements, and if unsatisfactory, a different control

paradigm may be chosen, or, if possible, the system design itself may be altered.

Control Implementation, the final step in the process, is the operational deployment

of the control algorithm to the physical plant. Although implementation is the last step,

it is often not the final step to be performed. Real operational environments are far from

perfect, and real, non-ideal conditions can affect the real-world performance of the control

algorithm. Many disturbances such as noise and non-linearities are present in practice,

and because imperfections are often difficult to realise mathematically, these can often

be unaccounted for. Therefore, if the control does not perform as per requirements, the



1.2 The Twin Rotor MIMO System 3

process is reiterated until the system control is satisfactory.

The development of highly sophisticated Unmanned Aerial Vehicles (UAV) is a byproduct

of the surge in research performed on Artificial Intelligence (AI) techniques, such as genetic

algorithms, neural networks and fuzzy-logic, all of which address core issues such as system

modelling and optimal control. Whilst work surrounding AI is continuously gaining more

traction, such techniques are yet to be widely accepted within the control systems industry,

with historical data, literature and track record still growing. Further study within the

fields of AI and optimal control are of great importance, as a better understanding of

such technologies are crucial to widespread adoption across many industries.

1.2 The Twin Rotor MIMO System

1.2.1 Overview

The 33-949S Twin Rotor MIMO System (TRMS) is an excellent candidate for performing

experiments and simulations due to the striking similarities to real-world twin rotor sys-

tems (Sarvart 2001). However, the TRMS has some notable simplifications; the system is

attached to a tower, offering only 2 degrees of freedom (DOF), and the position and veloc-

ity are controlled through varying the speed of the rotor (Feedback Instruments Ltd. n.d.).

Real-world helicopters are not attached to a tower, and as indicated by Salazar Alvarez

(2010), offer six DOF. Further, a real helicopter’s rotor speed is generally constant, with

propulsion controlled by varying blade angles. Further similarities between the TRMS

and a real helicopter lie within the ability to capture most dynamical characteristics. Per-

haps, of particular interest, is the cross-coupling between both rotors; an activation of one

input, e.g. vertical position, will also cause an activation of movement in the horizontal

plane (Feedback Instruments Ltd. n.d.).

Both rotors of the TRMS are mounted on a beam with a counter balance, fixed to a

tower mounted on a base containing the electrical unit, which is important for interfacing

between the model and a PC. There are two inputs on the 33-949S system: the voltages

supplied to each of the two rotors, and two outputs: vertical and horizontal angles, and

angular velocity (Feedback Instruments Ltd. n.d.).



4 Introduction

Figure 1.1: The manufacturer’s image of the overall TRMS control system (Feedback Instru-

ments Ltd. n.d.)

1.2.2 TRMS Model

Feedback Instruments Ltd. (n.d.) have included the derived equations for the parameters

of the TRMS system within the 33-949S manual. It is important to note that some

parameters are arguments of nonlinear functions, and that to form a transfer function

of the system, the system must be linearised. The manual also presents experimentally-

chosen values for the parameters, which may be substituted into the equations to present

a semi-phenomenological representation of the system to be used in simulation.

A simplified system schematic is also provided in the manual, presented in Figure 1.2,

which demonstrates the simple mapping between inputs and outputs, and the cross cou-

pling modes, where ψ is the pitch and ϕ is the azimuth (yaw) rotation.

1.3 Project Aims and Objectives

Considering that classical control design methods have been extensively researched, and

are already widely accepted within industry, the focus of this project is drawn to investi-

gating AI techniques, with particular interest drawn to methods that may have not yet



1.3 Project Aims and Objectives 5

Figure 1.2: The manufacturer’s simplified system schematic of the TRMS control system

(Feedback Instruments Ltd. n.d.)

been applied to the TRMS system.

The aim stated for the project is to Optimise fuel performance to reduce operational

costs of helicopter twin rotator systems. It is desirable to continue research into poten-

tial algorithms within AI to achieve a fuel-optimal system, but as indicated in previous

sections, classical methods are indeed widely accepted, and methods which incorporate

popular components such as the aforementioned PID controller may be more easily ac-

cepted within industry. AI is an important tool that should be harnessed to achieve

continuous improvements, and solve problems that are otherwise very difficult, or even

impossible with classical methods.

To ensure these aims are realised, the following objectives are in place for this project:

� Research and analyse classical methods of control to determine if any immediate

improvements could be made on these.

� Research and investigate AI methods used to solve similar problems. The literature

review presented a few key pieces, but there are plentiful methods to be researched.

� Research Deep Learning algorithms in particular and determine if these may be

useful for solving control problems.

� Apply a novel algorithm, or make improvements to existing methods to achieve the

aims of better fuel efficiency, without sacrificing performance.

� Investigate the applicability of the results and real-world inferences. In practice,



6 Introduction

this will include testing on a test rig in the lab.

The scope of this project is broad, as a scan of much existing literature is required to

evaluate different potential methods, and apply the most appropriate to achieve the aims

and objectives of this project. The work completed in this project may be extendable to

systems of higher DOF, but preliminary priority is placed on ensuring that a functional

method is employed for a 2 DOF system, such as the 33-949S TRMS.

1.4 Dissertation Overview

An overview of the dissertation goes here.



Chapter 2

Literature Review

This chapter aims to provide a broad review of the existing literature in the control of

TRMS systems, ranging from traditional methods to AI techniques. A more comprehen-

sive study is conducted of the evolutionary Genetic and Memetic Algorithms, which is

integral to the work conducted in this research project.

2.1 Robust Deadbeat Decoupling & Control

System decoupling, especially with strongly-coupled systems such as the TRMS, is vital

to ensuring that control algorithms can perform optimally. A paper by Wen & Lu (2008)

investigates decoupling of a twin rotor system using the robust deadbeat control technique.

A thorough analysis of the system’s mathematical model is developed to simulate the

system as accurately as possible. In the deadbeat control system, the design could be

insensitive to parameter variations of up to 50%. The robust deadbeat control method

is PID-based, and separates each of the input-output paths into two SISO 1 DOF paths

and models, each according to the structure outlined in Figure 2.1

The representation between the output and input is known as the transfer function, and

for this system is derived as:

C(s)

R(s)
=

Gc(s)G(s)

1 +G(s)H2(s) +Gc(s)G(s)H1(s)
(2.1)



8 Literature Review

Figure 2.1: Typical control loop for a Robust Deadbeat Control System (Wen & Lu 2008)

Where the H(s) feedback path is H1(s) and the Ka feedback path is H2(s). The plant is

represented as G(s) and the PID control portion, which is the segment cascading between

the two summing junctions, is represented by Gc(s).

Substituting the values of each of these functions yields a fourth order closed-loop transfer

function of the form:

T (s) =
ω4
n

s4 + αωns3 + βω2
ns

2 + γω3
ns+ ω4

n

(2.2)

This can be normalised to the form:

T (s) =
1

s̄4 + αs̄3 + βs̄2 + γs̄+ 1
(2.3)

where

s̄ =
s

ωn
(2.4)

In this form, the coefficients α, β, γ and Ts′ can be obtained from the robust deadbeat

control lookup table. The desired settling time was chosen by the designers to be 2 seconds

and with K initially set to 1, all unknown values in the transfer function were able to be

calculated by virtue of simultaneous equations, and substitution.

With the parameters in the control loop for both the main rotor and tail rotor determined,

the designers were able to form the robust deadbeat control MIMO system as shown in

Figure 2.2.



2.1 Robust Deadbeat Decoupling & Control 9

Figure 2.2: Final Deadbeat Robust Control MIMO model (Wen & Lu 2008)

Both 1 DOF cases of tail and main rotor are simulated individually, ignoring the cross

coupling. The K parameters K1 and K2, which mentioned previously were set to 1

initially, are both tuned to achieve a deadbeat response. The deadbeat control was then

applied to the 2 DOF case, which includes the full model of the TRMS system – including

the cross-couplings. The desired settling time in this setting is 4 seconds for both tail and

main rotors.

In all cases, the control system met or exceeded all specifications and proved to suppress

the effects of cross-coupling. The results were compared to a simple PID control of the

system, and demonstrated that the robust control method shows a much more accurate

response to a step input than the simple PID control. Simple PID control demonstrated

drastic overshoot and settling oscillation, whereas the robust deadbeat control method

response follows the step envelope well, with very little overshoot and oscillation.

For the tail rotor SISO system, a settling time of about 6 seconds is achieved, and over-

shoot amount reduced by 20%. For the SISO main rotor, a settling time of 12 seconds

was achieved, and overshoot was fully eliminated. Similarly for the full 2 DOF system

with cross-coupling, settling time was reduced to 20 seconds and the amount of overshoot

was also reduced. Although strong effects of nonlinear components was predicted, the

system demonstrated resilience to parameter variations, as predicted by the insensitivity

to 50% plant parameter variations (Wen & Lu 2008).



10 Literature Review

2.2 System Identification

Chalupa et al. (2015) aimed to design a higher-accuracy, valid model of the Twin Rotor

MIMO system to be used as the basis of further research. The work primarily utilises a

’grey box’ approach, which involves first deriving the model from first principles (white

box modelling), and then performing measurements of the system to further refine the

model. The white box modelling from first principles is similar in nature to that presented

in Wen & Lu (2008). The first enhancement that was performed to the model, was the

measurement of certain parameters, such as the length of the counter-weight beam, to

ensure that system parameters were as accurate to the real system as possible. Any

nonlinear static functions from the mathematical model were then determined using a

phenomenological approach and polynomial approximation. Linear approximation was

used to model the cross-coupling of tail motor to elevation, whereas due to the complexity

associated with modelling the azimuth rotations caused by the main rotor, an exponential

function of moment was used. Static characteristic measurements of the main motor show

a piecewise linear relationship between elevation and control voltage. When changing the

sign of the control voltage, and thus the rotation direction of the propeller, the gain of

the system is greater in the positive control voltage range, as compared to the negative

range. Thus the system can be considered linear when operating within each of these

ranges exclusively.

The research showed that enhancing the non-linear model using grey box identification

did produce a system model more accurate than white box modelling alone. It must

be noted however, that tests completed on the tail and main rotors were each isolated,

meaning with one input set, the other is set to 0. The paper did not indicate that tests

were completed whilst setting both inputs.

The following plant model equation was obtained for the main rotor:

Gv(s) =
111.2

0.3954s3 + 0.3835s2 + 1.463s+ 1
(2.5)

The plant model equation obtained for the tail rotor:

Gh(s) =
700.7

5.61s2 + 3.992s+ 1
(2.6)



2.3 Artificial Intelligence Techniques 11

Sarvart (2001) performs extensive work in black box identification for the TRMS MIMO

system. Sarvart acknowledges that mathematical modelling is best suited to simple sys-

tems, and that complex systems are much more difficult to analyse using such methods.

Often, specialist knowledge is required for the accuracy of details such as the behaviour

of electro-mechanical components, for example. Another important point that is raised,

is that mathematical models often do not account for environmental disturbances or dy-

namics that are often ignored, and thus it is inferred that mathematical models are simply

limited. System identification through black box methods are often almost necessary for

new aircraft in which parameters and structural details are unknown.

Whilst the work by Sarvart focuses on determining rigid body modes and other details

necessary for vibration control (which is the aim of the study), the researchers were

able to determine a black box model with a high degree of confidence, obtained through

validation of both time and frequency domain analyses. A discrete-time transfer function

was identified for 1 DOF main rotor input to pitch angle output. An analysis of the

poles in the transfer function indicate directly-related physical properties of the structural

material, such as the existence of critically stable oscillatory modes and state variables

such as rigid body motion. Strong couplings were identified between main rotor and pitch,

main rotor and yaw, tail rotor and yaw, however, very little interaction between tail rotor

and pitch was observed and was thus omitted from a model fit. The interaction between

main rotor and yaw was also identified as imperfect, however the resulting model was still

deemed acceptable for use in controller design.

2.3 Artificial Intelligence Techniques

Thus far, traditional methods of control, decoupling techniques and system identification

have been briefly discussed. These methods are widely accepted in industry and are rea-

sonably straightforward in implementation. However, whilst these methods are reliable

and produce good results, AI techniques have continuously shown through many fields,

that better results are achievable. Plentiful research has been conducted in the applica-

tion of AI to solve problems in control, such as optimisation and modelling. Increased

research is critical for increased industrial confidence in implementing methods based on

AI techniques.



12 Literature Review

Serradilla et al. (2020) investigates the use of AI in tuning parameters of controllers for

DC motors based on two objectives: high productivity and efficiency. Meta-heuristic AI

techniques, based on genetic algorithms, were utilised to adjust PID controller parameters

to achieve the desired objectives. The meta-heuristics approach searches for optimal

solutions within a given problem space, which is know as exploration. Due to the highly-

dimensional nature of the problem space, it is generally not feasible to explore all potential

solutions. Therefore, reasonably good solutions are found and then further refined.

The first step in the paper presented by Serradilla et al. (2020) involves gaining a de-

scription of the model through mathematical modelling. This step is synonymous with

system identification through white box modelling. A relevant point to note is that the

energy expenditure of the DC motor is modelled. A model of the energy expenditure of

the system is necessary if this is to be optimised.

It is helpful, and also necessary, that a brief review of PID control is presented in the

paper. A set of performance indexes are useful for determining the accuracy of the con-

troller, and provide a means of assessment for the choice of gains and parameters selected

in implementation. Whilst the details are not presented here as these are reasonably

well-known and are learnt in most undergraduate engineering control courses, the most

widely used performance indexes are settling time, decay ratio, overshoot and steady-state

error. These performance indexes are the most common and are determined against step

changes in set point response. If the reader is unfamiliar with these, it is recommended to

consult the referenced paper for the definitions, as well as standard or typical values. Ser-

radilla et al. highlights that whilst there are frequently used approaches to designing PID

controllers such as the root-place and Ziegler-Nichols methods, these hardly guarantee

the most optimal solution.

The next step presented in the paper by Serradilla et al. (2020) is optimisation with

meta-heuristics. An objective function must be constructed to satisfy the requirements of

an optimisation problem. First, weights were assigned to each of the performance indices,

using prior work by (Naranjo et al. 2020). The four weighted parameters, plus a weighted

energy parameter, are used to formulate an equation of weights, which can then be used

to construct an error equation. The equation of weights that is formulated in the paper



2.3 Artificial Intelligence Techniques 13

is as follows:

ε = We
α+ β + γ + δ

100−We
(2.7)

α, β, γ and δ are the weighted parameters of settling time, decay ratio, overshoot and

steady-state error, respectively. We is the weighted energy parameter, which is set de-

pendant on importance.

The error function that is used is a weighted average function as follows:

error =
1

s

1

5

s∑
s=1

α · tsss + β · ds + γ · os + δ · esss + ε · energys (2.8)

The error is then utilised in the fitness function, which is defined as:

fitness =
1

1 + error
(2.9)

The paper also specifies the Genetic Algorithm architecture that is utilised for evolution-

ary computation optimisation. Ultimately the fitness function is optimised to obtain a

value as close as possible to 1, so that, satisfying Equation 2.9, the error approaches 0.

Results of the research saw the ability to find optimal control parameters whilst con-

sidering both performance and energy criterion. Furthermore, it was discovered that

increasing the weight of energy results in poorer performance of settling time, decay ra-

tio, overshoot and steady-state error, although some combinations were identified that

demonstrated good energy savings, with little impact to performance. A final note is that

the importance of energy consumption is specific for each real motor. Thus, an analysis of

a motor, or in the general case the plant, must be performed before applying the strategy

(Serradilla et al. 2020).

The focus of work in the paper by Doğruer & Tan (2019) concerns using FOPID optimisa-

tion techniques to perform decoupling of a twin rotor MIMO system. Genetic Algorithms

are again utilised in the optimisation process, due to heuristic methods performing better

than classical design methods. The fitness function used in the genetic algorithm archi-

tecture is the Integral of Time-weighted Squared Error (ITSE). The FOPID is similar



14 Literature Review

to a PID controller, except there are 2 additional parameters required to be tuned. The

transfer function of a conventional PID controller is:

C(s) = Kp +
KI

s
+Kds (2.10)

where each of the K terms are the Proportional, Integral and Derivative terms, respec-

tively. The FOPID controller introduces a degree of integral term λ and a degree of

derivative term µ, such that the equation then becomes:

C(s) = Kp +
KI

sλ
+Kds

µ (2.11)

It is important to note that the FOPID controller is a suitable candidate when designing

for performance criteria such as robustness and stability.

Doğruer & Tan (2019) achieves System Identification through the black box method. The

researchers make use of MATLAB’s System Identification toolbox. The identification

yielded 4 mathematical models; one for each of the paths from input to output (including

cross-couplings). With models obtained for each path, decoupled transfer functions can

be obtained by decoupling techniques covered in the work by Ben Hariz & Bouani (2015).

Using the ITSE performance criterion in the genetic algorithm, FOPID controller designs

were created for each of the decoupling transfer functions to yield decoupling controllers.

When compared to a generic PID tuned using the Simulink model that the researchers

obtained, an 8% difference between maximum percent overshoot was observed for pitch

position. Whilst a 1.8% overshoot was observed with the FOPID for yaw position control,

and 0% overshoot was observed for the generic PID, the settling time of the FOPID was

7.87 seconds, as opposed to 50.37 for the generic PID.

In a paper by Norsahperi & Danapalasingam (2020), the tuning of Fractional-Order

PID controllers is investigated, examining methods such as particle swarm-based FOPID

(PSOFOPID) and neuro-based FOPID (NNFOPID). The motivation behind the research

is similar to that found in the work by Serradilla et al. (2020), in that whilst the controller

is industry-standard, the methods of tuning do not guarantee optimal solutions.

For the PSOFOPID research performed, a new method was proposed for setting the

initial search range which prevented the algorithm from being trapped in local optima,



2.4 Evolutionary Algorithms 15

reducing the problem search space. For the NNFOPID research, the algorithm was able

to tune more practical controller parameters without the need for deep knowledge of

the system, and resulted in a lighter network. Five criteria points were used to assess

the performance of each algorithm: Square-wave characteristics, reference to disturbance

ratio, evaluation time, energy consumption of control signal and tracking performance.

Notably, the test environment was controlled using 3 different cases: no coupling effect

and wind disturbance, coupling effect only (no wind disturbance) and wind disturbance

only (using a wind velocity of 4.01 m/s) (Norsahperi & Danapalasingam 2020). The

researchers compared the results of each algorithm against a PID controller, optimised by

pre-searched genetic algorithms (Juang et al. 2008). Energy consumption performance of

the designed controllers is also assessed for each tuning algorithm. The energy of control

input was measured and showed 31% reduction for the NNFOPID-tuned controller, and

5% reduction for the PSOFOPID-tuned controller. The NNFOPID method also offers

accurate system positioning through reducing the steady-state error by 34% in the cross-

coupling-only case. PSOFOPID control is useful for a 27% reduction in tracking error

and yields the lowest oscillation in the cross-coupling-only case. Both methods were also

demonstrated to be robust and efficient in the wind-disturbance-only case (Norsahperi &

Danapalasingam 2020).

Ant Colony based model prediction of a Twin Rotor System is investigated in a paper by

Toha et al.(2012). The focus is drawn to system identification, and inferring an accurate

mathematical model. The components of an Ant Colony Optimisation (ACO) meta-

heuristic are sets of ant-like agents, usage of memory, stochastic decisions, and collective

and distributed learning strategies. The results of the research indicate that a stable and

satisfactory model can be extracted using the algorithm. The algorithm was also 99.33%

accurate in predicting outputs at each time step, as compared to the actual output.

2.4 Evolutionary Algorithms

This section and subsequent sections aims to draw the reader’s attention closer to Evo-

lutionary Algorithms, and in particular Genetic & Memetic Algorithms, for which is the

primary focus of this paper.

In 1859, Charles Darwin published the book Origin of Species, in which he revealed



16 Literature Review

the theory of evolution by natural selection (Ayala 2009). Since then, much work has

progressed within science that further validate and verify the theories of evolution. It

is from this work that scientists and engineers alike have been inspired by evolution

theory’s more abstract applications, such as those within mathematics and computing.

The development of Evolutionary Algorithms is a product of inquiry over recent decades,

and as the name conveniently suggests, covers a broad range of programming algorithms

which are based on the theory of evolution.

Through studying the applications of evolutionary theory to computing, various subsets

of algorithms have been discovered. Evolutionary Algorithms (EA) have birthed vari-

ous subsets of traditional algorithms such as, Evolutionary Strategy, Genetic Algorithms

(GA), Genetic Programming, Genetic Improvement, Grammatical Evolution, Linear Ge-

netic Programming, Cartesian Genetic Programming, Differential Evolution and Gene

Expression Programming. Specialised techniques include Auto-constructive Evolution,

Deep Neuroevolution, Self-replicating Neural Networks, Markov Brains, PushGP, Simu-

lated Annealing, Tanlged Program Graph, Tabu search and Animal inspired algorithms

(Sloss & Gustafson 2020). Each technique have appropriate problem domains in which

they are most effective to be employed.

2.4.1 Genetic Algorithms

Of all EAs available, the Genetic Algorithm (GA) is the most popular (Sloss & Gustafson

2020). Genetic Algorithms utilise methods that are analogous to genetic evolutionary

processes to search for optimal solutions in an often wide solution space that is unsolv-

able by existing efficient algorithms or methods. Alam et al. (2020) summarises the

components of a Genetic Algorithm in their paper covering the review, implementations

and applications of Genetic Algorithms. The concepts will be extrapolated using a PID

tuning scenario to better illustrate the concepts involved. The first consideration is usu-

ally the objective function; this is an equation or set of constraints that combines target

characteristics, such that the equation can either be minimised or maximised to obtain

the best candidate solutions. An example of this has been covered in a previous section

of the literature review when analysing the work by Naranjo et al. (2020), where some of

the desired variables were step response characteristics such as settling time, overshoot

and energy. Candidates are the variables that are required to be tuned in order to achieve



2.4 Evolutionary Algorithms 17

the desired fitness of the objective function. In the case of this example, the candidates

are PID control variables Kp, Ki and Kd. The candidates are usually encoded to a suit-

able representation, i.e. binary strings, however, for this case, it is most appropriate to

keep the PID variables as floating-point numbers, as these are the type in which they are

implemented.

To start the Genetic Evolution, a random population of potential candidates must be

generated. Each individual candidate is a solution to the target problem. The popula-

tion is propagated through each iteration, better known as a generation in evolutionary

nomenclature. For each iteration, each candidate in the population is evaluated against

the objective function and a random selection of the fittest individuals is chosen to be

part of the next generation. A random sample of these individuals undergo crossover,

in which parent candidates combine attributes to produce offspring candidates. Another

randomly chosen sample set is subject to mutation, in which the individual is randomly

altered to introduce diversity in the population. The former process is used to exploit

good characteristics in candidates and encourage convergence to an optimum, whereas

the latter ensures that a local optima is not overly-exploited, ensuring that more ground

is covered in the hypothetical solution landscape, and that other potential areas of global

optima are discovered. The balancing of both exploitative and exploratory procedures

is also the subject of much research (Zhao et al. 2008). The final step in a generation

involves what could be essentially termed as ’survival of the fittest’, in which, through

a semi-stochastic method (where fitness is used as a weighting), individuals are selected

to become part of the following generation. Through iterating this process through a

number of generations, the population will become ’fitter’, and when generated offspring

demonstrate no significant differences to previous populations, the candidates can be said

to have converged to an optimum. In some instances, convergence may not occur, and

other termination criteria may be met, causing the algorithm to conclude. A common

termination may simply be that the maximum number of generations has been exceeded.

A general overview in the form of a flowchart is depicted in Figure 2.3.

2.4.2 Genetic Algorithms and Control

GAs are certainly not scarce within existing literature, and a brief survey is presented here

to demonstrate the breadth of research, especially as applied to tuning PID parameters.



18 Literature Review

Figure 2.3: Basic General Flowchart of a Genetic Algorithm (Albadr et al. 2020)

In a paper by Jayachitra & Vinodha (n.d.), a GA is applied to a PID controller for a non-

linear Continuous Stirred Tank Reactor plant. The researchers found that the optimised

PID allowed the plant to operate within the entire operating range, overcoming limitations

of the linearity of the PID, with satisfactory set point tracking and disturbance rejection.

The objective function to optimise in the genetic algorithm was the weighted sum of

Integral Square Error (ISE), Integral Absolute Error (IAE) and Integrated Time Absolute

Error (ITAE), as the weighted sum indices are more appropriate than the performance of

each standalone index. The definition for each of these functions is given in Equations 2.12,

2.13 and 2.14

ISE =

∫ ∞
0

[e(t)]2 dt (2.12)

IAE =

∫ ∞
0
|e(t)| dt (2.13)

ITAE =

∫ ∞
0

t |e(t)| dt (2.14)

where e(t) is the difference between the input setpoint signal r(t) and the output signal



2.4 Evolutionary Algorithms 19

y(t), i.e.

e(t) = y(t)− r(t) (2.15)

The weighted sum equation takes the form:

J(Kp,KI ,KD) = w1 (ISE) + w2 (IAE) + w3 (ITAE) (2.16)

where the weights w1, w2 and w3 were chosen to be 0.4, 0.2 and 0.4 respectively. The

researchers utilise Binary-String Encoding for representing the parameters of the PID

(the genes in evolutionary terms). The reproduction probability formula used is:

Pri =
Fi(θ)∑Pl
i=1 Fi(θ)

(2.17)

The crossover method, population and generation sizes were left unspecified, and the

mutation was briefly explained to be achieved through randomly flipping a bit in a gene

at a uniformly random chosen index.

Mirzal et al. (2012) investigates using a genetic algorithm to tune the gains of a PID

controller for a First Order Lag plus Time Delay (FOLPD) system. The researchers’

approach involved comparing the algorithm against multiple objective functions, the Iter-

ative Method and the Ziegler-Nichols Method, and selecting the best one. The objective

functions were ISE, IAE, ITAE, as defined previously, with another two common objective

functions included in the comparison, namely MSE and ITSE, as defined in Equations 2.18

and 2.19

MSE =
1

t

∫ τ

0
[e(t)]2 dt (2.18)

ITSE =

∫ τ

0
t [e(t)]2 dt (2.19)



20 Literature Review

Additionally, the fitness value for each chromosome is defined as:

fitness =
1

performance index
=

1

J
(2.20)

where performance index is the objective function used (usually defined as J). It appears

that the researchers used MATLAB’s implementation of genetic algorithms. For the

genetic algorithm, the termination criteria was set to 300 maximum generations, the

population was chosen to either be 80 or 100 chromosomes, floating-point was used to

encode the genes, Normalised Geometric Selection was the preferred parent selection

technique, arithmetic crossover for floating point numbers were used, with 4 crossover

points selected and the mutation rate set to 0.1%. Standard performance measures were

analysed: percentage overshoot, settling time, rise time, peak time and stability margin.

Criteria for settling time was chosen to be 5% and 0-95% criterion was used for rise time.

As predicted, the GA methods performed better than the Iterative and Ziegler-Nichols

Method. Perhaps unsurprisingly, each objective function yielded different characteristics,

with strong performance in some indices, whilst weaker in others.

The majority of a paper by Devanshu (2017) describes the GA configuration used to tune a

PID controller for a process control. The population was chosen to be about 80, as research

suggests that a population size between 30 to 100 is usually optimal, and the researcher’s

own experimentation revealed that out of experiments with 40, 60 80 and 90 chromosomes,

sizes of 90 and above do not result in much improvement. For reproduction selection, the

Roulette Wheel method was preferred for its simplicity. Multi-point crossover was the

preferred choice for the recombination operator, as Uniform crossover was believed to be

capable of dismantling perfectly fit genes, thus rendering it useless in the next generation.

It is unclear whether 0.1% or 0.01% was chosen for the mutation probability, however

it is assumed that one of these was chosen for implementation. Elitism is implemented

in the GA by preserving the best individual in each iteration, and ensuring that it is

propagated to the following generation if the current generation fails to yield a better

solution. No detailed mention is made of the selected objective function in this particular

paper. The GA algorithm was demonstrated to have a visually better step response than

the Ziegler-Nichols method.

In an article by Mahfoud et al. (2021), the GA is applied to tune the PID controller for

the Direct Torque Control of a Doubly Fed Induction Motor (DFIM). The GA used was



2.4 Evolutionary Algorithms 21

encoded using real numbers, as this appeared to be the most efficient, and reasonably

simple to implement. The first population was generated heuristically to ensure that

the algorithm evolves ’good’ genes. Maximum values of KP , KI and KD were set to

100, 10 and 1 respectively and all parameters had a minimum value of 0. It was noted

that research discovered optimal population sizes between 10 and 160, and that 20 was

chosen for initial implementation. Equations 2.12, 2.13 and the weighted function in

Equation 2.16 was used, and the performance of each is compared. The objective func-

tions are each converted to the fitness function given in Equation 2.9. The Tournament

Selection method was used for parent selection, as it yielded the best results through

experimentation. The probability of crossover is suggested to be within range [0.6, 0.99],

and was therefore chosen as 0.8. The probability of mutation should be between [0.001,

0.01], and was chosen as 0.001. The GA successfully improved response time by 82.67%

and rejection time by 72.21%, reduced overshoot and electromagnetic torque ripples by

100% and 16.16% respectively, and minimised Total Harmonic Distortion in the stator

and rotor currents by 53.76% and 34.55% respectively.

Alharbi & Gomm (2017) conducted research to optimise PID controllers for a Multi-

variable (MIMO) Process. In its simplest representation, the control loop is reminiscent

to the MIMO model of the TRMS system as depicted in Figure 1.2. A review of the

general methodology is worthwhile, as the methods presented could be well applied to the

TRMS. To allow the reader to better illustrate the system architecture and follow this

analysis better, the Shell oil process model overview is shown in Figure 2.4.

Figure 2.4: Shell process oil system overview (Alharbi & Gomm 2017)

It may benefit the reader for the sake of contextual application to this project, to relate

G11 to the Main Path for Pitch, G12 to the Cross Path from Pitch to Yaw, G21 to the

Cross Path from Yaw to Pitch and G22 to the Main Path for Yaw.



22 Literature Review

Alharbi & Gomm first optimise controllers for the system plant of each SISO-reduced path:

from u1 to y1 and from u2 to y2, corresponding to the plant transfer functions of G11 and

G22 respectively. To achieve this, the researchers ran optimisation for a PID wrapped

around each of these two transfer functions so that the controllers were considered for its

own plant individually, without any cross coupling considerations between the two input

lines. This was tested both by simulating each path separately, i.e. u1 to y1 and u2 to y2,

and by testing the entire system with cross-couplings present. When testing the entire

system, u1 was first set to a step function of r(t) = 1 and u2 set to 0, then vice versa

to test the u2 to y2 line. The plots for both outputs were obtained for both scenarios.

It must be noted at this point that the objective function chosen was ITAE, as given in

Equation 2.14.

Alharbi & Gomm then perform optimisation on each of the two PIDs for the whole-system

configuration, as in Figure 2.4. To do this, the researchers first set the parameters of the

PID controller for G22 equal to the parameters found in the SISO instance. The PID for

G11 is then optimised, using the error term:

e1(t) = y1(t)− r1(t) (2.21)

in the GA’s ITAE objective function. The PID for G22 is optimised by using the error

term:

e2(t) = y2(t)− r2(t) (2.22)

in the GA’s ITAE objective function. The testing steps used to obtain the step response

results are the same as detailed for the SISO-optimised case.

Most importantly to review, however, is the novel calculation of the objective function

using both the error terms e1(t) and e2(t), so that the objective function becomes:

ITAE =

∫ ∞
0

t |e1(t) + e2(t)| dt (2.23)

This allows the simultaneous optimisation of ensuring that the path supplied with r(t) = 1

follows a unit step response, and the other path, with r(t) = 0, remains at 0. Inspection



2.4 Evolutionary Algorithms 23

of the ITAE function and the corresponding error terms can verify this; in the situation

where r1(t) = 1 and r2(t) = 0, if e1(t) and e2(t) are minimised, the response will tend

towards a step response for y1(t), and will tend toward 0 for y2(t). The process for

optimisation is the same as the previous method that the researchers conducted. This

method of optimisation performed comparatively better than the other methods that

were conducted by the researchers, demonstrating improvements in most of the standard

performance criteria such as rise time, overshoot and settling time, whilst also achieving

the lowest ITAE value.

More sophisticated GAs have also been applied in research. An article by Lin & Liu

(2010) focuses on tuning the parameters of a PID controller using an adaptive GA. The

Adaptive Genetic Algorithm (AGA) used is different to a classical genetic algorithm in

that the rate of mutation (Pm) and crossover (Pc) are automatically increased when the

fitness of individuals in the population indicates a convergence toward a local optimum,

and are decreased when the population fitness tends toward dispersive characteristics.

The mutation (Equation 2.25) and crossover (Equation 2.24) probability are adjusted

with the following equations:

Pc =


pc1 f ′ < favg

pc1 − (pc1−pc2)(f ′−favg)
fmax−favg f ′ ≥ favg

(2.24)

Pm =


pm1 f < favg

pc1 − (pm1−pm2)(fmax−favg)
fmax−favg f ≥ favg

(2.25)

The fixed maximal cross probability is pc1, fixed minimum crossover probability is pc2,

fixed maximum mutation probability is pm1, fixed minimum mutation probability is pm2,

fmax and favg are maximal fitness and average fitness of population respectively, f ′ is

the fitter of the individuals to be crossed and f is the fitness of the chromosome to be

mutated. In the work previously examined by Mahfoud et al. (2021), the crossover

probability interval of [0.6, 0.99] and mutation probability interval of [0.001, 0.01] could

be assigned to the respective minimum and maximum crossover and mutation values, if

an adaptive algorithm were to be designed.

Lin & Liu also clearly outline the following GA configuration of PID parameter bounds:

0 to 20 and 0 to 1 respectively, chromosome encoding method: binary number encoding,



24 Literature Review

population size: 50, generation size: 100, crossover rate: 0.6, mutation: 0.06, reproduc-

tion method: roulette wheel, crossover: single point crossover, mutation: single point

mutation. The objective function used is a weighted version of the ITAE, equation, such

that:

J =

∫ ∞
0

(w1|e(t)|+ w2u
2(t)) dt+ w3 · tu (2.26)

where w1, w2 and w3 are the weights, e(t), as defined in Equation 2.15 is the error between

the reference setpoint signal and the system output, u(t) in this context is the controller

effort (output) and tu is rise time. The penalty function in Equation 2.27 is also used to

reduce overshoot when the error is less than 0:

J =

∫ ∞
0

(w1|e(t)|+ w2u
2(t) + w4|e(t)|) dt+ w3 · tu (2.27)

Where w4 is the weight for the added penalty term. The fitness function is as defined in

Equation 2.20.

The AGA method applied shows good results when compared to the Ziegler-Nichols and

Classical Genetic Algorithm (CGA) methods. The authors also claim that the simple

structure and low computational complexity make the algorithm suitable for online adap-

tation.

The Real-coded GA (RGA) is used to tune the PID controller for the TRMS, using

predetermined search range, in a paper by Prasad et al. (2013). To determine the initial

search, Simulink’s Design Optimisation Library CDO tool was attached to the signal to be

optimised, and desired step response characteristics were specified. The gradient descent

method was then chosen as the optimisation method. The CDO was then run to provide

an initial range for the PID parameters.

To run the RGA process, 12 chromosomes with three genes each were used for 1-DOF

systems and 20 chromosomes with 12 genes each for the 2-DOF system. Roulette wheel

selection was used, where the probability for selection for each chromosome is:

Pi =
ξi∑λ
t=1 ξt

(2.28)



2.4 Evolutionary Algorithms 25

where ξ is the fitness of the individual chromosome. Crossover method used is whole

arithmetic recombination, using the following two equations:


xi = (1− β)ai + βbi

yi = (1− β)bi + βai

(2.29)

where A = [a1, a2, ..., ai] and B = [b1, b2, ..., bi] are the resultant offspring as a result of

the cross over, and β is a random number in the range [0, 1]. It should be noted that

β = 0.5 will produce identical offspring. For mutation, the randomly selected genes are

modified so that they take the value determined by Equation 2.30

xk = Lk + r(Uk − Lk) (2.30)

where Lk Uk are lower and upper bounds respectively of the values that a gene can take,

and r is from [0,1]. The objective function used was the integral of absolute error and

squared control energy, or ITE, as given in Equation 2.31

IITE = (T 2

∫ T

0
|e(t)| dt) +

∫ T

0
u2(t) dt (2.31)

where T is the simulation time. The fitness function used was:

fitness =
30000

IITE
(2.32)

The value in the numerator is explained in a work referenced later in this section. Results

showed better performance as compared to the CDO optimisation.

A similar strategy is seen in the work by Juang et al. (2008), in that to determine the

initial search range, the Nonlinear Design Technique (NCD) was used. This yielded initial

values of approximately 1 for all PID controller parameter gains, therefore, the search

range was initially set to [0, 2]. A comprehensive, modified ITSE objective function was



26 Literature Review

used for control over multiple performance indices:

IPITSE = T 2

(∫ t2

t1

(y(t)− 1.1r(t)) dt
∣∣
Mp ≥ y(t) ≥ 1.1r(t)

+ 2

∫ t4

t3

(y(t)− 1.5r(t)) dt
∣∣
Mp ≥ y(t) ≥ 1.5r(t)

+

∫ tr

0
0.9r(t) dt

∣∣
0.9r(t) ≥ y(t)

+

∫ T

tss

|y(t)− r(t)| dt
∣∣
t ≥ steady−state time, |e(t)|≤ 0.05r(t)

)

+

∫ T

0
u2(t) dt

(2.33)

where T is the total running time, t1 to t2 is the time period when y(t) > 1.1r(t), t3 to

t4 is the time period when y(t) > 1.5r(t), tr is rise time, tss is steady-state time and Mp

is the maximum overshoot of y(t). The fitness function was chosen to be:

fitness =
10000

IPITSE
(2.34)

The numerator of this equation, often referred to as A, is generally chosen to be a large

constant, which reportedly enhances the differences between chromosomes. For the GA,

population size was set to 10, number of generations was 200, simulation time was from

0 to 50 seconds and sampling time was 0.05 seconds. Roulette wheel selection was used

for Selection and Reproduction, mutation is achieved through using Equation 2.30 with a

rate of 0.025, and crossover was applied by using a modified crossover process with a rate

of 0.025. This crossover method is implemented in this project, therefore implementation

is covered in Chapter 3.

The optimisation method shows to reduce error by 21% in the horizontal plane and 20%

in the vertical plane for the 2DOF test, as compared to conventional RGA optimisation.

Juang also contributed to another paper (Juang & tu 2013), which compares a similar

implementation of the GA with other optimisation methods. In this work, algorithms

were implemented on a Field Programmable Gate Array (FPGA), to achieve hardware-

in-the-loop testing.

A paper by Sivadasan & Iruthayarajan (2018) focuses on applying different evolutionary

algortithms (including the RGA) to the TRMS system, using a Nonlinear PID controller.



2.4 Evolutionary Algorithms 27

Both coupling ignored (2 PID controllers) and coupling considered (2 PID controllers +

2 cross coupling controllers) cases are investigated in this paper. The following objective

function - a variant of ISE - is used:

ISE =

∫ ∞
0

e2m dt+

∫ ∞
0

e2t dt (2.35)

which considers both the error signals of the main and tail rotor positions, where em is

the error of main rotor position, and et is error of tail rotor position. 20 independent

trials were conducted in this paper to draw useful conclusions of the performance of

each algorithm. It was concluded that PSO performs best, with the best fitness and

convergence characteristics.

An application of the Genetic Algorithm is also seen used to tune a Model Predictive

Controller (MPC) for the TRMS (Kumar & Narayan 2016). The objective function strat-

egy revolves around simultaneously optimising the infinity norm of sensitivity function

and the ISE objective function.

Literature also demonstrates that the GA is suitable for system identification of the

TRMS, using real-coded genes (Toha & Tokhi 2009).

To conclude a rather exhaustive section, it can be seen that there are many applications of

the GA within existing literature. It is beneficial to be familiar with the existing research,

to build a solid foundation of understanding and methodology for developing GAs, and

to better apply methods to the development of new algorithms, such as the Memetic

Algorithm (MA), as introduced in the following section.

2.4.3 Memetic Algorithms

A crude, but suitably simple definition of an MA, is that it is an Evolutionary Algorithm,

such as a Genetic Algorithm, with an added Local Search (LS) component. The repre-

sentation of the general flowchart of a GA in Figure 2.3 can be extrapolated to include

the LS component, as shown in Figure 2.5.

As with the core philosophy of the GA, the MA also finds its inspiration from evolutionary

theory. Memes describe cultural knowledge and ideas which often propagate and mutate



28 Literature Review

Figure 2.5: Basic General Flowchart of a Memetic Algorithm (Assiroj et al. 2021)

within generations of the human species. Within these cultures, strong ideas are often

refined and preserved, whilst weaker ideas dissipate quickly. The local search process in

a MA is then analogous to this example, in that the fittest individuals are refined and

propagated to future generations, whereas weaker individuals disappear quickly (Neri &

Cotta 2012).

For the sake of brevity, the mathematical foundation for MA is not included here; it is

anticipated that the information presented in this paper regarding MAs will be accessible

to an audience with no prior knowledge of the topic. However, if the reader is interested

in acquiring solid foundational knowledge, the article titled ”A Gentle Introduction to

Memetic Algorithms” by Moscato & Cotta (2003) provides good background and under-

standing for the key elements of LS strategy. Aside from the introduction to MA, the

chapter also includes guidelines for the genetic operators.

For instance, the authors elaborate on the recombination operator and provide guidelines

in considering an appropriate strategy. Blind recombination, which does not consider



2.4 Evolutionary Algorithms 29

individual fitness, is usually justified as the choice operator as it supposedly prevents sub-

optimal convergence through the introduction of excessive bias in the search algorithm.

However, hybrid/heuristic recombination operators are also presented, which are mono-

tonic in nature (where the child generated is at least as good as the best parent), such as

Dynastically Optimal Recombination, Patching-by-forma-completion, and a specialised

operator for the Travelling Salesman Problem - the Edge Assembly Crossover. An impor-

tant conclusion of this particular investigation is that blind crossover follows O(N logN)

time complexity, where N is the size of the input. Heuristic recombination is more ex-

pensive, but the solutions provided are usually better than the former, thus requiring to

be invoked a lesser number of times. The authors also make mention of random seeding

or injection of high-quality configurations to generate the initial population.

Another important consideration in MAs is Lamarckian Evolution versus the Baldwin

Effect. Both are strategies which describe the behaviour of improved individual(s) when

reintegrating with the population. In Lamarckian Evolution, the improved individuals

replace the original solutions that were selected for improvement, whereas the Baldwin

Effect describes the improved individuals joining the population alongside the individuals

chosen for improvement. Both strategies can present issues; for example, Lamarckian

Evolution can reduce the diversity of the population, leading to premature convergence.

To counter this, a percentage of the total improved individuals may be selected to replace

the original individuals, however, this in itself becomes another heuristic which must be

fine-tuned for the efficacy of the algorithm (Bereta 2019). In a paper by Krasnogor &

Smith (2005), the authors advocate the Lamarckian approach for running the local search

to an optimum. Coarse-grain schedulers are suggested as a simple means of avoiding the

loss of diversity caused by the Lamarckian Evolution approach, through monitoring and

application of vigorous mutation to the whole population. It must be noted that these

two strategies may also be combined, and have been done so in other research, with some

notable benefits (Choi & Moon 2005).

There are a plethora of different metaheurstics available for performing the LS opera-

tion. A paper by Thainiam (2019) investigates four of the most common: Hill Climbing

(HC), Tabu Search (TS), Simulated Annealing (SA) and Iterated Local Search (ILS).

HC stochastically iterates through neighbour solutions of a selected individual, and only

accepts the neighbour if it is a better solution than the original candidate. In TS, neigh-

bours are also visited as in HC, but with two specific alterations; the first being that



30 Literature Review

individuals with worse fitness can be accepted if no improved individuals are available, to

avoid stalling in strict local minima, and the second is that the search is prohibited from

visiting previously-searched solutions, which is achieved by utilising a memory structure.

SA considers neighbouring solutions, but uses probability to decide if the new solution

should be selected. Ultimately, the probabilistic nature of such a system should move to

a lower energy state (meaning the search becomes less stochastic), in which the optimum

should be located. The final method considered, ILS, is essentially an extension of the

Multi-Restart LS, in that a chosen LS method (in this paper it is HC) is performed itera-

tively, but upon restart, the solutions to improve are not random, but rather are variants

of the previous locally optimal solutions, modified through perturbation.

2.4.4 Memetic Algorithms and Control

Whilst the MA enjoys similar popularity to the GA for applications in many areas of

optimisation, only a small handful of articles can be found that investigate its application

to control systems. Four articles are presented here; the first two apply MA for nonlinear

system identification, and the remaining two use MA for determining the gains of a PID

controller.

In the first article (Maliński & Figwer 2015), the authors focus on nonlinear input-output

dynamic system identification using a MA for both very small and large numbers of

input and output measurements. The authors follow common memetic frameworks for

implementing the MA. In the initial stage, variables such as population size and standard

deviation for mutation are set, and procedures are implemented to adjust adaptive param-

eters when the search stagnates. The population is then processed by selecting parents

through Roulette Wheel Selection (RWS), performing crossover and mutation (if required

– this in itself was made adaptive by the authors), and then improvement through local

search. The algorithm tracks the best performing individual, which the authors label the

‘Current Leader’. The individual is kept separate from the population to ensure that it

is propagated to future generations. Crossover was chosen to be optional, and used only

on user demand. When crossover is enabled, the operation involves choosing two par-

ents, and then performing a one-dimensional memetic algorithm search to find a global

optimum along a line formed between the two parents. The mutation method involves

randomly selecting individuals using Gaussian distribution with a mean of 0 and a user



2.4 Evolutionary Algorithms 31

defined standard deviation. The rate of local search is also chosen to be adaptive, and

the local search method used is random hill-descension.

The next article by Subudhi & Jena (2009) covers an application of nonlinear system

identification using MA to the TRMS. The authors exploit three different global search

methods; GA, PSO and Differential Evolution (DE) for comparison and utilises a Back

Propagation (BP) gradient descent method for the local search component.

The third article investigates using the MA to design an optimal PID controller for a

servo-motor system (Shyr et al. 2002). The authors perform the following steps: initialise

a population of integers, use roulette wheel selection to select pairs for mating, apply

mutation and crossover to produce new individuals for the next generation, apply a hill-

climber algorithm for the local search to refine each individual, then terminate when

a solution cannot be improved upon within the nominated number of iterations. The

authors show that the MA converges faster, and to a better minimum than a Genetic

Algorithm that was used for comparison.

In the final article, a MA is used to tune a PID controller for an AVR system, where the

algorithm is DE-based (Mandal et al. 2011). The authors use a custom objective function

defined as in Equation 2.36

min f( ~K) = e−α · (ts + tr) + (1− e−α) · (Mp + Ess) (2.36)

where the control parameters ~K = [Kp,Ki,Kd] and α is a weighting factor, designed such

that a value of α < 0.7 allows the designer to preference a minimisation of rise time and

settling time, and α > 0.7 preferences a reduction of overshoot and steady state error.

Each individual is also evaluated against the Routh-Hurwitz stability criterion, in which

all values that do not pass are penalised with a very large positive constant value.

The competitive variant of DE that the authors employ is combined with a Hybrid Mu-

tation Strategy, which the authors claim reduces the likelihood of converging to local

optima, rather than the global optimum.

For LS, the authors use Solis and Wet’s algorithm, which could be categorised as a

randomised hill climber. A derivative of this algorithm is implemented in this project,

thus implementation details will be presented in the following chapters.





Chapter 3

Methodology

3.1 Chapter Overview

This chapter aims to outline the research problem and the components required to fulfil the

requirements of the project. These sections will provide the software design and decisions

made for implementation, and will highlight any limitations observed throughout the

process.

3.2 The Research Problem

As indicated from the literature review, not many papers have investigated the applicabil-

ity of the MA to control systems, and a knowledge gap has been identified in that the MA

has not yet been used to optimise the PID controllers for control and decoupling of the

TRMS. It is of particular interest to test if the MA is capable of optimising parameters to

the extent that sufficient decoupling is achievable, removing the need for the 2 additional

cross-coupling controllers.

Thus, this research aims to implement the MA to identify and analyse its suitability for

efficiently and successfully finding optimal PID parameters to both control and decouple

the system using only two PID controllers. The algorithm is analysed to determine if the

results are at least as good as, but ideally better, than existing GA implementations that

do not utilise LS methods.



34 Methodology

The key performance metrics that are analysed in this research are:

1. Total algorithm execution time

2. Sum of total absolute error between desired input setpoints and output response.

This should be minimised.

3. Sum of total absolute control effort. This should be minimised.

4. Key step response performance metrics (Doğruer & Tan 2019)

(a) Percentage overshoot

(b) Rise Time

(c) Settling Time

Items 2 and 3 can be effectively analysed by comparing fitness, as this is inversely pro-

portional to the objective function. Therefore, the objective function will be a controlled

variable in both SISO and MIMO cases separately.

3.3 The Optimisation Process

This project follows a similar process that was employed by Alharbi & Gomm (2017)

for optimising both SISO (1DOF) and MIMO (2DOF) representations of a multi-process

plant, with cross-couplings similar to the TRMS.

The linearised MIMO model can be accessed from the system manufacturer, and is sim-

plified and depicted in Figure 3.1 (Didactic 2021). The following subsections will provide

an overview of the general optimisation process to determine PID parameters suitable for

linear SISO and MIMO representations of the TRMS.

3.3.1 SISO Optimisation Process

To obtain initial starting parameters for both main (pitch) and tail (yaw) rotor PIDs,

optimisation is first performed on a SISO model of each individual pitch and yaw paths.

The SISO model for both pitch and yaw is simply the isolated path directly from input

to output, and can be extracted from the given MIMO model, as depicted in Figure 3.2.



3.3 The Optimisation Process 35

Figure 3.1: Simple Representation of TRMS MIMO System with Transfer Functions

For the SISO model, the PID is cascaded with the plant, and a negative feedback loop is

placed from the output to the input, so that the input to the PID controller is the error

term of e(t) = y(t)− r(t). The process of building this programmatically is outlined in a

following section. Therefore, the system model for both pitch and yaw paths becomes as

depicted in Figure 3.3.

The optimisation process is run for both pitch and yaw SISO systems individually to

determine good initial starting parameters, before proceeding to the MIMO optimisation

process.

Figure 3.2: Simple Representation of TRMS SISO System with Transfer Functions



36 Methodology

Figure 3.3: TRMS SISO Control System with added PID controllers

3.3.2 MIMO Optimisation Process

With good starting parameters determined from the optimisation of each SISO system,

the optimisation of the MIMO system, which takes into consideration the cross-coupling

paths, can be performed. The MIMO paths are as depicted in Figure 3.1. Similarly, a

PID controller can be cascaded with the main paths for both the pitch and yaw plant

representations. However, it is important to note that the PID should be cascaded before

the cross-coupling path in each instance; for example, the pitch path PID should be placed

before the parallel path split to the pitch path plant and yaw cross-coupling plant. The

reverse process can then be performed for yaw path PID controller.

This approach is implemented so the PID can control the errors of both the main path,

and the cross-coupling path simultaneously. This is as depicted in Figure 3.4.

When optimising one path, the input/output errors of both paths are incorporated into

the objective function. The error for the pitch path, having input r1(t) and output y1(t)

is:

e1(t) = y1(t)− r1(t) (3.1)

The error for the yaw path, having input r2(t) and output y2(t) is:

e2(t) = y2(t)− r2(t) (3.2)



3.3 The Optimisation Process 37

Figure 3.4: TRMS MIMO Control System with added PID controllers

The objective function, as discussed in further detail in a following section, is then tailored

to minimise both error functions e1(t) and e2(t) simultaneously. This is useful as a

means of using two PID controllers to simultaneously control the main path, and decouple

the cross-coupling path. This can be achieved by setting the input for the path under

optimisation to a step input of r(t) = 1, and setting the other input to r(t) = 0. If

optimisation drives the errors e1(t) and e2(t) to 0, then the main path output should be

driven towards the expected output of y(t) = r(t) = 1, and the cross-coupled path should

be driven towards the expected output of y(t) = r(t) = 0.

The following is a point form summary of the steps taken for optimising the MIMO

representation of the TRMS:

1. Incorporate both errors for both input/output paths in the objective function.

2. Fix the tail rotor PID with the parameters found in the SISO tail rotor PID opti-

misation

3. Optimise the main rotor PID, setting the main rotor input to r1(t) = 1, and the

tail rotor input to r2(t) = 0.

4. Using the results from the previous step, fix the main tail rotor PID parameters.



38 Methodology

5. Optimise the tail rotor PID, setting the tail rotor input to r2(t) = 1, and the tail

rotor input to r1(t) = 0.

3.4 Memetic Algorithm Software Design

A thorough review of existing literature is very useful in the design of any EA, as many

of the configurations and parameters for the algorithm operators rely on heuristic hy-

perparameters, having values that are often determined solely by pre-existing research.

Therefore it must be noted, that for many of the parameters outlined in the following

sections, prior research is exploited for reasonable starting values, and these are fine-tuned

or adjusted where necessary through experimentation. Thus, this highlights the first lim-

itation of EAs - that many potential parameter values may be used and that many must

be chosen posteriori.

The GA component of the MA is built using best practices discovered through a literature

review of the existing research applied to PID control tuning, and where possible the

TRMS test rig. However, there will be some modifications; whilst GA aims toward

convergence to a global optimum, most of the parameters for the operators are designed

for a balance between exploitation and exploration. In the case of the MA, this should be

mainly maintained, however a slight preference toward diversity is desired, as the added

local search component itself will search local optima using exploitation and exploration.

It is therefore desirable for the GA to diversify candidate solutions (whilst of course

maintaining sensible and feasible solutions), and for the MA LS component to intensively

focus on optimising elite individuals provided by the GA.

All code created to implement the MA is written in Matlab, and utilises a few notable

toolboxes, such as the Control Systems Toolbox and Parallel Computing Toolbox. If the

reader wishes to execute the code in their own Matlab environment, Matlab should

automatically detect and prompt to install the required toolboxes. If Matlab fails to

detect the missing toolboxes automatically, the reader may need to seek help directly

from Mathworks.



3.4 Memetic Algorithm Software Design 39

3.4.1 Population & Parameter Representation

Parameter Representation

As per many of the research articles outlined in Chapter 2, Section 2.4.2 the PID controller

parameters KP , KI and KD are encoded by real-number representation. Thus, each

individual in the population is represented as a vector, so that:

~K = [KP ,KI ,KD] (3.3)

where k1 is the Proportional gain, k2 is the Integral gain, and k3 is the Derivative gain.

Each PID parameter is referred to individually as the ’Gene’.

This representation is chosen primarily for ease of implementation, and to maintain the

highest resolution of values as possible. Often, binary representations are more efficient

than real-number encoding, but it must be noted that the performance gains from using

such representation is problem-specific, and do not translate to all problem domains.

This is discussed further in the work by Mahfoud et al. (2021), and as such, this research

follows suit.

Parameter Bounds and Initialisation

Whilst injection of high-quality configurations can be used for generating the initial pop-

ulation (Krasnogor & Smith 2005), the population is generated by random seeding for

initial testing. To select suitable bounds for each of the PID parameters, the literature

is reviewed to identify three parameter bounds from relevant research on the TRMS, and

one from MA research on a foreign system. The last two configurations included in the

paper are to test the limits of the bounds configuration. A trial run is conducted with each

of the parameter bound configurations, using a generation size of 30 and a population size

of 80. The average percentage of stable systems across all generations is recorded and the

final fittest value at the end of the algorithm is also recorded. The results are presented

in Table 3.1. It should be noted firstly that these values are recorded from one run of the

algorithm each, therefore, the values may not be truly representative of a final averaged

value across multiple runs, but for the purpose of guiding the selection of values, this is



40 Methodology

sufficient.

PID Bounds ([P, I, D]) Average Percentage of Stable Systems in Generation Fitness

[0, 4] (Prasad et al. 2013) 99.0833% 3.634

[0, 5] (Sivadasan & Iruthayarajan 2018) 99.2083% 3.7285

[0, 2] (Juang & tu 2013) (Juang et al. 2008) 98.9167% 3.7571

[0, 30] (Shyr et al. 2002) 98.8333% 3.7035

[0, 100] 97.8333% 0.50825

[0, 100], [0, 10], [0, 1] 73.875% 3.6941

Table 3.1: Table of different average percentages of stable systems across all generations and

fitness values for different parameter bound settings

The results of this brief experiment demonstrate that more unstable systems are gener-

ated, and the population struggles to converge to optimal fitness with larger parameter

bounds. Conversely, it is ideal to have reasonably large bounds, as this allows the al-

gorithm to operate over a larger solution space, and more potential solutions may be

identified. Most solutions however, from the trial runs, indicate that most optimal pa-

rameters have low values, thus the range of [0, 5] has been chosen as bounds for all of the

parameter gains.

Population Size

The number of individuals for the population size was determined through partial heuris-

tics. Research suggests that optimal population sizes lie between 10 and 160 individuals.

Small population sizes result in premature convergence due to the lack of diversity, and

large populations drastically increase computation time (Mahfoud et al. 2021). This has

been verified through experimentation in this project, therefore a value of population

size = 80 was determined to be a reasonably good value. The parameter popSize will be

used to denote the population size in the following sections, as it appears in the code.

Generation Size

A review of the collected literature in Chapter 2 is used to determine an appropriate

generation size. In the work by Kumar & Narayan (2016), 1000 generations were used

to tune a MPC. In tuning PID controllers using GAs, Lin & Liu (2010) and Mirzal et al.

(2012) use 100 and 300 generations respectively. A generation size of 30 was used for

tuning the parameters of a PID using a MA Shyr et al..



3.4 Memetic Algorithm Software Design 41

Prasad et al. (2013) and Juang et al. (2008) both performed their work on the TRMS,

and chose generation sizes of 200. Considering this value is reasonably average within

the sample of papers presented, and the work is focused on the TRMS, this value was

initially adopted in the final implementation. However, it was found that the MA regularly

converged at approximately 100 generations. It was deemed appropriate to reduce the

number of generations, as long as this variable was kept consistent over all test cases.

Furthermore, the smaller generation size is beneficial for a reduced general runtime. The

final value chosen for the number of generations is 120. The variable maxGenerations is

used to denote the generation size in the written code, and will therefore be used when

discussed in the following sections.

3.4.2 Objective Function and Fitness

Constructing Model for Calculation

The objective function is implemented in code as a MATLAB function named objec-

tive function(). The function takes two input parameters: K arr and testRH. K arr is

an array of the PID parameters to calculate the objective function for, and testRH is a

boolean to control whether or not the Routh-Hurwitz criterion is tested. The function

returns two values; fitness, which is the calculated fitness value, and stable, a boolean

which indicates if the system is stable using the Routh-Hurwitz (RH) criterion.

Before calculating the value of the objective function, a model must be first created by

cascading the system plant with the PID constructed by utilising the input K arr in the

Control System Toolbox function pid. The plant and PID are cascaded using another

Control System Toolbox function series(), and the feedback() function is used to form a

negative feedback loop, so that a complete model of the final system is formed.

To simulate the system with a step response, using the step() function, a time vector

must be supplied. To construct the time vector, the total time used is T = 50s, and a

sampling time/resolution of 0.05s (Juang & tu 2013)(Juang et al. 2008). With the step

response calculated, the control effort u(t) can be obtained from using another toolbox

function lsim(), by passing the controller as the system to analyse, 1 − y - the input to

the controller, where y is the output of the system, and the time vector t.



42 Methodology

With all variables calculated, y - the output to a step input and u - the controller effort,

the objective RH criterion and objective/fitness function can be determined.

A similar process can be followed for the MIMO representation of the system. In this

instance, however, care was taken to ensure that the controllers are cascaded before the

main and coupling path splits by first programmatically creating a representation of the

system as a subsystem with 2 inputs and 2 outputs, and cross-couplings handled internally.

The diagrammatic representation of this is depicted in Figure 3.5.

Figure 3.5: Diagrammatic representation of programmatic open-loop subsystem

The MIMO capability of the series Control Systems Toolbox function is employed to

cascade the output of each PID controller created for the pitch and yaw paths to the

respective pitch and yaw inputs of the subsystem. With that completed, negative feedback

lines from each output to the input are created by passing a 2x2 identity matrix to the

ss function; this ensures feedback lines are only formed for the main paths, and not

for cross-coupled paths. The final diagrammatic representation of the system formed

programmatically can be seen in Figure 3.6.

A helper function was created to build the required SISO or MIMO system, called

build control system(). Source code for the function can be perused in Appendix F.

Routh-Hurwitz Criterion

The RH criterion is an important mechanism which allows a designer to determine if a

given system is stable or not. If any roots lie within the right-half complex plane (i.e

positive-real), a dynamic system is unstable, therefore, all roots must lie in the open left-

half of the complex plane (negative-real) to ensure system stability (Ho et al. 1998). As



3.4 Memetic Algorithm Software Design 43

Figure 3.6: Diagrammatic representation of programmatic closed-loop subsystem with PID

controllers

Mandal et al. (2011) included the RH criterion in their objective function, it was decided

that this criterion should also be included this project’s objective function to guarantee

that proposed solutions are stable.

Thus, various Routh-Hurwitz algorithms have been constructed to analyse the poles of a

given transfer function. Most RH Algorithms are designed to construct the Routh table,

in which the values in the first column can be inspected. If all values have the same sign

(i.e., when iterating through each value in the first column, the sign does not change from

one value to the next), then the RH criterion is passed, and the system will be stable.

To construct the Routh table, a script by Sagharchi (2021) that automatically calculates

the stability by constructing the Routh table and checking the signs of the first column,

is modified into a function that returns the Routh table only, and the signs are checked

within a dedicated function is system stable(), which may be called as necessary elsewhere

in the code. Initially, a function created by Rivera-Santos (2021) was implemented, called

routh(), which returns the Routh table as a symbolic array. This was discarded, as the

function included calculating the determinate of an array, which was measured to be

computationally expensive. The routh() function appears to handle special cases which

may arise for certain system dynamics that may occur, and it is unclear whether the

function by Sagharchi (2021) is capable of handling such special cases. Both functions

have received high reviews in the Matlab File Exchange, therefore the computation-

ally expensive routh() function was discarded and the modified function of the script by

Sagharchi (2021) was kept for implementation. Results have shown no exceptions or errors

being thrown by the use of the rhStabilityCriterion() function through experimentation



44 Methodology

and testing.

The Objective Function & Fitness Function

As can be observed from the Literature Review chapter, there are many objective func-

tions implemented across different research domains. Many objective functions possess

different treatments of the error term, whilst others take a weighted approach to per-

formance criteria such as rise time, settling time and overshoot. Different weighted ap-

proaches were implemented and tested, but these contributed to greater inefficiency in

the calculation of the objective function, primarily due to the computational complexity

in obtaining step information (through either standard calculations or using Simulink’s

stepinfo() function). It was deemed inappropriate to add further computational overhead,

when programmatically constructing a model, analysing, and using response information

is already computationally expensive when multiple calls are made to the objective func-

tion. Weighted approaches are also subject to being yet another heuristic, in which further

tuning or prior knowledge is required.

Since one of the objectives of this project is to optimise for efficient controllers, the chosen

objective function is the ITE, as given by Prasad et al. (2013). This appeared to be one

of the only functions in which both errors and control effort are considered in the existing

literature, without the use of weighting coefficients. Another point of merit for choosing

the ITE objective function, is that the authors were performing their research specifically

on the TRMS. The objective function equation was presented in the Literature Review

chapter, but is included again here for convenience:

J = (T 2

∫ T

0
|e(t)| dt) +

∫ T

0
u2(t) dt (3.4)

In the same paper, the fitness function is calculated as:

fitness =
30000

J
(3.5)

This was also used for implementation in this project. The fitness function converts the

problem from a minimisation to a maximisation problem, which permits the algorithm



3.4 Memetic Algorithm Software Design 45

to remain analogous to the ’survival of the fittest’ philosophy. Numerically, due to the

proportionality between the objective function and the fitness function, the objective

function is still ultimately minimised, as the population becomes fitter. The constant

scaling factor in the numerator is not critical, and this value was taken directly from the

paper. Combined with the objective function, the fitness values yielded are around the

range of [1,10], which is easier to discriminate than the low values that would be produced

without the numerator scaling factor.

Any values that do not pass the RH criterion have a large number added to the result

of the objective function, so that when the fitness function is calculated, the resultant

fitness value is drastically lower than the fitness of individuals that pass the RH criterion.

3.4.3 Parent Selection

A large consensus of the Literature Review advocates for the use of Roulette Wheel

Selection (RWS) when selecting parents for mating, thus this has been implemented in

this work also. RWS ensures that the probability of selecting individuals is proportional

to their fitness. The probability of selection is as follows:

Pi =
ξi∑λ
t=1 ξt

(3.6)

where the numerator is the individual fitness, and the denominator evaluates to the total

fitness of the population.

Parent selection is implemented in the parent selection() function, which takes two inputs;

pop - the population, and fitVec - a vector of fitness values corresponding to each individual

in the population. The function returns the selected parent individual.

The code for parent selection is listed in Appendix F.

3.4.4 Crossover (Recombination)

The following modified crossover method as outlined in the paper by Juang et al. (2008),

is implemented for this work. The genes in the individual are selected and modified using



46 Methodology

the following equation:


xo1 = (1− β)xαpm + βxαpn

xo2 = (1− β)xαpn + βxαpm

(3.7)

where xpm and xpn are genes of two parents respectively, α is the crossover position,

randomly selected from range [1, µ], µ is the number of genes in an individual, and β is

random number within range [0,1]. Crossover is performed by firstly splitting both parent

chromosomes at the randomly chosen index. The two child chromosomes each inherit the

same genes from their respective parents up to, but not including the specified index. The

genes for both children at the specified random index are calculated using xo1 and xo2, in

the given equation above. All genes after the index are then the swapped values of both

parents.

Crossover is implemented in the crossover() function, which takes three inputs; pop -

the population, fitVec - a vector of fitness values corresponding to each individual in the

population, and crossover rate - a ratio value between [0, 1] to calculate the number of

total offspring produced. To elaborate on the third input further, a crossover rate of 0.65

would yield 0.65 × popSize, so that if popSize is 80, the number of offspring produced

would be a vector with dimensions 52x3. The number of offspring is always at least 2

offspring, The following formula is also used to ensure that the number of offspring is

always a multiple of 2:

number of offspring = floor(crossover rate · popSize
2

) · 2 (3.8)

The function returns the offspring vector, and a corresponding vector of fitness values for

each of the offspring individuals.

The rate of crossover is another heuristic which has been chosen based on research. Re-

search by Mahfoud et al. (2021) suggests that a rate of crossover should be chosen from

the interval [0.6, 0.99], and chooses the average of these two boundaries: 0.8. Therefore,

for this research a rate of 0.8 is also used.

The adaptive approach outlined by Lin & Liu (2010) was considered for adjusting the

crossover rate as the population tends toward convergence, however due to the addi-



3.4 Memetic Algorithm Software Design 47

tional complexity and time constraints of this project, this approach was not adopted for

implementation. This is a potential area for future research.

The code for crossover is listed in Appendix E.

3.4.5 Mutation

To perform mutation, a number of individuals determined by the mutation rate are chosen

at random. For each individual, a gene is chosen at random, and mutated with the

following equation (Prasad et al. 2013):

xk = Lk + r(Uk − Lk) (3.9)

where Lk Uk are lower and upper bounds respectively of the values that a gene can take,

and r is from [0,1].

The rate of mutation is also covered in the paper by Mahfoud et al. (2021). The recom-

mended rate of mutation is in the interval of [0.001, 0.01] and was chosen to be 0.001. In

the work by Mirzal et al. (2012), a value of 0.01 is used. The rate of mutation was chosen

to be 0.01, as for smaller population sizes, such as the population size of 80 in this project,

rates of 0.01 and 0.001 will both result in 1 mutated individual, because 0.01×80 < 1 and

0.001 × 80 < 1, and the minimum number of mutations to occur is configured to always

be at least 1 if the rate of mutation is non-zero.

Mutation is implemented in the mutation() function, which takes three inputs; pop - the

population, crossover rate - a ratio value between [0, 1] to be used to calculate the number

of total offspring produced, and gene bounds - a cell vector of bounds corresponding to

each of the Proportional, Integral and Derivative genes. The function returns both a

vector of the offspring and associated fitness values.

The adaptive approach outlined by Lin & Liu (2010) was considered for adjusting the

mutation rate as the population tends toward convergence, however due to the addi-

tional complexity and time constraints of this project, this approach was not adopted for

implementation. This is a potential area for future research.



48 Methodology

The code for mutation is listed in Appendix E.

3.4.6 Local Search

Following from the work by Mandal et al. (2011), in which the original Solis & Wet’s

algorithm is implemented, this project implements the modified Solis & Wet’s algorithm

by Zhang et al. (2012), albeit with a very minor alteration. In Zhang et al.’s work,

the algorithm is implemented in tandem with an electromagnetic-like global optimisation

scheme. The Solis & Wet’s algorithm is a stochastic hill-climbing algorithm. Before start-

ing the algorithm, the fittest candidate is typically chosen for improvement. A deviation

is then chosen from a normal distribution with a mean bi and standard deviation ρ. The

randomly chosen deviation value is added to all genes of the candidate solution. The

value of the mean, bi, is biased in a certain search direction (i.e. the value will become

positive or negative) dependent on whether the algorithm finds a better solution. The

standard deviation ρ is increased to broaden the search space if the algorithm detects a

convergence to local optima, and is decreased to focus the search if the algorithm fails to

find better local solutions.

The modified algorithm by Zhang et al. (2012) removes a maximum iteration limit in

favour of a global variable threshold that shrinks at the end of the LS algorithm, if

a better candidate is successfully found. The standard deviation, ρ - another global

variable, is likewise increased at the end of the algorithm. Since both variables are global,

each time the LS algorithm is run, the current search will have access to the previous

search’s ρ and threshold variables. Both shrinking of the threshold and expansion of the

standard deviation, as well as the global capability of both variables, ensures that the local

search space becomes wider as the whole MA progresses. As the algorithm iterates while

ρ > threshold, the shrinking and expansion introduced through this modified algorithm

also reduces the effective number of iterations as the MA progresses to convergence.

In the implementation for this project, some small changes were made to the LS algorithm.

It was found that the LS would occasionally stall, thus resulting in the exit criteria

(ρ > threshold) never being met. Thus, the maximum iteration limit was reintroduced

and set to 100. Reintroducing the maximum iteration did not negatively impact the LS

capability, and indicated potentially better performance (although this may be anecdotal

as full verification was not performed).



3.4 Memetic Algorithm Software Design 49

Neither of the two articles that investigate the MA and PID control provided the rate of

Local Search. The modified Solis & Wet’s algorithm is typically performed on the best

solution. There is evidence in research to suggest that this is more a limit of computing

power. In this project, a rate of 0.05 was used so that 4 of the fittest individuals were

subject to local search. This specific number was chosen, as the maximum number of

cores available on the test machine is 4, therefore the local search can be split between

4 workers, with the 4 local searches taking approximately the same amount of time as

performing 1 local search. This alludes to the last modification made to the LS algorithm;

the scaling factors of 0.2 and 5 for threshold and ρ respectively, are normalised by the

number of candidates selected for optimisation. This is done to compensate for the LS

being called on more than one individual per generation. All other parameters are used

as per the work by Zhang et al. (2012). The parameters are listed here for convenience:

� ρ - standard deviation initial value: 0.01

� threshold - termination condition initial value: 0.001

� maxF - maximum number of failures for decreasing ρ: 3

� maxS - maximum number of successes for increasing ρ: 3

� conF - exponential factor for increasing ρ: 2

� maxF - contraction factor for decreasing ρ: 0.5

For pseudocode of the algorithm, the reader should refer to the work by Zhang et al.

(2012), whilst also noting the small changes made in this project.

3.4.7 Survivor Selection

The crossover, mutation and local search operations introduce additional individuals to

the population, such that the population grows greater than the original size. Survivor

selection is used to cull the population back to the original desired size. To maintain

diversity, rather than select the population size of fittest individuals, tournament selection

was used to force popSize number of the total individuals to fight for a place in the next

generation. This method has been reported to provide good results when compared to

other selection processes (Mahfoud et al. 2021).



50 Methodology

Tournament selection is a simple method of sample and select, where k individuals are

selected to complete from the extended population, and the value with the highest fitness

value is selected. This process is repeated popSize number of times, so that the final

population size is reduced back to popSize. Commonly selected values of k are 2, 4 and

7, and for this project a simple binary tournament with k = 2 is used. This method

of selection is useful, in that it is simple and efficiently implemented in non-parallel and

parallel architectures, and has a time complexity of O(N), where N = popSize, as sorting

of the population is not required (Fang & li 2010).

The survivor selection also permits the preservation of elite individuals - commonly re-

ferred to in literature as elitism. Prior to performing any of the operator methods, the

elite individuals are preserved so that they are guaranteed a place in the next gener-

ation. Thus, N number of elite individuals are selected and propagated directly to the

next generation during survivor selection. The number of tournaments held then becomes

popSize − N . A get elites() helper function is created to assist in retrieving eliteCount

number of elite individuals. The function takes three inputs; pop - the population, fitVec

- a vector of fitness values for each of the population individuals, and eliteCount - the

number of elites to select. The function returns both a vector of elite individuals and a

vector of corresponding fitness values. According to research by Mishra & Shukla (2017),

a lower amount of elite individuals was better for avoiding premature convergence to a

local optima, with 0 elites surprisingly giving the best results. However, for this research,

the eliteCount is set to 1, to introduce the bare minimum amount of elitism, but to also

guarantee that at least one elite is propagated throughout each generation.

Survivor selection is implemented through the surivor selection() function, which takes

five inputs:

� extended pop - the extended population with the results from all the operators

� extpop fitness - the fitness of each individual in the extended population

� elites - the elites to propagate directly to the next generation

� elites fitness - the fitness of the elites

� pop size - the desired population size for the next generation

The function returns a vector of the next generation and a vector of fitness values for



3.5 Implementation Notes 51

each individual of the next generation.

The code for survivor selection is listed in Appendix E.

3.5 Implementation Notes

3.5.1 Simulation Workstation Specifications

The specifications of the PC used for optimisation and simulation is as listed in Table 3.2

CPU Intel (R) Core(TM) i7-7700HQ CPU @ 2.80GHz

GPU NVIDIA GeForce GTX 1050

RAM 16.0 GB

OS Windows 10 Education

System Type 64-bit operating system, x64-based processor

Table 3.2: Workstation PC Specifications

3.5.2 Parallelism

The code written for this project makes use of the Parallel Computing Toolbox by Mat-

lab. The toolbox utilises multicore CPUs/GPUs and/or clusters to perform computations

in parallel (Mathworks 2021b). In this work, the parfor and parfeval constructions are

used primarily to perform expensive computations in parallel, where possible. The reader

may peruse the source code attached in the appendix and find where computations are

performed in parallel by identifying the parfor loops, and the parfeval function calls.

Matlab utilises ’workers’, which are essentially parallel computational engines in which

a scope of code can be sent for execution.

By default, Matlab uses a number of workers equal to the number of physical CPU

cores running a single computational thread. Even though many CPU’s make use of

hyper-threading (i.e. multiple virtual cores per physical core), some resources which are

important for computations, such as Floating Point Units, are shared between virtual

cores, with only one physical unit per physical core. Therefore, it is usually optimal

to run one worker per physical core. In this project, a parallel pool of 6 workers was



52 Methodology

implemented, mainly due to experimental results. 6 workers in nearly all cases performed

as well as 4 workers, with occasionally outperforming 4 workers only. Being a 4-core

system with 2 threads per core (8 total threads), 8 workers was tested also. However, 8

workers resulted in the PC becoming unstable, therefore, a number of workers above 6

was avoided (Mathworks 2021f).

Much of the written code utilises parfor loops. These are similar in nature to normal for-

loops, except that code inside parfor loops are sent to workers for execution. Executions

are performed in a nondeterministic order, therefore loop iterations must be consecutively

increasing integer values and the body of the loop must not be dependent on previous it-

erations (Mathworks 2021d). For some dependencies, Reduction Variables can be utilised

(Mathworks 2021e), which was implemented for some cases in this project. Most cases

that fit the requirements were implemented as parfor loops. In deciding when such loops

can be used, the Decide When to use parfor guide was consulted (Mathworks 2021a). An-

other limitation of the parfor loop worth discussing, is that directly nested parfor loops

are not supported, with the exception of functions containing parfor loops that are called

within an outer parfor loop. This limitation meant that different runs of the algorithm

were required to be conducted sequentially, rather than using a parfor loop, as the main

code contained parfor loops.

Also included in the toolbox is parfeval, which can be used to run functions on paral-

lel pool workers (Mathworks 2021c). This function was specifically used to perform the

mutation, crossover and local search operators in parallel, as well as the get elites() func-

tion. Each of these functions/operators are able to be run independent of each other,

therefore parallel function evaluation was both sensible and beneficial in these cases. As

with parfor, the parfeval is limited in that functions that are already executing on parallel

workers cannot execute nested parfeval functions. This is another reason why, as in the

example given previously, different runs of the MA cannot be executed in parallel. The

client (workstation) is the only environment capable of calling parfeval.

The Parallel Computing Toolbox has been integral to ensuring good efficiency of the MA.

To assist in identifying bottlenecks and candidates for parallelisation, Matlab’s Pro-

filer tool was utilised. The Profiler tool provides detailed analysis, such as number of

calls, total time, self time, and presents a flame graph for visualisation. For examples,

the reader is recommended to visit the web page <https://au.mathworks.com/help/

matlab/matlab_prog/profiling-for-improving-performance.html>. Through us-



3.5 Implementation Notes 53

ing this tool, areas of improvement were identified, and in most cases, parallelisation,

or other basic fixes, drastically reduced execution time.

3.5.3 Testing and Verification

Due to the stochastic nature of EAs, a run may yield exceptional results, but a non-zero

probability exists that reasonably poor results are produced. It is common in literature for

many runs of the algorithm to be executed, and then analysed. Due to the computational

expense of the GA, and particularly the MA, amassed with tight time constraints, only

5 runs for each case were executed. Therefore, the best individuals for each run are

evaluated at the end of execution, and the run whose individual is the median of the set

of runs is chosen for analysis.

First, verify the GA produces results that are as good, or better than existing GA research

on TRMS. This will verify that the implemented GA is suitable as a testing benchmark

for the MA. To do this, compare GA results for Pitch and Yaw 1DOF (SISO) systems to

the existing research. If the GA performs equally or better, the GA is a good benchmark,

and it can be used with confidence for comparison with the MA results. If not, analyse

any shortcomings. MA results may still be compared to the GA testing results, but

comparison directly to established research is the most appropriate procedure. To perform

comparisons, use step, sine and square inputs to find the absolute error and absolute

control force. Step response characteristics should also be compared between GA and

MA results. Both Prasad et al. (2013) and Juang et al. (2008) clearly present results in

their work on the TRMS. With similar parameters such as sampling time and sampling

length, and by using similar evaluation methods, the results in this project can be directly

compared. To fulfil all the requirements outlined in Section 3.2, the mean run times of

GA and MA SISO tests will also be compared.

Second, test the MA MIMO parameters on the linearised 2DOF system. Most literature

utilises 2 main path controllers and 2 controllers for the coupling paths for the TRMS,

whereas this research utilises 2 controllers to perform both control and decoupling. Thus,

it is appropriate to compare the MA MIMO test results directly to the GA MIMO test

results, rather than comparing to results found in the literature. Juang et al. (2008)

explores methods for testing the MIMO representation of the TRMS, therefore similar

procedures should be implemented for testing the linearised 2DOF system. A step re-



54 Methodology

sponse test should be done for each main input/output path, where one input is subject

to a step, and the other is set to 0, as discussed in (Prasad et al. 2013) and (Alharbi

& Gomm 2017). In a similar manner to the first step, ensure that all key requirements

outlined in Section 3.2 are addressed.

Lastly, perform a test of the MA MIMO parameters on the nonlinear TRMS system, which

is the closest representation of the real system. Similar methods from the second step may

be employed here also. Also, a test of the GA MIMO parameters on the nonlinear TRMS

system should be performed for comparison against the MA MIMO results, ensuring to

address all key requirements outlined in Section 3.2.

To summarise the steps for testing of results:

1. For both Pitch and Yaw 1DOF Systems:

(a) Test step, sine and square responses for the PID parameters obtained from

GA optimisation. Use the same testing parameters as Prasad et al. (2013)

and Juang et al. (2008) so that results can be compared.

(b) Repeat the process with the PID parameters obtained from MA optimisation.

2. For Linear 2DOF System:

(a) Use the same MIMO testing parameters and methodology as presented by

Juang et al. (2008) to test step, sine and square responses for the parameters

obtained from GA optimisation.

(b) Perform single-path step response testing for both pitch and yaw, similar to

the method outlined at the end of Section 6.2 in the work by (2017) Alharbi

& Gomm.

(c) Repeat steps 2.(a) and 2.(b) for the MA optimisation results

3. For Non-linear 1DOF and 2DOF system:

(a) Repeat step 1 and 2 for the nonlinear system. Nonlinear simulation results

are not presented in current literature for the TRMS, therefore the results in

this step will be compared to those obtained from the previous steps. Again,

in this step, GA-optimised results should be compared to the MA-optimised

results.



3.6 Project Planning 55

3.5.4 Hardware Implementation

Due to project time constraints, hardware implementation was not investigated. Re-

sults are validated on the nonlinear simulation model as the closest representation of the

physical system. Therefore it can be somewhat inferred that the results obtained on

such a system will be reasonably representative of physical implementation. Hardware

implementation is briefly discussed as part of potential future work in Chapter 5.

3.6 Project Planning

3.6.1 Resource Requirements

Certain resources were required to ensure that this project achieves its objectives. The

largest investment required for the project is time. The project magnitude of effort called

for approximately 350 hours over the period of February 2021 to November 2021. This

is based on the project minimum requirement of 310 hours, and allowed additional time

for iterative design and testing, and also factored the potential of further research of

more advanced methods. Specific software and equipment are necessary in the success-

ful completion of the project, however most of these are readily available and already

acquired or are accessible through USQ. Time was allotted for obtaining pre-requisite

knowledge, investigation, implementation, iterative testing, optimisation, dissertation re-

view and writing, and communication with USQ supervisors for any required assistance

and feedback/review at project milestones.

Most aspects of the project were able to be conducted outside of USQ, using personal

equipment and resources. Due to time constraints, access to USQ laboratories and the

33-949S TRMS model to conduct real-world testing was not included as a requirement

for fulfilling the aims of this project. The student has used a PC laptop, replacing the

need for utilising USQ PCs.

The planned resources drafted at the start of the project is compiled in Table 3.3.



56 Methodology

Table 3.3: Table of Required Project Resources

Risk Assessment

The risk assessment is listed in Appendix B.



Chapter 4

Results and Discussion

4.1 Results

4.1.1 SISO Optimisation Results

Pitch Optimisation Results

Genetic Algorithm

Table 4.1 presents the optimisation results of 5 independent runs of the GA pitch opti-

misation. The maximum fitness is plotted against generation number for each run of the

algorithm, and is shown in Figure 4.1. Similarly, the average fitness per generation for

each run of the algorithm is plotted and shown in Figure 4.2. Run 4 was identified as the

median performer in the set of runs, and was chosen for analysis. The step response for

the fittest individual in run 4 is shown in Figure 4.3. The average iteration run time for

the GA optimisation on the pitch path was 614.117 seconds.



58 Results and Discussion

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 2.29 3.1198 13.4185 4.0609 Yes

Run 2 0.98586 1.3633 4.3317 9.5049 Yes

Run 3 2.3982 3.0331 21.2792 5.9724 Yes

Run 4 1.6928 2.9446 25.0201 9.5884 Yes

Run 5 1.5722 1.8413 5.1442 6.6710 Yes

Table 4.1: Results for 5 runs of the GA on the Pitch SISO system. The highlighted row is

the median performer of the set.

Figure 4.1: Maximum Fitness vs. Generation number for 5 runs of the GA on the Pitch SISO

system.



4.1 Results 59

Figure 4.2: Average Fitness vs. Generation number for 5 runs of the GA on the Pitch SISO

system.

Figure 4.3: Step Response for the fittest individual of run 4 of the GA optimisation on the

Pitch SISO system.

Memetic Algorithm

Table 4.2 presents the optimisation results of 5 independent runs of the MA pitch opti-

misation. The maximum fitness is plotted against generation number for each run of the



60 Results and Discussion

algorithm, and is shown in Figure 4.4. Similarly, the average fitness per generation for

each run of the algorithm is plotted and shown in Figure 4.5. Run 4 was identified as the

median performer in the set of runs, and was chosen for analysis. The step response for

the fittest individual in run 4 is shown in Figure 4.6. The average iteration run time for

the MA optimisation on the pitch path was 5832.9409 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 2.853 2.0422 9.1698 4.4870 Yes

Run 2 3.7571 3.9469 12.2246 2.6286 Yes

Run 3 3.7568 3.9260 12.2485 2.6812 Yes

Run 4 3.7246 4.0526 12.0318 2.2590 Yes

Run 5 3.659 4.1152 11.8409 2.0858 Yes

Table 4.2: Results for 5 runs of the MA on the Pitch SISO system. The highlighted row is

the median performer of the set.

Figure 4.4: Maximum Fitness vs. Generation number for 5 runs of the MA on the Pitch SISO

system.



4.1 Results 61

Figure 4.5: Average Fitness vs. Generation number for 5 runs of the MA on the Pitch SISO

system.

Figure 4.6: Step Response for the fittest individual of run 4 of the GA optimisation on the

Pitch SISO system.



62 Results and Discussion

Yaw Optimisation Results

Genetic Algorithm

Table 4.3 presents the optimisation results of 5 independent runs of the GA yaw optimi-

sation. The maximum fitness is plotted against generation number for each run of the

algorithm, and is shown in Figure 4.7. Similarly, the average fitness per generation for

each run of the algorithm is plotted and shown in Figure 4.8. Run 5 was identified as the

median performer in the set of runs, and was chosen for analysis. The step response for

the fittest individual in run 5 is shown in Figure 4.9. The average iteration run time for

the GA optimisation on the yaw path was 620.8791 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 0.47471 9.9354 25.3630 5.2779 Yes

Run 2 1.0046 4.3735 105.2105 11.9653 Yes

Run 3 1.1601 5.6345 82.1918 7.9832 Yes

Run 4 0.77853 12.3940 136.4734 4.0860 Yes

Run 5 0.79108 4.8663 40.6602 4.8957 Yes

Table 4.3: Results for 5 runs of the GA on the Yaw SISO system. The highlighted row is the

median performer of the set.

Figure 4.7: Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw SISO

system.



4.1 Results 63

Figure 4.8: Average Fitness vs. Generation number for 5 runs of the GA on the Yaw SISO

system.

Figure 4.9: Step Response for the fittest individual of run 5 of the GA optimisation on the

Yaw SISO system.

Memetic Algorithm

Table 4.4 presents the optimisation results of 5 independent runs of the MA yaw optimi-

sation. The maximum fitness is plotted against generation number for each run of the



64 Results and Discussion

algorithm, and is shown in Figure 4.10. Similarly, the average fitness per generation for

each run of the algorithm is plotted and shown in Figure 4.11. Run 2 was identified as

the median performer in the set of runs, and was chosen for analysis. The step response

for the fittest individual in run 2 is shown in Figure 4.12. The average iteration run time

for the MA optimisation on the yaw path was 2524.0169 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 0.61998 11.7298 38.1276 0.2123 Yes

Run 2 1.3593 14.2621 54.3952 4.0569 Yes

Run 3 1.2258 12.7717 35.3986 2.2310 Yes

Run 4 1.1031 12.1574 71.6190 7.9021 Yes

Run 5 0.55239 3.7508 41.4297 8.0107 Yes

Table 4.4: Results for 5 runs of the MA on the Yaw SISO system. The highlighted row is the

median performer of the set.

Figure 4.10: Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw SISO

system.



4.1 Results 65

Figure 4.11: Average Fitness vs. Generation number for 5 runs of the MA on the Yaw SISO

system.

Figure 4.12: Step Response for the fittest individual of run 4 of the MA optimisation on the

Yaw SISO system.



66 Results and Discussion

4.1.2 MIMO Optimisation Results

Pitch Optimisation Results

Genetic Algorithm

Table 4.5 presents the optimisation results of 5 independent runs of the GA MIMO pitch

optimisation. The maximum fitness is plotted against generation number for each run of

the algorithm, and is shown in Figure 4.13. Similarly, the average fitness per generation

for each run of the algorithm is plotted and shown in Figure 4.14. Run 4 was identified as

the median performer in the set of runs, and was chosen for analysis. The step response

for the fittest individual in run 4 is shown in Figure 4.15. The average iteration run time

for the GA optimisation on the pitch path was 1542.4625 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 0.36603 3.5187 16.0637 1.7749 Yes

Run 2 0.4928 6.6353 32.9710 3.0691 Yes

Run 3 0.51776 6.3791 15.4771 1.0894 Yes

Run 4 0.43738 8.8356 19.7101 0.0958 Yes

Run 5 0.37217 3.2777 16.2695 5.3998 Yes

Table 4.5: Results for 5 runs of the GA on the Pitch for the MIMO system configuration.

The highlighted row is the median performer of the set.



4.1 Results 67

Figure 4.13: Maximum Fitness vs. Generation number for 5 runs of the GA on the Pitch

path of the MIMO system.

Figure 4.14: Average Fitness vs. Generation number for 5 runs of the GA on the Pitch path

of the MIMO system.



68 Results and Discussion

Figure 4.15: Step Response for the fittest individual of run 4 of the GA optimisation on the

Pitch path of the MIMO system. The plot on top is the step response of the pitch path, and

the bottom plot shows the pure cross-coupling from the pitch path into the yaw path (yaw

input set to 0).

Memetic Algorithm

Table 4.6 presents the optimisation results of 5 independent runs of the MA MIMO pitch

optimisation. The maximum fitness is plotted against generation number for each run of

the algorithm, and is shown in Figure 4.16. Similarly, the average fitness per generation

for each run of the algorithm is plotted and shown in Figure 4.17. Run 5 was identified as

the median performer in the set of runs, and was chosen for analysis. The step response

for the fittest individual in run 5 is shown in Figure 4.18. The average iteration run time

for the MA optimisation on the pitch path was 1592.2072 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 0.43252 3.5467 16.8845 3.1782 Yes

Run 2 0.46662 3.5673 24.2599 4.7530 Yes

Run 3 0.51945 6.6705 18.3968 1.1586 Yes

Run 4 0.48049 9.1887 68.3867 5.9137 Yes

Run 5 0.47118 6.0307 22.6607 3.1533 Yes

Table 4.6: Results for 5 runs of the MA on the Pitch for the MIMO system configuration.

The highlighted row is the median performer of the set.



4.1 Results 69

Figure 4.16: Maximum Fitness vs. Generation number for 5 runs of the MA on the Pitch

path of the MIMO system.

Figure 4.17: Average Fitness vs. Generation number for 5 runs of the MA on the Pitch path

of the MIMO system.



70 Results and Discussion

Figure 4.18: Step Response for the fittest individual of run 5 of the MA optimisation on the

Pitch path of the MIMO system. The plot on top is the step response of the pitch path, and

the bottom plot shows the pure cross-coupling from the pitch path into the yaw path (yaw

input set to 0).

Yaw Optimisation Results

Genetic Algorithm

Table 4.7 presents the optimisation results of 5 independent runs of the GA MIMO yaw

optimisation. The maximum fitness is plotted against generation number for each run of

the algorithm, and is shown in Figure 4.19. Similarly, the average fitness per generation

for each run of the algorithm is plotted and shown in Figure 4.20. Run 4 was identified as

the median performer in the set of runs, and was chosen for analysis. The step response

for the fittest individual in run 4 is shown in Figure 4.21. The average iteration run time

for the GA optimisation on the yaw path was 1636.0385 seconds.



4.1 Results 71

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 0.21904 1.5972 57.7620 26.5864 Yes

Run 2 0.49197 2.4466 50.4228 5.7289 Yes

Run 3 0.67592 2.9218 75.5303 12.5286 Yes

Run 4 0.48115 10.5970 28.9519 1.9383 Yes

Run 5 0.39742 2.3269 46.2773 12.1354 Yes

Table 4.7: Results for 5 runs of the GA on the Yaw for the MIMO system configuration. The

highlighted row is the median performer of the set.

Figure 4.19: Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw path

of the MIMO system.



72 Results and Discussion

Figure 4.20: Average Fitness vs. Generation number for 5 runs of the GA on the Yaw path

of the MIMO system.

Figure 4.21: Step Response for the fittest individual of run 4 of the GA optimisation on the

yaw path of the MIMO system. The plot on top is the step response of the yaw path, and

the bottom plot shows the pure cross-coupling from the yaw path into the pitch path (pitch

input set to 0).



4.1 Results 73

Memetic Algorithm

Table 4.8 presents the optimisation results of 5 independent runs of the MA MIMO yaw

optimisation. The maximum fitness is plotted against generation number for each run of

the algorithm, and is shown in Figure 4.22. Similarly, the average fitness per generation

for each run of the algorithm is plotted and shown in Figure 4.23. Run 4 was identified as

the median performer in the set of runs, and was chosen for analysis. The step response

for the fittest individual in run 4 is shown in Figure 4.24. The average iteration run time

for the MA optimisation on the yaw path was 1835.9352s seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 0.5038 3.5840 114.8864 11.9515 Yes

Run 2 0.67504 3.3517 125.8870 17.3255 Yes

Run 3 1.0089 6.1961 54.5352 5.1239 Yes

Run 4 0.78143 12.5021 92.2993 2.2237 Yes

Run 5 0.25877 2.3092 40.4031 0.0017 Yes

Table 4.8: Results for 5 runs of the MA on the Yaw for the MIMO system configuration. The

highlighted row is the median performer of the set.

Figure 4.22: Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw path

of the MIMO system.



74 Results and Discussion

Figure 4.23: Average Fitness vs. Generation number for 5 runs of the MA on the Yaw path

of the MIMO system.

Figure 4.24: Step Response for the fittest individual of run 4 of the MA optimisation on the

yaw path of the MIMO system. The plot on top is the step response of the yaw path, and

the bottom plot shows the pure cross-coupling from the yaw path into the pitch path (pitch

input set to 0).



4.1 Results 75

4.1.3 Table Summary of Optimisation Results

Table 4.9 summarises the results analysed for GA and MA tests in both 1DOF and 2DOF

system representations. This table is a useful reference for the following discussion section.

System Optimisation Type Path Fitness Rise time (s) Settling time (s) Overshoot (%) Average Iteration Runtime (s)

Pitch 1.6928 2.944 25.02 9.588 614.117
GA

Yaw 0.79108 4.8663 40.6602 4.8957 620.8791

Pitch 3.7246 4.0526 12.0318 2.259 5832.9409
1DOF

MA
Yaw 1.1031 12.1574 71.619 7.9021 2524.0169

Pitch 0.43738 8.8356 19.7101 0.0958 1542.4625
GA

Yaw 0.48115 10.5970 28.9519 1.9383 1636.0385

Pitch 0.47118 6.0307 22.6607 3.1533 1592.2072
2DOF

MA
Yaw 0.67504 3.3517 125.8870 17.3255 1835.9352

Table 4.9: Table summary of optimisation results for both 1DOF and 2DOF, GA and MA

median runs.

4.1.4 1DOF Testing and Verification

A Matlab script called TestLinear1DOF, as attached in Appendix G, was developed

to complete testing and verification of the system, according to the steps outlined in

Section 3.5.3. It should be noted that testing with initial conditions was not implemented

in the final test script, as issues were encountered whilst attempting to implement this

testing (initial conditions were 4 times larger in magnitude than expected). Therefore,

due to time constraints, 1DOF testing was limited to the 1DOF procedure outlined by

Prasad et al. (2013), and the 2DOF testing followed the testing parameters by Juang

et al. (2008) and were assumed to have initial conditions of 0.

Tables 4.10 and 4.11 present results of the performance criteria and absolute error and con-

trol effort values for both sets of parameters optimised by GA and MA. Figures 4.25,4.26,4.27

and 4.28 shows input responses on the left column, and control effort plots in the right

column.

System Optimisation Type Path Rise time (s) Settling time (s) Overshoot (%)

Pitch 2.9446 25.0199 9.5883
GA

Yaw 4.8664 40.6597 4.8954

Pitch 4.0527 12.0318 2.259
1DOF

MA
Yaw 12.1573 71.6195 7.9027

Table 4.10: 1DOF rise time, settling time and overshoot testing results.



76 Results and Discussion

System Path Input Signal Absolute Error (GA) Absolute Error (MA) Absolute Control Effort (GA) Absolute Control Effort (MA)

Step 41.3033 51.6692 2683.7728 2309.9697

Sine 118.6786 221.7039 1384.3321 1311.7825Pitch

Square 169.4761 243.5065 2175.8904 1974.8772

Step 84.9281 146.0424 1621.4345 1263.7093

Sine 308.9649 384.1104 496.3711 392.8848

1DOF

Yaw

Square 349.6059 500.1544 797.4237 590.497

Table 4.11: Absolute Error and Absolute Control Effort Values for 1DOF Pitch and Yaw, of

both GA and MA runs.

Figure 4.25: GA-optimised Pitch 1DOF test results



4.1 Results 77

Figure 4.26: GA-optimised Yaw 1DOF test results

Figure 4.27: MA-optimised Pitch 1DOF test results



78 Results and Discussion

Figure 4.28: MA-optimised Yaw 1DOF test results

4.1.5 2DOF Testing and Verification

Similarly, Tables 4.12 and 4.13 present results of the performance criteria and absolute

error and control effort values for both sets of parameters optimised by GA and MA

for the 2DOF representation of the system. Figures 4.29,4.30,4.31 and 4.32 shows input

responses on the left column, and control effort plots in the right column.

System Optimisation Type Path Rise time (s) Settling time (s) Overshoot (%)

Pitch 8.8136 19.8276 0.077652
GA

Yaw 10.5953 28.8658 1.9551

Pitch 6.0312 22.8118 3.0803
2DOF

MA
Yaw 3.3517 125.8924 17.3286

Table 4.12: 2DOF rise time, settling time and overshoot testing results.



4.1 Results 79

System Path Input Signal Absolute Error (GA) Absolute Error (MA) Absolute Control Effort (GA) Absolute Control Effort (MA)

Step 15.9898 11.2533 540.8233 537.403

Sine 62.1917 47.3359 232.4934 261.1698Pitch

Square 74.3036 53.1625 343.5694 390.9454

Step 73.9294 88.7869 797.7371 783.4552

Sine 202.874 192.4944 292.8222 347.2617

2DOF

Yaw

Square 281.2459 261.4839 404.7526 481.6927

Table 4.13: Absolute Error and Absolute Control Effort Values for 2DOF Pitch and Yaw, of

both GA and MA runs.

Figure 4.29: GA-optimised Pitch 1DOF test results



80 Results and Discussion

Figure 4.30: GA-optimised Yaw 1DOF test results

Figure 4.31: MA-optimised Pitch 1DOF test results



4.2 Discussion 81

Figure 4.32: MA-optimised Yaw 1DOF test results

4.2 Discussion

As per the first step of Section 3.5.3, the results obtained should be compared to the

literature. The main articles of reference are by Prasad et al. (2013) and Juang et al.

(2008), where the 1DOF test parameters are derived from the former, and the 2DOF test

parameters are derived from the latter.

The results for the 1DOF testing and verification, as listed in Table 4.11, are first analysed.

Prasad et al. (2013) obtained the results as presented in Figure 4.14.

Table 4.14: Results obtained by Prasad et al. for the TRMS, using Real-valued GA



82 Results and Discussion

As can be observed, the error and control force results obtained by Prasad et al. are orders

of magnitude lower than the resutls obtained in this project (lower results are better). It

is unclear what the cause of such a big difference in values may be, and calls into question

whether the methods of testing in this project are different to those implemented in the

work by Prasad et al..

However, comparison with Juang et al. shows more comparative results for both the

1DOF and 2DOF, even though initial conditions were not implemented in this project

as they were for 1DOF studies in Juang et al.’s work. The 1DOF vertical (pitch) and

horizontal (yaw), and 2DOF cross-coupled results are presented from the paper here, for

the readers convenience, in Figures 4.15, 4.16 and 4.17

Table 4.15: Vertical (pitch) results obtained for TRMS using different GA methods (Juang

et al. 2008)

Table 4.16: Horizontal (yaw) results obtained for TRMS using different GA methods (Juang

et al. 2008)

Table 4.17: 2DOF results obtained for TRMS using different GA methods (Juang et al. 2008)

Comparing the 1DOF results by (Juang et al. 2008), but also considering testing methods

are slightly different, the project results listed in Table 4.11, perform reasonably better

when compared directly with Tables 4.15 and 4.15. None of the project results are better,

but they are comparable, unlike the results by Prasad et al. (2013).



4.2 Discussion 83

Conversely, the 2DOF system in this research performs reasonably well in comparison

to the results presented in Table 4.17 by Juang et al. (2008). Whilst the RGA results

perform better in most areas, the results are comparable. The cases in which the GA in

this research performs better is in pitch step absolute error, pitch square absolute error,

pitch step control effort, pitch sine control effort and pitch square control effort. This

comparison exercise need not be strenuous; it is enough to show that the MA results

can be compared to the base GA with confidence. This does not necessarily infer that

the results are optimal, or that the base GA is optimal; but for the simple purpose of

demonstrating the efficacy of the MA, this will suffice.

To analyse the performance of the MA as compared to the GA, the key performance met-

rics, absolute error, absolute control effort and average iteration runtime will be directly

compared.

4.2.1 SISO Analysis

Pitch SISO System

For the 1DOF pitch control system tuned by MA, as compared to the equivalent GA test:

� Rise time is increased by 37.63%

� Settling time is decreased by 51.91%

� Overshoot decreased by 76.44%

� Fitness increased by 120.026%

� Absolute net error across input types increased by 56.89%

� Absolute net control effort across input types decreased by 10.3678%

� Average iteration execution runtime increased by 849.809%

Yaw SISO System

For the 1DOF yaw control system tuned by MA, as compared to the equivalent GA test:



84 Results and Discussion

� Rise time is increased by 149.83%

� Settling time is increased by 76.14%

� Overshoot increased by 61.41%

� Fitness increased by 39.44%

� Absolute net error across input types increased by 38.58%

� Absolute net control effort across input types decreased by 22.92%

� Average iteration execution runtime increased by 306.52%

4.2.2 MIMO

Pitch MIMO System

For the 2DOF pitch control system tuned by MA, as compared to the equivalent GA test:

� Rise time is decreased by 31.75%

� Settling time is increased by 14.97%

� Overshoot increased by 3191.54%

� Fitness increased by 7.73%

� Absolute net error across input types decreased by 26.71%

� Absolute net control effort across input types increased by 6.50%

� Average iteration execution runtime increased by 3.23%

Yaw MIMO System

For the 2DOF yaw control system tuned by MA, as compared to the equivalent GA test:

� Rise time is decreased by 68.37%

� Settling time is increased by 334.81%



4.2 Discussion 85

� Overshoot increased by 793.85%

� Fitness increased by 40.297%

� Absolute net error across input types decreased by 2.74%

� Absolute net control effort across input types increased by 7.83%

� Average iteration execution runtime increased by 12.22%

It can be observed that as rise time decreases, settling time and overshoot is often in-

creased. This is not surprising, as minimising one will inevitably increase the other, as

these are conflicting constraints. It can also be observed that if absolute error is de-

creased, then absolute control effort increases. This is also logical, as greater control

effort is required to achieve minimum error, especially for higher-order, complex systems.

It is important to note however, that MA optimisation produced the fittest individual in

every tested case. This means that the overall net control effort and errors have been

minimised further than the GA optimisation runs. It must be noted however, that in

most cases, the average iteration execution runtime is greater for MA; partially from the

local search method introduced, but also due to many executions of the objective func-

tion, which for this project, was found to be quite computationally expensive, due to the

complex Control Systems Toolbox functions that are utilised to programmatically build

and test the systems.

The MA does appear to be more effective at converging to a global optimum than a GA

for the TRMS system, in seemingly every test case analysed. However, the computational

cost may render the MA unfavourable when compared to smarter and faster approaches.

In the results, as can be seen in Figure 4.18, even though somewhat minimised, significant

cross-couplings still exist between the pitch to yaw cross-coupling path, and chattering

oscillations are present in the converse coupling. Therefore, it is recommended that

4 controllers be used if possible, as other research has suggested. It is important to

note that a solution might indeed NOT exist which has the capability to simultaneously

control the main path and the cross-coupling with the given system dynamics. Another

observation from the data is that the MA seems to rapidly converge within a very few

number of generations, which may be due to a lack of diversity. This may need to be

addressed by reviewing the LS method, extending the number of generations or increasing

diversification (higher mutation, lower crossover, remove elitism) to allow the algorithm

to better search global optima.



86 Results and Discussion

Although mentioned in Section 3.5.3, nonlinear testing was disregarded, due to the lack

of explicit results in the literature for comparison. The analysis would not serve much

more purpose than a quick visual inspection, thus this step is also considered as part of

future work.



Chapter 5

Conclusions and Further Work

5.1 Conclusions

The aims of the project have developed during the different stages of the project life cycle.

Initially the aims were kept broad to encourage a broad scan of the literature. As EA’s

were found to be a very suitable candidate for this area of research with many potential

avenues of investigation, the aims of the project moved toward finding a way to further

investigate some of the more recent developments in EA. Through further research, the

GA was found, along with the more recent subset of MA. It was found that no current

implementations have been made on the TRMS system using the MA, or on any MIMO

at all. The aims then moved towards investigating the applicability of the MA with the

TRMS, and whether it can be used to fulfil the primary aim of the project - a design of

an optimal fuel/cost controller.

The MA was successfully implemented and tested on linear 1DOF and 2DOF represen-

tations of the TRMS. Results were positive for the MA, with every test case yielding

higher fitness values with MA optimisation than with GA optimisation. The MA ap-

peared to perform equally well in both representations of the system (with the exception

of statistical outliers). However, the MA failed to find an optimal solution for significant

decoupling of the system, which may either be a system limitation, or potentially even

an implementation issue. The MA is also generally very inefficient, even with parallelism

implemented. The bottleneck appeared to be the objective function, which utilises many

Control Systems Toolbox functions for building and testing systems programmatically.



88 Conclusions and Further Work

Limitations aside, the MA still assisted in finding an optimum that is not necessarily

the absolute global optimum, but one that certainly shows better performance than the

GA alone. Thus the primary aim of the project was achieved and a fuel/cost efficient

controller design was able to be fulfilled.

5.2 Further Work

As with all research, there is always more that can be done. Items that are of interest for

further work are:

� Review algorithm and diversify population to prevent premature convergence if

possible/necessary

� Implement and test on the 33-949S physical system and/or on nonlinear test models.

Verify and compare with simulation results.

� Investigate ways to optimise the objective function using parallelism or other ad-

vanced mechanisms. Try intercommunication processes (which Matlab handles

internally), but test other methods for efficacy.

� Complete an electrical energy expenditure study on the system and analyse the

optimisation algorithm performance in respect to energy savings

� Investigate the feasibility of the algorithm for online parameter tuning, or imple-

mentation on a device such as a Field Programmable Gate Array (FPGA).

� Employ and test memetic algorithm LS methods that have not yet been applied to

control systems

� Employ multiple local search methods and let the algorithm self-adaptively select

local search methods depending on the problem-specific performance of each (Ong

& Keane 2004).

� Implement adaptive parameters where possible to reduce the number of heuristic

variables. These parameters should adapt to changes in the population (Molina

et al. 2005).

� Extrapolate the algorithm and process to a higher DOF system, such as a UAV, or

a novel system.



References

Adewuya, A. A. (1996), ’New Methods in Genetic Search with Real-Valued Chromo-

somes’, Master’s thesis, Massachusetts Institute of Technology.

Alam, T., Qamar, S., Dixit, A. & Benaida, M. (2020), ‘Genetic algorithm reviews, imple-

mentations, and applications’, International Journal of Engineering Pedagogy (iJEP)

. DOI: 10.31219/osf.io/8tng5.

Albadr, M. A., Tiun, S., Ayob, M. & AL-Dhief, F. (2020), ‘Genetic algorithm based

on natural selection theory for optimization problems’, Symmetry 12(11). DOI:

10.3390/sym12111758.

Alharbi, W. & Gomm, B. (2017), ‘’Genetic Algorithm Optimisation of PID Controllers

for a Multivariable Process”, International Journal of Recent Contributions from

Engineering, Science & IT 5(1). DOI: 10.3991/ijes.v5i1.6692.

Assiroj, P., Warnars, H. L. H. S., Abdurachman, E., Kistijantoro, A. I. & Doucet, A.

(2021), ‘The implementation of memetic algorithm on image: a survey’, Journal

of Mathematical and Computational Science 11(6), 6872–6896. DOI: 10.28919/jm-

cs/5961.

Ayala, F. J. (2009), ‘Darwin and the scientific method’, Proceedings of the National

Academy of Sciences 106(1), 10033–10039. DOI: 10.1073/pnas.0901404106.

Ben Hariz, M. & Bouani, F. (2015), Design of controllers for decoupled tito systems using

different decoupling techniques, in ‘2015 20th International Conference on Methods

and Models in Automation and Robotics (MMAR)’, pp. 1116–1121. DOI: 10.1109/M-

MAR.2015.7284035.

Bereta, M. (2019), ‘Baldwin effect and Lamarckian evolution in a memetic algo-



90 REFERENCES

rithm for Euclidean Steiner tree problem’, Memetic Computing 11, 35–52. DOI:

https://doi.org/10.1007/s12293-018-0256-7.

Chalupa, P., Přikryl, J. & Novák, J. (2015), ‘Modelling of twin rotor mimo system’,

Procedia Engineering 100, 249–258. DOI: 10.1016/j.proeng.2015.01.365.

Choi, S.-S. & Moon, B.-R. (2005), ‘A graph-based lamarckian-baldwinian hybrid for

the sorting network problem’, IEEE Transactions on Evolutionary Computation

9(1), 105–114. DOI: 10.1109/TEVC.2004.841682.

Devanshu, A. (2017), in ‘’Genetic Algorithm Tuned PID Controller for Process Control”.

DOI: 10.1109/ICISC.2017.8068639.

Didactic, L. (2021), ‘33-007i and 33-007-pci twin rotor mimo system’, http://www.

ld-didactic.de/en/ld-didactic-download-center.html.

Doğruer, T. & Tan, N. (2019), Decoupling control of a twin rotor mimo system using opti-

mization method, in ‘2019 11th International Conference on Electrical and Electron-

ics Engineering (ELECO)’, pp. 780–784. DOI: 10.23919/ELECO47770.2019.8990435.

Fang, Y. & li, J. (2010), A review of tournament selection in genetic programming, in

‘Genetic Programming’, pp. 181–192. DOI: 10.1007/978-3-642-16493-4 19.

Feedback Instruments Ltd. (n.d.), 33-949S, 1 edn, Feedback Instruments Ltd, Park Road,

Crowborough, East Sussex, TN6 2QR, UK.

Ho, M.-T., Datta, A. & Bhattacharyya, S. (1998), ‘An elementary derivation of the routh-

hurwitz criterion’, IEEE Transactions on Automatic Control 43(3), 405–409. DOI:

10.1109/9.661607.

Jayachitra, A. & Vinodha, R. (n.d.), ‘Genetic algorithm based pid controller tuning

approach for continuous stirred tank reactor’, Advances in Artificial Intelligence

2014(791230), 1–8. DOI: 10.1155/2014/791230.

Juang, J.-G., Huang, M.-T. & Liu, W.-K. (2008), ‘Pid control using presearched

genetic algorithms for a mimo system’, IEEE Transactions on Systems, Man

and Cybernetics Part C: Applications and Reviews 38(5), 716–727. DOI:

10.1109/TSMCC.2008.923890.

Juang, J.-G. & tu, K.-T. (2013), ‘Design and realization of a hybrid intelligent con-

troller for a twin rotor MIMO system’, Journal of Marine Science and Technology

21(3), 333–341. DOI: 10.6119/JMST-012-1026-1.



REFERENCES 91

Krasnogor, N. & Smith, J. (2005), ‘A tutorial for competent memetic algorithms: model,

taxonomy, and design issues’, IEEE Transactions on Evolutionary Computation

9(5), 474–488. DOI: 10.1109/TEVC.2005.850260.

Kumar, P. & Narayan, S. (2016), ‘Optimal robust design for a twin rotor system using

multi-objective genetic algorithm tuned model predictive controller’, 9(11), 5043–

5056. https://www.researchgate.net/publication/311794292_Optimal_

robust_design_for_a_twin_rotor_system_using_multi-objective_genetic_

algorithm_tuned_model_predictive_controller.

Lin, G. & Liu, G. (2010), Tuning PID controller using adaptive genetic algorithms, in

‘2010 5th International Conference on Computer Science Education’, pp. 519–523.

DOI: 10.1109/ICCSE.2010.5593559.

Mahfoud, S., Derouich, A., EL Ouanjli, N., EL Mahfoud, M. & Taoussi, M. (2021), ‘A new

strategy-based pid controller optimized by genetic algorithm for dtc of the doubly

fed induction motor’, Systems 9(2). DOI: 10.3390/systems9020037.

Maliński, u. & Figwer, J. (2015), Nonlinear system identification using memetic algo-

rithms, in ‘2015 20th International Conference on Methods and Models in Automa-

tion and Robotics (MMAR)’, pp. 1086–1091. DOI: 10.1109/MMAR.2015.7284030.

Mandal, A., Zafar, H., Ghosh, P., Das, S. & Abraham, A. (2011), An efficient memetic

algorithm for parameter tuning of pid controller in avr system, in ‘2011 11th In-

ternational Conference on Hybrid Intelligent Systems (HIS)’, pp. 265–270. DOI:

10.1109/HIS.2011.6122116.

Mathworks (2021a), ‘Decide when to use parfor’. Web page, viewed 19 October 2021.

URL: https: // au. mathworks. com/ help/ parallel-computing/

reduction-variable. html

Mathworks (2021b), ‘Parallel computing toolbox’. Web page, viewed 19 October 2021.

URL: https: // au. mathworks. com/ products/ parallel-computing. html

Mathworks (2021c), ‘parfeval’. Web page, viewed 19 October 2021.

URL: https: // au. mathworks. com/ help/ parallel-computing/ parallel.

pool. parfeval. html

Mathworks (2021d), ‘parfor’. Web page, viewed 19 October 2021.

URL: https: // au. mathworks. com/ help/ parallel-computing/ parfor. html



92 REFERENCES

Mathworks (2021e), ‘Reduction variables’. Web page, viewed 19 October 2021.

URL: https: // au. mathworks. com/ help/ parallel-computing/

reduction-variable. html

Mathworks (2021f), ‘What is parallel computing?’. Web page, viewed 19 October 2021.

URL: https: // au. mathworks. com/ help/ parallel-computing/

what-is-parallel-computing. html

Mirzal, A., Yoshii, S. & Furukawa, M. (2012), ‘Pid parameters optimization by using ge-

netic algorithm’, ISTECS Journal 8(2006), 34–43. https://arxiv.org/abs/1204.

0885.

Mishra, A. & Shukla, A. (2017), Analysis of the effect of elite count on the behavior of

genetic algorithms: A perspective, in ‘2017 IEEE 7th International Advance Com-

puting Conference (IACC)’, pp. 835–840. DOI: 10.1109/IACC.2017.0172.

Molina, D., Herrera, F. & Lozano, M. (2005), Adaptive local search parameters for real-

coded memetic algorithms, in ‘2005 IEEE Congress on Evolutionary Computation’,

Vol. 1, pp. 888–895 Vol.1.

Moscato, P. & Cotta, C. (2003), A Gentle Introduction to Memetic Algorithms, Springer

US, Boston, MA, pp. 105–144.

Naranjo, J. E., Serradilla, F. & Nashashibi, F. (2020), ‘Speed control optimization for

autonomous vehicles with metaheuristics’, Electronics 9(4). DOI: 10.3390/electron-

ics9040551.

Neri, F. & Cotta, C. (2012), A Primer on Memetic Algorithms, Springer, Berlin, Heidel-

berg. https://doi.org/10.1007/978-3-642-23247-3_4.

Norsahperi, N. & Danapalasingam, K. (2020), ‘Particle swarm-based and neuro-based

fopid controllers for a twin rotor system with improved tracking performance and en-

ergy reduction’, ISA Transactions 102, 230–244. DOI: 10.1016/j.isatra.2020.03.001.

Ong, Y. S. & Keane, A. (2004), ‘Meta-lamarckian learning in memetic algo-

rithms’, IEEE Transactions on Evolutionary Computation 8(2), 99–110. DOI:

10.1109/TEVC.2003.819944.

Prasad, G. D., Manoharan, P. S. & Ramalakshmi, A. P. S. (2013), PID control scheme

for twin rotor MIMO system using a real valued genetic algorithm with a predeter-



REFERENCES 93

mined search range, in ‘2013 International Conference on Power, Energy and Control

(ICPEC)’, pp. 443–448. DOI: 10.1109/ICPEC.2013.6527697.

Rivera-Santos, E. (2021), ‘routh.m’, https://www.mathworks.com/matlabcentral/

fileexchange/58-routh-m. Retrieved from MATLAB Central File Exchange.

Sagharchi, F. (2021), ‘Routh-hurwitz stability criterion’, https://www.mathworks.com/

matlabcentral/fileexchange/17483-routh-hurwitz-stability-criterion.

Retrieved from MATLAB Central File Exchange.

Salazar Alvarez, T. (2010), ‘Mathematical model and simulation for a helicopter with tail

rotor’.

Sarvart, M. A. B. (2001), ’Modelling and Control of a Twin Rotor MIMO System’, PhD

thesis, University of Sheffield. unpublished thesis.

Serradilla, F., Cañas, N. & Naranjo, J. E. (2020), ‘Optimization of the energy consumption

of electric motors through metaheuristics and pid controllers’, Electronics 9(11).

DOI: 10.3390/electronics9111842.

Shyr, W.-J., Wang, B.-W., Yeh, Y.-Y. & Su, T.-J. (2002), Design of optimal pid

controllers using memetic algorithm, in ‘Proceedings of the 2002 American Con-

trol Conference (IEEE Cat. No.CH37301)’, Vol. 3, pp. 2130–2131 vol.3. DOI:

10.1109/ACC.2002.1023951.

Sivadasan, J. & Iruthayarajan, M. W. (2018), ‘’Tuning of Nonlinear PID Controller for

TRMS using Evolutionary Computation Methods”, Tehnički vjesnik 25(1). DOI:

10.17559/TV-20170612090511.

Sloss, A. N. & Gustafson, S. (2020), in W. Banzhaf, E. Goodman, L. Sheneman, L. Tru-

jillo & B. Worzel, eds, ‘Genetic Programming Theory and Practice XVII’, Springer,

Cham. https://doi.org/10.1007/978-3-030-39958-0_16.

Subudhi, B. & Jena, D. (2009), Nonlinear system identification of a twin rotor mimo

system, in ‘TENCON 2009 - 2009 IEEE Region 10 Conference’, pp. 1–6. DOI:

10.1109/TENCON.2009.5395966.

Thainiam, P. (2019), The effects of memes on memetic algorithms for solving

quadratic assignment problem, in ‘2019 IEEE International Conference on Indus-

trial Engineering and Engineering Management (IEEM)’, pp. 1334–1338. DOI:

10.1109/IEEM44572.2019.8978780.



Toha, S. F. & Tokhi, M. O. (2009), Real-coded genetic algorithm for parametric modelling

of a TRMS, in ‘2009 IEEE Congress on Evolutionary Computation’, pp. 2022–2028.

Toha, S., Julai, S. & Tokhi, M. (2012), ‘Ant colony based model prediction of a twin rotor

system’, Procedia Engineering 41, 1135–1144. DOI: 10.1016/j.proeng.2012.07.293.

Wen, P. & Lu, T. (2008), ‘Decoupling control of a twin rotor MIMO system using robust

deadbeat control technique’, IET Control Theory & Applications 2(11), 999–1007.

Wilbur, M. L., Mistry, M. P., Lorber, P. F., Blackwell, R., Barbarino, S., Lawrence,

T. H. & Arnold, U. T. (2018), Chapter 24 - rotary wings morphing technologies:

State of the art and perspectives, in A. Concilio, I. Dimino, L. Lecce & R. Pecora,

eds, ‘Morphing Wing Technologies’, Butterworth-Heinemann, pp. 759–797. DOI:

10.1016/B978-0-08-100964-2.00024-1.

Zhang, C., Gao, L., Li, X. & Wu, Q. (2012), ‘A novel electromagnetism-like mechanism

algorithm with modified solis and wets local search for global optimisation’, Int. J.

of Services Operations and Informatics 7, 117 – 135.

Zhao, G., Luo, W., Nie, H. & Li, C. (2008), A genetic algorithm balancing exploration and

exploitation for the travelling salesman problem, in ‘2008 Fourth International Con-

ference on Natural Computation’, Vol. 1, pp. 505–509. DOI: 10.1109/ICNC.2008.421.



Appendix A

Project Specification





ENG 4111/2 Research Project

Project Specification

For: Aaron Coutts
Topic: Optimal fuel cost controller design for a helicopter/twin rotor system
Supervisors: Prof. Paul Wen

Dr. Bob Song
Sponsorship: Faculty of Health, Engineering & Sciences
Project Aim: Optimise fuel/energy performance to reduce energy consumption

and costs in helicopter twin rotor systems.

Program: Version 2, 16 September 2021

1. Research background and learn the Twin Rotor Multi-Input Multi-Output System (TRMS). Obtain
simulation models for testing.

2. Research Artificial Intelligence (AI) Techniques and identify potential knowledge or implementation
gaps in the literature.

3. Design a PID controller for the system using traditional techniques (i.e. Ziegler-Nichols Method -
non AI techniques).

4. Investigate and identify an algorithm novel to optimising the TRMS system, with a suitable objective
function to minimise the energy costs of the TRMS system whilst maintaining performance.

5. Implement algorithm and conduct testing on simulation models. Compare the results with other
select algorithms and methods, both traditional and AI.

6. Refine algorithm and implement improvements where necessary.

As time and resources permit:

1. Implement the optimised PID controllers in the lab on the 33-949S physical system. Verify and
compare with simulation results. Also compare against other physical implementation of select algo-
rithms and methods, both traditional and AI.

2. Further improve algorithms through any discovered novel approaches.

3. Complete an electrical energy expenditure study on the system and analyse the optimisation algorithm
performance in respect to energy savings

4. Investigate feasibility of algorithm for online parameter tuning.

Agreed:

Student Name: Aaron Coutts
Date: 16 September 2021

Supervisor Name: Prof. Paul Wen
Dr. Bo Song

Date:





Appendix B

Risk Assessment



6/7/2021 RiskManagementPlans - RMP_2021_5646

https://intranet usq.edu.au/safetyrisk/_layouts/15/Print.FormServer.aspx 1/4

University of Southern Queensland Print View

USQ Safety Risk Management System
Version 2.0

Safety Risk Management Plan
Risk Management Plan
ID:

Status: Current User: Author: Supervisor: Approver:

Assessment Title:
 

Assessment Date:

Review Date:

(5 years maximum)
Workplace (Division/Faculty/Sec�on):

Approver:
Paul Wen

Supervisor: (for no�fica�on of Risk Assessment only)
Paul Wen

 

Context
DESCRIPTION:

What is the task/event/purchase/project/procedure?

Why is it being conducted?

Where is it being conducted?

Course code (if applicable) Chemical Name (if applicable)

WHAT ARE THE NOMINAL CONDITIONS?

Personnel involved

Equipment

Environment

RMP_2021_5646
Approval Requested

Engineering Research Project 2021 - Aaron Cou�s 7/06/2021

204070 - School of Mechanical and Electrical Engineering

Op�mise fuel performance to reduce opera�onal costs of helicopter twin rotor systems

To fulfill the research component of the Bachelor of Engineering (Honours) program

USQ - Toowoomba & Ext

ENG4111 & ENG4112

Aaron Cou�s, Paul Wen and other USQ staff

Personal computer and electronics

Personal office space and USQ laboratory



6/7/2021 RiskManagementPlans - RMP_2021_5646

https://intranet usq.edu.au/safetyrisk/_layouts/15/Print.FormServer.aspx 2/4

Other

Briefly explain the procedure/process

Assessment Team - who is conduc�ng the assessment?
Assessor(s):

Others consulted: (eg elected health and safety representa�ve,
other personnel exposed to risks)

 
 

Risk Matrix
 Consequence

Probability Insignificant Minor Moderate Major Catastrophic
No Injury

0-$5K
First Aid

$5K-$50K
Med Treatment

$50K-$100K
Serious Injury
$100K-$250K

Death
More than $250K

Almost
Certain M H E E E

1 in 2

Likely
M H H E E

1 in 100

Possible
L M H H H

1 in 1,000

Unlikely
L L M M M

1 in 10,000

Rare
L L L L L

1 in 1,000,000
Recommended Ac�on Guide

Extreme: E= Extreme Risk – Task MUST NOT proceed
High: H = High Risk – Special Procedures Required (Contact USQSafe) Approval by VC only
Medium: M= Medium Risk - A Risk Management Plan/Safe Work Method Statement is required
Low: L= Low Risk - Manage by rou�ne procedures.

 
 

Lab verifica�on of results on the TRMS 33-949S model and general development of project

Paul Wen





6/7/2021 RiskManagementPlans - RMP_2021_5646

https://intranet usq.edu.au/safetyrisk/_layouts/15/Print.FormServer.aspx 4/4

 

Step 5 - Ac�on Plan (for controls not already in place)
 Addi�onal Controls: Exclude from Ac�on

Plan:
(repeated control)

Resources: Persons Responsible: Proposed Implementa�on
Date:

 

Suppor�ng A�achments
No file attached

 

Step 6 – Request Approval
Dra�ers Name: Dra� Date:

Dra�ers Comments:

Assessment Approval: 

Maximum Residual Risk Level:

Document Status:   

 

Step 6 – Approval
Approvers Name: Approvers Posi�on Title:

Approvers Comments:

I am sa�sfied that the risks are as low as reasonably prac�cable and that the resources required will be provided.

Approval Decision: Approve / Reject Date: Document Status:

 

Aaron Cou�s 7/06/2021

All risks are marked as ALARP 0

Low - Manager/Supervisor Approval Required 1

Approval Requested

Paul Wen

Approval Requested





Appendix C

Ethical Clearance



106 Ethical Clearance

There are no Ethical Clearances applicable to this project.



Appendix D

Main Code and Objective

Function



108 Main Code and Objective Function

D.1 The ma.m Main Memetic Algorithm Script

The script ma.m is the main script to be called to start and run the Memetic Algorithm.

Listing D.1: Memetic Algorithm Main Script.

c l e a r v a r i a b l e s
c l o s e a l l
c l c

addpath ( ’ h e l p e r s ’ )
addpath ( ’ ope ra to r s ’ )

%i n i t i a l i s e p o p u l a t i o n parameters
numGenes = 3 ;
popSize = 80 ;
maxGenerations = 120 ;

%Operator r a t e s
mutationRate = 0 . 0 1 ;
c ros soverRate = 0 . 8 ;
l oca lSearchRate = 0 . 0 5 ; %0.05
e l i t eCount = 1 ;

%Gene boundar ies (PID parameters )
pBounds = [ 0 , 5 ] ; %100 1.5 4
iBounds = [ 0 , 5 ] ; %10 1 4
dBounds = [ 0 , 5 ] ; %1 1 4

%Map gene index to bounds = t h i s would be u s e f u l i f a d i f f e r e n t
↪→ number o f

%genes were used ( e . g . a FOPID)
geneBounds = {pBounds iBounds dBounds } ;

%============= t r a n s f e r f u n c t i o n and r e l a t e d v a r i a b l e s se tup
↪→ =============%

channel = 2 ; %1 : Pitch , 2 : Yaw
system type = ’MIMO’ ;
%f i x the PID c o n t r o l l e r t h a t i s not be ing tuned wi th

↪→ predetermined v a l u e s
%K f ixed = [0 .13136 0.27323 0 . 7 3 8 3 3 ] ; %GA Yaw SISO
%K f ixed = [0 .59458 0.60207 0 . 5 0 5 2 9 ] ; %GA Pitch MIMO
K fixed = [0 . 621 41 0.89421 0 . 4 2 0 3 9 ] ; %MA Pitch MIMO

i f channel == 1
%p i t c h t f
num = [0 . 016 57 0 .4194 2 . 4 5 4 ] ;
den = [ 1 1 .487 4 .403 5 . 4 4 9 ] ;

e l s e i f channel == 2
%yaw t f



D.1 The ma.m Main Memetic Algorithm Script 109

num = [0 .0009881 0.03361 0 . 4 0 6 5 ] ;
den = [ 1 1 .345 0 .4568 0 . 3 8 2 6 ] ;

end

%g l o b a l v a r i a b l e s to do wi th s i m u l a t i n g the system
g l o b a l G
i f strcmp ( system type , ’MIMO’ )

G11 = t f ( [ 0 . 0 1 6 5 7 0 .4194 2 . 4 5 4 ] , [ 1 1 .487 4 .403 5 . 4 4 9 ] ) ; %
↪→ p i t c h main

G12 = t f ( [ 0 . 0 4 9 8 6 0 . 0 9 6 2 ] , [ 1 0 .2377 4 . 9 0 2 ] ) ; %yaw
↪→ c o u p l i n g i n t o p i t c h

G21 = t f ( [ 0 . 0 2 2 4 8 0 . 4 5 2 7 ] , [ 1 0 .4099 0 . 2 1 8 1 ] ) ; %p i t c h
↪→ c o u p l i n g i n t o yaw

G22 = t f ( [ 0 . 0009881 0.03361 0 . 4 0 6 5 ] , [ 1 1 .345 0 .4568 0 . 3 8 2 6 ] )
↪→ ; %yaw main

G = [ G11 G12 ;
G21 G22 ] ;

e l s e
G = t f (num, den ) ;

end

g l o b a l dt
dt = 0 . 0 5 ;
g l o b a l T
T = 50 ;

%save g l o b a l v a r i a b l e s to . mat f i l e so they are a c c e s s i b l e f o r
↪→ workers

%( g l o b a l s are not a c c e s s i b l e to workers )
save ( ’ ws vars ’ , ’G ’ , ’ dt ’ , ’T ’ , ’ channel ’ , ’ system type ’ , ’

↪→ K fixed ’ )

%
↪→ ========================================================================

↪→

%TODO DELETE THE FOLLOWING = JUST FOR TESTING
g l o b a l unstableCount stableCount ;
unstableCount = 0 ;
stableCount = 0 ;
%END

%c o n t r o l f o r c a l c u l a t i n g percentage o f s t a b l e systems f o r each
↪→ geneat ion

ca l cu l a t eS tab l eSys t ems = f a l s e ;
percentageOfStableSystems = [ ] ;

%setup v a r i a b l e s to c o n t r o l the number o f runs and record data
↪→ f o r each run

i t e r a t i o n s = 5 ;
bestIndividualsOfEachRun = ze ro s ( i t e r a t i o n s , numGenes ) ;



110 Main Code and Objective Function

best Indiv idua lsOfEachRunFitness = ze ro s ( i t e r a t i o n s , 1 ) ;

l e g endSt rBu i lde r = s t r i n g s ( i t e r a t i o n s , 1 ) ; %f o r b u i l d i n g the
↪→ l e gen d when p l o t t i n g

%wai tbar f o r v i s u a l r e p r e s e n t a t i o n o f p r o g r e s s
f = waitbar (0 , ’ S t a r t i ng Memetic Algorithm Optimisat ion . . . ’ , ’

↪→ Name ’ , ’ Optimis ing . . . ’ ) ;

t i c ;
runTimeTracker = 0 ;

%s t a r t g l o b a l i t e r a t i o n here
f o r i t e r = 1 : i t e r a t i o n s
d i sp ( s t r c a t ( [ ’======================= Run ’ num2str ( i t e r ) ’

↪→ ========================= ’ ] ) )
i f channel == 1

channel name = ’ Pitch ’ ;
e l s e i f channel == 2

channel name = ’Yaw ’ ;
end
d i sp ( s t r c a t ( [ ’ Channel and System Type : ’ channel name ’ ’

↪→ system type ] ) )
%s o l i s =wet rho and t r e s h o l d v a l u e s t h a t are updated and accessed

↪→ through
%s t o r e d . mat f i l e . These are here as they need to be r e s e t each

↪→ i t e r a t i o n
rho = 0 . 0 1 ;
th r e sho ld = 0 . 0 0 1 ;
save ( ’ s o l i s w e t s l s v a r s ’ , ’ rho ’ , ’ th r e sho ld ’ )

%====================Generate i n i t i a l popu la t ion
↪→ ==========================%

%formula f o r g e n e r a t i n g N random numbers in the i n t e r v a l (a , b ) :
%r = a + ( b=a ) .* rand (N, 1 )

a = pBounds (1 ) ;
b = pBounds (2 ) ;
N = popSize ;
pPop = a + (b=a ) .* rand (N, 1 ) ; %Generate genes f o r P

a = iBounds (1 ) ;
b = iBounds (2 ) ;
iPop = a + (b=a ) .* rand (N, 1 ) ; %Generate genes f o r I

a = dBounds (1 ) ;
b = dBounds (2 ) ;
dPop = a + (b=a ) .* rand (N, 1 ) ; %Generate genes f o r D

pop = [ pPop iPop dPop ] ; %Combine to form p o p u l a t i o n

%f o r t r a c k i n g f i t n e s s over i t e r a t i o n s w



D.1 The ma.m Main Memetic Algorithm Script 111

maxFitnessValues = ze ro s (1 , maxGenerations + 1) ;
averageF i tnes sVa lues = ze ro s (1 , maxGenerations + 1) ;

%========================== S t a r t Operat ions
↪→ =============================%

gen = 1 ;
whi l e ( gen <= maxGenerations )

%EVALUATE FITNESS
%c r e a t e v e c t o r o f f i t n e s s v a l u e s t h a t correspond to the

↪→ f i t n e s s v a l u e s o f
%each chromosome in the popu la t ion , f o r e f f i c i e n c y .
%i . e . f i t n e s s V e c ( k ) i s f i t n e s s o f pop ( k , : )
f i t n e s s V e c = ze ro s ( popSize , 1 ) ;
pa r f o r k = 1 : l ength ( pop )

f i t n e s s V e c ( k ) = o b j e c t i v e f u n c t i o n ( pop (k , : ) ) ;
end

%update wai tbar
waitbar ( ( gen=1)/maxGenerations , f , . . .

{ ’ Running Memetic Algorithm Optimisat ion . . . ’ , s t r c a t ( [ ’
↪→ Current Generation : ’ num2str ( gen ) . . .

’ Current I t e r a t i o n : ’ num2str ( i t e r ) ] ) }) ;

%c a l c u l a t e percentage o f s t a b l e r e s u l t s per g e n e r a t i o n
i f c a l cu l a t eS tab l eSys t ems && ( gen == 1)

numberOfStableSystems = ze ro s ( popSize , 1 ) ;
percentageOfStableSystems = ze ro s ( maxGenerations , 1 ) ;

end
i f c a l cu l a t eS tab l eSys t ems

numberOfStableSystems = 0 ;
pa r f o r k = 1 : popSize

numberOfStableSystems = numberOfStableSystems +
↪→ i s s o l u t i o n f e a s i b l e ( pop (k , : ) , geneBounds ,
↪→ t rue ) ;

end
percentageOfStableSystems ( gen ) = (sum(

↪→ numberOfStableSystems ) / popSize ) * 100 ;
end

%! run o p e r a t o r s in p a r a l l e l !
%PRESERVE ELITE
OP1 = p a r f e v a l ( @ g e t e l i t e s , 2 , pop , f i tne s sVec , e l i t eCount ) ;
%CROSSOVER
OP2 = p a r f e v a l ( @crossover , 2 , pop , f i tne s sVec , c ros soverRate ) ;
%MUTATION
OP3 = p a r f e v a l ( @mutation , 2 , pop , mutationRate , geneBounds ) ;
%LOCAL SEARCH
OP4 = p a r f e v a l ( @ loca l s ea rch , 2 , pop , f i tne s sVec , geneBounds ,

↪→ l o ca lSearchRate ) ;

%r e t r i e v e r e s u l t s from p a r a l l e l o pera t ion



112 Main Code and Objective Function

[ R1 , R2 ] = fetchOutputs ( [ OP1, OP2, OP3, OP4] , ’ UniformOutput
↪→ ’ , f a l s e ) ;

e l i t e s = ce l l 2mat (R1(1 ) ) ;
e l i t e s F i t V e c = ce l l 2mat (R2(1 ) ) ;
x o v e r o f f s p r i n g = ce l l 2mat (R1(2) ) ;
x o v e r f i t V e c = ce l l 2mat (R2(2) ) ;
mut o f f sp r ing = ce l l 2mat (R1(3) ) ;
mut f i tVec = ce l l 2mat (R2(3 ) ) ;
l s o f f s p r i n g = ce l l 2mat (R1(4 ) ) ;
l s f i t V e c = ce l l 2mat (R2(4) ) ;

%want to see what the e l i t e was from b e f o r e any o p e r a t o r s
↪→ t a ke p l a c e

i f gen == 1
maxFitnessValues ( gen ) = max( f i t n e s s V e c ) ;
%a l s o compute average
averageF i tnes sVa lues ( gen ) = sum( f i t n e s s V e c ) / popSize ;

end

%g e t f i t t e s t i n d i v i d u a l from l o c a l search and add to e l i t e s
↪→ v e c t o r

%( Lamarckian Model )
i f ˜ isempty ( l s o f f s p r i n g )

[ maxLSFitness , idx ] = max( l s f i t V e c ) ;
maxLS = l s o f f s p r i n g ( idx , : ) ;
i f e l i t eCount == 1

%r e p l a c e
i f ( maxLSFitness > e l i t e s F i t V e c )

e l i t e s = maxLS ;
e l i t e s F i t V e c = maxLSFitness ;

end
e l s e i f e l i t eCount == 0

e l i t e s = maxLS ;
e l i t e s F i t V e c = maxLSFitness ;

e l s e
%f i n d max e l i t e and r e p l a c e
[ maxEl i teFitness , idx ] = max( e l i t e s F i t V e c ) ;
maxElite = e l i t e s ( idx , : ) ;
i f maxLSFitness > maxEl i teF i tness

e l i t e s ( idx , : ) = maxLS ;
e l i t e s F i t V e c ( idx ) = maxLSFitness ;

end
end

end

%SURVIVOR SELECTION = c u l l ex tended p o p u l a t i o n back to
↪→ popSize ,

%a p p l y i n g e l i t i s m
extended pop = [ pop ; x o v e r o f f s p r i n g ; mut o f f sp r ing ;

↪→ l s o f f s p r i n g ] ;
e x t p o p f i t n e s s = [ f i t n e s s V e c ; x o v e r f i t V e c ; mut f i tVec ;

↪→ l s f i t V e c ] ;



D.1 The ma.m Main Memetic Algorithm Script 113

[ newPop , newPopFitness ] = s u r v i v o r s e l e c t i o n ( extended pop ,
↪→ e x t p o p f i t n e s s , e l i t e s , e l i t e s F i t V e c , popSize ) ;

%a s s i g n new p o p u l a t i o n to be used in the next g e n e r a t i o n
pop = newPop ;
f i t n e s s V e c = newPopFitness ;

%s t o r e the max f i t n e s s v a l u e f o r p l o t t i n g purposes
maxFitnessValues ( gen+1) = max( f i t n e s s V e c ) ;
averageF i tnes sVa lues ( gen+1) = sum( f i t n e s s V e c ) / popSize ;

gen = gen + 1 ;
end

%c a l c u l t e percentage o f s t a b l e systems across a l l g e n e r a t i o n s
i f c a l cu l a t eS tab l eSys t ems

percentageOfStab leSystemsAl lGenerat ions = sum(
↪→ percentageOfStableSystems ) /maxGenerations ;

d i sp ( s t r c a t ( [ ’ Percentage o f Stab le Systems a c r o s s a l l
↪→ gene ra t i on s : ’ . . .

num2str ( percentageOfStab leSystemsAl lGenerat ions ) ’%’ ] ) )
end

%p rov ide update t h a t a l gor i thm i s f i n a l i s i n g
waitbar (1 , f , ’ F i n a l i s i n g . . . ’ ) ;

%b u i l d s t r i n g f o r l egen d
l e g endSt rBu i lde r ( i t e r , : ) = s t r c a t ( [ ’ I t e r a t i o n ’ num2str ( i t e r ) ] ) ;

f i g u r e (1 )
p l o t ( 1 : gen , maxFitnessValues )
t i t l e ( ’ Plot o f Max F i tne s s vs . Generation Number ’ )
x l a b e l ( ’ Generation Number ’ )
y l a b e l ( ’Max F i tne s s ’ )
i f maxGenerations > 1

xlim ( [ 1 maxGenerations ] )
end
hold on

f i g u r e (2 )
p l o t ( 1 : gen , averageF i tnes sVa lues )
t i t l e ( ’ Plot o f Average F i tne s s vs . Generation Number ’ )
x l a b e l ( ’ Generation Number ’ )
y l a b e l ( ’ Average F i tne s s ’ )
i f maxGenerations > 1

xlim ( [ 1 maxGenerations ] )
end
hold on

%g e t the f i t t e s t i n d i v i d u a l a t the end = t h i s w i l l be the
↪→ opt imal v a l u e

[ opt imisedParametersFitness , idx ] = max( f i t n e s s V e c ) ;



114 Main Code and Objective Function

optimisedParameters = pop ( idx , : ) ;
%d i s p l a y
di sp ( s t r c a t ( [ ’ Optimal PID Parameters : ’ num2str (

↪→ optimisedParameters ) ’ ’ ] ) ) ;
d i sp ( s t r c a t ( [ ’ F i tne s s Value : ’ num2str (

↪→ opt imisedParametersF i tness ) ] ) ) ;
newl ine ;

i f p i d t e s t ( optimisedParameters , f a l s e , t rue )
s t a b l e S t r = ’ Yes ’ ;

e l s e
s t a b l e S t r = ’No ’ ;

end
d i sp ( s t r c a t ( [ ’ System Stab le : ’ s t a b l e S t r ] ) ) ;

bestIndividualsOfEachRun ( i t e r , : ) = optimisedParameters ;
best Indiv idua lsOfEachRunFitness ( i t e r ) =

↪→ opt imisedParametersF i tness ;

%l o g e l a p s e d time
t = toc ;
runTimeTracker = runTimeTracker + t ;
end

f i g u r e (1 )
legend ( l egendStrBu i lde r , ’ Locat ion ’ , ’ northwest ’ )
f i g u r e (2 )
legend ( l egendStrBu i lde r , ’ Locat ion ’ , ’ northwest ’ )

d i sp ( ’==================================================== ’ )

%Find the median i t e r a t i o n , d i s p l a y and p l o t
[ ˜ , med idx ] = min ( abs ( bestIndiv idualsOfEachRunFitness=median (

↪→ best Indiv idua lsOfEachRunFitness ) ) ) ;
d i sp ( s t r c a t ( [ ’The run r e p r e s e n t a t i v e o f the median o f a l l

↪→ i t e r a t i o n s i s Run ’ num2str ( med idx ) ] ) ) ;
d i sp ( s t r c a t ( [ ’ Optimal PID Parameters : ’ num2str (

↪→ bestIndividualsOfEachRun ( med idx , : ) ) ’ ’ ] ) ) ;
d i sp ( s t r c a t ( [ ’ F i tne s s Value : ’ num2str (

↪→ best Indiv idua lsOfEachRunFitness ( med idx , : ) ) ] ) ) ;
f i g u r e (3 )
p i d t e s t ( bestIndividualsOfEachRun ( med idx , : ) , true , t rue ) ;
t i t l e ( ’ Step Response o f Median I n d i v i d u a l ’ )

%p r i n t average time taken f o r each run
newl ine ;
d i sp ( s t r c a t ( [ ’ Average I t e r a t i o n Runtime : ’ num2str (

↪→ runTimeTracker/ i t e r a t i o n s ) ’ s ’ ] ) )

%d e l e t e wai tbar
d e l e t e ( f )



D.2 The objective function.m 115

D.2 The objective function.m

The function objective function.m is the main script to be called to start and run the

Memetic Algorithm.

Listing D.2: Function to evaluate objective function and calculate fitness.

f unc t i on [ f i t n e s s , s t a b l e ] = o b j e c t i v e f u n c t i o n ( K arr , testRH )
%UNTITLED C a l c u l a t e s the f i t n e s s o f the g iven gene (PID

↪→ parameters )
% D e t a i l e d e x p l a n a t i o n goes here

g l o b a l unstableCount
g l o b a l stableCount

%load v a r i a b l e s from the saved . mat f i l e
load ( ’ ws vars ’ , ’ dt ’ , ’T ’ , ’ system type ’ , ’ channel ’ )

i f narg in < 2
testRH = true ;

end

t = 0 : dt :T;

i f strcmp ( system type , ’ SISO ’ )
[ ClosedLoopSys , K] = b u i l d c o n t r o l s y s t e m ( K arr ) ;
[ y , t ] = step ( ClosedLoopSys , t ) ; %s t e p response

%c o n t r o l e f f o r t
u = ls im (K,1=y , t ) ;

%Combute O b j e c t i v e Function =

%ITE : i n t e g r a l o f a b s o l u t e e rro r and squared c o n t r o l
↪→ energy

J = Tˆ 2 .* ( dt .* sum( abs(1=y ( : ) ) ) ) + ( dt .* sum(u ( : ) . ˆ 2 ) ) ;
e l s e i f strcmp ( system type , ’MIMO’ )

i f channel == 1
r1 = ones ( l ength ( t ) , 1) ;
r2 = ze ro s ( l ength ( t ) , 1) ;

e l s e i f channel == 2
r1 = ze ro s ( l ength ( t ) , 1) ;
r2 = ones ( l ength ( t ) , 1) ;

end

%b u i l d and g e t system
[ ClosedLoopSys , K] = b u i l d c o n t r o l s y s t e m ( K arr ) ;

K1 = K(1) ;
K2 = K(2) ;



116 Main Code and Objective Function

%s i m u l a t e system
y = ls im ( ClosedLoopSys , [ r1 r2 ] , t ) ;

y1 = y ( : , 1 ) ; %channel 1 output
y2 = y ( : , 2 ) ; %channel 2 output

%e r r o r s
e1 = r1=y1 ;
e2 = r2=y2 ;

%c o n t r o l e f f o r t s
u1 = ls im (K1, e1 , t ) ; %channel 1 PID c o n t r o l e f f o r t
u2 = ls im (K2, e2 , t ) ; %channel 2 PID c o n t r o l e f f o r t

J = Tˆ 2 .* ( dt . * ( sum( abs ( e1 ) )+sum( abs ( e2 ) ) ) ) + ( dt . * ( sum(
↪→ u1 . ˆ 2 )+sum( u2 . ˆ 2 ) ) ) ;

end

%Test i f u n s t a b l e us ing Routh=Hurwitz C r i t e r i o n
i f testRH

i f strcmp ( system type , ’ SISO ’ )
s t a b l e = i s s y s t e m s t a b l e ( ClosedLoopSys ) ;

e l s e i f strcmp ( system type , ’MIMO’ )
s t a b l e = i s s y s t e m s t a b l e ( ClosedLoopSys (1 , channel ) )

↪→ && i s s y s t e m s t a b l e ( ClosedLoopSys (2 , channel ) ) ;
end

e l s e
s t a b l e = true ;

end

%p e n a l i s e i f uns tab l e , c a l c u l a t e and re turn f i t n e s s
i f testRH

i f ˜ s t a b l e
J = J + 100000; %l a r g e p e n a l t y f o r u n s t a b l e

↪→ system
unstableCount = unstableCount + 1 ;

e l s e
stableCount = stableCount + 1 ;

end
end
f i t n e s s = 30000/J ;

end



Appendix E

Operator Functions



118 Operator Functions

E.1 The crossover.m Operator

The function crossover.m is an operator function that performs crossover on given par-

ents.

Listing E.1: Function to perform crossover.

%m o d i f i e s o f f s p r i n g us ing a modi f ied whole a r i t h m e t i c
↪→ recombinat ion

%approach
f unc t i on [ o f f s p r i n g , o f f s p r i n g f i t V e c ] = c r o s s o v e r ( pop , f i tVec ,

↪→ c r o s s o v e r r a t e )
%setup

number o f o f f sp r i ng = f l o o r ( ( c r o s s o v e r r a t e * l ength ( pop ) )
↪→ /2) * 2 ; %always round to even number

i f ( numbe r o f o f f sp r i ng < 2)
number o f o f f sp r i ng = 2 ;

end
numGenes = s i z e ( pop , 2) ;

o f f s p r i n g = [ ] ;
o f f s p r i n g f i t V e c = ze ro s ( number o f o f f sp r ing , 1) ;

pa r f o r k = 1 : number o f o f f sp r i ng /2
%s t a r t a c r o s s o v e r here
%randomly s e l e c t two parents x pm and x pn
x pm = p a r e n t s e l e c t i o n ( pop , f i t V e c ) ;
x pn = p a r e n t s e l e c t i o n ( pop , f i t V e c ) ;
%i n i t i a l i s e o f f s p r i n g
x o1 = ze ro s (1 , numGenes ) ;
x o2 = ze ro s (1 , numGenes ) ;

%S p l i t chromosome at the randomly chosen index , a , where
↪→ as i s in

%the i n v e r v a l [ 1 , u ] , where u i s numGenes
a = randi (numGenes , 1) ;

%s t o r e the same genes from r e s p e c t i v e parents f o r each
↪→ c h i l d up to , but

%not i n d l u d i n g the s p e c i f i e d index
i f ( a˜=1)

x o1 ( 1 : a=1) = x pm ( 1 : a=1) ;
x o2 ( 1 : a=1) = x pn ( 1 : a=1) ;

end

%c a l c u l a t e the x o1 and x o2 f o r each c h i l d and s t o r e at
↪→ the index ’ a ’

B = rand (1 , 1 ) ;



E.1 The crossover.m Operator 119

x o1 ( a ) = (1 = B) *x pm( a ) + B*x pn ( a ) ;
x o2 ( a ) = (1 = B) *x pn ( a ) + B*x pm( a ) ;

%swap genes o f parents a f t e r index ’a ’ f o r both
↪→ o f f s p r i n g

i f ( a < numGenes )
x o1 ( a+1:end ) = x pm( a+1:end ) ;
x o2 ( a+1:end ) = x pn ( a+1:end ) ;

end

o f f s p r i n g = [ o f f s p r i n g ; x o1 ] ;
o f f s p r i n g = [ o f f s p r i n g ; x o2 ] ;

end

pa r f o r k = 1 : number o f o f f sp r i ng
o f f s p r i n g f i t V e c ( k ) = o b j e c t i v e f u n c t i o n ( o f f s p r i n g (k , : ) )

↪→ ;
end

end



120 Operator Functions

E.2 The mutation.m Operator

The function mutation.m is an operator function that performs mutation on randomly

selected genes from a population.

Listing E.2: Function to perform mutation.

f unc t i on [ o f f s p r i n g , o f f s p r i n g f i t V e c ] = mutation ( pop ,
↪→ mutat ion rate , gene bounds )

%MUTATION Perform mutation on s p e c i f i e d amount o f p o p u l a t i o n
%Change a l l e l e v a l u e s randomly w i t h i n i t s domain
%i . e .
%<x1 , x2 , . . . , xn )> => <x ’ 1 , x ’ 2 , . . . , x ’ n>
%where xi , x ’ i i s an element o f [ Li , Ui ]
%where Ui and Li are upper and lower boundar ies r e s p e c t i v e l y

number o f o f f sp r i ng = c e i l ( mutat ion rate * s i z e ( pop , 1 ) ) ; %
↪→ use c e i l i n g as num o f mutat ions shou ld never be 0 i f
↪→ r a t e i s non=zero

numGenes = s i z e ( pop , 2) ;
o f f s p r i n g = ze ro s ( number o f o f f sp r ing , numGenes ) ;
o f f s p r i n g f i t V e c = ze ro s ( number o f o f f sp r ing , 1) ;

d i sp ( number o f o f f sp r i ng ) ;

%s e l e c t random genes to mutate accord ing to g iven
↪→ m u t a t i o n r a t e

f o r k = 1 : number o f o f f sp r i ng
%s e l e c t random chromosome
o f f s p r i n g (k , : ) = pop ( randi ( s i z e ( pop , 1 ) ) , : ) ;

%mutate chromosome by s e l e c t i n g random gene :
x = randi (numGenes , 1) ;
geneBounds = ce l l 2mat ( gene bounds ( x ) ) ;
L k = geneBounds (1 ) ; %L k = lower bound
U k = geneBounds (2 ) ; %U k = upper bound
o f f s p r i n g (k , randi (numGenes ) ) = L k + rand *( U k = L k ) ;

↪→ %mutate gene
end

%c a l c u l a t e f i t n e s s in p a r a l l e l
par f o r k = 1 : number o f o f f sp r i ng

o f f s p r i n g f i t V e c ( k ) = o b j e c t i v e f u n c t i o n ( o f f s p r i n g (k , : ) )
↪→ ;

end

end



E.3 The local search.m Operator 121

E.3 The local search.m Operator

The function local search.m is an operator function that handles all the calls to the

chosen local search method.

Listing E.3: Function to call LS algorithm.

f unc t i on [ o f f s p r i n g , o f f s p r i n g f i t V e c ] = l o c a l s e a r c h ( pop ,
↪→ f i tVec , gene bounds , r a t e )

%LOCAL SEARCH Method f o r hand l ing l o c a l search c a l l s

%d e f i n e parameters f o r the LS a l gor i thm
maxf = 3 ;
maxs = 3 ;
expf = 2 ;
conf = 0 . 5 ;
max i ter = 100 ;

l s c o u n t = c e i l ( r a t e * l ength ( pop ) ) ;

%g e t poo l o f c a n d i d a t e s f o r l o c a l search
[ candidatePool , poo l F i tn e s s ] = g e t e l i t e s ( pop , f i tVec ,

↪→ l s c o u n t ) ;

o f f s p r i n g = [ ] ;
o f f s p r i n g f i t V e c = [ ] ;

pa r f o r k = 1 : l s c o u n t
[ r e s u l t , r e s u l t F i t n e s s ] = . . .

s o l i s w e t s L S ( candidatePool (k , : ) , p oo lF i t n e s s ( k ) , . . .
maxf , maxs , expf , conf , gene bounds , max iter ,

↪→ l s c o u n t ) ;
i f ˜ isempty ( r e s u l t )

o f f s p r i n g = [ o f f s p r i n g ; r e s u l t ] ;
o f f s p r i n g f i t V e c = [ o f f s p r i n g f i t V e c ; r e s u l t F i t n e s s

↪→ ] ;
end

end
end



122 Operator Functions

E.4 The solis wets LS.m Operator

The function solis wets LS.m is an implementation of the modified Solis & Wets algo-

rithm.

Listing E.4: LS algorithm.

f unc t i on [ o f f s p r i n g , o f f s p r i n g f i t V e c ] = s o l i s w e t s L S (
↪→ candidateToImprove , . . .

candidateToImproveFitness , maxF, maxS , expf , conf ,
↪→ gene bounds , max iter , l s c o u n t )

%SOLIS WETS LS implements a modi f ied v e r s i o n o f S o l i s & Wet ’ s LS
↪→ a l gor i thm

load ( ’ s o l i s w e t s l s v a r s ’ , ’ rho ’ , ’ th r e sho ld ’ )

o f f s p r i n g = [ ] ;
o f f s p r i n g f i t V e c = [ ] ;

%s e t b i a s to 0
b = 0 ;

%i n i t i a l i s e f a i l u r e and s u c c e s s t r a c k e r s
f a i l u r e s = 0 ;
s u c c e s s e s = 0 ;

%s e t the new candida te to be the cand ida te to improve
↪→ i n i t i a l l y

newCandidate = candidateToImprove ;
newBestIndiv idual = [ ] ;
newBest Ind iv idua lF i tnes s = [ ] ;

i t e r = 0 ;
whi l e ( ( rho > th r e sho ld ) && ( i t e r < max iter ) )

%t r y to improve candida te
D = normrnd (b , rho ) ;
newCandidate = newCandidate + D;
[ newCandidateFitness , s t a b l e ] = o b j e c t i v e f u n c t i o n (

↪→ newCandidate ) ;
i f ( newCandidateFitness > candidateToImproveFitness ) &&

↪→ s t a b l e && i s s o l u t i o n f e a s i b l e ( newCandidate ,
↪→ gene bounds , f a l s e )

f a i l u r e s = 0 ;
s u c c e s s e s = s u c c e s s e s + 1 ;
b = 0.5*D + 0.2*b ;
newBestIndiv idual = newCandidate ;
newBest Ind iv idua lF i tnes s = newCandidateFitness ;

e l s e
newCandidate = candidateToImprove + D;



E.4 The solis wets LS.m Operator 123

[ newCandidateFitness , s t a b l e ] = o b j e c t i v e f u n c t i o n (
↪→ newCandidate ) ;

i f ( newCandidateFitness > candidateToImproveFitness )
↪→ && s t a b l e && i s s o l u t i o n f e a s i b l e (
↪→ newCandidate , gene bounds , f a l s e )

f a i l u r e s = 0 ;
s u c c e s s e s = s u c c e s s e s + 1 ;
b = b = 0 .4*D;
newBestIndiv idual = newCandidate ;
newBest Ind iv idua lF i tnes s = newCandidateFitness ;

e l s e
f a i l u r e s = f a i l u r e s + 1 ;
s u c c e s s e s = 0 ;
b = 0.5*b ;

end
end

i f s u c c e s s e s >= maxS
f a i l u r e s = 0 ;
s u c c e s s e s = 0 ;
rho = expf * rho ;

end
i f f a i l u r e s >= maxF

f a i l u r e s = 0 ;
s u c c e s s e s = 0 ;
rho = conf * rho ;

end
i t e r = i t e r + 1 ;

end

%i f the new i n d i v i d u a l i s b e t t e r than b e f o r e the l o c a l
↪→ search , s h r i n k

%t h r e s h o l d and re turn the new i n d i v i d u a l
i f ˜ isempty ( newBestIndiv idual )

i f ( newBest Ind iv idua lF i tnes s > candidateToImproveFitness
↪→ ) && i s s o l u t i o n f e a s i b l e ( newBestIndividual ,
↪→ gene bounds , f a l s e )

th r e sho ld = (0 . 2 / l s c o u n t ) * th r e sho ld ;
end
o f f s p r i n g = newBestIndiv idual ;
o f f s p r i n g f i t V e c = newBest Ind iv idua lF i tnes s ;

end
rho = (5/ l s c o u n t ) * rho ;

save ( ’ s o l i s w e t s l s v a r s ’ , ’ rho ’ , ’ th r e sho ld ’ )

end





Appendix F

Helper Functions



126 Helper Functions

F.1 The build control system.m Helper Function

Listing F.1: Helper function to help build control system programmatically.

f unc t i on [ sys , K] = b u i l d c o n t r o l s y s t e m ( K arr )
%BUILD CONTROL SYSTEM Bui lds a c o n t r o l system f o r the g iven PID

↪→ parameters
% Returns the c l o s e d loop system and K, a 1x1 r e p r e s e n t i n g the

↪→ PID
% c o n t r o l l e r i f the system type i s SISO , and a 1x2

↪→ r e p r e s e n t i n g the PID
% c o n t r o l l e r f o r both channe ls i f the system type i s MIMO

%load v a r i a b l e s from the saved . mat f i l e
load ( ’ ws vars ’ , ’G ’ , ’ system type ’ , ’ channel ’ , ’ K f ixed ’ )

i f strcmp ( system type , ’ SISO ’ )
K = pid ( K arr (1 ) , K arr (2 ) , K arr (3 ) , 0 . 001 ) ;
Loop = s e r i e s (K,G) ;
sys = feedback ( Loop , 1) ;

e l s e i f strcmp ( system type , ’MIMO’ )
i f channel == 1

K1 = pid ( K arr (1 ) , K arr (2 ) , K arr (3 ) , 0 . 001 ) ;
K2 = pid ( K f ixed (1 ) , K f ixed (2 ) , K f ixed (3 ) , 0 . 001 ) ;

e l s e i f channel == 2
K1 = pid ( K f ixed (1 ) , K f ixed (2 ) , K f ixed (3 ) , 0 . 001 ) ;
K2 = pid ( K arr (1 ) , K arr (2 ) , K arr (3 ) , 0 . 001 ) ;

end

K = [K1 K2 ] ;

%cascade PIDs BEFORE cross=c o u p l i n g paths
y1 p id l oop = s e r i e s (K1, G, 1 , 1) ;
y2 p id l oop = s e r i e s (K2, G, 1 , 2) ;

s y s w i t h p i d s = [ y1 p id l oop y2 p id l oop ] ;

fb = t f ( s s ( eye (2 ) ) ) ; %genera te i d e n t i t y s t a t e space
↪→ f o r u n i t y f e e d b a c k l i n e s

sys = feedback ( sy s w i th p id s , fb , =1) ; %n e g a t i v e
↪→ f e e d b a c k f o r both i /o l i n e s

end
end



F.2 The get elites.m Helper Function 127

F.2 The get elites.m Helper Function

Listing F.2: Helper function to get elites from the given population.

f unc t i on [ e l i t eVec , e l i t e F i t V e c ] = g e t e l i t e s ( pop , f i tVec ,
↪→ e l i t eCount )

%GET ELITES g e t s e l i t e C o u n t number o f e l i t e s from the g iven
↪→ p o p u l a t i o n

i f ( e l i t eCount > 0)
tmpPop = pop ;
tmpFitVec = f i t V e c ;
e l i t e V e c = ze ro s ( e l i t eCount , s i z e ( pop , 2 ) ) ;
e l i t e F i t V e c = ze ro s ( e l i t eCount , 1) ;
f o r k = 1 : e l i t eCount

[ ˜ , I ] = max( tmpFitVec ) ;
e l i t e V e c (k , : ) = tmpPop( I , : ) ;
e l i t e F i t V e c ( k ) = tmpFitVec ( I ) ;
tmpFitVec ( I ) = [ ] ;
tmpPop( I , : ) = [ ] ;

end
%no need to hang onto t h e s e temp v e c t o r s when done , so

↪→ f r e e them
%from memory
c l e a r tmpPop tmpFitVec

e l s e
e l i t e V e c = [ ] ;
e l i t e F i t V e c = [ ] ;

end
end



128 Helper Functions

F.3 The is solution feasible.m Helper Function

Listing F.3: Helper function to test if a potential solution is within bounds and is stable.
Useful in LS.

f unc t i on f e a s i b l e = i s s o l u t i o n f e a s i b l e ( K arr , gene bounds ,
↪→ c h e c k s t a b i l i t y )

%IS SOLUTION FEASIBLE : Checks i f the s o l u t i o n meets a l l c r i t e r i a
↪→ to be

%c l a s s e d as a f e a s i b l e s o l u t i o n
% Check i f the g iven s o l u t i o n i s w i t h i n bounds and the
%system produced i s s t a b l e

load ( ’ ws vars ’ , ’ channel ’ , ’ system type ’ )

%check i f the s o l u t i o n i s w i t h i n bounds
f o r k = 1 : l ength ( gene bounds )

geneBounds = ce l l 2mat ( gene bounds ( k ) ) ;
L = geneBounds (1 ) ; %lower bound
U = geneBounds (2 ) ; %upper bound
i f ( K arr ( k ) < L) | | ( K arr ( k ) > U)

f e a s i b l e = f a l s e ;
r e turn

end
end

%check i f s t a b l e
i f c h e c k s t a b i l i t y

ClosedLoop = b u i l d c o n t r o l s y s t e m ( K arr ) ;
i f strcmp ( system type , ’ SISO ’ )

f e a s i b l e = i s s y s t e m s t a b l e ( ClosedLoop ) ;
e l s e i f strcmp ( system type , ’MIMO’ )

f e a s i b l e = i s s y s t e m s t a b l e ( ClosedLoop (1 , channel ) )
↪→ && i s s y s t e m s t a b l e ( ClosedLoop (2 , channel ) ) ;

end
e l s e

f e a s i b l e = true ;
end

end



F.4 The is system stable.m Helper Function 129

F.4 The is system stable.m Helper Function

Listing F.4: Helper function to test if a potential solution is stable.

f unc t i on s t a b l e = i s s y s t e m s t a b l e ( sys )
%GENERATE RH TABLE Checks i f s o l u t i o n i s s t a b l e us ing Routh=

↪→ Hurwitz c r i t e r i o n .
[ ˜ , den ] = t fda ta ( sys ) ;
den = ce l l 2mat ( den ) ;
rhTableAsDbl = r h S t a b i l i t y C r i t e r i o n ( den ) ; %genera te RH

↪→ t a b l e us ing s c r i p t by Farzad Sagharchi
%Check change in s i g n s in f i r s t column = i f s i g n changes ,

↪→ system
%u n s t a b l e
s t a b l e = true ;
f o r i = 1 : l ength ( den ) = 1

i f s i gn ( rhTableAsDbl ( i , 1 ) ) * s i gn ( rhTableAsDbl ( i +1 ,1) )
↪→ == =1

s t a b l e = f a l s e ;
break

end
end

end



130 Helper Functions

F.5 The parent selection.m Helper Function

Implements RWS to select parents.

Listing F.5: Helper function to implement RWS to select parents.

%s e l e c t parent from pop us ing r o u l e t t e wheel s e l e c t i o n .
f unc t i on parent = p a r e n t s e l e c t i o n ( pop , f i t V e c )

%c a l c u l a t e the sum of a l l f i t n e s s v a l u e s in the p o p u l a t i o n
t o t a l F i t n e s s = sum( f i t V e c ) ;

%genera te random number in the i n t e r v a l o f [ 0 , t o t a l F i t n e s s ]
r = t o t a l F i t n e s s * rand (1 , 1 ) ;

%loop through p o p u l a t i o n and sum the f i t n e s s f o r each
↪→ i n d i v i d u a l . Stop

%and re turn the i n d i v i d u a l when the sum o f f i t n e s s v a l u e s
↪→ becomes g r e a t e r

%than , or e q u a l to , the random number r
p a r t i a l F i t n e s s = 0 ;
f o r k=length ( pop ) :=1:1

p a r t i a l F i t n e s s = p a r t i a l F i t n e s s + f i t V e c ( k ) ;
i f ( p a r t i a l F i t n e s s >= r )

parent = pop (k , : ) ;
break

end
end

end



F.6 The pidtest.m Helper Function 131

F.6 The pidtest.m Helper Function

Listing F.6: Helper function used for building and testing a PID controller programmatically.

f unc t i on [ s t a b l e ] = p i d t e s t ( K arr , p l o t r e spons e , p r i n t s t e p i n f o
↪→ )

g l o b a l dt

load ( ’ ws vars ’ , ’ channel ’ , ’ system type ’ )

ClosedLoop = b u i l d c o n t r o l s y s t e m ( K arr ) ;
t = 0 : dt : 5 0 ;

%s t a b i l i t y check
i f strcmp ( system type , ’ SISO ’ )

s t a b l e = i s s y s t e m s t a b l e ( ClosedLoop ) ;
e l s e i f strcmp ( system type , ’MIMO’ )

s t a b l e = i s s y s t e m s t a b l e ( ClosedLoop (1 , channel ) ) &&
↪→ i s s y s t e m s t a b l e ( ClosedLoop (2 , channel ) ) ;

end

i f p l o t r e s p o n s e
i f strcmp ( system type , ’ SISO ’ )

s tep ( ClosedLoop , t )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

e l s e i f strcmp ( system type , ’MIMO’ )
i f channel == 1

r1 = ones ( l ength ( t ) , 1) ;
r2 = ze ro s ( l ength ( t ) , 1) ;

e l s e i f channel == 2
r1 = ze ro s ( l ength ( t ) , 1) ;
r2 = ones ( l ength ( t ) , 1) ;

end
l s im ( ClosedLoop , [ r1 r2 ] , t ) ;

end
end

%p r i n t system s t e p i n f o
i f p r i n t s t e p i n f o

d i sp ( ’ Step Ana lys i s ’ ) ;
i f strcmp ( system type , ’ SISO ’ )

d i sp ( s t e p i n f o ( ClosedLoop ) ) ;
e l s e i f strcmp ( system type , ’MIMO’ )

d i sp ( s t e p i n f o ( ClosedLoop ( channel , channel ) ) )
end

end
end



132 Helper Functions

F.7 The rhStabilityCriterion.m Helper Function

Created by Sagharchi Sagharchi, and modified to return Routh table only.

Listing F.7: Helper function to return routh table.

%% Routh=Hurwitz s t a b i l i t y c r i t e r i o n
%
% The Routh=Hurwitz s t a b i l i t y c r i t e r i o n i s a necessary ( and

↪→ f r e q u e n t l y
% s u f f i c i e n t ) method to e s t a b l i s h the s t a b i l i t y o f a s i n g l e=

↪→ input ,
% s i n g l e=output (SISO) , l i n e a r time i n v a r i a n t (LTI) c o n t r o l

↪→ system .
% More g e n e r a l l y , g i ven a polynomial , some c a l c u l a t i o n s us ing

↪→ only the
% c o e f f i c i e n t s o f t h a t po lynomia l can l e a d us to the c o n c l u s i o n

↪→ t h a t i t
% i s not s t a b l e .

% I n s t r u c t i o n s
% ============

%
% in t h i s program you must g i v e your system c o e f f i c i e n t s and

↪→ the
% Routh=Hurwitz t a b l e would be shown
%
% Farzad Sagharchi , Iran
% 2007/11/12
% Modif ied by Aaron Coutts
% 9/10/2021

f unc t i on rhTable = r h S t a b i l i t y C r i t e r i o n ( c o e f f V e c t o r )
%% I n i t i a l i z a t i o n

% Taking c o e f f i c i e n t s v e c t o r and o r g a n i z i n g the f i r s t two
↪→ rows

ceo f fLength = length ( c o e f f V e c t o r ) ;
rhTableColumn = round ( ceo f fLength /2) ;

% I n i t i a l i z e Routh=Hurwitz t a b l e wi th empty zero array
rhTable = ze ro s ( ceo f fLength , rhTableColumn ) ;

% Compute f i r s t row o f the t a b l e
rhTable ( 1 , : ) = c o e f f V e c t o r ( 1 , 1 : 2 : c eo f fLength ) ;

% Check i f l e n g t h o f c o e f f i c i e n t s v e c t o r i s even or odd
i f ( rem( ceo f fLength , 2 ) ˜= 0)



F.7 The rhStabilityCriterion.m Helper Function 133

% i f odd , second row of t a b l e w i l l be
rhTable ( 2 , 1 : rhTableColumn = 1) = c o e f f V e c t o r ( 1 , 2 : 2 :

↪→ ceo f fLength ) ;
e l s e

% i f even , second row of t a b l e w i l l be
rhTable ( 2 , : ) = c o e f f V e c t o r ( 1 , 2 : 2 : c eo f fLength ) ;

end

%% C a l c u l a t e Routh=Hurwitz t a b l e ’ s rows

% Set epss as a sma l l v a l u e
epss = 0 . 0 1 ;

% C a l c u l a t e o th er e lements o f the t a b l e
f o r i = 3 : ceo f fLength

% s p e c i a l case : row o f a l l z e r o s
i f rhTable ( i =1 , : ) == 0

order = ( ceo f fLength = i ) ;
cnt1 = 0 ;
cnt2 = 1 ;
f o r j = 1 : rhTableColumn = 1

rhTable ( i =1, j ) = ( order = cnt1 ) * rhTable ( i =2,
↪→ cnt2 ) ;

cnt2 = cnt2 + 1 ;
cnt1 = cnt1 + 2 ;

end
end

f o r j = 1 : rhTableColumn = 1
% f i r s t e lement o f upper row
firstElemUpperRow = rhTable ( i =1 ,1) ;

% compute each element o f the t a b l e
rhTable ( i , j ) = ( ( rhTable ( i =1 ,1) * rhTable ( i =2, j +1) )

↪→ = . . . .
( rhTable ( i =2 ,1) * rhTable ( i =1, j +1) ) ) /

↪→ firstElemUpperRow ;
end

% s p e c i a l case : zero in the f i r s t column
i f rhTable ( i , 1 ) == 0

rhTable ( i , 1 ) = epss ;
end

end
end

% %% Compute number o f r i g h t hand s i d e p o l e s ( u n s t a b l e p o l e s )
% % I n i t i a l i z e u n s t a b l e p o l e s wi th zero
% u n s t a b l e P o l e s = 0 ;
%



134 Helper Functions

% % Check change in s i g n s
% f o r i = 1: c e o f f L e n g t h = 1
% i f s i g n ( rhTable ( i , 1 ) ) * s i g n ( rhTable ( i +1 ,1) ) == =1
% u n s t a b l e P o l e s = u n s t a b l e P o l e s + 1 ;
% end
% end
%
% % Print c a l c u l a t e d data on screen
% f p r i n t f ( ’\n Routh=Hurwitz Table :\n ’ )
% rhTable
%
% % Print the s t a b i l i t y r e s u l t on screen
% i f u n s t a b l e P o l e s == 0
% f p r i n t f ( ’˜˜˜˜˜> i t i s a s t a b l e system ! <˜˜˜˜˜\n ’ )
% e l s e
% f p r i n t f ( ’˜˜˜˜˜> i t i s an u n s t a b l e system ! <˜˜˜˜˜\n ’ )
% end
%
% f p r i n t f ( ’\n Number o f r i g h t hand s i d e p o l e s =%2.0 f \n ’ ,

↪→ u n s t a b l e P o l e s )
%
% r e p l y = input ( ’Do you want r o o t s o f system be shown? Y/N ’ , ’ s

↪→ ’ ) ;
% i f r e p l y == ’ y ’ | | r e p l y == ’Y’
% sysRoots = r o o t s ( c o e f f V e c t o r ) ;
% f p r i n t f ( ’\n Given polynomia l c o e f f i c i e n t s r o o t s :\n ’ )
% sysRoots
% end



F.8 The survivor selection.m Helper Function 135

F.8 The survivor selection.m Helper Function

Selects next generation.

Listing F.8: Helper function to select next generation.

f unc t i on [ next generat ion , n e x t g e n f i t n e s s ] = s u r v i v o r s e l e c t i o n
↪→ ( extended pop , . . .

e x t p o p f i t n e s s , e l i t e s , e l i t e s f i t n e s s , p o p s i z e )
%SURVIVOR SELECTION Perform s e l e c t i o n to reduce
%p o p u l a t i o n s i z e back to p o p s i z e

%propagate e l i t e s to the next g e n e r a t i o n
next gene ra t i on = e l i t e s ;
n e x t g e n f i t n e s s = e l i t e s f i t n e s s ;

%perform binary tournament s e l e c t i o n
par f o r k = 1 : pop s i ze=s i z e ( e l i t e s , 1 )

[ winner , w innerF i tnes s ] = tournament s e l e c t i on (
↪→ extended pop , e x t p o p f i t n e s s , 2) ;

n ex t gene ra t i on = [ nex t gene ra t i on ; winner ] ;
n e x t g e n f i t n e s s = [ n e x t g e n f i t n e s s ; w innerF i tnes s ] ;

end
end



136 Helper Functions

F.9 The tournament selection.m Helper Function

Implements tournament selection. To be used for selecting the next generation.

Listing F.9: Helper function to implement tournament selection.

f unc t i on [ next generat ion , n e x t g e n f i t n e s s ] = s u r v i v o r s e l e c t i o n
↪→ ( extended pop , . . .

e x t p o p f i t n e s s , e l i t e s , e l i t e s f i t n e s s , p o p s i z e )
%SURVIVOR SELECTION Perform s e l e c t i o n to reduce
%p o p u l a t i o n s i z e back to p o p s i z e

%propagate e l i t e s to the next g e n e r a t i o n
next gene ra t i on = e l i t e s ;
n e x t g e n f i t n e s s = e l i t e s f i t n e s s ;

%perform binary tournament s e l e c t i o n
par f o r k = 1 : pop s i ze=s i z e ( e l i t e s , 1 )

[ winner , w innerF i tnes s ] = tournament s e l e c t i on (
↪→ extended pop , e x t p o p f i t n e s s , 2) ;

n ex t gene ra t i on = [ nex t gene ra t i on ; winner ] ;
n e x t g e n f i t n e s s = [ n e x t g e n f i t n e s s ; w innerF i tnes s ] ;

end
end



Appendix G

Test Scripts & Functions

G.1 The TestLinear1DOF.m Script

The test script written to test and verify 1DOF systems for pitch and yaw control of the

TRMS.

Listing G.1: Test 1DOF system and print results.

c l e a r v a r i a b l e s
c l o s e a l l
c l c

%t r a n s f e r f u n c t i o n s
p i t c h t f = t f ( [ 0 . 0 1 6 5 7 0 .4194 2 . 4 5 4 ] , [ 1 1 .487 4 .403 5 . 4 4 9 ] ) ;
yaw tf = t f ( [ 0 . 0009881 0.03361 0 . 4 0 6 5 ] , [ 1 1 .345 0 .4568 0 . 3 8 2 6 ] ) ;

%
↪→ ========================================================================

↪→
op t im i s a t i on type = ’MA’ ; %change t h i s depending on whether

↪→ t e s t i n g GA or MA

i f strcmp ( opt imi sa t i on type , ’MA’ )
Pitch Kp = 0 .039411 ;
Pitch Ki = 0 . 9 699 1 ;
Pitch Kd = 0 . 164 99 ;
Yaw Kp = 0 .3 1597 ;
Yaw Ki = 0 . 1578 9 ;
Yaw Kd = 0 .4 2171 ;

e l s e i f strcmp ( opt imi sa t i on type , ’GA’ )
Pitch Kp = 0 . 4 5 1 ;



138 Test Scripts & Functions

Pitch Ki = 1 . 8 7 0 1 ;
Pitch Kd = 0 . 4 9 5 9 ;
Yaw Kp = 0 .1 3136 ;
Yaw Ki = 0 . 2732 3 ;
Yaw Kd = 0 .7 3833 ;

end

dt = 0 . 0 5 ;
T = 50 ;
t = 0 : dt :T;

%d e f i n e t e s t parameters f o r Prasad e t . a l . ’ s t e s t i n g parameters
tes tParameters = s t r u c t ;
te s tParameters . s tep = 1 ;
tes tParameters . sineAmp = 1 ;
tes tParameters . s ineFreq = 0 . 0 2 5 ;
tes tParameters . sqrAmp = 1 ;
tes tParameters . sqrFreq = 0 . 0 2 5 ;
tes tParameters . i n i t i a l C o n d i t i o n = 0 ;

%t e s t p i t c h
K arr = [ Pitch Kp Pitch Ki Pitch Kd ] ;
[ sys , c o n t r o l l e r ] = bu i ld S ISO cont ro l sy s t em ( p i t c h t f , K arr ) ;

[ r iseTime , se t t l ingTime , overshoot , e r ro r , c o n t r o l E f f o r t ] =
↪→ sys t e s t S ISO ( sys , c o n t r o l l e r , t , testParameters , t rue ) ;

d i sp ( s t r c a t ( [ ’======== ’ op t im i s a t i on type ’ t e s t r e s u l t s
↪→ f o r Pitch Control ======== ’ ] ) )

d i sp ( s t r c a t ( [ ’ Rise time : ’ num2str ( r i seTime ) ] ) )
d i sp ( s t r c a t ( [ ’ S e t t l i n g time : ’ num2str ( s e t t l i ngT ime ) ] ) )
d i sp ( s t r c a t ( [ ’ Percentage overshoot : ’ num2str ( overshoot ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Step Input : ’

↪→ num2str ( e r r o r . s tep ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Sine Input : ’

↪→ num2str ( e r r o r . s i n e ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Square Input : ’

↪→ num2str ( e r r o r . sqr ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Step Input :

↪→ ’ num2str ( c o n t r o l E f f o r t . s t ep ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Sine Input :

↪→ ’ num2str ( c o n t r o l E f f o r t . s i n e ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Square

↪→ Input : ’ num2str ( c o n t r o l E f f o r t . sqr ) ] ) )

%t e s t yaw
K arr = [ Yaw Kp Yaw Ki Yaw Kd ] ;
[ sys , c o n t r o l l e r ] = bu i ld S ISO cont ro l sy s t em ( yaw tf , K arr ) ;
[ r iseTime , se t t l ingTime , overshoot , e r ro r , c o n t r o l E f f o r t ] =

↪→ sys t e s t S ISO ( sys , c o n t r o l l e r , t , testParameters , t rue ) ;
d i sp ( s t r c a t ( [ ’======== ’ op t im i s a t i on type ’ t e s t r e s u l t s

↪→ f o r Yaw Control ======== ’ ] ) )
d i sp ( s t r c a t ( [ ’ Rise time : ’ num2str ( r i seTime ) ] ) )



G.1 The TestLinear1DOF.m Script 139

di sp ( s t r c a t ( [ ’ S e t t l i n g time : ’ num2str ( s e t t l i ngT ime ) ] ) )
d i sp ( s t r c a t ( [ ’ Percentage overshoot : ’ num2str ( overshoot ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Step Input : ’

↪→ num2str ( e r r o r . s tep ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Sine Input : ’

↪→ num2str ( e r r o r . s i n e ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Square Input : ’

↪→ num2str ( e r r o r . sqr ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Step Input :

↪→ ’ num2str ( c o n t r o l E f f o r t . s t ep ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Sine Input :

↪→ ’ num2str ( c o n t r o l E f f o r t . s i n e ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Square

↪→ Input : ’ num2str ( c o n t r o l E f f o r t . sqr ) ] ) )



140 Test Scripts & Functions

G.2 The TestLinear2DOF.m Script

The test script written to test and verify 2DOF systems for pitch and yaw control of the

TRMS.

Listing G.2: Test 2DOF system and print results.

c l e a r v a r i a b l e s
c l o s e a l l
c l c

%t r a n s f e r f u n c t i o n s
G11 = t f ( [ 0 . 0 1 6 5 7 0 .4194 2 . 4 5 4 ] , [ 1 1 .487 4 .403 5 . 4 4 9 ] ) ; %

↪→ p i t c h main
G12 = t f ( [ 0 . 0 4 9 8 6 0 . 0 9 6 2 ] , [ 1 0 .2377 4 . 9 0 2 ] ) ; %yaw c o u p l i n g

↪→ i n t o p i t c h
G21 = t f ( [ 0 . 0 2 2 4 8 0 . 4 5 2 7 ] , [ 1 0 .4099 0 . 2 1 8 1 ] ) ; %p i t c h c o u p l i n g

↪→ i n t o yaw
G22 = t f ( [ 0 . 0009881 0.03361 0 . 4 0 6 5 ] , [ 1 1 .345 0 .4568 0 . 3 8 2 6 ] ) ;

↪→ %yaw main

G = [ G11 G12 ;
G21 G22 ] ;

%
↪→ ========================================================================

↪→
op t im i s a t i on type = ’MA’ ; %change t h i s depending on whether

↪→ t e s t i n g GA or MA

i f strcmp ( opt imi sa t i on type , ’GA’ )
Pitch Kp = 0 . 594 58 ;
Pitch Ki = 0 . 6 020 7 ;
Pitch Kd = 0 . 505 29 ;
Yaw Kp = 0 .3 1266 ;
Yaw Ki = 0 . 2287 5 ;
Yaw Kd = 0 .9 9066 ;

e l s e i f strcmp ( opt imi sa t i on type , ’MA’ )
Pitch Kp = 0 . 621 41 ;
Pitch Ki = 0 . 8 942 1 ;
Pitch Kd = 0 . 420 39 ;
Yaw Kp = 0 .3 6102 ;
Yaw Ki = 0 . 3018 9 ;
Yaw Kd = 0 .7 1477 ;

end

dt = 0 . 0 5 ;
T = 50 ;
t = 0 : dt :T;



G.2 The TestLinear2DOF.m Script 141

%d e f i n e t e s t parameters f o r Juang e t . a l . ’ s t e s t i n g parameters
testParametersChannel1 = s t r u c t ;
testParametersChannel1 . s tep = 1 ;
testParametersChannel1 . sineAmp = 0 . 5 ;
testParametersChannel1 . s ineFreq = 0 . 0 2 5 ;
testParametersChannel1 . sqrAmp = 0 . 5 ;
testParametersChannel1 . sqrFreq = 0 . 0 2 5 ;
testParametersChannel1 . i n i t i a l C o n d i t i o n = 0 ;

testParametersChannel2 = s t r u c t ;
testParametersChannel1 . s tep = 0 . 2 ;
testParametersChannel1 . sineAmp = 0 . 2 ;
testParametersChannel1 . s ineFreq = 0 . 0 2 5 ;
testParametersChannel1 . sqrAmp = 0 . 2 ;
testParametersChannel1 . sqrFreq = 0 . 0 2 5 ;
testParametersChannel1 . i n i t i a l C o n d i t i o n = 0 ;

%t e s t
K1 arr = [ Pitch Kp Pitch Ki Pitch Kd ] ;
K2 arr = [ Yaw Kp Yaw Ki Yaw Kd ] ;
[ sys , c o n t r o l l e r s ] = build MIMO control system (G, K1 arr , K2 arr

↪→ ) ;

[ r iseTime , se t t l ingTime , overshoot , e r ro r , c o n t r o l E f f o r t ] = . . .
systest MIMO ( sys , c o n t r o l l e r s , t , testParametersChannel1 ,

↪→ testParametersChannel1 , t rue ) ;
d i sp ( s t r c a t ( [ ’======== ’ op t im i s a t i on type ’ t e s t r e s u l t s f o r

↪→ Pitch Control ======== ’ ] ) )
d i sp ( s t r c a t ( [ ’ Rise time : ’ num2str ( r i seTime . channel1 ) ] ) )
d i sp ( s t r c a t ( [ ’ S e t t l i n g time : ’ num2str ( s e t t l i ngT ime . channel1 ) ] ) )
d i sp ( s t r c a t ( [ ’ Percentage overshoot : ’ num2str ( overshoot . channel1

↪→ ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Step Input : ’ num2str (

↪→ e r r o r . channel1 . s tep ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Sine Input : ’ num2str (

↪→ e r r o r . channel1 . s i n e ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Square Input : ’ num2str (

↪→ e r r o r . channel1 . sqr ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Step Input : ’

↪→ num2str ( c o n t r o l E f f o r t . channel1 . s tep ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Sine Input : ’

↪→ num2str ( c o n t r o l E f f o r t . channel1 . s i n e ) ] ) )
d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Square Input : ’

↪→ num2str ( c o n t r o l E f f o r t . channel1 . sqr ) ] ) )

d i sp ( s t r c a t ( [ ’======== ’ op t im i s a t i on type ’ t e s t r e s u l t s f o r
↪→ Yaw Control ======== ’ ] ) )

d i sp ( s t r c a t ( [ ’ Rise time : ’ num2str ( r i seTime . channel2 ) ] ) )
d i sp ( s t r c a t ( [ ’ S e t t l i n g time : ’ num2str ( s e t t l i ngT ime . channel2 ) ] ) )
d i sp ( s t r c a t ( [ ’ Percentage overshoot : ’ num2str ( overshoot . channel2

↪→ ) ] ) )



142 Test Scripts & Functions

di sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Step Input : ’ num2str (
↪→ e r r o r . channel2 . s tep ) ] ) )

d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Sine Input : ’ num2str (
↪→ e r r o r . channel2 . s i n e ) ] ) )

d i sp ( s t r c a t ( [ ’Sum of Absolute Error f o r Square Input : ’ num2str (
↪→ e r r o r . channel2 . sqr ) ] ) )

d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Step Input : ’
↪→ num2str ( c o n t r o l E f f o r t . channel2 . s tep ) ] ) )

d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Sine Input : ’
↪→ num2str ( c o n t r o l E f f o r t . channel2 . s i n e ) ] ) )

d i sp ( s t r c a t ( [ ’Sum of Absolute Control E f f o r t f o r Square Input : ’
↪→ num2str ( c o n t r o l E f f o r t . channel2 . sqr ) ] ) )



G.3 The build SISO control system.m Script 143

G.3 The build SISO control system.m Script

Helper function for building a SISO control system programmatically for given PID pa-

rameters.

Listing G.3: Builds SISO Control System.

f unc t i on [ sys , K] = bu i ld S ISO cont ro l sy s t em (G, K arr )
%BUILD CONTROL SYSTEM
% Returns the c l o s e d loop system and K, a 1x1 r e p r e s e n t i n g the

↪→ PID
% c o n t r o l l e r f o r the g iven system

K = pid ( K arr (1 ) , K arr (2 ) , K arr (3 ) , 0 . 001 ) ;
Loop = s e r i e s (K,G) ;
sys = feedback ( Loop , 1) ;

end



144 Test Scripts & Functions

G.4 The build MIMO control system.m Script

Helper function for building a MIMO control system programmatically for given PID

parameters.

Listing G.4: Builds MIMO Control System.

f unc t i on [ sys , K] = build MIMO control system (G, K1 arr , K2 arr )
%BUILD CONTROL SYSTEM
% Returns the c l o s e d loop system and K, a 1x2 r e p r e s e n t i n g the

↪→ PID
% c o n t r o l l e r f o r both channe ls

K1 = pid ( K1 arr (1 ) , K1 arr (2 ) , K1 arr (3 ) , 0 . 001 ) ;
K2 = pid ( K2 arr (1 ) , K2 arr (2 ) , K2 arr (3 ) , 0 . 001 ) ;

K = [K1 K2 ] ;

%cascade PIDs BEFORE cross=c o u p l i n g paths
y1 p id l oop = s e r i e s (K1, G, 1 , 1) ;
y2 p id l oop = s e r i e s (K2, G, 1 , 2) ;

s y s w i t h p i d s = [ y1 p id l oop y2 p id l oop ] ;

fb = t f ( s s ( eye (2 ) ) ) ; %genera te i d e n t i t y s t a t e space
↪→ f o r u n i t y f e e d b a c k l i n e s

sys = feedback ( sy s w i th p id s , fb , =1) ; %n e g a t i v e
↪→ f e e d b a c k f o r both i /o l i n e s

end



G.5 The systest MIMO.m Script 145

G.5 The systest MIMO.m Script

Helper function for testing, returning and plotting response characteristics for MIMO

control systems.

Listing G.5: For testing MIMO systems.

f unc t i on [ r iseTime , set t l ingTime , overshoot , e r ro r ,
↪→ c o n t r o l E f f o r t ] = . . .

systest MIMO ( sys , c o n t r o l l e r s , tvec ,
↪→ t e s t paramete r s channe l1 , t e s t paramete r s channe l2 ,
↪→ p l o t r e s p o n s e )

%
t = tvec ;

%return system i n f o
r i seTime = s t r u c t ;
s e t t l i ngTime = s t r u c t ;
overshoot = s t r u c t ;

s i = s t e p i n f o ( sys ) ;
r i seTime . channel1 = s i ( 1 , 1 ) . RiseTime ;
s e t t l i ngTime . channel1 = s i ( 1 , 1 ) . Sett l ingTime ;
overshoot . channel1 = s i ( 1 , 1 ) . Overshoot ;
r i seTime . channel2 = s i ( 2 , 2 ) . RiseTime ;
s e t t l i ngTime . channel2 = s i ( 2 , 2 ) . Sett l ingTime ;
overshoot . channel2 = s i ( 2 , 2 ) . Overshoot ;

%s t e p response us ing i n i t i a l
e r r o r = s t r u c t ;
e r r o r . channel1 = s t r u c t ;
e r r o r . channel2 = s t r u c t ;
c o n t r o l E f f o r t = s t r u c t ;
c o n t r o l E f f o r t . channel1 = s t r u c t ;
c o n t r o l E f f o r t . channel2 = s t r u c t ;

% %make i n i t i a l c o n d i t i o n v e c t o r s
% x 0 = ( t e s t p a r a m e t e r s . i n i t i a l C o n d i t i o n \ s s ( sys ) .C) ’ ;
%
% ls im ( ss ( sys ) , t e s t p a r a m e t e r s . s t e p *ones (1 , l e n g t h ( t ) ) , t ,

↪→ x 0 )

i f t e s t pa ramete r s channe l 1 . i n i t i a l C o n d i t i o n == 0 &&
↪→ t e s t pa ramete r s channe l 2 . i n i t i a l C o n d i t i o n == 0

s t e p i n p u t 1 = ( t e s t pa ramete r s channe l 1 . s tep * ones (1 ,
↪→ l ength ( t ) ) ) ’ ;

s t e p i n p u t 2 = ( t e s t pa ramete r s channe l 1 . s tep * ones (1 ,
↪→ l ength ( t ) ) ) ’ ;

y s t ep = ls im ( sys , [ s t e p i n p u t 1 s t e p i n p u t 2 ] , t ) ;



146 Test Scripts & Functions

s i n e i n p u t 1 = ( t e s t pa ramete r s channe l 1 . sineAmp* s i n (2*
↪→ pi * t * t e s t pa ramete r s channe l 1 . s ineFreq ) ) ’ ;

s i n e i n p u t 2 = ( t e s t pa ramete r s channe l 2 . sineAmp* s i n (2*
↪→ pi * t * t e s t pa ramete r s channe l 2 . s ineFreq ) ) ’ ;

y s i n e = ls im ( sys , [ s i n e i n p u t 1 s i n e i n p u t 2 ] , t ) ;

s q r i n p u t 1 = ( t e s t pa ramete r s channe l 1 . sqrAmp* square ( t ,
↪→ t e s t pa ramete r s channe l 1 . sqrFreq ) ) ’ ;

s q r i n p u t 2 = ( t e s t pa ramete r s channe l 2 . sqrAmp* square ( t ,
↪→ t e s t pa ramete r s channe l 2 . sqrFreq ) ) ’ ;

y sq r = ls im ( sys , [ s q r i n p u t 1 s q r i n p u t 2 ] , t ) ;

%return sum of a b s o l u t e e rror
e r r o r . channel1 . s tep = sum( abs ( s t ep input 1=y s t ep ( : , 1 ) ) )

↪→ ;
e r r o r . channel1 . s i n e = sum( abs ( s i n e i n p u t 1=y s i n e ( : , 1 ) ) )

↪→ ;
e r r o r . channel1 . sqr = sum( abs ( sq r input 1=y sq r ( : , 1 ) ) ) ;
e r r o r . channel2 . s tep = sum( abs ( s t ep input 2=y s t ep ( : , 2 ) ) )

↪→ ;
e r r o r . channel2 . s i n e = sum( abs ( s i n e i n p u t 2=y s i n e ( : , 2 ) ) )

↪→ ;
e r r o r . channel2 . sqr = sum( abs ( sq r input 2=y sq r ( : , 2 ) ) ) ;

%return sum of c o n t r o l e f f o r t
e f f o r t s t e p c h a n n e l 1 = ls im ( c o n t r o l l e r s (1 ) , s t ep input 1

↪→ =y s t ep ( : , 1 ) , t ) ;
e f f o r t s i n e c h a n n e l 1 = ls im ( c o n t r o l l e r s (1 ) , s i n e i n p u t 1

↪→ =y s i n e ( : , 1 ) , t ) ;
e f f o r t s q r c h a n n e l 1 = ls im ( c o n t r o l l e r s (1 ) , sq r input 1=

↪→ y sq r ( : , 1 ) , t ) ;
e f f o r t s t e p c h a n n e l 2 = ls im ( c o n t r o l l e r s (2 ) , s t ep input 2

↪→ =y s t ep ( : , 2 ) , t ) ;
e f f o r t s i n e c h a n n e l 2 = ls im ( c o n t r o l l e r s (2 ) , s i n e i n p u t 2

↪→ =y s i n e ( : , 2 ) , t ) ;
e f f o r t s q r c h a n n e l 2 = ls im ( c o n t r o l l e r s (2 ) , sq r input 2=

↪→ y sq r ( : , 2 ) , t ) ;

c o n t r o l E f f o r t . channel1 . s tep = sum( abs (
↪→ e f f o r t s t e p c h a n n e l 1 ) ) ;

c o n t r o l E f f o r t . channel1 . s i n e = sum( abs (
↪→ e f f o r t s i n e c h a n n e l 1 ) ) ;

c o n t r o l E f f o r t . channel1 . sqr = sum( abs ( e f f o r t s q r c h a n n e l 1
↪→ ) ) ;

c o n t r o l E f f o r t . channel2 . s tep = sum( abs (
↪→ e f f o r t s t e p c h a n n e l 2 ) ) ;

c o n t r o l E f f o r t . channel2 . s i n e = sum( abs (
↪→ e f f o r t s i n e c h a n n e l 2 ) ) ;

c o n t r o l E f f o r t . channel2 . sqr = sum( abs ( e f f o r t s q r c h a n n e l 2
↪→ ) ) ;

end



G.5 The systest MIMO.m Script 147

i f p l o t r e s p o n s e
%p l o t Pi tch channel r e s u l t s
f i g u r e

subplot ( 3 , 2 , 1 )
p l o t ( t , y s t ep ( : , 1 ) , t , s t e p i n p u t 1 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Pitch Step Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 3 )
p l o t ( t , y s i n e ( : , 1 ) , t , s i n e i n p u t 1 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Pitch Sine Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 5 )
p l o t ( t , y sq r ( : , 1 ) , t , s q r i n p u t 1 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Pitch Square Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 2 )
p l o t ( t , e f f o r t s t e p c h a n n e l 1 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Pitch Control E f f o r t f o r Step Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 4 )
p l o t ( t , e f f o r t s i n e c h a n n e l 1 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Pitch Control E f f o r t f o r Sine Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 6 )
p l o t ( t , e f f o r t s q r c h a n n e l 1 )



148 Test Scripts & Functions

x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Pitch Control E f f o r t f o r Square Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

%p l o t Yaw channel r e s u l t s
f i g u r e

subplot ( 3 , 2 , 1 )
p l o t ( t , y s t ep ( : , 2 ) , t , s t e p i n p u t 2 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’Yaw Step Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 3 )
p l o t ( t , y s i n e ( : , 2 ) , t , s i n e i n p u t 2 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’Yaw Sine Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 5 )
p l o t ( t , y sq r ( : , 2 ) , t , s q r i n p u t 2 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’Yaw Square Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 2 )
p l o t ( t , e f f o r t s t e p c h a n n e l 2 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’Yaw Control E f f o r t f o r Step Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 4 )
p l o t ( t , e f f o r t s i n e c h a n n e l 2 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’Yaw Control E f f o r t f o r Sine Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;



G.5 The systest MIMO.m Script 149

s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 6 )
p l o t ( t , e f f o r t s q r c h a n n e l 2 )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’Yaw Control E f f o r t f o r Square Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

end
end



150 Test Scripts & Functions

G.6 The systest SISO.m Script

Helper function for testing, returning and plotting response characteristics for SISO con-

trol systems.

Listing G.6: For testing SISO systems.

f unc t i on [ r iseTime , set t l ingTime , overshoot , e r ro r ,
↪→ c o n t r o l E f f o r t ] = . . .

sy s t e s t S ISO ( sys , c o n t r o l l e r , tvec , t e s t paramete r s ,
↪→ p l o t r e s p o n s e )

t = tvec ;

%return system i n f o
s i = s t e p i n f o ( sys ) ;
r i seTime = s i . RiseTime ;
s e t t l i ngTime = s i . Sett l ingTime ;
overshoot = s i . Overshoot ;

%s t e p response us ing i n i t i a l
e r r o r = s t r u c t ;
c o n t r o l E f f o r t = s t r u c t ;

% %make i n i t i a l c o n d i t i o n v e c t o r s
% x 0 = ( t e s t p a r a m e t e r s . i n i t i a l C o n d i t i o n \ s s ( sys ) .C) ’ ;
%
% ls im ( ss ( sys ) , t e s t p a r a m e t e r s . s t e p *ones (1 , l e n g t h ( t ) ) , t ,

↪→ x 0 )

i f t e s t pa ramete r s . i n i t i a l C o n d i t i o n == 0
s t e p in pu t = ( t e s t pa ramete r s . s tep * ones (1 , l ength ( t ) ) ) ’ ;
y s t ep = ls im ( sys , s t e p in pu t , t ) ;
s i n e i n p u t = ( t e s t pa ramete r s . sineAmp* s i n (2* pi * t *

↪→ t e s t pa ramete r s . s ineFreq ) ) ’ ;
y s i n e = ls im ( sys , s i n e input , t ) ;
s q r i n p u t = ( t e s t pa ramete r s . sqrAmp* square ( t ,

↪→ t e s t pa ramete r s . sqrFreq ) ) ’ ;
y sq r = ls im ( sys , sq r input , t ) ;

%return sum of a b s o l u t e e rror
e r r o r . s tep = sum( abs ( s t ep input=y s t ep ) ) ;
e r r o r . s i n e = sum( abs ( s i n e input=y s i n e ) ) ;
e r r o r . sqr = sum( abs ( sqr input=y sq r ) ) ;

%return sum of c o n t r o l e f f o r t
e f f o r t s t e p = ls im ( c o n t r o l l e r , s t ep input=y step , t ) ;
e f f o r t s i n e = ls im ( c o n t r o l l e r , s i n e input=y s ine , t ) ;
e f f o r t s q r = ls im ( c o n t r o l l e r , sq r input=y sqr , t ) ;



G.6 The systest SISO.m Script 151

c o n t r o l E f f o r t . s t ep = sum( abs ( e f f o r t s t e p ) ) ;
c o n t r o l E f f o r t . s i n e = sum( abs ( e f f o r t s i n e ) ) ;
c o n t r o l E f f o r t . sqr = sum( abs ( e f f o r t s q r ) ) ;

end

i f p l o t r e s p o n s e
f i g u r e

subplot ( 3 , 2 , 1 )
p l o t ( t , y step , t , s t ep in pu t )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Step Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 3 )
p l o t ( t , y s ine , t , s i n e i n p u t )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ S ine Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 5 )
p l o t ( t , y sqr , t , s q r i n p u t )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Square Response ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 2 )
p l o t ( t , e f f o r t s t e p )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Control E f f o r t f o r Step Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

subplot ( 3 , 2 , 4 )
p l o t ( t , e f f o r t s i n e )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Control E f f o r t f o r Sine Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;



152 Test Scripts & Functions

drawnow

subplot ( 3 , 2 , 6 )
p l o t ( t , e f f o r t s q r )
x l a b e l ( ’Time ( s ) ’ )
y l a b e l ( ’ Amplitude ’ )
t i t l e ( ’ Control E f f o r t f o r Square Input ’ )
h = f i n d o b j ( gcf , ’ type ’ , ’ l i n e ’ ) ;
s e t (h , ’ l i n ew id th ’ , 2 ) ;
drawnow

end

end



G.7 The square.m Script 153

G.7 The square.m Script

Helper function for generating a square wave.

Listing G.7: For generating square waves without Signal Processing Toolbox.

f unc t i on sqr = square ( t , f )
%SQUARE Generates a square wave us ing time v e c t o r t , and rea l=

↪→ f r equency f
sqr = s i gn ( s i n (2* pi * t * f ) ) ;

end




