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Abstract: 

In autonomous mechatronic systems, object detection is a vital functionality which allows the system 

to process information about it’s surrounding environment and interpret it in order to act without the 

need for human interference. In order to procure information regarding it’s environment, a system must 

be equipped with sensors appropriate for the conditions in which it is operating, which are also capable 

of perceiving the required types of object for the current application. Despite the numerous existing 

systems tailored to the environment, in applications requiring autonomous navigation in an indoor 

environment, little research has been conducted observing the accuracy of object detection when applied 

to small-scale low-lying obstacles. Of the common forms of sensors employed in object detection 

applications, being ultrasonic, LiDAR and both monocular and stereo vision camera configurations, the 

sensors system most appropriate for the detection of small-scale low-lying obstacles is a stereo vision 

camera. A sample stereo vision system was created and subsequently evaluated in a series of tests in 

order to determine the accuracy of it’s depth estimation when directed at applicable obstacles likely to 

be present within an indoor environment. The sample system was prepared with hardware consisting of 

a pair of identical webcams fixed a set distance apart, and software developed utilising MATLAB, 

governing the calibration of the stereo camera, the image segmentation and the depth estimation of 

identified obstacles. First tested within a controlled environment, the system was determined to have a 

baseline error of less than 4% when detecting more traditional obstacles. When applied to the analysis 

of small-scale low-lying obstacles, factors such as the size of flat obstacles, the angle at which they 

were orientated and their positioning within the camera’s visible area were determined to impact the 

accuracy of the depth estimation.   
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Chapter 1: Introduction 

1.1 - Introduction: 

As mechatronic and other automated system technologies have advanced, there has been an increased 

focus on creating systems with the ability to respond to their environments automatically, without the 

need for human assistance. In mobile robotics and automation applications, obstacle detection 

programming is a vital means of providing environmental data for a system to respond to. Such systems 

vary in complexity and capability, with numerous different means of performing object detection 

available, with unique methods being continuously developed. The majority of these methods tend to 

focus on the detection of obstacles which would obstruct a system’s movement and otherwise require 

the alteration of its travel path.  This project will focus on the analysis of a sample obstacle detection 

system, to determine its accuracy in identifying the relative position of certain types of obstacles. To do 

this, research will be conducted on existing obstacle detection systems in order to determine the most 

appropriate aspects to utilise in the sample system. Once the sample obstacle detection system has been 

prepared, it will be tested in a series of scenarios and evaluated on its performance. This will be 

conducted in three phases, first the sample system will be tested through the use of a more distinct 

obstacle in a prepared test environment, then a series of sample obstacles will be analysed within the 

same test environment, and then in a series of alternate scenarios indicative of indoor environments, in 

which systems utilising object detection may be employed. The results obtained through this testing 

will then be analysed in order to determine the baseline behaviour of the sample system, it’s behaviour 

under ideal conditions and finally it’s behaviour in practical scenarios. 

 

1.2 - Problem Identification and Aim: 

Despite the numerous examples of obstacle detection code testing, these has been little conducted that 

focusses on obstacles which do not directly obstruct a robot’s path, obstacles which the system could 

navigate through but may cause complications. In an indoor environment, these obstacles could include 

sensitive documents and equipment which could be damaged if navigated through and other small 

obstructions which could be navigated over at the cost of time, or risk of damage to the system. In order 

to determine the ability for simplistic obstacle detection systems to detect such obstacles, this project 

will analyse the effectiveness of such an obstacle detection program in detecting low-lying, small-scale 

obstacles in an indoor environment. Despite there being exceptions in a practical setting, for the 

purposes of this project ‘small-scale’ refers to objects with a height less than 25% of a system’s wheel 

diameter which the system has enough clearance to navigate over if required. 
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1.3 - Objectives: 

In order to conduct such research, key objectives were identified which, when completed, should 

provide data detailing the effectiveness of a sample obstacle detection system in identifying specific 

types of test obstacles.  

1. Research examples of obstacle detection programming and hardware. 

2. Determine which programming and hardware elements can be utilised for the project. 

3. Develop obstacle detection programming using the MATLAB environment. 

4. Test the program’s capabilities in controlled scenarios. 

5. Perform additional tests in other indoor environments, outside the testing scenarios. 

6. Evaluate the program’s ability to analyse different types of obstacles. 

 

 

1.4 – Research Questions: 

During the completion of this project, several key research questions will be answered as progress is 

made on the project objectives. At the conclusion of this project, the research and experimentation 

conducted should provide most if not all of these questions with a suitable answer. 

1. What are the capabilities and limitations of object detection systems currently in use? 

2. What hardware and software components would be best suited for use in an object detection 

system capable of detecting small-scale low-lying obstacles in an indoor environment? 

3. What is the baseline accuracy of the chosen object detection system? 

4. How does the accuracy of the system change when analysing sample small-scale low-lying 

obstacles? 

5. How accurate is the system when utilised outside a controlled test environment? 

  



Nicholas Jennings   

Page 12 

 1.5 – Background: 

Amongst the various example object detection systems which will be discussed during the literature 

review, similar types of sensors tend to be utilised in order to collect data for analysis. This section will 

detail the broad categories under which the majority of object detection sensors can be categorised and 

provide a brief outline as to how they operate, and the general benefits and detriments of their use. 

 

Ultrasonic sensors are one of the most commonly utilised sensors in object detection applications, being 

primarily utilised as proximity sensors. Typical ultrasonic sensors are capable of determining the 

distance and location of objects within their effective range. They do so by bouncing ultrasonic waves 

off objects within their range and measuring the time it takes the waves to return, allowing for the 

calculation of the object’s distance. Frequently, ultrasonic sensors are utilised in the generation of 3D 

maps of environments, from which the locations of objects within it can be determined. As such, a large 

portion of ultrasonic based obstacle avoidance systems will extract obstacle location data from full or 

partial 3D maps of their environment. One of the key advantages of ultrasonic sensors over Cameras is 

the fact that their means of object detection is unaffected by visual obstructions, such as, airborne 

particles which can affect the results obtained by other sensors.  

 

Light Detection and Ranging (LIDAR) sensors are a type of sensor primarily utilised in the surveying 

of large environments, and as such some object avoidance methods utilising them have been developed. 

LIDAR sensors detect objects by reflecting a laser off them and come in either 2D or 3D variants, which 

vary in their perception capabilities. 2D LIDARs measure along a single plane, either by rotating a 

single point laser or using a continuous laser covering the effective axis, resulting in two-dimensional 

data on the environment. 3D LIDARs build upon this basic system, translating the two-dimensional 

laser system along a perpendicular axis, thereby generating three-dimensional data. Like with ultrasonic 

sensors, a large portion of LIDAR based object detection systems utilise 3D maps in some capacity. 

  



Nicholas Jennings   

Page 13 

Camera sensors are the most widely known form of sensor which sees use in object detection 

applications, being a common fixture in everyday life. Although not specialised for the measurement 

of distance as with the previously discussed sensors, means have been devised in order to interpret 

image data to obtain such information. This however is not the primary benefit for the use of cameras 

in object detection. Cameras are primarily used in order to detect the presence of objects through the 

detection of shifts in light levels or colour within an image. As such cameras are often used in tandem 

with other sensors and typically require more intensive processing to retrieve useful data. When 

incorporated into systems, camera sensors are typically arranged into monocular or stereo vision 

configurations.  

 

Monocular vision systems refer to obstacle detection systems which primarily make use of a single 

camera for sensory input. In general, the obstacle detection performed by monocular systems is 

limited to the detection of an objects presence, with other supplementary sensors determining it’s 

depth if necessary. Even though this functionality is the norm, various methods have been explored in 

the attempts to derive useable depth information from monocular systems. Despite these inherent 

limitations with their use, the environmental data available to systems utilising a monocular camera 

can be instrumental to a system’s functionality.  

 

Stereo vision-based obstacle detection systems consist of a pair of cameras fixed a set distance apart, 

generating a pair of images used in analysis. The vast majority of stereo vision systems tend to operate 

under the same general principles. One of the fundamental steps of this process is the rectification of 

the input images. This process projects the input images from each camera in the stereo system onto a 

common image plane, simplifying the process of locating matched points between the images in the 

pair. Using the rectified images produced by this process, a stereo vision system can determine the depth 

of any of the pixels shared between the input images. This is accomplished using the stereo vision 

principle as outlined by Figure 1.1. 
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These calculations are typically either performed on individual pixels to determine their depth, or on 

entire images in order to create 3D depth maps of the visible region. The range at which these 

calculations can be performed is dependent on the positions and fields of view of the cameras which 

constitute the stereo vision system. As shown by Figure 1.1, the area in which these calculations can be 

performed are points where each camera’s fields of vision overlap, meaning that the smaller the distance 

between the two camera lenses, the closer the system can perceive obstacles. 

 

In cases where resources do not allow for the depth analysis of entire environments simultaneously, 

systems employ methods of determining which point in an area to focus the relative depth calculations 

on. In systems which utilise a camera input, this typically involves the analysis of the image(s) to 

determine points of interest. This can be done in a variety of methods ranging from simple segmentation 

methods to the training of deep learning neural networks to perform image segmentation specialised for 

the task at hand.  

Figure 1.1: Stereo Vision Principles (Sharma, Sahoo, Manivannan 2018) 
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Chapter 2: Literature Review 

This chapter details the literature review process undertaken over the course of this project.  This 

includes the identification of existing concepts and systems related to obstacle detection, or those which 

present the potential to be adapted for such an application. This research will focus on the most common 

forms of sensor utilised in obstacle detection applications, being ultrasonic sensors, LIDAR and 

cameras. From the collected sources, the benefits and drawbacks of each sensor will be discussed, and 

the most optimal configuration for this project will be found. Following this, the potential outcomes of 

the project will be discussed along with the consequential effects their occurrence may entail. 

2.1 - Ultrasonic Sensor: 

  2.1.1 - Ultrasonic Example 1: Radar Based Design 

Radar systems can determine the range, angle and even speed of objects via the 

transmission and subsequent detection of electromagnetic signals bouncing off 

objects. Due to the similarities in their operation, some ultrasonic object detection 

systems have been used in a manner which mimics radars (Kulkarni, Potdar, Hegde, 

Baligar 2019). This typically involves the use of the ultrasonic sensor attached to a 

servo motor which will oscillate it along the desired range. By recording the angle at 

which the ultrasonic sensor is orientated at each distance measurement, the 

approximate location of objects relative to the sensor can be determined. One 

particular example created a GUI to display this data in a manner which resembles a 

radar’s interface which also provided more exact details on an object’s range and angle 

via SMS. Testing of a simple HC-SR04 ultrasonic sensor rotating across 180 degrees 

was conducted using this form of presentation. It proved capable of detecting objects 

between 2cm and 400cm away from the sensor in a 150-degree area. (Kulkarni, Potdar, 

Hegde, Baligar 2019) 

  

Figure 2.1: Radar Based Ultrasonic Object Detection System 

(Kulkarni, Potdar, Hegde, Baligar 2019) 



Nicholas Jennings   

Page 16 

2.1.2 – Ultrasonic Example 2: 3D Mapping and Position Estimation 

Ultrasonic based 3D environmental mapping techniques are commonly utilised in obstacle avoidance 

methods as a means of organising environmental data. Such methods typically employ either multiple 

ultrasonic sensors at different orientations, or a primary sensor capable of reorientation. These systems 

utilise similar concepts to the previous ultrasonic radar example, recording both the depth data and the 

sensor’s orientation to determine the distance and relative angle of an obstacle with respect to the main 

system. Some methods have proved capable of utilising such data in the position estimation of a system, 

a concept which could be adapted to suit obstacle avoidance applications (Nakajima, Premachandra, 

Kato 2017).  This position estimation was accomplished by comparing a simplistic ultrasonic map of a 

system’s immediate surroundings to a world map created from previous maps. When tested using a 

simple quad rotor drone, the main system was further provided with additional elevation data obtained 

from an additional ultrasonic sensor, allowing for the generation of simplistic 3D maps. (Nakajima, 

Premachandra, Kato 2017) 

 

 

2.2 - LiDAR Sensor: 

2.2.1 – LiDAR Example 1: Adjusted Orientation 

Two-dimensional LIDARs see an abundance of use as a sensor in 

obstacle detection systems, due to their viability in a vast majority of 

practical applications. As previously stated, the primary constraint of 

2D LIDARs is the limited area in which they can perceive obstacles, 

being a two-dimensional plane. In order to help compensate for this, 

some obstacle detection methods have adjusted the angle at which the 

sensor is orientated in order to allow it to perceive obstacles below its 

elevation (Peng, Qu, Zhong, Xie, Luo, Gu 2015). A proposed real-

time detection method was based around a sensor in 

such an orientation, with the intention of 

implementing it in the control of a small-scale mobile 

robot. The detection algorithms for this method are capable of classifying the point data obtained from 

the LIDAR, to determine the general shape of object. These determined shapes are then utilised in the 

obstacle avoidance algorithms, generating a simplistic map of the robot’s immediate environment. 

Tested via MATLAB simulation, the obstacle avoidance algorithm proved capable of producing a travel 

path to navigate the robot around the obstacle shapes in order to reach its destination. (Peng, Qu, Zhong, 

Xie, Luo, Gu 2015) 

Figure 2.2: LIDAR Example 1 Obstacle classification and path 

planning. (Peng, Qu, Zhong, Xie, Luo, Gu 2015) 
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2.2.2 – LIDAR Example 2:  LOAM method  

One of the most common uses for LIDAR technology is in the generation of 3D Maps and, although 

not explicitly intended for obstacle detection purposes, the concepts present the capability to be adapted 

for such applications. One LIDAR based 3D mapping method used in a variety of different applications 

is the Lidar Odometry and Mapping (LOAM) real-time method (Zhang & Singh 2014). As the name 

implies, the base version of this method utilises a 2-axis LIDAR capable of moving in 6 degrees of 

freedom, and its software concurrently operates both odometry and mapping algorithms in order to 

generate 3D point cloud maps of a given environment. Typically, when the LOAM method is applied 

to an application, a new variant is created in order to better suit the task at hand, one such variant was 

designed for use in mobile robot trajectory planning (Pan, Li, Liu, Xu, Ji, Kang 2020). The improved 

method aimed to decrease the possibility of point cloud matching errors which can occur as a result of 

the robot’s movement, a factor which was not considered in the original LOAM’s design. This altered 

version of the LOAM method was tested as part of a trajectory planning system controlling a crawler 

mobile robot and demonstrated its applicability in such an application. (Pan, Li, Liu, Xu, Ji, Kang 2020) 

  

Figure 2.3: LOAM method 3D Maps. (Zhang & Singh 2014) 
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2.3 - Camera Sensor: 

In order to utilise solely camera sensors in the determination of an objects depth, mathematical 

principles regarding the position and size of features in image(s) must be applied. These calculations 

are typically either performed on the entirety of an image input over the course of the analysis or are 

performed on determined points of interest identified within them. Which of these methods a system 

will employ depends on the application and processing power available, with full image analysis 

typically being more taxing. This section will first discuss some generic image segmentation techniques 

that can be used to highlight points of interest within images for analysis purposes. Following this, some 

examples of monocular and stereo vision systems will be outlined, some of which include their own 

dedicated segmentation systems. 

 

 

2.3.1 – Image Processing  

 2.3.1.1 - Traditional Segmentation: 

Image segmentation is a broad term with covers a large variety of methods which segment an image for 

analysis purposes, the majority of which generate binary image masks which highlight the desired 

portions of an image. One of the simplest forms of this is the thresholding process which creates binary 

images from either grayscale or colour images, by specifying a threshold value which denotes the 

transition point between 0 and 1 on a binary image. Another prominent form of image segmentation is 

the semiautomatic technique known as graph cut. This method requires the identification of a region of 

interest (ROI) and background of a given image, from which it generates a binary mask. (MathWorks 

2021) 

 

 
Figure 2.4: Basic forms of Image Segmentation. (MathWorks 2021) 
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The background subtraction and image differencing obstacle detection techniques are commonly 

utilised in monocular systems as they allow for the isolation of foreground elements and the 

determination of changes between subsequent images respectively (Garcia-Garcia, Bouwmans, Silva 

2020). General background segmentation methods can be divided into three steps. This process begins 

with the computation of training image of the background in question, from which a model is created 

to represent it. Once this model has been established, the active portions of the programming take place. 

These consist of the classification of pixels within an image as either foreground or background and the 

subsequent update of the model using the new background data. In a practical application, the training 

data used to create the background model would be provided by a static camera of a designated area. 

The primary downfall of such systems is their reliance on a stationary camera in order to operate 

effectively, with a constantly changing image background being difficult for a system to comprehend. 

(Kim & Do 2012) (Garcia-Garcia, Bouwmans, Silva 2020) 

  

 

2.3.1.2 - Neural Networks and YOLO Method: 

More powerful obstacle detection systems typically make use of neural networks for the identification 

of obstacles within images. Such methods are not only highly accurate but can also possess the 

capability to classify obstacles by type, which can be useful data for more complex systems. The 

fundamental concept which allows humans to recognise objects within images is the human mind’s 

ability to recognise patterns. Traditional computers are incapable of reliably recognising patterns within 

data and images, this issue is something which deep learning neural networks (DLNN) are designed to 

rectify. As can be inferred from the name, the algorithms which comprise DLNN systems are modelled 

off of the functionality of the human brain. The specifications and details of these systems vary between 

designs, but the vast majority of these systems can be trained to process specific types of data or image 

input to produce a desired result. Typically, in image processing applications, this training requires the 

preparation of training data which takes the form of a series of example images and accompanying label 

data. Generally, the more specialised and comprehensive the training data provided to the system is, the 

more accurate the system’s image analysis will be. The form of analysis performed on images using a 

DLNN are classified as either Image Classification, Semantic Segmentation or Instance Segmentation. 

(Wang, Chen, Hu, Li 2020) (Ye, Liu, Wang 2017) 
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Image Classification is the most straightforward of the aforementioned forms of image analysis possible 

using a DLNN. Image classifications systems will provide an applicable label to an input image, 

classifying it accordance to the training data it was provided. These types of DLNN systems see use in 

applications which do not require intricate analysis of an image, merely a surface level observation such 

as detecting an object’s presence but not it’s exact position. Common examples of systems which utilise 

this process include the identification of single handwritten characters, the detection of tumours within 

x-rays and some forms of facial recognition systems. (Wang, Chen, Hu, Li 2020) 

 

Semantic segmentation takes this process one step further, not only identifying the presence of a 

specified feature within an image, but also the exact pixels within the image the feature occupies. Such 

a system will label the pixels within a provided image according to the information the network was 

trained with in the same manner as other DLNN systems. The data required to train a DLNN to perform 

semantic segmentation is more complex than that required for an image classification system, requiring 

labels for individual pixels as opposed to entire images. As such, both the creation of the training data 

and the system’s image processing are more complex than that required to create an image classification 

system. Semantic segmentation sees applications in the tracking of motion in a series of images as well 

as vision-based object detection applications. (Wang, Chen, Hu, Li 2020) 

 

One of the primary downsides of semantic segmentation DLNN systems are their inability to distinguish 

between multiple instances of the same pixel class. Instance segmentation DLNN networks expand 

upon the capabilities of semantic segmentation networks by including the ability to distinguish between 

such instances, categorising each feature separately. Such functionality allows systems to expand upon 

the usefulness of the previously mentioned methods allowing for more detailed analysis of images. In 

particular this added capability is utilised to allow a system to count the number of like features within 

an image, as well as record position and location data for multiple objects of the same type 

simultaneously. (Ye, Liu, Wang 2017) 
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One example of a neural network obstacle detection system is the You Only Look Once (YOLO): 

Unified, Real-Time Object Detection system (Redmon, Divvala, Girshick, Farhadi 2016). Like other 

neural network-based systems, the YOLO detection system can be tailored to the task at hand, trained 

to detect and classify the obstacles needed for a given application. The process the code undertakes in 

order perform this detection first requires the resizing of the provided image input to a 448 x 448 

resolution. Following this, the image is divided into a grid, each cell of which is individually analysed 

to generate bounding boxes and assigned a confidence score. Each bounding box encapsulates all of the 

pixels that could constitute an object, with multiple boxes capable of existing in each cell. The 

confidence scores on the other hand denote the possibility that an object is visible within the respective 

cell, classifying the type of object if applicable. These two processes run concurrently and are both 

taken into consideration in determining the final detection, as can be seen in Figure 2.5. (Redmon, 

Divvala, Girshick, Farhadi 2016) 

 

  

Figure 2.5: YOLO Process (Redmon, Divvala, Girshick, Farhadi 2016) 
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The initial iteration of the YOLO system possessed capabilities which placed it in competition with 

other obstacle detection systems at the time of its release. The YOLO’s analysis systems process images 

at a rate of up to 45 frames per second on the minimum specifications, with more powerful variants 

being capable of analysing at upwards of 150 frames per second. One function which sets the YOLO 

system apart from its contemporaries is the method employed in making predictions. Unlike other 

obstacle detection systems, the YOLO system does not use a search window when performing analysis, 

instead performing the analysis globally. Doing so allows the system to somewhat understand the 

context of objects, improving the detection accuracy of the system as a whole. (Redmon, Divvala, 

Girshick, Farhadi 2016) 

 

The YOLO system’s versatility has allowed it to be used in a number of different applications including 

autonomous vehicles (Sarda, Dixit, Bhan 2021), facial recognition (Ghenescu, Mihaescu, Carata, 

Ghenescu, Barnoviciu, Chindea 2018) and other miscellaneous detection problems. This utility is 

further demonstrated by the fact that, despite the YOLO system typically being used with a monocular 

camera setup, there have been instances where it has been utilised in conjunction with a stereo vision 

system. One such instance accomplished this by simply using a depth camera and calculating an average 

depth for all of the pixels present within the bounding box, producing an approximate depth for the 

obstacle in question (Inoue, Kaizu, Igarashi, Imou 2019). This data was then utilised by a path planning 

algorithm, namely the Teb local planner, to generate an obstacle free path for the system to follow. 

(Inoue, Kaizu, Igarashi, Imou 2019) 
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2.3.2 - Monocular Vision: 

2.3.2.1 – Monocular Example 1: Dynamic Humanoid Obstacle 

Research has been conducted analysing the effectiveness of monocular obstacle avoidance 

programming in the control a mobile robot. Focussed on the detection of dynamic humanoid obstacles 

in an indoor environment, this research makes use of the obstacle detection technique known as Block-

based motion estimation (Kim & Do 2012). As the name implies, this method divides an image into a 

series of ‘blocks’, the motion vector of which is determined through the ‘Sum of Absolute Differences’ 

criterion comparing two subsequent image frames. The blocks in each image which have the highest 

degree of similarity identified by the search window, through their change in position within the image 

frame, demonstrate the motion vector of their block and the features within it. In order to utilise this 

method in the detection of dynamic (moving) obstacles within the environment, information regarding 

the positions and dimensions of the environments static obstacles can be provided in order to focus the 

code’s detection capabilities on the identification of moving obstacles. (Kim & Do 2012)  

Figure 2.6: Block Based Motion Estimation (Kim & Do 2012) 



Nicholas Jennings   

Page 24 

Testing of this form of Block-based motion estimation when used on a video feed provided from a 

640x480 30 fps mobile camera provided mixed results. The testing in question initially halved the image 

size prior to processing and then proceeded to divide the image in to blocks of 21 square pixels and 

begin searching using a window 32x21 pixels in size. The detection failures in the system were 

determined to be caused by a series of factors that can vary in different situations. The most prominent 

of these factors was the distance between the moving obstacle and the robot. Due to the fact that 

obstacles further away from the camera appear to be moving at a slower speed, the algorithm 

experienced difficulties identifying said obstacles until they became closer to the camera. Other factors 

which caused detection errors include an obstacle’s colour which may result in the algorithm’s inability 

to detect it at all, and the identification of reflected light which appeared to be in motion as a result of 

the camera’s movement. (Kim & Do 2012) 
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2.3.2.2 – Monocular Example 2: UAV Trajectory Planning 

Monocular based obstacle avoidance has also seen use outside of land-bound mobile robotics, one such 

area is in unmanned aerial vehicle applications (Zhang, Cao, Ding, Zhuang, Tao 2020). Traditionally, 

a UAV’s ability to detect and avoid obstacles is referred to as a Sense and Avoid (SAA) system, which 

utilise onboard sensors to determine an obstacle’s relative position and the potential risks it imposes. 

Despite not being the primary sensor used in UAV applications, research has been conducted into the 

viability of monocular systems as an alternative sensory system. One particular study proposed the 

avoidance of obstacles through the planning of a trajectory through an environment as opposed to 

traditional, reactionary obstacle avoidance methods. The method this research proposed combined two 

forms of obstacle avoidance programming, which performed relative range based and relative angle-

based calculations respectively. Simulations of such methods demonstrated the viability of such a 

system which could not only determine a trajectory through a series of obstacles, but also optimise the 

time and energy required for the system to follow through. (Zhang, Cao, Ding, Zhuang, Tao 2020) 

 

 

  

Figure 2.7: Trajectory Optimisation (Zhang, Cao, Ding, Zhuang, Tao 2020) 
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This system utilised the Perspective-n-Point (PnP) problem which is a core aspect of geometry-based 

methods of monocular obstacle detection. These methods estimate the relative orientation of a camera 

in terms of its rotation and translation relative to the 3D feature points of an obstacle after it has been 

projected onto a 2D image plane. The solving of this PnP problem is typically approached in an either 

iterative or non-iterative manner, with more iterative solutions requiring more computational power to 

run efficiently, and as a result being harder to implement. (Zhang, Cao, Ding, Zhuang, Tao 2020) 

 

 

2.3.2.3 – Monocular Example 3: LIDAR Hybrid – Overhang Obstacles 

In some applications, a monocular camera system is supplemented with a traditional distance sensor. 

This is typically done in order to reduce the computational load on a system which typically 

accompanies purely monocular obstacle detection and help to circumvent the inherent detection 

weaknesses of each sensor (Young,& Simic 2015). Generally, monocular camera systems do not 

provide as reliable distance information as other better suited sensors, 

instead providing more reliable information on the environment in a 

2D manner. In contrast, light detection and ranging sensors (LIDAR) 

are capable of providing reliable distance information but are limited 

by their orientation in the points at which they can conduct this 

measurement. Research which has sought to combine these two 

technologies in a way which compensates for each respective 

sensor’s weakness have been conducted, with particular focus given 

to autonomous driving applications. (Young,& Simic 2015) 

Such research has specifically cited the inability for LIDARs to 

identify overhangs outside their field of view, which may impede the 

systems movement, as one of the key issues which the use of a 

camera could remedy. As such, the camera portion of the system was 

focussed entirely on the detection of overhang obstacles, with the LIDAR detecting traditional, positive 

obstacles. The obstacle detection system the research designed to perform such identification uses the 

LIDAR as the primary sensory system. Acting under the assumption that all overhangs the system 

would encounter would be supported by traditional obstacles within the LIDAR’s radius, the overhang 

detection programming is only activated once the LIDAR has detected such obstacles. When this 

occurs, the monocular camera runs detection algorithms to determine whether an overhang is present, 

and if one is discovered, the system will adapt its pathing accordingly. (Young,& Simic 2015) 

       

(Young & Simic 2015) 
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Experimentation into the effectiveness of such a system was conducted using a golf cart as a base in a 

configuration shown in Figure 2.8, making use of a relatively low-resolution camera and a Raspberry 

Pi board as a controller. This configuration was tested on its ability to identify a boom gate, a robotic 

arm and block tape as examples of the types of overhang obstacles the system was designed for. The 

final iteration of the identification code resulted in obstacle detection at an average of approximately 

half a second across the 3 types of obstacles tested. Overall, the experimentation demonstrated the 

navigational capabilities of the system, with the system capable of detecting the relatively small 

overhanging obstacles reliably and adjusting its course accordingly. The only downfall identified of the 

proposed system was the speed at which it conducted its detection, with the current iteration not 

processing fast enough for autonomous vehicle applications. (Young,& Simic 2015) 
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2.3.3 - Stereo Vision: 

2.3.3.1 – Stereo Example 1: Dynamic Feature Tracking:  

Some research regarding stereo vision have approached object detection in a way which creates 3D 

depth maps of specific features within the input images. One particular example of this form of object 

detection focused on dynamic obstacles passing by a stationary stereo camera system (Sharma, Sahoo, 

Manivannan 2018). Making use of a simplistic camera setup consisting of a pair of USB webcams, the 

research focussed on the utilisation of the Kanade-Lucas-Tomasi (KLT) feature tracker in conjunction 

with the stereo camera system as a means of performing dynamic obstacle detection. The system’s 

stereo vision depth calculations were performed by making use of the equations outlined in Figure 1.1, 

with MATLAB being used to determine the relevant camera intrinsic values. The KLT feature tracker 

is capable of following the movement of specified feature points between subsequent images, this even 

includes the reacquisition of feature points lost due to factors such as illumination. This however is 

reliant on the assumption that the dynamic objects have a consistent shape and that the environment’s 

texture remains unchanged. The interaction of the KLT algorithms with the stereo vision is relatively 

simplistic. As the KLT tracked the selected feature points as they progressed through the video’s frames, 

the depth of each of those points was calculated, creating a depth map for each frame. (Sharma, Sahoo, 

Manivannan 2018)  

 

  

Figure 2.9: Dynamic Feature Tracking and Depth Map (Sharma, Sahoo, Manivannan 2018) 
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The testing of this system both demonstrated some of it’s capabilities and highlighted some downfalls. 

Foremost, the system proved capable of determining an object’s path, plotting relatively accurate 

approximations of the path’s the test obstacles followed. The primary downfall identified was that the 

speed of the dynamic obstacle affected the system’s ability to maintain its feature points, with faster 

speeds increasing the amount lost during analysis. As previously stated regarding stereo vision, the 

system’s stereo camera setup, being two cameras 128.28mm apart, with fields of vision up to 60° limited 

its ability to perceive objects within a metre of the system. (Sharma, Sahoo, Manivannan 2018)  

 

 

2.3.3.2 – Stereo Vision Example 2: Mobile Robot Platforms – Hybrid  

Despite the inherent advantages stereo-vision systems possess, as with monocular sensors, some 

methods choose to augment their stereo camera systems with additional functionality, expanding upon 

the capabilities of the system. One particular example of such a hybrid system focussed on providing a 

stereo vision system with the capability to detect objects while the camera angled downwards (SOLAK 

& BOLAT 2018). The proposed system made use of the standard stereo triangulation concepts for the 

applicable regions, forming a standard obstacle avoidance system. The detection of objects within the 

images is completed using an adaptable thresholding process which determines the properties of visible 

objects prior to the thresholding process. This is supplemented by the processing of the image to remove 

noise and blurring as well as the conversion of the input image from a RGB to Hue-Saturation-Value 

(HSV) image which displays changes in light levels more clearly. Once the thresholding process has 

created a binary image, additional functions are utilised in order to improve its clarity by filling of gaps 

within the identified regions and making each individual object more distinct. This corrected version of 

the input image’s binary mask is then utilised in the determination of object’s dimensions and central 

coordinates for use in the depth estimation process. Supplementary to the standard stereo vision 

triangulation, the system performs Look-up Table and Curve-fitting operations. The Look-up Table 

consists of pre-programmed data detailing the relationship between disparities and depth values taken 

from examples, with multiple distance measurements for each disparity value used to create an average 

value for the system to use. The Curve-Fitting process then makes use of the table’s data in the 

construction of a function which describes the relationship between disparity and depth, which serves 

as an additional means of determining a point’s depth. (SOLAK & BOLAT 2018) 
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Testing of the system was conducted, comparing the distance values the system returned with both a 

traditional ruler and a laser distance meter. The testing conditions included three main studies, one in 

which the cameras were level, another in which the cameras were angled downwards and a third which 

the horizontal and vertical distances of the obstacles were varied. The system demonstrated a high 

degree of accuracy with all the test scenarios resulting in average accuracies above 95%. Notably, the 

second scenario, which was engineered as to employ the Curve-fitting depth estimation, only 

demonstrated an approximately 0.5% reduction in average accuracy, demonstrating that, while less 

accurate than the stereo vision, the Curve-fitting retained a high degree of accuracy. (SOLAK & 

BOLAT 2018)  

Figure 2.10: Stereo Vision Example 2 Image Segmentation Process (SOLAK & BOLAT 2018) 
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2.4 - Evaluation: 

In order to complete the second objective of this project, the examples outlined in the literature review 

will be evaluated in order to determine the general capabilities of their sensory systems and control 

algorithms which constitute their obstacle detection systems. This will involve the identification of the 

strengths and downfalls of using each system, taking into account the methods some examples have 

used in order to circumvent the inherent shortcomings of their primary sensory system. 

 

The research conducted into obstacle detection systems indicates that the generation of 3D maps is 

possible with each of the sensors the literature review discussed. However, for obstacle detection and 

avoidance purposes, this appears largely unnecessary. Several sources have indicated that 

comprehensive environmental data such as 3D reconstruction is not vital in obstacle avoidance, with 

rough information regarding the position of obstacles in the local area being sufficient for mobile robot 

applications. Some sources directly state this (Monocular Example 1) whilst others simply demonstrate 

the possibility of performing obstacle detection without such processing. This can be attributed to the 

resource requirements associated with the generation of 3D maps which can be impractical when 

considering the controllers used in the operation of mobile robots. 

 

The advantages of ultrasonic based obstacle detection systems primarily lie in the functionality of the 

sensor itself. The fact that an ultrasonic sensor is unaffected by visual obstructions can prove 

advantageous in applications in which this is a common occurrence, such as outdoors, but in 

environments where this is not an issue, other sensors can provide more comprehensive and accurate 

environmental data. The primary reason ultrasonic sensors are used as often as they are in obstacle 

detection systems is their cost effectiveness, which results in them being more viable for the design of 

low-cost obstacle detection systems. 

 

LIDAR sensors outclass ultrasonic sensors in terms of both effective range and accuracy but are much 

more expensive as a result. Despite this cost being somewhat mitigated if a 2D LIDAR is used, to the 

detriment of reducing the effective area the sensor can perceive. Despite methods existing to circumvent 

the reduced effective area of the 2D iteration, the proposed method outlined in LIDAR Example 1 would 

only be effective when used in a system in motion. 
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Both the monocular and stereo vision camera systems are capable of providing more than just depth 

data, which can be helpful in the obstacle detection process. This extra data can allow for more accurate 

classification of obstacles, considering more than just their geometric shape. Monocular systems appear 

to be largely inferior to stereo vision systems, requiring additional sensors or extensive interpretation 

to generate any depth data. 

 

Therefore, taking these factors into account, the most optimal sensory system to base the project’s 

sample system around would be stereo vision. Based upon the research conducted, a stereo vision 

system’s detection area is best suited for detecting obstacles at a lower elevation than the sensor. For 

this project, the ability to process colour data is vital in the detection of paper documentation and other 

flat objects in the assessed area, a process which is only possible when utilising either of the camera-

based systems. Research however demonstrated that stereo vision systems involve less complex 

interpretation, mitigating the cost of a second camera. It was also determined that, as opposed to creating 

3D depth maps of entire images, image segmentation techniques should be employed in order to isolate 

the obstacles within an image for depth analysis. 

 

Following the determination that a stereo vision system will form the base of this project’s object 

detection system, the means by which the input images will be processed in order for depth analysis to 

be conducted must be considered. Due to the nature of a stereo vision system, image segmentation 

would need to be employed in the sample system, and as such an image classification DLNN would not 

be applicable for this project. Amongst the segmentation methods discussed, the thresholding method 

would be the easiest to create, merely requiring the establishment of a series of colour thresholds, to 

which an image’s pixels will be compared to. Use of this method comes with two primary issues, the 

first of which being that the thresholding method is susceptible to noise, and as such additional 

processing may be needed beyond the initial segmentation in order to create useable results. The 

secondary issue comes from the limitations of thresholding as a segmentation method, restricting the 

types of obstacles that can be identified to those of a specific colour. The semantic and instance 

segmentation methods possible using a DLNN do not have these issues, with their customisable nature 

affording them a high degree of versatility. This is counterbalanced by the fact that they are significantly 

more difficult to create and train, requiring extensive coding to create a relatively simple system, and 

in some cases specialised hardware.  
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Considering the benefits and limitations of the discussed image segmentation methods, the following 

conclusions were reached regarding the project’s sample system. Despite the inherent advantages of 

DLNN based image segmentation, the time it would take to prepare such a system is impractical with 

the project’s time constraints. As such the initial system will utilise a thresholding method to segment 

the input images. Due to the fact that the project is largely focussed on determining the system’s ability 

to detect different object shapes as opposed to colours, the testing objects can be prepared in a manner 

compensate for this limitation. In order to correct the noise a thresholding system is likely to perceive, 

additional functions will need to be utilised to refine the data for the stereo vision system to process. 

Should this system prove to be unreliable in the preliminary testing phase of the research methodology, 

a DLNN image segmentation method will be explored, should time permit. Additionally, in the event 

that the thresholding system proves capable of producing acceptable results, if time constraints allow, 

a DLNN could be prepared and used as a point of comparison for analysis.  

 

It was also determined that the feature tracking methodology discussed in Stereo Example 1 would not 

be necessary to implement as part of this project’s system. This is due to the fact that the example in 

question was designed to identify moving objects with a stationary camera, factors which fall outside 

the objectives of this project as the situations they are drawn from typically involve a moving camera 

and stationary objects. Even if such functionality was relevant to the project’s potential applications the 

difficulty and time cost associated with implementation of such a system would be impractical with the 

project’s time constraints. 
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2.5 - Potential Outcomes and Consequential Effects: 

Due to the fact that this project’s scope is limited to the evaluation of the effectiveness of an obstacle 

detection system, the consequences of its outcomes are not severe. In a broad scope, this project’s 

methodology would simply provide details regarding the accuracy of the sample obstacle detection 

system as it analysed different forms of low lying, indoor obstacles. Should the system prove capable 

of reliably determining the positions of such obstacles, it would provide a precedent for stereo vision to 

be utilised in indoor environments where such obstacles appear. With this confirmation, the sample 

system could then be further adapted in order to increase its viability in practical applications. This 

would likely involve the enhancement of the system to operate in real time and potentially even act as 

portion of an obstacle avoidance code capable of controlling a mobile robot. Otherwise, if the system 

is determined to be incapable of producing accurate results, other methods of detecting the analysed 

types of obstacles would need to be determined. This would prompt further research into such detection 

to either improve upon the sample system, attempting to correct its flaws, or pursue another method 

entirely. 
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Chapter 3: Methodology 

3.1 - Methodology Preparation: 

In order to conduct the research methodology to complete the aim of this project, a sample obstacle 

detection system was created. Based upon the factors identified in the literature review, the optimal 

sensor system to utilise for this project was determined to be a stereo vision system. It was determined 

that the MATLAB programming environment was capable of operating a stereo vision system, and as 

such, its documentation was consulted during the preparation of the sample obstacle detection system 

required for the methodology. (MathWorks 2021) 

3.1.1 - Hardware: 

The hardware required for the stereo vision system being utilised in the research methodology is 

relatively simplistic. In order to ensure the accuracy of the stereo vision system, a pair of identical USB 

webcams were used. The MATLAB features utilised in the calibration of the stereo vision system can 

be performed using any pair of cameras, so long as their individual field of vision are below 95 degrees. 

This pair of cameras were mounted on a simple wooden structure with their lenses positioned 80mm 

apart. This distance was chosen in order to ensure the system was capable of accurately determining the 

depth of objects in close proximity to the cameras, as per the stereo vision theory identified in the 

literature review. The only other hardware the system required was a computer capable of running the 

MATLAB programming platform, on which the system’s software aspects are run. 

 

 

 

Figure 3.1: Sample System Hardware Setup 
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3.1.2 - Software: 

The software aspects of the sample obstacle detection system were created utilising the MATLAB 

programming platform, utilising applications included as part of the Image Processing and Computer 

Vision toolbox. 

 

 3.1.2.1 - Stereo Camera Calibration: 

In order to be capable of performing the stereo depth estimation required for reliable obstacle detection, 

the parameters of the stereo camera system must be determined. In order to generate these parameters 

for the camera setup used, MATLAB’s Stereo Camera Calibrator app was utilised. This parameter 

determination can be conducted on any stereo vision setup provided each camera’s field of vision is 

below the 95-degree maximum. To accomplish this, the app must be provided with a series of image 

pairs, each featuring a specific checkerboard pattern available in MATLAB. By measuring the disparity 

between the points on the checkerboard, the application is capable of determining the relative position 

of the checkerboard with respect to the centre of the stereo vision system. In order to increase the 

accuracy of these calculations, the provided image pairs should show the checkerboard pattern in 

positions covering the entire shared region, orientating the pattern at no more than a 45-degree angle to 

the image plane. The distance at which this calibration is conducted also affects the accuracy of the 

system, with the distance between the checkerboard and the camera pair during calibration being 

approximately the same as where objects would be detected. 

 

 

  

Figure 3.2: Stereo Camera Calibration 
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Specifically for this project, the stereo calibration was performed using 57 pairs of images. These 

were taken with the checkerboard covering shared image planes 500mm and 400mm away from the 

camera, as well as several pairs depicting the checkerboard at angles to the image plane. This series of 

images produced a mean reprojection error of 0.38 pixels and produced a camera centric view of the 

calibration images as shown in Figure 3.2. 

 

 

3.1.2.2 - Image Segmentation: 

Concurrently to the generation of the stereo camera parameters, the image pairs are also used to generate 

individual parameters for each camera. These are utilised in the correction of image distortion using the 

‘undistortImage’ MATLAB function. These corrected images are then utilised in the image 

segmentation process, in order to single out the appropriate pixels for depth analysis. The segmentation 

methods considered for this project all provide their results in the form of a binary image, highlighting 

the detected regions when used as a binary mask. 

 

The current iteration performs this segmentation using colour thresholding methodology. The code 

which performs this segmentation was created utilising MATLAB’s colour thresholder app. This app 

allows for the thresholding of images in a manner which interactively demonstrates what result it would 

produce. The process was performed using a single test image, in which the thresholding was configured 

to identify the darkest obstacles in the environment. This segmentation was then further processed by 

methods which clear the borders and fill any holes in the segmented region. In the majority of cases, it 

is unlikely that this process would exclusively highlight pixels containing the objects in question, as 

such one further function was utilised. The ‘bwareafilt’ function is used to isolate the largest cluster of 

pixels in a binary image which, in this case, should highlight the obstacle in question.  
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 3.1.2.3 - Depth Calculation: 

Once the binary masks for each image have been created, highlighting the obstacles within them, the 

depth estimation process is conducted. This system’s depth estimation process involves the calculation 

of three separate depth values, these being the minimum, average and central depth of the identified 

obstacle. The average and minimum depths of the obstacle are determined from depth data calculated 

on each of the pixels highlighted by the binary mask, whilst the central depth is simply the depth at the 

centre of the identified area. All these depth calculations are completed using the ‘triangulate’ 

MATLAB function which, when provided with the system’s stereo parameters and a set of coordinates 

from each of the input images, calculates the relative depth of the given pixel. 

 

 3.1.2.4 - Other Code Functions: 

The systems code also includes a series of image outputs which display aspects of the code’s 

functionality. Firstly, using the stereo parameters, a stereo anaglyph and disparity map are generated 

for the image inputs, displaying the disparity between the left and right camera perspectives. Secondly, 

the binary image mask generated by the system’s segmentation algorithms is overlayed on top of each 

input image, highlighting both the obstacle being analysed, as well as its identified centre. 

 

 

 

 

 

 

  

Figure 3.3: Stereo Anaglyph and Disparity Map 
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Following this final correction, the images are then processed through the image segmentation 

algorithm which produce a binary mask indicating the pixels which meet the specified colour 

thresholds. 

 

 

 

 

 

 

 

This binary mask is then processed using the ‘bwareafilt’ function to isolate the largest collection of 

identified pixels which, under ideal circumstances, should indicate the presence of an obstacle. Within 

Figure 3.7 a small cluster of identified pixels can be seen in the upper left hand corner of the test 

environment which are not highlighted in the more processed Figure 3.8. 

 

Figure 3.6: Undistorted Image 

Figure 3.7: Binary Mask (Overlayed on Undistorted Image) 
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The dimensions and relative position of the largest obstacle within the image are 

determined and provided to the ‘triangulate’ function in order to produce the system’s 

three depth values as outputs. This includes the calculation of the coordinates centre 

pixel in the identified shape, which is then used to calculate the central depth, and then 

the depth of every pixel in the identified cluster is determined, of which the average and 

minimum values are provided as the average and minimum depths. These three depth 

values are then displayed in the MATLAB command window. 

  

Figure 3.8: Completed Image Processing 

Figure 3.9: System Output 
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 3.2 - Research Methodology: 

In accordance with this project’s aim, its research methodology revolves around the analysis of an object 

detection system. As outlined in the methodology preparation section, a stereo camera system was 

chosen as the basis for the sample obstacle detection code as it was deemed best suited for the forms of 

obstacles on which this project was focussed. 

 

3.2.1 - Preliminary Testing: 

The first portion of the methodology revolves around the confirmation of the sample obstacle detection 

system’s abilities. This will involve a series of tests utilising large and distinct obstacles which fall 

outside the core aims of the project. Conducting these tests will allow for the evaluation of the baseline 

capabilities of the sample system, ensuring the baseline reliability of the system. This is vital as to 

determine whether disparities between the results of the second phase of the research methodology are 

as a result of the types of obstacles being analysed, or errors in the system’s programming. Any major 

errors identified during this stage of the methodology must be remedied prior to progression to the 

second phase.  

 

3.2.2 - Controlled Scenario Testing: 

Once the effectiveness of the sample system has been evaluated and deemed adequate, the second phase 

of the research methodology will be undertaken. This second phase will involve the majority of this 

project’s experimentation, testing the validated sample detection system in a series of controlled 

scenarios. As per the project’s aim, a series of tests will be performed covering a variety of low-lying, 

small scale obstacle types varying in number and location within the test environment. These tests will 

also include variation in the position of the stereo camera system within the test environment, collecting 

images of the test obstacles at different elevations and angles for analysis. As the primary focus of this 

phase of the methodology is the evaluation of the system’s obstacle detection abilities, the test 

environments utilised are tailored to facilitate this detection. This will entail the controlled test scenarios 

presenting as minimal excess information to the system as possible, removing any potential interference 

the environment may cause in the detection process.  
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3.2.3 - Alternate Environment Testing: 

The third phase of the methodology focusses on the addition of environmental uncertainty into the 

testing process. Involving the same general testing factors as the previous phase, the third phase will 

replace the controlled testing environment with more variable environments. This will still focus on the 

detection of the same obstacle types, whilst still alternating the locations of both them and the camera 

system, with the addition of environmental changes. These environmental changes include altering 

factors such as light levels and the properties of the floor and background in order to further test the 

system. 

 

3.2.4 – Evaluation: 

Once the testing of the second and third phase of the methodology have been completed, the evaluation 

phase will be conducted. This simply involves the interpretation of the test images, evaluating the 

sample system’s effectiveness for each test. Both the accuracy of the segmentation process and the 

depth estimation will be considered and recorded for each image pair. Following this interpretation, 

correlations within the data will be sought with the intent of determining which test scenarios produced 

the most reliable results and what this data would entail if applied to a practical setting. 
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3.3 - Preliminary Testing: 

The preliminary testing phase of the research methodology serves the purpose of observing the system’s 

object detection capability via a series of basic tests and evaluations. As this project’s object detection 

code utilises the colour thresholding method to perform image segmentation, the preliminary testing 

environment was constructed in order to best accommodate for it’s limitations. As previously discussed, 

thresholding methods of image segmentation are susceptible to noise from environmental factors due 

to their use of colour as a means of differentiating between pixels and by extension the objects within 

an image. The elements of the testing environment’s design were chosen to allow the segmentation to 

be performed independent of the system’s inherent weaknesses in order to observe the effectiveness of 

the chosen threshold and the stereo depth estimations. In order to ensure uncertain environmental factors 

as texture and inconsistent colour interfere with the results of the preliminary testing, the test 

environment needed to isolate the system’s field of view and provide a consistent colour and texture 

which would cause the minimal impact on the results. A set of four of white MDF boards were chosen 

to form the testing chamber, encapsulating the entirety of the stereo camera’s field of vision whilst still 

allowing for typical indoor light levels. This not only provides a uniform texture for the test environment 

but also produces the optimal contrast with the dark colours the thresholding method is best suited to 

identify. 

The testing environment constructed under this logic is shown in Figure 3.10. 

 

  Figure 3.10: Testing Environment 
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The preliminary testing itself was conducted using a larger, more distinct object than those described in 

the project’s aim. The series of tests vary both the depth and horizontal position of the test obstacle to 

produce more comprehensive results and determine whether the system’s accuracy has a measurable 

relationship with any of these factors. The MATLAB documentation referenced in the creation of the 

stereo vision system states that the calibration performed should produce results that are the most 

accurate at the distance the checkerboard was from the camera during calibration. As such, the 

preliminary testing will also provide a means of determining the degree to which the accuracy changes 

outside of the 400-500mm range the system was calibrated at. 

 

 

The object chosen to act as a sample for the preliminary testing was a trapezoidal pen cup as shown in 

Figure 3.4. This was chosen not only because of the colour contrast with the test environment, but also 

the fact that it is an object which may appear within an indoor environment. This test object was placed 

within the testing environment at a specified position relative to the stereo camera system and an image 

pair was obtained. This process was repeated, alternating the lateral position of the object 200mm to 

either side of the camera’s centre in increments of 40mm. Once a set of 11 image pairs for the distance 

were obtained, the process was repeated for 20mm further away from the camera resulting in a set of 

distances ranging from 380mm to 520mm. The coordinate system the data analysis will be utilising is 

detailed in Figure 3.11. 

 

 

 

 

 

Figure 3.11: Testing Coordinate System 
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3.4 - Sample Obstacle Testing: 

Making use of the understanding of the object detection system obtained through the preliminary 

testing, the next stages of analysis can be performed. As stated in the project objectives, the final stage 

of analysis focusses on the observation of the system’s ability to detect sample objects which may 

appear in an indoor environment, in which self-navigating mobile robots may be employed. The sample 

objects were required to be dark in colour, as to ensure the image segmentation method employed by 

the sample system was capable of differentiating them from other features in the input images. 4 test 

objects were chosen which were tested in the controlled environment previously used in the preliminary 

testing, as well as in alternative indoor environments with different environmental factors. 

 

 

3.4.1 - Controlled Environment Testing: 

The testing of the sample objects undertaken in the controlled environment will constitute the first stage 

of the sample obstacle testing. This testing will serve the purpose of comparing the identification of the 

sample obstacles to the trends identified during the preliminary testing. This should allow for the 

isolation of the effects of the objects themselves on the identification and depth analysis processes, 

removing any minor abnormalities the sample system naturally has. The sample objects on which this 

analysis will be performed were chosen as examples which best represent general obstacles which could 

be on the floor of any given indoor environment, as to ensure the analysis could be applicable to a wide 

array of indoor environments. The four forms of sample obstacle chosen for analysis include an A4 

sheet of paper, an SD card, a corded mouse and more generalized rectangular barrier of various heights. 

The analysis of the sample systems ability to detect these sample objects will also focus on identifying 

how certain characteristics of an object can affect the systems readings. As such less variety in the 

object’s positions within the image planes were required, due to data regarding how an objects position 

affects the readings being available in the form of the preliminary analysis. 
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3.4.2 - Alternate Environment Testing: 

Once the impact the characteristics of the sample objects have on the sample system’s detection 

capabilities, the testing then proceeds to alternate environments in order to determine the impact their 

conditions may have on the accuracy of object detection and depth estimation. Due to the nature of the 

segmentation method, the impact that the lighting of an environment can be inferred, as such the 

alternate testing environments focus on the variation of other factors such as the texture and colouration 

of the ground on which the sample objects are situated. One area of particular focus will be the 

observation of how the identification of additional pixels surrounding the sample object will affect the 

accuracy of the systems results, as such a scenario is amongst the most likely abnormalities to occur 

when segmenting images by colour thresholding.  

 

3.4.3 - Testing Process: 

The process under which the sample object detection system’s response to the chosen obstacles was 

determined was conducted in the following manner. The testing of the SD card done similar to the 

preliminary testing, with image pairs captured at increments of 50mm within a range of -100mm to 

100mm in the x-direction and 400mm to 500mm in the y-direction. These tests were conducted with 

the same SD card in two different orientations. The A4 sheet of paper was similarly tested at different 

orientations, being 0, 45, 90 and 135 degrees. Due to the size of the paper relative to the image plane, 

it was decided that only the distance in the y-direction would be changed between tests and to within a 

different range than the SD card, specifically between 350 and 450. The corded mouse was tested in 5 

different orientations, alternating the y-position between 400mm and 500mm in increments of 50mm. 

Sample image pairs detailing the different orientations of the relevant objects will be provided along 

with the raw result and error tables in the results chapter of this report. In order to best conduct the 

analysis of the image pairs for each sample obstacle, the colour thresholding values of the segmentation 

code were adjusted as to ensure that the system recognised the sample obstacle within the image.  
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Chapter 5: Results and Analysis 

5.1 – Preliminary Testing: 

The preliminary testing, as described in section 3.1.1 involved the collection of a series of 88 separate 

image pairs each detailing the same test object shown in Figure 5.1. These image pairs were each 

processed through the sample object detection system produced in the methodology preparation, and 

each of the depth values the system returned recorded in the following tables. Organised based upon 

the position of the object within the test environment for the appropriate image pair, the tables are 

divided into a series of 1x3 cell groups detailing the depth estimations for the relative positions. These 

are organised with the first entry of each collection of cells containing the central depth estimation, the 

second containing the average depth estimation and the third containing the minimum depth estimation. 

All of these values are in units of millimetres and denote the absolute distance between the stereo camera 

system and the identified object. This data was then further interpreted to determine the error in the 

estimation process. This involved direct comparison between the output values and the actual position 

of the object within the test environment, retrieving an error value in terms of percentage, organised in 

the same manner as the raw data. These values were then further collated to determine several average 

error values which detail the average for each estimation method, for the system as a whole, for each 

half of the effective range and for data excluding outliers. Within the tables, entries listed as ‘ERROR’ 

produced estimations with error values in excess of 100% and were therefore discounted as relevant 

data. 

This method of interpreting data was performed for three separate tests, analysing the same 88 image 

pairs with slight variations to the colour thresholds used in the image segmentation, mentioned in 

section 3.1.3. The following pair of images are an example of the types of image pairs analysed in the 

preliminary testing, specifically the pair taken with the object positioned at x = 40mm and y = 380mm. 

 

 

 

Figure 5.1: Preliminary Testing Sample Image Pair (40, 380) 
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Through depth and accuracy data outlined in Tables 5.1 and 5.2 detail the baseline capabilities of the 

initial object detection system, highlighting which aspects operate as intended, and which areas require 

improvement. Overall, the initial system proved capable of producing depth values with an average 

error of below 7%, however the accuracy data displays trends which indicate how an object’s position 

within the image frame can affect the accuracy of it’s depth estimation. In general the system produced 

more accurate data when analysing objects within the left half of the image frame. A specific example 

of this is the average depth estimations, the error of which rarely exceeded 4% on the left-hand side. In 

contrast to this, the readings obtained from objects within the right side of the image frame, prominently 

objects positioned beyond 16 degrees to the right of the stereo camera’s field of vision, possessed a high 

degree of error. This was evident due to the fact that the error values drastically decreased within the 

120mm column once the object’s y-axis position was more than 440mm, indicating that the x-axis 

position was not the cause of such data.  If beyond 16 degrees is considered outside the system’s 

effective range, the average error of the system becomes less than 3% which may more accurately 

indicate the accuracy of the system if it was operating as intended. The analysis also indicates that, 

whilst it may produce the most accurate results on average, the average depth analysis method possesses 

the largest variation in it’s accuracy which may prove problematic in certain situations. 

 

By observing the pixels highlighted by the system’s 

segmentation program, several areas of improvement can 

be identified. Foremost of these areas is related to the 

image pairs labelled in Tables 5.1 and 5.2 as producing an 

error. This was assigned to analysis which resulted in an 

error value exceeding 100%, as was the case for the pairs 

in question. The image segmentation performed on these 

image pairs can be seen in figure 5.2, with the object not 

being recognised in one of the pair’s images. As this only 

transpired for the three instances shown, it is reasonable to 

assume that the fact that the object isn’t separated from the from the image’s edge is the cause of the 

issue at hand. Secondly, a general trend throughout a number of the processed image pairs is the 

incomplete segmentation of the test object from the background. This was likely caused by the glossy 

nature of the test object, reflecting light and appearing a lighter shade in certain positions. In order to 

resolve such an issue, the thresholding process would need to be tweaked in order to recognise the 

applicable surfaces of the object.  

 

 

Figure 5.2: Error Image Segmentation 
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A fact clearly demonstrated by the results of the second preliminary test is the increase in error as a 

result of the altered colour thresholds. Despite the segmentation identifying the test object more 

completely, the results for all three depth estimation methods demonstrated a higher degree of error. 

Maintaining a similar trend to the first example, with regards to the calculations on the left half of the 

image frame, the new values rarely reached the same error extremes present in the first preliminary test. 

In spite of this, there is a noticeable increase in the error values calculated on the left side, producing 

errors exceeding 10% more regularly whilst maintaining a similar average when compared to the initial 

test.  

It is also important to note that, due to the new segmentation identifying the side faces of the object, the 

error of the centre and average depth calculations slightly increased when compared to the original 

testing. This is interesting due to the fact that the measurements which the depth estimations were 

compared to in order to determine the error in their readings were taken with respect to the front face 

of the object, meaning that the side faces of the test obstacle would always be slightly further away 

from the stereo camera, and as such should have a more noticeable impact on the average depth 

calculations. 
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The data shown in Table 5.6 clearly demonstrates the increased accuracy of this iteration of the image 

segmentation algorithm when compared to it’s predecessors. Similar trends regarding the distribution 

of error across the image plane, were noted but to a smaller extent than the previous tests. The most 

noteworthy observation unique to this series of tests is the minimum depth error calculations on the left-

hand side of the image plane. In all other testing, including the overall and right-hand side of this same 

dataset, the minimum depth calculations produced the greatest error, however, the left-hand side’s 

minimum depth error was substantially lower than it’s centre and average depth. 

5.1.4 - Other Changes: 

Through a small series of tests, the issue regarding the detection of objects on the edge of the image 

frame present in all of the preliminary tests was rectified. It was determined that this occurrence was a 

by-product of the border clearing functionality incorporated into the segmentation code. Due to the 

benefits the border clearing function provides to the accuracy of the system, during the sample obstacle 

testing the functionality will be manually deactivated if an applicable error occurs. In applicable 

situations in the sample object testing, this functionality will be deactivated temporarily to retrieve 

results from otherwise errored readings. 
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Figure 5.5: Sample Obstacle Testing Mouse Orientation 1 Sample Image Pair (400) 

Figure 5.6: Sample Obstacle Testing Mouse Orientation 2 Sample Image Pair (400) 

Figure 5.7: Sample Obstacle Testing Mouse Orientation 3 Sample Image Pair (400) 

Figure 5.8: Sample Obstacle Testing Mouse Orientation 4 Sample Image Pair (400) 
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Figure 5.10: Sample Obstacle Testing Paper 0 Degrees Sample Image Pair (400) 

Figure 5.11: Sample Obstacle Testing Paper 45 Degrees Sample Image Pair (400) 

Figure 5.12: Sample Obstacle Testing Paper 90 Degrees Sample Image Pair (400) 

Figure 5.13: Sample Obstacle Testing Paper 135 Degrees Sample Image Pair (400) 
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Figure 5.14: Sample Obstacle Testing Barrier 3mm Degrees Sample Image Pair (400) 

Figure 5.15: Sample Obstacle Testing Barrier 6mm Degrees Sample Image Pair (400) 

Figure 5.16: Sample Obstacle Testing Barrier 9mm Degrees Sample Image Pair (400) 

Figure 5.17: Sample Obstacle Testing Barrier 12mm Degrees Sample Image Pair (400) 
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In the sample obstacle testing, the error values for the readings captured using the A4 paper and SD 

card as sample object were calculated in a slightly different manner than the preliminary tests. This was 

due to the large disparity between the thickness of the sample objects and their other dimensions, which 

when viewed by the sample system would be more prominent. To remedy this, instead of being 

compared to the expected position of the centre of it’s foremost edge, as with the object used in the 

preliminary testing, the central and average depth error values were calculated with respect to the centre 

point of the object’s top face instead. Specifically, the expected depths for the SD card readings were 

offset by 12mm for the first orientation and 16mm for the second whilst the paper readings were offset 

by 105mm for 0 degrees, 181.872mm for both 45 and 135 degrees and 147.5mm for 90 degrees. 

 

The readings obtained during the testing of the SD card as the sample object are largely in line with 

those collected during the preliminary testing. The average error in the sample system’s readings for 

both of the tested orientations was below 4%, with each orientation demonstrating a few instances where 

the error noticeably exceeds the norm. The majority of these outliers are contained within the average 

depth readings, with the notable exception of the first orientation’s ‘-100 450’ minimum depth 

calculation which approached 10% error. 

 

Through the comparing the error of data collected using the SD card and A4 paper as test objects, it 

becomes apparent that the system becomes less reliable when identifying larger low-lying obstacles. 

Despite the fact that the thickness of the SD card is substantially more visible in the captured images 

and should therefore significantly impact the accuracy of the average and central depth estimation, the 

average error of the A4 paper’s central and average depth readings is more than double the SD card’s. 

This phenomenon’s cause can be isolated to the size of the object’s top face and not the overall number 

of pixels being considered in the analysis due to the fact that the preliminary tests, despite analysing an 

more pixels the SD card tests, retained a similar level of accuracy. 
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The 45 and 135 degree orientations of the paper, as well as tests conducted using the corded mouse as 

a sample object highlight a major shortcoming of the sample system. Although the other tests performed 

with the sample system have demonstrated it’s capabilities in recognising simpler shapes with edges in 

parallel with the stereo camera, the more complex shapes and angles of these tests have resulted in large 

increases in the system’s error. This impact is most clearly visible in the minimum depth calculations 

which, despite the fact that all previous tests demonstrated an average error below 4%, these tests 

involving the objects and orientations in question present errors in excess of 20%. Despite this however, 

the results obtained using the average depth estimation produced the most consistently accurate readings 

for the situations in question, with the notable exception of situations where the majority of the object 

is located towards the right edge of the image plane as with mouse configuration 2.  

 

 

 

The most obvious characteristic of the barrier testing results is the large levels of inaccuracy present in 

tests conducted at y-distances less than 500mm. As can be seen in Tables 5.15 and 5.16, despite the 

500mm readings demonstrating accuracy more indicative of that seen in other testing, all but two of the 

450mm readings possessed errors in excess of 50% with all of the 400mm readings falling into the 

territory of being considered an unusable reading. By observing the regions of the collected images 

highlighted by the sample system, it became clear that the fact that this issue is likely as a result of at 

least one of the edges of the identified region being on the border our outside of the image plane. Due 

to the way the system operates, this would mean that some of the identified pixels would be outside the 

regions where it would be possible to perform stereo calculations. This fact offset the comparison of 

pixels between the images in the pair, leading to the system estimating the feature to be much further 

away than in reality. As such, only when all of the identified object was visible in both of the images in 

the par, would the system return to it’s previous levels of accuracy. Within the image pair provided in 

Figure 5.19, it can be seen that each edge of the barrier is only visible in one of the images resulting in 

the depth estimation readings of 2492.8mm for central depth, 1508.6mm for average depth and 

1318.8mm for minimum depth, all with errors in excess of 100%. 

Figure 5.19: 12mm Barrier at 400mm Segmentation 
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5.3 - Alternate Environment Testing: 

The tests performed outside of the prepared control environment validated the inherent flaws with the 

image segmentation method the sample system utilises. Although not unexpected, the sample system’s 

colour thresholding encountered issues resulting from the natural shadows in the environment. As can 

be seen in Figure 5.20, no suitable threshold value could be determined in order to single out the sample 

object being used in the test, the system would either identify a shadow within the image or a 

combination of the object and the shadows it intersects with. 

 

 

 

 

Due to this shortcoming, the depth values the sample system determined for each image pair were 

inherently unreliable and as such, the error in their results were not determined. This issue however 

could potentially be rectified through the employ of an additional light source aimed in the same 

direction as the stereo camera system. As with most indoor environments, the three examples chosen 

for the capture of the test images were lit by light sources mounted within the roof. If the aforementioned 

additional light source were employed, significantly less shadow would be visible in the stereo camera’s 

image frame, therefore the colour thresholding would be more effective in identifying only the sample 

obstacle. 

 

  

Figure 5.20: Alternate Environment segmentation sample (Raw – Left, Segmented – Right) 
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Chapter 6: Conclusions and Further Work 

6.1 - Conclusion: 

In conclusion, this project has fulfilled it’s core aim and completed each of the objectives outlined in 

the first chapter of this report. This has involved the creation and subsequent analysis of a stereo vision 

system as a sample object detection system, a decision born from research into the capabilities of 

existing systems. The system was prepared using MATLAB, making use of the Image Processing and 

Computer Vision toolbox to both calibrate the stereo camera hardware as well as perform colour 

thresholding segmentation on images during the analysis. Once prepared, this system was run through 

three phases of testing, each designed to allow for the observation of how the accuracy of the system’s 

changes in response to the adjustment of different factors. Specifically, this process first involved a 

distinct obstacle within a controlled environment, that same controlled environment was then used to 

analyse example small-scale low-lying obstacles which were then tested in alternate indoor 

environments with more uncertain backgrounds and lightings. From this data, a general accuracy of the 

system was established, and factors were identified which attributed to decreases in this accuracy such 

as the size of flat objects, their orientation relative to the stereo camera and the position of obstacles 

within the camera’s field of vision. 

 

 

6.2 - Further Work: 

Beyond the research has been conducted in the pursuit of this project’s aim and objectives, further work 

could be explored to expand upon and understand the capabilities of the project’s object detection 

system. These potential avenues fall under three categories, the remedy of notable shortcomings of the 

system, the expansion of the testing on the existing system and the inclusion of supplementary 

functionality to the system, which in turn would require further testing using a research methodology 

tailored to the enhanced system.  
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Of the tests conducted, two main factors were identified which decreased the system’s accuracy to the 

point of making the distance estimations unusable in a practical setting. Namely these issues are the 

identified problems regarding the perception of objects with features outside of the stereo range, and 

the separation of object from shadows in the environment as seen in the alternate environment testing. 

Through additional work it may be possible to find alternate ways of refining the image segmentation 

produced, isolating it to features specifically visible by both cameras and further fine tuning it’s ability 

to distinguish shadow and dark colour objects. The more feasible solution to this issue would be the 

implementation of a deep learning neural network to perform image segmentation, a process which 

although more time consuming, would be more likely to allow the system to produce more accurate 

depth estimations. 

 

Further testing of the current system would mostly involve the variation of variables in the testing 

environment which were controlled during initial methodology. Some examples of such factors include 

the lighting conditions of the environment, the angle and elevation at which the camera is positioned as 

well as further variation in environmental conditions. The analysis of the results of such additional 

testing would expand upon the understanding of the system’s capabilities and limitations. Another 

means by which the current methodology could be expanded is through the variation of individual 

components of the object detection system. To some degree, this was completed as part of preliminary 

testing phase, but other aspects of the design chosen outlined in the methodology preparation section of 

chapter 4 could be altered and subsequently tested. First amongst these would be the positions of the 

twin cameras which constitute the stereo vision hardware. As stereo vision theory dictates, the distance 

between each lens of a stereo camera determines the area in which depth estimation can be performed. 

Testing could be conducted comparing the estimated obstacle positions with the cameras at different 

distances apart, observing what effect, if any, it has on the accuracy of the system’s readings. Similar 

tests could be performed to determine the impact other aspects of the system’s design, such as the 

specifications of the camera, have on the accuracy of the results when compared to the initial design. 
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The second avenue for building upon this project’s methodology revolves around the expansion of the 

capabilities of the project’s system to more closely approximate how similar systems would operate in 

practical scenarios. The core problem which this project is built upon revolves around the navigation of 

a mobile robot throughout an indoor environment. Whilst the methodology performed serves as a 

conceptual test of the problem, in order to better approximate the practical conditions, improvements 

would need to be made to the system. Chief amongst these improvements would be the adaptation of 

the system to operate in conjunction with a real-time video feed provided by a mobile robot. Testing of 

such a system would provide insight as to what extent the motion of the camera can impact the system’s 

readings. To complement this additional image segmentation methods may also be incorporated into 

the system, such as feature tracking and instance segmentation in order to further adapt the system for 

practical applications. Beyond these improvements, the methodology could be expanded upon by 

further study outside of the purview of this project’s objectives. This would primarily take the form of 

interpreting the readings determined by the object detection system and controlling a robot accordingly. 

This would require the interpretation of the sample system’s data in real-time to produce navigational 

commands  

 

In contrast to the previously discussed options for expanding upon the research conducted during the 

completion of this project, minor quality of life improvements could be made on the project’s sample 

system to make it easier to utilise. Foremost amongst these would be the implementation of code to 

assist in the determination of the colour threshold values applicable for each image, either automatically 

or with small amounts of user input. A similar quality of life improvement would be the automation of 

the ‘clear border’ function to toggle on or off in response to whether an object would cross over with 

the image’s border. This would vastly reduce the amount of adjustment needed to ensure the sample 

system produced the most useable results. 
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Appendix A:  ENG4111/4112 Research Project 

Project Specification 

For:   Nicholas Jennings 

Title:  Identifying Abnormalities in Indoor Environments using Obstacle Detection 

Programming 

Major:   Mechatronic engineering  

Supervisors:  Tobias Low 

Enrolment:  ENG4111 – ONC S1, 2021 

  ENG4112 – ONC S2, 2021 

Project Aim: To test the effectiveness of obstacle detection programming in locating 

terrain abnormalities and small obstacles in an indoor environment. 

Programme:  Version 3, 6th May 2021 

1. Research background information regarding obstacle detection/avoidance 

programming, focussing on systems which use vision as the primary sensor. 

 

2. Determine the means by which researched methods identify objects in images and 

how they determine their location relative to the robot. 

 

3. Develop an obstacle detection code (in MATLAB) based upon methods identified, 

capable of detecting obstacles and terrain abnormalities in still images. 

 

4. Test the capabilities of the obstacle detection code using a series of controlled 

environments. 

 

5. Perform additional tests in other indoor environments to determine the program’s 

effectiveness outside of the test scenarios. 

 

6. Evaluate the ability for the algorithms to identify different types of abnormalities. 

If time and resources permit: 

7. Adapt obstacle detection code to work from a real-time data feed provided by the 

camera(s), creating a real-time obstacle detection code. 

 

8. Incorporate motor control into the real-time obstacle detection code to control a 

small scale, land-bound robot, to create a real-time obstacle avoidance program. 

 

9. Determine the effectiveness of the real-time obstacle avoidance program in the test 

scenarios. 
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 Appendix B: MATLAB Code: 

Appendix B.1: Main MATLAB Code 

clear 
close all 
clc 
cd 'C:\Users\nicje\OneDrive\Documents\Research Project\MATLAB Files'; 

  
%Parameter and Input Loading 
load('stereoParamsV1.mat'); %Loading Parameters from Stereo Calibration 
load('cameraParamsL.mat' ); %Loading Left Camera Parameters 
load('cameraParamsR.mat' ); %Loading Right Camera Parameters 

  
cd 'C:\Users\nicje\OneDrive\Documents\Research Project\Controlled 

Environment Testing'; 
inputImage1= imread('B 400 12 L.jpg'); %Left Camera Input 
inputImage2= imread('B 400 12 R.jpg'); %Right Camera Input 
cd 'C:\Users\nicje\OneDrive\Documents\Research Project\MATLAB Files'; 

  
%Stereo Anaglyph Generation 
[rectifiedL,rectifiedR] = 

rectifyStereoImages(inputImage1,inputImage2,stereoParamsV1,'OutputView','va

lid' ); 
figure; 
imshow(stereoAnaglyph(rectifiedL,rectifiedR)); 
title('Rectified Input Images'); 

  
%Disparity Map Generation 
dispRange = [0 48]; 
dispMap = 

disparitySGM(rgb2gray(rectifiedL),rgb2gray(rectifiedR),'DisparityRange',dis

pRange,'UniquenessThreshold',20); 
figure; 
imshow(dispMap,dispRange); 
title('Disparity Map'); 
colormap jet; 
colorbar; 

  
%Image Segmentation 
UnDistorted_L = undistortImage(inputImage1,cameraParamsL); 
UnDistorted_R = undistortImage(inputImage2,cameraParamsR); 
CThresh_L = SegmentationCode(UnDistorted_L); 
CThresh_R = SegmentationCode(UnDistorted_R); 

  
LargestOBJ_L = bwareafilt(CThresh_L,1); 
LargestOBJ_R = bwareafilt(CThresh_R,1); 

  
%Object Centre Calculation 

  
[L_obj_y,L_obj_x]=find(LargestOBJ_L); 
[R_obj_y,R_obj_x]=find(LargestOBJ_R); 

  
MatchPoint_L = [mean(L_obj_x), mean(L_obj_y)]; 
MatchPoint_R = [mean(R_obj_x), mean(R_obj_y)]; 
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%Segmentation Demonstration 
figure; 
imshow(imoverlay(UnDistorted_L,LargestOBJ_L,'blue')); 
axis on; 
hold on; 
plot(mean(L_obj_x),mean(L_obj_y),'g+') 
title('Left Camera Object Center'); 

  
figure; 
imshow(imoverlay(UnDistorted_R,LargestOBJ_R,'blue')); 
axis on; 
hold on; 
plot(mean(R_obj_x),mean(R_obj_y),'g+') 
title('Right Camera Object Center'); 

  
%Depth Calculations 
length_Max = [length(L_obj_x), length(L_obj_y), length(R_obj_x), 

length(R_obj_y)]; 
for count = 1:min(length_Max) 
    Depth_Full(count)= 

norm(triangulate([L_obj_x(count),L_obj_y(count)],[R_obj_x(count),R_obj_y(co

unt)],stereoParamsV1)); 
end 
tri = triangulate(MatchPoint_L,MatchPoint_R,stereoParamsV1); 

  
C_Depth_mm = norm(tri); 
A_Depth_mm = mean(Depth_Full); 
Min_Depth_mm = min(Depth_Full); 

  
disp('Central Depth' ); 
disp(C_Depth_mm); 
disp('Average Depth'); 
disp(A_Depth_mm); 
disp('Minimum Depth' ); 
disp(Min_Depth_mm); 
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  Appendix B.2: MATLAB Segmentation Code 

function [BW,maskedRGBImage] = SegmentationCode(RGB) 
%createMask  Threshold RGB image using auto-generated code from 

colorThresholder app. 
%  [BW,MASKEDRGBIMAGE] = createMask(RGB) thresholds image RGB using 
%  auto-generated code from the colorThresholder app. The colorspace and 
%  range for each channel of the colorspace were set within the app. The 
%  segmentation mask is returned in BW, and a composite of the mask and 
%  original RGB images is returned in maskedRGBImage. 

  
% Auto-generated by colorThresholder app on 03-May-2021 
%------------------------------------------------------ 

  

  
% Convert RGB image to chosen color space 
I = RGB; 

  
% Define thresholds for channel 1 based on histogram settings 
channel1Min = 0.000; 
channel1Max = 20.000; 

  
% Define thresholds for channel 2 based on histogram settings 
channel2Min = 0.000; 
channel2Max = 20.000; 

  
% Define thresholds for channel 3 based on histogram settings 
channel3Min = 0.000; 
channel3Max = 20.000; 

  
% Create mask based on chosen histogram thresholds 
sliderBW = (I(:,:,1) >= channel1Min ) & (I(:,:,1) <= channel1Max) & ... 
    (I(:,:,2) >= channel2Min ) & (I(:,:,2) <= channel2Max) & ... 
    (I(:,:,3) >= channel3Min ) & (I(:,:,3) <= channel3Max); 
BW = sliderBW; 

  
% Fill holes 
BW = imfill(BW, 'holes'); 

  
% Clear borders 
BW = imclearborder(BW); 

  

% Initialize output masked image based on input image. 
maskedRGBImage = RGB; 

  
% Set background pixels where BW is false to zero. 
maskedRGBImage(repmat(~BW,[1 1 3])) = 0; 

  
end 

 

 




