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Abstract

Cognitive Radio (CR) has emerged as a potential solution to spectrum scarcity, whereby

time division of spectrum use could allow Secondary Users (SU) to leverage bands when

unoccupied by a Primary User (PU). This requires accurate detection of PU signal pres-

ence at low Signal to Noise Ratio (SNR).

Eigenvalue-based detection schemes have the potential to detect low SNR signals with

periodicity. All schemes reviewed in the literature use Random Matrix Theory and com-

binations of eigenvalues to develop a threshold for Boolean detection. This project extends

early work in Maximum-Minimum Eigenvalue (MME) detection by using eigenvalues as

a proxy for SNR, examines the factors affecting it, and develops a framework for opti-

mised detection. Novel Maximum-Minimum Percentage Difference (MMPD) detection is

applied to simulated and real SDR signals to examine whether the SNR proxy hypothesis

is valid under a range of conditions. Simulations were used to develop a mathematical

model for the MMPD scheme. It is refined and tested against generated and real signals,

and pre-processing requirements for received signals are defined. An alternative detec-

tion scheme called Eigenvector Augmented Fast Fourier Transform (EVA-FFT) is also

developed based on Principal Component Analysis (PCA) and tested extensively.

This project defines the relationship between the eigenvalues of the sample covariance

matrix and SNR, as well as how it changes with antenna count and listening time. Low

SNR limits are proposed for eigenvalue based detection schemes based on antenna count

and cycles captured. Neither MMPD or EVA-FFT employ energy detection as most other

eigenvalue/eigenvector based schemes do.
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Chapter 1

Literature Review

1.1 Broadband in Australia

1.1.1 National Broadband Network (NBN) Background

The NBN in its current form was first proposed in 2009 by the Rudd Government as

a faster alternative to existing copper infrastructure in Australia. The intent was to

service residential, non-residential and non-premises end users in all parts of the country

(Communications Alliance n.d.) using a combination of optical Fibre To The Premises

(FTTP), fixed wireless and satellite communications. It was anticipated that FTTP

internet speeds of up to 100 megabits per second would be available to 90% of Australian

premises, with the remainder gaining access to speeds up to 12 megabits per second

(Rudd 2009). At the time the NBN was the largest infrastructure project in Australian

history (Egan 2008), with an initial estimated cost of $43B spanning eight years. Although

the government sought private sector investment as part of the forecast project costs,

there was a clear intent to implement ownership restrictions in order to promote an

open-access network and encourage competition between telecom retailers. The Rudd

government billed the NBN as productivity enabling infrastructure and an important

driver of economic growth (Rudd 2009).

NBN Co Limited was subsequently established in April 2009 (Australian Business Register

2021) to provide a primarily hard-wired FTTP technology supplemented by fixed wireless

and satellite technologies. The regulatory framework for the NBN is established under
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the National Broadband Network Companies Act 2011 (Cwlth) and Telecommunications

Legislation Amendment (National Broadband Network Measures - Access Arrangments)

Act 2011 (Cwlth).

When Prime Minister Rudd left office in 2013 the NBN project was failing to meet targets

and was significantly behind schedule, with only 154,000 people able to access the service.

Since that time the NBN implementation has become a mix of FTTP and Fibre To The

Node (FTTN) due to differing strategies between the Australian Liberal and Labor parties

(Conifer 2016). FTTN installations connect fibre optic lines to node points, which are

then connected to premises via copper lines, resulting in lower maximum speeds than

FTTP (Australian Competition & Consumer Commission n.d.). The net cost for the

project has also exceeded original estimates, reportedly reaching $57B in 2020 when the

‘roll-out’ phase was completed (Conifer 2020).

1.1.2 Urban Strategy

Premises in urban environments are equipped with either FTTP, FTTN, Hybrid Fibre

Coaxial (HFC), Fibre To The Basement (FTTB) or Fibre To The Curb (FTTC). HFC

involves using existing pay TV cabling to connect the fibre node to the premises (NBN Co

Limited 2020a). FTTB and FTTC are similar to FTTN, in that the fibre terminates at

a node and requires a copper line to the premises (Australian Competition & Consumer

Commission n.d.a). FTTP is the fastest connection type in terms of data transfer rates

for customers because the optical fibre transmission lines use light rather than electric

pulses to transmit information, permitting higher propagation velocity without attenua-

tion losses due to distributed electrical parameters.

The maximum data download and upload rates using FTTP technology via the NBN are

presently 1000Mbps and 50Mbps respectively (NBN Co Limited 2020b).

1.1.3 Urban Fringe and Regional Strategy

Urban fringe areas are on the periphery of population centres and represent the ’mid-

dle ground’ between distributed regional and high density urban populations. To service

these areas NBN Co Limited uses a mix of FTTP/N/B/C, HFC as well as fixed wire-
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less and satellite wireless. Fixed wireless installations consist of radio frequency (RF)

transceiver installations that provide line of sight data transfer between customers and

the NBN wide area network (WAN) using Time Division Duplex Long Term Evolution

(TDD-LTE) protocols to minimise bandwidth requirements compared to the frequency di-

vision alternative (FDD-LTE) (Australian Competition & Consumer Commission n.d.b).

TDD-LTE dedicates the majority of time in any sub-channel to downlink communica-

tions (download), while less time as allocated to uplink (upload) since users are typically

consuming media hosted elsewhere. Satellite installations require less infrastructure than

fixed wireless, since base stations are not required in the targeted regional locality. For

the purposes of this project, investigations are targeted toward NBN fixed wireless, with

a view to maximise bandwidth utility. As described subsequently in Section 1.2, time-

sharing of bandwidth has the potential to improve spectral efficiency and maximise data

rates in regional areas. This requires accurate detection of when bands are occupied. The

specific focus of this project, therefore, is detection schemes that enable such time-sharing

of the RF spectrum.

1.2 Software Defined Radio and Cognitive Radio

1.2.1 Introduction

The major premise giving rise to interest in and demand for Cognitive Radio (CR) is

the scarcity of suitable and available RF spectrum for communications between wireless

devices to support information transmission at high data rates. In the cellular specific

context, over the last 15 years there has been drastic growth in mobile traffic and wireless

devices, exacerbated due to the proliferation of smart devices. This presents a challenge in

terms of capacity for existing cellular infrastructure (Yu, Xue, Bennis, Chen & Han 2018).

The capacity problem is that information transfer is demanded at very high volume flow

rates which requires spectral use, while the available RF spectrum is insufficient to satisfy

the anticipated future demand in the context of the prevailing regulatory approach by

governments. The conventional regulatory approach of fixed spectrum assignment via

licensing is limited by the finite RF bands suitable for particular wireless applications.

Identifying new spectrum for use is considered “almost impractical” as a means to solve

the capacity problem (Gupta & Dhurandher 2020). The only option, therefore, is to
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make more efficient use of the existing spectra through a system of sharing (Chen, Chen

& Meng 2014). CR seeks to exploit the fact that primary users (PU) holding licences

for RF bands do not generally occupy those bands constantly, nor over the entirety of

the regulated area to which the licence applies. The realisation of temporal and spa-

tial diversity in the regulated RF environment permits the conception of the CR, which

takes advantage of wide-band spectral sensing to detect unoccupied frequencies and use

them for communications, without impacting other users (Wen, Tang & Ziolkowski 2019).

This is known as Dynamic Spectrum Access (DSA) and is based on context-aware be-

haviour, underpinned by autonomous reconfiguration driven by learnings from sampling

the spectral environment (Lopez-Benitez & Casadevall 2013).

Software Defined Radio (SDR) expands on conventional radio systems by using soft-

ware to set transceiver characteristics and process signals, rather than using dedicated

hardware for the purpose (Fisne & Ozsoy 2018). An SDR is a wireless device whose char-

acteristics are modified using a computer terminal or embedded system (Regula, Gilbert

& Sheikh 2020). This makes SDRs a flexible wireless solution for any enterprise that

requires a configurable and/or bespoke network, and as such SDR is substantially used

in military applications (Jondral, Elsner & Schwall 2012). For example, unmanned vehi-

cles employ SDRs to enhance battlespace communications and extend effective range for

ground vehicles where line of sight is impeded. This is accomplished by using unmanned

aerial vehicles as a relay for re-transmission (Webb, Schwall, Elsner & Jondral 2012).

A CR is an SDR which senses its radio frequency (RF) environment, examines changes,

and uses this information to dynamically reconfigure. Thus, SDR is an enabling and pre-

requisite technology for CR (Jondral et al. 2012). It may be said that all CR are SDR, but

not vice versa. In contrast to conventional wireless transceivers that can only make use of

preallocated bands, CR are able to utilise any available frequency within their bandwidth

according to inferences about their environment, which has been described as an OODA

(Observe, Orient, Decide, Act) loop (Zhu & Pan 2020). The flexibility of CR technology

and techniques are foreseeably extensible, since multiple operating parameters such as

frequency, transmission power and modulation technique can potentially be manipulated

in real time and different combinations (Gupta & Dhurandher 2020). The fundamental

elements of a CR (Fernando 2019) are:

� spectrum sensing - gathering real time spectral information;
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� spectrum allocation - optimal channel assignment;

� spectrum access - transmit on the allocated channels at appropriate power levels;

� spectrum sharing - coordinate spectral use with other SUs and PUs; and

� spectrum mobility - detect PU channel reclamation, release the channel(s) and adopt

an alternative channel or strategy.

This research project focusses primarily on spectrum sensing and investigates the different

techniques for retrieving man-made signals that are buried in significant noise.

1.2.2 Spectrum Availability and Sensing Generally

Spectrum availability can be considered in terms of occupied and unoccupied frequency

bands, with availability being a state determined by the CR that a particular band corre-

sponding to one or more channels is not in use. Bands unused by the licensed PU at a spe-

cific time and geographic location are termed spectrum holes (Gupta & Dhurandher 2020).

It is thought that spectral usage varies significantly with time and geographic location

ranging from 15% to 85% (Guo 2010). For a CR to operate effectively it must be able to

sense the PU occupied bands of the RF spectrum and dynamically access spectrum holes

for opportunistic communications (Almalfouh & Stuber 2011). This must be done in a

manner that is autonomously adaptive and does not affect PU communications, while

seeking to maintain sufficient quality of service (QoS) to satisfy user demand (Regula

et al. 2020). CR are thought to eventually provide meaningful utility across a wide range

of frequencies e.g. tens of MHz to approximately 10 GHz, though efforts prior to 2010

substantially sought to leverage the bands below 1 GHz which are primarily used for

television (Razavi 2010). Spectrum sensing requires the reliable detection of PU signals

indicative of channel occupation in real time (Gupta & Dhurandher 2020), a problem

statement which acknowledges the challenges of temporal and spatial diversity, as well

as the need for the system to be adequately responsive such that vacant channels can be

exploited before they are reclaimed by the PU.

There are three main modes of spectrum sensing described in the literature (Chen et al.

2014):

1. Overlay - The CR has knowledge of the PU RF codebook and is thus able to avoid
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interference. This is generally difficult to attain since it would require formal agree-

ments and potential sharing of intellectual property between the PU and SUs. If

available, CR nodes can examine sensor information for signal properties or patterns

indicative of PU channel access. This is known as feature detection.

2. Interweave - The CR network employs spectrum sensing to identify and exploit

spectrum holes, accessing channels not claimed by the PU for its own communica-

tions.

3. Underlay - The CR network adaptively varies its operating parameters such as trans-

mit power, direction and sub-carrier allocation in Orthogonally Frequency Division

Multiplexed (OFDM) systems. This type of scheme tries to use channels by remain-

ing below a pre-set interference temperature threshold, such that the CR network

transmissions appear as tolerable noise to the PU.

It is conceivable that a complex CR network could switch between these spectrum sensing

strategies depending on available information, however, such functional complexity in

pursuit of optimal spectral utility drives hardware costs and computational overhead.

A typical approach to spectrum sensing is done in two broad stages. First the receiver

is isolated from the receive antenna and the receiver’s internal noise power is measured

as the signal PS(t) = Pn(t). The RF environment is subsequently measured with the

antenna connected and this results in any occupying signal power, multiplied by the

channel gain, plus the receiver noise power PS(t) = h(t)PPU (t) + Pn(t). The test for

channel occupation becomes a question as to whether the difference between these two

measurements represents a signal power indicative of an occupied band. Since it is not

only the presence of energy at particular frequencies that is important, but how this

varies with time, energy detection methods require a long sensing time. Feature detection

is a different method that is not reliant on knowledge of the receiver noise power, but

instead looks for known patterns in received waveforms that correspond to PU modulation

scheme(s). This method has a comparable sensing time to the energy detection method,

with the added disadvantage of requiring synchronisation between the receiver’s baseband

Analog to Digital Converter (ADC) clock and the received signal symbol rate, which is

difficult to achieve (Razavi 2010).

Spectrum sensing is a challenging part of CR network design because propagation factors

like multi-path fading and shadowing can significantly affect spectral component detection
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at SU CR nodes. This could cause an occupied band to be improperly sensed as vacant

or vice versa, causing either undue interference to PU communications or inefficient SU

spectral utility respectively (Almalfouh & Stuber 2011). One may say, then, that the first

challenge for a CR is to accurately sense the RF environment and ascribe meaning to the

power densities detected. It follows that the use of multiple sensor nodes in a cooperative

fashion to achieve spatial diversity in spectrum sensing will improve the accuracy of the

inferences drawn, and offset the adverse effects of fading and shadowing (Chen et al. 2014).

A consequence of shadowing and fading effects is that CRs require a highly sensitive RF

front end, far exceeding those sensitivities specified in wireless standards. The difference

between a genuine PU signal and noise at a CR node may be very small and difficult to

resolve, emphasising the need for stable noise power in the CR receiver that does not drift

(Razavi 2010). For example, a CR may determine channel availability based on an SNR

threshold of -15 dB to -20 dB even though standards specify +8 dB to +25 dB depending

on the modulation scheme in use (Razavi 2010).

Various cooperative spectrum sensing strategies are described in the literature which

use multiple SU nodes to try to account for spatial and temporal diversity, as well as

unknown PU antenna gain characteristics. The use of multiple channels per CR node adds

to the complexity of spectrum sensing, and so too does the fact that most transceivers

are not full duplex since they cannot maintain continuity in sensing while the CR is

transmitting (Fernando 2019). The algorithms employed in the literature to enhance

the reliability of sensor data are almost exclusively stochastic; deterministic methods

would entail the processing of enormous data sets for multiple variables across vast areas

including topography, soil type, vegetation and human structures to name just a few

(Almalfouh & Stuber 2011).

Different techniques have been employed to monitor the RF environment including RADAR

imaging and electromagnetic spectrum sensing. Different methods entail different hard-

ware requirements which affects the size, power consumption and weight of CR installa-

tions. A typical CR transceiver contains an RF front end, Analog to Digital Converter

(ADC), Digital Signal Processor (DSP) and Digital to Analog Converter (DAC) supplying

RF output stages. Depending on the implementation, an array of frequency converters

and narrow band filters might be used to cover the desired bandwidth. Tunable RF com-

ponents might be used to make the system more flexible. These variations are usually

seen in the analog RF front end of CR receivers after the antennas and initial amplifica-
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tion stages (Zhu & Pan 2020). The speed and resolution demands on the digital hardware

can vary significantly depending on the algorithms employed. For example, one suggested

scheme requiring digital downconversion of a block of channels and then taking the Fast

Fourier Transform (FFT) of the entire block would require high ADC speed and resolution

compared to simpler energy detection methods (Razavi 2010).

Energy detection methods are quite straightforward, comparing received signal strength

against a threshold to make a decision as to channel states. Drawing correct conclusions

in such a scheme relies primarily on spatial diversity of nodes as previously mentioned,

however, the accuracy of sensing can be reduced due to low SNR regions. An alternative

in an overlay scenario is to employ feature or coherence detection using matched filters,

though the requisite PU information may not be available to the SU, thus excluding this

method. The use of cyclic autocorrelation is another alternative in a scheme known as

cyclostationary detection, where the convolution of adjacent time series of signal data

will tend to reject noise and reveal the presence of PU signals in a band. An FFT

can then be constrained to lag windows flagged in the autocorrelation, thus reducing

the computational burden for SU nodes. Although an autocorrelation approach can be

optimised to some extent, the requirement to correlate at all lags for the sampling window

introduces significant computation delay compared to energy detection (Chen et al. 2014).

Another scheme for networks with multiple antennas allows spectrum occupation to be

detected without any prior knowledge of PU signals, by comparison of maximum and

minimum eigenvalues of a received signal matrix (Chen et al. 2014). Since a multi-

dimensional matrix can be representative of a linear transformation of space, most vectors

subjected to the transform will end up moving off their initial axis. An eigenvector is a

vector which remains on the same axis when the transform matrix is applied, and is

scaled by an associated eigenvalue. Eigenvalue and eigenvector based detection methods

are elaborated in Section 3, since they form the primary basis for this research project.

1.2.3 Dynamic Reconfiguration

Dynamic reconfiguration describes the ability of a CR to take advantage of different fre-

quency bands by changing its operating parameters or hardware configuration in real time.

Reconfigurable antennas, active devices and Multiple Input Multiple Output (MIMO) sys-

tems are all examples of hardware that facilitate dynamic reconfiguration to support the
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flexible and wide-band operations of CR (Guo 2010). Reconfigurable antennas permit

sensing and transmission for a larger variety of frequency bands, and studies have been

conducted on various linearly polarised antenna variants and a circularly polarised vari-

ant (Wen et al. 2019). Reconfigurable active devices such as filters have the potential to

reduce the hardware and power requirements for CR nodes. MIMO systems allow CR

installations to take advantage of spatial diversity by enabling beamforming. This has

the potential to improve spectrum sensing by taking advantage of multipath effects, as

well as to avoid interference with PUs by controlling the direction of transmitted power

(Chen et al. 2014).

Beamforming strategies have been investigated when PU Channel State Information (CSI)

is available to the CR network in real time via a dedicated channel. When the CR network

has the PU CSI, it can generate beamforming strategies between the CR base station and

nodes, such that power is directed in a way that minimises the effect on the PU. This also

allows the network to be more flexible and maintain a useable service level for CR nodes,

while relieving the requirement for spectrum sensing at those nodes (Chen et al. 2014).

Though this approach may sound attractive, PU CSI is not practically available in the

manner described and there is no obvious incentive for a PU to share that information in

the regulatory environment of exclusive licensing for RF bands.

The criteria for reconfiguration are based on switching criteria in a CR, using a scheme

called Adaptive Modulation and Coding (AMC). AMC is an umbrella term for the influ-

ence of Medium Access Control (MAC) and physical layer parameters on SDR reconfigu-

ration. Optimising this influence can yield performance improvements in SDRs generally

and extends to their use in CR networks (Jondral et al. 2012). Reconfiguration during

runtime with minimal disruption to communications or data processing is an obvious

challenge. Block abstraction of signal processing chains is not unusual, with different

waveform processing schemes selected by switch action. Dickens et al. (2012) describe a

method of streamlining dynamic reconfiguration using dynamic waveform insertion and

removal to minimise disruption to signal processing. The scheme is based on a block

abstraction represented in a Graphical User Interface (GUI), and involves the concept

of a surfer which is a resource control algorithm that queues blocks for processing by

each thread. The surfer is able to improve block processing efficiency since normally each

block as assigned a single thread or a single thread is used for all processing. The surfer

concept leverages shared memory between different physical processors and is effectively
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a sophisticated buffering scheme for process execution (Dickens, Laneman & Dunn 2012).

Some SDR devices have Digital Clock Managers (DCMs) which allow variation in oper-

ating clock frequency during runtime by the manipulation of Dynamically Reconfigurable

Ports (DRPs) (Jondral et al. 2012). This is in keeping with the need to maximise hard-

ware utility in a CR by making the existing hardware as flexible as possible, such that it

can be used over a wide range of frequencies and adapt as required to its environment.

Another scheme known as Partial Recognition (PR) uses time sharing for part of a Field

Programmable Gate Array (FPGA) while the rest of the FPGA operates uninterrupted.

This was combined with the concept of DRPs to significantly reduce hardware utilisation

in SDR architecture compared to static FPGA design (He, Crockett & Stewart 2012).

Microwave photonics is an area of study that modulates optical signals with radio fre-

quency signals using electro-optical modulators. Since optical signals are immune to

electromagnetic interference and have a much shorter wavelength, there are advantages

over RF solutions in terms of size, weight, propagation loss and interference. Hardware

can operate with a wide bandwidth of tens or even hundreds of GHz. This presents a

challenge in terms of dynamic reconfiguration because a CR needs to vary its operating

frequency in a highly flexible manner, which in turn requires variable signal generation.

Thus, if a CR network is to leverage microwave photonics in its architecture, the high

frequencies are a limiting factor for electrical waveform generation via a conventional

DAC. A solution has been proposed employing multiple lasers in a feedback loop, where a

master laser is modulated using an electro-optical modulator until the output frequency

settles at the desired value. Electrical conversion is then achieved by way of a photode-

tector. Receivers based on microwave photonics have adaptations of the superheterodyne

principle to achieve flexibility in information recovery, where the local oscillator takes the

form of a reference light source, and photodetectors act in the place of mixers (Zhu &

Pan 2020).

1.2.4 Dynamic Spectrum Access

Once a CR network has knowledge of the RF environment through spectrum sensing, it

must then determine how to utilise the parts of the spectrum deemed available (spectrum

holes), and how it will behave as the environment changes. This system of adaptively

using the available spectrum is known as Dynamic Spectrum Access (DSA) and relies on
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spectrum sensing information and dynamic reconfiguration capabilities as prerequisites.

One could say DSA is the set of protocols governing how the CR network assigns channels

to nodes, based on its knowledge of spectrum holes (Zhu & Pan 2020). Provided the

spectrum sensing information is accurate, improving DSA algorithms is an obvious way

to enhance spectrum utilisation efficiency (Jondral et al. 2012, Gupta & Dhurandher 2020)

by ascribing meaning to the sensed information and then deciding how the CR network

should optimally access any available channels. This alludes to a complicating issue,

being that DSA algorithms make judgements about the spectrum sensing information,

since in reality there are inaccuracies. This is generally based on the application of

weighting systems and/or the application of probability functions to assign meaning to

the aggregated sensor data (Almalfouh & Stuber 2011). A significant barrier to DSA

exists for portable consumer devices, where robust spectrum sensing may not be a viable

option given size, weight and power constraints (Webb et al. 2012), exacerbated by the

inherent wide-band nature of DSA (Fisne & Ozsoy 2018).

Opportunistic access of PU licensed spectrum by SUs during times of inactivity describes

a hierarchical access scheme with at least two levels. The different types of opportunistic

spectrum access were defined at Section 1.2.2 as overlay, interweave or underlay. In any of

these schemes, DSA can produce interference for PUs when the spectrum is imperfectly

sensed, interpreted, or out of band emissions occur. Out of band emissions are when part

of a CR node’s radiated power in a vacant channel/sub-band leaks into neighbouring ones

occupied by the PU, generally as a result of pulse shaping at the transmitter (Almalfouh

& Stuber 2011). A particular underlay CR network implementation has been simulated

with the PU providing CSI via an RF feedback link, giving obvious performance advan-

tages over conventional spectrum sensing due to accurate and timely CSI informing DSA

strategy. Variations of this basic idea have been explored with differences in the manner of

CSI feedback from the PU, or the number of PU nodes, though the major premise of direct

contact between PU and the CR network is essentially unchanged (Chen et al. 2014, He

& Dey 2011, He & Dey 2012).

A significant part of any DSA strategy for a CR network is what to do when a PU reclaims

a channel. This is known as a hand off strategy and the common methods employed are

as follows (Gupta & Dhurandher 2020):

1. Reactive-decision spectrum hand off: Searching for a target channel only begins after
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interruption of channel use by a PU. Using this method an SU node must tolerate the

delay between interruption and transmission resumption on an alternative channel.

If there aren’t any channels available then the SU node will need to wait in a queue.

2. Proactive-decision spectrum hand off: The SU node relies on a pre-prepared list of

target channels for handoff. This can be done by regularly observing channels and

populating a hand off list based on their usage history, or geolocation databases

can be looked up. This helps to reduce sensing time and delays to service. A

challenge associated with this method is that it cannot be known whether a PU

will have occupied a handoff channel after it was deemed suitable and available, but

before interruption of the SU. Depending on the implementation, an SU node may

perform channel switching pre-emptively if it predicts PU interruption is imminent.

The scheme might perform poorly if the predictions are wrong.

3. Non-switching hand off: An SU node prefers staying on the same channel rather

than switching. If the PU reclaims a channel, the SU node will wait in the queue

until the PU stops transmitting.

In multiple node CR networks the matter of dynamic access is closely tied to the problems

of cooperative spectrum sensing and spectrum sharing, being how to adequately sense the

spectrum for a spatially distributed set of nodes and how to optimally issue channel as-

signments to them. Cooperative communications techniques for CR networks including

feedback of SU sensor information have been explored as a means to optimise decision

making regarding spectrum access (Letaief & Zhang 2009, Chen et al. 2014). A clustering

approach to cooperative sensing has been explored too, with the aim being to obtain

sensing diversity via the spatial distribution of node clusters. A particular node in each

cluster would be assigned as the ’cluster head’ if it had the highest level energy detection

residual energy, communicating cluster sensing information to a central ’fusion centre’

through a common control channel (Sun, Zhang & Letaief 2007). Clustering approaches

have also been modelled as a congestion game, analysing cluster formation to arrive at

an optimal result by convergence toward a Nash equilibrium solution, where convergence

speed and cluster size were the primary parameters of interest (Li, Fang & Gross 2018).

In similar work, clustering has been used for node organisation into logical groups with

a focus on scalability, sensing stability/accuracy and energy efficiency. A key part of the

work was an algorithm for distributed load balancing. Cluster member nodes each calcu-

lated the residual energy and distance from neighbouring clusters, using this information
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to participate in a process for selection of the cluster heads. Due to the discrete-time and

stochastic nature of the control processes at play, the authors elected to use a Markov

decision process for cluster size selection (Muthukkumar & Manimegalai 2017).

A non-cooperative game approach was used for the formation of coalitions, which are

effectively groups of SU nodes, for cooperative spectrum sensing. The game was separated

into two parts, the first being optimal coalition formation for spectrum sensing and the

second being optimal channel allocation of transmit time. Nash equilibria were found

for both games separately, with the results demonstrating the combination of the two

Nash equilibria is equivalent to the Nash equilibrium of a single game encompassing the

entire complex problem. In this way the researchers established that the multivariable

complexity of CR network optimisation can be decomposed into separate, less complex

games and solved separately to arrive at an overall optimal solution (Jiang, Yuan, Leung,

You & Zheng 2017).

1.2.5 Eigenvalue Based Spectrum Sensing

Eigenvalue based detection systems are based on the conception of a matrix as a trans-

formation of multi-dimensional space, which is a central idea in linear algebra. The

eigenvalues of a matrix may be found by application of the following equation:

Av⃗ = λv⃗ (1.1)

Where A is the matrix, in this case the covariance matrix formed from the signals of

each antenna source, v⃗ and λ are an eigenvector and eigenvalue of matrix A respectively.

Any eigenvector of the A will result in a scaled version of itself post-transformation

by A, that is, the eigenvector represents a consistent direction that exists before and

after transformation of multi-dimensional space. Eigenvectors can be indicative of useful

characteristics depending on the context. For example, in rotational transformations in

three dimensional space an eigenvector may be indicative of axis of rotation.

In CR applications energy detection methods are simple but suffer from being ineffective

at low SNR values, while IEEE 802.22 suggests that PU signals should be detectable at

-21 dB SNR with a probability of detection greater than 90 percent (Mashta, Altabban

& Wainakh 2020). Eigenvalue based detection schemes have been identified as a method

of inferring PU signal presence without any prior knowledge of the nature of that signal,
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noting that increasing the number of signal samples (longer sampling time) does not

translate to improved probability of detection for energy detection schemes when noise

uncertainty is present (Zeng & Liang 2009). The authors appear to employ techniques

similar to Principal Component Analysis (PCA) to inform threshold setting for a Boolean

decision as to PU signal presence. Although they do not explicitly identify PCA as being

employed, the formation of a covariance matrix from received signals and the selection

of particular eigenvectors/values obtained from it are consistent with PCA. Their work

explored detection algorithms based on the ratio of maximum or average eigenvalue to

minimum eigenvalue.

Principal Component Analysis (PCA) is a statistical processing technique where multiple

sets of observations are captured, standardised, arranged into a matrix and then processed

into a covariance matrix. The matrixX for a set ofM observations of signal x(t) expressed

in discrete time as x(n), will have dimensions M xN where N is the number of samples.

The covariance matrix C is square and formed from X. It has the variance of each row

of X as its diagonal elements, and the covariances between rows of X comprise the other

elements. For example, if there are three signal observations (such as from three co-located

antennas) as rows of X then the covariance matrix will be:

C =


Cov(X1,X1) Cov(X1,X2) Cov(X1,X3)

Cov(X2,X1) Cov(X2,X2) Cov(X2,X3)

Cov(X3,X1) Cov(X3,X2) Cov(X3,X3)

 = XXT (1.2)

Where the subscripts indicate the applicable row of X. In an M multi-antenna system

then, the covariance matrix of the received signals will have dimensions M xM. The eigen-

values of the covariance matrix correspond to the eigenvectors along which most of the

variation exists in the data. By selecting the dominant eigenvectors and forming a ’feature

matrix’, the original (standardised) data matrix can be transformed into a single vector

of observation data with the useful variance retained and irrelevant variance minimised.

For the purposes of CR we expect useful variance around a zero mean for most man-made

signals that exhibit periodicity, while noise can be considered variance that is not useful.

The first algorithm employed was Maximum-Minimum Eigenvalue (MME) detection and

simply computed the covariance matrix from the received signals, calculated the ratio of

maximum and minimum eigenvalues, then compared that value to a pre-defined threshold

as follows:
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λmax

λmin
> γ (1.3)

Where λmax is the maximum eigenvalue of the sample covariance matrix, λmin is the

minimum eigenvalue of the same, and γ is the threshold. If the expression evaluates

TRUE then the presence of a PU signal is inferred, else the opposite conclusion is drawn.

The second algorithm employed was Energy with Minimum Eigenvalue (EME) detection

which was similar to the first, however, employed energy detection to calculate the average

power of the received signal rather than using the eigenvalue ratio. The ratio of the

signal power to the minimum eigenvalue was compared to a pre-defined threshold in the

same way as the first algorithm. This approach is subtly but meaningfully different from

conventional energy detection, because it uses the minimum eigenvalue as a proxy for noise

power rather than relying on a pre-defined noise power that may not be temporally stable.

Neither approach used the relationship between signal and noise to select an appropriate

threshold, but rather used number of samples, probability of false alarm and a smoothing

factor as inputs into a probabilistic model using multivariate Gaussian Wishart matrices

according to Random Matrix Theory (RMT). (Zeng & Liang 2009).

The two eigenvalue based spectrum sensing algorithms discussed use a decision threshold

that is arrived at in using a probabilistic approach. There is an implicit assumption that

the eigenvectosr associated with the PU signal have a persistently dominant eigenvalue

at SNR where energy detection is not viable. This could be true and the experimental

results presented support the conclusion that MME is superior to energy detection in the

range of approximately -20 dB to -8 dB, however, inferior below -20 dB. The relationship

between the eigenvectors, eigenvalues and the original data set permits transformation

of the signal data into a signal matrix containing only the desired principal components,

however, this was not pursued in either algorithm. The capacity for noise rejection is a key

advantage of PCA techniques, but neither algorithm took advantage of the opportunity

to reject noise in this way prior to comparison against a threshold.

Noting the primary advantage of eigenvalue detection over energy detection techniques

is an apparently greater resilience to noise uncertainty, further work has been done in

recent years to optimise eigenvalue detection approaches. One study defined a Standard

Condition Number (SCN) as the ratio of the maximum eigenvalue of the signal covariance

matrix to the minimum eigenvalue of the same. The SCN was then compared to a ’noise



16 Literature Review

only’ SCN resulting in a Boolean decision of PU signal presence or absence. This study

may be distinguished from the aforementioned one because it considers the effects of

correlated noise rather than white noise, which renders the RMT approach based on

a Wishart random matrix not applicable. The authors state that filtering of received

signals gives rise to a filter output signal containing correlated noise, which consequently

degrades sensing performance because the detection threshold selection was premised on

uncorrelated white noise. The practical value of SNR estimation for transmission strategy

selection is discussed as a potential way to modulate CR transmit power in an underlay

scheme (Sharma, Chatzinotas & Ottersten 2013).

So far the eigenvalue based detection schemes discussed only considered a subset of the

eigenvalues of the signal covariance matrix, however, an eigenvalue weighting system has

been explored to make use of all of the eigenvalues. The approach involves an adaptation

of the Generalised Likelihood Ratio Test (GLRT) and is referred to as the Eigenvalue

Likelihood Ratio Test (ELRT), once again determining a threshold based on noise power

inferred from some arrangement of the eigenvalues of the covariance matrix. Optimal,

semi-blind and blind models were proposed, with each requiring different input data.

Each model computes a weighting factor for each eigenvalue to be multiplied by, sums

them all, thus giving a threshold against which to compare received the signal energy

calculation and obtain a Boolean result for signal presence (Liu, Li, Wang & Jin 2017).

The threshold calculations are given as follows:

Optimal : Topt =

M∑
i=1

ρs
ρs + σ2

n

λ̂i (1.4)

Semi− blind : Tsb =

M∑
i=1

(λ̂i − σ2
n)

σ2
n

λ̂i (1.5)

Blind : Tb =

M∑
i=1

(λ̂i − σ̂2
n)

σ̂2
n

λ̂i (1.6)

Where ρs is the diagonal matrix of eigenvalues of the PU signal, λ̂i is the i’th eigenvalue of

the sample covariance matrix, σ2
n is the noise power and σ̂2

n is the estimated noise power

calculated from the mean of the eigenvalues of the recieved signal covariance matrix.

Another adaptation of the GLRT has been used based on the ratio between arithmetic

and geometric mean (AGM) of the eigenvalues of the sample covariance matrix (Zhang,
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Lim, Liang & Zeng 2010).

TAGM =
1
M

∑
m λm,x

(
∏

m λm,x)1/M
(1.7)

Where M is the number of antennas, m is the number of the eigenvalue, and λm,x is

the mth eigenvalue of the sample covariance matrix x. This approach required only the

eigenvalues of the sample covariance matrix, however, selected a threshold based on a

desired false alarm probability which was presumably tabulated from prior simulations.

The same analytical selection of threshold based on false alarm probability was seen in

an adaptation of this approach (Bouallegue, Dayoub, Gharbi & Hassan 2018), where

the AGM concept was applied again, except using only the maximum and minimum

eigenvalues. This approach was termed ’mean to square extreme eigenvalue’ (MSEE),

giving the threshold as:

TMSEE =
λM + λm

2
√
λMλm

(1.8)

Where λM is the maximum eigenvalue of the sample covariance matrix, and λm is the

minimum eigenvalue.

Automatic Modulation Classification (AMC) is the process of analysing a signal and al-

gorithmically determining its modulation scheme according to known features. AMC can

be used to enable demodulation of a range of signals in the RF environment, and finds

obvious application in a military setting. In the CR context, eigenvalue based AMC has

been explored as a means to enable a CR to glean more information about its RF envi-

ronment and the types of signals present, which provides the opportunity to prioritise the

signals of different users when selecting transmission strategy. The researchers sought to

classify 64QAM, FM and OFDM received signals by comparison of their feature vectors.

When received signals are noise only, the feature vector has a random direction and the

eigenvalues of the sample covariance matrix are approximately equal. When the received

signals contain signals exhibiting periodicity, the feature vector will have a definite direc-

tion which is indicative of the signal type, thus enabling classification (Bhatti, da Silva,

Rowe & Sowerby 2014).
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1.3 Conclusions

The Australian land area is very large and sparsely populated in many regional areas,

making wireless broadband services a cost effective solution compared to wired networks.

Those wireless networks are data rate limited by bandwidth, in part owing to a regulatory

regime of exclusive spectrum licensing. There is an opportunity to increase the efficiency

of spectrum utility through a time sharing approach via CR networks. These networks

would be formed from SDR that adapt to their spectral environment. NBN fixed wireless

services could potentially leverage bands of spectrum reserved for other users, such as TV

broadcasters, when they are not in use.

IEEE 802.22 Wireless Regional Area Networks (WRAN) requires that an SU must be able

to detect a PU with a probability of detection Pd of 90% and probability of false alarm Pfa

of 10% at -21 dB (IEEE Std 802.22-2011 2011). Many different approaches are evident

in the literature, with most using energy detection as the primary scheme. The point of

difference lies in determination of the threshold against which the average received signal

energy is compared, which requires an estimation of noise power. The common approach

to this estimation is to use a probabilistic approach, which is intuitive because Gaussian

white noise is random and conforms to a normal probability distribution. Where multiple

antennas are used to gather received signals, the noise becomes a multivariate Gaussian

probability distribution, hence the common application of random matrix theory observed

in the literature.

The multiple antenna case permits examination of the sample covariance matrix, whose

eigenvectors are indicative of the principal signal components and whose eigenvalues are

the corresponding magnitudes. Studies exploring eigenvalue based detection schemes

widely use the minimum eigenvalue or a combination of the eigenvalues as a proxy for

noise power, with this assumption the major premise of the application of the selected

probability distribution. An interesting exception is in some of the earliest and most

promising work using the ratio of maximum to minimum eigenvalues as a proxy for signal

power (Zeng & Liang 2009). This approach avoided a conventional energy detection

approach and suggested that sufficient information could be contained in the eigenvectors

and eigenvalues of the sample covariance matrix to make an informed decision on the

question of signal presence.
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Further, the signal detection algorithms only seek to report the presence of man-made

signals as a Boolean result, however, modern modulation schemes such as OFDM utilise a

spread spectrum approach employing different sub-channels that are occupied at different

times. This is true in the context of NBN fixed wireless services, which utilise a scheme

similar to 4G TDD-LTE. Energy detection is not a viable option for such an application

without extensive filtering, since it is unable to differentiate between signal components.

The Fast Fourier Transform (FFT) seems an appropriate tool for channel state detection

to decide which channels are occupied and which are available for use in a particular band.

The central question then becomes what threshold to set for detection when considering

the normalised FFT amplitudes. The problem is simplified when channel frequencies are

known in advance, which is realistic for practical cases involving commercial PUs who

employ standardised modulation schemes.

The eigenvalues of a sample covariance matrix will be equal to noise variance when there

is no man-made signal component present i.e. they will be approximately equal. In the

alternative case the variance/covariance due to the man-made signal will dominate and

thus correspond to the maximum eigenvalue and feature vector, up to a point. Intu-

itively, then, at some SNR the noise variance will conceal the presence of the useful signal

variance/covariance, meaning there is a limiting SNR below which eigenvalue/eigenvector

detection methods will be ineffective. Some important questions not addressed in the

literature are as follows:

1. Is there a limiting SNR for eigenvalue/eigenvector based detection schemes, and

what are the driving factors?

2. Can the relationship between eigenvalues serve as a proxy for SNR, and therefore

support Boolean detection?

3. Can PCA be applied to signals captured from different receivers in the same band,

in order to decide signal presence without performing FFT on all received signals?

4. Can an eigenvalue informed approach to FFT threshold setting be used to maximise

detection accuracy in a multi-antenna, multi-channel context?

5. Are the above items applicable to the Australian context described in Section 1.1?

The focus of this research project is to investigate these questions primarily in the con-

text of a spectral band containing constantly present components at different SNR. These
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signals will ultimately be received via multiple antennas attached to separate receivers.

Since channel detection experiments would require prior knowledge of channel states at

various times, this research project instead focuses on Boolean detection. A channel de-

tection simulation employing eigenvalue inferred SNR in combination with FFT threshold

detection is also presented.



Chapter 2

Methodology

2.1 Data Collection

Several questions arose after review of the literature in Section 1.2. Investigation of these

areas requires the collection and analysis of data. Data is collected from simulations run

in MATLAB using generated signals initially, then subsequently using imported signals

captured via SDR. A Boolean detection algorithm is applied to a signal generated at

varying SNR and the associated Pd and Pfa are tabulated against them. To demonstrate

the potential application of developed algorithms to an FFT detection scenario, a multi-

channel analysis is conducted using generated signals with varying active component

frequencies. Detection results are recorded against multiple SNR levels, with Pd and Pfa

recorded for each SNR across multiple iterations of channel state changes.

Since the algorithms are being refined as the project progresses, the scenarios begin as sim-

ple simulations, progress to a replicated single receiver signal and ultimately culminates

in the multiple receiver case. Simulations and simulation results are detailed in Section

3, while hardware experiments are detailed in Section 4. The same process flow shown

in Figure 2.1 applies to both simulation and hardware experiments, except the recording

and pre-processing blocks are replaced with signals synthesised in code for simulations.

When using SDR receivers, the associated software permits export of a band in *.wav file

format. The receivers are used to simultaneously capture signals in the same frequency

band (dependent on the limitations of the software), with the bandwidth dependent on

the type of signal. The use of multiple receivers is intended to simulate a single multi-
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antenna receiver. FM signals are used to gauge algorithm performance and refine signal

processing prior to applying the developed detection algorithm to spread spectrum 2.4

GHz WiFi signals. Computation time for the core operations of MMPD and MME are

also captured.

The broad process flow for data capture is shown in Figure 2.1. The same process is

repeated 10,000 times for each SNR integer level between -35 dB and 0 dB. NT is the

truncated number of samples after pre-processing, and is less than the captured number

of samples N .

Bandwidth,
Sample rate

x (4xNT)
Pre-process

A (1x4)

Noise
calibration

IQ (4xN)Recording.wav
x4 Noisy multi-antenna

signal (4xNT)

Summing point

y (4xNT)

Standardise

Defined test
SNR

AWGN (4xNT)

Noise
generator (per

antenna)
Inferred SNR,

MMPD Boolean,
MME Boolean

MMPD/MME
Detection

* Objects inside box for testing only

Figure 2.1: Generalised testing and data collection process flow.

2.2 Data Analysis

Quantitative data is collected based on the IEEE 802.22 standard requirements for prob-

ability of detection and probability of false alarm. The probability of detection is the

number of correctly detected active signals out of the total number of active signals. The

probability of false alarm is the number of incorrectly detected active signals out of the

total noise only signals, providing worst case Pfa. This means the low SNR Pd will be

equal to Pfa. The overall accuracy of detection algorithms will be captured through these

two metrics, at different SNR for Pd. Varying SNR signals are obtained by evaluating

the received signals and artificially adding white Gaussian noise. Detection algorithm

performance is compared to maximum-minimum eigenvalue detection (MME), noting the

different methods described in the literature are quite similar in many of their features.
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To ensure the algorithms are compared in a meaningful way, they are applied to common

scenarios i.e. using the same number of antennas, cycles captured, sampling frequency

and signals. The Pd and Pfa are captured for multiple iterations at different SNR levels,

and computation time is captured using the MATLAB ‘run and time’ feature. Since there

is no ability to control the broadcasts captured using SDRs, only Pd is captured for the

SDR scenarios. This is not problematic, since Pfa is equal to Pd at low SNR.

Ultimately, algorithm performance is based on a comparison of detection performance

(Pd) at -21 dB. This value is chosen because it is a key performance metric defined in

IEEE Std 802.22-2011. The developed algorithm will be deemed superior to MME if it

satisfies both of the following criteria:

1. Pd is higher than MME at -21 dB, and this difference is statistically significant when

averaged over 10,000 iterations; and

2. Pd at low SNR (-30dB and below) is greater than MME, but remains within the

range 8% ≤ Pfa ≤ 12%. This permits a ±2% tolerance around the 10% threshold

defined in Section 3.2.

An average Pd difference greater than or equal to 5% at -21 dB will be deemed statistically

significant prima facie, and will not be demonstrated through formal statistical testing.

In either case, Pd vs SNR performance is reported graphically via MATLAB generated

plots.

2.3 Tools and Materials

The broad resource requirements are identified in the table below
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# Resource Quantity Source

1 Computer and peripherals. 2 Existing asset and online purchase.

2 MATLAB software. 2 Existing assett.

3 RTL-SDR receiver 4 Nooelec online store.

4 HackRF SDR transceiver 1 Nooelec online store.

5 TexStudio Latex Editor 1 Existing asset.

6 Microsoft Office 2 Existing asset.

7 Printer and consumables 1 Existing asset.

8 Scientific calculator 1 Existing asset.

9 Office furniture 1 Existing asset.



Chapter 3

Eigenvalues and Signal to Noise

Ratio

3.1 Max-Min Percentage Difference (MMPD) Eigenvalue

Detection

If signal detection is to be accomplished by examining the eigenvectors and eigenvalues

of the sample covariance matrix, then the relationship between the eigenvalues and SNR

must be understood. The persistence of a signal eigenvalue compared to noise is logically

related to how strong the variance/covariance distribution is, which is of course related to

the number of data points. This is reflected in the literature where there is an improve-

ment in detection probability with a higher number of samples or an increased number of

receiving antennas. Intuitively, the frequency is also a contributing factor since the vari-

ance attributable to the signal is maximised when more cycles occur in the sample space.

Consequently, the relationship between number of cycles captured and SNR detectability

is a natural entry point for investigation.

To obtain meaningful results, SNR detectability needs to be properly defined and so too

the eigenvalue proxy we wish to use. Since the maximum to minimum eigenvalue ratio

has proven to be a reasonable proxy for signal strength, and the minimum eigenvalue

has frequently been used as a proxy for noise power, we suspect the relationship between

maximum and minimum eigenvalues is key. Since we know that there is a large difference
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between the maximum and minimum eigenvalues of the sample covariance matrix when a

strong signal is present, and that the difference between them diminishes as noise begins

to dominate, one may reason that the percentage difference between the maximum and

minimum eigenvalues makes a good proxy for SNR i.e. we might infer SNR via calculation

of percentage difference in eigenvalues. Thus, a figure of merit is this percentage difference

defined as:

D = 100
λmax − λmin

λmax
(3.1)

Where λmax is the maximum eigenvalue of the sample covariance matrix, and λmin is the

minimum eigenvalue of the same.

To examine the relationship between D and SNR, a signal was generated in MATLAB,

subjected to varying levels of additive white Gaussian noise (AWGN) corresponding to

SNR levels from 10 dB to -40 dB. To initially examine the relationship, 1500 cycles C

were generated as N samples at frequency f of 1 MHz for 4 (M ) antennas. The sample

space was therefore an M × N matrix X. The sample covariance matrix was computed

by application of Equation 1.2. The eigenvalues were calculated using the built in eigs()

function in MATLAB, which is based on Equation 1.1. The maximum and minimum

eigenvalue percentage difference D was then calculated for all SNRs and plotted from -25

dB to 10 dB:

From Figure 3.1 we see a clear relationship between D and SNR. The plot was re-generated

with varying values of f with nil effect, indicating the eigenvalue to SNR relationship is

independent of frequency provided a given number of cycles are captured in the sample

space. This relationship underpins our novel eigenvalue based detection scheme, named

Maximum-Minimum Percentage Difference (MMPD) Eigenvalue Detection. The code

listing for the function used to obtain the above results is located in Appendix D.1.

By taking the average of the percentage difference values at low SNR of -40 dB to -30 dB,

we may define the percentage difference for cutoff Dco and SNR cutoff SNRco, which

appears to be approximately -20 dB by visual inspection of the plot. Below SNRco

the signal cannot be reliably distinguished from the noise using the relationship between

maximum and minimum eigenvalues. This is an interesting result because it corresponds

to the SNR threshold where detection schemes significantly degrade as presented in the

literature, noting that those schemes almost all use 4 antennas too. When less cycles
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Table 3.1: Parameters by number of antennas - 2000 cycles captured.

Polynomial Coefficients for SNR(D)

M Dco SNRco a b c d e f

2 1.7644 -17.701 1.993e-8 -4.818e-6 4.744e-4 -2.413e-2 8.177e-1 -1.894e1

3 2.9561 -18.989 3.247e-8 -8.1e-6 7.949e-4 -3.849e-2 1.111 -2.3e1

4 3.6597 -20.96 3.858e-8 -9.602e-6 9.315e-4 -4.427e-2 1.228 -2.53e1

5 4.5142 -21.007 5.106e-8 -1.293e-5 1.259e-3 -5.884e-2 1.513 -2.827e1

6 5.1995 -22.048 5.498e-8 -1.388e-5 1.345e-3 -6.237e-2 1.585 -2.973e1

7 5.6836 -22.345 5.056e-8 -1.249e-5 1.185e-3 -5.428e-2 1.412 -2.931e1

8 6.377 -22.849 6.204e-8 -1.563e-5 1.504e-3 -6.902e-2 1.717 -3.216e1

9 6.783 -23.529 6.099e-8 -1.520e-5 1.443e-3 -6.545e-2 1.631 -3.211e1

10 7.1653 -24.152 7.046e-8 -1.781e-5 1.712e-3 -7.825e-2 1.908 -3.477e1

The optimisation of the system is a question of deciding how close to SNRco to position

SNR(ϕ), where ϕ is the optimum percentage difference to serve as a detection threshold.

Shifting the threshold ϕ down from 6.5 to 5.5, for example, improves Pd at -20 dB while

increasing Pfa. Figures 3.4 and 3.5 illustrate this relationship averaged over 1000 itera-

tions where N = 10000 samples, f = 1 MHz, Fs = 5 MSPS M = 4 and C = 2000. The

code used to generate these plots is in Appendix D.3. Importantly, the standardisation

method defined in Section 4.2.2 was applied prior to generation of these plots, since data

from multiple receivers requires standardisation prior to forming the sample covariance

matrix.
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An approach based on the percentage differences between maximum and minimum eigen-

values of the sample covariance matrix is not present in the literature to date, as far as

the author is aware. It is distinguished from other eigenvalue based Boolean detection

methods by the following features:

1. Only requires knowledge of bandwidth and the lowest frequency requiring detection.

2. Defines the low SNR limit of the scheme.

3. Does not employ energy detection as most other schemes do.

4. Does not employ probabilistic threshold setting.

5. Is far simpler to understand compared to random matrix theory approaches.

6. Informs CR listening time vs receive antenna count to achieve a desired performance.

7. Intuitive method to adjust performance in software, trading off Pd against Pfa.

3.2 Optimal MMPD

In the previous section the MMPD scheme was introduced and simulated results given

for four different threshold settings. The thresholds selected were in the vicinity of Ddeg,

that is, 1.5Dco. The optimum threshold is selected based on the 10% Pfa limit (IEEE Std

802.22-2011 2011), with the objective of remaining near to this limit since Pd and Pfa

are a trade-off. We therefore define the optimum threshold ϕ when 9.5% ≤ Pfa ≤ 10%.

Analytical results indicate a reasonable approximation for 10% ± 2% is given for the

C = 2000 case by:

ϕ ≈ −0.0555M2 + 1.561M + 0.5254± γ (3.3)

Adjusting γ permits fine Pfa control. Positive γ results in lower Pfa, while negative values

have the opposite effect. For the four antenna case explored in this project, the optimal

γ value is +0.3.





34 Eigenvalues and Signal to Noise Ratio

using signals from different receivers is expected to show the curves right-shifted, with Pd

tapering off at higher SNR.

MMPD execution time averaged 407.56 µs while MME averaged 399.92 µs, a difference

of 1.875%.

3.3 FFT Detection Effectiveness

3.3.1 Potential For Channel State Detection

While Boolean detection algorithms are useful for indicating signal presence, they are less

useful for determining which channels are in use in a given band. A useful property of the

eigenvectors of the sample covariance matrix is the ability to form a feature vector and

transform the data set into a single vector with the noise information minimised. This is

a specific application of PCA. A natural consequence of this noise suppression ought to

be extension of the useful SNR range for the FFT, in a similar way to autocorrelating a

single signal vector prior to FFT.

Another interesting idea is that a particular eigenvector is indicative of a particular mod-

ulation scheme or signal type (Bhatti et al. 2014). This prompts the idea of eigenvector

persistence, where one might discover the PU eigenvector by survey at a known strong sig-

nal location, then use that information to inform detection at some far away SU location

that has a poor or variable SNR.

From these ideas we conceive the following approach to signal detection in the single/multi-

channel context employing FFT:

1. SU receives PU signal at unknown SNR.

2. SU uses MMPD algorithm developed in Section 3.1 to infer SNR.

3. If the inferred SNR is above SNR(ϕ) then transform the sample matrix using the

feature vector of the sample covariance matrix, then apply the FFT.

4. If the SNR is below SNR(ϕ) then transform the sample matrix using the last

calculated feature vector.
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5. If the SNR is below SNR(ϕ) and no previously calculated feature vector is available,

transform the sample matrix using the feature vector then apply the FFT. This

rejects noise despite not being able to extract a meaningful feature vector.

6. Use threshold detection modulated by the inferred SNR i.e. when there is less noise

it is safe to use a relatively low threshold, but when the SNR is low the threshold

setting can be ramped or adjusted to minimise PU transmission conflicts or improve

some other metric.

Transmission conflicts with PUs are highly undesirable because they lead to inefficient

use of SU transmission power as well as having potential commercial implications. Conse-

quently, we reason it is better to incorrectly deem a channel as occupied than to incorrectly

deem it as free. For the FFT this leads to the somewhat counter-intuitive conclusion that

a lower threshold is preferable at low SNR. Figure 3.7 demonstrates the basic advantage

of PCA for noise rejection, noting the significant noise reduction at -25 dB even when

SNR(ϕ) is -19 dB. This is only possible with the use of MMPD detection, since it yields

the inferred SNR upon which feature vector selection is dependent. Here N = 23, 353

samples, Fs = 222 SPS, M = 4, C = 2000 and the frequencies are channels in the 4G LTE

band from 3.4025 GHz to 3.5945 GHz spaced at 8 MHz, down-shifted by a factor of 4.

The results for FFT threshold detection without PCA or MMPD application are given in

table 3.2. The FFT results after PCA transform, and where the threshold is modulated

by the inferred SNR from MMPD, are given in table 3.3. The results are averaged over

1000 iterations of random channel states for each of the 25 channels. The code for this

section is in Appendix D.4.

The tabled data indicates that the use of MMPD and PCA increase the accuracy of

channel state detection at low SNR. The adjustment of the normalised peak detection

threshold used was extremely simple, being 0.4 above SNR(ϕ) and 0.25 below. A more

sophisticated approach could optimise the trade-off between minimising PU conflicts and

maximising free channel utility, but here we consider it sufficient to broadly demonstrate

the advantages of PCA and MMPD.

Another important point to consider here is standardisation. In the simulations thus far

the observation sets (samples from each antenna) have been defined in such a way that no

standardisation is required, however, this will not be the case when capturing real signals

if the antenna and receiver gains are unequal.
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Figure 3.7: Effect of MMPD and PCA on FFT.
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Table 3.2: Multi-channel FFT effectiveness without PCA and MMPD.

SNR (dB)
Channel Detection

Accuracy (%)
PU Conflicts (%)

Free Channel

Utility (%)

0 100 0 100

-2 100 0 100

-4 100 0 100

-6 99.984 0.016 100

-8 99.944 0.056 100

-10 99.9 0.1 100

-12 99.644 0.356 100

-14 99.18 0.76 99.862

-16 98.192 1.404 99.097

-18 95.584 2.728 96.357

-20 91.58 4.42 91.695

-22 85.628 7.496 85.862

-24 78.94 11.748 81.168

-26 71.592 18.244 79.513

-28 64.924 24.592 79.143

-30 60.332 29.148 79.856
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Table 3.3: Multi-channel FFT effectiveness using PCA and MMPD.

SNR (dB)
Channel Detection

Accuracy (%)
PU Conflicts (%)

Free Channel

Utility (%)

0 100 0 100

-2 100 0 100

-4 100 0 100

-6 100 0 100

-8 100 0 100

-10 100 0 100

-12 99.996 0 99.987

-14 99.936 0 99.846

-16 99.676 0 99.26

-18 98.716 0.004 97.224

-20 96.336 0.024 92.317

-22 92.192 0.12 83.955

-24 86.748 0.416 73.703

-26 80.976 0.88 63.304

-28 74.464 2.172 53.151

-30 70.68 4.032 49.736
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3.3.2 Eigenvector Augmented Fast Fourier Transform (EVA-FFT)

The hardware experiments conducted in Section 4.2.2 triggered the need for an alternative

detection algorithm that could perform Boolean signal detection in a band of interest when

the received signals have poor correlation and eigenvalue based methods are impaired.

EVA-FFT was thus developed as a simple detection scheme that takes advantage of the

hallmark PCA technique of transforming the sample covariance matrix, while borrowing

from the work done developing MMPD. In short, EVA-FFT has evolved from MMPD

and its process flow is presented in Figure 3.8.
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Figure 3.8: Eigenvector Augmented Fast Fourier Transform test method.

EVA-FFT transforms the sample covariance matrix using a surveyed feature vector. In

this context, the survey operation is the assignment of weightings to the receiver signals

for the purposes of signal detection. These weightings are the elements of a vector used

to transform the standardised sample matrix y. A normalised FFT is then applied to

the result, yielding Y. The average value of Y is Yav. The normalisation is useful if



40 Eigenvalues and Signal to Noise Ratio

one considers that the normalised spectral content of noise has a particular average level

δ. Simulations using uncorrelated white Gaussian noise show δ is approximately 0.3. If

some other signal is present in the band, even slightly above the noise floor, the average

amplitude of the normalised spectrum will be below δ. This relies on pre-processing

to shift the tuned center frequency to Fs/4 as described in Section 4.2.1. For this to

be effective we must satisfy Fs > 4B to ensure the noise floor is represented in the

vicinity of Fs/2, where bandwidth B is the bandwidth centered on the signal of interest.

The parameter δ serves as a viable threshold for Boolean signal detection, and can be

adjusted to provide a desired Pfa. Analytical results indicate the optimum threshold for

maintaining Pfa of 10% is 0.2685. Experimental results for EVA-FFT are given in Section

4.3.

The normalised FFT for uncorrelated noise, and the average level are shown in Figure

3.9.
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Figure 3.9: FFT for uncorrelated noise.

The red box in Figure 3.8 represents a self-survey function to select an appropriate feature

vector. It only needs to be used for calibration, such as when the receiver changes location

or orientation. An alternative is to use a surveyed feature vector obtained from MMPD.
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The self-survey routine provides the system with different feature vector options depend-

ing on desired detection characteristics. The details of these options are fully elaborated

in the hardware experimentation information at Section 4.3.



Chapter 4

Hardware Experiments

Chapter 3 defined MMPD as an eigenvalue based detection scheme and offered some

mathematical methods to support algorithm implementation. Simulation results were

collected and compared to sub-optimal MME detection for the Boolean detection case,

and a methodology was proposed to extend the scheme to improve frequency domain peak

detection post-FFT.

This chapter investigates the effectiveness of MMPD when dealing with real world signal

information. The chapter follows initial equipment set-up, data capture and analytical

trials, through to the final experiments.

4.1 Initial Data Capture and Analysis

4.1.1 Single SDR Receiver - FM Signals

To investigate the potential benefits of MMPD and PCA in processing RF derived signals,

it is necessary to adequately capture such signals from the real world. This helps one

to develop an understanding of the format of captured data and thus how it might be

properly processed to yield some useful analysis. Initial data capture was performed

using an RTL2832U/R820T2 receiver, commonly referred to as RTL-SDR. It uses a small

telescopic antenna connected to the receiver via mini-coaxial connecion, with the receiver

plugged into a USB Type A port on a computer. Initial data capture was done for various
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wideband FM radio stations using a single RTL-SDR. This is because FM stations are

easy to recognise and the decoded signal components can be verified by playback of the

mono audio component. Figure 4.1 shows the blue RTL-SDR connected to a vertically

polarized antenna. To reduce image height, the full length of the antenna is not shown.

Figure 4.1: Single RTL-SDR for data capture.

SDR Sharp (SDR#) software was used to examine the spectrum and define the settings

for *.wav file capture, which was subsequently processed in MATLAB. SDR# permits

recording of demodulated audio, or baseband IQ signals, where I and Q represent the

in-phase and quadrature components of the RF signal. The term baseband refers to the

down-conversion of the RF signal from approximately 100 MHz to be in the vicinity of 0

Hz.
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Figure 4.2: SDR# Settings and spectrum for data capture.

Figure 4.2 shows the SDR# software settings and selection of 100.7MHz for capture.

The software limits capture to a maximum bandwidth of 250kHz in the wide-band FM

mode, and here it was set to 200kHz. In the bottom right of the figure, the demodulated
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information is clearly visible, particularly the 19kHz pilot tone. To the left of the pilot

tone is the mono audio, which we obtain from the baseband IQ signal and play back in

MATLAB to verify signal capture.

The baseband IQ recordings were imported into MATLAB at a sample frequency of

3.2 MSPS. The default import using the audioread() function yields a matrix with two

columns which hold the I and Q components. First, the FFT was applied to a fraction

of the signal matrix to determine what the baseband offset frequency was. The SDR

baseband offset frequency could not be manually selected and it changed each time the

device was power cycled. The signal was then band-pass filtered with the offset frequency

being the centre of the pass-band of a 30th order filter, and the filter bandwidth being

equal to the bandwidth selected in SDR#. The filter was constructed using a custom

function, and applied to minimise any noise in the signal so that the FM MPX spectrum

would be clearly visible. Once filtered, the columns for the I and Q components were

combined as x = I + jQ to give a single vector of complex numbers. The phase angle

ϕ between samples was obtained as the angle between the real and imaginary parts of

xnx
∗
n+1. Noting that the modulating signal amplitude is proportional to the instantaneous

frequency, and the instantaneous frequency is equal to the rate of change of phase angle,

it follows that m(n) = ϕ(n)− ϕ(n− 1).

The result for a typical music recording is shown in Figure 4.3.
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Figure 4.3: Recovered intelligence from 100.7MHz FM radio station in Toowoomba.

Appendix D.5 contains the code listing for this section. The MPX spectrum obtained

can be compared to the typical spectrum for FM broadcasts shown in 4.4. Once the

mono audio component was decimated to a 48 kSPS and a rudimentary approximation
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of de-emphasis filtering was applied, the mono audio play back was loud and clear.

Figure 4.4: Baseband spectrum for broadcast FM (Murray n.d.).

The RTL-SDR receiver is well suited to capturing FM radio broadcasts which contain

clearly defined peaks in the spectrum of the modulating signal. It should be noted that

some broadcasts contain only mono audio, and the 19 kHz pilot tone and higher frequency

components are not seen in the modulating signal spectrum. Comparing the performance

of Boolean detection using a single receiver vs multiple receivers is a logical progression

from here, and necessary to employ the MMPD techniques developed in the preceding

sections.

The initial experience capturing signals using a single SDR receiver and processing them in

MATLAB yielded some important results in terms of pre-processing SDR signals generally.

Since the captured band is down-shifted to baseband and therefore centered at 0 Hz, any

DC level presents as a significant 0 Hz spike at the center of the signal. Removal of a DC

level requires application of a DC level shift in the time domain, which is a simple matter

of finding the average amplitude.

Another important point is that the MMPD algorithm developed in the preceding sections

assumes 2000 cycle capture based on the carrier frequency and bandwidth as viewed in

the frequency domain. When the signal is centered at baseband it is not clear how many

samples are required to achieve a 2000 cycle equivalent. The solution to this problem

becomes simple when one considers the format of the data as imported into MATLAB

i.e. an N x2 matrix where the first column contains the I components and the second

column contains the Q components. Since we require a time domain signal for application



4.1 Initial Data Capture and Analysis 47

of MMPD anyway, we may frequency up-shift the spectral components upwards during

the conversion from IQ format to a real time domain signal.

The first question to be answered in that regard, then, is how far to up-shift the signal.

Since the visible spectral response is limited to half the sample rate, it seems logical to

center the band of interest in the visible window. This corresponds to Fs/4. Dimensional

analysis reveals the appropriate number of samples is thus:

NT =
CFs

Fs/4−B/2
(4.1)

Where NT is the number of samples for truncation, C is the number of cycles for capture,

Fs is the sample rate and B is the bandwidth. This equation only yields a useful result

if Fs/4 > B, therefore NT = 4C is used as an alternative. The IQ matrix is truncated

to be a NT × 2 matrix. For reconstruction of the time domain waveform the desired

carrier radian frequency is defined as ωc = Fs/4, the magnitude for each sample is equal

to |R(n)| = |IQ(n, 1) + jIQ(n, 2)|, the phase angle is ϕ(n) = arg(R(n)), and the time

domain waveform is thus:

x(n) = |R(n)| cos(ωct+ ϕ(n)) (4.2)

Recalling that the algorithm developed to form the sample covariance matrix for eigen-

value and eigenvector calculation requires observations to be in the columns, with a set

of observations per row, x(n) is transposed appropriately here to be a row vector. Figure

4.5 shows the effect of the pre-processing operations described. The DC spike has been

removed, the band is lower resolution due to sample truncation, and the band is centered

at 50 kHz since the sample rate was 250 kHz in this example. MATLAB code for the

pre-processing function is listed at Appendix D.6.
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Pre-processing IQ signals
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Figure 4.5: IQ signal MMPD pre-processing for a single receiver.

4.2 MMPD Applied to FM Signal Data

4.2.1 Quadrupled Single Receiver Signal

The SDR hardware available for experimentation in the project does not lend itself to

synchronous recording. Multiple computer terminals are required, with each connected

to an SDR and running appropriate software. Although multiple receiver recordings have

been taken, as will be seen in subsequent sections, there are issues of spatial and temporal

variation that could potentially affect the results. Temporal variation results from the

inability to perfectly synchronise recording start and stop times on all computer terminals.

Spatial variation refers to the physical dispersion of the receivers and associated antennas,

causing variable SNR for each.

Noting these matters, it is prudent to attempt application of MMPD to data obtained

from a single receiver, with that data replicated three times to simulate four received

signals of comparable strength. Obviously, these signals will match exactly and correlation

between them will be high. We therefore degrade the signals individually with Additive
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White Gaussian Noise (AWGN) to artificially affect the eigenvalue variation in the sample

covariance matrix. This allows preliminary testing of the MMPD algorithm on real SDR

captured signal data without yet needing to address the temporal and spatial variation

challenges. It also provides a benchmark for best-case detection performance, since the

data is perfectly correlated. To be clear, eigenvalue based detection techniques cannot

be used for a single data vector in the way shown in this section. For example, if we

replicated AWGN and applied it to such a detection scheme, false positives would be

obtained because the data is correlated. The approach is used here for the express purpose

of developing the ideas discussed in the preceding sections.

To test the performance of the MMPD Boolean detection algorithm across a range of

SNR, the received signals must be degraded with a specific amount of noise. To do this

for all SNR values requires corresponding noise amplitude values, which in turn requires

knowledge of how SNR changes with AWGN. By examining the spectral power density of

the pre-processed IQ data before and after the addition of AWGN, approximate peak noise

amplitude An can be determined according to Equation 4.3, where A0 is the estimated

signal amplitude and Ag is the estimated noise amplitude prior to the introduction of any

additional noise.

An =
A0

10
SNR
20

−Ag (4.3)

A0 and Ag were solved by simultaneous equations for known values of An and SNR. Hence,

knowing A0 and Ag to a reasonable approximation, we may determine the appropriate

AWGN standard deviation An to obtain a desired SNR. Analytical results indicate this

method is accurate within ±5 dB which results in an offset compared to the SNR inferred

by the MMPD algorithm.

The offset exists because Equation 4.3 relies on accurate calculation of initial SNR, as

well as SNR after the introduction of test noise. That is, how the SNR changes with the

introduction of test noise determines the result. SNR was estimated using the element-

wise square of the FFT of the signal. The errors in SNR estimation were due to adjacent

band interference and difficulty perfectly centering on the band of interest, since the

center did not always correspond to the maximum peak. This inaccuracy caused imprecise

AWGN introduction for testing and ultimately manifested in the afore-mentioned offset
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which was different for each imported signal. The differences were due to the spectral

peculiarities of each recording. This was problematic because evaluation of algorithm

performance at specific SNR levels, of course, requires signals to be reliably degraded to

those levels.

The first attempt to overcome the ’offset issue’ was to introduce a band-pass digital

pre-filter. This measure improved accuracy but inconsistent offset SNR values were still

observed between different recordings, regardless of the filter order. If one recalls that

an effective band-pass filter can eliminate all components outside the band of interest, it

follows that the noise power has been almost entirely eliminated. A simple calculation is

then performed to determine the average signal power Ps, which allows calculation of the

required standard deviation in the noise distribution An for any desired SNR. In practice,

An is a multiplier for the randn(1, N) function in MATLAB to produce AWGN with

average noise power A2
n.

Ps =
1

N

N∑
n=1

x(n)2 (4.4)

An =

√
Ps10

−SNR
10 (4.5)

This approach eliminated the offset completely for all recordings, tested separately. Con-

sequently, the MMPD inferred SNR exactly matched the expected SNR after the intro-

duction of specific AWGN levels. It is essential that the pre-filtered signals be used only

for the purposes of calculating the noise levels for testing, and not for filtering the re-

ceived signals prior to applying the MMPD algorithm. This is because band-pass filtering

gives rise to correlated noise, dramatically increasing Pfa. An example of this is shown

in Figure 4.6, where uncorrelated white Gaussian noise only is received and subjected to

pre-filtering, AWGN addition and then MMPD detection.

The right-most part of the plot shows the unwanted detection even though uncorrelated

noise was received at each antenna. This represents a potential problem in radio receivers

where band-pass filtering is a common operation, either in hardware or software. Care

should be taken to avoid the problem of unintentionally causing noise correlation. Fig-

ure 4.7 shows the result of MMPD on the same uncorrelated noise, without applying

band-pass filtering first.
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4.2.2 Four Receiver Signals

As Section 4.2.1 alluded, the multiple receiver case introduces the problems of temporal

and spatial diversity which must be overcome to obtain meaningful results from the sample

covariance matrix of the received signal data. Temporal diversity is a problem of synchro-

nisation, where the recording start and stop times vary which means that corresponding

samples are offset in terms of their matrix position. The synchronisation problem also

means the different recordings contain a different number of samples. Spatial diversity

refers to the physical differences in receiver and antenna positioning. The data from each

receiver is scaled differently due to the variation in received signal strength. Another

issue is that separate receivers apply slightly different offsets when shifting the band of

interest to baseband. This results in different frequency components between recordings.

While pre-processing improves the alignment of spectral components, there is still some

difference between them.

Spatial diversity necessitates standardisation of the data, which scales the sets evenly

so that the sample covariance matrix provides meaningful results, and therefore yields

meaningful eigenvectors. Standardisation has been achieved by converting all data to Z

scores z(n) according to Equation 4.6, where x(n) is the sample value, x̂ is the mean

and σ is the standard deviation for the data from a particular antenna. Applying this

equation for each antenna after pre-processing and noise addition, then concatenating the

vectors, effectively addresses the issue of spatial diversity and better simulates co-located

antennas with comparable gain.

z(n) =
x(n)− x̂

σ
(4.6)

Considering the temporal diversity problem, the start time offset is very small compared

to the total recording time for the signals. Since the signal in the band of interest is

not intermittent in our case, we may conclude that there is sigificant overlap of samples

exhibiting periodicity. We therefore subject the received signals to the detection algorithm

without undertaking to resolve the temporal offset known to exist in the data. It is

expected that MMPD performance will be reduced as a result of this decision. The

difference in sample count is naturally resolved by the pre-processing function, which

truncates the data for each receiver to be the same number of samples NT .
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AWGN with specific peak amplitudes were introduced to evaluate MMPD and MME al-

gorithm performance for different SNR for FM signals at 100.7 MHz with bandwidth 250

kHz. This was accomplished per antenna in the same manner described in Section 4.2.1.

This approach ensures the signals are approximately equal SNR for testing purposes,

however, the temporal offset and slight difference in frequency components affects the

sample covariance matrix and therefore also affects the eigenvalue spread. This resulted

in the eigenvalue based detection methods, MMPD and MME, failing to detect at all

when multiple receivers were used. The probability of detection versus SNR is shown in

Figure 4.9. This may not be overly problematic, since in a real multi-antenna receiver the

synchronisation and frequency offset difference will be negligible. This situation is likely,

however, to cause significantly reduced detection performance if eigenvalue based detec-

tion methods are applied to signals from separate receivers. The problem is potentially

exacerbated if the receivers are in motion e.g. mounted to a vehicle.

Eigenvalue based detection schemes in the literature and simulated scenarios assume

perfectly correlated data prior to the addition of AWGN. The results of this experiment

suggests that the relationship between SNR and eigenvalues relied upon in these schemes

is not practically viable for detection of low SNR RF signals.

An important conclusion arising from the results obtained is that the relationship be-

tween SNR and the maximum/minimum eigenvalues of the sample covariance matrix is

not evident for the multiple receiver case. The reduced performance compared to the

single receiver case has an intuitive explanation; capture synchronisation and frequency

up/down shifting affects the performance of any eigenvalue based detection scheme. These

inferences are reasonable at face value, but require further investigation to establish with

any rigour. These questions are left open for future research.

The code for this section is listed at Appendix D.7. The pre-processing algorithm is listed

at Appendix D.6, having been re-used here. The results for this section are averaged for

10,000 iterations. The results were repeatable with different sets of SDR captured signals.

4.3 EVA-FFT Applied to Multiple Receivers

Since eigenvalue based detection performance was reduced compared to the theoretical

performance when multiple receivers were used, the detection scheme defined in Section
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Figure 4.10: hackRF RF transceiver.

considering the basic PCA transform operation. For example, if the feature vector is

[1, 0, 0, 0], then pre-multiplying by the M × N receiver data will only include data from

receiver 1. Since eigenvalue based detection has failed to operate using multiple receivers,

the sample covariance matrix cannot yield information for the purposes of EVA-FFT i.e.
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the feature vector. An alternative method was needed to determine the feature vector.

In the context of our experiments we consider the following facts:

1. The feature vector represents receiver weighting;

2. In PCA theory the dominant eigenvalue of the sample covariance matrix indicates

the dominant eigenvector;

3. In PCA theory the dominant eigenvector is used as the feature vector; and

4. An eigenvalue is the magnitude of an eigenvector.

By deductive reasoning we conclude the following:

1. The elements of the dominant eigenvector of the sample covariance matrix, in a

multiple receiver/antenna system, represents the relative performance of the re-

ceivers/antennas;

2. A dominant eigenvector will only present if the received signals have matching fre-

quency and phase; and

3. If the appropriate feature vector can be deduced by using the FFT, then we have

formed the dominant eigenvector.

In an attempt to optimise feature vector selection, a function was developed to performs

automatic feature vector survey based on the normalised FFT of a block of the received

signal. The function permits three options based on the inverse of the average normalised

amplitude of each receivers spectral content, which is used as a proxy for signal power.

The options are:

1. Weight the receiver data according to their relative signal power;

2. Use only the receiver with the highest signal power; or

3. Weight all receivers evenly.
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Figure 4.22: Unexpected spectral peak in WiFi data.
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Figure 4.23: SDR# spectrum and waterfall for WiFi 2.42 GHz - RX1.



Chapter 5

Conclusions

5.1 General Summary

MMPD and MME performed well when received signals were perfectly correlated prior

to AWGN addition. When separate receivers were used, however, these eigenvalue based

detection schemes performed poorly. Nevertheless, these investigations informed the de-

velopment of pre-processing and standardisation algorithms needed for development of a

sample covariance matrix that is primed for PCA transform. The process of obtaining

a dominant eigenvalue from the sample covariance matrix, and using it to select a fea-

ture vector constitutes a rapid survey of relative signal strengths between receivers. This

permits the system to give preference to the best received signal(s) at any time.

This enabled the evolution of MMPD into EVA-FFT, which was optimised for Pfa of

10% and processes a defined number of samples as a block. Since meaningful eigenvalue

variation was not able to be captured for the multiple receiver case, EVA-FFT was tested

against FM signals from multiple receivers, and this established that EVA-FFT is superior

to eigenvalue based detection in narrow-band applications. EVA-FFT was also tested

against WiFi signals in the vicinity of 2.4 GHz, where the captured signal was difficult

to visually distinguish from the noise floor. The small variations in the spectral content

captured were not sufficient to present a dominant eigenvalue or associated eigenvector

for MMPD or MME detection. EVA-FFT appeared to have detected the WiFi signals,

but upon further inspection it had detected nearby peaks in the spectrum.
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The solid outer circle has a radius defined by the dominant eigenvector ER, which arises

due to received signals R1 and R2. These are the blue arrows. One can imagine the

oscillating data points left and right for R1, and up and down for R2. If the receivers are

synchronised in frequency and phase, and have comparable magnitudes, then the radius

of the outer solid circle is maximum. That is, ER is the dominant eigenvector whose

magnitude is the dominant eigenvalue.

The green arrows represent the eigenvalues En1, En2 and En3, which correspond to the

noise levels 10 dB, -5 dB and -20 dB respectively. White Gaussian noise is distributed

evenly, hence the dashed circles, and one can imagine the inner noise circle expanding

outward toward the perimeter as more noise is added. Eventually, the noise circle becomes

so large that it conceals the eigenvector ER associated with the received signals. This is

why the difference between maximum and minimum eigenvalues diminishes as SNR gets

lower. Eventually all the eigenvalues become equal, as the ’noise circle’ is approximately

equal in all directions and hides the desired signal.

The percentage difference between the maximum and minimum eigenvalues is shown by

the red arrows for different SNR. When SNR is high, the difference D1 is large and easy

to detect. When SNR is low, the difference D3 is small and difficult to detect.

All the theoretical experiments and literature reviewed focused on what happens when

the noise level changes i.e. the dashed circle expanding out toward the perimeter and

concealing ER. In the multiple receiver case, not only did the noise circle expand outward,

but the solid outer circle also moved inward. This is because R1 and R2 could not be

precisely synchronised in frequency and phase, resulting in a more circular and noise-like

distribution when the sample covariance matrix was calculated.

5.2 Performance of Detection Schemes

Pd was collected for MMPD, EVA-FFT and MME detection schemes, where MME was

the baseline. In Section 2.2 the following criteria were established for determining whether

a detection algorithm was superior to MME:

1. Pd is higher than MME at -21 dB, and this difference is statistically significant when

averaged over 10,000 iterations; and
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2. Pd at low SNR (-30dB and below) is greater than MME, but remains within the

range 8% ≤ Pfa ≤ 12%. This permits a ±2% tolerance around the 10% threshold

defined in Section 3.2.

It was noted that an average Pd difference greater than or equal to 5% at -21 dB will be

deemed statistically significant prima facie, and will not be demonstrated through formal

statistical testing.

MMPD is dependent on being able to detect some difference between the maximum and

minimum eigenvalues of the sample covariance matrix of a set of received signals. As

such it will work in any scenario where MME does. The best case performance was

simulated using perfectly correlated synthesised and captured signals. In this context

MMPD showed a Pd ≈ 30% at -21 dB, while MME Pd < 5%, satisfying criterion 1.

The low SNR Pd represented the worst case Pfa of 9.96%, satisfying criterion 2. By

these metrics MMPD is deemed superior to MME prima facie in theory only, since the

theoretical performance could not be validated using multiple receivers.

EVA-FFT relies on a feature vector for the band of interest, surveyed prior to detection.

It evolved from MMPD and uses the same pre-filtering and standardisation routines,

however, does not require a meaningful difference in eigenvalues of the sample covariance

matrix. Instead, EVA-FFT aggregates data from multiple receivers and transforms it

using the surveyed feature vector, permitting multiple received signals to be combined

into a single vector. Considering FM signals, EVA-FFT demonstrated Pd > 90% at -21

dB, while MME failed to exceed 2%. Even the theoretical maximum MME Pd of 5%

at -21 dB is significantly less than EVA-FFT. Criterion 1 is therefore satisfied for EVA-

FFT. Pfa for EVA-FFT was 11.46%, satisfying criterion 2. By these metrics EVA-FFT

is deemed superior to MME prima facie.

MMPD EVA-FFT did not perform an FFT based survey to obtain receiver weightings,

but rather used the dominant eigenvector of the sample covariance matrix for weighting.

Pd for FM signals exceeded 50% at -21 dB, also satisfying criterion 1. Pfa was also

11.46%, satifying criterion 2. By these metrics MMPD EVA-FFT is deemed superior to

MME prima facie.
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5.3 Questions Revisited and Further Research

The following questions were raised at the end of the literature review at Section 1.3:

1. Is there a limiting SNR for eigenvalue/eigenvector based detection schemes, and

what are the driving factors?

(a) Yes, the limiting SNR are defined as SNRco in table 3.1. The most influential

factors appear to be antenna count and number of cycles captured.

2. Can the relationship between eigenvalues serve as a proxy for SNR, and therefore

support Boolean detection?

(a) Theoretically, yes. This relies on the same theory underpinning the MME

scheme which is widely accepted as a baseline detection method in the lit-

erature. Chapter 3 details the relationship between eigenvalues and SNR at

length. This project was unable to validate this theory through hardware ex-

periments. Further work is needed in this area.

3. Can PCA be applied to signals captured from different receivers in the same band,

in order to decide signal presence without performing FFT on all received signals?

(a) Yes. This was established concretely for FM signals as shown in Figure 4.14,

however, negative results were obtained for spread spectrum signals as shown

in Figures 4.19, 4.20 and 4.21.

4. Can an eigenvalue informed approach to FFT threshold setting be used to maximise

detection accuracy in a multi-antenna, multi-channel context?

(a) Theoretically, yes. This is demonstrated in principle in Section 3.3.1, but

this project was unable to validate the theory through hardware experiments.

Further work is needed in this area.

5. Are the above items applicable to the Australian context described in Section 1.1?

(a) Yes, the Australian context does not change the fact that more available band-

width facilitates higher data transfer rates. The vast land area of the country

means that regional locations serviced by NBN fixed wireless could make use

of spectral holes when licenced users are not occupying particular bands. The
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above-listed items highlight some potential techniques to aid detection of spec-

tral holes.
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D.1 Code Listing 1

1 %{

2 AUTHOR: Benedict Hardless

3 CREATED: 25-May-2021

4 MODIFIED: May-21, Jun-21

5 TESTED: Jun-21

6 FILE NAME: PDtoSNR.m

7 PURPOSE: Based on the arguments, simulates a periodic signal with

8 varying SNR, then examines the eigenvalue relationship to SNR.

9 It also determines a lower limit for determining SNR from the

10 eigenvalues.

11 ARGS: NUM CYCLES is the number of cycles define how many cycles are

12 simulated as captured by the receiver, used for calculating

13 the eigenvalues.

14 NUM ANT is the number of co-located antenna elements used for

15 capture, used for calculating the covariance signal matrix.

16 RETURNS: p is a polynomial to infer SNR from max/min eigenvalue

17 percentage difference.

18 SNRcutoff is the lowest possible inferrable SNR from the

19 max/min eigenvalue percentage difference.

20 SNRdegrade is 1.5 times SNRcutoff.

21 pdCutoff is the max/min eigenvalue percentage difference

22 corresponding to SNRcutoff.

23 pdMax is the maximum calculated percentage difference between

24 max/min eigenvalues. It is used for developing the

25 logistic growth model in the dissertation.

26 %}

27 function [p,SNRdegrade,SNRcutoff, pdCutoff, pdMax] = ...

PDtoSNR(NUM CYCLES,NUM ANT)

28

29 f = [1E6]; % Define frequencies to consider

30 w = 2*pi*f; % Radian frequencies

31 % Use different number of cycles for capture, so we can compare how the

32 % max/min eigenvalue relationship changes. Capturing less cycles makes

33 % eigenvalue based signal/noise discrimination less effective at ...

low SNR.

34 SNR ITVL = 0.1;

35 SNR = 10:-SNR ITVL:-40; % SNR levels to map to eigval % diff

36 Fs = f*10; % Sampling frequency

37 T = 1/Fs; % Sampling interval
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38 DUR = NUM CYCLES/f; % Duration for the number of cycles

39 n = 1:Fs*DUR; % Vector of sample numbers

40 t = (n-1)*T*1000; % Vector of times in ms

41 N = length(n); % Number of samples

42 w0 = 2*pi*f/Fs; % Radians per sample

43 X = sin(w0*n); % Locally generated signal

44 Ps = sum(X.ˆ2)/length(X); % Signal power

45 An = sqrt(Ps*10.ˆ-(SNR/10)); % Noise scaling amplitudes to get SNRs

46 for i snr = 1:length(SNR)

47 for i = 1:NUM ANT

48 noise = An(i snr)*randn(1,length(X(1,:))); % Generate noise

49 x(i,:) = X + noise; % Generate noisy signal

50 end

51 C = x*x'; % Covariance matrix

52 eigs=flipud(sort(eig(C))); % Eigenvalues largest to smallest

53 % Percentage difference betweeen main and weakest eigenvalues

54 pd(i snr) = 100*(eigs(1)-eigs(end))/eigs(1);

55 end

56 %{

57 Use lowest percentage difference to decide on a cutoff value, below

58 which the percentage difference in eigenvalues is not useful for

59 determining SNR and therefore not useful for determining signal

60 presence. The eigenvalue corresponding to the man-made signal can't

61 be effectively distinguished from the noise below, so eigenvalue

62 based detection becomes significantly less effective.

63 %}

64 clear x X noise;

65 % The % difference threshold is the mean PD at low SNR (-30:-40dB)

66 pdCutoff = mean(pd(end-10/SNR ITVL:end));

67 %pdCutoff = max(pd(end-10/SNR ITVL:end));

68 % Convert threshold to index number so it can be matched to cutoff SNR

69 cutoffIdx = min(find(pd < pdCutoff));

70 % Polynomial for above the cutoff PD - gives SNR from PD

71 p = polyfit(pd(1:cutoffIdx),SNR(1:cutoffIdx),5);

72 % The low SNR limit of eigenvalue detection effectiveness

73 SNRcutoff = polyval(p,pdCutoff);

74 % The SNR where eigenvalue detection begins to significantly degrade

75 % Choose degrade point based on 3dB (1.5* mean PD at low SNR)

76 SNRdegrade = [polyval(p,pdCutoff*1.5); polyval(p,pdCutoff*1.05);...

77 polyval(p,pdCutoff*1.02)];

78 %SNRdegrade = polyval(p,pdCutoff*1.05);

79 %fprintf('Cutoff SNR: %.2f\n',SNRcutoff);

80 %fprintf('SNR degrade from: %.2f\n',SNRdegrade(1));
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81 pdMax = max(pd);

82 end

D.2 Code Listing 2

1 %{

2 AUTHOR: Benedict Hardless

3 CREATED: 27-May-2021

4 MODIFIED: May-21, Jun-21

5 TESTED: Jun-21

6 FILE NAME: PDtoSNRrelations.m

7 PURPOSE: Plots SNR cutoff vs cycles captured for various antenna counts.

8 FILES REQ: Must be in the same directory as PDtoSNR.m

9 %}

10 clc; clear; close all;

11 % number of data points

12 N = 40;

13 NUM CYCLES = exp(linspace(log(100),log(10000),N));

14 figure(1);

15 for NUM ANT = 2:10

16 p = nan(N,6);

17 SNRdeg = nan(N,1); SNRcut = SNRdeg;

18 for i cyc = 1:length(NUM CYCLES)

19 [p(i cyc,:),SNRdeg(i cyc),SNRcut(i cyc)] =...

20 PDtoSNR(NUM CYCLES(i cyc),NUM ANT);

21 end

22 plot(NUM CYCLES,SNRdeg,'-o'); hold on;

23 end

24 grid on; grid minor;

25 title('SNR cutoff vs Number of Cycles');

26 xlabel('Cycles Captured');

27 ylabel('SNR cutoff (dB)');

28 legend('2 ant', '3 ant', '4 ant', '5 ant', '6 ant',...

29 '7 ant', '8 ant', '9 ant', '10 ant');

30 xlim([0 10000]);

31 % Uncomment for printing figure to .eps file

32 %print('-f1','SNRtoNumCyc','-depsc');
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D.3 Code Listing 3

1 %{

2 AUTHOR: Benedict Hardless

3 CREATED: 27-May-2021

4 MODIFIED: May-21, Jun-21

5 TESTED: Jun-21

6 FILE NAME: MMPD singleChan.m

7 PURPOSE: Plots probability of detection and probability of false alarm

8 against SNR. User has the option of examining multiple custom

9 thresholds or a single optimised threshold, compared against

10 sub-optimal MME performance.

11 INFO: Uncomment line 18 if user wants optimum

12 threshold. Comment out for custom.

13 %}

14 clc; clear; close all;

15 fprintf('\n-------------------------------------------------\n');

16 fprintf('BOOLEAN MMPD EIGENVALUE DETECTION\n\n');

17 OPTION = 0; % 1 for optimum MMPD threshold. 0 for custom thresholds.

18 LOOPS = 500; % Times to loop the simulation

19 %% User Settings

20 f = 1E2; % Frequencies

21 ITER CHAN = 1; % Number of channel change iterations

22 Fs = f*5; % Sampling frequency

23 T = 1/Fs; % Sampling interval

24 M = 10; % Number of antennas

25 NUM CYCLES = 2000; % Number of cycles to capture

26 DUR = NUM CYCLES/f; % Duration for the number of cycles

27 n = 1:Fs*DUR; % Vector of sample numbers

28 t = (n-1)*T*1000; % Vector of times

29 N = length(n); % Number of samples

30 w0 = 2*pi*f/Fs; % Radians per sample

31 A = 1; % Signal amplitude

32 SNR ITVL = 0.5; % Spacing for SNR values

33 SNR LVLS = 0:-SNR ITVL:-35; % SNR levels for consideration

34 POLYS = [1.993E-8, -4.818E-6, 4.744E-4, -2.413E-2, 8.177E-1, -1.894E1;...

35 3.247E-8, -8.1E-6, 7.949E-4, -3.849E-2, 1.111, -2.3E1;...

36 3.858E-8, -9.602E-6, 9.315E-4, -4.427E-2, 1.228, -2.53E1;...

37 5.106E-8, -1.293E-5, 1.259E-3, -5.884E-2, 1.513, -2.827E1;...

38 5.498E-8, -1.388E-5, 1.345E-3, -6.237E-2, 1.585, -2.973E1;...

39 5.056E-8, -1.249E-5, 1.185E-3, -5.428E-2, 1.412, -2.931E1;...
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40 6.204E-8, -1.563E-5, 1.504E-3, -6.902E-2, 1.717, -3.216E1;...

41 6.099E-8, -1.52E-5, 1.443E-3, -6.545E-2, 1.631, -3.211E1;...

42 7.046E-8, -1.781E-5, 1.712E-3, -7.825E-2, 1.908, -3.477E1;];

43 SNRCUTS = -[17.701, 18.989, 20.96, 21.007, 22.048, 22.345, 22.849, ...

23.529,...

44 24.152];

45 DCUTS = [1.7644 2.9561 3.6597 4.5142 5.1995 5.6836 6.377 6.783 7.1653];

46 % Define key parameters for the desired cutoff points

47 % Characteristic polynomial per table 3.1

48 P = POLYS(M-1,:);

49 % SNR degraded values

50 Dco = DCUTS(M-1);

51 % MMPD Threshold(s)

52 if (OPTION == 1)

53 phi = -0.0609*Mˆ2+1.6506*M+0.34112;

54 else

55 phi = [10.73:-0.0125:3];

56 end

57 SNRphi = polyval(P,phi);

58 SNRcut = SNRCUTS(M-1);

59 % MME threshold

60 L = 1; % Smoothing factor for MME

61 a = sqrt(N); b = sqrt(M*L); % These to shorten the equation next line

62 gamma = ((a+b)ˆ2/(a-b)ˆ2)*(1+((a+b)ˆ(-2/3))/((N*M*L)ˆ(1/6))*0.45);

63 %% Produce the signal and associated noise amplitudes

64 % Produce a signal

65 x = A*sin(w0*n);

66 % Get the signal power

67 Ps = sum(x.ˆ2)/length(x);

68 % Noise amplitude for each SNR

69 An = sqrt(Ps*10.ˆ-(SNR LVLS/10));

70 %% Receive the signal with noise

71 % Pre-allocate matrices for channel detection

72 res = nan(LOOPS,length(SNR LVLS));

73 % Pre-allocate matrices for MME detection

74 MMEres = res; MMEacc1 = res; MMEdetacc1 = res; MMEfa acc1 = res;

75 MMEacc = nan(1,length(SNR LVLS)); MMEdet acc = MMEacc;

76 MMEfa acc = MMEacc;

77 % Pre-allocate received signal matrix

78 rx = nan(M,N,length(SNR LVLS));

79 % Pre-allocate accuracy matrices

80 acc1 = res; detacc1 = res; fa acc1 = res;

81 acc = nan(length(phi),length(SNR LVLS));
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82 det acc = acc;

83 fa acc = acc;

84 % Pre-allocate for timers

85 tmrMMPD = nan(LOOPS,1); tmrMME = tmrMMPD; tmrEigs = tmrMMPD;

86 for i thresh = 1:length(phi)

87 % For each SNR level

88 for i sim = 1:LOOPS

89 for i snr = 1:length(SNR LVLS)

90 % Randomly decide the channel state

91 chanState = randi([0,1]);

92 % For each RX node

93 for i node = 1:M

94 noise = An(i snr)*randn(1,N);

95 % There is a RX signal with different noise (diff SNR ...

each frame)

96 rx(i node,:,i snr) = x*chanState + noise;

97 rx(i node,:,i snr) = stand(rx(i node,:,i snr));

98 end

99 %% Process using MMPD and MME

100 tEigs = tic; % Start timer for obtaining eigenvalues

101 C = rx(:,:,i snr)*rx(:,:,i snr)'/N; % Form covariance ...

matrix

102 [Vx,Dx] = eig(C); % Get max eigenvectors and ...

values

103 eigs = diag(Dx); % Isolate the eigenvalues

104 [eigs, eigIdx] = sort(eigs); % Sort eigenvalues low to high

105 % change to be high to low

106 eigs = flipud(eigs); eigIdx = flipud(eigIdx);

107 tmrEigs(i sim) = toc(tEigs);

108 tMMPD = tic; % Start timer for MMPD

109 % Get percent difference between strongest/weakest eigenvalues

110 percDiff = 100*(eigs(1)-eigs(end))/eigs(1);

111 % Convert to SNR estimate

112 SNRinfer = polyval(P,percDiff);

113 % If the MMPD inferred SNR is above threshold, signal is ...

present

114 if (SNRinfer > SNRphi(i thresh))

115 res(i sim,i snr) = 1;

116 % If MMPD inferred SNR is below threshold, signal is not ...

present

117 else

118 res(i sim,i snr) = 0;

119 end
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120 tmrMMPD(i sim) = toc(tMMPD); % Stop timer for MMPD

121 tMME = tic; % Start timer for MME

122 % If the MME ratio is above the threshold, signal is present

123 MMEratio = eigs(1)/eigs(end);

124 if (MMEratio > gamma) MMEres(i sim,i snr) = 1;

125 else MMEres(i sim,i snr) = 0;

126 end

127 tmrMME(i sim) = toc(tMME); % Stop timer for MME

128 % Test if the result matches the actual channel state for MMPD

129 acc1(i sim,i snr) = (res(i sim,i snr) == chanState);

130 % Do the same for MME

131 MMEacc1(i sim,i snr) = (MMEres(i sim,i snr) == chanState);

132 % Test if the result matches when the channel state is 1

133 if (chanState)

134 detacc1(i sim,i snr) = (res(i sim,i snr) == chanState...

135 & chanState == 1);

136 MMEdetacc1(i sim,i snr) = (MMEres(i sim,i snr) == ...

chanState...

137 & chanState == 1);

138 end

139 % Test if the result is a 1 when the channel state is 0

140 fa acc1(i sim,i snr) = (res(i sim,i snr) > chanState);

141 MMEfa acc1(i sim,i snr) = (MMEres(i sim,i snr) > chanState);

142 end

143 end

144 %% Determine accuracy

145 % For each SNR

146 for i snr = 1:length(SNR LVLS)

147 % The accuracy is the percentage of ones in the column

148 acc(i thresh,i snr) = 100*sum(acc1(:,i snr))/LOOPS;

149 MMEacc(i thresh,i snr) = 100*sum(MMEacc1(:,i snr))/LOOPS;

150 % Probability of detection is percentage of ones in the column

151 % out of all non-nan results

152 det acc(i thresh,i snr) = 100*sum(detacc1(:,i snr)==1)/...

153 sum(¬isnan(detacc1(:,i snr)));

154 MMEdet acc(i thresh,i snr) = 100*sum(MMEdetacc1(:,i snr)==1)/...

155 sum(¬isnan(MMEdetacc1(:,i snr)));

156 % Probability of false alarm is percentage of ones in the column

157 fa acc(i thresh,i snr) = 200*sum(fa acc1(:,i snr))/LOOPS;

158 MMEfa acc(i thresh,i snr) = 200*sum(MMEfa acc1(:,i snr))/LOOPS;

159 end

160 detacc1 = nan(LOOPS,length(SNR LVLS));

161 MMEdetacc1 = detacc1;
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162 if (OPTION == 0)

163 fprintf('Phi: %.4f \tPfa: %.2f\n', phi(i thresh), ...

mean(fa acc(i thresh,:)));

164 if (mean(fa acc(i thresh,:)) > 10); break; end

165 end

166 end

167 fprintf('\n-------------------------------------------------\n');

168 % Average the results for the MME scheme

169 if (length(phi) > 1)

170 MMEdet accAvg = mean(MMEdet acc);

171 MMEfa accAvg = mean(MMEfa acc);

172 else

173 MMEdet accAvg = MMEdet acc;

174 MMEfa accAvg = MMEfa acc;

175 end

176 figure()

177 for i = 1:length(phi)

178 plot(SNR LVLS, det acc(i,:),'-o'); hold on;

179 end

180 plot(SNR LVLS, MMEdet accAvg,'-ˆ');

181 title('Eigenvalue Detection Performance (Pd)');

182 xlabel('SNR');

183 ylabel('Probability of Detection (%)');

184 grid on; grid minor;

185 if (OPTION == 1)

186 legend('Opt MMPD', 'MME L = 1');

187 else

188 legend('Phi = 1.8','Phi = 1.5', 'Phi = 1.2','MME L = 1',...

189 'Location','northwest');

190 end

191 figure()

192 for i = 1:length(phi)

193 plot(SNR LVLS, fa acc(i,:),'-o'); hold on;

194 end

195 plot(SNR LVLS, MMEfa accAvg,'-ˆ');

196 title('Eigenvalue Detection Performance (Pfa)');

197 xlabel('SNR');

198 ylabel('Probability of False Alarm (%)');

199 grid on; grid minor;

200 if (OPTION == 1)

201 legend('Opt MMPD', 'MME L = 1');

202 else

203 legend('Phi = 1.8','Phi = 1.5', 'Phi = 1.2','MME L = 1',...
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204 'Location','northwest');

205 end

206 % Display execution time results

207 MMPDtime = (mean(tmrEigs)+mean(tmrMMPD))*1E6;

208 MMEtime = (mean(tmrEigs)+mean(tmrMME))*1E6;

209 fprintf('MMPD execution time: %.3f us\n', MMPDtime);

210 fprintf('MME execution time: %.3f us\n', MMEtime);

D.4 Code Listing 4

1 %{

2 AUTHOR: Benedict Hardless

3 CREATED: 25-May-2021

4 MODIFIED: May-21, Jun-21

5 TESTED: Jun-21

6 FILE NAME: MMPD multiChan.m

7 PURPOSE: Compares FFT performance with and without MMPD and PCA.

8 INFO: Uncomment 'Plot Results' section to obtain comparison plot.

9 Regarding tables for examining FFT performance and the trade

10 off between TX conflicts and Free channel utility, this

11 requires multiple executions to obtain. For MMPD/PCA enabled,

12 set OPTION equal to 1. For baseline FFT set OPTION to 0. You

13 can adjust the MMPD/PCA low SNR threshold at line 144.

14 %}

15 clc; clear; close all;

16 fprintf('\n-------------------------------------------------\n');

17

18 %% User Settings

19 OPTION = 0; % Set to 1 for MMPD and PCA enabled. Else set to 0.

20 f = 3400E6:8E6:3592E6+2.5E6; % 4G LTE band frequencies

21 DWN SHFT FAC = 4;

22 fd = f*10ˆ-DWN SHFT FAC; % Down shift factor for frequencies

23 NUM CHANS = length(fd); % Number of channels

24 ITER CHAN = 1; % Number of channel change iterations

25 Fs = 2ˆ22; % Sampling frequency

26 T = 1/Fs; % Sampling interval

27 M = 4; % Number of antennas

28 NUM CYCLES = 2000; % Number of cycles to capture

29 DUR = NUM CYCLES/fd(end); % Duration for the number of cycles
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30 n = 1:Fs*DUR; % Vector of sample numbers

31 t = (n-1)*T*1000; % Vector of times

32 N = length(n); % Number of samples

33 w0 = 2*pi*fd/Fs; % Radians per sample

34 A = 1; % Signal amplitude

35 % Spacing for SNR values

36 SNR itvl = 2;

37 % Times to loop the simulation to get averaged results

38 LOOPS = 1000;

39 TrLast = nan; Tr = nan; % Pre-allocate for prior feature matrix

40 % Variables for averaging

41 sumAcc = 0;

42 sumErrorCount = 0;

43 sumUtilRes = 0;

44 %% Establish decision threshold and cutoff for signal detection

45 % Polynomials for SNR inference

46 POLYS = [1.993E-8, -4.818E-6, 4.744E-4, -2.413E-2, 8.177E-1, -1.894E1;...

47 3.247E-8, -8.1E-6, 7.949E-4, -3.849E-2, 1.111, -2.3E1;...

48 3.858E-8, -9.602E-6, 9.315E-4, -4.427E-2, 1.228, -2.53E1;...

49 5.106E-8, -1.293E-5, 1.259E-3, -5.884E-2, 1.513, -2.827E1;...

50 5.498E-8, -1.388E-5, 1.345E-3, -6.237E-2, 1.585, -2.973E1;...

51 5.056E-8, -1.249E-5, 1.185E-3, -5.428E-2, 1.412, -2.931E1;...

52 6.204E-8, -1.563E-5, 1.504E-3, -6.902E-2, 1.717, -3.216E1;...

53 6.099E-8, -1.52E-5, 1.443E-3, -6.545E-2, 1.631, -3.211E1;...

54 7.046E-8, -1.781E-5, 1.712E-3, -7.825E-2, 1.908, -3.477E1;];

55 SNRCUTS = -[17.701, 18.989, 20.96, 21.007, 22.048, 22.345, 22.849, ...

23.529,...

56 24.152];

57 DCUTS = [1.7644 2.9561 3.6597 4.5142 5.1995 5.6836 6.377 6.783 7.1653];

58 % Define key parameters for the desired cutoff points

59 % Characteristic polynomial per table 3.1

60 P = POLYS(M-1,:);

61 % SNR degraded values

62 Dco = DCUTS(M-1);

63 phi = Dco*(0.0105*Mˆ2-0.1783*M+2.2815); % MMPD Threshold

64 SNRphi = polyval(P,phi);

65 SNRcut = SNRCUTS(M-1);

66 %% Produce a composite freq signal

67 for i sim = 1:LOOPS

68 chanStatePU = randi([0,1],1,NUM CHANS); % Random PU channel states

69 SNR LVLS = 0:-SNR itvl:-30; % SNR levels for consideration

70 % Develop TX signal components as channel frequencies

71 for i chan = 1:NUM CHANS
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72 % Produce signal matrix. Row => channel

73 xChan(i chan,:) = A*sin(w0(i chan)*n)*chanStatePU(i chan);

74 end

75 % Sum the signals together to get the TX band as one signal

76 x = sum(xChan,1);

77 % Get the signal power

78 Ps = sum(x.ˆ2)/length(x);

79 % Noise amplitude for each SNR

80 An = sqrt(Ps*10.ˆ-(SNR LVLS/10));

81 %% Receive the signal with noise

82 % Pre-allocate magnitude matrix for channel detection

83 A chan = nan(length(SNR LVLS),NUM CHANS);

84 % Pre-allocate for timer

85 tMMPD = zeros(1,21);

86 % For each SNR level

87 for i snr = 1:length(SNR LVLS)

88 % For each antenna

89 for i M = 1:M

90 noise = An(i snr)*randn(1,N);

91 % There is a RX signal with different noise (diff SNR each ...

frame)

92 rx(i M,:,i snr) = x + noise;

93 end

94 %% Apply MMPD

95 tStartMED = tic; % Start timer

96 C = rx(:,:,i snr)*rx(:,:,i snr)'/N; % Form covariance matrix

97 [Vx,Dx] = eig(C); % Get max eigenvectors and values

98 eigs = diag(Dx); % Isolate the eigenvalues

99 [eigs, eigIdx] = sort(eigs); % Sort eigenvalues low to high

100 % change to be high to low

101 eigs = flipud(eigs); eigIdx = flipud(eigIdx);

102 % Get percent difference between strongest/weakest eigenvalues

103 percDiff = 100*(eigs(1)-eigs(end))/eigs(1);

104 if (¬isnan(percDiff))

105 % Convert to SNR estimate if there is a valid percentage diff

106 SNRinfer = polyval(P,percDiff);

107 else

108 SNRinfer = SNRcut;

109 end

110 % If the inferred SNR is above threshold, use calculated dominant

111 % eigenvector for transform. Construct feature vector

112 if (SNRinfer > SNRphi) Tr = Vx(:,eigIdx(1))';

113 % But if inferred SNR is below threshold, use the previously
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114 % calculated eigenvector for transform if there is one

115 elseif (¬isnan(TrLast)) Tr = TrLast; % Alternative feature vector

116 else % PUT THE SURVEYED FEATURE VECTOR HERE for Tr

117 end

118 TrLast = Tr;

119 % Obtain transformed data matrix (eig-vectors must be the rows)

120 x1 = rx(1,:,i snr);

121 x2 = Tr*rx(:,:,i snr);

122 % In the case of a single channel, the PCA will not work. You will

123 % get errors when the channel state is zero. Use the single channel

124 % script instead.

125 % Perform FFT for signal without any MMPD or PCA transform

126 x fft basic = fft(x1);

127 Ax1 = abs(x fft basic)*2/N;

128 Ax1 = Ax1/max(Ax1);

129 fScale1 = (n-1)/(N*T);

130 % Perform FFT for principle component(s) of signal

131 x fft = fft(x2); % CHANGE BACK TO X@

132 Ax = abs(x fft)*2/N;

133 Ax = Ax/max(Ax);

134 fScale = (n-1)/(N*T);

135 % If SNR is greater than intersection point between channel

136 % accuracy and preventing TX conflicts

137 if (SNRinfer > phi)

138 % Then use P3 polynomial

139 THRESH(i snr) = 0.4;

140 else

141 % But if SNR is worse, then use more conservative model to

142 % minimise TX conflicts. Remain fixed if MMPD/PCA is disabled.

143 if (OPTION ==1)

144 THRESH(i snr) = 0.25;

145 else

146 THRESH(i snr) = 0.4;

147 end

148 end

149 tMED(i snr) = toc(tStartMED); % Elapsed time for MED section

150 %% Plot results

151 %{

152 % FFT only on received signal

153 subplot(2,length(SNR LVLS),i snr);

154 plot(fScale1/1E5,Ax1); grid on; grid minor;

155 xlabel('Frequency (GHz)');

156 ylabel('Amplitude');
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157 txt = sprintf('FFT Only: SNR %ddB',SNR LVLS(i snr));

158 title(txt);

159 axis([3.2 3.8 0 max(Ax)*1.1]);

160

161 % MMPD informed FFT using PCA

162 subplot(2,length(SNR LVLS),i snr+length(SNR LVLS));

163 plot(fScale/1E5,Ax); grid on; grid minor;

164 xlabel('Frequency (GHz)');

165 ylabel('Amplitude');

166 txt = sprintf('MMPD/PCA: SNR %ddB',SNR LVLS(i snr));

167 title(txt);

168 axis([3.2 3.8 0 max(Ax)*1.1]);

169 %}

170

171 %% Detect channel states

172 F = fd; % Frequencies to search for

173 S tone = round(F*N*T)+1; % Sample number of those frequencies

174 sideSamp = floor(350*N*T); % Samples either side for the search

175 % Look up the corresponding amplitudes for the sample nums

176 for i fSamp = 1:NUM CHANS

177 if (OPTION == 1)

178 A chan(i snr,i fSamp) = Ax(S tone(i fSamp));

179 else

180 A chan(i snr,i fSamp) = Ax1(S tone(i fSamp));

181 end

182 end

183 end

184 % Compare the amplitude for each channel to a threshold

185 detChanStates = A chan > THRESH'; % Is it above the threshold?

186 % Quantify over-all channel state accuracy

187 % For each SNR

188 for i acc = 1:length(SNR LVLS)

189 % Which channel states are equal to the defined PU channel states?

190 res = detChanStates(i acc,:) == chanStatePU;

191 % Count the number of correct states and convert to % of channels

192 acc(i acc) = sum(res)*100/NUM CHANS;

193 end

194 %% Gather results

195 % Construct SNR and channel state matrix for manual review

196 SNRcol = [nan; SNR LVLS']; chanStateTable = [chanStatePU; ...

detChanStates];

197 reviewMat = [SNRcol, chanStateTable];

198 % For each SNR level
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199 for i snr = 1:length(SNR LVLS)

200 % Count channel state errors where SU thinks channel free but ...

it isn't

201 errorCount(i snr) = sum(reviewMat(i snr+1,2:end) < ...

reviewMat(1,2:end));

202 utilRes(i snr) = sum(reviewMat(i snr+1,2:end) == 0 & ...

reviewMat(1,2:end) == 0);

203 end

204 % Convert SU/PU conflict channel state errors to percentage for ...

each SNR

205 errorCount = errorCount*100/NUM CHANS;

206 if (NUM CHANS > 1)

207 utilRes = utilRes*100/(sum(reviewMat(1,2:end) == 0));

208 else

209 utilRes = zeros(1,length(SNR LVLS));

210 end

211 % Need this if statement to stop sim breaking if there are no chan ...

state

212 % errors found.

213 if (sum(errorCount > 0) > 0)

214 % Identify a cutoff SNR based on where SU/PU conflicts occur

215 SNRcutOff = max(SNR LVLS(find(errorCount > 0)))+SNR itvl;

216 else

217 SNRcutOff = SNR LVLS(end);

218 end

219 cutoffIdx = min(find(SNR LVLS ≤ SNRcutOff));

220 util = sum(utilRes(1:cutoffIdx))/cutoffIdx;

221 % Results averaging across simulation loops

222 sumAcc = sumAcc + acc;

223 sumErrorCount = sumErrorCount + errorCount;

224 sumUtilRes = sumUtilRes + utilRes;

225 end

226 meanAcc = sumAcc/LOOPS;

227 meanErrorCount = sumErrorCount/LOOPS;

228 meanUtilRes = sumUtilRes/LOOPS;

229 %% Present results

230 % Show computation time

231 MEDtime = sum(tMED)*1000;

232 fprintf('MMPD & FFT computation time: %.4fms (all SNR)\n\n',MEDtime);

233 resTable = table(SNR LVLS',acc',errorCount',utilRes');

234 resTable.Properties.VariableNames = {'SNR (dB)',...

235 'Channel Detection Accuracy (%)', 'TX conflicts (%)',...

236 'Free Channel Utility (%)'};
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237 disp(resTable);

238 fprintf('Recommended SNR cutoff:%.2f dB\n', SNRcutOff);

239 fprintf('Avg channel prediction accuracy above SNR cutoff: %.3f%%\n',...

240 mean(acc(1:cutoffIdx)));

241 fprintf('Average free channel utility above SNR cutoff: %.3f%%\n\n',util);

242 %% Present averaged results over all LOOPS

243 resTable = table(SNR LVLS',meanAcc',meanErrorCount',meanUtilRes');

244 resTable.Properties.VariableNames = {'SNR (dB)',...

245 'Channel Detection Accuracy (%)', 'TX conflicts (%)',...

246 'Free Channel Utility (%)'};

247 disp(resTable);

248 fprintf('Recommended SNR cutoff:%.2f dB\n', SNRcutOff);

249 fprintf('Avg channel prediction accuracy above SNR cutoff: %.3f%%\n',...

250 mean(meanAcc(1:cutoffIdx)));

D.5 Code Listing 5

1 %{

2 AUTHOR: Benedict Hardless

3 CREATED: 11-Jul-2021

4 MODIFIED: 11,12,13 Jul-21

5 TESTED: 13 Jul-21

6 FILE NAME: FMdemod.m

7 PURPOSE: Import baseband IQ *.wav file and play back mono audio. Display

8 the MPX spectrum, which is the FM intelligence imposed on the

9 carrier. The modulation signal always contains mono audio,

10 sometimes a 19kHz pilot tone, sometimes stereo audio centered

11 at 38kHz, and other channel information.

12 INFO: Uncomment time varying FFT and vary block size to see how

13 MPX spectrum changes with time.

14 %}

15 clc; clear; close all;

16 %% User defined information

17 FILENAME = 'SDRSharp 20210707 030954Z 101193000Hz IQ.wav';

18 BW = 200E3; hBW = BW/2; % Bandwidth for baseband RF filter

19 D EMPH ORDER = 8; % Order of de-emphasis filter

20 VOL SCALE = 10; % Audio volume scaler

21 %% Import IQ Signal

22 [xIQ,Fs] = audioread(FILENAME);
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23 % Combine default import into single vector of complex numbers

24 N = length(xIQ); n = 1:N; T = 1/Fs;

25 % Perform FFT on part of IQ signal to examine spectrum

26 N2 = floor(N/500); n2 = 2:N2;

27 IQfft = fft(xIQ(2:N2));

28 IQfft = abs(IQfft)*2/N2;

29 f = ((n2-1)/(N2*T));

30 %figure(); plot(f,IQfft);

31 % Find the maximum frequency component i.e. baseband offset

32 [M, I] = max(IQfft(2:end)); OFFSET = f(I+1);

33 fprintf('OFFSET: %4.2f kHz\n',OFFSET/1000);

34 % Filter it

35 b = getFilterTF(Fs,OFFSET-hBW,OFFSET+hBW,30);

36 xIQ = filter(b,1,xIQ);

37 %% Demodulate FM Signal from baseband IQ

38 x = xIQ(:,1)+j*xIQ(:,2);

39 % Modulating signal amplitude is proportional to inst freq

40 % Inst freq of signal is rate of change of phase angle

41 xA = x(1:end-1); xB = conj(x(2:end));

42 phi = angle(xA.*xB);

43 m = diff(phi);

44 %% Frequency shift signal to remove offset introduced by SDR#

45 % Filter for FM MPX info

46 b = getFilterTF(Fs,0,110E3,30);

47 MPX = filter(b,1,m);

48 % Isolate audio and apply de-emphasis filter

49 scale = round(Fs/48E3);

50 Fs2 = Fs/scale;

51 mDec = decimate(m,scale);

52 N2 = length(mDec); n2 = 1:N2; T2 = 1/Fs2;

53 b = getFilterTF(Fs2,0,16E3,30);

54 mMono = filter(b,1,mDec);

55 b = getFilterTF(Fs2,0,5000,D EMPH ORDER);

56 mMonoAudio = filter(b,1,mMono);

57 mMonoAudio = (mMonoAudio/max(mMonoAudio))*VOL SCALE;

58 sound(mMonoAudio,Fs2);

59 %% Analyse FM MPX spectrum in single block

60

61 xFFT = fft(MPX);

62 xFFT = abs(xFFT)*2/N;

63 xFFT = xFFT/max(xFFT);

64 fScale = ((n-1)/(N*T))/1E3;

65 figure();
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66 subplot(1,2,1);

67 plot(fScale(1:N/2), xFFT(1:N/2)); grid on; grid minor;

68 xlabel('Frequency (kHz)');

69 ylabel('Amplitude');

70 title('FM MPX Spectrum');

71 xlim([0 60]);

72 ylim([0 0.25]);

73

74 %% Analyse FM mono audio spectrum in single block after de-emphasis

75 xFFT = fft(mMonoAudio);

76 xFFT = abs(xFFT)*2/N2;

77 xFFT = xFFT/max(xFFT);

78 fScale = ((n2-1)/(N2*T2))/1E3;

79 subplot(1,2,2);

80 plot(fScale(1:N2/2), xFFT(1:N2/2)); grid on; grid minor;

81 xlabel('Frequency (kHz)');

82 ylabel('Amplitude');

83 title('De-emphasised FM Mono Audio');

84 xlim([0 20]);

85 ylim([0 1.1]);

86

87 %% Time varying FFT

88 %{

89 % Define block size, overlap and number of blocks

90 N = N-1;

91 bsize = floor(N/50);

92 lapFrac = 2; lap = bsize/lapFrac;

93 numBlks = floor(1+(N-bsize)/(bsize-lap));

94 X = nan(numBlks,floor(N/50));

95 % Iterate through the blocks

96 for i = 1:numBlks

97 % Set first block start and end. No overlap setting needed

98 if i==1

99 startN = 1;

100 endN = bsize;

101 else

102 % Set block start to create overlap with last block

103 startN = endN-lap+1;

104 % Set block end

105 endN = startN+bsize-1;

106 end

107 % Perform fft on block

108 X(i,:) = abs(fft(MPX(startN:endN)))*2/N;
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109 end

110

111 N1 = size(X,2);

112 n1 = 1:N1;

113 f = ((n1-1)/(N1*T))/1E3;

114 X = X/max(max(X));

115

116 figure();

117

118 for i blk = 1:numBlks

119 plot(f, X(i blk,:));

120 grid on; grid minor;

121 xlim([0 270]);

122 ylim([0 0.4]);

123 xlabel('Frequency (kHz)');

124 pause(0.1);

125 end

126 %}

1 %{

2 returns b coefficients for use in filter(b,1,x) for a bandpass

3 filter with limits fL and fH. Higher order filters are more defined.

4 %}

5 function h = getFilterTF(Fs,fL,fH,order)

6

7 a = 2*pi*fL/Fs;

8 % Set upper filter pass freq

9 b =2*pi*fH/Fs;

10 % Filter order

11 M = order;

12 % Number of coefficients

13 N = M+1;

14 % Span of n values for our filter. More is more precise.

15 n = -M/2:M/2;

16 % Get the coefficients for the TF by solving for values of n.

17 h = 1./((n+eps)*pi).*(sin(b*(n+eps))-sin(a*(n+eps)));

18 % Include if you want a hamming window

19 n = 0:M;

20 hamwin = 0.54-0.46*cos(2*n*pi/M);

21 h = h.*hamwin;

22 %{
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23 UNCOMMENT TO SEE FILTER RESPONSE PLOTTED

24 % Set frequency range to look at for filter response

25 dw = 1/400;

26 w = 0:dw:pi;

27 % Define z and get filter response

28 z = exp(j*w);

29 resp = 0;

30 for idx = 1:N

31 if i < M

32 resp = resp + h(idx).*z.ˆ(-idx);

33 end

34 end

35 % Scale the frequency for the defined sampling frequency

36 f = w*Fs/(2*pi);

37 % Plot result

38 plot(f,abs(resp)); grid on; grid minor;

39 title('Filter Frequency Response');

40 ylabel('Gain'); xlabel('Frequency (Hz)');

41 %}

42

43 end

1 %********************************************************************

2 %{

3 Author: Benedict Hardless

4 Created: 18-Jul-2021

5 Name: getFFT

6 Purpose: Simplify application of fft by scaling the values.

7 Arguments: X is the signal for FFT.

8 N is number of samples.

9 T is sampling interval.

10 NORM is 0, but change to 1 for normalised amplitudes.

11 Returns: Y is vector of amplitudes

12 f is vector of corresponding frequencies

13 %}

14 function [Y, f] = getFFT(X,N,T,NORM)

15 n = 1:N;

16 Y = fft(X);

17 Y = abs(Y)*2/N;

18 if (NORM > 0)

19 Y = Y/max(Y);
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20 end

21 f = ((n-1)/(N*T));

22 end

23 %********************************************************************

D.6 Code Listing 6

1 %{

2 AUTHOR: Benedict Hardless

3 CREATED: 14-Aug-2021

4 MODIFIED: 14-Aug-21

5 TESTED: 14-Aug-21

6 FILE NAME: preProcess.m

7 PURPOSE: Up-shifts band to center in FFT window. Truncates to 2000 cycle

8 equivalent number of samples. Converts IQ format to time

9 domain signal. Eliminates DC offset.

10 ARGUMENTS: IQ is Nx2 matrix of I and Q components.

11 Fs is sample frequency.

12 RETURNS: x is row vector of pre-processed time domain waveform.

13 %}

14 function [x,I] = preProcess(IQ,Fs,BW)

15 % Up-shift to center in FFT window

16 C = 2000;

17 % Number of samples for 2000 cycles. Required for MMPD.

18 if (Fs/4 > BW)

19 N = C*Fs/(Fs/4-BW/2);

20 else

21 N = 4*C;

22 end

23 N = round(N);

24 % Truncate sample count

25 IQ1 = IQ(1:N,:);

26 T = 1/Fs;

27 t = 0:T:(N-1)*T;

28 % Convert IQ to complex number

29 R = IQ1(:,1)+j*IQ1(:,2);

30 % Remove DC offset

31 Ravg = mean(R);

32 if (Ravg > 0)



116 Code Listings

33 R = R-Ravg;

34 elseif (Ravg < 0)

35 R = R+Ravg;

36 end

37 phi = angle(R);

38 a = (abs(R).*cos(phi))';

39 [X f]= getFFT(a,N,T,1); %figure(); plot(f,X);

40 [M idx] = max(X); OFFSET = Fs/round(idx-N/4);

41 if (OFFSET > 0)

42 SHIFT = Fs/4+OFFSET*1E2;

43 else

44 SHIFT = Fs/4-OFFSET*1E2;

45 end

46 % Construct time domain waveform

47 wc = 2*pi*SHIFT;

48 % Return time domain waveform

49 x = (abs(R).*cos(wc*t'+phi))';

50 [X,f] = getFFT(x,length(x),T,1);

51 [M I] = max(X);

52 %figure(); plot(f,X);

53 end

D.7 Code Listing 7

1 %{

2 AUTHOR: Benedict Hardless

3 CREATED: 16-Aug-2021

4 MODIFIED: 16:30-Aug-21

5 TESTED: 16:30-Aug-21

6 FILE NAME: BoolDetectMulti RevD.m

7 PURPOSE: Attempts Boolean detection of baseband FM signals. This

8 script was developed in the early stages of SDR testing, and

9 has been refined and revised to use PCA and FFT for detection

10 following MMPD.

11 %}

12 %% Preliminary & User Settings

13 clc; clear all; close all;

14 LOWLVL = -35; % SNR to start from

15 LOOPS = 100; % Times to iterate for averaging results
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16 BW = 250E3; % Bandwidth of baseband RF

17 FFT THRESH = 0.2685; % Threshold for FFT detection

18 DIFF PERF = 0; % Different SNR for each receiver?

19 % 1 for yes, 0 for no.

20 %{

21 Define the type of simulation. 0 for correlated noise. 1 is for

22 un-correlated noise. 2 is for separately recorded SDR signals.

23 %}

24 TYPE = 2;

25 %{

26 Activate pre-filtering. Important because it can give rise to correlated

27 noise. 0 to disable. 1 to enable.

28 %}

29 PRE FILT = 0;

30 % Enable/disable standardisation

31 STAND = 1;

32 % Test signal present or absent. 1 for signal.

33 SIG = 1;

34 %{

35 Feature vector for signal of interest. 2 is to weight all receivers evenly.

36 1 is to select best receiver. 0 is to use all receivers, but favour those

37 with better received signal power.

38 %}

39 SINGLE = 0;

40 %% Replicate SDR IQ File and Apply MMPD and MME

41 if (SIG == 1)

42 %{

43 FILENAME1 = 'DTS FM 100.7a.wav';

44 FILENAME2 = 'DTS FM 100.7a.wav';

45 FILENAME3 = 'DTS FM 100.7a.wav';

46 FILENAME4 = 'DTS FM 100.7a.wav';

47 %}

48

49 FILENAME1 = 'DTN WIFI 2.42Gc.wav';

50 FILENAME2 = 'DTS WIFI 2.42Gc.wav';

51 FILENAME3 = 'TP WIFI 2.42Gc.wav';

52 FILENAME4 = 'YOGA WIFI 2.42Gc.wav';

53

54 else

55 FILENAME1 = 'Nfloor232.wav';

56 FILENAME2 = 'Nfloor232.wav';

57 FILENAME3 = 'Nfloor232.wav';

58 FILENAME4 = 'Nfloor232.wav';
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59 end

60 if (TYPE == 2)

61 [IQ1, Fs] = audioread(FILENAME1);

62 [IQ2, Fs] = audioread(FILENAME2);

63 [IQ3, Fs] = audioread(FILENAME3);

64 [IQ4, Fs] = audioread(FILENAME4);

65 elseif (TYPE == 1)

66 IQ1 = randn(1E6,2);

67 IQ2 = randn(1E6,2);

68 IQ3 = randn(1E6,2);

69 IQ4 = randn(1E6,2);

70 elseif (TYPE == 0)

71 IQ1 = randn(1E6,2);

72 IQ2 = IQ1;

73 IQ3 = IQ1;

74 IQ4 = IQ1;

75 end

76 % Pre-process IQ signals. Filter the signals to eliminate noise outside BW.

77 % Allows better calculation of average signal power. You may need to look

78 % at the pre-process.m file and see where the spectrum sits at the end. It

79 % can change a bit between files.

80 %b = getFilterTF(Fs,-BW/2,BW/2,100);

81 [x1,I1] = preProcess(IQ1,Fs,BW);

82 [x2,I2] = preProcess(IQ2,Fs,BW);

83 [x3,I3] = preProcess(IQ3,Fs,BW);

84 [x4,I4] = preProcess(IQ4,Fs,BW);

85 b1 = getFilterTF(Fs,I1-BW/2,I1+BW/2,100);

86 b2 = getFilterTF(Fs,I2-BW/2,I2+BW/2,100);

87 b3 = getFilterTF(Fs,I3-BW/2,I3+BW/2,100);

88 b4 = getFilterTF(Fs,I4-BW/2,I4+BW/2,100);

89 xa = x1; xb = x2; xc = x3; xd = x4;

90 x1 = filter(b1,1,x1); x2 = filter(b2,1,x2);

91 x3 = filter(b3,1,x3); x4 = filter(b4,1,x4);

92 x = [x1; x2; x3; x4];

93 N = size(x,2); T = 1/Fs;

94 % Calculate average signal power to inform noise generation for SNR levels

95 for i = 1:4

96 Ps(i) = sum(x(i,:).ˆ2)/N;

97 end

98 if (DIFF PERF > 0)

99 Ps = max(Ps)*([0.2 1 15 15]);

100 end

101 % If pre-filtering is disabled then the filtering was only used to
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102 % determine the AWGN levels.

103 if (PRE FILT == 0)

104 x = [xa; xb; xc; xd];

105 end

106 % Perform survey to obtain feature vector

107 FEAT = survey(stand(x),T,SINGLE);

108 % Pre-allocate for noisy matrix of signals

109 x4 = nan(4,N);

110 detlvl = nan;

111 det = zeros(LOOPS,length(LOWLVL:0));

112 for SNR = LOWLVL:0

113 idx = SNR+abs(LOWLVL)+1;

114 for i = 1:4

115 An(i) = sqrt(Ps(i)*10ˆ-(SNR/10));

116 end

117 for k = 1:LOOPS

118 % Add the noise

119 for i = 1:4

120 awgn = An(i)*randn(1,N);

121 x4(i,:) = x(i,:) + awgn;

122 end

123 % Standardise the data

124 if (STAND > 0)

125 y = stand(x4);

126 else

127 y = x4;

128 end

129 [SNRinfer(idx,k), MMPDres(idx,k), MMEres(idx,k),FEAT2] = ...

boolMMPD(Fs,y,0.3);

130 % Transformed data matrix obtained

131 yTr = FEAT*y;

132 yTr2 = FEAT2*y;

133 % Perform FFT on transformed data

134 YTr = getFFT(yTr,N,T,1);

135 YTr2 = getFFT(yTr2,N,T,1);

136 if (SNR == 0 && k == LOOPS)

137

138 end

139 % Test transformed data against threshold

140 det(k,idx) = mean(YTr) < FFT THRESH;

141 det2(k,idx) = mean(YTr2) < FFT THRESH;

142 % Perform FFT separately for all receivers for comparison

143 Y1 = getFFT(x4(1,:),N,T,1);
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144 Y2 = getFFT(x4(2,:),N,T,1);

145 Y3 = getFFT(x4(3,:),N,T,1);

146 Y4 = getFFT(x4(4,:),N,T,1);

147 % Test individual RX FFT outputs against threshold

148 det3(k,idx) = mean(Y1) < FFT THRESH;

149 det4(k,idx) = mean(Y2) < FFT THRESH;

150 det5(k,idx) = mean(Y3) < FFT THRESH;

151 det6(k,idx) = mean(Y4) < FFT THRESH;

152 end

153 % Calculate detection probability Pd for MMPD and MME

154 perfMMPD(idx) = 100*sum(MMPDres(idx,:))/size(MMPDres,2);

155 perfMME(idx) = 100*sum(MMEres(idx,:))/size(MMEres,2);

156 % Show animation during low iteration testing

157 if (LOOPS ≤ 100)

158 txtDet = sprintf('MMPD DETECT rate: %.2f %%',perfMMPD(idx));

159 figure(1); plot(YTr); title(['SNR: ',num2str(SNR),' dB']);

160 pause(0.1);

161 end

162 end

163 % Report performance at SNR

164 fprintf('---------- DETECTION PERFORMANCE ----------\n\n')

165 % Calculate detection probability Pd for all FFT detections

166 EVAFFT = sum(det,1)*100/LOOPS;

167 EVAFFT2 = sum(det2,1)*100/LOOPS;

168 FFT1 = sum(det3,1)*100/LOOPS;

169 FFT2 = sum(det4,1)*100/LOOPS;

170 FFT3 = sum(det5,1)*100/LOOPS;

171 FFT4 = sum(det6,1)*100/LOOPS;

172 xvals = (LOWLVL:0);

173 % Plot the results

174

175 figure();

176 xlim([LOWLVL 0]);

177 xlabel('SNR');

178 ylabel('Probability of Detection (%)');

179 xlim([LOWLVL 0]); ylim([0 100]);

180 title('EVA-FFT Probability of Detection');

181 hold on; grid on;

182 %plot(xvals,perfMMPD,'-o'); plot(xvals,perfMME,'-ˆ');

183 plot(LOWLVL:0,EVAFFT,'-o'); plot(LOWLVL:0,EVAFFT2,'-ˆ');

184 plot(LOWLVL:0,FFT1,'-*'); plot(LOWLVL:0,FFT2,'-d');

185 plot(LOWLVL:0,FFT3,'-s'); plot(LOWLVL:0,FFT4,'-p');

186 legend('EVAFFT','MMPD EVAFFT','FFT RX1','FFT RX2',...



D.7 Code Listing 7 121

187 'FFT RX3','FFT RX4','location','east');

188 if (DIFF PERF > 0)

189 xlabel('Degradation Level');

190 else

191 xlabel('SNR');

192 end

193

194 % ***********************************************************************

195 %{

196 AUTHOR: Benedict Hardless

197 CREATED: 31-Aug-2021

198 MODIFIED: 31-Aug-21

199 TESTED: 31-Aug-21

200 FILE NAME: preProcess.m

201 PURPOSE: Provides a feature vector based on a block of pre-processed

202 and standardised receiver signals.

203 ARGUMENTS: x is the pre-processed and standardised received signals block.

204 it is an MxN matrix where M is number of receivers.

205 T is sample rate

206 SINGLE decides type of weighting scheme. 1 is best receive

207 signal only. 2 is weighted based on relative received signal

208 power. 0 is weighted evenly.

209 RETURNS: feat is the feature vector 1xN.

210 %}

211 function [feat] = survey(x,T,SINGLE)

212 N = size(x,2);

213 feat = zeros(1,size(x,1));

214 if (SINGLE ̸= 2)

215 for i = 1:size(x,1)

216 % Perform normalised FFT for each RX

217 X(i,:) = getFFT(x(i,:),N,T,1);

218 % Get the means

219 Xav(i) = mean(X(i,:));

220 end

221 % Find the lowest mean

222 [low idx] = min(Xav);

223 if (SINGLE == 1)

224 feat(idx) = 1;

225 elseif (SINGLE == 0)

226 feat = 1./Xav;

227 end

228 else

229 feat = [1 1 1 1];
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230 end

231 end

1 %{

2 ******************************* FUNCTION ********************************

3 AUTHOR: Benedict Hardless

4 CREATED: 24-Jul-2021

5 MODIFIED: Jul-21, 29:30-Aug-21

6 TESTED: Jul-21, 29:30-Aug-21

7 FILE NAME: boolMMPD.m

8 PURPOSE: Takes a pre-processed SDR IQ recording (converted to real time

9 domain format etc.) with a known sample rate and antenna count.

10 Calculates the inferred SNR and provides a Boolean result for

11 both MMPD and MME detection.

12 ARGS: Fs is sample rate.

13 IQ is the pre-processed SDR signal matrix with dims NUM ANT*N.

14 FINE is gamma from Ch 3, s3.2, equation 3.3.

15 RETURNS: SNRinfer is MMPD inferred SNR.

16 MMPDres is Boolean MMPD detection result.

17 MMEres is Boolean MME detection result.

18 feat is the feature vector

19 %}

20

21 function [SNRinfer, MMPDres, MMEres, feat] = boolMMPD(Fs, IQ, FINE)

22 % 1 for optimum MMPD threshold. 0 for custom thresholds.

23 OPTION = 1;

24 EXACT = 0;

25 M = size(IQ,1); % Number of antennas

26 N = length(IQ); % Number of samples

27 POLYS = [1.993E-8,-4.818E-6,4.744E-4,-2.413E-2,8.177E-1,-1.894E1;...

28 3.247E-8,-8.1E-6,7.949E-4,-3.849E-2,1.111,-2.3E1;...

29 3.858E-8,-9.602E-6,9.315E-4,-4.427E-2,1.228,-2.53E1;...

30 5.106E-8,-1.293E-5,1.259E-3,-5.884E-2,1.513,-2.827E1;...

31 5.498E-8,-1.388E-5,1.345E-3,-6.237E-2,1.585,-2.973E1;...

32 5.056E-8,-1.249E-5,1.185E-3,-5.428E-2,1.412,-2.931E1;...

33 6.204E-8,-1.563E-5,1.504E-3,-6.902E-2,1.717,-3.216E1;...

34 6.099E-8,-1.52E-5,1.443E-3,-6.545E-2,1.631,-3.211E1;...

35 7.046E-8,-1.781E-5,1.712E-3,-7.825E-2,1.908,-3.477E1];

36 SNRCUTS = -[17.701,18.989,20.96,21.007,22.048,22.345,22.849,23.529,...

37 24.152];

38 DCUTS = [1.7644 2.9561 3.6597 4.5142 5.1995 5.6836 6.377 6.783 7.1653];



D.7 Code Listing 7 123

39 % Define key parameters for the desired cutoff points

40 % Characteristic polynomial per table 3.1

41 P = POLYS(M-1,:);

42 % SNR degraded values

43 Dco = DCUTS(M-1);

44 % MMPD Threshold(s)

45 if (OPTION == 1)

46 if (EXACT == 0)

47 % For Pfa ≤ 10% when no active signal present

48 phi = -0.0555*Mˆ2+1.561*M+0.5254+FINE;

49 else

50 % Exact for Pfa ≤ 10% when 50% active signal present

51 phiAll = ...

[nan,3.275,4.84,5.975,6.9875,7.875,8.67,9.35,10.05,10.68];

52 phi = phiAll(M);

53 end

54 else

55 phi = Dco*[1.8 1.5 1.2];

56 end

57 SNRphi = polyval(P,phi);

58 SNRcut = SNRCUTS(M-1);

59 % MME threshold

60 L = 1; % Smoothing factor for MME

61 a = sqrt(N); b = sqrt(M*L); % These to shorten the equation next line

62 gamma = ((a+b)ˆ2/(a-b)ˆ2)*(1+((a+b)ˆ(-2/3))/((N*M*L)ˆ(1/6))*0.45);

63 % Process using MMPD and MME

64 C = IQ*IQ'/N; % Form covariance matrix

65 [Vx,Dx] = eig(C); % Get max eigenvectors and values

66 eigs = diag(Dx); % Isolate the eigenvalues

67 [eigs, eigIdx] = sort(eigs); % Sort eigenvalues low to high

68 % Change to be high to low

69 eigs = flipud(eigs); eigIdx = flipud(eigIdx);

70 % Get percent difference between strongest/weakest eigenvalues

71 D = 100*((eigs(1)-eigs(end))/eigs(1));

72 % Convert to SNR estimate

73 SNRinfer = polyval(P,D);

74 % If the MMPD inferred SNR is above threshold, signal is present

75 if (SNRinfer > SNRphi)

76 MMPDres = 1;

77 % If MMPD inferred SNR is below threshold, signal is not present

78 else

79 MMPDres = 0;

80 end
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81 feat = Vx(:,eigIdx(1))';

82 % If the MME ratio is above the threshold, signal is present

83 MMEratio = abs(eigs(1)/eigs(end));

84 if (MMEratio > gamma) MMEres = 1;

85 else MMEres = 0;

86 end

87 end

1 %********************************************************************

2 %{

3 Author: Benedict Hardless

4 Created: 18-Jul-2021

5 Name: getFFT

6 Purpose: Simplify application of fft by scaling the values.

7 Arguments: X is the signal for FFT.

8 N is number of samples.

9 T is sampling interval.

10 NORM is 0, but change to 1 for normalised amplitudes.

11 Returns: Y is vector of amplitudes

12 f is vector of corresponding frequencies

13 %}

14 function [Y, f] = getFFT(X,N,T,NORM)

15 n = 1:N;

16 Y = fft(X);

17 Y = abs(Y)*2/N;

18 if (NORM > 0)

19 Y = Y/max(Y);

20 end

21 f = ((n-1)/(N*T));

22 end

23 %********************************************************************

1 %{

2 returns b coefficients for use in filter(b,1,x) for a bandpass

3 filter with limits fL and fH. Higher order filters are more defined.

4 %}

5 function h = getFilterTF(Fs,fL,fH,order)

6

7 a = 2*pi*fL/Fs;

8 % Set upper filter pass freq
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9 b =2*pi*fH/Fs;

10 % Filter order

11 M = order;

12 % Number of coefficients

13 N = M+1;

14 % Span of n values for our filter. More is more precise.

15 n = -M/2:M/2;

16 % Get the coefficients for the TF by solving for values of n.

17 h = 1./((n+eps)*pi).*(sin(b*(n+eps))-sin(a*(n+eps)));

18 % Include if you want a hamming window

19 n = 0:M;

20 hamwin = 0.54-0.46*cos(2*n*pi/M);

21 h = h.*hamwin;

22 %{

23 UNCOMMENT TO SEE FILTER RESPONSE PLOTTED

24 % Set frequency range to look at for filter response

25 dw = 1/400;

26 w = 0:dw:pi;

27 % Define z and get filter response

28 z = exp(j*w);

29 resp = 0;

30 for idx = 1:N

31 if i < M

32 resp = resp + h(idx).*z.ˆ(-idx);

33 end

34 end

35 % Scale the frequency for the defined sampling frequency

36 f = w*Fs/(2*pi);

37 % Plot result

38 plot(f,abs(resp)); grid on; grid minor;

39 title('Filter Frequency Response');

40 ylabel('Gain'); xlabel('Frequency (Hz)');

41 %}

42

43 end

1 %********************************************************************

2 %{

3 Author: Benedict Hardless

4 Created: 18-Aug-2021

5 Name: stand
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6 Purpose: Standardise a data set for PCA or MMPD.

7 Arguments: x is the data set. Rows per receive antenna, columns for

8 observations.

9 Returns: y is the standardised data.

10 %}

11 function y = stand(x)

12 % Standard deviation for each antenna's observation set

13 S = std(x,0,2);

14 % Mean for each antenna's observation set

15 M = mean(x,2);

16 % Standardised results are z scores

17 for i = 1:size(x,1)

18 y(i,:) = (x(i,:) - M(i))/S(i);

19 end

20 end

1 function [feat] = survey(x,N,T,SINGLE)

2 for i = 1:size(x,1)

3 % Perform normalised FFT for each RX

4 X(i,:) = getFFT(x(i,:),N,T,1);

5 % Get the means

6 Xav(i) = mean(X(i,:));

7 end

8 % Find the lowest mean

9 [low idx] = min(Xav);

10 feat = zeros(1,size(x,1));

11 % Select receiver or combination of receivers and return weighting

12 if (SINGLE == 1)

13 feat(idx) = 1;

14 elseif (SINGLE == 0)

15 feat = 1./Xav;

16 else

17 feat = [1 1 1 1];

18 end

19 end




