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Abstract 
 
Transcranial Doppler (TCD) ultrasound (US) is a form of non-invasive medical imaging primarily used 

for measuring cerebral blood flow velocity (CBF-V). Velocity of the flow of blood in the intracranial 

arteries during dilation and constriction. By placing the TCD probe at the thin bone windows of 

temporal bone, the juncture of the frontal, parietal, temporal, and sphenoid (Naqvi et al. 2013), low 

frequency US waves in the order of 2 MHz or less, are used to produce a high-resolution imaging of 

CBF-V and vessel plasticity. Whilst relatively inexpensive the performance of manual probes is highly 

dependent on the operator, with auto probes scanning the entire brain. Both methods require 

considerable time resulting in discomfort for the patient and consuming resources of the user.  

 

Proposed designs implement several algorithms to automatically scan and generate imagery. The 

initial algorithm is a global search of the Circle of Willis within the human brain, identifying targeted 

blood vessel sections (Huang et al. n.d.). Once the global search is complete, a local search is 

initiated to increase the accuracy of search outputs by examining the true or false signals from the 

global search, acquiring a continuous and stable signal spectrum.  

 

A controller that could shorten the time required to perform ultrasound of the brain will reduce 

discomfort for the user and increase the availability of the resource, increasing the number of 

patients that can be serviced further improving the efficiency of the device (Huang et al. n.d.). This 

dissertation aims to simulate an auto TCD probe and reduce the time taken for these algorithms to 

perform searches and produce imagery of the CBF-V. The algorithms are the Decision Tree, Naive 

Bayes, Equal Interval Search, An Unknown Algorithm and the Golden Section Search.  
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Introduction 
 

The following chapter outlines the justification for the project, in where it is needed as well as 

resource requirements. The overall objectives and how the outcomes will be evaluated. 

 

 

1.1 Project Justification 
 
Automation has an increasing presence in every industry including healthcare. Increases in 

efficiency, reduction in costs and less human generated errors make the option of automating 

processes appealing and perhaps necessary to be competitive in the industry. Studies from Robert 

Schier, MD (Guilford-Blake 2018), predict that all medical imaging will be performed by machines 

within the next 20 years. Once the implementation of automation is complete, the focus will be to 

increase the efficiency and accuracy of these devices. 

 

Errors occurring in ultrasound can range from five to nine percent of all scans, leading to re-scanning 

or at worst misdiagnosis of medical conditions. With millions of scans performed per year this 

presents a significant number of human induced errors. This can be attributed to the skill of the 

operator; this varies between operator’s dependent on training and experience which does not 

guarantee uniform care for patients. Whilst other factors as age, sex and past injuries can affect the 

temporal bone thickness which limits the accuracy of the TCD due to a limited trans-temporal 

acoustic view. These factors are unavoidable when assessing the viability of TCD US results (Dr 

Andrea 2016). 

 

Elements of the TCD procedure that can be controlled are equipment design and operator 

application and training. Replacing the human interface could reduce the induced error into TCD 

results. There would be consistency with scanning procedure, with multiple units afforded high 

quality accurate scans with reduction in misdiagnosis and multiple scans. The areas that can reduce 

the time taken for scans, lies predominantly within the signal processing, particularly within directing 

the local search function, which is the crux of this dissertation.  

 

Typically, a TCD US procedure can take up to several hours. Manual scanning will require the patient 

to remain motionless on their back while the radiologist holds the probe against the patient’s 

temple. The difficulties associated with this are for the patient to remain still for extended periods 

whilst having the probe applied to the temple and exposed to noise generated by the device. Issues 

created for the operator are repetitive strain injury if not managed correctly coupled with issues 

locating and identifying the required cerebral arteries. Auto probes place the same discomfort on 

the user as manual scans. 
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Reducing the time taken will consume less of the patient’s time and exposure to discomfort coupled 

with providing more accurate results. 

 

1.2 Project Objectives 

 
The overall objective of this dissertation is to present background information about the auto TCD 

probe, how it acquires data and uses this to produce a medical image of the cerebral artery blood 

flow. There are several components that are required to complete the entire process, which are 

explained briefly in the following chapter. The dissertation will be focused on the step of data 

acquisition and imaging process. This is how the maximum blood flow is calculated from the global 

search algorithm data.  

I. Initiate background research on Transcranial doppler ultrasound (TCD), including past, 

current, and conceptual designs. 

II. Simulate controller model using MATLAB capturing relevant data for benchmarking. 

III. Assess data for optimization areas. 

IV. Prioritize optimization points select areas that will give the greatest performance increase. 

V. Create an optimised controller model that locates the maximum blood flow using the least 

number of steps. 

VI. Process and evaluate experimental data. 

VII. Evaluate the effectiveness of the new controller. 

VIII. Provide recommendations for any further improvements. 

Specifically, the objective is to develop an algorithm that uses the data from the signal plots and 

locates the maximum blood flow within the given search area.  

 

1.3 Outcome Evaluation 

 
Ultimately the outcome that will be assessed is the comparison of several local search algorithms, 

the number of steps each uses to evaluate data, including lines of code and number of loop 

iterations. And which method is the most efficient in producing the maximum blood flow velocity in 

the localised area. 

 

1.4 Resource Requirements 

 
Simulation of the auto TCD probe controller model will be implemented in MATLAB Simulink. Raw 

data input has been provided by USQ, which is raw data taken from a TCD probe. This has been 

gathered using finite element method (FEM), covered in section 4.2. This data will be used to 

implement the second stage of the controller producing the result.  
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Table 1.0 Resource Requirements 

Item Source Costs AUD$ Comment 

MATLAB Student 59 Already Purchased 

SIMSCAPE Student 12 Already Purchased 

Microsoft Office  Student 25 Already Purchased 

Datasheets Internet 0 Datasheets.com 

Datasheets Delica/USQ 0 Provided by USQ 

Datasets Delica/USQ 0 Provided by USQ 

 

 

1.5 Chapter Summary 

 
This introductory chapter has given the broad objectives of the research project, justification, and 

limitations of current design. Presenting the need of an optimised TCD controller. Clearly defined 

project objective steps, acting as guide for the project. 
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Background Information 
 

This chapter covers the information on the Trans Doppler Ultrasound, and which algorithms can be 

used to process the raw data, it is provided to help understand where the algorithms researched 

work in the system. 

 

2.1 Background  
 
The following chapter will cover general and technical aspects of the TCD probe. Short examination 

of the TCD probe and the function of the device. Including physical components, patient, and 

operator interaction. The auto TCD probe will be described in further detail, with design of the units 

driving the probe and software design, particular attention will be given to the algorithms used to 

process and analyse signals from the probe.  

 

2.2 General Background 
 

TCD is used as a non-invasive approach to measure the cerebral blood flow velocity in the major 

intracranial arteries (Naqvi et al. 2013). The TCD probe is positioned at the thin bone windows of 

temporal bone, the juncture of the frontal, parietal, temporal, and sphenoid (Naqvi et al. 2013), low 

frequency US waves in the order of 2 MHz or less, are used to produce a high-resolution imaging of 

CBF-V and vessel plasticity. This form of ultrasound compact design makes it portable coupled with 

relatively inexpensive offers considerable advantage over other forms of US, its use in constant 

bedside monitoring for intensive care applications is an attribute of these advantages.  

Limiting the effectiveness of the TCD is the dependency on operator skill. Long training programs 

and significant practical training are required for adequate results, coupled with the complexity of 

understanding the cerebrovascular anatomy in the third dimension (Naqvi et al. 2013).  Some 

applications of the TCD are used in brain stem death, head injury, cerebral pressure autoregulation 

and subarachnoid haemorrhage. It is adaptable to adults and children and has been in use since 

1982. 

 

 

Figure 2.1 Manual TCD (left) and Auto TCD (right) application for patient use (Naqvi et al. 2013) 
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Based on the doppler effect, where a sound wave strikes a moving object. The reflected waves 
frequency will be changed, this is referred to as a doppler shift (fd) and the change in frequency is 
directionally proportional to the velocity (v) of the moving object (Naqvi et al. 2013).  Derived in 
Figure 2.1, (c) is the speed of the wave, (fo) the incident pulse frequency and (θ) is the angle of the 
moving object relative to the TCD probe. 

 

Figure 2.2 Equation for calculating CBF-V (Naqvi et al. 2013).    

  

The TCD emits and receives waves and uses the received signal to calculate fd and v to produce a 

spectral waveform. This waveform is used to produce medical imaging (Refer Figure 3) of the 

cerebral arteries within the brain. 

    

 
Figure 2.3 Imaging of the cerebral arteries peak systolic velocity (PSV) and end diastolic velocity (EDV) (Drsquo & 
Andrea 2016) 

 

2.3 Technical Background 
 
Several components for an Auto TCD Probe will be examined, with the main interest being of the 

algorithms that process the global search data to locate the maximum blood flow velocity. Currently 

locating a detailed examination of the entire system is proving difficult, intellectual property 

protection is understandable for working systems. However even with course descriptions of Auto 

TCD probes, various systems overviews follow a similar flowchart. 

i. Automatic scanning of the entire Circle of Willis 

ii. Processing of the data, numerically representing the cerebral arteries. 

iii. Scanning areas returning a strong signal to improve the US image. 
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iv. Classification of signals to produce the different arteries and velocity of the cerebral 

arteries.  

 

The following information is drawn from an auto TCD probe design entitled “An Auto TCD Probe 

Design and Visualization” by Yi Huang, Paul Wen, Bo Song and Yan Li.  

 
An auto TCD probe will position individual transducers to scan and locate cerebral arteries without 

human intervention (Huang et al. n.d.). There are two main components that make up the auto TCD 

probe. The first is the harness that holds the assembly together, this also holds the devices to the 

patient’s head (Refer Figure 1) and keeps the probes located correctly on the temporal window. 

 

The second component is the TCD US probe, using a 2Mhz frequency to emit ultrasound waves. The 

device emits a single ultrasound wave at a time. Controlling deflection angles of the waves are two 

servo motors positioning the transducers in the X and Y axis, with the Z axis being the direction of 

the wave (Huang et al. n.d.).   

  

The fundamental frequency of the US probe is 2MHz. This frequency will allow scans of depths up to 

80mm with an acceptable level of attenuation to the signal. The design only scans a single side of the 

Circle of Willis through the left transtemporal window as in theory it is symmetrical. Scanning depth 

of 80mm will cover one side of the scanning window up to the centre of the cerebral arteries. 

Sampling depths will range from 40mm to 80mm, with a step size of 5mm. The deflection angle of 

the two servo motors is 1 degree with the range from -70 to 70 degrees with a resolution of 1 

degree. For each servo motor this will present 141 positions, giving 19881 points in the cartesian 

plane at 5mm increments from 40mm to 80mm this presents a total 178929 measurements. 

 

The first algorithm for controlling the positioning of each servo motor is named Global Search 

Algorithm. This uses the US to scan the Circle of Willis within the brain to locate target cerebral 

blood vessels. According to MRI and MRA procedures, obtaining the position of each cerebral artery, 

then using this data with the finite element method (FEM). Giving an accurate location of each artery 

inclusive of the location of the ultrasound window in the skull.  

    

Initially the processing of the FEM data and origin coordinate translation is required. The initial data 

point of the FEM has its origin based at (0,0,0) X = 0, Y = 0 and Z = 0. Once data has been collected 

and processed the origin can be manipulated to the left side of the temporal window. For each axis 

there will be 118 FEM points. The central point of the left ultrasound window can be found by taking 

the average of these 118 points for each axis. With the central window defined the origin of the 

coordinates can be transformed to produce the vector key, in the form of (x0,  y0,  z0), all the 

coordinates of the cerebral arteries need to be transformed using the conversion vector. Once 

complete the coordinates of the arteries can be repositioned based on the coordinates of the 

ultrasound window.  Finally, the depth of ultrasound wave and deflection angles of the X and Y servo 

motors is set, controlling the reflection angles of transmission (Huang et al. n.d.). with 141 detection 

points for each motor, producing 19981 detection points per scannable depth. 
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The global search’s purpose is defining the focal zone of the ultrasound at a specified depth. After 

the search has completed the Circle of Willis at a certain depth, the K-nearest neighbour search 

(KNN) is used in this case to find the nearest point in scale space, using echoes generated by arteries 

from the US. By calculating the Euclidean distance between the detected US signals and the near 

sample points of arteries will give an indication of the strength of signals, in this case 10597 FEM 

points are used to construct the arteries. Next the distance between test signals and samples from 

all scanning signals is calculated. 

 

The second algorithm is the local search approach, this is to improve the accuracy of the searching 

outputs. It takes the strongest signal from the global search, then using the two equations in figure 

2.3, creates the deflection angle for x y respectively. With the deflection angles calculated, the scan 

changes the deflection angles of x and y along with the servo motors to scan within a circle with x0, 

y0, z0 been the centre point. The 10 closest neighbouring points are calculated using the KNN as are 

the Euclidean distances of these points. This will ensure a stable signal spectrum is established as the 

signal from the global search can be intermittent with exception to certain areas providing 

continuous signals. It will also aid in confirming if the strong signal from the global search is to be 

excluded from the global search as the local search further examines the true or false signal. 

 

 

Figure 2.4 Deflection and for X and Y of detected signal (Huang et al. n.d.). 

Classifying the signals uses the KNN method, (reviewed in detail in section 3.2), and is used as the 
reference algorithm in this project. Firstly, the distance between a detected signal and each relevant 
data point, then sorted as the relationship and distance increases. Next the points with the least 
distance are compared with the initial K points. Finally, the category of K points with the highest 
frequency before the extrapolation of classification of data. 

 

2.4 Chapter Summary 
 
The Auto TCD probe scans the area of the Circle of Willis at a set frequency at different distances to 

map a set of data points, which are then extrapolated to provide a more detailed representation of 

the cerebral arteries. 

The positioning of the TCD, servo motor deflection and to a limited extent the global search function 

is almost arbitrary for this report. The intention is to give a reasonable description of the system. The 

main interest is the results from the global search and the second search and how the data is 

processed. In this case the KNN algorithm, which will be reviewed with the Decision Tree, Naive 

Bayes and the Golden Section Search algorithms in the literature review.    
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Literature Review 

 
The following chapter covers several algorithms that will be potentially used in the project, providing 

detailed analysis of how the algorithms are compiled and how they are used for function 

optimisation. 

 

3.1 Literature Review 
 
The following section is a review of various sources of information reviewing differing methods to 

identify the maximum values in the results of the global search function, including methods for 

interpolation. Also, there is a general review of algorithms in the physical scanning of the cerebral 

arteries.  

 

3.2 Finite Element Method (FEM) 

 
FEM is a numerical method for solving problems of engineering and mathematical physics. It is used 

in problems that have complex geometries that require numerical solutions as well as loading and 

properties of materials. Common applications include Structural and stress analysis, fluid flow, heat 

transfer, electromagnetic fields, and acoustics modelling. The crux of the method is that many 

engineering problems can be defined governing equations and boundary conditions (Kim & De Weck 

2004). Taking any of the systems, the governing or differential equation coupled with the boundary 

condition will provide a numerical representation of the system. 

The FEM takes the model required for analysis and divides it into a system of many smaller models 

or bodies. These smaller bodies are connected at two or more common points referred to as nodes, 

boundary lines or surfaces and can be represented as a simultaneous algebraic 

equation.   (Introduction to Finite Element Analysis (FEA) or Finite Element Method (FEM) n.d.)  

 

 

Figure 3.1 - Numerical Conversion of Engineering Phenomenon (Olivier De Weck, Il & Kim 2004). 
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The method can be defined in three routines with several subroutines to form the numerical 

solution. The first is pre-processing, where the geometric domain, element types, material 

properties, geometric properties, element connectivity and physical constraints. Secondly is the 

solution routine, where the unknown variables of the primary field are computed. These values are 

then used by back substitution to compute additional derived variables such as element stresses and 

flow. The final routine is post processing where sophisticated processes are used to sort and plot the 

relevant results from the finite element solution (Olivier De Weck, Il & Kim 2004).     

 

3.3 K Nearest Neighbour Algorithm (KNN) 

 
The KNN algorithm uses the assumption that similar things exist close in proximity (Harrison 2018). 

The abbreviated process for the KNN algorithm using the equation  

 

𝑑 = 𝑛𝑘 = 𝑥1 × 1𝑘 − 𝑥2 × 𝑘2 

Figure 3.2 – KNN Algorithm 

 

Initialise data for processing.  

Select a value of k, the chosen number of neighbouring points in this case 10. 

Calculate the distance between the current point and the queried point. 

The distance and the index of the point to an array, sorted in distance from nearest to furthest. 

Use the value of the K entry to return the mean or the mode dependent on application. 

The value of K is dependent on several variables, the value wants to keep the number of errors in 

calculation to a minimum while being able to make reliable predictions about unknown data. 

Decreasing the value of K produces fewer stable predictions, while increasing to threshold improves 

predictions. However, once the threshold is reached the number of errors will begin to increase. The 

speed at which the algorithm is executed slows as the number points, predictors, or independent 

variables increases (Varghese 2019).  

Advantages 

i. Simple to implement.  

ii. Small number of parameters to optimise. 

iii. Produces results in real time.  

Disadvantages  

i. Value of K requires careful selection. 

ii. Requires large amounts of computing resources and increases exponentially with 

dataset size. 

iii. Longer runtimes than other algorithms 
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3.4 Decision Tree 

 
Uses a tree-based structure to solve regression and classification problems (Varghese 2019). Derived 

from the independent variables, each node having a condition to produce a feature. Where each 

node decides on how to navigate based on a given condition. Once the final stage is reached, called 

a leaf node, an output is predicted. Making the tree efficient requires selecting the correct 

conditions, while information gain is used to select node conditions. With tree structure is 

developed using a recursive, greedy algorithm (Varghese 2019). 

 

Figure 3.2 Decision Tree Structure with nodes and leaves (Decision Trees 2020) 

 

Gini index is used for classification and regression trees, used for calculating how mixed data points 

are (Varghese 2019).  

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − 𝑃2𝑡 

Figure 3.3 – Gini Index 

 

Entropy and information gain for selecting the next attribute.  

 

𝐻𝑠 =  −𝑃𝐶 ∗ log𝑓(𝑠)(𝑃𝐶) 

Figure 3.4 - Entropy 

𝐼𝑔𝑠 = ℎ𝑠 − 𝑡𝑃𝑡 ∗ 𝐻(𝑡) 

Figure 3.5 – Information Gain 

 

H(s) is entropy and IG(s) is information gain used for calculating entropy difference of parent and 

child nodes. 

Advantages 

1. No data pre-processing. 
2. Data distribution requires no assumptions. 
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3. Efficient with collinearity 

Disadvantages 

1. Overfitting the model without decision tree pruning. 
2. Prone to outliers 
3. May become overly complex with large datasets. 
4. Losses critical information with continuous variables. 

 

 

 

3.5 Naïve Bayes 

 
Naive Bayes assumes that there is no dependence amongst attributes, referred to as class 

conditional independence (Ashari, Paryudi & Min 2013). It is used to solve classification problems 

throughout many industries and is based on the Bayes theorem, an extension of conditional 

probability which uses one conditional probability to calculate another. The equation representing 

Bayes Theorem. 

 

𝑃𝐵 = 𝑃𝐴 ∗
𝑃(𝐴)

𝑃(𝐵)
 

Figure 3.6 – Bayes Theorem 

 

The probability of A given that B has occurred, the right-hand side the probability of B given A has 

occurred, multiplied by the probability of event A to event B (Ashari, Paryudi & Min 2013). 

Advantages  

1. Performs better than other algorithms if the assumption of independent predictors is true. 
2. Straightforward to implement.  
3. Requires a small amount of training data to estimate test data (Ashari, Paryudi & Min 2013). 

Disadvantages 

1. The assumption of independent predictors is the main limiting factor of Naïve Bayes, it 
assumes that all attributes are independent. In the physical world the likelihood of a set of 
independent predictors is extremely low. 

2. A categorical variable in the test data sheet not in the training data set will result in a 
prediction being unable to be made.  This is called zero frequency and can be smoothed 
using techniques such as Laplace estimation.  
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3.6 Golden Section Search 
 
The golden section search is used for finding the maximum or minimum of a dataset inside an 

interval specified by the user, usually for a unimodal function, one that contains only one maximum 

or minimum on the interval. It can be adopted as a line search method for univariate problems by 

progressively subdividing the regions until the difference between these is less than the specified 

tolerance. Once this has been accomplished the maximum or minimum is found (Hanson, 2021). The 

conditions that need to be satisfied so that the correct points between the bounds are examined 

are: 

1. The distance between the optimised bounds is the same whichever side they are removed 
from. 

2. This distance or proportion is to remain constant on every iteration, using one of the existing 
calculated points on the next iteration. 

Referring to figure 3.7, initially three points are assigned, 𝑥i, 𝑥1 and xu where (𝑥i<𝑥1<𝑥u). The 

values of the function correspond to 𝑓(𝑥i), 𝑓(𝑥1) and 𝑓(𝑥u) and the maximum value lies between 

these points. A fourth point 𝑥2 is used between the larger intervals of [𝑥i, 𝑥1] and [𝑥i, 𝑥u], if the 

larger interval is 𝑓(𝑥2)>𝑓(𝑥1) then the new coordinates will be 𝑥l<𝑥2<𝑥1. This process continues 

until the distance of the outer point reaches the specified tolerance (Yalcin and Kaw, 2021).  

 

 

Figure 3.7 - Cross section of a function (Yalcin and Kaw, 2021) 

 

Determining the distance of the intermediate points for the Golden Section Search, is based on the 

Golden Ratio. This is a ratio that has been used in mathematics and engineering since 300 BC and is 

the ratio of two values whose sum of the larger of the two quantities is the same as their ratio. 

Mathematically it is expressed as a+ba = ab where a is greater than b and both are greater than zero. 

Alternately let R = ab then the equation can be written as: 
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𝑅2 + 𝑅 − 1 = 0 

𝑇ℎ𝑒𝑛 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑟𝑜𝑚𝑢𝑙𝑎 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 

𝑅 =  −1 + 1 − 4(−1)2 

𝑅 = 0.61803 

Figure 3.8 – Deriving the Golden Ratio 

 

The distance of the intermediate points to the boundaries of the search region is as close to the 

golden ratio as practical as demonstrated in figure 4.7, where 𝑥l and 𝑥2 are chosen to ensure the 

distance from the boundaries represents this ratio.  

 

 

Figure 3.8 - Cross section of a function (Yalcin and Kaw, 2021) 

 

 After the first two intermediate points are determined, a smaller interval must be chosen where the 

maximum or minimum of the function exists. This interval is located at either [𝑥l, 𝑥2, 𝑥1] or [𝑥2, 𝑥1, 

𝑥u], which of these is used will be found by evaluating the function at points 𝑥2 and 𝑥1. In the case 

that 𝑓(𝑥2)>𝑓(𝑥1) the next interval will be [𝑥l, 𝑥2, 𝑥1], else this not been the case then the next 

interval will be [𝑥2, 𝑥1, 𝑥u]. In the case of figure 4.7, indeed 𝑓(𝑥2)>𝑓(𝑥1) giving new interval at [𝑥l, 

𝑥2, 𝑥1]. The boundary of the smaller interval is 𝑥l and 𝑥1 with one of the intermediate points already 

located at 𝑥2, which has a ratio to the boundary of the golden ratio and the second interval at 𝑥l 

(Hanson, 2021). 
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3.7 An Unknown Algorithm 
 
Most algorithms evaluate a function at several points, with the location of the test points based on 

the value of the function at the previous test, with many algorithms halting on local maxima or 

minima. Majority of algorithms that evaluate functions this way can be very time consuming and 

require large amounts of processing power. With optimisation algorithms it is essential that the 

maximum or minimum be found using the minimum amount of test points. If the known, then the 

search can conclude once a test point returns the maximum value. The following algorithm is based 

on a method developed by H.J Kushner's versatile stochastic model function, whose form is 

unknown and time varying. If the global maximum or upper boundary of a univariate function is 

known, the method results in a simpler algorithm that does not regard the differentiability of the 

function (Haskell, Castelino and Mirshab, 2021).  

Figure 3.10 represents a univariate function g(z), each interaction is performed on the interval 

[Zmin, Zmax] and it is assumed that the maximum value of the function is G, with the other 

parameters defined as. 

𝑑𝑚𝑎𝑥 = 𝐺 − 𝑔(𝑍𝑚𝑎𝑥) 

𝑑𝑚𝑖𝑛 = 𝐺 − 𝑔(𝑍𝑚𝑖𝑛) 

Figure 3.9 – dmax and dmin values 

 

Each iteration of the algorithm at a point within the interval is selected as a new possibility for the 

maximum represented as ẑ. 

 

  

Figure 3.10 - An Arbitrary Function (Haskell, Castelino and Mirshab, 2021). 

 
The algorithm iterates through a series of steps using the initial test interval [Zmin, Zmax], and can 

be described as: 

1. If g(zmin) = G or g(zmax) = G then END 

2. Do the following n times or until the maximum has been found 

3. Compute ẑ 
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Ẑ = Zmin + t 

Where, t = dminT (dmin + dmax) 

And T =Zmax - Zmin 

4. If g(ẑ) = G the END 

5. Reduce interval into smaller intervals - [Zmin, ẑ] and [ ẑ, Zmax] 

6.  Ẑ becomes new Zmax for the first interval and the new Zmin for the second 

7. Calculate Amin 

Amin = (dmin dmax)/T 

8. Each interval is added to a segment list containing Amin, Zmin, Zmax, dmin and dmax. 

9. The entry with the smallest Amin in the segment list, the new interval corresponding      

[Zmin,Zmax] 

 
The value of n can be determined based on some arbitrary value or as a percentage of the total 

search space, if no maximum is found after the value of n is reached the result is the closest to the 

value of the maximum (Haskell, Castelino and Mirshab, 2021). 
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3.8 Equal Interval Search Method 
 
The equal interval search method is one of the simplest methods for finding a local maximum or 

minimum of a univariate function. To find the maximum of a function, f(x), where the maximum 

exists in the interval [a, b]. Referring to figure 4.8, using an interval of an arbitrary value e at which it 

is assumed the maximum occurs, two intervals can be calculated. 

 

𝑓 (
(𝑎 + 𝑏)

2
+

𝑒

2
) 𝑎𝑛𝑑 𝑓 (

(𝑎 + 𝑏)

2
−

𝑒

2
) 

 

𝑖𝑓 𝑓 (
(𝑎 + 𝑏)

2
+

𝑒

2
) ≥ (

(𝑎 + 𝑏)

2
−

𝑒

2
) 

 

𝑇ℎ𝑒𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑠 

[
(𝑎 + 𝑏)

2
−

𝑒

2
, 𝑏] 

𝑒𝑙𝑠𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑐𝑐𝑢𝑟𝑠  

[
(𝑎 + 𝑏)

2
+

𝑒

2
, 𝑎] 

Figure 3.11 – Where the Maximum Occurs Equal Interval Method 

 

The process is repeated until the interval is reduced to a predetermined size (Yalcin and Kaw, 2021). 

From the data points A, M-, M+, and B, the value of the function increases from A to M-. then 

decreases from M- to M+. When there is a sudden change in function value as this, the new upper 

and lower bracket values can be evaluated. The lower bound remains at Point A, with the new upper 

boundary at M+.  

 

 

Figure 3.12 - Cross section of a function (Yalcin and Kaw, 2021) 
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3.9 Chapter Summary 
 
While six different algorithms with methods of optimising functions were examined only three will 
be implemented and evaluated for optimising the data from the global search. These will be the 
Golden Section Search, and Unknown Algorithm and the Equal Section Search. The K-nearest 
Neighbour, Naive Bayes and the Decision Tree are complex algorithms and after evaluation would 
require many resources to adapt and compile for the purpose of locating the maximum of a 
function. 

The equal interval search is a very basic and potentially inefficient algorithm for evaluating the 
maximum of a function. As the algorithm starts in the midpoint of the function, then takes values 
either side of the midpoint at a pre-determined distance. Then comparing these values follows the 
direction in which the function is increasing. Even if the function has a single a maximum then the 
function should arrive at a maximum, if the function has multiple maximums or multiple values close 
to the maximum, the algorithm may struggle to locate the true maximum.  
 
An unknown algorithm overcomes the issue of multiple maxima, as it references a predicted 
maximum value. While this ensures faster convergence it is another step in the algorithm, as the 
value must be calculated before the algorithm can locate the maximum. 
 
The golden section search is also intended to find a single maxima or minima of a function. The 
limitations apply as with the previous algorithms, as there may be multiple maxima or values close 
to the maximum which could cause errors in processing the raw data. The main advantage of the 
golden section is no pre-calculating of maxima is required or size of interval. 
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Methodology 
 
This chapter outlines how each algorithm will process the raw data in MATLAB to determine the 

maximum blood flow velocity in the local search results. The result of this will be analysed for the 

number of steps taken to reach the outcome, which will be the metric for measuring the 

performance of the algorithm. 

 

4.1 MATLAB Introduction 
 
MATLAB will be used to simulate the algorithms as performing the calculations manually would be 

very time consuming and inefficient use of time. MATLAB allows a high number of calculations of 

every second, whilst offering extensive support for math-based applications and is used extensively 

in academic institutions. 

 

4.2 Raw Data Evaluation 
 
Raw data from the global search has been provided by the University of Southern Queensland. It is 

presented in a three-dimensional plane, refer to figure 4.9.1, and there are three different data 

points to make up the complete data set: 

I. X coordinate - Deflection angle of the probe located at the horizontal plane  

II. Y coordinate - Deflection angle of the probe located at the vertical plane 

III. Z coordinate - Strength of the signal from the doppler ultrasound 

While the algorithms presented are implemented to examine a single plane, X and Y coordinates, 

where the X axis increases evenly, and the Y value is potentially varying. 

 

 

Figure 4.1 - 3D Plot of Raw Global Search Data (USQ 2021) 
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Referring to Figure 4.2, the first plot is the position of the X probe as it sweeps at various angles 

through a set range, the angle of the X probe is varying constantly. We can see from the second plot 

that the Y axis probe goes through step changes approximately every 21 iterations of the X probe. 

Finally, the third plot is the result of the doppler signal at both points X and Y and is the strength of 

the doppler signal.  

The focus of the optimisation will be on the Z doppler strength signal. Other data is predetermined 

an Z is essentially the unknown. Algorithms will examine each data set of 21 values of the Z value 

and attempt to locate the maximum value in the least number of iterations of loops as possible. 

Even one or two iterations less over a large dataset can result in much quicker processing of the raw 

data. 

 

 
Figure 4.2 - Separate Plots of Global Search data 
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4.3 Data Integration 
 
As the data from the global search is presented in three dimensions, with the X, Y and Z planes, the 
local maximum will be evaluated within two planes, X and Y only. This will be achieved by breaking 
the global data into smaller sections and optimising these smaller sections individually. In the 
preceding chapter it was identified that The Y axis probe remained static through twenty iterations 
of the X probe. Based on this, the X value can represent the X plane, as for twenty-one iterations it is 
linear. The Z values can be represented on the Y plane as their value is random and the maximum is 
unknown. Referring to Figure 5.2.1, twenty-one X probe values are plotted, on the Y axis twenty-one 
Z plane data points. The selected algorithms will be applied to these smaller blocks of data points to 
find the maximum point. There is a total of four hundred and fifty-seven data points in the global 
search data set, however the last sixteen data points appear corrupted and will be omitted from the 
data processing. This brings the total amount of data blocks to twenty-one, the selected algorithms 
will be applied to the separate blocks which represent different planes in the ultrasound image.  

 

 

 

Figure 4.3 – Global Search Data with Y Plane Removed 

 

With the global data separated into separate planes, with the maximum in each plane calculated, 

the data can be transferred to a new array or matrix with the maximum value and the X and Y 

coordinates of the maximum point. 
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4.4 The Golden Section Search MATLAB Implementation 
 
The Golden Section Search is normally used to evaluate a function with a known maxima or minima. 

In the case of the global search data, there is no known maximum for the data, and as it appears, is 

not represented by a known function. Following will be the steps of using MATLAB to implement the 

Golden Section Search for the global data. 

Firstly, as established the function will be replaced with one of the data planes, with the upper and 

lower bounds as xU and xL. The golden ratio can also be declared in relation to the upper and lower 

boundaries denominated by D, referring to Figure 3.8:  

 

 

𝑅2 + 𝑅 − 1 = 0 

𝑇ℎ𝑒𝑛 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑟𝑜𝑚𝑢𝑙𝑎 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 

𝑅 =  −1 + 1 − 4(−1)2 

𝑅 = 0.61803 

Figure 3.8 – Deriving the Golden Ratio 

 

Results in 

𝐷 = 𝑅(𝑥𝑢 − 𝑥𝐿) 

Figure 4.4 – Golden Ratio in Relation to Upper and Lower Boundaries 

 

Using pseudo code this will be represented as: 

F = single global data plane 

Xu = the upper bound of the data set, in this case the lowest deflection angle of the X probe 

Xl = the lower bound of the data set, in this case the highest deflection angle of the Y probe 

Fu = value of the data at Xu 

Fl = value of the data at Xl 

D = the ratio of the upper boundary less the lower boundary in the golden ratio 

With the boundary ratio and the upper and lower limits determined, then the values of the global 

data at the initial boundary ratios can be calculated: 

X1 = the upper limit Xu, minus the golden ratio of the boundaries D 

X2 = the lower limit XL, plus the golden ratio of the boundaries D 

F1 = the value of the global data at the point X1 

F2 = the value of the global data at the point X2 
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With the ratio and the values along the X axis of the data plane may differ, they will be rounded to 

match the available data points, or the resolution of the x axis may be increased to meet the 

requirements. The next stage is to establish conditions for the algorithms on how to proceed 

through the search process to find the maximum value.  

 
If F1 > F2  

Then the upper boundary moves to X2  

Xu = X2  

Fu = X1 

New value for X2 assigned 

X2 = X1 

F2 = F1 

New value for X1 assigned 

D = R*(Xu-Xl) re-evaluates distance between the bounds 

X1 = XU - D 

Evaluate F1 

F1 = value of data plane at point X1 

 

Otherwise, if the value of F1<F2 the lower bound moves to X1 

Xl=X1 

Fl = F1 

New value assigned to X1 

X1 = X2 

Fl = F2 

New value assigned to X2 

D = R*(xU-xL) re-evaluates distance between the bounds 

X2 = Xl + D 

Evaluate F2 

F2 = value of data plane at point X2 

 

There is a possibility that F1 and F2 may be equal, in the case that they both contain a maxima or 

minima, in this case they are both the result 

Xl = (X1 + X2)/2 midpoint of X1 and X2 
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Xu = Xl this will return an error for the result 

Then convergence can be confirmed 

Error = the absolute value of the span of the upper and lower bound relative to the centre position 

of the lower boundary, where: 

Error = absolute value of Xu =Xl 

 

With the variables and values established the program will have to iterate through the search 

function until it can find the maximum value, achieved by using a loop with set conditions to 

terminate the loop once a value in the tolerance is found. The loop can be constructed as follows: 

 

Tol = tolerance of the loop relative to the error, while the error is greater than the tolerance the loop 

will continue, upon the tolerance exceeding the error, then the result is evaluated.  

 

Xe = Result where (X1 + X2)/2 averaging the values of X1 and X2. 

 
At this point the values must be referenced back to the Y probe deflection angle, which is constant 

through the selected range, the X probe deflection angle is relative to the result as is the maximum 

value. 

  

 

4.5 Implementing an Unknown Algorithm in MATLAB 
 

 
The Unknown Algorithm, like the Golden Section Search, requires a known local maximum or 

minimum, although not a known function. The value of G normally represents the maximum, in this 

case it will represent the estimated upper boundary. An arbitrary univariate function would normally 

be represented by g(z), in this application let g(z) represent the global data. Each iteration of the 

variable is performed on the boundaries Zmin and Zmax (Haskell, Castelino and Mirshab, 2021), 

dmax and dmin is the value of the global data evaluated at points Zmin and Zmax. 

The algorithm will use the values of Zmin and Zmax as initial test intervals and iterate through a loop 

until the maximum value of iterations is reached. The pseudo code for this algorithm in MATLAB is as 

follows. 

Declares the value G, equal to or greater than the maximum value of the global search data, at this 

point this will be formed for small datasets manually, for larger data sets there are functions 

available in MATLAB for finding a maximum, this will affect the performance of the algorithm. 

If g(Zmin) = G or g(Zmax) = G, then the maximum is located at these points 

Value for variable n, can be set manually or set as a percentage of the number of data points in the 

global data, as it is assumed that the maximum must have been found by this point. 
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Calculate dmin and dmax, these are the values of Z of the global search data, evaluated at the 

minimum and maximum of the X axis. 

dmin = G - g(Zmax) 

dmax = G - g(Zmin)  

 

Calculate the value T, ṱ, and ẑ. 

T produces the span of the interval 

T = Zmax - Zmin  

 

ṱ calculates a new smaller interval proportional to the total span 

ṱ = dmin T / (dmin + dmax) 

 

Creates the new upper boundary for the new interval, also minimum for the next interval 

ẑ = Zmin + ṱ 

 

At this point if g(ẑ) = G the maximum is found, this is the value of the function evaluated at the new 

upper boundary, also the next intervals lower boundary 

Divide the interval into two smaller intervals 

[Zmin, ẑ] and [Zmax, ẑ] where ẑ becomes the Zmax for the first interval and Zmin for the second 

interval. 

Calculate a new parameter, Amin, for both new intervals, this evaluates how close the values at 

dmax and dmin are to the maximum value, the smaller this value the closer to the maximum both 

points are.  

Amin1 = (dmin*dmax)/T 

The new segment where Amin is the smallest, becomes the new test interval with the corresponding 

[zmin, zmax]. 

The number iteration can either be predetermined, this will start at a higher number during testing 

and reduced until a result is produced before error. 
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4.6 Equal Interval Search MATLAB Implementation 

 
 
As this is the simplest method of finding the local maximum or minimum of a known function it will 

be used as a baseline for the other methods for comparison of optimisation. The size of the interval 

is predetermined and is represented by ɛ and will use this same size interval throughout the entire 

evaluation of the global search data. 

Firstly the range evaluated will be represented by [a,b], where a is the lower boundary of the global 

search data and b is the upper boundary. 

a = lower boundary x value of global search data 

b = upper boundary x value of global search data 

 

Let ɛ = 1 for the initial interval size, this will be adjusted through subsequent testing for optimal 

number of steps. 

The first interval 

F1 = Z((a + b) / 2 + ɛ/2) lower interval evaluates the value of Z plane from the data at this point 

F2 = Z((a + b) / 2 - ɛ/2) upper interval evaluates the value of Z plane from the data at this point 

If F1 > F2 then the maximum lies in this interval 

Alternatively 

If F1 < F2 then the maximum lies in this interval 

The interval will then be moved to coincide with the side that the maximum was found 

If F1 > F2 

Create a new interval where the upper boundary is b and the lower boundary is F2 

a = F2 

F2 = F1 

F1 = Z((a + b) / 2 + ɛ/2) 

 

If F1 < F2  

Create a new interval where the upper boundary is F1, and the lower boundary is a 

b = F1 

F1 = F2 

F1 = Z((a + b) / 2 - ɛ/2) 
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Iterate through this until the specified number of loops is reached, initially this will be five, with 

further testing this number may be adjusted with regards to error rate of the algorithm. 
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Results and Discussion  
 

The following chapter provides how the results from test data have been analysed and evaluated. 

Using MATLAB to simulate algorithms and evaluate effectiveness of each by taking into 

consideration the number of steps of code, the number of iterations the code requires to reach the 

maximum and the error rate of the function. The number of steps can be considered secondary as 

the number of iterations required as this will act a multiplier each time the iteration increases. The 

erratic nature of the raw data has also been taken into consideration as the multiple number of 

minima and maxima can make it difficult for algorithms.  

 

5.1 Results Summary 

 
Processed data has been tabulated after algorithm optimisation. The first five data sets (each of 21 

data points) have been recorded. The first column is the range of the data set each of twenty-one 

points, the second is the number of times the algorithm has processed the data referred to as 

iterations. The third and fourth columns indicated the location and maximum value of that dataset 

and the fifth and sixth are the results returned from the algorithm. The final two columns are the 

difference between the actual maximum value and the algorithms calculated values. 

The second set of data tables is the same process with data smoothing applied in MATLAB (Figure 

5.1), this eliminates the outliers and possibly reduces the value of maxima and minima values 

proportionally. This was implemented to assist with the algorithms locating the maxima more 

efficiently, removing multiple maximum and minimum values so the search could follow the increase 

in function value easier.  

Further to this the averages of the position error and function value error are presented in a table to 

give some comparison between the algorithms results of the smoothed and raw data. 

 
 

 
Figure 5.1 Comparison of Raw Data and Smoothed Data 
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5.2 Equal Interval Method 
 
Initial finding of the equal section search is that’s the error rate of the raw data is high, with loop 

count varying from one to five which it was found that there was little effect on the result after four 

iterations, in some cases the error rate increased with larger number of iterations moving further 

away from the maximum, also the zero values have been offset by one as zero returns a false result.  

This algorithm had the highest error rate for position error, the change in slope can cause the 

algorithm to return false results and become stuck on a certain value, even though this is not the 

maximum. While the average function value error is not as high as the other algorithms, this is less 

significant than producing an incorrect location. 

The number of steps required for the algorithm to complete one iteration is twenty-nine. Based on 

five iterations this potentially evaluates the maximum at one hundred and forty-five steps. With a 

high error rate and an inaccurate evaluation of the maximum location this method in this form 

cannot reliably find a local maximum. 

 

Table 5.1 Averaged Result Data Equal Interval Algorithm  

Dataset Maximum 
Value 

Maximum 
Location for 
X 

Average 
Function Value 
Error 

Average 
Position Error 
(Raw Data) 

Average 
Position Error 
(Smoothed 
Data) 

1:21 19.655 11 10.16164 
 

1.2 
 

3.8 
 

22:42 12.897 21 6.85276 
 

14.2 
 

12 
 

43:63 15.218 11 2.20308 
 

3.6 
 

3.8 
 

64:84 17.059 16 4.6496 9.2 
 

8 
 

85:105 22.194 18 13.3605 
 

8 
 

8 
 

Total Averaged ~ ~ 7.445516 

 

7.24 
 

7.12 
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5.3 An Unknown Algorithm 
 

Error rate for the Unknown Algorithm is 11.36421 for the value and 4.52 for the X position (Table 

5.2). This is a minimal improvement over the Equal Interval Search with one of the five data sets 

been calculated accurately. Examining the full results (Table B.3), the algorithm cannot move past a 

local maximum, as it returns the same location for the maximum location in each of the datasets 

with exception to one, the 43:63 range in which it only changed once. The final three data sets 

returned a zero result, which is the minimum, although one of multiple points of this value through 

the dataset. Main source of error could be that the algorithm fails to move off the local maximum as 

the search iterates.  

This is evaluated in the literature review as this algorithm was designed to avoid this result. 

Examining the algorithm, the error appears to occur when a zero value is returned for the variable 

Zd, this occurs if the initial maximum is at the Zmin or Zmax point. Placing an offset of one for G 

provides some improvement, although the algorithm still fails to locate the maximum on majority of 

iterations.  

Lines of code required for the algorithm are thirty-four and based on number of iterations to reach a 

maximum for the full results is four. Resulting in one hundred and thirty-four steps to reach a 

maximum. 

 

Table 5.2 Averaged Result Data an Unknown Algorithm 

Dataset Maximum 
Value 

Maximum 
Location for 
X 

Average 
Function Value 
Error 

Average 
Position Error 
(Raw Data) 

Average 
Position Error 
(Smoothed 
Data) 

1:21 19.655 11 6.5716 
 

2 
 

12 
 

22:42 12.897 21 0 
 

0 
 

0 
 

43:63 15.218 11 10.99564 
 

4.6 
 

7.2 
 

64:84 17.059 16 17.0594 
 

5 
 

5 

85:105 22.194 18 22.1944 
 

11 
 

3 
 

Total Averaged ~ ~ 11.36421 
 

4.52 
 

5.44 
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5.4 The Golden Section Search 

 
The Golden Section Search returned the lowest error rate of all three algorithms and found a 

maximum in the least number of loop iterations normally converging after three iterations as can be 

found in Table B.5. As with the other algorithms with the erratic nature of the raw data it can 

become stuck on a false maximum, given some improvements with data smoothing the error rate 

was reduced.  

The algorithm is the least dependent on prior information in that it forms all its intervals of the basis 

of the Golden ratio applied at the upper and lower bounds of the function. While the value function 

error was smaller, the smoothed data position error proved the strongest at 3.96. The number of 

steps for each iteration was forty-two, resulting in one hundred and twenty-six total steps. This gives 

the Golden Section Search the least number of steps for all algorithms. 

Although the algorithm remained stuck on false maximums potentially requiring more work to 

locate the true maximum. 

 

Table 5.3 Averaged Data for the Golden Section Search 

Dataset Maximum 
Value 

Maximum 
Location for 
X 

Average 
Function Value 
Error 

Average 
Position Error 
(Raw Data) 

Average 
Position Error 
(Smoothed 
Data) 

1:21 19.655 11 2.2118 
 

02 
 

0 
 

22:42 12.897 21 4.88482 
 

12.6 
 

8.8 
 

43:63 15.218 11 5.90478 
 

2.4 
 

4.4 
 

64:84 17.059 16 3.51556 
 

0.4 
 

1.6 

85:105 22.194 18 22.1944 
 

7 
 

5 
 

Total Averaged ~ ~ 7.74227 
 

4.12 
 

3.96 
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5.5 Chapter Summary 

 
While intermittently all three algorithms managed to locate the maximum, on most occasions all 

three became stuck on a false maximum. The nature of the algorithms is that it would narrow the 

focus onto an upward direction of a function, if the function had a higher maximum after a down 

trend than often this was missed. Although unsuccessful the highest performing was the Golden 

Section Search, in which with more refining could possibly produce more accurate results.  
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Conclusions and Further Works 
 

6.1 Conclusion 
 

The primary objective was to produce a time optimal controller for a transcranial ultrasound, by 

developing an algorithm that would locate the maximum blood flow in the least number of steps. 

While the algorithms did not produce accurate results for the maximum value of a function, there is 

potential with improvements there could be an increase in accuracy. It was found that all of the 

researched algorithms are capable of locating the maximum of a univariate function, however with 

the raw data provided there are several values at near maximum that resulted in high error rates.  

 

6.2 Further Works 

 
Further work to either smooth the raw data, or variations of the algorithms to help to locate the 

maximum. It may also be prudent to extrapolate the raw data, although this may increase the 

processing time with no benefit.   
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Appendix A 

 

Project Specification 
 

For: Kieran Higo 

Title: The time-optimal controller design & implementation for an auto TCD probe   

Major: Electrical and Electronic Engineering   

Supervisors: Paul Wen and Bo Song 

Enrolment: ENG4111 – EXT S1, 2021 

  ENG4112 – EXT S2, 2021 

 

Project Aim: Design and implement a controller to increase speed and efficiency of the TCD probe 

reducing discomfort to the user. 

 

Program: Version 1, 15th March 2021  

 

Initiate background research on Transcranial doppler ultrasound (TCD), including past, current, and 

conceptual designs. 

Create a model from current servo unit used in TCD. 

Simulate controller model using MATLAB capturing relevant data for benchmarking. 

Assess data for optimization areas. 

Prioritize optimization points select areas that will give greatest performance increase. 

Create optimised controller model for simulation. 

Evaluate optimised data based on the model. 

Implement new controller in existing servo unit. 

Simulate TCD unit with optimised controller. 

Process and evaluate experimental data. 

Evaluate the effectiveness of new controller. 

Provide recommendations for any further improvements. 

If time and resource permit: 

Collect feedback from field users and service reps for any improvements recommended.  
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Appendix B 

 

Algorithm Test Results 
 

The following appendix will provide full test results of the Equal Interval Search, Unknown Algorithm, 

and the Golden Section Search Algorithm. 
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Table B.1 - Equal Interval Search Results 
Dataset 
Range of 
X 

Iterations Max 
value X 

F(x) Calculated 
Value 

F(x) Position 
Error 

Error 
Value 

1:21 1 X = 9 19.6554 X = 11 13.0832 2 6.5722 

1:21 2 X = 9 19.6554 X = 8  8.5964 1 11.059 

1:21 3 X = 9 19.6554 X = 8  8.5964 1 11.059 

1:21 4 X = 9 19.6554 X = 8 8.5964 1 11.059 

1:21 5 X = 9 19.6554 X = 8  8.5964 1 11.059 

22:43 1 X = 21 12.8973 X = 0 0 21 12.8973 

22:42 2 X = 21 12.8973 X = 14 11.4414 7 1.4559 

22:42 3 X = 21 12.8973 X = 7 5.5456 14 7.3517 

22:42 4 X = 21 12.8973 X = 7 5.5456 14 7.3517 

22:42 5 X = 21 12.8973 X = 6 7.6901 15 5.2072 

43:63 1 X = 11 15.2176 X = 11 15.2176 0 0 

43:63 2 X = 11 15.2176 X = 5 11.5458 6 3.6718 

43:63 3 X = 11 15.2176 X = 5 11.5458 6 3.6718 

43:63 4 X = 11 15.2176 X = 5 11.5458 6 3.6718 

43:63 5 X = 11 15.2176 X = 11 15.2176 0 0 

64:84 1 X = 16 17.0594 X = 11 12.5738 5 4.4856 

64:84 2 X = 16 17.0594 X = 7 13.2313 11 3.8281 

64:84 3 X = 16 17.0594 X = 6 12.0813 10 4.9781 

64:84 4 X = 16 17.0594 X = 6 12.0813 10 4.9781 

64:84 5 X = 16 17.0594 X = 6 12.0813 10 4.9781 

85:105 1 X = 18 22.1944 X = 0 0 18 22.1944 

85:105 2 X = 18 22.1944 X = 14 11.9534 4 10.241 

85:105 3 X = 18 22.1944 X = 14 11.9534 4 10.241 

85:105 4 X = 18 22.1944 X = 14 11.9534 4 10.241 

85:105 5 X = 18 22.1944 X = 8 8.3093 10 13.8851 
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Table B.2 Equal Section Search Smoothed Data 
Dataset 
Range of 
X 

Iterations Max value 
X 

F(x) Calculated 
Value 

Position 
Error 

1:21 1 X = 9 19.6554 X = 11 2 

1:21 2 X = 9 19.6554 X = 6 3 

1:21 3 X = 9 19.6554 X = 5 4 

1:21 4 X = 9 19.6554 X = 2 7 

1:21 5 X = 9 19.6554 X = 6 3 

22:43 1 X = 21 12.8973 X = 11 10 

22:42 2 X = 21 12.8973 X = 11 10 

22:42 3 X = 21 12.8973 X = 11 10 

22:42 4 X = 21 12.8973 X = 6 15 

22:42 5 X = 21 12.8973 X = 6 15 

43:63 1 X = 11 15.2176 X = 11 0 

43:63 2 X = 11 15.2176 X = 3 8 

43:63 3 X = 11 15.2176 X = 5 6 

43:63 4 X = 11 15.2176 X = 8 3 

43:63 5 X = 11 15.2176 X = 9 2 

64:84 1 X = 16 17.0594 X = 11 5 

64:84 2 X = 16 17.0594 X = 11 5 

64:84 3 X = 16 17.0594 X = 6 10 

64:84 4 X = 16 17.0594 X = 6 10 

64:84 5 X = 16 17.0594 X = 6 10 

85:105 1 X = 18 22.1944 X = 0 18 

85:105 2 X = 18 22.1944 X = 14 4 

85:105 3 X = 18 22.1944 X = 14 4 

85:105 4 X = 18 22.1944 X = 14 4 

85:105 5 X = 18 22.1944 X = 8 10 
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Table B.2 - An Unknown Algorithm Results 
Dataset 

Range of 
X 

Iterations Max 
Value X 

F(x) Calculated 
Value X 

Calculated 
Value F(x) 

Position 
Error 

Error 
Value 

1:21 1 X = 9 19.6554 X = 11 13.0838 6.5716 2 

1:21 2 X = 9 19.6554 X = 11 13.0838 6.5716 2 

1:21 3 X = 9 19.6554 X = 11 13.0838 6.5716 2 

1:21 4 X = 9 19.6554 X = 11 13.0838 6.5716 2 

1:21 5 X = 9 19.6554 X = 11 13.0838 6.5716 2 

22:42 1 X = 21 12.8973 X = 21 12.8973 0 0 

22:42 2 X = 21 12.8973 X = 21 12.8973 0 0 

22:42 3 X = 21 12.8973 X = 21 12.8973 0 0 

22:42 4 X = 21 12.8973 X = 21 12.8973 0 0 

22:42 5 X = 21 12.8973 X = 21 12.8973 0 0 

43:63 1 X = 11 15.2176 X = 7 10.5549 4.6627 4 

43:63 2 X = 11 15.2176 X = 7 10.5549 4.6627 4 

43:63 3 X = 11 15.2176 X = 6 0 15.2176 5 

43:63 4 X = 11 15.2176 X = 6 0 15.2176 5 

43:63 5 X = 11 15.2176 X = 6 0 15.2176 5 

64:84 1 X = 16 17.0594 X = 21 0 17.0594 5 

64:84 2 X = 16 17.0594 X = 21 0 17.0594 5 

64:84 3 X = 16 17.0594 X = 21 0 17.0594 5 

64:84 4 X = 16 17.0594 X = 21 0 17.0594 5 

64:84 5 X = 16 17.0594 X = 21 0 17.0594 5 

85:105 1 X = 18 22.1944 X = 7 0 22.1944 11 

85:105 2 X = 18 22.1944 X = 7 0 22.1944 11 

85:105 3 X = 18 22.1944 X = 7 0 22.1944 11 

85:105 4 X = 18 22.1944 X = 7 0 22.1944 11 

85:105 5 X = 18 22.1944 X = 7 0 22.1944 11 
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Table B.4 - An Unknown Algorithm Results Smoothed Data 
Dataset 
Range of 
X 

Iterations Max 
Value X 

F(x) Calculated 
Value X 

Position 
Error 

1:21 1 X = 9 19.6554 21 12 

1:21 2 X = 9 19.6554 21 12 

1:21 3 X = 9 19.6554 21 12 

1:21 4 X = 9 19.6554 21 12 

1:21 5 X = 9 19.6554 21 12 

22:42 1 X = 21 12.8973 21 0 

22:42 2 X = 21 12.8973 21 0 

22:42 3 X = 21 12.8973 21 0 

22:42 4 X = 21 12.8973 21 0 

22:42 5 X = 21 12.8973 21 0 

43:63 1 X = 11 15.2176 7 4 

43:63 2 X = 11 15.2176 3 8 

43:63 3 X = 11 15.2176 3 8 

43:63 4 X = 11 15.2176 3 8 

43:63 5 X = 11 15.2176 3 8 

64:84 1 X = 16 17.0594 21 5 

64:84 2 X = 16 17.0594 21 5 

64:84 3 X = 16 17.0594 21 5 

64:84 4 X = 16 17.0594 21 5 

64:84 5 X = 16 17.0594 21 5 

85:105 1 X = 18 22.1944 21 3 

85:105 2 X = 18 22.1944 21 3 

85:105 3 X = 18 22.1944 21 3 

85:105 4 X = 18 22.1944 21 3 

85:105 5 X = 18 22.1944 21 3 
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Table B.5 Golden Section Search Results 
Dataset 
Range of 
X 

Iterations Max 
Value X 

F(x) Calculated 
Value X 

Calculated 
Value F(x) 

Position 
Error 

Error 
Value 

1:21 1 X = 9 19.6554 X = 8 8.5964 1 11.059 

1:21 2 X = 9 19.6554 X = 9 19.6554 0 0 

1:21 3 X = 9 19.6554 X = 9 19.6554 0 0 

1:21 4 X = 9 19.6554 X = 9 19.6554 0 0 

1:21 5 X = 9 19.6554 X = 9 19.6554 0 0 

22:42 1 X = 21 12.8973 X = 8 9.3020 13 3.5953 

22:42 2 X = 21 12.8973 X = 6 7.6901 15 5.2072 

22:42 3 X = 21 12.8973 X = 6 7.6901 15 5.2072 

22:42 4 X = 21 12.8973 X = 6 7.6901 15 5.2072 

22:42 5 X = 21 12.8973 X = 6 7.6901 15 5.2072 

43:63 1 X = 11 15.2176 X = 7 10.5549 4 4.6627 

43:63 2 X = 11 15.2176 X = 9 9.0023 2 6.2153 

43:63 3 X = 11 15.2176 X = 9 9.0023 2 6.2153 

43:63 4 X = 11 15.2176 X = 9 9.0023 2 6.2153 

43:63 5 X = 11 15.2176 X = 9 9.0023 2 6.2153 

64:84 1 X = 16 17.0594 X = 16 17.0594 0 0 

64:84 2 X = 16 17.0594 X = 17 8.2705 1 8.7889 

64:84 3 X = 16 17.0594 X = 17 8.2705 1 8.7889 

64:84 4 X = 16 17.0594 X = 16 17.0594 0 0 

64:84 5 X = 16 17.0594 X = 16 17.0594 0 0 

85:105 1 X = 18 22.1944 X =11 0 7 22.1944 

85:105 2 X = 18 22.1944 X =11 0 7 22.1944 

85:105 3 X = 18 22.1944 X =11 0 7 22.1944 

85:105 4 X = 18 22.1944 X =11 0 7 22.1944 

85:105 5 X = 18 22.1944 X = 11 0 7 22.1944 
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Table B.6 Golden Section Search Smoothed Data 
Dataset 
Range of X 

Iterations Max Value X F(x) Calculated 
Value X 

Position Error 

1:21 1 X = 9 19.6554 9 0 

1:21 2 X = 9 19.6554 9 0 

1:21 3 X = 9 19.6554 9 0 

1:21 4 X = 9 19.6554 9 0 

1:21 5 X = 9 19.6554 9 0 

22:42 1 X = 21 12.8973 10 11 

22:42 2 X = 21 12.8973 10 11 

22:42 3 X = 21 12.8973 10 11 

22:42 4 X = 21 12.8973 10 11 

22:42 5 X = 21 12.8973 10 11 

43:63 1 X = 11 15.2176 8 3 

43:63 2 X = 11 15.2176 9 2 

43:63 3 X = 11 15.2176 8 3 

43:63 4 X = 11 15.2176 8 3 

43:63 5 X = 11 15.2176 9 2 

64:84 1 X = 16 17.0594 13 3 

64:84 2 X = 16 17.0594 17 1 

64:84 3 X = 16 17.0594 17 1 

64:84 4 X = 16 17.0594 17 1 

64:84 5 X = 16 17.0594 17 1 

85:105 1 X = 18 22.1944 12 6 

85:105 2 X = 18 22.1944 12 6 

85:105 3 X = 18 22.1944 12 6 

85:105 4 X = 18 22.1944 12 6 

85:105 5 X = 18 22.1944 12 6 
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Appendix C 
 

Consequential Effects 
 
Consequential effects of this project are limited to any person who may read the report. Listed are 
the possible effects associated with the report. 

1. Giving or providing false information on a topic by not thoroughly researching and using 
reliable information. 

2. Intellectual property breaches by sharing information publicly not intended for. 
3.  Not stating the intention of the report in the unlikely event that it is taken as approved 

research and used in the field. 
4. Failing to seek peer/supervisor review. 
5. Not giving credit to information sources 
6. Ensuring that fraudulent activity is not committed, creating a report. 
7. Ensure that outcomes of dissertation are giving thought to sustainability. 
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Appendix D 
 

Risk Analaysis 
 
Risk analysis system is provided by TransAlta corporation and remains property of TransAlta Energy 
Australia. This is the standard for risk assessment used by engineering and maintenance. 
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Appendix E 
 

Project Risks 
 
Research and Project Risks 

Risk Description Risk Mitigation Pre-
score 

Post-
score 

Preliminary Procedures 
 

Incorrect review of information 
leading to incorrect project 
objectives 

Review careful, confirm with course 
supervisor to ensure correct pursual 

18 8 

Expired software licenses Ensure license is current before start of 
semester 

13 6 

Incorrect Interpolation Algorithms Select algorithms suited to TCD US 14 7 
Data Preparation 

 

Research insufficient, incomplete, or 
erroneous data 

Research multiple quality sources of 
information 

19 9 

Programming mistakes causing false 
results 

Test code multiple times with multiple 
inputs 

32 12 

Run code with incorrect inputs Check inputs and step through program 
to check calculated values at each stage 

33 11 

Compile Data and Analyse Results 
 

Incorrect data cross referencing or 
recording 

Cross reference data and double check 19 9 

Determination of Controller 
 

Incorrect estimate of optimisation Check against known working model 21 9 
Compile Report 

 

Timeline not met Keep track of progress using project 
plan and update constantly 

33 12 

Supervisor or engineering not 
available for review 

Schedule appointments in advance and 
be flexible with times 

23 11 

Miscellaneous  
 

Ergonomic issues Take regular breaks and work at 
ergonomic workstation 

16 9 

Losing focus on work requirements Prioritize work and study balance  16 9 

 

Risk Description Risk Mitigation Pre-
score 

Post-
score 

Preliminary Procedures 
 

Incorrect Interpolation of data resulting in 
incorrect medical imaging 

Thorough QA/QC 
testing 

30 8 

Algorithms do not actually process data faster. Failed project, wasted 
resource 

13 6 

Algorithms do not actually process data faster. Legal issues with falsity 14 7 

Intellectual Property protection of raw data and 
proposed algorithms 

Legal Issues 14 7 

 

 



52 
 

Appendix F 
 

Project Timeline 
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Appendix H 

 

MATLAB code 

 

H.1 Equal Interval Search 

 
%Equal Section Search for Global Search Raw Data 
 
%Initialise 
 
close all; 
clc; 
clear all; 
 
OD = importdata('Data3OrginalDataExtracted.mat'); %Import Global Search Data 
 
fZ = OD(85:105,3);    %Seperate Z values 
 
%Find maximum of data set for algorithm 
 
E = 2; %Interval Size 
 
a = 1;        %Lower boundry value of X 
b = 21;       %Upper boundry value of X 
 
A = fZ(1);         %Lower boundry value of Z 
B = fZ(21);        %Upper boundry value of Z 
 
n = 0;      %Record number of loops for performance evaluation 
X = 0; 
Max = 0; 
 
while n < 5 
     
        P = ceil(abs((a+b)/2 + E/2)+1); 
        N = ceil(abs((a+b)/2 - E/2)+1); 
 
        Mp = fZ(abs(P)); %Upper value of E 
        Mn = fZ(abs(N)); %Lower value of E 
 
        if Mp>Mn 
             
            a = Mn; 
 
            Max = Mp; %Change Upper Boundry to M+ 
            X = P; 
 
        elseif Mn>Mp 
 
                b = Mp; 
 
                Max = Mn; %Change Lower Boundry to M- 
                X = N; 
 
        elseif Mn==Mp 
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                a = N-1; 
                b = P+1; 
        end 
 
     n = n+1; 
      
end  
 
Max  
X 
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H.2 An Unknown Algorithm 

 
%Unknown Search for Global Search Raw Data 
 
%Initialise 
 
close all; 
clc; 
clear all; 
 
OD = importdata('Data3OrginalDataExtracted.mat'); %Import Global Search Data 
 
fZ = OD(85:105,3);    %Seperate Z values 
 
%fZr = OD(1:21,3);  
%N = 4; 
%fZ = repelem(fZr, N); % for Optmisation 
 
%Find maximum of data set for algorithm 
 
G = max(fZ); %G value maximum of data set 
 
Zmin = 1;        %Lower boundry value of X 
Zmax = 21;       %Upper boundry value of X 
 
gZmin = fZ(1);         %Lower boundry value of Z 
gZmax = fZ(21);        %Upper boundry value of Z 
 
dmin = G - gZmin; %G minus lower boundry of Z value 
dmax = G - gZmax; %G minus upper boundry of Z value 
 
n = 0;      %Record number of loops for performance evaluation 
 
while n < 4 
     
        T = Zmax-Zmin; 
        td = dmin*T/(dmin+dmax); 
        Zd = Zmin+td; 
 
        if Zd<1 
 
            Zd = Zd+1; 
        end 
 
        Zh = round(Zd); 
 
        dmaxl = G - (fZ(Zh)); 
        dminu = dmaxl;  
         
        %For the new interval 1 - lower 
 
        AminL  = (dmin*dmaxl)/T; 
 
        %For the new interval 2 - upper 
 
        AminU  = (dminu*dmax)/T; 
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     %end 
 
     if AminL < AminU 
 
        dmax = dmaxl; 
        Zmax = Zh; 
 
     elseif AminL > AminU 
 
        dmin = dminu; 
        Zmin = Zh; 
      
     end 
 
     if dmax==G || dmin == G 
     n = 10; 
     end 
 
     n = n+1; 
      
end  
 
fZ(Zmax)   %Display maximum of function      
Zmax       %Display X value 
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H.3 Golden Section Search 
 

%Golden Section Search for Global Search Raw Data 

%Initialise 

close all; 

clc; 

clear all; 

OD = importdata('Data3OrginalDataExtracted.mat'); %Import Global Search 

Data 

fX = OD(1:21,1);    %Separate X probe values 

fY = OD(1:21,2);    %Separate Y probe values 

fZ = OD(1:21,3);    %Separate Z values 

f = [fX,fZ];        %Place X and Z values in a single matrix 

xL = 1;%fX(1);         %Lower boundary value of X 

xU = 21;%fX(21);        %Upper boundary value of X 

fL = fZ(1);         %Lower boundary value of Z 

fU = fZ(21);        %Upper boundary value of Z 

R = 0.5*(sqrt(5) - 1);  %Golden ratio 

D = round(R*(xU - xL)); %Golden ratio applied to upper and lower boundaries 

x1 = xU - D;            %Upper boundary evaluated with golden ratio 

x2 = xL + D;            %Lower boundary evaluated with golden ratio 

f1 = fZ(x1);    %Value of Z at adjusted boundary 

f2 = fZ(x2);    %Value of Z at adjusted boundary 

tol = 1e-4; %Tolerance value 

err = inf;  %Error, set at infinity to ensure loop executed 

n = 0;      %Record number of loops for performance evaluation 

while err > tol %Loop while the err is greater than tolerance 

   

   if f1 > f2 %When the value of f1 is greater than f2 perform the 

following 

       

       xU = x2;    %Change upper boundary 

       fU = f2;    %Change upper value of Z 

       

       x2 = x1;    %Change lower boundary 

       f2 = f1;    %Change lower value of Z 
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       D = round(R*(xU - xL)); %Update ratio of upper and lower boundaries 

       x1 = xU - D;            %Upper boundary evaluated with golden ratio 

       

       f1 = fZ(x1);            %Value of Z at adjusted boundary 

       

   elseif f1 < f2  %As the case above, in the case of f1 been greater than 

f2 

       

       xL = x1; 

       fL = f1; 

       

       x1 = x2; 

       f1 = f2; 

       

       D = round(R*(xU - xL)); 

       x2 = xL + D; 

       

       f2 = fZ(x2); 

       

   else 

       xL = (x1 + x2)/2; 

       xU = xL; 

       

   end 

   

   n = n+1;                        %update value of n for performance 

tracking 

   err = 2*abs(xU - xL)/(xU + xL); %adjust error value for loop increment 

   

end 

xef = floor((x1+x2)/2); %For rounding the value to the lower value of X 

xec = ceil((x1+x2)/2);  %For rounding the value to the upper value of X 

cf = fZ(xef);%The Z value at the point 

cc = fZ(xec); 

if cf > cc  %Taking the larger value of cf and cc 

   

   C = cf; 
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else 

   

   C = cc; 

   

end 
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