University of Southern Queensland

Faculty of Health, Engineering & Sciences

Optimal fuel cost controller design for a helicopter/twin
rotor system
A dissertation submitted by
A. Coutts
in fulfilment of the requirements of
ENG4112 Research Project

towards the degree of

Bachelor of Electrical & Electronic Engineering

Submitted: October, 2021






Abstract

The TRMS (Twin Rotor Multi-Input-Multi-Output [MIMO] System) 33-949 system is
a small-scale model of a helicopter, exhibiting many similar characteristics, except for
limited degrees of freedom. The non-linearities, as well as cross-couplings between the
inputs and outputs of such a system make the model a useful basis for designing, test-
ing, and deploying a broad range of control algorithm implementations, and allow for

experimentation and exploration of various optimisation techniques.

Many Machine and Deep Learning techniques have been discovered that allow researchers
to optimise control algorithms based on multiple objectives. Research was conducted to
find a method of optimisation that allowed the search of a large space of candidate solu-
tions to minimise an objective function of error and cost. The evolutionary-based genetic
algorithm was suitable, demonstrating good results on the TRMS system. Memetic Al-
gorithms (MA) were discovered to have been applied in system identification, but not yet
applied in finding optimal control parameters for a TRMS system. A MA is of the same
family of algorithms as a Genetic Algorithm (GA), so the performance of the memetic
algorithm is directly comparable to the established research on GA and its application to

the TRMS.

Implementation and testing has revealed that the MA does outperform an equivalent GA
(the same algorithm, with the Local Search removed) in every test case, with typical
fitness value improvements of anywhere from 5% to 120% (and greater improvements are
likely as observed from the results data). Of particular interest was the capability of MA
for finding simultaneous decoupling and control solutions. Test results have indicated
however, that significant cross-couplings still exist, particularly in the pitch-to-yaw path.
Therefore, the MA has been useful for designing a cost/error optimal controller, especially

for Single-Input-Single-Output (SISO) applications, but as with many developments in



ii

Al it certainly is not without limitations.



University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering
& Sciences, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of
the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled “Research Project” is to con-
tribute to the overall education within the student’s chosen degree program. This doc-
ument, the associated hardware, software, drawings, and other material set out in the
associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences






Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

A. CouTTs







Acknowledgments

Thanks are in order to my supervisors Prof. Paul Wen and Dr. Bo Song, for their support

and guidance throughout this project.

I would like to specially thank my little brother. The youngest sibling of two who was
undeniably helpful in all ways for the completion and success of this thesis, except that
through his good-hearted, yet questionably helpful discussion, added unnecessary stress
in the final months of completing this thesis. His intentions and actions remained pure,
yet the outcome was a hindrance. Thus, 'twas a burden of love to withhold my fist from

his larynx. Nevertheless, I thank him for his support, and for being a bearable housemate.

In all seriousness, I would like to thank all my friends and family for their unwavering sup-
port, not only through this thesis, but throughout my entire university journey. Thanks
to the uni crew for all the great (and questionably productive) study sessions we had, and
thank you for dragging me away from the studies when I clearly needed it. Thank you to
Jacob, Josh, Kieran, Nathan and Tim - the close friends that I’ve held since primary and
high-school - for always making time to be there for me, even though I may drop off the
map for extended periods of time. Finally, thank you to my family for all the love, help

and support at every single step of the way.

A. CouTTs






Contents

Abstract i
Acknowledgments vii
List of Figures XV
List of Tables xix
Chapter 1 Introduction 1
1.1 Background . . . . . . . ... 1
1.2 The Twin Rotor MIMO System . . . . . . .. ... ... ... ....... 3
1.2.1 Overview . . . . . . . . e 3

1.2.2 TRMS Model . . . . .. . . . e 4

1.3 Project Aims and Objectives . . . . . . . . . ... ... .. 4
1.4 Dissertation Overview . . . . . .. .. .. . o 6
Chapter 2 Literature Review 7
2.1 Robust Deadbeat Decoupling & Control . . . . . . . ... ... ... ... 7

2.2 System Identification . . . . . .. ... oo o 10



2.3 Artificial Intelligence Techniques . . . . . . . . . . . ... ... ... ... 11
2.4 Evolutionary Algorithms . . . . . . .. ... .. o oo 15
2.4.1 Genetic Algorithms . . . . . . .. ... oo 16
2.4.2 Genetic Algorithms and Control . . . . .. ... ... ... .... 17
2.4.3 Memetic Algorithms . . . . . . .. .. ... 27
2.4.4 Memetic Algorithms and Control . . . . . . . ... ... ... ... 30
Chapter 3 Methodology 33
3.1 Chapter Overview . . . . . . . . . . . . e 33
3.2 The Research Problem . . . . .. .. .. ... ... ... ... 33
3.3 The Optimisation Process . . . . . . . . . . . ... ... ... 34
3.3.1 SISO Optimisation Process . . . .. ... ... ... .. ...... 34
3.3.2 MIMO Optimisation Process . . .. . ... ... ... ....... 36

3.4 Memetic Algorithm Software Design . . . . ... ... ... ... .... 38
3.4.1 Population & Parameter Representation . . . . . . . . . ... ... 39
3.4.2 Objective Function and Fitness . . . . . . . ... ... ... .... 41
3.4.3 Parent Selection . . . .. .. .. ... Lo 45
3.4.4 Crossover (Recombination) . . . ... ... .. ... ... ..... 45
3.4.5 Mutation . . .. ..o 47
3.4.6 Local Search . . . .. .. ... .. ... 48
3.4.7 Survivor Selection . . . . . ... Lo 49

3.5 Implementation Notes . . . . . . . . . .. ... ... ... ... ...... 51



3.6

3.5.1 Simulation Workstation Specifications . . . . . .. ... ... ...
3.5.2 Parallelism . . ... ... ... ...
3.5.3 Testing and Verification . . . . . . ... ... ... ... ......
3.5.4 Hardware Implementation . . . . . . ... ... ... ........
Project Planning . . . . . . . . ... ...
3.6.1 Resource Requirements . . . . ... ... ... ... ... ...

Chapter 4 Results and Discussion

4.1 Results

4.2

4.1.1 SISO Optimisation Results . . . . .. ... ... ... .......
4.1.2 MIMO Optimisation Results . . . . .. .. ... ... ... ....
4.1.3 Table Summary of Optimisation Results . . . . . . ... ... ...
4.1.4 1DOF Testing and Verification . . . . . .. ... ... ... ....
4.1.5 2DOF Testing and Verification . . . . .. ... ... .. ... ...
Discussion . . . . . . ..
4.2.1 SISO Analysis . . . . .. . .
422 MIMO . . . .. o

Chapter 5 Conclusions and Further Work

5.1 Conclusions . . . . . . . . .
5.2 Further Work . . . . . . . ..
References

57

o7

o7

66

75

75

78

81

83

84

87

87

88

89



Appendix A Project Specification

Appendix B Risk Assessment

Appendix C Ethical Clearance

Appendix D Main Code and Objective Function

D.1 The ma.m Main Memetic Algorithm Script . . .

D.2 The objective_function.m. . . ... ... ..

Appendix E Operator Functions

E.1 The crossover.m Operator . . . .. .. .. ..

E.2 The mutation.m Operator . . . . . . .. .. ..

E.3 The local _search.m Operator . . ... .. ..

E.4 The solis wets LS.m Operator . . . . . .. ..

Appendix F Helper Functions

F.1 The build_control_system.m Helper Function

F.2 The get_elites.m Helper Function. . . . . ..

F.3 The is_solution_feasible.m Helper Function

F.4 The is_system_stable.m Helper Function . . .

F.5 The parent_selection.m Helper Function . .

F.6 The pidtest.m Helper Function . ... .. ..

F.7 The rhStabilityCriterion.m Helper Function

95

99

105

107

108

115

117

118

120

121

122

125



F.8 The survivor_selection.m Helper Function . . . . ... ... ... ... 135
F.9 The tournament _selection.m Helper Function . . . . . . ... ... ... 136
Appendix G Test Scripts & Functions 137
G.1 The TestLinear1DOF.m Script . . . . . . . . . . . oo 137
G.2 The TestLinear2DOF.m Script . . . . . . . . . . . oot 140
G.3 The build_SISO_control system.m Script. . . . ... ... ... ..... 143
G.4 The build MIMO_control_system.m Script. . . . . . .. ... ... .... 144
G.5 The systest MIMO.m Script . . . . . . . . . . . o 145
G.6 The systest_SISO.m Script . . . . . . . .. ... ... oL 150
G.7 The square.m Script . . . . . . . ... L 153






List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

The manufacturer’s image of the overall TRMS control system (Feedback

Instruments Ltd. n.d.) . . . . ..o oo

The manufacturer’s simplified system schematic of the TRMS control sys-

tem (Feedback Instruments Ltd. n.d.) . .. ... ... ... ... ... ..

Typical control loop for a Robust Deadbeat Control System (Wen & Lu 2008)

Final Deadbeat Robust Control MIMO model (Wen & Lu 2008) . . . ..

Basic General Flowchart of a Genetic Algorithm (Albadr et al. 2020) . . .

Shell process oil system overview (Alharbi & Gomm 2017) . . . . . .. ..

Basic General Flowchart of a Memetic Algorithm (Assiroj et al. 2021)

Simple Representation of TRMS MIMO System with Transfer Functions .

Simple Representation of TRMS SISO System with Transfer Functions . .

TRMS SISO Control System with added PID controllers . . . . . . . . ..

TRMS MIMO Control System with added PID controllers . . . . . . . ..

Diagrammatic representation of programmatic open-loop subsystem

Diagrammatic representation of programmatic closed-loop subsystem with

PID controllers . . . . . . . . .

18

21

28

35

35

36

37

42



4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Maximum Fitness vs. Generation number for 5 runs of the GA on the

Pitch SISO system. . . . . . . .. .. . o

Average Fitness vs. Generation number for 5 runs of the GA on the Pitch

SISO system. . . . . . . . . . e

Step Response for the fittest individual of run 4 of the GA optimisation on
the Pitch SISO system. . . . . . . . . .. ... ... ...

Maximum Fitness vs. Generation number for 5 runs of the MA on the

Pitch SISO system. . . . . . . .. ..

Average Fitness vs. Generation number for 5 runs of the MA on the Pitch

SISO system. . . . . . . . o e

Step Response for the fittest individual of run 4 of the GA optimisation on
the Pitch SISO system. . . . . . .. .. . . L oo

Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw

SISO system. . . . . . . . o e

Average Fitness vs. Generation number for 5 runs of the GA on the Yaw

SISO system. . . . . . . . o o

Step Response for the fittest individual of run 5 of the GA optimisation on
the Yaw SISO system. . . . . . . . .. ...

Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw

SISO system. . . . . . . . e

Average Fitness vs. Generation number for 5 runs of the MA on the Yaw

SISO system. . . . . . . . o e e

Step Response for the fittest individual of run 4 of the MA optimisation
on the Yaw SISO system. . . . . .. .. .. . .o oL

Maximum Fitness vs. Generation number for 5 runs of the GA on the

Pitch path of the MIMO system. . . . . ... ... ... ... .. ....

63



4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

Average Fitness vs. Generation number for 5 runs of the GA on the Pitch

path of the MIMO system. . . . . ... .. ... .. .. .. .. ......

Step Response for the fittest individual of run 4 of the GA optimisation on
the Pitch path of the MIMO system. The plot on top is the step response
of the pitch path, and the bottom plot shows the pure cross-coupling from
the pitch path into the yaw path (yaw input set to 0). . . . .. ... ...

Maximum Fitness vs. Generation number for 5 runs of the MA on the

Pitch path of the MIMO system. . . . . .. ... ... ... ... .....

Average Fitness vs. Generation number for 5 runs of the MA on the Pitch

path of the MIMO system. . . . . ... .. ... ... .. ... ....

Step Response for the fittest individual of run 5 of the MA optimisation on
the Pitch path of the MIMO system. The plot on top is the step response
of the pitch path, and the bottom plot shows the pure cross-coupling from
the pitch path into the yaw path (yaw input set to 0). . . . . . ... ...

Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw

path of the MIMO system. . . . . ... .. .. ... ... .. ....

Average Fitness vs. Generation number for 5 runs of the GA on the Yaw

path of the MIMO system. . . . . ... ... ... ... ... .......

Step Response for the fittest individual of run 4 of the GA optimisation on
the yaw path of the MIMO system. The plot on top is the step response
of the yaw path, and the bottom plot shows the pure cross-coupling from

the yaw path into the pitch path (pitch input set to 0). . . .. ... ...

Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw

path of the MIMO system. . . . . ... ... ... ... ... .......

Average Fitness vs. Generation number for 5 runs of the MA on the Yaw

path of the MIMO system. . . . . ... ... ... ... ... ......



4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

Step Response for the fittest individual of run 4 of the MA optimisation on
the yaw path of the MIMO system. The plot on top is the step response
of the yaw path, and the bottom plot shows the pure cross-coupling from

the yaw path into the pitch path (pitch input set to 0). . . .. ... ...

GA-optimised Pitch 1DOF test results . . . . . .. ... ... .......

GA-optimised Yaw 1DOF test results . . . . . .. .. ... ... .....

MA-optimised Pitch 1DOF test results . . . . . . ... ... ... .....

MA-optimised Yaw 1DOF test results . . . . ... ... ... ... ....

GA-optimised Pitch 1DOF test results . . . . . .. ... .. .. ... ...

GA-optimised Yaw 1DOF test results . . . . ... ... ... ... ....

MA-optimised Pitch 1DOF test results . . . . . . ... .. ... ... ...

MA-optimised Yaw 1DOF test results . . . . ... ... ... ... ....



List of Tables

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Table of different average percentages of stable systems across all genera-

tions and fitness values for different parameter bound settings . . . . . . . 40
Workstation PC Specifications . . . . . . . .. .. ... ... ... ... 51
Table of Required Project Resources . . . . . ... ... ... ... .... 56

Results for 5 runs of the GA on the Pitch SISO system. The highlighted

row is the median performer of theset. . . . . .. ... ... ... .... 58

Results for 5 runs of the MA on the Pitch SISO system. The highlighted

row is the median performer of theset. . . . . .. ... ... ... .... 60

Results for 5 runs of the GA on the Yaw SISO system. The highlighted

row is the median performer of theset. . . . . .. ... ... .. ..... 62

Results for 5 runs of the MA on the Yaw SISO system. The highlighted

row is the median performer of theset. . . . ... ... ... .. ..... 64

Results for 5 runs of the GA on the Pitch for the MIMO system configu-

ration. The highlighted row is the median performer of the set. . . . .. 66

Results for 5 runs of the MA on the Pitch for the MIMO system configu-

ration. The highlighted row is the median performer of the set. . . . .. 68

Results for 5 runs of the GA on the Yaw for the MIMO system configura-

tion. The highlighted row is the median performer of the set. . . . . . .. 71



4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

Results for 5 runs of the MA on the Yaw for the MIMO system configura-

tion. The highlighted row is the median performer of the set. . . . . . ..

Table summary of optimisation results for both 1DOF and 2DOF, GA and

MA median runs. . . . . . ..

1DOF rise time, settling time and overshoot testing results. . . .. . ..

Absolute Error and Absolute Control Effort Values for 1IDOF Pitch and
Yaw, of both GA and MA runs. . . . . . . . . .. .. ... .. .......

2DOF rise time, settling time and overshoot testing results. . . . . . ..

Absolute Error and Absolute Control Effort Values for 2DOF Pitch and
Yaw, of both GA and MA runs. . . . . . . ... ... ... ... ......

Results obtained by Prasad et al. for the TRMS, using Real-valued GA

Vertical (pitch) results obtained for TRMS using different GA methods
(Juang et al. 2008) . . . . . ..

Horizontal (yaw) results obtained for TRMS using different GA methods
(Juang et al. 2008) . . . . ..

2DOF results obtained for TRMS using different GA methods (Juang et al.



Chapter 1

Introduction

1.1 Background

The twin rotor aircraft, most commonly known as the Helicopter, has many applications
across various transport, industrial and military operations. Helicopters have an advan-
tage over most fixed-wing aircraft, with the ability to take off, hover, and land vertically.
When compared to fixed-wing counterparts, rotary-wing aircraft operational aerodynamic
environments are often complex, introducing a plethora of issues that have become the

focus of much research (Wilbur et al. 2018).

An optimal flight pitch control system in a rotor-wing aircraft is important to many
operational aspects. High frequency system characteristics and high overshoot can induce
increased wear and damage to the structure of the aircraft and can cause discomfort and
potential harm to passengers. Furthermore, because these characteristics are undesirable,
the energy consumed performing such actions is wasted, thus reducing useful fuel and
increasing operational costs. The conventional PID controller is frequently utilised in
industry for multiple applications due to the simple architecture, and relative simplicity
in tuning for given control objectives. More than 95% of industrial control systems are
PID-based (Serradilla et al. 2020). While the PID is simple and spans many applications,
complications arise when controlling nonlinear dynamical systems, such as the twin rotor
system. Because of the widespread expertise in implementation of the PID controller,
much research has focused on methods to optimise the capability of PID controllers in

regard to nonlinear dynamical systems (Norsahperi & Danapalasingam 2020).



2 Introduction

Sarvart (2001) outlines the design and implementation of control for contemporary sys-
tems such as the twin rotor system. System design and requirements definition, followed
by modelling and analysis are the first two steps within the overarching process. With a
physical system created, and a model derived, a controller can then be designed, analysed

and implemented.

System Design and Requirement, as the name suggests, involves identifying require-
ments and designing the physical system. Often, through this stage, various control
engineers are involved to provide expert input, ensuring the system is compatible with
control techniques to be implemented later in the process. However, it is the task of many
engineers to provide control systems for a physical system or plant which has already been

designed and built.

The next step in the process, Modelling, is often the most difficult, and equally one of
the most important. The model must accurately represent the real-world system, as this
is used as the basis in designing, simulating and implementing the control law. Models
can be obtained either by mathematical modelling of the system’s physical properties, or

through iterative system identification methods.

In the third step, Control Design, the operating conditions of the plant must be deter-
mined, and an appropriate design methodology selected to suit. Many control paradigms
are available, with approaches dependent on plant type, i.e. either Single-Input Single-
Output (SISO) or Multi-Input Multi-Output (MIMO). Classical techniques such as fre-
quency domain methods are typical candidates for SISO systems, whereas modern con-
trol techniques such as state-space approaches are often better suited to MIMO systems.
Control Analysis may also be viewed as the validation phase. This step allows the con-
trol design to be verified against requirements, and if unsatisfactory, a different control

paradigm may be chosen, or, if possible, the system design itself may be altered.

Control Implementation, the final step in the process, is the operational deployment
of the control algorithm to the physical plant. Although implementation is the last step,
it is often not the final step to be performed. Real operational environments are far from
perfect, and real, non-ideal conditions can affect the real-world performance of the control
algorithm. Many disturbances such as noise and non-linearities are present in practice,
and because imperfections are often difficult to realise mathematically, these can often

be unaccounted for. Therefore, if the control does not perform as per requirements, the



1.2 The Twin Rotor MIMO System 3

process is reiterated until the system control is satisfactory.

The development of highly sophisticated Unmanned Aerial Vehicles (UAV) is a byproduct
of the surge in research performed on Artificial Intelligence (AI) techniques, such as genetic
algorithms, neural networks and fuzzy-logic, all of which address core issues such as system
modelling and optimal control. Whilst work surrounding Al is continuously gaining more
traction, such techniques are yet to be widely accepted within the control systems industry,
with historical data, literature and track record still growing. Further study within the
fields of AI and optimal control are of great importance, as a better understanding of

such technologies are crucial to widespread adoption across many industries.

1.2 The Twin Rotor MIMO System

1.2.1 Overview

The 33-949S Twin Rotor MIMO System (TRMS) is an excellent candidate for performing
experiments and simulations due to the striking similarities to real-world twin rotor sys-
tems (Sarvart 2001). However, the TRMS has some notable simplifications; the system is
attached to a tower, offering only 2 degrees of freedom (DOF), and the position and veloc-
ity are controlled through varying the speed of the rotor (Feedback Instruments Ltd. n.d.).
Real-world helicopters are not attached to a tower, and as indicated by Salazar Alvarez
(2010), offer six DOF. Further, a real helicopter’s rotor speed is generally constant, with
propulsion controlled by varying blade angles. Further similarities between the TRMS
and a real helicopter lie within the ability to capture most dynamical characteristics. Per-
haps, of particular interest, is the cross-coupling between both rotors; an activation of one
input, e.g. vertical position, will also cause an activation of movement in the horizontal

plane (Feedback Instruments Ltd. n.d.).

Both rotors of the TRMS are mounted on a beam with a counter balance, fixed to a
tower mounted on a base containing the electrical unit, which is important for interfacing
between the model and a PC. There are two inputs on the 33-949S system: the voltages
supplied to each of the two rotors, and two outputs: vertical and horizontal angles, and

angular velocity (Feedback Instruments Ltd. n.d.).



4 Introduction

PC

control

L 4

\. measurement

Figure 1.1: The manufacturer’s image of the overall TRMS control system (Feedback Instru-

ments Ltd. n.d.)

1.2.2 TRMS Model

Feedback Instruments Ltd. (n.d.) have included the derived equations for the parameters
of the TRMS system within the 33-949S manual. It is important to note that some
parameters are arguments of nonlinear functions, and that to form a transfer function
of the system, the system must be linearised. The manual also presents experimentally-
chosen values for the parameters, which may be substituted into the equations to present

a semi-phenomenological representation of the system to be used in simulation.

A simplified system schematic is also provided in the manual, presented in Figure 1.2,
which demonstrates the simple mapping between inputs and outputs, and the cross cou-

pling modes, where 1 is the pitch and ¢ is the azimuth (yaw) rotation.

1.3 Project Aims and Objectives

Considering that classical control design methods have been extensively researched, and
are already widely accepted within industry, the focus of this project is drawn to investi-

gating Al techniques, with particular interest drawn to methods that may have not yet



1.3 Project Aims and Objectives 5

u Pitch Rotor

_"’

Main Path Pitch (}; 4 >

Cross Path
From Pitch

Cross Path

j From Yaw

u Yaw Roto i ‘
2 . W r Main Path Yaw B Jf >

Figure 1.2: The manufacturer’s simplified system schematic of the TRMS control system

(Feedback Instruments Ltd. n.d.)

been applied to the TRMS system.

The aim stated for the project is to Optimise fuel performance to reduce operational
costs of helicopter twin rotator systems. It is desirable to continue research into poten-
tial algorithms within Al to achieve a fuel-optimal system, but as indicated in previous
sections, classical methods are indeed widely accepted, and methods which incorporate
popular components such as the aforementioned PID controller may be more easily ac-
cepted within industry. Al is an important tool that should be harnessed to achieve
continuous improvements, and solve problems that are otherwise very difficult, or even

impossible with classical methods.

To ensure these aims are realised, the following objectives are in place for this project:

Research and analyse classical methods of control to determine if any immediate

improvements could be made on these.

e Research and investigate Al methods used to solve similar problems. The literature

review presented a few key pieces, but there are plentiful methods to be researched.

e Research Deep Learning algorithms in particular and determine if these may be

useful for solving control problems.

e Apply a novel algorithm, or make improvements to existing methods to achieve the

aims of better fuel efficiency, without sacrificing performance.

e Investigate the applicability of the results and real-world inferences. In practice,



6 Introduction

this will include testing on a test rig in the lab.

The scope of this project is broad, as a scan of much existing literature is required to
evaluate different potential methods, and apply the most appropriate to achieve the aims
and objectives of this project. The work completed in this project may be extendable to
systems of higher DOF, but preliminary priority is placed on ensuring that a functional

method is employed for a 2 DOF system, such as the 33-949S TRMS.

1.4 Dissertation Overview

An overview of the dissertation goes here.



Chapter 2

Literature Review

This chapter aims to provide a broad review of the existing literature in the control of
TRMS systems, ranging from traditional methods to Al techniques. A more comprehen-
sive study is conducted of the evolutionary Genetic and Memetic Algorithms, which is

integral to the work conducted in this research project.

2.1 Robust Deadbeat Decoupling & Control

System decoupling, especially with strongly-coupled systems such as the TRMS, is vital
to ensuring that control algorithms can perform optimally. A paper by Wen & Lu (2008)
investigates decoupling of a twin rotor system using the robust deadbeat control technique.
A thorough analysis of the system’s mathematical model is developed to simulate the
system as accurately as possible. In the deadbeat control system, the design could be
insensitive to parameter variations of up to 50%. The robust deadbeat control method
is PID-based, and separates each of the input-output paths into two SISO 1 DOF paths

and models, each according to the structure outlined in Figure 2.1

The representation between the output and input is known as the transfer function, and

for this system is derived as:

Cls) _ Ge(5)G(5)
R(s) 14 G(s)Ha(s) + G.(s)G(s)Hy(s)

(2.1)



8 Literature Review

R(s) C(s)

K |-t {? Plant G(s)

H(s)

Figure 2.1: Typical control loop for a Robust Deadbeat Control System (Wen & Lu 2008)

Where the H(s) feedback path is Hi(s) and the K, feedback path is Ha(s). The plant is
represented as G(s) and the PID control portion, which is the segment cascading between

the two summing junctions, is represented by G.(s).

Substituting the values of each of these functions yields a fourth order closed-loop transfer

function of the form:

wh

. _ (2.2)
st + awps3 + fwls? + ywds + wi

T(s) =

This can be normalised to the form:

1
T(s) = 2.3
S e By o | (2:3)
where
S
s— 5 2.4
5= 2 24

In this form, the coefficients «, 3, v and Ty can be obtained from the robust deadbeat
control lookup table. The desired settling time was chosen by the designers to be 2 seconds
and with K initially set to 1, all unknown values in the transfer function were able to be

calculated by virtue of simultaneous equations, and substitution.

With the parameters in the control loop for both the main rotor and tail rotor determined,
the designers were able to form the robust deadbeat control MIMO system as shown in

Figure 2.2.



2.1 Robust Deadbeat Decoupling & Control 9

Ha(s)

K5 ") Kz |—{PID:}(Z)—{Horizontal e

angular
mmenium
&
reaction ming
moment

Rn(s ; v e
(s) K, -/PID, Vertical |l

H,(s)

Figure 2.2: Final Deadbeat Robust Control MIMO model (Wen & Lu 2008)

Both 1 DOF cases of tail and main rotor are simulated individually, ignoring the cross
coupling. The K parameters K; and Ko, which mentioned previously were set to 1
initially, are both tuned to achieve a deadbeat response. The deadbeat control was then
applied to the 2 DOF case, which includes the full model of the TRMS system — including
the cross-couplings. The desired settling time in this setting is 4 seconds for both tail and

main rotors.

In all cases, the control system met or exceeded all specifications and proved to suppress
the effects of cross-coupling. The results were compared to a simple PID control of the
system, and demonstrated that the robust control method shows a much more accurate
response to a step input than the simple PID control. Simple PID control demonstrated
drastic overshoot and settling oscillation, whereas the robust deadbeat control method

response follows the step envelope well, with very little overshoot and oscillation.

For the tail rotor SISO system, a settling time of about 6 seconds is achieved, and over-
shoot amount reduced by 20%. For the SISO main rotor, a settling time of 12 seconds
was achieved, and overshoot was fully eliminated. Similarly for the full 2 DOF system
with cross-coupling, settling time was reduced to 20 seconds and the amount of overshoot
was also reduced. Although strong effects of nonlinear components was predicted, the
system demonstrated resilience to parameter variations, as predicted by the insensitivity

to 50% plant parameter variations (Wen & Lu 2008).



10 Literature Review

2.2 System Identification

Chalupa et al. (2015) aimed to design a higher-accuracy, valid model of the Twin Rotor
MIMO system to be used as the basis of further research. The work primarily utilises a
'grey box’ approach, which involves first deriving the model from first principles (white
box modelling), and then performing measurements of the system to further refine the
model. The white box modelling from first principles is similar in nature to that presented
in Wen & Lu (2008). The first enhancement that was performed to the model, was the
measurement of certain parameters, such as the length of the counter-weight beam, to
ensure that system parameters were as accurate to the real system as possible. Any
nonlinear static functions from the mathematical model were then determined using a
phenomenological approach and polynomial approximation. Linear approximation was
used to model the cross-coupling of tail motor to elevation, whereas due to the complexity
associated with modelling the azimuth rotations caused by the main rotor, an exponential
function of moment was used. Static characteristic measurements of the main motor show
a piecewise linear relationship between elevation and control voltage. When changing the
sign of the control voltage, and thus the rotation direction of the propeller, the gain of
the system is greater in the positive control voltage range, as compared to the negative
range. Thus the system can be considered linear when operating within each of these

ranges exclusively.

The research showed that enhancing the non-linear model using grey box identification
did produce a system model more accurate than white box modelling alone. It must
be noted however, that tests completed on the tail and main rotors were each isolated,
meaning with one input set, the other is set to 0. The paper did not indicate that tests

were completed whilst setting both inputs.

The following plant model equation was obtained for the main rotor:

111.2
G = 2.5
v(8) = 530545 + 0.353557 + 1.4635 + 1 (25)
The plant model equation obtained for the tail rotor:
700.7
Ghr(s) (2.6)

T 5.61s2 +3.992s + 1



2.3 Artificial Intelligence Techniques 11

Sarvart (2001) performs extensive work in black box identification for the TRMS MIMO
system. Sarvart acknowledges that mathematical modelling is best suited to simple sys-
tems, and that complex systems are much more difficult to analyse using such methods.
Often, specialist knowledge is required for the accuracy of details such as the behaviour
of electro-mechanical components, for example. Another important point that is raised,
is that mathematical models often do not account for environmental disturbances or dy-
namics that are often ignored, and thus it is inferred that mathematical models are simply
limited. System identification through black box methods are often almost necessary for

new aircraft in which parameters and structural details are unknown.

Whilst the work by Sarvart focuses on determining rigid body modes and other details
necessary for vibration control (which is the aim of the study), the researchers were
able to determine a black box model with a high degree of confidence, obtained through
validation of both time and frequency domain analyses. A discrete-time transfer function
was identified for 1 DOF main rotor input to pitch angle output. An analysis of the
poles in the transfer function indicate directly-related physical properties of the structural
material, such as the existence of critically stable oscillatory modes and state variables
such as rigid body motion. Strong couplings were identified between main rotor and pitch,
main rotor and yaw, tail rotor and yaw, however, very little interaction between tail rotor
and pitch was observed and was thus omitted from a model fit. The interaction between
main rotor and yaw was also identified as imperfect, however the resulting model was still

deemed acceptable for use in controller design.

2.3 Artificial Intelligence Techniques

Thus far, traditional methods of control, decoupling techniques and system identification
have been briefly discussed. These methods are widely accepted in industry and are rea-
sonably straightforward in implementation. However, whilst these methods are reliable
and produce good results, Al techniques have continuously shown through many fields,
that better results are achievable. Plentiful research has been conducted in the applica-
tion of Al to solve problems in control, such as optimisation and modelling. Increased
research is critical for increased industrial confidence in implementing methods based on

Al techniques.



12 Literature Review

Serradilla et al. (2020) investigates the use of Al in tuning parameters of controllers for
DC motors based on two objectives: high productivity and efficiency. Meta-heuristic Al
techniques, based on genetic algorithms, were utilised to adjust PID controller parameters
to achieve the desired objectives. The meta-heuristics approach searches for optimal
solutions within a given problem space, which is know as exploration. Due to the highly-
dimensional nature of the problem space, it is generally not feasible to explore all potential

solutions. Therefore, reasonably good solutions are found and then further refined.

The first step in the paper presented by Serradilla et al. (2020) involves gaining a de-
scription of the model through mathematical modelling. This step is synonymous with
system identification through white box modelling. A relevant point to note is that the
energy expenditure of the DC motor is modelled. A model of the energy expenditure of

the system is necessary if this is to be optimised.

It is helpful, and also necessary, that a brief review of PID control is presented in the
paper. A set of performance indexes are useful for determining the accuracy of the con-
troller, and provide a means of assessment for the choice of gains and parameters selected
in implementation. Whilst the details are not presented here as these are reasonably
well-known and are learnt in most undergraduate engineering control courses, the most
widely used performance indexes are settling time, decay ratio, overshoot and steady-state
error. These performance indexes are the most common and are determined against step
changes in set point response. If the reader is unfamiliar with these, it is recommended to
consult the referenced paper for the definitions, as well as standard or typical values. Ser-
radilla et al. highlights that whilst there are frequently used approaches to designing PID
controllers such as the root-place and Ziegler-Nichols methods, these hardly guarantee

the most optimal solution.

The next step presented in the paper by Serradilla et al. (2020) is optimisation with
meta-heuristics. An objective function must be constructed to satisfy the requirements of
an optimisation problem. First, weights were assigned to each of the performance indices,
using prior work by (Naranjo et al. 2020). The four weighted parameters, plus a weighted
energy parameter, are used to formulate an equation of weights, which can then be used

to construct an error equation. The equation of weights that is formulated in the paper



2.3 Artificial Intelligence Techniques 13

is as follows:

a+B+y+96

=W,

(2.7)
«, B, v and § are the weighted parameters of settling time, decay ratio, overshoot and
steady-state error, respectively. W, is the weighted energy parameter, which is set de-

pendant on importance.

The error function that is used is a weighted average function as follows:

11
error = fgza-tsss—l-ﬁ-ds+’yoos+6-esss+e-energys (2.8)
s

s=1

The error is then utilised in the fitness function, which is defined as:

1
't = — 2.9
fitness 1+ error (29)
The paper also specifies the Genetic Algorithm architecture that is utilised for evolution-

ary computation optimisation. Ultimately the fitness function is optimised to obtain a

value as close as possible to 1, so that, satisfying Equation 2.9, the error approaches 0.

Results of the research saw the ability to find optimal control parameters whilst con-
sidering both performance and energy criterion. Furthermore, it was discovered that
increasing the weight of energy results in poorer performance of settling time, decay ra-
tio, overshoot and steady-state error, although some combinations were identified that
demonstrated good energy savings, with little impact to performance. A final note is that
the importance of energy consumption is specific for each real motor. Thus, an analysis of
a motor, or in the general case the plant, must be performed before applying the strategy

(Serradilla et al. 2020).

The focus of work in the paper by Dogruer & Tan (2019) concerns using FOPID optimisa-
tion techniques to perform decoupling of a twin rotor MIMO system. Genetic Algorithms
are again utilised in the optimisation process, due to heuristic methods performing better
than classical design methods. The fitness function used in the genetic algorithm archi-

tecture is the Integral of Time-weighted Squared Error (ITSE). The FOPID is similar



14 Literature Review

to a PID controller, except there are 2 additional parameters required to be tuned. The

transfer function of a conventional PID controller is:

K
C(s) = K, + 71 + Kys (2.10)

where each of the K terms are the Proportional, Integral and Derivative terms, respec-
tively. The FOPID controller introduces a degree of integral term A and a degree of

derivative term p, such that the equation then becomes:

K
O(s) = Kp + —5 + Kgs" (2.11)
S

It is important to note that the FOPID controller is a suitable candidate when designing

for performance criteria such as robustness and stability.

Dogruer & Tan (2019) achieves System Identification through the black box method. The
researchers make use of MATLAB’s System Identification toolbox. The identification
yielded 4 mathematical models; one for each of the paths from input to output (including
cross-couplings). With models obtained for each path, decoupled transfer functions can
be obtained by decoupling techniques covered in the work by Ben Hariz & Bouani (2015).
Using the I'TSE performance criterion in the genetic algorithm, FOPID controller designs
were created for each of the decoupling transfer functions to yield decoupling controllers.
When compared to a generic PID tuned using the Simulink model that the researchers
obtained, an 8% difference between maximum percent overshoot was observed for pitch
position. Whilst a 1.8% overshoot was observed with the FOPID for yaw position control,
and 0% overshoot was observed for the generic PID, the settling time of the FOPID was
7.87 seconds, as opposed to 50.37 for the generic PID.

In a paper by Norsahperi & Danapalasingam (2020), the tuning of Fractional-Order
PID controllers is investigated, examining methods such as particle swarm-based FOPID
(PSOFOPID) and neuro-based FOPID (NNFOPID). The motivation behind the research
is similar to that found in the work by Serradilla et al. (2020), in that whilst the controller

is industry-standard, the methods of tuning do not guarantee optimal solutions.

For the PSOFOPID research performed, a new method was proposed for setting the

initial search range which prevented the algorithm from being trapped in local optima,



2.4 Evolutionary Algorithms 15

reducing the problem search space. For the NNFOPID research, the algorithm was able
to tune more practical controller parameters without the need for deep knowledge of
the system, and resulted in a lighter network. Five criteria points were used to assess
the performance of each algorithm: Square-wave characteristics, reference to disturbance
ratio, evaluation time, energy consumption of control signal and tracking performance.
Notably, the test environment was controlled using 3 different cases: no coupling effect
and wind disturbance, coupling effect only (no wind disturbance) and wind disturbance
only (using a wind velocity of 4.01 m/s) (Norsahperi & Danapalasingam 2020). The
researchers compared the results of each algorithm against a PID controller, optimised by
pre-searched genetic algorithms (Juang et al. 2008). Energy consumption performance of
the designed controllers is also assessed for each tuning algorithm. The energy of control
input was measured and showed 31% reduction for the NNFOPID-tuned controller, and
5% reduction for the PSOFOPID-tuned controller. The NNFOPID method also offers
accurate system positioning through reducing the steady-state error by 34% in the cross-
coupling-only case. PSOFOPID control is useful for a 27% reduction in tracking error
and yields the lowest oscillation in the cross-coupling-only case. Both methods were also
demonstrated to be robust and efficient in the wind-disturbance-only case (Norsahperi &

Danapalasingam 2020).

Ant Colony based model prediction of a Twin Rotor System is investigated in a paper by
Toha et al.(2012). The focus is drawn to system identification, and inferring an accurate
mathematical model. The components of an Ant Colony Optimisation (ACO) meta-
heuristic are sets of ant-like agents, usage of memory, stochastic decisions, and collective
and distributed learning strategies. The results of the research indicate that a stable and
satisfactory model can be extracted using the algorithm. The algorithm was also 99.33%

accurate in predicting outputs at each time step, as compared to the actual output.

2.4 Evolutionary Algorithms

This section and subsequent sections aims to draw the reader’s attention closer to Evo-
lutionary Algorithms, and in particular Genetic & Memetic Algorithms, for which is the

primary focus of this paper.

In 1859, Charles Darwin published the book Origin of Species, in which he revealed



16 Literature Review

the theory of evolution by natural selection (Ayala 2009). Since then, much work has
progressed within science that further validate and verify the theories of evolution. It
is from this work that scientists and engineers alike have been inspired by evolution
theory’s more abstract applications, such as those within mathematics and computing.
The development of Evolutionary Algorithms is a product of inquiry over recent decades,
and as the name conveniently suggests, covers a broad range of programming algorithms

which are based on the theory of evolution.

Through studying the applications of evolutionary theory to computing, various subsets
of algorithms have been discovered. Evolutionary Algorithms (EA) have birthed vari-
ous subsets of traditional algorithms such as, Evolutionary Strategy, Genetic Algorithms
(GA), Genetic Programming, Genetic Improvement, Grammatical Evolution, Linear Ge-
netic Programming, Cartesian Genetic Programming, Differential Evolution and Gene
Expression Programming. Specialised techniques include Auto-constructive Evolution,
Deep Neuroevolution, Self-replicating Neural Networks, Markov Brains, PushGP, Simu-
lated Annealing, Tanlged Program Graph, Tabu search and Animal inspired algorithms
(Sloss & Gustafson 2020). Each technique have appropriate problem domains in which

they are most effective to be employed.

2.4.1 Genetic Algorithms

Of all EAs available, the Genetic Algorithm (GA) is the most popular (Sloss & Gustafson
2020). Genetic Algorithms utilise methods that are analogous to genetic evolutionary
processes to search for optimal solutions in an often wide solution space that is unsolv-
able by existing efficient algorithms or methods. Alam et al. (2020) summarises the
components of a Genetic Algorithm in their paper covering the review, implementations
and applications of Genetic Algorithms. The concepts will be extrapolated using a PID
tuning scenario to better illustrate the concepts involved. The first consideration is usu-
ally the objective function; this is an equation or set of constraints that combines target
characteristics, such that the equation can either be minimised or maximised to obtain
the best candidate solutions. An example of this has been covered in a previous section
of the literature review when analysing the work by Naranjo et al. (2020), where some of
the desired variables were step response characteristics such as settling time, overshoot

and energy. Candidates are the variables that are required to be tuned in order to achieve



2.4 Evolutionary Algorithms 17

the desired fitness of the objective function. In the case of this example, the candidates
are PID control variables K, K; and Kq. The candidates are usually encoded to a suit-
able representation, i.e. binary strings, however, for this case, it is most appropriate to
keep the PID variables as floating-point numbers, as these are the type in which they are

implemented.

To start the Genetic Evolution, a random population of potential candidates must be
generated. Each individual candidate is a solution to the target problem. The popula-
tion is propagated through each iteration, better known as a generation in evolutionary
nomenclature. For each iteration, each candidate in the population is evaluated against
the objective function and a random selection of the fittest individuals is chosen to be
part of the next generation. A random sample of these individuals undergo crossover,
in which parent candidates combine attributes to produce offspring candidates. Another
randomly chosen sample set is subject to mutation, in which the individual is randomly
altered to introduce diversity in the population. The former process is used to exploit
good characteristics in candidates and encourage convergence to an optimum, whereas
the latter ensures that a local optima is not overly-exploited, ensuring that more ground
is covered in the hypothetical solution landscape, and that other potential areas of global
optima are discovered. The balancing of both exploitative and exploratory procedures
is also the subject of much research (Zhao et al. 2008). The final step in a generation
involves what could be essentially termed as ’survival of the fittest’, in which, through
a semi-stochastic method (where fitness is used as a weighting), individuals are selected
to become part of the following generation. Through iterating this process through a
number of generations, the population will become ’fitter’, and when generated offspring
demonstrate no significant differences to previous populations, the candidates can be said
to have converged to an optimum. In some instances, convergence may not occur, and
other termination criteria may be met, causing the algorithm to conclude. A common
termination may simply be that the maximum number of generations has been exceeded.

A general overview in the form of a flowchart is depicted in Figure 2.3.

2.4.2 Genetic Algorithms and Control

GAs are certainly not scarce within existing literature, and a brief survey is presented here

to demonstrate the breadth of research, especially as applied to tuning PID parameters.



18 Literature Review

Initialise Population

[
'r

Calculate Fitness Value

v

Selection

v

Crossover

v

Mutation

Is termination criteria sati

Yes

Figure 2.3: Basic General Flowchart of a Genetic Algorithm (Albadr et al. 2020)

In a paper by Jayachitra & Vinodha (n.d.), a GA is applied to a PID controller for a non-
linear Continuous Stirred Tank Reactor plant. The researchers found that the optimised
PID allowed the plant to operate within the entire operating range, overcoming limitations
of the linearity of the PID, with satisfactory set point tracking and disturbance rejection.
The objective function to optimise in the genetic algorithm was the weighted sum of
Integral Square Error (ISE), Integral Absolute Error (IAE) and Integrated Time Absolute
Error (ITAE), as the weighted sum indices are more appropriate than the performance of
each standalone index. The definition for each of these functions is given in Equations 2.12,

2.13 and 2.14

ISE = /Oo[e(t)]Q dt (2.12)
0

[AE — / S o)) dt (2.13)
0

ITAE = /oot le(t)] dt (2.14)
0

where e(t) is the difference between the input setpoint signal r(¢) and the output signal



2.4 Evolutionary Algorithms 19

y(t), i.e.

e(t) =y(t) —r(t) (2.15)

The weighted sum equation takes the form:

J(Ky, K1, Kp) =w, (ISE) 4wy (IAE) + ws (ITAE) (2.16)

where the weights wi, we and ws were chosen to be 0.4, 0.2 and 0.4 respectively. The
researchers utilise Binary-String Encoding for representing the parameters of the PID

(the genes in evolutionary terms). The reproduction probability formula used is:

Pi= ) (2.17)

P,
Zi:l1 F, 1(9)
The crossover method, population and generation sizes were left unspecified, and the
mutation was briefly explained to be achieved through randomly flipping a bit in a gene

at a uniformly random chosen index.

Mirzal et al. (2012) investigates using a genetic algorithm to tune the gains of a PID
controller for a First Order Lag plus Time Delay (FOLPD) system. The researchers’
approach involved comparing the algorithm against multiple objective functions, the Iter-
ative Method and the Ziegler-Nichols Method, and selecting the best one. The objective
functions were ISE, IAE, ITAE, as defined previously, with another two common objective
functions included in the comparison, namely MSE and I'TSE, as defined in Equations 2.18
and 2.19

MSE = % /O e dt (2.18)

ITSE = | t[e(t)]* dt (2.19)



20 Literature Review

Additionally, the fitness value for each chromosome is defined as:

1 1
fitness = : == (2.20)
per formance index  J

where performance index is the objective function used (usually defined as J). It appears
that the researchers used MATLAB’s implementation of genetic algorithms. For the
genetic algorithm, the termination criteria was set to 300 maximum generations, the
population was chosen to either be 80 or 100 chromosomes, floating-point was used to
encode the genes, Normalised Geometric Selection was the preferred parent selection
technique, arithmetic crossover for floating point numbers were used, with 4 crossover
points selected and the mutation rate set to 0.1%. Standard performance measures were
analysed: percentage overshoot, settling time, rise time, peak time and stability margin.
Criteria for settling time was chosen to be 5% and 0-95% criterion was used for rise time.
As predicted, the GA methods performed better than the Iterative and Ziegler-Nichols
Method. Perhaps unsurprisingly, each objective function yielded different characteristics,

with strong performance in some indices, whilst weaker in others.

The majority of a paper by Devanshu (2017) describes the GA configuration used to tune a
PID controller for a process control. The population was chosen to be about 80, as research
suggests that a population size between 30 to 100 is usually optimal, and the researcher’s
own experimentation revealed that out of experiments with 40, 60 80 and 90 chromosomes,
sizes of 90 and above do not result in much improvement. For reproduction selection, the
Roulette Wheel method was preferred for its simplicity. Multi-point crossover was the
preferred choice for the recombination operator, as Uniform crossover was believed to be
capable of dismantling perfectly fit genes, thus rendering it useless in the next generation.
It is unclear whether 0.1% or 0.01% was chosen for the mutation probability, however
it is assumed that one of these was chosen for implementation. Elitism is implemented
in the GA by preserving the best individual in each iteration, and ensuring that it is
propagated to the following generation if the current generation fails to yield a better
solution. No detailed mention is made of the selected objective function in this particular
paper. The GA algorithm was demonstrated to have a visually better step response than

the Ziegler-Nichols method.

In an article by Mahfoud et al. (2021), the GA is applied to tune the PID controller for
the Direct Torque Control of a Doubly Fed Induction Motor (DFIM). The GA used was



2.4 Evolutionary Algorithms 21

encoded using real numbers, as this appeared to be the most efficient, and reasonably
simple to implement. The first population was generated heuristically to ensure that
the algorithm evolves 'good’ genes. Maximum values of Kp, K; and Kp were set to
100, 10 and 1 respectively and all parameters had a minimum value of 0. It was noted
that research discovered optimal population sizes between 10 and 160, and that 20 was
chosen for initial implementation. Equations 2.12, 2.13 and the weighted function in
Equation 2.16 was used, and the performance of each is compared. The objective func-
tions are each converted to the fitness function given in Equation 2.9. The Tournament
Selection method was used for parent selection, as it yielded the best results through
experimentation. The probability of crossover is suggested to be within range [0.6, 0.99],
and was therefore chosen as 0.8. The probability of mutation should be between [0.001,
0.01], and was chosen as 0.001. The GA successfully improved response time by 82.67%
and rejection time by 72.21%, reduced overshoot and electromagnetic torque ripples by
100% and 16.16% respectively, and minimised Total Harmonic Distortion in the stator

and rotor currents by 53.76% and 34.55% respectively.

Alharbi & Gomm (2017) conducted research to optimise PID controllers for a Multi-
variable (MIMO) Process. In its simplest representation, the control loop is reminiscent
to the MIMO model of the TRMS system as depicted in Figure 1.2. A review of the
general methodology is worthwhile, as the methods presented could be well applied to the
TRMS. To allow the reader to better illustrate the system architecture and follow this

analysis better, the Shell oil process model overview is shown in Figure 2.4.

u + Y1
» G111 :(8 =
+
" Gz
» G21
uz iz ¥2
» G > 2
22 b,

Figure 2.4: Shell process oil system overview (Alharbi & Gomm 2017)

It may benefit the reader for the sake of contextual application to this project, to relate
(11 to the Main Path for Pitch, G12 to the Cross Path from Pitch to Yaw, G2; to the
Cross Path from Yaw to Pitch and Gay to the Main Path for Yaw.



22 Literature Review

Alharbi & Gomm first optimise controllers for the system plant of each SISO-reduced path:
from w1 to y; and from ws to y2, corresponding to the plant transfer functions of G and
G99 respectively. To achieve this, the researchers ran optimisation for a PID wrapped
around each of these two transfer functions so that the controllers were considered for its
own plant individually, without any cross coupling considerations between the two input
lines. This was tested both by simulating each path separately, i.e. u; to y; and usg to y2,
and by testing the entire system with cross-couplings present. When testing the entire
system, u; was first set to a step function of r(¢) = 1 and wug set to 0, then vice versa
to test the uy to yo line. The plots for both outputs were obtained for both scenarios.
It must be noted at this point that the objective function chosen was ITAE, as given in

Equation 2.14.

Alharbi & Gomm then perform optimisation on each of the two PIDs for the whole-system
configuration, as in Figure 2.4. To do this, the researchers first set the parameters of the
PID controller for Gos equal to the parameters found in the SISO instance. The PID for

(11 is then optimised, using the error term:

e1(t) = yi(t) —ri(t) (2.21)
in the GA’s ITAE objective function. The PID for G2 is optimised by using the error
term:

e2(t) = ya2(t) — ra(t) (2.22)

in the GA’s ITAE objective function. The testing steps used to obtain the step response

results are the same as detailed for the SISO-optimised case.

Most importantly to review, however, is the novel calculation of the objective function

using both the error terms e;(t) and ex(t), so that the objective function becomes:

ITAFE = /Ooot |€1(t) + 82(t)| dt (2.23)

This allows the simultaneous optimisation of ensuring that the path supplied with (¢) = 1

follows a unit step response, and the other path, with r(¢) = 0, remains at 0. Inspection



2.4 Evolutionary Algorithms 23

of the ITAE function and the corresponding error terms can verify this; in the situation
where 71(t) = 1 and ra(t) = 0, if e;(¢) and es(t) are minimised, the response will tend
towards a step response for yi(t), and will tend toward O for yo(t). The process for
optimisation is the same as the previous method that the researchers conducted. This
method of optimisation performed comparatively better than the other methods that
were conducted by the researchers, demonstrating improvements in most of the standard
performance criteria such as rise time, overshoot and settling time, whilst also achieving

the lowest ITAE value.

More sophisticated GAs have also been applied in research. An article by Lin & Liu
(2010) focuses on tuning the parameters of a PID controller using an adaptive GA. The
Adaptive Genetic Algorithm (AGA) used is different to a classical genetic algorithm in
that the rate of mutation (P,,) and crossover (P.) are automatically increased when the
fitness of individuals in the population indicates a convergence toward a local optimum,
and are decreased when the population fitness tends toward dispersive characteristics.
The mutation (Equation 2.25) and crossover (Equation 2.24) probability are adjusted

with the following equations:

De1 < f
p=0" I (2.24)
po — Lagtllslen) g1 > f,,,
Pm1 I <1
p,o=" e (2.25)

_ (pml_me)(fmaz_favg) f > fa/ug

fmax_favg

Pe1

The fixed maximal cross probability is p.1, fixed minimum crossover probability is pco,
fixed maximum mutation probability is p,,1, fixed minimum mutation probability is p.,2,
fmaz and fag are maximal fitness and average fitness of population respectively, f’ is
the fitter of the individuals to be crossed and f is the fitness of the chromosome to be
mutated. In the work previously examined by Mahfoud et al. (2021), the crossover
probability interval of [0.6, 0.99] and mutation probability interval of [0.001, 0.01] could
be assigned to the respective minimum and maximum crossover and mutation values, if

an adaptive algorithm were to be designed.

Lin & Liu also clearly outline the following GA configuration of PID parameter bounds:

0 to 20 and 0 to 1 respectively, chromosome encoding method: binary number encoding,



24 Literature Review

population size: 50, generation size: 100, crossover rate: 0.6, mutation: 0.06, reproduc-
tion method: roulette wheel, crossover: single point crossover, mutation: single point
mutation. The objective function used is a weighted version of the ITAE, equation, such

that:

J = /oo(w1|e(t)| + wou?(t)) dt + w3 - t, (2.26)
0

where w1, wy and ws are the weights, e(t), as defined in Equation 2.15 is the error between
the reference setpoint signal and the system output, u(¢) in this context is the controller
effort (output) and ¢, is rise time. The penalty function in Equation 2.27 is also used to

reduce overshoot when the error is less than 0:

J = /Oo(wlle(t)\ + wou? (t) + wyle(t)]) dt + ws - t,, (2.27)
0

Where wy is the weight for the added penalty term. The fitness function is as defined in
Equation 2.20.

The AGA method applied shows good results when compared to the Ziegler-Nichols and
Classical Genetic Algorithm (CGA) methods. The authors also claim that the simple
structure and low computational complexity make the algorithm suitable for online adap-

tation.

The Real-coded GA (RGA) is used to tune the PID controller for the TRMS, using
predetermined search range, in a paper by Prasad et al. (2013). To determine the initial
search, Simulink’s Design Optimisation Library CDO tool was attached to the signal to be
optimised, and desired step response characteristics were specified. The gradient descent
method was then chosen as the optimisation method. The CDO was then run to provide

an initial range for the PID parameters.

To run the RGA process, 12 chromosomes with three genes each were used for 1-DOF
systems and 20 chromosomes with 12 genes each for the 2-DOF system. Roulette wheel

selection was used, where the probability for selection for each chromosome is:

&i

= > 2.28
S & (2:28)

[



2.4 Evolutionary Algorithms 25

where £ is the fitness of the individual chromosome. Crossover method used is whole

arithmetic recombination, using the following two equations:

z; = (1 — B)a; + Bb;

yi = (1= B)b; + Ba;

(2.29)

where A = [ay,aq,...,a;] and B = [by, be, ..., b;] are the resultant offspring as a result of
the cross over, and f is a random number in the range [0, 1]. It should be noted that
B = 0.5 will produce identical offspring. For mutation, the randomly selected genes are

modified so that they take the value determined by Equation 2.30

xp = L + T‘(Uk - Lk) (2.30)
where L U are lower and upper bounds respectively of the values that a gene can take,

and r is from [0,1]. The objective function used was the integral of absolute error and

squared control energy, or ITE, as given in Equation 2.31
T T
g = (T2 / le()] dt) + / W2(¢) dt (2.31)
0 0
where T is the simulation time. The fitness function used was:

30000
ITE

fitness = (2.32)
The value in the numerator is explained in a work referenced later in this section. Results

showed better performance as compared to the CDO optimisation.

A similar strategy is seen in the work by Juang et al. (2008), in that to determine the
initial search range, the Nonlinear Design Technique (NCD) was used. This yielded initial
values of approximately 1 for all PID controller parameter gains, therefore, the search

range was initially set to [0, 2]. A comprehensive, modified ITSE objective function was



26 Literature Review

used for control over multiple performance indices:

t2
2
Ipirse =T </t1 (y(t) — L.1r(t)) dt|Mp > y(t) > 1.1r(t)

tq
o / (w(t) = 150(1) dtly ~ o > 1sre

3

tr
+/0 0.97(t) dt|y 0,00 > 41 (2.33)

T
+ /t |y(t> o T(t)‘ dt‘t > steady—state time, |e(t)|< 0.05r(t)>

T
2
+/0 u”(t) dt

where T is the total running time, ¢; to t3 is the time period when y(t) > 1.1r(¢), t3 to
t4 is the time period when y(t) > 1.57(t), ¢, is rise time, ty, is steady-state time and M,

is the maximum overshoot of y(¢). The fitness function was chosen to be:

10000

IpiTse

fitness = (2.34)
The numerator of this equation, often referred to as A, is generally chosen to be a large
constant, which reportedly enhances the differences between chromosomes. For the GA,
population size was set to 10, number of generations was 200, simulation time was from
0 to 50 seconds and sampling time was 0.05 seconds. Roulette wheel selection was used
for Selection and Reproduction, mutation is achieved through using Equation 2.30 with a
rate of 0.025, and crossover was applied by using a modified crossover process with a rate
of 0.025. This crossover method is implemented in this project, therefore implementation

is covered in Chapter 3.

The optimisation method shows to reduce error by 21% in the horizontal plane and 20%
in the vertical plane for the 2DOF test, as compared to conventional RGA optimisation.
Juang also contributed to another paper (Juang & tu 2013), which compares a similar
implementation of the GA with other optimisation methods. In this work, algorithms
were implemented on a Field Programmable Gate Array (FPGA), to achieve hardware-

in-the-loop testing.

A paper by Sivadasan & Iruthayarajan (2018) focuses on applying different evolutionary
algortithms (including the RGA) to the TRMS system, using a Nonlinear PID controller.



2.4 Evolutionary Algorithms 27

Both coupling ignored (2 PID controllers) and coupling considered (2 PID controllers +
2 cross coupling controllers) cases are investigated in this paper. The following objective

function - a variant of ISE - is used:

ISE—/ e, dt+/ e? dt (2.35)
0 0

which considers both the error signals of the main and tail rotor positions, where e,, is
the error of main rotor position, and e; is error of tail rotor position. 20 independent
trials were conducted in this paper to draw useful conclusions of the performance of
each algorithm. It was concluded that PSO performs best, with the best fitness and

convergence characteristics.

An application of the Genetic Algorithm is also seen used to tune a Model Predictive
Controller (MPC) for the TRMS (Kumar & Narayan 2016). The objective function strat-
egy revolves around simultaneously optimising the infinity norm of sensitivity function

and the ISE objective function.

Literature also demonstrates that the GA is suitable for system identification of the

TRMS, using real-coded genes (Toha & Tokhi 2009).

To conclude a rather exhaustive section, it can be seen that there are many applications of
the GA within existing literature. It is beneficial to be familiar with the existing research,
to build a solid foundation of understanding and methodology for developing GAs, and
to better apply methods to the development of new algorithms, such as the Memetic

Algorithm (MA), as introduced in the following section.

2.4.3 Memetic Algorithms

A crude, but suitably simple definition of an MA, is that it is an Evolutionary Algorithm,
such as a Genetic Algorithm, with an added Local Search (LS) component. The repre-
sentation of the general flowchart of a GA in Figure 2.3 can be extrapolated to include

the LS component, as shown in Figure 2.5.

As with the core philosophy of the GA, the MA also finds its inspiration from evolutionary

theory. Memes describe cultural knowledge and ideas which often propagate and mutate



28 Literature Review

Initialise Population

"l
]
¥

A

Calculate Fitness Value

'

Selection

v

Crossover

v

Mutation

v

Local Search

Is termination criteria satisfied?

Figure 2.5: Basic General Flowchart of a Memetic Algorithm (Assiroj et al. 2021)

within generations of the human species. Within these cultures, strong ideas are often
refined and preserved, whilst weaker ideas dissipate quickly. The local search process in
a MA is then analogous to this example, in that the fittest individuals are refined and
propagated to future generations, whereas weaker individuals disappear quickly (Neri &

Cotta 2012).

For the sake of brevity, the mathematical foundation for MA is not included here; it is
anticipated that the information presented in this paper regarding MAs will be accessible
to an audience with no prior knowledge of the topic. However, if the reader is interested
in acquiring solid foundational knowledge, the article titled ” A Gentle Introduction to
Memetic Algorithms” by Moscato & Cotta (2003) provides good background and under-
standing for the key elements of LS strategy. Aside from the introduction to MA, the

chapter also includes guidelines for the genetic operators.

For instance, the authors elaborate on the recombination operator and provide guidelines

in considering an appropriate strategy. Blind recombination, which does not consider



2.4 Evolutionary Algorithms 29

individual fitness, is usually justified as the choice operator as it supposedly prevents sub-
optimal convergence through the introduction of excessive bias in the search algorithm.
However, hybrid/heuristic recombination operators are also presented, which are mono-
tonic in nature (where the child generated is at least as good as the best parent), such as
Dynastically Optimal Recombination, Patching-by-forma-completion, and a specialised
operator for the Travelling Salesman Problem - the Edge Assembly Crossover. An impor-
tant conclusion of this particular investigation is that blind crossover follows O(N log N)
time complexity, where N is the size of the input. Heuristic recombination is more ex-
pensive, but the solutions provided are usually better than the former, thus requiring to
be invoked a lesser number of times. The authors also make mention of random seeding

or injection of high-quality configurations to generate the initial population.

Another important consideration in MAs is Lamarckian Evolution versus the Baldwin
Effect. Both are strategies which describe the behaviour of improved individual(s) when
reintegrating with the population. In Lamarckian Evolution, the improved individuals
replace the original solutions that were selected for improvement, whereas the Baldwin
Effect describes the improved individuals joining the population alongside the individuals
chosen for improvement. Both strategies can present issues; for example, Lamarckian
Evolution can reduce the diversity of the population, leading to premature convergence.
To counter this, a percentage of the total improved individuals may be selected to replace
the original individuals, however, this in itself becomes another heuristic which must be
fine-tuned for the efficacy of the algorithm (Bereta 2019). In a paper by Krasnogor &
Smith (2005), the authors advocate the Lamarckian approach for running the local search
to an optimum. Coarse-grain schedulers are suggested as a simple means of avoiding the
loss of diversity caused by the Lamarckian Evolution approach, through monitoring and
application of vigorous mutation to the whole population. It must be noted that these
two strategies may also be combined, and have been done so in other research, with some

notable benefits (Choi & Moon 2005).

There are a plethora of different metaheurstics available for performing the LS opera-
tion. A paper by Thainiam (2019) investigates four of the most common: Hill Climbing
(HC), Tabu Search (TS), Simulated Annealing (SA) and Iterated Local Search (ILS).
HC stochastically iterates through neighbour solutions of a selected individual, and only
accepts the neighbour if it is a better solution than the original candidate. In TS, neigh-

bours are also visited as in HC, but with two specific alterations; the first being that



30 Literature Review

individuals with worse fitness can be accepted if no improved individuals are available, to
avoid stalling in strict local minima, and the second is that the search is prohibited from
visiting previously-searched solutions, which is achieved by utilising a memory structure.
SA considers neighbouring solutions, but uses probability to decide if the new solution
should be selected. Ultimately, the probabilistic nature of such a system should move to
a lower energy state (meaning the search becomes less stochastic), in which the optimum
should be located. The final method considered, ILS, is essentially an extension of the
Multi-Restart LS, in that a chosen LS method (in this paper it is HC) is performed itera-
tively, but upon restart, the solutions to improve are not random, but rather are variants

of the previous locally optimal solutions, modified through perturbation.

2.4.4 Memetic Algorithms and Control

Whilst the MA enjoys similar popularity to the GA for applications in many areas of
optimisation, only a small handful of articles can be found that investigate its application
to control systems. Four articles are presented here; the first two apply MA for nonlinear
system identification, and the remaining two use MA for determining the gains of a PID

controller.

In the first article (Malinski & Figwer 2015), the authors focus on nonlinear input-output
dynamic system identification using a MA for both very small and large numbers of
input and output measurements. The authors follow common memetic frameworks for
implementing the MA. In the initial stage, variables such as population size and standard
deviation for mutation are set, and procedures are implemented to adjust adaptive param-
eters when the search stagnates. The population is then processed by selecting parents
through Roulette Wheel Selection (RWS), performing crossover and mutation (if required
— this in itself was made adaptive by the authors), and then improvement through local
search. The algorithm tracks the best performing individual, which the authors label the
‘Current Leader’. The individual is kept separate from the population to ensure that it
is propagated to future generations. Crossover was chosen to be optional, and used only
on user demand. When crossover is enabled, the operation involves choosing two par-
ents, and then performing a one-dimensional memetic algorithm search to find a global
optimum along a line formed between the two parents. The mutation method involves

randomly selecting individuals using Gaussian distribution with a mean of 0 and a user



2.4 Evolutionary Algorithms 31

defined standard deviation. The rate of local search is also chosen to be adaptive, and

the local search method used is random hill-descension.

The next article by Subudhi & Jena (2009) covers an application of nonlinear system
identification using MA to the TRMS. The authors exploit three different global search
methods; GA, PSO and Differential Evolution (DE) for comparison and utilises a Back

Propagation (BP) gradient descent method for the local search component.

The third article investigates using the MA to design an optimal PID controller for a
servo-motor system (Shyr et al. 2002). The authors perform the following steps: initialise
a population of integers, use roulette wheel selection to select pairs for mating, apply
mutation and crossover to produce new individuals for the next generation, apply a hill-
climber algorithm for the local search to refine each individual, then terminate when
a solution cannot be improved upon within the nominated number of iterations. The
authors show that the MA converges faster, and to a better minimum than a Genetic

Algorithm that was used for comparison.

In the final article, a MA is used to tune a PID controller for an AVR system, where the
algorithm is DE-based (Mandal et al. 2011). The authors use a custom objective function

defined as in Equation 2.36

min f(K) = e - (ts+t,) + (1 —e™) - (M, + Ey;) (2.36)
where the control parameters K= (K, K, Kg4) and « is a weighting factor, designed such
that a value of a < 0.7 allows the designer to preference a minimisation of rise time and
settling time, and a > 0.7 preferences a reduction of overshoot and steady state error.
Each individual is also evaluated against the Routh-Hurwitz stability criterion, in which

all values that do not pass are penalised with a very large positive constant value.

The competitive variant of DE that the authors employ is combined with a Hybrid Mu-
tation Strategy, which the authors claim reduces the likelihood of converging to local

optima, rather than the global optimum.

For LS, the authors use Solis and Wet’s algorithm, which could be categorised as a
randomised hill climber. A derivative of this algorithm is implemented in this project,

thus implementation details will be presented in the following chapters.






Chapter 3

Methodology

3.1 Chapter Overview

This chapter aims to outline the research problem and the components required to fulfil the
requirements of the project. These sections will provide the software design and decisions
made for implementation, and will highlight any limitations observed throughout the

process.

3.2 The Research Problem

As indicated from the literature review, not many papers have investigated the applicabil-
ity of the MA to control systems, and a knowledge gap has been identified in that the MA
has not yet been used to optimise the PID controllers for control and decoupling of the
TRMS. It is of particular interest to test if the MA is capable of optimising parameters to
the extent that sufficient decoupling is achievable, removing the need for the 2 additional

cross-coupling controllers.

Thus, this research aims to implement the MA to identify and analyse its suitability for
efficiently and successfully finding optimal PID parameters to both control and decouple
the system using only two PID controllers. The algorithm is analysed to determine if the
results are at least as good as, but ideally better, than existing GA implementations that

do not utilise LS methods.



34 Methodology

The key performance metrics that are analysed in this research are:

1. Total algorithm execution time

2. Sum of total absolute error between desired input setpoints and output response.

This should be minimised.
3. Sum of total absolute control effort. This should be minimised.
4. Key step response performance metrics (Dogruer & Tan 2019)

(a) Percentage overshoot
(b) Rise Time

(c) Settling Time

Items 2 and 3 can be effectively analysed by comparing fitness, as this is inversely pro-
portional to the objective function. Therefore, the objective function will be a controlled

variable in both SISO and MIMO cases separately.

3.3 The Optimisation Process

This project follows a similar process that was employed by Alharbi & Gomm (2017)
for optimising both SISO (1DOF) and MIMO (2DOF) representations of a multi-process

plant, with cross-couplings similar to the TRMS.

The linearised MIMO model can be accessed from the system manufacturer, and is sim-
plified and depicted in Figure 3.1 (Didactic 2021). The following subsections will provide
an overview of the general optimisation process to determine PID parameters suitable for

linear SISO and MIMO representations of the TRMS.

3.3.1 SISO Optimisation Process

To obtain initial starting parameters for both main (pitch) and tail (yaw) rotor PIDs,
optimisation is first performed on a SISO model of each individual pitch and yaw paths.
The SISO model for both pitch and yaw is simply the isolated path directly from input

to output, and can be extracted from the given MIMO model, as depicted in Figure 3.2.



3.3 The Optimisation Process 35

MAIN (PITCH) ROTOR IN MAIN (PITCH) ROTOR QUT

0.01657s” + 0.4194s + 2.454
1(t) 1 S L 3
LRED 5 + 148757 + 4.4035 + 5.449 ; Q > yo

0.022485 + 0.4527
5% +0.4099s + 0.2181

0.049865s + 0.0962
52+ 0.2377s +4.902

@ 0.000988132+U.033611+0.4065 ;
r2() 7|8+ 134557 4 0.4568s + 0.3826 (!\-) D

TAIL (YAW) ROTOR OUT

TAIL (YAW) ROTOR IN

Figure 3.1: Simple Representation of TRMS MIMO System with Transfer Functions

For the SISO model, the PID is cascaded with the plant, and a negative feedback loop is
placed from the output to the input, so that the input to the PID controller is the error
term of e(t) = y(t) — r(t). The process of building this programmatically is outlined in a
following section. Therefore, the system model for both pitch and yaw paths becomes as

depicted in Figure 3.3.

The optimisation process is run for both pitch and yaw SISO systems individually to
determine good initial starting parameters, before proceeding to the MIMO optimisation

process.

MAIN (PITCH) ROTOR IN

PITCH
0.01657s* + 0.4194s + 2.454
am (1) > (3D
5 + 1.4875% + 4.403s + 5.449 y1(t)
0.00098815% + 0.03361s + 0.4065
2 | »{ 4
an (20 & + 1.3455 + 0.4568s + 0.3826 (D)
YAW

TAIL (YAW) ROTOR IN

Figure 3.2: Simple Representation of TRMS SISO System with Transfer Functions



36 Methodology

MAIN (PITCH) ROTOR IN PITCH

0.01657s% + 0.4194s + 2.454 »{ )
10 PID > I i =
¢ 4@—5 (s) £ + 14875 + 4.403s + 5.449 { ’

TAIL (YAW) ROTOR IN YAW

Q 0.00098815? + 0.03361s + 0.4065
2(t) PID » ’ > 2 ) 2(t)
’ j " & + 1.3455° + 0.4568s + 0.3826 W f

Figure 3.3: TRMS SISO Control System with added PID controllers

3.3.2 MIMO Optimisation Process

With good starting parameters determined from the optimisation of each SISO system,
the optimisation of the MIMO system, which takes into consideration the cross-coupling
paths, can be performed. The MIMO paths are as depicted in Figure 3.1. Similarly, a
PID controller can be cascaded with the main paths for both the pitch and yaw plant
representations. However, it is important to note that the PID should be cascaded before
the cross-coupling path in each instance; for example, the pitch path PID should be placed
before the parallel path split to the pitch path plant and yaw cross-coupling plant. The

reverse process can then be performed for yaw path PID controller.

This approach is implemented so the PID can control the errors of both the main path,

and the cross-coupling path simultaneously. This is as depicted in Figure 3.4.

When optimising one path, the input/output errors of both paths are incorporated into
the objective function. The error for the pitch path, having input 71 (¢) and output y; (¢)

is:

er(t) = yi(t) — ri(t) (3.1)

The error for the yaw path, having input r9(¢) and output ya(t) is:

e2(t) = ya(t) — ra(?) (3.2)



3.3 The Optimisation Process

37

MAIN (PITCH) ROTOR IN

rit)

r2(t)

0.01657s + 0.4194s + 2.454

@—ﬁ)ﬂ PO

s + 1.4875" + 4.4035 + 5.449

PITCH

’<++) »(1) 1

0.02248s + 0.4527

> 4+ 0.4099s + 0.2181

0.04986s + 0.0962

52+ 0.2377s +4.902

()| PiDes)

0.00098815” + 0.03361s + 0.4065

TAIL (YAW) ROTOR IN

5 4 1.3455% + 0.4568s + 0.3826

YAW

Figure 3.4: TRMS MIMO Control System with added PID controllers

The objective function, as discussed in further detail in a following section, is then tailored

to minimise both error functions e;(t) and ey(t) simultaneously. This is useful as a

means of using two PID controllers to simultaneously control the main path, and decouple

the cross-coupling path. This can be achieved by setting the input for the path under

optimisation to a step input of r(f) = 1, and setting the other input to r(t) = 0. If

optimisation drives the errors e;(t) and ex(t) to 0, then the main path output should be

driven towards the expected output of y(t) = r(t) = 1, and the cross-coupled path should

be driven towards the expected output of y(t) = r(t) = 0.

The following is a point form summary of the steps taken for optimising the MIMO

representation of the TRMS:

1. Incorporate both errors for both input/output paths in the objective function.

Fix the tail rotor PID with the parameters found in the SISO tail rotor PID opti-

misation

Optimise the main rotor PID, setting the main rotor input to ri(¢) = 1, and the

tail rotor input to ra(t) = 0.

Using the results from the previous step, fix the main tail rotor PID parameters.

y2(t)



38 Methodology

5. Optimise the tail rotor PID, setting the tail rotor input to ra(t) = 1, and the tail

rotor input to 71 (t) = 0.

3.4 Memetic Algorithm Software Design

A thorough review of existing literature is very useful in the design of any EA, as many
of the configurations and parameters for the algorithm operators rely on heuristic hy-
perparameters, having values that are often determined solely by pre-existing research.
Therefore it must be noted, that for many of the parameters outlined in the following
sections, prior research is exploited for reasonable starting values, and these are fine-tuned
or adjusted where necessary through experimentation. Thus, this highlights the first lim-
itation of EAs - that many potential parameter values may be used and that many must

be chosen posteriori.

The GA component of the MA is built using best practices discovered through a literature
review of the existing research applied to PID control tuning, and where possible the
TRMS test rig. However, there will be some modifications; whilst GA aims toward
convergence to a global optimum, most of the parameters for the operators are designed
for a balance between exploitation and exploration. In the case of the MA, this should be
mainly maintained, however a slight preference toward diversity is desired, as the added
local search component itself will search local optima using exploitation and exploration.
It is therefore desirable for the GA to diversify candidate solutions (whilst of course
maintaining sensible and feasible solutions), and for the MA LS component to intensively

focus on optimising elite individuals provided by the GA.

All code created to implement the MA is written in MATLAB, and utilises a few notable
toolboxes, such as the Control Systems Toolbox and Parallel Computing Toolbox. If the
reader wishes to execute the code in their own MATLAB environment, MATLAB should
automatically detect and prompt to install the required toolboxes. If MATLAB fails to
detect the missing toolboxes automatically, the reader may need to seek help directly

from Mathworks.



3.4 Memetic Algorithm Software Design 39

3.4.1 Population & Parameter Representation

Parameter Representation

As per many of the research articles outlined in Chapter 2, Section 2.4.2 the PID controller
parameters Kp, K; and Kp are encoded by real-number representation. Thus, each

individual in the population is represented as a vector, so that:

—

K = [Kp, K7, Kp] (3.3)

where k; is the Proportional gain, ks is the Integral gain, and k3 is the Derivative gain.

FEach PID parameter is referred to individually as the ’Gene’.

This representation is chosen primarily for ease of implementation, and to maintain the
highest resolution of values as possible. Often, binary representations are more efficient
than real-number encoding, but it must be noted that the performance gains from using
such representation is problem-specific, and do not translate to all problem domains.
This is discussed further in the work by Mahfoud et al. (2021), and as such, this research

follows suit.

Parameter Bounds and Initialisation

Whilst injection of high-quality configurations can be used for generating the initial pop-
ulation (Krasnogor & Smith 2005), the population is generated by random seeding for
initial testing. To select suitable bounds for each of the PID parameters, the literature
is reviewed to identify three parameter bounds from relevant research on the TRMS, and
one from MA research on a foreign system. The last two configurations included in the
paper are to test the limits of the bounds configuration. A trial run is conducted with each
of the parameter bound configurations, using a generation size of 30 and a population size
of 80. The average percentage of stable systems across all generations is recorded and the
final fittest value at the end of the algorithm is also recorded. The results are presented
in Table 3.1. It should be noted firstly that these values are recorded from one run of the
algorithm each, therefore, the values may not be truly representative of a final averaged

value across multiple runs, but for the purpose of guiding the selection of values, this is



40 Methodology

sufficient.

PID Bounds ([P, I, D]) Average Percentage of Stable Systems in Generation | Fitness

[0, 4] (Prasad et al. 2013) 99.0833% 3.634

[0, 5] (Sivadasan & Iruthayarajan 2018) 99.2083% 3.7285

[0, 2] (Juang & tu 2013) (Juang et al. 2008) 98.9167% 3.7571
[0, 30] (Shyr et al. 2002) 98.8333% 3.7035

[0, 100] 97.8333% 0.50825

[0, 100], [0, 10], [0, 1] 73.875% 3.6941

Table 3.1: Table of different average percentages of stable systems across all generations and

fitness values for different parameter bound settings

The results of this brief experiment demonstrate that more unstable systems are gener-
ated, and the population struggles to converge to optimal fitness with larger parameter
bounds. Conversely, it is ideal to have reasonably large bounds, as this allows the al-
gorithm to operate over a larger solution space, and more potential solutions may be
identified. Most solutions however, from the trial runs, indicate that most optimal pa-
rameters have low values, thus the range of [0, 5] has been chosen as bounds for all of the

parameter gains.

Population Size

The number of individuals for the population size was determined through partial heuris-
tics. Research suggests that optimal population sizes lie between 10 and 160 individuals.
Small population sizes result in premature convergence due to the lack of diversity, and
large populations drastically increase computation time (Mahfoud et al. 2021). This has
been verified through experimentation in this project, therefore a value of population
size = 80 was determined to be a reasonably good value. The parameter popSize will be

used to denote the population size in the following sections, as it appears in the code.

Generation Size

A review of the collected literature in Chapter 2 is used to determine an appropriate
generation size. In the work by Kumar & Narayan (2016), 1000 generations were used
to tune a MPC. In tuning PID controllers using GAs, Lin & Liu (2010) and Mirzal et al.
(2012) use 100 and 300 generations respectively. A generation size of 30 was used for

tuning the parameters of a PID using a MA Shyr et al..



3.4 Memetic Algorithm Software Design 41

Prasad et al. (2013) and Juang et al. (2008) both performed their work on the TRMS,
and chose generation sizes of 200. Considering this value is reasonably average within
the sample of papers presented, and the work is focused on the TRMS, this value was
initially adopted in the final implementation. However, it was found that the MA regularly
converged at approximately 100 generations. It was deemed appropriate to reduce the
number of generations, as long as this variable was kept consistent over all test cases.
Furthermore, the smaller generation size is beneficial for a reduced general runtime. The
final value chosen for the number of generations is 120. The variable mazGenerations is
used to denote the generation size in the written code, and will therefore be used when

discussed in the following sections.

3.4.2 Objective Function and Fitness

Constructing Model for Calculation

The objective function is implemented in code as a MATLAB function named objec-
tive_function(). The function takes two input parameters: K_arr and testRH. K_arr is
an array of the PID parameters to calculate the objective function for, and testRH is a
boolean to control whether or not the Routh-Hurwitz criterion is tested. The function
returns two values; fitness, which is the calculated fitness value, and stable, a boolean

which indicates if the system is stable using the Routh-Hurwitz (RH) criterion.

Before calculating the value of the objective function, a model must be first created by
cascading the system plant with the PID constructed by utilising the input K_arr in the
Control System Toolbox function pid. The plant and PID are cascaded using another
Control System Toolbox function series(), and the feedback() function is used to form a

negative feedback loop, so that a complete model of the final system is formed.

To simulate the system with a step response, using the step() function, a time vector
must be supplied. To construct the time vector, the total time used is T' = 50s, and a
sampling time/resolution of 0.05s (Juang & tu 2013)(Juang et al. 2008). With the step
response calculated, the control effort u(t) can be obtained from using another toolbox
function lsim(), by passing the controller as the system to analyse, 1 — y - the input to

the controller, where y is the output of the system, and the time vector t.



42 Methodology

With all variables calculated, y - the output to a step input and wu - the controller effort,

the objective RH criterion and objective/fitness function can be determined.

A similar process can be followed for the MIMO representation of the system. In this
instance, however, care was taken to ensure that the controllers are cascaded before the
main and coupling path splits by first programmatically creating a representation of the
system as a subsystem with 2 inputs and 2 outputs, and cross-couplings handled internally.

The diagrammatic representation of this is depicted in Figure 3.5.

MAIN (PITCH) ROTOR IN PICH

) C1 ) > 1 1 yi(t)

2y (2 ) p{2 2 y2(t)

TAIL (YAW) ROTOR IN YAW

Figure 3.5: Diagrammatic representation of programmatic open-loop subsystem

The MIMO capability of the series Control Systems Toolbox function is employed to
cascade the output of each PID controller created for the pitch and yaw paths to the
respective pitch and yaw inputs of the subsystem. With that completed, negative feedback
lines from each output to the input are created by passing a 2x2 identity matrix to the
ss function; this ensures feedback lines are only formed for the main paths, and not
for cross-coupled paths. The final diagrammatic representation of the system formed

programmatically can be seen in Figure 3.6.

A helper function was created to build the required SISO or MIMO system, called

build_control_system(). Source code for the function can be perused in Appendix F.

Routh-Hurwitz Criterion

The RH criterion is an important mechanism which allows a designer to determine if a
given system is stable or not. If any roots lie within the right-half complex plane (i.e
positive-real), a dynamic system is unstable, therefore, all roots must lie in the open left-

half of the complex plane (negative-real) to ensure system stability (Ho et al. 1998). As



3.4 Memetic Algorithm Software Design 43

MAIN (PITCH) ROTOR IN PITCH
) ?—» PID(s) 1 1 »(3) yi0)
2(t) +) PID(s) > 2 2 »( 4 ) y2(t)
YAW
TAIL (YAW) ROTOR IN

Figure 3.6: Diagrammatic representation of programmatic closed-loop subsystem with PID

controllers

Mandal et al. (2011) included the RH criterion in their objective function, it was decided
that this criterion should also be included this project’s objective function to guarantee

that proposed solutions are stable.

Thus, various Routh-Hurwitz algorithms have been constructed to analyse the poles of a
given transfer function. Most RH Algorithms are designed to construct the Routh table,
in which the values in the first column can be inspected. If all values have the same sign
(i.e., when iterating through each value in the first column, the sign does not change from

one value to the next), then the RH criterion is passed, and the system will be stable.

To construct the Routh table, a script by Sagharchi (2021) that automatically calculates
the stability by constructing the Routh table and checking the signs of the first column,
is modified into a function that returns the Routh table only, and the signs are checked
within a dedicated function is_system_stable(), which may be called as necessary elsewhere
in the code. Initially, a function created by Rivera-Santos (2021) was implemented, called
routh(), which returns the Routh table as a symbolic array. This was discarded, as the
function included calculating the determinate of an array, which was measured to be
computationally expensive. The routh() function appears to handle special cases which
may arise for certain system dynamics that may occur, and it is unclear whether the
function by Sagharchi (2021) is capable of handling such special cases. Both functions
have received high reviews in the MATLAB File Exchange, therefore the computation-
ally expensive routh() function was discarded and the modified function of the script by
Sagharchi (2021) was kept for implementation. Results have shown no exceptions or errors

being thrown by the use of the rhStabilityCriterion() function through experimentation



44 Methodology

and testing.

The Objective Function & Fitness Function

As can be observed from the Literature Review chapter, there are many objective func-
tions implemented across different research domains. Many objective functions possess
different treatments of the error term, whilst others take a weighted approach to per-
formance criteria such as rise time, settling time and overshoot. Different weighted ap-
proaches were implemented and tested, but these contributed to greater inefficiency in
the calculation of the objective function, primarily due to the computational complexity
in obtaining step information (through either standard calculations or using SIMULINK’S
stepinfo() function). It was deemed inappropriate to add further computational overhead,
when programmatically constructing a model, analysing, and using response information
is already computationally expensive when multiple calls are made to the objective func-
tion. Weighted approaches are also subject to being yet another heuristic, in which further

tuning or prior knowledge is required.

Since one of the objectives of this project is to optimise for efficient controllers, the chosen
objective function is the ITE, as given by Prasad et al. (2013). This appeared to be one
of the only functions in which both errors and control effort are considered in the existing
literature, without the use of weighting coefficients. Another point of merit for choosing
the ITE objective function, is that the authors were performing their research specifically
on the TRMS. The objective function equation was presented in the Literature Review

chapter, but is included again here for convenience:

T T
J = (T? /0 le(t)| dt) + /0 W3(t) dt (3.4)

In the same paper, the fitness function is calculated as:

30000
fitness = —5 (3.5)

This was also used for implementation in this project. The fitness function converts the

problem from a minimisation to a maximisation problem, which permits the algorithm



3.4 Memetic Algorithm Software Design 45

to remain analogous to the ’survival of the fittest’ philosophy. Numerically, due to the
proportionality between the objective function and the fitness function, the objective
function is still ultimately minimised, as the population becomes fitter. The constant
scaling factor in the numerator is not critical, and this value was taken directly from the
paper. Combined with the objective function, the fitness values yielded are around the
range of [1,10], which is easier to discriminate than the low values that would be produced

without the numerator scaling factor.

Any values that do not pass the RH criterion have a large number added to the result
of the objective function, so that when the fitness function is calculated, the resultant

fitness value is drastically lower than the fitness of individuals that pass the RH criterion.

3.4.3 Parent Selection

A large consensus of the Literature Review advocates for the use of Roulette Wheel
Selection (RWS) when selecting parents for mating, thus this has been implemented in
this work also. RWS ensures that the probability of selecting individuals is proportional

to their fitness. The probability of selection is as follows:

RS

— 3.6
S & (36)

7

where the numerator is the individual fitness, and the denominator evaluates to the total

fitness of the population.

Parent selection is implemented in the parent_selection() function, which takes two inputs;
pop - the population, and fit Vec - a vector of fitness values corresponding to each individual

in the population. The function returns the selected parent individual.
The code for parent selection is listed in Appendix F.
3.4.4 Crossover (Recombination)

The following modified crossover method as outlined in the paper by Juang et al. (2008),

is implemented for this work. The genes in the individual are selected and modified using



46 Methodology

the following equation:

To1 = (1 = B)ay,, + By, (3.7)

Toz = (1 = B)ap, + By,

where x,,, and x,, are genes of two parents respectively, « is the crossover position,
randomly selected from range [1, u|, o is the number of genes in an individual, and S is
random number within range [0,1]. Crossover is performed by firstly splitting both parent
chromosomes at the randomly chosen index. The two child chromosomes each inherit the
same genes from their respective parents up to, but not including the specified index. The
genes for both children at the specified random index are calculated using x,; and x,2, in
the given equation above. All genes after the index are then the swapped values of both

parents.

Crossover is implemented in the crossover() function, which takes three inputs; pop -
the population, fitVec - a vector of fitness values corresponding to each individual in the
population, and crossover_rate - a ratio value between [0, 1] to calculate the number of
total offspring produced. To elaborate on the third input further, a crossover rate of 0.65
would yield 0.65 x popSize, so that if popSize is 80, the number of offspring produced
would be a vector with dimensions 52x3. The number of offspring is always at least 2
offspring, The following formula is also used to ensure that the number of offspring is

always a multiple of 2:

popSize

)2 (3.8)

number of of fspring = floor(crossover rate -
The function returns the offspring vector, and a corresponding vector of fitness values for

each of the offspring individuals.

The rate of crossover is another heuristic which has been chosen based on research. Re-
search by Mahfoud et al. (2021) suggests that a rate of crossover should be chosen from
the interval [0.6, 0.99], and chooses the average of these two boundaries: 0.8. Therefore,

for this research a rate of 0.8 is also used.

The adaptive approach outlined by Lin & Liu (2010) was considered for adjusting the

crossover rate as the population tends toward convergence, however due to the addi-



3.4 Memetic Algorithm Software Design 47

tional complexity and time constraints of this project, this approach was not adopted for

implementation. This is a potential area for future research.

The code for crossover is listed in Appendix E.

3.4.5 Mutation

To perform mutation, a number of individuals determined by the mutation rate are chosen
at random. For each individual, a gene is chosen at random, and mutated with the

following equation (Prasad et al. 2013):

xp = L + T(Uk — Lk) (3.9)

where Li U are lower and upper bounds respectively of the values that a gene can take,

and r is from [0,1].

The rate of mutation is also covered in the paper by Mahfoud et al. (2021). The recom-
mended rate of mutation is in the interval of [0.001, 0.01] and was chosen to be 0.001. In
the work by Mirzal et al. (2012), a value of 0.01 is used. The rate of mutation was chosen
to be 0.01, as for smaller population sizes, such as the population size of 80 in this project,
rates of 0.01 and 0.001 will both result in 1 mutated individual, because 0.01 x 80 < 1 and
0.001 x 80 < 1, and the minimum number of mutations to occur is configured to always

be at least 1 if the rate of mutation is non-zero.

Mutation is implemented in the mutation() function, which takes three inputs; pop - the
population, crossover_rate - a ratio value between [0, 1] to be used to calculate the number
of total offspring produced, and gene_bounds - a cell vector of bounds corresponding to
each of the Proportional, Integral and Derivative genes. The function returns both a

vector of the offspring and associated fitness values.

The adaptive approach outlined by Lin & Liu (2010) was considered for adjusting the
mutation rate as the population tends toward convergence, however due to the addi-
tional complexity and time constraints of this project, this approach was not adopted for

implementation. This is a potential area for future research.



48 Methodology

The code for mutation is listed in Appendix E.

3.4.6 Local Search

Following from the work by Mandal et al. (2011), in which the original Solis & Wet’s
algorithm is implemented, this project implements the modified Solis & Wet’s algorithm
by Zhang et al. (2012), albeit with a very minor alteration. In Zhang et al.’s work,
the algorithm is implemented in tandem with an electromagnetic-like global optimisation
scheme. The Solis & Wet’s algorithm is a stochastic hill-climbing algorithm. Before start-
ing the algorithm, the fittest candidate is typically chosen for improvement. A deviation
is then chosen from a normal distribution with a mean b; and standard deviation p. The
randomly chosen deviation value is added to all genes of the candidate solution. The
value of the mean, b;, is biased in a certain search direction (i.e. the value will become
positive or negative) dependent on whether the algorithm finds a better solution. The
standard deviation p is increased to broaden the search space if the algorithm detects a
convergence to local optima, and is decreased to focus the search if the algorithm fails to

find better local solutions.

The modified algorithm by Zhang et al. (2012) removes a maximum iteration limit in
favour of a global variable threshold that shrinks at the end of the LS algorithm, if
a better candidate is successfully found. The standard deviation, p - another global
variable, is likewise increased at the end of the algorithm. Since both variables are global,
each time the LS algorithm is run, the current search will have access to the previous
search’s p and threshold variables. Both shrinking of the threshold and expansion of the
standard deviation, as well as the global capability of both variables, ensures that the local
search space becomes wider as the whole MA progresses. As the algorithm iterates while
p > threshold, the shrinking and expansion introduced through this modified algorithm

also reduces the effective number of iterations as the MA progresses to convergence.

In the implementation for this project, some small changes were made to the LS algorithm.
It was found that the LS would occasionally stall, thus resulting in the exit criteria
(p > threshold) never being met. Thus, the maximum iteration limit was reintroduced
and set to 100. Reintroducing the maximum iteration did not negatively impact the LS
capability, and indicated potentially better performance (although this may be anecdotal

as full verification was not performed).



3.4 Memetic Algorithm Software Design 49

Neither of the two articles that investigate the MA and PID control provided the rate of
Local Search. The modified Solis & Wet’s algorithm is typically performed on the best
solution. There is evidence in research to suggest that this is more a limit of computing
power. In this project, a rate of 0.05 was used so that 4 of the fittest individuals were
subject to local search. This specific number was chosen, as the maximum number of
cores available on the test machine is 4, therefore the local search can be split between
4 workers, with the 4 local searches taking approximately the same amount of time as
performing 1 local search. This alludes to the last modification made to the LS algorithm;
the scaling factors of 0.2 and 5 for threshold and p respectively, are normalised by the
number of candidates selected for optimisation. This is done to compensate for the LS
being called on more than one individual per generation. All other parameters are used

as per the work by Zhang et al. (2012). The parameters are listed here for convenience:

p - standard deviation initial value: 0.01

e threshold - termination condition initial value: 0.001

e mazF - maximum number of failures for decreasing p: 3
e maxS - maximum number of successes for increasing p: 3
e conF - exponential factor for increasing p: 2

e maxF - contraction factor for decreasing p: 0.5

For pseudocode of the algorithm, the reader should refer to the work by Zhang et al.
(2012), whilst also noting the small changes made in this project.

3.4.7 Survivor Selection

The crossover, mutation and local search operations introduce additional individuals to
the population, such that the population grows greater than the original size. Survivor
selection is used to cull the population back to the original desired size. To maintain
diversity, rather than select the population size of fittest individuals, tournament selection
was used to force popSize number of the total individuals to fight for a place in the next
generation. This method has been reported to provide good results when compared to

other selection processes (Mahfoud et al. 2021).



50 Methodology

Tournament selection is a simple method of sample and select, where k£ individuals are
selected to complete from the extended population, and the value with the highest fitness
value is selected. This process is repeated popSize number of times, so that the final
population size is reduced back to popSize. Commonly selected values of k are 2, 4 and
7, and for this project a simple binary tournament with k£ = 2 is used. This method
of selection is useful, in that it is simple and efficiently implemented in non-parallel and
parallel architectures, and has a time complexity of O(IN), where N = popSize, as sorting

of the population is not required (Fang & li 2010).

The survivor selection also permits the preservation of elite individuals - commonly re-
ferred to in literature as elitism. Prior to performing any of the operator methods, the
elite individuals are preserved so that they are guaranteed a place in the next gener-
ation. Thus, N number of elite individuals are selected and propagated directly to the
next generation during survivor selection. The number of tournaments held then becomes
popSize — N. A get_elites() helper function is created to assist in retrieving eliteCount
number of elite individuals. The function takes three inputs; pop - the population, fitVec
- a vector of fitness values for each of the population individuals, and eliteCount - the
number of elites to select. The function returns both a vector of elite individuals and a
vector of corresponding fitness values. According to research by Mishra & Shukla (2017),
a lower amount of elite individuals was better for avoiding premature convergence to a
local optima, with 0 elites surprisingly giving the best results. However, for this research,
the eliteCount is set to 1, to introduce the bare minimum amount of elitism, but to also

guarantee that at least one elite is propagated throughout each generation.

Survivor selection is implemented through the surivor_selection() function, which takes

five inputs:

e crtended_pop - the extended population with the results from all the operators
e cxipop_fitness - the fitness of each individual in the extended population

e clites - the elites to propagate directly to the next generation

e clites_fitness - the fitness of the elites

e pop_size - the desired population size for the next generation

The function returns a vector of the next generation and a vector of fitness values for



3.5 Implementation Notes 51

each individual of the next generation.

The code for survivor selection is listed in Appendix E.

3.5 Implementation Notes

3.5.1 Simulation Workstation Specifications

The specifications of the PC used for optimisation and simulation is as listed in Table 3.2

CPU Intel (R) Core(TM) i7-7700HQ CPU @ 2.80GHz
GPU NVIDIA GeForce GTX 1050

RAM 16.0 GB

oS Windows 10 Education

System Type | 64-bit operating system, x64-based processor

Table 3.2: Workstation PC Specifications

3.5.2 Parallelism

The code written for this project makes use of the Parallel Computing Toolbox by MAT-
LAB. The toolbox utilises multicore CPUs/GPUs and /or clusters to perform computations
in parallel (Mathworks 20216). In this work, the parfor and parfeval constructions are
used primarily to perform expensive computations in parallel, where possible. The reader
may peruse the source code attached in the appendix and find where computations are
performed in parallel by identifying the parfor loops, and the parfeval function calls.
MATLAB utilises 'workers’, which are essentially parallel computational engines in which

a scope of code can be sent for execution.

By default, MATLAB uses a number of workers equal to the number of physical CPU
cores running a single computational thread. Even though many CPU’s make use of
hyper-threading (i.e. multiple virtual cores per physical core), some resources which are
important for computations, such as Floating Point Units, are shared between virtual
cores, with only one physical unit per physical core. Therefore, it is usually optimal

to run one worker per physical core. In this project, a parallel pool of 6 workers was



52 Methodology

implemented, mainly due to experimental results. 6 workers in nearly all cases performed
as well as 4 workers, with occasionally outperforming 4 workers only. Being a 4-core
system with 2 threads per core (8 total threads), 8 workers was tested also. However, 8
workers resulted in the PC becoming unstable, therefore, a number of workers above 6

was avoided (Mathworks 2021f).

Much of the written code utilises parfor loops. These are similar in nature to normal for-
loops, except that code inside parfor loops are sent to workers for execution. Executions
are performed in a nondeterministic order, therefore loop iterations must be consecutively
increasing integer values and the body of the loop must not be dependent on previous it-
erations (Mathworks 2021d). For some dependencies, Reduction Variables can be utilised
(Mathworks 2021¢), which was implemented for some cases in this project. Most cases
that fit the requirements were implemented as parfor loops. In deciding when such loops
can be used, the Decide When to use parfor guide was consulted (Mathworks 2021a). An-
other limitation of the parfor loop worth discussing, is that directly nested parfor loops
are not supported, with the exception of functions containing parfor loops that are called
within an outer parfor loop. This limitation meant that different runs of the algorithm
were required to be conducted sequentially, rather than using a parfor loop, as the main

code contained parfor loops.

Also included in the toolbox is parfeval, which can be used to run functions on paral-
lel pool workers (Mathworks 2021¢). This function was specifically used to perform the
mutation, crossover and local search operators in parallel, as well as the get_elites() func-
tion. Each of these functions/operators are able to be run independent of each other,
therefore parallel function evaluation was both sensible and beneficial in these cases. As
with parfor, the parfeval is limited in that functions that are already executing on parallel
workers cannot execute nested parfeval functions. This is another reason why, as in the
example given previously, different runs of the MA cannot be executed in parallel. The

client (workstation) is the only environment capable of calling parfeval.

The Parallel Computing Toolbox has been integral to ensuring good efficiency of the MA.
To assist in identifying bottlenecks and candidates for parallelisation, MATLAB’S Pro-
filer tool was utilised. The Profiler tool provides detailed analysis, such as number of
calls, total time, self time, and presents a flame graph for visualisation. For examples,
the reader is recommended to visit the web page <https://au.mathworks.com/help/

matlab/matlab_prog/profiling-for-improving-performance.html>. Through us-



3.5 Implementation Notes 53

ing this tool, areas of improvement were identified, and in most cases, parallelisation,

or other basic fixes, drastically reduced execution time.

3.5.3 Testing and Verification

Due to the stochastic nature of EAs, a run may yield exceptional results, but a non-zero
probability exists that reasonably poor results are produced. It is common in literature for
many runs of the algorithm to be executed, and then analysed. Due to the computational
expense of the GA, and particularly the MA, amassed with tight time constraints, only
5 runs for each case were executed. Therefore, the best individuals for each run are
evaluated at the end of execution, and the run whose individual is the median of the set

of runs is chosen for analysis.

First, verify the GA produces results that are as good, or better than existing GA research
on TRMS. This will verify that the implemented GA is suitable as a testing benchmark
for the MA. To do this, compare GA results for Pitch and Yaw 1DOF (SISO) systems to
the existing research. If the GA performs equally or better, the GA is a good benchmark,
and it can be used with confidence for comparison with the MA results. If not, analyse
any shortcomings. MA results may still be compared to the GA testing results, but
comparison directly to established research is the most appropriate procedure. To perform
comparisons, use step, sine and square inputs to find the absolute error and absolute
control force. Step response characteristics should also be compared between GA and
MA results. Both Prasad et al. (2013) and Juang et al. (2008) clearly present results in
their work on the TRMS. With similar parameters such as sampling time and sampling
length, and by using similar evaluation methods, the results in this project can be directly
compared. To fulfil all the requirements outlined in Section 3.2, the mean run times of

GA and MA SISO tests will also be compared.

Second, test the MA MIMO parameters on the linearised 2DOF system. Most literature
utilises 2 main path controllers and 2 controllers for the coupling paths for the TRMS,
whereas this research utilises 2 controllers to perform both control and decoupling. Thus,
it is appropriate to compare the MA MIMO test results directly to the GA MIMO test
results, rather than comparing to results found in the literature. Juang et al. (2008)
explores methods for testing the MIMO representation of the TRMS, therefore similar

procedures should be implemented for testing the linearised 2DOF system. A step re-



54 Methodology

sponse test should be done for each main input/output path, where one input is subject
to a step, and the other is set to 0, as discussed in (Prasad et al. 2013) and (Alharbi
& Gomm 2017). In a similar manner to the first step, ensure that all key requirements

outlined in Section 3.2 are addressed.

Lastly, perform a test of the MA MIMO parameters on the nonlinear TRMS system, which
is the closest representation of the real system. Similar methods from the second step may
be employed here also. Also, a test of the GA MIMO parameters on the nonlinear TRMS
system should be performed for comparison against the MA MIMO results, ensuring to

address all key requirements outlined in Section 3.2.

To summarise the steps for testing of results:

1. For both Pitch and Yaw 1DOF Systems:

(a) Test step, sine and square responses for the PID parameters obtained from
GA optimisation. Use the same testing parameters as Prasad et al. (2013)

and Juang et al. (2008) so that results can be compared.

(b) Repeat the process with the PID parameters obtained from MA optimisation.
2. For Linear 2DOF System:

(a) Use the same MIMO testing parameters and methodology as presented by
Juang et al. (2008) to test step, sine and square responses for the parameters

obtained from GA optimisation.

(b) Perform single-path step response testing for both pitch and yaw, similar to
the method outlined at the end of Section 6.2 in the work by (2017) Alharbi
& Gomm.

(c) Repeat steps 2.(a) and 2.(b) for the MA optimisation results
3. For Non-linear IDOF and 2DOF system:

(a) Repeat step 1 and 2 for the nonlinear system. Nonlinear simulation results
are not presented in current literature for the TRMS, therefore the results in
this step will be compared to those obtained from the previous steps. Again,
in this step, GA-optimised results should be compared to the MA-optimised

results.



3.6 Project Planning 55

3.5.4 Hardware Implementation

Due to project time constraints, hardware implementation was not investigated. Re-
sults are validated on the nonlinear simulation model as the closest representation of the
physical system. Therefore it can be somewhat inferred that the results obtained on
such a system will be reasonably representative of physical implementation. Hardware

implementation is briefly discussed as part of potential future work in Chapter 5.

3.6 Project Planning

3.6.1 Resource Requirements

Certain resources were required to ensure that this project achieves its objectives. The
largest investment required for the project is time. The project magnitude of effort called
for approximately 350 hours over the period of February 2021 to November 2021. This
is based on the project minimum requirement of 310 hours, and allowed additional time
for iterative design and testing, and also factored the potential of further research of
more advanced methods. Specific software and equipment are necessary in the success-
ful completion of the project, however most of these are readily available and already
acquired or are accessible through USQ. Time was allotted for obtaining pre-requisite
knowledge, investigation, implementation, iterative testing, optimisation, dissertation re-
view and writing, and communication with USQ supervisors for any required assistance

and feedback/review at project milestones.

Most aspects of the project were able to be conducted outside of USQ, using personal
equipment and resources. Due to time constraints, access to USQ laboratories and the
33-949S TRMS model to conduct real-world testing was not included as a requirement
for fulfilling the aims of this project. The student has used a PC laptop, replacing the
need for utilising USQ PCs.

The planned resources drafted at the start of the project is compiled in Table 3.3.



56 Methodology

Item Quantities Source Cost Comment
PC with Microsoft 1 Student & USQ, Nil After hours access to
Windows students personal laptop.

Potential requirement for
usage of USQ PC

MATLAB/Simulink = 1 full usQ Nil Use for
version simulating/modelling, and
copy plotting/reporting of
results
Microsoft Word al usQ Nil Word processing of

dissertation (primarily
note-taking and drafting)

Microsoft Excel 1 usQ Nil Data
presentation/graphing,
project planning

LaTeX software 1l Student Nil Word processing of
dissertation and
presentation

usQ laboratory L usQ Nil Access to laboratory to
perform
testing/verification of
results

Twin Rotor MIMO 1 usQ Nil Used to perform

System 33-949S testing/verification of
controller

Table 3.3: Table of Required Project Resources

Risk Assessment

The risk assessment is listed in Appendix B.



Chapter 4

Results and Discussion

4.1 Results

4.1.1 SISO Optimisation Results
Pitch Optimisation Results

Genetic Algorithm

Table 4.1 presents the optimisation results of 5 independent runs of the GA pitch opti-
misation. The maximum fitness is plotted against generation number for each run of the
algorithm, and is shown in Figure 4.1. Similarly, the average fitness per generation for
each run of the algorithm is plotted and shown in Figure 4.2. Run 4 was identified as the
median performer in the set of runs, and was chosen for analysis. The step response for
the fittest individual in run 4 is shown in Figure 4.3. The average iteration run time for

the GA optimisation on the pitch path was 614.117 seconds.



58 Results and Discussion

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?
Run 1 2.29 3.1198 13.4185 4.0609 Yes
Run 2 | 0.98586 1.3633 4.3317 9.5049 Yes
Run 3 | 2.3982 3.0331 21.2792 5.9724 Yes
Run 4 | 1.6928 2.9446 25.0201 9.5884 Yes
Run 5 | 1.5722 1.8413 5.1442 6.6710 Yes

Table 4.1: Results for 5 runs of the GA on the Pitch SISO system. The highlighted row is

the median performer of the set.

Plot of Max Fitness vs. Generation Number

2.4 T T T T T
Iteration 1 r .~
29 Iteration 2 | B
Iteration 3 o |
oL Iteration 4 = ]
Iteration 5 |
|
1871 B 1
@
S 16 o, ]
= ~ ]
L a—— =]
Frar )~ | 1
= el I |
126t | |
| |
| |
1. | ol _ =
|~ e —
0.8 — =t
0.6 L L . L L L

10 20 30 40 50 60 70 80 90 100 110 120
Generation Number

Figure 4.1: Maximum Fitness vs. Generation number for 5 runs of the GA on the Pitch SISO

system.



4.1 Results 59

Plot of Average Fitness vs. Generation Number

2.5 T T T T T
Iteration 1 —
Iteration 2 i
Iteration 3 _______-/
2T lteration 4 7
Iteration 5
ey
g15f [ —— : :
= /
@ ! |
| |
g [ J
L qr+ A = |
> | ! i e —
<< /' =t
I/

0 1 1 L 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.2: Average Fitness vs. Generation number for 5 runs of the GA on the Pitch SISO

system.

Step Response of Median Individual
1.2 T :

o
oo
T

Amplitude
o
(3]

o
'S
T
L

0 . . . .
0 10 20 30 40 50

Time (seconds)

Figure 4.3: Step Response for the fittest individual of run 4 of the GA optimisation on the
Pitch SISO system.

Memetic Algorithm
Table 4.2 presents the optimisation results of 5 independent runs of the MA pitch opti-

misation. The maximum fitness is plotted against generation number for each run of the



60 Results and Discussion

algorithm, and is shown in Figure 4.4. Similarly, the average fitness per generation for
each run of the algorithm is plotted and shown in Figure 4.5. Run 4 was identified as the
median performer in the set of runs, and was chosen for analysis. The step response for
the fittest individual in run 4 is shown in Figure 4.6. The average iteration run time for

the MA optimisation on the pitch path was 5832.9409 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?
Run 1 2.853 2.0422 9.1698 4.4870 Yes
Run 2 | 3.7571 3.9469 12.2246 2.6286 Yes
Run 3 | 3.7568 3.9260 12.2485 2.6812 Yes
Run 4 | 3.7246 4.0526 12.0318 2.2590 Yes
Run 5 3.659 4.1152 11.8409 2.0858 Yes

Table 4.2: Results for 5 runs of the MA on the Pitch SISO system. The highlighted row is

the median performer of the set.

Plot of Max Fitness vs. Generation Number

4 T T T T T
T amp—
35 ¢ |I — =
.II
In’
f
3r N
| g A
& | / .//
@ 25H _
£ ' I
[ || | i
g 20h |
! 1
/
| lteration 1| |
15 | Iteration 2
| Iteration 3
’ I lteration 4| |
lteration 5
0.5 : :

10 20 30 40 50 60 70 80 90 100 110 120
Generation Number

Figure 4.4: Maximum Fitness vs. Generation number for 5 runs of the MA on the Pitch SISO

system.



4.1 Results

2 Plot of Average Fitness vs. Generation Number
III
3r |I 7
| e = =
| &
@25 | ./ / 1
2 | IIJ' N
= 2 l} i
% ||’. a/
g 15 | /
< 7
| Iteration 1
/ Iteration 2 |
1 / lteration 3
,I' Iteration 4
05 / lteration5|
0 1 1 L 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.5: Average Fitness vs. Generation number for 5 runs of the MA on the Pitch SISO

system.

Step Response of Median Individual

1.2

o o
» o
T T

| .

Amplitude

o
E-N
T

0.2r

0 . . .
20 30

Time (seconds)

40 50

Figure 4.6: Step Response for the fittest individual of run 4 of the GA optimisation on the
Pitch SISO system.



62 Results and Discussion

Yaw Optimisation Results

Genetic Algorithm

Table 4.3 presents the optimisation results of 5 independent runs of the GA yaw optimi-
sation. The maximum fitness is plotted against generation number for each run of the
algorithm, and is shown in Figure 4.7. Similarly, the average fitness per generation for
each run of the algorithm is plotted and shown in Figure 4.8. Run 5 was identified as the
median performer in the set of runs, and was chosen for analysis. The step response for
the fittest individual in run 5 is shown in Figure 4.9. The average iteration run time for

the GA optimisation on the yaw path was 620.8791 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?
Run 1 | 047471 9.9354 25.3630 5.2779 Yes
Run 2 | 1.0046 4.3735 105.2105 11.9653 Yes
Run 3 | 1.1601 5.6345 82.1918 7.9832 Yes
Run 4 | 0.77853 12.3940 136.4734 4.0860 Yes
Run 5 | 0.79108 4.8663 40.6602 4.8957 Yes

Table 4.3: Results for 5 runs of the GA on the Yaw SISO system. The highlighted row is the

median performer of the set.

Plot of Max Fitness vs. Generation Number

1.2 T T T T T
Iteration 1
Iteration 2
1F Iteration 3 o —
Iteration 4 —
Iteration 5 |
|
08 _— s — =
W .'. |
W
o |
=
ic 06 - b
= i |
© {
= | f
I_A—n’
0.4 r [ b
| ._/ 4“
D2 o v b
0 1 1 L 1 1 1

10 20 30 40 50 60 70 80 90 100 110 120
Generation Number

Figure 4.7: Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw SISO

system.



4.1 Results 63

Plot of Average Fitness vs. Generation Number

1 .2 T T T T T
Iteration 1
Iteration 2

1k Iteration 3 L
Iteration 4 g
lteration 5 ]
./’:
081 — — J
fi /

Average Fitness
o
[#2]

0.2 P E

0 1 1 L 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.8: Average Fitness vs. Generation number for 5 runs of the GA on the Yaw SISO

system.

Step Response of Median Individual
1.2

=]
o
T
.

Amplitude
o
>

o
'S
T
L

0 . . . .
0 10 20 30 40 50

Time (seconds)

Figure 4.9: Step Response for the fittest individual of run 5 of the GA optimisation on the
Yaw SISO system.

Memetic Algorithm
Table 4.4 presents the optimisation results of 5 independent runs of the MA yaw optimi-

sation. The maximum fitness is plotted against generation number for each run of the



64 Results and Discussion

algorithm, and is shown in Figure 4.10. Similarly, the average fitness per generation for
each run of the algorithm is plotted and shown in Figure 4.11. Run 2 was identified as
the median performer in the set of runs, and was chosen for analysis. The step response
for the fittest individual in run 2 is shown in Figure 4.12. The average iteration run time

for the MA optimisation on the yaw path was 2524.0169 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?
Run 1 | 0.61998 11.7298 38.1276 0.2123 Yes
Run 2 | 1.3593 14.2621 54.3952 4.0569 Yes
Run 3 | 1.2258 12.7717 35.3986 2.2310 Yes
Run 4 | 1.1031 12.1574 71.6190 7.9021 Yes
Run 5 | 0.55239 3.7508 41.4297 8.0107 Yes

Table 4.4: Results for 5 runs of the MA on the Yaw SISO system. The highlighted row is the

median performer of the set.

- Plot of Max Fitness vs. Generation Number

1.2_ | -

1F -.j lteration 1|
5 i§ Iteration 2
| )

@ , / Iterat! on3
g | — Iteration 4 7
= Iteration 5
L
3 — E
= T mee

0 . . \ . \ . \ \ . ‘ .
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.10: Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw SISO

system.



4.1 Results 65

Plot of Average Fitness vs. Generation Number

1 .4 T T T T T
e — o
-
1.2 =
Iteration 1 =
Iteration 2
Iteration 3
Iteration 4 7
Iteration 5

Average Fitness

40 50 60 70 80 90 100 110 120
Generation Number

Figure 4.11: Average Fitness vs. Generation number for 5 runs of the MA on the Yaw SISO

system.

Step Response of Median Individual
1.2

o
oo
:

.

Amplitude
=
(3]

o
'S
T
L

0 . . . .
0 10 20 30 40 50

Time (seconds)

Figure 4.12: Step Response for the fittest individual of run 4 of the MA optimisation on the
Yaw SISO system.



66 Results and Discussion

4.1.2 MIMO Optimisation Results

Pitch Optimisation Results

Genetic Algorithm

Table 4.5 presents the optimisation results of 5 independent runs of the GA MIMO pitch
optimisation. The maximum fitness is plotted against generation number for each run of
the algorithm, and is shown in Figure 4.13. Similarly, the average fitness per generation
for each run of the algorithm is plotted and shown in Figure 4.14. Run 4 was identified as
the median performer in the set of runs, and was chosen for analysis. The step response
for the fittest individual in run 4 is shown in Figure 4.15. The average iteration run time

for the GA optimisation on the pitch path was 1542.4625 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?
Run 1 | 0.36603 3.5187 16.0637 1.7749 Yes
Run 2 | 0.4928 6.6353 32.9710 3.0691 Yes
Run 3 | 0.51776 6.3791 15.4771 1.0894 Yes
Run 4 | 0.43738 8.8356 19.7101 0.0958 Yes
Run 5 | 0.37217 3.2777 16.2695 5.3998 Yes

Table 4.5: Results for 5 runs of the GA on the Pitch for the MIMO system configuration.
The highlighted row is the median performer of the set.



4.1 Results 67

Plot of Max Fitness vs. Generation Number

0.55 T T T T T T T T T T
0.5 | N
0.45 b
e
|I
o 045 | 1
wn
o | S
c -
iL 0.35 J—I .
x|
= Jl
| J
0.5 hj | lteration 1
| lteration 2
0.25 L .l Iteration 3 4
lteration 4
0.2 lteration 5
0.15 1 1 L 1 1 1 1 1 1 L 1

10 20 30 40 50 60 70 80 90 100 110 120
Generation Number

Figure 4.13: Maximum Fitness vs. Generation number for 5 runs of the GA on the Pitch

path of the MIMO system.

Plot of Average Fitness vs. Generation Number

0.55 T T T T T
Iteration 1
05 Iteration 2 ]
Iteration 3
045 Iteration 4 ]
Iteration 5| - R
0.4

=
w
(4]

I |I
|

L
| I||||'

E ?

et
]
&

Average Fitness
=]
[#%]

o
S
T

0.15 {f) E

0.1y 7

0.05 1 1 L 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.14: Average Fitness vs. Generation number for 5 runs of the GA on the Pitch path
of the MIMO system.



68

Results and Discussion

Step Response of Median Individual

A
081 f\

To: Out(1)

Amplitude

0 10 20 30
Time (seconds)

40 50

Figure 4.15: Step Response for the fittest individual of run 4 of the GA optimisation on the

Pitch path of the MIMO system. The plot on top is the step response of the pitch path, and

the bottom plot shows the pure cross-coupling from the pitch path into the yaw path (yaw

input set to 0).

Memetic Algorithm

Table 4.6 presents the optimisation results of 5 independent runs of the MA MIMO pitch

optimisation. The maximum fitness is plotted against generation number for each run of

the algorithm, and is shown in Figure 4.16. Similarly, the average fitness per generation

for each run of the algorithm is plotted and shown in Figure 4.17. Run 5 was identified as

the median performer in the set of runs, and was chosen for analysis. The step response

for the fittest individual in run 5 is shown in Figure 4.18. The average iteration run time

for the MA optimisation on the pitch path was 1592.2072 seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?

Run 1 | 0.43252 3.5467 16.8845
Run 2 | 0.46662 3.5673 24.2599
Run 3 | 0.51945 6.6705 18.3968
Run 4 | 0.48049 9.1887 68.3867
Run 5 | 0.47118 6.0307 22.6607

3.1782 Yes
4.7530 Yes
1.1586 Yes
5.9137 Yes
3.1533 Yes

Table 4.6: Results for 5 runs of the MA on the Pitch for the MIMO system configuration.

The highlighted row is the median performer of the set.



4.1 Results

69

Plot of Max Fitness vs. Generation Number

0.55 T T T T T T T T T T
05 b
& —
0.45 - II I| 4
; i
~ f I
-7 — .‘
., 04 J / 1
b 4
@
s
ic 0.35 F b
= :
o] Iteration 1
b= 03F Iteration 2 1
Iteration 3
Iteration 4
0.25 Iteration 5 T
0.2 - 1
0.15 1 1 L 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100 110 120

Figure 4.16: Maximum Fitness vs.

path of the MIMO system.

Plot of Average Fitness vs. Generation Number

Generation Number

Generation number for 5 runs of the MA on the Pitch

0.55 T T T T T
05 b
B a2 T W Y Wil Vs
0.45 A
i i : 7
0.4 o e i
m o
@ -
E 0.35
=
o 03 b
o
i
¢ 0.25 7
<<
0.2 Iteration 1 B
Iteration 2
0.15 lteration 3|
Iteration 4
0.1 Iteration 5 i
0.05 1 1 L 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.17: Average Fitness vs. Generation number for 5 runs of the MA on the Pitch path

of the MIMO system.



70 Results and Discussion

Step Response of Median Individual
1 F B e e e
N .-‘p\\/ v,

08+- [V

0B .4
N

To: Out(1)

0.4 rf

0.2 g

Amplitude

0 10 20 30 40 50
Time (seconds)

Figure 4.18: Step Response for the fittest individual of run 5 of the MA optimisation on the
Pitch path of the MIMO system. The plot on top is the step response of the pitch path, and
the bottom plot shows the pure cross-coupling from the pitch path into the yaw path (yaw

input set to 0).

Yaw Optimisation Results

Genetic Algorithm

Table 4.7 presents the optimisation results of 5 independent runs of the GA MIMO yaw
optimisation. The maximum fitness is plotted against generation number for each run of
the algorithm, and is shown in Figure 4.19. Similarly, the average fitness per generation
for each run of the algorithm is plotted and shown in Figure 4.20. Run 4 was identified as
the median performer in the set of runs, and was chosen for analysis. The step response
for the fittest individual in run 4 is shown in Figure 4.21. The average iteration run time

for the GA optimisation on the yaw path was 1636.0385 seconds.



4.1 Results

71

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?
Run 1 | 0.21904 1.5972 57.7620 26.5864 Yes
Run 2 | 0.49197 2.4466 50.4228 5.7289 Yes
Run 3 | 0.67592 2.9218 75.5303 12.5286 Yes
Run 4 | 0.48115 10.5970 28.9519 1.9383 Yes
Run 5 | 0.39742 2.3269 46.2773 12.1354 Yes

Table 4.7: Results for 5 runs of the GA on the Yaw for the MIMO system configuration. The

highlighted row is the median performer of the set.

0.7

06 r

0.5

Max Fitness

02

0.1 H

Plot of Max Fitness vs. Generation Number

04 r

031/

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

10

20

30

40

50 60 70 80
Generation Number

90 100 110 120

Figure 4.19: Maximum Fitness vs. Generation number for 5 runs of the GA on the Yaw path

of the MIMO system.



72 Results and Discussion

Plot of Average Fitness vs. Generation Number

0.? T T T T
06 b
05 4
- Pty sy
P
» I
@
= J
& f »
@ B
o
o i
@
=
<
Iteration 1
lteration 2
lteration 3 | |
Iteration 4
lteration 5
1 1 1 1 L 1

0 1 1 L 1 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.20: Average Fitness vs. Generation number for 5 runs of the GA on the Yaw path

of the MIMO system.

Step Response of Median Individual

o o
[#2] [o=] -
i
.

To: Out(1)
o
=y

o
]

L C R A IR S CE S

...... T ~ = ——— T —

Amplitude

0 . .
0 10 20 30 40 50
Time (seconds)

Figure 4.21: Step Response for the fittest individual of run 4 of the GA optimisation on the
yaw path of the MIMO system. The plot on top is the step response of the yaw path, and
the bottom plot shows the pure cross-coupling from the yaw path into the pitch path (pitch

input set to 0).



4.1 Results 73

Memetic Algorithm

Table 4.8 presents the optimisation results of 5 independent runs of the MA MIMO yaw
optimisation. The maximum fitness is plotted against generation number for each run of
the algorithm, and is shown in Figure 4.22. Similarly, the average fitness per generation
for each run of the algorithm is plotted and shown in Figure 4.23. Run 4 was identified as
the median performer in the set of runs, and was chosen for analysis. The step response
for the fittest individual in run 4 is shown in Figure 4.24. The average iteration run time

for the MA optimisation on the yaw path was 1835.9352s seconds.

Fitness Rise time (s) Settling time (s) Overshoot (%) System Stable?
Run 1 | 0.5038 3.5840 114.8864 11.9515 Yes
Run 2 | 0.67504 3.3517 125.8870 17.3255 Yes
Run 3 | 1.0089 6.1961 54.5352 5.1239 Yes
Run 4 | 0.78143 12.5021 92.2993 2.2237 Yes
Run 5 | 0.25877 2.3092 40.4031 0.0017 Yes

Table 4.8: Results for 5 runs of the MA on the Yaw for the MIMO system configuration. The
highlighted row is the median performer of the set.

- Plot of Max Fitness vs. Generation Number

09r 7

0.8 r 5

- Iteration 1
07 r Iteration 2 §

‘ Iteration 3 |
Iteration 4 | 7
Iteration 5
05 ‘ B T =

06

Max Fitness

04t |TT 1
0.3 _'II..'H B

0.2 {fil o~ b
y

0.1 1 ] I 1 1 1 1 1 ] I 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.22: Maximum Fitness vs. Generation number for 5 runs of the MA on the Yaw path

of the MIMO system.



74 Results and Discussion
- Plot of Average Fitness vs. Generation Number
1 & -
w 08T . 4
wn
IS “‘\/‘\/J
i /
© 06 1
f=7] |
o | !
@ | P R S =S
LI
04r | A o _
Iteration 1
Iteration 2 |
0.2 — lteration 3| -
Iteration 4
Iteration 5
0 1 1 L 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100 110 120

Generation Number

Figure 4.23: Average Fitness vs. Generation number for 5 runs of the MA on the Yaw path

of the MIMO system.

[

Step Response of Median Individual

e 2
o

o
i

To: Out(1)

o
]

=

T i

Amplitude

—

o
o 06

Coar |

0.2

0.8 r

IV e a

20 30
Time (seconds)

40

50

Figure 4.24: Step Response for the fittest individual of run 4 of the MA optimisation on the

yaw path of the MIMO system. The plot on top is the step response of the yaw path, and

the bottom plot shows the pure cross-coupling from the yaw path into the pitch path (pitch

input set to 0).



4.1 Results 75

4.1.3 Table Summary of Optimisation Results

Table 4.9 summarises the results analysed for GA and MA tests in both 1IDOF and 2DOF

system representations. This table is a useful reference for the following discussion section.

System Optimisation Type | Path | Fitness | Rise time (s) | Settling time (s) Overshoot (%) | Average Iteration Runtime (s)
Pitch | 1.6928 2.944 25.02 9.588 614.117
GA
Yaw | 0.79108 4.8663 40.6602 4.8957 620.8791
1DOF
A Pitch | 3.7246 4.0526 12.0318 2.259 5832.9409
M
Yaw 1.1031 12.1574 71.619 7.9021 2524.0169
GA Pitch | 0.43738 8.8356 19.7101 0.0958 1542.4625
Yaw | 0.48115 10.5970 28.9519 1.9383 1636.0385
2DOF
Pitch | 0.47118 6.0307 22.6607 3.1533 1592.2072
MA
Yaw | 0.67504 3.3517 125.8870 17.3255 1835.9352

Table 4.9: Table summary of optimisation results for both 1IDOF and 2DOF, GA and MA

median runs.

4.1.4 1DOF Testing and Verification

A MATLAB script called TestLinearl1DOF, as attached in Appendix G, was developed
to complete testing and verification of the system, according to the steps outlined in
Section 3.5.3. It should be noted that testing with initial conditions was not implemented
in the final test script, as issues were encountered whilst attempting to implement this
testing (initial conditions were 4 times larger in magnitude than expected). Therefore,
due to time constraints, 1IDOF testing was limited to the 1DOF procedure outlined by
Prasad et al. (2013), and the 2DOF testing followed the testing parameters by Juang

et al. (2008) and were assumed to have initial conditions of 0.

Tables 4.10 and 4.11 present results of the performance criteria and absolute error and con-
trol effort values for both sets of parameters optimised by GA and MA. Figures 4.25,4.26,4.27

and 4.28 shows input responses on the left column, and control effort plots in the right

column.
System | Optimisation Type | Path | Rise time (s) | Settling time (s) | Overshoot (%)
aA Pitch 2.9446 25.0199 9.5883
Yaw 4.8664 40.6597 4.8954
1DOF
Pitch 4.0527 12.0318 2.259
MA
Yaw 12.1573 71.6195 7.9027

Table 4.10: 1DOF rise time, settling time and overshoot testing results.



76 Results and Discussion

System | Path | Input Signal | Absolute Error (GA) | Absolute Error (MA) Absolute Control Effort (GA) | Absolute Control Effort (MA)
Step 41.3033 51.6692 2683.7728 2309.9697
Pitch Sine 118.6786 221.7039 1384.3321 1311.7825
IDOF Square 169.4761 243.5065 2175.8904 1974.8772
Step 84.9281 146.0424 1621.4345 1263.7093
Yaw Sine 308.9649 384.1104 496.3711 392.8848
Square 349.6059 500.1544 797.4237 590.497

Amplilude

Amplitude

Amplitude

Table 4.11: Absolute Error and Absolute Control Effort Values for IDOF Pitch and Yaw, of
both GA and MA runs.

Step Response

1 A"
LELS
a6t
04
0z
0 A
0 5

A WL - .
A"

10 15 20

Sine Response

25 30 35 40
Time ()

05

L]
0.5

B " . . L .

o 5 10 15 20 25 30 35 40 45 50

Time (s}
Square Response

1 O e oo
05 1
]
0.5

) B Fat O

s s s L L ™ T DO O T L
o 5 10 15 20 25 30 35 40 45 50

Time (s}

g

8

Ampliude

8

Amplitude
=

Amplitude

Control Effort for Step Input

15

20 25 30
Time (s)

Control Effort for Sine Input

35 40

45

Time (s)

Figure 4.25: GA-optimised Pitch 1DOF test results

5 10 18 20 25 30 3% 40 45 50
Time (s)
Control Effort for Square Input
oy OSSPSR | .
5 10 15 20 25 30 35 40 45 50



4.1 Results

77

Step Response
—— T —

Amplitude

Amplitude
=

—_—

20 25 30 35 40 45
Time (8)
Sine Response
T T T

Figure 4.26: GA-optimised Yaw 1DOF

] 5 10 15 20 25 30 35 40 a5
Time {5}
Square Response
1 g— - . T
.5
a
3
= 0
H
05
-1 s s s T T — '
0 5 ] 15 20 25 30 35 40 45
Time (5}
Step Response
1 =
o8
™
Sos
=
E 04
(%4
o 5 10 15 20 25 30 35 40 45
Time (8)
Sine Response
1 T T T
0.5
a
E
5 0
E
<
0.5
4
] 5 10 15 20 25 30 35 40 a5
Time {5}
Square Response
1 - . T
[E] g
a
3
2 0
E
<
05
dEe 'l L i SRRl L
0 5 ] 15 20 25 30 35 40 45

Time (5}

Amplilude
B
g

Control Effort for Step Input

05

Amplitude
=

05

Amplitlude

10 15 20 25 30 35 40 45 50
Time (s)
Control Effort for Sine Input

10 15 20 25 30 35 40 45 50
Time (s)
Control Effort for Square Input

-40

Ampliude
i " ’
g £ B2

3

Amplitude
=

Time (s)

test results

Control Effort for Step Input

10 15 20 25 30 35 40 45 50
Time (s)
_ Control Effort for Sine Input

10 15 20 25 30 35 40 45 50
Time (s)
Control Effort for Square Input

Amplitude
=]

10 15 20 25 30 35 40 45 50
Time (s)

Figure 4.27: MA-optimised Pitch 1DOF test results



Amplitude

Amplitude

Amplitude

78 Results and Discussion
Step Response Control Effort for Step Input

2 e 500 : . : . ;
08 ] 400

: o
08 300

2

04 Eom
02 100

3 i i A i i : i i G 3

o 5 10 18 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50

Time (5)

Sine Response Cantral Effort for Sine Input

Amplituge

o 5 10 15 20 25 30 35 40 45 50 o 5 10 18 20 25 30 35 40 45 50
Time (s} Time (s)
Square Response Control Effort for Square Input

: .
<
05 ] 10
@
8
0 § 0
£
=y
0.5 10
4 . i A ] i it i i . i . .
0 5 0 15 20 2 W I/ 40 45 50 0 5 1 15 20 2 30 35 40 45 50

Time (s) Time (s)

Figure 4.28: MA-optimised Yaw 1DOF test results

4.1.5 2DOF Testing and Verification

Similarly, Tables 4.12 and 4.13 present results of the performance criteria and absolute
error and control effort values for both sets of parameters optimised by GA and MA
for the 2DOF representation of the system. Figures 4.29,4.30,4.31 and 4.32 shows input

responses on the left column, and control effort plots in the right column.

System | Optimisation Type | Path | Rise time (s) | Settling time (s) | Overshoot (%)
aA Pitch 8.8136 19.8276 0.077652
Yaw 10.5953 28.8658 1.9551
2DOF
Pitch 6.0312 22.8118 3.0803
MA
Yaw 3.3517 125.8924 17.3286

Table 4.12: 2DOF rise time, settling time and overshoot testing results.



4.1 Results 79

System | Path | Input Signal | Absolute Error (GA) | Absolute Error (MA) Absolute Control Effort (GA) | Absolute Control Effort (MA)
Step 15.9898 11.2533 540.8233 537.403
Pitch Sine 62.1917 47.3359 232.4934 261.1698
Square 74.3036 53.1625 343.5694 390.9454
2DOF
Step 73.9294 88.7869 797.7371 783.4552
Yaw Sine 202.874 192.4944 292.8222 347.2617
Square 281.2459 261.4839 404.7526 481.6927

Table 4.13: Absolute Error and Absolute Control Effort Values for 2DOF Pitch and Yaw, of
both GA and MA runs.

Pitch Step Response Pitch Contral Effort for Step Input

0.25 T T T T T T 100 T T r T
02 a0} 4
@ o
E 015 'g a0l ]
a A =
E 0 1 E 40
0.08 1 20
0 i i i i i i i . i o
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time {5) Time (s)
o Pitch Sine Response b Pitch Control Effort for Sine Input
01 02
a a
3 -}
g 0 g0
E E
< <
0.1 0.2
02 04 r
o 5 10 15 20 28 30 35 40 45 50 o 5 10 15 20 25 30 3% 40 45 50
Time (s} Time ()
o5 Pitch Square Response S Pitch Control Effort for Square Input
01 g 2F -
a &
2 EL—
=] Z0 —
E E
< <
a1 : ar 1
02 . . . . . . 4 . . . . . .
o 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 3B 40 45 50
Time (s} Time (s)

Figure 4.29: GA-optimised Pitch 1DOF test results



80

Results and Discussion

=]
o

Amplitude
=
=

o
hs

LE

Amplitude
=

05

Amplitlude

0.5

02

015

Amplituda
=

02

01

Amplitude
=

01

0.2
o

02

Amplitlude

04

0.2

Yaw Step Response

20 25 30 35
Time (8)
Yaw Sine Response
T T T

20 25 30 35
Time (5}

Yaw Square Response

Figure 4.30: GA-optimised Yaw 1DOF

Pitch Step Response

15
=
15

20 25 30 35

Time (8)
Pitch Sine Response
v . T

20 25 30 35
Time {5}

Pitch Square Response

Vo P

20 25 30 35

Time (5}

- L5
g 8

Amplilude
g

2

Yaw Control Effort for Step Input

g{}

asr

Amplitude
=1

10 15 20 25 30 35
Time (s)
Yaw Contral Effort for Sine Input

0 15 20 25 30 Eo)
Time (s)
Yaw Control Effort for Square Input

Amplituge
(=1

40

Amplilude

20

Time (s)

test results

Pitch Contral Effort for Step Input

0.8

Amplitude
=

0.5
o

10 15 20 25 30 35
Time (s)
Pitch Control Effart for Sine Input

10 15 20 25 30 35
Time (s)
Pitch Control Effort for Square Input

Figure 4.31: MA-optimised Pitch 1DOF test results




Amplilude

Amplitude

Amplituge

4.2 Discussion

81

Yaw Step Response

08 150
0.4 =100
2
2
= \//\\//\\//_\\- < wf
0 / i L L L i L L L L o
] 3 10 15 20 25 30 35 40 45 50
Time (s8)
Yaw Sine Response
0s5F 05
a
2
] L
E
<
0.5
08 " . . L h . L L " 4
o 5 10 15 20 25 30 35 40 45 50
Time (s}
i Yaw Square Response
b /\_/—\
3
o7 =\ P
E
<
0 \/—/
A . . n L h . L L L
o 5 10 15 20 25 30 35 40 45 50
Time (s}

Yaw Control Effort for Step Input

5 10 15 20 25 30 35 40 45 50
Time (s)
‘Yaw Control Effort for Sine Input
5 10 18 20 25 30 35 40 45 50
Time (s)

Yaw Control Effort for Square Input

10 15 20 25 3 3B 40 45 50
Time (s)

Figure 4.32: MA-optimised Yaw 1DOF test results

4.2 Discussion

As per the first step of Section 3.5.3, the results obtained should be compared to the

literature. The main articles of reference are by Prasad et al. (2013) and Juang et al.

(2008), where the 1DOF test parameters are derived from the former, and the 2DOF test

parameters are derived from the latter.

The results for the 1IDOF testing and verification, as listed in Table 4.11, are first analysed.

Prasad et al. (2013) obtained the results as presented in Figure 4.14.

System Reference Absolute Error Absolute Control Force
Horizontal 1-DOF Step 1.075 1.972
Sine 0.06328 1.513
Square 4.014 11.38
Vertical 1-DOF Step 11.22 45.76
Sine 10.22 44.86
Square 8.168 44.06
2-DOF System Step 49.05 80.03
Sine 43.01 66.92
Square 45.25 65.23

Table 4.14: Results obtained by Prasad et al. for the TRMS, using Real-valued GA



82 Results and Discussion

As can be observed, the error and control force results obtained by Prasad et al. are orders
of magnitude lower than the resutls obtained in this project (lower results are better). It
is unclear what the cause of such a big difference in values may be, and calls into question
whether the methods of testing in this project are different to those implemented in the

work by Prasad et al..

However, comparison with Juang et al. shows more comparative results for both the
1DOF and 2DOF, even though initial conditions were not implemented in this project
as they were for 1IDOF studies in Juang et al.’s work. The 1DOF vertical (pitch) and

horizontal (yaw), and 2DOF cross-coupled results are presented from the paper here, for

the readers convenience, in Figures 4.15, 4.16 and 4.17

reference error control
PID C-RGA | M-RGA PID C-RGA | M-RGA
Step 67.84 50.07 53.60 687.53 605.95 | 59949
Sine 72.69 72.43 66.47 1185.74 | 1178.00 | 492.77
Square 137.27 106.91 75.40 1234.81 1213.9 | 457.34

Table 4.15: Vertical (pitch) results obtained for TRMS using different GA methods (Juang

et al. 2008)
reference error control
PID C-RGA | M-RGA PID C-RGA | M-RGA
Step 26.21 20.13 20.28 17.83 15.98 14.84
Sine 11.58 14.46 8.29 12.47 12.29 7.62
Square 86.36 63.11 38.07 78.66 58.83 37.71

Table 4.16: Horizontal (yaw) results obtained for TRMS using different GA methods (Juang

et al. 2008)
Reference error control

PID C-RGA M-RGA PID C-RGA M-RGA

Step H 81.2 69.09 54.52 76.71 51.34 40.47

v 40.11 34.92 27.46 812.36 701.23 617.10

Sine H 23.21 19.33 20.92 27.41 20.12 18.93

\Y% 65.74 51.78 52.61 611.70 500.2 501.78

Square H 150.22 141.52 134.03 202 171.28 165.32

v 112.85 96.36 90.21 656.37 591.65 551.59

Table 4.17: 2DOF results obtained for TRMS using different GA methods (Juang et al. 2008)

Comparing the 1DOF results by (Juang et al. 2008), but also considering testing methods
are slightly different, the project results listed in Table 4.11, perform reasonably better
when compared directly with Tables 4.15 and 4.15. None of the project results are better,

but they are comparable, unlike the results by Prasad et al. (2013).



4.2 Discussion 83

Conversely, the 2DOF system in this research performs reasonably well in comparison
to the results presented in Table 4.17 by Juang et al. (2008). Whilst the RGA results
perform better in most areas, the results are comparable. The cases in which the GA in
this research performs better is in pitch step absolute error, pitch square absolute error,
pitch step control effort, pitch sine control effort and pitch square control effort. This
comparison exercise need not be strenuous; it is enough to show that the MA results
can be compared to the base GA with confidence. This does not necessarily infer that
the results are optimal, or that the base GA is optimal; but for the simple purpose of

demonstrating the efficacy of the MA, this will suffice.

To analyse the performance of the MA as compared to the GA, the key performance met-
rics, absolute error, absolute control effort and average iteration runtime will be directly

compared.

4.2.1 SISO Analysis

Pitch SISO System

For the 1DOF pitch control system tuned by MA, as compared to the equivalent GA test:

e Rise time is increased by 37.63%

e Settling time is decreased by 51.91%

e Overshoot decreased by 76.44%

e Fitness increased by 120.026%

e Absolute net error across input types increased by 56.89%

e Absolute net control effort across input types decreased by 10.3678%

e Average iteration execution runtime increased by 849.809%

Yaw SISO System

For the 1DOF yaw control system tuned by MA, as compared to the equivalent GA test:



84 Results and Discussion

e Rise time is increased by 149.83%

e Settling time is increased by 76.14%

e Overshoot increased by 61.41%

e Fitness increased by 39.44%

e Absolute net error across input types increased by 38.58%

e Absolute net control effort across input types decreased by 22.92%

e Average iteration execution runtime increased by 306.52%

4.2.2 MIMO

Pitch MIMO System

For the 2DOF pitch control system tuned by MA, as compared to the equivalent GA test:

e Rise time is decreased by 31.75%

e Settling time is increased by 14.97%

e Overshoot increased by 3191.54%

e Fitness increased by 7.73%

e Absolute net error across input types decreased by 26.71%

e Absolute net control effort across input types increased by 6.50%

e Average iteration execution runtime increased by 3.23%

Yaw MIMO System

For the 2DOF yaw control system tuned by MA, as compared to the equivalent GA test:

e Rise time is decreased by 68.37%

e Settling time is increased by 334.81%



4.2 Discussion 85

Overshoot increased by 793.85%

Fitness increased by 40.297%

Absolute net error across input types decreased by 2.74%

Absolute net control effort across input types increased by 7.83%

e Average iteration execution runtime increased by 12.22%

It can be observed that as rise time decreases, settling time and overshoot is often in-
creased. This is not surprising, as minimising one will inevitably increase the other, as
these are conflicting constraints. It can also be observed that if absolute error is de-
creased, then absolute control effort increases. This is also logical, as greater control
effort is required to achieve minimum error, especially for higher-order, complex systems.
It is important to note however, that MA optimisation produced the fittest individual in
every tested case. This means that the overall net control effort and errors have been
minimised further than the GA optimisation runs. It must be noted however, that in
most cases, the average iteration execution runtime is greater for MA; partially from the
local search method introduced, but also due to many executions of the objective func-
tion, which for this project, was found to be quite computationally expensive, due to the
complex Control Systems Toolbox functions that are utilised to programmatically build

and test the systems.

The MA does appear to be more effective at converging to a global optimum than a GA
for the TRMS system, in seemingly every test case analysed. However, the computational
cost may render the MA unfavourable when compared to smarter and faster approaches.
In the results, as can be seen in Figure 4.18, even though somewhat minimised, significant
cross-couplings still exist between the pitch to yaw cross-coupling path, and chattering
oscillations are present in the converse coupling. Therefore, it is recommended that
4 controllers be used if possible, as other research has suggested. It is important to
note that a solution might indeed NOT exist which has the capability to simultaneously
control the main path and the cross-coupling with the given system dynamics. Another
observation from the data is that the MA seems to rapidly converge within a very few
number of generations, which may be due to a lack of diversity. This may need to be
addressed by reviewing the LS method, extending the number of generations or increasing
diversification (higher mutation, lower crossover, remove elitism) to allow the algorithm

to better search global optima.



86 Results and Discussion

Although mentioned in Section 3.5.3, nonlinear testing was disregarded, due to the lack
of explicit results in the literature for comparison. The analysis would not serve much
more purpose than a quick visual inspection, thus this step is also considered as part of

future work.



Chapter 5

Conclusions and Further Work

5.1 Conclusions

The aims of the project have developed during the different stages of the project life cycle.
Initially the aims were kept broad to encourage a broad scan of the literature. As EA’s
were found to be a very suitable candidate for this area of research with many potential
avenues of investigation, the aims of the project moved toward finding a way to further
investigate some of the more recent developments in EA. Through further research, the
GA was found, along with the more recent subset of MA. It was found that no current
implementations have been made on the TRMS system using the MA, or on any MIMO
at all. The aims then moved towards investigating the applicability of the MA with the
TRMS, and whether it can be used to fulfil the primary aim of the project - a design of

an optimal fuel/cost controller.

The MA was successfully implemented and tested on linear 1DOF and 2DOF represen-
tations of the TRMS. Results were positive for the MA, with every test case yielding
higher fitness values with MA optimisation than with GA optimisation. The MA ap-
peared to perform equally well in both representations of the system (with the exception
of statistical outliers). However, the MA failed to find an optimal solution for significant
decoupling of the system, which may either be a system limitation, or potentially even
an implementation issue. The MA is also generally very inefficient, even with parallelism
implemented. The bottleneck appeared to be the objective function, which utilises many

Control Systems Toolbox functions for building and testing systems programmatically.



88 Conclusions and Further Work

Limitations aside, the MA still assisted in finding an optimum that is not necessarily
the absolute global optimum, but one that certainly shows better performance than the
GA alone. Thus the primary aim of the project was achieved and a fuel/cost efficient

controller design was able to be fulfilled.

5.2 Further Work

As with all research, there is always more that can be done. Items that are of interest for

further work are:

e Review algorithm and diversify population to prevent premature convergence if

possible /necessary

e Implement and test on the 33-949S physical system and/or on nonlinear test models.

Verify and compare with simulation results.

e Investigate ways to optimise the objective function using parallelism or other ad-
vanced mechanisms. Try intercommunication processes (which MATLAB handles

internally), but test other methods for efficacy.

e Complete an electrical energy expenditure study on the system and analyse the

optimisation algorithm performance in respect to energy savings

e Investigate the feasibility of the algorithm for online parameter tuning, or imple-

mentation on a device such as a Field Programmable Gate Array (FPGA).

e Employ and test memetic algorithm LS methods that have not yet been applied to

control systems

e Employ multiple local search methods and let the algorithm self-adaptively select
local search methods depending on the problem-specific performance of each (Ong

& Keane 2004).

e Implement adaptive parameters where possible to reduce the number of heuristic
variables. These parameters should adapt to changes in the population (Molina

et al. 2005).

e Extrapolate the algorithm and process to a higher DOF system, such as a UAV, or

a novel system.



References

Adewuya, A. A. (1996), 'New Methods in Genetic Search with Real-Valued Chromo-

somes’, Master’s thesis, Massachusetts Institute of Technology.

Alam, T., Qamar, S., Dixit, A. & Benaida, M. (2020), ‘Genetic algorithm reviews, imple-
mentations, and applications’, International Journal of Engineering Pedagogy (iJEP)

. DOI: 10.31219/osf.io/8tng5.

Albadr, M. A., Tiun, S., Ayob, M. & AL-Dhief, F. (2020), ‘Genetic algorithm based
on natural selection theory for optimization problems’, Symmetry 12(11). DOI:

10.3390/sym12111758.

Alharbi, W. & Gomm, B. (2017), “Genetic Algorithm Optimisation of PID Controllers
for a Multivariable Process”, International Journal of Recent Contributions from

Engineering, Science & IT 5(1). DOI: 10.3991 /ijes.v5i1.6692.

Assiroj, P., Warnars, H. L. H. S., Abdurachman, E., Kistijantoro, A. I. & Doucet, A.
(2021), ‘The implementation of memetic algorithm on image: a survey’, Journal
of Mathematical and Computational Science 11(6), 6872-6896. DOI: 10.28919/jm-
cs/5961.

Ayala, F. J. (2009), ‘Darwin and the scientific method’, Proceedings of the National
Academy of Sciences 106(1), 10033-10039. DOI: 10.1073/pnas.0901404106.

Ben Hariz, M. & Bouani, F. (2015), Design of controllers for decoupled tito systems using
different decoupling techniques, in ‘2015 20th International Conference on Methods
and Models in Automation and Robotics (MMAR)’, pp. 1116-1121. DOI: 10.1109/M-
MAR.2015.7284035.

Bereta, M. (2019), ‘Baldwin effect and Lamarckian evolution in a memetic algo-



90 REFERENCES

rithm for Euclidean Steiner tree problem’, Memetic Computing 11, 35-52. DOI:
https://doi.org/10.1007/s12293-018-0256-7.

Chalupa, P., Prikryl, J. & Novék, J. (2015), ‘Modelling of twin rotor mimo system’,
Procedia Engineering 100, 249-258. DOI: 10.1016/j.proeng.2015.01.365.

Choi, S.-S. & Moon, B.-R. (2005), ‘A graph-based lamarckian-baldwinian hybrid for
the sorting network problem’, IEEE Transactions on Fvolutionary Computation

9(1), 105-114. DOI: 10.1109/TEVC.2004.841682.

Devanshu, A. (2017), in “Genetic Algorithm Tuned PID Controller for Process Control”.
DOTI: 10.1109/ICISC.2017.8068639.

Didactic, L. (2021), ‘33-007i and 33-007-pci twin rotor mimo system’, http://www.

1ld-didactic.de/en/ld-didactic-download-center.html.

Dogruer, T. & Tan, N. (2019), Decoupling control of a twin rotor mimo system using opti-
mization method, in ‘2019 11th International Conference on Electrical and Electron-

ics Engineering (ELECO)’, pp. 780-784. DOI: 10.23919/ELECO47770.2019.8990435.

Fang, Y. & li, J. (2010), A review of tournament selection in genetic programming, in

‘Genetic Programming’, pp. 181-192. DOI: 10.1007/978-3-642-16493-4_19.

Feedback Instruments Ltd. (n.d.), 33-949S, 1 edn, Feedback Instruments Ltd, Park Road,
Crowborough, East Sussex, TN6 2QR, UK.

Ho, M.-T., Datta, A. & Bhattacharyya, S. (1998), ‘An elementary derivation of the routh-
hurwitz criterion’, IEEE Transactions on Automatic Control 43(3), 405-409. DOI:
10.1109/9.661607.

Jayachitra, A. & Vinodha, R. (n.d.), ‘Genetic algorithm based pid controller tuning
approach for continuous stirred tank reactor’, Advances in Artificial Intelligence

2014(791230), 1-8. DOI: 10.1155/2014/791230.

Juang, J.-G., Huang, M.-T. & Liu, W.-K. (2008), ‘Pid control using presearched
genetic algorithms for a mimo system’, IEEE Transactions on Systems, Man
and Cybernetics Part C: Applications and Reviews 38(5), 716-727. DOLI:
10.1109/TSMCC.2008.923890.

Juang, J.-G. & tu, K.-T. (2013), ‘Design and realization of a hybrid intelligent con-
troller for a twin rotor MIMO system’, Journal of Marine Science and Technology

21(3), 333-341. DOI: 10.6119/JMST-012-1026-1.



REFERENCES 91

Krasnogor, N. & Smith, J. (2005), ‘A tutorial for competent memetic algorithms: model,
taxonomy, and design issues’, IEFEE Transactions on FEvolutionary Computation

9(5), 474-488. DOI: 10.1109/TEVC.2005.850260.

Kumar, P. & Narayan, S. (2016), ‘Optimal robust design for a twin rotor system using
multi-objective genetic algorithm tuned model predictive controller’; 9(11), 5043—
5056. https://www.researchgate.net/publication/311794292_Optimal_
robust_design_for_a_twin_rotor_system_using multi-objective_genetic_

algorithm_tuned_model_predictive_controller.

Lin, G. & Liu, G. (2010), Tuning PID controller using adaptive genetic algorithms, in
2010 5th International Conference on Computer Science Education’, pp. 519-523.
DOI: 10.1109/ICCSE.2010.5593559.

Mahfoud, S., Derouich, A., EL Ouanjli, N., EL. Mahfoud, M. & Taoussi, M. (2021), ‘A new
strategy-based pid controller optimized by genetic algorithm for dtc of the doubly
fed induction motor’, Systems 9(2). DOI: 10.3390/systems9020037.

Malinski, u. & Figwer, J. (2015), Nonlinear system identification using memetic algo-
rithms, in ‘2015 20th International Conference on Methods and Models in Automa-
tion and Robotics (MMAR)’, pp. 1086-1091. DOI: 10.1109/MMAR.2015.7284030.

Mandal, A., Zafar, H., Ghosh, P., Das, S. & Abraham, A. (2011), An efficient memetic
algorithm for parameter tuning of pid controller in avr system, in ‘2011 11th In-
ternational Conference on Hybrid Intelligent Systems (HIS)’, pp. 265-270. DOI:
10.1109/HIS.2011.6122116.

Mathworks (2021a), ‘Decide when to use parfor’. Web page, viewed 19 October 2021.
URL: https: //aw. mathworks. com/help/parallel-computing/

reduction—-variable. html

Mathworks (2021b), ‘Parallel computing toolbox’. Web page, viewed 19 October 2021.

URL: https: //au. mathworks. com/products/parallel-computing. html

Mathworks (2021c¢), ‘parfeval’. Web page, viewed 19 October 2021.
URL: https: //auw. mathworks. com/help/parallel-computing/parallel.

pool. parfeval. hitml

Mathworks (2021d), ‘parfor’. Web page, viewed 19 October 2021.
URL: https: //au. mathworks. com/help/parallel-computing/parfor. html



92 REFERENCES

Mathworks (2021¢), ‘Reduction variables’. Web page, viewed 19 October 2021.
URL: https: // au. mathworks. com/help/parallel-computing/

reduction-variable. html

Mathworks (2021f), ‘What is parallel computing?’. Web page, viewed 19 October 2021.
URL: https: //aw. mathworks. com/help/parallel-computing/

what-is-parallel-computing. html

Mirzal, A., Yoshii, S. & Furukawa, M. (2012), ‘Pid parameters optimization by using ge-
netic algorithm’, ISTECS Journal 8(2006), 34-43. https://arxiv.org/abs/1204.
0885.

Mishra, A. & Shukla, A. (2017), Analysis of the effect of elite count on the behavior of
genetic algorithms: A perspective, in ‘2017 IEEE 7th International Advance Com-
puting Conference (IACC)’, pp. 835-840. DOL: 10.1109/TACC.2017.0172.

Molina, D., Herrera, F. & Lozano, M. (2005), Adaptive local search parameters for real-
coded memetic algorithms, in ‘2005 IEEE Congress on Evolutionary Computation’,

Vol. 1, pp. 888-895 Vol.1.

Moscato, P. & Cotta, C. (2003), A Gentle Introduction to Memetic Algorithms, Springer
US, Boston, MA, pp. 105-144.

Naranjo, J. E., Serradilla, F. & Nashashibi, F. (2020), ‘Speed control optimization for
autonomous vehicles with metaheuristics’, Electronics 9(4). DOI: 10.3390/electron-

ics9040551.

Neri, F. & Cotta, C. (2012), A Primer on Memetic Algorithms, Springer, Berlin, Heidel-
berg. https://doi.org/10.1007/978-3-642-23247-3_4.

Norsahperi, N. & Danapalasingam, K. (2020), ‘Particle swarm-based and neuro-based
fopid controllers for a twin rotor system with improved tracking performance and en-

ergy reduction’, ISA Transactions 102, 230-244. DOI: 10.1016/j.isatra.2020.03.001.

Ong, Y. S. & Keane, A. (2004), ‘Meta-lamarckian learning in memetic algo-
rithms’, IEEE Transactions on Evolutionary Computation 8(2), 99-110. DOI:
10.1109/TEVC.2003.819944.

Prasad, G. D., Manoharan, P. S. & Ramalakshmi, A. P. S. (2013), PID control scheme

for twin rotor MIMO system using a real valued genetic algorithm with a predeter-



REFERENCES 93

mined search range, in ‘2013 International Conference on Power, Energy and Control

(ICPEC)’, pp. 443-448. DOI: 10.1109/ICPEC.2013.6527697.

Rivera-Santos, E. (2021), ‘routh.m’, https://www.mathworks.com/matlabcentral/

fileexchange/58-routh-m. Retrieved from MATLAB Central File Exchange.

Sagharchi, F. (2021), ‘Routh-hurwitz stability criterion’, https://www.mathworks.com/
matlabcentral/fileexchange/17483-routh-hurwitz-stability-criterion.

Retrieved from MATLAB Central File Exchange.

Salazar Alvarez, T. (2010), ‘Mathematical model and simulation for a helicopter with tail

rotor’.

Sarvart, M. A. B. (2001), "Modelling and Control of a Twin Rotor MIMO System’, PhD
thesis, University of Sheffield. unpublished thesis.

Serradilla, F., Canas, N. & Naranjo, J. E. (2020), ‘Optimization of the energy consumption
of electric motors through metaheuristics and pid controllers’, Electronics 9(11).

DOI: 10.3390/electronics9111842.

Shyr, W.-J., Wang, B.-W., Yeh, Y.-Y. & Su, T.-J. (2002), Design of optimal pid
controllers using memetic algorithm, in ‘Proceedings of the 2002 American Con-
trol Conference (IEEE Cat. No.CH37301)’, Vol. 3, pp. 2130-2131 vol.3. DOI:
10.1109/ACC.2002.1023951.

Sivadasan, J. & Iruthayarajan, M. W. (2018), “Tuning of Nonlinear PID Controller for
TRMS using Evolutionary Computation Methods”, Tehnicki vjesnik 25(1). DOI:
10.17559/TV-20170612090511.

Sloss, A. N. & Gustafson, S. (2020), in W. Banzhaf, E. Goodman, L. Sheneman, L. Tru-
jillo & B. Worzel, eds, ‘Genetic Programming Theory and Practice XVII’, Springer,
Cham. https://doi.org/10.1007/978-3-030-39958-0_16.

Subudhi, B. & Jena, D. (2009), Nonlinear system identification of a twin rotor mimo
system, in ‘TENCON 2009 - 2009 IEEE Region 10 Conference’, pp. 1-6. DOI:
10.1109/TENCON.2009.5395966.

Thainiam, P. (2019), The effects of memes on memetic algorithms for solving
quadratic assignment problem, in ‘2019 IEEE International Conference on Indus-
trial Engineering and Engineering Management (IEEM)’, pp. 1334-1338. DOLI:
10.1109/IEEM44572.2019.8978780.



Toha, S. F. & Tokhi, M. O. (2009), Real-coded genetic algorithm for parametric modelling
of a TRMS, in ‘2009 IEEE Congress on Evolutionary Computation’, pp. 2022-2028.

Toha, S., Julai, S. & Tokhi, M. (2012), ‘Ant colony based model prediction of a twin rotor
system’, Procedia Engineering 41, 1135-1144. DOI: 10.1016/j.proeng.2012.07.293.

Wen, P. & Lu, T. (2008), ‘Decoupling control of a twin rotor MIMO system using robust
deadbeat control technique’, IET Control Theory & Applications 2(11), 999-1007.

Wilbur, M. L., Mistry, M. P., Lorber, P. F., Blackwell, R., Barbarino, S., Lawrence,
T. H. & Arnold, U. T. (2018), Chapter 24 - rotary wings morphing technologies:
State of the art and perspectives, in A. Concilio, I. Dimino, L. Lecce & R. Pecora,
eds, ‘Morphing Wing Technologies’, Butterworth-Heinemann, pp. 759-797. DOI:
10.1016/B978-0-08-100964-2.00024-1.

Zhang, C., Gao, L., Li, X. & Wu, Q. (2012), ‘A novel electromagnetism-like mechanism
algorithm with modified solis and wets local search for global optimisation’, Int. J.

of Services Operations and Informatics 7, 117 — 135.

Zhao, G., Luo, W., Nie, H. & Li, C. (2008), A genetic algorithm balancing exploration and
exploitation for the travelling salesman problem, in ‘2008 Fourth International Con-

ference on Natural Computation’, Vol. 1, pp. 505-509. DOI: 10.1109/ICNC.2008.421.



Appendix A

Project Specification






ENG 4111/2 Research Project

Project Specification

For: Aaron Coutts
Topic: Optimal fuel cost controller design for a helicopter/twin rotor system
Supervisors:  Prof. Paul Wen

Dr. Bob Song

Sponsorship:  Faculty of Health, Engineering & Sciences
Project Aim:  Optimise fuel/energy performance to reduce energy consumption
and costs in helicopter twin rotor systems.

Program: Version 2, 16 September 2021

1. Research background and learn the Twin Rotor Multi-Input Multi-Output System (TRMS). Obtain
simulation models for testing.

2. Research Artificial Intelligence (AI) Techniques and identify potential knowledge or implementation
gaps in the literature.

3. Design a PID controller for the system using traditional techniques (i.e. Ziegler-Nichols Method -
non Al techniques).

4. Investigate and identify an algorithm novel to optimising the TRMS system, with a suitable objective
function to minimise the energy costs of the TRMS system whilst maintaining performance.

5. Implement algorithm and conduct testing on simulation models. Compare the results with other
select algorithms and methods, both traditional and Al.

6. Refine algorithm and implement improvements where necessary.

As time and resources permit:

1. Implement the optimised PID controllers in the lab on the 33-949S physical system. Verify and
compare with simulation results. Also compare against other physical implementation of select algo-
rithms and methods, both traditional and Al.

2. Further improve algorithms through any discovered novel approaches.

3. Complete an electrical energy expenditure study on the system and analyse the optimisation algorithm
performance in respect to energy savings

4. Investigate feasibility of algorithm for online parameter tuning.

Agreed:
Student Name: Aaron Coutts
Date: 16 September 2021

Supervisor Name: Prof. Paul Wen
Dr. Bo Song
Date:






Appendix B

Risk Assessment



6/7/2021

RiskManagementPlans - RMP_2021_5646

Print View
USQ Safety Risk Management System
Version 2.0
Safety Risk Management Plan
Risk Management Plan Status: Current User: Author: Supervisor: Approver:

RMP_2021_5646

Assessment Title:

Workplace (Division/Faculty/Section):

Engineering Research Project 2021 - Aaron Coutts

204070 - School of Mechanical and Electrical Engineering

Assessment Date: 7/06/2021

Review Date:

(5 years maximum)

Approver: Supervisor: (for notification of Risk Assessment only)
Paul Wen Paul Wen

Context
DESCRIPTION:

What is the task/event/purchase/project/procedure?
Why is it being conducted?
Where is it being conducted?

Course code (if applicable)

Optimise fuel performance to reduce operational costs of helicopter twin rotor systems
To fulfill the research component of the Bachelor of Engineering (Honours) program
UsQ - Toowoomba & Ext

ENG4111 & ENG4112 Chemical Name (if applicable)

WHAT ARE THE NOMINAL CONDITIONS?

Personnel involved
Equipment

Environment

https://intranet usq.edu.au/safetyrisk/_layouts/15/Print.FormServer.aspx

Aaron Coutts, Paul Wen and other USQ staff
Personal computer and electronics

Personal office space and USQ laboratory

1/4



6/7/2021
I Other

Briefly explain the procedure/process

RiskManagementPlans - RMP_2021_5646

Lab verification of results on the TRMS 33-949S model and general development of project

Assessment Team - who is conducting the assessment?

Assessor(s): Paul Wen
Others consulted: (eg elected health and safety representative,
other personnel exposed to risks)
Risk Matrix
Insignificant Minor Moderate Major Catastrophic
No Injury First Aid Med Treatment Serious Injury Death
0-$5K $5K-$50K $50K-$100K $100K-$250K More than $250K
Almost
Certain M H E E E
1lin2
U
ikely m H H E E
1in 100
Possible
L M H H H
1in 1,000
Unlikely
L L M M M
1in 10,000
Rare
L L L L L
1in 1,000,000
Recommended Action Guide
Extreme: E= Extreme Risk — Task MUST NOT proceed
High: H = High Risk — Special Procedures Required (Contact USQSafe) Approval by VC only
Medium: M= Medium Risk - A Risk Management Plan/Safe Work Method Statement is required
Low: L= Low Risk - Manage by routine procedures.

https://intranet usq.edu.au/safetyrisk/_layouts/15/Print.FormServer.aspx

2/4



6/7/2021

RiskManagementPlans - RMP_2021_5646

Risk Register and Analysis

strain, eye strain and
fatigue

and take regular work
breaks

Step 2 Step 2a Step 2b
Hazards: The Risk: Consequence: Existing Controls: Risk Assessment: Additional Controls: Risk assessment with additional
From step 1 or moreif | What can happen if exposedto | Whatistheharm | What are the existing controls thatare | Consequence x Probability Risk | Enter additional controls i required to controls:
identified the hazard without existing that can be caused aiready in place? Level reduce the risk level
controls in place? by the hazard
without existing Has the consequence or probability changed?
controls in place?
Probabilit Risk ALARP Consequence | Probability Risk ALARP
y Level Level
Example
Working in Heat stress/haat J— Regular broaks, chillod water availablo, possible high No temporary shade shalters, essential tasks | o1 untikoly mod Y
P over 359 ks leading to loose dlothing, fatigue management only, close supervision, buddy system
c serious personal injury/death policy.
1 Working with... | Electrocution and Minor Electrical equipment in Unlikely | Low
electronic equipment UsQ lab is protected by
failure RCD. Electronic equipment
is operated at low voltage.
Ensure that electrical
equipment is in good
condition before use
2 | Highspeedr.. | Cuts, bruises, or Minor Guards should be in place Unlikely | Low
significant damage to surrounding rotors to
body parts that come prevent exposure of
in contact with spinning parts. Guards
spinning rotors should be checked before
operating device. When
device is operating,
maintain appropriate
distances from spinning
parts.
3 Hard Drive/P... Loss of Critical Files Insignificant Backup files often on Unlikely | Low
multiple devices (for
security). Ensure files are
backed-up to the cloud.
4 | Travellingto/... | Car Crash Moderate Drive safely to conditions. Rare Low
Follow all road rules.
5 Ergonomics Musculoskeletal Minor Work with correct posture | Unlikely | Low

https:/fintranet usq.edu.au/safetyrisk/_layouts/15/Print. FormServer.aspx

3/4



6/7/2021 RiskManagementPlans - RMP_2021_5646

Step 5 - Action Plan (for controls not already in place)

Additional Controls: Exclude from Action Resources: Persons Responsible: Proposed Implementation
Plan: Date:
(repeated control)

Supporting Attachments

B No file attached

Step 6 — Request Approval

Drafters Name: Aaron Coutts Draft Date: 7/06/2021

Drafters Comments:

Assessment Approval: All risks are marked as ALARP

Maximum Residual Risk Level: Low - Manager/Supervisor Approval Required

Document Status: Approval Requested

Step 6 — Approval

Approvers Name: Paul Wen Approvers Position Title:

Approvers Comments:

| am satisfied that the risks are as low as reasonably practicable and that the resources required will be provided.

Approval Decision: Approve / Reject Date: Document Status: Approval Requested

https://intranet usq.edu.au/safetyrisk/_layouts/15/Print.FormServer.aspx






Appendix C

Ethical Clearance



106 Ethical Clearance

There are no Ethical Clearances applicable to this project.



Appendix D

Main Code and Objective

Function



108 Main Code and Objective Function

D.1 The ma.m Main Memetic Algorithm Script

The script ma.m is the main script to be called to start and run the Memetic Algorithm.

Listing D.1: Memetic Algorithm Main Script.

clear variables
close all
cle

addpath( "helpers ")
addpath ( 'operators’)

%initialise population parameters

numGenes = 3;
popSize = 80;
maxGenerations = 120;

%Operator rates
mutationRate = 0.01;
crossoverRate = 0.8;
localSearchRate = 0.
eliteCount = 1;

05; %0.05

%Gene boundaries (PID parameters)

pBounds = [0, 5]; %100 1.5 4
iBounds = [0, 5]; %10 1 /4
dBounds = [0, 5]; %1 1 4

%Map gene index to bounds — this would be useful if a different
— number of

%genes were used (e.g. a FOPID)

geneBounds = {pBounds iBounds dBounds};

% transfer function and related wvariables setup
— %
channel = 2; %1: Pitch, 2: Yaw

system_type = 'MIMO’;
%fix the PID controller that is mot being tuned with
— predetermined values

%K_fixed = [0.13136 0.27323 0.73833); HGA Yaw SISO

%K _fized = [0.59458 0.60207 0.50529]; Y%GA Pitch MIMO
K_fixed = [0.62141 0.89421 0.42039]; IMA Pitch MIMO
if channel =1

Y%pitch tf

num = [0.01657 0.4194 2.454];

den = [1 1.487 4.403 5.449];
elseif channel = 2

Yyaw tf



D.1 The ma.m Main Memetic Algorithm Script 109

num = [0.0009881 0.03361 0.4065];
den = [1 1.345 0.4568 0.3826];
end

%global wvariables to do with simulating the system
global G
if stremp (system_type, 'MIMO’)

G11 = tf([0.01657 0.4194 2.454] ,[1 1.487 4.403 5.449]); %
— pitch main
G12 = t£([0.04986 0.0962],[1 0.2377 4.902]); Yoy aw
— coupling into pitch
G21 = tf([0.02248 0.4527],[1 0.4099 0.2181]); %pitch
— coupling into yaw
G22 = tf([0.0009881 0.03361 0.4065],[1 1.345 0.4568 0.3826])
= %yaw main
G = [Gl1 GI12;
G21 G22];
else
G = tf(num, den);
end
global dt
dt = 0.05;
global T
T = 50;

%save global wvariables to .mat file so they are accessible for
— workers

%(globals are not accessible to workers)

save(’ws_vars’, 'G’, ’dt’, 'T’, ’channel’, ’'system_type’,
— K _fixed )

)

%

>
s

%T0ODO DELETE THE FOLLOWING — JUST FOR TESTING
global unstableCount stableCount;
unstableCount = 0;

stableCount = 0;

J6END

%control for calculating percentage of stable systems for each
— geneation

calculateStableSystems = false;

percentageOfStableSystems = [];

%setup wvariables to control the number of runs and record data
— for each run

iterations = b5;

bestIndividualsOfEachRun = zeros(iterations ,numGenes) ;



110 Main Code and Objective Function

bestIndividualsOfEachRunFitness = zeros(iterations ,1);

legendStrBuilder = strings (iterations ,1); %for building the
— legend when plotting

Z%waitbar for wisual representation of progress
f = waitbar (0, ’'Starting._Memetic.Algorithm._Optimisation ...’

— Name’, ’'Optimising...");

tic;
runTimeTracker = 0;

%start global iteration here

for iter = 1l:iterations

disp (strcat ([’ SRun.’ num2str(iter) .
= 1))

if channel =— 1
channel _name = ’'Pitch’;

elseif channel =— 2
channel_name = 'Yaw’;

end

disp (strcat ([ "Channel_and_System _Type:._.’ channel_name ’_’

< system_type]))

%solis —wet rho and treshold values that are updated and accessed
— through

%stored .mat file. These are here as they need to be reset each
— iteration

rho = 0.01;

threshold = 0.001;

save(’'solis_wets_ls_vars’, ’rho’, ’threshold’)

% Generate initial population
— %

%formula for generating N random numbers in the interval (a,b):

%r = a + (b—a).*rand(N,1)

a = pBounds(1);

b = pBounds(2);

N = popSize;

pPop = a + (b-a).xrand(N,1); %Generate genes for P

a = iBounds(1);

b = iBounds(2);

iPop = a + (b-a).xrand(N,1); %Generate genes for I

a = dBounds(1);

b = dBounds(2) ;

dPop = a + (b—a).xrand(N,1); %Generate genes for D

pop = [pPop iPop dPop]; %Combine to form population

%for tracking fitness over iterationsw



D.1 The ma.m Main Memetic Algorithm Script

111

maxFitnessValues = zeros (1, maxGenerations + 1);
averageFitnessValues = zeros (1, maxGenerations + 1);

07

(Y

Start Operations

— %

gen = 1;
while (gen <= maxGenerations)

%EVALUATE FITNESS

%create wvector of fitness wvalues that correspond to the
— fitness wvalues of

%each chromosome in the population, for efficiency.

%i.e. fitnessVec (k) is fitness of pop(k,:)

fitnessVec = zeros(popSize,1);

parfor k = 1l:length (pop)
fitnessVec (k) = objective_function (pop(k,:));

end

%update waitbar
waitbar ((gen—1)/maxGenerations, f,

"Running _Memetic_.Algorithm_Optimisation ..., strcat ([’
g g

< Current._Generation: .’ num2str(gen)
"_Current_Iteration:.’ num2str(iter)])});

%calculate percentage of stable results per generation
if calculateStableSystems && (gen =— 1)
numberOfStableSystems = zeros (popSize ,1);

percentageOfStableSystems = zeros(maxGenerations,1) ;

end
if calculateStableSystems
numberOfStableSystems = 0;
parfor k = 1:popSize
numberOfStableSystems = numberOfStableSystems +
— is_solution_feasible (pop(k,:), geneBounds,
<~ true);
end
percentageOfStableSystems (gen) = (sum(
— numberOfStableSystems)/popSize) * 100;
end

%!run operators in parallel!

%PRESERVE ELITE

OP1 = parfeval (Qget_elites, 2, pop,fitnessVec ,eliteCount);

JCROSSOVER

OP2 = parfeval (Q@Qcrossover, 2, pop,fitnessVec ,crossoverRate);

JMUTATION

OP3 = parfeval (@Qmutation, 2, pop,mutationRate,geneBounds);

%LOCAL SEARCH

OP4 = parfeval (@local_search, 2 , pop,fitnessVec ,geneBounds,

— localSearchRate);

Z%retrieve results from parallel operation



112

Main Code and Objective Function

[R1, R2] = fetchOutputs ([OP1, OP2, OP3, OP4], ’UniformOutput

s

©, false);

elites = cell2mat (R1(1));

elitesFitVec = cell2mat (R2(1));
xover_offspring = cell2mat (R1(2));
xover_fitVec = cell2mat (R2(2));
mut_offspring = cell2mat (R1(3));
mut_fitVec = cell2mat (R2(3));
Is_offspring = cell2mat (R1(4));
Is_fitVec = cell2mat (R2(4));

Y%want to see what the elite was from before any operators

— take place
if gen =1
maxFitnessValues(gen) = max(fitnessVec);
Y%also compute average
averageFitnessValues(gen) = sum(fitnessVec)/popSize;
end

%get fittest individual from local search and add to elites

%

vector

%(Lamarckian Model)
Tisempty (ls_offspring)

[maxLSFitness, idx] = max(ls_fitVec);
maxLS = ls_offspring (idx ,:) ;

if eliteCount =1

if

end

%replace

if (maxLSFitness > elitesFitVec)
elites = maxLS;
elitesFitVec = maxLSFitness;

end
elseif eliteCount =— 0
elites = maxLS;

elitesFitVec = maxLSFitness;

else

%find max elite and replace
[maxEliteFitness, idx]| = max(elitesFitVec);
maxElite = elites (idx,:);
if maxLSFitness > maxEliteFitness

elites (idx ,:) = maxLS;

elitesFitVec (idx) = maxLSFitness;
end

end

%SURVIVOR SELECTION — cull extended population back to

— popSize,

Z%applying elitism

extended_pop = [pop; xover_offspring; mut_offspring;
< ls_offspring];

extpop_fitness = [fitnessVec; xover_fitVec; mut_fitVec;

— ls_fitVec];



D.1 The ma.m Main Memetic Algorithm Script 113

[newPop, newPopFitness|] = survivor_selection (extended_pop,
— extpop_fitness, elites , elitesFitVec, popSize);

%assign new population to be used in the mnexl generation
pop = newPop;
fitnessVec = newPopFitness;

%store the maz fitness wvalue for plotting purposes
maxFitnessValues(gen+1) = max(fitnessVec);
averageFitnessValues(gen+1) = sum(fitnessVec)/popSize;

gen = gen + 1;
end

Y%calculte percentage of stable systems across all generations
if calculateStableSystems
percentageOfStableSystemsAllGenerations = sum(
< percentageOfStableSystems)/maxGenerations;
disp (strcat ([ "Percentage_of_Stable_Systems_across_all.
— generations:.’ ...
num2str (percentageOfStableSystemsAllGenerations) '%’]))
end

%provide update that algorithm is finalising
waitbar (1, f, 'Finalising ... ’);

%build string for legend
legendStrBuilder (iter ,:) = strcat ([ 'Iteration.’ num2str(iter)]);

figure (1)
plot (1:gen, maxFitnessValues)
title ("Plot_of _Max_Fitness.vs._Generation_Number’)
xlabel (’Generation _Number )
ylabel ('Max_Fitness )
if maxGenerations > 1
xlim ([1 maxGenerations])
end
hold on

figure (2)
plot (1:gen, averageFitnessValues)
title ('Plot_of_Average_Fitness._vs._.Generation_Number’)
xlabel (’Generation _Number )
ylabel (’Average_Fitness’)
if maxGenerations > 1
xlim ([1 maxGenerations])
end
hold on

%get the fittest individual at the end — this will be the
— optimal wvalue
[optimisedParametersFitness ,idx] = max(fitnessVec);



114 Main Code and Objective Function

optimisedParameters = pop(idx ,:) ;

%display

disp (strcat ([ 'Optimal _PID_Parameters: .’ num2str(
< optimisedParameters) ’'’]));

disp (strcat ([ 'Fitness_Value:_.  num2str(
< optimisedParametersFitness)]));

newline ;

if pidtest (optimisedParameters, false, true)
stableStr = "Yes’;

else
stableStr = 'No’;

end

disp (strcat ([ 'System_Stable:.’ stableStr]));

bestIndividualsOfEachRun (iter ,:) = optimisedParameters;
bestIndividualsOfEachRunFitness(iter) =

— optimisedParametersFitness;

%log elapsed time

t = toc;

runTimeTracker = runTimeTracker + t;

end

figure (1)

legend (legendStrBuilder , 'Location’, ’northwest’)

figure (2)

legend (legendStrBuilder , 'Location’, ’northwest’)

disp (’ ")

%Find the median iteration , display and plot
[, med_idx] = min(abs(bestIndividualsOfEachRunFitness-—median (
— bestIndividualsOfEachRunFitness)));
disp(strcat ([ "The_run_representative_of_the._median_of_all_
< iterations._is_Run.’ num2str(med_idx)]));
disp(strcat ([ 'Optimal _PID_Parameters: .’ num2str(
— bestIndividualsOfEachRun (med_idx,:)) "’]));
disp(strcat ([ 'Fitness_.Value:.  num2str(
— bestIndividualsOfEachRunFitness (med_idx ,:))]));
figure (3)
pidtest (bestIndividualsOfEachRun (med.idx ,:) , true, true);
title (’Step_Response_of_Median_Individual ”)

%print average time taken for each run

newline

disp (strcat ([ "Average_Iteration_Runtime: .’ num2str(
— runTimeTracker/iterations) ’'s’]))

%delete waitbar
delete (f)



D.2 The objective_function.m 115

D.2 The objective function.m

The function objective_function.m is the main script to be called to start and run the

Memetic Algorithm.

Listing D.2: Function to evaluate objective function and calculate fitness.

function [fitness, stable] = objective_function (K_arr, testRH)
%UNTITLED Calculates the fitness of the given gene (PID

— parameters)
% Detailed explanation goes here

global unstableCount

global stableCount

%load wvariables from the saved .mat file
load (ws_vars’, ’dt’, 'T’, ’system_type’, ’channel’)

if nargin < 2
testRH = true;
end

t = 0:dt:T;

if stremp (system_type, ’SISO’)
[ ClosedLoopSys, K| = build_control_system (K_arr);
[y,t] = step(ClosedLoopSys,t); %step response

%control effort
u = Ilsim(Kl-y,t);

%Combute Objective Function —
RITE: integral of absolute error and squared control
— energy
J =T"2.%(dt.*sum(abs(1-y(:)))) + (dt.s«sum(u(:)."2));
elseif stremp(system_type, 'MIMO’)
if channel = 1
rl = ones(length(t), 1);
r2 = zeros (length(t), 1);
elseif channel = 2
rl = zeros(length(t), 1);
r2 = ones(length(t), 1);

)
1

end

%build and get system
[ ClosedLoopSys, K| = build_control_system (K_arr);



116 Main Code and Objective Function

%simulate system
y = lsim (ClosedLoopSys ,[rl r2], t);

yl =y(:,1); %channel 1 output
y2 =y (:,2); %channel 2 output
%errors

el = rl—yl;

e2 = r2—y2;

%control efforts
ul = Isim(Kl,el,t); %channel 1 PID control effort
u2 = Isim(K2,e2,t); %channel 2 PID control effort

J =T "2.«(dt.+«(sum(abs(el))+sum(abs(e2)))) + (dt.* (sum(
— ul.”2)4sum(u2."2)));
end

%Test if unstable using Routh—Hurwitz Criterion
if testRH
if stremp (system_type, ’SISO’)
stable = is_system_stable (ClosedLoopSys);
elseif stremp(system_type, 'MIMO’)
stable = is_system_stable (ClosedLoopSys(1,channel))
— && is_system _stable (ClosedLoopSys(2,channel));
end
else
stable = true;
end

Z%penalise if wunstable, calculate and return fitness

if testRH
if “stable
J=7J 4+ 100000; %large penalty for wunstable

— system
unstableCount = unstableCount + 1;
else
stableCount = stableCount + 1;
end
end
fitness = 30000/J;
end



Appendix E

Operator Functions



118 Operator Functions

E.1 The crossover.m Operator

The function crossover.m is an operator function that performs crossover on given par-

ents.

Listing E.1: Function to perform crossover.

%modifies offspring wusing a modified whole arithmetic
— recombination

%approach

function [offspring, offspring_fitVec] = crossover(pop, fitVec,
< crossover_rate)
%setup

number_of _offspring = floor ((crossover_rate * length (pop))
— /2) % 2; %always round to even number
if (number_of _offspring < 2)

number_of_offspring = 2;
end
numGenes = size (pop, 2);
offspring = [];

offspring_fitVec = zeros(number_of_offspring, 1);

parfor k = l:number_of_offspring/2
%start acrossover here
%randomly select two parents z_pm and z_pn
x.pm = parent_selection (pop, fitVec);
x_pn = parent_selection (pop, fitVec);
%initialise offspring
x_0l = zeros (1, numGenes) ;
x_.02 = zeros (1, numGenes) ;

%Split chromosome at the randomly chosen index, a, where
— as 1S in

Y%the inverval [1,u], where u is numGenes

a = randi(numGenes, 1);

%store the same genes from respective parents for each
— child up to, but

%not indluding the specified index

if (a™=1)
x.0l(l:a—1) = xpm(l:a—1);
x.02(l:a—1) = x_pn(l:a—1);

end

%calculate the z_ol and z_02 for each child and store at
— the indexr ’a’
B = rand(1,1);



E.1 The crossover.m Operator 119

x.ol(a) = (1 — B)*xpm(a) + Bsx_pn(a);
x-02(a) = (1 — B)sx_pn(a) + Bxxpm(a);

Z%swap genes of parents after index ’‘a’ for both
— offspring

if (a < numGenes)
x-0l (a+1l:end) = x.pm(a+1l:end);
x_02(a+1:end) x_pn(a+1l:end);

end

offspring = [offspring; x_ol];
offspring = [offspring; x_02];

end
parfor k = l:number_of_offspring
offspring _fitVec (k) = objective_function (offspring(k,:))
—
end

end



120 Operator Functions

E.2 The mutation.m Operator

The function mutation.m is an operator function that performs mutation on randomly

selected genes from a population.

Listing E.2: Function to perform mutation.

function [offspring , offspring_fitVec] = mutation(pop,
< mutation_rate, gene_bounds)
JMUTATION Perform mutation on specified amount of population
%Change allele wvalues randomly within its domain
%i.e.
I<xl, z2, ..., zn)> -><z’l, z’2, ..., xz'n>
%where zi, x’i is an element of [Li, Ui]
%where Ui and Li are upper and lower boundaries respectively

number_of _offspring = ceil (mutation_rate * size(pop,1)); %
— wuse ceiling as num of mutations should never be 0 if
— rate 1S non—zero

numGenes = size (pop, 2);

offspring = zeros(number_of_offspring , numGenes) ;

offspring _fitVec = zeros(number_of_offspring, 1);

disp (number_of_offspring) ;

%select random gemes to mutate according to given
— mutation_rate

for k = l:number_of_offspring
%select random chromosome
offspring (k,:) = pop(randi(size(pop,1)) ,:);
%mutate chromosome by selecting random gene:

x = randi(numGenes, 1);

geneBounds = cell2mat (gene_bounds(x));

L_k = geneBounds(1); %L_k — lower bound
Uk = geneBounds(2); %U_k — upper bound

offspring (k,randi(numGenes)) = L.k + rand*(Uk — L.k);
— %mutate gene
end

%calculate fitness in parallel

parfor k = 1l:number_of_offspring
offspring _fitVec (k) = objective_function (offspring(k,:))
=
end

end



E.3 The local_search.m Operator 121

E.3 The local search.m Operator

The function local_search.m is an operator function that handles all the calls to the

chosen local search method.

Listing E.3: Function to call LS algorithm.

function [offspring , offspring_fitVec] = local_search (pop,
— fitVec, gene_bounds, rate)
FLOCALSEARCH Method for handling local search calls

%define parameters for the LS algorithm

maxf = 3;

maxs = 3;

expf = 2;

conf = 0.5;
max_iter = 100;

Is_count = ceil(rate * length (pop));

%get pool of candidates for local search
[candidatePool, poolFitness] = get_elites (pop, fitVec,
— ls_count);

offspring = [];
offspring fitVec = [];

parfor k = 1:1s_count
[result , resultFitness] = ...
solis_wets_LS (candidatePool(k,:), poolFitness(k) ,...
maxf, maxs, expf, conf, gene_bounds, max_iter,
— ls_count);
if Tisempty(result)
offspring = [offspring; result |;
offspring fitVec = [offspring fitVec; resultFitness
= 1
end
end
end



122 Operator Functions

E.4 The solis wets LS.m Operator

The function solis_wets_LS.m is an implementation of the modified Solis & Wets algo-

rithm.

Listing E.4: LS algorithm.
function [offspring , offspring_fitVec] = solis_wets_LS(
— candidateTolmprove , ...
candidateTolmproveFitness , maxF, maxS, expf, conf,
< gene_bounds, max_iter, ls_count)
%SOLIS_-WETS_LS implements a modified version of Solis & Wet’s LS
— algorithm
load (’solis_wets_ls_vars’, ’'rho’, ’threshold’)
offspring = [];
offspring_fitVec = [];

%set bias to 0
b = 0;

Z%initialise failure and success trackers
failures = 0;
successes = 0;

%set the mew candidate to be the candidate to improve
— initially

newCandidate = candidateTolmprove;

newBestIndividual = [];

newBestIndividualFitness = [];

iter = 0;
while ((rho > threshold) && (iter < max_iter))
%try to improve candidate
D = normrnd (b, rho);
newCandidate = newCandidate + D;
[newCandidateFitness, stable] = objective_function (
— newCandidate) ;
if (newCandidateFitness > candidateToImproveFitness) &&
— stable && is_solution_feasible (newCandidate,
< gene_bounds, false)

failures = 0;

successes = successes + 1;

b = 0.5%xD + 0.2xb;

newBestIndividual = newCandidate;

newBestIndividualFitness = newCandidateFitness;
else

newCandidate = candidateTolmprove + D;



E.4 The solis_wets_LS.m Operator 123

[newCandidateFitness, stable] = objective_function (
— newCandidate) ;

if (newCandidateFitness > candidateTolmproveFitness)
— && stable && is_solution_feasible (
— newCandidate, gene_bounds, false)

failures = 0;

successes = successes + 1;

b =b — 0.4x«D;

newBestIndividual = newCandidate;

newBestIndividualFitness = newCandidateFitness;
else

failures = failures + 1;

successes = 0;

b = 0.5%b;
end

end

if successes >= maxS

failures = 0;
successes = 0;
rho = expf * rho;

end

if failures >= maxF
failures = 0;
successes = 0;
rho = conf % rho;

end

iter = iter + 1;
end

%if the new individual is better than before the local
— search, shrink
%threshold and return the new individual
if “isempty (newBestIndividual)
if (newBestIndividualFitness > candidateTolmproveFitness
— ) && is_solution_feasible (newBestIndividual ,
— gene_bounds, false)
threshold = (0.2/1s_count)xthreshold;
end
offspring = newBestIndividual;
offspring _fitVec = newBestIndividualFitness;
end
rho = (5/1ls_count )*rho;

save(’solis_wets_ls_vars’, ’rho’, ’threshold’)

end






Appendix F

Helper Functions



126 Helper Functions

F.1 The build control system.m Helper Function

Listing F.1: Helper function to help build control system programmatically.

function [sys, K] = build_control_system (K_arr)

%BUILD_CONTROL_SYSTEM Builds a control system for the given PID
— parameters

% Returns the closed loop system and K, a 1xl representing the
— PID

% controller if the system type is SISO, and a 1z2
— representing the PID

% controller for both channels if the system type is MIMO

%load wvariables from the saved .mat file
load ("ws_vars’, ’G’, ’system_type’, ’channel’, 'K _fixed’)

if stremp (system_type, ’SISO’)
K = pid(K.arr (1), K.arr(2), K_.arr(3), 0.001);
Loop = series (K,G);
sys = feedback (Loop, 1);
elseif stremp(system_type, 'MIMO’)
if channel = 1
Kl = pid(K.arr(1), K.arr(2), K.arr(3), 0.001);
K2 = pid (K _fixed (1), K_fixed(2), K_fixed(3), 0.001);
elseif channel = 2
K1 = pid (K_fixed (1), K_fixed(2), K_fixed(3), 0.001);
K2 = pid(K.arr(1), K.arr(2), K.arr(3), 0.001);
end

K = [Kl K2]J;

%cascade PIDs BEFORE cross—coupling paths
yl_pid_loop = series (K1, G, 1, 1);
y2_pid_loop = series (K2, G, 1, 2);

sys_with_pids = [yl_pid_loop y2_pid_loop];

fb = tf(ss(eye(2))); %generate identity state space
— for wunity feedback lines

sys = feedback (sys_with_pids, fb, —1); %negative
— feedback for both i/o lines

end
end



F.2 The get_elites.m Helper Function 127

F.2 The get elites.m Helper Function

Listing F.2: Helper function to get elites from the given population.

function [eliteVec ,eliteFitVec]| = get_elites (pop,fitVec,
— eliteCount )
%GET_-ELITES gets eliteCount number of elites from the given

if (eliteCount > 0)
tmpPop = pop;
tmpFitVec = fitVec;
eliteVec = zeros(eliteCount , size(pop,2));
eliteFitVec = zeros(eliteCount, 1);
for k = 1:eliteCount
[T, I] = max(tmpFitVec);
eliteVec (k,:) = tmpPop(I,:);
eliteFitVec (k) = tmpFitVec(I);
tmpFitVec(l) = [];
tmpPop(1,:) = []:
end
%no need to hang onto these temp wectors when done, so
— free them
%from memory
clear tmpPop tmpFitVec
else
eliteVec = [];
eliteFitVec = [];
end
end



128 Helper Functions

F.3 The is_solution feasible.m Helper Function

Listing F.3: Helper function to test if a potential solution is within bounds and is stable.

Useful in LS.

function feasible = is_solution_feasible (K_arr, gene_bounds,
< check_stability)

%IS_SOLUTION_FEASIBLE: Checks if the solution meets all criteria
— to be

%classed as a feasible solution

% Check if the given solution is within bounds and the

%system produced is stable
load ("ws_vars’, ’channel’, ’system_type’)
%check if the solution is within bounds

for k = 1:length(gene_bounds)
geneBounds = cell2mat (gene_bounds(k));

L = geneBounds(1); %lower bound
U = geneBounds(2) ; Y%upper bound
if (K.arr(k) <L) || (K.arr(k) > U)
feasible = false;
return
end

end

%check if stable
if check_stability
ClosedLoop = build_control_system (K_arr);
if stremp (system_type, ’SISO’)
feasible = is_system_stable (ClosedLoop);
elseif strecmp(system_type, 'MIMO’)
feasible = is_system_stable (ClosedLoop(1,channel))
— && is_system_stable (ClosedLoop (2,channel));
end
else
feasible = true;
end
end



F.4 The is_system_stable.m Helper Function 129

F.4 The is_system_stable.m Helper Function

Listing F.4: Helper function to test if a potential solution is stable.

function stable = is_system_stable (sys)
% GENERATE RH TABLE Checks if solution is stable using Routh—
— Hurwitz criterion.
[",den] = tfdata(sys);
den = cell2mat (den);
rhTableAsDbl = rhStabilityCriterion (den); %generate RH
— table wusing script by Farzad Sagharchi
%Check change in signs in first column — if sign changes,
— system
%unstable
stable = true;
for i = 1l:length(den) — 1
if sign(rhTableAsDbl(i,1)) x sign(rhTableAsDbl(i+1,1))
— = —1
stable = false;
break
end
end
end



130 Helper Functions

F.5 The parent selection.m Helper Function

Implements RWS to select parents.

Listing F.5: Helper function to implement RWS to select parents.

%select parent from pop wusing roulette wheel selection .
function parent = parent_selection (pop, fitVec)
%calculate the sum of all fitness wvalues in the population
totalFitness = sum(fitVec);

%generate random number in the interval of [0, totalFitness]
r = totalFitness*rand (1,1);

%loop through population and sum the fitness for each
— individual. Stop
%and return the individual when the sum of fitness wvalues
— becomes greater
%than , or equal to, the random number r
partialFitness = 0;
for k=length (pop):—1:1
partialFitness = partialFitness + fitVec(k);
if (partialFitness >= r)
parent = pop(k,:);
break
end
end
end



F.6 The pidtest.m Helper Function 131

F.6 The pidtest.m Helper Function

Listing F.6: Helper function used for building and testing a PID controller programmatically.
function [stable] = pidtest(K_arr, plot_response, print_stepinfo

=)
global dt
load ("ws_vars’, ’channel’, ’system_type’)

ClosedLoop = build_control_system (K_arr);
t = 0:dt:50;

%stability check
if stremp(system_type, ’SISO’)
stable = is_system_stable (ClosedLoop) ;
elseif strcmp(system_type, 'MIMO’)
stable = is_system_stable (ClosedLoop (1,channel)) &&
— is_system_stable (ClosedLoop (2,channel));
end

if plot_response
if stremp(system_type, ’SISO’)
step (ClosedLoop , t)
h = findobj(gcf, 'type’, line’);
set (h, 'linewidth ' ,2);

drawnow
elseif strecmp(system_type, 'MIMO’)
if channel =1

rl = ones(length(t), 1);
r2 = zeros(length(t), 1);
elseif channel = 2
rl = zeros(length(t), 1);
r2 = ones(length(t), 1);
end
Isim (ClosedLoop ,[rl r2], t);
end
end

%print system step info
if print_stepinfo
disp (’Step_Analysis’);
if stremp (system_type, ’SISO’)
disp (stepinfo (ClosedLoop) ) ;
elseif strcmp(system_type, 'MIMO’)
disp (stepinfo (ClosedLoop (channel ,channel)))
end
end
end



132 Helper Functions

F.7 The rhStabilityCriterion.m Helper Function

Created by Sagharchi Sagharchi, and modified to return Routh table only.

Listing F.7: Helper function to return routh table.
%% Routh—Hurwitz stability criterion

%

% The Routh—Hurwitz stability criterion is a necessary (and
— frequently

% sufficient) method to establish the stability of a single—
— nput,

% single—output (SISO), linear time invariant (LTI) control
— system.

% More generally , given a polynomial, some calculations using
— only the

% coefficients of that polynomial can lead us to the conclusion
— that 1t

% is mot stable.

% Instructions

%

%

% in this program you must give your system coefficients and
— the

% Routh—Hurwitz table would be shown

%

% Farzad Sagharchi ,Iran

%  2007/11/12

%  Modified by Aaron Coutts

%  9/10/2021

function rhTable = rhStabilityCriterion (coeffVector)
%% Initialization

% Taking coefficients wvector and organizing the first two
= rows

ceoffLength = length (coeffVector);

rhTableColumn = round(ceoffLength/2);

% Initialize Routh—Hurwitz table with empty zero array
rhTable = zeros(ceoffLength ,rhTableColumn);

% Compute first row of the table
rhTable(1,:) = coeffVector (1,1:2:ceoffLength);

% Check if length of coefficients wvector is even or odd
if (rem(ceoffLength ,2) "= 0)



F.7 The rhStabilityCriterion.m Helper Function 133

% if odd, second row of table will be
rhTable (2,1:rhTableColumn — 1) = coeffVector (1,2:2:
< ceoffLength);
else
% if even, second row of table will be
rhTable(2,:) = coeffVector (1,2:2:ceoffLength);
end

%% Calculate Routh—Hurwitz table 's rows

% Set epss as a small value
epss = 0.01;

% Calculate other elements of the table
for i = 3:ceoffLength

% special case: row of all zeros
if rhTable(i—1,:) = 0
order = (ceoffLength — i);
cntl = 0;
cnt2 = 1;
for j = 1l:rhTableColumn — 1
rhTable(i—1,j) = (order — cntl) * rhTable(i—2,
— cnt2);
cnt2 = cnt2 4+ 1;
cntl = cntl + 2;
end
end

for j = 1:rhTableColumn — 1
% first element of upper row
firstElemUpperRow = rhTable(i—1,1);

% compute each element of the table
rhTable(i,j) = ((rhTable(i—1,1) * rhTable(i—2,j+1))
— — ...
(rhTable(i—2,1) * rhTable(i—1,j+1))) /
— firstElemUpperRow ;
end

% special case: zero in the first column
if rhTable(i,1) = 0
rhTable(i,1) = epss;
end
end
end

% %% Compute number of right hand side poles(unstable poles)
% % Initialize unstable poles with zero

% unstablePoles = 0;

%



134 Helper Functions

R

Check change in signs

1 = 1:ceoffLength — 1

if sign(rhTable(i,1)) * sign(rhTable(i+1,1)) == —1
unstablePoles = unstablePoles + 1;

~
o)
=

end
end

% Print calculated data on screen
forintf(’\n Routh—Hurwitz Table:\n’)
rhTable

% Print the stability result on screen

if unstablePoles == 0

forintf(’~"""" > it is a stable system! < 7777 \n’)
else

fprintf(’~"""" > it 158 an wunstable system! <~ ~°77 \n’)
end

R N R X 2T ¥ T ¥ ¥ aF RN K K € K K N K K

fprintf(’\n Number of right hand side poles =%2.0f\n’,
— unstablePoles)

%

% reply = input(’Do you want roots of system be shown? Y/N 7, ’s
= 7);
if reply == "y’ || reply == 'Y’

sysRoots = roots(coeffVector);
fporintf(’\n Given polynomial coefficients roots :\n’)
sysRoots

N N X N KN

end



F.8 The survivor_selection.m Helper Function 135

F.8 The survivor_selection.m Helper Function

Selects next generation.

Listing F.8: Helper function to select next generation.
function [next_generation, nextgen_fitness] = survivor_selection
— (extended_pop
extpop_fitness , elites, elites_fitness , pop_size)
ZSURVIVOR_SELECTION Perform selection to reduce
%population size back to pop_size

%propagate elites to the next generation
next_generation = elites;
nextgen _fitness = elites_fitness;

%perform binary tournament selection
parfor k = 1l:pop_size—size(elites ,1)

[winner, winnerFitness] = tournament_selection (

— extended_pop, extpop_fitness, 2);
next_generation = [next_generation; winner|;
nextgen _fitness = [nextgen _fitness; winnerFitness]|;

end
end



136 Helper Functions

F.9 The tournament selection.m Helper Function

Implements tournament selection. To be used for selecting the next generation.

Listing F.9: Helper function to implement tournament selection.
function [next_generation, nextgen_fitness] = survivor_selection
— (extended_pop
extpop_fitness , elites, elites_fitness , pop_size)
ZSURVIVOR_SELECTION Perform selection to reduce
%population size back to pop_size

%propagate elites to the next generation
next_generation = elites;
nextgen _fitness = elites_fitness;

%perform binary tournament selection
parfor k = 1l:pop_size—size(elites ,1)

[winner, winnerFitness] = tournament_selection (

— extended_pop, extpop_fitness, 2);
next_generation = [next_generation; winner|;
nextgen _fitness = [nextgen _fitness; winnerFitness]|;

end
end



Appendix G

Test Scripts & Functions

G.1 The TestLinear1DOF.m Script

The test script written to test and verify 1DOF systems for pitch and yaw control of the
TRMS.

Listing G.1: Test 1DOF system and print results.

clear variables
close all
clc

%transfer functions
pitch_tf = t£([0.01657 0.4194 2.454],[1 1.487 4.403 5.449]);
yaw_tf = tf([0.0009881 0.03361 0.4065],[1 1.345 0.4568 0.3826]);

%
%
(_>
optimisation_type = 'MA’; %change this depending on whether

— testing GA or MA

if stremp(optimisation_type, 'MA’)
Pitch_ Kp = 0.039411;
Pitch_.Ki = 0.96991;
Pitch_.Kd = 0.16499;
Yaw Kp = 0.31597;
Yaw_Ki = 0.15789;
Yaw Kd = 0.42171;
elseif strcmp(optimisation_type, 'GA’)
Pitch_ Kp = 0.451;



138 Test Scripts & Functions

Pitch_ Ki = 1.8701;
Pitch_.Kd = 0.4959;
Yaw Kp = 0.13136;
Yaw Ki = 0.27323;
Yaw Kd = 0.73833;

end

dt = 0.05;
T = 50;

t = 0:dt:T;

%define test parameters for Prasad et. al.’s testing parameters
testParameters = struct;

testParameters.step = 1;
testParameters.sineAmp = 1;
testParameters.sineFreq = 0.025;
testParameters.sqrAmp = 1;
testParameters.sqrFreq = 0.025;
testParameters.initialCondition = 0;

%test pitch
K_arr = [Pitch_.Kp Pitch_Ki Pitch_Kd|;
[sys,controller] = build_SISO _control_system (pitch_tf, K_arr);

[riseTime , settlingTime , overshoot, error, controlEffort] =
< systest_SISO (sys, controller, t, testParameters, true);

disp (strcat ([~ _7 optimisation_type '_test_results.
— for_Pitch_Control. ’

disp (strcat ([ 'Rise_time: .’ num2str(riseTime)]))

disp (strcat ([ ’Settling time:. " num2str(settlingTime)]))

disp (strcat ([ "Percentage_overshoot:.’ num2str(overshoot)]))

disp (strcat ([ 'Sum_of_Absolute_Error_for_Step._Input:.’
< num2str(error.step)]))

disp(strcat ([ 'Sum.of_Absolute_Error_for._Sine_Input:.’
< num2str(error.sine)]))

disp (strcat ([ 'Sum_of_Absolute_Error_for_Square._Input:._’
< num2str(error.sqr)]))

disp (strcat ([ 'Sum_of_Absolute_Control_Effort_for_Step_Input:
< .’ num2str(controlEffort.step)]))

disp (strcat ([ 'Sum_of_Absolute_Control_Effort_for_Sine_Input:

< .’ num2str(controlEffort.sine)]))
disp (strcat ([ 'Sum_of_Absolute_Control_Effort_for._Square.
— Input:.’ num2str(controlEffort.sqr)]))

%test yaw
K_arr = [YawKp Yaw_Ki Yaw Kd];
[sys, controller] = build_SISO _control_system (yaw_tf, K_arr);
[riseTime , settlingTime , overshoot, error, controlEffort] =
< systest_SISO (sys, controller, t, testParameters, true);
disp(strcat ([ ————_’ optimisation_type '_test_results.
— for _Yaw.Control ——"]))
disp (strcat ([ 'Rise_time: .  num2str(riseTime)]))



G.1 The TestLinear1DOF.m Script 139

)

"Settling _time: .’ num2str(settlingTime)]))
"Percentage _overshoot:.’ num2str(overshoot)]))

disp (strcat ([
[
[ ’Sum_of_Absolute_Error_for_Step_Input:._’
r
[

( (
disp (strcat (
disp (strcat (
< num2str(error.step)]))
disp (strcat ([ 'Sum_of_Absolute_Error_for_Sine_Input:._’
< num2str(error.sine)]))
disp (strcat ([ 'Sum_of_Absolute_Error_for_Square_Input:._’
— num?2str(error.sqr)]))
disp (strcat ([ 'Sum_of_Absolute_.Control_Effort_for_Step_Input:
< .’ num2str(controlEffort.step)]))
disp (strcat ([ 'Sum_of_Absolute_.Control_Effort_for_Sine_Input:
< .’ num2str(controlEffort.sine)]))
disp(strcat ([ 'Sum_of_Absolute_.Control_Effort_for._.Square.
< Input:.’ num2str(controlEffort.sqr)]))



140 Test Scripts & Functions

G.2 The TestLinear2D0OF.m Script

The test script written to test and verify 2DOF systems for pitch and yaw control of the
TRMS.

Listing G.2: Test 2DOF system and print results.

clear variables
close all
cle

%transfer functions

G11 = tf([0.01657 0.4194 2.454],[1 1.487 4.403 5.449]); %
— pitch main

G12 = tf([0.04986 0.0962],[1 0.2377 4.902]); %yaw coupling
— into pitch

G21 = tf([0.02248 0.4527],[1 0.4099 0.2181]); %pitch coupling
—  into yaw

G22 = tf([0.0009881 0.03361 0.4065],[1 1.345 0.4568 0.3826]);
— Y%yaw main

G = [Gl1l GI12;

G21 G22];

%
N
;>

optimisation_type = 'MA’; %change this depending on whether

— testing GA or MA

if strcmp(optimisation_type, 'GA’)
Pitch_Kp = 0.59458;

Pitch_Ki = 0.60207;
Pitch_.Kd = 0.50529;
Yaw Kp = 0.31266;
Yaw_Ki = 0.22875;
Yaw_Kd = 0.99066;
elseif strcmp(optimisation_type, 'MA’)
Pitch_ Kp = 0.62141;

Pitch_Ki = 0.89421;
Pitch_.Kd = 0.42039;
Yaw_ Kp = 0.36102;
Yaw_Ki = 0.30189;
Yaw Kd = 0.71477;

end
dt = 0.05;
T = 50;

t = 0:dt:T;



G.2 The TestLinear2DOF.m Script 141

%define test parameters for Juang et. al.’s testing parameters
testParametersChannell = struct;

testParametersChannell .step = 1;

testParametersChannell .sineAmp = 0.5;
testParametersChannell . sineFreq = 0.025;
testParametersChannell .sqrAmp = 0.5;

testParametersChannell .sqrFreq = 0.025;

testParametersChannell . initialCondition = 0;
testParametersChannel2 = struct;
testParametersChannell .step = 0.2;
testParametersChannell .sineAmp = 0.2;
testParametersChannell . sineFreq = 0.025;
testParametersChannell .sqrAmp = 0.2;
testParametersChannell .sqrFreq = 0.025;
testParametersChannell . initialCondition = 0;
%test
Kl_arr = [Pitch_.Kp Pitch_Ki Pitch_Kd];
K2_arr = [Yaw Kp Yaw_Ki Yaw Kd];
[sys, controllers] = build_-MIMO_control_system (G, Kl_arr, K2_arr
= )

[riseTime , settlingTime , overshoot, error, controlEffort] =

systest_MIMO (sys, controllers, t, testParametersChannell ,
— testParametersChannell , true);
disp (strcat ([ ————_"
— Pitch_.Control._ 1))

disp(strcat ([ 'Rise_time:_. " num2str(riseTime.channell)]))

disp (strcat ([ 'Settling time:. " num2str(settlingTime.channell)]))

disp (strcat ([ "Percentage_overshoot:_.’ num2str(overshoot.channell

= )1))

optimisation_type ’_test_.results_for.

disp (strcat ([ 'Sum_of_Absolute_Error_for_Step_Input:.’ num2str(
< error.channell.step)]))

disp (strcat ([ 'Sum_of_Absolute_Error_for_Sine_Input:.’ num2str(
< error.channell.sine)]))

disp (strcat ([ 'Sum_of_Absolute_Error_for_Square_Input:_’ num2str(

— error.channell.sqr)]))

disp (strcat ([ "Sum_of_Absolute_Control_Effort_for_Step_Input:.’
< num2str(controlEffort.channell.step)]))

disp (strcat ([ "Sum_of_Absolute_Control_Effort_for_Sine_Input:.’
< num2str(controlEffort.channell.sine)]))

disp (strcat ([ 'Sum_of_Absolute_Control_Effort._for_Square_Input:.’
<  num2str(controlEffort.channell.sqr)]))

"_test.oresults._for.

disp (strcat ([~

— Yaw.Control .

disp (strcat ([ 'Rise_time:_’
disp(strcat ([ 'Settling.
disp (strcat ([ "Percentage_overshoot: .’

= )1))

optimisation_type
1))

num2str (riseTime . channel2)]))
" num2str(settlingTime.channel2)]))
num2str (overshoot.channel2

time: .



142 Test Scripts & Functions

disp (strcat ([ 'Sum_of_Absolute_Error_for_Step_Input:.’ num2str(
< error.channel2.step)]))
disp (strcat ([ 'Sum_of_Absolute_Error_for_Sine_Input:_.’ num2str(

< error.channel2.sine)]))

disp (strcat ([ 'Sum_of_Absolute_Error_for_Square_Input: .
< error.channel2.sqr)]))

disp (strcat ([ "Sum_of_Absolute_Control_Effort_for_Step_Input:.’
< num2str(controlEffort.channel2.step)]))

disp (strcat ([ 'Sum_of_Absolute_.Control_Effort._for_Sine_Input:.’
< num2str(controlEffort.channel2.sine)]))

disp (strcat ([ 'Sum_of_Absolute_.Control_Effort._for_Square_Input:.’
<  num2str(controlEffort.channel2.sqr)]))

" num2str (



G.3 The build_SISO_control_system.m Script 143

G.3 The build SISO control system.m Script

Helper function for building a SISO control system programmatically for given PID pa-

rameters.

Listing G.3: Builds SISO Control System.

function [sys, K] = build_SISO_control_system (G, K_arr)
%BUILD_.CONTROL_SYSTEM
% Returns the closed loop system and K, a 1xl representing the
— PID
% controller for the given system
K = pid(K.arr (1), K_arr(2), K.arr(3), 0.001);
Loop = series (K,G);
sys = feedback (Loop, 1);
end



144 Test Scripts & Functions

G.4 The build MIMO control system.m Script

Helper function for building a MIMO control system programmatically for given PID

parameters.

Listing G.4: Builds MIMO Control System.
function [sys, K| = build_MIMO _control_system (G, Kl_arr, K2_arr)
%BUILD_CONTROL_SYSTEM
% Returns the closed loop system and K, a 1z2 representing the

— PID
% controller for both channels
Kl = pid(Kl.arr(1), Kl_arr(2), Kl_arr(3), 0.001);
K2 = pid(K2.arr (1), K2_arr(2), K2_arr(3), 0.001);

)

K = [KI K2];

%cascade PIDs BEFORE cross—coupling paths
yl_pid_loop = series (K1, G, 1, 1);
y2_pid_loop = series (K2, G, 1, 2);

sys-with_pids = [yl_pid_loop y2_pid_-loop |;

fb = tf(ss(eye(2))); %generate identity state space
— for wunity feedback lines
sys = feedback (sys_with_pids, fb, —1); Z%negative
— feedback for both i/o lines
end



G.5 The systest MIMO.m Script

145

G.5 The systest MIMO.m Script

Helper function for testing, returning and plotting response characteristics for MIMO

control systems.

Listing G.5: For testing MIMO systems.

function

systest_MIMO (sys,

— test_parameters_channell ,

controllers ,

— plot_response)

%

t = tvec;

Zreturn system info
riseTime = struct;
settlingTime = struct;
overshoot = struct;

si = stepinfo (sys)
riseTime.channell

[riseTime , settlingTime , overshoot, error,
— controlEffort] =

tvec ,
test_parameters_channel2 |

= si(1,1).RiseTime;

settlingTime.channell = si(1,1).SettlingTime;
= si(1,1).0Overshoot;

overshoot.channell
riseTime . channel2

settlingTime.channel2 =

overshoot.channel2

si(2,2).RiseTime;
si(2,2).SettlingTime;

= si(2,2).0vershoot;

%step response wusing initial
error = struct;
error.channell = struct;
error.channel2 = struct;
controlEffort = struct;
controlEffort.channell = struct;
controlEffort.channel2 = struct;
% %make initial condition wvectors
% -0 = (test_parameters.initialCondition\ss(sys).C) ’;
%
% Isim (ss(sys),test_parameters.stepxones(1,length(t)), t,
— z.0)
if test_parameters_channell.initialCondition = 0 &&

< test_parameters_channel2.initialCondition

step_input_1

— length(t)
step_input_2 =

y-step =

Isim (sys

:0

(test_parameters_channell .stepxones(1,

)) 7

(test_parameters_channell .step*ones(1,
— length(t))) ’;

[step_input_1 step_input_2]

;b))



146

Test Scripts & Functions

end

sine_input_-1 = (test_parameters_channell .sineAmp=*sin (2x
< pixt*xtest_parameters_channell.sineFreq)) ’;

sine_input_2 = (test_parameters_channel2.sineAmpx*sin (2x
< pixt*xtest_parameters_channel2.sineFreq)) ’;

y-sine = lsim(sys, [sine_input_1 sine_input_-2], t);

sqr_input_1 = (test_parameters_channell.sqrAmp*square (t,
<> test_parameters_channell .sqrFreq)) ’;

sqr_input_2 = (test_parameters_channel2.sqrAmpxsquare (t,
— test_parameters_channel2.sqrFreq)) ’;

y-sqr = lsim (sys, [sqr_input_1 sqr_input_-2], t);

%return sum of absolute error

error.channell .step = sum(abs(step_input_1—y_step(:,1)))
-

error.channell.sine = sum(abs(sine_input_-1—y_sine (:,1)))
=

error.channell .sqr = sum(abs(sqr_input_1—y_sqr(:,1)));

error.channel2.step = sum(abs(step_input_-2—y_step (:,2)))
- 3

error.channel2.sine = sum(abs(sine_input_-2—y_sine (:,2)))
—

error.channel2.sqr = sum(abs(sqr_input_2—y_sqr(:,2)));

%return sum of control effort

effort_step_channell = Isim(controllers(1l), step_input_1
— —y._step(:,1), t);

effort_sine_channell = Isim(controllers (1), sine_input_1
— —y_sine(:,1), t);

effort_sqr_channell = Isim(controllers(1l), sqr_input_1-—

— y-osqr(:,1), t);
effort_step_channel2 = Isim(controllers(2), step_input_2
%*nytep(:>2)v t);

effort_sine_channel2 = Isim(controllers(2), sine_input_2
— —y_sine (:,2), t);
effort_sqr_channel2 = lsim(controllers(2), sqr_input_2—

— yosqr(:,2), t);

controlEffort.channell.step = sum/(abs(
— effort_step_channell));
controlEffort.channell.sine = sum/(abs(
< effort_sine_channell));
controlEffort.channell.sqr = sum(abs(effort_sqr_channell
= ));
controlEffort.channel2.step = sum/(abs(
— effort_step_channel2));
controlEffort.channel2.sine = sum(abs(
< effort_sine_channel2));
controlEffort.channel2.sqr = sum(abs(effort_sqr_channel2
= ));



G.5 The systest MIMO.m Script 147

if plot_response
%plot Pitch channel results
figure

subplot (3,2,1)

plot(t, y_step(:,1), t, step_-input_1)
xlabel ("Time_.(s) ")

ylabel (?Amplitude ")

title ("Pitch_Step_Response’)

h = findobj(gcf, "type’, line’);

set (h, ’linewidth’,2);

drawnow

subplot (3,2,3)

plot (t, y_sine(:,1),t, sine_input_1)
xlabel ("Time.(s) ")

ylabel (?Amplitude ")

title ("Pitch_Sine_Response’)

h = findobj(gcf, "type’, line’);

set (h, "linewidth ’,2);

drawnow

subplot (3,2,5)

plot(t, y_sqr(:,1), t, sqr_input_1)
xlabel ("Time._(s) )

ylabel (?Amplitude ")

title ("Pitch_Square_Response’)

h = findobj(gcf, "type’, line’);

set (h, "linewidth ’,2);

drawnow

subplot (3,2,2)

plot (t, effort_step_channell)

xlabel ("Time_(s) ")

ylabel (?Amplitude ")

title (’Pitch_.Control_Effort_for_Step.Input’)
h = findobj(gcf, "type’, line’);

set (h, "linewidth ’,2);

drawnow

subplot (3,2,4)

plot (t, effort_sine_channell)

xlabel ("Time_(s) ")

ylabel (?Amplitude ")

title ("Pitch_Control_Effort_for._Sine_Input’)
h = findobj(gecf, "type’, line’);

set (h, "linewidth ’,2);

drawnow

subplot (3,2,6)
plot (t, effort_sqr_channell)



148 Test Scripts & Functions

xlabel ("Time._(s) ")

ylabel (?Amplitude ")

title ("Pitch_Control_Effort_for_Square_Input’)
h = findobj(gcf, type’, line’);

set (h, "linewidth’,2);

drawnow

%plot Yaw channel results
figure

subplot (3,2,1)

plot (t, y_step(:,2), t, step_input_2)
xlabel ("Time_(s) ")

ylabel (?Amplitude )

title ("Yaw_.Step_Response’)

h = findobj(gecf, "type’, line’);

set (h, "linewidth ’,2);

drawnow

subplot (3,2,3)

plot (t, y_sine(:,2),t, sine_input_2)
xlabel ("Time_(s) ")

ylabel (?’Amplitude ")

title ("Yaw.Sine._.Response’)

h = findobj(gcf, "type’, line’);

set (h, "linewidth ’,2);

drawnow

subplot (3,2,5)
plot (t, y-sqr(:,2)
xlabel ("Time_(s) ")
ylabel (7 Amplitude ")

title ("Yaw_.Square_Response’)

h = findobj(gcf, "type’, line’);
set (h, "linewidth ’,2);

drawnow

, t, sqr_input_2)

subplot (3,2,2)

plot (t, effort_step_channel2)

xlabel ("Time_(s) ")

ylabel ("Amplitude ")

title ("Yaw_Control_Effort _for_Step_Input’)
h = findobj(gcf, 'type’, line’);

set (h, "linewidth’,2);

drawnow

subplot (3,2 ,4)

plot (t, effort_sine_channel2)

xlabel ("Time_(s) ")

ylabel ("Amplitude ")

title ('Yaw_.Control_ Effort _for._.Sine_Input’)
h = findobj(gcf, 'type’, line’);



G.5 The systest MIMO.m Script 149

set (h, "linewidth’,2);
drawnow

subplot (3,2,6)
plot (t, effort_sqr_channel2)
xlabel ("Time_.(s) ")
ylabel (" Amplitude ")
title ("Yaw.Control_Effort._.for_Square_.Input’)
h = findobj(gcf, "type’, line’);
set (h, "linewidth ’,2);
drawnow
end
end



150 Test Scripts & Functions

G.6 The systest_SIS0.m Script

Helper function for testing, returning and plotting response characteristics for SISO con-

trol systems.

Listing G.6: For testing SISO systems.

function [riseTime, settlingTime , overshoot, error,
— controlEffort] =
systest_SISO (sys, controller, tvec, test_parameters,
< plot_response)

t = tvec;

%return system info
si = stepinfo(sys);

riseTime = si.RiseTime;
settlingTime = si.SettlingTime;
overshoot = si.Overshoot;

%step response wusing initial
error = struct;
controlEffort = struct;

% Jmake initial condition wvectors

% z-0 = (test_parameters.initialCondition\ss(sys).C) ’;

%

% Isim (ss(sys),test_parameters.stepxones(1,length(t)), t,
— x.0)
if test_parameters.initialCondition = 0

step_input = (test_parameters.stepxones(1l,length(t))) ’;
y_step = lsim(sys, step_input , t);
sine_input = (test_parameters.sineAmpx*sin (2% pixtsx*
< test_parameters.sineFreq)) ’;
y-sine = Isim (sys, sine_input, t);
sqr_input = (test_parameters.sqrAmps*square(t,
< test_parameters.sqrFreq)) ’;
y_sqr = lsim (sys, sqr_input, t);

%return sum of absolute error

error.step = sum(abs(step_input—y_step));
error.sine = sum(abs(sine_input—y_sine));
error.sqr = sum(abs(sqr_input—y_sqr));

%return sum of control effort

effort_step = lsim(controller , step_input—y_step, t);
effort_sine = lsim(controller , sine_input—y_sine, t);
effort_sqr = lsim(controller , sqr_input—y_sqr, t);



G.6 The systest_SISO0.m Script 151

controlEffort.step = sum(abs(effort_step));

controlEffort.sine = sum(abs(effort_sine));

controlEffort.sqr = sum(abs(effort_sqr));
end

if plot_response
figure

subplot (3,2,1)

plot(t, y-step, t, step_input)
xlabel ("Time._(s) ")

ylabel (?Amplitude ")

title (’Step_Response’)

h = findobj(gcf, 'type’, line’);
set (h, ’linewidth’,2);

drawnow

subplot (3,2,3)

plot (t, y-sine,t, sine_input)
xlabel ("Time._(s) ")

ylabel (" Amplitude ")

title (’Sine_Response’)

h = findobj(gecf, 'type’, line’);
set (h, ’linewidth’,2);

drawnow

subplot (3,2,5)

plot(t, y-sqr, t, sqr_input)
xlabel ("Time.(s) ")

ylabel (" Amplitude ")

title (’Square_Response’)

h = findobj(gcf, "type’, line’);
set (h, "linewidth’,2);

drawnow

subplot (3,2,2)

plot (t, effort_step)

xlabel ("Time.(s) ")

ylabel (?Amplitude ")

title ("Control_Effort_for._.Step_Input’)
h = findobj(gecf, "type’, line’);

set (h, "linewidth ’,2);

drawnow

subplot (3,2,4)

plot (t, effort_sine)

xlabel ("Time._(s) )

ylabel (?Amplitude ")

title ("Control_Effort_for._Sine_Input’)
h = findobj(gcf, "type’, line’);

set (h, "linewidth ’,2);



152 Test Scripts & Functions

drawnow

subplot (3,2,6)
plot (t, effort_sqr)
xlabel ("Time_(s) ")
ylabel ("Amplitude ")
title (’Control_Effort._for_Square_Input’)
h = findobj(gcf, 'type’, line’);
set (h, 'linewidth’,2);
drawnow
end

end



G.7 The square.m Script 153

G.7 The square.m Script

Helper function for generating a square wave.

Listing G.7: For generating square waves without Signal Processing Toolbox.
function sqr = square(t,f)
%SQUARE Generates a square wave using time wvector t, and real—
— frequency f
sqr = sign (sin (2xpixt*xf));
end





