University of Southern Queensland Faculty of Health, Engineering and Sciences

Develop a framework for residential construction cost estimating in the Australian market.

A dissertation submitted by

# Andrew Peter Dixon

in the fulfilment of the requirements of

# ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Construction (Honours) (Construction Management)

Submitted October 2021

# Abstract

Time is a valuable resource in the construction industry and it is critical to the financial success of a project that accurate cost estimates are produced. Several methods of estimating currently exist with varying degrees of accuracy and completion time. First principle estimating is the most time consuming, often taking hours to complete, however is the most accurate. The unit rate method is quick to apply although it suffers from inaccuracy. A need exists for an accurate method of cost estimating that can be quickly applied. This study solves the problem by developing a framework for cost estimating based on the residential construction sector in the Australian market, which has not been done previously.

The approach taken in this study is based on cost modelling, which is a method of statistically predicting construction costs using input variables known as cost drivers. Cost drivers are factors of statistical significance that affect the total cost of a construction project. The literature review found that previous cost modelling studies focused on a broad range of cost drivers which yield a model that is not commercially viable and inaccurate. Therefore, this study has focussed on design related cost drivers only. This will improve accuracy and the commercial viability of the framework. Previous studies used cost data from publicly available or historical sources. This data includes contractor mark-up strategies, risk contingencies, variance in construction methodology and fluctuations in unit costs between localities which skew results. This study will utilise an up-to-date cost estimating database available in the construction industry for uniform data collection. It will also focus on construction cost only rather than final project cost, this removes the influence of mark-up and contingency factors. These steps will ensure the relevance of the developed framework.

A case study using semi-structured interviews was conducted on a cost estimating company in the residential sector of the Australian construction industry. The purpose was to confirm that the first principle estimating method is currently used, it is time consuming and the most accurate method available. It also examined the validity of cost drivers found in the literature review and expanded the design related cost drivers used for the statistical analysis. In addition, the case study findings were used to calculate a first principle estimate on 170 house designs. This method was used to create the cost data samples for the statistical analysis.

A statistical analysis was conducted on the sample data using SPSS which resulted in a model that predicts the construction cost for a project. Linear regression analysis and two neural network models were tested. Models from previous studies range in accuracy from 3.98% to 19.60%, this level of accuracy is not deemed commercially viable. With a focus on design related cost drivers this study found linear regression analysis performed best and improved the accuracy of previous studies to a mean absolute percentage error (MAPE) of 1.70%. The linear regression statistical model was used to develop the framework.

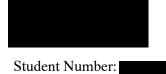
The discoveries of this study benefit cost estimating professionals by offering an estimating method that is accurate, which can be applied faster than traditional first principle methods. The framework can be operated by users with little training compared to fully qualified estimators completing first principle estimates. Further development of this technique, which involves design related cost drivers only, can be applied to other sectors on the construction industry. This has the potential to lower resources for companies tendering for the procurement of work by offering an accurate method that reduces the time and skill to apply.

University of Southern Queensland Faculty of Health, Engineering and Sciences ENG4111 / ENG4112 Research Project

# Limitations of use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering and Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained with or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Health, Engineering and Sciences, and the staff of the University of Southern Queensland.


This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and any other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

# Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Andrew Peter Dixon



# Acknowledgements

I would first like to thank my supervisor, Dr Amirhossein Heravi, for his guidance and support throughout the development of this dissertation. Without the guidance and suggestions Dr Heravi provided it wouldn't have been possible to complete to complete this project.

Secondly, I would like to thank Talus Building Solutions Pty Ltd for providing full access to the information and software used to develop this study. The information provided by this company and its staff has been invaluable in developing a meaningful contribution to the body of knowledge.

Finally, I would like to thank my family and friends for their ongoing support throughout the process. Specifically, I would like to thank Renee for her close support, encouragement and help she has provided not just during this dissertation but throughout my entire program.

# Table of contents

| Abstract                                                                 | ii   |
|--------------------------------------------------------------------------|------|
| Limitations of use                                                       | .iii |
| Certification                                                            | .iv  |
| Acknowledgements                                                         | v    |
| List of tables                                                           | X    |
| List of figures                                                          | xii  |
| List of appendices                                                       | civ  |
| Chapter 1 – Introduction                                                 | 1    |
| 1.1 Outline of the study                                                 | 1    |
| 1.2 Introduction                                                         | 1    |
| 1.3 The problem                                                          | 2    |
| 1.4 Research objectives                                                  | 3    |
| 1.4.1 Identify current cost estimating techniques                        | 3    |
| 1.4.2 Identify potential cost drivers                                    | 3    |
| 1.4.3   Develop cost model framework                                     | 3    |
| 1.5 Conclusions                                                          | 4    |
| Chapter 2 – Literature review                                            | 5    |
| 2.1 Introduction                                                         | 5    |
| 2.2 Design and construct residential construction practices              | . 5  |
| 2.2.1 Standard inclusions, the specification and contract                | 6    |
| 2.2.2 Critical analysis and review of residential construction practices | 7    |
| 2.3 Current cost estimating techniques available                         | 7    |
| 2.3.1 The unit rate                                                      | 8    |
| 2.3.2 First principle estimates                                          | 9    |
| 2.3.3 Cost modelling                                                     | 10   |
| 2.3.4 Critical analysis of findings and research focus                   | 10   |
| 2.4 Statistical cost modelling techniques                                | 11   |
| 2.4.1 Cost drivers                                                       | 11   |
| 2.4.2 Statistical models available                                       | 15   |
| 2.4.3 Linear regression analysis method                                  | 17   |
| 2.4.4 Artificial neural network method                                   | 18   |

| 2.4.    | .5    | Relevant output from the cost models                        | 19 |
|---------|-------|-------------------------------------------------------------|----|
| 2.4.    | .6    | Findings from cost modelling techniques                     | 20 |
| 2.5     | Res   | earch gap                                                   | 20 |
| 2.6     | Sun   | nmary                                                       | 21 |
| Chapter | 3 - R | esearch methodology                                         | 22 |
| 3.1     | Intr  | oduction                                                    | 22 |
| 3.2     | Cas   | e study                                                     | 23 |
| 3.2.    | .1    | Case study interviews                                       | 24 |
| 3.2.    | .2    | Interviewee selection                                       | 24 |
| 3.2.    | .3    | Interview process                                           | 24 |
| 3.2.    | .4    | Research validity and reliability                           | 26 |
| 3.3     | Con   | struction cost data collection method                       | 26 |
| 3.3.    | .1    | Baseline estimate method                                    | 27 |
| 3.3.    | .2    | Sample data set selection                                   | 29 |
| 3.3.    | .3    | Construction cost calculation method                        | 31 |
| 3.3.    | .4    | Collation of construction cost                              | 32 |
| 3.4     | Cos   | t modelling procedure and development                       | 32 |
| 3.4.    | .1    | Data collation and formatting                               | 33 |
| 3.4.    | .2    | Multiple linear regression analysis                         | 33 |
| 3.4.    | .3    | Artificial neural networks                                  | 35 |
| 3.4.    | .4    | Testing of cost models                                      | 35 |
| 3.4.    | .5    | Model selection                                             | 36 |
| 3.4.    | .6    | Framework development                                       | 37 |
| 3.5     | Sun   | nmary                                                       | 38 |
| Chapter | 4 – R | Results and discussion                                      | 39 |
| 4.1     | Res   | ults from case study interviews                             | 39 |
| 4.1.    | .1    | Phase one results – establish current estimating techniques | 39 |
| 4.1.    | .2    | Phase two results – determine further relevant cost drivers | 41 |
| 4.1.    | .3    | Custom joinery or cabinetry                                 | 46 |
| 4.1.    | .4    | Cost drivers identified                                     | 47 |
| 4.2     | Esti  | mating methodology from case study results                  | 48 |

| 4.2.1      | iTWO Cost X software                                          |     |
|------------|---------------------------------------------------------------|-----|
| 4.2.2      | Company measurement sheet using Microsoft Excel               |     |
| 4.2.3      | Databuild cost estimating software                            |     |
|            | ta modelling results                                          |     |
| 4.3.1      | Data collation                                                |     |
| 4.3.2      | Linear regression analysis of results                         |     |
| 4.3.3      | Critical reasoning for cost drivers failing significance test |     |
| 4.3.4      | Linear regression model testing and results                   |     |
| 4.3.5      | Multilayer perceptron neural network analysis of results      |     |
| 4.3.6      | Radial basis function neural network analysis of results      |     |
| 4.3.7      | Critical comparison of statistical modelling methods          |     |
| 4.3.8      | Summary                                                       | 67  |
| 4.4 Re     | commended data analysis with cabinetry removed                |     |
| 4.4.1      | Results from linear regression without custom cabinetry       |     |
| 4.4.2      | Results from model testing                                    | 73  |
| 4.5 Fra    | mework development and testing                                | 77  |
| 4.5.1      | Framework selection                                           | 77  |
| 4.5.2      | Framework development                                         | 77  |
| 4.5.3      | The framework example in Cost X                               | 79  |
| 4.5.4      | Framework update example                                      | 86  |
| 4.6 Su     | mmary of critical findings and benefits of the framework      | 89  |
| 5 Conclus  | sion and recommendations                                      | 91  |
| 5.1 Co     | nclusions                                                     | 91  |
| 5.2 Lin    | nitations                                                     |     |
| 5.3 Re     | commendations for further research                            |     |
| References |                                                               | 95  |
| Appendix A | - Project specification                                       |     |
| Appendix B | – Risk management plan                                        | 101 |
| Appendix C | - Case study interview questions phase one                    | 103 |
| Appendix D | - Case study interview questions phase two                    | 104 |
| Appendix E | – Time plan                                                   |     |

| Appendix F – Ethic 1 approval                                                             |
|-------------------------------------------------------------------------------------------|
| Appe dix G - Int rview responses                                                          |
| ppendi H – Dat analy is import template                                                   |
| Appen ix I – Lin ar r gres ion SPSS data output                                           |
| Appendix J – Multil yered erceptr n Neural Network detailed output 1 2                    |
| Appe dix K – Radial Basis F nction N ural Network detailed output                         |
| Appen ix L – Linear regression sample testing147                                          |
| A pendix – Line r regress on results without cabinetry costs                              |
| Appe dix N Multil yered Pe ceptron Neural etwork detailed results without cabine ry 58    |
| Appe dix O – Radial B sis Fu ction neu al network detailed output excluding cabi etry 166 |
| Appendix P – Excel framework template                                                     |
| Appendix Q – Cost X framework template                                                    |
| Appendix R – Cost X framework worked example 175                                          |
| Appendix S – Example first principle estimate                                             |
| Appendix T – Example cost summary                                                         |

# List of tables

| Table 1 – Design cost drivers identified by previous studies                                 | . 13 |
|----------------------------------------------------------------------------------------------|------|
| Table 2 – Recent studies of construction cost prediction models and accuracy                 | . 16 |
| Table 3 – Summary of interview candidates.                                                   | 24   |
| Table 4 – Summary of relevant findings from the literature review                            | 25   |
| Table 5 – Simplified cost drivers from literature review.                                    | 25   |
| Table 6 – Sample data design inclusions                                                      | 28   |
| Table 7 – Average sample size for successful models                                          | . 31 |
| Table 8 – Example data format for SPSS import                                                | . 33 |
| Table 9 – Price calculation build up method                                                  | 41   |
| Table 10 – Summary and cross reference of cost drivers from interviews                       | 42   |
| Table 11 – Final cost drivers identified for data analysis                                   | . 47 |
| Table 12 – First linear regression results                                                   | 54   |
| Table 13 – Linear regression results with significant cost drivers                           | . 55 |
| Table 14 – Variance inflation factor summary for regression model                            | . 57 |
| Table 15 – Linear regression coefficients                                                    | 58   |
| Table 16 – Cost drivers removed from linear regression model                                 | 58   |
| Table 17 – Linear regression model testing results summary                                   | . 60 |
| Table 18 – Multilayer perceptron neural network results summary                              | . 61 |
| Table 19 – Radial basis function neural network results summary                              | 62   |
| Table 20 – Summary of predicted versus calculated cost of three cost models                  | 63   |
| Table 21 – Summary of percentage error results from three cost modelling options             | . 64 |
| Table 22 – Summary of MAPE results from three cost modelling options                         | . 67 |
| Table 23 – Results from linear regression analysis without cabinetry                         | 69   |
| Table 24 – Second regression results with cost drivers removed from cost excluding cabinetry | . 70 |
| Table 25 – Second regression results with cost drivers removed from cost excluding cabinetry | . 71 |
| Table 26 – Variation inflation factors for regression model excluding cabinetry              | . 72 |
| Table 27 – Cost driver coefficients from regression model without cabinetry                  | 73   |
| Table 28 – Cost variance results from model without cabinetry                                | . 74 |
| Table 29 – Percentage errors from models without cabinetry                                   | 75   |
| Table 30 – MAPE results from model without cabinetry                                         | 76   |
|                                                                                              |      |

| Table 31 – Comparison of MAPE results from both modelling options | 76 |
|-------------------------------------------------------------------|----|
| Table 32 – Weight decision matrix for framework selection         | 77 |
| Table 33 – Excel blank cost calculation framework                 | 78 |
| Table 34 – Populated Excel cost modelling framework.              | 79 |
| Table 35 – Summary of significant design related cost drivers     | 92 |

# List of figures

| Figure 1 – Conceptual model of artificial neural network                                                     |
|--------------------------------------------------------------------------------------------------------------|
| Figure 2 – Outline of stages in methodology of framework development                                         |
| Figure 3 – Simple concept plan                                                                               |
| Figure 4 – Complex concept plan                                                                              |
| Figure 5 – Flow chart of simplified Company estimating method                                                |
| Figure 6 – Flow chart of proposal calculation build up                                                       |
| Figure 7 – External and garage area cost driver example                                                      |
| Figure 8 – Hips, valleys and ridge line cost driver example                                                  |
| Figure 9 – Eave cost driver identification                                                                   |
| Figure 10 – Gable end cost driver identification                                                             |
| Figure 11 – Parapet cost driver identification                                                               |
| Figure 12 – Cost driver definition of one living area                                                        |
| Figure 13 – Cost driver definition of three separate living areas                                            |
| Figure 14 – iTWO Cost X measurement example (GFA)                                                            |
| Figure 15 – iTWO Cost X measurement example (roof line)                                                      |
| Figure 16 – Excel measure sheet basic layout example                                                         |
| Figure 17 – Excel measure sheet example of raw data and secondary calculations                               |
| Figure 18 – Excel import sheet with link to Databuild                                                        |
| Figure 19 – Databuild recipe build example                                                                   |
| Figure 20 – Databuild recipe import from Excel measure sheet                                                 |
| Figure 21 – Databuild output of recipe components                                                            |
| Figure 22 – Price catalogue and date valid                                                                   |
| Figure 23 – Scatter plot of residual versus predicted values                                                 |
| Figure 24 – Regression plot for normality of residual errors                                                 |
| Figure 25 – Eave versus external wall perimeter layout                                                       |
| Figure 26 – Distribution of linear regression error around the mean                                          |
| Figure 27 – Distribution of multilayer perceptron neural network error around the mean                       |
| Figure 28 – Distribution of radial basis function neural network error around the mean                       |
| Figure 29 - Scatter plot of residual error versus predicted values for regression analysis without cabinetry |
|                                                                                                              |

| Figure 30 - Regression plot for normality of residual areas for cost excluding cabinetry72 |
|--------------------------------------------------------------------------------------------|
| Figure 31 – Cost X framework live link dimension groups                                    |
| Figure 32 – Gross floor area measured example                                              |
| Figure 33 – External areas measured example                                                |
| Figure 34 – Garage area measured example                                                   |
| Figure 35 – External walls measured example                                                |
| Figure 36 – Internal walls measured example                                                |
| Figure 37 – External opening measured example                                              |
| Figure 38 – Hips, valleys and ridge line measured example                                  |
| Figure 39 – Gable end measured example                                                     |
| Figure 40 – Number of bathrooms measured example                                           |
| Figure 41 – Additional plumbing outlets measured example                                   |
| Figure 42 – Framework Cost X workbook calculation                                          |
| Figure 43 – Databuild current unit and project cost                                        |
| Figure 44 – Unit price update before and after                                             |
| Figure 45 – Software reprice module                                                        |
| Figure 46 – Updated unit and project cost                                                  |
| Figure 47 – Summarised framework update process                                            |

# List of appendices

| Appendix A - Proje t specification                                                   | 100   |
|--------------------------------------------------------------------------------------|-------|
| Appen ix B – Risk manag ment plan                                                    | 101   |
| A pendix C – C se study nterview uesti ns phase one                                  | 1 3   |
| Appen ix D Case stu y intervi w que tions phase two                                  | 104   |
| A pendix E – Time plan                                                               | 105   |
| A pendix F – Ethical approval                                                        | . 10  |
| Appendix G - Interview responses                                                     | . 10  |
| Append x H – Data analysis import template                                           | . 11  |
| Appe dix – Linear regression SPSS data output                                        | 121   |
| Ap endix – Mult layered erceptron Neural Network detailed output                     | 132   |
| App ndix K Radial asis Function Neural Network detailed output                       | 140   |
| Appendix L – Linear regression sample testing                                        | . 147 |
| ppendix M – Linear regression results without cabinetry costs                        | 148   |
| Ap endix N Multil yered P rceptron Neural Network detailed resul s withou cabi etry  | 158   |
| Appen ix O – Radial Ba is Function neural network detailed outpu exclud ng cabine ry | 166   |
| Appendix P – Excel framework template                                                | 173   |
| Appendix Q – Cost X framework template                                               | . 174 |
| Appendix R – Cost X framework worked example                                         | . 175 |
| Appendix S – Example first principle estimate                                        | . 176 |
| Appendix T – Example cost summary                                                    | . 198 |

# Chapter 1 – Introduction

This section will introduce the research project and detail the background for the problem along with its need to be researched. A clear definition of the problem will be detailed along with the aims and objectives this research project will achieve.

## 1.1 Outline of the study

The need for this project was identified through industry work experience within a Queensland based estimating company (the Company) that specialises in providing residential housing cost estimates for contractors during the concept design stage of the project. It has been recognised that accurate cost estimates from first principle methods take time and skill to perform. During periods of high-volume turnover, tight deadlines often hinder the availability of resources causing inaccuracies in cost estimates and a limit on productivity. This study will develop a framework that will reduce the time it takes for cost estimates without a significant reduction in accuracy when compared to traditional techniques like first principle estimating. This will help professionals in the industry improve productivity by providing a reliable alternative method of cost estimating.

## 1.2 Introduction

Often full design documentation is not available during the initial concept stage of the project. The documents available typically consist of a site plan, floor plan and elevations. This has been found to be common in residential housing construction in Australia for project and volume custom home builders with contracts entered based solely on concept plans and their initial cost estimates. A need for accurate concept estimates is critical to ensure the contractor remains profitable during execution of the contract. There are a few options used to arrive at an initial construction cost estimate in the industry, all with varying levels of accuracy and time. The most accurate method of estimating is based on a first principle build-up of costs which consist of allocating quantities and rates against a breakdown of statutory and consultant fees, materials, labour, plant and machine hire and subcontract works. This is achieved through a builder's bill of quantities (BOQ) which is an abridged and less formal version of a bill of quantities produced by a professional Quantity Surveyor.

The Company currently employs the first principle method of cost estimating and utilises software packages to improve the speed and accuracy of the process. However, these processes can only be improved up to a point as the method itself is time consuming. Depending on the complexity of the design and skill of the estimator it can take anywhere from two to four hours to extract the quantities and assign rates to build a baseline construction estimate. A baseline cost estimate will focus on the construction cost of the project only and exclude any profit margins and off-site overheads. It is common in residential construction, especially design and construct contractors, to formulate a baseline estimate on a standard level of inclusions and finishes. The baseline estimate can then have profit and overhead margins added on top to reach a proposal price for the client.

A need exists for a more efficient way to produce a baseline cost estimate without a significant loss in accuracy. The development of this framework will reduce the time it takes for a cost estimate, this will increase the turnover of estimates and lower company overheads. Whilst cost models involving statistical

methods have been developed and researched for many decades, it was found that the accuracy is not commercially viable and may result in too much variance in cost to enter a contract and retain profit for the contractor. To the best of knowledge, no relevant framework or study exists with a focus on the residential housing sector in the Australian market involving cost modelling.

# 1.3 The problem

Much research has been performed in cost modelling construction projects. Cost modelling consists of applying a statistical analysis to a sample data set to predict an output. There has been a focus on highly complex and varied types of buildings within previous studies which often leads to variance in output accuracy detracting from the viability of the model. Many studies utilise information that span different localities, construction methodologies and completion dates for the sample data. The problem with this method is that there is no uniform comparison between the sample data sets. This can lead to inaccuracy and unreliable results from the cost model.

There can be many factors that contribute to the final price of a project in addition to the cost of construction itself. A list of possible contributing factors are detailed below:

- Market influences such as labour shortages, material supply issues, competition or local authority requirements.
- Profit markup strategy by the contractor. The profit margins contractors apply to projects will vary based on current workload and the perceived risk. This can vary greatly between projects and contractors.
- Location of the project can have variances in supply and labour rates.
- Construction methodology and type of construction materials employed.
- Level of finish and inclusions.
- Site conditions such as rock excavation or significant slope.
- Design factors such as the number of bathrooms or a complex design layout.

Previous studies have attempted to capture some or all the variable factors in the model they developed. Due to the vast amount of variance and significant ambiguity in such a method, this leads to a model that can be inaccurate. The aim of this study is to remove ambiguity through a narrow focus on design related factors or input variables (cost drivers) that will be identified through a literature review and a case study. This will formulate a model that has a relatively high level of accuracy when tested against test sample estimates.

A problem often found in cost modelling framework is the inability of the model to be periodically updated when construction costs fluctuate. Previous studies have also utilised historical data that may or may not have had up-to-date costs available when performing a statistical analysis. These models quickly become obsolete when trying to predict future construction costs if the data cannot be periodically updated and the model parameters reapplied for a revised framework. A framework that can be updated when construction costs fluctuate will be a critical component of this research project.

Time is a critical resource in construction and this study aims to reduce the time it takes to formulate a construction cost estimate. Currently a problem exists with the volume of work and the time it takes using the Company's current method of estimating. This is a common issue in the industry as time is often limited. It can take significant resources and skill to consistently output accurate estimates so a need for a more efficient method is required. A first principles estimate, no matter how well the software is set up or skill of the user, is a methodical and time-consuming process and often prone to human error. This problem can be solved with a cost modelling framework consisting of input variables which can be quicky and easily extracted from the information available during the concept design stage. This has the potential to complete a baseline cost estimate in a matter of minutes for an estimator with minimal training compared to the hours it takes for a first principle estimate to be produced.

The aim of this research project is to develop a framework that reduces the time it takes to estimate construction costs of Australian residential dwellings in comparison to traditional first principle methods through a cost modelling statistical analysis of cost drivers relating to design factors only.

## 1.4 Research objectives

### 1.4.1 Identify current cost estimating techniques

A literature review will be conducted to determine some of the current methods of cost estimating with a particular focus on residential construction, however general methods will also be reviewed to understand current practices within the industry. Research will also be conducted into any current statistical cost modelling methods, how those studies were conducted, the accuracy of the output and the tests used to determine the accuracy of the model.

A case study of the Company will be conducted to further develop an understanding of how cost estimating is currently performed in Australia, particularly the Queensland region, and to validate the findings from the literature review. Industry professionals will be observed and interviewed to ascertain how first principle estimating is currently conducted. This will determine the method this research project will use to calculate the construction costs of the sample data sets used in the statistical analysis.

#### 1.4.2 Identify potential cost drivers

Potential cost drivers will be identified through a review of literature and semi-structured interviews conducted through a case study of the Company. The case study will serve to validate and expand the list of potential cost drivers found during the literature. These cost drivers will form the input variables for the statistical analysis required to develop the cost modelling framework.

#### 1.4.3 Develop cost model framework

Using the estimating methods determined from the case study, concept designs will be randomly selected and construction costs calculated to form a data set. This data set will be analysed with a statistical software package using the various techniques determined through the literature review. The software systems and concept plan library available through the Company will be used to collect sample data. The data will be validated using statistical tests to analyse the output from the model. Once validated the output from the models will be compared against test samples with construction costs calculated from first principles to determine the accuracy of the cost model predictions.

The best statistical model will be selected based on certain criteria and will be used to develop the framework. The framework must allow for a cost estimate to be completed relatively quickly through the extraction of simple input variables available from concept plans. To remain relevant and reliable the framework must be able to be periodically updated when construction costs fluctuate. A methodology to update the framework will be developed.

## 1.5 Conclusions

Previous studies in cost modelling have had a broad focus on cost drivers which have led to models that are inaccurate and often irrelevant. No previous cost modelling studies have been identified that focus on residential construction in the Australian market. Through a review of literature and case study of a cost estimating company this research project will develop a framework with a narrow focus on design related cost drivers which will yield a more accurate and robust cost modelling framework. The resources of the Company will be utilised to gain access to up-to-date methods and construction costs when developing the framework. Test samples will be used to test the validity of the model by comparing the output against calculated first principle construction costs.

# Chapter 2 – Literature review

## 2.1 Introduction

To develop the cost modelling framework the current method of procurement and cost estimating in the Australian market must be established. This will lead to the collection of construction cost data and cost driver identification so statistical cost modelling can be used to create a framework. A review of current literature will establish an understanding of the factors necessary to meet the research objectives and identify the research gap.

To meet the first objective of this research project a review of current literature will initially focus on current practices in the Australian residential construction industry. It will detail typical methods of procurement and cost estimating found in Australia, establish current estimating techniques and provide a basis for questions to raise during the case study of the Company using semi-structured interviews.

A review of estimating techniques that are common in the construction industry will be detailed to understand the methods available to develop the research methodology. It will also determine whether the estimating method found to be used currently in the Australian industry is common to the industry in general. To formulate a relevant cost modelling framework, the construction costs must be calculated from first principle estimating methods before they can be statistically analysed, therefore it is critical that these methods are reviewed.

Statistical cost modelling will be the main tool used to analyse the construction cost data and formulate a framework. This technique has been identified as a valid estimating method to be explored in more detail with a narrow focus of its input variables (cost drivers), models available, expected accuracies and output. The review of this technique will identify a set of preliminary cost drivers which will be validated and expanded upon during the case study interviews. The results from the literature review and case study will provide information to formulate a research methodology for the framework development.

## 2.2 Design and construct residential construction practices

Construction projects are delivered to completion through various contracting methods. The methods will depend heavily on the type of project, the client involved and the contractor's capabilities. Whilst many variants in delivery methods exist, the two main types are traditional or design and construct. Traditional methods involve the client commissioning the design of the project and then tendering to contractors to deliver the project (Ashworth 2002, p. 395). The contractor has no control over the design with traditional methods. Design and construct procurement means the contractor is engaged for both the design of the project and the construction, usually utilising the services of an in-house design team or external designers which are engaged by the contractor (Austroads 2014, p. 23). Design and construct delivery methods are very common in the residential construction industry in Australia (Warren-Meyers and McRae, 2017). This research project will focus on that method of delivery only.

This section will determine the typical practice for residential builders in the Australian market from information gathered through a review of current literature. It will also establish current practice in residential construction regarding standard inclusions and baseline estimating which will be used by this research project to calculate construction costs for the statistical analysis and framework development.

#### 2.2.1 Standard inclusions, the specification and contract

Many residential builders have a library of standard plans and a specific level of inclusions. The inclusions are a detailed explanation of what types of fittings, fixtures and finishes the consumer can expect when they enter a building contract. A baseline first principle estimate is produced with this standard set of inclusions for each design and any custom designs that the contractor is working on for the consumer (Lim et al. 2016, p. 14). Standard inclusions are set out so the client knows what level of finish and construction methods are employed by the contractor. This allows the contractor to specify a standard range and level of finish for the tender proposal which often provides a point of difference for marketing their product.

Items detailed on a typical inclusion list range from assumed construction methods such as foundation type, external and internal wall and superstructure types. Internal finishes are also specified which can include floor coverings, wall linings and mouldings. Fixtures such as plumbing, appliances and electrical fittings are often from a range selected by the contractor and displayed in a display home. Prime Cost allowances for items such as carpet and tiles are included at the same rate across all baseline estimates. External inclusions such as driveways, fencing and landscaping are also included at set amounts across all baselines. The consumer has the option to vary all the inclusions and levels of finish depending on their own tastes to customise their product with adjustments made for these to the baseline estimate. Warren-Meyers and McRae (2017) found this method of procurement common in the Australian market with volume building dominated by large companies such as Metricon, Simonds and GJ Gardner. They also found that the bespoke end of the market often allows consumers more choice which is becoming common as people move toward more customised homes to suit their taste.

A specification is a detailed breakdown of inclusions and a formal proposal put forward by the contractor to the consumer. This document is based on the standard set of inclusions with any requested variations applied and detailed. It provides a contractual reference point for both the consumer and contractor and forms part of the building contract between the parties, provides a basis for accurate estimating and details the level of finish included in the proposal (Del Pico 2012, p. 14).

Standard form contracts from industry bodies are commonly used for the delivery of residential dwellings (CMG1002 Residential construction: methods, materials and management: course notes, 2018). Standard form contracts are the result of collaborative efforts and the evolutionary process to tailor the contract conditions to types of construction and to alleviate common difficulties in interpretation and implementation (Loots and Charrett 2009, p. 31). This type of contract is advantageous because they provide more certainty of contract terms and are easy for contractors to use. Industry bodies provide these standard form contracts to their members for a fee to use when contracting construction work. Procurement methods such as contract type have been featured as cost drivers during previous studies (Emsley et al. 2002, Lowe et al. 2006 and Soutis and Lowe 2011). The use of standard form contracts reduces the risk for the contractor. By using this type of contract for procurement, the contract is no longer considered a variable that may impact the cost of construction. If the standard form contract is found to be used in the residential construction industry during the case study, then it may be excluded from consideration as a cost driver.

#### 2.2.2 Critical analysis and review of residential construction practices

Residential construction in Australia, especially volume building, can be likened to a production line due to their high turnover. Dowling (2005) found new housing construction to be economically significant with it contributing to 4% of Australia's gross domestic product and that little is known about the residential sector in general. Contractors have developed systems to estimate costs of designs through a series of standard plan ranges, set levels of inclusions and the minimisation of risk using standard form contracts. As consumers develop and become more knowledgeable, they naturally wish to customise not only their inclusions but also their designs as they are no longer simply satisfied with the standard plans on offer (Warren-Meyers and McRae 2017). A need has arisen for the ability to estimate the cost of these custom designs without negatively impacting the accuracy levels found in traditional methods of estimating, which will be detailed in next section.

A relevant study by Lim et al. (2016, p. 14) based in South East Queensland found that the most common estimating method adopted by contractors involved the production of a bill of quantities to establish a baseline cost with variances to finishes or inclusions then adjusted from that baseline. This shows that an estimate produced to standard levels of inclusion in the residential construction industry is a common method of establishing a baseline and will be used in the development of the cost modelling framework by this project.

Research into current practices in the Australian residential market show that many contractors produce baseline estimates for projects based on a standard level of inclusions using a first principle method of estimating. This baseline estimate is produced for a range of standard plan designs and can be applied to any custom designs the contractor is working on with the consumer. Consumers have the right to vary the inclusions and tailor the home to suit their needs which is then compiled into a specification produced by the contractor forming a tender proposal. The baseline first principle method of construction cost calculation will be used for the development of a suitable cost modelling framework. Various methods of estimating techniques applicable to the construction industry will be discussed in the next section to better understand the main types available along with their advantages and disadvantages.

## 2.3 Current cost estimating techniques available

Various methods of producing a cost estimate for construction projects exist and are common between different sectors of the industry. This section will detail some of the common methods available, their predicted accuracy and relevance to the proposed cost modelling framework. There will be a trade-off between the time and accuracy of each method employed to produce a cost estimate. The developed cost modelling framework will find a balance between the two.

The accuracy of the cost estimate typically evolves as further design details become available. It is critical that these estimates are as accurate as possible to ensure the business is achievable as the cost estimating function is an important element in the financial success of the project (Akintoye and Fitzgerald 2000, p. 162). Many studies have been conducted into the accuracy of cost estimates and the factors that contribute to the inaccuracies. Serpell (2004, p. 160) found that there are five major factors contributing to estimate accuracy including scope quality, information quality, uncertainty level, estimator performance and quality of estimating procedure.

Variance between the initial cost estimate and final cost of the construction project can vary significantly. Stoy and Schalcher (2008, p. 139) reported that a variance of up to 30% can be seen in German residential projects during the early design stages. Ashworth & Skitmore (1982, p. 24) believe this can be improved to between 13% and 18% with more detailed designs and reliable data. Research has established that a priced bill of quantities can have an accuracy level of  $\pm 10\%$  (Ashworth 2004, p. 54). AbouRizk et al. (2002, p. 655) further validates this finding and found that accuracy favourably increases from  $\pm 50\%$  for a strategic estimate to  $\pm 10\%$  during the detailed design phase. This confirms that as more information becomes available, the level of estimate accuracy improves. A need has been identified for more accurate estimating methods during the early stages of project development which can be determined from the minimal design information that is available. Common methods of estimating found in the construction industry will be detailed in the following sections along with their expected accuracies.

#### 2.3.1 The unit rate

The unit rate method of estimating is often known as an approximate estimate and involves the multiplication of a single variable with that of a unit rate (Ashworth and Skitmore 1982, p. 3). This has the advantage of being quickly applied to forecast the cost of a project by knowing only the quantity of the unit required and the rate to apply to it. Accuracy of such a method varies significantly and is a common method in residential construction in Australia due to the repeatability of project home building in general, however often needs adjusting based on design variables and historical price fluctuations (Lim et al. 2016, p. 14).

The Australian Institute of Quantity Surveyors define the gross building area (GBA) as the total enclosed and unenclosed area of the building measured from the normal outside face of any enclosing wall (AIQS 2000, p. 5). The rate used can be based on experience or a good historical library of comparable buildings which can then be adjusted for site variables or design differences (Azman et al. 2013, p. 996). Take an example of a completed house design that has a gross building area of 270 m<sup>2</sup> and a final construction cost of \$337,500. The estimator can easily calculate a unit rate for the design.

Unit rate of Design A = 
$$\frac{\$337,500}{270 m^2}$$
 =  $\$1,250 / m^2$  (1)

If the new design (Design B) has some differences between the model used for comparison, there needs to be some adjustments made to this prediction value. Let us say that Design B has an additional bathroom and an additional bedroom when compared to Design A which was used to determine the applicable rate. Let us also assume that the rate obtained from Design A was from a project completed over 2 years ago. The estimator would need to first quantify the additional costs for the bathroom and bedroom and apply a cost index factor to the historic price to normalise the cost for today's rates. This then simply becomes a process of applying the adjustments accordingly.

Cost of Design 
$$B = (270m^2 \times \$1,250 / m^2) \times (1 + Index factor) + \$bath + \$bed$$
 (2)  
Cost of Design  $B = \$364,312.50$  (3)  
Where;  
 $\$bath = \$10,000$   
 $\$bed = \$5,000$   
Index factor = 3.5%

This type of estimating technique lends itself as a good indicator of final cost but not as an accurate predictor. They are acceptable under certain circumstances however best left for experienced estimators and are often not accurate enough when compared to other methods (Del Pico 2012, p. 55). Ashworth (2004, p. 342) states that these types of estimates often have an accuracy of 13% which is dependent on size, method used and luck.

A variant to the unit rate method of estimating is the elemental cost estimate in which the project is broken down into major building elements and rates assigned to each of those to build up a total cost (Ashworth 2004, p. 272). The Australian Institute of Quantity Surveyors define elements in their cost management manual for components such as Preliminaries, Substructure, Superstructure, Finishes, Fittings, Services, Site Works and External Services (AIQS 2006). These elements can be further broken down into sub-elements and rates assigned to build up a total cost for construction. The accuracy of this method relies on the quality and relevance of the data used to obtain the rates. This method is quite popular in calculating construction costs with a study of UK quantity surveyors confirming 80% used this method when providing cost plans (Soutus and Lowe 2011). A similar and more detailed method is the first principle estimate which will be discussed in the following section.

#### 2.3.2 First principle estimates

This is the traditional method of estimating adopted by many contractors and referred to as analytical estimating. It involves extracting quantities for the components required to complete the project and assigning them to labour, materials, plant hire and subcontract works which are then allocated individual unit rates to build up a total cost (Ashworth and Skitmore 1982, p. 4). Overheads and profit are often added on top of the determined construction cost to arrive at a tender price. This method of cost estimating requires considerable skill and diligence by the estimator and is also the most time consuming, however it is the most reliable and accurate method with Ashworth (2004, p. 342) claiming a typical accuracy of 10%.

The study by Lim et al. (2016, p. 14) determined that a first principle estimate using a priced bill of quantities for each standard house design to form a baseline of construction cost is common practice in the Australian residential market, the study is relevant to Queensland where this research project is basing its data collection. Del Pico (2012, p. 55) recognises that this method is labour intensive and time consuming but does yield the most accurate results when compared to other methods of estimating. The first principle estimating method will be utilised by this research project to calculate the construction costs of the sample

designs used for the statistical analysis required to develop a cost model. Cost modelling will be discussed in the next section as it will be used by this research project to develop the framework.

### 2.3.3 Cost modelling

Cost modelling is a modern technique used to forecast construction costs which utilise numerical methods such as statistical analysis (Ashworth 2004, p. 274). A mathematical model is constructed that best fits the data available to provide an output in terms of cost (Ashworth and Skitmore 1982, p. 7). Regression analysis and neural networks are the two models that have shown the most promise and highest levels of accuracy, however both use historical data (Lowe et al. 2006 p. 750). Ashworth (2004, p. 342) determined this type of estimate provides an accuracy of between 15% - 20% depending on data quality and information available. There has been much research done into trying to develop a viable model with a high enough level of accuracy to be relevant. There have been several studies focussing on residential construction in other countries, however no focus on the Australian market has been found.

A study by Stoy and Schalcher (2007), with a focus on the German residential market, have collated similar studies dating back to 1998 identifying the data pool size, method of cost modelling and a list of cost drivers. Cost drivers are considered variables of the project that impact the construction cost of the works. Regression analysis was also used by Alshibani et al. (2018) to formulate a model for cost prediction based on Canadian low-rise residential buildings. Badawy (2019) developed a hybrid model using the output from both regression analysis and neural networks to predict the cost of residential buildings in Egypt. This shows that cost modelling is a common area of research. No information exists on models developed in the Australian residential construction sector. Current levels of accuracy are only good enough for preliminary estimates rather than detailed estimates which have an accuracy high enough to enter a building contract and maintain profitability. Cost modelling will form the basis of this research project's framework and will be further explored in section 2.4 Statistical cost modelling techniques.

### 2.3.4 Critical analysis of findings and research focus

The most accurate method of estimating is the traditional first principles method which is the most time consuming. One of the objectives of this research project is to produce a cost modelling framework, so it is important to determine what level of accuracy must be produced for the model to be deemed successful. Further cost modelling accuracies from previous studies will be covered in section 2.4 Statistical cost modelling techniques.

It has been determined that the first principle estimate is the most common method employed by contractors in the Queensland residential construction industry (Lim et al. 2016). A case study of a cost estimating company based in Queensland will aim to validate this finding. The data collection for this project will require a first principle estimate of sample designs to formulate the data for a statistical analysis. It is crucial to confirm that this method is currently employed in the industry. This will be validated through the case study interviews.

This section has introduced and detailed current methods of estimating and their expected levels of accuracy. Through previous research it has been determined that these methods are viable options to estimate construction costs depending on the stage of the design and level of accuracy required. An accuracy level of 50% at the strategic stage to 10% at the detailed design stage is considered typical in the industry.

First principle estimating techniques involve the extraction of quantities and assigning a rate to each item to build up a total cost. This is the most accurate method available and the most time-consuming. The unit rate method is very quick to apply and adjust however relies on the skill of the estimator and access to good quality historical data with levels of accuracy less than that of first principle estimates. Calculating construction costs using only the unit rate method, whilst fast, often yields inaccurate results due to its simplistic and one-dimensional nature. The method of first principle estimating will be used by this research project to calculate the construction costs for the sample models used for data analysis so an understanding of the procedure is important, this will be analysed during the case study.

Cost modelling is a modern technique that employees various numerical methods such as statistical analysis to predict an output cost with regression analysis and neural networks being common. The advantage of this method is that it can be performed relatively quickly given the right input variables. It can also yield relatively accurate results if the modelling is performed well with the correct input variables and quality sample data. Cost modelling will be used during the development of the framework for this research project whilst utilising construction costs obtained from first principle estimates. As cost modelling methods form the basis of the framework, the techniques currently available will be detailed in the next section.

### 2.4 Statistical cost modelling techniques

Cost modelling is a form of estimating that uses statistical methods to forecast construction project costs. The use of cost modelling as a cost forecasting technique and a brief introduction to the method was given in the previous section. As this technique will form the basis of the cost modelling framework for this research project, this section will provide greater detail on the method itself. It will also detail cost drivers that have been identified from previous studies which will give relevance to the choice of cost drivers statistically analysed by this study and be validated during the case study interviews. A summary of accuracies obtained through various cost modelling methods will be detailed, this will provide a target for this research project to improve upon.

#### 2.4.1 Cost drivers

Cost drivers are statistically significant factors that have an influence on the cost of the construction project, in a cost model they are a function of the building cost (Ofori-Boadu 2015, p. 4). These form input parameters for any cost model and are typically quantitative or qualitative values. The purpose of any cost model is to determine the relationship between input variables and output variables, in this case construction cost (Dursan and Stoy 2016, p. 3). Many factors affecting the cost of a project have been identified from a broad range of categories such as market factors, site location and conditions, design details, structural parameters, project team experience, procurement method and tender period (Sayed et al. 2020, p. 3). Lim et al. (2016) categorized key factors into two categories. The categories are environmental factors such as market conditions, financial uncertainty, weather conditions and supply issues with the second category being project specific factors such as project type, duration, contract type, location, design complexity, construction method and site conditions (Lim et al. 2016, p. 7). A study by Lowe, Emsley and Harding

(2006, p. 751) determined three categories of cost drivers would be project, site and design related factors. Many factors affect the final cost of a construction project and it is impractical to adequately capture all of them in a cost model that provides a robust, reliable and accurate output. Therefore, it is best to narrow the focus of cost drivers which this research project will do by considering design related factors only.

Most studies have similar design or structural related cost drivers included in their cost models, which will be the focus of this research project. These cost drivers have an influence on the complexity of the design and therefore an impact on the cost. A review of studies involving cost modelling that contain relevant design cost drivers specific to buildings such as commercial, residential or high-rise construction have been identified and collated in Table 1. This table details the year and location of the study, type of model used and the cost drivers identified. This shows no study has been conducted in the Australian market and that linear regression features prominently as the chosen method of statistical analysis. Linear regression will be the main type of statistical method used by this research project in the development of a cost modelling framework and will be explored in the following sections along with alternative models such as neural networks.

| Study | Author                | Year | Location | Model                                               |                                                                                  |                                                                            |                                                                                            | Desig                                                                                     | gn related cost dri                                                                          | vers                                                                                         |                                                         |                                                                       |                                                 |                                                                                                                       |
|-------|-----------------------|------|----------|-----------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1     | Lowe et al.           | 2006 | U.K.     | Regression                                          | Gross<br>internal floor<br>area                                                  | Function                                                                   | Internal walls                                                                             | Wall-to-floor<br>ratio                                                                    | External walls                                                                               | Floor finishes                                                                               | Height                                                  |                                                                       |                                                 |                                                                                                                       |
| 2     | Stoy and<br>Schalcher | 2007 | Germany  | Regression                                          | Gross<br>external floor<br>area                                                  | Compactness                                                                | Area of internal<br>divisions and<br>internal<br>construction/gross<br>external floor area | Floor<br>space/gross<br>external floor<br>area                                            | Circulation<br>area/gross<br>external floor<br>area                                          | Ancillary<br>area for<br>services/gross<br>external floor<br>area                            | Usable<br>floor<br>area/gross<br>external<br>floor area | Area ancillary<br>to main<br>function/gross<br>external floor<br>area | Median<br>floor<br>height                       | Levels<br>below<br>ground                                                                                             |
|       |                       |      |          |                                                     | Levels above<br>ground                                                           | Gross external<br>floor area/levels                                        | Excavation<br>volume/gross<br>external floor area                                          | Building base<br>surface/gross<br>external floor<br>area                                  | External wall<br>surface/gross<br>external floor<br>area                                     | Internal wall<br>surface/gross<br>external floor<br>area                                     | Ceiling<br>area/gross<br>external<br>floor area         | Ceiling<br>area/gross<br>external floor<br>area                       | Facade<br>glass/gross<br>external<br>floor area | (Building<br>base<br>surfaces +<br>external<br>wall<br>surfaces +<br>roof space)<br>/ gross<br>external<br>floor area |
|       |                       |      |          |                                                     | (External<br>wall surfaces<br>+ roof space)<br>/ gross<br>external floor<br>area | Ventilated gross<br>external floor<br>area/gross<br>external floor<br>area | Vented and<br>ventilated gross<br>external floor<br>area/gross<br>external floor area      | Partly air<br>conditioned<br>gross external<br>floor area/gross<br>external floor<br>area | Partly air<br>conditioned<br>gross external<br>floor<br>area/gross<br>external floor<br>area | Partly air<br>conditioned<br>gross external<br>floor<br>area/gross<br>external floor<br>area | Site<br>area/gross<br>external<br>floor area            | Site area<br>covered by<br>buildings/gross<br>external floor<br>area  |                                                 |                                                                                                                       |
| 3     | Stoy et al.           | 2008 | Germany  | Regression                                          | Gross floor<br>area                                                              | Compactness                                                                | Proportion of<br>openings                                                                  | Number of<br>elevators                                                                    |                                                                                              |                                                                                              |                                                         |                                                                       |                                                 |                                                                                                                       |
| 4     | Ofori-Badu            | 2015 | Global   | Regression                                          | Floor area                                                                       | Number of<br>stories                                                       | Shape complexity                                                                           | Height of<br>building                                                                     | Wall height per<br>storey                                                                    | Structural material                                                                          |                                                         |                                                                       |                                                 |                                                                                                                       |
| 5     | Dursan and<br>Stoy    | 2016 | Germany  | Regression<br>&<br>Artificial<br>Neural<br>Networks | Gross<br>external floor<br>area                                                  | Gross building<br>volume                                                   | Average storey<br>height                                                                   | Average floor<br>size                                                                     | Number of<br>storeys in total                                                                |                                                                                              |                                                         |                                                                       |                                                 |                                                                                                                       |
| 6     | Alshibani et<br>al.   | 2018 | Canada   | Regression                                          | Number of floors                                                                 | Height of floor                                                            | Type of structure                                                                          | Type of<br>envelope                                                                       | Building area                                                                                |                                                                                              |                                                         |                                                                       |                                                 |                                                                                                                       |
| 7     | Juszczyk              | 2018 | Poland   | Support<br>Vector<br>Regression                     | Building<br>footprint                                                            | Building volume                                                            | Number of<br>storeys                                                                       | Foundation type                                                                           | Building and<br>roof structure                                                               | Number of<br>elevators                                                                       | Usable<br>area of<br>dwelling                           | Number<br>segments                                                    |                                                 |                                                                                                                       |

Table 1 – Design cost drivers identified by previous studies.

Forty-one cost drivers were initially identified by Lowe et al. (2006) during a study conducted in the United Kingdom, thirty-two of these related to design. The cost drivers were spread over project, site and design related factors. During the regression analysis it was found through statistical significance tests that most of these cost drivers did not impact the model and were subsequently excluded. This ended with a total of twenty cost drivers being included with seven related to design which have been detailed in Table 1. This process of reducing the number of significant cost drivers without an impact on model accuracy is crucial in developing a relevant framework and will be utilised during this research project to remove any cost drivers that are not statistically significant from further consideration.

The study by Stoy and Schalcher (2007) used regression analysis to predict the cost of residential buildings in Germany and identified a total of thirty-seven relevant cost drivers. This study has the most comprehensive use of cost drivers for residential construction and most of them centre around ratios of building elements to gross floor area. This means gross floor area becomes a function of many of the identified cost drivers. Gross floor area is the most important variable identified from this study and believed to have the greatest impact on building cost. This can also be surmised from the introduction of the unit rate method of estimating earlier in the literature review where a cost value is typically applied to the gross floor area of a building to determine a project cost.

A study by Stoy and Schalcher along with Pollalis (2008) further investigated cost drivers in the early stage estimating of residential construction. This study collated cost drivers from eight previous studies stretching back to 1998, however these include cost drivers in addition to design related factors. The study reduced the variables significantly to a total of six, with only four being related to design and the remaining two being duration of project and the region it was constructed in. Again, the overall size of the building was a prominent factor with the proportion of openings (window openings / gross floor area) and compactness (wall area / gross floor area) being common to the previous study.

A study of high-rise buildings from all over the world was found to clearly identify cost drivers, their meaning and relationship with estimating cost and accuracy (Ofori-Badu 2015). Although conducted on high-rise buildings, this study offered excellent insight into key cost drivers whilst keeping the number of input variables manageable. This is crucial in developing an easy-to-use framework and this research project will aim to include a minimal number of statistically significant cost drivers. Six cost drivers were selected with all of them relating to design factors with total floor area in common with the previous two studies. The accuracy of the output using regression analysis was approximately 9% when assessed using the mean absolute percentage error which will be discussed further in section 3.4.4 Testing of cost models.

Another German study by Dursan and Stoy (2016) used linear regression to analyse 657 buildings with a total of twenty-four cost drivers, however only five related to design factors. The cost drivers were a mixture of qualitative and quantitative variables and focused on a range of building types including residential. The cost drivers for this study were gathered through semi-structured interviews with industry practitioners. This is an excellent method to narrow down what factors drive the cost of the project, as it provides relevant input from industry professionals. Semi-structured interviews will be conducted through a case study to validate and further expand the cost drivers found during this literature review.

Low-rise residential buildings were focused on by a study conducted in Canada of 300 test samples (Alshibani et al. 2018). Six cost drivers were identified with only four being related to design. This study also used the year of construction and location as the remaining two variables which can cause significant variance in cost fluctuation and construction methodology in itself. Whilst the identification of similar cost

drivers to previous studies were validated, the model had an accuracy of 90.66% which can be improved upon without the inclusion of such ambiguous cost drivers. This research project will focus on design related cost drivers with the aim of reducing ambiguity and improving model accuracy.

Several qualitative and quantitative cost drivers were used for a study on residential construction by Juszczyk (2018) in Poland. Eight of the thirteen possible cost drivers were related to design features. The issue with using qualitative variables for an analytical cost model is that they are difficult for the user to quantify without ambiguity. For example, the study used ground conditions as a qualitative variable with the options of simple, complex and complicated. This can quickly become ambiguous and difficult to interpret causing inaccurate results when the model is used by others. As a linear regression model is numeric by nature and qualitative variables can be a source of ambiguity, this research project will use quantitative cost drivers to reduce ambiguity, increase accuracy and usability of the framework.

An analysis of previous studies show there exists common cost drivers revolving around the building geometry with studies identifying factors such as floor area, wall heights, compactness and building volume. Some of these are considered functions of each other with volume being a function of wall height, external wall length and floor area. Similarly, compactness is a function of wall area and floor area so it is obvious that these cost driver components are critical when it comes to influencing the building cost. The purpose of this section was to identify common design related cost drivers to use in the development of the cost modelling framework for this project which will be validated during the case study. Whilst there are more studies that exist on cost modelling these were considered the most relevant to this research project due to their close alignment with residential construction and the project aims. No relevant study has been found to have been conducted in the Australian market which this research project will provide.

The analysis of previous relevant studies has shown that linear regression and artificial neural networks feature as the predominant form of statistical analysis for cost modelling. This research project will compare both methods and the following sections will further detail these models and provide a brief outline of how they work.

#### 2.4.2 Statistical models available

As seen from Table 1 linear regression analysis is the most common method used when statistically analysing the data. There have been many other studies performed on different sectors of the construction industry using regression and other methods of statistical analysis during the early design stages of a project to predict cost. Table 2 collates and summarises the different types of models found during the literature review along with other relevant data such as the accuracy of each method to gain a better understanding of what has been utilised in the past and the varying levels of success for the chosen models.

| Author                       | Year                                                                                                                                                                                                                    | Location                          | Building type                                                                                                                     | Model type                                                                                                                               | Test for accuracy                                                | Accuracy                              |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|--|--|
| Badawy                       | 2020EgyptResidential housingHybrid of regression and artificial neural network (multilayer perceptron)Mean absolute percent                                                                                             |                                   | Mean absolute percent error (MAPE)                                                                                                | 10.64%                                                                                                                                   |                                                                  |                                       |  |  |
| Chakraborty et al.           | 2020                                                                                                                                                                                                                    | Unknown                           | Multi-level highrise                                                                                                              | Hybrid natural and light gradient boosting     Mean bias error (MBE)                                                                     |                                                                  |                                       |  |  |
| Ugar et al.                  | 2018                                                                                                                                                                                                                    | Turkey                            | Residential multi storey housing                                                                                                  | Artificial neural network (multilayer perceptron and classification and regression trees)                                                | Not assessed, focus was on improving accuracy of current methods | Unknown                               |  |  |
| Juszczyk                     | 2018                                                                                                                                                                                                                    | Poland                            | Residential and commercial buildings                                                                                              | Support vector regression                                                                                                                | Mean absolute percent error (MAPE)                               | 8.87%                                 |  |  |
| Alshibani et al.             | 2018                                                                                                                                                                                                                    | Canada                            | Low rise residential buildings                                                                                                    | Multiple linear regression                                                                                                               | Average validity percentage (AVP)                                | 90.66%                                |  |  |
| Wang et al.                  | 2017                                                                                                                                                                                                                    | Taiwan                            | Residential reinforced concrete<br>buildings                                                                                      | Artificial neural network (neurofuzzy and multifactor)                                                                                   | Mean absolute percent error (MAPE)                               | 7.73%                                 |  |  |
| Alshamrani                   | nrani 2016 USA Educational facilities Multiple linear regression Average validity percentage (AVP)                                                                                                                      |                                   |                                                                                                                                   |                                                                                                                                          | 94.30%                                                           |                                       |  |  |
| Ofori-Boadu                  | fori-Boadu     2015     Global     High rise buildings     Multiple linear regression     Mean absolute percent error (MAPE)                                                                                            |                                   |                                                                                                                                   |                                                                                                                                          |                                                                  |                                       |  |  |
| El-Sawah and Moselhi         | d Moselhi       2014       Canada       Low rise steel buildings and timber bridges       Multiple linear regression and artificial neural network (back propagation, bridges)       Mean absolute percent error (MAPE) |                                   |                                                                                                                                   |                                                                                                                                          | 16.83% to 19.35%                                                 |                                       |  |  |
| Gulcicek et al.              | 2013                                                                                                                                                                                                                    | Turkey                            | Multi-level buildings                                                                                                             | ulti-level buildings Multiple linear regression and artificial neural network (multilayer perceptron) Mean absolute percent error (MAPE) |                                                                  | 5.23% (ANN)                           |  |  |
| Latief, Wibowo and<br>Isvara | 2013                                                                                                                                                                                                                    | Jakarta                           | Multi-level buildings       Hybrid (regression and adaptive neurofuzzy interface system)       Mean absolute percent error (MAPE) |                                                                                                                                          | 3.98%                                                            |                                       |  |  |
| Petroutsatou et al.          | tou et al. 2012 Greece Road tunnel construction Multiple linear regression and artificial neural network (multilayer forward feed Overall percentage accurate and generalized regression network)                       |                                   | Overall percentage accuracy                                                                                                       | 90.6% (regression)<br>and 95.35% (ANN)                                                                                                   |                                                                  |                                       |  |  |
| Mahamid                      | 2011                                                                                                                                                                                                                    | Palestine                         | Road construction                                                                                                                 | Multiple linear regression                                                                                                               | Mean absolute percent error (MAPE)                               | 13% to 31%                            |  |  |
| Yu and Skibniewski           | xi2010ChinaHigh rise residential buildingsArtificial neural network (Integrated neurofuzzy system)Absolute percent error                                                                                                |                                   | 90.01%                                                                                                                            |                                                                                                                                          |                                                                  |                                       |  |  |
| Zhigang and Yajing           | g and Yajing 2009 China Multi-level buildings Artificial neural network (Radial basis function) Mean relative error (MRE)                                                                                               |                                   | Mean relative error (MRE)                                                                                                         | 6.14%                                                                                                                                    |                                                                  |                                       |  |  |
| Jablonowki and<br>MacEachern | 2009                                                                                                                                                                                                                    | Mexico, Brazil<br>and West Africa | Well drilling construction                                                                                                        | Multiple linear regression                                                                                                               | Standard error                                                   | 10.89%                                |  |  |
| Stoy et al.                  | 2008                                                                                                                                                                                                                    | Germany                           | Residential multi level buildings     Multiple linear regression     Mean absolute percent error (MAPE)                           |                                                                                                                                          | 9.60%                                                            |                                       |  |  |
| Lowe, Emsley and<br>Harding  | 2006                                                                                                                                                                                                                    | United Kingdom                    | Multi-level buildings                                                                                                             | Multiple linear regression                                                                                                               | Mean absolute percent error (MAPE)                               | 19.60%                                |  |  |
| Sonmez                       | nmez 2004 USA Aged care retirement facilities Multiple linear regression and artificial neural networks (back propagation with sigmoid transfer function)                                                               |                                   | Mean absolute percent error (MAPE)                                                                                                | Best of 11.1%<br>(regression)                                                                                                            |                                                                  |                                       |  |  |
| Emsley et al.                | 2002                                                                                                                                                                                                                    | United Kingdom                    | Multi-level buildings                                                                                                             | Multiple linear regression and artificial neural networks (multilayer perceptron)                                                        | Mean absolute percent error (MAPE)                               | 19.3% (regression)<br>and 16.6% (ANN) |  |  |

Table 2 – Recent studies of construction cost prediction models and accuracy.

Table 2 shows the extent of relevant studies over the last twenty years, with a trend moving from linear regression analysis to artificial neural networks. However, regression analysis still features prominently in the studies as a valid model. Based on the evidence presented, this research project will test variants of both techniques to assess their suitability for the framework.

The mean absolute percentage error was used predominantly throughout the studies to assess the validity of the model. This test will also be utilised in this research project, this technique will be further detailed in section 3.4.4 Testing of cost models. The levels of accuracy displayed in Table 2 for previous studies can be considered highly variable with only one model achieving an accuracy under 5%. This research project will improve on this result by developing a modelling framework that focuses on design related variables only and using the baseline estimating technique found to be common in the Australian residential construction sector.

Table 2 shows that whilst many studies have been done, some with a focus on the residential sector, no cost model has been based on the Australian residential construction industry which this research project will provide.

Following on from Table 2 it has been shown that linear regression and artificial neural networks are the most common form of cost modelling used in previous studies. This research project will compare both methods as potential candidates for the framework development. A brief outline of the two methods will be provided in the following sections.

### 2.4.3 Linear regression analysis method

Linear regression has been used as a cost modelling technique to predict cost since the 1970's with Professor Geoffrey Trimble originally putting forward the idea (Ashworth 2004, p. 332). It is an appealing option because it provides estimates in a robust and systematic way with little information required and can be easily applied using a simple formula (Jablonoski and MacEachern 2009, p. 440). Ashworth (2004, p. 334) states that simple linear regression analysis quantifies the relationship between two variables by constructing a line of best fit derived by the sum of least squares method. This simple method includes the analysis of one input variable and one output variable. Multiple linear regression analysis is a more advanced technique which uses multiple input variables to describe the relationship between the output variable. The use of multiple linear regression will be used by this research project to develop the cost modelling framework and referred to simply as linear regression.

Linear regression has been shown to provide relatively accurate cost prediction models with the main advantage being an easily usable algebraic formula, this will allow this research project to provide a relevant framework for potential users. The major disadvantage with linear regression is that it assumes a linear relationship between the input and output variables, which is not always the case with non-linear relationships often existing between variables (Emsley et al. 2002, p. 468). This downside has been identified through previous studies and is why machine learning models such as artificial neural networks have been gaining popularity. Artificial neural networks will be used by this research study as a comparison to linear regression and the general theory will be discussed in the next section.

#### 2.4.4 Artificial neural network method

Table 2 shows that over 60% of the modelling techniques used over the last twenty years have included some form of an artificial neural network. The success of the technique is such that it cannot be ignored and therefore it is prudent to compare of the results from artificial neural networks during this research.

It is common to first utilise linear regression to identify any statistically significant input variables, then remove any insignificant variables and use the remaining variables in the creation of the neural network. Neural networks do an excellent job at estimating non-linear relationships between variables by employing a machine learning algorithm designed to mimic the human brain (Gulcicek et al. 2013, p. 576). This is important because many of the relationships between input and output variables are generally complex and non-linear which means neural networks are best suited to predictive models (Emsley et al. 2002, p. 468). The neural network achieves this through a learning algorithm, which in its simplest form consists of an input layer, a hidden layer then an output layer as shown in Figure 1 (Zhigang and Yajing 2009, p. 32). There are many different forms of artificial neural networks that can be used as cost prediction models as seen in Table 2, however they typically follow the same layered form. This has been conceptualised in Figure 1.

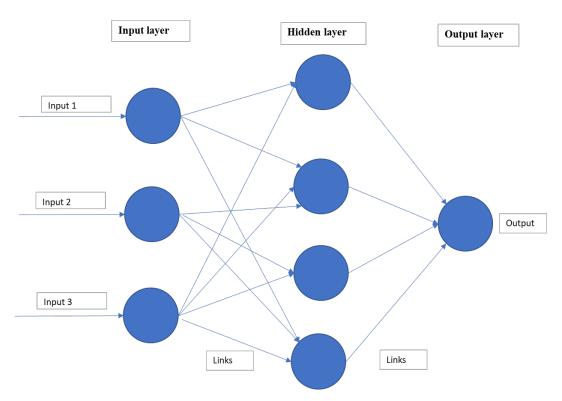



Figure 1 - Conceptual model of artificial neural network.

While artificial neural networks improve accuracy, they are also much more complicated to replicate compared to multiple linear regression analysis. To develop a relevant neural network model the output generally needs to be programmed using specialised software in comparison to linear regression which yields an algebraic equation that can simply be applied to calculate a result. This research project will select an appropriate statistical method based on factors other than accuracy and will be further detailed in the methodology chapter.

Both linear regression and neural networks produce an output from input variables. Up until this point it has been assumed that this output needs to be in the form of a lump sum of total cost, however it is unclear as to what cost this relates to. The model output options will be discussed in the next section with relevance to this research project.

#### 2.4.5 Relevant output from the cost models

One area that needs to be explored is the output that the model provides and whether it is relevant. Many studies focus on the ability to predict the cost of the project. This project cost could range from the tender price, the final account cost for the client or the total cost to the contractor all of which could vary greatly and only be relevant to certain target audiences. It is crucial to design a predictive model that provides a relevant output without the impact of influencing factors that may not be identical across the entire data set. By focusing only on the cost of construction as an output for the statistical model this research project will remove these influencing factors and develop a more relevant and accurate model.

A study conducted by Emsley et al. (2002) recognised the difference between tender cost and final contract sum, which was a criticism of previous cost models. This cost can still be adversely skewed by market influences. Each contractor will have a different internal strategy when it comes to securing the tender and can be heavily influenced by factors such as profit margin, current work being undertaken, labour and material resources and perceived risk of the project. All these factors will adversely affect the mark-up strategy applied to the raw construction costs. There exists a gap in the current studies in that raw construction cost excluding profit and overhead contribution percentages have not been investigated, which are often added directly on top of the construction costs. Many of the models researched have not clearly specified what actual cost the model is designed to predict, however judging by the use of historical data, it can be assumed that the cost is either the final contract sum or the tender amount which are generally contained in a public record database. This research project will only be assessing the raw construction costs of the projects to gain clarity and greater accuracy. Access to these costs will be available through the Company cost estimating database. This will provide a clearer indication of the influence the cost drivers have on cost and by isolating design cost drivers this will give a more accurate baseline estimate produced by the modelling framework.

Upon further research into previous studies, it also became apparent that some models provide outputs of other relevant costs such as cost per gross floor area instead of a lump sum (Zhigang and Yajing 2009). Emsley et al. (2002) also studied the output of log of total cost, cost per m<sup>2</sup> and log of cost per m<sup>2</sup> and found that the best results were obtained through a neural network model which predicted the cost per m<sup>2</sup> with a mean absolute percent error (MAPE) of 16.6%. Likewise, a study using regression analysis determined total cost should be rejected as a predictor as it found that the error in project cost rises proportionally with the total cost of the project or because there is a high correlation between cost and size (Lowe et al. 2006, p. 752). As the samples this research project will be using are single storey dwellings the variance in size and cost will be relatively small, therefore the impact of this finding will be minimised. These were the only three significant studies that provide an output other than lump sum cost and therefore deemed not significant enough for this research project to explore. Validation of output from a statistical model needs to be confirmed and there exists statistical tests which can be performed, these will be discussed in the methodology section.

#### 2.4.6 Findings from cost modelling techniques

The review of current studies into cost modelling techniques show a tendency to over complicate the input variables by trying to encompass too many cost drivers. This will lower the accuracy of any model due to the subjective nature of some of the input variables and of ambiguity from using qualitative variables. This research project aims to focus only on design related cost drivers that can be easily quantified by a user for input into the cost modelling framework. Using this technique will improve accuracy of the model and the development of a successful framework.

Multiple linear regression analysis will be used as the basis for this research project due its ease of use and historical success as a predictive model. Due to the development in recent years of artificial neural networks and their success in cost forecasting they will be utilised during this study as a comparison to linear regression. It has been found that over the past twenty years several studies have utilised these techniques with an accuracy ranging between 3.98% (Latief, Wibowo and Isvara 2013) and 19.60% (Lowe, Emsley and Harding 2006). With a focus on design related cost drivers this research project will improve these accuracies. Further improvement will be made by using the output of raw construction cost only rather than tender price or final contract sum which can often be adversely influenced by market conditions, budget over runs and contractor procurement strategies when applying profit margins during the tender stage. The output from the models will be validated using the mean absolute percentage error found during previous studies to confirm their accuracy which will be discussed in section 3.4.4 Testing of cost models.

### 2.5 Research gap

Baseline first principle estimates to a standard level of inclusions are common in residential housing construction in Australia. This method will remove the influence of external factors such as site conditions, contractor profit margins and variable levels of fixtures or finishes. This baseline estimate can then have profit margins applied and adjusted for variable site conditions if required which will give a more robust framework to predict costs during the concept stage of design. This method will be used by this research project in gathering the raw construction costs for the sample data used for the statistical analysis.

First principle estimates have been found to be the most accurate form of estimating but also the most time consuming which lowers productivity and increases the chance of human error. A need for an accurate cost modelling technique applicable to the Australian residential construction market has been identified as no previous studies have been performed in this area.

Previous studies have utilised historic data that is often available through public record with the data often consisting of total tender cost or final contract sum to the client. The data set is often skewed by market factors and considered an unreliable source to develop an accurate cost model. This research project aims to utilise construction costs only with up-to-date rates through access to a cost estimating company's database to produce a relevant and accurate model. Previous cost models also do not deal with the problem of how to update the model when construction unit prices fluctuate and no example of this was found. As all models developed generally rely on historic data there is a need to base a relevant framework on a system that can be periodically updated otherwise the model quickly becomes obsolete. This research project will detail a method to update the framework when construction costs fluctuate.

## 2.6 Summary

This literature review covered current estimating techniques in the construction industry, current practices in residential construction in Australia and a review of current methods of estimating including cost modelling. It found that cost modelling is a viable form of estimating costs of construction projects during the concept stage. Whilst many studies are available, there has been little research into residential construction and no specific focus on the Australian market.

From this analysis a gap in the current research exists. It was also discovered that many of the cost models have a focus on tender price or contract sum. This provides a misleading output due to the influence of factors that are often not captured by input variables such as contractor markup strategy or other influencing market forces such as labour or material shortages. This project will develop a more accurate model using raw construction costs and design related cost drivers with a focus on residential single storey dwellings. Data will be collected by using the baseline estimating technique which was found to be common in the Australian residential construction industry, this will provide for a uniform statistical analysis.

# Chapter 3 - Research methodology

# 3.1 Introduction

This section will detail the methodology employed to collect and analyse the data and the steps involved in developing a cost modelling framework. The methodology for this research project will move through three distinct stages before arriving at the development of a framework. The stages will be linked successively to each other, and each stage must be completed before moving on to the next.

The first stage involves a case study of the Company using semi-structured interviews which will determine two things. The first will determine the method of estimating used by the Company which will be used to gather the sample data for a statistical analysis. The second will validate and expand the cost drivers found during the literature review which will form the input variables for the statistical analysis.

The second stage will involve data gathered through a quantitative analysis to calculate construction costs of sample concept plan designs. These sample plans will provide the raw cost data used for the statistical analysis. This data will be collected using the Company's existing cost database, software resources and estimating methods from information found during the case study.

The third stage requires a statistical analysis of the construction costs collected during stage two. The data collected will determine which cost model will move forward for inclusion in the framework. The best cost model will be selected using a weighted decision matrix and once selected will be used to develop the final framework.

The stages of methodology used to develop the cost modelling framework have been illustrated in Figure 2 and further detailed in the following sections.

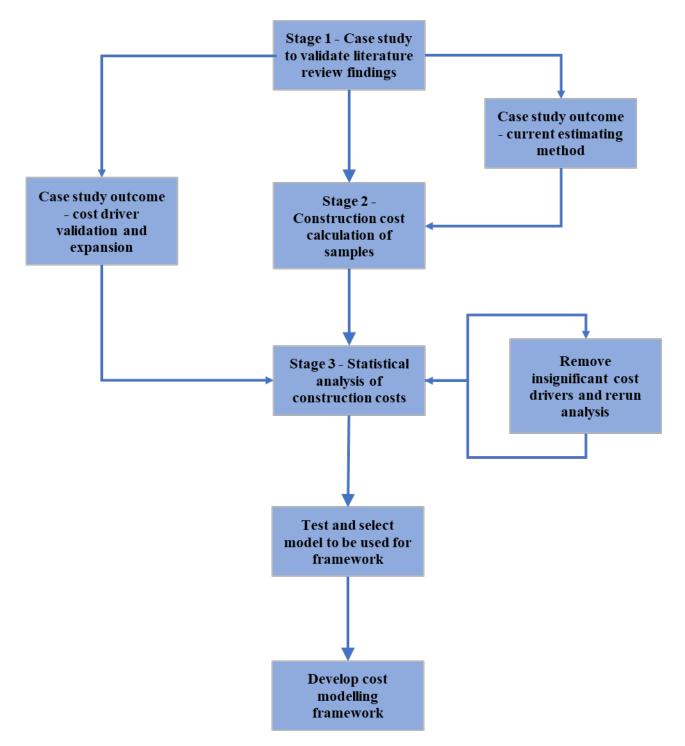



Figure 2 - Outline of stages in methodology of framework development

## 3.2 Case study

Two of the objectives of this research project involve the identification of current estimating techniques in the Australian residential construction industry and the identification of potential cost drivers. A review of current literature has provided the details of different types of estimating techniques common in the construction industry. Cost drivers have also been identified from a wide array of construction projects from previous cost modelling studies. To confirm the findings from the literature review a case study of the

Company will be conducted which will focus on construction cost estimating within the residential sector in the Queensland region. The Company will provide access to the resources required to perform the study. This will include a library of residential housing plans, current up-to-date cost databases, software, measuring tools and procedures to complete the data collection.

#### 3.2.1 Case study interviews

To gather the information required for this research project interviews will be conducted with estimators at the Company. These will be conducted in the form of semi-structured interviews which are the most common form of data collection for qualitative research (DiCicco-Bloom & Crabtree 2006, p. 315). This structure will allow interviewees to add potentially valuable information on current practice and further insight (O'Keeffe et al 2016, p. 1911). The interviews will be conducted one on one with the use of open-ended questions. The interview with each candidate will not take any longer than thirty to forty minutes.

#### 3.2.2 Interviewee selection

Three current employees of the company will be selected as interview candidates. Their time employed with the Company range from three to fifteen years. This will ensure each interviewee has relevant knowledge of the subject matter. Table 3 shows a summary of interview candidates with their experience in the industry, position in the company and time employed by the Company.

| Participant | Position         | Service at the Company | Time in residential construction |
|-------------|------------------|------------------------|----------------------------------|
| 1           | Estimator        | 3 years                | 9 years                          |
| 2           | Senior estimator | 11 years               | 15 years                         |
| 3           | Director         | 15 years               | 26 years                         |

Table 3 – Summary of interview candidates.

#### 3.2.3 Interview process

The questions will be determined prior to the interview and structured around topics identified during the literature review. Questions will be open ended, which will provide the interviewee the opportunity to elaborate and provide further insight into the topics discussed. The interviewer will guide the conversations back on topic if they veer too far away from the question parameters. The interview questions will be broken into two phases. One phase will establish current practice in the Australian residential construction industry. The second phase will provide insight from industry professionals into what they perceive as design related cost drivers to verify and expand on the findings from the literature review. The findings from the literature review relating to current practice in the Australian residential industry have been summarised in Table 4.

| 1 | <ul><li>There are three main methods of estimating construction costs.</li><li>a) Unit rate indicator.</li><li>b) First principle estimating.</li><li>c) Cost modelling.</li></ul>         |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | The level of accuracy and time taken to execute each method varies with first principle estimating being the most time consuming and accurate.                                             |
| 3 | Full design documentation during the early stages when the contract price is set is often not available.                                                                                   |
| 4 | A baseline bill of quantities is often produced in residential<br>construction for each design based on a standard level of<br>inclusions which can be varied according to consumer taste. |
| 5 | Design and build contracts are common for residential contractors in Australia.                                                                                                            |

Table 4 – Summary of relevant findings from the literature review.

The summarised findings in Table 4 will provide a basis for the list of open-ended questions for the semistructured interviews. The interview questions developed from the literature review findings can be found in Appendix C. The research questions will be submitted for ethical review and approval. Ethical approval for conducting these interviews has been granted and can be found in Appendix F.

A list of cost drivers found during the literature review have been identified previously in Table 1. Some items identified by the studies can be automatically removed as they are either duplicates or functions of other cost drivers. By using the baseline and standard inclusions estimating technique, some cost drivers will no longer be considered unique to each design and do not need to be included as a potential cost driver for this research. Table 5 provides a summary of cost drivers relating to design factors identified in the literature review.

| Cost driver               | Unit           | Calculation definition                                        |
|---------------------------|----------------|---------------------------------------------------------------|
| Gross internal floor area | m <sup>2</sup> | Internal living area measured of outside face of wall         |
| Gross external floor area | m <sup>2</sup> | Floor area of alfresco, patios, porches etc.                  |
| Gross floor area          | m <sup>2</sup> | Total floor area of dwelling measured to outside face of wall |
| Compactness               | ratio          | Area of external walls / gross floor area                     |
| Internal walls            | m              | Length of internal walls                                      |
| External walls            | m              | Length of external walls                                      |
| Proportion of openings    | m <sup>2</sup> | The area of all external wall openings                        |
| Building volume           | m <sup>3</sup> | External wall length x wall height x internal floor area      |
| Shape complexity          | N/A            | This will be further developed from interview data            |

Table 5 – Simplified cost drivers from literature review.

More data is required to be collected to form a relevant list of cost drivers for statistical analysis. A critical review of a typical floor plan for a house shows there are several features missing from the list shown in Table 5. Missing items that could potentially drive the cost of construction are the number of bedrooms, number of bathrooms and if there are any additional living areas such as separate theatre rooms, lounge rooms and rumpus rooms. As a semi-structured interview technique offers the benefit of probing to clarify and further explore data (Barriball and While 1994, p. 331), the development of additional cost driver identification will form the second phase of the semi-structured interview.

During the interview an explanation of a cost driver will be provided to the interviewee. This will be stated as "a design related factor that is believed to contribute significantly to the total cost of construction". From this statement the interviewee will be asked to name in their own words some factors they consider falling into the definition of a cost driver. These items will be recorded and further probed to seek clarification and relate them back to the cost drivers identified in Table 5. This technique will yield realistic data gathered from current industry professionals and provide a better understanding of potential cost drivers for inclusion in the data analysis. Few formal questions will be asked during this phase of the interview leaving the interviewee to develop their own answers and the interviewer to further probe interesting responses to formulate a definitive list of cost drivers to include in the cost modelling process. Interview questions for this phase of the case study can be found in Appendix D.

The data gathered from the second phase of the interview will be collated and analysed to formulate a complete list of cost drivers to be included during the data analysis.

#### 3.2.4 Research validity and reliability

The interviewees selected are industry professionals with relevant experience and information regarding the topic. Semi-structured interviews have been shown as a valid method of qualitative data collection (DiCicco-Bloom & Crabtree 2006, p. 315). The data collected from this technique must prove to be reliable if it is to be used in this research project. It is assumed to be reliable if the responses start to yield similar or repetitive answers between the interviewees. This is known as thematic saturation and signals that no new meaningful data can be gathered about the topic (Weller et al. 2018, p. 11). When the interview responses reach this point, it will signal that the answers are reliable and can be used in this research project.

## 3.3 Construction cost data collection method

The method of calculating the cost of construction along with the selection and type of data to be included in the cost modelling will be detailed in this section. The resources of the Company along with their current methods of construction cost calculation will be detailed. Findings gathered from the literature review improve the accuracy of the statistical model by focusing on design features only and providing a baseline estimate for analysis, this process will also be detailed.

The first purpose of the case study is to determine the estimating technique used by the Company which will validate the findings from the literature review. The second purpose of the case study is to validate and expand the cost drivers identified during the literature review. The information gathered from the case study will be used during the collection of construction cost data which will in turn be used for analysis and

development of the cost modelling framework. The following sections will outline the method of data collection used by this research project for the statistical analysis.

### 3.3.1 Baseline estimate method

Many previous studies complicate their models with the inclusion of many different types of cost drivers such as site conditions, environmental factors and variable levels of fixtures and finishes. It has been noted that the data used for previous studies are often gathered from historical sources and often represent total construction cost or final cost to the client which includes contractor profit margins and possible contract variations. The methodology proposed for this research project is to remove the influence these factors have on the results to ascertain a very precise and accurate baseline estimate which will form the sample data sets for the statistical analysis. It is deemed crucially important to make any assessment of construction cost without the influence of contractor profit margins as this is a variable factor which can be influenced by market conditions, contractor workloads, perceived risk of the project and previous relationships with the client.

The literature review shows a baseline estimate is common in the Australian residential construction market, especially new housing. This is because each design is relatively similar and generally consist of similar features such as garages, outdoor living areas, bathrooms, bedrooms, kitchens and laundries. These basic design components are typically present in any house found throughout Australia but can be of varying quantity and size between each design. The method of baseline estimating proposed is to keep as many of the structural elements, fittings, fixtures and general level of specification the same across all samples. A brief outline of design and inclusion assumptions for the sample data sets is provided below in Table 6.

| Sample data design inclusions                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preliminaries                                                                                                                                                                                                              |
| Statutory fees and charges                                                                                                                                                                                                 |
| Site bins and cleans                                                                                                                                                                                                       |
| Crane hire                                                                                                                                                                                                                 |
| Delivery fees                                                                                                                                                                                                              |
| Structural elements                                                                                                                                                                                                        |
| Foundations – a strip footing with masonry block base and sand filled void with a 100mm thick concrete slab                                                                                                                |
| External walls – 200 series reinforced concrete masonry                                                                                                                                                                    |
| Roof – pine timber trussed roof with metal roof cladding fixed to metal roof battens with plasterboard ceiling                                                                                                             |
| Internal walls – pine timber stud framed walls with plasterboard ceiling.                                                                                                                                                  |
| Windows – aluminium framed glazing fitted with aluminium security screens                                                                                                                                                  |
| External doors – timber entrance doors, aluminium sliding glass doors and metal panel lift garage doors                                                                                                                    |
| Internal doors – hollow core internal doors in a timber frame                                                                                                                                                              |
| Finishes                                                                                                                                                                                                                   |
| External wall finish - cement render to masonry walls external wall face                                                                                                                                                   |
| Internal wall finish – plasterboard sheeting to timber framed internal walls and internal face of external masonry wall. Tiles will be included to shower and bath areas to 2.1m above floor level                         |
| Ceiling finish – plasterboard sheeting fixed to metal ceiling battens                                                                                                                                                      |
| Floor finishes – the location of select floor finishes will be consistent across all data samples. Carpet to all bedrooms. Tiles to all internal main living area, alfresco, porch and wet areas. Plain concrete to garage |
| Fittings                                                                                                                                                                                                                   |
| Cabinetry – all laundry units, vanities and kitchens along with any other custom cabinetry items will be included to a similar level of specification                                                                      |
| Internal fitouts – these would include shower screens, mirrors and wardrobes<br>and will be included at the same level of specification with only quantity<br>varying between data sets                                    |
| Services                                                                                                                                                                                                                   |
| Plumbing fixtures – these will remain the same price across all data sets,<br>merely the quantity will vary. For example, each basin mixer used will be the<br>same price                                                  |
| Appliances – an identical appliance range will be used                                                                                                                                                                     |
| Airconditioning – all bedrooms and living areas will be airconditioned to the same standard                                                                                                                                |
| Electrical – identical fittings will be used with only the quantity varying based on design                                                                                                                                |
| External works                                                                                                                                                                                                             |
| No external works such as landscaping or fencing will be included as these will<br>be site dependant and easily adjusted after the model produces a result                                                                 |

Table 6 – Sample data design inclusions

By maintaining a consistent construction methodology, level of finish and fixtures across the data sets, a baseline estimate can be produced that minimises the cost influence these factors can have. This will leave a narrowly focussed data set of construction cost for the statistical analysis used for the framework development. It should be noted all labour, plant, material, labour and subcontract works will be included in the data sets based on the Company's current pricing structure which include agreed supply rates and up-to-date unit cost pricing rather than the use of outdated historical data prevalent in previous studies. This will allow the framework developed to be relevant to current industry costs.

#### 3.3.2 Sample data set selection

The Company has a library of concept plans freely available for this research to select from. The selection will be random with variance in design complexity and overall size to ensure a realistic data set can be produced. A wide-ranging data set will provide a better statistical analysis that will more closely align with real population data. Figure 3 and Figure 4 show an example of the range of sample plans to be selected, ranging from simple to relatively complex.

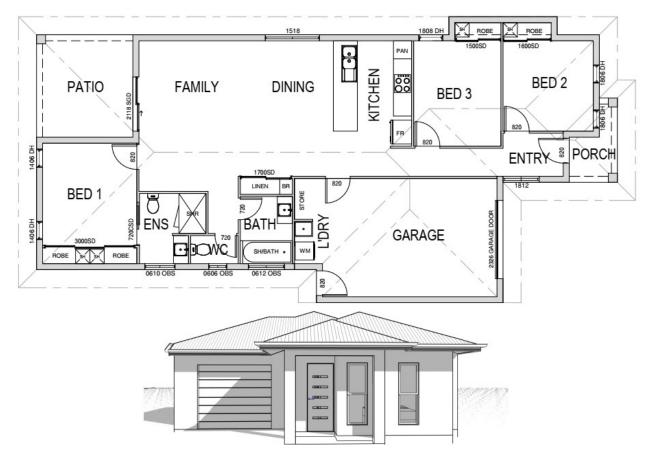



Figure 3 – Simple concept plan.



Figure 4 – Complex concept plan.

A collation of sample sizes against studies that had relatively successful cost models have been presented in Table 7. Any cost model with a variance between output and actual cost of under 10% has been included with an average sample size of 138 models. From this information it can be assumed a viable cost model can be produced from a similar quantity of sample sets, therefore 170 will be chosen for this study to ensure an adequate data spread. An additional twenty sample models will be separately selected for the testing phase of the data analysis to compare the accuracy of the output from the cost modelling framework. Twenty test samples represent over 10% of the original data set and have been selected due to time constraints when gathering the data which is approximately one hour per sample.

| Author                       | Year | Location | Test for accuracy                     | Accuracy                                  | # of samples |
|------------------------------|------|----------|---------------------------------------|-------------------------------------------|--------------|
| Juszczyk                     | 2018 | Poland   | Mean absolute percent error<br>(MAPE) | 8.87%                                     | 105          |
| Alshibani et al.             | 2018 | Canada   | Average validity percentage (AVP)     | 90.66%                                    | 300          |
| Wang et al.                  | 2017 | Taiwan   | Mean absolute percent error<br>(MAPE) | 7.73%                                     | 46           |
| Alshamrani                   | 2016 | USA      | Average validity percentage (AVP)     | 94.30%                                    | 250          |
| Ofori-Boadu                  | 2015 | Global   | Mean absolute percent error<br>(MAPE) | 9.11%                                     | 118          |
| Gulcicek et al.              | 2013 | Turkey   | Mean absolute percent error<br>(MAPE) | 5.23%                                     | 384          |
| Latief, Wibowo<br>and Isvara | 2013 | Jakarta  | Mean absolute percent error (MAPE)    | 3.98%                                     | 50           |
| Petroutsatou et al.          | 2012 | Greece   | Overall percentage accuracy           | 90.6% (regression)<br>and 95.35%<br>(ANN) | 33           |
| Yu and<br>Skibniewski        | 2010 | China    | Absolute percent error                | 90.01%                                    | 110          |
| Zhigang and<br>Yajing        | 2009 | China    | Mean relative error (MRE)             | 6.14%                                     | 50           |
| Stoy et al.                  | 2008 | Germany  | Mean absolute percent error<br>(MAPE) | 9.60%                                     | 75           |
|                              |      |          |                                       | Average                                   | 138          |

Table 7 – Average sample size for successful models

#### 3.3.3 Construction cost calculation method

Total construction costs for each sample will be gathered through the measurement of each concept design with quantities extracted and costs assigned according to the Company's current method of estimating from first principles. Each sample design will take approximately one hour to calculate using this method. This currently consists of a multi-step approach using three key software tools which measure and record quantities, then calculates the construction costs. The software that will be used is detailed below along with a brief explanation of the function the software provides.

- 1. **iTWO Cost X** The Company uses iTWO Cost X developed by Rib Software International to quickly and accurately measure and record quantities (RIB Group 2021). The software provides a graphical user interface where a plan can be imported and measured on-screen using dimension groups. The dimension groups are created by the user and in this case defined as relevant building elements that need to be used during the next step of the process.
- 2. **Microsoft Excel** This software provides a platform to gather and manipulate raw data then perform secondary calculations of quantities extracted from iTWO Cost X. The Company has developed an Excel measurement template which is used for each estimate. This has been developed around the measurement of building elements and features such as floor areas, walls, doors, finishes, electrical, plumbing and external features. The data is then manipulated and populates an import sheet which links directly to the cost estimating software Databuild which contains the price databases that will be used to calculate the construction costs for the statistical analysis.

3. **Databuild** - This software was developed in Australia with a focus on residential estimating (Databuild 2014). It excels at rapid estimating in which a user programs what is referred to as recipes which contain a build-up of multiple singular items that formulate the building component the recipe relates to. An example of this is a concrete slab on ground which will be measured primarily in m<sup>2</sup> and contain a build-up of all necessary items required to complete the component. This will include all relevant materials, labour, plant hire or subcontract works required to complete the element. Element recipes for all building components exist and quantities can be extracted to provide a first principle cost estimate build up, this will be used to finalise the total construction costs for the data set used for the statistical analysis.

A simplified explanation of the process to be used to gather the data is detailed below in Figure 5.

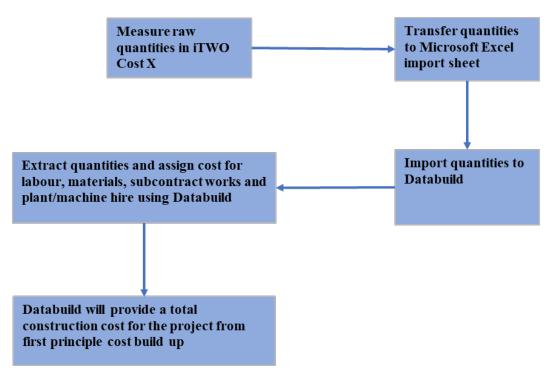



Figure 5 - Flow chart of simplified Company estimating method.

## 3.3.4 Collation of construction cost

Each concept design used for data analysis will have the construction cost calculated using the methods and software described in the previous section. Once complete, this data will be exported from Databuild. It will be saved in an Excel format with a sample number assigned to each data set which will be a unique identifier and contain a total cost of the construction for each 170 samples. This will form a data set which will allow the cost drivers determined from the literature review and case study to be assigned values for each sample in an Excel spreadsheet for the statistical analysis. The statistical analysis will be detailed in the next section.

# 3.4 Cost modelling procedure and development

With the previous sections focussing on how the construction cost data will be gathered this section will focus on how that data will be analysed to formulate a cost modelling framework. The statistical analysis will be conducted using the software Statistical Package for the Social Sciences (SPSS) by IBM as this

software has an intuitive interface, can easily import data from Excel and can assess both multiple linear regression and artificial neural networks with flexible options (Arkkelin 2014, p. 3).

## 3.4.1 Data collation and formatting

SPSS can import data from Excel and Databuild can easily export its data to Excel. This means that the total construction costs for each sample can be exported from Databuild and manipulated in Excel to provide a data template for SPSS to utilise during the statistical analysis. The format will consist of an identification number for each sample concept design, the total construction cost excluding GST then a series of cost drivers with appropriate values populated for each sample. The regressors (cost drivers) will be identified from the literature review and the case study interviews. Table 8 illustrates the format required by SPSS for an import template when produced in Excel.

| Sample<br># | Target<br>value (Y) | Cost<br>Driver 1 | Cost<br>Driver 2 | Cost<br>Driver 3 | Cost<br>Driver 4 | Cost<br>Driver 5 | ••••• | Cost<br>Driver N |
|-------------|---------------------|------------------|------------------|------------------|------------------|------------------|-------|------------------|
| A001        | \$256,470.60        | 266.20           | 26.20            | 38.80            | 75.90            | 96.00            |       | 55.00            |
| A002        | \$203,229.45        | 196.93           | 17.66            | 35.20            | 63.00            | 67.20            |       | 64.50            |
| A003        | \$234,250.75        | 257.91           | 3.21             | 36.40            | 67.60            | 73.41            | ••••• | 75.73            |
| A004        | \$243,551.36        | 259.60           | 23.90            | 40.00            | 71.20            | 75.60            |       | 93.40            |
| A005        | \$257,068.89        | 283.60           | 45.20            | 36.20            | 74.30            | 79.80            |       | 83.70            |
| A006        | \$278,226.47        | 306.20           | 40.48            | 64.80            | 88.40            | 90.80            | ••••• | 90.80            |
| A007        | \$205,565.30        | 205.56           | 19.78            | 36.50            | 63.50            | 70.90            |       | 55.10            |

Table 8 – Example data format for SPSS import

#### 3.4.2 Multiple linear regression analysis

Multiple linear regression analysis has already been established as a common method of statistical cost modelling during the literature review. This section will outline the procedure used to develop a regression model using SPSS. For multiple linear regression analysis to be used successfully in construction cost forecasting Morris (2020, pp. 46-59) has outlined three important concepts.

- 1. The data must represent the behaviour of the larger population. In this case each house design sample contains typical features found to be common between all houses such as foundations, roofing, bedrooms, living areas and bathrooms.
- 2. The data must typically conform to a linear model. It is expected that as a design get larger in gross floor area then the total cost of construction will increase, this shows that the data is typically linear.
- 3. The regressor variables (cost drivers) must not have a high degree of collinearity between them. This means the variables must not have a direct linear relationship to each other as they are meant to be independent. If there is a high degree of collinearity between variables it may adversely affect the response value (predicted output). To overcome this issue, thought will be given to the selection of cost drivers to minimise the effect and a collinearity test will be run between regressors (Alshibani et al. 2018).

The results of a multiple linear regression analysis are generally given by the following formula and best summarised by Jablonoski and MacEachern (2009).

$$y = \beta_0 + \beta x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_n x_n + e$$
(4)

Where;

y = predicted cost

 $e = random \, error \, term$ 

 $\beta$  = input variable

 $\beta_0 = constant$  when variables equal zero

x = input variable coefficient

In order to reach an output formula, the data for *n* observations with *k* input variables is determined through the ordinary least squares method. The relationship of multiple variables is defined below.

$$y = xb + e \tag{5}$$

Where;

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad x = \begin{bmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nk} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}, \quad e = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

The sum of the squared residual errors is then solved for vector *b*.

$$e'e = (y - xb)'(y - xb)$$
 (6)

This then yields the parameter estimate for the following vector.

$$b = (x'x)^{-1}x'y (7)$$

Once the output is produced it is important to remove any input variables from the model that are not significant at a 95% confidence interval, this is typically done through a t-test (Ofori-Boadu 2015). At a 95% confidence interval the P-value produced from the t-test shows that a statistically significant variable would be under 0.05.

The formatted cost data along with the populated cost drivers will be imported into SPSS for analysis. A linear regression analysis will be run using a 95% confidence interval which aims to provide a range of values that would contain the true population mean 95% of the time (Dursun and Stoy 2016, p. 9).

The next step will be to remove any regressors (cost drivers) that are not statistically significant to the model. This will improve accuracy by removing unnecessary cost drivers. A t-test will show that a cost driver is significant if the P-value is less than 0.05 for a 95% confidence internal (Alshamrani 2017, p. 320). This

shows that we reject the null hypothesis and accept the alternative hypothesis which means that the cost driver significantly impacts the cost of construction.

The model validity will be confirmed using statistical checks. The regression model needs to fit the data as closely as possible; this will be determined by the statistical measure R<sup>2</sup>. A high R<sup>2</sup> value close to 1 (100%) shows that the linear model is a good fit for the data (Jablonowski and MacEachern 2009, p. 448). Chatterjee and Simonoff (2012, p. 15) suggest a linear regression model makes sense if the residual errors have a constant variance, are normally distributed and no collinearity between variables exist. These checks will be done to confirm the model validity.

Once the linear regression analysis is complete and the checks are performed, SPSS will provide output coefficients for each of the remaining significant cost drivers plus a constant term. This will provide a simple algebraic formula to test the output of the model against test samples.

## 3.4.3 Artificial neural networks

As discussed in the literature review, artificial neural networks have been gaining attention over the last few decades and used successfully along with regression analysis as a cost modelling technique (Lowe et al. 2006, p. 750). The significant cost drivers found during the linear regression analysis will be used to form the artificial neural network input layer. This will ensure a relevant benchmark for the neural network model development and demonstrate a strong relationship to the output variable (Emsley et al. p. 469). As neural networks are inherently non-linear any collinearity between the remaining cost drivers will not cause bias in the output layer of the model (Gulcicek et al. 2013, p. 576).

The multilayer perceptron (MLP) and radial basis function (RBF) neural networks will be analysed using SPSS, these network models were used successfully on a previous study in construction cost forecasting (Zhigang and Yajing 2009). Each neural network with have a single hidden layer and use the 170 sample data sets to create the neural network. The twenty test samples will be added to the data imported to SPSS with all cost drivers populated and no quantity for construction cost. Once developed, the neural networks will provide output construction costs for each of the twenty test samples and this will be used to analyse the accuracy of each neural network model.

## 3.4.4 Testing of cost models

Twenty additional test sample concept plans will be randomly selected to use during the data testing for the final regression and neural network models. Twenty samples will represent over 10% of the input data set. The test samples will have their construction costs calculated using the same method of first principle estimating used to gather the 170 sample data sets. These values will then be compared to the output from each model to determine its accuracy.

There will be three cost models used for the accuracy testing and output comparison.

- A multiple linear regression model.
- A single layer multi-perceptron neural network.

• A single layer radial basis function neural network.

The Mean Absolute Percentage Error (MAPE) to assess the accuracy of the cost modelling techniques will be used. This is an easy and accurate way of expressing the errors in the models and allow for the analysis of the average errors for each forecasting model (Makridakis and Hibon 1995, p. 5). The MAPE will be used to determine which model is the most accurate at predicting construction costs for residential houses. This data will be collected, calculated and presented in Excel during the results discussion of this research project.

Table 2 collated recent predictive model studies and detailed not only the accuracy achieved but also the test used to determine the validity of the model. 60% of the studies utilised the MAPE method to test model validity. This method tests the deviation of the predicted value in comparison to the actual value as a percentage and utilises the absolute value of the variance to avoid negative results skewing the calculation (Makrisakis and Hibon 1995, p. 5). This is shown below.

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - P_t}{A_t} \right|$$
(8)

Where;

MAPE = mean absolute percent error

n = number of samples

 $A_t = actual value$ 

$$P_t = predicted value$$

Whilst other tests of accuracy are available, the MAPE will be utilised by this research project as it clearly shows the comparison between model prediction and actual output. It does however work best when there are no zero value variances in the output data. This is not to be expected with a model designed to predict the cost of a construction project. It would also be more relevant if there were few significant outliers to the data set which can be assessed using R<sup>2</sup> which determines the correlation of the data set to the regression formula (Petroutsaou et al. 2012 and Juszczyk 2018).

#### 3.4.5 Model selection

The cost model chosen for the development of the framework will not be based solely on cost forecasting accuracy. A cost modelling framework can be chosen based on how easy it is to use, the speed in which it produces a result and a satisfactory degree of accuracy (Lowe et al. 2006, p. 750). To be a truly relevant framework, it must have the ability to be updated when construction costs fluctuate. By using a live cost database to collect data, this research project will meet that criteria.

A weighted decision matrix will be used to determine the best model to select for framework development. This will consist of the following criteria and weightings.

- 1. The accuracy of the model.
  - This will be determined by the lowest MAPE value.
  - A rank will be given to each model ranging from one through to three to correspond with lowest to highest performing model, 3 for the highest and 1 for the lowest.
  - This criteria will be given a weighting of 40%.
- 2. The ease of use and speed in which the model provides a result.
  - This will be based on whether the model output can be easily replicated using readily available software such as Excel.
  - A simple yes value (2) or no value (1) will be given.
  - This criteria will be given a weighting of 40%.
- 3. The ability to update the cost model.
  - This will be subjective and determined by the researcher based on how difficult it is to export cost data and run through another iteration of each statistical analysis.
  - Each model will be assigned a rating between one (worst) and ten (best).
  - The weighting for this criteria is 20%.

The total weight will be tallied and the modelling technique with the highest score will be used to develop the cost modelling framework.

## 3.4.6 Framework development

The cost modelling framework development will depend on the final model selected from the weighted decision matrix. Two options are available.

- 1. The multiple linear regression framework will be developed in iTWO Cost X and Excel. Cost X contains the ability to measure quantities on screen and live link those measurements to a workbook which functions much the same as Excel. An Excel version will also be produced as this software is more commonly available.
- 2. A neural network model framework will need to be run through SPSS each time a cost prediction is required or specific software will need to be programmed in order for an end user to utilise the framework model.

## 3.5 Summary

This section detailed the three stages the research methodology will take. Progressing through the case study to identify current estimating techniques and cost drivers will serve to validate the results from the literature review. Construction costs for the sample models will be calculated based on information obtained through the case study of the Company using their procedures and software for first principle estimating methods. This raw data will then be statistically analysed, tested and validated to determine the most appropriate statistical model to use for the development of the cost modelling framework. The different stages used during this methodology will achieve the research objectives by identifying cost estimating techniques, cost drivers and finally developing a cost model framework.

# Chapter 4 – Results and discussion

## 4.1 Results from case study interviews

Two of the objectives for this project are to determine current estimating techniques in the Australian residential market and to identify potential cost drivers. The literature review identified some of this information however a case study of a Queensland estimating company has been conducted to validate the literature review findings and expand the cost drivers.

Part of the methodology for developing the cost modelling framework is to determine current methods of estimating and identify additional design related cost drivers through a case study. This provides a more relevant understanding of the Australian estimating methods. This section will detail the results gathered from the case study interviews and achieve two of the project objectives. The case study involved two phases. The first phase is to determine current estimating techniques in the Australian market, this will validate information discovered during the literature review. Phase two will gather additional cost drivers to the ones identified during the literature review. Summarised transcripts from each interview can be found in Appendix G with the results and analysis presented in the following sections.

#### 4.1.1 Phase one results – establish current estimating techniques

The interviews found the initial information available for an accurate cost estimate varies according to scope and type of the project. All participants agreed that for initial estimates a concept plan only was often available. It is rare they are provided full design documentation such as detailed architectural plans, structural plans, civil plans, hydraulic or electrical plans. This was found to be common in residential construction due to the production line output of volume housing construction. Once contracted the project then has full design documentation completed, however the initial first principle cost estimate was performed on a concept plan only.

The case study interviews confirmed the time taken to produce a first principle estimate ranged from one to two hours for a simple design. It is the objective of this project to use cost modelling to cut this time down to a matter of minutes which will significantly improve productivity. It was noted that complex builds such as multi-storey dwellings or medium density residential can take one day or more, which is outside the scope of this project.

The level of accuracy for the three methods of estimating commonly found and identified during the literature review (unit rate and first principles) were validated during the case study. Each respondent agreed that the unit rate method was unreliable other than for a preliminary feasibility estimate. The accuracy of the unit rate estimate from the respondents ranged from 10% to 20%. This correlates with the findings of Ashworth (2004, p. 342) who determined a 13% accuracy using this method. A first principle estimate, depending on complexity of the project, was thought by the respondents to be between 1% and 4% of actual costs. Ashworth (2004, p. 342) determined this method to be approximately 10% accurate. The higher accuracy of the first principle method in residential construction was explained due to the relatively simple and predictable nature of housing construction compared to more complex sectors of the industry such as commercial or civil construction.

The methodology for this project's framework centres around using a baseline estimating technique of standard inclusions and design related factors. It was found to be common in residential construction to complete a first principle estimate with a baseline level of inclusions in Queensland during the literature review (Lim et al. 2016, p. 14). The case study interview responses validated this finding. The interviewees were asked how they build up the cost for a construction project, the use of a standard specification and how a consumer modifies the inclusions to suit their own tastes.

Each response agreed that a priced bill of quantities is calculated for each project to a baseline cost using a standard specification of inclusions, an example bill of quantities using this method has been provided in Appendix S. Standard specifications of inclusions are common in the Australian industry (Lim et al. 2016, p. 14) with some contractors offering different levels of finish to target certain buyer markets such as low cost or high-end. This offers a certain level of choice however it was noted in the literature review consumers often wish to customise their inclusions (Warren-Meyers and McRae, 2017). This was determined as common place by the interviewees and they cater for this by calculating the baseline estimate, adding the desired profit margins and then varying inclusions requested by the consumer. This process has been summarised below in Figure 6.

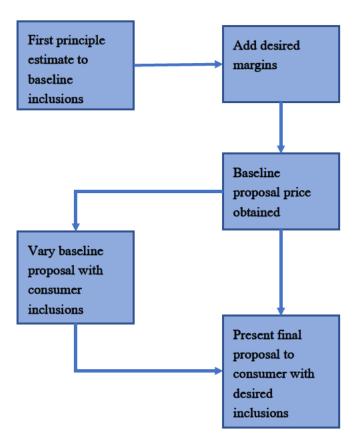



Figure 6 - Flow chart of proposal calculation build up

An example has been illustrated below in Table 9 which numerically details the process.

| Description                          | Cost (\$) |
|--------------------------------------|-----------|
| Baseline construction cost           | \$250,000 |
| Add 10% profit margin                | \$25,000  |
| Add 5% overhead contribution         | \$12,500  |
| Baseline proposal price              | \$287,500 |
| Vary inclusions for consumer         |           |
| Remove tiles from alfresco           | -\$2,500  |
| Include stone bench tops to kitchen  | \$5,000   |
| Increase carpet to premium range     | \$3,300   |
| Add 10 extra lights                  | \$1,200   |
| Proposal price submitted to consumer | \$294,500 |

Table 9 - Price calculation build up method

This process is important to define as this project will use the baseline estimate method discovered during the case study to collect the cost data for analysis. The literature review found that previous cost models often include too many variables which can lead to model inaccuracy. These variables are often external to the structure itself such as site conditions, contract types, environmental and risk factors. Using the baseline estimating method will remove many of the external variables, reduce the cost drivers and improve the accuracy of the framework.

The literature review found contract type was often included as a cost driver (Emsley et al. 2002, Lowe et al. 2006 and Soutis and Lowe 2011). The final interview question for this phase was to determine the type of contract used in a residential project. The results confirmed that industry body standard form contracts are typically used in residential construction with Master Builders and Housing Industry Australia being the most common. These contracts are often very similar in terms, conditions and layouts which removes the risk of differing contract terms. Due to this finding the contract type can be ignored as a cost driver.

The answers from the interviewees all garnered similar responses, meaning a saturation point was reached as detailed in the methodology. This means the data is considered reliable and can be used.

#### 4.1.2 Phase two results – determine further relevant cost drivers

This phase of the case study determined additional cost drivers that were not discovered during the literature review. Providing tangible information from experts is critical in gathering relevant results. By first defining a cost driver for the interviewee, they were then asked to identify design related factors that they considered would contribute significantly to cost (cost drivers). The responses have been summarised in Table 10 and correlated against the results obtained from the literature review previously summarised in Table 5. Table

| Cost driver identified                | Identified from<br>literature review and<br>case study |
|---------------------------------------|--------------------------------------------------------|
| Gross floor area                      | Yes                                                    |
| External areas                        | No                                                     |
| Garage areas                          | No                                                     |
| Layout complexity                     | Yes                                                    |
| Roof design                           | No                                                     |
| Number of bathrooms                   | No                                                     |
| Number of additional plumbing outlets | No                                                     |
| Wall height                           | Yes                                                    |
| Window openings                       | Yes                                                    |
| External wall length                  | Yes                                                    |
| Number of separate living areas       | No                                                     |
| Number of bedrooms                    | No                                                     |
| Custom joinery / cabinetry            | No                                                     |

10 shows which cost drivers were identified during both the literature review and case study (yes) and which cost drivers were only identified during the case study interviews (no).

Table 10 - Summary and cross reference of cost drivers from interviews

Gross floor area was identified as the highest contributing cost driver as a positive linear relationship generally exists between the size of the building and total cost. From Table 10 it can also be seen that the interview results validated several of the cost driver findings from the literature review; this is an excellent result as these items have been deemed relevant through other studies and now validated by the case study.

The purpose of the second phase case study interviews was to determine further cost drivers that may be relevant to a cost modelling framework suited to the Australian residential construction industry. They have been identified in Table 10. The cost drivers identified in the case study have been explained in the following sections to define the cost driver measurement parameters for the framework.

#### 4.1.2.1 External and garage areas

These two areas were identified by participant three. Clarification of this response revealed that these areas should be separated from internal living space which is often more expensive. Internal spaces are conditioned spaces which contain a higher density of costly inclusions such as electrical, air conditioning, internal partitions and windows located on external walls. In comparison an alfresco is often not enclosed by external walls and may only have a floor finish treatment with minimal electrical fittings such as lights. Similarly, a garage is generally enclosed however features no floor finishes and again minimal electrical fittings. Figure 7 shows a typical floor plan identifying external and garage areas for a reference point.



Figure 7 – External and garage area cost driver example

#### 4.1.2.2 Roof design

A roof consists of geometric planes that combine for an attractive appeal. All three interviewees identified the roof design features as a major contributing factor to cost. Features such as hips, valleys, ridge lines, eaves, gables or parapets were common responses when probed. These items were indicated as cost drivers during the case study and will feature in the cost model development for this project. They have been identified and highlighted below to illustrate their locations.

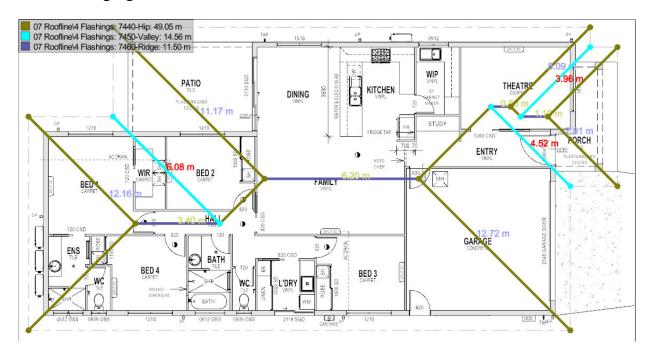



Figure 8 - Hips, valleys and ridge line cost driver example

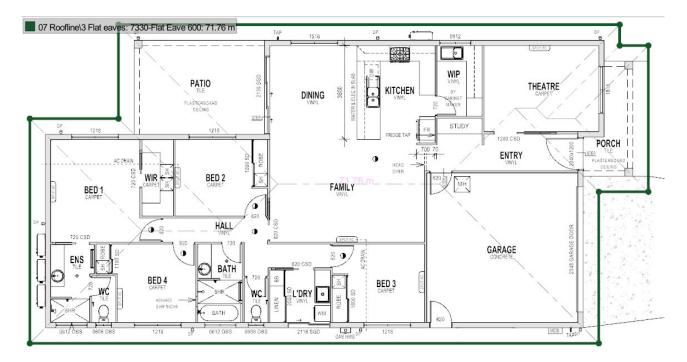



Figure 9 - Eave cost driver identification

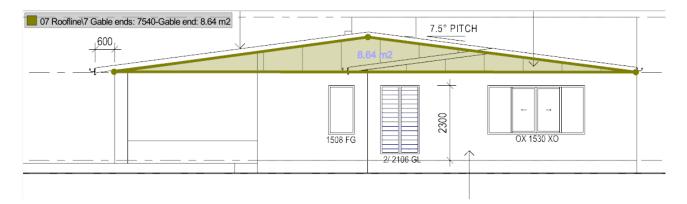



Figure 10 – Gable end cost driver identification

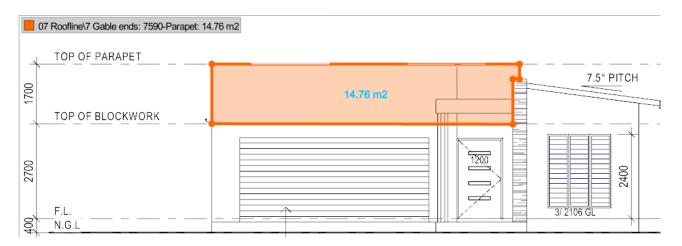



Figure 11 – Parapet cost driver identification

#### 4.1.2.3 Number of bathrooms

Plumbing drainage and fit off requirements for a dwelling add cost. Bathrooms are often small in area however feature expensive fit out requirements such as tiling to walls and floor, custom vanity units, shower outlets, bath tubs, mirrors and shower screens. This creates a high cost per square metre of floor area. The total number of bathrooms in a dwelling was identified through the interview process as a potentially significant cost driver and must be included in the cost modelling process.

#### 4.1.2.4 Number of living areas

The number of living areas was identified through the interview responses as being significant. It was explained by interviewees that a separate living area often requires more internal partitions to separate the area from others and requires additional electrical components such as lights, fans and air conditioning. Two figures below show different house designs that feature one and three separate living areas which will be used as a definition for the cost driver measurement.

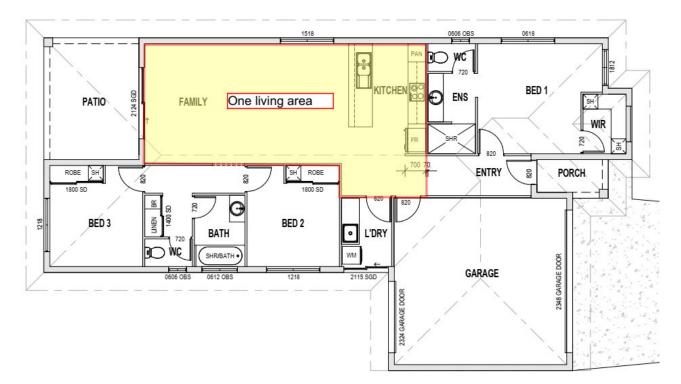



Figure 12 - Cost driver definition of one living area

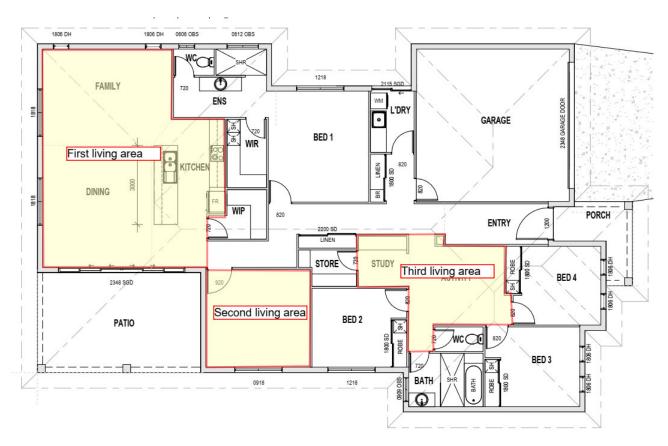



Figure 13 - Cost driver definition of three separate living areas

#### 4.1.2.5 Number of additional plumbing outlets

This cost driver was explained by interviewees that using the Company's baseline estimate method assumes a standard number of plumbing fittings per bathroom. Any additional outlets are then considered as extras. A typical bathroom is assumed to include one shower outlet, one vanity and one bath. If a design included a double vanity or two shower outlets, then these would be identified as "extra or additional". Using this technique the framework will assume one kitchen sink, one laundry tub and a standard number of fittings per bathroom such as one shower, one bath and one vanity basin. Any extra fittings will be considered for this cost driver.

#### 4.1.2.6 Number of bedrooms

This cost driver is similar in theory to the number of additional living areas. Each bedroom requires partitioning, air conditioning, doors, windows, robes and electrical fittings. Therefore, including the total number of bedrooms is deemed a relevant cost driver and this item was identified by at least two of the interview respondents.

## 4.1.3 Custom joinery or cabinetry

This cost driver relates to custom made kitchen and bathroom cabinetry which can be intricate and costly. It is possible that similar sized houses can include varying lengths of bench space and more intricate joinery. This cost is often placed into the proposal as a Prime Cost. A Prime Cost is defined as a specified item of known work which is assigned a dollar value in the proposal for the purpose of tendering (Loots and Charrett

2009, p. 216). The respondents explained they assign a lump sum value to these items for inclusion in the estimate. During the initial tendering phase an indicative sum only is used, which is calculated using lineal metres of bench space.

This finding suggests that the data may be abnormally biased toward dwellings with larger amounts of custom cabinetry independent of the size of the design. It is difficult to place a simple unit quantity against custom cabinetry for the data analysis. As one project objective is to develop a cost modelling framework which is quick and effective, measuring intricate custom cabinetry will not make this possible. This finding suggests that two discrete sets of data should be analysed when developing the framework to explore a potentially more accurate method of cost modelling. One data set will include the allowances for custom cabinetry whilst the second data set will exclude these. It is noted that this will yield an irrelevant construction cost baseline output from the framework. This can be rectified by adding the custom cabinetry component back on to the baseline cost after it has been calculated although this is not an ideal solution.

#### 4.1.4 Cost drivers identified

Data gathered from both the case study interviews and literature review have led to a defined list of cost drivers deemed relevant to design related factors and will be used during the data analysis. These have been summarised in Table 11 with a total of 15 cost drivers identified for statistical analysis.

| Cost driver description     | Unit of measure                  |
|-----------------------------|----------------------------------|
| Gross floor area            | m <sup>2</sup>                   |
| External areas              | m <sup>2</sup>                   |
| Garage area                 | m <sup>2</sup>                   |
| External walls              | Lineal metre                     |
| Internal walls              | Lineal metre                     |
| Eaves                       | Lineal metre                     |
| Compactness                 | Ext wall area / gross floor area |
| Area of external openings   | m <sup>2</sup>                   |
| No. sets of stacker SGDs    | Each                             |
| Hips / valleys / ridges     | Lineal metre                     |
| Gable ends                  | m <sup>2</sup>                   |
| No. of bedrooms             | Each                             |
| No. of living areas         | Each                             |
| No. of bathrooms            | Each                             |
| Additional plumbing outlets | Each                             |

Table 11 - Final cost drivers identified for data analysis

The case study interviews have satisfied the first two objectives of this project. The first was to determine current cost estimating techniques employed in the Australian residential market. The second was to identify additional design related cost drivers to ones discovered during the literature review. The following section briefly outlines the first principle methodology used by the Company, this technique was used to collect construction cost data for statistical analysis.

## 4.2 Estimating methodology from case study results

First principle estimating is one of the methods identified during the literature review as the most time consuming and accurate. The case study interviews confirmed first principle estimating is common and this section will detail the method used by the Company. This method was used to collect the sample data for statistical analysis and subsequent framework development therefore important to define.

#### 4.2.1 iTWO Cost X software

The Company uses iTWO Cost X developed by Rib Software International to quickly and accurately measure and record quantities (RIB Group 2021). The software provides a graphical user interface to import a design plan and measure quantities on screen. Dimension groups are created by the user and in this case defined as relevant building elements. They can be measured as count (each), length (lineal metres), area (square metres) or volume (cubic metres). Figure 14 and Figure 15 show a sample of the measurements taken through iTWO Cost X.

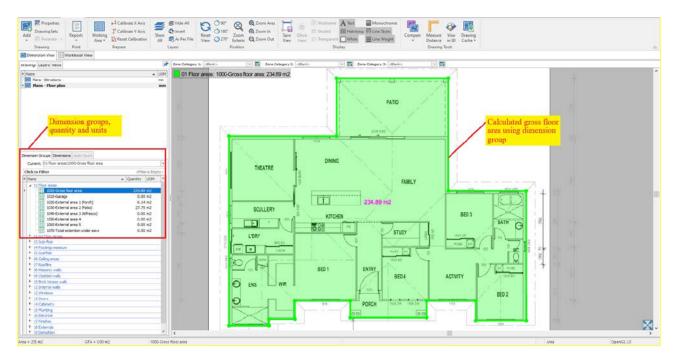



Figure 14 - iTWO Cost X measurement example (GFA)

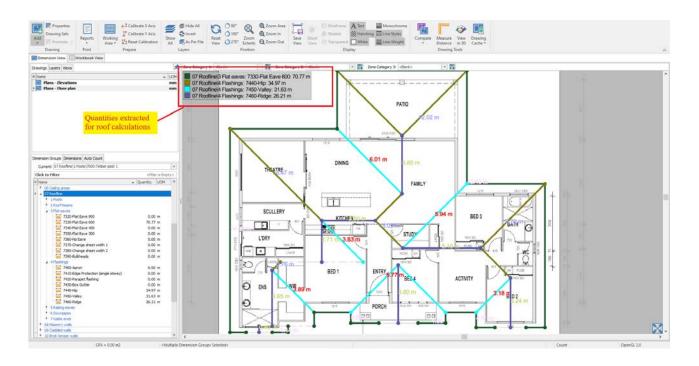



Figure 15 – iTWO Cost X measurement example (roof line)

#### 4.2.2 Company measurement sheet using Microsoft Excel

Microsoft Excel provides an excellent platform to collect, manipulate and provide secondary calculations for raw measurement quantities. The quantities obtained through iTWO Cost X are used to populated an Excel template developed by the Company. This has been developed around the measurement of building elements and features such as floor areas, walls, doors, finishes, electrical, plumbing and external features. The data then populates an import sheet which links directly to the cost estimating software Databuild. A brief visual explanation of the Company Excel measure sheet will be provided in the following figures to detail the process involved during the data collection for this research project. The basic structure, an example of raw data along with the secondary calculations embedded and extracted using Excel and the import sheet will be shown.

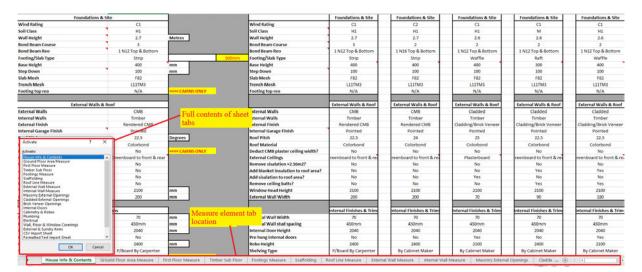



Figure 16 – Excel measure sheet basic layout example.



Figure 17 – Excel measure sheet example of raw data and secondary calculations.

| 100   |                                                                        | C D                          | 11.2 | E.               | 2.6 |     | 1.181  | 1.11    | ĸ      | 1.16 | 1943 | N    | 0        |         | 0    | 5 |  |
|-------|------------------------------------------------------------------------|------------------------------|------|------------------|-----|-----|--------|---------|--------|------|------|------|----------|---------|------|---|--|
| 00001 | PRELIMINARY - CONTRACT SUM. CONTRACT HOUSE                             | 0,75                         | 1    | 7800001          | 4   |     |        |         | -      |      |      |      |          | 1       |      | - |  |
| 00005 | PRELIMINARY FIXED COSTS-CONTRACT HOUSE                                 | 1.00 mm                      | 1    | 1800005          |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 10003 | COLOURS/GRECS                                                          | 1.00 each                    | 1    | 180003           |     |     |        |         |        |      |      |      |          | 1       |      |   |  |
| 10005 | FIXED COSTS - CMB -TOWNSVILLE                                          | 1.00 item                    | 1    | 180005           |     |     |        |         |        |      |      |      |          | 1       |      |   |  |
| 0570  | 81-H1 CLASS SOOH BASE - (MESH LAPPED OVER STARTER BARSI-11-TM3 X 6M    | 58 90 lin m                  | 1    | T80570           |     |     |        |         |        |      |      |      | 1.00     | /       |      |   |  |
| 0572  | DKTRA 81-H1 CLASS OPENINGS (NO STARTERS)                               | 82.42 lin.m                  | 1    | T80572           |     |     |        |         |        |      |      |      | 1        |         |      |   |  |
| 0576  | N2-H1 CLASS SOOH BASE (SLAB THICKENING)-11-TM3 X 6M                    | 78.25 lin.m                  | 1    | T80576           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 0578  | 35-H1 CLASS 500H BASE (SLAB STEP)-11-TM3 X 6M                          | 23.52 lin.m                  | 1    | 180578           |     |     |        |         |        |      |      | Co   | nditio   | nal for | mula |   |  |
| 0805  | TRIMMER BARS \$X2000MM N12                                             | 6.00 each                    | 1    | 180805           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 0680  | FOOTING CORNERS 1/N12                                                  | 14.00 each                   | 1    | T80850           |     |     |        |         |        |      |      | to   | gather   | data fi | rom  |   |  |
| 0840  | EB-IB INTERSECTION 2/N16 BENT                                          | 20.00 each                   | 1    | 180840           |     |     |        |         |        |      |      | C IN | ecific o | alle    |      |   |  |
| 0844  | DOWEL BAR TO STEPPED DOWN GARAGE WALL IN LIEU OF SLAB TIE              | 11.30 lin #                  | 1    | T80844           |     |     |        |         |        |      |      | sh   | semie (  | cents . |      |   |  |
| 1026  | SLAB 100MM FR2 ON 300MM DECO & VISQUEEN                                | 156.60 m2                    |      | T81026           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1210  | LIVING-COLORBOND ROOF # 20 DEG TRUSSES                                 | 134.25 =2                    | 1    | T81210           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1215  | CARPORT/PATIO-GREENBOARD CEILING COLORBOND ROOF @ 20 DEG               | 22.35 == 2                   | 1    | T81215           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 11222 | INCREASE ROOF PITCH TO 22.5 DEG                                        | 156.60 == 2                  |      | T81222           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 11246 | EXTRA FOR TRUSS SPANS > 10M                                            | 156.60 m2                    |      | 181246           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1270  | CELLING INSULATION R2.0                                                | 134.25 =2                    | 1    | 181270           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1610  | ROLL TOP RIDGE CAP                                                     | 18.20 lin m                  |      | T81610           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1660  | APRON PLASHING (slope length)                                          | 4.67 lin m                   |      | T81660           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1690  | BARGE/FASCIA SOOMM EAVE <25 deg (slope length) INC EDGE RESTRAINT      | 28.79 lin m                  |      | T81690           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1695  | EDGE RESTRAINT FOR FASCIA/GUTTER >S OM ABOVE NOL                       | 38.80 lin m                  | 1    | T81696           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1700  | FASCIA /GUTTER NO EAVE                                                 | 7.40 lin m                   |      | T81700           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 11724 | FASCIA /GUTTER 600 EAVE @ 22.5 DEG-HORIZONTAL                          | 31.40 lin m                  |      | 181724           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1785  | DELETE GUTTER ADD MARGE FOR FLYOVER ROOF                               | 1.20 lin m                   | 1    | T81785           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1792  | DEDUCT RENDER FOR 600MM FLAT EAVE                                      | 29.00 lin m                  |      | T81792           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1798  | STORMWATER PIPES TO 3M                                                 | 6.00 each                    | 1.   | 181798           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 1815  | HARDIFLEX GABLE END (M2)                                               | 11.09 m2                     | 1    | 181815           |     | 100 |        |         | 100000 |      |      |      |          |         |      |   |  |
| 1825  |                                                                        | 11.65 =2                     | 1    |                  | _   | Q1  | antity | popu    | lated  |      |      |      |          |         |      |   |  |
| 2512  | Databund Rein code                                                     | 51.60 lin m                  |      | T82512           |     | fre | m Exe  | cel tab | NC 21  |      |      |      |          |         |      |   |  |
| 2522  | CUICKWALL TO 2 7M H WALL 4400 BASE link for csv import                 | 51.60 lin m                  | 1    | 182522           |     |     |        |         | -      |      |      |      |          |         |      |   |  |
| 2528  | PLASTERIDARD TO 2 7M CMB                                               | 35.30 lin m                  | -    | 102522           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2532  | 2.7H C2 EXTERNAL CORNERS -2/NL2X2                                      | 6.00 each                    | 1    | 182528           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2536  | 2 7H C2 EXTERNAL CORNERS -2/NE2X2<br>2 7H C2 INTERNAL CORNERS -2/NE2X2 | 5.00 each                    | 1    | 182536           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2560  | N12 STARTERS 2.7M                                                      | 46.00 each                   |      | 182530           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2562  | N12 STARTERS 2.7M<br>N16 STARTERS 2.7M                                 | 4.00 each                    | 1    | 182560           |     |     |        |         |        |      |      |      |          |         |      |   |  |
|       |                                                                        |                              | -    |                  |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2565  | 100MM GARAGE STEPDOWN- 2.8H- N12 WALLBARS                              | 11.50 lin m<br>-105.20 lin m | 1    | 782565<br>782814 |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2814  | ADDITIONAL N12 PER BOND BEAM COURSE                                    |                              | 1    |                  |     |     |        |         |        |      |      |      |          |         |      |   |  |
|       | ADDITIONAL N16 PER BOND BEAM COURSE                                    | 20.80 lin m                  | 1    | T82816           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2822  | ADDITIONAL N12 CORNER BAR                                              | -18.00 each                  | 12   | T82822           |     |     |        |         |        |      |      |      |          |         |      |   |  |
| 2830  | 48.2 COURSE UGS /M @ 200 C                                             | 5.00 lin m                   | 1    | T82850           |     |     |        |         |        |      |      |      |          |         |      |   |  |

Figure 18 – Excel import sheet with link to Databuild.

## 4.2.3 Databuild cost estimating software

Databuild estimating software was developed in Australia with a focus on residential construction (Databuild 2014). A user programs "recipes" that represent a building element and contains multiple items to formulate that element. An example recipe is a concrete slab on ground which is measured in m<sup>2</sup> and contains a build-up of all necessary items required to complete the element. The recipe is programmed to include all relevant materials, labour, plant hire and subcontract works. Figure 19 shows an example of a recipe for a slab on ground programmed in the Company's version of Databuild.

| Cada                                                                                                                                         | View 🔓 🐴 🖹 🖀 🚰 🖓 🚰 🚰 Prices: 🗊 💟 🗋 Vista 🔹 9/05/2021 🏨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.10.1                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Carls.                                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cost Centre<br>900                                                             | <ul> <li>Details, Prices</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Picture                                                                                                                                                                                                                                                     | Recipes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Template                                                                                                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pecification  |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ed.                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Formula                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 0922                                                                                                                                         | STEEL ONLY 6000IA BORED PIER- 6/NI2 RELIGS AT 3000 Databuild item codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T Officiality                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 0926                                                                                                                                         | THEE ONE TO BOTH ODNED FIEN OWNED HE DIDS AT SOCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1000                                                                                                                                         | STEEL ONLY-600DIA BORED PIER- 6/N20- R6 LIGS AT 300c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1005                                                                                                                                         | SLAB 100MM F72 ON 100MM SAND & VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1005                                                                                                                                         | SLAB TOUMM F72 ON TOUMM SAND & VISUUEEN<br>RWFT SLAB-TOOMM F72 ON 200MM DECO & VISUUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1007                                                                                                                                         | RAFT SLAB 100MM FR2 ON 200MM DECD & VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1009                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1010                                                                                                                                         | RAFT SLAB 100MM F32 UN 200MM DECD & VISUUEEN Selected concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Re                                                                                                                                                                                                                                                          | cipe compone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 012                                                                                                                                          | RAFT SLAB 100MM FR2 ON 300MM DECO & VISQUEEN / slab recipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / hui                                                                                                                                                                                                                                                       | ld-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1014                                                                                                                                         | BAFT SLAB 100MM F92 ON 300MM DECO & VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / Out                                                                                                                                                                                                                                                       | iu-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 020                                                                                                                                          | SLAB 100MM F72 ON 300MM DECO & VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 022                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|                                                                                                                                              | SLAB 100MM F72 ON 400MM DECD & VISQUEEN<br>SLAB 100MM F72 ON 500MM DECD & VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 024                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 024                                                                                                                                          | SLAB 100MM F72 ON 500MM DECO & VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 024<br>026<br>020                                                                                                                            | SLAB 100MM F72 ON 500MM DECO IL VISQUEEN<br>SLAB 100MM F82 ON 300MM DECO IL VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 900                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recipe ingredients for ite                                                                                                                                                                                                                                  | m 81626 SLAB 100MM F82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 024<br>026<br>020<br>030                                                                                                                     | SLAB TORME F22 ON SOME DECD A VISIOUEEN<br>ELAB TORME F22 ON SOME DECD A VISIOUEEN<br>SLAB TORME F22 ON 400M PCCD A VISIOUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900<br>900<br>900                                                              | Code Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             | m 81626 SLAB 100MM FR2<br>Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                                                                                           | Cost_Centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n2<br>Formula |
| 024<br>026<br>020<br>030<br>032                                                                                                              | SLAB 100km F72 ON 500km DECD & VISQUEEN<br>SLAB 100km FR2 ON 500km DECD & VISQUEEN<br>SLAB 100km FR2 ON 400km DECD & VISQUEEN<br>SLAB 100km FR2 ON 500km DECD & VISQUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900<br>900<br>900<br>900<br>900                                                | 0451 EARTHWORKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA ALLOWANCE                                                                                                                                                                                                                                              | Quantity<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units<br>m2                                                                                                     | Cost_Centre<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 024<br>026<br>020<br>030<br>032<br>034                                                                                                       | SLAB 1000MF F72 OR 500MF DECC 1 VISOUEEN<br>ESUB 1000MF F782 OR 400MF DECC 0 VISOUEEN<br>SLAB 1000MF F782 OR 400MF DECC 0 VISOUEEN<br>SLAB 1000MF F782 OR 500MF DECC VISOUEEN<br>SLAB 1000MF F782 OR 300MF DECC VISOUEEN<br>SLAB 1000MF F782 OR 400MF DECC VISOUEEN<br>SLAB 1000MF F782 OR 500MF DECC 0 VISOUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900<br>900<br>900<br>900<br>900<br>900                                         | 0451 EARTHWORKS     0650 BOBCAT HIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA ALLOWANCE<br>GENERAL                                                                                                                                                                                                                                   | Quantity<br>1<br>0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Units<br>m2<br>hour                                                                                             | Cost_Centre<br>115<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 024<br>025<br>020<br>030<br>032<br>034<br>036                                                                                                | SLAE BOOMF F2C OF SCIONE DECCE 1 VISIOLEEN<br>DEUE BOOMF F2C OF SCIONE FECCE VISIOLEEN<br>SLAE BOOMF F2C OF SCIONE FECCE VISIOLEEN<br>SLAE BOOMF F2C OF SCIONE DECCE VISIOLEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900<br>900<br>900<br>900<br>900<br>900<br>900                                  | 0451 EARTHWORKS     0650 BOBCAT HIRE     0803 SLR2 MESH S0     0814 BAR CHAIRS 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREA ALLOWANCE<br>GENERAL<br>RE                                                                                                                                                                                                                             | Quantity<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units<br>m2<br>hour<br>each                                                                                     | Cost_Centre<br>115<br>130<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Formula       |
| 024<br>026<br>020<br>030<br>032<br>034<br>036<br>038                                                                                         | SLAB 1000MF F72 OR 500MF DECC 1 VISOUEEN<br>ESUB 1000MF F782 OR 400MF DECC 0 VISOUEEN<br>SLAB 1000MF F782 OR 400MF DECC 0 VISOUEEN<br>SLAB 1000MF F782 OR 500MF DECC VISOUEEN<br>SLAB 1000MF F782 OR 300MF DECC VISOUEEN<br>SLAB 1000MF F782 OR 400MF DECC VISOUEEN<br>SLAB 1000MF F782 OR 500MF DECC 0 VISOUEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900<br>200<br>900<br>900<br>900<br>900<br>900<br>900                           | 0451 EARTHWORKS     0550 BOBCAT HIRE     0803 SLR9 WESH SQ     0514 BAR CHAIRS 5     0814 BAR CHAIRS 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AREA ALLOWANCE<br>GENERAL<br>RE<br>NSS<br>NSS                                                                                                                                                                                                               | Quantity<br>1<br>0.025<br>0.08<br>0<br>1.5625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units<br>m2<br>hour                                                                                             | Cost_Centre<br>115<br>130<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Formula       |
| 024<br>026<br>020<br>030<br>032<br>034<br>034<br>039<br>039<br>039                                                                           | SLAE BOOM F22 OF SCHOLD FOCOL VISIOLEEN<br>SLAE BOOM F20 OF ADDAM F20 OF SCHOLD VISIOLEEN<br>SLAE BOOM F20 OF ADDAM F20 OF SCHOLD VISIOLEEN<br>SLAE BOOM F20 OF SCHOLD FOCOL VISIOLEEN<br>SLAFE FOOD SLAE SCHOLT FICS. SLAE - SZEMH HIGH F0O - SLIZ MESH<br>WAFFLE FOO SLAE SCHOLT HICK SLAE - SZEMH HIGH F0O - SLIZ MESH<br>WAFFLE FOO SLAE SCHOLT HICK SLAE - SZEMH HIGH F0O - SLIZ MESH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 900<br>300<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900             | 0451 EARTHWORKS     0650 B0BCAT HIRE     0603 SLR2 MESH S0     0614 BAR CHAIRS 5     0614 BAR CHAIRS 5     0614 BAR CHAIRS 5     0620 THE WIRE: 1.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA ALLOWANCE<br>GENERAL<br>RE<br>1955<br>KIS IDLCOILA                                                                                                                                                                                                     | Quantity<br>1<br>0.025<br>0.08<br>0<br>1.5625<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Units<br>m2<br>hour<br>each<br>each (per 100)<br>each (per 100)<br>roll                                         | Cost_Centre<br>115<br>130<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Formula       |
| 024<br>026<br>020<br>030<br>032<br>034<br>035<br>039<br>039<br>0390<br>040                                                                   | SLAE IDDAR F72 OR SOLAH IDSOLEEN<br>SLAE IDDAR F20 OK SOLAH IDDAR SO                                | 900<br>200<br>900<br>900<br>900<br>900<br>900<br>900                           | 0451 EARTHWORKS     0650 B0BCAT HIRE     0603 SLR2 MESH 50     0814 BAR CHAIRS 5     0814 BAR CHAIRS 5     0814 TIE WIRE 1.4     0820 TIE WIRE 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA ALLOWANCE<br>GENERAL<br>RE<br>VR5<br>XR5 IDLCDILA<br>MAM DLACK 200.m 782450                                                                                                                                                                            | Quarthy<br>1<br>0.025<br>0.08<br>0<br>1.5625<br>0.005<br>0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units<br>m2<br>hour<br>each<br>each (per 100)<br>roll<br>coll                                                   | Cost Centre<br>115<br>130<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formula       |
| 024<br>026<br>020<br>030<br>032<br>034<br>036<br>039<br>039<br>0390<br>040<br>041                                                            | SLAE BOOM F22 OF SCHOLD EXCED 1 VISUEEN<br>SLAE BOOM F20 OF VISUES SOME F020 AUSSUEEN<br>SLAE BOOM F20 OF VISUES SOME F020 AUSSUEEN<br>SLAE BOOM F20 OF SCHOLD EXCED 1 VISUEEN<br>SLAE BOOM F20 OF SCHOLD 1 VISUEEN<br>SLAE | 900<br>500<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900             | 0451 EARTHWORKS     0650     0603 SLR2 MESH 50     0614 BAR CHAIRS     0614 BAR CHAIRS     0614 BAR CHAIRS     0620 TIE WHE 1.4     0620 TIE WHE 1.4     0620 TIE VHE 1.4     0620 TIE VHE 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AREA ALLOWANCE<br>GENERAL<br>RE<br>1985<br>1985<br>SKI DUCDULA<br>KKI DULCULA<br>MANN DULCK 2004m FB2450<br>FE 48mm X 30 mt TFP30                                                                                                                           | Quantity<br>1<br>0.025<br>0.08<br>0<br>1.5625<br>0.005<br>0.0065<br>0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units<br>m2<br>hour<br>each<br>each (per 100)<br>each (per 100)<br>roll<br>roll                                 | Cost Centre<br>115<br>130<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Formula       |
| 024<br>026<br>020<br>030<br>034<br>034<br>036<br>039<br>039<br>039<br>0390<br>040<br>041<br>042                                              | SLAE IDDAR F72 OR SOLAH IDSOLEEN<br>SLAE IDDAR F20 OK SOLAH IDDAR SO                                | 900<br>300<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900             | 0451 EARTHWORKS     0550 B00CAT HINE     0503 B00CAT HINE     0503 SL82 MESH 50     0514 BAR CHAIRS 5     0514 BAR CHAIRS 5     0520 FIE WIRE 1.4     0521 POLYTHENE 5     0540 DUCT FOLYTHENE 5     0540 DUCT FOLYTHENE 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA ALLOWANCE<br>GENERAL<br>RE<br>1985<br>1985<br>KG IDECOLA<br>MAM BLACK 2004n FB2450<br>FE 48mn X 30 nf 1FP30<br>CO INCL BELWERY                                                                                                                         | Quantity<br>1<br>0.025<br>0.08<br>0<br>1.5625<br>0.005<br>0.005<br>0.005<br>0.02<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units<br>m2<br>hour<br>each (per 100)<br>each (per 100)<br>roll<br>roll<br>roll<br>m3 (sand)                    | Cost_Centre           115           130           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formula       |
| 024<br>020<br>030<br>032<br>034<br>036<br>038<br>039<br>039<br>039<br>040<br>040<br>041<br>042<br>046                                        | SLAE BOOM F22 OF SCIONE DECOL VISIOLEEN<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF ADDAM F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SCIONE F20 OF SCIONE F20 OF SCIONE<br>SLAE BOOM F20 OF SC          | 900<br>510<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>9 | Addi EARTWAORKS     BOBCAT HITLE     BRID     BOBCAT HITLE     BRID     BRID | AREA ALLOWANCE<br>GENERAL<br>NG<br>NG<br>NG<br>NG<br>NG<br>NG DECOLA<br>ALAM BLACK 200.an FB2450<br>FE 48mx 32 mk 19F930<br>CO INEL DELVERY<br>STEELP.ALCE AND FINISH SLAB S'CLAS                                                                           | Quantity<br>1<br>0.0025<br>0.008<br>0<br>1.5625<br>0.0095<br>0.0065<br>0.02<br>0.29<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units<br>m2<br>hour<br>each<br>each (per 100)<br>each (per 100)<br>roll<br>roll                                 | Cost_Centre           115           130           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140 </td <td>Formula</td> | Formula       |
| 1022<br>1024<br>1026<br>1020<br>1030<br>1032<br>1034<br>1039<br>1039<br>1039<br>1039<br>1039<br>1039<br>1040<br>1041<br>1042<br>1046<br>1048 | SLAE 10004 F20 00 SOUND TOCO 1 VISUEEN<br>SLAE 10004 F20 00 SOUND F20 00 SOUND F20 00 SOUND F20<br>SLAE 10004 F20 00 SOUND F20 00 SOUND F20 00 SOUND F20 00<br>SLAE 10004 F20 00 SOUND F20 00 SOUND F20 00 SOUND F20 00<br>SLAE 10004 F20 00 SOUND F20 00 SOUND F20 00<br>SOUND F20 00 SOUND F20 00 SOUND F20 00 SOUND F20 00<br>SOUND F20 SOUND F20 SOUND F20 00<br>SOUND F20 SOUND F20 SOUND F20 00<br>SOUND F20 SOUND F20 SO                                              | 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900             | Addi EARTWAORKS     BOBCAT HITLE     BRID     BOBCAT HITLE     BRID     BRID | AREA ALLOWANCE<br>GENTRA<br>RE<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5                                                                                                                                                        | Quantity<br>1<br>0.0025<br>0.008<br>0<br>1.5625<br>0.0095<br>0.0065<br>0.02<br>0.29<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units<br>m2<br>hour<br>each (per 100)<br>roll<br>roll<br>roll<br>m3 (sand)<br>m2                                | Cost_Centre           115           130           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140           140                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| 024<br>026<br>020<br>030<br>032<br>034<br>036<br>039<br>039<br>039<br>039<br>0390<br>040<br>041<br>042<br>046<br>048<br>049                  | SLAE BOOM F22 OF SCION ERCO LI VISGUEEN<br>SLAE BOOM F20 OF SCION ERCO LI VISGUEEN<br>SLAE BOOM F20 OF AGOME MCCO LIVISQUEEN<br>SLAE BOOM F20 OF SCION ERCO LI VISQUEEN<br>SLAE BOOM F20 OF SLAE SCION F100 OF SCION ERCO LI VISQUEEN<br>SLAE BOOM F20 OF SLAE BOOM F100 OF SCION ERCO LI VISQUEEN<br>SLAE BOOM F20 OF SLAE BOOM F100 OF SCIENTES<br>SLAE SLAE SLAE BOOM F100 OF SCIENTES<br>SLAE SLAE SLAE SLAE SLAE SLAE SLAE SLAE                                                                                                                                                                                                                                                                                                                         | 900<br>510<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>9 | DASI EARTIMORES     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT POLY     DOUCT POLY     DOUCT POLY     DOUCT POLY     DOUCT POLY     124     SCREEND DO     1315     SETOUT, SAM     1330     CONCRETE 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AREA ALLOWANCE<br>GENTRA<br>RE<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5<br>VR5                                                                                                                                                        | Quantity<br>1<br>0.025<br>0.08<br>0<br>1.5625<br>0.005<br>0.006<br>0.02<br>0.30<br>S<br>0<br>1<br>S<br>1<br>1<br>S<br>1<br>1<br>S<br>2<br>1<br>1<br>5<br>2<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>1<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Units<br>m2<br>hour<br>each (ser 100)<br>roll<br>roll<br>m3 (send)<br>m2<br>m2                                  | Cost         Centre           115         130           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           160         160                                                                                                                                                                                                                                                                                                                                     | Formula       |
| 024<br>028<br>020<br>030<br>032<br>034<br>038<br>039<br>039<br>039<br>039<br>039<br>040<br>044<br>044<br>044<br>048<br>049<br>049<br>049     | SLAE 1004 F2 CO 1500 H 1000 L 1450 LEEN<br>SLAE 1004 F2 CO 14 4004 M 1000 L 1450 LEEN<br>SLAE 1004 F2 CO 14 4004 M 1000 L 1450 LEEN<br>SLAE 1004 F2 CO 1500 M 1000 L 1450 LEEN<br>SLAE 1004 F2 CO 1500 M 1000 L 1450 LEEN<br>SLAE 1004 F2 CO 1500 M 1000 L 1500 LEEN<br>SLAE 1004 F2 CO 1500 M 1000 L 1500 LEEN<br>SLAE 1004 F2 CO 1500 M 1000 L 1500 LEEN<br>SLAE 1004 F2 CO 1500 M 1000 L 1500 LEEN<br>SLAE 1004 F2 CO 1500 M 1000 L 1500 L 1500 LEEN<br>SLAE 1004 F2 CO 1500 SAM 1000 L 1500 L 15                                                                                      | 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900             | DASI EARTIMORES     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT POLY     DOUCT POLY     DOUCT POLY     DOUCT POLY     DOUCT POLY     124     SCREEND DO     1315     SETOUT, SAM     1330     CONCRETE 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APEA ALLOWANCE<br>GENERAL<br>RE<br>1995<br>Status<br>Status<br>Status<br>COLLAR<br>De Mann X 200 and FR280<br>DO INEL DELARTRY<br>1 STEELP. And E AND FRISH SLAB 5° CLAS<br>1 STEELP. And E AND FRISH SLAB 5° CLAS<br>1 STEELP. And E AND FRISH SLAB 1° CLA | Quantity<br>1<br>0.025<br>0.08<br>0<br>1.5625<br>0.005<br>0.006<br>0.02<br>0.30<br>S<br>0<br>1<br>S<br>1<br>1<br>S<br>1<br>1<br>S<br>2<br>1<br>1<br>5<br>2<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>1<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Units<br>m2<br>hour each<br>each (per 100)<br>each (per 100)<br>roll<br>m3 (pand)<br>m2<br>m2<br>m2<br>m3volume | Cost         Centre           115         130           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         185                                                                                                                                                                                                                                                                                                                                                               | Formula       |
| 024<br>020<br>030<br>032<br>034<br>036<br>038<br>039<br>039<br>039<br>039<br>039<br>040<br>041<br>042<br>046<br>048<br>049                   | SLAE BOOM F22 OF SCION ERCO LI VISGUEEN<br>SLAE BOOM F20 OF SCION ERCO LI VISGUEEN<br>SLAE BOOM F20 OF AGOME MCCO LIVISQUEEN<br>SLAE BOOM F20 OF SCION ERCO LI VISQUEEN<br>SLAE BOOM F20 OF SLAE SCION F100 OF SCION ERCO LI VISQUEEN<br>SLAE BOOM F20 OF SLAE BOOM F100 OF SCION ERCO LI VISQUEEN<br>SLAE BOOM F20 OF SLAE BOOM F100 OF SCIENTES<br>SLAE SLAE SLAE BOOM F100 OF SCIENTES<br>SLAE SLAE SLAE SLAE SLAE SLAE SLAE SLAE                                                                                                                                                                                                                                                                                                                         | 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900             | DASI EARTIMORES     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT HINE     DOUCT POLY     DOUCT POLY     DOUCT POLY     DOUCT POLY     DOUCT POLY     124     SCREEND DO     1315     SETOUT, SAM     1330     CONCRETE 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APEA ALLOWANCE<br>GENERAL<br>RE<br>1995<br>Status<br>Status<br>Status<br>COLLAR<br>De Mann X 200 and FR280<br>DO INEL DELARTRY<br>1 STEELP. And E AND FRISH SLAB 5° CLAS<br>1 STEELP. And E AND FRISH SLAB 5° CLAS<br>1 STEELP. And E AND FRISH SLAB 1° CLA | Quantity<br>1<br>0.025<br>0.08<br>0<br>1.5625<br>0.005<br>0.006<br>0.02<br>0.30<br>S<br>0<br>1<br>S<br>1<br>1<br>S<br>1<br>1<br>S<br>2<br>1<br>1<br>5<br>2<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>1<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Units<br>m2<br>hour each<br>each (per 100)<br>each (per 100)<br>roll<br>m3 (pand)<br>m2<br>m2<br>m2<br>m3volume | Cost         Centre           115         130           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         140           140         185                                                                                                                                                                                                                                                                                                                                                               | Formula       |

Figure 19 – Databuild recipe build example.

From the previous section Figure 18 shows the Excel import sheet and details a list of item codes running down the left-hand side of the page, these item codes directly correspond to items in Databuild as shown in Figure 19. The populated item codes from Excel are imported directly into Databuild, a list of recipes can then be compiled into the project as shown in Figure 20.

| C.C.C.S.C.C.    |          | n 000 TEMP JOB                                                                           |              |                |                                         |                     |             |        |             |      |               |
|-----------------|----------|------------------------------------------------------------------------------------------|--------------|----------------|-----------------------------------------|---------------------|-------------|--------|-------------|------|---------------|
| Job 00          |          | prigete Actions Workup Reports 🗊 🖉 🔊 📲 🗢 🔄 🕵 😭 🎵 🎘 👭 🖾 🖉 🍰 🎼 🖬 🤪 🖻 🥙 🌶 🦃 🥬<br>P/Lev/Koir |              | Show AL        | Loads                                   |                     |             |        |             | - 3  | Date 09/05/21 |
| Sub Gr          | iroup    | Bill Amount Bill Amount Bill Amount                                                      | Bill Amount  |                | pet a                                   | Load                | Amo         | unt Su | ppler       |      | CC Supervisor |
| (A3)<br>(Unalio | ocated   | \$169,397.40 \$168.9<br>\$0.00<br>} 900 ESTIMATING RECIPES                               | \$169,397,40 | \$168,990.     | 10 A | Load 1 \$<br>Load 2 |             | 00     |             |      | 8             |
| 1 PBE           | ELIMINAR | IES \$153,397.40 \$168,99 V 001 MESSAGES                                                 | \$0.00       | \$0            | m -                                     | Load 3<br>Load 4    |             | 00     |             |      |               |
|                 | _        |                                                                                          | \$169,397.40 | \$168,990.     | 16 -                                    | Load S              | <b>C</b> () | m      |             |      | 10            |
| 1               |          | Databuild item codes                                                                     |              |                |                                         |                     |             |        |             |      |               |
| Code            | - 1      | imported from Excel                                                                      | Quert        | ty Units       | Unit Price                              | Price               | Lock        | PL.    | Price Level | Load |               |
| 81000           |          | CONCINE TE SLABS                                                                         | -            | 0 SubHeading   | \$0.00                                  |                     | ď           | 2      | Ker         | 1    |               |
| 81026           |          | SLAB 100MM F82 ON 300MM DECO & VISQUEEN                                                  | 156          | 6 m2           | \$74.92                                 | \$11,731.70         | ഷ്          | 2      | Ker         | 1    |               |
| 81100           |          | FIMBER FLOORS                                                                            |              | 0 SubHeading   | \$0.00                                  | \$0.00              | s.          | 2      | Ker         | 1    |               |
| 81200           |          | TRUSSES ROOFS                                                                            |              | 0 SubHeading   | \$0.00                                  | \$0.00              | ഹി          | 2      | Keir        | 1    |               |
| 81210           | 1        | MING COLORBOND ROOF @ 20 DEG TRUSSES                                                     | 134.3        | 8 m2           | \$130.11                                | \$17,471.55         | ສົ          | 2      | Kei         | 1    |               |
| 81215           |          | CARPORT/PATIO-WR CEILING COLORBOND ROOF @ 20 DEG                                         | 22.          | 86 m2          | \$146.32                                | \$3.271.70          | ď           | 2      | Ker         | 1    |               |
| 81222           | 2        | NCREASE ROOF PITCH TO 22:5 DEG                                                           | 156          | 6 m2           | \$2.28                                  | \$356.97            | ഹ്          | 2      | Keir        | 1    |               |
| 81246           | i - 1    | EXTRA FOR TRUSS SPANS > 10M                                                              | 156          | 6 m2           | \$7.00                                  | \$1,096.20          | d'          | 2      | Keir        | 1    |               |
| 81270           |          | CEILING INSULATION R25 Quantities imported                                               | 134.2        | 8 m2           | \$5.68                                  | \$762.71            | aî.         | 2      | Keir        | 1    |               |
| 81300           |          | SKILLION / PITCHED ROOFS from Excel                                                      | _            | 0 SubHeading   | \$0.00                                  | \$0.00              | a           | 2      | Keir        | 1    |               |
| 81600           |          | HIPS/ VALLEYS/EAVES                                                                      | 4            | 0 SubHeading   | \$0.00                                  | \$0.00              | 6           | 2      | Keir        | 1    |               |
| 81610           |          | ROLL TOP RIDGE CAP                                                                       | 18           | 3 lin m (0.3)  | \$29.52                                 | \$540.14            | 3           | 2      | Keir        | 1    |               |
| 81660           |          | APRON FLASHING (sloce lensth)                                                            | 4            | 8 lin m (0.3)  | \$22.56                                 | \$108.29            | -           | 2      | Ker         | 1    |               |
| 01690           |          | IARGE/FASCIA 200MM EAVE <25 deg (slope length) INC EDGE RESTRAINT                        | 1. 12        | 8 lin m (0.3)  | \$97.75                                 | 100000              | 100         | 12     | Keir        | 1    |               |
| 01696           |          | EDGE RESTRAINT FOR FASCIA/GUTTER >3.0M ABOVE NGL                                         |              | 19 lin m (0.3) | \$13.16                                 | \$513.24            | -           | 2      | Keir        |      |               |
| 81700           |          | ASCIA /BUTTER NO EAVE                                                                    |              | 5 lin m (0.3)  | \$35.50                                 | \$266.97            | 1           | 2      | Ker         | 1    |               |
| 81724           |          | ASCA /GUTTER BIO EAVE @ 22.5 DEG-HORIZONTAL                                              | 1.22         | .5 lin m (0.3) | \$74.50                                 |                     | -           | 100    | Ker         |      |               |
| 81785           |          | VALIA VIGITTER BUD EARGE FOR FLYOVER ROOF                                                |              | 2 lin m (0.3)  | \$11.24                                 |                     | 1.0         |        | Ker         |      |               |
| 1.1             |          |                                                                                          |              |                | 1.199.19                                |                     | 1           | 12     | 100         |      |               |
| 81792           |          | DEDUCT RENDER FOR 500MM FLAT EAVE                                                        | 29           | 1 lin m (0.3)  | -\$5.25                                 |                     | _           | 2      | Kor         |      |               |
| 81798           |          | STORMWATER PIPES TO 3M                                                                   |              | 6 each         | \$50.00                                 |                     | 1.5         | 1      | Kei         |      |               |
| 81800           |          | GABLES                                                                                   | -            | 0 SubHeading   | \$0.00                                  |                     | -           | 1      | Kei         | 1    |               |
| 81815           |          | (ARDIFLEX GABLE END (M2)                                                                 |              | 12 m2          | \$75.39                                 | \$838.30            |             |        | Ker         | 1    |               |

Figure 20 – Databuild recipe import from Excel measure sheet.

As shown in Figure 19 each recipe item contains the individual components required to complete the project. Databuild extracts these items from the recipes and places each item into corresponding cost centres to form

a coherent and detailed first principle breakdown of the project. Figure 21 shows the quantities along with assigned unit prices from the cost catalogue contained within a bill of quantities for the project.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | w Navigate Actions Work                                                                                                                                                                                                              |                                                                      |                                                                         |             | • 🚽 d  | k 🔁 ,J 🔆 AA 🖾 🔳 🏠 և 🛋 🚳 📄 🐖 🗲 | <b>(</b>                   |                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                            |                                                                                                                                                                                                                             |                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|--------|-------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Jop 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                    |                                                                      | VLev Keir                                                               | _           |        | -                             |                            | Sh                                                                                                                              | Show ALL Loads                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                             |                                                                                             |
| Sub Group<br>(All)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bill A<br>\$173,5                                                                                                                                                                                                                    | nount                                                                | Buo<br>\$173,971                                                        | <u>lo</u> : | code   | Lost Centre                   | Bill Amount                |                                                                                                                                 | buuget 🔨                                                                                                                                                                                                                | Load Load 1                                                                                                                | Am<br>\$3,12                                                                                                                                                                                                                | ount                                                                                        |
| (Unallocated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      | \$0.00                                                               |                                                                         |             | 1.05   |                               | 44,000,00                  |                                                                                                                                 |                                                                                                                                                                                                                         | Load 2                                                                                                                     | \$                                                                                                                                                                                                                          | 0.00                                                                                        |
| 1 PRELIMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                                      | \$5,870                                                                 |             | 105    | EQUIPMENT HIRE                | \$1,060.00                 |                                                                                                                                 | 1,060.00                                                                                                                                                                                                                | Load 3                                                                                                                     |                                                                                                                                                                                                                             | 0.00                                                                                        |
| 2 BASE<br>3 FRAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$28,11                                                                                                                                                                                                                              |                                                                      | \$28,182<br>\$39,246                                                    |             | 115    | EARTHWORKS                    | \$313.20                   |                                                                                                                                 | \$313.20                                                                                                                                                                                                                | Load 4<br>Load 5                                                                                                           |                                                                                                                                                                                                                             | 0.00<br>0.00                                                                                |
| 4 ENCLOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                      | \$20,569                                                                |             | 130    | PLANT MACHINE HIRE            | \$1,256.04                 |                                                                                                                                 | 1,256.04                                                                                                                                                                                                                | Load 6                                                                                                                     |                                                                                                                                                                                                                             | 0.00                                                                                        |
| 5 FIXING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$41,7                                                                                                                                                                                                                               | 8.95                                                                 | \$41,798                                                                | 9           | 135    | CONCRETE PUMP FOOTING         | \$714.40                   |                                                                                                                                 | \$714.40                                                                                                                                                                                                                | Load 7                                                                                                                     |                                                                                                                                                                                                                             | 0.00                                                                                        |
| 6 PRACTIC<br>COMMERCIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | 4.01<br>\$0.00                                                       | \$38,304.<br>\$0                                                        |             | 140    | FOOTING / SLAB REINFORCING    | \$3,129.94                 |                                                                                                                                 | 3,129.94                                                                                                                                                                                                                | Load 8<br>Load 9                                                                                                           |                                                                                                                                                                                                                             | 0.00<br>0.00                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9L                                                                                                                                                                                                                                   | \$0.00                                                               | ֆլ                                                                      | <u></u>     | 145    | FOOTING CONCRETE              | \$1,890.00                 |                                                                                                                                 | 1,890.00                                                                                                                                                                                                                | Varn 10                                                                                                                    |                                                                                                                                                                                                                             | 0.00                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                      |                                                                         |             | 160    | PLUMBER - DRAINS              | \$2,910.00                 |                                                                                                                                 | 2,910.00                                                                                                                                                                                                                | Vam 11                                                                                                                     |                                                                                                                                                                                                                             | 0.00                                                                                        |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                      |                                                                      |                                                                         |             | 165    | TERMITE TREATMENT             | \$2,447.25                 |                                                                                                                                 | 2,447.25                                                                                                                                                                                                                | Vam 12<br>Vam 13                                                                                                           |                                                                                                                                                                                                                             | 0.00                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t centre list and                                                                                                                                                                                                                    |                                                                      |                                                                         |             | 170    | SAND AND GRAVEL               | \$1,815.60                 |                                                                                                                                 | 1,815.60                                                                                                                                                                                                                | Varn 13<br>Varn 14                                                                                                         |                                                                                                                                                                                                                             | 0.00                                                                                        |
| tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l price                                                                                                                                                                                                                              |                                                                      |                                                                         |             | 180    | SLAB FINISHER                 | \$4,594.80                 |                                                                                                                                 | 4,594.80                                                                                                                                                                                                                | Varn 15                                                                                                                    |                                                                                                                                                                                                                             | 0.00                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an 📕 Analasan                                                                                                                                                                                                                        |                                                                      |                                                                         |             | 185    | SLAB CONCRETE                 | \$6,390.00                 |                                                                                                                                 | 6,390.00                                                                                                                                                                                                                | Varn 16                                                                                                                    |                                                                                                                                                                                                                             | 0.00                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                      |                                                                         |             | 190    | CONCRETE PUMP SLAB            | \$1,434.40                 |                                                                                                                                 | 1,434.40                                                                                                                                                                                                                | Vam 17<br>Load 18                                                                                                          |                                                                                                                                                                                                                             | 0.00                                                                                        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                      |                                                                      |                                                                         |             | 200    | BLOCK LAYER                   | \$7,502.80<br>\$173,971.56 |                                                                                                                                 | 7,502.80<br>3,971.56 🗸 🗖                                                                                                                                                                                                | Load 19<br>ORun 20                                                                                                         | \$                                                                                                                                                                                                                          | 0.00                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                      |                                                                         |             |        |                               |                            | Unit                                                                                                                            | and avta                                                                                                                                                                                                                | vlad                                                                                                                       |                                                                                                                                                                                                                             |                                                                                             |
| rd den worku                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Item des                                                                                                                                                                                                                             | criptio                                                              | on                                                                      |             |        |                               |                            |                                                                                                                                 | and exter<br>of item                                                                                                                                                                                                    | nded                                                                                                                       |                                                                                                                                                                                                                             |                                                                                             |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Item des                                                                                                                                                                                                                             | criptio                                                              | on                                                                      |             |        |                               |                            |                                                                                                                                 |                                                                                                                                                                                                                         | nded                                                                                                                       |                                                                                                                                                                                                                             |                                                                                             |
| D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Description                                                                                                                                                                                                                          | criptio                                                              | on                                                                      |             |        |                               | Q                          | price                                                                                                                           | of item                                                                                                                                                                                                                 | e Pr                                                                                                                       |                                                                                                                                                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      | criptio                                                              | on                                                                      |             |        |                               | Q                          | price                                                                                                                           | of item                                                                                                                                                                                                                 | e Pr                                                                                                                       |                                                                                                                                                                                                                             |                                                                                             |
| D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Description                                                                                                                                                                                                                          | criptio                                                              | n                                                                       |             |        |                               | Q                          | price                                                                                                                           | of item                                                                                                                                                                                                                 | e Pr<br>2 \$702                                                                                                            | .60 💣                                                                                                                                                                                                                       | 2                                                                                           |
| Code<br>0763<br>0769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description<br>L11TM3X 6M<br>N12S6 DBAR 6Mx12mm                                                                                                                                                                                      |                                                                      |                                                                         |             |        |                               | Q                          | price<br>uantity Units<br>30 each<br>30 each                                                                                    | of item                                                                                                                                                                                                                 | e Pr<br>2 \$702<br>0 \$252                                                                                                 | .60 🕤                                                                                                                                                                                                                       | 2                                                                                           |
| D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D           D         D | Description<br>L11TM3X 6M<br>N12S6 DBAR 6Mx12mm<br>R10X 1400 COGGED & H                                                                                                                                                              | OOKED SL                                                             | AB TIE SB1014                                                           |             |        |                               | Q                          | uantity Units<br>30 each<br>30 each<br>117 each                                                                                 | of item                                                                                                                                                                                                                 | e Pr<br>2 \$702<br>0 \$252<br>8 \$184                                                                                      | .60 🗊<br>.00 🗊<br>.86 🗊                                                                                                                                                                                                     | 2<br>2<br>2                                                                                 |
| Code<br>0763<br>0773<br>0775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description<br>L11TM3X 6M<br>N1256 DBAR 6Mx12mm<br>R10X 1400 COGGED & H<br>N12X 1400 COGGED & H                                                                                                                                      | OKED SL                                                              | AB TIE SB1014<br>ARTER BAR                                              |             |        |                               | Q                          | price<br>uantity Units<br>30 each<br>30 each                                                                                    | of item<br>Unit Pric<br>\$23.4<br>\$8.4<br>\$1.5<br>\$2.6                                                                                                                                                               | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153                                                                           | .60 🗊<br>.00 🗊<br>.86 🗊                                                                                                                                                                                                     | 2<br>2<br>2<br>2                                                                            |
| 0763<br>0769<br>0773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description<br>L11TM3X 6M<br>N12S6 DBAR 6Mx12mm<br>R10X 1400 COGGED & H                                                                                                                                                              | OKED SL                                                              | AB TIE SB1014<br>ARTER BAR                                              |             |        |                               | Q                          | uantity Units<br>30 each<br>30 each<br>117 each                                                                                 | of item                                                                                                                                                                                                                 | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153                                                                           | 60 🕤<br>00 🕤<br>86 🕤<br>58 🕤                                                                                                                                                                                                | 2                                                                                           |
| Code<br>0763<br>0773<br>0775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description<br>L11TM3X 6M<br>N1256 DBAR 6Mx12mm<br>R10X 1400 COGGED & H<br>N12X 1400 COGGED & H                                                                                                                                      | DOKED SL<br>DOKED ST                                                 | AB TIE SB1014<br>ARTER BAR<br>ARTER BAR                                 | 261         |        | Quantity of item and          | Q                          | uantity Units<br>30 each<br>31 each<br>117 each<br>54 each                                                                      | of item<br>Unit Pric<br>\$23.4<br>\$8.4<br>\$1.5<br>\$2.6                                                                                                                                                               | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153<br>4 \$17                                                                 | 60 3<br>00 3<br>86 3<br>58 3<br>36 3                                                                                                                                                                                        | 2<br>2<br>2<br>2<br>2                                                                       |
| D         Code           0763         0763           0773         0775           0776         0776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Description<br>L11TM3X 6M<br>N1256 DBAR 6Mx12mm<br>R10X1400 COGGED & H<br>N12X1400 COGGED & H<br>N16X1400 COGGED & H                                                                                                                 | DOKED SL<br>DOKED ST                                                 | AB TIE SB1014<br>ARTER BAR<br>ARTER BAR                                 | 261         |        | Quantity of item and<br>unit  |                            | uantity Units<br>30 each<br>30 each<br>117 each<br>54 each<br>4 each                                                            | of item<br>Unit Pric<br>\$23.4<br>\$8.4<br>\$1.5<br>\$2.6<br>\$4.3                                                                                                                                                      | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153<br>4 \$173<br>0 \$123                                                     | 60     1       00     1       86     1       58     1       36     1       20     1                                                                                                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2                                                             |
| D         Code           0763         0763           0773         0775           0776         0776           0785         0785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description<br>L11TM3X 6M<br>N1256 DBAR 6Mx12mm<br>R10X 1400 COGGED & H<br>N12X 1400 COGGED & H<br>N16X 1400 COGGED & H<br>N16X 1400 COGGED & H                                                                                      | DOKED SL<br>DOKED ST                                                 | AB TIE SB1014<br>ARTER BAR<br>ARTER BAR                                 | 261         |        |                               |                            | uantity Units<br>30 each<br>30 each<br>117 each<br>54 each<br>4 each<br>4 each                                                  | of item<br>Unit Price<br>\$23.4<br>\$8.4<br>\$1.5<br>\$2.6<br>\$4.3<br>\$2.6<br>\$4.3<br>\$2.6<br>\$3.5                                                                                                                 | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153<br>4 \$17<br>0 \$123<br>2 \$1,085                                         | 60         31           00         32           58         33           36         32           20         33           76         33                                                                                       | 2<br>2<br>2<br>2                                                                            |
| Code           0763           0769           0773           0775           0776           0775           0776           0785           0803           0814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Description           L1TTM3X 6M           N12S6 DBAR 6Mx12mm           R10x 1400 COGGED & H           N12x1400 COGGED & H           N12x500 GALVANISED           SL82 MESH SQRE           BAR CHAIRS 50/65                          | DOKED SL<br>DOKED ST<br>DOKED ST                                     | AB TIE SB1014<br>ARTER BAR<br>ARTER BAR<br>OWEL BAR SB1                 |             | OF 251 |                               |                            | uantity Units<br>30 each<br>30 each<br>117 each<br>54 each<br>4 each<br>13 each<br>13 each<br>13 each<br>13 each<br>13 each     | Of item           Unit Price           \$23.4           \$88.4           \$1.5           \$2.6           \$4.3           \$2.6           \$83.5           \$83.5           \$0           \$0.1                          | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153<br>4 \$177<br>0 \$123<br>2 \$1,085<br>5 \$45                              | 60     36       86     36       36     36       20     36       76     36                                                                                                                                                   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| Code           0763         0763           0773         0775           0776         0776           0778         0776           0776         0776           0803         0803           0814         0815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Description<br>L11TM3X 6M<br>N1256 DBAR 6Mx12mm<br>R10X 1400 COGGED & H<br>N12X 1400 COGGED & H<br>N16X 1400 COGGED & H<br>N16X 1400 COGGED & H<br>N12X 500 GALVANISED<br>SL82 MESH SQRE<br>BAR CHAIRS 50/65<br>TMS60-BAR CHAIRS TO  | DOKED SL<br>DOKED ST<br>DOKED ST<br>OGGED D                          | AB TIE SB1014<br>ARTER BAR<br>ARTER BAR<br>OWEL BAR SB1                 |             | DF 25) |                               |                            | uantity Units<br>30 each<br>30 each<br>117 each<br>54 each<br>4 each<br>13 each<br>300 each (per<br>7 each                      | Unit Price           Unit Price           \$23.4           \$88.4           \$1.5           \$2.6           \$4.3           \$83.5           \$83.6           \$83.7           \$83.7           \$83.7           \$83.7 | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153<br>4 \$173<br>4 \$173<br>0 \$123<br>2 \$1,085<br>5 \$45<br>0 \$51         | 60         3           00         3           86         3           58         3           36         3           20         3           76         3           80         3           80         3                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                     |
| Code<br>0763<br>0769<br>0773<br>0775<br>0775<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815<br>0820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description<br>L1TTM3X 6M<br>N1256 DBAR 6Mx12mm<br>R10X 1400 COGGED & H<br>N12X 1400 COGGED & H<br>N12X 1400 COGGED & H<br>N12X 500 GALVANISED<br>SL82 MESH SORE<br>BAR CHAIRS 50/65<br>TMS60-BAR CHAIRS TO<br>TIE WIRE- 1.42KG IDLC | DOKED SL<br>DOKED ST<br>DOKED ST<br>DOGGED D<br>OGGED D<br>SUIT TREM | AB TIE SB1014<br>ARTER BAR<br>ARTER BAR<br>OWEL BAR SB1<br>OWEL BAR SB1 |             | DF 25) |                               |                            | uantity Units<br>30 each<br>30 each<br>117 each<br>54 each<br>4 each<br>13 each<br>13 each<br>300 each (per<br>7 each<br>1 roll | Of item           Unit Price           \$23.4           \$88.4           \$1.5           \$2.6           \$4.3           \$83.5           \$0           \$0.1           \$7.4           \$3.5                           | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153<br>4 \$173<br>0 \$123<br>2 \$1,085<br>5 \$45<br>0 \$53<br>4 \$51<br>0 \$3 | 60         a           00         a           86         a           58         a           36         a           20         a           76         a           80         a           80         a           80         a | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| Code<br>0763<br>0769<br>0775<br>0775<br>0775<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description<br>L11TM3X 6M<br>N1256 DBAR 6Mx12mm<br>R10X 1400 COGGED & H<br>N12X 1400 COGGED & H<br>N16X 1400 COGGED & H<br>N16X 1400 COGGED & H<br>N12X 500 GALVANISED<br>SL82 MESH SQRE<br>BAR CHAIRS 50/65<br>TMS60-BAR CHAIRS TO  | DOKED SL<br>DOKED ST<br>DOKED ST<br>DOGGED D<br>OGGED D<br>SUIT TREM | AB TIE SB1014<br>ARTER BAR<br>ARTER BAR<br>OWEL BAR SB1<br>OWEL BAR SB1 |             | OF 25) |                               |                            | uantity Units<br>30 each<br>30 each<br>117 each<br>54 each<br>4 each<br>13 each<br>300 each (per<br>7 each                      | Unit Price           Unit Price           \$23.4           \$88.4           \$1.5           \$2.6           \$4.3           \$83.5           \$83.6           \$83.7           \$83.7           \$83.7           \$83.7 | e Pr<br>2 \$702<br>0 \$252<br>8 \$184<br>4 \$153<br>4 \$173<br>0 \$123<br>2 \$1,085<br>5 \$45<br>0 \$53<br>4 \$51<br>0 \$3 | 60         a           00         a           86         a           58         a           36         a           20         a           76         a           80         a           80         a           80         a | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                |

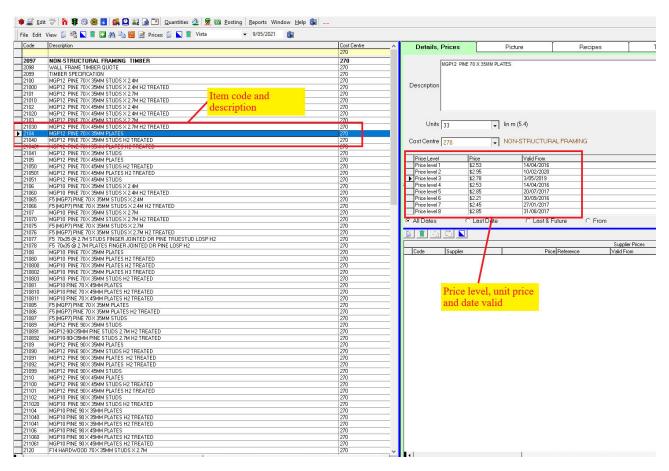

🔐 Edit 💖 🖹 🗱 🗐 🎯 🛐 🕵 🕰 🞲 🖻 🔍 Quantities 🏂 👮 🐯 Posting | Reports Window Help 🕼 | ....

Figure 21 – Databuild output of recipe components.

The entire cost of the project can easily be totalled in Databuild. An example of a first principle estimate using this method is found in Appendix S along with a cost summary in Appendix T exported from Databuild. The cost data for each 170 sample and twenty test designs used during this research project have been created using this process. The total cost of each sample set has been exported to Excel to collate and format the data for statistical analysis in SPSS, this can be found in Appendix H.

Databuild can store costs for each unit item contained within a price catalogue. This feature will form an important part this project's cost modelling framework, it will provide functionality for a dynamic updatable data set. When prices vary Databuild can reprice all the projects instantaneous giving a revised total construction cost. This will allow the cost data to be periodically rerun through the cost modelling process to update the framework. This is a critical part of the third project objective and allows for a relevant framework to be produced which does not rely on historical data. This was considered a shortfall of previous studies during the literature review. Figure 22 shows the price catalogue for a typical item along with the unit price and the date from which the price is valid. Using this functionality means the cost model can easily

be updated when unit prices alter which inevitably occur in the construction industry. This process will be detailed in section 4.5.4 Framework update example.



 $Figure \ 22-Price \ catalogue \ and \ date \ valid.$ 

## 4.3 Data modelling results

The methodology section explained how the framework development goes through an iterative process. Sample design construction costs were calculated using the first principle estimating method confirmed in the case study. Cost drivers identified through both the literature review and case study interviews were assigned values for each sample set. The data set then underwent a linear regression analysis to determine the statistical significance of each cost driver. Cost drivers not significant to the regression analysis were removed and the analysis run again to determine the coefficients for the linear regression equation. This lead to the testing of two neural network designs using the significant cost drivers. The results are presented and discussed in this section.

## 4.3.1 Data collation

Construction costs for the 170 sample designs were collated into an Excel spreadsheet. The 15 cost drivers identified for analysis were assigned appropriate values next to each sample design. This created an import template for SPSS to analyse the data. Appendix H shows the template with relevant cost driver values populated for each sample.

#### 4.3.2 Linear regression analysis of results

The first step required a linear regression analysis to be performed in SPSS on the data set. The results identified statistically significant cost drivers. Cost drivers that were not significant were removed and the significant cost drivers remained for a second linear regression analysis. This section will discuss the results from the linear regression analysis performed on the data.

A multiple linear regression analysis was performed using a 95% confidence interval. This assumes 95% of the mean of the population will fall within this area. The dependent variable for the analysis was the total cost of construction. The independent variables were the 15 identified cost drivers. Table 12 shows the results from the first linear regression analysis.

|                                    | Unstandardized C | Coefficients | Standardized<br>Coefficients |                 |       |
|------------------------------------|------------------|--------------|------------------------------|-----------------|-------|
| Cost driver                        | В                | Std. Error   | Beta                         | t               | Sig.  |
| (Constant)                         | 42484.836        | 21073.480    |                              | 2.016           | 0.046 |
| GFA (m2)                           | 436.166          | 77.346       | 0.569                        | 5.639           | 0.000 |
| External areas (m2)                | 135.652          | 58.926       | 0.044                        | 2.302           | 0.023 |
| Garage area (m2)                   | -197.486         | 62.463       | -0.041                       | -3.162          | 0.002 |
| External walls (lin m)             | 566.869          | 278.086      | 0.143                        | 2.038           | 0.043 |
| Internal walls (lin m)             | 132.036          | 49.810       | 0.060                        | 2.651           | 0.009 |
| Eaves (lin m)                      | -72.345          | 73.220       | -0.022                       | - <b>0</b> .988 | 0.325 |
| Compactness (Ext wall area / GFA)  | -6873.767        | 21883.290    | -0.017                       | -0.314          | 0.754 |
| Area of external openings (m2)     | 343.183          | 89.455       | 0.083                        | 3.836           | 0.000 |
| No. sets of stacker SGDs           | -323.402         | 628.161      | -0.006                       | -0.515          | 0.607 |
| Hips / valleys / ridges<br>(lin m) | 135.596          | 29.424       | 0.097                        | 4.608           | 0.000 |
| Gable ends (m2)                    | 468.681          | 72.119       | 0.152                        | 6.499           | 0.000 |
| No. of bedrooms (each)             | -226.166         | 1023.109     | -0.003                       | -0.221          | 0.825 |
| No. of living areas<br>(each)      | -65.425          | 750.349      | -0.001                       | -0.087          | 0.931 |
| No. of bathrooms (each)            | 11354.954        | 2537.164     | 0.050                        | 4.475           | 0.000 |
| Additional plumbing outlets (each) | 2017.203         | 421.354      | 0.081                        | 4.787           | 0.000 |

Table 12 - First linear regression results

The results from the first linear regression were used to identify which cost driver significance. With a 95% confidence interval the P-value (shown in the sig. column) detailed in Table 12 will determine significance. Any cost driver with a P < 0.05 is considered significant to the model and retained. This means there is strong evidence the null hypothesis can be rejected and concludes a statistically significant relationship exists (Arkkelin 2014, p98). From these results, five cost drivers are not significant and are highlighted yellow in Table 12. These are eaves, compactness, stacker sliding glass doors, number of bedrooms and

number of living areas. These are excluded from the model and the linear regression analysis run again using the same parameters. The results from the second linear regression analysis with the remaining significant cost drivers are detailed in Table 13.

|                                    | Unstandardized | Coefficients | Standardized<br>Coefficients |        |       |
|------------------------------------|----------------|--------------|------------------------------|--------|-------|
| Cost driver                        | В              | Std. Error   | Beta                         | t      | Sig.  |
| (Constant)                         | 34911.766      | 5738.616     |                              | 6.084  | 0.000 |
| GFA (m2)                           | 448.781        | 30.635       | 0.586                        | 14.649 | 0.000 |
| External areas (m2)                | 137.002        | 55.328       | 0.045                        | 2.476  | 0.014 |
| Garage area (m2)                   | -185.313       | 58.579       | -0.038                       | -3.163 | 0.002 |
| External walls (lin m)             | 470.019        | 101.773      | 0.118                        | 4.618  | 0.000 |
| Internal walls (lin m)             | 134.711        | 44.257       | 0.061                        | 3.044  | 0.003 |
| Area of external openings (m2)     | 328.761        | 83.295       | 0.080                        | 3.947  | 0.000 |
| Hips / valleys / ridges<br>(lin m) | 132.503        | 28.155       | 0.095                        | 4.706  | 0.000 |
| Gable ends (m2)                    | 443.071        | 62.785       | 0.144                        | 7.057  | 0.000 |
| No. of bathrooms (each)            | 11000.077      | 2485.330     | 0.048                        | 4.426  | 0.000 |
| Additional plumbing outlets (each) | 2015.819       | 408.810      | 0.081                        | 4.931  | 0.000 |

Table 13 - Linear regression results with significant cost drivers

The results from the second linear regression analysis show that all remaining cost drivers are significant as all have a P < 0.05. It is also important to confirm the results using other tests to ensure they are reliable. Linear regression assumes that there is a linear relationship between the dependant and independent variables (Morris 2020, p. 46). To confirm the model is viable certain assumptions must be made and the data tested. Chatterjee and Simonoff (2012, p. 15) suggest a linear regression model makes sense if the residual errors have a constant variance, the errors are normally distributed and each variable is independent of one another. These tests were run on the data output with the results summarised below.

1. Residual errors must have a constant variance. A scatter plot of the residual versus the predicted values for the model can be produced. If there is no pattern and are randomly scattered around zero it means the relationship between the response and predictor variables is zero. Figure 23 confirms the residual errors have a constant variance.

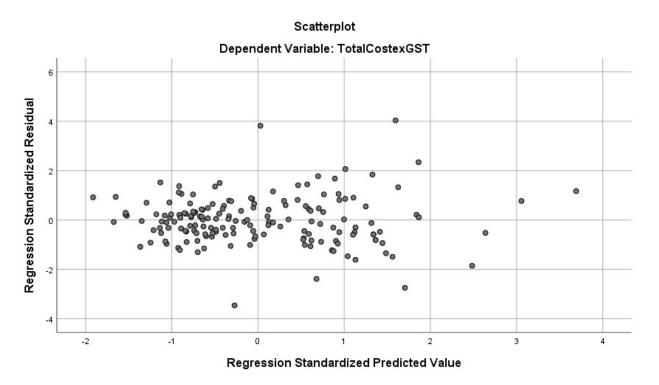
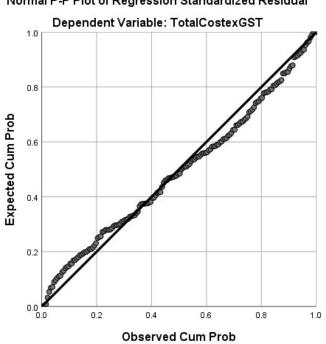




Figure 23 - Scatter plot of residual versus predicted values

2. The residual errors must be normally distributed. This is assessed through a plot of the expected versus the observed errors. If they roughly show a straight line, then normality is maintained. Figure 24 shows this relationship with the regression model holds true as a rough straight line is shown.



Normal P-P Plot of Regression Standardized Residual

Figure 24 - Regression plot for normality of residual errors

3. Each predictor variable (cost driver) must be independent of each other. Collinearity between variables suggest the coefficients produced by the model may not be valid and the errors for these can become abnormally inflated resulting in an invalid model. A multicollinearity test is performed during the linear regression analysis. Chatterjee and Simonoff (2012, p. 29) state that the variance inflation factor (VIF) should be confirmed for each variable and that no formal cut off exists for a large VIF. They state that collinearity is not an issue if the VIF satisfies the below expression.

$$VIF < \max(10, \frac{1}{1 - R_{model}^2})$$
 (9)

The adjusted R<sup>2</sup> produced by the model is 0.982. The closer that value is to 1 the better the goodness of fit for the regression model. This shows the fit of the regression model is a very good fit for the data. Since  $R^2_{model}$  is 0.982, collinearity is not an issue if the VIF of the cost driver is less than 55.56. Table 14 shows a summary of the VIF values for each cost driver. This shows that there are no collinearity issues in the model and each cost driver is independent of each other.

| Cost driver                        | VIF    |
|------------------------------------|--------|
| GFA (m2)                           | 15.142 |
| External areas (m2)                | 3.082  |
| Garage area (m2)                   | 1.399  |
| External walls (lin m)             | 6.214  |
| Internal walls (lin m)             | 3.836  |
| Area of external openings (m2)     | 3.845  |
| Hips / valleys / ridges (lin m)    | 3.882  |
| Gable ends (m2)                    | 3.947  |
| No. of bathrooms (each)            | 1.129  |
| Additional plumbing outlets (each) | 2.531  |

Table 14 - Variance inflation factor summary for regression model

The validity of the statistical model has been confirmed and therefore can be relied upon to produce a relevant cost model. This has been done for the linear regression model using the  $\beta$  coefficients from the SPSS output. Table 15 shows the output from linear regression analysis with a variable being assigned to each cost driver, the cost driver name and the coefficient term.

| Variable              | Cost driver                        | $\beta$ coefficient |
|-----------------------|------------------------------------|---------------------|
| <b>X</b> 0            | (Constant)                         | 34911.766           |
| <b>X</b> 1            | GFA (m2)                           | 448.781             |
| X2                    | External areas (m2)                | 137.002             |
| X3                    | Garage area (m2)                   | -185.313            |
| X4                    | External walls (lin m)             | 470.019             |
| X5                    | Internal walls (lin m)             | 134.711             |
| X6                    | Area of external openings (m2)     | 328.761             |
| <b>X</b> <sub>7</sub> | Hips / valleys / ridges (lin m)    | 132.503             |
| <b>X</b> <sub>8</sub> | Gable ends (m2)                    | 443.071             |
| X9                    | No. of bathrooms (each)            | 11000.077           |
| X10                   | Additional plumbing outlets (each) | 2015.819            |

Table 15 - Linear regression coefficients

From this information, an algebraic formula was developed to test the data and shown in equation 10.

$$Cost (\$) = 34911.76 + 448.78x_1 + 137x_2 - 185.31x_3 + 470.02x_4 + 134.71x_5 + 328.76x_6 + 132.50x_7 + 443.07x_8 + 11000.08x_9 + 2015.82x_{10}$$
(10)

Equation 10 will be used when testing the statistical model's accuracy. The test will compare the variance between predicted and calculated costs of twenty test samples and determine the MAPE. The full SPSS output from the linear regression analysis can be found in Appendix I.

#### 4.3.3 Critical reasoning for cost drivers failing significance test

Following on from the results of the first linear regression analysis, it was found that some cost drivers are not statistically significant. This section will provide critical reasoning why these cost drivers may not be significant to the model, a summary of these are shown in Table 16.

| Cost driver                          | Sig.  |
|--------------------------------------|-------|
| Eaves (lin m)                        | 0.325 |
| Compactness (Ext<br>wall area / GFA) | 0.754 |
| No. sets of stacker<br>SGDs          | 0.607 |
| No. of bedrooms<br>(each)            | 0.825 |
| No. of living areas (each)           | 0.931 |

| T 11 1/    | $\alpha$ | 1 .     | 1       | C    | 1.    | •          | 1 1   |
|------------|----------|---------|---------|------|-------|------------|-------|
| Table 16 – | COSL     | arivers | removed | from | Inear | regression | model |
|            |          |         |         |      |       |            |       |

The eaves of the building were not significant even though other roof features such as hips, valleys and gable ends remain. This may be because the external walls run the perimeter of the building footprint like the eaves. The eaves could be considered a function of external walls which remained a significant cost driver. Figure 25 shows a typical plan highlighting the external walls and the eaves of the building, it can be seen both follow very similar perimeters around the building.

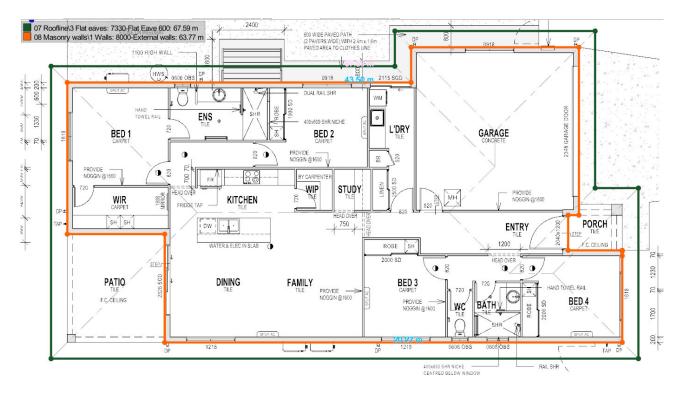



Figure 25 - Eave versus external wall perimeter layout

Compactness was discovered during the literature review as a cost driver (Stoy and Schlacher 2007 and Stoy et al. 2008). The results found it is not significant to this model. Like the eave cost driver, the compactness of a building can be considered a function of the remaining significant cost drivers. Compactness is a measure of wall area divided by gross floor area. As the external walls remain in the cost model, are all the same height and the fact the gross floor area also remains explains why compactness was not significant.

Window and sliding glass door complexity was identified during the case study interviews and the inclusion of this cost driver was based on that result. This item was likely excluded from the model as it simply is not significant enough to impact cost. External opening area remains a significant factor which is a function of window and door size.

The total number of bedrooms and living areas were also identified during the interviews. A logical analysis would suggest that these would be factors driving cost of construction. This is a puzzling result considering the additional fit out requirements for a separate room. An explanation comes from assessing the geometry of a dwelling. A separate room is made up of several components such as internal partition walls, external walls and external window/door openings. These components all remain within the cost model, so as surprising as the results are, the separation of bedrooms and living areas are a function of other remaining cost drivers within the model.

#### 4.3.4 Linear regression model testing and results

The linear regression model has been validated and a formula derived to apply to the testing sample designs. This is a critical step in the cost modelling development and towards the next phase which tests neural network models.

Twenty test designs samples were randomly selected to test the accuracy of the linear regression model using equation 10. The cost drivers can be found in Table 15 from the previous section. Each sample had an appropriate value assigned to the cost driver. A table was produced in Excel to calculate the predicted cost of each test sample using equation 10, this can be found in Appendix L. The predicted cost was then compared to the calculated cost for each test sample. Each sample had its construction cost calculated using the first principle cost estimating method used to collect the original data sets. A comparison of predicted versus calculated costs are summarised in Table 17.

| Test<br>Sample | Model<br>Predicted Cost | Calculated<br>Cost | Difference in<br>cost (Pred vs<br>Calc) | Absolute %<br>error | % error |
|----------------|-------------------------|--------------------|-----------------------------------------|---------------------|---------|
| S001           | \$271,294.45            | \$269,845.36       | \$1,449.08                              | 0.54%               | 0.54%   |
| S002           | \$233,475.42            | \$241,288.69       | -\$7,813.26                             | 3.24%               | -3.24%  |
| S003           | \$257,161.76            | \$259,434.80       | -\$2,273.04                             | 0.88%               | -0.88%  |
| S004           | \$269,605.37            | \$270,115.64       | -\$510.27                               | 0.19%               | -0.19%  |
| S005           | \$190,189.54            | \$191,207.60       | -\$1,018.06                             | 0.53%               | -0.53%  |
| S006           | \$252,880.80            | \$257,411.03       | -\$4,530.24                             | 1.76%               | -1.76%  |
| S007           | \$184,771.95            | \$188,202.31       | -\$3,430.36                             | 1.82%               | -1.82%  |
| S008           | \$279,777.53            | \$289,247.39       | -\$9,469.86                             | 3.27%               | -3.27%  |
| S009           | \$301,716.72            | \$305,755.27       | -\$4,038.56                             | 1.32%               | -1.32%  |
| S010           | \$323,620.58            | \$311,996.76       | \$11,623.82                             | 3.73%               | 3.73%   |
| S011           | \$254,347.21            | \$260,118.56       | -\$5,771.35                             | 2.22%               | -2.22%  |
| S012           | \$203,473.55            | \$203,807.14       | -\$333.59                               | 0.16%               | -0.16%  |
| S013           | \$223,225.88            | \$219,262.09       | \$3,963.78                              | 1.81%               | 1.81%   |
| S014           | \$280,995.88            | \$289,336.00       | -\$8,340.12                             | 2.88%               | -2.88%  |
| S015           | \$217,331.26            | \$221,375.79       | -\$4,044.53                             | 1.83%               | -1.83%  |
| S016           | \$227,990.94            | \$223,609.16       | \$4,381.78                              | 1.96%               | 1.96%   |
| S017           | \$253,980.13            | \$259,505.08       | -\$5,524.95                             | 2.13%               | -2.13%  |
| S018           | \$242,171.38            | \$241,368.56       | \$802.82                                | 0.33%               | 0.33%   |
| S019           | \$200,694.71            | \$202,958.42       | -\$2,263.71                             | 1.12%               | -1.12%  |
| S020           | \$220,577.87            | \$225,592.66       | -\$5,014.79                             | 2.22%               | -2.22%  |
| Mean           | \$244,464.15            | \$246,571.92       | -\$2,107.77                             | 1.70%               | -0.86%  |
| Std Dev        |                         |                    |                                         | 1.07%               | 1.84%   |

Table 17 - Linear regression model testing results summary

The results show that the costs predicted by the model has a mean absolute percentage error (MAPE) of 1.70%. Also calculated is the cost variance in dollars, standard deviation and the percentage error mean. The MAPE was determined during the methodology as the main test for model accuracy. The most accurate model discovered during the literature review was from a study in 2013 by Latief, Wibowo and Isvara (2013)

which was a hybrid regression and neural fuzzy logic model based on multi-level buildings, this model had a MAPE of 3.98%. The results produced by the linear regression analysis using the baseline estimate method and cost drivers only related to design factors improved the accuracy to a MAPE of 1.70%. This proves the method sound and the validity of the statistical modelling method, this means it can be considered for the framework development.

## 4.3.5 Multilayer perceptron neural network analysis of results

Due to some success found during the literature review of neural networks for cost modelling, an analysis was warranted. SPSS offer two neural network options with multilayer perceptron being discussed in this section.

Using the statistically significant cost drivers a neural network was set up in SPSS. The raw input data was the same as the information used for the linear regression analysis. SPSS was setup to include the predictive output of the neural network for each test sample. As a neural network does not make assumptions of linearity, the output can be directly applied without any validity testing. Table 18 summarises the output of the multilayer perceptron neural network with the detailed output found in Appendix J.

| Test<br>Sample | Predicted Cost | Calculated<br>Cost | Difference in<br>cost (Pred vs<br>Calc) | Absolute %<br>error | % error |
|----------------|----------------|--------------------|-----------------------------------------|---------------------|---------|
| S001           | \$279,570.82   | \$269,845.36       | \$9,725.45                              | 3.60%               | 3.60%   |
| S002           | \$229,814.68   | \$241,288.69       | -\$11,474.01                            | 4.76%               | -4.76%  |
| S003           | \$261,082.36   | \$259,434.80       | \$1,647.57                              | 0.64%               | 0.64%   |
| S004           | \$264,082.09   | \$270,115.64       | -\$6,033.55                             | 2.23%               | -2.23%  |
| S005           | \$194,933.52   | \$191,207.60       | \$3,725.91                              | 1.95%               | 1.95%   |
| S006           | \$254,618.33   | \$257,411.03       | -\$2,792.70                             | 1.08%               | -1.08%  |
| S007           | \$193,871.08   | \$188,202.31       | \$5,668.76                              | 3.01%               | 3.01%   |
| S008           | \$271,310.61   | \$290,642.89       | -\$19,332.28                            | 6.65%               | -6.65%  |
| S009           | \$312,316.27   | \$305,755.27       | \$6,560.99                              | 2.15%               | 2.15%   |
| S010           | \$312,371.98   | \$311,996.76       | \$375.22                                | 0.12%               | 0.12%   |
| S011           | \$252,640.57   | \$260,118.56       | -\$7,477.98                             | 2.87%               | -2.87%  |
| S012           | \$201,772.07   | \$203,807.14       | -\$2,035.07                             | 1.00%               | -1.00%  |
| S013           | \$226,865.37   | \$219,262.09       | \$7,603.28                              | 3.47%               | 3.47%   |
| S014           | \$279,474.44   | \$295,506.96       | -\$16,032.53                            | 5.43%               | -5.43%  |
| S015           | \$218,682.32   | \$221,375.79       | -\$2,693.47                             | 1.22%               | -1.22%  |
| S016           | \$221,294.99   | \$223,649.16       | -\$2,354.17                             | 1.05%               | -1.05%  |
| S017           | \$255,266.30   | \$259,505.08       | -\$4,238.78                             | 1.63%               | -1.63%  |
| S018           | \$246,446.09   | \$241,368.56       | \$5,077.53                              | 2.10%               | 2.10%   |
| S019           | \$203,312.21   | \$202,958.42       | \$353.79                                | 0.17%               | 0.17%   |
| S020           | \$220,907.72   | \$225,592.66       | -\$4,684.94                             | 2.08%               | -2.08%  |
| Mean           | \$245,031.69   | \$246,952.24       | -\$1,920.55                             | 2.36%               | -0.64%  |
| Std Dev        |                |                    |                                         | 1.73%               | 2.91%   |

Table 18 - Multilayer perceptron neural network results summary

Table 18 details the predicted cost of the neural network and the calculated costs for the test samples. The test samples are the same used for the linear regression analysis comparison, this allows for a relevant comparison between the modelling methods. The key measures of MAPE, standard deviation and percentage error have been included in Table 18. The MAPE for this method is 2.36% which is less accurate than the linear regression method, therefore a lower performing statistical model.

#### 4.3.6 Radial basis function neural network analysis of results

The method of producing the radial basis function neural network in SPSS is the same as the multilayer perceptron with a detailed output found in Appendix K. The results have been summarised in Table 19.

| Test<br>Sample | Predicted Cost | Calculated<br>Cost | Difference in<br>cost (Pred vs<br>Calc) | Absolute %<br>error | % error |
|----------------|----------------|--------------------|-----------------------------------------|---------------------|---------|
| S001           | \$269,414.92   | \$269,845.36       | -\$430.44                               | 0.16%               | -0.16%  |
| S002           | \$231,272.82   | \$241,288.69       | -\$10,015.87                            | 4.15%               | -4.15%  |
| S003           | \$256,848.52   | \$259,434.80       | -\$2,586.28                             | 1.00%               | -1.00%  |
| S004           | \$275,470.08   | \$270,115.64       | \$5,354.44                              | 1.98%               | 1.98%   |
| S005           | \$188,685.42   | \$191,207.60       | -\$2,522.18                             | 1.32%               | -1.32%  |
| S006           | \$255,685.65   | \$257,411.03       | -\$1,725.38                             | 0.67%               | -0.67%  |
| S007           | \$170,318.44   | \$188,202.31       | -\$17,883.88                            | 9.50%               | -9.50%  |
| S008           | \$267,541.39   | \$290,642.89       | -\$23,101.50                            | 7.95%               | -7.95%  |
| S009           | \$312,664.64   | \$305,755.27       | \$6,909.37                              | 2.26%               | 2.26%   |
| S010           | \$267,545.06   | \$311,996.76       | -\$44,451.70                            | 14.25%              | -14.25% |
| S011           | \$250,405.75   | \$260,118.56       | -\$9,712.81                             | 3.73%               | -3.73%  |
| S012           | \$210,173.38   | \$203,807.14       | \$6,366.24                              | 3.12%               | 3.12%   |
| S013           | \$226,229.03   | \$219,262.09       | \$6,966.94                              | 3.18%               | 3.18%   |
| S014           | \$278,719.54   | \$295,506.96       | -\$16,787.43                            | 5.68%               | -5.68%  |
| S015           | \$216,159.92   | \$221,375.79       | -\$5,215.87                             | 2.36%               | -2.36%  |
| S016           | \$213,339.01   | \$223,649.16       | -\$10,310.15                            | 4.61%               | -4.61%  |
| S017           | \$258,340.41   | \$259,505.08       | -\$1,164.67                             | 0.45%               | -0.45%  |
| S018           | \$244,476.92   | \$241,368.56       | \$3,108.36                              | 1.29%               | 1.29%   |
| S019           | \$196,911.34   | \$202,958.42       | -\$6,047.08                             | 2.98%               | -2.98%  |
| S020           | \$218,218.88   | \$225,592.66       | -\$7,373.78                             | 3.27%               | -3.27%  |
| Mean           | \$240,421.06   | \$246,952.24       | -\$6,531.18                             | 3.70%               | -2.51%  |
| Std Dev        |                |                    |                                         | 3.46%               | 4.44%   |

Table 19 - Radial basis function neural network results summary

Table 19 summarises the results of the radial basis function neural network. This shows the radial basis function neural network has a MAPE of 3.70% which is the worst performing statistical model.

## 4.3.7 Critical comparison of statistical modelling methods

The three methods trialled to determine a valid cost model are linear regression analysis, multilayer perceptron and radial basis function neural networks. To better understand the results from each method and enable model selection, the results were tabulated showing predicted cost, calculated cost and the MAPE. Table 20 summarises the predicted cost values for each method and the calculated cost of the test samples.

| Test<br>Sample | Calculated<br>Cost | Linear regression<br>predicted value | MLP Neural network predicted value | RBF neural network predicted value |
|----------------|--------------------|--------------------------------------|------------------------------------|------------------------------------|
| S001           | \$269,845.36       | \$271,294.45                         | \$279,570.82                       | \$269,414.92                       |
| S002           | \$241,288.69       | \$233,475.42                         | \$229,814.68                       | \$231,272.82                       |
| S003           | \$259,434.80       | \$257,161.76                         | \$261,082.36                       | \$256,848.52                       |
| S004           | \$270,115.64       | \$269,605.37                         | \$264,082.09                       | \$275,470.08                       |
| S005           | \$191,207.60       | \$190,189.54                         | \$194,933.52                       | \$188,685.42                       |
| S006           | \$257,411.03       | \$252,880.80                         | \$254,618.33                       | \$255,685.65                       |
| S007           | \$188,202.31       | \$184,771.95                         | \$193,871.08                       | \$170,318.44                       |
| S008           | \$289,247.39       | \$279,777.53                         | \$271,310.61                       | \$267,541.39                       |
| S009           | \$305,755.27       | \$301,716.72                         | \$312,316.27                       | \$312,664.64                       |
| S010           | \$311,996.76       | \$323,620.58                         | \$312,371.98                       | \$267,545.06                       |
| S011           | \$260,118.56       | \$254,347.21                         | \$252,640.57                       | \$250,405.75                       |
| S012           | \$203,807.14       | \$203,473.55                         | \$201,772.07                       | \$210,173.38                       |
| S013           | \$219,262.09       | \$223,225.88                         | \$226,865.37                       | \$226,229.03                       |
| S014           | \$289,336.00       | \$280,995.88                         | \$279,474.44                       | \$278,719.54                       |
| S015           | \$221,375.79       | \$217,331.26                         | \$218,682.32                       | \$216,159.92                       |
| S016           | \$223,609.16       | \$227,990.94                         | \$221,294.99                       | \$213,339.01                       |
| S017           | \$259,505.08       | \$253,980.13                         | \$255,266.30                       | \$258,340.41                       |
| S018           | \$241,368.56       | \$242,171.38                         | \$246,446.09                       | \$244,476.92                       |
| S019           | \$202,958.42       | \$200,694.71                         | \$203,312.21                       | \$196,911.34                       |
| S020           | \$225,592.66       | \$220,577.87                         | \$220,907.72                       | \$218,218.88                       |
|                | Mean difference    | -\$2,107.77                          | -\$1,920.55                        | -\$6,531.18                        |

Table 20 - Summary of predicted versus calculated cost of three cost models

As seen in Table 20 the mean difference between predicted versus actual are all negative. This shows that on average the prediction model underestimates the cost of construction in comparison to the calculated cost. Even though this result is not ideal the variance with the two top performing models is minimal when applied over the entire cost of the project as a percentage. The linear regression analysis and multilayer perceptron neural network models both have very close results, however the radial basis function is over three times higher. The percentage error for each model has been summarised in Table 21 which provides a much clearer understanding of the differences between the models.

| Test<br>Sample | Linear<br>regression %<br>error | MLP Neural<br>network %<br>error | RBF neural<br>network %<br>error |
|----------------|---------------------------------|----------------------------------|----------------------------------|
| S001           | 0.54%                           | 3.60%                            | -0.16%                           |
| S002           | -3.24%                          | -4.76%                           | -4.15%                           |
| S003           | -0.88%                          | 0.64%                            | -1.00%                           |
| S004           | -0.19%                          | -2.23%                           | 1.98%                            |
| S005           | -0.53%                          | 1.95%                            | -1.32%                           |
| S006           | -1.76%                          | -1.08%                           | -0.67%                           |
| S007           | -1.82%                          | 3.01%                            | -9.50%                           |
| S008           | -3.27%                          | -6.65%                           | -7.95%                           |
| S009           | -1.32%                          | 2.15%                            | 2.26%                            |
| S010           | 3.73%                           | 0.12%                            | -14.25%                          |
| S011           | -2.22%                          | -2.87%                           | -3.73%                           |
| S012           | -0.16%                          | -1.00%                           | 3.12%                            |
| S013           | 1.81%                           | 3.47%                            | 3.18%                            |
| S014           | -2.88%                          | -5.43%                           | -5.68%                           |
| S015           | -1.83%                          | -1.22%                           | -2.36%                           |
| S016           | 1.96%                           | -1.05%                           | -4.61%                           |
| S017           | -2.13%                          | -1.63%                           | -0.45%                           |
| S018           | 0.33%                           | 2.10%                            | 1.29%                            |
| S019           | -1.12%                          | 0.17%                            | -2.98%                           |
| S020           | -2.22%                          | -2.08%                           | -3.27%                           |
| Mean           | -0.86%                          | -0.64%                           | -2.51%                           |
| Std Dev        | 1.84%                           | 2.91%                            | 4.44%                            |

Table 21 - Summary of percentage error results from three cost modelling options

Table 21 shows the spread of differences between the three models. Like Table 20 the linear regression analysis and multilayer perceptron neural networks perform well with a very narrow difference between the two. Even though the multilayer perceptron model performs slightly better than the regression analysis, its standard deviation is higher. With a 95% confidence interval we expect that the population mean would lie within two standard deviations of the sample mean. An analysis of distribution can be made by assessing the spread of results shown two standard deviations above and below the mean. The percentage error has been chosen for this analysis rather the absolute percentage error so negative values are included in the distribution. The below figures show the analysis for each cost modelling method with the blue vertical lines indicating two standard deviations, the yellow lines representing one standard deviation and the red line representing the mean.

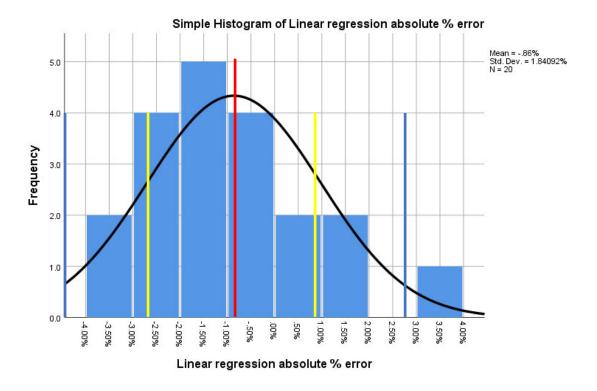



Figure 26 – Distribution of linear regression error around the mean

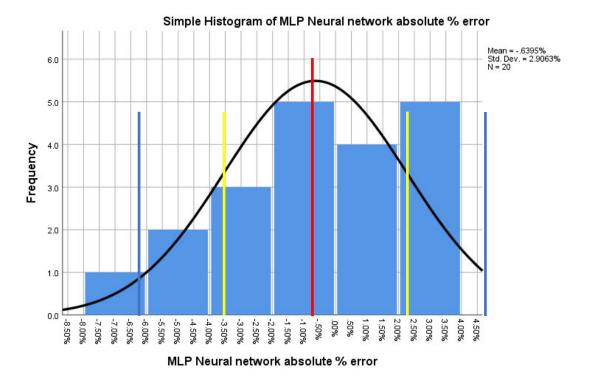



Figure 27 - Distribution of multilayer perceptron neural network error around the mean

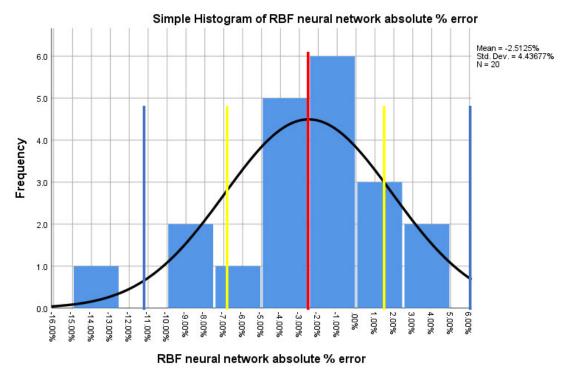



Figure 28 - Distribution of radial basis function neural network error around the mean

The above figures illustrate the spread of the results around the mean for each statistical model. The radial basis function model performs poorly with the spread of the results significantly above and below the mean. Even though most of the predictive costs are within two standard deviations, the spread of results is greater which means a less accurate and consistent model output. The multilayer perceptron, whilst showing a more favourable average percentage error does show a wider spread when compared to the linear regression model. The linear regression model shows a tighter spread meaning a greater consistency of accurate and reliable output. All models do show some skewing of the distribution with both neural networks exhibiting a negative skew and the linear regression showing a positive skew. Results within two standard deviations of the mean at a 95% confidence interval shows that there is a 5% chance the model excludes the true population mean. From this analysis the linear regression model performs better than the two neural networks.

The mean difference in predicted versus calculated values show some interesting information, however the MAPE will be used in the weighted decision matrix used to determine the best model for the framework development. Table 22 shows the summarised MAPE results for each cost modelling method.

| Test<br>Sample | Linear regression<br>absolute % error | MLP Neural network absolute % error | RBF neural network absolute % error |
|----------------|---------------------------------------|-------------------------------------|-------------------------------------|
| S001           | 0.54%                                 | 3.60%                               | 0.16%                               |
| S002           | 3.24%                                 | 4.76%                               | 4.15%                               |
| S003           | 0.88%                                 | 0.64%                               | 1.00%                               |
| S004           | 0.19%                                 | 2.23%                               | 1.98%                               |
| S005           | 0.53%                                 | 1.95%                               | 1.32%                               |
| S006           | 1.76%                                 | 1.08%                               | 0.67%                               |
| S007           | 1.82%                                 | 3.01%                               | 9.50%                               |
| S008           | 3.27%                                 | 6.20%                               | 7.50%                               |
| S009           | 1.32%                                 | 2.15%                               | 2.26%                               |
| S010           | 3.73%                                 | 0.12%                               | 14.25%                              |
| S011           | 2.22%                                 | 2.87%                               | 3.73%                               |
| S012           | 0.16%                                 | 1.00%                               | 3.12%                               |
| S013           | 1.81%                                 | 3.47%                               | 3.18%                               |
| S014           | 2.88%                                 | 3.41%                               | 3.67%                               |
| S015           | 1.83%                                 | 1.22%                               | 2.36%                               |
| S016           | 1.96%                                 | 1.03%                               | 4.59%                               |
| S017           | 2.13%                                 | 1.63%                               | 0.45%                               |
| S018           | 0.33%                                 | 2.10%                               | 1.29%                               |
| S019           | 1.12%                                 | 0.17%                               | 2.98%                               |
| S020           | 2.22%                                 | 2.08%                               | 3.27%                               |
| MAPE           | 1.70%                                 | 2.36%                               | 3.70%                               |
| Std Dev        | 1.07%                                 | 1.73%                               | 3.46%                               |

Table 22 - Summary of MAPE results from three cost modelling options

Table 22 shows that the linear regression analysis model performed much better than the two neural network models when using the MAPE as an indicator for accuracy, which was found to be the preferred measure during the literature review. All three models perform more accurately than the best model discovered during the literature review which had a MAPE of 3.98%. This proves baseline estimating with a focus on design related cost drivers is a successful methodology in producing an accurate statistical cost model.

## 4.3.8 Summary

The results of the statistical analysis on 170 samples of calculated construction costs show that linear regression performed the best using the MAPE as a measure of accuracy. Whilst the multilayered perceptron neural network had a slightly less error percentage than linear regression, it was found linear regression had a better MAPE result and higher consistency when comparing the distribution around the mean within two standard deviations.

A MAPE of 1.70% for the linear regression analysis is an excellent result, however during the case study interviews it was discovered that custom cabinetry such as kitchens, vanities and laundry units were thought by the respondents to add significant cost. This item was not identified as a cost driver due to how difficult it is to apply using simple input quantities. It was recommended from this discovery to trial a statistical

analysis without the cost of custom cabinetry included and compare the results to the original models. This allowed for a thorough exploration of available options for the development of the framework. It was expected the result from modelling without custom cabinetry will provide a MAPE at least half that found during the modelling with cabinetry. Unless this increase in accuracy is achieved, it will not be further considered.

# 4.4 Recommended data analysis with cabinetry removed

The results from the previous statistical models were promising. However, it has been recognised that a more accurate model may be created by removing custom cabinetry from the cost data samples used for analysis. During the case study interviews it was found that this component could add significant cost, so to test this theory a second cost modelling analysis was performed using an identical methodology. The results from this modelling process hope to improve the accuracy to at least half the MAPE of the modelling with cabinetry. This means unless the MAPE is under 0.85% the results will be excluded from further consideration. A framework without custom cabinetry will be incomplete and require additional complication to produce a result, therefore won't be warranted without reaching the target accuracy. This section will analyse the results from each cost modelling option with the cabinetry costs excluded from both the import data and sample testing data.

## 4.4.1 Results from linear regression without custom cabinetry

The lump sum cost of custom cabinetry was removed from each data set and the import template for SPSS was populated with the revised costs. The exact parameters used for the original linear regression analysis have been used again for this experiment. The results of the first linear regression analysis for the model have identified cost drivers that were not statistically significant and required to be removed. These have been displayed in Table 23 with the yellow highlighted values that have a P > 0.05 at a 95% confidence interval.

|                                    | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |       |
|------------------------------------|-----------------------------|------------|------------------------------|--------|-------|
| Cost Driver                        | В                           | Std. Error | Beta                         | t      | Sig.  |
| (Constant)                         | 38875.972                   | 15125.653  |                              | 2.570  | 0.011 |
| GFA (m2)                           | 362.403                     | 55.516     | 0.532                        | 6.528  | 0.000 |
| External areas (m2)                | 96.394                      | 42.295     | 0.035                        | 2.279  | 0.024 |
| Garage area (m2)                   | -103.607                    | 44.834     | -0.024                       | -2.311 | 0.022 |
| External walls (lin m)             | 577.778                     | 199.598    | 0.163                        | 2.895  | 0.004 |
| Internal walls (lin m)             | 121.739                     | 35.751     | 0.062                        | 3.405  | 0.001 |
| Eaves (lin m)                      | 11.616                      | 52.554     | 0.004                        | 0.221  | 0.825 |
| Compactness (Ext wall area / GFA)  | -9147.833                   | 15706.900  | -0.025                       | -0.582 | 0.561 |
| Area of external openings<br>(m2)  | 246.818                     | 64.207     | 0.067                        | 3.844  | 0.000 |
| No. sets of stacker SGDs           | 137.344                     | 450.868    | 0.003                        | 0.305  | 0.761 |
| Hips / valleys / ridges (lin<br>m) | 116.163                     | 21.119     | 0.094                        | 5.500  | 0.000 |
| Gable ends (m2)                    | 361.786                     | 51.764     | 0.132                        | 6.989  | 0.000 |
| No. of bedrooms (each)             | 1597.691                    | 734.344    | 0.026                        | 2.176  | 0.031 |
| No. of living areas (each)         | 943.118                     | 538.569    | 0.021                        | 1.751  | 0.082 |
| No. of bathrooms (each)            | 8663.515                    | 1821.069   | 0.043                        | 4.757  | 0.000 |
| Additional plumbing outlets (each) | 1313.182                    | 302.430    | 0.059                        | 4.342  | 0.000 |

Table 23 - Results from linear regression analysis without cabinetry

The results have identified the same cost drivers for removal from the model as the first experiment except for the number of bedrooms. This cost driver's P-value has been dramatically reduced from 0.825 in the first experiment to 0.031 so remained in the model, moving forward to the next stage. The regression model was run again with the cost drivers identified in Table 24 as not statistically significant being removed.

|                                    | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |       |
|------------------------------------|-----------------------------|------------|------------------------------|--------|-------|
| Cost driver                        | В                           | Std. Error | Beta                         | t      | Sig.  |
| (Constant)                         | 31573.465                   | 4347.083   |                              | 7.263  | 0.000 |
| GFA (m2)                           | 402.629                     | 22.838     | 0.591                        | 17.630 | 0.000 |
| External areas (m2)                | 77.892                      | 40.977     | 0.029                        | 1.901  | 0.059 |
| Garage area (m2)                   | -117.069                    | 42.593     | -0.027                       | -2.749 | 0.007 |
| External walls (lin m)             | 477.932                     | 74.003     | 0.135                        | 6.458  | 0.000 |
| Internal walls (lin m)             | 145.303                     | 32.892     | 0.074                        | 4.418  | 0.000 |
| Area of external openings<br>(m2)  | 255.773                     | 60.743     | 0.070                        | 4.211  | 0.000 |
| Hips / valleys / ridges (lin<br>m) | 114.699                     | 20.443     | 0.093                        | 5.611  | 0.000 |
| Gable ends (m2)                    | 354.087                     | 45.585     | 0.129                        | 7.768  | 0.000 |
| No. of bedrooms (each)             | 1334.544                    | 695.006    | 0.021                        | 1.920  | 0.057 |
| No. of bathrooms (each)            | 8723.253                    | 1805.263   | 0.043                        | 4.832  | 0.000 |
| Additional plumbing outlets (each) | 1344.164                    | 298.659    | 0.060                        | 4.501  | 0.000 |

Table 24 - Second regression results with cost drivers removed from cost excluding cabinetry

The results from the second regression analysis excluding the cabinetry costs identified two additional cost drivers in this model that are not statistically significant. Like the original experiment that included cabinetry costs, the number of bedrooms are now not significant. However, the inclusion of external areas have also been identified. According to the methodology a third regression analysis is needed until all remaining cost drivers are significant (P < 0.05). Table 25 has summarised the results from the third linear regression analysis with cabinetry costs removed.

|                                    | Unstandardized Coefficients |            | Standardized<br>Coefficients |        |       |
|------------------------------------|-----------------------------|------------|------------------------------|--------|-------|
| Cost drivers                       | В                           | Std. Error | Beta                         | t      | Sig.  |
| (Constant)                         | 33106.791                   | 4183.005   |                              | 7.915  | 0.000 |
| GFA (m2)                           | 433.219                     | 18.059     | 0.636                        | 23.989 | 0.000 |
| Garage area (m2)                   | -128.003                    | 42.862     | -0.030                       | -2.986 | 0.003 |
| External walls (lin m)             | 478.288                     | 74.673     | 0.135                        | 6.405  | 0.000 |
| Internal walls (lin m)             | 143.156                     | 30.898     | 0.073                        | 4.633  | 0.000 |
| Area of external openings<br>(m2)  | 244.158                     | 61.243     | 0.066                        | 3.987  | 0.000 |
| Hips / valleys / ridges (lin<br>m) | 112.580                     | 20.670     | 0.091                        | 5.446  | 0.000 |
| Gable ends (m2)                    | 349.094                     | 46.025     | 0.128                        | 7.585  | 0.000 |
| No. of bathrooms (each)            | 8565.022                    | 1827.058   | 0.042                        | 4.688  | 0.000 |
| Additional plumbing outlets (each) | 1226.038                    | 298.482    | 0.055                        | 4.108  | 0.000 |

Table 25 - Second regression results with cost drivers removed from cost excluding cabinetry

The results from the third linear regression analysis show highly significant remaining cost drivers. To ensure a valid regression model the residual errors must have a constant variance, the errors be normally distributed and each prediction variable be independent of each other. These assumptions were tested and the results summarised below.

1. Residual errors must have a constant variance. Figure 29 shows a scatter plot indicating a random pattern above and below zero. This shows the residual errors have a constant variance.

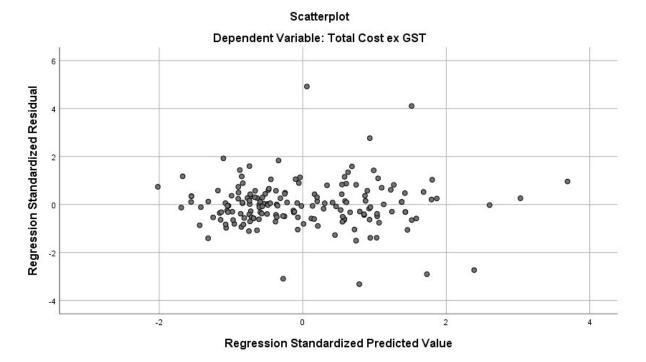
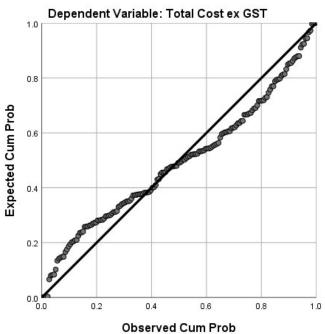




Figure 29 - Scatter plot of residual error versus predicted values for regression analysis without cabinetry

2. The residual errors must be normally distributed. Figure 30 shows the plot of expected versus observed errors and again a rough straight line has indicated this assumption to hold true although with a more pronounced curvature than the results with cabinetry.



Normal P-P Plot of Regression Standardized Residual

Figure 30 – Regression plot for normality of residual areas for cost excluding cabinetry

| Cost drivers                       | VIF      |
|------------------------------------|----------|
| GFA (m2)                           | 9.732811 |
| Garage area (m2)                   | 1.385231 |
| External walls (lin m)             | 6.187978 |
| Internal walls (lin m)             | 3.458681 |
| Area of external openings (m2)     | 3.845071 |
| Hips / valleys / ridges (lin m)    | 3.870111 |
| Gable ends (m2)                    | 3.923077 |
| No. of bathrooms (each)            | 1.128382 |
| Additional plumbing outlets (each) | 2.496022 |

3. Each predictor (cost driver) must be independent. Collinearity was tested comparing the variance inflation factor (VIF) for each variable. Table 26 summarised the VIF for each cost driver.

Table 26 - Variation inflation factors for regression model excluding cabinetry

The adjusted  $R^2$  value for this model is 0.988, which is slightly better than the first model which was 0.982. This means this model is a better fit than the model with cabinetry costs as it is closer to 1. Using equation 9, no collinearity occurs if the maximum VIF for the cost driver is below 10 or 83. The results show no collinearity in the model exists. Satisfying these assumptions show that the linear regression model is viable. Therefore, a linear regression formula can be constructed using the significant cost drivers. Table 27 summarises the significant cost drivers along with the calculated coefficients the model produced.

| Variable       | Cost driver                        | B coefficient |
|----------------|------------------------------------|---------------|
| X <sub>0</sub> | (Constant)                         | 33106.791     |
| <b>X</b> 1     | GFA (m2)                           | 433.219       |
| X2             | Garage area (m2)                   | -128.003      |
| X3             | External walls (lin m)             | 478.288       |
| X4             | Internal walls (lin m)             | 143.156       |
| X5             | Area of external openings (m2)     | 244.158       |
| X6             | Hips / valleys / ridges (lin m)    | 112.580       |
| X7             | Gable ends (m2)                    | 349.094       |
| X8             | No. of bathrooms (each)            | 8565.022      |
| X9             | Additional plumbing outlets (each) | 1226.038      |

Table 27 - Cost driver coefficients from regression model without cabinetry

From this information, the following linear regression formula can be developed and used for the calculation of testing sample costs. The complete results from the linear regression analysis can be found in Appendix M.

 $Cost (\$) = 33106.79 + 433.22x_1 - 128.00x_2 + 478.29x_3 + 143.16x_4 + 244.16 + 112.58x_6 + 349.09x_7 + 8565.02x_8 + 1226.04x_9$ (11)

#### 4.4.2 Results from model testing

To analyse whether the linear regression model without cabinetry performs better, the same twenty test samples were used for comparison. The two artificial neural network models were also tested to determine the error variances and provide a complete analysis, the detailed results for both neural networks are found in Appendix N and Appendix O. The results from all three models are summarised in the following tables showing the calculated costs, predicted costs, the percentage error and the absolute percentage error.

| Test<br>Sample | Calculated<br>Cost | Linear regression predicted value | MLP Neural network predicted value | RBF neural network predicted value |
|----------------|--------------------|-----------------------------------|------------------------------------|------------------------------------|
| S001           | \$247,142.16       | \$250,532.47                      | \$257,971.33                       | \$249,555.93                       |
| S002           | \$220,599.19       | \$217,069.06                      | \$221,947.97                       | \$225,557.38                       |
| S003           | \$240,376.80       | \$235,349.85                      | \$245,869.14                       | \$232,559.61                       |
| S004           | \$253,299.84       | \$246,155.38                      | \$235,514.28                       | \$263,224.25                       |
| S005           | \$178,352.29       | \$177,950.11                      | \$180,270.31                       | \$171,914.10                       |
| S006           | \$239,267.39       | \$236,029.87                      | \$239,405.22                       | \$237,490.89                       |
| S007           | \$175,227.01       | \$171,689.65                      | \$167,633.72                       | \$172,689.84                       |
| S008           | \$259,735.09       | \$259,183.63                      | \$264,982.20                       | \$246,368.99                       |
| S009           | \$277,121.87       | \$277,723.25                      | \$276,485.36                       | \$270,694.97                       |
| S010           | \$288,027.56       | \$296,923.78                      | \$274,024.98                       | \$246,369.51                       |
| S011           | \$239,836.73       | \$235,267.25                      | \$244,503.97                       | \$243,369.27                       |
| S012           | \$189,667.44       | \$188,183.27                      | \$187,387.37                       | \$195,672.82                       |
| S013           | \$208,472.59       | \$206,316.13                      | \$208,788.77                       | \$197,625.49                       |
| S014           | \$258,468.24       | \$256,573.30                      | \$262,900.37                       | \$258,620.02                       |
| S015           | \$204,975.52       | \$203,059.40                      | \$205,916.69                       | \$197,825.26                       |
| S016           | \$209,717.16       | \$212,490.47                      | \$215,941.07                       | \$204,472.14                       |
| S017           | \$236,180.27       | \$235,409.59                      | \$236,682.29                       | \$240,324.06                       |
| S018           | \$224,421.95       | \$221,228.59                      | \$212,765.27                       | \$172,689.87                       |
| S019           | \$189,813.01       | \$187,675.85                      | \$189,467.16                       | \$193,428.33                       |
| S020           | \$209,827.16       | \$205,903.93                      | \$204,103.03                       | \$199,566.41                       |
|                | Mean<br>difference | -\$1,490.72                       | -\$898.44                          | -\$6,525.51                        |

Table 28 - Cost variance results from model without cabinetry

The Table 28 shows the first principle calculated costs for each test sample and the predicted cost each model produced. The multilayer perceptron neural network exhibits a smaller variance compared to the linear regression model with the radial basis function neural network performing worse than the other two.

| Test<br>Sample | Linear<br>regression %<br>error | MLP Neural<br>network %<br>error | RBF neural<br>network %<br>error |
|----------------|---------------------------------|----------------------------------|----------------------------------|
| S001           | 1.37%                           | 4.38%                            | 0.98%                            |
| S002           | -1.60%                          | 0.61%                            | 2.25%                            |
| S003           | -2.09%                          | 2.28%                            | -3.25%                           |
| S004           | -2.82%                          | -7.02%                           | 3.92%                            |
| S005           | -0.23%                          | 1.08%                            | -3.61%                           |
| S006           | -1.35%                          | 0.06%                            | -0.74%                           |
| S007           | -2.02%                          | -4.33%                           | -1.45%                           |
| S008           | -0.21%                          | 2.02%                            | -5.15%                           |
| S009           | 0.22%                           | -0.23%                           | -2.32%                           |
| S010           | 3.09%                           | -4.86%                           | -14.46%                          |
| S011           | -1.91%                          | 1.95%                            | 1.47%                            |
| S012           | -0.78%                          | -1.20%                           | 3.17%                            |
| S013           | -1.03%                          | 0.15%                            | -5.20%                           |
| S014           | -0.73%                          | 1.71%                            | 0.06%                            |
| S015           | -0.93%                          | 0.46%                            | -3.49%                           |
| S016           | 1.32%                           | 2.97%                            | -2.50%                           |
| S017           | -0.33%                          | 0.21%                            | 1.75%                            |
| S018           | -1.42%                          | -5.19%                           | -23.05%                          |
| S019           | -1.13%                          | -0.18%                           | 1.90%                            |
| S020           | -1.87%                          | -2.73%                           | -4.89%                           |
| Mean           | -0.72%                          | -0.39%                           | -2.73%                           |
| Std Dev        | 1.40%                           | 2.99%                            | 6.32%                            |

Table 29 - Percentage errors from models without cabinetry

Table 29 shows the percentage error for the differences between each model. The multilayer perceptron slightly outperforms the linear regression model. The errors for each model are less than the errors found during the original experiment with cabinetry included and summarised in Table 21. This suggests that modelling without cabinetry included in the testing may yield a more accurate model. The final analysis is to determine the mean absolute percentage error which is collated in Table 30.

| Test<br>Sample | Linear<br>regression<br>absolute %<br>error | MLP Neural<br>network<br>absolute %<br>error | RBF neural<br>network<br>absolute %<br>error |
|----------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
| S001           | 1.37%                                       | 4.38%                                        | 0.98%                                        |
| S002           | 1.60%                                       | 0.61%                                        | 2.25%                                        |
| S003           | 2.09%                                       | 2.28%                                        | 3.25%                                        |
| S004           | 2.82%                                       | 7.02%                                        | 3.92%                                        |
| S005           | 0.23%                                       | 1.08%                                        | 3.61%                                        |
| S006           | 1.35%                                       | 0.06%                                        | 0.74%                                        |
| S007           | 2.02%                                       | 4.33%                                        | 1.45%                                        |
| S008           | 0.21%                                       | 2.02%                                        | 5.15%                                        |
| S009           | 0.22%                                       | 0.23%                                        | 2.32%                                        |
| S010           | 3.09%                                       | 4.86%                                        | 14.46%                                       |
| S011           | 1.91%                                       | 1.95%                                        | 1.47%                                        |
| S012           | 0.78%                                       | 1.20%                                        | 3.17%                                        |
| S013           | 1.03%                                       | 0.15%                                        | 5.20%                                        |
| S014           | 0.73%                                       | 1.71%                                        | 0.06%                                        |
| S015           | 0.93%                                       | 0.46%                                        | 3.49%                                        |
| S016           | 1.32%                                       | 2.97%                                        | 2.50%                                        |
| S017           | 0.33%                                       | 0.21%                                        | 1.75%                                        |
| S018           | 1.42%                                       | 5.19%                                        | 23.05%                                       |
| S019           | 1.13%                                       | 0.18%                                        | 1.90%                                        |
| S020           | 1.87%                                       | 2.73%                                        | 4.89%                                        |
| MAPE           | 1.32%                                       | 2.18%                                        | 4.28%                                        |
| Std Dev        | 0.82%                                       | 2.03%                                        | 5.34%                                        |

Table 30 – MAPE results from model without cabinetry

The MAPE results are shown in Table 30. The aim of this experiment was to try to produce a more accurate model with a MAPE less than 0.85%. The results show a MAPE higher than this target. Therefore, this option will not be considered further in favour of a statistical model with similar accuracy and easier user input from the first experiment that included custom cabinetry. The results from both models with and without cabinetry have been summarised in Table 31.

|                              | Linear<br>regression | MLP Neural<br>network | RBF Neural<br>network |
|------------------------------|----------------------|-----------------------|-----------------------|
| With cabinetry model MAPE    | 1.70%                | 2.36%                 | 3.70%                 |
| Without cabinetry model MAPE | 1.32%                | 2.18%                 | 4.28%                 |

Table 31 - Comparison of MAPE results from both modelling options

The results show that linear regression is the best modelling option for both experiments. The model with the costs excluding cabinetry did not reach the target accuracy of 0.85% to warrant consideration in the final framework development. Modelling without cabinetry was no longer considered a valid option to continue with.

# 4.5 Framework development and testing

The results from the cost modelling from the first experiment with custom cabinetry were used to select and develop the best fit cost model for the framework. The methodology detailed how the model will be selected using a weighted decision matrix. The framework was developed using both Excel and iTWO Cost X software which satisfies the third research objective. The process of selecting the cost model, developing the framework along with a worked example will be detailed in this section.

### 4.5.1 Framework selection

This section will use the MAPE results from the analysis including custom cabinetry to select an appropriate framework. Table 32 has summarised the weighted results based on the criteria determined in the methodology section.

| Model              | Accuracy of model | Ease of use / speed | Model update ability | Score |
|--------------------|-------------------|---------------------|----------------------|-------|
| Linear regression  | 3                 | 2                   | 7                    | 3.4   |
| MLP neural network | 2                 | 1                   | 5                    | 2.2   |
| RBF neural network | 1                 | 1                   | 5                    | 1.8   |
| Weighting          | 40%               | 40%                 | 20%                  |       |

Table 32 - Weight decision matrix for framework selection

The weighted decision matrix results show linear regression analysis is the best model based on the highest score of 3.4. The linear regression model has been selected for the framework development for this project with both neural networks excluded from further consideration.

#### 4.5.2 Framework development

iTWO Cost X and Excel has been utilised to develop the framework as detailed in the methodology. Cost X has a distinct advantage as it can measure quantities on screen and link these directly to a workbook. The workbook functions like an Excel spreadsheet and can be used for calculations. Cost X is a software platform that requires a yearly subscription and the Company's licensed software has been used. Due to licensing of the Cost X software and the fact Excel is commonly available, the framework has also been developed in Excel. iTWO Cost X provides free viewer software that can be downloaded and installed to be able to see an example of the framework. A link to this software has been provided below.

#### https://www.itwocostx.com/costx/products/costx-viewer/

Developing the framework involved the use of equation 10 which has been detailed again below. The coefficients from the original linear regression analysis have been assigned to each cost driver, these will be used to calculate a total construction cost.

$$Cost (\$) = 34911.76 + 448.78x_1 + 137x_2 - 185.31x_3 + 470.02x_4 + 134.71x_5 + 328.76x_6 + 132.50x_7 + 443.07x_8 + 11000.08x_9 + 2015.82x_{10}$$
(10)

By using the coefficients from equation 10 and assigning them to the relevant cost drivers a framework has been developed in Excel. An example of the framework has been shown in the table below, the working Excel framework template has been provided in Appendix P. The framework example is blank to show which values need to be included to calculate a result, the input cells have been highlighted in yellow.

|                         | Cost modellin                      | g framework    |                   |        |
|-------------------------|------------------------------------|----------------|-------------------|--------|
| Variable identification | Cost driver                        | Coefficient    | Input value       | Result |
| X <sub>0</sub>          | (Constant)                         | 34911.77       |                   | 0.00   |
| X1                      | GFA (m2)                           | 448.78         |                   | 0.00   |
| X2                      | External areas (m2)                | 137.00         |                   | 0.00   |
| X <sub>3</sub>          | Garage area (m2)                   | -185.31        |                   | 0.00   |
| X4                      | External walls (lin m)             | 470.02         |                   | 0.00   |
| X5                      | Internal walls (lin m)             | 134.71         |                   | 0.00   |
| X <sub>6</sub>          | Area of external openings (m2)     | 328.76         |                   | 0.00   |
| X7                      | Hips / valleys / ridges (lin m)    | 132.50         |                   | 0.00   |
| X8                      | Gable ends (m2)                    | 443.07         |                   | 0.00   |
| X9                      | No. of bathrooms (each)            | 11000.08       |                   | 0.00   |
| X10                     | Additional plumbing outlets (each) | 2015.82        |                   | 0.00   |
|                         |                                    | Construe       | ction cost ex GST | \$0.00 |
|                         |                                    | GST            | 10%               | \$0.00 |
|                         |                                    | Profit mark up | 15%               | \$0.00 |
|                         |                                    |                | Total price       | \$0.00 |

Table 33 - Excel blank cost calculation framework

Input cost driver variables are placed into the highlighted cells for the framework to calculate a construction cost. Quantities from a sample concept plan have been used to demonstrate the use of the framework in Table 34.

|                         | Cost modellin                      | g framework    |                   |              |
|-------------------------|------------------------------------|----------------|-------------------|--------------|
| Variable identification | Cost driver                        | Coefficient    | Input value       | Result       |
| X <sub>0</sub>          | (Constant)                         | 34911.77       |                   | 34911.77     |
| X1                      | GFA (m2)                           | 448.78         | 216.99            | 97381.03     |
| X2                      | External areas (m2)                | 137.00         | 17.20             | 2356.43      |
| X <sub>3</sub>          | Garage area (m2)                   | -185.31        | 38.80             | -7190.13     |
| X4                      | External walls (lin m)             | 470.02         | 65.77             | 30913.13     |
| X5                      | Internal walls (lin m)             | 134.71         | 87.80             | 11827.66     |
| X <sub>6</sub>          | Area of external openings (m2)     | 328.76         | 33.75             | 11095.69     |
| X7                      | Hips / valleys / ridges (lin m)    | 132.50         | 54.40             | 7208.17      |
| X8                      | Gable ends (m2)                    | 443.07         | 3.87              | 1714.69      |
| X9                      | No. of bathrooms (each)            | 11000.08       | 2.00              | 22000.15     |
| X10                     | Additional plumbing outlets (each) | 2015.82        | 2.00              | 4031.64      |
|                         |                                    | Construe       | ction cost ex GST | \$216,250.22 |
|                         |                                    | GST            | 10%               | \$21,625.02  |
|                         |                                    | Profit mark up | 15%               | \$35,681.29  |
|                         |                                    |                | Total price       | \$273,556.53 |

Table 34 – Populated Excel cost modelling framework.

The framework cost model predicts construction costs using the baseline method determined from case study interviews and the literature review. GST and profit markup have only been included as a possible example to demonstrate how this framework can be practically applied in the industry to determine a tender price for a project. Determining the input variables required calculating the cost driver quantities from the concept plan, this can be a tedious measuring process but far less labour intensive than the first principle estimating process. The framework takes less than ten minutes to apply, however the use of on-screen measuring in iTWO Cost X will increase the speed of this process. The following section will detail how the framework is used in iTWO Cost X with illustrated examples using a sample concept plan.

## 4.5.3 The framework example in Cost X

This section will briefly show the developed framework in use. Cost X can utilise on screen measuring tools which can live link directly to a workbook. The workbook functionality is like that of Excel so the framework calculations developed in the previous section will be populated in a Cost X workbook and dimension groups added to represent the cost driver input variables. Two Cost X files have been provided, a blank template which represents the final developed framework and a worked example. These files have been provided in Appendix Q and Appendix R and can be viewed using the free viewer provided by iTWO Cost X detailed in the previous section.

The Cost X dimension groups have been created and linked to the relevant workbook values to create the framework template. This relationship has been shown below in Figure 31. The cost drivers used for dimension groups in the framework are gross floor area, external areas, garage areas, external walls, internal walls, gable ends, roof line (hips, valleys and ridges), number of bathrooms and number of additional plumbing fittings. Each group can be assigned units of count, length or area as required.

| Vorkbooks             |                     |          | *                                |          | A1     | Cell = x0                          |            |        |           | ^          | Total =  | 547,113    |       |
|-----------------------|---------------------|----------|----------------------------------|----------|--------|------------------------------------|------------|--------|-----------|------------|----------|------------|-------|
| Name                  |                     |          | Total                            |          |        |                                    |            |        |           |            |          |            |       |
| Framework calcul      | ation workbook      |          | 547,113                          |          |        |                                    |            |        |           | ~          |          |            |       |
|                       |                     |          |                                  |          | A:Code | B:Description                      | C:Quantity | D:Unit | E:Rate    | F:Subtotal | G:Factor | H:Total    | l:Use |
|                       |                     |          |                                  | 1        | x0     | (Constant)                         | 1.00       | each   | 34,911.77 | 34,911.77  |          | 34,911.77  |       |
|                       |                     |          |                                  | 2        | xl     | GFA (m2)                           | 216.99     | m2     | 448.78    | 97,381.03  |          | 97,381.03  |       |
|                       |                     |          |                                  | 3        | x2     | External areas (m2)                | 17.20      | m2     | 137.00    | 2,356.43   |          | 2,356.43   |       |
|                       |                     |          |                                  | 4        | x3     | Garage area (m2)                   | 38.80      | m2     | -185.31   | -7,190.13  |          | -7,190.13  |       |
|                       |                     |          |                                  | 5        | x4     | External walls (lin m)             | 65.77      | lin m  | 470.02    | 30,913.13  |          | 30,913.13  |       |
| Rates Values          | Phraseologies       | Work     | book Values                      | 6        | x5     | Internal works (lin m)             | 87.80      | lin m  | 134.71    | 11,827.66  |          | 11,827.66  |       |
| Dimension Groups      | Dimensions          | Codes    | Constants                        | 7        | x6     | rrea of external openings (m2)     | 33.75      | m2     | 328.76    | 11,095.69  |          | 11,095.69  |       |
| Click to Filter       |                     |          | <filter empty="" is=""></filter> |          | x7     | Hips / valleys / ridges (lin m)    | 54.40      | lin m  | 132.50    | 7,208.17   |          | 7,208.17   |       |
| ame<br>Cost Driver X1 |                     | A Quanti | ity UOM                          | 9        | xS     | Gable ends (m2)                    | 3.87       | m2     | 443.07    | 1,714.69   |          | 1,714.69   |       |
| Gross floor an        | ea (m2)             |          | 216.99 m2                        | 10       | x9     | No. of bathrooms (each)            | 2.00       | each   | 11,000.08 | 22,000.15  |          | 22,000.15  |       |
| Cost Driver X2        | ; (m2)              |          | 17.20 m2                         | 11       | x10    | Additional plumbing outlets (each) | 2.00       | each   | 2,015.82  | 4,031.64   |          | 4,031.64   |       |
| Cost Driver X3        | 2)                  |          | 38.80 m2                         | 12       |        |                                    |            |        |           |            |          |            |       |
| Cost Driver X4        | 12)                 |          | 30.00 m2                         | 13       |        | Construction cost ex GST           |            |        |           |            |          | 216,250.22 |       |
| External walls        | (lin m)             |          | 65.76 m                          | 14       |        | GST                                | 10.000     | %      |           |            |          | 21,625.02  |       |
| Cost Driver X5        |                     |          |                                  | 15       |        | Profit mark up %                   | 15.000     | %      |           |            |          | 35,681.29  |       |
| Internal walls        | (lin m)             |          | 87.80 m                          | 16       |        |                                    |            |        |           |            |          |            |       |
| Cost Driver X6        |                     |          | New Astronomy Control            | 17       | -      | Total price                        |            |        |           |            |          | 272 556 52 |       |
| Area of exter         | nal openings (m2)   |          | 33.74 m2                         | 2000     |        | 10tal price                        |            |        |           |            |          | 273,556.53 |       |
| Cost Driver X7        |                     |          | 54.39 m                          | 18       |        |                                    |            |        |           |            |          |            |       |
| Cost Driver X8        | ridges (iin m)      |          | 54.39 m                          | 19       |        |                                    |            |        |           |            |          |            |       |
| Gable ends (m         | 7)                  |          | 3.87 m2                          | 20       |        |                                    |            |        |           |            |          |            |       |
| Cost Driver X9        | 2)                  |          | 3.67 112                         | 1.000.00 |        |                                    |            |        |           |            |          |            |       |
| # No. of bathro       | ums (each)          |          | 2.00 no                          | 21       |        |                                    |            |        |           |            |          |            |       |
| Cost Driver X10       | and (coord)         |          | 2.00 110                         | 22       |        |                                    |            |        |           |            |          |            |       |
|                       | bing outlets (each) |          | 2.00 no                          | 23       |        |                                    |            |        |           |            |          |            |       |
|                       |                     |          |                                  | 100000   |        |                                    |            |        |           |            |          |            |       |
|                       |                     |          |                                  | 24       |        |                                    |            |        |           |            |          |            |       |

Figure 31 – Cost X framework live link dimension groups

.....

The following figures demonstrate the framework in use on a sample plan with an example of each cost driver group being measured and displayed. Figure 32 shows the gross floor area cost driver being measured on an example plan. Gross floor area is often used for unit rate calculations and has been identified as a major cost driver.

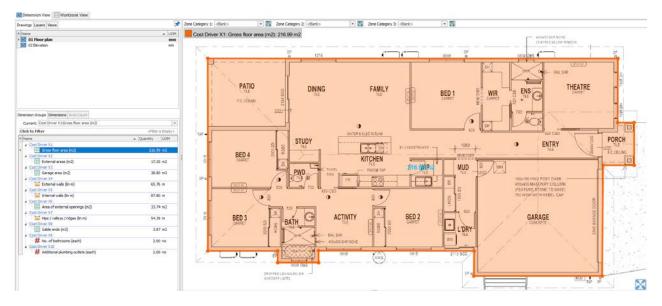



Figure 32 – Gross floor area measured example

The external area cost driver is shown highlighted in Figure 33, on the example plan this represents the porch and patio areas. These spaces are important cost drivers as they separate the ratio of internal conditioned space, which is more expensive compared to external spaces.



Figure 33 – External areas measured example

The location and quantity for the garage area cost driver has been shown in Figure 34. This cost driver, although an internal space, does not contain floor coverings or high cost fit out items.

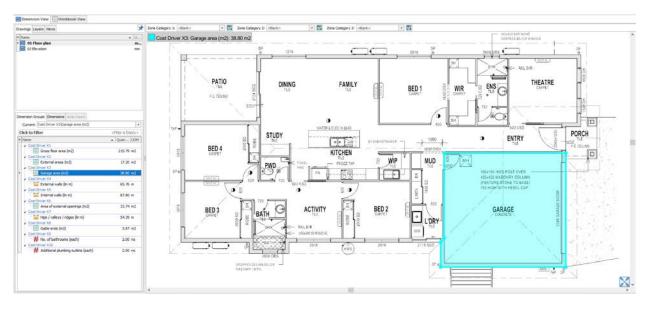



Figure 34 - Garage area measured example

The external wall cost driver is displayed and quantified in Figure 35. This is a significant cost driver as it typically follows the outline of the building and contributes to design complexity.



Figure 35 – External walls measured example

The internal partition wall cost driver is highlighted and quantified in Figure 36. These walls partition the internal living spaces. These partitions are a function of the number of individual rooms within the dwelling.

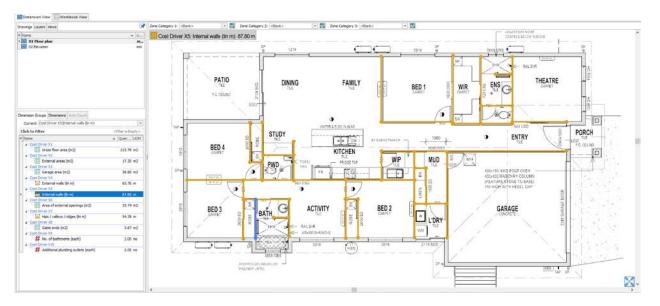



Figure 36 - Internal walls measured example

Openings in the external walls such as doors and windows are shown in Figure 37. This cost driver shows that more openings in an external wall increase the cost of construction.



Figure 37 – External opening measured example

Roof line features as such hips, valleys and ridge lines are displayed in Figure 38. This cost driver shows that a more complex roof line will increase the cost of construction.

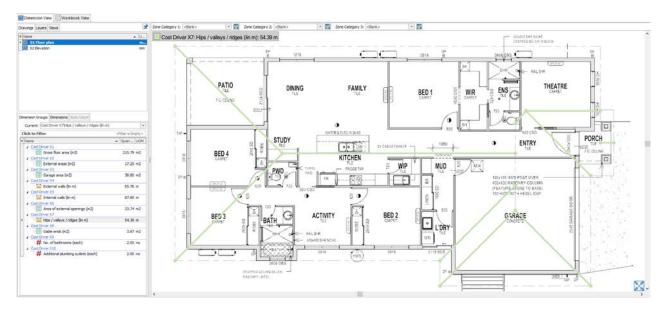



Figure 38 - Hips, valleys and ridge line measured example

The gable ends shown in Figure 39 indicate further complexity to the roof line of a building.



Figure 39 - Gable end measured example

For clarity the measured dimension group highlighted through Cost X has been circled in red. The number of bathrooms in a house is a simple quantification and shown in Figure 40.

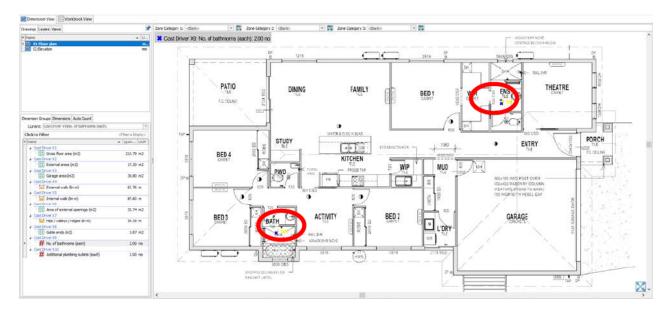



Figure 40 - Number of bathrooms measured example

Additional plumbing fittings are shown in Figure 41. The example plan has identified an additional basin in the powder room and an additional kitchen sink in the pantry, therefore two additional outlets have been included for this cost driver.

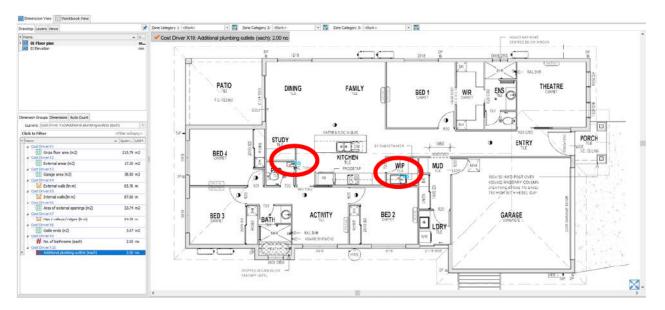



Figure 41 - Additional plumbing outlets measured example

The development of this framework in Cost X provides for a fast and easy method of implementing the framework. As discussed earlier, Cost X can live link the measured dimension groups to a workbook. The measured dimension groups shown in the left red box use the coefficients from equation 10 to calculate a result in the H:Total column of the workbook. These results are then added to achieve a total cost of construction like the Excel framework example. Ancillary costs such as mark up and GST percentages can then easily be added to this baseline construction cost estimate to reach a final tender price. This is illustrated in Figure 42.

| antbooks 2                                         |                | A1         | Cell = x0                          |           |        |              |            | Total =  | 547,113    |          |         |             |              |        |      |
|----------------------------------------------------|----------------|------------|------------------------------------|-----------|--------|--------------|------------|----------|------------|----------|---------|-------------|--------------|--------|------|
| Nane Tota                                          |                |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
| Framework calculation workbook 547, 113            |                |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
|                                                    |                |            |                                    |           |        |              | 14         |          |            |          |         |             |              |        |      |
|                                                    |                | ACode      | 0:Description                      | CQuantity | D:Unit | LiRate       | P.Subtotal | Gifector | HtTotal    | ±User1   | J:User2 | K:User3     | LiUser4      | MUser5 | NUSE |
|                                                    | -1             | :10        | (Constant)                         | 1.00      | each   | 34,911.77    | 34,911.77  |          | 34,911.77  |          |         |             |              |        |      |
|                                                    | 2              | 21         | GFA (m2)                           | 216.99    | m2     | 448.75       | 97,381.03  |          | 97,381.03  |          |         |             |              |        |      |
| Dimension groups                                   | 1              | <b>n</b> 2 | External areas (m2)                | 17.20     | m2     | 137.00       | 2,356.43   |          | 2,356.43   |          | -       | Cost d      | river sub ti | otals  |      |
|                                                    | 4              | 23         | Gange mea (m2)                     | 38.80     | m2     | -185.31      | -7,190.13  |          | -7,190.13  |          |         |             |              |        |      |
|                                                    | - 5            | <b>n4</b>  | External walls (lin m)             | 65,77     | lin m  | 470.02       | 30,913,13  |          | 30,913,13  |          |         |             |              |        |      |
| Rates Values Phraseologies Workbook Values         | 6              | zś         | Internal walls (lin m)             | 87.80     | lin m  | 134.71       | 11,827.66  |          | 11,827.66  |          |         |             |              |        |      |
| Dimension Groups Dimensions Codes Constants        | 7              | 250        | Asea of external openings (m2)     | 33.75     | m2     | 328.76       | 11,095.69  |          | 11,096.69  |          |         |             |              |        |      |
| lick to Fiter SEmpty>                              | .8             | <b>n</b> 7 | Hips / valleys / tidges (lin m)    | 54.40     | lin m  | 132.50       | 7,208.17   |          | 7,208.17   |          |         |             |              |        |      |
| ame   Quantity UOM  Cost Driver XL                 | 9              | π6         | Gable ends (m2)                    | 3.87      | m2     | 443.07       | 1,714.69   |          | 1,714.69   |          |         |             |              |        |      |
| Gross floor area (m2) 216.99 m2     Cost Driver X2 | 10             | ::9        | No. of bathrooms (each)            | 2.00      | each   | 11,000.05    | 22,000.15  |          | 22,000.15  |          |         |             |              |        |      |
| External areas (m2) 17.20 m2                       | 11             | π10        | Additional plumbing outlets (each) | 2.00      | each   | 2,015.02     | 4,031.64   |          | 4,031.64   |          |         |             |              |        |      |
| Cost Dever X3                                      | 12             |            |                                    |           |        |              | 1          |          |            |          |         |             |              |        |      |
| Cost Driver X4                                     | 13             |            | Construction cost ex OST           |           |        | /            |            |          | 216,250.22 | <u> </u> | Frame   | work cost c | alculation   |        |      |
| External wals (in m) 65.76 m                       | 14             |            | GST                                | 10.000    | 94     | /            |            |          | 21,625.02  |          |         |             |              |        |      |
| Cost Driver X5                                     | 15             |            | Profit mark up %                   | 15.000    | 96     |              |            |          | 35,601.29  |          | Add or  | ancillary   |              |        |      |
| Internal wals (in m) 87.80 m                       | 16             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
| Area of external openings (m2) 33.74 m2            | 17             |            | Total price                        |           | 1      |              |            |          | 273,556.53 |          | costs a | s required  |              |        |      |
| Cost Driver X7                                     | 18             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
| Hips / valleys / ridges (in m) 54.39 m             | 19             |            |                                    |           | 1      |              |            |          |            |          |         |             |              |        |      |
| Gable ends (m2) 3.87 m2                            | and the second |            |                                    |           | 1      |              |            |          |            |          |         |             |              |        |      |
| Cost Driver X9 3.87 m2                             | 20             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
| # No. of bathrooms (each) 2.00 no                  | 21             |            |                                    | Consta    | nt and | coefficients |            |          |            |          |         |             |              |        |      |
| Cost Driver X10                                    | 22             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
| # Additional plumbing outliets (each) 2.00 no      | 23             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
|                                                    | 24             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
|                                                    | 25             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
|                                                    | 26             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |
|                                                    | 27             |            |                                    |           |        |              |            |          |            |          |         |             |              |        |      |

Figure 42 - Framework Cost X workbook calculation

## 4.5.4 Framework update example

Part of the third objective of this project is to develop a cost modelling framework that is quick to apply using simple input variables. The developed framework has met this requirement by using iTWO Cost X and Excel software. The framework can be easily applied by an end user following the simple worked example contained in the previous section.

Another part of the third objective is for the framework to be capable of periodic updates. This is critical if the framework is to remain relevant with fluctuating construction costs. For example, if the unit price of concrete changes, the framework must be able to be adjusted to handle this. A procedure has been developed to update the framework periodically to ensure its relevance and the cost output to remain relevant.

As detailed previously, unit cost information is contained within a price catalogue in the estimating software Databuild. The ability to apply any unit cost updates can be achieved through a reprice function within the software which recalculates the total project cost while accounting for all altered unit costs. The following figures detail this process in Databuild.

Figure 43 shows an example of the current unit cost for concrete and the summation of all the costs for the project. If the unit cost for concrete alters then the item's unit cost can be updated within the price catalogue of the software.



Figure 43 – Databuild current unit and project cost

Figure 44 shows the unit price of concrete in the catalogue being changed from \$150 to \$200. This change can then be used by the software reprice function to apply to the project cost.

| Details, Prices                                                                                                  |                                                                                   | Picture                                                                          | Recipes |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|
| Description                                                                                                      | E 20MPA 20MM AGG                                                                  | 3                                                                                |         |
|                                                                                                                  |                                                                                   |                                                                                  |         |
| Units 17<br>Cost Centre 185                                                                                      | <b>•</b>                                                                          | m3volume<br>SLAB CONCRETE                                                        |         |
| Cost Centre 185                                                                                                  | Price                                                                             | SLAB CONCRETE                                                                    |         |
| Cost Centre 185                                                                                                  | <b>•</b>                                                                          | SLAB CONCRETE                                                                    |         |
| Cost Centre 185                                                                                                  | Price                                                                             | SLAB CONCRETE                                                                    |         |
| Cost Centre 185 Price Level Price level 1                                                                        | ▼ Price                                                                           | SLAB CONCRETE<br>Valid From<br>21/11/2016                                        |         |
| Cost Centre 185<br>Price Level<br>Price level 1<br>Price level 2                                                 | Price<br>\$148.00<br>\$150.00                                                     | SLAB CONCRETE<br>Valid From<br>21/11/2016<br>15/01/2016                          |         |
| Cost Centre 185<br>Price Level<br>Price level 1<br>Price level 2<br>Price level 3                                | Price<br>\$148.00<br>\$150.00<br>\$152.00                                         | SLAB CONCRETE<br>Valid From<br>21/11/2016<br>15/01/2016<br>13/03/2020            |         |
| Cost Centre 185<br>Price Level<br>Price level 1<br>Price level 2<br>Price level 3<br>Price level 4               | Price           \$148.00           \$150.00           \$150.00           \$150.00 | Valid From<br>21/11/2016<br>15/01/2016<br>13/03/2020<br>14/04/2016               |         |
| Cost Centre 185<br>Price Level Price level 1<br>Price level 2<br>Price level 3<br>Price level 4<br>Price level 5 | Price<br>\$148.00<br>\$150.00<br>\$150.00<br>\$150.00<br>\$150.00                 | Valid From<br>21/11/2016<br>15/01/2016<br>13/03/2020<br>14/04/2016<br>21/09/2017 |         |

| Details, Prices             | Picture                                       | Recipes   |
|-----------------------------|-----------------------------------------------|-----------|
| CONCRETE 20                 | MPA 20MM AGG                                  |           |
| Units 17<br>Cost Centre 185 | <ul><li>▼ m3volum</li><li>▼ SLAB CO</li></ul> |           |
| Price Level P               | rice Va                                       | alid From |
|                             |                                               | /11/2016  |
|                             |                                               | /08/2021  |
| Price level 3 \$            | 152.00 13                                     | 3/03/2020 |
|                             |                                               | 4/04/2016 |
| Price level 5 \$            | 185.00 21                                     | 1/09/2017 |
| Price level 6 \$            | 165.00 22                                     | 2/02/2018 |
| Price level 7 \$            | 192.00 13                                     | 3/09/2018 |
| Price level 8 \$            | 150.00 8/                                     | /01/2018  |
|                             |                                               |           |

Figure 44 – Unit price update before and after

Figure 45 and Figure 46 show the reprice module and the updated project costs respectively. This demonstrates how a unit price for an item can be updated and then applied to recalculate the total project cost. This procedure can be used periodically to reprice all the sample data and reapply the statistical analysis.

| Code | Cost Centre      |                       | Bill Amount | Budget 🔨 Load        | d Amount Supplier |             |
|------|------------------|-----------------------|-------------|----------------------|-------------------|-------------|
|      | 8                |                       |             | ► Load               | d1 \$7,350.00     |             |
| 145  | FOOTING CONCRET  | 💗 Reprice Bill        |             |                      |                   | ×           |
| 160  | PLUMBER - DRAINS |                       |             |                      |                   |             |
| 165  | TERMITE TREATM   |                       |             |                      |                   |             |
| 170  | SAND AND GRAVE   |                       |             | C This Cost Ct       | ,                 |             |
| 180  | SLAB FINISHER    | 1118000               |             |                      |                   |             |
| 185  | SLAB CONCRETE    |                       |             |                      |                   |             |
| 190  | CONCRETE PUMP    |                       |             |                      |                   |             |
| 200  | BLOCK LAYER      |                       |             |                      |                   |             |
| 202  | CONCRETE MASON   |                       |             |                      |                   |             |
| 205  |                  | Over-ride Price LOCKS |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  | Leave Manual Prices   |             |                      |                   |             |
|      |                  | 1. Ecove manadir nees |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  | Set Price Level to    |             | Price level 2        |                   | -           |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             |                      |                   |             |
|      |                  |                       |             | Only if Price exists | E Report          |             |
|      |                  |                       |             |                      | i riepolit        |             |
|      |                  |                       |             |                      |                   |             |
|      |                  | C. Job Charle Date    | G           | 08/08/21             |                   | <b>A</b> -1 |
|      |                  | O Job Start Date      | (•          | 08/08/21             |                   | ÷-          |

Figure 45 – Software reprice module

| Sub Group                            | BillAmount            |   | Code Cost Centre           | Bil Amount   | Budget 🔨       | Load             | Amount Supplier   |  |
|--------------------------------------|-----------------------|---|----------------------------|--------------|----------------|------------------|-------------------|--|
| (A)                                  | \$210.115.88          |   |                            |              |                | Load 1           | \$9,000.00        |  |
| (Unallocated)                        | \$0.00                |   | 185 SLAB CONCRETE          | \$9,800.00   | \$7,350.00     | Load 2           | \$0.00            |  |
| 1 PRELIMINABLES                      | \$5,870.27            |   | 190 CONCRETE PUMP SLAB     | \$1,582,00   | \$1,582.00     | Load 3           | \$0.00            |  |
| 2 BASE                               | \$34,407.62           |   | 200 BLOCK LAYER            | \$8,077.10   | \$8,077,10     | Load 4           | \$0.00            |  |
| 3 FRAME                              | \$47,979.56           |   |                            |              |                |                  |                   |  |
| 4 ENCLOSED                           | \$25,826.62           |   | 202 CONCRETE MASONARY      | \$5,306.20   | \$5,306.20     | Load 6<br>Load 7 | \$0.00<br>\$0.00  |  |
| 5 FIXING                             | \$56,020.83           |   | 205 BOND BEAM STEEL        | \$1,157.05   | \$1,157.05     | Load #           | \$0.00            |  |
| 6 PRACTICAL COMPLETION<br>COMMERCIAL | \$40,010.99<br>\$0.00 | _ | 212 TRUSS TIE DOWNS        | \$171.70     | \$171.70       | Load 9           | \$0.00            |  |
| COMMENCIAL                           | \$0.00                |   | 216 BOND BEAM PUMP         | \$639.40     | \$639.40       | Van 10           | \$0.00            |  |
|                                      |                       |   | 218 BOND BEAM CONCRETE     | \$1,231,20   | \$1,231,20     | Van 11           | \$0.00            |  |
|                                      |                       |   | 220 ELECTRICIAN-ROUGH WIRE | \$8,564,60   | \$8,564,60     | Van 12           | \$0.00            |  |
|                                      |                       |   |                            | 20.040.05    | \$207,665.88 v | Van 13           | \$0.00            |  |
| 4                                    |                       | 2 |                            | \$210,115.88 | \$207,665.88 🗸 | Vam 14           | \$0.00            |  |
| Q Gan Workup                         |                       |   | Updated project cost       |              |                |                  | Updated unit cost |  |
| Picture                              |                       |   |                            |              |                | 1                |                   |  |
| Picture                              |                       |   |                            |              |                |                  | /                 |  |

Figure 46 - Updated unit and project cost

The methodology for the statistical analysis used in this project can be reapplied to determine any changes to the linear regression formula (equation 10). The coefficients and constant term can then be updated on the Excel or Cost X version of the framework to ensure a correct construction cost output. The process has been summarised below in Figure 47.

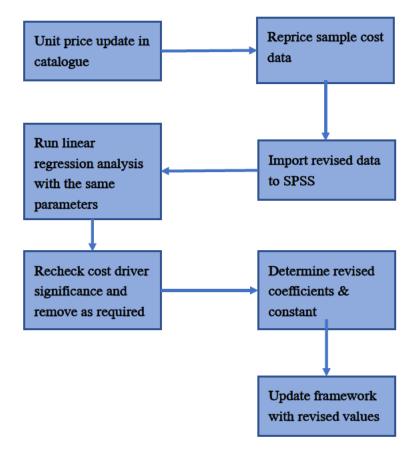



Figure 47 - Summarised framework update process

This section has detailed a procedure to update the cost modelling framework. This has met the final component to complete the third objective for this research project.

# 4.6 Summary of critical findings and benefits of the framework

The three main objectives of this project are to identify current estimating techniques, potential cost drivers and develop a cost modelling framework for residential construction estimating in the Australian market. The purpose of this chapter is to critically analyse the observations and results to meet these project objectives.

The literature review conducted for this project identified the background for current estimating techniques, their accuracy, methods employed in residential construction and to ascertain the state of research into cost modelling. Further to this, the literature review defined measures of accuracy for the cost model along with testing methodologies. A case study of an estimating company in the Australian construction industry was used to validate and expand the findings from the literature review. The case study found baseline estimating techniques to a standard level of inclusions were common using first principle estimating methods. This method assumes a certain level of fittings and fixtures and often excludes any external factors such as site conditions, environmental factors or mark-up strategies, these items can be adjusted after a baseline cost has been achieved. This discovery proved critical in developing an accurate cost model as the literature review found many studies included irrelevant cost drivers which decreased modelling accuracy. The case study discovered additional design related cost drivers to those found in the literature review. It was important to identify potentially significant cost drivers from both the literature review and from professional sources within the industry to fully analyse their impact on cost. The case study also allowed an understanding of first principle estimating and this technique was critical in gathering relevant sample data used for the cost modelling process which developed the final framework. The literature review and case study provided the results required to meet the first and second objectives of this project.

The data modelling process gathered cost data using first principles estimating methods with cost drivers assigned to each sample set for a linear regression analysis. This process identified any statistically significant cost drivers. The linear regression was then run again, checked for cost driver significance and the formula recorded. Two neural network models were also assessed with their results recorded. The output from the models were compared against test samples to confirm their accuracy. The literature review found that the MAPE was the most common method used to determine model accuracy, the results showed that linear regression performed the best with a MAPE of 1.70%. This result improves the accuracy of the cost models found during the literature review with the best result of 3.98% in a study by Latief, Wibowo and Isvara (2013). This proves that a cost model that considers a narrow focus on design related cost drivers using the baseline method of estimating is a sound methodology and yields superior accuracy.

During the case study, it was discovered that custom cabinetry was thought to significantly impact the cost of construction. This finding prompted further investigation. The same procedure of statistical analysis was run on the same sample models, however this time the cabinetry costs were completely removed. It was expected the cost model would meet a target accuracy of at least a MAPE of 0.85%, however this was not the case. The MAPE for this modelling option did not meet this target and therefore excluded from further consideration.

Linear regression was chosen for framework development using a weighted decision matrix due to its high accuracy along with its simple and easy application. The framework was developed in Excel and Cost X. This meets the third objective of this project with a framework that is accurate, quick to use and can be

updated periodically using the Company software and cost database. The development of this framework dramatically reduces the time it takes to achieve a construction cost estimate in comparison to first principle estimating methods from hours to a matter of minutes. The framework has a minimal loss in accuracy when compared to test sample cost calculations. This framework has bridged the gap between long, tedious and accurate first principle estimating methods and quick, inaccurate unit rate estimates found common in the industry.

This project has created a successful methodology for a cost modelling framework using the baseline estimating method. The benefit of this discovery is that the methodology can be applied to other sectors of the industry. This framework can help contractors improve tender turnaround times by offering a less labourintensive method of estimating that sacrifices very little accuracy. This framework can also benefit companies by offering them a method of estimating that, unlike first principle estimating methods, does not require a high level of training to apply. The framework can be applied by junior estimators with relatively little training compared to a fully trained estimator who is needed for the first principle estimate. As the application of this framework is simple with fewer components to measure compared to a first principle estimate must be methodical and during times of pressure can make mistakes. This can result is major costs being excluded and profit margin slippage for the construction project. This framework can benefit the industry by improving productivity, reducing company overheads and minimising human error when producing cost estimates.

# 5 Conclusion and recommendations

# 5.1 Conclusions

The purpose of this research project was to develop a framework for construction cost estimating in the residential Australian market. This framework was created using cost modelling which utilises statistical methods to predict the construction cost of a project. Cost modelling was found during the literature review to have been a topic of research for many decades, however a research gap existed. Previous models were too complex and considered too many factors (cost drivers) which yield inaccurate results. Another problem with previous studies was that the model they developed used historical data and merely offered a snapshot in time based on when and where the input cost data was collected. This did not benefit the greater industry in providing a robust model that can be updated when construction costs fluctuate.

This project remedied the problem and narrowed the research gap by creating a model with a focus on design related cost drivers only. This was inspired by observing how a cost estimating company in Australia currently applies first principle estimating using a baseline method. By creating a baseline estimate any external factors such as site conditions, environmental factors, mark-up strategies, risk contingencies or changes to the inclusions can easily be applied by varying the baseline cost. By using the methods and software available through the Company this project has solved the problem by creating a framework that can be periodically updated when construction costs fluctuate. This is critically important as it allows the framework to be employed in a commercial setting with an output that can be relied upon. Three main objectives were defined to solve the problem.

The first objective was to identify current cost estimating techniques. This was completed by validating the literature review findings with the results from the case study. It was concluded that first principle estimating is the technique employed to achieve the highest accuracy, however is the most time consuming method. It was also discovered that residential construction in Australia utilised baseline cost estimating to a standard level of inclusions which can then be manipulated with additions or subtractions based on external factors or client wishes (Lim et al. 2016, p. 14). This baseline methodology has been validated through the case study of the Company. This discovery was pivotal in developing the research methodology by removing many external and non-relevant factors from consideration, something previous studies neglected to do. By narrowing the focus of the cost model to design related factors, this project's cost modelling method has improved upon previous studies.

The second project objective was to identify potential cost drivers. Past research identified as many cost drivers as possible relating to factors such as site conditions, environmental factors, market conditions, project personnel experience and contract types. It was concluded that this approach is problematic as it considers too many irrelevant cost drivers which results in a cost model with undesirable accuracy. A focus on design related factors only will improve the accuracy of a cost model. The design related cost drivers required for this project were compiled through the literature review and case study interviews. It was found that the gross floor area of a building was the most frequently used cost driver. This draws a conclusion as to why the unit rate method of estimating remains common place in the industry albeit inaccurate for anything but a preliminary feasibility analysis. By completing the second objective a detailed list of design related cost drivers were compiled for the statistical analysis required to fulfil the third objective.

The third objective, to develop the cost modelling framework, follows on from the completion of previous objectives. This objective requires the development of a framework that is accurate, relevant and can be periodically updated. By completing this objective several conclusions have been drawn.

1. A statistical analysis determined ten out of a potential fifteen design related cost drivers are statistically significant to the cost of a residential construction project. The significant design related cost drivers that impact the cost are shown in Table 35.

| Cost driver | Description                 | Unit of measure |
|-------------|-----------------------------|-----------------|
| 1           | Gross floor area            | $m^2$           |
| 2           | External areas              | m <sup>2</sup>  |
| 3           | Garage area                 | m <sup>2</sup>  |
| 4           | External walls              | Lineal metre    |
| 5           | Internal walls              | Lineal metre    |
| 6           | Area of external openings   | m <sup>2</sup>  |
| 7           | Hips / valleys / ridges     | Lineal metre    |
| 8           | Gable ends                  | m <sup>2</sup>  |
| 9           | No. of bathrooms            | Each            |
| 10          | Additional plumbing outlets | Each            |

Table 35 - Summary of significant design related cost drivers

- 2. The cost of custom cabinetry being removed from the cost data sets does not have a significant effect on the accuracy of the cost model and therefore the cost of construction.
- 3. The linear regression analysis cost model performs better than the two neural networks tested with a MAPE of 1.70%.
- 4. A cost model analysis with design related cost drivers and baseline estimating techniques for sample data collection improve upon the accuracy of previous studies which range from 3.98% and 19.60%.
- 5. Linear regression was the cost model selected using a weighted decision matrix based on accuracy, ease of use and the ability to apply updates to the framework when construction costs fluctuate.
- 6. Equation 10 derived from the linear regression analysis and detailed below, was used to develop the framework in Excel and iTWO Cost X.

 $Cost (\$) = 34911.76 + 448.78x_1 + 137x_2 - 185.31x_3 + 470.02x_4 + 134.71x_5 + 328.76x_6 + 132.50x_7 + 443.07x_8 + 11000.08x_9 + 2015.82x_{10}$ (10)

7. Updating the framework's cost model is achieved using the Company's cost estimating database by repricing unit costs and reapplying the methodology of statistical analysis. This will update the coefficients and constant in equation 10 which can then be reapplied to the framework.

This project narrowed the research gap by providing an accurate cost modelling framework. The framework's accuracy was improved by not only utilising the baseline method for cost data statistical analysis but by narrowing the focus of the cost drivers from a wide array of irrelevant factors to only design related ones. By simplifying to design related cost drivers only, the project has developed a successful cost

modelling methodology which can be applied to other industry sectors such as commercial and civil construction.

This framework benefits contractors and estimators that have difficulty in providing accurate cost estimates within tight deadlines. It was found that first principle estimates are the most accurate however they can take hours to calculate. This framework can be applied in a matter of minutes with a minimal impact on the cost estimate accuracy. This increase in efficiency can reduce company overheads and free resources within the estimating team. Another benefit this framework provides is that it can be easily applied by relatively unskilled or junior estimators. This lowers the cost and time it takes to train an estimator to perform a first principle estimate and allows a company to output tangible deliverables without first investing significant training resources. The return on investment for utilising this framework can come to fruition much faster without a significant reduction in quality output and cost accuracy.

# 5.2 Limitations

The development of this framework relied upon data gathered from a cost estimating Company. This data represents a small section of the residential industry based within a local area. This suggests that although this research project produced sound results the framework can only be applied through this scope. What this means is that the framework developed cannot be used to calculate residential construction costs for localities all over Australia without some form of indexing for local cost fluctuations. This is because unit prices and construction methodologies can differ between local areas. However, being aware of this limitation can allow locality indexing to be performed and the framework applied successfully.

This project developed a successful methodology that can easily be reapplied to any locality rather than indexing. This can be achieved by altering the unit costs within the Databuild pricing catalogue to suit local rates and recalculating the linear regression equation. By doing this a relevant cost modelling framework can be developed for different locations. As the data gathered for this project took significant time to compile, the project had limited resources available to apply the methodology to other specific locations.

Another limitation of this project is that it utilised proprietary licensed software available through the Company. This software was used to formulate a baseline cost data set for an accurate cost model, which this project succeeded in. However, trying to replicate this methodology would require software with similar functionality to provide the baseline cost data used for statistical analysis and update procedure. Whilst the methodology this project discovered is successful, this limitation should be noted for future research and development in this area.

# 5.3 Recommendations for further research

Further testing of this framework is recommended and can be implemented into the Company infrastructure over a period to determine the practicality and measurable outcomes in a commercial setting. It is recommended to trial this framework alongside the Company's first principle estimating methods for a period and compile a comparison of output results for analysis. Whilst this project did test the output from the framework, it would be best assessed over a period of six months to a year. This will assess how well the framework can handle periodic updates and determine its predictive power against larger calculated test data sets. Due to time constraints this was not possible within the scope of this project.

There remains a vast area to explore using the successful methodology discovered by this project. The methodology developed was based on a narrow focus of residential dwellings in a single locality using relatively simple single storey designs. Now the methodology has proven successful, expansion into other localities and more complex designs such as multi-storey dwellings is recommended. A similar methodology can be applied to multi-storey designs by using cost drivers related to this additional layer of complexity. Once further developed, the methodology can be considered a viable foundation for the creation of any cost modelling procedure and applied to other sectors of the construction industry.

Any type of construction project can be further researched using the baseline estimating and design only cost driver methodology this project has developed. This framework can positively contribute to the industry by providing an excellent procedure to develop a specific cost model for any contractor or cost estimating professional willing to apply the methodology. This will benefit companies by lowering overhead costs, increasing productivity and reducing the chance of human error.

## References

Abeysekara, V 2018, CMG1002: Residential construction: Methods, Materials and Management, University of Southern Queensland, Toowoomba.

AbouRizk, SM, Babey, GM & Karumanasseri, G 2002, 'Estimating the cost of capital projects: an empirical study of accuracy levels for municipal government projects', *Canadian journal of civil engineering*, vol. 29, no. 5, pp. 653-61, viewed 26th April 2021, <a href="https://www.researchgate.net/publication/237188753">https://www.researchgate.net/publication/237188753</a> Estimating the cost of capital projects An empirical study of accuracy levels for municipal government projects.

Akintoye, A & Fitzgerald, E 2000, 'A survey of current cost estimating practices in the UK', *Construction Management and Economics*, vol. 18, no. 2, pp. 161-72, viewed 21st April 2021, <u>https://www-tandfonline-com.ezproxy.usq.edu.au/doi/pdf/10.1080/014461900370799?needAccess=true</u>.

Alshamrani, OS 2017, 'Construction cost prediction model for conventional and sustainable college buildings in North America', *Journal of Taibah University for Science*, vol. 11, no. 2, pp. 315-23, viewed 14th April 2021, <u>https://www.tandfonline.com/doi/pdf/10.1016/j.jtusci.2016.01.004?needAccess=true</u>.

Alshibani, A, Ashamrani, O & Shaawat, M 2018, 'Model for estimating construction costs for low-rise residential buildings', *WIT Transactions on the Built Environment*, pp. 221-31, viewed 21st March 2021, <u>https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/179/36606</u>.

Arkkelin, D 2014, *Using SPSS to understand research and data analysis*, viewed 10th May 2021, https://scholar.valpo.edu/cgi/viewcontent.cgi?article=1000&context=psych\_oer.

Ashworth, A 2002, Pre-contract studies: development economics, tendering and estimating, 2nd ed. edn, Blackwell Science, Oxford

Ashworth, A 2004, Cost studies of buildings, 4th edition edn, Pearson Education Limited, England.

Ashworth, A & Skitmore, RM 1982, Accuracy in estimating, Chartered Institute of Building London.

Australian Institute of Quantity Surveyors 2000, *Book of areas for analysis and comparison of buildings*, Second edition edn, Australian Institute of Quantity Surveyors, Australia.

Australian Institute of Quantity Surveyors 2006, *Australian Cost Management Manual - Volume 2*, First edition edn, Australian Institute of Quantity Surveyors, Canberra.

Austroads Ltd 2014, *Building and Construction Procurement Guide – Principles and Options,* Austroads Ltd, Sydney, viewed 21st April 2021, <u>https://austroads.com.au/publications/project-delivery/ap-g92-</u>14/media/AP-G92-14 Building and Construction Procurement Guide.pdf.

Azman, MA, Abdul-Samad, Z & Ismail, S 2013, 'The accuracy of preliminary cost estimates in Public Works Department (PWD) of Peninsular Malaysia', *International journal of project management*, vol. 31, no. 7, pp. 994-1005, viewed 26th April 2021, <u>https://doi-org.ezproxy.usq.edu.au/10.1016/j.ijproman.2012.11.008</u>.

Badawy, M 2020, 'A hybrid approach for a cost estimate of residential buildings in Egypt at the early stage', *Asian Journal of Civil Engineering*, vol. 21, no. 5, pp. 763-74, viewed 21st March 2021, <u>https://link-springer-com.ezproxy.usq.edu.au/article/10.1007/s42107-020-00237-z</u>.

Barriball, L & While, A 1994, 'Collecting Data using a semi-structured interview: a discussion paper', *Journal of advanced nursing*, vol. 19, no. 2, pp. 328-35, viewed 9th May 2021, <u>https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2648.1994.tb01088.x</u>.

Chakraborty, D, Elhegazy, H, Elzarka, H & Gutierrez, L 2020, 'A novel construction cost prediction model using hybrid natural and light gradient boosting', *Advanced Engineering Informatics*, vol. 46, viewed 22nd March 2021, <u>https://www.sciencedirect.com/science/article/pii/S1474034620301695</u>.

Chatterjee, S & Simonoff, JS 2012, *Handbook of Regression Analysis*, John Wiley & Sons, Incorporated, Somerset, UNITED STATES, viewed 26th July 2021, <a href="http://ebookcentral.proquest.com/lib/usq/detail.action?docID=1108688">http://ebookcentral.proquest.com/lib/usq/detail.action?docID=1108688</a> .

Databuild 2014, *Databuild*, Illinois Tool Works Inc., Melbourne, Victoria, viewed 30th August 2021, <u>https://databuild.com.au</u>.

Del Pico, Wayne 2012, *Estimating building costs*, Second edition edn, John Wiley & Sons Inc., Hoboken, New Jersey.

DiCicco-Bloom, B & Crabtree, BF 2006, 'The qualitative research interview', *Medical education*, vol. 40, no. 4, pp. 314-21, viewed 5th May 2021, <u>https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2929.2006.02418.x</u>.

Dowling, R 2005, 'Residential Building in Australia, 1993-2003', *Urban policy and research*, vol. 23, no. 4, pp. 447-64, viewed 26th April 2021, <u>https://www.tandfonline.com/doi/abs/10.1080/08111470500391424</u>.

Dursun, O & Stoy, C 2016, 'Conceptual estimation of construction costs using the multistep ahead approach', *Journal of Construction Engineering and Management*, vol. 142, no. 9, viewed 24th March 2021, <u>https://ascelibrary-org.ezproxy.usq.edu.au/doi/full/10.1061/%28ASCE%29CO.1943-7862.0001150</u>.

El-Sawah, H & Moselhi, O 2014, 'Comparative study in the use of neural networks for order of magnitude cost estimating in construction', *Journal of Information Technology in Construction*, vol. 19, pp. 462-73, viewed 22th March 2021, <u>https://www.itcon.org/papers/2014\_27.content.01242.pdf</u>.

Emsley, MW, Lowe, DJ, Duff, AR, Harding, A & Hickson, A 2002, 'Data modelling and the application of a neural network approach to the prediction of total construction costs', *Construction Management and Economics*, vol. 20, no. 6, pp. 465-72, viewed 22nd March 2021, <u>https://www-tandfonline-com.ezproxy.usq.edu.au/doi/pdf/10.1080/01446190210151050?needAccess=true</u>.

Gulcicek, U, Ozkan, O, Gunduz, M & Demir, IH 2013, 'Cost assessment of construction projects through neural networks', *Canadian journal of civil engineering*, vol. 40, no. 6, pp. 574-9, viewed 22nd March 2021,

https://www.researchgate.net/publication/263151734 Cost assessment of construction projects throug h neural networks. Jablonowski, CJ & MacEachern, DP 2009, 'Developing probabilistic well construction estimates using regression analysis', *Energy Exploration and Exploitation*, vol. 27, no. 6, pp. 439-52, viewed 22nd March 2021, <u>https://journals-sagepub-com.ezproxy.usq.edu.au/doi/abs/10.1260/0144-5987.27.6.439</u>.

Juszczyk, M 2018, 'Residential buildings conceptual cost estimates with the use of support vector regression', *MATEC Web of Conferences*, vol. 196, viewed 22nd March 2021, <u>https://www.matec-conferences.org/articles/matecconf/abs/2018/55/matecconf\_rsp2018\_04090/matecconf\_rsp2018\_04090.html</u>.

Latief, Y, Wibowo, A & Isvara, W 2013, 'Preliminary cost estimation using regression analysis incorporated with adaptive neuro fuzzy inference system', *International Journal of Technology*, vol. 4, no. 1, pp. 63-72, viewed 22nd March 2021,

https://www.researchgate.net/publication/289339062 Preliminary Cost Estimation Using Regression Analysis Incorporated With Adaptive Neuro Fuzzy Inference System.

Lim, B, Nepal, MP, Skitmore, M & Xiong, B 2016, 'Drivers of the accuracy of developers' early stage cost estimates in residential construction', *Journal of Financial Management of Property and Construction*, vol. 21, no. 1, pp. 4-20, viewed 21st March 2021, <u>https://www-emerald-</u> com.ezproxy.usq.edu.au/insight/content/doi/10.1108/JFMPC-01-2015-0002/full/html.

Loots, P & Charrett, D 2009, *Practical Guide to Engineering and Construction Contracts*, CCH Australia, Sydney, Australia.

Lowe, DJ, Emsley, MW & Harding, A 2006, 'Predicting Construction Cost Using Multiple Regression Techniques', *Journal of Construction Engineering and Management*, vol. 132, no. 7, pp. 750-8, viewed 22nd March 2021, <u>https://ascelibrary.org/doi/10.1061/%28ASCE%290733-</u>9364%282006%29132%3A7%28750%29.

Mahamid, I 2011, 'Early cost estimating for road construction projects using multiple regression techniques', *Australasian Journal of Construction Economics and Building*, vol. 11, no. 4, pp. 87-101, viewed 22nd March 2021, <u>https://epress.lib.uts.edu.au/journals/index.php/AJCEB/article/view/2195</u>.

Makridakis, S & Hibon, M 1995, 'Evaluating accuracy (or error) measures', viewed 11th May 2021, <u>https://sites.insead.edu/facultyresearch/research/doc.cfm?did=46875#:~:text=The%20MAPE%20is%20a%</u>20relative,extent%2C%20or%20importance%20of%20errors.

Morris, Alan S 2020, 'Regression analysis in the early forecasting of construction prices', Loughborough University of Technology, Loughborough.

Ofori-Boadu, AN 2015, 'Exploring regression models for forecasting early cost estimates for high-rise buildings', *Journal of Technology, Management, and Applied Engineering*, vol. 31, no. 5, pp. 1-24, viewed 22nd March 2021,

https://www.researchgate.net/publication/291333562 Exploring Regression Models for Forecasting Ea rly Cost Estimates for High-Rise Buildings.

O'Keeffe, J, Buytaert, W, Mijic, A, Brozovic, N & Sinha, R 2016, 'The use of semi-structured interviews for the characterisation of farmer irrigation practices', *Hydrology and earth system sciences*, vol. 20, no. 5, pp. 1911-24, viewed 5th May 2021, <u>https://hess.copernicus.org/articles/20/1911/2016/</u>.

Petroutsatou, K, Georgopoulos, E, Lambropoulos, S & Pantouvakis, JP 2012, 'Early cost estimating of road tunnel construction using neural networks', *Journal of Construction Engineering and Management*, vol. 138, no. 6, pp. 679-87, viewed 22nd March 2021, https://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0000479.

RIB Group 2021, *iTwo Cost X*, RIB Software International Limited, Toowong, Queensland, viewed 30th August 2021, <u>https://www.itwocostx.com</u>.

Sayed, M, Abdel-Hamid, M & El-Dash, K 2020, 'Improving cost estimation in construction projects', *International Journal of Construction Management*, viewed 22nd March 2021, <a href="https://www.tandfonline.com/doi/full/10.1080/15623599.2020.1853657?scroll=top&needAccess=true">https://www.tandfonline.com/doi/full/10.1080/15623599.2020.1853657?scroll=top&needAccess=true</a>.

Serpell, AF 2004, 'Towards a knowledge-based assessment of conceptual cost estimates', *Building research and information : the international journal of research, development and demonstration*, vol. 32, no. 2, pp. 157-64, viewed 31st March 2021,

https://www.researchgate.net/publication/233594888 Towards a knowledgebased assessment of conceptual cost estimates.

Sonmez, R 2004, 'Conceptual cost estimation of building projects with regression analysis and neural networks', *Canadian journal of civil engineering*, vol. 31, no. 4, pp. 677-83, viewed 24th March 2021, <u>https://www.researchgate.net/publication/344676822 Conceptual Cost Estimate of Buildings Using R</u> egression Analysis In Egypt.

Soutos, M & Lowe, DJ 2011, 'Elemental cost estimating: current UK practice and procedure', *Journal of Financial Management of Property and Construction*, vol. 16, no. 2, pp. 147-62, viewed 26th April 2021, https://www-emerald-

<u>com.ezproxy.usq.edu.au/insight/content/doi/10.1108/13664381111153123/full/pdf?title=elemental-cost-</u> estimating-current-uk-practice-and-procedure.

Stoy, C & Schalcher, HR 2007, 'Residential building projects: Building cost indicators and drivers', *Journal of Construction Engineering and Management*, vol. 133, no. 2, pp. 139-45, viewed 21st March 2021, <u>https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-</u>9364%282007%29133%3A2%28139%29.

Stoy, C, Pollalis, S & Schalcher, HR 2008, 'Drivers for cost estimating in early design: Case study of residential construction', *Journal of Construction Engineering and Management*, vol. 134, no. 1, pp. 32-9, viewed 21st March 2021, <u>https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9364%282008%29134%3A1%2832%29</u>.

Ugur, LO, Kanit, R, Erdal, H, Namli, E, Erdal, HI, Baykan, UN & Erdal, M 2019, 'Enhanced Predictive Models for Construction Costs: A Case Study of Turkish Mass Housing Sector', *Computational Economics*, vol. 53, no. 4, pp. 1403-19, viewed 22nd March 2021, <u>https://link-springer-com.ezproxy.usq.edu.au/article/10.1007/s10614-018-9814-9</u>.

Wang, WC, Bilozerov, T, Dzeng, RJ, Hsiao, FY & Wang, KC 2017, 'Conceptual cost estimations using neuro-fuzzy and multi-factor evaluation methods for building projects', *Journal of Civil Engineering and Management*, vol. 23, no. 1, pp. 1-14, viewed 22nd March 2021, https://journals.vgtu.lt/index.php/JCEM/article/view/573.

Warren-Myers, G & McRae, E 2017, 'Volume home building: The provision of sustainability information for new homebuyers', *Construction economics and building*, vol. 17, no. 2, pp. 24-40, viewed 14th September 2020, <u>https://epress.lib.uts.edu.au/journals/index.php/AJCEB/article/view/5245</u>.

Weller, SC, Vickers, B, Russell Bernard, H, Blackburn, AM, Borgatti, S, Gravlee, CC & Johnson, JC 2018, 'Open-ended interview questions and saturation', *PloS one*, vol. 13, no. 6, pp. e0198606-e, viewed 17th May 2021, <u>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198606</u>.

Yu, WD & Skibniewski, MJ 2010, 'Integrating neurofuzzy system with conceptual cost estimation to discover cost-related knowledge from residential construction projects', *Journal of Computing in Civil Engineering*, vol. 24, no. 1, pp. 35-44, viewed 21st March 2021, https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290887-3801%282010%2924%3A1%2835%29.

Zhigang, J & Yajing, L 2009, 'The application of RBF neural network on construction cost forecasting', *Proceedings - 2009 2nd International Workshop on Knowledge Discovery and Data Mining, WKKD 2009*, pp. 32-5, <u>https://ieeexplore-ieee-org.ezproxy.usq.edu.au/document/4771871/</u>.

### Appendix A - Project specification

#### ENG4111/4112 Research Project

#### **Project Specification**

| For:         | Andrew Peter Dixon                                                                                                                                                                                                                                                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Develop a framework for residential construction cost estimating in the Australian market                                                                                                                                                                          |
| Major:       | Construction Management                                                                                                                                                                                                                                            |
| Supervisor:  | Dr Amirhossein Heravi                                                                                                                                                                                                                                              |
| Enrolment:   | ENG4111 – ONL S1, 2021                                                                                                                                                                                                                                             |
|              | ENG4112 – ONL S2, 2021                                                                                                                                                                                                                                             |
| Project aim: | The aim of this project is to develop a framework to reduce the time it takes to estimate construction costs of Australian residential dwellings in comparison to traditional methods through a statistical analysis of design complexity features (cost drivers). |

#### Programme: Version 1, 17<sup>th</sup> March 2021

- 1. A literature review will be conducted to identify the various techniques of cost estimating in residential construction.
- 2. Select a case study and conduct interviews to identify current methods of estimating in Australia and determine appropriate cost drivers which will form the basis of the analysis.
- 3. A sample set of concept design for typical residential dwellings will be selected and a first principles estimate will be performed on each model.
- 4. Collate total construction cost for each design along with values for each determined cost driver variable. This data set is required to be formatted specifically for import into the statistical analysis package (SPSS).
- 5. Run collated data through SPSS for analysis. Determine any cost drivers which are not statistically significant and assess for removal from the model.
- 6. Test the results of the formulated model against an independent data set to evaluate the reliability and validity the proposed model.

### Appendix B – Risk management plan

The approve safety risk management plan ID is RMP\_2021\_5471. A summary of the details can be found below.

| UNIVERSITY                                                                                                                                                                                                                                                                              | of Southern Quee                                                                                                                                                                       |                                                    |                            |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------------|
| QUEENSLAND USQ Safe                                                                                                                                                                                                                                                                     | ety Risk Mana                                                                                                                                                                          | agement Syste                                      | em                         | Version                        |
|                                                                                                                                                                                                                                                                                         | Safety Risk Ma                                                                                                                                                                         | anagement Plan                                     |                            |                                |
| Risk Management Plan Stotus:<br>ID: Approve<br>RMP_2021_5471                                                                                                                                                                                                                            | Current User:                                                                                                                                                                          | Author:                                            | Supervisor:                | Approver:                      |
| Assessment Title: Risk assessment of                                                                                                                                                                                                                                                    | honours research project                                                                                                                                                               |                                                    | Assessment Date:           | 3/05/2021                      |
| Workplace (Division/Faculty/Section): 204010 - Faculty of                                                                                                                                                                                                                               | Health, Engineering and Science                                                                                                                                                        | ces                                                | Review Date:               | 3/05/2026<br>(5 years maximum) |
| Approver:<br>Amirhassein Heravi                                                                                                                                                                                                                                                         |                                                                                                                                                                                        | Supervisor: (for notificatio<br>Amirhossein Heravi | n of Risk Assessment only) |                                |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                                                    |                            |                                |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        | ntext                                              |                            |                                |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                                                    |                            |                                |
| What is the task/event/purchase/project/procedure?                                                                                                                                                                                                                                      | Conducting honours resea                                                                                                                                                               | arch project                                       |                            |                                |
| DESCRIPTION:<br>What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?                                                                                                                                                        | Conducting honours resea<br>Required component of p                                                                                                                                    | arch project<br>rogram                             |                            |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?                                                                                                                                                                        | Conducting honours resea                                                                                                                                                               | arch project<br>rogram                             | me (if applicable)         |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?<br>Course code (if applicable)                                                                                                                                         | Conducting honours resea<br>Required component of p<br>Home and work premises                                                                                                          | arch project<br>rogram                             | me (if applicable)         |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?<br>Course code (if applicable)<br>WHAT ARE THE NOMINAL CONDITIONS?                                                                                                     | Conducting honours resea<br>Required component of p<br>Home and work premises                                                                                                          | arch project<br>rogram                             | me (if applicable)         |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?<br>Course code (if applicable)<br>WHAT ARE THE NOMINAL CONDITIONS?<br>Personnel involved                                                                               | Conducting honours resea<br>Required component of pr<br>Home and work premises<br>ENG4111/4112                                                                                         | rogram<br>Chemical Na                              | me (if applicable)         |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?<br>Course code (if applicable)<br>WHAT ARE THE NOMINAL CONDITIONS?<br>Personnel involved<br>Equipment                                                                  | Conducting honours resea<br>Required component of p<br>Home and work premises<br>ENG4111/4112<br>Andrew Peter Dixon                                                                    | rogram<br>Chemical Na                              | me (if applicable)         |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?                                                                                                                                                                                                        | Conducting honours resea<br>Required component of pr<br>Home and work premises<br>ENG4111/4112<br>Andrew Peter Dixon<br>Computer software and d                                        | rogram<br>Chemical Na                              | me (if applicable)         |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?<br>Course code (if applicable)<br>WHAT ARE THE NOMINAL CONDITIONS?<br>Personnel involved<br>Equipment<br>Environment<br>Other                                          | Conducting honours resea<br>Required component of p<br>Home and work premises<br>ENG4111/4112<br>Andrew Peter Dixon<br>Computer software and c<br>Office                               | rogram<br>Chemical Na                              |                            |                                |
| What is the task/event/purchase/project/procedure?<br>Why is it being conducted?<br>Where is it being conducted?<br>Course code (if applicable)<br>WHAT ARE THE NOMINAL CONDITIONS?<br>Personnel involved<br>Equipment<br>Environment<br>Other<br>Briefly explain the procedure/process | Conducting honours resea<br>Required component of p<br>Home and work premises<br>ENG4111/4112<br>Andrew Peter Dixon<br>Computer software and d<br>Office<br>Research articles, collect | rogram<br>Chemical Na                              | op model                   |                                |

|     |                                                  |                                                                                                 |                                                                                                                   |                         | <b>Risk Regist</b>                                             | er and          | Analy                             | ysis      |                                                                                           |                                                                                             |             |               |       |  |  |  |
|-----|--------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------|-----------------|-----------------------------------|-----------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|---------------|-------|--|--|--|
|     | Step 1                                           | Step 2                                                                                          | Step 2a                                                                                                           |                         | Step 2b                                                        |                 | Step 3                            | 1         |                                                                                           | Step 4                                                                                      | Step 4      |               |       |  |  |  |
|     | Hazards:<br>From step 1 or more if<br>Identified | The Risk:<br>What can happen if exposed to<br>the bacard without existing<br>controls in place? | Consequence:<br>What is the harm<br>that can be caused<br>by the hacard<br>without existing<br>controls in place? | What are the            | ring Controls:<br>existing controls that are<br>eady in place? |                 | Assessme<br>a x Probabil<br>Level |           | Additional Controls:<br>Enter additional controls if required to<br>reduce the risk level | Risk assessment with additional<br>cantrols:<br>Has the consequence or probability changed? |             |               |       |  |  |  |
| _   |                                                  |                                                                                                 | <u>.</u>                                                                                                          |                         |                                                                | Probabilit<br>y | Risk<br>Level                     | ALARP     |                                                                                           | Consequence                                                                                 | Probability | Risk<br>Level | ALARP |  |  |  |
| -   | Example<br>Working In                            | Neat stress/heat                                                                                | catastrophic                                                                                                      | Regular break           | is, chilled water available,                                   | possible        | high                              | No        | temporary shade shelters, essential tasks                                                 | catastrophic                                                                                | unlikely    | mod           | Wes   |  |  |  |
|     | temperatures over 35 <sup>0</sup><br>C           | stroke/exhaustion leading to<br>serious personal injury/death                                   |                                                                                                                   | loose clothe            | ng, fatigue management<br>policy.                              |                 |                                   |           | only, close supervision, buddy system                                                     |                                                                                             |             |               |       |  |  |  |
|     | Eye strain                                       | Excessive time in front<br>of screen may cause<br>headaches                                     | Minor                                                                                                             | Regular b               | reaks                                                          | Likely          | High                              |           | Ensure breaks are taken<br>and use correct lighting in<br>office                          | Insignifica                                                                                 | Unlikely    | Low           |       |  |  |  |
| 111 | Sore back fro                                    | Bad posture issues<br>and lower back pain                                                       | Minor                                                                                                             | work offic              | desk in place at<br>te which will be<br>en possible            | Possible        | Me                                |           | Set an alarm to remind me<br>to stand up regularly                                        | Minor                                                                                       | Unlikely    | Low           |       |  |  |  |
| 1   | Mental stress                                    | Mental health impact                                                                            | Moderate                                                                                                          | Regular e<br>relaxation | xercise and<br>1 time                                          | Possible        | High                              |           | Use holidays at work to<br>take time off if needed                                        | Minor                                                                                       | Unlikely    | Low           |       |  |  |  |
| 1   | Car accident                                     | Death                                                                                           | Catastrophic                                                                                                      |                         | e driving practice<br>iving when tired                         | Unlikely        | Me                                |           | Set up remote log in so<br>work can be done from<br>home                                  | Insignifica                                                                                 | Rare        | Low           |       |  |  |  |
|     | lighting in office                               | e taken and use correct                                                                         |                                                                                                                   | 1                       | Desk light and ala                                             | arm clock       |                                   |           | Andrew Dixon                                                                              |                                                                                             | 3/05/2021   |               |       |  |  |  |
|     | Ensure breaks an                                 | e taken and use correct                                                                         | (repeated                                                                                                         | control)                | Desk light and ala                                             | arm clock       |                                   |           | Andrew Dixon                                                                              |                                                                                             | 3/05/202    | 1             |       |  |  |  |
|     |                                                  | emind me to stand up                                                                            |                                                                                                                   | 1                       |                                                                | _               |                                   | _         |                                                                                           |                                                                                             |             |               |       |  |  |  |
|     | regularly                                        | china nic to stand up                                                                           |                                                                                                                   |                         |                                                                |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
|     | Use holidays at w<br>needed                      | ork to take time off if                                                                         |                                                                                                                   | 1                       | Time off available                                             | e through v     | vork                              |           | Andrew Dixon                                                                              | 3/05/2021                                                                                   |             |               |       |  |  |  |
|     | Set up remote lo<br>from home                    | g in so work can be done                                                                        |                                                                                                                   | 1                       | Software availabi                                              | lity            |                                   |           | Andrew Dixon                                                                              | 3/05/2021                                                                                   |             |               |       |  |  |  |
| -   | Supporting A                                     | Attachments                                                                                     |                                                                                                                   |                         |                                                                |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
| -   | Step 6 – Rec                                     | quest Approval                                                                                  |                                                                                                                   |                         |                                                                |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
|     | Drafters Name:<br>Drafters Comments              |                                                                                                 | Peter Dixon                                                                                                       |                         |                                                                |                 |                                   |           | Draft Date:                                                                               |                                                                                             | 3/05/2021   | 1             |       |  |  |  |
|     |                                                  | oval: All risks are mark<br>al Risk Level: Low - Mar                                            |                                                                                                                   |                         | Remined                                                        |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
| -   | Vaximum Residu                                   | al Risk Level: Low - Mar                                                                        | lager/superviso                                                                                                   | Approve                 | rkequireu                                                      |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
|     |                                                  |                                                                                                 |                                                                                                                   | Approve                 |                                                                |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
|     | Step 6 – App                                     | proval                                                                                          |                                                                                                                   |                         |                                                                |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
| -   | Approvers Name:                                  | Amirhassei                                                                                      | n Heravi                                                                                                          |                         |                                                                | Approv          | ers Posit                         | ion Title | Supervisor                                                                                |                                                                                             |             |               |       |  |  |  |
| ,   | Approvers Commen                                 | ts: Possible ris                                                                                | ks are correctly re                                                                                               | flected                 |                                                                |                 |                                   |           |                                                                                           |                                                                                             |             |               |       |  |  |  |
|     |                                                  | he risks are as low as rea                                                                      | conably practicab                                                                                                 | le and that             | the recourses requi                                            | ired will be    | provided                          | e l       |                                                                                           |                                                                                             |             |               |       |  |  |  |
| I   | am satisfied that t                              | ne maks are as low as rea.                                                                      | anaby proceeds                                                                                                    | ic and mor              | the resources requi                                            |                 |                                   |           | 100                                                                                       |                                                                                             |             |               |       |  |  |  |

## Appendix C – Case study interview questions phase one

| 1 | What kind of design and specification details are available when you calculate construction costs?                              |
|---|---------------------------------------------------------------------------------------------------------------------------------|
| 2 | How long does a first principle estimate generally take you?                                                                    |
| 3 | Have you found unit rate estimating methods common in the residential industry?                                                 |
| 4 | Between unit rate and first principle estimating which do you perceive as the most accurate and what variance would one expect? |
| 5 | Briefly explain how you calculate the total cost of a project?                                                                  |
| 6 | Can you outline the use of a standard specification in the residential construction industry and its importance.                |
| 7 | Explain how you modify cost estimates if a consumer wishes<br>to vary the standard inclusions provided by a contractor.         |
| 8 | Can you name some of the common forms of contracts that are employed by residential contractors?                                |

## Appendix D – Case study interview questions phase two

| 1  | Cost driver definition to be stated as "a cost driver for the<br>purpose of this interview is a design related factor that is<br>believed to contribute significantly to the total cost of<br>construction".  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | In your experience can you identify some factors that come to<br>mind that you consider would fall under the definition of a<br>cost driver.                                                                  |
| За | Clarification of an answer from question 2 - Would you please clarify what you mean by that?                                                                                                                  |
| 3b | Probing of an answer from question 2 - this will depend on the answer and guidance from the interviewer.                                                                                                      |
| 4  | This question will ask the interviewee about the significance<br>of the cost drivers identified in table 7. It will only be asked if<br>the cost drivers were not previously mentioned by the<br>interviewee. |
| 5  | Shape complexity has been identified from previous studies as<br>a cost driver, what does that term mean to you?                                                                                              |

## Appendix E – Time plan

|    | Task Name                               | Duration | Start        | Finish         | Mar '21         Apr '21         May '21         Jun '21         Jul '21         Aug '21         Sep '21         Oct '21           22         1         8         15         22         29         5         12         19         26         3         10         17         24         31         7         14         21         28         5         12         19         26         2         9         16         23         30         6         13         20         27         4         1 |
|----|-----------------------------------------|----------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 1. Preparation                          | 0 days   |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2  | Prepare Proposal                        | 6 days   | Mon 22/02/2  | 1Sun 28/02/21  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3  | Submit Proposal                         | 1 day    | Mon 1/03/2   | Mon 1/03/21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4  | Gather resources                        | 6 days   | Mon 1/03/21  | Sun 7/03/21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5  | Select sample models                    | 10 days  | Mon 1/03/2   | Fri 12/03/21   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6  | Proposal approved                       | 2.5 days | Tue 2/03/21  | Thu 4/03/21    | -Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7  | Project Specification Due               | 1 day    | Thu 4/03/21  | Fri 5/03/21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8  | 2. Collect data                         | 0 days   | 1            | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9  | Measure & compile sample model costs    | 30 days  | Mon 15/03/2  | 21Fri 23/04/21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10 | Case study interviews                   | 5 days   | Mon 21/06/2  | 21Fri 25/06/21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11 | Assign cost drivers to each model       | 2 days   | Mon 29/06/2  | 2CTue 30/06/20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | 3. Analyse Data                         | 0 days   |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | Use SPSS linear regression analysis     | 7 days   | Thu 1/07/21  | Fri 9/07/21    | The second se                                                                                                                                                                                                                                                                                                                                                                                      |
| 14 | Compile model formula                   | 10 days  | Mon 12/07/2  | 21Fri 23/07/21 | Terra Contraction of the second se                                                                                                                                                                                                                                                                                                                                                                                      |
| 15 | Add formula to Excel for testing        | 1 day    | Mon 26/07/2  | 1Mon 26/07/21  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16 | 4. Test Data                            | 0 days   |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17 | Select test models                      | 4 days   | Tue 27/07/2  | 1 Fri 30/07/21 | 「<br>」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18 | Measure & compile test model costs      | 4 days   | Mon 2/08/2   | Thu 5/08/21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19 | Analyse model accuracy with test models | 5 days   | Fri 6/08/21  | Thu 12/08/21   | j j j j j j j j j j j j j j j j j j j                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 | 5. Presentation & write up              | 0 days   |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21 | Literature review & methodology         | 55 days  | Tue 2/03/21  | Sat 15/05/21   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22 | Data analysis and results write up      | 11 days  | Fri 13/08/21 | Fri 27/08/21   | řest i do na se                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 23 | Progress report due                     | 1 day    | Wed 26/05/2  | 21Wed 26/05/21 | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 24 | Partial draft dissertation              | 3 days   | Mon 30/08/2  | 21Wed 1/09/21  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25 | Results for presentation during PP2     | 11 days  | Mon 6/09/2   | Sun 19/09/21   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26 | Finalise disseration                    | 24 days  |              | Wed 13/10/21   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 27 | Submit dissertation                     | 1 day    | Thu 14/10/2  | 1 Thu 14/10/21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### Appendix F - Ethical approval

USQ HREC ID: H21REA138 Project title: Develop a framework for residential construction cost estimating in the Australian market Approval date: 29/06/2021 Expiry date: 29/06/2022 USQ HREC status: Approved The standard conditions of this approval are:

a) responsibly conduct the project strictly in accordance with the proposal submitted and granted ethics approval, including any amendments made to the proposal;.

(b) advise the University (email:ResearchIntegrity@usq.edu.au) immediately of any complaint pertaining to the conduct of the research or any other issues in relation to the project which may warrant review of the ethical approval of the project;

(c) promptly report any adverse events or unexpected outcomes to the University (email: <u>ResearchIntegrity@usq.edu.au</u>) and take prompt action to deal with any unexpected risks;

(d) make submission for any amendments to the project and obtain approval prior to implementing such changes;

(e) provide a progress 'milestone report' when requested and at least for every year of approval.

(f) provide a final 'milestone report' when the project is complete;

(g) promptly advise the University if the project has been discontinued, using a final 'milestone report'.

The additional conditionals of approval for this project are:

(a) Nil.

Appendix G - Interview responses

## Interview summary – Participant 1

Position – Estimator

Time in residential construction – 9 years

Service at company- 3 years

### Questions related to estimating techniques

### 1. What kind of design and specification details are available when you calculate construction costs?

- A concept design consisting of site plan, floor plan and elevation.
- Often a soil investigation report if available.
- Contour plan.
- Brief scope of inclusions from client.
- Full design documentation such as detailed architectural and structural plans often not provided.

### 2. How long does a first principle estimate generally take you?

- Usually 2 hours for a standard design.
- More complex designs with larger levels of inclusions including double storey designs take much longer.

### 3. Have you found unit rate estimating methods common in the residential industry?

- Never really heard of it being used effectively.
- Heard terrible stories about projects loosing money as this was the only method used to estimate the initial cost.

# 4. Between unit rate and first principle estimating which do you perceive as the most accurate and what variance would one expect?

- Use a first principle estimating method with software developed for the projects we often price. The unit rate is too inaccurate.
- First principle method approx. 1-2%.
- Unit rate method 20%.

### 5. Briefly explain how you calculate the total cost of a project?

- First principle estimate of construction costs.
- Apply margin build up.
- Vary specification inclusions from standard if required.
- 6. Can you outline the use of a standard specification in the residential construction industry and its importance?

- A standard specification is very common.
- Often there are different levels of specification aimed at different market entry points such as a high level (more expensive) and entry level (very cheap).
- A standard specification keeps pricing accurate and consistent.
- It allows a builder to "brand" their product with a specific level of quality or range of fittings.

# 7. Explain how you modify cost estimates if a consumer wishes to vary the standard inclusions provided by a contractor.

- We use our baseline estimate to a standard specification as a starting point.
- Then modify any inclusions as an adjustment to that baseline cost on the Excel proposal sheet that gets presented to the client so they can see the cost applicable to the change request.

## 8. Can you name some of the common forms of contracts that are employed by residential contractors?

- Housing Industry Australia (HIA).
- Master Builders.

### Questions related to cost driver identification

Cost driver definition to the be stated as "a cost driver for the purpose of this interview is a design related factor that is believed to contribute significantly to the total cost of construction".

- 1. In your experience can you identify some factors that come to mind that you consider would fall under the definition of a cost driver.
- Layout complexity.
- Roof design.
- Bathroom number.
- Kitchens and plumbing outlets.
- Wall height.
- Window types.

### 2. A - Clarification of an answer from question 2 - Would you please clarify what you mean by that?

Layout complexity

- Comes into play regarding number of bedrooms and living spaces within the dwelling.
- The shape of the external perimeter of the building.

### Roofline

- More complex geometric roof layouts often add cost.
- Features such as gable ends, fly over roofing, hips, valleys and eaves.

### Window types

- Windows come in many shapes and configurations.
- Sliding windows are cheap.
- Louvres, awning, casement windows often more expensive if there are a significant amount.
- Large sliding doors with multiple leafs are also very high cost drivers.

Kitchens and plumbing outlets

- Custom kitchens can add up quickly depending on the length of cupboards and features included. Often detailed in the proposal as a Provisional Sum.
- Additional plumbing fixtures such as sinks, basins, shower outlets, WCs often are cost significant.
- 3. B Probing of an answer from question 2 this will depend on the answer and guidance from the interviewer.

Summary of probing explanation provided above under appropriate heading.

- 4. This question will ask the interviewee about the significance of the cost drivers identified in table 5. It will only be asked if the cost drivers were not previously mentioned by the interviewee.
- External area is cheaper than internal area as it does not need air conditioning, electrical fittings, expensive floor coverings, windows, partition walls and doors.
- Gross floor area is the main driver of cost.
- A compact plan is much more expensive than a large open plan so this is significant.
- Internal and external wall lengths are relatively significant.
- External wall openings will depend on opening type, however can be a cost driver.
- 5. Shape complexity has been identified from previous studies as a cost driver, what does that term mean to you?

The lengths and interactions of geometric features of the house such as roof lines, external walls and slab and footing layouts. A shape with a longer perimeter versus area is often times much more expensive and than simple shape of the same size.

| Cost driver               | Unit           | Calculation definition                                        |
|---------------------------|----------------|---------------------------------------------------------------|
| Gross internal floor area | m <sup>2</sup> | Internal living area measured of outside face of wall         |
| Gross external floor area | m <sup>2</sup> | Floor area of alfresco, patios, porches etc.                  |
| Gross floor area          | m <sup>2</sup> | Total floor area of dwelling measured to outside face of wall |
| Compactness               | ratio          | Area of external walls / gross floor area                     |
| Internal walls            | m              | Length of internal walls                                      |
| External walls            | m              | Length of external walls                                      |
| Proportion of openings    | m <sup>2</sup> | The area of all external wall openings                        |
| Building volume           | m <sup>3</sup> | External wall length x wall height x internal floor area      |
| Shape complexity          | N/A            | This will be further developed from interview data            |
|                           |                |                                                               |

## Interview summary – Participant 2

Position - Senior Estimator

Time in residential construction – 15 years

Service at company- 11 years

### Questions related to estimating techniques

#### 9. What kind of design and specification details are available when you calculate construction costs?

Typically we are provided with a concept plan, that is a floor plan, elevations and a site plan. Full design documentation is often not available when producing an initial tender in residential construction. Sometimes clients have full design documents done when they have had their project developed with the help of an architect or building designer, however for design and construct contractors this is not common.

The contractor generally has a standard level of inclusions available for us to use when pricing the initial tender with the client being able to request variations to those inclusions to be included in the proposal.

10. How long does a first principle estimate generally take you?

It really depends on the complexity of the build. A simple design with no extenuating site conditions can take 1-1.5 hours depending on experience. A difficult and complex design with specialised inclusions can take one to two days.

#### 11. Have you found unit rate estimating methods common in the residential industry?

Yes, it is common in the residential industry. This is a method most contractors employ initially as they lack the time and skill to perform a detailed quantity take off. Often contractors approach our company because they have employed this method prior to contracting and found out they lost money or had a severely reduced profitability for the project. It works well as an indicator but certainly not a predictor.

## 12. Between unit rate and first principle estimating which do you perceive as the most accurate and what variance would one expect?

- Definitely the first principle method, however it is more time consuming.
- A unit rate estimate, depending on the skill of the person applying it, can vary up to 10-15% of actual cost of the project. This often impacts profit margins.
- First principle estimates vary between 1-4% depending on complexity of project.

#### 13. Briefly explain how you calculate the total cost of a project?

We use software to quickly extract quantities, manipulate them and then formulate a first principle bill of quantities to calculate total construction costs. 3 key software tools we use are Excel, Cost X and Databuild. The company has set these up to work together. A typical build up of cost attributes rates to plant, labour, sub contractor and fee allowances. These are specific to each contractor we work with and also the each local area we operate in. A database of unit costs for all components are keep on file and updated when required, this means projects are live priced and updates to the price catalogue can be applied immediately.

Typically we product an estimate for the total construction costs of the project based on a standard level of specification, we then modify or change that if the client requests specific alterations to the standard inclusion level. We find measuring to a baseline estimate much quicker, easier to replicate and also provides a price comparison for future similar projects if the inclusions are identical. This helps us provide ball park estimates to ensure the design of the project can meet the required budget.

## 14. Can you outline the use of a standard specification in the residential construction industry and its importance.

A standard specification or level of inclusions is a common tool residential contractors use to show potential clients their level of finish and what they are receiving for their proposal. Some contractors do not allow significant variation to these inclusions, however this is more common in larger project home builders. Most contractors are happy to accommodate changes. The standard specification is common to many contractors especially those that have "display homes" in villages to show off their product. It also provides a point with which to base initial estimates and we use this in formulating a construction cost.

## 15. Explain how you modify cost estimates if a consumer wishes to vary the standard inclusions provided by a contractor.

A mentioned we typically produce an estimate to a standard level of inclusions which is based on the contractor's standard specification. This provides us a baseline estimate. We can then vary costs for the tender if the client would like to change something.

An example would be wet area tiling. The contractor's standard may be only tiling the shower recess area to 2.1m above the floor level. The client may require tiling to all the walls in the bathroom to the full height of the wall. This additional cost can easily be applied to the tender proposal build up sheet for inclusion in the total cost of the works.

#### 16. Can you name some of the common forms of contracts that are employed by residential contractors?

Design and construct contracts are very common in the residential market. Contractors often belong to industry bodies such as HIA or Master Builders. These bodies produce standard form contracts for the contractor to use. These are by far the most common seen in the residential sector.

## Questions related to cost driver identification

Cost driver definition to the be stated as "a cost driver for the purpose of this interview is a design related factor that is believed to contribute significantly to the total cost of construction".

- 6. In your experience can you identify some factors that come to mind that you consider would fall under the definition of a cost driver.
- Gross floor area.
- External wall complexity/layout.
- Roof line complexity.
- Number of bedrooms.
- Number of bathrooms.
- External openings and window complexity.
- Number plumbing outlets.
- Number of separate living areas.
- Amount of custom cabinetry.

### 7. A - Clarification of an answer from question 2 - Would you please clarify what you mean by that?

Roofline complexity

- Often made up of geometric planes.
- Hips, valleys, eaves.
- Gable ends and parapets.

Number of plumbing outlets

- Typically a standard number of outlets in a bathroom is assumed. 1 shower, 1 basin, 1 WC & 1 bath.
- Additional basins and shower outlets attract significant supply and fitting charges and if there are many can increase costs significantly.

Separate living area

• These could be media rooms, rumpus rooms, separate dining areas. These all require additional electrical fittings, air conditioning and partition walls/windows to make them habitable and can drive costs.

Custom cabinetry

- This can vary significantly and depends entirely on the design and layout of bathrooms, kitchens and laundries.
- A large kitchen with a walk in pantry will be significantly more expensive than a simple galley kitchen.
- This variable is difficult to define in a project and often a Provision Sum allowance is used so the client can discuss their needs with a cabinetmaker once contracted.

## 8. B - Probing of an answer from question 2 - this will depend on the answer and guidance from the interviewer.

Any probing was summarised above in the clarification asked.

# 9. This question will ask the interviewee about the significance of the cost drivers identified in table 5. It will only be asked if the cost drivers were not previously mentioned by the interviewee.

Gross floor area is the single most significant cost driver. The proportion of external area vs internal area is also important as internal area signifies conditioned liveable space which often costs a larger amount.

A lot of the items like compactness, building volume and shape complexity look to be functioned of each other.

Personally do not think internal walls are significant as these are a function of the number of rooms in the house, however I has noticed that houses with a lot of dead space i.e long hallways are often not very cost efficient.

# 10. Shape complexity has been identified from previous studies as a cost driver, what does that term mean to you?

This means the complexity of the outside perimeter of the building, a building perimeter with a significant amount of ins and outs will significantly increase the length of external walls. This will drive costs.

| Cost driver                    | Unit           | Calculation definition                                        |  |  |  |  |  |  |
|--------------------------------|----------------|---------------------------------------------------------------|--|--|--|--|--|--|
| Gross internal floor area      | m <sup>2</sup> | Internal living area measured of outside face of wall         |  |  |  |  |  |  |
| Gross external floor area      | m <sup>2</sup> | Floor area of alfresco, patios, porches etc.                  |  |  |  |  |  |  |
| Gross floor area               | m <sup>2</sup> | Total floor area of dwelling measured to outside face of wall |  |  |  |  |  |  |
| Compactness                    | ratio          | Area of external walls / gross floor area                     |  |  |  |  |  |  |
| Internal walls                 | m              | Length of internal walls                                      |  |  |  |  |  |  |
| External walls                 | m              | Length of external walls                                      |  |  |  |  |  |  |
| Proportion of openings         | m <sup>2</sup> | The area of all external wall openings                        |  |  |  |  |  |  |
| Building volume m <sup>3</sup> |                | External wall length x wall height x internal floor area      |  |  |  |  |  |  |
| Shape complexity               | N/A            | This will be further developed from interview data            |  |  |  |  |  |  |

## Interview summary – Participant 3

### Position - Director of estimating company

### Time in residential construction - 26 years

Service at company- 15 years

### Questions related to estimating techniques

### 17. What kind of design and specification details are available when you calculate construction costs?

- Varies according to scope of project.
- Generally only a concept plan with site plan, elevations and floor plan.
- Rarely do we have full design documents available.
- We aim to price accurately on a concept plan and given the nature of residential construction projects they tend to be predictable in regards to structural design.

### 18. How long does a first principle estimate generally take you?

- The company has developed systems to cater for rapid estimating methods however generally around 1 hour for a simple standard project.
- A complex build can take 1-2 days however these are heavily involved and quite complex.

#### 19. Have you found unit rate estimating methods common in the residential industry?

- These method is extremely common among builders with little understanding of project costing, often taking contracts based on a unit rate estimate only.
- Very dangerous.

## 20. Between unit rate and first principle estimating which do you perceive as the most accurate and what variance would one expect?

- Obviously first principle. Unit rate can work if the design is very similar with similar feature however advised as a ball park estimate only.
- First principle 2-3%
- Unit rate 10-15%

### 21. Briefly explain how you calculate the total cost of a project?

- Calculate construction cost only using our software programs.
- Add any statutory fees and charges and percentage of contract related items such as commission.
- Apply profit margins plus any risk factor percentages or retentions.

## 22. Can you outline the use of a standard specification in the residential construction industry and its importance?

• Very important, it provides a contractual link between the concept and final drawings to ensure what was priced was included in the final plans.

- It serves as a communication document to relay the proposal cost plus the inclusions in that cost to the client and other stake holders.
- It helps monitor project variations as it provides a baseline of inclusions that can easily identify cost variances for actioning.

# 23. Explain how you modify cost estimates if a consumer wishes to vary the standard inclusions provided by a contractor.

- Often modify the proposal by adding or subtracting the cost from the initial baseline tender cost.
- It depends on the change required however most changes to fittings, fixtures and inclusions can be adjusted this way.
- Any major redesigns will result in a recalculation of costs through a first principle estimate.

# 24. Can you name some of the common forms of contracts that are employed by residential contractors?

- Queensland Master Builders Association (QMBA).
- Housing Industry Australia (HIA).

### Questions related to cost driver identification

Cost driver definition to the be stated as "a cost driver for the purpose of this interview is a design related factor that is believed to contribute significantly to the total cost of construction".

# 11. In your experience can you identify some factors that come to mind that you consider would fall under the definition of a cost driver.

- Gross floor area
- Number of bathroom
- External length of wall
- Roof configuration
- Number of rooms
- Joinery
- External areas such as alfresco or garage

### 12. A - Clarification of an answer from question 2 - Would you please clarify what you mean by that?

Roof configuration

- Shape of roof plane.
- Hips, valleys add to cost and complexity of truss design making it harder to install.
- Gable ends and parapets.
- Eaves and box gutters.

#### Joinery

• Massive cost and a single factor to determine a high end or low end house. Million dollar houses often have \$300-\$400k worth of joinery where as \$400k houses may only include \$20k.

Number of rooms

- More rooms means more internal walls, electrical fittings, windows.
- They cost more to fit out therefore the larger number of separate rooms the more likely it will impact the total cost.
- 13. B Probing of an answer from question 2 this will depend on the answer and guidance from the interviewer.

Explanation of probing provided as a summary above

- 14. This question will ask the interviewee about the significance of the cost drivers identified in table 5. It will only be asked if the cost drivers were not previously mentioned by the interviewee.
- A lot of those seem to be functions of each other such as volume and compactness comparing to external walls.
- Gross floor area is the single most important factor as most costs when building up an estimate can be related back to square metres or a derivative of.
- Internal spacing is more expensive due to fitout costs, linings, conditioning of space etc. It would be relevant to separate out external vs internal floor space.

## 15. Shape complexity has been identified from previous studies as a cost driver, what does that term mean to you?

- The most efficient shape is a circle however this would not be cost effective in a build where most things need to be square or straight.
- An exact square or rectangle would be the most efficient and cost effective however when there ends up being returns walls or more complex layouts the costs can increase.
- Complexity would refer to the difference between a square/rectangular building and a building with a more complex external layout increasing the perimeter of the building while keeping the area similar.

| Cost driver               | Unit           | Calculation definition                                        |
|---------------------------|----------------|---------------------------------------------------------------|
| Gross internal floor area | m <sup>2</sup> | Internal living area measured of outside face of wall         |
| Gross external floor area | m <sup>2</sup> | Floor area of alfresco, patios, porches etc.                  |
| Gross floor area          | m <sup>2</sup> | Total floor area of dwelling measured to outside face of wall |
| Compactness               | ratio          | Area of external walls / gross floor area                     |
| Internal walls            | m              | Length of internal walls                                      |
| External walls            | m              | Length of external walls                                      |
| Proportion of openings    | m <sup>2</sup> | The area of all external wall openings                        |
| Building volume           | m <sup>3</sup> | External wall length x wall height x internal floor area      |
| Shape complexity          | N/A            | This will be further developed from interview data            |

## Appendix H – Data analysis import template

| Sample #     | Total Cost ex GST            | GFA (m2)         | External areas (m2) | Garage area (m2) | External walls (lin<br>m) | Internal walls (lin<br>m) | Eaves (lin m)  | Compactness (Ext<br>wall area / GFA) | Area of external openings (m2) | No. sets of stacker<br>SGDs | Hips / valleys /<br>ridges (lin m) | Gable ends (m2) | No. of bedrooms<br>(each) | No. of living areas<br>(each) | No. of bathrooms<br>(each) | Additional<br>plumbing outlets<br>(each) |
|--------------|------------------------------|------------------|---------------------|------------------|---------------------------|---------------------------|----------------|--------------------------------------|--------------------------------|-----------------------------|------------------------------------|-----------------|---------------------------|-------------------------------|----------------------------|------------------------------------------|
| A001         | \$256,470.60                 | 266.20           | 26.20               | 38.80            | 75.90                     | 97.40                     | 96.00          | 0.7698                               | 48.00                          | 2                           | 55.00                              | 32.00           | 4                         | 3                             | 2                          | 2                                        |
| A002         | \$203,229.45                 | 196.93           | 17.66               | 35.20            | 63.00                     | 68.60                     | 67.20          | 0.8638                               | 39.60                          | 0                           | 64.50                              | 0.00            | 3                         | 2                             | 2                          | 0                                        |
| A003         | \$234,250.75                 | 257.91           | 3.21                | 36.40            | 67.60                     | 65.23                     | 73.41          | 0.7077                               | 41.64                          | 0                           | 75.73                              | 0.00            | 4                         | 2                             | 2                          | 2                                        |
| A004         | \$243,551.36                 | 259.60           | 23.90               | 40.00            | 71.20                     | 94.00                     | 75.60          | 0.7405                               | 47.59                          | 1                           | 93.40                              | 0.00            | 4                         | 3                             | 2                          | 0                                        |
| A005         | \$257,068.89                 | 283.60           | 45.20               | 36.20            | 74.30                     | 97.90                     | 79.80          | 0.7074                               | 50.86                          | 2                           | 83.70                              | 0.00            | 4                         | 3                             | 2                          | 2                                        |
| A006         | \$278,226.47                 | 306.20           | 40.48               | 64.80            | 88.40                     | 102.40                    | 90.80          | 0.7795                               | 67.62                          | 1                           | 90.80                              | 11.20           | 4                         | 2                             | 2                          | 0                                        |
| A007         | \$205,565.30                 | 205.56           | 19.78               | 36.50            | 63.50                     | 78.60                     | 70.90          | 0.8341                               | 37.62                          | 0                           | 55.10                              | 4.20            | 4                         | 2                             | 2                          | 1                                        |
| A008         | \$207,065.02                 | 195.94<br>287.34 | 16.80<br>45.20      | 36.40<br>41.80   | 66.00<br>78.30            | 71.90                     | 67.80<br>80.30 | 0.9095                               | 46.04 56.56                    | 2                           | 65.40<br>83.40                     | 0.00            | 3                         | 23                            | 2                          | 0                                        |
| A009<br>A010 | \$260,259.71<br>\$234,757.14 | 287.34           | 23.40               | 36.30            | 78.30                     | 83.20                     | 75.80          | 0.7537                               | 48.60                          | 2                           | 87.10                              | 0.00            | 4                         | 2                             | 2                          | -1                                       |
| A010         | \$280,925.29                 | 312.50           | 57.70               | 41.50            | 70.10                     | 110.90                    | 82.30          | 0.6255                               | 46.74                          | 0                           | 93.10                              | 0.00            | 4                         | 2                             | 2                          | -1                                       |
| A011<br>A012 | \$278,418.73                 | 302.80           | 37.60               | 36.10            | 82.50                     | 102.10                    | 87.30          | 0.7356                               | 56.18                          | 3                           | 129.70                             | 0.00            | 4                         | 3                             | 2                          | 1                                        |
| A012         | \$271,357.16                 | 274.70           | 38.90               | 41.80            | 87.80                     | 82.30                     | 82.00          | 0.8630                               | 60.83                          | 1                           | 103.60                             | 0.00            | 4                         | 3                             | 2                          | 1                                        |
| A014         | \$229,310.38                 | 236.50           | 20.30               | 38.90            | 74.20                     | 93.80                     | 76.60          | 0.8471                               | 40.30                          | 1                           | 82.70                              | 0.00            | 4                         | 2                             | 2                          | 1                                        |
| A015         | \$220,366.20                 | 215.40           | 26.70               | 40.60            | 64.00                     | 80.90                     | 75.30          | 0.8022                               | 43.61                          | 2                           | 56.90                              | 0.00            | 4                         | 1                             | 2                          | 0                                        |
| A016         | \$247,771.20                 | 265.95           | 29.20               | 36.30            | 76.00                     | 97.40                     | 80.80          | 0.7716                               | 49.12                          | 1                           | 111.50                             | 0.00            | 4                         | 2                             | 2                          | 0                                        |
| A017         | \$281,878.27                 | 288.40           | 35.80               | 36.10            | 95.60                     | 105.70                    | 99.60          | 0.8950                               | 58.14                          | 1                           | 101.70                             | 0.00            | 4                         | 3                             | 2                          | 4                                        |
| A018         | \$231,603.23                 | 225.69           | 21.40               | 36.40            | 67.80                     | 85.10                     | 76.40          | 0.8111                               | 40.77                          | 0                           | 105.50                             | 0.00            | 4                         | 2                             | 2                          | 1                                        |
| A019         | \$208,429.35                 | 213.60           | 23.20               | 35.60            | 63.40                     | 71.60                     | 71.80          | 0.8014                               | 37.53                          | 0                           | 73.70                              | 0.00            | 4                         | 2                             | 2                          | 0                                        |
| A020         | \$235,966.18                 | 245.91           | 25.50               | 36.20            | 70.00                     | 87.00                     | 75.40          | 0.7686                               | 38.79                          | 0                           | 98.50                              | 0.00            | 4                         | 3                             | 2                          | 1                                        |
| A021         | \$261,891.05                 | 289.00           | 43.30               | 39.70            | 76.60                     | 94.30                     | 77.40          | 0.7156                               | 45.95                          | 2                           | 79.00                              | 0.00            | 4                         | 3                             | 2                          | 2                                        |
| A022         | \$190,778.26                 | 177.88           | 16.86               | 36.50            | 57.80                     | 61.50                     | 67.00          | 0.8773                               | 34.83                          | 0                           | 68.70                              | 0.00            | 3                         | 1                             | 2                          | 1                                        |
| A023         | \$170,844.18                 | 147.18           | 14.08               | 27.80            | 56.40                     | 46.90                     | 60.00          | 1.0347                               | 22.20                          | 0                           | 61.30                              | 0.00            | 3                         | 1                             | 2                          | -1                                       |
| A024         | \$249,587.38                 | 257.34           | 26.70               | 37.20            | 78.00                     | 89.70                     | 78.20          | 0.8184                               | 53.26                          | 1                           | 83.50                              | 0.00            | 4                         | 3                             | 2                          | 3                                        |
| A025         | \$260,647.23                 | 276.81           | 34.30               | 36.10            | 75.40                     | 106.70                    | 82.20          | 0.7355                               | 45.86                          | 1                           | 97.50                              | 0.00            | 4                         | 2                             | 2                          | 1                                        |
| A026         | \$224,201.97                 | 231.30           | 21.80               | 36.00            | 78.00                     | 77.30                     | 73.80          | 0.9105                               | 39.66                          | 0                           | 83.30                              | 0.00            | 4                         | 2                             | 2                          | 0                                        |
| A027         | \$171,890.92                 | 148.58           | 16.00               | 26.20            | 59.40                     | 49.20                     | 62.20          | 1.0794                               | 26.32                          | 0                           | 66.90                              | 0.00            | 3                         | 1                             | 2                          | -1                                       |
| A028         | \$184,135.54                 | 169.48           | 16.20               | 35.50            | 64.40                     | 52.90                     | 65.60          | 1.0260                               | 38.55                          | 0                           | 69.10                              | 0.00            | 3                         | 1                             | 2                          | -1                                       |
| A029         | \$195,151.61                 | 189.14           | 19.50               | 35.40            | 68.40                     | 63.20                     | 70.80          | 0.9764                               | 35.55                          | 0                           | 70.60                              | 0.00            | 4                         | 1                             | 2                          | -1                                       |
| A030         | \$193,732.18                 | 179.62           | 11.38               | 35.20            | 65.80                     | 67.90                     | 61.50          | 0.9891                               | 36.81                          | 0                           | 55.30                              | 0.00            | 4                         | 2                             | 2                          | -1                                       |
| A031<br>A032 | \$202,673.75<br>\$203,965.96 | 193.20<br>202.26 | 15.80<br>16.80      | 36.40<br>35.10   | 64.80<br>64.80            | 70.60                     | 68.40<br>68.80 | 0.9056                               | 42.93<br>37.89                 | 2                           | 61.00<br>62.80                     | 0.00            | 4                         | 2                             | 2                          | 0                                        |
| A032<br>A033 | \$185,377.45                 | 173.36           | 15.52               | 35.00            | 58.40                     | 59.70                     | 67.20          | 0.8030                               | 34.92                          | 0                           | 67.00                              | 0.00            | 4                         | 2                             | 2                          | -1                                       |
| A033         | \$280,121.54                 | 303.90           | 29.60               | 37.10            | 87.80                     | 110.10                    | 85.60          | 0.7801                               | 48.19                          | 1                           | 110.40                             | 0.00            | 4                         | 5                             | 2                          | -1                                       |
| A034<br>A035 | \$200,454.48                 | 194.42           | 12.40               | 36.20            | 64.00                     | 69.00                     | 66.40          | 0.8888                               | 35.13                          | 0                           | 73.70                              | 0.00            | 3                         | 2                             | 2                          | 0                                        |
| A035         | \$195,578.82                 | 194.42           | 12.40               | 35.10            | 62.00                     | 72.00                     | 64.80          | 0.9004                               | 37.17                          | 0                           | 59.80                              | 0.00            | 4                         | 2                             | 2                          | 0                                        |
| A030         | \$193,578.82                 | 186.72           | 14.30               | 35.20            | 62.20                     | 62.90                     | 66.00          | 0.8994                               | 33.30                          | 0                           | 60.60                              | 0.00            | 3                         | 2                             | 2                          | -1                                       |
| A038         | \$254,756.23                 | 266.32           | 34.30               | 36.10            | 74.20                     | 97.80                     | 80.40          | 0.7523                               | 47.44                          | 2                           | 93.00                              | 0.00            | 5                         | 2                             | 2                          | 1                                        |
| A039         | \$262,318.22                 | 282.20           | 34.72               | 36.30            | 79.20                     | 103.80                    | 78.80          | 0.7578                               | 52.26                          | - 1                         | 90.00                              | 0.00            | 4                         | 3                             | 2                          | 4                                        |
| A040         | \$183,599.01                 | 174.84           | 26.00               | 35.10            | 62.20                     | 52.10                     | 66.80          | 0.9605                               | 33.30                          | 0                           | 65.90                              | 0.00            | 3                         | 1                             | 2                          | -1                                       |
| A041         | \$195,989.27                 | 191.64           | 32.50               | 36.90            | 73.60                     | 45.00                     | 68.00          | 1.0369                               | 41.94                          | 0                           | 58.80                              | 0.00            | 3                         | 1                             | 2                          | 0                                        |

| A042         | \$219,545.11                 | 223.49           | 20.80          | 36.40          | 69.60          | 82.00          | 73.60          | 0.8408 | 37.53          | 0   | 78.00          | 0.00      | 4 | 1 | 2 | 0  |
|--------------|------------------------------|------------------|----------------|----------------|----------------|----------------|----------------|--------|----------------|-----|----------------|-----------|---|---|---|----|
| A043         | \$246,441.99                 | 264.60           | 25.90          | 36.30          | 72.80          | 98.80          | 79.20          | 0.7429 | 47.10          | 0   | 96.40          | 0.00      | 4 | 3 | 2 |    |
| A044         | \$223,343.53                 | 226.98           | 22.30          | 36.20          | 65.40          | 85.10          | 73.80          | 0.7780 | 40.23          | 0   | 99.40          | 0.00      | 4 | 2 | 2 |    |
| A045         | \$204,979.69                 | 184.75           | 15.40          | 37.30          | 71.40          | 62.30          | 71.60          | 1.0435 | 42.99          | 2   | 84.90          | 0.00      | 3 | 1 | 2 | 1  |
| A046         | \$217,497.84                 | 218.20           | 19.70          | 37.10          | 67.40          | 73.40          | 72.30          | 0.8340 | 37.16          | 1   | 75.90          | 0.00      | 4 | 2 | 2 | 0  |
| A047         | \$202,460.30                 | 195.98           | 15.20          | 36.80          | 62.80          | 73.00          | 68.00          | 0.8652 | 36.00          | 2   | 70.80          | 0.00      | 3 | 2 | 2 | 0  |
| A048         | \$282,308.33                 | 319.31           | 35.60          | 38.90          | 86.00          | 97.00          | 84.60          | 0.7272 | 46.07          | 1   | 101.60         | 0.00      | 5 | 3 | 2 | 5  |
| A049         | \$200,405.12                 | 194.26           | 3.70           | 36.80          | 64.80          | 75.80          | 71.10          | 0.9006 | 42.90          | 1   | 49.60          | 5.60      | 3 | 2 | 2 | -1 |
| A050         | \$212,310.27                 | 219.41           | 20.20          | 37.30          | 63.80          | 88.60          | 68.60          | 0.7851 | 38.52          | 1   | 61.40          | 0.00      | 4 | 2 | 2 | 0  |
| A051         | \$188,216.85                 | 182.40           | 15.10          | 36.40          | 60.00          | 68.50          | 63.60          | 0.8882 | 34.56          | 0   | 59.40          | 0.00      | 3 | 2 | 2 | -1 |
| A052         | \$193,490.86                 | 189.70           | 12.70          | 36.20          | 61.00          | 76.80          | 57.60          | 0.8682 | 33.51          | 0   | 61.70          | 0.00      | 4 | 2 | 2 |    |
| A053         | \$198,680.40                 | 186.00           | 14.30          | 38.00          | 64.00          | 70.50          | 66.50          | 0.9290 | 37.38          | 0   | 61.80          | 0.00      | 3 | 2 | 2 |    |
| A054         | \$225,145.75                 | 235.00           | 29.00          | 36.00          | 66.00          | 86.80          | 69.80          | 0.7583 | 42.30          | 0   | 75.28          | 0.00      | 4 | 2 | 2 |    |
| A055         | \$212,059.26                 | 219.40           | 21.70          | 36.10          | 65.80          | 80.60          | 69.40          | 0.8098 | 39.24          | 0   | 67.00          | 0.00      | 4 | 2 | 2 |    |
| A056         | \$220,947.82                 | 232.00           | 32.03          | 37.60          | 65.00          | 83.91          | 70.80          | 0.7565 | 42.76          | 1   | 59.00          | 0.00      | 3 | 3 | 2 |    |
| A057<br>A058 | \$211,205.30<br>\$195,409.85 | 215.80<br>194.70 | 24.50<br>23.40 | 38.10<br>36.20 | 62.10<br>59.00 | 78.90          | 75.30          | 0.7770 | 38.04<br>33.30 | 1 2 | 64.70<br>45.20 | 0.00 4.00 | 4 | 2 | 2 |    |
| A058<br>A059 | \$193,409.83                 | 217.20           | 23.40          | 36.40          | 64.10          | 69.70          | 71.80          | 0.8182 | 48.44          | 0   | 81.00          | 0.00      | 4 | 3 | 2 |    |
| A059<br>A060 | \$220,877.22                 | 181.03           | 11.41          | 37.01          | 61.20          | 74.30          | 66.00          | 0.9128 | 35.04          | 0   | 85.10          | 0.00      | 4 | 1 | 2 |    |
| A061         | \$278,418.73                 | 302.80           | 37.60          | 36.10          | 82.50          | 102.10         | 87.30          | 0.7356 | 56.18          | 3   | 129.70         | 0.00      | 4 | 4 | 2 |    |
| A062         | \$299,487.03                 | 338.10           | 50.00          | 43.40          | 80.80          | 114.60         | 85.80          | 0.6453 | 50.11          | 1   | 99.80          | 0.00      | 4 | 3 | 2 |    |
| A063         | \$207,665.88                 | 202.14           | 19.10          | 36.40          | 62.00          | 78.50          | 69.10          | 0.8281 | 38.64          | 0   | 55.20          | 4.60      | 4 | 2 | 2 | 1  |
| A064         | \$263,623.87                 | 278.70           | 38.19          | 36.30          | 79.60          | 100.00         | 81.62          | 0.7712 | 52.82          | 1   | 83.30          | 5.38      | 4 | 2 | 2 | 2  |
| A065         | \$260,550.93                 | 277.80           | 33.60          | 37.30          | 76.70          | 111.40         | 84.60          | 0.7455 | 54.50          | 1   | 84.80          | 0.00      | 4 | 2 | 2 | 3  |
| A066         | \$224,085.01                 | 213.00           | 27.10          | 36.30          | 71.30          | 69.40          | 71.40          | 0.9038 | 52.89          | 2   | 63.40          | 0.00      | 4 | 2 | 2 | 2  |
| A067         | \$224,904.99                 | 224.61           | 20.40          | 36.40          | 69.60          | 86.30          | 74.20          | 0.8367 | 40.74          | 1   | 70.80          | 0.00      | 4 | 2 | 2 | 2  |
| A068         | \$206,649.08                 | 208.00           | 14.40          | 38.40          | 63.40          | 84.80          | 69.80          | 0.8230 | 35.82          | 0   | 70.20          | 0.00      | 4 | 2 | 2 | 1  |
| A069         | \$230,316.90                 | 233.63           | 22.60          | 41.10          | 67.00          | 85.28          | 75.00          | 0.7743 | 43.08          | 0   | 100.60         | 0.00      | 4 | 2 | 2 | 0  |
| A070         | \$256,810.91                 | 272.10           | 35.30          | 42.10          | 70.40          | 97.00          | 88.50          | 0.6986 | 51.22          | 1   | 80.00          | 13.50     | 4 | 3 | 2 |    |
| A071         | \$200,975.03                 | 193.40           | 12.34          | 36.30          | 61.20          | 71.75          | 75.50          | 0.8544 | 37.72          | 0   | 50.20          | 3.02      | 3 | 3 | 2 |    |
| A072         | \$245,905.31                 | 266.75           | 49.30          | 38.70          | 70.00          | 86.60          | 75.20          | 0.7085 | 42.56          | 1   | 62.70          | 6.60      | 4 | 2 | 2 |    |
| A073         | \$301,898.33                 | 303.43           | 33.60          | 44.60          | 81.90          | 113.60         | 93.20          | 0.7288 | 59.07          | 1   | 28.50          | 59.40     | 5 | 2 | 2 |    |
| A074         | \$278,226.47                 | 306.20           | 40.48          | 64.80          | 88.40          | 102.40         | 90.80          | 0.7795 | 67.62          | 1   | 90.80          | 11.20     | 4 | 2 | 2 |    |
| A075<br>A076 | \$206,692.68<br>\$201,247.68 | 200.46           | 2.50<br>19.67  | 35.10<br>38.00 | 60.40<br>65.57 | 89.40<br>68.10 | 67.80<br>70.61 | 0.8135 | 45.78<br>53.79 | 0   | 62.30<br>87.66 | 0.00      | 4 | 3 | 2 |    |
| A070<br>A077 | \$198,931.60                 | 192.71           | 13.22          | 36.50          | 61.20          | 74.20          | 52.10          | 0.8138 | 37.32          | 1   | 18.20          | 21.00     | 4 | 2 | 2 |    |
| A077         | \$200,073.29                 | 192.71           | 13.10          | 38.50          | 60.60          | 80.50          | 64.00          | 0.8643 | 34.80          | 0   | 61.90          | 1.80      | 4 | 2 | 2 |    |
| A079         | \$238,404.83                 | 259.00           | 37.90          | 36.30          | 70.20          | 90.60          | 76.20          | 0.7318 | 40.86          | 0   | 87.20          | 0.00      | 4 | 3 | 2 |    |
| A080         | \$231,469.51                 | 244.67           | 30.29          | 36.70          | 61.80          | 73.80          | 80.50          | 0.6820 | 37.08          | 2   | 96.52          | 0.00      | 4 | 2 | 2 |    |
| A081         | \$273,300.74                 | 299.70           | 28.79          | 36.40          | 74.20          | 100.70         | 85.20          | 0.6685 | 51.29          | 1   | 82.20          | 0.00      | 4 | 2 | 2 |    |
| A082         | \$199,597.73                 | 198.90           | 19.42          | 36.40          | 64.40          | 69.50          | 68.00          | 0.8742 | 39.24          | 0   | 67.60          | 0.00      | 3 | 2 | 2 |    |
| A083         | \$248,167.15                 | 263.03           | 27.60          | 36.50          | 74.60          | 102.00         | 80.80          | 0.7658 | 46.26          | 1   | 94.30          | 0.00      | 4 | 3 | 2 |    |
| A084         | \$212,801.61                 | 209.06           | 18.50          | 36.40          | 64.40          | 71.10          | 68.80          | 0.8317 | 37.98          | 0   | 64.60          | 0.00      | 4 | 3 | 2 |    |
| A085         | \$225,102.24                 | 223.00           | 21.60          | 42.31          | 65.10          | 76.07          | 97.58          | 0.7882 | 47.19          | 0   | 3.00           | 39.91     | 4 | 1 | 2 | 1  |
| A086         | \$251,753.48                 | 241.93           | 22.23          | 49.85          | 76.70          | 80.90          | 86.30          | 0.8560 | 52.16          | 1   | 51.40          | 30.00     | 3 | 2 | 2 | 2  |
| A087         | \$204,517.60                 | 204.19           | 18.38          | 41.08          | 63.00          | 61.80          | 65.00          | 0.8330 | 39.21          | 1   | 71.50          | 0.00      | 4 | 1 | 2 |    |
| A088         | \$180,817.92                 | 169.40           | 16.85          | 37.76          | 56.20          | 46.60          | 60.90          | 0.8957 | 38.66          | 1   | 48.70          | 11.00     | 3 | 1 | 2 | -1 |

| A089         | \$206,003.35                 | 199.50           | 14.24          | 37.08          | 59.20          | 71.80       | 70.90          | 0.8012 | 44.60          | 1 | 52.40          | 0.00       | 3 | 2 | 2 | 0   |
|--------------|------------------------------|------------------|----------------|----------------|----------------|-------------|----------------|--------|----------------|---|----------------|------------|---|---|---|-----|
| A090         | \$217,580.32                 | 219.94           | 20.90          | 41.01          | 65.80          | 78.60       | 69.00          | 0.8078 | 44.06          | 1 | 74.80          | 0.00       | 3 | 3 | 2 | 0   |
| A091         | \$272,929.53                 | 263.62           | 27.32          | 38.35          | 81.30          | 84.90       | 85.50          | 0.8327 | 60.35          | 1 | 111.70         | 0.00       | 3 | 3 | 2 | 4   |
| A092         | \$378,428.20                 | 398.22           | 50.33          | 57.82          | 113.00         | 115.60      | 122.50         | 0.7662 | 74.66          | 1 | 149.70         | 5.30       | 4 | 4 | 3 | 7   |
| A093         | \$242,508.38                 | 242.90           | 24.33          | 38.61          | 75.00          | 76.60       | 80.70          | 0.8337 | 42.44          | 0 | 83.30          | 4.10       | 4 | 2 | 2 | 1   |
| A094         | \$164,693.01                 | 147.12           | 12.30          | 42.07          | 55.80          | 45.20       | 57.90          | 1.0241 | 35.25          | 1 | 48.30          | 0.00       | 2 | 2 | 2 | -1  |
| A095         | \$270,429.51                 | 288.64           | 54.00          | 38.27          | 77.20          | 81.10       | 83.80          | 0.7221 | 55.34          | 1 | 90.90          | 0.00       | 4 | 2 | 2 | 1   |
| A096         | \$176,848.06                 | 166.04           | 22.95          | 23.73          | 52.20          | 57.40       | 60.20          | 0.8488 | 41.12          | 0 | 35.20          | 6.80       | 3 | 1 | 2 | -1  |
| A097         | \$290,608.17                 | 294.75           | 48.29          | 44.96          | 76.20          | 101.50      | 81.88          | 0.6980 | 56.90          | 0 | 124.83         | 1.74       | 4 | 2 | 2 | 4   |
| A098         | \$225,288.57                 | 228.80           | 27.33          | 38.88          | 73.20          | 69.80       | 81.00          | 0.8638 | 41.98          | 1 | 45.60          | 13.10      | 4 | 2 | 2 | 1   |
| A099         | \$171,373.88                 | 156.60           | 22.35          | 40.89          | 56.40          | 44.62       | 67.59          | 0.9724 | 34.47          | 0 | 18.20          | 22.77      | 3 | 1 | 2 | -1  |
| A100         | \$205,110.72                 | 204.37           | 16.96          | 42.88          | 64.20          | 70.50       | 69.00          | 0.8482 | 43.86          | 1 | 75.10          | 0.00       | 3 | 2 | 2 | -1  |
| A101         | \$221,715.00                 | 226.71           | 18.25          | 42.88          | 63.30          | 88.60       | 70.70          | 0.7539 | 44.37          | 1 | 77.60          | 0.00       | 4 | 2 | 2 | -1  |
| A102         | \$183,803.64                 | 178.08           | 14.28          | 35.20          | 63.00          | 54.90       | 67.80          | 0.9552 | 38.43          | 0 | 52.10          | 0.00       | 3 | 1 | 2 | 0   |
| A103         | \$254,085.63                 | 263.25           | 33.97          | 0.00           | 70.80          | 89.10       | 79.20          | 0.7262 | 44.42          | 2 | 72.20          | 0.00       | 4 | 3 | 2 | 1   |
| A104         | \$217,552.36                 | 208.43           | 18.90          | 39.40          | 67.20          | 82.60       | 71.30          | 0.8705 | 39.60          | 1 | 51.80          | 4.90       | 3 | 2 | 2 | 0   |
| A105         | \$208,851.94                 | 202.20           | 13.20<br>60.57 | 35.90<br>40.71 | 64.40<br>84.80 | 78.10 67.80 | 66.40<br>97.40 | 0.8599 | 37.14 68.70    | 0 | 83.50<br>74.00 | 0.00 40.90 | 4 | 2 | 2 | 23  |
| A106<br>A107 | \$316,051.06<br>\$188,122.95 | 362.05<br>181.47 | 17.54          | 36.40          | 59.60          | 60.30       | 62.40          | 0.6324 | 33.54          | 0 | 52.03          | 13.36      | 4 | 2 | 2 | 0   |
| A107<br>A108 | \$160,631.84                 | 124.51           | 17.34          | 0.00           | 45.40          | 51.60       | 50.20          | 0.9845 | 24.24          | 0 | 47.60          | 0.00       | 3 | 2 | 2 | -1  |
| A109         | \$302,408.13                 | 320.54           | 47.84          | 43.80          | 77.80          | 111.00      | 89.60          | 0.6553 | 64.45          | 2 | 114.80         | 10.50      | 4 | 5 | 2 | 5   |
| A110         | \$268,423.72                 | 282.30           | 44.50          | 42.80          | 81.00          | 93.90       | 85.00          | 0.7747 | 63.02          | 1 | 98.70          | 0.00       | 4 | 2 | 2 | 1   |
| A111         | \$231,212.12                 | 223.40           | 27.10          | 38.40          | 70.60          | 71.20       | 77.20          | 0.8533 | 47.34          | 2 | 94.20          | 0.00       | 3 | 3 | 2 | 1   |
| A112         | \$209,824.03                 | 205.00           | 17.65          | 38.60          | 64.80          | 74.50       | 69.40          | 0.8535 | 40.90          | 1 | 69.42          | 0.00       | 4 | 1 | 2 | 0   |
| A113         | \$213,738.73                 | 220.62           | 31.58          | 44.38          | 66.80          | 54.10       | 70.20          | 0.8175 | 41.04          | 0 | 77.10          | 0.00       | 3 | 2 | 2 | -1  |
| A114         | \$253,435.57                 | 269.03           | 32.19          | 32.97          | 73.40          | 85.90       | 98.00          | 0.7366 | 47.24          | 1 | 0.00           | 31.98      | 4 | 3 | 2 | 1   |
| A115         | \$249,372.21                 | 261.40           | 30.54          | 37.39          | 78.00          | 46.80       | 111.20         | 0.8057 | 54.60          | 1 | 0.00           | 38.96      | 4 | 1 | 2 | 2   |
| A116         | \$245,260.86                 | 254.46           | 32.50          | 51.19          | 74.00          | 83.30       | 79.40          | 0.7852 | 49.23          | 1 | 89.50          | 0.00       | 4 | 1 | 2 | 1   |
| A117         | \$216,917.47                 | 223.90           | 19.22          | 41.90          | 66.20          | 88.10       | 74.20          | 0.7983 | 35.82          | 0 | 59.00          | 3.90       | 4 | 2 | 2 | 1   |
| A118         | \$171,521.63                 | 149.50           | 11.90          | 26.20          | 57.20          | 55.00       | 59.50          | 1.0330 | 27.60          | 0 | 62.50          | 0.00       | 3 | 2 | 2 | -1  |
| A119         | \$250,703.41                 | 236.92           | 22.36          | 42.36          | 71.20          | 69.60       | 78.40          | 0.8114 | 48.39          | 0 | 103.00         | 0.00       | 4 | 1 | 2 | 0   |
| A120         | \$328,966.90                 | 348.67           | 46.70          | 48.50          | 101.20         | 98.50       | 120.20         | 0.7837 | 55.36          | 1 | 0.00           | 76.24      | 4 | 3 | 2 | 4   |
| A121         | \$253,453.87                 | 255.40           | 21.60          | 39.60          | 78.00          | 100.80      | 74.40          | 0.8246 | 52.38          | 3 | 63.40          | 0.00       | 4 | 2 | 3 | 2   |
| A122<br>A123 | \$187,947.80<br>\$279,634.12 | 176.35<br>262.63 | 12.52<br>25.36 | 35.70<br>38.97 | 59.10<br>80.00 | 70.10 80.30 | 63.80<br>90.40 | 0.9048 | 32.79<br>57.58 | 0 | 79.00          | 0.00 45.10 | 4 | 2 | 2 | 0 5 |
| A123<br>A124 | \$219,034.12                 | 202.03           | 23.30          | 39.12          | 74.00          | 58.00       | 71.20          | 0.8224 | 43.89          | 0 | 85.50          | 0.00       | 4 | 2 | 2 | 1   |
| A124<br>A125 | \$351,833.15                 | 384.00           | 52.90          | 39.40          | 95.40          | 133.00      | 75.70          | 0.9023 | 58.74          | 1 | 25.00          | 47.75      | 5 | 3 | 2 | 6   |
| A126         | \$233,316.47                 | 221.72           | 5.04           | 0.00           | 68.60          | 86.90       | 82.00          | 0.8354 | 50.44          | 2 | 111.40         | 0.00       | 4 | 2 | 2 | 1   |
| A127         | \$198,179.27                 | 194.20           | 13.70          | 36.50          | 61.20          | 68.20       | 68.50          | 0.8509 | 33.27          | 0 | 54.30          | 3.30       | 4 | 2 | 2 | 0   |
| A128         | \$212,034.02                 | 213.10           | 20.40          | 36.10          | 61.80          | 71.40       | 111.80         | 0.7830 | 41.64          | 1 | 0.00           | 23.60      | 3 | 2 | 2 | 3   |
| A129         | \$202,813.65                 | 206.84           | 25.30          | 36.50          | 61.00          | 67.90       | 65.80          | 0.7963 | 29.58          | 1 | 55.60          | 0.00       | 3 | 2 | 2 | -1  |
| A130         | \$198,228.63                 | 199.40           | 31.00          | 36.80          | 61.00          | 52.70       | 71.70          | 0.8260 | 39.39          | 1 | 91.30          | 0.00       | 3 | 1 | 2 | -1  |
| A131         | \$243,569.25                 | 281.20           | 3.50           | 42.40          | 71.90          | 89.30       | 79.10          | 0.6904 | 52.22          | 2 | 74.80          | 7.50       | 4 | 2 | 2 | 2   |
| A132         | \$188,887.72                 | 178.89           | 12.30          | 39.29          | 63.70          | 51.00       | 65.90          | 0.9614 | 36.45          | 1 | 56.90          | 0.00       | 3 | 2 | 2 | 0   |
| A133         | \$205,228.36                 | 192.60           | 15.60          | 36.40          | 62.90          | 63.90       | 66.60          | 0.8818 | 39.72          | 0 | 79.50          | 0.00       | 3 | 2 | 2 | 2   |
| A134         | \$259,458.61                 | 278.51           | 55.80          | 39.96          | 72.80          | 69.50       | 79.20          | 0.7058 | 43.26          | 0 | 98.40          | 0.00       | 4 | 2 | 2 | 2   |
| A135         | \$271,885.65                 | 278.20           | 40.68          | 38.35          | 76.80          | 77.30       | 94.80          | 0.7454 | 60.08          | 1 | 64.50          | 23.35      | 4 | 2 | 2 | 4   |

| A136 | \$312,382.14 | 303.73 | 41.18 | 40.96 | 80.70 | 84.00  | 92.80  | 0.7174 | 71.83 | 1 | 3.00   | 47.00 | 4 | 2 | 2 | 3  |
|------|--------------|--------|-------|-------|-------|--------|--------|--------|-------|---|--------|-------|---|---|---|----|
| A137 | \$193,899.80 | 179.19 | 3.75  | 36.76 | 57.60 | 58.30  | 65.50  | 0.8679 | 34.90 | 0 | 58.20  | 1.90  | 4 | 2 | 2 | 0  |
| A138 | \$264,662.45 | 265.58 | 32.40 | 36.90 | 74.80 | 93.00  | 79.60  | 0.7604 | 53.22 | 2 | 108.30 | 0.00  | 4 | 3 | 2 | 3  |
| A139 | \$203,082.35 | 192.44 | 15.30 | 36.20 | 66.00 | 72.60  | 70.50  | 0.9260 | 43.56 | 2 | 80.70  | 0.00  | 3 | 2 | 2 | 1  |
| A140 | \$183,429.29 | 161.68 | 14.17 | 39.92 | 63.40 | 46.00  | 57.70  | 1.0588 | 37.78 | 1 | 55.60  | 0.00  | 3 | 1 | 2 | 0  |
| A141 | \$259,313.59 | 266.84 | 34.30 | 36.40 | 74.20 | 88.40  | 80.40  | 0.7508 | 48.86 | 2 | 93.10  | 0.00  | 5 | 2 | 2 | 1  |
| A142 | \$279,962.98 | 279.81 | 49.20 | 40.50 | 79.00 | 103.10 | 93.00  | 0.7623 | 42.53 | 2 | 80.40  | 18.50 | 3 | 2 | 3 | 2  |
| A143 | \$203,129.98 | 205.25 | 10.73 | 61.52 | 71.60 | 54.10  | 71.40  | 0.9419 | 48.97 | 1 | 60.30  | 0.00  | 4 | 1 | 2 | 1  |
| A144 | \$277,234.56 | 314.60 | 66.90 | 39.60 | 72.00 | 83.80  | 78.60  | 0.6179 | 48.32 | 2 | 72.20  | 0.00  | 4 | 2 | 2 | 1  |
| A145 | \$191,923.59 | 163.66 | 17.80 | 0.00  | 55.20 | 66.30  | 65.60  | 0.9107 | 33.48 | 1 | 102.70 | 0.00  | 3 | 2 | 2 | 0  |
| A146 | \$270,437.18 | 290.40 | 31.70 | 42.50 | 74.30 | 95.30  | 108.25 | 0.6908 | 43.77 | 1 | 0.00   | 47.70 | 4 | 3 | 2 | 3  |
| A147 | \$198,109.12 | 180.74 | 16.89 | 40.80 | 62.80 | 51.00  | 84.50  | 0.9381 | 41.31 | 1 | 12.70  | 33.68 | 3 | 1 | 2 | 0  |
| A148 | \$236,707.70 | 242.10 | 23.30 | 36.90 | 72.00 | 88.90  | 76.80  | 0.8030 | 41.40 | 1 | 84.40  | 0.00  | 4 | 1 | 2 | 1  |
| A149 | \$193,128.89 | 190.16 | 19.85 | 36.40 | 61.00 | 58.92  | 70.93  | 0.8661 | 36.96 | 0 | 41.23  | 12.00 | 3 | 2 | 2 | 0  |
| A150 | \$200,523.95 | 201.45 | 20.67 | 45.13 | 61.60 | 67.20  | 66.40  | 0.8256 | 36.42 | 0 | 59.30  | 0.00  | 3 | 1 | 2 | 1  |
| A151 | \$216,317.52 | 215.32 | 19.70 | 38.80 | 66.80 | 85.20  | 70.60  | 0.8376 | 39.69 | 1 | 67.90  | 0.00  | 5 | 3 | 2 | 0  |
| A152 | \$265,935.84 | 271.81 | 40.12 | 43.35 | 77.00 | 75.00  | 81.80  | 0.7649 | 54.78 | 1 | 105.90 | 0.00  | 3 | 2 | 2 | 1  |
| A153 | \$255,059.40 | 271.60 | 21.60 | 39.60 | 65.00 | 94.60  | 86.00  | 0.6462 | 33.81 | 1 | 142.60 | 0.00  | 4 | 3 | 2 | 0  |
| A154 | \$269,203.96 | 275.35 | 33.05 | 56.36 | 88.33 | 72.60  | 93.40  | 0.8661 | 53.43 | 0 | 135.10 | 0.00  | 5 | 2 | 3 | 0  |
| A155 | \$199,387.26 | 194.10 | 12.50 | 35.60 | 63.10 | 80.40  | 67.80  | 0.8777 | 37.85 | 0 | 76.30  | 0.00  | 4 | 2 | 2 | 0  |
| A156 | \$245,478.85 | 264.43 | 36.28 | 43.63 | 73.60 | 79.39  | 82.67  | 0.7515 | 53.16 | 0 | 116.98 | 0.00  | 4 | 2 | 2 | 0  |
| A157 | \$183,721.57 | 181.94 | 14.04 | 38.98 | 60.10 | 58.10  | 59.60  | 0.8919 | 37.55 | 1 | 49.40  | 0.00  | 3 | 2 | 2 | 0  |
| A158 | \$188,421.97 | 187.13 | 33.10 | 36.60 | 58.00 | 65.30  | 67.00  | 0.8369 | 36.54 | 0 | 60.60  | 0.00  | 3 | 1 | 2 | 0  |
| A159 | \$245,482.13 | 254.61 | 23.40 | 39.70 | 67.80 | 91.00  | 74.40  | 0.7190 | 49.21 | 1 | 60.90  | 0.00  | 4 | 2 | 2 | 3  |
| A160 | \$207,043.49 | 194.00 | 26.50 | 38.10 | 77.80 | 62.00  | 69.80  | 1.0828 | 36.23 | 1 | 70.20  | 0.00  | 4 | 1 | 2 | 1  |
| A161 | \$280,676.14 | 303.80 | 42.30 | 42.80 | 80.77 | 111.05 | 82.80  | 0.7178 | 62.49 | 1 | 104.78 | 11.41 | 5 | 3 | 2 | 1  |
| A162 | \$255,271.86 | 258.40 | 45.53 | 35.30 | 72.80 | 86.41  | 82.11  | 0.7607 | 52.02 | 1 | 93.30  | 3.20  | 4 | 2 | 2 | 2  |
| A163 | \$194,923.58 | 202.88 | 27.48 | 49.45 | 66.00 | 62.00  | 73.20  | 0.8784 | 43.41 | 1 | 86.40  | 1.20  | 3 | 1 | 1 | 0  |
| A164 | \$186,313.70 | 182.00 | 19.90 | 38.00 | 54.00 | 61.00  | 61.30  | 0.8011 | 38.63 | 0 | 51.50  | 2.85  | 3 | 1 | 2 | -1 |
| A165 | \$265,061.52 | 288.70 | 61.90 | 38.40 | 73.30 | 99.90  | 99.90  | 0.6855 | 55.48 | 1 | 83.70  | 9.80  | 4 | 3 | 2 | 2  |
| A166 | \$171,952.71 | 155.50 | 15.60 | 38.30 | 56.00 | 48.90  | 60.20  | 0.9723 | 30.72 | 0 | 57.20  | 0.30  | 3 | 1 | 2 | -1 |
| A167 | \$313,855.80 | 327.64 | 50.30 | 52.00 | 91.40 | 100.50 | 96.60  | 0.7532 | 57.10 | 1 | 65.50  | 28.20 | 4 | 3 | 2 | 2  |
| A168 | \$177,432.47 | 162.50 | 23.00 | 23.50 | 51.80 | 54.00  | 60.50  | 0.8607 | 33.60 | 0 | 31.00  | 9.60  | 3 | 1 | 2 | -1 |
| A169 | \$281,305.34 | 325.50 | 38.20 | 41.00 | 78.40 | 102.70 | 96.50  | 0.6503 | 61.39 | 1 | 126.40 | 7.50  | 4 | 2 | 2 | 2  |
| A170 | \$215,975.56 | 219.94 | 20.90 | 41.01 | 65.80 | 78.60  | 69.00  | 0.8078 | 44.06 | 1 | 74.80  | 0.00  | 3 | 3 | 2 | 1  |

### Appendix I – Linear regression SPSS data output

### REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N

/MISSING LISTWISE

### /STATISTICS COEFF OUTS CI(95) BCOV R ANOVA COLLIN TOL CHANGE ZPP

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT TotalCostexGST

/METHOD=ENTER GFAm2 Externalareasm2 Garageaream2 Externalwallslinm Internalwallslinm

Areaofexternalopeningsm2 Hipsvalleysridgeslinm Gableendsm2 No.ofbathroomseach

Additionalplumbingoutletseach

/SCATTERPLOT=(\*ZRESID ,\*ZPRED)

/RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID).

### Regression

|                        | Notes                          |                                                                                   |
|------------------------|--------------------------------|-----------------------------------------------------------------------------------|
| Output Created         |                                | 26-JUL-2021 10:44:43                                                              |
| Comments               |                                |                                                                                   |
| Input                  | Active Dataset                 | DataSet4                                                                          |
|                        | Filter                         | <none></none>                                                                     |
|                        | Weight                         | <none></none>                                                                     |
|                        | Split File                     | <none></none>                                                                     |
|                        | N of Rows in Working Data File | 170                                                                               |
| Missing ∀alue Handling | Definition of Missing          | User-defined missing values are treated as missing.                               |
|                        | Cases Used                     | Statistics are based on cases with<br>no missing values for any variable<br>used. |

| Syntax    |                                               | REGRESSION                                                                                 |
|-----------|-----------------------------------------------|--------------------------------------------------------------------------------------------|
|           |                                               | /DESCRIPTIVES MEAN<br>STDDEV CORR SIG N                                                    |
|           |                                               | /MISSING LISTWISE                                                                          |
|           |                                               | /STATISTICS COEFF OUTS<br>CI(95) BCOV R ANOVA COLLIN<br>TOL CHANGE ZPP                     |
|           |                                               | /CRITERIA=PIN(.05) POUT(.10)                                                               |
|           |                                               | /NOORIGIN                                                                                  |
|           |                                               | /DEPENDENT TotalCostexGST                                                                  |
|           |                                               | /METHOD=ENTER GFAm2<br>Externalareasm2 Garageaream2<br>Externalwallslinm Internalwallslinm |
|           |                                               | Areaofexternalopeningsm2                                                                   |
|           |                                               | Hipsvalleysridgeslinm<br>Gableendsm2                                                       |
|           |                                               | No.ofbathroomseach                                                                         |
|           |                                               | Additionalplumbingoutletseach                                                              |
|           |                                               | /SCATTERPLOT=(*ZRESID<br>,*ZPRED)                                                          |
|           |                                               | /RESIDUALS DURBIN<br>HISTOGRAM(ZRESID)<br>NORMPROB(ZRESID).                                |
| Resources | Processor Time                                | 00:00:59                                                                                   |
|           | Elapsed Time                                  | 00:00:00.56                                                                                |
|           | Memory Required                               | 9280 bytes                                                                                 |
|           | Additional Memory Required for Residual Plots | 536 bytes                                                                                  |
|           | Descriptive Statistics                        |                                                                                            |

#### Descriptive Statistics

| Mean |  |
|------|--|

Std. Deviation N

| TotalCostexGST                | 229763.403618235<br>3700 | 38952.3740878218<br>7400 | 170 |
|-------------------------------|--------------------------|--------------------------|-----|
| GFAm2                         | 232.944823529411<br>700  | 50.8373161087431<br>10   | 170 |
| Externalareasm2               | 25.9712941176470<br>50   | 12.6987300104175<br>80   | 170 |
| Garageaream2                  | 37.9335294117647<br>20   | 8.08066517062311<br>9    | 170 |
| Externalwallslinm             | 69.4892352941176<br>00   | 9.80313529142295<br>4    | 170 |
| Internalwallslinm             | 78.9437058823529<br>20   | 17.7125171474854<br>25   | 170 |
| Areaofexternalopeningsm2      | 44.3741764705882<br>46   | 9.42215390603597<br>0    | 170 |
| Hipsvalleysridgeslinm         | 72.3485882352941<br>20   | 28.0069336154371<br>88   | 170 |
| Gableendsm2                   | 5.43764705882352<br>9    | 12.6642065743859<br>11   | 170 |
| No.ofbathroomseach            | 2.02                     | .171                     | 170 |
| Additionalplumbingoutletseach | .85                      | 1.558                    | 170 |

### Correlations

|                     |                                   | TotalCostexGST | GFAm2 | Externalareasm2 | Garageaream2 | Externalwallslin<br>m | Internalwallslinm | Areaofexternalop<br>eningsm2 | Hipsvalleysridge<br>slinm | Gableendsm2 | No.ofbathroomse<br>ach | Additionalplumbi<br>ngoutletseach |
|---------------------|-----------------------------------|----------------|-------|-----------------|--------------|-----------------------|-------------------|------------------------------|---------------------------|-------------|------------------------|-----------------------------------|
| Pearson Correlation | TotalCostexGST                    | 1.000          | .979  | .773            | .363         | .905                  | .806              | .850                         | .329                      | .412        | .264                   | .767                              |
|                     | GFAm2                             | .979           | 1.000 | .792            | .389         | .878                  | .821              | .827                         | .355                      | .354        | .209                   | .718                              |
|                     | Externalareasm2                   | .773           | .792  | 1.000           | .279         | .663                  | .551              | .646                         | .274                      | .269        | .133                   | .504                              |
|                     | Garageaream2                      | .363           | .389  | .279            | 1.000        | .457                  | .223              | .433                         | .082                      | .196        | .133                   | .208                              |
|                     | Externalwallslinm                 | .905           | .878  | .663            | .457         | 1.000                 | .684              | .821                         | .338                      | .345        | .296                   | .713                              |
|                     | Internalwallslinm                 | .806           | .821  | .551            | .223         | .684                  | 1.000             | .622                         | .386                      | .161        | .182                   | .602                              |
|                     | Areaofexternalopeningsm2          | .850           | .827  | .646            | .433         | .821                  | .622              | 1.000                        | .286                      | .356        | .171                   | .645                              |
|                     | Hipsvalleysridgeslinm             | .329           | .355  | .274            | .082         | .338                  | .386              | .286                         | 1.000                     | 596         | .155                   | .111                              |
|                     | Gableendsm2                       | .412           | .354  | .269            | .196         | .345                  | .161              | .356                         | 596                       | 1.000       | .017                   | .412                              |
|                     | No.ofbathroomseach                | .264           | .209  | .133            | .133         | .296                  | .182              | .171                         | .155                      | .017        | 1.000                  | .188                              |
|                     | Additionalplumbingoutletseac<br>h | .767           | .718  | .504            | .208         | .713                  | .602              | .645                         | .111                      | .412        | .188                   | 1.000                             |
| Sig. (1-tailed)     | TotalCostexGST                    |                | .000  | .000            | .000         | .000                  | .000              | .000                         | .000                      | .000        | .000                   | .000                              |
|                     | GFAm2                             | .000           |       | .000            | .000         | .000                  | .000              | .000                         | .000                      | .000        | .003                   | .000                              |
|                     | Externalareasm2                   | .000           | .000  |                 | .000         | .000                  | .000              | .000                         | .000                      | .000        | .042                   | .000                              |
|                     | Garageaream2                      | .000           | .000  | .000            |              | .000                  | .002              | .000                         | .144                      | .005        | .042                   | .003                              |
|                     | Externalwallslinm                 | .000           | .000  | .000            | .000         |                       | .000              | .000                         | .000                      | .000        | .000                   | .000                              |
|                     | Internalwallslinm                 | .000           | .000  | .000            | .002         | .000                  | -                 | .000                         | .000                      | .018        | .009                   | .000                              |
|                     | Areaofexternalopeningsm2          | .000           | .000  | .000            | .000         | .000                  | .000              |                              | .000                      | .000        | .013                   | .000                              |
|                     | Hipsvalleysridgeslinm             | .000           | .000  | .000            | .144         | .000                  | .000              | .000                         |                           | .000        | .022                   | .074                              |

|   | Gableendsm2                       | .000 | .000 | .000 | .005 | .000 | .018 | .000 | .000 |      | .412 | .000 |
|---|-----------------------------------|------|------|------|------|------|------|------|------|------|------|------|
|   | No.ofbathroomseach                | .000 | .003 | .042 | .042 | .000 | .009 | .013 | .022 | .412 |      | .007 |
|   | Additionalplumbingoutletseac<br>h | .000 | .000 | .000 | .003 | .000 | .000 | .000 | .074 | .000 | .007 |      |
| N | TotalCostexGST                    | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | GFAm2                             | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Externalareasm2                   | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Garageaream2                      | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Externalwallslinm                 | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Internalwallslinm                 | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Areaofexternalopeningsm2          | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Hipsvalleysridgeslinm             | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Gableendsm2                       | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | No.ofbathroomseach                | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Additionalplumbingoutletseac<br>h | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |

### Variables Entered/Removed<sup>a</sup>

| Model | Variables Entered                                                                                                                                                                                                                                | Variables Removed | Method |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| 1     | Additionalplumbing<br>outletseach,<br>Hipsvalleysridgeslin<br>m, Garageaream2,<br>No.ofbathroomseac<br>h,<br>Externalareasm2,<br>Internalwallslinm,<br>Areaofexternalopen<br>ingsm2,<br>Gableendsm2,<br>Externalwallslinm,<br>GFAm2 <sup>b</sup> |                   | Enter  |

a. Dependent Variable: TotalCostexGST

b. All requested variables entered.

### Model Summary<sup>b</sup>

| Model | R                 | R Square | Adjusted R Square | Std. Error of the<br>Estimate | R Square Change | F Change | df1 | df2 | Sig. F Change | Durbin-Watson |
|-------|-------------------|----------|-------------------|-------------------------------|-----------------|----------|-----|-----|---------------|---------------|
| 1     | .992 <sup>a</sup> | .983     | .982              | 5202.96020881481<br>300       | .983            | 931.326  | 10  | 159 | .000          | 1.959         |

a. Predictors: (Constant), Additionalplumbingoutletseach, Hipsvalleysridgeslinm, Garageaream2, No.ofbathroomseach, Externalareasm2, Internalwallslinm, Areaofexternalopeningsm2, Gableendsm2, Externalwallslinm, GFAm2

b. Dependent Variable: TotalCostexGST

### **ANOVA**<sup>a</sup>

|       |            |                  | ANOVA |                 |         |                   |
|-------|------------|------------------|-------|-----------------|---------|-------------------|
| Model |            | Sum of Squares   | df    | Mean Square     | F       | Sig.              |
| 1     | Regression | 252117322161.530 | 10    | 25211732216.153 | 931.326 | .000 <sup>b</sup> |
|       | Residual   | 4304256394.587   | 159   | 27070794.935    |         |                   |
|       | Total      | 256421578556.117 | 169   |                 |         |                   |

a. Dependent Variable: TotalCostexGST

b. Predictors: (Constant), Additionalplumbingoutletseach, Hipsvalleysridgeslinm, Garageaream2, No.ofbathroomseach, Externalareasm2, Internalwallslinm, Areaofexternalopeningsm2, Gableendsm2, Externalwallslinm, GFAm2

### **Coefficients**<sup>a</sup>

|       | Unstandardized Coefficients   |           | Standardized<br>Coefficients |      |        | 95.0% Confidence Interval for B |             | Correlations   |            |         | Collinearity Statistics |           |        |
|-------|-------------------------------|-----------|------------------------------|------|--------|---------------------------------|-------------|----------------|------------|---------|-------------------------|-----------|--------|
| Model |                               | В         | Std. Error                   | Beta | t      | Sig.                            | Lower Bound | Upper Bound    | Zero-order | Partial | Part                    | Tolerance | VIF    |
| 1     | (Constant)                    | 34911.766 | 5738.616                     |      | 6.084  | .000                            | 23578.022   | 46245.510      |            |         |                         |           |        |
|       | GFAm2                         | 448.781   | 30.635                       | .586 | 14.649 | .000                            | 388.277     | 509.285        | .979       | .758    | .151                    | .066      | 15.142 |
|       | Externalareasm2               | 137.002   | 55.328                       | .045 | 2.476  | .014                            | 27.729      | 246.274        | .773       | .193    | .025                    | .324      | 3.082  |
|       | Garageaream2                  | -185.313  | 58.579                       | 038  | -3.163 | .002                            | -301.006    | -69.619        | .363       | 243     | 033                     | .715      | 1.399  |
|       | Externalwallslinm             | 470.019   | 101.773                      | .118 | 4.618  | .000                            | 269.017     | 671.020        | .905       | .344    | .047                    | .161      | 6.214  |
|       | Internalwallslinm             | 134.711   | 44.257                       | .061 | 3.044  | .003                            | 47.305      | 222.118        | .806       | .235    | .031                    | .261      | 3.836  |
|       | Areaofexternalopeningsm2      | 328.761   | 83.295                       | .080 | 3.947  | .000                            | 164.253     | 493.269        | .850       | .299    | .041                    | .260      | 3.845  |
|       | Hipsvalleysridgeslinm         | 132.503   | 28.155                       | .095 | 4.706  | .000                            | 76.897      | <u>188.110</u> | .329       | .350    | .048                    | .258      | 3.882  |
|       | Gableendsm2                   | 443.071   | 62.785                       | .144 | 7.057  | .000                            | 319.072     | 567.071        | .412       | .488    | .073                    | .253      | 3.947  |
|       | No.ofbathroomseach            | 11000.077 | 2485.330                     | .048 | 4.426  | .000                            | 6091.560    | 15908.593      | .264       | .331    | .045                    | .886      | 1.129  |
|       | Additionalplumbingoutletseach | 2015.819  | 408.810                      | .081 | 4.931  | .000                            | 1208.421    | 2823.217       | .767       | .364    | .051                    | .395      | 2.531  |

a. Dependent Variable: TotalCostexGST

#### 128

### **Coefficient Correlations**<sup>a</sup>

| Model |              |                               | Additionalplumbin<br>goutletseach | Hipsvalleysridgesli<br>nm | Garageaream2 | No.ofbathroomsea<br>ch | Externalareasm2 | Internalwallslinm | Areaofexternalope<br>ningsm2 | Gableendsm2 | Externalwallslinm | GFAm2     |
|-------|--------------|-------------------------------|-----------------------------------|---------------------------|--------------|------------------------|-----------------|-------------------|------------------------------|-------------|-------------------|-----------|
| 1     | Correlations | Additionalplumbingoutletseach | 1.000                             | .122                      | .217         | 018                    | .118            | 061               | 075                          | 044         | 256               | 174       |
|       |              | Hipsvalleysridgeslinm         | .122                              | 1.000                     | .116         | 024                    | .055            | .026              | 101                          | .816        | 195               | 254       |
|       |              | Garageaream2                  | .217                              | .116                      | 1.000        | 017                    | .099            | .135              | 136                          | .065        | 233               | 116       |
|       |              | No.ofbathroomseach            | 018                               | 024                       | 017          | 1.000                  | .019            | 017               | .091                         | .021        | 231               | .043      |
|       |              | Externalareasm2               | .118                              | .055                      | .099         | .019                   | 1.000           | .314              | .007                         | .078        | .065              | 598       |
|       |              | Internalwallslinm             | 061                               | .026                      | .135         | 017                    | .314            | 1.000             | .102                         | .161        | .086              | 647       |
|       |              | Areaofexternalopeningsm2      | 075                               | 101                       | 136          | .091                   | .007            | .102              | 1.000                        | 107         | 260               | 245       |
|       |              | Gableendsm2                   | 044                               | .816                      | .065         | .021                   | .078            | .161              | 107                          | 1.000       | 138               | 296       |
|       |              | Externalwallslinm             | 256                               | 195                       | 233          | 231                    | .065            | .086              | 260                          | 138         | 1.000             | 337       |
|       |              | GFAm2                         | 174                               | 254                       | 116          | .043                   | 598             | 647               | 245                          | 296         | 337               | 1.000     |
|       | Covariances  | Additionalplumbingoutletseach | 167125.649                        | 1402.916                  | 5184.879     | -18234.355             | 2671.808        | -1105.799         | -2544.464                    | -1131.004   | -10646.852        | -2178.493 |
|       |              | Hipsvalleysridgeslinm         | 1402.916                          | 792.720                   | 190.894      | -1652.849              | 85.599          | 31.910            | -235.856                     | 1442.029    | -557.611          | -219.243  |
|       |              | Garageaream2                  | 5184.879                          | 190.894                   | 3431.530     | -2504.457              | 319.668         | 350.572           | -664.523                     | 237.523     | -1390.768         | -208.791  |
|       |              | No.ofbathroomseach            | -18234.355                        | -1652.849                 | -2504.457    | 6176863.136            | 2620.107        | -1820.396         | 18798.739                    | 3317.107    | -58427.599        | 3255.829  |
|       |              | Externalareasm2               | 2671.808                          | 85.599                    | 319.668      | 2620.107               | 3061.200        | 768.147           | 33.447                       | 269.405     | 365.488           | -1013.078 |
|       |              | Internalwallslinm             | -1105.799                         | 31.910                    | 350.572      | -1820.396              | 768.147         | 1958.643          | 376.076                      | 448.726     | 385.636           | -877.026  |
|       |              | Areaofexternalopeningsm2      | -2544.464                         | -235.856                  | -664.523     | 18798.739              | 33.447          | 376.076           | 6938.109                     | -558.016    | -2203.172         | -625.828  |
|       |              | Gableendsm2                   | -1131.004                         | 1442.029                  | 237.523      | 3317.107               | 269.405         | 448.726           | -558.016                     | 3941.896    | -882.094          | -568.490  |
|       |              | Externalwallslinm             | -10646.852                        | -557.611                  | -1390.768    | -58427.599             | 365.488         | 385.636           | -2203.172                    | -882.094    | 10357.778         | -1050.126 |

a. Dependent Variable: TotalCostexGST

### Collinearity Diagnostics<sup>a</sup>

|       |           |            |                 | Variance Proportions |       |                 |              |                       |                   |                              |                           |             |                        |                                   |
|-------|-----------|------------|-----------------|----------------------|-------|-----------------|--------------|-----------------------|-------------------|------------------------------|---------------------------|-------------|------------------------|-----------------------------------|
| Model | Dimension | Eigenvalue | Condition Index | (Constant)           | GFAm2 | Externalareasm2 | Garageaream2 | Externalwallslin<br>m | Internalwallslinm | Areaofexternalop<br>eningsm2 | Hipsvalleysridge<br>slinm | Gableendsm2 | No.ofbathroomse<br>ach | Additionalplumbi<br>ngoutletseach |
| 1     | 1         | 9.208      | 1.000           | .00                  | .00   | .00             | .00          | .00                   | .00               | .00                          | .00                       | .00         | .00                    | .00                               |
|       | 2         | 1.074      | 2.927           | .00                  | .00   | .00             | .00          | .00                   | .00               | .00                          | .00                       | .12         | .00                    | .08                               |
|       | 3         | .499       | 4.295           | .00                  | .00   | .00             | .00          | .00                   | .00               | .00                          | .00                       | .13         | .00                    | .36                               |
|       | 4         | .111       | 9.104           | .00                  | .00   | .44             | .01          | .00                   | .00               | .00                          | .00                       | .00         | .00                    | .13                               |
|       | 5         | .038       | 15.588          | .00                  | .00   | .10             | .24          | .00                   | .02               | .00                          | .43                       | .37         | .00                    | .08                               |
|       | 6         | .029       | 17.766          | .02                  | .00   | .02             | .45          | .00                   | .06               | .00                          | .23                       | .09         | .02                    | .00                               |
|       | 7         | .019       | 22.212          | .02                  | .01   | .04             | .09          | .00                   | .37               | .00                          | .09                       | .04         | .06                    | .10                               |
|       | 8         | .012       | 27.432          | .00                  | .00   | .04             | .13          | .00                   | .03               | .72                          | .12                       | .12         | .02                    | .06                               |
|       | 9         | .004       | 50.125          | .06                  | .16   | .09             | .05          | .30                   | .18               | .26                          | .05                       | .06         | .42                    | .02                               |
|       | 10        | .003       | 54.417          | .81                  | .13   | .10             | .02          | .08                   | .05               | .02                          | .08                       | .05         | .46                    | .15                               |
|       | 11        | .002       | 66.147          | .08                  | .70   | .17             | .00          | .61                   | .29               | .00                          | .00                       | .01         | .01                    | .01                               |

a. Dependent Variable: TotalCostexGST

| -568.490 | -1050.126 | 938.506 |
|----------|-----------|---------|
|          |           |         |

# **Residuals Statistics**<sup>a</sup>

|                      | Minimum                       | Maximum                  | Mean                     | Std. Deviation           | Ν   |
|----------------------|-------------------------------|--------------------------|--------------------------|--------------------------|-----|
| Predicted Value      | 155860.953125000<br>0000      | 372330.937500000<br>0000 | 229763.403618235<br>4600 | 38624.0659994329<br>5400 | 170 |
| Residual             | -<br>18003.9414062500<br>0000 | 20980.0859375000<br>0000 | 00000000011967           | 5046.67937846619<br>900  | 170 |
| Std. Predicted Value | -1.913                        | 3.691                    | .000                     | 1.000                    | 170 |
| Std. Residual        | -3.460                        | 4.032                    | .000                     | .970                     | 170 |

a. Dependent Variable: TotalCostexGST

Appendix J - Multilayered Perceptron Neural Network detailed output

\*Multilayer Perceptron Network.

MLP TotalCostexGST (MLEVEL=S) WITH GFAm2 Externalareasm2 Garageaream2 Externalwallslinm

 $Internal walls linm\ Area of external openings m2\ Hipsvalleys ridges linm\ Gableends m2\ No. of bathrooms each$ 

Additionalplumbingoutletseach

/RESCALE COVARIATE=STANDARDIZED

/PARTITION TRAINING=7 TESTING=3 HOLDOUT=0

/ARCHITECTURE AUTOMATIC=YES (MINUNITS=1 MAXUNITS=50)

/CRITERIA TRAINING=BATCH OPTIMIZATION=SCALEDCONJUGATE LAMBDAINITIAL=0.0000005

SIGMAINITIAL=0.00005 INTERVALCENTER=0 INTERVALOFFSET=0.5 MEMSIZE=1000

/PRINT CPS NETWORKINFO SUMMARY

/PLOT NETWORK PREDICTED RESIDUAL

/SAVE PREDVAL

/STOPPINGRULES ERRORSTEPS= 1 (DATA=AUTO) TRAININGTIMER=ON (MAXTIME=15) MAXEPOCHS=AUTO

ERRORCHANGE=1.0E-4 ERRORRATIO=0.001

/MISSING USERMISSING=EXCLUDE .

# **Multilayer Perceptron**

Notes

| Output Created         |                                | 26-JUL-2021 08:22:45                                                                                                                      |
|------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Comments               |                                |                                                                                                                                           |
| Input                  | Data                           | C:\Uni Info\2021<br>Courses\ENG4111 - Project part<br>1\Data experiments\Real<br>results\With Cabinetry\Data<br>formated prior to MLP.sav |
|                        | Active Dataset                 | DataSet2                                                                                                                                  |
|                        | Filter                         | <none></none>                                                                                                                             |
|                        | Weight                         | <none></none>                                                                                                                             |
|                        | Split File                     | <none></none>                                                                                                                             |
|                        | N of Rows in Working Data File | 190                                                                                                                                       |
| Missing ∀alue Handling | Definition of Missing          | User- and system-missing values are treated as missing.                                                                                   |
|                        | Cases Used                     | Statistics are based on cases with valid data for all variables used by the procedure.                                                    |
| Weight Handling        |                                | not applicable                                                                                                                            |

#### Syntax

MLP TotalCostexGST (MLEVEL=S) WITH GFAm2 Externalareasm2 Garageaream2 Externalwallslinm

Internalwallslinm Areaofexternalopeningsm2 Hipsvalleysridgeslinm Gableendsm2 No.ofbathroomseach

Additionalplumbingoutletseach

/RESCALE COVARIATE=STANDARDIZED

/PARTITION TRAINING=7 TESTING=3 HOLDOUT=0

/ARCHITECTURE AUTOMATIC=YES (MINUNITS=1 MAXUNITS=50)

/CRITERIA TRAINING=BATCH OPTIMIZATION=SCALEDCONJU GATE LAMBDAINITIAL=0.0000005

SIGMAINITIAL=0.00005 INTERVALCENTER=0 INTERVALOFFSET=0.5 MEMSIZE=1000

/PRINT CPS NETWORKINFO SUMMARY

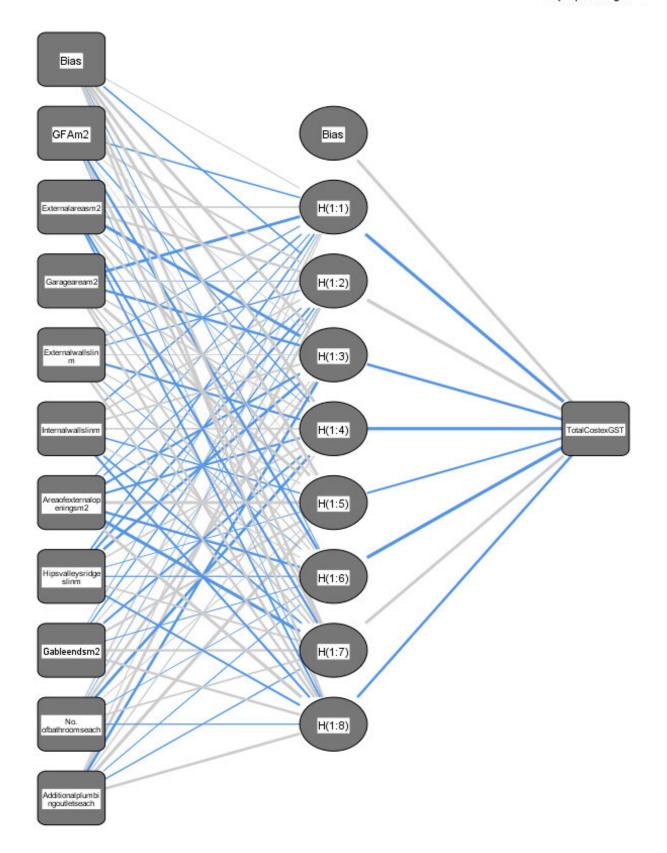
/PLOT NETWORK PREDICTED RESIDUAL

/SAVE PREDVAL

/STOPPINGRULES ERRORSTEPS= 1 (DATA=AUTO) TRAININGTIMER=ON (MAXTIME=15) MAXEPOCHS=AUTO

|                               |                 | ERRORCHANGE=1.0E-4<br>ERRORRATIO=0.001<br>/MISSING<br>USERMISSING=EXCLUDE . |
|-------------------------------|-----------------|-----------------------------------------------------------------------------|
| Resources                     | Processor Time  | 00:00:00.95                                                                 |
|                               | Elapsed Time    | 00:00:00.69                                                                 |
| Variables Created or Modified | Predicted Value | MLP_PredictedValue                                                          |

# **Case Processing Summary**


|          |          | Ν   | Percent |
|----------|----------|-----|---------|
| Sample   | Training | 122 | 71.8%   |
|          | Testing  | 48  | 28.2%   |
| Valid    |          | 170 | 100.0%  |
| Excluded |          | 20  |         |
| Total    |          | 190 |         |

| Input Layer     | Covariates                   | 1          | GFA (m2)                           |
|-----------------|------------------------------|------------|------------------------------------|
|                 |                              | 2          | External areas (m2)                |
|                 |                              | 3          | Garage area (m2)                   |
|                 |                              | 4          | External walls (lin m)             |
|                 |                              | 5          | Internal walls (lin m)             |
|                 |                              | 6          | Area of external openings (m2)     |
|                 |                              | 7          | Hips / valleys / ridges<br>(lin m) |
|                 |                              | 8          | Gable ends (m2)                    |
|                 |                              | 9          | No. of bathrooms<br>(each)         |
|                 |                              | 10         | Additional plumbing outlets (each) |
|                 | Number of Units <sup>a</sup> |            | 10                                 |
|                 | Rescaling Method for Covar   | iates      | Standardized                       |
| Hidden Layer(s) | Number of Hidden Layers      |            | 1                                  |
|                 | Number of Units in Hidden L  | ayer 1ª    | 8                                  |
|                 | Activation Function          |            | Hyperbolic tangent                 |
| Output Layer    | Dependent Variables          | 1          | Total Cost ex GST                  |
|                 | Number of Units              |            | 1                                  |
|                 | Rescaling Method for Scale   | Dependents | Standardized                       |
|                 | Activation Function          |            | Identity                           |

**Error Function** 

Sum of Squares

a. Excluding the bias unit



Hidden layer activation function: Hyperbolic tangent Output layer activation function: Identity

# Model Summary

| Training | Sum of Squares Error | 1.264                                                              |
|----------|----------------------|--------------------------------------------------------------------|
|          | Relative Error       | .021                                                               |
|          | Stopping Rule Used   | 1 consecutive<br>step(s) with no<br>decrease in error <sup>a</sup> |
|          | Training Time        | 0:00:00.02                                                         |
| Testing  | Sum of Squares Error | .945                                                               |
|          | Relative Error       | .041                                                               |

Dependent Variable: Total Cost ex GST

a. Error computations are based on the testing sample.

Appendix K – Radial Basis Function Neural Network detailed output

\*Radial Basis Function Network.

RBF TotalCostexGST (MLEVEL=S) WITH GFAm2 Externalareasm2 Garageaream2 Externalwallslinm

Internalwallslinm Areaofexternalopeningsm2 Hipsvalleysridgeslinm Gableendsm2 No.ofbathroomseach

Additionalplumbingoutletseach

/RESCALE COVARIATE=STANDARDIZED DEPENDENT=STANDARDIZED

/PARTITION TRAINING=7 TESTING=3 HOLDOUT=0

/ARCHITECTURE MINUNITS=AUTO MAXUNITS=AUTO HIDDENFUNCTION=NRBF

/CRITERIA OVERLAP=AUTO

/PRINT CPS NETWORKINFO SUMMARY CLASSIFICATION

/PLOT NETWORK PREDICTED RESIDUAL

/SAVE PREDVAL

/MISSING USERMISSING=EXCLUDE .

# **Radial Basis Function**

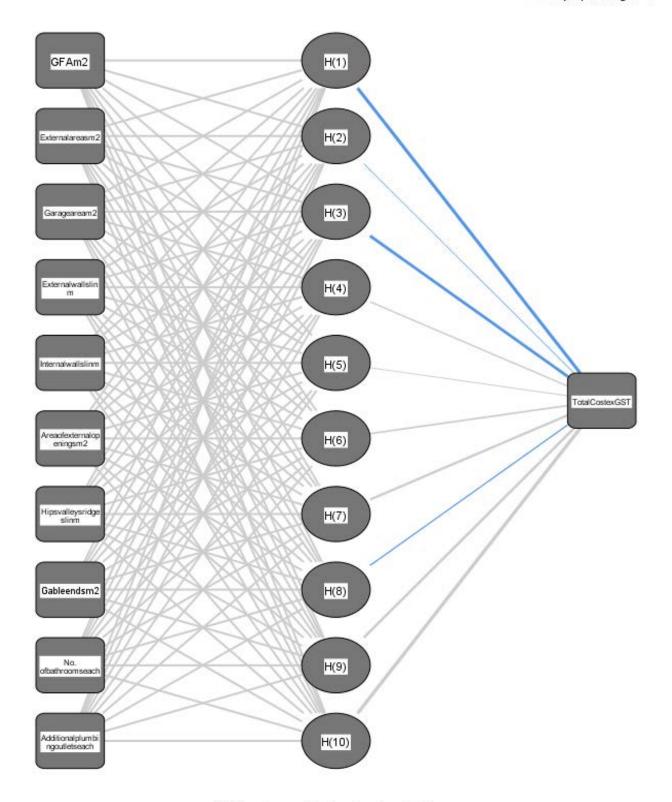
Notes

| Output Created         |                                | 26-JUL-2021 08:28:47                                                                                                                      |
|------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Comments               |                                |                                                                                                                                           |
| Input                  | Data                           | C:\Uni Info\2021<br>Courses\ENG4111 - Project part<br>1\Data experiments\Real<br>results\With Cabinetry\Data<br>formated prior to MLP.sav |
|                        | Active Dataset                 | DataSet2                                                                                                                                  |
|                        | Filter                         | <none></none>                                                                                                                             |
|                        | Weight                         | <none></none>                                                                                                                             |
|                        | Split File                     | <none></none>                                                                                                                             |
|                        | N of Rows in Working Data File | 190                                                                                                                                       |
| Missing ∀alue Handling | Definition of Missing          | User- and system-missing values are treated as missing.                                                                                   |
|                        | Cases Used                     | Statistics are based on cases with<br>valid data for all variables used by<br>the procedure.                                              |
| Weight Handling        |                                | not applicable                                                                                                                            |

#### Syntax

| Syntax                        |                 | RBF TotalCostexGST            |
|-------------------------------|-----------------|-------------------------------|
|                               |                 | (MLEVEL=S) WITH GFAm2         |
|                               |                 | Externalareasm2 Garageaream2  |
|                               |                 | Externalwallslinm             |
|                               |                 | Internalwallslinm             |
|                               |                 | Areaofexternalopeningsm2      |
|                               |                 | Hipsvalleysridgeslinm         |
|                               |                 | Gableendsm2                   |
|                               |                 | No.ofbathroomseach            |
|                               |                 | Additionalplumbingoutletseach |
|                               |                 | /RESCALE                      |
|                               |                 | COVARIATE=STANDARDIZED        |
|                               |                 | DEPENDENT=STANDARDIZED        |
|                               |                 | /PARTITION TRAINING=7         |
|                               |                 | TESTING=3 HOLDOUT=0           |
|                               |                 |                               |
|                               |                 | ARCHITECTURE                  |
|                               |                 | MINUNITS=AUTO                 |
|                               |                 | MAXUNITS=AUTO                 |
|                               |                 | HIDDENFUNCTION=NRBF           |
|                               |                 | /CRITERIA OVERLAP=AUTO        |
|                               |                 | /PRINT CPS NETWORKINFO        |
|                               |                 | SUMMARY CLASSIFICATION        |
|                               |                 |                               |
|                               |                 | /PLOT NETWORK PREDICTED       |
|                               |                 | RESIDUAL                      |
|                               |                 | /SAVE PREDVAL                 |
|                               |                 | /MISSING                      |
|                               |                 | USERMISSING=EXCLUDE .         |
|                               |                 |                               |
| Resources                     | Processor Time  | 00:00:00.83                   |
|                               | Elapsed Time    | 00:00:00.74                   |
| Variables Created or Modified | Predicted Value | RBF_PredictedValue            |

# **Case Processing Summary**


|          |          | Ν   | Percent |
|----------|----------|-----|---------|
| Sample   | Training | 116 | 68.2%   |
|          | Testing  | 54  | 31.8%   |
| Valid    |          | 170 | 100.0%  |
| Excluded |          | 20  |         |
| Total    |          | 190 |         |

## **Network Information**

| Input Layer | Covariates | 1  | GFA (m2)                           |
|-------------|------------|----|------------------------------------|
|             |            | 2  | External areas (m2)                |
|             |            | 3  | Garage area (m2)                   |
|             |            | 4  | External walls (lin m)             |
|             |            | 5  | Internal walls (lin m)             |
|             |            | 6  | Area of external openings (m2)     |
|             |            | 7  | Hips / valleys / ridges<br>(lin m) |
|             |            | 8  | Gable ends (m2)                    |
|             |            | 9  | No. of bathrooms<br>(each)         |
|             |            | 10 | Additional plumbing outlets (each) |

|              | Number of Units                       | 10                |
|--------------|---------------------------------------|-------------------|
|              | Rescaling Method for Covariates       | Standardized      |
| Hidden Layer | Number of Units                       | 10 <sup>a</sup>   |
|              | Activation Function                   | Softmax           |
| Output Layer | Dependent Variables 1                 | Total Cost ex GST |
|              | Number of Units                       | 1                 |
|              | Rescaling Method for Scale Dependents | Standardized      |
|              | Activation Function                   | Identity          |
|              | Error Function                        | Sum of Squares    |

a. Determined by the testing data criterion: The "best" number of hidden units is the one that yields the smallest error in the testing data.



Hidden layer activation function: Softmax Output layer activation function: Identity

# **Model Summary**

| Training | Sum of Squares Error | 4.233              |
|----------|----------------------|--------------------|
|          | Relative Error       | .074               |
|          | Training Time        | 0:00:00.23         |
| Testing  | Sum of Squares Error | 5.610 <sup>a</sup> |
|          | Relative Error       | .165               |

Dependent Variable: Total Cost ex GST

a. The number of hidden units is determined by the testing data criterion: The "best" number of hidden units is the one that yields the smallest error in the testing data.

# Appendix L – Linear regression sample testing

| Test<br>model | GFA (m2) | External<br>areas (m2) | Garage area<br>(m2) | External<br>walls (lin<br>m) | Internal<br>walls (lin<br>m) | Area of<br>external<br>openings<br>(m2) | Hips /<br>valleys /<br>ridges (lin<br>m) | Gable ends<br>(m2) | No. of<br>bathrooms<br>(each) | Additional<br>plumbing<br>outlets<br>(each) | Predicted Cost | Calculated Cost | Difference in<br>cost (Pred vs<br>Calc) | Absolute<br>% error | % error |
|---------------|----------|------------------------|---------------------|------------------------------|------------------------------|-----------------------------------------|------------------------------------------|--------------------|-------------------------------|---------------------------------------------|----------------|-----------------|-----------------------------------------|---------------------|---------|
| S001          | 302.30   | 46.30                  | 45.60               | 80.00                        | 92.80                        | 56.64                                   | 76.10                                    | 0.00               | 2                             | 1                                           | \$271,294.45   | \$269,845.36    | \$1,449.08                              | 0.54%               | 0.54%   |
| S002          | 244.33   | 24.51                  | 39.38               | 67.20                        | 94.20                        | 48.23                                   | 65.70                                    | 0.00               | 2                             | 1                                           | \$233,475.42   | \$241,288.69    | -\$7,813.26                             | 3.24%               | -3.24%  |
| S003          | 273.60   | 51.10                  | 37.60               | 72.40                        | 86.80                        | 44.07                                   | 90.50                                    | 2.70               | 2                             | 2                                           | \$257,161.76   | \$259,434.80    | -\$2,273.04                             | 0.88%               | -0.88%  |
| S004          | 274.61   | 39.18                  | 40.23               | 73.00                        | 91.75                        | 63.10                                   | 0.00                                     | 49.90              | 2                             | 1                                           | \$269,605.37   | \$270,115.64    | -\$510.27                               | 0.19%               | -0.19%  |
| S005          | 184.85   | 18.50                  | 36.40               | 60.20                        | 66.40                        | 32.28                                   | 59.60                                    | 1.80               | 2                             | -1                                          | \$190,189.54   | \$191,207.60    | -\$1,018.06                             | 0.53%               | -0.53%  |
| S006          | 272.50   | 27.40                  | 37.20               | 74.00                        | 105.30                       | 46.26                                   | 95.40                                    | 0.00               | 2                             | 0                                           | \$252,880.80   | \$257,411.03    | -\$4,530.24                             | 1.76%               | -1.76%  |
| S007          | 158.20   | 2.40                   | 0.00                | 56.60                        | 71.30                        | 32.52                                   | 57.50                                    | 0.00               | 2                             | 1                                           | \$184,771.95   | \$188,202.31    | -\$3,430.36                             | 1.82%               | -1.82%  |
| S008          | 284.70   | 22.90                  | 39.80               | 82.40                        | 104.60                       | 51.20                                   | 109.40                                   | 4.90               | 3                             | 1                                           | \$279,777.53   | \$289,247.39    | -\$9,469.86                             | 3.27%               | -3.27%  |
| S009          | 331.80   | 37.98                  | 42.78               | 89.80                        | 97.33                        | 60.23                                   | 24.40                                    | 32.10              | 2                             | 3                                           | \$301,716.72   | \$305,755.27    | -\$4,038.56                             | 1.32%               | -1.32%  |
| S010          | 350.40   | 42.60                  | 40.50               | 90.20                        | 115.80                       | 58.60                                   | 111.70                                   | 0.00               | 3                             | 4                                           | \$323,620.58   | \$311,996.76    | \$11,623.82                             | 3.73%               | 3.73%   |
| S011          | 262.90   | 28.00                  | 38.40               | 71.20                        | 115.40                       | 43.76                                   | 79.20                                    | 6.30               | 2                             | 3                                           | \$254,347.21   | \$260,118.56    | -\$5,771.35                             | 2.22%               | -2.22%  |
| S012          | 197.40   | 24.30                  | 37.50               | 61.40                        | 66.30                        | 38.82                                   | 68.10                                    | 0.00               | 2                             | 1                                           | \$203,473.55   | \$203,807.14    | -\$333.59                               | 0.16%               | -0.16%  |
| S013          | 228.50   | 36.60                  | 36.10               | 65.70                        | 78.90                        | 38.22                                   | 85.80                                    | 0.00               | 2                             | 0                                           | \$223,225.88   | \$219,262.09    | \$3,963.78                              | 1.81%               | 1.81%   |
| S014          | 294.75   | 48.29                  | 45.22               | 76.20                        | 101.50                       | 56.90                                   | 124.83                                   | 1.74               | 2                             | 4                                           | \$280,995.88   | \$289,336.00    | -\$8,340.12                             | 2.88%               | -2.88%  |
| S015          | 218.10   | 18.50                  | 36.00               | 66.50                        | 85.00                        | 39.66                                   | 82.50                                    | 0.00               | 2                             | 0                                           | \$217,331.26   | \$221,375.79    | -\$4,044.53                             | 1.83%               | -1.83%  |
| S016          | 239.40   | 24.20                  | 39.40               | 70.70                        | 81.10                        | 46.80                                   | 44.30                                    | 5.00               | 2                             | 0                                           | \$227,990.94   | \$223,609.16    | \$4,381.78                              | 1.96%               | 1.96%   |
| S017          | 269.50   | 37.60                  | 37.80               | 72.00                        | 107.53                       | 50.10                                   | 99.45                                    | 0.00               | 2                             | 0                                           | \$253,980.13   | \$259,505.08    | -\$5,524.95                             | 2.13%               | -2.13%  |
| S018          | 234.90   | 33.90                  | 0.00                | 67.20                        | 87.30                        | 36.30                                   | 92.80                                    | 8.10               | 2                             | 2                                           | \$242,171.38   | \$241,368.56    | \$802.82                                | 0.33%               | 0.33%   |
| S019          | 195.98   | 15.20                  | 36.80               | 62.80                        | 73.00                        | 36.00                                   | 70.80                                    | 0.00               | 2                             | 0                                           | \$200,694.71   | \$202,958.42    | -\$2,263.71                             | 1.12%               | -1.12%  |
| S020          | 215.90   | 18.20                  | 36.10               | 70.40                        | 82.80                        | 42.00                                   | 97.50                                    | 0.00               | 2                             | 0                                           | \$220,577.87   | \$225,592.66    | -\$5,014.79                             | 2.22%               | -2.22%  |
| Mean          |          |                        |                     |                              |                              |                                         |                                          |                    |                               |                                             |                |                 | -\$2,107.77                             | 1.70%               | -0.86%  |
| Std Dev       |          |                        |                     |                              |                              |                                         |                                          |                    |                               |                                             |                |                 | \$4,846.84                              | 1.04%               | 1.79%   |

Appendix M – Linear regression results without cabinetry costs

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N

/MISSING LISTWISE

/STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL CHANGE ZPP

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT TotalCostexGST

/METHOD=ENTER GFAm2 Garageaream2 Externalwallslinm Internalwallslinm Areaofexternalopeningsm2

Hipsvalleysridgeslinm Gableendsm2 No.ofbathroomseach Additionalplumbingoutletseach

/PARTIALPLOT ALL

/SCATTERPLOT=(\*ZRESID ,\*ZPRED)

/RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID).

# Regression

# Notes

| Output Created         |                                | 30-JUL-2021 14:40:52                                                                                                                                              |
|------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comments               |                                |                                                                                                                                                                   |
| Input                  | Data                           | C:\Uni Info\2021<br>Courses\ENG4111 - Project part<br>1\Data experiments\Real<br>results\Without cabinetry\Linear<br>regression with sig drivers<br>removed 3.sav |
|                        | Active Dataset                 | DataSet2                                                                                                                                                          |
|                        | Filter                         | <none></none>                                                                                                                                                     |
|                        | Weight                         | <none></none>                                                                                                                                                     |
|                        | Split File                     | <none></none>                                                                                                                                                     |
|                        | N of Rows in Working Data File | 170                                                                                                                                                               |
| Missing Value Handling | Definition of Missing          | User-defined missing values are treated as missing.                                                                                                               |
|                        | Cases Used                     | Statistics are based on cases with<br>no missing values for any variable<br>used.                                                                                 |

| Syntax    |                                                  | REGRESSION                                                        |
|-----------|--------------------------------------------------|-------------------------------------------------------------------|
|           |                                                  | /DESCRIPTIVES MEAN<br>STDDEV CORR SIG N                           |
|           |                                                  | /MISSING LISTWISE                                                 |
|           |                                                  | /STATISTICS COEFF OUTS<br>CI(95) R ANOVA COLLIN TOL<br>CHANGE ZPP |
|           |                                                  | /CRITERIA=PIN(.05) POUT(.10)                                      |
|           |                                                  | /NOORIGIN                                                         |
|           |                                                  | /DEPENDENT TotalCostexGST                                         |
|           |                                                  | /METHOD=ENTER GFAm2                                               |
|           |                                                  | Garageaream2 Externalwallslinm                                    |
|           |                                                  | Internalwallslinm                                                 |
|           |                                                  | Areaofexternalopeningsm2                                          |
|           |                                                  | Hipsvalleysridgeslinm                                             |
|           |                                                  | Gableendsm2                                                       |
|           |                                                  | No.ofbathroomseach                                                |
|           |                                                  | Additionalplumbingoutletseach                                     |
|           |                                                  | /PARTIALPLOT ALL                                                  |
|           |                                                  | /SCATTERPLOT=(*ZRESID                                             |
|           |                                                  | ,*ZPRED)                                                          |
|           |                                                  | /RESIDUALS DURBIN                                                 |
|           |                                                  | HISTOGRAM(ZRESID)                                                 |
|           |                                                  | NORMPROB(ZRESID).                                                 |
| Resources | Processor Time                                   | 00:00:02.11                                                       |
|           | Elapsed Time                                     | 00:00:01.84                                                       |
|           | Memory Required                                  | 8272 bytes                                                        |
|           | Additional Memory Required for<br>Residual Plots | 3368 bytes                                                        |

[DataSet2] C:\Uni Info\2021 Courses\ENG4111 - Project part 1\Data experiments\Real results\Without cabinetry\Linear regression with sig drivers removed 3.sav

# **Descriptive Statistics**

|                                    | Mean                     | Std. Deviation           | Ν   |
|------------------------------------|--------------------------|--------------------------|-----|
| Total Cost ex GST                  | 212901.770906470<br>4500 | 34653.2188415874<br>9000 | 170 |
| GFA (m2)                           | 232.944823529411<br>700  | 50.8373161087431<br>10   | 170 |
| Garage area (m2)                   | 37.9335294117647<br>20   | 8.08066517062311<br>9    | 170 |
| External walls (lin m)             | 69.4892352941176<br>00   | 9.80313529142295<br>4    | 170 |
| Internal walls (lin m)             | 78.9437058823529<br>20   | 17.7125171474854<br>25   | 170 |
| Area of external openings (m2)     | 44.3741764705882<br>46   | 9.42215390603597<br>0    | 170 |
| Hips / valleys / ridges (lin m)    | 72.3485882352941 20      | 28.0069336154371<br>88   | 170 |
| Gable ends (m2)                    | 5.43764705882352<br>9    | 12.6642065743859<br>11   | 170 |
| No. of bathrooms (each)            | 2.02                     | .171                     | 170 |
| Additional plumbing outlets (each) | .85                      | 1.558                    | 170 |

# Correlations

|                     |                                    | Total Cost ex GST | GFA (m2)            | Garage area (m2) | External walls (lin<br>m) | Internal walls (lin<br>m) | Area of external openings (m2) | Hips / valleys /<br>ridges (lin m) | Gable ends (m2) | No. of bathrooms<br>(each) | Additional<br>plumbing outlets<br>(each) |
|---------------------|------------------------------------|-------------------|---------------------|------------------|---------------------------|---------------------------|--------------------------------|------------------------------------|-----------------|----------------------------|------------------------------------------|
| Pearson Correlation | Total Cost ex GST                  | 1.000             | .984                | .374             | .911                      | .819                      | .850                           | .344                               | .398            | .262                       | .759                                     |
|                     | GFA (m2)                           | .984              | 1.000               | .389             | .878                      | .821                      | .827                           | .355                               | .354            | .209                       | .718                                     |
|                     | Garage area (m2)                   | .374              | .389                | 1.000            | .457                      | .223                      | .433                           | .082                               | .196            | .133                       | .208                                     |
|                     | External walls (lin m)             | .911              | .878                | .457             | 1.000                     | .684                      | .821                           | .338                               | .345            | .296                       | .713                                     |
|                     | Internal walls (lin m)             | .819              | . <mark>8</mark> 21 | .223             | .684                      | 1.000                     | .622                           | .386                               | .161            | .182                       | .602                                     |
|                     | Area of external openings (m2)     | .850              | .827                | .433             | .821                      | .622                      | 1.000                          | .286                               | .356            | .171                       | .645                                     |
|                     | Hips / valleys / ridges (lin m)    | .344              | .355                | .082             | .338                      | .386                      | .286                           | 1.000                              | 596             | .155                       | .111                                     |
|                     | Gable ends (m2)                    | .398              | .354                | .196             | .345                      | .161                      | .356                           | 596                                | 1.000           | .017                       | .412                                     |
|                     | No. of bathrooms (each)            | .262              | .209                | .133             | .296                      | .182                      | .171                           | .155                               | .017            | 1.000                      | .188                                     |
|                     | Additional plumbing outlets (each) | .759              | .718                | .208             | .713                      | .602                      | .645                           | .111                               | .412            | .188                       | 1.000                                    |
| Sig. (1-tailed)     | Total Cost ex GST                  |                   | .000                | .000             | .000                      | .000                      | .000                           | .000                               | .000            | .000                       | .000                                     |
|                     | GFA (m2)                           | .000              |                     | .000             | .000                      | .000                      | .000                           | .000                               | .000            | .003                       | .000                                     |
|                     | Garage area (m2)                   | .000              | .000                |                  | .000                      | .002                      | .000                           | .144                               | .005            | .042                       | .003                                     |
|                     | External walls (lin m)             | .000              | .000                | .000             |                           | .000                      | .000                           | .000                               | .000            | .000                       | .000                                     |
|                     | Internal walls (lin m)             | .000              | .000                | .002             | .000                      |                           | .000                           | .000                               | .018            | .009                       | .000                                     |
|                     | Area of external openings (m2)     | .000              | .000                | .000             | .000                      | .000                      |                                | .000                               | .000            | .013                       | .000                                     |
|                     | Hips / valleys / ridges (lin m)    | .000              | .000                | .144             | .000                      | .000                      | .000                           |                                    | .000            | .022                       | .074                                     |
|                     | Gable ends (m2)                    | .000              | .000                | .005             | .000                      | .018                      | .000                           | .000                               |                 | .412                       | .000                                     |

|   | No. of bathrooms (each)               | .000 | .003 | .042 | .000 | .009 | .013 | .022 | .412 |      | .007 |
|---|---------------------------------------|------|------|------|------|------|------|------|------|------|------|
|   | Additional plumbing outlets<br>(each) | .000 | .000 | .003 | .000 | .000 | .000 | .074 | .000 | .007 |      |
| N | Total Cost ex GST                     | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | GFA (m2)                              | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Garage area (m2)                      | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | External walls (lin m)                | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Internal walls (lin m)                | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Area of external openings (m2)        | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Hips / valleys / ridges (lin m)       | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Gable ends (m2)                       | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | No. of bathrooms (each)               | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |
|   | Additional plumbing outlets<br>(each) | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  | 170  |

## Variables Entered/Removed<sup>a</sup>

| Model | Variables Entered                                                                                                                                                                                                                                                       | Variables Removed | Method |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| 1     | Additional plumbing<br>outlets (each), Hips<br>/ valleys / ridges (lin<br>m), Garage area<br>(m2), No. of<br>bathrooms (each),<br>Internal walls (lin<br>m), Area of external<br>openings (m2),<br>Gable ends (m2),<br>External walls (lin<br>m), GFA (m2) <sup>b</sup> | -                 | Enter  |

#### a. Dependent Variable: Total Cost ex GST

b. All requested variables entered.

# Model Summary<sup>b</sup>

|       |       |          |                   |                               |                 | CI       | nange Statistics | 6   |               |               |
|-------|-------|----------|-------------------|-------------------------------|-----------------|----------|------------------|-----|---------------|---------------|
| Model | R     | R Square | Adjusted R Square | Std. Error of the<br>Estimate | R Square Change | F Change | df1              | df2 | Sig. F Change | Durbin-Watson |
| 1     | .994ª | .988     | .988              | 3825.58302973945              | .988            | 1522.986 | 9                | 160 | .000          | 1.851         |
|       |       |          |                   | 600                           |                 |          |                  |     |               |               |

a. Predictors: (Constant), Additional plumbing outlets (each), Hips / valleys / ridges (lin m), Garage area (m2), No. of bathrooms (each), Internal walls (lin m), Area of external openings (m2), Gable ends (m2), External walls (lin m), GFA (m2)

b. Dependent Variable: Total Cost ex GST

## **ANOVA**<sup>a</sup>

| Model |            | Sum of Squares   | df  | Mean Square     | F        | Sig.              |
|-------|------------|------------------|-----|-----------------|----------|-------------------|
| 1     | Regression | 200601288675.230 | 9   | 22289032075.026 | 1522.986 | .000 <sup>b</sup> |
|       | Residual   | 2341613682.789   | 160 | 14635085.517    |          |                   |
|       | Total      | 202942902358.019 | 169 |                 |          |                   |

a. Dependent Variable: Total Cost ex GST

b. Predictors: (Constant), Additional plumbing outlets (each), Hips / valleys / ridges (lin m), Garage area (m2), No. of bathrooms (each), Internal walls (lin m), Area of external openings (m2), Gable ends (m2), External walls (lin m), GFA (m2)

|       |                                | Unstandardized Coefficients |          | Standardized<br>Coefficients |        |      | 95.0% Confiden | ce Interval for B |            | Correlations |      | Collinearity | Statistics |
|-------|--------------------------------|-----------------------------|----------|------------------------------|--------|------|----------------|-------------------|------------|--------------|------|--------------|------------|
| Model |                                | B Std. Error                |          | Beta                         | t      | Sig. | Lower Bound    | Upper Bound       | Zero-order | Partial      | Part | Tolerance    | VIF        |
| 1     | (Constant)                     | 33106.791                   | 4183.005 |                              | 7.915  | .000 | 24845.768      | 41367.814         |            |              |      |              |            |
|       | GFA (m2)                       | 433.219                     | 18.059   | .636                         | 23.989 | .000 | 397.555        | 468.884           | .984       | .885         | .204 | .103         | 9.733      |
|       | Garage area (m2)               | -128.003                    | 42.862   | 030                          | -2.986 | .003 | -212.650       | -43.356           | .374       | 230          | 025  | .722         | 1.385      |
|       | External walls (lin m)         | 478.288                     | 74.673   | .135                         | 6.405  | .000 | 330.817        | 625.760           | .911       | .452         | .054 | .162         | 6.188      |
|       | Internal walls (lin m)         | 143.156                     | 30.898   | .073                         | 4.633  | .000 | 82.136         | 204.176           | .819       | .344         | .039 | .289         | 3.459      |
|       | Area of external openings (m2) | 244.158                     | 61.243   | .066                         | 3.987  | .000 | 123.209        | 365.107           | .850       | .301         | .034 | .260         | 3.845      |

### **Coefficients**<sup>a</sup>

| Hips / valleys / ridges (lin m)    | 112.580  | 20.670   | .091 | 5.446 | .000 | 71.758   | 153.402   | .344 | .395 | .046 | .258 | 3.870 |
|------------------------------------|----------|----------|------|-------|------|----------|-----------|------|------|------|------|-------|
| Gable ends (m2)                    | 349.094  | 46.025   | .128 | 7.585 | .000 | 258.200  | 439.988   | .398 | .514 | .064 | .255 | 3.923 |
| No. of bathrooms (each)            | 8565.022 | 1827.058 | .042 | 4.688 | .000 | 4956.763 | 12173.281 | .262 | .348 | .040 | .886 | 1.128 |
| Additional plumbing outlets (each) | 1226.038 | 298.482  | .055 | 4.108 | .000 | 636.566  | 1815.509  | .759 | .309 | .035 | .401 | 2.496 |

# a. Dependent Variable: Total Cost ex GST

# Collinearity Diagnostics<sup>a</sup>

|       |           |            |                 | Variance Proportions |          |                  |                           |                           |                                |                                    |                 |                            |                                          |
|-------|-----------|------------|-----------------|----------------------|----------|------------------|---------------------------|---------------------------|--------------------------------|------------------------------------|-----------------|----------------------------|------------------------------------------|
| Model | Dimension | Eigenvalue | Condition Index | (Constant)           | GFA (m2) | Garage area (m2) | External walls (lin<br>m) | Internal walls (lin<br>m) | Area of external openings (m2) | Hips / valleys /<br>ridges (lin m) | Gable ends (m2) | No. of bathrooms<br>(each) | Additional<br>plumbing outlets<br>(each) |
| 1     | 1         | 8.315      | 1.000           | .00                  | .00      | .00              | .00                       | .00                       | .00                            | .00                                | .00             | .00                        | .00                                      |
|       | 2         | 1.072      | 2.785           | .00                  | .00      | .00              | .00                       | .00                       | .00                            | .00                                | .12             | .00                        | .09                                      |
|       | 3         | .496       | 4.094           | .00                  | .00      | .00              | .00                       | .00                       | .00                            | .00                                | .13             | .00                        | .38                                      |
|       | 4         | .044       | 13.787          | .01                  | .00      | .15              | .00                       | .01                       | .00                            | .37                                | .30             | .01                        | .20                                      |
|       | 5         | .030       | 16.688          | .02                  | .00      | .57              | .00                       | .06                       | .01                            | .08                                | .02             | .03                        | .00                                      |
|       | 6         | .020       | 20.495          | .02                  | .02      | .05              | .00                       | .33                       | .00                            | .25                                | .14             | .05                        | .12                                      |
|       | 7         | .013       | 25.311          | .00                  | .01      | .18              | .00                       | .11                       | .60                            | .16                                | .17             | .01                        | .05                                      |
|       | 8         | .005       | 42.788          | .01                  | .53      | .04              | .12                       | .38                       | .36                            | .11                                | .12             | .01                        | .05                                      |
|       | 9         | .003       | 49.949          | .67                  | .04      | .00              | .04                       | .00                       | .02                            | .01                                | .00             | .89                        | .04                                      |
|       | 10        | .002       | 59.188          | .28                  | .40      | .02              | .84                       | .12                       | .01                            | .01                                | .00             | .00                        | .07                                      |

a. Dependent Variable: Total Cost ex GST

# **Residuals Statistics**<sup>a</sup>

|                      | Minimum                       | Maximum                  | Mean                     | Std. Deviation           | Ν   |
|----------------------|-------------------------------|--------------------------|--------------------------|--------------------------|-----|
| Predicted Value      | 143329.250000000<br>0000      | 340027.187500000<br>0000 | 212901.770906470<br>4000 | 34452.7193965580<br>4000 | 170 |
| Residual             | -<br>12714.6728515625<br>0200 | 18818.4843750000<br>0000 | .00000000010614          | 3722.32484678906<br>580  | 170 |
| Std. Predicted Value | -2.019                        | 3.690                    | .000                     | 1.000                    | 170 |
| Std. Residual        | -3.324                        | 4.919                    | .000                     | .973                     | 170 |

a. Dependent Variable: Total Cost ex GST

# Appendix N – Multilayered Perceptron Neural Network detailed results without cabinetry

GET

FILE='C:\Uni Info\2021 Courses\ENG4111 - Project part 1\Data experiments\Real results\Without cabinetry\Data import prior to reg analysis.sav'.

DATASET NAME DataSet1 WINDOW=FRONT.

SAVE OUTFILE='C:\Uni Info\2021 Courses\ENG4111 - Project part 1\Data experiments\Real '+

'results\Without cabinetry\Data prior to neural netwiork.sav'

/COMPRESSED.

\*Multilayer Perceptron Network.

MLP TotalCostexGST (MLEVEL=S) WITH GFAm2 Garageaream2 Externalwallslinm Internalwallslinm

Areaofexternalopeningsm2 Hipsvalleysridgeslinm Gableendsm2 No.ofbathroomseach

Additionalplumbingoutletseach

/RESCALE COVARIATE=STANDARDIZED

/PARTITION TRAINING=7 TESTING=3 HOLDOUT=0

/ARCHITECTURE AUTOMATIC=YES (MINUNITS=1 MAXUNITS=50)

/CRITERIA TRAINING=BATCH OPTIMIZATION=SCALEDCONJUGATE LAMBDAINITIAL=0.0000005

SIGMAINITIAL=0.00005 INTERVALCENTER=0 INTERVALOFFSET=0.5 MEMSIZE=1000

/PRINT CPS NETWORKINFO SUMMARY

/PLOT NETWORK PREDICTED RESIDUAL

/SAVE PREDVAL

/STOPPINGRULES ERRORSTEPS= 1 (DATA=AUTO) TRAININGTIMER=ON (MAXTIME=15) MAXEPOCHS=AUTO

ERRORCHANGE=1.0E-4 ERRORRATIO=0.001

/MISSING USERMISSING=EXCLUDE .

# **Multilayer Perceptron**

Notes

| Output Created         |                                | 01-AUG-2021 07:32:35                                                                                                                            |
|------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Comments               |                                |                                                                                                                                                 |
| Input                  | Data                           | C:\Uni Info\2021<br>Courses\ENG4111 - Project part<br>1\Data experiments\Real<br>results\Without cabinetry\Data<br>prior to neural netwiork.sav |
|                        | Active Dataset                 | DataSet1                                                                                                                                        |
|                        | Filter                         | <none></none>                                                                                                                                   |
|                        | Weight                         | <none></none>                                                                                                                                   |
|                        | Split File                     | <none></none>                                                                                                                                   |
|                        | N of Rows in Working Data File | 190                                                                                                                                             |
| Missing ∀alue Handling | Definition of Missing          | User- and system-missing values are treated as missing.                                                                                         |
|                        | Cases Used                     | Statistics are based on cases with valid data for all variables used by the procedure.                                                          |
| Weight Handling        |                                | not applicable                                                                                                                                  |

#### Syntax

MLP TotalCostexGST (MLEVEL=S) WITH GFAm2 Garageaream2 Externalwallslinm Internalwallslinm

Areaofexternalopeningsm2 Hipsvalleysridgeslinm Gableendsm2 No.ofbathroomseach

Additionalplumbingoutletseach

/RESCALE COVARIATE=STANDARDIZED

/PARTITION TRAINING=7 TESTING=3 HOLDOUT=0

/ARCHITECTURE AUTOMATIC=YES (MINUNITS=1 MAXUNITS=50)

/CRITERIA TRAINING=BATCH OPTIMIZATION=SCALEDCONJU GATE LAMBDAINITIAL=0.0000005

SIGMAINITIAL=0.00005 INTERVALCENTER=0 INTERVALOFFSET=0.5 MEMSIZE=1000

/PRINT CPS NETWORKINFO SUMMARY

/PLOT NETWORK PREDICTED RESIDUAL

/SAVE PREDVAL

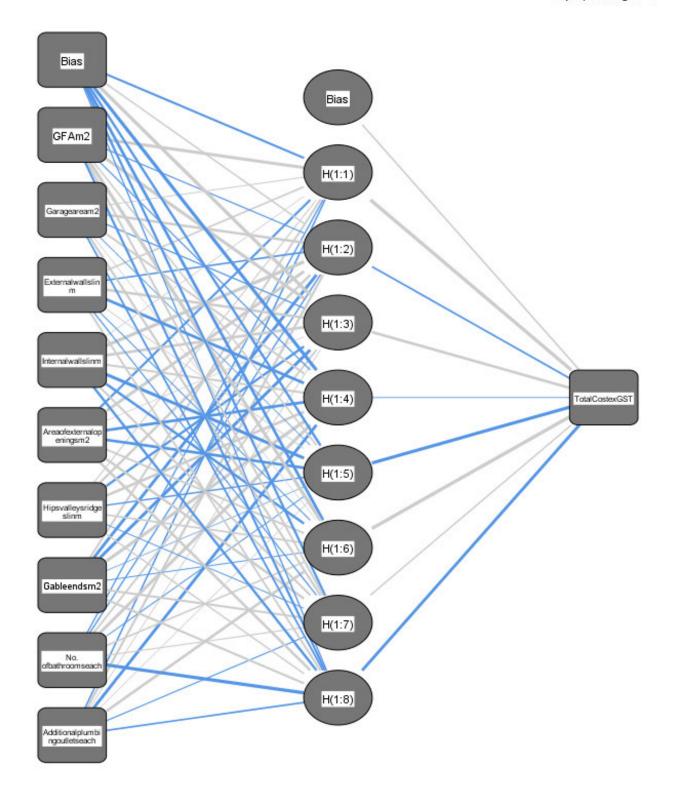
/STOPPINGRULES ERRORSTEPS= 1 (DATA=AUTO) TRAININGTIMER=ON (MAXTIME=15) MAXEPOCHS=AUTO

ERRORCHANGE=1.0E-4 ERRORRATIO=0.001

|                               |                 | /MISSING<br>USERMISSING=EXCLUDE . |
|-------------------------------|-----------------|-----------------------------------|
| Resources                     | Processor Time  | 00:00:03.17                       |
|                               | Elapsed Time    | 00:00:02.78                       |
| Variables Created or Modified | Predicted Value | MLP_PredictedValue                |

[DataSet1] C:\Uni Info\2021 Courses\ENG4111 - Project part 1\Data experiments\Real results\Without cabinetry\Data prior to neural netwiork.sav

# **Case Processing Summary**


|          |          | Ν   | Percent |
|----------|----------|-----|---------|
| Sample   | Training | 119 | 70.0%   |
|          | Testing  | 51  | 30.0%   |
| Valid    |          | 170 | 100.0%  |
| Excluded |          | 20  |         |
| Total    |          | 190 |         |

## **Network Information**

| Input Layer     | Covariates                              | 1        | GFA (m2)                                 |
|-----------------|-----------------------------------------|----------|------------------------------------------|
|                 |                                         | 2        | Garage area (m2)                         |
|                 |                                         | 3        | External walls (lin<br>m)                |
|                 |                                         | 4        | Internal walls (lin<br>m)                |
|                 |                                         | 5        | Area of external openings (m2)           |
|                 |                                         | 6        | Hips / valleys /<br>ridges (lin m)       |
|                 |                                         | 7        | Gable ends (m2)                          |
|                 |                                         | 8        | No. of bathrooms<br>(each)               |
|                 |                                         | 9        | Additional<br>plumbing outlets<br>(each) |
|                 | Number of Units <sup>a</sup>            |          | 9                                        |
|                 | Rescaling Method for Co                 | variates | Standardized                             |
| Hidden Layer(s) | Hidden Layer(s) Number of Hidden Layers |          |                                          |
|                 |                                         |          |                                          |
|                 | Activation Function                     |          | Hyperbolic<br>tangent                    |
| Output Layer    | Dependent Variables                     | 1        | Total Cost ex GST                        |
|                 |                                         | 1        |                                          |
|                 | Rescaling Method for Scale Dependents   |          |                                          |

| Activation Function | Identity       |
|---------------------|----------------|
| Error Function      | Sum of Squares |

a. Excluding the bias unit



Hidden layer activation function: Hyperbolic tangent Output layer activation function: Identity

# Model Summary

| Training | Sum of Squares Error | 2.868                                                              |  |
|----------|----------------------|--------------------------------------------------------------------|--|
|          | Relative Error       | .049                                                               |  |
|          | Stopping Rule Used   | 1 consecutive<br>step(s) with no<br>decrease in error <sup>a</sup> |  |
|          | Training Time        | 0:00:00.02                                                         |  |
| Testing  | Sum of Squares Error | 3.627                                                              |  |
|          | Relative Error       | .087                                                               |  |

Dependent Variable: Total Cost ex GST

a. Error computations are based on the testing sample.

# Appendix O – Radial Basis Function neural network detailed output excluding cabinetry

\*Radial Basis Function Network.

RBF TotalCostexGST (MLEVEL=S) WITH GFAm2 Garageaream2 Externalwallslinm Internalwallslinm

Areaofexternalopeningsm2 Hipsvalleysridgeslinm Gableendsm2 No.ofbathroomseach

Additionalplumbingoutletseach

/RESCALE COVARIATE=STANDARDIZED DEPENDENT=STANDARDIZED

/PARTITION TRAINING=7 TESTING=3 HOLDOUT=0

/ARCHITECTURE MINUNITS=AUTO MAXUNITS=AUTO HIDDENFUNCTION=NRBF

/CRITERIA OVERLAP=AUTO

/PRINT CPS NETWORKINFO SUMMARY

/PLOT NETWORK PREDICTED RESIDUAL

/SAVE PREDVAL

/MISSING USERMISSING=EXCLUDE .

# **Radial Basis Function**

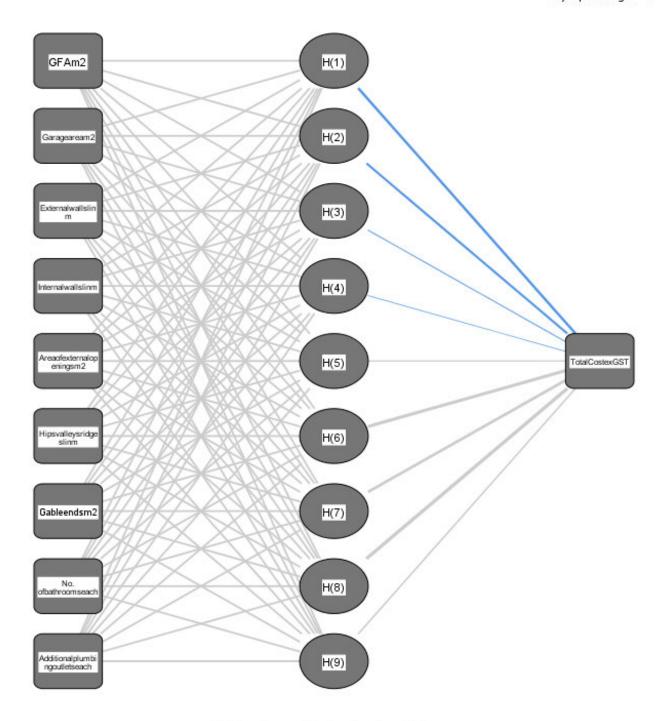
Notes

| Output Created         |                                | 01-AUG-2021 07:34:41                                                                                                                            |
|------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Comments               |                                |                                                                                                                                                 |
| Input                  | Data                           | C:\Uni Info\2021<br>Courses\ENG4111 - Project part<br>1\Data experiments\Real<br>results\Without cabinetry\Data<br>prior to neural netwiork.sav |
|                        | Active Dataset                 | DataSet1                                                                                                                                        |
|                        | Filter                         | <none></none>                                                                                                                                   |
|                        | Weight                         | <none></none>                                                                                                                                   |
|                        | Split File                     | <none></none>                                                                                                                                   |
|                        | N of Rows in Working Data File | 190                                                                                                                                             |
| Missing ∀alue Handling | Definition of Missing          | User- and system-missing values are treated as missing.                                                                                         |
|                        | Cases Used                     | Statistics are based on cases with valid data for all variables used by the procedure.                                                          |
| Weight Handling        |                                | not applicable                                                                                                                                  |

# Syntax

| Syntax                        |                 | Internalwallslinm<br>Areaofexterna<br>Hipsvalleysridge<br>Gableendsm2<br>No.ofbathrooms<br>Additionalplur<br>/RESCALE<br>COVARIATE=S<br>DEPENDENT=S<br>/PARTITION<br>TESTING=3 HO<br>/ARCHITECTU<br>MINUNITS=AUT<br>MAXUNITS=AUT<br>MAXUNITS=AUT<br>HIDDENFUNCT<br>/CRITERIA OV<br>/PRINT CPS<br>SUMMARY | WITH GFAm2<br>Externalwallslinm<br>alopeningsm2<br>slinm<br>each<br>nbingoutletseach<br>TANDARDIZED<br>TRAINING=7<br>DLDOUT=0<br>RE<br>TO<br>DLDOUT=0<br>RE<br>TO<br>ION=NRBF<br>ERLAP=AUTO<br>NETWORKINFO<br>DRK PREDICTED |
|-------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resources                     | Processor Time  |                                                                                                                                                                                                                                                                                                          | 00:00:01.75                                                                                                                                                                                                                 |
|                               | Elapsed Time    |                                                                                                                                                                                                                                                                                                          | 00:00:00.81                                                                                                                                                                                                                 |
| Variables Created or Modified | Predicted Value | RBF_Predicted                                                                                                                                                                                                                                                                                            | /alue                                                                                                                                                                                                                       |

# **Case Processing Summary**


|          |          | Ν   | Percent |
|----------|----------|-----|---------|
| Sample   | Training | 122 | 71.8%   |
|          | Testing  | 48  | 28.2%   |
| Valid    |          | 170 | 100.0%  |
| Excluded |          | 20  |         |
| Total    |          | 190 |         |

# **Network Information**

| Input Layer | Covariates | 1 | GFA (m2)                           |
|-------------|------------|---|------------------------------------|
|             |            | 2 | Garage area (m2)                   |
|             |            | 3 | External walls (lin m)             |
|             |            | 4 | Internal walls (lin m)             |
|             |            | 5 | Area of external openings (m2)     |
|             |            | 6 | Hips / valleys / ridges<br>(lin m) |
|             |            | 7 | Gable ends (m2)                    |
|             |            | 8 | No. of bathrooms<br>(each)         |
|             |            | 9 | Additional plumbing outlets (each) |

|              | Number of Units                       | 9                 |
|--------------|---------------------------------------|-------------------|
|              | Rescaling Method for Covariates       | Standardized      |
| Hidden Layer | Number of Units                       | 9 <sup>a</sup>    |
|              | Activation Function                   | Softmax           |
| Output Layer | Dependent Variables 1                 | Total Cost ex GST |
|              | Number of Units                       | 1                 |
|              | Rescaling Method for Scale Dependents | Standardized      |
|              | Activation Function                   | Identity          |
|              | Error Function                        | Sum of Squares    |

a. Determined by the testing data criterion: The "best" number of hidden units is the one that yields the smallest error in the testing data.



Hidden layer activation function: Softmax Output layer activation function: Identity

# **Model Summary**

| Training | Sum of Squares Error | 7.041              |
|----------|----------------------|--------------------|
|          | Relative Error       | .116               |
|          | Training Time        | 0:00:00.13         |
| Testing  | Sum of Squares Error | 7.184 <sup>a</sup> |
|          | Relative Error       | .312               |

Dependent Variable: Total Cost ex GST

a. The number of hidden units is determined by the testing data criterion: The "best" number of hidden units is the one that yields the smallest error in the testing data.

# Appendix P – Excel framework template

Note that this file has been uploaded separately. If not available please contact Peter Dixon (<u>q1023548@umail.usq.edu.au</u>).

# Appendix Q – Cost X framework template

Note that this file has been uploaded separately. If not available please contact Peter Dixon (<u>q1023548@umail.usq.edu.au</u>).

# Appendix R – Cost X framework worked example

Note that this file has been uploaded separately. If not available please contact Peter Dixon (<u>q1023548@umail.usq.edu.au</u>).

# Appendix S – Example first principle estimate

Please see following pages for this appendix document.

| -          |                                                     | P2021<br>Quantities          |                    |                      |            |    |
|------------|-----------------------------------------------------|------------------------------|--------------------|----------------------|------------|----|
|            |                                                     |                              |                    | 23                   | 3 May      | 12 |
| Job        | 000 EXAMPLE ESTIMATE                                |                              |                    |                      |            |    |
|            |                                                     |                              |                    |                      |            | _  |
|            | PRELIMINARIES                                       |                              |                    |                      |            |    |
|            | Descrip ion                                         | Quantity Units               | Rate               | <u>Amount</u>        | Lv         | _  |
|            | SITE SIGNAGE ALLOWANCE                              | 1 each                       | \$100.00           | \$100.00             | 2          |    |
| 0060       | CONTRACT                                            | 1 each<br>Total 005 PRELIMIN | \$20.00<br>ARIES   | \$20.00<br>\$120.00  | 2          | 2  |
| <u>015</u> | CONSULTANCY FEES                                    |                              |                    |                      |            |    |
| Item       | Descrip ion                                         | Quantity Units               | Rate               | Amount               | <u>Lvi</u> |    |
| 0098       | COLOUR CONSULTANT FEE - STANDARD FEE                | 1\$                          | \$400.00           | \$400.00             | 2          | 2  |
|            |                                                     | Total 015 CONSULTANCY        | FEES               | \$400.00             |            |    |
| <u>030</u> | SOIL TEST                                           |                              |                    |                      |            |    |
|            | Descrip ion                                         | Quantity Units               | Rate               | Amount               | LVI        | -  |
| 0141       | ENGINEER'S SOIL TESTING & SITE CLASSIFICATION       | 1 item<br>Total 030 SOIL     | \$375.00<br>. TEST | \$375.00<br>\$375.00 | 2          | 2  |
| <u>035</u> | ENGINEER                                            |                              |                    |                      |            |    |
| Item       | Descrip ion                                         | Quantity Units               | Rate               | Amount               | Lvi        |    |
| 0142       | SLAB AND FOOTINGS CERTIFICATION                     | 1 item                       | \$600.00           | \$600.00             | 2          | 2  |
| 01432      | INSPECTION ALLOWANCE- BOND BEAM                     | 1 each                       | \$100.00           | \$100.00             | 2          | 2  |
| 0145       | FRAME CERTIFICATION                                 | 1 each                       | \$30.00            | \$30.00              | 2          | 2  |
|            |                                                     | Total 035 ENG                | INEER              | \$730.00             |            |    |
| <u>045</u> | ENERGY EFFICIENCY                                   |                              |                    |                      |            |    |
|            | Descrip ion                                         | Quantity Units               | Rate               | Amount               |            | -  |
| 0358       | ENERGY EFFICIENCY ASSESSMENT                        | 1 item                       | \$120.00           | \$120.00             | 2          | 2  |
|            |                                                     | Total 045 ENERGY EFFIC       | IENCY              | \$120.00             |            |    |
| <u>055</u> | WORKPLACE HEALTH & SAFETY                           |                              |                    |                      |            |    |
|            | Descrip ion                                         | Quantity Units               | Rate               | Amount               |            |    |
| 0170       | WORKPLACE HEALTH & SAFETY OFFICER<br>STANDARD HOUSE | 1 each                       | \$227.27           | \$227.27             | 2          | 2  |
|            | Total 05                                            | 5 WORKPLACE HEALTH & SA      | AFETY              | \$227.27             |            |    |



Page 2 of 21

23 May 2021

Job 000 EXAMPLE ESTIMATE

#### 070 CERTIFICATION AND COUNCIL FEES

| Item | Descrip ion               | Quantity                                 | <u>Units</u> | Rate       | Amount     | Lvl | Ld |  |
|------|---------------------------|------------------------------------------|--------------|------------|------------|-----|----|--|
| 0359 | BUILDING FEES FIXED COSTS |                                          | 1 each       | \$1,700.00 | \$1,700.00 | 2   | 1  |  |
| 0363 | PLAN LODGEMENT FEES       |                                          | 1 item       | \$70.00    | \$70.00    | 2   | 1  |  |
| 0365 | DRIVEWAY PERMIT           |                                          | 1 item       | \$125.00   | \$125.00   | 2   | 1  |  |
|      | Т                         | Total 070 CERTIFICATION AND COUNCIL FEES |              |            |            |     |    |  |

#### 075 COUNCIL FEES - HYDRAULICS

| Item | Descrip ion                               | <u>Quantity</u> | <u>Units</u> | Rate     | Amount            | Lvi | Ld | _ |
|------|-------------------------------------------|-----------------|--------------|----------|-------------------|-----|----|---|
| 0368 | PLUMBING & DRAINAGE PLAN APPROVAL         | 1               | each         | \$278.00 | \$278.00          | 2   | 1  |   |
| 0370 | PLUMBING AND DRAINAGE FEES                | 1               | each         | \$735.00 | \$735.00          | 2   | 1  |   |
| 0375 | WATER METER (INCLUDES SERVICE CONNECTION) | 1               | each         | \$990.00 | \$990.00          | 2   | 1  |   |
|      | Total 075 COUNCIL FEES - HYDRAULICS       |                 |              |          | <b>\$2,003.00</b> |     |    |   |

# 100 SURVEYOR

| Item | Descrip ion           | Quantity           | <u>Units</u> | Rate   | Amount   | Lvl | Ld |
|------|-----------------------|--------------------|--------------|--------|----------|-----|----|
| 0381 | SURVEYOR PS ALLOWANCE | 250 each           |              | \$0.91 | \$227.28 | 2   | 1  |
|      |                       | Total 100 SURVEYOR |              |        | \$227.28 |     |    |

#### 105 EQUIPMENT HIRE

| Item | Descrip ion                       | Quantity Units           | Rate     | Amount     | Lvl | Ld |  |
|------|-----------------------------------|--------------------------|----------|------------|-----|----|--|
| 0385 | CHEMICAL TOILET 8 WEEK HIRE       | 1 each                   | \$450.00 | \$450.00   | 2   | 1  |  |
| 0386 | ADDITIONAL TOILET HIRE (PER WEEK) | 12 each                  | \$27.50  | \$330.00   | 2   | 1  |  |
| 0387 | ADDITIONAL TOILET CLEAN           | 4 each                   | \$70.00  | \$280.00   | 2   | 1  |  |
|      | 1                                 | Total 105 EQUIPMENT HIRE |          | \$1,060.00 |     |    |  |

#### 115 EARTHWORKS

| Item | Descrip ion               | <b>Quantity</b>      | <u>Units</u> | Rate   | Amount   | Lvl | Ld |
|------|---------------------------|----------------------|--------------|--------|----------|-----|----|
| 0451 | EARTHWORKS AREA ALLOWANCE | 156.6 m2             |              | \$2.00 | \$313.20 | 2   | 1  |
|      |                           | Total 115 EARTHWORKS |              |        | \$313.20 |     |    |

#### **130 PLANT MACHINE HIRE**

| Item | Descrip ion                     | Quantity Units | Rate    | Amount   | Lvl | Ld |
|------|---------------------------------|----------------|---------|----------|-----|----|
| 0650 | BOBCAT HIRE -GENERAL            | 9 hour         | \$90.00 | \$810.00 | 2   | 1  |
| 0660 | BOBCAT HIRE - TRENCHING GENERAL | 82.5 lin.m     | \$4.30  | \$354.75 | 2   | 1  |
|      |                                 |                |         |          |     |    |

| -                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2021<br>Quantities                                                                                                                                                                           |                                                                                                                                                                                     | Р                                                                                                                                                                                                  | age      |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                     | 23                                                                                                                                                                                                 | 3 Ma     |
| Job                                                                                                                                | 000 EXAMPLE ESTIMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                                                    |          |
| <u>13(</u>                                                                                                                         | ) PLANT MACHINE HIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                                                    |          |
| Item                                                                                                                               | Descrip ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quantity Units                                                                                                                                                                               | Rate                                                                                                                                                                                | Amount                                                                                                                                                                                             | Lv       |
| 0670                                                                                                                               | BOBCAT TRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 hour                                                                                                                                                                                       | \$90.00                                                                                                                                                                             | \$90.00                                                                                                                                                                                            |          |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total 130 PLANT MACHINE                                                                                                                                                                      | HIRE                                                                                                                                                                                | <b>\$1,254.75</b>                                                                                                                                                                                  |          |
| <u>13</u>                                                                                                                          | <b>5 CONCRETE PUMP FOOTING</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                                                    |          |
| <u>Item</u>                                                                                                                        | Descrip ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quantity Units                                                                                                                                                                               | Rate                                                                                                                                                                                | <u>Amount</u>                                                                                                                                                                                      | L        |
| 0694                                                                                                                               | FOOTING PUMP ALLOWANCE - PER HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 hour                                                                                                                                                                                       | \$180.00                                                                                                                                                                            | \$360.00                                                                                                                                                                                           |          |
|                                                                                                                                    | FOOTING PUMP ALLOWANCE - PER M3 PUMPED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.4 m3                                                                                                                                                                                      | \$9.00                                                                                                                                                                              | \$111.60                                                                                                                                                                                           |          |
| 0696                                                                                                                               | FOOTING PUMP ALLOWANCE - TRAVEL TO SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 hour                                                                                                                                                                                       | \$100.00                                                                                                                                                                            | \$100.00                                                                                                                                                                                           |          |
| 0697                                                                                                                               | FOOTING PUMP ALLOWANCE - OFF SITE DUMPING<br>& PRIMING<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 hour<br>Il 135 CONCRETE PUMP FOO                                                                                                                                                           | \$141.00<br>TING                                                                                                                                                                    | \$141.00<br>\$712.60                                                                                                                                                                               |          |
|                                                                                                                                    | & PRIMING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                                                    |          |
| <u>140</u>                                                                                                                         | & PRIMING<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II 135 CONCRETE PUMP FOO                                                                                                                                                                     | TING                                                                                                                                                                                | \$712.60                                                                                                                                                                                           | Ľ        |
| <u>140</u>                                                                                                                         | & PRIMING<br>Tota<br>D FOOTING / SLAB REINFORCING<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | II 135 CONCRETE PUMP FOO<br>Quantity Units                                                                                                                                                   | TING<br><u>Rate</u>                                                                                                                                                                 | \$712.60<br><u>Amount</u>                                                                                                                                                                          | Ľ        |
| <u>140</u><br><u>Item</u><br>0763                                                                                                  | & PRIMING<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II 135 CONCRETE PUMP FOO                                                                                                                                                                     | TING                                                                                                                                                                                | \$712.60                                                                                                                                                                                           | Ľ        |
| <u>140</u><br><u>Item</u><br>0763<br>0769                                                                                          | & PRIMING<br>Tota<br>D FOOTING / SLAB REINFORCING<br>Descrip ion<br>4 L11TM3 X 6M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each                                                                                                                                        | TING<br><u>Rate</u><br>\$23.42                                                                                                                                                      | \$712.60<br><u>Amount</u><br>\$702.60                                                                                                                                                              | Ľ        |
| <u>Item</u><br>0763<br>0769<br>0773                                                                                                | & PRIMING<br>Tota<br>D FOOTING / SLAB REINFORCING<br>Descrip ion<br>E L11TM3 X 6M<br>N12S6 DBAR 6Mx12mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | II 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each<br>30 each<br>30 each                                                                                                                  | TING<br><u>Rate</u><br>\$23.42<br>\$8.40                                                                                                                                            | \$712.60<br><u>Amount</u><br>\$702.60<br>\$252.00                                                                                                                                                  | Ľ        |
| 140<br>0763<br>0769<br>0773<br>0775<br>0776                                                                                        | & PRIMING<br>Tota<br>DESCTID ION<br>L11TM3 X 6M<br>N12S6 DBAR 6Mx12mm<br>R10 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N16 X 1400 COGGED & HOOKED STARTER BAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each                                                                                             | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34                                                                                                              | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36                                                                                                                      | Ľ        |
| 140<br>0763<br>0769<br>0773<br>0775<br>0776                                                                                        | & PRIMING<br>Tota<br>DESCTID ION<br>LI11TM3 X 6M<br>N12S6 DBAR 6Mx12mm<br>R10 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N16 X 1400 COGGED & HOOKED STARTER BAR<br>N16 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 500 GALVANISED COGGED DOWEL BAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | II 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each                                                                                                      | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84                                                                                                                        | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58                                                                                                                                 | L        |
| <u>ltem</u><br>0763<br>0769<br>0773<br>0775<br>0776<br>0785                                                                        | & PRIMING<br>Tota<br>DESCTID ION<br>L11TM3 X 6M<br>N12S6 DBAR 6Mx12mm<br>R10 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N16 X 1400 COGGED & HOOKED STARTER BAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each                                                                                             | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34                                                                                                              | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36                                                                                                                      | L        |
| 140<br>11em<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803                                                                | & PRIMING<br>Tota<br>DESCTIP ION<br>LITIM3 X 6M<br>N12S6 DBAR 6Mx12mm<br>R10 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N16 X 1400 COGGED & HOOKED STARTER BAR<br>N16 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 500 GALVANISED COGGED DOWEL BAR<br>SB1261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each                                                                                  | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80                                                                                                    | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20                                                                                                          |          |
| 140<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803<br>0814                                                                | & PRIMING<br>Tota<br>DESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION<br>EDESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each<br>13 each                                                                       | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80<br>\$83.52                                                                                         | \$712.60<br><u>Amount</u><br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20<br>\$1,085.76                                                                                     | Ľ        |
| 140<br>item<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815<br>0820                                        | & PRIMING<br>Tota<br><b>DESCIP</b> ION<br><b>DESCIP</b> ION<br>L11TM3 X 6M<br>N12S6 DBAR 6MX12mm<br>R10 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 500 GALVANISED COGGED DOWEL BAR<br>SB1261<br>SL82 MESH SQRE<br>BAR CHAIRS 50/65<br>TMS60- BAR CHAIRS TO SUIT TRENCH MESH (PER<br>BAG OF 25)<br>TIE WIRE- 1.42KG IDLCOILA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I 135 CONCRETE PUMP FOO<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each<br>13 each<br>300 each (per                                                      | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80<br>\$83.52<br>\$0.15                                                                               | \$712.60<br><u>Amount</u><br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20<br>\$1,085.76<br>\$45.00                                                                          | Ľ        |
| 140<br>item<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815<br>0820<br>0831                                | & PRIMING<br>Tota<br>D FOOTING / SLAB REINFORCING<br>Description<br>EL11TM3 X 6M<br>N12S6 DBAR 6Mx12mm<br>R10 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 500 GALVANISED COGGED DOWEL BAR<br>SB1261<br>SL82 MESH SQRE<br>BAR CHAIRS 50/65<br>TMS60- BAR CHAIRS TO SUIT TRENCH MESH (PER<br>BAG OF 25)<br>TIE WIRE- 1.42KG IDLCOILA<br>POLYTHENE 50Mx4M BLACK 200um FB2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quantity Units<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each<br>13 each<br>300 each (per<br>7 each<br>1 roll<br>2 roll                                 | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80<br>\$83.52<br>\$0.15<br>\$7.40<br>\$3.50<br>\$82.00                                                | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20<br>\$1,085.76<br>\$45.00<br>\$51.80<br>\$3.50<br>\$164.00                                                | Ŀ        |
| 140<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815<br>0820<br>0831<br>0840                                | & PRIMING<br>Tota<br><b>DESCRIPTING / SLAB REINFORCING</b><br><b>DESCRIPTION</b><br><b>LITTM3 X 6M</b><br>N12S6 DBAR 6MX12mm<br>R10 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED SLAB TIE SB1014<br>N12 X 1400 COGGED & HOOKED STARTER BAR<br>N16 X 1400 COGGED & HOOKED STARTER BAR<br>N12 X 500 GALVANISED COGGED DOWEL BAR<br>SB1261<br>SL82 MESH SQRE<br>BAR CHAIRS 50/65<br>TMS60- BAR CHAIRS TO SUIT TRENCH MESH (PER<br>BAG OF 25)<br>TIE WIRE- 1.42KG IDLCOILA<br>POLYTHENE 50MX4M BLACK 200um FB2450<br>DUCT POLY TAPE 48mm X 30 mtr TPP30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quantity Units<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each<br>13 each<br>300 each (per<br>7 each<br>1 roll<br>2 roll<br>4 roll                       | TING<br><u>Rate</u><br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80<br>\$83.52<br>\$0.15<br>\$7.40<br>\$3.50<br>\$82.00<br>\$3.50                                      | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20<br>\$1,085.76<br>\$45.00<br>\$51.80<br>\$51.80<br>\$3.50<br>\$164.00<br>\$14.00                          | L        |
| 140<br>140<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815<br>0820<br>0831<br>0840<br>0961                 | & PRIMING<br>Tota<br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b> | Quantity Units<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each<br>13 each<br>300 each (per<br>7 each<br>1 roll<br>2 roll<br>4 roll<br>1 each             | TING<br>Rate<br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80<br>\$83.52<br>\$0.15<br>\$7.40<br>\$3.50<br>\$82.00<br>\$3.50<br>\$82.00<br>\$3.50<br>\$3.50<br>\$100.00  | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20<br>\$1,085.76<br>\$45.00<br>\$51.80<br>\$51.80<br>\$3.50<br>\$164.00<br>\$14.00<br>\$140.00              | L        |
| 140<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815<br>0820<br>0831<br>0840<br>0961<br>1622                | & PRIMING<br>Tota<br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b> | Quantity Units<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each<br>13 each<br>300 each (per<br>7 each<br>1 roll<br>2 roll<br>4 roll<br>1 each<br>36 lin.m | TING<br>Rate<br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80<br>\$83.52<br>\$0.15<br>\$7.40<br>\$83.50<br>\$82.00<br>\$3.50<br>\$82.00<br>\$3.50<br>\$100.00<br>\$1.35 | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20<br>\$1,085.76<br>\$45.00<br>\$51.80<br>\$3.50<br>\$164.00<br>\$14.00<br>\$140.00<br>\$140.00<br>\$148.60 | L        |
| 140<br>140<br>0763<br>0769<br>0773<br>0775<br>0776<br>0785<br>0803<br>0814<br>0815<br>0820<br>0831<br>0840<br>0961<br>1622<br>1624 | & PRIMING<br>Tota<br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b><br><b>DESCIP</b> | Quantity Units<br>Quantity Units<br>30 each<br>30 each<br>116 each<br>54 each<br>4 each<br>44 each<br>13 each<br>300 each (per<br>7 each<br>1 roll<br>2 roll<br>4 roll<br>1 each             | TING<br>Rate<br>\$23.42<br>\$8.40<br>\$1.58<br>\$2.84<br>\$4.34<br>\$2.80<br>\$83.52<br>\$0.15<br>\$7.40<br>\$3.50<br>\$82.00<br>\$3.50<br>\$82.00<br>\$3.50<br>\$3.50<br>\$100.00  | \$712.60<br>Amount<br>\$702.60<br>\$252.00<br>\$183.28<br>\$153.58<br>\$17.36<br>\$123.20<br>\$1,085.76<br>\$45.00<br>\$51.80<br>\$51.80<br>\$3.50<br>\$164.00<br>\$14.00<br>\$140.00              | <u>1</u> |

| Item | Descrip ion            | Quantity                   | <u>Units</u> | Rate     | Amount     | Lvl | Ld |
|------|------------------------|----------------------------|--------------|----------|------------|-----|----|
| 0970 | FOOTING CONCRETE 20/20 | 12.4                       | l m3         | \$150.00 | \$1,860.00 | 2   | 1  |
|      |                        | Total 145 FOOTING CONCRETE |              |          | \$1,860.00 |     |    |



# ERP2021 Bill of Quantities

Page 4 of 21

23 May 2021

Job 000

EXAMPLE ESTIMATE

#### 160 PLUMBER - DRAINS

| Item | Descrip ion                                                         | Quantity     | <u>(</u> | Units        | Rate       | <u>Amount</u>      | Lvl | Ld |  |
|------|---------------------------------------------------------------------|--------------|----------|--------------|------------|--------------------|-----|----|--|
| 1071 | DRAINAGE 45M UP TO 8 POINTS SINGLE FLOOR<br>SLAB ON GROUND DWELLING |              | 1 e      | ach S        | \$2,600.00 | \$2,600.00         | 2   | 1  |  |
| 1073 | ADDITIONAL DRAINAGE POINTS                                          | -            | -1 e     | ach          | \$40.00    | -\$40.00           | 2   | 1  |  |
| 1075 | DRAINAGE TO ENSUITE                                                 |              | 1 e      | ach          | \$200.00   | \$200.00           | 2   | 1  |  |
| 1076 | EXTRA FOR ISLAND BENCH PLUMBING                                     |              | 1 e      | ach          | \$150.00   | \$150.00           | 2   | 1  |  |
| 1196 | DRAINAGE POINT FOR AC CONDENSATE TO 5M                              | 4            | 4 e      | ach          | \$0.00     | \$0.00             | 2   | 1  |  |
|      |                                                                     | Total 160 Pl | LUI      | MBER - DRAIN | IS         | <b>\$2,</b> 910.00 |     |    |  |

#### 165 TERMITE TREATMENT

| Item | Descrip ion                               | Quantity Units              | Rate    | Amount            | Lvi | Ld |
|------|-------------------------------------------|-----------------------------|---------|-------------------|-----|----|
| 1223 | TERMITE PROTECTION TO PENETRATIONS (EACH) | 19 each                     | \$16.00 | \$304.00          | 2   | 1  |
| 1225 | TERMITE PROTECTION - TREATMENT TO PIERS   | 4 each                      | \$20.00 | \$80.00           | 2   | 1  |
| 1226 | TERMITE PROTECTION - PERIMETER TREATMENT  | 117.3 lin m                 | \$17.50 | \$2,052.75        | 2   | 1  |
|      |                                           | Total 165 TERMITE TREATMENT |         | <b>\$2,436.75</b> |     |    |

#### 170 SAND AND GRAVEL

| Item | Descrip ion                 | <b>Quantity</b>           | <u>Units</u> | Rate    | Amount            | Lvl | Ld |
|------|-----------------------------|---------------------------|--------------|---------|-------------------|-----|----|
| 1241 | SCREENED DECO INCL DELIVERY | 60                        | ) m3         | \$30.26 | <b>\$1,815.60</b> | 2   | 1  |
|      |                             | Total 170 SAND AND GRAVEL |              |         | <b>\$1,815.60</b> |     |    |

#### 180 SLAB FINISHER

\_

| Item  | Descrip ion                                              | Quantity                | <u>Units</u> | Rate    | Amount            | Lvi | Ld |
|-------|----------------------------------------------------------|-------------------------|--------------|---------|-------------------|-----|----|
| 1068  | FORM SHOWER / BATHROOM RECESS IN SLAB                    | 2                       | each         | \$75.00 | \$150.00          | 2   | 1  |
| 1069  | FORM SLIDING GLASS DOOR REBATE IN SLAB                   | 1                       | each         | \$60.00 | \$60.00           | 2   | 1  |
| 13152 | SETOUT, SAND, STEEL, PLACE AND FINISH SLAB 'H1'<br>CLASS | 156.6                   | 6 m2         | \$28.00 | <b>\$4,384.80</b> | 2   | 1  |
|       |                                                          | Total 180 SLAB FINISHER |              | t       | \$4,594.80        |     |    |

#### 185 SLAB CONCRETE

| Item | Descrip ion             | Quantity Units     | Rate       | Amount     | Lvl | Ld |
|------|-------------------------|--------------------|------------|------------|-----|----|
| 1320 | CONCRETE 20MPA 20MM AGG | 42.4 m3            | \$150.00   | \$6,360.00 | 2   | 1  |
|      |                         | Total 185 SLAB CON | \$6,360.00 |            |     |    |



Page 5 of 21

23 May 2021

Job 000

EXAMPLE ESTIMATE

# 190 CONCRETE PUMP SLAB

| Item  | Descrip ion                                             | Quantity Units               | Rate     | <u>Amount</u> | Lvi | Ld |
|-------|---------------------------------------------------------|------------------------------|----------|---------------|-----|----|
| 13250 | CONCRETE PUMP ALLOWANCE - PER HOUR                      | 4.25 hour                    | \$180.00 | \$765.00      | 2   | 1  |
| 13252 | CONCRETE PUMP ALLOWANCE - PER M3 PUMPED                 | 42.4 m3                      | \$9.00   | \$381.60      | 2   | 1  |
| 13254 | CONCRETE PUMP ALLOWANCE - TRAVEL TO SITE                | 1 hour                       | \$100.00 | \$100.00      | 2   | 1  |
| 13255 | CONCRETE PUMP ALLOWANCE - OFF SITE<br>DUMPING & PRIMING | 1 hour                       | \$141.00 | \$141.00      | 2   | 1  |
|       |                                                         | Total 190 CONCRETE PUMP SLAB |          | \$1,387.60    |     |    |

#### 200 BLOCK LAYER

| Item  | Descrip ion                                   | Quantity Units        | Rate    | <u>Amount</u> | Lvl | Ld |
|-------|-----------------------------------------------|-----------------------|---------|---------------|-----|----|
| 13301 | LAY 200 SERIES BLOCKS FOR BASE                | 619 each              | \$3.30  | \$2,042.70    | 2   | 1  |
| 1331  | LAY 200 SERIES BLOCKS                         | 1590 each             | \$3.30  | \$5,247.00    | 2   | 1  |
| 1334  | EXTRA FOR CUTS                                | 4 each                | \$3.30  | \$13.20       | 2   | 1  |
| 1340  | HEADS FOR WINDOWS, DOORS & LINTELS UP TO 5.6M | 14 each               | \$10.00 | \$140.00      | 2   | 1  |
| 1341  | PROPS FOR OPENINGS >2.0M                      | 5 each                | \$10.00 | \$50.00       | 2   | 1  |
|       |                                               | Total 200 BLOCK LAYER |         | \$7,492.90    |     |    |

# 202 CONCRETE MASONARY

| Item | Descrip ion                            | Quantity Units              | Rate    | <u>Amount</u>   | Lv | Ld |
|------|----------------------------------------|-----------------------------|---------|-----------------|----|----|
| 1391 | 20.01 STANDARD                         | 892 each                    | \$2.20  | \$1,962.40      | 2  | 1  |
| 1391 | 20.01 STANDARD                         | 207 each                    | \$2.20  | \$455.40        | 2  | 2  |
| 1392 | 20.02 THREE QUARTER                    | 10 each                     | \$2.20  | \$22.00         | 2  | 1  |
| 1393 | 20.03 HALF                             | 70 each                     | \$2.20  | \$154.00        | 2  | 1  |
| 1401 | 20.12 LINTEL                           | 62 each                     | \$2.20  | \$136.40        | 2  | 1  |
| 1404 | 20.16 LINTEL/ KNOCK OUT                | 9 each                      | \$2.20  | \$19.80         | 2  | 1  |
| 1406 | 20.20 K/OUT BOND BEAM                  | 303 each                    | \$2.20  | \$666.60        | 2  | 1  |
| 1406 | 20.20 K/OUT BOND BEAM                  | 207 each                    | \$2.20  | \$455.40        | 2  | 2  |
| 1407 | 20.21 K/O B/BEAM CORNER                | 18 each                     | \$2.20  | \$39.60         | 2  | 1  |
| 1412 | 15.38 SILL 1/2 HEIGHT                  | 60 each                     | \$2.20  | \$132.00        | 2  | 1  |
| 1422 | 20.71 STANDARD 1/2 HEIGHT              | 105 each                    | \$2.20  | \$231.00        | 2  | 1  |
| 1422 | 20.71 STANDARD 1/2 HEIGHT              | 207 each                    | \$2.20  | \$455.40        | 2  | 2  |
| 1424 | 20.73 HALF 1/2 HEIGHT                  | 7 each                      | \$2.20  | \$15.40         | 2  | 1  |
| 1425 | 30.02 THREE QUARTER                    | 56 each                     | \$3.30  | <b>\$184.80</b> | 2  | 1  |
| 1544 | STANDARD HOUSE TAKE-OFF COST PER FLOOR | 1 each                      | \$35.00 | \$35.00         | 2  | 1  |
|      |                                        | Total 202 CONCRETE MASONARY |         | \$4,965.20      |    |    |

# 205 BOND BEAM STEEL

| Item | Descrip ion       | Quantity Units | Rate    | Amount   | Lvi | Ld |
|------|-------------------|----------------|---------|----------|-----|----|
| 1605 | N12 DBAR X 6000MM | 22 each        | \$7.00  | \$154.00 | 2   | 1  |
| 1607 | N16 DBAR X 6000MM | 8 each         | \$13.30 | \$106.40 | 2   | 1  |



Page 6 of 21

23 May 2021

Job

EXAMPLE ESTIMATE

#### 205 BOND BEAM STEEL

000

| Item   | Descrip ion                           | Quantity    | <u>Units</u> | Rate     | Amount     | LvI | Ld |  |
|--------|---------------------------------------|-------------|--------------|----------|------------|-----|----|--|
| 1612   | N12 x 2500MM X 200mm WALL BARS WB1225 | 1           | 8 each       | \$5.08   | \$40.62    | 2   | 1  |  |
| 16121  | N12 x 2600MM X 200mm WALL BARS WB1226 | 4           | 6 each       | \$5.42   | \$249.26   | 2   | 1  |  |
| 1618   | N16 x 2600MM x 200mm WALL BARS WB1626 |             | 4 each       | \$9.42   | \$37.69    | 2   | 1  |  |
| 1630   | N12 600 X 600 CORNER BAR CB1206       | 1           | 8 each       | \$1.81   | \$32.51    | 2   | 1  |  |
| 1635   | R8 X 230MM HOOK BAR                   | 2           | 5 each       | \$0.76   | \$19.00    | 2   | 1  |  |
| 1636   | R8 X 430MM HOOK BAR                   | 17          | 4 each       | \$0.94   | \$163.02   | 2   | 1  |  |
| 1642   | BOND BEAM BLOCK OUT PLATES (BAG 100)  | :           | 2 bag        | \$62.22  | \$124.44   | 2   | 1  |  |
| 164206 | BOND BEAM STEEL DELIVERY              |             | 1 each       | \$108.00 | \$108.00   | 2   | 1  |  |
|        |                                       | Total 205 B | OND BEAM STE | EL       | \$1,034.94 |     |    |  |

#### 212 TRUSS TIE DOWNS

| Item  | Descrip ion                                | Quantity Units            | Rate   | Amount   | Lvi | Ld |
|-------|--------------------------------------------|---------------------------|--------|----------|-----|----|
| 16430 | 200 X 50 X 6MM HOT DIPPED GAL TRUSS PLATES | 82 each                   | \$1.70 | \$139.40 | 2   | 1  |
|       |                                            | Total 212 TRUSS TIE DOWNS |        | \$139.40 |     |    |

#### 216 BOND BEAM PUMP

| <u>Item</u> | Descrip ion                                              | Quantity Units         | Rate     | <u>Amount</u> | LvI | Ld |  |
|-------------|----------------------------------------------------------|------------------------|----------|---------------|-----|----|--|
| 1690        | CONCRETE PUMP ALLOWANCE COLUMNS                          | 4 each                 | \$15.00  | \$60.00       | 2   | 1  |  |
| 169900      | BOND BEAM PUMP ALLOWANCE - PER HOUR                      | 1.75 hour              | \$180.00 | \$315.00      | 2   | 1  |  |
| 169902      | BOND BEAM PUMP ALLOWANCE - PER M3 PUMPED                 | 7.2 m3                 | \$9.00   | \$64.80       | 2   | 1  |  |
| 169904      | BOND BEAM PUMP ALLOWANCE - TRAVEL TO SITE                | 1 hour                 | \$100.00 | \$100.00      | 2   | 1  |  |
| 169906      | BOND BEAM PUMP ALLOWANCE - OFF SITE<br>DUMPING & PRIMING | 1 hour                 | \$141.00 | \$141.00      | 2   | 1  |  |
|             |                                                          | Total 216 BOND BEAM PU | IMP      | \$680.80      |     |    |  |

# 218 BOND BEAM CONCRETE

| <u>Item</u> | Descrip ion              | Quantity Units               | Rate     | <u>Amount</u> | Lvl | Ld |
|-------------|--------------------------|------------------------------|----------|---------------|-----|----|
| 1710        | BOND BEAM CONCRETE 20/10 | 7.2 m3                       | \$162.00 | \$1,166.40    | 2   | 1  |
|             |                          | Total 218 BOND BEAM CONCRETE |          | \$1,166.40    |     |    |

#### 223 ELECTRICIAN

\_

| ltem | Descrip ion                     | Quantity Units | <u>Rate</u> | Amount   | LvI | Ld |
|------|---------------------------------|----------------|-------------|----------|-----|----|
| 1910 | UNDERGROUND MAINS TO 15M        | 1 each         | \$250.00    | \$250.00 | 2   | 1  |
| 1913 | SWITCHBOARD                     | 1 each         | \$500.00    | \$500.00 | 2   | 1  |
| 1915 | CONNECT HWS                     | 1 each         | \$120.00    | \$120.00 | 2   | 1  |
| 1916 | CONNECT STOVE OR OVEN & COOKTOP | 1 each         | \$160.00    | \$160.00 | 2   | 1  |
|      |                                 |                |             |          |     |    |

Page 7 of 21



# ERP2021 Bill of Quantities

23 May 2021

Job 000 EXAMPLE ESTIMATE

# 223 ELECTRICIAN

| Item   | Descrip ion                               | Quantity Units   | Rate     | Amount           | Lvl | Ld |
|--------|-------------------------------------------|------------------|----------|------------------|-----|----|
| 1918   | LIGHT POINT                               | 26 each          | \$50.00  | \$1,300.00       | 2   | 1  |
| 1933   | FAN POINT                                 | 6 each           | \$55.00  | \$330.00         | 2   | 1  |
| 19331  | EXHAUST FAN WIRE & FIT-                   | 2 each           | \$80.00  | \$160.00         | 2   | 1  |
| 193311 | EXTRA FOR DUCTED / VENTILATED EXHAUST FAN | 2 each           | \$140.00 | \$280.00         | 2   | 1  |
| 1939   | 2 WAY SWITCH                              | 2 each           | \$40.00  | \$80.00          | 2   | 1  |
| 1940   | DIMMER SWITCH                             | 1 each           | \$130.00 | \$130.00         | 2   | 1  |
| 1942   | DOOR BELL SUPPLY WIRE & FIT               | 1 each           | \$200.00 | \$200.00         | 2   | 1  |
| 1945   | SUPPLY WIRE & FIT SMOKE DETECTOR          | 6 each           | \$90.00  | \$540.00         | 2   | 1  |
| 1950   | TV AERIAL & BRACKET ONLY                  | 1 each           | \$135.00 | \$135.00         | 2   | 1  |
| 1951   | TV POINTS                                 | 2 each           | \$55.00  | <b>\$</b> 110.00 | 2   | 1  |
| 19571  | SPLIT SYSTEM AC CONNECTION INCL ISOLATOR  | 4 each           | \$180.00 | \$720.00         | 2   | 1  |
| 1961   | DPP 10A                                   | 25 each          | \$65.00  | \$1,625.00       | 2   | 1  |
| 1963   | EXTRA FOR WEATHERPROOF POWER POINT        | 2 each           | \$25.00  | \$50.00          | 2   | 1  |
| 1968   | LEAD IN & INITIAL TELEPHONE POINT         | 1 each           | \$465.00 | \$465.00         | 2   | 1  |
| 19682  | DATA POINT                                | 2 each           | \$55.00  | \$110.00         | 2   | 1  |
| 19780  | CONDUIT ONLY FOR FUTURE SOLAR SYSTEM      | 1 each           | \$50.00  | \$50.00          | 2   | 1  |
| 198000 | EXTRA TO CONNECT CIRCUIT TO TARIFF 33     | 1 each           | \$250.00 | \$250.00         | 2   | 1  |
|        |                                           | Total 223 ELECTR | ICIAN    | \$7,565.00       |     |    |

#### 230 RENDER AND APPLIED FINISHES

| Item       | Descrip ion                          | Quantity             | Units           | Rate     | <u>Amount</u>    | Lvi        | <u>Ld</u> |
|------------|--------------------------------------|----------------------|-----------------|----------|------------------|------------|-----------|
| 1986       | 2 COAT ACRYLIC RENDER TO EXTERNAL WA | LS 151               | .6 m2           | \$21.00  | \$3,183.60       | 2          | 1         |
|            |                                      | Total 230 RENDER AND | APPLIED FINISHE | ES       | \$3,183.60       |            |           |
| <u>235</u> | SCAFFOLDING                          |                      |                 |          |                  |            |           |
| Item       | Descrip ion                          | Quantity             | <u>Units</u>    | Rate     | Amount           | Lvi        | Ld        |
| 03995      | BOND BEAM SCAFFOLD ALLOWANCE         | 56                   | .6 lin.m        | \$5.50   | \$311.30         | 2          | 1         |
|            |                                      | Total 2              | 35 SCAFFOLDIN   | IG       | \$311.30         |            |           |
| <u>255</u> | CRANE HIRE                           |                      |                 |          |                  |            |           |
| Item       | Descrip ion                          | Quantity             | <u>Units</u>    | Rate     | <u>Amount</u>    | Lvl        | Ld        |
| 0700       | CRANE HIRE- TRUSSES & BEAMS          | 3.2                  | 25 hour         | \$195.00 | \$633.75         | 2          | 1         |
|            |                                      | Tota                 | 1 255 CRANE HIF | RE       | <b>\$</b> 633.75 |            |           |
| <u>260</u> | <u>TRUSSES</u>                       |                      |                 |          |                  |            |           |
| Item       | Descrip ion                          | Quantity             | <u>Units</u>    | Rate     | <u>Amount</u>    | <u>Lvl</u> | Ld        |



Page 8 of 21

23 May 2021

Job 000 EXAMPLE ESTIMATE

#### 260 TRUSSES

| Item | Descrip ion                                         | Quantity Units | Rate    | Amount             | LvI | Ld |
|------|-----------------------------------------------------|----------------|---------|--------------------|-----|----|
| 2021 | TRUSS ALLOWANCE /M2 TIMBER N2/C1 20 DEGREE<br>PITCH | 156.6 m2       | \$19.00 | <b>\$2,</b> 975.40 | 2   | 1  |
| 2022 | ALLOWANCE FOR EAVES                                 | 18.84 m2       | \$3.60  | \$67.82            | 2   | 1  |
| 2023 | EXTRA FOR 5 DEG PITCH INCREASE                      | 78.32 m2       | \$3.60  | \$281.95           | 2   | 1  |
| 2026 | EXTRA FOR TRUSSES WITH SPAN > 10M                   | 156.6 m2       | \$6.00  | \$939.60           | 2   | 1  |
|      |                                                     | Total 260 TRUS | SES     | \$4,264.78         |     |    |

#### 270 NON-STRUCTURAL FRAMING TIMBER

| <u>Item</u> | Descrip ion                             | Quantity Units            | Rate     | <u>Amount</u>      | LvI | Ld |
|-------------|-----------------------------------------|---------------------------|----------|--------------------|-----|----|
| 21075       | F5 (MGP7) PINE 70 X 35MM STUDS X 2.7M   | 100 each                  | \$6.01   | \$601.00           | 2   | 1  |
| 21081       | MGP10 PINE 70 X 45MM PLATES             | 10.8 lin m                | \$2.98   | \$32.18            | 2   | 1  |
| 21085       | F5 (MGP7) PINE 70 X 35MM PLATES         | 102.6 lin m               | \$2.01   | \$206.23           | 2   | 1  |
| 21102       | MGP10 PINE 90 X 35MM STUDS              | 54 lin m                  | \$2.60   | \$140.40           | 2   | 1  |
| 21104       | MGP10 PINE 90 X 35MM PLATES             | 21.6 lin m                | \$2.60   | \$56.16            | 2   | 1  |
| 2182        | BRACEPLY 2745 X 900 X 4.0MM HWD F27     | 4 sheet                   | \$20.75  | \$83.00            | 2   | 1  |
| 21980       | CAVITY SLD DOOR UNIT EVOLUTION 2040X820 | 2 each                    | \$119.70 | \$239.40           | 2   | 1  |
| 2310        | DELIVER WALL FRAMING                    | 1 each                    | \$95.00  | \$95.00            | 2   | 1  |
|             | Total 270 NC                            | N-STRUCTURAL FRAMING TIMB | ER       | <b>\$1,4</b> 53.37 |     |    |

275 STRUCTURAL FRAMING TIMBER

| Item  | Descrip ion                                 | Quantity Units       | Rate    | Amount          | Lvl | Ld |
|-------|---------------------------------------------|----------------------|---------|-----------------|-----|----|
| 2103  | MGP12 PINE 70 X 45MM STUDS X 2.7M           | 17 each              | \$9.45  | \$160.65        | 2   | 1  |
| 2104  | MGP12 PINE 70 X 35MM PLATES                 | 27 lin m             | \$2.95  | \$79.65         | 2   | 1  |
| 2104  | MGP12 PINE 70 X 35MM PLATES                 | 48.6 lin m           | \$2.95  | \$143.37        | 2   | 2  |
| 21041 | MGP12 PINE 70 X 35MM STUDS                  | 10.8 lin m           | \$3.06  | \$33.05         | 2   | 1  |
| 21089 | MGP12 PINE 90 X 35MM STUDS                  | 37.8 lin m           | \$3.79  | \$143.26        | 2   | 1  |
| 2109  | MGP12 PINE 90 X 35MM PLATES                 | 10.8 lin m           | \$3.86  | \$41.69         | 2   | 1  |
| 2109  | MGP12 PINE 90 X 35MM PLATES                 | 27 lin m             | \$3.86  | \$104.22        | 2   | 2  |
| 2110  | MGP12 PINE 90 X 45MM PLATES                 | 16.2 lin m           | \$5.54  | \$89.75         | 2   | 1  |
| 2182  | BRACEPLY 2745 X 900 X 4.0MM HWD F27         | 2 sheet              | \$20.75 | \$41.50         | 2   | 1  |
| 2269  | SMART LVL15 170 X 35                        | 1.2 lin m            | \$13.73 | \$16.48         | 2   | 1  |
| 2303  | SMART LVL15 150 X 58                        | 6.3 lin m            | \$21.38 | \$134.69        | 2   | 1  |
| 2318  | PINE 42 X 35MM UNDER EAVE PINE BATTEN FJ F7 | 86.4 lin m           | \$1.77  | \$152.93        | 2   | 1  |
| 2319  | METAL CEILING BATTENS- (6.1m X FURRING      | 451.4 lin m          | \$0.86  | \$388.20        | 2   | 1  |
|       | CHANNEL)                                    |                      |         |                 |     |    |
| 2340  | DELIVER STRUCTURAL T MBER                   | 1 each               | \$95.00 | <b>\$</b> 95.00 | 2   | 1  |
|       | Total 275 ST                                | RUCTURAL FRAMING TIM | BER     | \$1,624.44      |     |    |

285 FC SHEETING / CLADDING

| Item Descrip ion | Quantity | <u>Units</u> | Rate | Amount | Lvi | Ld |
|------------------|----------|--------------|------|--------|-----|----|
|                  |          |              |      |        |     |    |



\_

# ERP2021 Bill of Quantities

23 May 2021

000 EXAMPLE ESTIMATE Job

#### 285 FC SHEETING / CLADDING

| Item   | Descrip ion                                         | Quantity Units                   | Rate    | Amount     | LvI | Ld |
|--------|-----------------------------------------------------|----------------------------------|---------|------------|-----|----|
| 2317   | F5 PINE 70 X 35MM NOGGIN                            | 43.2 lin m                       | \$2.58  | \$111.46   | 2   | 1  |
| 2525   | PINE 42 X 35MM UNDER EAVE BATTEN                    | 172.8 lin m                      | \$1.65  | \$285.12   | 2   | 1  |
| 25257  | 31 X 12MM DAR MOULDING                              | 70.2 lin m                       | \$0.75  | \$52.65    | 2   | 1  |
| 2530   | HARDIFLEX M2 RATE 6.0MM                             | 13.32 m2                         | \$12.41 | \$165.30   | 2   | 1  |
| 2536   | HARDIFLEX 2400X600X4 5MM EAVES SHEET                | 22 sheet                         | \$11.72 | \$257.84   | 2   | 1  |
| 2547   | PVC JOINER STRIP 4.5 X 3000MM                       | 5 each                           | \$1.69  | \$8.45     | 2   | 1  |
| 2548   | PVC JOINER STRIP 6.0 X 3000MM                       | 5 each                           | \$3.59  | \$17.95    | 2   | 1  |
| 2552   | SUPPLY WINDOW/DOOR HEAD FLASHING                    | 7.2 lin m                        | \$8.27  | \$59.54    | 2   | 2  |
| 2576   | HARDIPLANK SMOOTH 4200X230MM                        | 27 sheet                         | \$16.67 | \$450.09   | 2   | 1  |
| 25767  | HARDIES CORNER FLASHING 75X75MM - 3M<br>LENGTHS     | 2 each                           | \$23.01 | \$46.02    | 2   | 1  |
| 257691 | HARDIES ALUMINIUM SNAP ON CORNER 2 PART - 3M LENGTH | 3 each                           | \$39.30 | \$117.90   | 2   | 1  |
| 2581   | 32 X19 PRE PRIMED PINE STOP                         | 21.6 lin m                       | \$1.63  | \$35.16    | 2   | 1  |
| 2599   | DELIVERY BODY TRUCK                                 | 1 each                           | \$95.00 | \$95.00    | 2   | 1  |
|        |                                                     | Total 285 FC SHEETING / CLADDING | G       | \$1,702.49 |     |    |

# 290 FRAME HARDWARE

| Item  | Descrip ion                                              | <u>Quantity</u> Units | Rate     | <u>Amount</u>   | Lvl | Ld |
|-------|----------------------------------------------------------|-----------------------|----------|-----------------|-----|----|
| 2210  | M12 X 3000 THREADED CYCLONE ROD GAL                      | 16 each               | \$5.58   | \$89.23         | 2   | 1  |
| 2212  | NUTS M12 & SQUARE WASHERS GAL                            | 16 each               | \$0.86   | \$13.76         | 2   | 1  |
| 2235  | DYNABOLT M12 X 99MM                                      | 4 each                | \$1.39   | \$5.56          | 2   | 1  |
| 2344  | MISCELLANEOUS HARDWARE ALLOWANCE                         | 1 each                | \$300.00 | \$300.00        | 2   | 1  |
| 2348  | BATTEN SCREWS 14-10x75mm ZP (BOX 100) T17                | 1 box                 | \$30.00  | \$30.00         | 2   | 1  |
| 2350  | BUILDING PAPER 60M X 1350MM ANTI GLARE                   | 1 each                | \$90.00  | \$90.00         | 2   | 1  |
| 2351  | FOIL FIX STRIP (PER BOX 10)                              | 7 box                 | \$8.50   | \$59.50         | 2   | 1  |
| 2355  | PORTA STRAP 30MM X 1MM X 30M ROLL                        | 1 each                | \$22.34  | \$22.34         | 2   | 1  |
| 2358  | LOOPED CYCLONE STRAPS X600MM EACH                        | 6 each                | \$0.72   | \$4.32          | 2   | 1  |
| 2360  | MULTI- GRIPS 100 X 35MM                                  | 100 each              | \$0.36   | \$36.00         | 2   | 1  |
| 23610 | CHEMSET 101 INJECTION C101C - 380mL TUBE                 | 1 each                | \$22.50  | \$22.50         | 2   | 1  |
| 2362  | M12 CHEMSET STUD ANCHOR                                  | 10 each (per          | \$1.14   | <b>\$11.4</b> 0 | 2   | 1  |
| 23631 | M12 X 65MM CUP HEAD BOLTS GAL INCL NUT AND WASHER        | 64 each               | \$1.27   | \$81.28         | 2   | 1  |
| 23726 | M16 X 75MM HEX HEAD BOLTS GAL GAL INCL NUT<br>AND WASHER | 5 each                | \$0.86   | \$4.30          | 2   | 1  |
|       |                                                          | Total 290 FRAME HARDW | ARE      | \$770.19        |     |    |

#### 298 EXTERNAL FRAME CARPENTER

| Item | Descrip ion                                                  | Quantity Units | Rate   | Amount     | Lvl | Ld |
|------|--------------------------------------------------------------|----------------|--------|------------|-----|----|
| 2605 | SET UP BOND BEAM AND POUR                                    | 56.6 lin.m     | \$5.00 | \$283.00   | 2   | 1  |
| 2608 | EXTRA TO STAND TRUSSES AND BATTEN FOR<br>SPANS 8.0M AND OVER | 156.6 m2       | \$1.10 | \$172.26   | 2   | 1  |
| 2609 | STAND & BRACE TRUSSES ONLY-BATTENS BY<br>OTHERS              | 156.6 m2       | \$6.60 | \$1,033.56 | 2   | 1  |

c2020 Databuild www.databuild.com.au 2.63.1 C:\Databuild\Reports\C10dbill.rpt Peter D 10:13

Page 9 of 21



Page 10 of 21

23 May 2021

Job 000 EXAMPLE ESTIMATE

#### 298 EXTERNAL FRAME CARPENTER

| Item | Descrip ion                                                                        | Quantity Units             | Rate    | Amount     | Lvl | Ld |
|------|------------------------------------------------------------------------------------|----------------------------|---------|------------|-----|----|
| 2613 | GABLE END CONSTRUCTION                                                             | 22.8 m2                    | \$19.80 | \$451.44   | 2   | 1  |
| 2623 | FABRICATE & STAND EXTERNAL/ INTERNAL LOAD<br>BEARING WALL FRAMES INCL CYCLONE RODS | 10 lin.m                   | \$26.40 | \$264.00   | 2   | 1  |
|      | Total 298                                                                          | B EXTERNAL FRAME CARPENTER |         | \$2,204.26 |     |    |

#### 300 INTERNAL FRAME CARPENTER

| Item                               | Descrip ion                            | Quantity Units | Rate    | Amount     | LvI | Ld |
|------------------------------------|----------------------------------------|----------------|---------|------------|-----|----|
| 2622                               | FABRICATE & STAND INTERNAL WALL FRAMES | 39.5 lin.m     | \$22.00 | \$869.00   | 2   | 1  |
| 2634                               | INSTALL METAL CEILING BATTENS          | 156.6 m2       | \$1.40  | \$219.24   | 2   | 1  |
| 2636                               | PLY BRACING INSTALLATION               | 6 sheet        | \$13.20 | \$79.20    | 2   | 1  |
| 26361                              | TIMBER BRACE WALL CONSTRUCTION         | 2 each         | \$0.00  | \$0.00     | 2   | 1  |
| 2680                               | FIX NOGGIN                             | 1 each         | \$16.50 | \$16.50    | 2   | 1  |
| Total 300 INTERNAL FRAME CARPENTER |                                        |                |         | \$1,183.94 |     |    |

# 320 ROOF SUNDRIES

| Item Descrip ior |                         | Quantity                | <u>Units</u> | Rate   | <u>Amount</u> | LV | Ld |
|------------------|-------------------------|-------------------------|--------------|--------|---------------|----|----|
| 2724 SUPPLY &    | INSTALL PINK BATTS R2.5 | 134.28                  | 3 m2         | \$5.68 | \$762.71      | 2  | 1  |
|                  |                         | Total 320 ROOF SUNDRIES |              |        | \$762.71      |    |    |

#### 325 ROOF CONTRACTOR

| Item  | Descrip ion                                                      | Quantity Units          | Rate    | Amount      | <u>Lvi</u> i | <u>_d</u> |
|-------|------------------------------------------------------------------|-------------------------|---------|-------------|--------------|-----------|
| 2701  | SUPPLY AND INSTALL COLORBOND FASCIA AND<br>GUTTER (NETT LENGTH)  | 37.8 lin m              | \$28.67 | \$1,083.73  | 2            | 1         |
| 2702  | SUPPLY AND INSTALL COLORBOND FASCIA (NETT<br>LENGTH)             | 31.5 lin m              | \$16.78 | \$528.57    | 2            | 1         |
| 2703  | SUPPLY AND INSTALL PVC DOWNPIPES TO 3.0M                         | 6 each                  | \$50.00 | \$300.00    | 2            | 1         |
| 2709  | SUPPLY AND INSTALL 0.75 BMT CYCLONIC RATED<br>METAL ROOF BATTENS | 307.5 lin m             | \$5.14  | \$1,580.55  | 2            | 1         |
| 27095 | SUPPLY AND INSTALL INTERMEDIATE SAFETY<br>BATTENS                | 115.9 lin m             | \$1.79  | \$207.46    | 2            | 1         |
| 2755  | SUPPLY AND INSTALL COLORBOND CUSTOM ORB<br>(NETT AREA)           | 203.2 m2                | \$22.21 | \$4,513.07  | 2            | 1         |
| 2765  | SUPPLY AND INSTALL COLORBOND BARGE<br>CAPPING (NETT LENGTH)      | 31.5 lin m              | \$23.69 | \$746.24    | 2            | 1         |
| 2767  | SUPPLY AND INSTALL COLORBOND ROLL TOP<br>RIDGE (NETT LENGTH)     | 18.3 lin m              | \$15.80 | \$289.14    | 2            | 1         |
| 2771  | SUPPLY AND INSTALL COLORBOND APRON<br>FLASHING (NETT LENGTH)     | 4.8 lin m               | \$23.69 | \$113.71    | 2            | 1         |
| 2780  | ALLOWANCE FOR EDGE RESTRAINT                                     | 67.8 lin m              | \$13.16 | \$892.25    | 2            | 1         |
|       |                                                                  | Total 325 ROOF CONTRACT | OR      | \$10,254.71 |              |           |



\_\_\_\_\_

# ERP2021 Bill of Quantities

Page 11 of 21

23 May 2021

Job 000

EXAMPLE ESTIMATE

#### 335 PLUMBER - ROUGH IN

| Item | Descrip ion                                           | Quantity Units           | Rate       | <u>Amount</u>      | Lvi | Ld |  |
|------|-------------------------------------------------------|--------------------------|------------|--------------------|-----|----|--|
| 1170 | STANDARD WATER SERVICE SINGLE FLOOR SLAB<br>ON GROUND | 1 each                   | \$1,900.00 | \$1,900.00         | 2   | 1  |  |
| 1172 | EXTRA FOR WATER SERVICE TO ENSUITE                    | 1 each                   | \$200.00   | \$200.00           | 2   | 1  |  |
| 1173 | WATER SERVICE TO EACH ADDITIONAL FIXTURE              | -1 each                  | \$110.00   | - <b>\$</b> 110.00 | 2   | 1  |  |
|      |                                                       | Total 335 PLUMBER - ROUG | SH IN      | \$1,990.00         |     |    |  |

# 355 WINDOWS

| Item   | Descrip ion                                  | Quantity Units    | Rate       | Amount     | Lvi | Ld |
|--------|----------------------------------------------|-------------------|------------|------------|-----|----|
| 321130 | SL 06-12 OBS XO                              | 2 each            | \$128.52   | \$257.04   | 2   | 1  |
| 321220 | SL 06-18 XO                                  | 5 each            | \$100.44   | \$502.20   | 2   | 1  |
| 321260 | SL 06-24 OXXO                                | 1 each            | \$208.17   | \$208.17   | 2   | 1  |
| 321930 | S1218 XO                                     | 1 each            | \$226.19   | \$226.19   | 2   | 1  |
| 322840 | S1818 OX/OX                                  | 1 each            | \$411.70   | \$411.70   | 2   | 1  |
| 324790 | S2330 OXXO SGD                               | 1 each            | \$1,123.05 | \$1,123.05 | 2   | 1  |
| 326440 | INSTALL PINE REVEALS & DPC TO WINDOWS & SGDS | 3 each            | \$10.00    | \$30.00    | 2   | 1  |
| 326450 | PINE REVEALS 116X19 MM                       | 15.9 lin m        | \$10.00    | \$159.00   | 2   | 1  |
| 326470 | INSTALL WINDOWS                              | 6 each            | \$55.00    | \$330.00   | 2   | 2  |
| 326490 | INSTALL COMBINATION WINDOWS                  | 1 each            | \$85.00    | \$85.00    | 2   | 2  |
| 326530 | INSTALL OX SLIDING GLASS DOORS               | 1 each            | \$95.00    | \$95.00    | 2   | 2  |
| 326570 | DELIVERY WINDOWS                             | 1 each            | \$80.00    | \$80.00    | 2   | 1  |
|        |                                              | Total 355 WINDOWS |            | \$3,507.35 |     |    |

#### 360 LOCK-UP CARPENTER

| Item   | Descrip ion                                               | Quantity Units            | Rate    | Amount          | Lvl | Ld |
|--------|-----------------------------------------------------------|---------------------------|---------|-----------------|-----|----|
| 2624   | FIX FC TO RAKING EAVES/SOFFITS                            | 28.8 lin.m                | \$11.00 | \$316.80        | 2   | 1  |
| 2625   | FIX FC TO HORIZONTAL EAVES/SOFFITS                        | 31.4 lin.m                | \$11.00 | \$345.40        | 2   | 1  |
| 263700 | WALL CLADDING (STRIA CLADDING OR SIMILAR<br>WEATHERBOARD) | 20.08 m2                  | \$33.00 | \$662.64        | 2   | 1  |
| 26375  | WALL CLADDING SHEETING- HARDITEX/AXON OR SIMILAR          | 11.12 m2                  | \$16.50 | <b>\$183.48</b> | 2   | 1  |
| 2661   | FIT EXTERNAL DOOR IN TIMBER FRAME INCLUDING WEATHERSEAL   | 2 each                    | \$82.50 | \$165.00        | 2   | 1  |
| 2663   | FIT INTERNAL DOORS INCL JAMBS, STOPS ARCS & HARDWARE      | 1 each                    | \$71.50 | \$71.50         | 2   | 1  |
| 2668   | FIT WINDOWS & SGDs                                        | 3 each                    | \$55.00 | \$165.00        | 2   | 1  |
| 26687  | INSTALL FLASHING TO WINDOW/DOOR HEAD                      | 6.3 lin.m                 | \$13.20 | \$83.16         | 2   | 2  |
| 2845   | INSTALL SISALATION                                        | 35.76 m2                  | \$1.00  | \$35.76         | 2   | 1  |
|        |                                                           | Total 360 LOCK-UP CARPENT | ER      | \$2,028.74      |     |    |



\_

# ERP2021 Bill of Quantities

Page 12 of 21

23 May 2021

Job 000

EXAMPLE ESTIMATE

# 365 EXTERNAL DOORS / FRAMES

|   | Item  | Descrip ion                                    | Quantity Units        | Rate     | Amount          | Lvl | Ld |  |
|---|-------|------------------------------------------------|-----------------------|----------|-----------------|-----|----|--|
|   | 3778  | EXTERNAL FEATURE DOOR 2040MM HIGH x 820MM WIDE | 1 each                | \$454.55 | \$454.55        | 2   | 1  |  |
|   | 3792  | DURACOTE EXTERNAL DOOR 820X2040MM              | 1 each                | \$109.00 | \$109.00        | 2   | 1  |  |
|   | 3800  | PRE-PRIMED TREATED PINE 140X32 JAMBS           | 10.2 lin m            | \$8.01   | \$81.70         | 2   | 1  |  |
|   | 3801  | TREATED PINE 32X12 STOPS                       | 10.2 lin m            | \$0.96   | \$9.79          | 2   | 1  |  |
|   | 3805  | DELIVERY                                       | 1 each                | \$95.00  | \$95.00         | 2   | 1  |  |
|   | 3840  | HIRLINE HINGE 100MM                            | 2 each                | \$1.00   | \$2.00          | 2   | 1  |  |
| : | 38410 | HIRLINE HINGE 100X75X1.6mm                     | 2 each                | \$3.00   | \$6.00          | 2   | 1  |  |
| 3 | 86410 | HUMES DOOR 2040 HIGH                           | 1 each                | \$48.60  | \$48.60         | 2   | 1  |  |
|   | 3911  | 92X19MM FJP DAR                                | 5.4 lin m             | \$3.16   | <b>\$</b> 17.06 | 2   | 1  |  |
|   | 3916  | 32X12MM FJP DAR                                | 5.4 lin m             | \$0.97   | \$5.24          | 2   | 1  |  |
|   |       | Tot                                            | al 365 EXTERNAL DOORS | FRAMES   | \$828.95        |     |    |  |
|   |       |                                                |                       |          |                 |     |    |  |

#### 400 CABINETMAKER

| Item | Descrip ion                                                      | Quantity Units         | Rate       | Amount             | Lvl | Ld |
|------|------------------------------------------------------------------|------------------------|------------|--------------------|-----|----|
| 3521 | FLOOR CUPBOARDS                                                  | 4.7 lin.m              | \$641.00   | \$3,012.70         | 2   | 1  |
| 3522 | LEVEL BAR 800MM                                                  | 1.5 lin.m              | \$662.00   | \$993.00           | 2   | 1  |
| 3526 | FRIDGE GABLE                                                     | 1 each                 | \$126.00   | \$126.00           | 2   | 1  |
| 3527 | MICROWAVE CUPBOARD                                               | 1 each                 | \$504.00   | \$504.00           | 2   | 1  |
| 3529 | UNDERBENCH OVEN PROVISION                                        | 1 each                 | \$189.00   | \$189.00           | 2   | 1  |
| 3530 | 1 DOOR PANTRY TO 600 WIDE                                        | 1 each                 | \$693.00   | \$693.00           | 2   | 1  |
| 3533 | OVERHEAD CUPBOARDS                                               | 2.4 lin.m              | \$378.00   | \$907.20           | 2   | 1  |
| 3537 | RANGEHOOD CUTOUT                                                 | 1 each                 | \$126.00   | \$126.00           | 2   | 1  |
| 3540 | VANITY OFF FLOOR CUPBOARDS                                       | 1.8 lin.m              | \$672.00   | \$1,209.60         | 2   | 1  |
| 3541 | SET OF DRAWERS TO VANITY                                         | 2 each                 | \$231.00   | \$462.00           | 2   | 1  |
| 3551 | STANDARD EXTRAS OVER BASE KITCHEN                                | 1 each                 | \$1,166.00 | \$1,166.00         | 2   | 1  |
| 3556 | 20MM ENGINEERED (LOW END) STONE BENCHTOP-<br>EXTRA OVER LAMINATE | 4.8 m2 stone           | \$395.00   | \$1,896.00         | 2   | 1  |
|      |                                                                  | Total 400 CABINETMAKER |            | <b>\$11,284.50</b> |     |    |

#### 405 TILE SUPPLY

| Item | Descrip ion                          | Quantity | <u>Units</u> | Rate    | Amount     | LvI | Ld |
|------|--------------------------------------|----------|--------------|---------|------------|-----|----|
| 3601 | ALLOWANCE - BATHROOM WALL TILES      | 8.4      | m2           | \$27.27 | \$229.07   | 2   | 1  |
| 3602 | ALLOWANCE - ENSUITE WALL TILES       | 8.4      | m2           | \$27.27 | \$229.07   | 2   | 1  |
| 3603 | ALLOWANCE - BATHROOM SPASHBACK TILES | 00.28    | m2           | \$27.27 | \$7.64     | 2   | 1  |
| 3604 | ALLOWANCE - ENSUITE SPASHBACK TILES  | 00.28    | m2           | \$27.27 | \$7.64     | 2   | 1  |
| 3605 | ALLOWANCE - KITCHEN SPASHBACK TILES  | 2.92     | m2           | \$27.27 | \$79.63    | 2   | 1  |
| 3606 | ALLOWANCE - LAUNDRY SPASHBACK TILES  | 00.36    | m2           | \$27.27 | \$9.82     | 2   | 1  |
| 3607 | ALLOWANCE - BATHROOM SKIRTING TILES  | 00.44    | m2           | \$27.27 | \$12.00    | 2   | 1  |
| 3608 | ALLOWANCE - ENSUITE SKIRTING TILES   | 00.64    | m2           | \$27.27 | \$17.45    | 2   | 1  |
| 3611 | ALLOWANCE - BATHROOM FLOOR TILES     | 3.84     | m2           | \$27.27 | \$104.72   | 2   | 1  |
| 3612 | ALLOWANCE - ENSUITE FLOOR TILES      | 5.8      | m2           | \$27.27 | \$158.17   | 2   | 1  |
| 3616 | ALLOWANCE - MAIN FLOOR TILES         | 44.6     | m2           | \$27.27 | \$1,216.24 | 2   | 1  |



Page 13 of 21

23 May 2021

Job 000 EXAMPLE ESTIMATE

#### 405 TILE SUPPLY

| Item | Descrip ion                   | Quantity              | Units | Rate     | Amount     | Lvi | Ld |
|------|-------------------------------|-----------------------|-------|----------|------------|-----|----|
| 3620 | ALLOWANCE - PATIO FLOOR TILES | 24.6                  | 6 m2  | \$27.27  | \$670.84   | 2   | 1  |
| 3628 | ALUMINIUM ANGLE               | 15                    | each  | \$18.50  | \$277.50   | 2   | 3  |
| 3636 | FEATURE TILE ALLOWANCE        | 1                     | each  | \$545.45 | \$545.45   | 2   | 1  |
| 3650 | TILE DELIVERY                 | 2                     | each  | \$65.00  | \$130.00   | 2   | 2  |
|      |                               | Total 405 TILE SUPPLY |       | Y        | \$3,695.22 |     |    |
| 440  | WADDODES                      |                       |       |          |            |     |    |

#### 410 WARDROBES

| <u>Item</u> | Descrip ion                                         | Quantity Units      | Rate     | Amount            | Lvi | Ld |  |
|-------------|-----------------------------------------------------|---------------------|----------|-------------------|-----|----|--|
| 36642       | SLIDING ROBE - 2400X1200 VINYL-INSTALLED            | 1 each              | \$274.76 | \$274.76          | 2   | 1  |  |
| 36651       | SLIDING ROBE - 2400X1500 MIRROR<br>PANELS-INSTALLED | 1 each              | \$410.98 | \$410.98          | 2   | 1  |  |
| 36652       | SLIDING ROBE - 2400X1500 VINYL-INSTALLED            | 1 each              | \$366.35 | \$366.35          | 2   | 1  |  |
| 36661       | SLIDING ROBE - 2400X1800 MIRROR<br>PANELS-INSTALLED | 1 each              | \$439.96 | \$439.96          | 2   | 1  |  |
|             |                                                     | Total 410 WARDROBES |          | <b>\$1,492.05</b> |     |    |  |

#### 415 FLOORCOVERINGS

| Item | Descrip ion          | Quantity                 | <u>Units</u> | Rate     | Amount     | Lvl | Ld |
|------|----------------------|--------------------------|--------------|----------|------------|-----|----|
| 3684 | CARPET ALLOWANCE (A) | 10.8                     | 3 lin.m      | \$150.00 | \$1,620.00 | 2   | 1  |
|      |                      | Total 415 FLOORCOVERINGS |              | S        | \$1,620.00 |     |    |

#### 417 WALL/CEILING INSULATION

| Item  | Descrip ion                                      | Quantity Units | Rate   | <u>Amount Lvl Ld</u> |
|-------|--------------------------------------------------|----------------|--------|----------------------|
| 27211 | SUPPLY AND INSTALL R1.5 BATTS TO EXTERNAL WALLS~ | 12.96 m2       | \$5.20 | <b>\$67.39</b> 2 1   |

Total 417 WALL/CEILING INSULATION

# \$67.39

#### 424 PLASTERBOARD CONTRACTOR

\_

| Item    | Descrip ion                               | Quantity Units | Rate     | <u>Amount</u> | Lvi | Ld |
|---------|-------------------------------------------|----------------|----------|---------------|-----|----|
| 3752    | 10MM PLASTERBOARD TO CEILINGS NETT RATE   | 134.28 m2      | \$15.00  | \$2,014.20    | 2   | 1  |
| 3752003 | 10MM WR BOARD TO CEILINGS NETT RATE       | 22.36 m2       | \$18.25  | \$408.07      | 2   | 1  |
| 3753    | 10MM PLASTERBOARD TO PARTITIONS NETT RATE | 221.92 m2      | \$14.00  | \$3,106.88    | 2   | 1  |
| 3754    | PLASTERBOARD LINING TO CMB NETT RATE      | 91.28 m2       | \$14.00  | \$1,277.92    | 2   | 1  |
| 3755    | EXTRA FOR 6MM VILLABOARD LINING NETT RATE | 54 m2          | \$3.95   | \$213.30      | 2   | 1  |
| 37592   | CONCERTO CORNICE                          | 173.1 lin m    | \$12.10  | \$2,094.51    | 2   | 1  |
| 3760    | PREPAINT                                  | 1 each         | \$215.00 | \$215.00      | 2   | 1  |
| 3763    | MANHOLE                                   | 1 each         | \$50.00  | \$50.00       | 2   | 1  |



Page 14 of 21

23 May 2021

Job 000

EXAMPLE ESTIMATE

# 424 PLASTERBOARD CONTRACTOR

| Item   | Descrip ion                       | Quantity                          | <u>Units</u> | Rate     | Amount             | Lvl | Ld |
|--------|-----------------------------------|-----------------------------------|--------------|----------|--------------------|-----|----|
| 376780 | RETURN TO FIX CORNICE TO KITCHEN  |                                   | 1 each       | \$165.00 | \$165.00           | 2   | 1  |
| 376781 | RETURN TO FIX CORNICE TO WET AREA |                                   | 1 each       | \$75.00  | \$75.00            | 2   | 2  |
|        |                                   | Total 424 PLASTERBOARD CONTRACTOR |              | R        | <b>\$</b> 9,619.88 |     |    |

# 425 DOOR LOCKS

| Item  | Descrip ion                           | Quantity Units       | Rate     | <u>Amount</u>   | Lvi | Ld |
|-------|---------------------------------------|----------------------|----------|-----------------|-----|----|
| 3816  | TRILOCK ENTRANCE LEVER SET            | 1 each               | \$173.95 | <b>\$173.95</b> | 2   | 1  |
| 3820  | REAR/ GARAGE ENTRANCE SET             | 2 each               | \$70.00  | \$140.00        | 2   | 1  |
| 3829  | INTERNAL DOOR PASSAGE SETS            | 2 each               | \$38.10  | \$76.20         | 2   | 1  |
| 3831  | INTERNAL PRIVACY SET                  | 2 each               | \$54.58  | \$109.16        | 2   | 1  |
| 3833  | CAVITY SLIDING DOOR PRIVACY SET       | 1 each               | \$31.29  | \$31.29         | 2   | 1  |
| 3834  | CAVITY SLIDING DOOR PASSAGE SET       | 1 each               | \$18.71  | \$18.71         | 2   | 1  |
| 38403 | HIRLINE HINGE 100MM-STAINLESS STEEL   | 6 each               | \$4.20   | \$25.20         | 2   | 1  |
| 38405 | LIFT OFF HINGE 100MM -STAINLESS STEEL | 2 each               | \$4.50   | \$9.00          | 2   | 1  |
| 38410 | HIRLINE HINGE 100X75X1.6mm            | 3 each               | \$3.00   | \$9.00          | 2   | 1  |
| 3844  | MAGNETIC DOOR STOP / CATCH            | 7 each               | \$9.80   | \$68.60         | 2   | 1  |
| 3848  | RP4 STORM SEAL 915mm                  | 2 each               | \$17.15  | \$34.30         | 2   | 1  |
| 38488 | RP60 DOOR SEAL 915mm                  | 1 each               | \$16.83  | <b>\$16.83</b>  | 2   | 1  |
| 3849  | DELIVERY DOOR LOCKS                   | 1 each               | \$20.00  | \$20.00         | 2   | 1  |
|       |                                       | Total 425 DOOR LOCKS |          | \$732.24        |     |    |

#### 430 INTERNAL DOORS

| Item  | Descrip ion                 | Quantity                 | <u>Units</u> | Rate    | <u>Amount</u>   | Lvl | Ld |
|-------|-----------------------------|--------------------------|--------------|---------|-----------------|-----|----|
| 38641 | HUMES ACCENT DOOR 2040 HIGH | (                        | 6 each       | \$53.30 | \$319.80        | 2   | 1  |
| 3890  | DELIVERY INTERNAL DOORS     |                          | 1 each       | \$95.00 | \$95.00         | 2   | 1  |
|       |                             | Total 430 INTERNAL DOORS |              |         | <b>\$414.80</b> |     |    |

#### 435 FINISHING TIMBER

| Item | Descrip ion                                 | Quantity | <u>Units</u> | Rate    | Amount   | Lvl | Ld |  |
|------|---------------------------------------------|----------|--------------|---------|----------|-----|----|--|
| 3900 | 68 X 12MM FJP SKIRT/ARCHITRAVE              | 286.2    | 2 lin m      | \$1.54  | \$440.75 | 2   | 1  |  |
| 3910 | 116X19MM FJP DAR                            | 10.8     | 3 lin m      | \$4.35  | \$46.98  | 2   | 1  |  |
| 3911 | 92X19MM FJP DAR                             | 64.8     | 3 lin m      | \$3.16  | \$204.77 | 2   | 1  |  |
| 3912 | 68X19MM FJP DAR                             | 59.4     | 1 lin m      | \$2.46  | \$146.12 | 2   | 1  |  |
| 3913 | 42X19MM FJP DAR                             | 48.6     | 5 lin m      | \$1.65  | \$80.19  | 2   | 1  |  |
| 3916 | 32X12MM FJP DAR                             | 21.6     | 6 lin m      | \$0.97  | \$20.95  | 2   | 1  |  |
| 3956 | P/BOARD EDGE LIP SHELVING 2400 X 450 X 16MM | 4        | l each       | \$21.33 | \$85.32  | 2   | 1  |  |
| 3957 | P/BOARD EDGE LIP SHELVING 3600 X 450 X 16MM | 8        | each         | \$31.99 | \$255.92 | 2   | 1  |  |
| 3960 | DELIVERY FINISHING TIMBER                   | 1        | leach        | \$95.00 | \$95.00  | 2   | 1  |  |
|      |                                             |          |              |         |          |     |    |  |



# ERP2021 Bill of Quantities

Page 15 of 21

23 May 2021

Job 000 EXAMPLE ESTIMATE

Total 435 FINISHING TIMBER

#### \$1,376.00

#### 440 FINISHING HARDWARE

| Item | Descrip ion                 | Quantity Units               | Rate   | Amount  | LV | Ld |  |
|------|-----------------------------|------------------------------|--------|---------|----|----|--|
| 4101 | 19MM S/S CURTAIN ROD        | 9 lin.m                      | \$5.00 | \$45.00 | 2  | 1  |  |
| 4102 | 19MM DIA PILLAR ENDS (PAIR) | 5 pair                       | \$2.10 | \$10.50 | 2  | 1  |  |
| 4103 | 19MM DIA PILLAR CENTRE      | 5 each                       | \$1.10 | \$5.50  | 2  | 1  |  |
|      |                             | Total 440 FINISHING HARDWARE |        |         |    |    |  |

# 445 FINISHING CARPENTER

| Item  | Descrip ion                                            | Quantity Units | Rate     | Amount   | Lvi | Ld |
|-------|--------------------------------------------------------|----------------|----------|----------|-----|----|
| 2647  | FIT LAUNDRY TUB                                        | 1 each         | \$27.50  | \$27.50  | 2   | 1  |
| 2663  | FIT INTERNAL DOORS INCL JAMBS, STOPS ARCS & HARDWARE   | 4 each         | \$71.50  | \$286.00 | 2   | 1  |
| 2665  | FIT INTERNAL SLIDING DOORS INCL JAMBS, ARCS & HARDWARE | 2 each         | \$88.00  | \$176.00 | 2   | 1  |
| 2666  | FIX SKIRTING                                           | 85.4 lin.m     | \$3.10   | \$264.74 | 2   | 1  |
| 2667  | EXTRA FOR TIMBER REVEALS TO WINDOWS                    | 8 each         | \$60.50  | \$484.00 | 2   | 1  |
| 26685 | FIT ARCHITRAVES TO WINDOWS/ SGDS                       | 3 each         | \$33.00  | \$99.00  | 2   | 1  |
| 2674  | JAMB & ARC ROBE OPENING                                | 4 each         | \$33.00  | \$132.00 | 2   | 1  |
| 2675  | FITOUT ROBES WITH SHELF & HANGING RAIL                 | 5 each         | \$66.00  | \$330.00 | 2   | 1  |
| 2676  | EXTRA FOR NEST OF SHELVES IN ROBE                      | 4 each         | \$99.00  | \$396.00 | 2   | 1  |
| 2677  | FITOUT LINEN INCL 4 SHELVES AND BROOM SPACE            | 1 each         | \$176.00 | \$176.00 | 2   | 1  |
| 2678  | FITOUT PANTRY INCL 4 SHELVES                           | 1 each         | \$165.00 | \$165.00 | 2   | 1  |
| 2679  | FIT CANOPY RANGEHOOD INCL FLEXIDUCT INTO<br>ROOF SPACE | 1 each         | \$132.00 | \$132.00 | 2   | 1  |

Total 445 FINISHING CARPENTER

\$2,668.24

#### 465 WATERPROOFING

| Iter | n Descrip ion                                                 | Quantity Units         | Rate     | Amount   | Lvl | Ld |  |
|------|---------------------------------------------------------------|------------------------|----------|----------|-----|----|--|
| 515  | 5 WATERPROOF FLASHING                                         | 9 lin m                | \$15.50  | \$139.50 | 2   | 1  |  |
| 517  | 8 WATERPROOF SHOWER 900 X 1500 TILED BASE                     | 2 each                 | \$198.50 | \$397.00 | 2   | 1  |  |
| 518  | 2 SUPPLY & INSTALL WATERSTOP ANGLE                            | 4 lin.m                | \$17.00  | \$68.00  | 2   | 1  |  |
| 518  | 4 SHOWER WASTES -SUPPLY INSTALL AND<br>WATERPROOF             | 2 each                 | \$30.00  | \$60.00  | 2   | 1  |  |
| 522  | 1 SUPPLY & INSTALL CHROME FLOOR WASTE GRATE/<br>PUDDLE FLANGE | 1 each                 | \$25.00  | \$25.00  | 2   | 1  |  |
|      |                                                               | Total 465 WATERPROOFIN | IG       | \$689.50 |     |    |  |

#### 470 CERAMIC TILING

| Item Descrip ion                       | Quantity Units | Rate    | <u>Amount</u> | <u>Lvi i</u> | Ld |
|----------------------------------------|----------------|---------|---------------|--------------|----|
| 5205 FIX WALL TILING INCL GLUE & GROUT | 14 m2          | \$38.00 | \$532.00      | 2            | 1  |



Page 16 of 21

23 May 2021

Job

EXAMPLE ESTIMATE

#### 470 CERAMIC TILING

000

| Item  | Descrip ion                                            | Quantity Units           | Rate    | Amount     | Lvl | Ld |
|-------|--------------------------------------------------------|--------------------------|---------|------------|-----|----|
| 5207  | FIX FLOOR TILING INCL GLUE & GROUT                     | 8.04 m2                  | \$36.00 | \$289.44   | 2   | 1  |
| 5209  | FIX SPLASHBACK WALL TILING INCL GLUE & GROUT           | 3.2 m2                   | \$38.00 | \$121.60   | 2   | 1  |
| 5211  | FIX SKIRTING TILING INCL GLUE & GROUT                  | 9 lin m                  | \$15.00 | \$135.00   | 2   | 1  |
| 5218  | BED RECESSED FLOOR PRIOR TO TILING                     | 2.8 m2                   | \$75.00 | \$210.00   | 2   | 1  |
| 5224  | INSTALL SMART TILE FLOOR WASTE                         | 4 each                   | \$30.00 | \$120.00   | 2   | 1  |
| 5225  | FIX LARGE FLOOR AREAS INCL GLUE & GROUT                | 40.56 m2                 | \$36.00 | \$1,460.16 | 2   | 1  |
| 5227  | FIX PATIO FLOOR AREAS INCL GLUE & GROUT                | 22.36 m2                 | \$36.00 | \$804.96   | 2   | 1  |
| 5233  | SILICONE INTERNAL ANGLES -SINGLE BATHROOM<br>ALLOWANCE | 1 item                   | \$80.00 | \$80.00    | 2   | 1  |
| 52335 |                                                        | 1 each                   | \$60.00 | \$60.00    | 2   | 1  |
| 5235  | MITRE EXTERNAL ANGLES                                  | 3 lin m                  | \$18.00 | \$54.00    | 2   | 1  |
| 5237  | DOOR THRESHOLD/ ALUMINIUM ANGLE                        | 4 each                   | \$15.00 | \$60.00    | 2   | 1  |
| 5238  | TILE NICHE                                             | 2 each                   | \$65.00 | \$130.00   | 2   | 1  |
| 5239  | EXPANSION JOINT IN TILE FLOORING                       | 15.3 lin m               | \$7.00  | \$107.10   | 2   | 1  |
|       |                                                        | Total 470 CERAMIC TILING |         | \$4,164.26 |     |    |

# 475 SHOWER SCREENS

| Item | Descrip ion                                           | Quantity                 | <u>Units</u> | Rate       | Amount     | Lvl | <u>Ld</u> |
|------|-------------------------------------------------------|--------------------------|--------------|------------|------------|-----|-----------|
| 5354 | SEMI FRAMELESS 2000 X 1400MM PIVOT SHOWER             | :                        | 2 each       | \$1,056.86 | \$2,113.72 | 2   | 1         |
| 5380 | SCREEN SUPPLIED & INSTALLED<br>SHOWER SCREEN DELIVERY |                          | 1 each       | \$31.50    | \$31.50    | 2   | 1         |
|      |                                                       | Total 475 SHOWER SCREENS |              |            | \$2,145.22 |     |           |

#### 480 MIRRORS

| Item | Descrip ion                                         | Quantity          | <u>Units</u> | Rate     | Amount   | Lvl | Ld |
|------|-----------------------------------------------------|-------------------|--------------|----------|----------|-----|----|
| 5431 | 900 X 900 POLISHED EDGE MIRROR SUPPLIED & INSTALLED | 2                 | each         | \$170.00 | \$340.00 | 2   | 1  |
|      |                                                     | Total 480 MIRRORS |              |          | \$340.00 |     |    |

# 483 PLUMBING - FLOOR WASTE

| Item | Descrip ion                   | Quantity                         | <u>Units</u> | Rate    | <u>Amount</u> | Lvl | Ld |
|------|-------------------------------|----------------------------------|--------------|---------|---------------|-----|----|
| 3626 | SUPPLY SMART TILE FLOOR WASTE | 4                                | l each       | \$61.60 | \$246.40      | 2   | 1  |
|      | Tot                           | Total 483 PLUMBING - FLOOR WASTE |              |         | \$246.40      |     |    |

486 PLUMBING - HWS

| Item | Descrip ion | Quantity | <u>Units</u> | Rate | <u>Amount</u> | Lvl | Ld |
|------|-------------|----------|--------------|------|---------------|-----|----|
|      |             |          |              |      |               |     |    |



Page 17 of 21

23 May 2021

Job 000

EXAMPLE ESTIMATE

# 486 PLUMBING - HWS

| Item   | Descrip ion                                                  | Quantity L   | <u>Units</u>  | Rate     | Amount   | Lvi | Ld |
|--------|--------------------------------------------------------------|--------------|---------------|----------|----------|-----|----|
| 561448 | APRICUS 315 LITRE ELECTRIC HOT WATER SYSTEM<br>(SOLAR READY) | 1 e          | each          | \$995.00 | \$995.00 | 2   | 1  |
|        |                                                              | Total 486 PL | LUMBING - HWS | 3        | \$995.00 |     |    |

#### 505 PLUMBING - PC ITEMS

| Item  | Descrip ion                                 | Quantity Units                | Rate     | <u>Amount</u>      | Lvl | Ld |  |
|-------|---------------------------------------------|-------------------------------|----------|--------------------|-----|----|--|
| 5514  | MINI CISTERN COCK Q/T WITH NON RETURN VALVE | 2 each                        | \$7.18   | \$14.36            | 2   | 1  |  |
| 55140 | WASHING MACHINE COCK (1 ONLY) C/D WITH NON  | 1 each                        | \$5.90   | \$5.90             | 2   | 1  |  |
|       | RETURN VALVE                                |                               |          |                    |     |    |  |
| 5515  | HOSE COCK BALL WITH LEVER HANDLE 15MM       | 2 each                        | \$9.26   | \$18.52            | 2   | 1  |  |
| 5516  | BACK FLOW PREVENTION DEVICE DUAL CHECK      | 1 each                        | \$34.68  | \$34.68            | 2   | 1  |  |
| 5520  | BUSH BRS 20 X 15MM                          | 1 each                        | \$4.36   | \$4.36             | 2   | 1  |  |
| 5603  | PLUMBING PC ITEMS AS QUOTED                 | 1 each                        | \$0.00   | \$0.00             | 2   | 1  |  |
| 5625  | NUGLEAM SUPREME 45L S/S TUB & PVC CABINET   | 1 each                        | \$227.53 | \$227.53           | 2   | 1  |  |
| 5669  | WC SUITE                                    | 2 each                        | \$175.20 | \$350.40           | 2   | 1  |  |
| 5680  | DOUBLE TOWEL RAIL                           | 2 each                        | \$49.70  | \$99.40            | 2   | 1  |  |
| 5684  | TOILET ROLL HOLDER                          | 2 each                        | \$18.99  | \$37.98            | 2   | 1  |  |
| 5751  | DELIVERY SINKS/ BASINS                      | 1 each                        | \$15.00  | \$15.00            | 2   | 1  |  |
| 5752  | DELIVERY PLUMBING BATHS                     | 1 each                        | \$15.00  | \$15.00            | 2   | 1  |  |
| 5753  | DELIVERY PLUMBING PC ITEMS                  | 1 each                        | \$16.00  | \$16.00            | 2   | 1  |  |
| 5805  | BASIN SET                                   | 2 each                        | \$75.02  | \$150.04           | 2   | 1  |  |
| 5807  | SHOWER SET                                  | 2 each                        | \$186.69 | \$373.38           | 2   | 1  |  |
| 5808  | LAUNDRY SET                                 | 1 each                        | \$82.73  | \$82.73            | 2   | 1  |  |
| 5809  | WASHING MACHINE TAPS                        | 1 each                        | \$11.80  | \$11.80            | 2   | 1  |  |
| 5820  | SINK SET                                    | 1 each                        | \$82.73  | \$82.73            | 2   | 1  |  |
|       |                                             | Total 505 PLUMBING - PC ITEMS |          | <b>\$1,</b> 539.81 |     |    |  |

# 510 PAINTER

\_

| Item  | Descrip ion                                                   | Quantity Units | Rate     | <u>Amount</u> | Lvl | Ld |
|-------|---------------------------------------------------------------|----------------|----------|---------------|-----|----|
| 5960  | LIVING/ GARAGE AREA PAINTERS RATE                             | 134.28 m2      | \$40.00  | \$5,371.20    | 2   | 1  |
| 5965  | CARPORT/ PATIO AREA PAINTERS RATE                             | 22.36 m2       | \$40.00  | \$894.40      | 2   | 1  |
| 5974  | PAINT INTERNAL WALLS                                          | 89.4 m2        | \$25.00  | \$2,235.00    | 2   | 1  |
| 5980  | EXTRA TO PAINT EXTERNAL CLADDING BOARDS TO GABLES             | 11.68 m2       | \$15.00  | \$175.20      | 2   | 1  |
| 59806 | EXTRA TO PAINT RAISED GABLE ENDS                              | 2 each         | \$100.00 | \$200.00      | 2   | 1  |
| 59808 | EXTRA TO PAINT EXTERNAL CLADDING BOARDS TO WALLS              | 8.4 m2         | \$5.00   | \$42.00       | 2   | 1  |
| 5981  | EXTRA TO PAINT EXTERNAL FC CLADDING SHEETS<br>TO RAISED AREAS | 11.12 m2       | \$10.00  | \$111.20      | 2   | 1  |
| 6059  | STAIN ENTRY DOOR                                              | 1 each         | \$200.00 | \$200.00      | 2   | 1  |
| 6061  | PAINT MASONARY/ HEBEL LETTERBOX                               | 1 each         | \$80.00  | \$80.00       | 2   | 1  |
| 6062  | ALLOWANCE FOR FEATURE WALL                                    | 2 each         | \$300.00 | \$600.00      | 2   | 1  |



Page 18 of 21

23 May 2021

Job 000 EXAMPLE ESTIMATE

|             |                                                         | Total 510 P/            | AINTER             | <b>\$</b> 9,909.00   |     |
|-------------|---------------------------------------------------------|-------------------------|--------------------|----------------------|-----|
| <u>515</u>  | PLUMBER - FIT-OFF                                       |                         |                    |                      |     |
| Item        | Descrip ion                                             | Quantity Units          | Rate               | Amount               | LVI |
| 1179        | STANDARD FITOUT                                         | 1 each                  | \$1,700.00         | \$1,700.00           | 2   |
| 1180        | FITOUT FOR ENSUITE                                      | 1 each                  | \$400.00           | \$400.00             | 2   |
| 1181        | EXTRA FITOUT PER FIXTURE                                | -1 each                 | \$110.00           | -\$110.00            | 2   |
|             | EXTRA FOR HOSE TAP WITH VACUUM BREAKER                  | 1 each                  | \$200.00           | \$200.00             | 2   |
| 11832       | EXTRA FOR FITTING FRIDGE CONNECTED TO COLD WATER        | 1 each                  | \$200.00           | \$200.00             | 2   |
|             |                                                         | Total 515 PLUMBER - F   | FIT-OFF            | <b>\$2,390.00</b>    |     |
| <u>520</u>  | APPLIANCES                                              |                         |                    |                      |     |
| Item        | Descrip ion                                             | Quantity Units          | Rate               | Amount               | Lvl |
| 6121        | COOKTOP (A)                                             | 1 each                  | \$525.00           | \$525.00             | 2   |
| 6131        | OVEN (A)                                                | 1 each                  | \$1,045.45         | \$1,045.45           | 2   |
| 6151        | RANGEHOOD (A)                                           | 1 each                  | \$417.27           | \$417.27             | 2   |
|             | DISHWASHER                                              | 1 each                  | \$820.00           | \$820.00             | 2   |
|             | DUCTING FOR RANGEHOOD                                   | 1 each                  | \$160.00           | \$160.00             | 2   |
| 6159        | DELIVERY                                                | 1 each                  | \$40.00            | \$40.00              | 2   |
| 520         |                                                         | Total 520 APPLI         | ANCES              | \$3,007.72           |     |
| <u>530</u>  | ELECTRICAL FITTINGS                                     |                         |                    |                      |     |
|             | Descrip ion                                             | Quantity Units          | Rate               | <u>Amount</u>        |     |
|             | LIGHT FITTING PC PER FITTING                            | 26 each                 | \$27.27            | \$709.02             | 2   |
|             | 48" WHITE CEILING FAN<br>290MM SQUARE WHITE EXHAUST FAN | 6 each<br>2 each        | \$65.00<br>\$60.91 | \$390.00<br>\$121.82 |     |
| 0213        |                                                         | Total 530 ELECTRICAL FI |                    | \$1,220.84           |     |
| <u>545</u>  | FINAL CARPENTER                                         |                         |                    |                      |     |
| <u>Item</u> | Descrip ion                                             | Quantity Units          | Rate               | Amount               | Lvl |
| 2681        | FIT ACCESSORIES                                         | 6 each                  | \$12.00            | \$72.00              | -   |
|             | FINAL FITOUT                                            | 1 each                  | \$330.00           | \$330.00             | 2   |
|             |                                                         | Total 545 FINAL CARP    | ENTER              | \$402.00             |     |
| <u>550</u>  | A.C & SPECIAL APPLIANCES                                |                         |                    |                      |     |
| <u>Item</u> | Descrip ion                                             | Quantity Units          | Rate               | Amount               | Lvi |
|             | INVERTER SPLIT UNIT 9,000 BTU -2.5kW                    | 3 each                  | \$599.00           | \$1,797.00           | 2   |



\_\_\_\_\_

# ERP2021 Bill of Quantities

Page 19 of 21

23 May 2021

Job 000 EXAMPLE ESTIMATE

#### 550 A.C & SPECIAL APPLIANCES

| Item  | Descrip ion                            | Quantity U             | <u>Jnits R</u> | ate <u>Amount</u>     | Lvi | Ld |
|-------|----------------------------------------|------------------------|----------------|-----------------------|-----|----|
| 63162 | INVERTER SPLIT UNIT 28,000 BTU - 8.0kW | 1 ea                   | ach \$2,037    | .00 <b>\$2,037.00</b> | 2   | 1  |
|       |                                        | Total 550 A.C & SPECIA | \$3,834.00     |                       |     |    |

# 552 INSTALL A.C & SPECIAL APPLIANCES

| <u>Item</u>                                | Descrip ion                               | Quantity Units | Rate     | <u>Amount</u> | Lvl | Ld |
|--------------------------------------------|-------------------------------------------|----------------|----------|---------------|-----|----|
| 631700                                     | AIRCONDITIONING SPECIFICATION             | 1 item         | \$0.00   | \$0.00        | 2   | 1  |
| 6318                                       | SPLIT SYSTEM A.C INSTALLATION 7000-12000  | 3 each         | \$600.00 | \$1,800.00    | 2   | 1  |
| 6319                                       | SPLIT SYSTEM A.C INSTALLATION 21000-30000 | 1 each         | \$600.00 | \$600.00      | 2   | 1  |
| Total 552 INSTALL A.C & SPECIAL APPLIANCES |                                           |                |          | \$2,400.00    |     |    |

#### 570 SCREENS

| Item   | Descrip ion                              | Quantity Units | Rate     | Amount     | Lvl | Ld |
|--------|------------------------------------------|----------------|----------|------------|-----|----|
| 328055 | SL 06-12 XO SECURITY SCREENS             | 2 each         | \$49.03  | \$98.06    | 2   | 1  |
| 328095 | SL 06-18 XO SECURITY SCREENS             | 5 each         | \$63.57  | \$317.85   | 2   | 1  |
| 328135 | SL 06-24 OXXO SECURITY SCREENS           | 1 each         | \$91.58  | \$91.58    | 2   | 1  |
| 328605 | S1218 XO SECURITY SCREENS                | 1 each         | \$94.27  | \$94.27    | 2   | 1  |
| 329260 | S1818 OX/OX SECURITY SCREENS             | 1 each         | \$165.38 | \$165.38   | 2   | 1  |
| 331155 | S2330 OXXO SGD SECURITY SCREENS          | 1 each         | \$436.41 | \$436.41   | 2   | 1  |
| 331890 | HINGED DOOR 820 X 2040MM SECURITY SCREEN | 1 each         | \$291.38 | \$291.38   | 2   | 1  |
| 331915 | DELIVERY SCREENS                         | 1 each         | \$0.00   | \$0.00     | 2   | 1  |
|        |                                          | Total 570 SCRE | ENS      | \$1,494.93 |     |    |

# 590 GARAGE DOORS

| Item  | Descrip ion                     | Quantity  | <u>Units</u> | Rate       | Amount            | Lvi | Ld |  |
|-------|---------------------------------|-----------|--------------|------------|-------------------|-----|----|--|
| 6924  | PANEL LIFT DOOR 2400X5200       | 1         | l each       | \$1,680.00 | \$1,680.00        | 2   | 1  |  |
| 69301 | REMOTE CONTROL TO PANELIFT DOOR | 1         | each         | \$390.00   | \$390.00          | 2   | 1  |  |
|       |                                 | Total 590 | GARAGE DOO   | RS         | <b>\$2,070.00</b> |     |    |  |

#### 595 HOUSE CLEAN

\_

| Item | Descrip ion                    | Quantity | <u>Units</u>  | Rate   | <u>Amount</u> | Lvl | Ld |  |
|------|--------------------------------|----------|---------------|--------|---------------|-----|----|--|
| 6912 | INTERNAL HOUSE CLEAN           | 134.28   | 3 m2          | \$2.50 | \$335.70      | 2   | 1  |  |
| 6913 | HOUSE CLEAN -PATIOS & CARPORTS | 22.36    | 6 m2          | \$2.50 | \$55.90       | 2   | 1  |  |
|      |                                | Total 59 | 5 HOUSE CLEAN |        | \$391.60      |     |    |  |



# ERP2021 Bill of Quantities

Page 20 of 21

23 May 2021

000 EXAMPLE ESTIMATE Job

# 625 EXTERNAL CONCRETING

| Item        | Descrip ion                                                 | Quantity Units               | Rate     | Amount           | Lv         | Ld        |
|-------------|-------------------------------------------------------------|------------------------------|----------|------------------|------------|-----------|
| 6557        | SUPPLY & INSTALL EXPOSED AGGREGATE<br>DRIVEWAY              | 65 m2                        | \$76.00  | \$4,940.00       | 2          | 1         |
| 65574       | 90MM PIPE CONDUIT UNDER DRIVEWAY                            | 1 each                       | \$45.00  | \$45.00          | 2          | 1         |
| 6563        | LAUNDRY STEP                                                | 1 each                       | \$150.00 | \$150.00         | 2          | 1         |
| 6566        | FORM, PLACE & FINISH HOT WATER SYSTEM SLAB                  | 1 each                       | \$150.00 | \$150.00         | 2          | 1         |
|             | Tota                                                        | al 625 EXTERNAL CONCR        | ETING    | \$5,285.00       |            |           |
| <u>640</u>  | CLOTHESLINES                                                |                              |          |                  |            |           |
| <u>Item</u> | Descrip ion                                                 | Quantity Units               | Rate     | <u>Amount</u>    | <u>Lvi</u> | <u>Ld</u> |
| 659110      | HILLS EVERYDAY SINGLE WALL MOUNTED<br>CLOTHESLINE           | 1 each                       | \$240.91 | <b>\$</b> 240.91 | 2          | 1         |
| 65930       | INSTALL WALL MOUNTED CLOTHESLINE                            | 1 each                       | \$0.00   | \$0.00           | 2          | 1         |
|             |                                                             | Total 640 CLOTHES            | LINES    | <b>\$</b> 240.91 |            |           |
| <u>645</u>  | LETTERBOXES                                                 |                              |          |                  |            |           |
| <u>Item</u> | Descrip ion                                                 | Quantity Units               | Rate     | Amount           | Lvi        | Ld        |
| 65955       | STANDARD RENDERED HEBEL LETTERBOX -<br>COMPLETE             | 1 each                       | \$370.00 | \$370.00         | 2          | 1         |
|             |                                                             | Total 645 LETTERE            | OXES     | \$370.00         |            |           |
| <u>665</u>  | SITE CLEAN                                                  |                              |          |                  |            |           |
| <u>Item</u> | Descrip ion                                                 | Quantity Units               | Rate     | Amount           | <u>Lvi</u> | <u>Ld</u> |
| 6931        | PROVISIONAL ALLOWANCE FOR TWO SITE CLEANS.<br>INC. TIP FEES | 1 each                       | \$500.00 | \$500.00         | 2          | 1         |
| 6932        | SITE CLEAN AREA ALLOWANCE                                   | 156.6 m2                     | \$2.50   | \$391.50         | 2          | 1         |
|             |                                                             | Total 665 SITE 0             | CLEAN    | <b>\$</b> 891.50 |            |           |
| <u>670</u>  | SKIP HIRE                                                   |                              |          |                  |            |           |
|             | Descrip ion                                                 | <u>Quantity</u> <u>Units</u> | Rate     | <u>Amount</u>    | <u>Lvi</u> | <u>Ld</u> |
| Item        |                                                             |                              |          |                  |            |           |
|             | SKIP HIRE                                                   | 3 each                       | \$420.00 | \$1,260.00       | 2          | 1         |

700 MISCELLANEOUS

| Item | Descrip ion | <b>Quantity</b> | <u>Units</u> | Rate | Amount | Lvl | Ld |
|------|-------------|-----------------|--------------|------|--------|-----|----|
|      |             |                 |              |      |        |     |    |

|             |                                   |              | ERP2021<br>Bill of Quantit | ties            |                                   |                                  | Pa                                    | ge 21           | of |
|-------------|-----------------------------------|--------------|----------------------------|-----------------|-----------------------------------|----------------------------------|---------------------------------------|-----------------|----|
|             |                                   |              |                            |                 |                                   |                                  | 23                                    | 8 May           | 20 |
| Job         | 000                               | EXAMPLE E    | STIMATE                    |                 |                                   |                                  |                                       |                 |    |
| <u>700</u>  | MISCELLANEOUS                     |              |                            |                 |                                   |                                  |                                       |                 |    |
| Item        | Descrip ion                       |              |                            | Quantity        | Units                             | Rate                             | Amount                                | Lvi             | ļ  |
| 7301        | MISCELLANEOUS HAR                 | OWARE        |                            | 1               | each                              | \$200.00                         | \$200.00                              | 2               |    |
| 7305        | MISCELLANEOUS LABO                | UR           |                            | 1               | hour                              | \$50.00                          | \$50.00                               | 2               | 1  |
| 7310        | MISCELLANEOUS MATE                | RIALS        |                            | 1               | each                              | \$200.00                         | \$200.00                              | 2               | 1  |
|             |                                   |              | 1                          | Total 700 I     | MISCELLAN                         | EOUS                             | \$450.00                              |                 |    |
|             | Descrip ion<br>ALLOWANCE FOR TEMI | PORARY POWER |                            |                 | <u>Units</u><br>each<br>DRARY SER | <u>Rate</u><br>\$100.00<br>VICES | <u>Amount</u><br>\$100.00<br>\$100.00 | <u>Lvi</u><br>2 | 2  |
| <u>710</u>  | CONTINGENCY                       |              |                            |                 |                                   |                                  |                                       |                 |    |
| <u>Item</u> | Descrip ion                       |              |                            | <u>Quantity</u> | <u>Units</u>                      | Rate                             | Amount                                | <u>Lvl</u>      |    |
| 7453        | CONTINGENCY                       |              |                            | 156.6           | 6 m2                              | \$5.00                           | \$783.00                              | 2               |    |
|             |                                   |              |                            | Total 71        | D CONTING                         | ENCY                             | \$783.00                              |                 |    |
| <u>715</u>  | MAINTENANCE                       |              |                            |                 |                                   |                                  |                                       |                 |    |
| <u>Item</u> | Descrip ion                       |              |                            | <u>Quantity</u> | <u>Units</u>                      | Rate                             | Amount                                | <u>Lvi</u>      |    |
| 7481        | MAINTENANCE PER JO                | В            |                            | 1               | each                              | \$250.00                         | \$250.00                              | 2               |    |
|             |                                   |              |                            | Total 71        | 5 MAINTEN                         | IANCE                            | <b>\$2</b> 50.00                      |                 |    |
|             |                                   |              |                            |                 |                                   |                                  |                                       |                 |    |

# Appendix T – Example cost summary

Please see following pages for this appendix document.



000

# ERP2021 - Sample Data Bill Summary

Page 1 of 3

6 September 2021

EXAMPLE ESTIMATE

|     | <u>Cost Centre</u>             |         | Amount      |       |
|-----|--------------------------------|---------|-------------|-------|
| 005 | PREL MINARIES                  |         | \$120.00    | .1%   |
| 015 | CONSULTANCY FEES               |         | \$400.00    | .2%   |
| 030 | SOIL TEST                      |         | \$375.00    | .2%   |
| 035 | ENGINEER                       |         | \$730.00    | .4%   |
| 045 | ENERGY EFFICIENCY              |         | \$120.00    | .1%   |
| 055 | WORKPLACE HEALTH & SAFETY      |         | \$227.27    | .1%   |
| 070 | CERTIFICATION AND COUNCIL FEES | ;       | \$1,895.00  | 1.1%  |
| 075 | COUNCIL FEES - HYDRAULICS      |         | \$2,003.00  | 1.2%  |
|     | 1 PRELIM                       | INARIES | \$5,870.27  | 3%    |
| 100 | SURVEYOR                       |         | \$227.28    | .1%   |
| 105 | EQUIPMENT HIRE                 |         | \$1,060.00  | .6%   |
| 115 | EARTHWORKS                     |         | \$313.20    | .2%   |
| 130 | PLANT MACHINE HIRE             |         | \$1,254.75  | .7%   |
| 135 | CONCRETE PUMP FOOTING          |         | \$712.60    | .4%   |
| 140 | FOOTING / SLAB REINFORCING     |         | \$3,128.36  | 1.8%  |
| 145 | FOOTING CONCRETE               |         | \$1,860.00  | 1.1%  |
| 160 | PLUMBER - DRAINS               |         | \$2,910.00  | 1.7%  |
| 165 | TERMITE TREATMENT              |         | \$2,436.75  | 1.4%  |
| 170 | SAND AND GRAVEL                |         | \$1,815.60  | 1.0%  |
| 180 | SLAB FINISHER                  |         | \$4,594.80  | 2.6%  |
| 185 | SLAB CONCRETE                  |         | \$6,360.00  | 3.7%  |
| 190 | CONCRETE PUMP SLAB             |         | \$1,387.60  | .8%   |
|     |                                | 2 BASE  | \$28,060.94 | 16%   |
| 200 |                                |         | ¢7.400.00   | 4.00/ |
| 200 | BLOCK LAYER                    |         | \$7,492.90  | 4.3%  |
| 202 | CONCRETE MASONARY              |         | \$4,965.20  | 2.9%  |
| 205 | BOND BEAM STEEL                |         | \$1,034.94  | .6%   |
| 212 | TRUSS TIE DOWNS                |         | \$139.40    | .1%   |
| 216 | BOND BEAM PUMP                 |         | \$680.80    | .4%   |
| 218 | BOND BEAM CONCRETE             |         | \$1,166.40  | .7%   |
| 223 | ELECTRICIAN                    |         | \$7,565.00  | 4.4%  |
| 230 | RENDER AND APPLIED FINISHES    |         | \$3,183.60  | 1.8%  |
| 235 | SCAFFOLDING                    |         | \$311.30    | .2%   |
| 255 | CRANE HIRE                     |         | \$633.75    | .4%   |
| 260 | TRUSSES                        |         | \$4,264.78  | 2.5%  |
| 270 | NON-STRUCTURAL FRAMING TIMBE   | R       | \$1,453.37  | .8%   |
| 275 | STRUCTURAL FRAMING TIMBER      |         | \$1,624.44  | .9%   |
| 285 | FC SHEETING / CLADDING         |         | \$1,702.49  | 1.0%  |
| 290 | FRAME HARDWARE                 |         | \$770.19    | .4%   |
| 298 | EXTERNAL FRAME CARPENTER       |         | \$2,204.26  | 1.3%  |
|     | :                              | FRAME   | \$39,192.82 | 23%   |
| 300 | INTERNAL FRAME CARPENTER       |         | \$1,183.94  | .7%   |



000

\_\_\_\_

# ERP2021 - Sample Data Bill Summary

Page 2 of 3

6 September 2021

EXAMPLE ESTIMATE

|   |             | Cost Centre                      | Amount                |             |
|---|-------------|----------------------------------|-----------------------|-------------|
| 3 | 320         | ROOF SUNDRIES                    | \$762.71              | .4%         |
|   | 325         | ROOF CONTRACTOR                  | \$10,254.71           | 5.9%        |
| 3 | 335         | PLUMBER - ROUGH IN               | \$1,990.00            | 1.1%        |
|   | 355         | WINDOWS                          | \$3,507.35            | 2.0%        |
|   | 360         | LOCK-UP CARPENTER                | \$2,028.74            | 1.2%        |
|   | 365         | EXTERNAL DOORS / FRAMES          | \$828.95              | .5%         |
| - |             |                                  |                       |             |
|   |             | 4 ENCLOSE                        | D \$20,556.40         | 12%         |
| 4 | 100         | CABINETMAKER                     | \$11,284.50           | 6.5%        |
| 4 | 405         | TILE SUPPLY                      | \$3,695.22            | 2.1%        |
| 4 | <b>1</b> 10 | WARDROBES                        | \$1,492.05            | .9%         |
| 4 | 115         | FLOORCOVERINGS                   | \$1,620.00            | .9%         |
| 4 | 117         | WALL/CEILING INSULATION          | \$67.39               | .0%         |
| 4 | 424         | PLASTERBOARD CONTRACTOR          | \$9,619.88            | 5.5%        |
| 4 | 125         | DOOR LOCKS                       | \$732.24              | .4%         |
|   | 130         | INTERNAL DOORS                   | \$414.80              | .2%         |
|   | 135         | FINISHING TIMBER                 | \$1,376.00            | .8%         |
|   | 140         | FINISHING HARDWARE               | \$61.00               | .0%         |
|   | 145         | FINISHING CARPENTER              | \$2,668.24            | 1.5%        |
|   | 465         | WATERPROOFING                    | \$689.50              | .4%         |
|   | 470         | CERAMIC TILING                   | \$4,164.26            | 2.4%        |
|   | 475         | SHOWER SCREENS                   | \$2,145.22            | 1.2%        |
|   | 180         | MIRRORS                          | \$340.00              | .2%         |
|   | 483         | PLUMBING - FLOOR WASTE           | \$246.40              | .1%         |
|   | 186         | PLUMBING - HWS                   | \$995.00              | .6%         |
|   |             | 5 FIXIN                          |                       | 24%         |
|   |             | 5 FIXIN                          | G <b>\$</b> 41,611.71 | <b>∠4</b> % |
| 5 | 505         | PLUMBING - PC ITEMS              | \$1,539.81            | .9%         |
| 5 | 510         | PAINTER                          | \$9,909.00            | 5.7%        |
| 5 | 515         | PLUMBER - FIT-OFF                | \$2,390.00            | 1.4%        |
| 5 | 520         | APPLIANCES                       | \$3,007.72            | 1.7%        |
| 5 | 530         | ELECTRICAL FITTINGS              | \$1,220.84            | .7%         |
| 5 | 545         | FINAL CARPENTER                  | \$402.00              | .2%         |
| 5 | 55 <b>0</b> | A.C & SPECIAL APPLIANCES         | \$3,834.00            | 2.2%        |
| 5 | 552         | INSTALL A.C & SPECIAL APPLIANCES | \$2,400.00            | 1.4%        |
| 5 | 570         | SCREENS                          | \$1,494.93            | .9%         |
| 5 | 590         | GARAGE DOORS                     | \$2,070.00            | 1.2%        |
|   | 595         | HOUSE CLEAN                      | \$391.60              | .2%         |
|   | 625         | EXTERNAL CONCRETING              | \$5,285.00            | 3.0%        |
|   | 540         | CLOTHESLINES                     | \$240.91              | .1%         |
|   | 645         | LETTERBOXES                      | \$370.00              | .2%         |
|   | 665         | SITE CLEAN                       | \$891.50              | .5%         |
|   | 570         | SKIP HIRE                        | \$1,260.00            | .7%         |
|   | 700         | MISCELLANEOUS                    | \$450.00              | .3%         |
|   | 00          | MISOLLEANLOUS                    | \$400.00              | .3%         |



# ERP2021 - Sample Data Bill Summary

Page 3 of 3

6 September 2021

000 EXAMPLE ESTIMATE

|         | Cost Centre            | Amount       |     |
|---------|------------------------|--------------|-----|
| <br>705 | TEMPORARY SERVICES     | \$100.00     | .1% |
| 710     | CONTINGENCY            | \$783.00     | .5% |
| 715     | MAINTENANCE            | \$250.00     | .1% |
|         | 6 PRACTICAL COMPLETION | \$38,290.31  | 22% |
|         | Total                  | \$173,582.44 |     |
|         | Plus 10.00% GST        | \$17,358.24  |     |
|         | Total                  | \$190,940.68 |     |
|         |                        |              |     |