
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Apply Advanced Process Control to Fine Screening Circuit

in Large Mineral Processing Plant

A dissertation submitted by

A. Kapor

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Instrumentation, Control and Automation Engineering

Submitted: October, 2021

Abstract

This research project focuses on improving the control of a fine-ore screening circuit in a

large gold processing plant. At this plant, ore is classified across a set of eight vibrating

screens in which the undersize material reports to four ball mills and the oversize material

is returned for further crushing. While the feed-rates to each individual fine screen and

the total oversize return is known, there is a lack of instrumentation to reliably measure

individual screen oversize. Inadequate classification of ore is an often-overlooked cause

of poor mill performance (Rotich et al. 2016, p. 3889) and by obtaining a better under-

standing of individual screen performance, the impact on production can be mitigated.

Through the development of an appropriate model, a parameter estimation problem is

derived where the efficiency of the eight vibrating screens can be estimated via regression

of historical data, allowing the screen oversize to be predicted. The performance of

multiple algorithms for parameter estimation were then assessed in terms of accuracy,

speed and repeatability. The most appropriate algorithm was selected to form the basis

of an online estimation program, developed in Matlab®. The fastest algorithm was a

simple least squares fit, though a quadratic programming method was ultimately selected

as it allowed bounds to be set on the parameters.

While the implementation performs well over longer timeframes it can be unreliable at

shorter intervals when variance in feed is low. Further modification to the algorithm

and the introduction of regular system excitation is recommended. A further result of the

analysis is the development an additional algorithm to maximise the mill feed based on the

oversize model output. This research demonstrates how parameter estimation techniques

can be employed using historical and real-time data to form inferential measurement

points. While the model needs some refinement, the approach proved to be a viable

method with future applicability.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

A. Kapor

Acknowledgments

My greatest gratitude goes to my wife, Ruby. None of this would have been possible

without her unwavering support over the last eight years. Secondly, to my three chil-

dren, Indiana, Theodore and Charlotte, who have I have watched grow up over this time

remaining ever-patient with my studies.

I would also like to acknowledge my USQ supervisor, Catherine Hills, for her support,

guidance and feedback throughout what has been a challenging time.

A. Kapor

Contents

Abstract i

Acknowledgments vii

List of Figures xv

List of Tables xix

List of Listings xx

Acronymns xxi

Chapter 1 Introduction 1

1.1 Boddington Gold Mine . 2

1.2 Fine Screening Process . 2

1.3 Motivation . 6

1.4 Project Aim . 7

1.5 Objectives . 7

Chapter 2 Literature Review 9

2.1 General Screen Theory . 9

2.2 Screen Efficiency . 10

2.3 Parameter Estimation . 12

2.3.1 Linear Regression . 12

2.3.2 Multiple Linear Regression . 13

2.3.3 Polynomial Regression . 14

2.3.4 Quadratic Programming . 15

2.3.5 Metaheuristic Techniques . 15

2.3.6 Artificial Neural Networks . 17

2.3.7 Support Vector Machine Regression 17

2.4 Model Validation . 18

2.4.1 k-fold Cross-Validation . 18

2.4.2 Other Techniques . 19

2.5 Software and Systems . 20

2.5.1 Distributed Control System . 20

2.5.2 OPC Communication . 20

2.5.3 MATLAB . 21

2.5.4 Software Development Life Cycle 24

2.6 Research Gap . 26

Chapter 3 Methodology 27

3.1 System Model Formulation . 27

3.1.1 Static Model . 28

3.1.2 Dynamic Model . 30

3.1.3 Accounting for Non-Linearities . 32

3.1.4 Defining Transport Delays . 34

3.2 Assessment of Algorithms . 36

3.2.1 Requirements . 36

3.2.2 Tools . 37

3.2.3 List of Candidate Algorithms . 37

3.2.4 Suitability Assessment . 37

3.2.5 Usage and Parameterisation . 39

3.2.6 Performance Assessment . 43

3.2.7 Selection . 45

3.3 Software Implementation . 47

3.3.1 System Architecture . 47

3.3.2 Software Development Approach 49

3.3.3 Tools . 49

3.4 Verification . 50

3.4.1 Recording . 50

3.4.2 Field Verification . 50

3.5 Screen Feed Ratio Optimisation . 51

3.5.1 DCS Implementation . 51

3.6 Alarm and Monitoring Scheme . 52

3.7 Chapter Summary . 53

Chapter 4 Implementation and Results 55

4.1 Implementation in MATLAB . 55

4.1.1 Data Input and Output Modules 56

4.1.2 Input Validation . 59

4.1.3 Model Solver and Predictor Functions 61

4.1.4 Model Solver Class . 61

4.1.5 Model Aggregator . 62

4.1.6 Additional Graphical Components 63

4.2 Implementation in DCS . 65

4.2.1 OPC Read Blocks . 66

4.2.2 OPC Write Blocks . 66

4.2.3 Fine Screen Model . 67

4.2.4 Total Oversize Prediction Error . 68

4.3 Testing . 68

4.3.1 DCS Model Performance . 69

4.3.2 Hyperparameter Sensitivity Simulation 71

4.3.3 Visual Inspection . 75

4.3.4 Discussion . 75

4.4 Screen Feed Ratio Optimisation . 76

4.4.1 Overview . 76

4.4.2 Analysis . 76

4.4.3 Discussion . 80

4.5 Alarm and Monitoring . 81

4.6 Chapter Summary . 81

Chapter 5 Conclusions and Further Work 83

5.1 Conclusions . 83

5.2 Further Work . 85

References 87

Appendix A Project Specification 95

Appendix B Risk Assessment 97

Appendix C Ethical Clearance 101

Appendix D Code Listings 103

Appendix E Graphical User Interface 149

List of Figures

1.1 Top-down view of mill feeders as they feed onto fine screens 3

1.2 Banana screen used for fine ore classification. 4

1.3 The fine screening process being examined. 4

1.4 Top deck of banana screen. 5

1.5 Oversize return conveyor. 5

1.6 One of four nucleonic weightometers on the oversize return conveyor. . . . 6

2.1 An diagram of the k-fold cross-validation procedure 19

2.2 The software development cycle . 25

3.1 Mass Balance of ore streams in and out of fine screen. 28

3.2 Scattergraph of Total Oversize vs Predicted Oversize, linear model. 32

3.3 Scattergraph of Total Oversize vs Predicted Oversize, quadratic model. . . 33

3.4 Transport delays present from feed measurement to oversize measurement 34

3.5 Flow chart of the intended system architecture. 48

4.1 OPC client configuration in Graphical User Interface (GUI) application . 58

4.2 OPC read group tags in GUI application 58

4.3 OPC write group tags in GUI application 58

4.4 Block diagram of ValidateInput class implementation. 60

4.5 FSOS UI - Aggregator/Solver Configuration. 63

4.6 Excerpt from Fine Screen Oversize Solver (FSOS) GUI, showing the a

timeseries plot of screen feed-rates. 64

4.7 Excerpt from FSOS GUI, showing the model coefficient table. 65

4.8 Excerpt from FSOS GUI, showing timeseries plot and scatterplot compar-

ing actual with predicted oversize. 65

4.9 Functional diagram of DCS implemented input processing in preparation

for OPC-DA Read operations. 66

4.10 Functional diagram of DCS implemented calculation of model predcition

error. 68

4.11 Trend of predicted oversize ratio from Distributed Control System (DCS)

model following a plant disturbance. 70

4.12 Moving Root Mean Squared Error (RMSE) of the five simulation runs of

different window sizes (Forgetting Factor fixed at zero) 72

4.13 Trend of model coefficient estimates with window size, n = 100 000 (For-

getting Factor fixed at zero). 73

4.14 Trend of model coefficient estimates with window size n, = 1 500 000

(Forgetting Factor fixed at zero). 74

4.15 Fine screen 201 Feed presentation . 75

4.16 Effect of increasing screen feed on mill feed for a pair of screens. 78

4.17 Effect of changing the screen feed ratio on mill feed for a given total feed

to a pair of screens. 80

E.1 Screenshot of GUI developed for this project. 150

List of Tables

3.1 Transport delays to align measurements with total oversize return 35

3.2 Assessment of Algorithm Suitability . 38

3.3 Algorithm Benchmarking . 45

4.1 OPC Tag and Group Requirements . 57

List of Listings

4.1 Creating an OPCDA client in Matlab® 58

D.1 validateModels.m (Script) . 104

D.2 compareModels.m (Script) . 107

D.3 RecircModel.m (Class) . 110

D.4 visualiseModel.m (Function) . 113

D.5 createReadGroup.m (Class Method) . 116

D.6 createWriteGroup.m (Class Method) . 118

D.7 ValidateInput.m (Class) . 120

D.8 Aggregator.m (Class) . 124

D.9 Solver.m (Class) . 131

D.10 quadSolver.m (Function) . 134

D.11 quadPredict.m (Function) . 135

D.12 CircularBuffer.m (Class) . 136

D.13 testSolver.m (Class) . 141

D.14 feedratio.m (Script) . 144

D.15 model.m (Class) . 148

Acronyms

ANN Artificial Neural Network . 17

APC Advanced Process Control . 2

CV Coefficient of Variation . 60

DCS Distributed Control System . xvi

DE Differential Evolution . 16

FOPDT First Order Plus Dead Time . 30

FSOS Fine Screen Oversize Solver . xvi

GA Genetic Algorithm . 15

GUI Graphical User Interface . xv

HPGR High Pressure Grinding Roll . 2

HMI Human Machine Interface . 20

IMC Internal Model Controller . 16

MISO Multiple Input Single Output . 30

OLS Ordinary Least Squares . 13

OPC Open Platform Communications . 20

OPC-DA Open Platform Communications - Data Access 20

OPC-UA Open Platform Communications - Unified Access 21

OOS Out-Of-Sample . 19

PID Proportional, Integral & Derivative . 16

PSO Particle Swarm Optimisation . 15

PLC Programmable Logic Control . 20

QP Quadratic Programming . 15

RGA Real-coded Genetic Algorithm . 16

RMSE Root Mean Squared Error . xvi

SI Swarm Intelligence . 16

SDLC Software Development Life Cycle . 47

SVM Support Vector Machine . 17

SVR Support Vector Regression . 17

TDD Test Driven Development . 25

UML Unified Modelling Language . 49

Chapter 1

Introduction

This research project presents a real parameter estimation problem in the form of a fine

ore screening and conveying system where the instantaneous efficiency of eight vibrating

screens needs to be determined from existing data. Inadequate classification of ore is

an often overlooked cause of poor mill performance (Rotich et al. 2016, p. 3889) and

by obtaining a better understanding of individual screen performance, the impact on

production can be mitigated. In this respect, the absolute accuracy of the screen efficiency

estimates is not as important as its repeatability, which will allow the comparison between

each screen to be made, as well as a comparison with some baseline value. Through the

development of a linear system model, and the continuous estimation of its parameters, it

is expected that a model based optimising control strategy can be implemented, increasing

throughput and driving other decision making processes.

This dissertation will first provide an introduction to the plant in which this project is

based, and give an outline of the process streams that form the focus of the research.

It will be followed by an explanation of the challenges and opportunities that ultimately

motivated the subsequent objectives of this research. Chapter 2 then discusses the lit-

erature that was found to be relevant to the theoretical design and the implementation

of the proposed solution, starting with the general theory of ore screening and finishing

with concepts concerned with the software development. Chapter 3, forms the main body

of the work, and discusses the theoretical formulation of the system model, as well the

selection of algorithms and design of the system architecture. Chapter 4 discusses the

practical aspects of the implementation, provides an analysis of its efficacy gathered from

2 Introduction

testing and simulation, and demonstrates how the model outputs may be of benefit the

process control strategy. Finally, the conclusions presented in Chapter 5, compare the

outcomes achieved with those set out at the beginning of the project, and presents some

opportunities for further work and improvement.

1.1 Boddington Gold Mine

Newmont’s Boddington site is a gold and copper mine situated in the south-west of West-

ern Australia approximately 120 km from Perth. With an attributable gold production

of over 700 thousand ounces per year, the operation currently processes approximately 40

million metric tonnes of ore annually through a plant that includes crushing, screening,

milling, copper flotation and gold recovery operations (Newmont Corporation 2021). Con-

trol of the plant equipment is primarily performed with a Yokogawa DCS augmented with

many Advanced Process Control (APC) strategies, including expert systems optimising

the secondary crushing, milling and flotation circuits. The plant has recently undergone

significant upgrades to crushing area conveyor capacities, highlighting new bottlenecks

and new opportunities for optimisation.

1.2 Fine Screening Process

The focus of this research is on the fine screening process at Boddington that removes

oversize material from the fine ore-stream before reaching the ball mills. Prior to this,

coarse ore is crushed by four parallel High Pressure Grinding Rolls (HPGRs) that form

the the tertiary crushing plant. The crushed ore is then transported by conveyor to one

of eight fine ore bins. As can be seen from the photograph in Figure 1.1, the four milling

trains are then fed from the fine ore bins through a pair of banana screens (Figures 1.2, 1.4)

for each, with the oversize material reporting back to the tertiary crushing plant via the

return conveyor pictured in Figure 1.5.

1.2 Fine Screening Process 3

Figure 1.1: Top-down view of mill feeders (foreground) as they feed onto fine screens (red

star) prior to feeding the ball mills (background).

While the size distribution in the feed is wholly affected by upstream crushing processes,

this study is mainly concerned with the fine screens themselves, the feed to them, and

the common oversize return, as highlighted in Figure 1.3. From this figure, the following

major process flows can also be described.

Total Oversize Return is the combined mass flow of mostly coarse material that has

been rejected by the eight fine screens. There is only one oversize return conveyor

on which the material is returned to the crushing plant.

Total Fine Screen Feed is the total combined mass flow of feed that moves from the

fine ore bins to each of the fine screens for sizing (eight streams). At steady state,

this is equal to the tertiary crushing throughput, or fine ore bin feed rate.

Total New Mill Feed is the total mass flow into the milling circuit (four trains). It is

equal to total screen underflow and consequently, the Total Fine Screen Feed minus

the Total Oversize Return.

Recirculating Load is the ratio of total feed that is returned as oversize to the crusher

for reprocessing, i.e. Total Oversize Return ÷ Total Fine Screen Feed

1.2 Fine Screening Process 5

The fine screening area at Newmont Boddington Gold Mine forms the only connection

point between the fines crushing plant and the rest of the concentrator. Subsequently,

the performance of this circuit has significant impact on the achievable throughput and

ultimately metal production. An increase in recirculating load due to a drop in screen-

ing performance not only reduces the available feed to the mill in the short term, but

also places additional and unnecessary burden on the tertiary crushers. This reduction

in efficiency is thus compounded over the longer term into increased wear on crusher

components and increased power usage. As noted by Rotich et al. (2016), poor screen

classification is a major contributor to the high energy use associated with poor com-

minution performance in solid particulate industries.

Figure 1.4: Top deck of banana screen. Figure 1.5: Oversize return

conveyor.

6 Introduction

1.3 Motivation

While the individual fine screen feed rates and Total Oversize Return is known, there is a

lack of instrumentation to reliably measure the rate of individual screen oversize. While

there exists a measurement of oversize for each pair of fine screens (per mill train), the

nucleonic instruments shown in Figure 1.6 are not linear throughout their measurement

range and require significant conditioning to be representative of the actual oversize. The

compensation scheme currently used assumes that the fraction of oversize is equal across

all four milling trains (and all eight screens), leading any increase in oversize either due

to measurement error or performance degradation to be distributed evenly across all of

the units. An inability to easily attribute which screen is the source of increased oversize

makes it difficult to monitor circuit performance and possibly mitigate any issues before

throughput is affected.

Figure 1.6: One of four nucleonic weightometers on the oversize return conveyor.

Attempts have been made to install additional instrumentation to overcome these issues.

Ideally, the installation of an additional four weightometers on the oversize conveyor so

that the oversize on all eight fine screens could be measured would be a simple solution.

However, the physical construction of the plant left little room for such an arrangement,

making retrofitting impractical. Similarly, it was found that there was not enough room to

replace the existing nucleonic devices with a load-cell type weighframe that offers greater

accuracy without significant expenditure. Finally, a trial installation of a laser scanner

type instrument also proved to be unreliable. While initially promising, the performance

was unacceptable much of the time due to interaction with dust and steam in a challenging

environment.

1.4 Project Aim 7

Despite the challenges, the existing control arrangement has performed acceptably over

time. Historically, milling throughput had been constrained by the maximum crushing

output. However, recent upgrades to increase the capacity of major conveyors has facili-

tated much higher crushing rates, placing increased focus on downstream processes. Due

to the high throughputs involved, even a modest improvement to fine screen performance

in percentage terms can add substantial economic value.

1.4 Project Aim

Real-time determination of screen efficiency would allow early identification of failure

while also informing future maintenance strategies. With a robust, continuous measure-

ment of individual screen oversize, proper balancing of the screen feed to optimize mill

throughput could be achieved. There is also potential for the nucleonic measurements

to be removed entirely which would reduce the radiation risk on-site as well as reduce

ongoing maintenance costs. With these benefits in mind, while statically determining

these values offline from historical data has merit, this project aims to ultimately develop

an algorithm to perform online parameter estimation in the form of virtual measurement

points for continuous use by the DCS.

1.5 Objectives

In facilitating the success of this project, the following objectives have been set:

1. Review existing theory, models and methods for determining fine screen efficiency.

2. Define the structure of the model that best represents the system.

3. Research and compare algorithms used for parameter estimation, in the context of

the defined model structure and fine screen efficiency in general.

4. Using the selected algorithm(s), develop an application to identify the parameters

of the system model online, as a measure of fine screen efficiency.

5. Verify the performance of the model against actual plant operation.

8 Introduction

6. Use the derived model to assess the impact of adjusting the fine screen feed ratio

on mill throughput.

If time allows and the above objectives are met, this project will also:

7. Implement an online optimiser in DCS to balance the fine screen feed ratio.

8. Implement an alarming and monitoring scheme for fine screen efficiency.

9. Deploy the model as a portable package.

Chapter 2

Literature Review

This project requires research to be performed across three broad domains. First, a review

of the theory regarding the screening process is pivotal, as this will inform the derivation

of the plant model. The second area of interest is that of parameter estimation, in

which mathematical model structures, potential algorithms and selection techniques will

be assessed. The third and final area in the literature that will be reviewed regards the

software implementation, from the tools and software that may be of use and the overall

approach to the development of an application.

2.1 General Screen Theory

The basic premise of industrial screening is to separate granular particles under a target

size from those above it by passing the product through a mesh, grate or some other

aperture (Sullivan 2012, p. 1). As discussed by Sullivan (2012, p. 1), whether or not

a particle will pass through the given opening is entirely probabilistic and depends on,

amongst other things, the difference in size of the opening and the particle itself, and the

dimensions of the wire mesh or screening substrate.

There are other several factors that impact screen performance, including (Sullivan 2012,

pp. 3-9):

� Size and shape of material

10 Literature Review

� Feed density

� Moisture content

� Size distribution

� Screening media (material, shape, aperture etc.)

� Condition of screening media (binding/blocking, holed, missing etc.)

� Screen motion (amplitude and frequency of vibration, and bed velocity)

Vibrating screens are one of the most extensively used type of screening in minerals

processing for sizing, grading and dewatering applications (Wills & Finch 2015, p. 187).

By shaking (vibrating) the screen, the ore bed tends to stratify, allowing coarser particles

to move to the top, increasing the probability for smaller particles to fall through (Sullivan

2012, p. 1), and as such providing a significant increase in screening performance. While

correct excitation will increase the interaction between particles and screen openings,

excessive vibration may be detrimental by making the interactions too erratic and sparse

for proper separation (Wills & Finch 2015, p. 185).

For high tonnage situations, capacity and efficiency are equally important. By using

a slope that is initially steep but reduces towards the discharge end, banana or multi-

slope screens cause fast stratification of particles and hence boast far greater capacity

than conventional screens. The softening slope then reduces the average velocity of the

remaining material and thus maintaining high efficiency across the entire deck (Wills

& Finch 2015, p. 189). The Newmont Boddington Gold Mine utilises banana screens

extensively for this purpose, in requiring sustained high throughput and reliable sizing in

a challenging environment.

2.2 Screen Efficiency

According to Sullivan (2012, p. 1) a measure of screen efficiency that is used most often

is the ratio of the weight of the product that has passed the screen to the total weight

of undersize in the feed. Wills & Finch (2015, p. 182) provide a more accurate formula.

Given the total mass flow rate of feed to the screen, F , the mass fraction of material finer

than the desired size in that feed, f , the mass flow rate of the underflow stream, U , and

2.2 Screen Efficiency 11

the mass fraction of material finer than the desired size in the fine underflow stream, u,

the underflow efficiency, EU can be defined in Equation 2.1.

EU =
Uu

Ff
(2.1)

This definition, assumes that the desired product is in fact the undersize material. Given

mass flow in the oversize stream, O, and the fraction of undersize in that stream, o, a

measure for oversize efficiency, EO is then given by Equation 2.2 (Wills & Finch 2015, p.

182).

EO =
O(1 − o)

F (1 − f)
(2.2)

Wills & Finch (2015) also provide an equation for underflow efficiency in terms of the

undersize mass fractions only in the form of Equation (2.3).

EO =
(f − o)u

(u− o)f
(2.3)

It should be noted that while these descriptions of efficiency are the most used, they are

only appropriate for measuring performance on the same feed, as the difficulty of separa-

tion is not considered (Wills & Finch 2015, p. 182). Similarly, the amount of undesired

material present in either the undersize or oversize streams is ignored. Depending on

the application, calculating total separation efficiency may be more appropriate (Wills &

Finch 2015, p. 183).

Wills & Finch (2015, p. 182) also demonstrate simplifying assumption that can be made

to underflow efficiency. Provided that screen panels are intact, it can safely be assumed

that the oversize material present in the undersize is negligible, leaving the fraction of

undersize (u) to approach 1, giving Equation 2.4.

EU =
U

Ff
(2.4)

Using this simplification, Wills & Finch (2015, p. 183) finally provide an succinct calcu-

lation for circulating load in terms of underflow efficiency, C, presented as Equation 2.5.

12 Literature Review

C =
1

Euf
− 1 (2.5)

Where the circulating load is defined by (Wills & Finch 2015) as the ratio of oversize to

undersize flow, C = O/U . While this differs from the term Recirculating Load defined in

Section 1.2, one can appreciate its relevance.

2.3 Parameter Estimation

2.3.1 Linear Regression

Theory on linear models and linear regression is thorough and long-standing. An exhaus-

tive discussion on the developments in the field would be unnecessary but the fundamen-

tals are well discussed in any good statistics books such as De Veaux et al. (2016, pp.

198-262) and Darlington & Hayes (2016, p. 17-85).

Linear regression is the fitting of a linear model to a set of real world data. The line of

best fit is normally taken to mean the line that reduces the sum of the squared residuals

the most. For a single independent variable, it can be found in the form,

ŷ = b0 + b1x (2.6)

as given by De Veaux et al. (2016, p. 200), where ŷ is the predicted value of y. The value of

b1 is the slope of the linear model and can be easily found from the correlation coefficient,

r, and standard deviations of both x and y, by Equation 2.7 (De Veaux et al. 2016, p.

201).

b1 = r
sy
sx

(2.7)

The intercept, b0 can then be found by,

b0 = ȳ − b1x̄ (2.8)

2.3 Parameter Estimation 13

2.3.2 Multiple Linear Regression

Multiple linear regression takes these concepts, and applies them to higher dimensional

linear problems. Darlington & Hayes (2016, pp.64) gives the general model linear model

of k dimensions.

ŷ = b0 + b1x1 + b2x2 + · · · + bkxk (2.9)

= b0 +
k∑
j=1

bjxj (2.10)

De Veaux et al. (2016, p. 837) also provides a set of assumptions and conditions in order

for multiple regression to be applicable.

Linearity Scatterplots of y against each regressor should be approximately straight.

Independence The predictor values must be independent from each other

Equal Variance The error variability of each regressor should be similar

Normality The error residuals should approximate a normal distribution

There are several approaches to the estimating the parameters of the multiple regression

model. Dobson & Barnett (2018) provides extensive mathematical treatment of both

maximum likelihood and Ordinary Least Squares (OLS) techniques. Taken from Rencher

& Christensen (2012) and others, for an over-determined system the long-established OLS

solution is given by Equation 2.11.

β̂ =
(
XTX

)−1
XTY (2.11)

Where X and Y are the predictor and response matrices respectively, for the linear

system described by Equation 2.10. Due to the often expensive and likely impossible

matrix inversion operation, it is usually more favourable to perform QR decomposition

(Shaffer 2020) given by Equation 2.13.

14 Literature Review

X = QR (2.12)

∴ β̂ = R−1QTY (2.13)

Where Q is an orthoganal matrix and R an upper triangular one (Shaffer 2020). Such an

approach is implemented internally by Matlab®functions mldivide and fitlm to solve

most non-sparse linear problems (Mathworks 2021c, Mathworks 2021h).

2.3.3 Polynomial Regression

If a given system model is continuous but exhibits some curvature, linear regression

can be extended to include integer powers of the predictor variables (Weisberg 2013)[p.

109]. For a single regressor, the polynomial regression of degree d is given by Equa-

tion 2.14((Weisberg 2013)[p. 110]).

ŷ = b0 + b1x+ b2x
2 + · · · + bdx

d (2.14)

Quadratic regression is a special case of polynomial regression where d = 2 (Weisberg

2013)[p. 110]. For multiple regressors, powers of each variable can be included in the

linear sum, as well as their products, yielding Equation 2.15.

ŷ = b0 + b1x1 + b2x2 + b11x
2
1 + b22x

2
2 + b12x1x2 (2.15)

Provided that each term is either the product of an independent variable and a coefficient,

or a constant, it can be considered linear model. In the case of polynomial regression,

with some of the predictor variables squared, the model is still ‘linear in the parameters’

(Frost 2017a), and the problem can be solved through normal linear techniques such as

Ordinary Least Squares (OLS). This flexibility can invariably lead to a higher number

of regressors than required and, as Weisberg (2013) notes, a strategy to select or delete

regressors from the model is normally utilised. Similarly, over-fitting can arise if too high

of a degree is used as this may force the model to fit the noise as well as the data (Lever

et al. 2016). In such cases, some form of cross-validation is recommended.

2.3 Parameter Estimation 15

For single regressors, the Matlab®function polyfit can be used to fit data to an nth

order polynomial (Mathworks 2021l). Internally, this function simply calls mldivide after

transforming the single input vector, [x1 x2 · · · xm] into Vandemonde form given by:

V =

x1 x21 · · · xn1

x2 x22 · · · xn2
...

. . .
...

...

xm x2m · · · xn2

 (2.16)

By extension, nth order polynomial regression with multiple regressors can be performed

using any of the standard linear solver functions by first calculating vectors of each re-

gressor taken to the nth power, and concatenating this into a single matrix.

2.3.4 Quadratic Programming

For systems where constraints or bounds exist on the parameters, OLS, cannot be used.

Quadratic Programming (QP) can be utilised however, which finds the vector x that

minimises the quadratic function given by Equation 2.17, subject to linear bounds and

constraints (Mathworks 2021f).

min
x

1

2
xTHx+ cTx (2.17)

The Matlab®function lsqlin utilises this QP formulation in order to solve linear least

squares problems that include bounds or constraints. If no constraints are specified,

lsqlin simply falls back to using mldivide (Mathworks 2021g).

2.3.5 Metaheuristic Techniques

Metaheuristic search algorithms can be used to identify the parameters of a system model

by generating large amounts of candidate solutions in order to eventually arrive at choice

that best minimises the target cost function. The number of specific algorithms are nu-

merous and ever growing (Zelinka & Chen 2018), but leading approaches include Genetic

Algorithms (GAs) and Particle Swarm Optimisation (PSO). These algorithms make little

16 Literature Review

assumptions about the underlying search space and so they are well suited to problems

that include non-linear or non-differentiable functions, or incomplete data sets (Fleming

& Purshouse 2002). It can be seen in the literature that there are many competing

algorithm designs for within the GA and PSO domains.

Genetic Algorithms (GAs) are modelled on the process of natural selection to, over many

generations, develop sets of optimal solutions to complex tasks (Lewin 2005). According

to Renders et al. (1992), possible applications of the genetic algorithms include on-line,

off-line and supervisory optimization and control. An on-line, adaptive controller has

been developed by Dangprasert & Avatchanakorn (1996) that employs Genetic Algo-

rithms (GAs) in a simulated environment, though experimental results from Fister et al.

(2016) suggested that the time complexity of Genetic Algorithms may be suboptimal

when compared with other approaches. Genetic Algorithms (GAs) have also been used

for system identification and prove particularly useful in the identification of non-linear

systems (Fleming & Purshouse 2002, p. 1224). Chang (2007) notes that classical least

squares techniques are only suitable for linear problems and subsequently uses an Real-

coded Genetic Algorithm (RGA) to parameterise a model of known, non-linear structure.

PSO is a Swarm Intelligence (SI) algorithm that is designed to mimic the way birds flock to

a common goal, through the simple rule-based movements of individual agents through a

search space (Zhang et al. 2015). There is some research suggesting that PSO are generally

faster to converge on a solution than Genetic Algorithms. Coello & Lechuga (2002)

compare the performance of PSO to both sequential quadratic programming and genetic

algorithms in respect to the tuning of an Internal Model Controller (IMC) for a greenhouse

temperature system. They find that while PSO takes longer than the traditional approach,

it provided better performance overall and was faster than the genetic algorithm. Fister

et al. (2016) later provided an in depth comparison between many SI algorithms alongside

GA and Differential Evolution (DE). The authors find that PSO, was best suited to the

task of tuning the Proportional, Integral & Derivative (PID) controller of a 2DOF robot

arm mechanism, though it is noted that the low number of generations and population

size may favour the early convergence present in PSO.

2.3 Parameter Estimation 17

2.3.6 Artificial Neural Networks

A subset of machine learning, Artificial Neural Networks (ANNs) are modelled on the

human brain by approximating the signalling that occurs between neurons to build what

is in effect, a complex network of linear regression models (IBM Cloud Education 2020).

While there are many types of neural networks, the feed-forward or convolutional type

is the most common in the literature. A feed-forward ANN is organised in layers of

interconnected nodes that take input data, assign it a weight and if the sum of signals

at that node pass a certain threshold, the data is passed to the next layer (Frost 2017b).

Through the application of a supervised training regime, the predicition accuracy of an

ANN is improved over time, allowing them to perform both regression and classication

tasks where the structure of the relationship is unknown (IBM Cloud Education 2020).

Shanmugam et al. (2021) demonstrate the utility of ANN through the development of

a non-linear model for predicting the efficiency of screening coal, from moisture, screen

angle and screen frequency data. While their results were mixed, the study demonstrated

practical applications of ANN in mineral processing.

2.3.7 Support Vector Machine Regression

Support Vector Machines (SVMs) were originally developed to perform classification

tasks, in which it uses kernel methods to map the problem to a high dimensional space

and define a hyperplane that best separates data of different classes (Li et al. 2016). SVM

has since been adapted to regression problems, in which case it is generally referred to as

Support Vector Regression (SVR) in the literature. The standard form of SVR is gen-

erally suitable where some acceptable level of error in the prediction is tolerable, as the

cost function only considers points on the error margin boundary, and not those beyond

it (Sharp 2020). Zhang et al. (2016) train an SVM to predict the sieving efficiency of

a screen, through the experimental analysis of the effects of screen aperture, length and

inclination. The authors presented a rigourous methodolgy that paired cross-validation

with a genetic algorithm to tune the hyperparameters of the SVM. This resulted in siev-

ing efficiency model that was reportedly more accurate than both ANN and empirical

formula (Zhang et al. 2016).

18 Literature Review

2.4 Model Validation

In order to compare two or more models, statistical methods must be employed to estimate

the true predictive power of the each model using the available existing data (Cerqueira

et al. 2020, p. 1998). For a fair and unbiased estimation of a model’s accuracy and

generalising ability, it is necessary to assess the models performance on data that it was

not trained on (Vanwinckelen & Blockeel 2012, p.1). If there are large amounts of data

available, it may be possible to simply split the data set in two, however for sparse or

smaller sets of data, a resampling technique may be required in order to maximise the

use of the existing samples for both testing and training in a way that does not bias

the performance estimate (Brownlee 2018). This resampling is generally known as cross-

validation and is often applied to both classification and regression problems (Bergmeir

et al. 2018).

2.4.1 k-fold Cross-Validation

Of cross-validation, a k-fold approach is clearly the most discussed in the literature.

Pramoditha (2020) presents a simple introduction to this technique, and a visual repre-

sentation of the procedure is shown in Figure 2.1. Adapted from Pramoditha (2020), the

figure also shows the selection of k = 10 folds, which is often presented as the common

choice in the literature (Brownlee 2018). The basic premise is to randomly split the data

into k blocks, reserve one of the blocks for testing the model, and then use the remaining

blocks for training the model. The process is repeated until all of the blocks have been

used to test the model. At each testing iteration, a record of the model’s error or score

is taken and the combined results are usually averaged to form a summary of its perfor-

mance (Brownlee 2018). As noted by Brownlee (2018), recording the Standard Deviation

of the performance indicator may also be beneficial.

Jung & Hu (2015) provides an excellent theoretical treatment on the k-fold cross-validation

before presenting an averaging approach to generate an ’ultimate’ model from the many

candidates that the cross-validation procedure was applied to. Others advocate for re-

peated cross-validation, though Vanwinckelen & Blockeel (2012) demonstrate that this

does not improve the performance estimate once the entire dataset has been exhausted.

20 Literature Review

2.5 Software and Systems

Implementation of the modelling and parameter estimation techniques discussed could

ultimately take place on a variety of systems using many different software packages.

This choice however, is confined to the context in which this research takes place, and the

specific control system installed at Newmont Boddington Gold. Additionally, a software

package is desired that provides relatively simple to use implementations of the required

algorithms, and is also able to communicate with the installed control system for the

acquisition of data. To this end, Matlab®was chosen as the ideal option.

An overview of the systems and software relevant to the research follows.

2.5.1 Distributed Control System

A DCS is suite of interconnected software, hardware and computer systems whose primary

goal is to provide automated control and operation of an industrial plant (Yokogawa n.d.b).

As opposed to Programmable Logic Controls (PLCs), which traditionally control a single

unit, DCS provides plant-wide control and optimisation, and as such are employed to

supervise large or complex processes with large number of control loops (Control Station

2018). Yokogawa’s DCS platform, CentumVP, installed at Newmont Boddington Gold

Mine, provides an extensive combination of Human Machine Interfaces (HMIs), regulatory

control, APC, alarm management, a common tag database and many other features within

a unified engineering package (Yokogawa n.d.b).

2.5.2 OPC Communication

Open Platform Communications (OPC) is a set of standards for the transfer of data

between automation and industrial components in a secure and reliable manner (OPC

Foundation n.d.). The first specification, Open Platform Communications - Data Ac-

cess (OPC-DA), was only available to the Windows operating system, and leveraged Mi-

crosoft’s DCOM framework in a client-server model to provide access to real-time process

data (Mahmoud et al. 2015, p. 158). The convenience of OPC-DA’s standard interface,

is that software can be developed without knowledge of the target device, allowing for the

integration of advanced automation solutions in an efficient and const effective manner

2.5 Software and Systems 21

(Mahmoud et al. 2015, pp. 155-166).

Newer and more interoperable standards such as Open Platform Communications - Uni-

fied Access (OPC-UA) have been developed, though it can be seen across the available

literature that OPC-DA remains the de facto standard across multiple industries. Yoko-

gawa’s CENTUM Exaopc platform, deployed at Newmont Boddington Gold Mine, uses

OPC-DA for data access (Yokogawa n.d.a). The Matlab®OPC Toolbox allows the real-

time access of plant data using OPC-DA, enabling Matlab®programs to read and write

data from directly to a DCS (Mathworks 2021i).

2.5.3 MATLAB

Matlab®is a high-level programming language based on matrices that is designed to

approximate the natural expression of mathematics. Used in a variety of applications

such as signal processing and control systems, the product is extended through the use of

Toolboxes, though there is large amounts of functionality found in the in-built functions

(Mathworks 2021n).

The following subsections, provide a brief overview of some Matlab®functions that have

been found to be relevant to this research:

mldivide

The Matlab® function mldivide or Matrix Left Division, is a simple built-in function

to solve systems of linear equations of the form Ax = B. The actual algorithm employed

by Matlab® to achieve this is dependent on the structure of the input data. According

to the documentation, for a non-sparse rectangular array where the number of rows (ob-

servations) is much greater than the number of columns (predictors), mldivide returns

the least squares solution using QR Decomposition (Mathworks 2021h).

fitlm

Much like mldivide, fitlm from the Matlab® Statistics and Machine Learning Toolbox

uses generally QR Decomposition to provide a least squares solution to a system of linear

22 Literature Review

equations. The main advantage of this function is that it returns a full linear model

object that consists of the estimated parameters, residuals and error statistics (Mathworks

2021c). While there are a few more options than mldivide, such as robust optimisation

using Weighted Least Squares, there is no facility to add constraints or bounds.

lsqlin

lsqlin from the Matlab® Optimization Toolbox is a constrained linear least square

solver that also takes different code paths dependedent on the type of problem passed

to the function. The default algorithm is a quadratic programming iterative method

called ‘interior-set’ (Mathworks 2021f), though if there are no constraints given, lsqlin

refers the solution to mldivide (Mathworks 2021g). There is also an option to use other

algorithms such as ’trust-region-reflective’ and ’active-set’ though these are more suited to

problems with large amounts of data or large numbers of linear constraints, respectively

(Mathworks 2021f).

particleswarm

The function particleswarm is part of the Matlab® Global Optimization Toolbox,

and implements the metaheuristic global search technique, Particle Swarm Optimisation

(PSO). As described in Section 2.3.5, this algorithm generates a population of candidate

solutions or ’particles’, that iteratively move through the search space in order minimise

a cost function (Mathworks 2021j). particleswarm allows upper and lower bounds to be

set and has many configuration hyperparmaeters available to be set such as swarm size,

inertia range and adaptive neighbourhood size, as well as options for both parallel and

vectorized operations (Mathworks 2021j).

ga

The function ga is part of the Matlab® Global Optimization Toolbox, and implements

the metaheuristic global search technique, Genetic Algorithm (GA). As described in

Section 2.3.5, this algorithm generates a population of candidate solutions, that through

the application of a fitness function and the mechanisms of mutation and selection, move

2.5 Software and Systems 23

through search space to arrive at the global minimum(Mathworks 2021k). ga allows upper

and lower bounds to be set, as well as linear equality and equality constraints. It also has

many configuration hyperparameters available to be set such as population size, cross-

over fraction and elite count, as well as options for both parallel and vectorized operations

(Mathworks 2021k).

fitrnet

The fitrnet function, from the Matlab® Statistics and Machine Learning Toolbox can

be used to train a feedforward ANN model. The function takes predictor and response

data and returns a trained regression neural network object. The model used consists of

a single fully connected hidden layer with 10 outputs by default, but is fully configurable,

allowing both the number of hidden layers and their size to be set, as well other options

for customization, including the activation functions, and initial weights and tolerances

(Mathworks 2021d).

fitrsvm

The Matlab® function, fitrsvm from the Statistics and Machine Learning Toolbox

creates and trains a Support Vector Machine (SVM) regression model based on a set of

predictor and response data. According ot Matlab®, this type of model is only suitable

for low to moderate dimensional data (Mathworks 2021e). Matlab® implements what

they refer to as epsilon-insensitive SVM regression, that attempts to find an n-dimensional

funciton that has as little curvature as possible, while minimising the error between the

function and the response variable for all observations (Mathworks 2021e). The function

allows for k-fold cross validation internally, as well provides a parallell processing option.

cvpartition

The process of partitioning a data set into n random sets for cross-validation is simplified

through the use of the cvpartition function from the Matlab® Statistics and Machine

Learning Toolbox. This function provides takes as an argument, the number of observa-

tions n and returns a cvpartition object that contains the indices of the training and test

24 Literature Review

sets, for use by other functions such as crossval. Multiple types of partitions are able

to be generated including leave-one-out, as well as stratified and non-stratified variants

of k-fold and holdout cross-validation(Mathworks 2021b).

crossval

The crossval function is also part of the Statistics and Machine Learning Toolbox in

Matlab® and provides an unbiased estimate of a model’s loss (or error) using cross-

validation (Mathworks 2021a). The function takes arguments for a loss function as well

as for predictor and response data. It then uses either the selected partitioning strategy

(passed as argument) or the provided cvpartition object to issue training and testing

data sets to the provided loss function, which should return a loss value such as RMSE

for that iteration. The mean of these loss values are then combined for the final estimate

of model performance (Mathworks 2021a).

2.5.4 Software Development Life Cycle

A life cycle, when prescribed to software development, is a conceptual model that encap-

sulates how a required software system is to be brought into reality, through its design,

implementation, maintenance and eventual decommissioning (IEEE 2017, p. 17), simi-

lar to that shown in Figure 2.2. A traditional approach to the development of software

follows sequential steps of intitiation, requirement definition, design, construnction and

then testing, commonly referred to as the ”waterfall” model (IEEE 2017, p. 18). The

challenge of this approach is that unless the entire project requirements are intricately

known in advance, there is a high likelihood that changes will need to be made at later

stages that are not budgeted for, neccessitating a need for a more incremental or iterative

approach(IEEE 2017, p. 18).

Alternative approaches have been devised to mediate these issues, such as Iterative Water-

fall, Spiral Model and V-Model, though all have their own limitations (Kumar & Rashid

2018). Clearly, the most popular approach in recent literature is a model known as Agile.

Ultimately, Agile development breaks a software project up into smaller more deliver-

able increments, allowing a faster, more flexible programming approach (Atlassian 2021).

While most features of agile are specific to managing teams and dealing with clients,

2.5 Software and Systems 25

Figure 2.2: The software development cycle (Cliffydcw 2012). Used under a CC Attribution-

ShareAlike 3.0 licence (https://creativecommons.org/licenses/by-sa/3.0/)

there is significant merit in following an iterative approach. One specific component of

the Agile model that is of particular value is Test Driven Development (TDD), which

places testing at the forefront of iterative development (Johnson 2012). A typical TDD

methodology would include:

1. Define application requirements based on system architecture,

2. Write acceptance tests,

3. Define unit requirements (modules),

4. Write unit tests for scripts, classes and functions as per Mathworks (2021m),

5. Write code to pass unit tests

6. Connect units and test entire application.

This approach to development should not be a linear one, and it is expected that as

development and testing progress, both unit requirements and tests would evolve. The

critical point is that the all tests should be run when ever a change is made to ensure

that functionality has not regressed (Mathworks 2021m).

26 Literature Review

2.6 Research Gap

The prediction of vibrating screen efficiency is an emerging research area and most tech-

niques still rely heavily on laboratory environments or are computationally expensive. It

is clear that more work is required here. Despite the numerous other factors involved,

measurements of mass flow in the underflow and overflow streams of a real plant give

the simplest indication of real performance. While little research could be found that at-

tempts to calculate fine screen underflow efficiency in an online manner, this could be due

to the specific nature of the problem in question. Regardless, there is a clear opportunity

to apply parameter estimation techniques to solving such a problem.

Approaches for parameter estimation and optimisation are thoroughly presented in the

literature. While the evolutionary approaches discussed do seem more suited to non-

linear problems, there are many areas where they perform exceptionally well. A further

benefit of these techniques is that through the use of an objective cost function, additional

constraints and goals can more readily be integrated into the model. On the other hand,

the advantages and simplicity of multiple linear regression are well known and should be

the technique of choice if the system can be accurately modelled that way. Regardless,

much of the research is applied to either simulated or heavily curated environments. The

exploration of the competing parameter estimation algorithms in the context of a real

world problem is a worthwhile endeavour.

Chapter 3

Methodology

The objectives of this research project are encapsulated by four distinct phases.

Formulation of the System Model

Assessment of algorithms to estimate the parameters of the model

Implementation of the parameter estimator, online optimiser and, alarm and monitor-

ing scheme

Verification of the performance and accuracy of implementations

This chapter will subsequently discuss the formulation of the system model, the selec-

tion of an appropriate algorithm in order to meet the stated objectives and the overall

architecture that will be required to complete the solution. With this defined, an outline

of the verification procedures that will ideally be used to assess the implementation’s

effectiveness will then be provided. Additional features that complement the final imple-

mentation, such as online feed ratio optimisation and an alarm an monitoring scheme will

be discussed, and a review of the minimum requirements of each shall be given.

3.1 System Model Formulation

Following on from the review in Section 2.2, there are numerous methods in development

to predict the performance of vibrating screens. Most numerical and empirical models of

28 Methodology

screens however, depend on measurements that are difficult to obtain on a regular and

frequent basis outside of a laboratory setting. Regardless, these models are generally only

applicable for the exact physical arrangement and feed on which they were designed. In

order for such models to be utilised in this research, a significant amount of experimen-

tation would be required to fully characterise the installed equipment in-situ. Such an

approach is not feasible, would result in wholesale disruption and is outside the scope of

this project.

In the context of needing to measure screen efficiency as opposed to predicting it, the

problem is better treated at a macro level through a model based on the mass balance of

the entire fine-screening circuit.

3.1.1 Static Model

As starting point in developing a system model, a mass balance of the fine screening

circuit at steady state can be made. As shown for a single screen in Figure 3.1, the total

feed to the circuit Ṁin, is equal to the sum of both the undersize and oversize streams

from each of the eight fine screens.

Ṁin =

8∑
n=1

Ṁn, oversize +

8∑
n=1

Ṁn, undersize (3.1)

 �̇�𝑛

 𝑅𝑛 �̇�𝑛

 (1 − 𝑅𝑛) �̇�𝑛

Feeder

Return Conveyor

Ball Mills

Screen

Figure 3.1: Mass Balance of ore streams in and out of fine screen.

Considering just the oversize ore stream from Equation 3.1, it can then be demonstrated

that the Total Oversize Return, Ṁoversize is equal to the sum of the products of screen

feed, Ṁn and some factor Rn.

3.1 System Model Formulation 29

Ṁoversize =

8∑
n=1

RnṀn (3.2)

Where,

Rn =
Ṁn, oversize

Ṁn

(3.3)

Rj is the ratio of the mass flow of oversize material to the mass flow of new feed Mn for

each screen n, and is synonymous with the recirculating load. As discussed in Section 1.2,

at steady state, the recirculating load for the entire fine screen circuit, RTotal is,

RTotal =

∑8
n=1 Ṁn

ṀTotal

(3.4)

The results derived in Equations 3.2 and 3.3 should be all that is required in order to

model the oversize of each screen. It would be beneficial however, to relate this back the

general measures of efficiency discussed in Section 2.2. Given equation (2.4) from Wills

& Finch (2015, p. 182),

EU =
U

Ff

and the fact that, F = O + U , we can derive a formula that relates the recirculating

load value used by Newmont to underflow efficiency in much the same manner as Wills

& Finch (2015, p. 183) in equation (2.5).

Defining the recirculating load of any individual screen, n as,

Rn =
On
Fn

(3.5)

And the mass flow balance at steady state being,

On = Fn − Un (3.6)

Substituting equation (3.6) into (3.5) gives,

Rn = 1 − Un
Fn

(3.7)

30 Methodology

Rearranging and substituting equation (2.4) into (3.7) then gives,

Rn = 1 − EU,nfn (3.8)

Finally, defining underflow efficiency as,

EU,n =
1 −Rn
fn

(3.9)

Arriving at the quite obvious conclusion that the underflow efficiency is directly propor-

tional to 1−Rn, the recirculating load or oversize ratio, and inversely proportional to the

mass fraction of undersize in the feed to the screen, fn.

We can also make the reasonable assumption that fn should generally be constant and

equal across all eight screens, provided that the upstream crushing equipment is operating

to specification. It follows that any deviation of a single Rn from RTotal indicates a change

in efficiency of that individual screen n, and that an equal change in all values of Rn (or

RTotal) would instead suggest a change in upstream performance. The oversize ratio,

Rn, as defined in Equation 3.3, is therefore an appropriate single measure of fine screen

efficiency for the purposes of this project.

3.1.2 Dynamic Model

Equation (3.2) formulates a static model relating the total mass flow of oversize return

as the linear combination of eight inputs. To allow continuous estimation of efficiency, a

more dynamic definition is required. The most commonly used approximation for simple

processes is the that of a First Order Plus Dead Time (FOPDT) model. By treating

the fine screens and return conveyor as a linear, Multiple Input Single Output (MISO),

FOPDT system, the individual oversize ratio of each screen can be treated as the unknown

input gains and solved given an appropriate data set.

Take the general form of an FOPDT model given in discrete time by King (2016, p. 13),

PVk = a0 + a1PVk−1 + b1MVk−θ/ts (3.10)

a0 = (1 − e−ts/τ)bias a1 = e−ts/τ b1 = β(1 − e−ts/τ) (3.11)

3.1 System Model Formulation 31

Where β is the process gain, τ is the process lag, θ is the process deadtime, ts is the scan

time and k is the current timestep.

A single fine screen stream, n, from feeder through to return oversize conveyor can then

be modelled as,

yn(k) = a0 + a1y(k − 1) + b1xn(k − θ/ts) (3.12)

Where yn(k) is the oversize mass flow for a given screen feed xn at timestep k. Taking

the DCS scan interval ts = 1 and a bias of zero, this simplifies to

yn(k) = a1y(k − 1) + b1x(k − θ) (3.13)

Finally, as this process only consists of the vibrating screens and conveyors, it is a safe

assumption that the process lag is negligible and the only dynamic effect that needs to

be considered is pure deadtime in the form of transport delay between each measurement

point. Tending τ to zero leads to,

lim
τ→0

a1 = 0 (3.14)

lim
τ→0

b1 = βn (3.15)

∴ yn(t) = βnx(t− θ) (3.16)

Combining Equations (3.16) and (3.2), the dynamic response of the entire MISO system

at time t can now be described as,

y(t) = β1x1(t− θ1) + β2x2(t− θ2) + · · · + β8x8(t− θ8) (3.17)

y(t) =

8∑
n=1

βnxn(t− θn) (3.18)

or in matrix form,

3.1 System Model Formulation 35

Table 3.1: Transport delays to align measurements with total oversize return

Delay (s)

n Stream
Feeder To

Nucleonic

Nucleonic

to Return

Weighframe

Total Delay

(θ)

1 Screen 1A 21 15 36

2 Screen 1B 22 15 37

3 Screen 2A 21 21 42

4 Screen 2B 22 21 43

5 Screen 3A 21 26 47

6 Screen 3B 22 26 48

7 Screen 4A 21 32 53

8 Screen 4B 22 32 54

36 Methodology

3.2 Assessment of Algorithms

The review of literature in Section 2.5.3 identified several algorithms in the form of Mat-

lab® functions that may be suited to the task of parameterising the system model. In

meeting objective 3, a comparison of the features and performance of each method needs

to be performed so that the ideal implementation can be constructed. Firstly, the generic

requirements shall be outlined as well as the tools that are available for use. The shortlist

of candidate algorithm will then be presented without comment, and an assessment of

these algorithms against the requirements will be made.

3.2.1 Requirements

The problem to be solved is that of the estimation of multiple parameters that charac-

terise a linear, MISO system, as defined in Section 3.1. This can be framed either as an

identification problem or an optimisation problem with a singular objective, namely to

find the vector of β values that minimise the difference between predicted oversize, ŷ and

actual oversize return, y.

For an ideal algorithm in this context, the following characteristics must be present:

Suitable in that the algorithm is capable of solving the given objective function using

the defined model structure without unnecessary complexity.

Accurate in terms of both the predicted oversize value and the estimated parameters

themselves.

Repeatable so that solution is stable and gives the consistent outputs.

Efficient in order to provide prompt calculations with minimal computing resources, and

this more easily re-deployable.

The remainder of this subsection discusses the tools and procedures that will be employed

to assess the algorithms against the above measures.

3.2 Assessment of Algorithms 37

3.2.2 Tools

While the general suitability of an algorithm can be assessed through a review of the

literature alone, the remainder of the required characteristics will need to be benchmarked

against historical data. This will require the following resources:

1. OSISoft® PI Historian Data Archive

2. Windows PC or Server meeting recommended requirements

3. MathworksMatlab® R2018a or later

4. Matlab® Interface for OSISoft®PI System

5. Matlab® Statistics and Machine Learning Toolbox

6. Matlab® Global Optimization Toolbox

7. Network connection between Matlab® host machine and OSISoft® PI server

3.2.3 List of Candidate Algorithms

From the discussion in Section 2.5.3, the shortlist of candidate algorithms are as follows:

mldivide (Matrix Left Division)

fitlm (Fit Linear Model)

lsqlin (Constrained Linear Least Squares)

particleswarm (Particle Swarm Optimisation)

ga (Genetic Algorithm)

fitrnet (Fit Neural Network)

fitsvm (Fit Support Vector Machine)

3.2.4 Suitability Assessment

The first characteristic to be assessed is the algorithm suitability. The assessment con-

tains a list of features that, make the algorithm a realistic and achievable candidate for

38 Methodology

Table 3.2: Assessment of Algorithm Suitability

Suitability Criteria

Candidate

Multiple

Inputs

(M1)

Inter-

pretable

(M)

Bounded Simplicity
Literature

Support

Total

Score

(Yes/No) (1=Bad, 5=Good)

mldivide Yes Yes 1 5 5 11

fitlm Yes Yes 1 4 5 10

lsqlin Yes Yes 5 4 5 14

particleswarm Yes Yes 5 2 4 11

ga Yes Yes 5 2 4 11

fitrnet Yes No - - - 0

fitrsvm Yes No - - - 0

1 M denotes a mandatory requirement.

implementation, shown in Table 3.2. Features marked with an M denote a mandatory

feature that immediately disqualifies the algorithm from further investigation.

The justification for these criterion follows.

Multiple Inputs are required in order to match the inputs used in the derived system

model.

Interpretable in that the algorithm is able to specifically estimate the parameters of a

system described as per Equations 3.18 and 3.22. A black-box will not provide the

transparent structure and interpretability required.

Bounded so that the parameter estimations are kept within the expected range.

Simplicity in order to reduce the development time to suit the relative simplicity of the

problem.

Literature Support should be strong so that there is enough resources available to

implement the algorithm free from.

Following the assessment, only four algorithms with the highest score were selected for

3.2 Assessment of Algorithms 39

further testing. This is a critical point that will ensure unnecessarily time-consuming

work is not performed. Considering the known, relatively simple model structure, and

the mostly black-box nature of the ANN and SVM approaches, these techniques were elim-

inated from consideration outright. Of the remaining algorithms, mldivide and fitlm

are almost identical, with both using a QR factorisation approach and neither accepting

bounds on the parameters. The main difference is the simplicity of mldivide in that it

simply returns the estimated parameters while fitlm returns a ’linear model’ structure.

The lsqlin however, also provides a simple least squares function but additionally allows

bounds and linear constraints to be used.

The two metaheuristic techniques in GA and PSO both accept parameter bounds and

constraints, and they are also more flexible in the model structure requirements. This

however comes at a greater complexity in setup and large amount of hyperparameters

that need to be set. Much of the intricacies of such algorithms are well abstracted away

by the Matlab®functions and may not necessarily be an issue.

With these points in mind and the scores shown in Table 3.2, the candidate algorithms

selected for further analysis are:

1. mldivide (Effectively QR Decomposition)

2. lsqlin (Constrained Linear Least Squares)

3. particleswarm(Particle Swarm Optimisation)

4. ga (Genetic Algorithm)

3.2.5 Usage and Parameterisation

The following brief subsections outline the basic code required to use and parameterise

each of the candidate algorithms that were selected for further analysis in the previous

section. Each of these algorithms need to be able to estimate the parameters of both

the linear and quadratic model structure. Fortunately, the simple linear sum structures

defined in both Equations 3.18 and 3.22 allow for this, as will be demonstrated.

Effectively, all combinations of the model structure and solver algorithm need to solve

the following linear overdetermined system with m observations.

40 Methodology

Ax = b (3.26)

Where A, is an m x n matrix of predictor variable observations, b is an m x 1 column

vector of response variable observations (the actual oversize), and x is an n x 1 vector of

unknown coefficients.

For the linear model structure, n = 8 and the columns of A simply form the feed to each

screen.

For the quadratic model structure, n = 16, and the columns of A are extended with the

the square of each of the screen feeds, as described in Section 2.3.3.

It follows that the overarching requirement of the following algorithm implementations is

that they all accept an m x n matrix of predictor observations and an m x 1 vector of

response observations, and return n coefficients.

mldivide

As previously stated, for an overdetermined system and non-sparse rectangular matrix,

mldivide employs a QR decomposition based solver function to solve the linear system

Ax = b. Matlab®defines a left-leaning backslash, ‘\’, as the built-in operator to

perform mldivide operations. It is not possible to set bounds or constraints on the

estimated parameters and there are no other configuration options required when calling

mldivide (Mathworks 2021h).

Usage:

1 % For linear system Ax = b

2 x = A\b;

lsqlin

The constrained linear least squares solver, implemented by the lsqlin function in Mat-

lab®, applies different solver method dependent on the arguments provided. Most impor-

tantly if constraints or bounds are provided, a QP method will be employed (Mathworks

3.2 Assessment of Algorithms 41

2021g). lsqlin takes many optional arguments, though most are not needed for this

problem.

Knowing that it is physically impossible for the coefficients to be outside the range of 0 to

1, lower (lb) and upper (ub) bounds of all coefficients will be set to 0 and 1 respectively,

as shown in the below listing. The lsqlin function also outputs diagnostic information

on when the solution converges so an options structure will also need to be passed to

the function to disable this feature. The final consideration is the omission of unneeded

arguments in the main function call. This can be achieved by setting irrelevant arguments

to an empty array with [], as shown in the following listing.

Usage:

1 lb = zeros(1,n);

2 ub = ones(1,n);

3 opts = optimset('display','off');

4 % For linear system Ax = b

5 x = lsqlin(A, b, [], [], [], [], lb, ub, [], opts);

particleswarm

Compared to mldivide and lsqlin, the usage of the particleswarm function in Mat-

lab®, is more involved as the algorithm makes no assumptions of the model structure.

particleswarm, requires a function handle to a cost function that can only take one ar-

gument, the vector of coefficients, and return the cost of that combination (Mathworks

2021j). In order to integrate the training data, a strategy of nested anonymous functions

must be used, as shown in the below listing.

Also passed to the particleswarm function, is the number of coefficients, n, the lower (lb)

and upper (ub) bounds, and an options structure (opts). While there are a plethora of

ways to customise the swarm, the default options were generally used, with the exception

of the those shown in the following listing.

Usage:

1 lb = zeros(1,n);

2 ub = ones(1,n);

3 opts = optimoptions('particleswarm',

42 Methodology

4 'SwarmSize', 100, ... % default = min(100,10*nvars)

5 'FunctionTolerance', 1e-7, ... % default = 1e-6

6 'UseVectorized', true, ... % default = false

7 'display', 'off'); % default = 'on'

8

9 % For linear system Ax = b

10 % Cost function (Vectorised RMSE of oversize model)

11 cost = @(x, A, b) sqrt(mean((A*x' - b).ˆ2, 1));

12

13 % PSO function can only have one input argument

14 trainFunction = @(x) cost(x, A train, b train)';

15

16 x = particleswarm(trainFunction, n, lb, ub, opts);

ga

The configuration of the Genetic Algorithm (GA) function ga in Matlab®, is similar

to that of particleswarm. It also requires a function handle to a cost function that can

only take one argument, the vector of coefficients, and return the cost of that combination

(Mathworks 2021k). Once again, the training data is included through the use of nested

anonymous functions as shown in the below listing.

The main difference is there is also an option to pass linear inequality and equality con-

straints in addition to bounds. As this feature will not be used, passing an empty array

with [] safely ignores these arguments. Also passed to the ga function, is the number of

coefficients, n, the lower (lb) and upper (ub) bounds, and an options structure (opts).

While there are a plethora of ways to customise the genetic algorithm, the default options

were generally used, with the exception of the those shown in the following listing.

Usage:

1 lb = zeros(1,n);

2 ub = ones(1,n);

3 opts = optimoptions('ga',

4 'PopulationSize', 200, ... % default = 200

5 'FunctionTolerance', 1e-7, ... % default = 1e-6

6 'UseVectorized', true, ... % default = false

7 'display', 'none'); % default = 'on'

8

3.2 Assessment of Algorithms 43

9 % For linear system Ax = b

10 % Cost function (Vectorised RMSE of oversize model)

11 cost = @(x, A, b) sqrt(mean((A*x' - b).ˆ2, 1));

12

13 % GA function can only have one input argument

14 trainFunction = @(x) cost(x, A train, b train)';

15

16 mdl = ga(trainFunction , n, [], [], [], [], lb, ub, [], opts);

3.2.6 Performance Assessment

The assessment of algorithm suitability in Section 3.2.4 allowed a short-list of four com-

peting algorithm candidates to be selected. Of these, reference implementations were

developed in the preceding section to allow for further benchmarking. Each algorithm

was to be tested against both the linear and quadratic model structures. The aim of this

assessment is not to develop a complete program for online parameter estimation, but to

quantify the relative performance of each competing model based on a static set of sample

data. In this regard, and to ensure objective fairness in the comparison, the reference

implementations adhere to the following:

� Take a pre-processed data set of fine screen feed rates and total oversize observations.

� Return an estimation of the eight (8) unknown values of βn in the case of a linear

model or sixteen (16) unknown values in the case of the quadratic one.

� Use a single process thread at all times, though vectorised operation is allowed.

� Do this only once per execution.

All models will be tested against the same set of data. The data extracted from the PI

Historian Data Archive consisted of the following:

� 120000 timestamped observations over a 200 day period.

� Each observation consisted of 8 x Fine Screen feeder mass flow rates, and 1 x Total

Oversize Return mass flow rate, all in dry tonnes per hour.

� The period of time covered, is during a period where no serious issues or shutdowns

have occurred in the fine screening area.

44 Methodology

Given this data set, some pre-processing needed to occur prior to testing. Firstly, all

the screen feed-rates were time-aligned with the total oversize measurement as per the

transport delays given in Table 3.1. This ensures that data can be treated as ’static’

and the simple model structure can be used. With this completed, the final step of pre-

processing was to eliminate any observations that contained bad or insufficient data. If

a single point in an observation was questionable, the entire row was be discarded. With

the sanitisation process complete, the final data set contained a total of 108088 good

observations.

With the pre-processed data set and reference implementations developed, a comparison

of the algorithm’s performance was carried out using the k-fold cross-validation technique

discussed in section 2.4, and based on the general ideas outlined by Cerqueira et al. (2020),

Vanwinckelen & Blockeel (2012), Pramoditha (2020) and others. As is common in the

literature, a standard selection of 10 folds was used (k = 10). At every validation iteration,

the RMSE and execution time was recorded for each of the candidate algorithms.

The RMSE summarises the error between the actual y and predicted ŷ output over N

observations, and is defined as in Equation 3.27, below.

RMSE =

√∑N
n=1(ŷ − y)2

N
(3.27)

At the end of the procedure, the mean RMSE, the standard deviation of the RMSE, and

the mean execution time provide effective measures of the accuracy, repeatability and

efficiency of the algorithm, respectively.

The subsequent cross-validation strategy is as follows:

1. Extract required dataset from PI Data Archive.

2. Pre-process the dataset as per requirements.

3. For each candidate algorithm, perform 10-fold cross-validation as per Figure 2.1.

4. Calculate and record the RMSE and execution time for each candidate at each

iteration (10).

5. Calculate the mean of the RMSE results for each candidate algorithm.

3.2 Assessment of Algorithms 45

6. Calculate the standard deviation of the, RMSE results for each candidate algorithm.

7. Calculate the mean of the execution time results for each candidate algorithm.

8. Tabulate and assess the results, then select the candidate.

Listing D.1 from Appendix D provides the Matlab®implementation of the cross-validation

procedure performed on the candidate algorithms. Partitioning of the data-set was per-

formed using the cvpartition function and 10 folds. Each of the reference implemen-

tations were wrapped in a cross-validation function that could be passed directly to the

crossval function and return the required performance measurements. While the model

functions themselves were single threaded, parallel processing was enabled to allow mul-

tiple folds to be evaluated simultaneously, reducing the overall time taken to perform the

validation. The subsequent results from this process is now presented in Table 3.3.

Table 3.3: Algorithm Benchmarking

Candidate Accuracy1 Repeatability2 Efficency3

Linear Using mldivide 162.42 6.01 0.0148

Linear Using lsqlin 162.42 6.01 0.0089

Linear Using PSO 168.79 21.76 2.4129

Linear Using GA 162.42 6.01 5.2179

Quadratic Using mldivide 138.35 6.47 0.0864

Quadratic Using lsqlin 138.21 6.48 0.0287

Quadratic Using PSO 150.32 11.00 30.4139

Quadratic Using GA 299.84 16.36 114.7158

Cross-validation performed on an Intel i7 with 16GB of RAM.

1 Accuracy is defined as the average of the Root Mean Squared Errors (RMSEs) gathered from the

k-fold cross-validation process.

2 Repeatability is defined as the standard deviation of RMSEs results from the k-fold cross-validation

process.

3 Efficiency is defined as mean time to convergence on a solution over 10 tests.

3.2.7 Selection

The performance assessment allows for some interesting conclusions. It is clear that for

this particular problem, the use of GA and PSO algorithms is simply not warranted. For

46 Methodology

both of these algorithms, the time taken to arrive at a solution was orders of magnitude

longer than any of the non-stochastic approaches and at the same time provided no benefit

in terms of prediction accuracy. This is a somewhat expected result as the system model

does appear to be linear in the parameters and is a continuous function. As such, more

complicated, non-linear techniques are usually unnecessary.

Although, the accuracy of all of the algorithms when applied to the linear model were

comparable, mldivide and lsqlin were substantially more accurate when used with the

quadratic model. Interestingly, the QP approach used by lsqlin appears to be consid-

erably faster on all accounts, though mldivide still converges in the sub 100 millisecond

timerange. Overall, and considering that it allows bounds and linear constraints to be

applied to the parameters, lsqlin paired with the quadratic model structure appears to

objectively be the best approach to solving this problem.

3.3 Software Implementation 47

3.3 Software Implementation

With the completion of sections 3.1 and 3.2, Objectives 1, 2 and 3 have been met. A good

appreciation of the system model has been developed and an appropriate algorithm has

been selected. With these components, an online parameter estimator can be developed

to solve the fine screen oversize model. For brevity, this application will be referred to as

the Fine Screen Oversize Solver (FSOS) for the remainder of this paper.

The development of the FSOS application has three aspects to consider:

System Architecture that defines the overall structure of the application

Software Development Life Cycle (SDLC) that determines the workflow that will

be used to implement the system.

Tools and Methods that will be used in the development.

A discussion of each of these items follows.

3.3.1 System Architecture

In order to meet the requirements of objective 4 and ultimately the aim of this project, an

online parameter estimator (FSOS) must be developed based on the algorithm selected

in Section 3.2. While the implementation of this algorithm itself is not trivial, it forms

but a single component of the entire solution.

The system also requires components that:

� Take user input and interaction

� Accept and store a continuous stream of data from the plant control system

� Apply pre-processing to that data if required

� Determine which parameters can be estimated at any one time (E.g. A screen is

offline or the data variability is too low)

� Execute estimation algorithm

3.3 Software Implementation 49

3.3.2 Software Development Approach

The development of the FSOS application followed an iterative and test driven approach,

similar to that discussed in Section 2.5.4. From the system architecture defined in the pre-

vious section, each of the modules were generally developed and tested separately, before

connecting each section together and testing the combined operation. Once a working

solution was developed, the modules were integrated into an graphical user interface, that

will be presented in Chapter 4.

3.3.3 Tools

The tools that will be used to complete the implementation are a superset of those defined

in 3.2.2, namely:

1. Windows PC or Server meeting recommended requirements

2. MathworksMatlab®R2018a or later

3. Matlab®Interface for OSISoft®PI System

4. Matlab®OPC Communication Toolbox

5. Matlab®Simulink

6. Matlab®Statistics and Machine Learning Toolbox

7. Matlab®Optimization Toolbox

8. Matlab®System Identification Toolbox

9. OSISoft®PI Historian Data Archive

10. Yokogawa ExaOPC OPC-DA server connected to plant control system

11. Network connection between MATLAB host machine, OSISoft®PI data archive and

OPC-DA

12. Git for Windows, for version control

13. Microsoft Visio, for creation of Unified Modelling Language (UML) diagrams

50 Methodology

3.4 Verification

3.4.1 Recording

Following implementation of the FSOS, the systems accuracy and stability will need

to be verified. To facilitate this, the following model parameters will recorded in the

OSISoft®PI Data Historian at minimal compression and scan rate of 10 seconds:

� 8 x Calculated Fine Screen Efficiency Values (Short term / instantaneous)

� 8 x Calculated Fine Screen Efficiency Values (Long Term)

� 8 x ”Calculation Enabled” Boolean Value

� Current Total Oversize RMSE

� Estimator execution time (Last run)

An initial run-in period of two-weeks will allow the system to collect substantial data and

give a recorded history to analyse.

3.4.2 Field Verification

Once it is confirmed that system is generally stable and functional, a field verification will

be performed. With the assistance of plant metallurgists, the following procedure shall

be used:

1. For each fine screen (8), take a metallurgical cut of:

� Screen feed

� Screen underflow

� Screen overflow

2. Record the exact time each sample was taken.

3. Metallurgist to determine % undersize in all three samples for each screen (24)

4. Using received analysis values, calculate underflow efficiency using Equation (2.3)

for each screen.

3.5 Screen Feed Ratio Optimisation 51

5. Using sampled value of feed undersize fraction, f , verify assumptions were correct

and calculate fine screen underflow efficiency for each screen using Equation (3.20)

and values for β taken from the historian at recorded the sample timestamp.

6. Compare the results obtained from steps 4 & 5, and report on anomalies.

7. Repeat the above at least twice at temporally distant opportunities, to account for

any errors in the sampling process.

It is anticipated that the predicted screen efficiency will not be the same as that obtained

from metallurgical sampling, due to the assumptions made around both feed and under-

flow undersize fractions being constant. However, the predictions should be proportional

to the sampling results and represent a good and consistent approximation. Provided

that any discrepancies are explained by a constant error term, this may be factored into

the model in order to improve it’s future accuracy.

3.5 Screen Feed Ratio Optimisation

The final main objective of this reasearch, Objective 6, is to assess the impact of adjusting

the fine screen feed ratio on mill throughput. As discussed in Section 1.2 and illustrated

in Figure 1.3, each pair of screens feeds a single mill, and there is a facility to control the

split of new feed across these screens in terms of the proportion that is sent over Screen A

of the pair A and B. There are, of course, constraints on both the maximum and minimum

mill feed, and the maximum and minimum feed to each screen. Given that the screen

efficiency is a function of feedrate, and that the performance of any two screens may differ,

a relatively straightforward parameter optimisation problem is formed, in which the ideal

screen feed ratio for a pair of screens at any given total feed-rate might be determined.

3.5.1 DCS Implementation

While the development and analysis of this optimising strategy will be carried out in

Matlab® and presented in Section 4.4, it is anticipated that the process should derive

a simple algorithm that can be implemented in the DCS, using standard function blocks.

Such a function would take the model coefficients and total requested feed-rate, and

output the ratio required to maximise mill throughput.

52 Methodology

In addition to the optimisation algorithm itself, the following features will be important:

Modular , per-mill approach. This is necessitated by the fact that a pair of screens feeds

a single mill.

Watchdog controlled to ensure that the optimiser only takes action when the health of

the estimator is verified

Overridable by plant operators in response to underdesired behaviour or plant disrup-

tions.

Constrained so that the split ratio is only modulated within safe bounds.

3.6 Alarm and Monitoring Scheme

Provided that the FSOS output is stable and sensible, an additional objective of this

project is to implement an alarm an monitoring scheme that would inform maintenance

and operational personal of a degradation in screen performance. The intention is that

this would be implemented entirely in the DCS, with the following features:

1. With a stable fine screen model, record the baseline performance for each screen.

This is a simply a measure of expected oversize for a given mean feedrate.

2. Create an HMI alarm for any prolonged instance where a screens calculated oversize

exceeds its baseline by some threshold.

3. Create an HMI alarm when any single screen’s oversize exceeds the total circuit

Recirculating Load by some threshold.

4. Create an SMS Notification or email alert to maintenance personnel based on the

above alarms.

For both the alarms and notifications, care must be taken to ensure that they are not gen-

erated incessantly. This will be achieved by adherence to AS IEC 62682:2017 (Standards

Australia 2017), which provides direction on how alarm systems shall be managed in

process control systems. Ensuring, any implemented alarms are useful and not excessive

reduces the risk that such an implementation would become noise to the operator.

3.7 Chapter Summary 53

3.7 Chapter Summary

This section detailed the methodology followed throughout this research in order to meet

the objectives established in Section 1.5. Specifically, Objectives 2 and 3 were met in en-

tirety, through both the full development of the system model and subsequent selection of

an algorithm to best estimate its parameters. Additionally, outlines of how Objectives 4

through 8 should be achieved was given, in reference to the Software Design, Verification,

Screen Feed Ratio Optimisation and Alarm and Monitoring Scheme sections. In complet-

ing these objectives, the actual implementation of the FSOS application, the associated

testing and further analysis is required, as will be discussed in the remaining chapters.

Chapter 4

Implementation and Results

The previous chapter derived the system model and selected an appropriate algorithm,

while defining the requirements and construction of the FSOS application. This chapter

provides a detailed analysis of how each of the functional modules defined in Figure 3.5

were ultimately implemented. While the FSOS appication itself was written in Matlab®,

there were some supporting and connecting components that required implementation in

the DCS, which will also be discussed. Following the implementation details, the testing

and analysis of the FSOS outputs will be presented. As will be shown, the results of

this testing necessitated several modifications to the implementation, with mixed results.

Completing this chapter, some example outputs from the model implementation are used

to help define and illustrate and an optimisation algorithm that could be implemented in

the control scheme to improve mill throughput.

4.1 Implementation in MATLAB

This section discusses the modules that were written in Matlab® in the implementation

of the FSOS application. Where appropriate, a discussion of the issues encountered and

justification of design choices will be also be provided. Full code listings can be found in

Appendix D, as indicated.

56 Implementation and Results

4.1.1 Data Input and Output Modules

The acquisition of live plant data subsequent writing of values back to the DCS was

achieved with OPC-DA through the use of the Matlab® OPC Toolbox.

The basic process for initiating OPC-DA communication is as follows:

1. Create OPC-DA server object with opcda, passing IP address and ID of the OPC

server as arguments.

2. Add an empty group to OPC Server object using addgroup

3. Add OPC Items in the form of plant data tags to the group with additem

4. Connect to the OPC Server with connect.

5. Perform read and write operations as required (read, write, readasync,readasync)

The read and write operations listed as step 5, encompass two different methods of

OPC-DA communication, that have very different consequences.

Synchronous data transfer can be initiated with the the read and write function of

the OPC Toolbox. These calls are of a blocking type, as the session must wait for

the data to be returned from the server.

Asynchronous operations use callbacks to allow processing to continue while the data

collection occurs in the background. The readasync and writeasync functions from

the Matlab® OPC Toolbox can be used, or by setting the OPC group subscription

status to ’ON’, and reading the .Value property of the OPC items within the group.

Communication with the DCS first required the reading of plant data in the form of the

instantaneous feed rates to each of the screens, and the total oversize return, both in

tonnes per hour. The outputs of the FSOS application, the model coefficients of each

screen, would also need to be written to the control system. As the model coefficients

only need to be written when the actually change, two OPC groups were created, one for

the read operations and one for the write operations.

The OPC-DA groups used and the subsequent DCS tags wherein can be summarised in

Table 4.1.

4.1 Implementation in MATLAB 57

Table 4.1: OPC Tag and Group Requirements

Group Subscription Item Tag Description

Read 1 sec WY625108 RD.PV Screen 1A Feed

WY625128 RD.PV Screen 1B Feed

WY625208 RD.PV Screen 2A Feed

WY625228 RD.PV Screen 2B Feed

WY625308 RD.PV Screen 3A Feed

WY625328 RD.PV Screen 3B Feed

WY625408 RD.PV Screen 4A Feed

WY625428 RD.PV Screen 4B Feed

WY625000RECIRC.PV Total Oversize Return

Write Off (Async) WY625108 WR.DT01 Model coeff. α1

WY625108 WR.DT01 Model coeff. β1

WY625128 WR.DT02 Model coeff. α2

WY625128 WR.DT02 Model coeff. β2

WY625208 WR.DT01 Model coeff. α3

WY625208 WR.DT02 Model coeff. β3

WY625228 WR.DT01 Model coeff. α4

WY625228 WR.DT02 Model coeff. β4

WY625308 WR.DT01 Model coeff. α5

WY625308 WR.DT02 Model coeff. β5

WY625328 WR.DT01 Model coeff. α6

WY625328 WR.DT02 Model coeff. β6

WY625408 WR.DT01 Model coeff. α7

WY625408 WR.DT02 Model coeff. β7

WY625428 WR.DT01 Model coeff. α8

WY625428 WR.DT02 Model coeff. β8

58 Implementation and Results

The code required to initiate the OPC connection is trivial using the opcda function from

the Matlab® OPC Toolbox, and given directly in Listing 4.1, below.

Listing 4.1: Creating an OPCDA client in Matlab®

1 % Create the OPCDA object

2 daobj = opcda(host address, server ID, 'Timeout', timeout);

As private methods of the main GUI application class, two functions were created to

facilitate the creation of the OPC groups. Listings D.5 and D.6 in Appendix D, provide

the code for the createReadGroup and createWriteGroup functions respectively.

Figures 4.1, 4.2 and 4.3 show how the configuration was performed in the FSOS Graphical

User Interface (GUI). The parameters shown in these figures, were passed to the above

functions, from the main FSOS class.

Figure 4.1: OPC client configuration in GUI application

Figure 4.2: OPC read group tags in GUI application

Figure 4.3: OPC write group tags in GUI application

Testing of OPC communication and subsequent input and output functions was straight-

4.1 Implementation in MATLAB 59

forward and there proved to be no issues encountered that would require further elabo-

ration.

4.1.2 Input Validation

Not all data gathered from the plant in real-time is suitable for being used in the parameter

estimation scheme. When performing offline, static modelling, the dataset can easily be

sanitised and unsuitable data removed in batches. For a continuously online algorithm

however, the input validity needs to be determined in relative real-time.

An input validation module was created to meet this aim, by evaluating the instantaneous

inputs with the following criteria.

Low variance across the fine screen feed measurements results in large covariance and

model instability. The exclusion of consecutive observations where the standard

deviation is low is essential in ensuring ongoing richness of the dataset.

Low throughput , detected as a low overall oversize return measurement is common

disturbance that can persist for extended periods, such as shutdowns. Filling the

buffer with such observations would be detrimental to the model.

Outliers Due to plant disturbances or instrumentation errors, some observations are

clearly well outside of the expected range and should be ignored.

Invalid Values as a result of communication or instrument failure lead to elements of

the observation being invalid and as such, the entire observation must be discarded.

Listing D.7 in Appendix D, defines a Matlab® system object that validates the inputs

before they are passed to the solver datastore. A system object is a built-in inheritable

class that has features common to discrete signal processing type tasks. This allows the

current and past states of the input signal to be saved between execution steps, and used

in its internal algorithms before generating the next output.

Taking a vector of the most recent observation data, the ValidateInput system object

internally calculates a moving average of the last 10 samples, and analyses variance,

magnitude, and validity of the data. If one of these criteria falls below the tunable

4.1 Implementation in MATLAB 61

observations or inadvertently rejecting some good ones. This challenge will be discussed

in later sections.

4.1.3 Model Solver and Predictor Functions

The specific Matlab®functions used for a single estimation operation were encapsulated

in a wrapper function so that interface exposed to the rest of the program was simplified.

For the quadratic model structure and selected solver function, lsqlin, a pair of functions

were created, for the estimation of model parmeters and the prediction of oversize, based

on the model.

The function quadSolver takes matrices of the predictor (screen feed) and response (to-

tal oversize) observations from the data buffer. It expands the predictor matrices by

taking the square of each column fitting the quadratic model input data requirements,

as discussed in Section 3.2.5. The solver function also accepts upper and lower bounds

as parameters, which default to −1 to +1, if not supplied. Using lsqlin and the given

bounds and data, quadSolver, outputs the 16 model coefficients, αn, βn [n = 1, 2, . . . , 8],

as well as the prediction residuals.

The function quadPredict is a complementary function that accepts a vector of screen

feed values and a vector of the 16 model coefficients. Using a vectorised version of the the

previously defined Equation 3.25, Rn = αn + βnxn, the predicted oversize ratio for each

of the screens is calculated.

The full Matlab® code for both of these functions is provided in Listings D.11 and D.11,

in Appendix D.

4.1.4 Model Solver Class

To maintain a level of modularity while still being able to retain the model state over many

iterations, the Solver class was created to encapsulate the estimator function defined in

the previous section with its running parameters, namely the bounds, and most recent

coefficient and residual values. On instantiation of a Solver object, the class constructor

requires a handle to the solver function, typically quadSolver, though any compatable

variant could be used. This flexibility, means that if an improvement on the quadratic

62 Implementation and Results

model is found at a later date, it can be replaced with minimal difficulty.

Once setup, the public method fit, can be used to retrain the model with a new data set.

The implementation is mostly trivial, but the code listing can be found in Appendix D,

under Listing D.9.

4.1.5 Model Aggregator

The parameter estimation procedure used in the FSOS application consists both the model

itself and the historical data that is used to regress the coefficients. To encapsulate the

data and model together, an Aggregator System Object class was created, that managed

both the storage of data and estimation of model parameters, using the solver class defined

previously.

For the data storage, data type class called CircularBuffer was also defined, and an

CircularBuffer object used as the main data store. The benefit of defining a special

data type as opposed to simply using a matrix, was that as the number of observations

gets larger, the cost of shuffling every element in the matrix increases. A circular buffer

avoids this problem by simply maintaining a pointer to the oldest element in the list,

and overwriting that row when new data comes in. While not central to this research,

Listing D.12 in Appendix D, provides the complete class definition.

Through testing of the Aggregator class, it was found that some additional flexibility

would be desirable. Specifically, the ability to mix the outputs of multiple models might

help to create a more stable solution. The use of a separate class to wrap around the solver

implementation facilitates this and the instantiation of additional Solver objects was

trivial. To this end, long and short period models were integrated into the Aggregator,

both using data from the shared datastore. With the addition of a Forgetting Factor

parmeter, q, the two models were mixed by taking the weighted average of the model

coefficients from each model, exemplified by Equation 4.1, below.

βout = (1 − q) × βlong + q × βshort (4.1)

The forgetting factor was able to be modified during operation, through use of the FSOS

GUI, as shown in the excerpt given in Figure 4.5.

4.1 Implementation in MATLAB 63

Figure 4.5: FSOS UI - Aggregator/Solver Configuration.

In testing, this addition appears to add some stability, to the solution, though the optimum

setting of the forgetting factor and total buffer size remains a challenge. The approach

however, is flexible enough that it could be use to mix other models into the solution at

a later date.

4.1.6 Additional Graphical Components

The FSOS GUI interface was developed using Matlab®App Designer. As there is

large amounts of boilerplate code generated by this process, it would be superfluous

to provide a full code listing though a screenshot of the entire interface is available in

Appendix E.There were however, many graphical features developed that add to the

visualisation and operation of the FSOS application. An overview of a subset of these

components will follow.

Input Plot

Figure 4.6 shows a plot was created to provides a trend of the last 60 seconds of fine

screed feed-rates. This plot refreshes on every OPC update to provide assurance that the

correct plant data is being received by the model.

64 Implementation and Results

Figure 4.6: Excerpt from FSOS GUI, showing the a timeseries plot of screen feed-rates.

Model Coefficient Table

Figure 4.7 features a coefficient table that displays the current model coefficients, and

predicted oversize (in tph) for the given feed. This plot on the right, demonstrates how

much feed-rate impacts the oversize ratio for each screen. While the coefficients and

associated plot are only updated when the model is updated, the predicted oversize is

refreshed on every OPC update.

4.2 Implementation in DCS 65

Figure 4.7: Excerpt from FSOS GUI, showing the model coefficient table.

Actual vs Predicted Oversize Plots

Figure 4.8 shows both a timeseries and scatter plot, comparing the actual total oversize,

with that predicted by the model.

Figure 4.8: Excerpt from FSOS GUI, showing timeseries plot and scatterplot comparing

actual with predicted oversize.

4.2 Implementation in DCS

In order for the FSOS application to be of any use, it needs to be connected to the plant

Distributed Control System (DCS). As previously stated, this was achieved through

OPC-DA communication which necessitates some tags to be created for the reading and

writing of data from Matlab®. While the Yokogawa Exaopc OPC-DA server can the-

oretically acquire data from any data item in the DCS, the security on the block has to

specifically be set to allow write operations. For this reason, dedicated read and write

66 Implementation and Results

blocks were created in the DCS to form OPC targets for FSOS application, as specified

in Table 4.1 from Section 4.1.1.

4.2.1 OPC Read Blocks

Blocks were created in the DCS to take the weightometer readings and perform small

amounts of pre-processing before being read by OPC-DA into Matlab®. The main re-

quirement was to apply the necessary transport delays as defined in section 3.1.4. The

facility to select either the between the raw weightometer reading, feeder speed model, or

an average of the two was provided. While the raw reading would ideally be used, this

option was implemented in the case that there were issues with individual instruments.

The implementation of these features within the native DCS was far simpler than pro-

viding them within the Matlab®program and will make it easier to modify for other

engineers in the future without necessitating access to the modelling server.

The DCS code was implemented in function blocks native to the Yokogawa system, similar

to that shown in the block diagram given in Figure 4.9, below. The delays in the delay

block were set as per that given by Table 3.1 in Section 3.1.4.

Signal
Switch

Average
Block

Delay Block
PV Display

Block
(Read)

Screen Feed RAW

Screen Feed Model

Figure 4.9: Functional diagram of DCS implemented input processing in preparation for OPC-

DA Read operations.

4.2.2 OPC Write Blocks

A ’batch data block’ for each of the fine screens was created to be the target for OPC

to write the estimated model coefficients from the FSOS application running on the

modelling server. The batch data block in the Yokogawa DCS simply hold up to 16

4.2 Implementation in DCS 67

numerical data points and offer no other functionality. As such, there was no additional

code required, though the fine screen model described in the following subsection, is

obtains its model coefficients from it.

4.2.3 Fine Screen Model

Calculation blocks in the DCS allow for short calulation scripts to be executed. The

feature storage for up to 8 parameters, take upto 8 inputs and 4 outputs and execute

once per DCS scan. This makes them ideal to implement small models and algorithms,

and as such are used extensively for this purpose through the plant.

By implementing the system model defined in Section 3.1, and applying the solved model

coefficients recieved from OPC-DA to that model, a continual calcualtion of fine screen

oversize can occur, regardless of the state of FSOS server. The calculation simply uses

the last known model coefficients until a new estimation is received from the server. An

additional improvement that can be made at this point, is forcing the model outputs to

agree with the actual total oversize. By introducing an error correction gain term, based

on the current difference between the predicted and actual total oversize, the oversize

ratio of each screen can be gently modified until the mass balance is achieved.

The proprietary syntax used in these blocks is fairly straight forward, though for clarity,

just the pseudocode will be provided.

Set time constant Tc to large number, eg. 25000

Read the two coefficients (a & b) from batch data block

Read the current fine screen feed (X)

Read the current error (E) between actual and predicted total oversize

Limit coefficients a & b to safe range

Calculate Raw Oversize Ratio (R0) = a + bX

if X > Low feed limit then

Trim Factor (F) = F + E/Tc

end if

Limit F to safe range

Corrected Oversize Ratio (Rc) = F*R0

Predicted Oversize Tonnes (M) = Rc*F

4.3 Testing 69

parameters.

3. Visual inspection of Screens for a subjective assessment of comparative performance

4.3.1 DCS Model Performance

As discussed in Section 4.2.3, an implementation of the finescreen oversize model was

built in the DCS, using coefficient updates from the FSOS application. Additionally, this

model contains a correction gain, that pushes the oversize ratio on the screens screens

closer to actual recirculating load, effectively ensuring that the mass balance is correct.

While the error between the actual total oversize return and the predicted total oversize

return is not necessarily indicative of individual screen performance, it still provides a

useful metric to the accuracy of the model overall. In particular, if the model coefficients

are accurate, the predicted total oversize should still track the actual oversize closely,

immediately following a disturbance such a screen going offline, or an abrupt change to

feed rate.

Figure 4.11, is a screenshot of trend data from the OSISoft PI Historian. The trend shows

plots for the modelled, and corrected, oversize ratio for all eight fine screens, alongside the

actual oversize return (WY625000RECIRC) and predicted oversize return (WY625018E).

70 Implementation and Results

Figure 4.11: Trend of predicted oversize ratio from DCS model following a plant disturbance.

As can be observed, there is initially disturbance to far left of the plot that coincides with

a screen 1A being taken down for maintenance. As the feed to screen 1B ramps up to

account for the loss of its partner, the predicted oversize return is clearly undershooting.

This appears to indicate that the coefficients for screen 1B may not be quite correct.

Encouragingly, the model does appear to slowly correct itself over the next few hours, as

the error correction term comes into play.

A review of several such events, not pictured, suggests mixed results. Some of the screens

appear to be well modelled, while others are inaccurate and certain feed-rates. This

appears to occur on screen pairs that have shared extended periods of stability and as

such, equal feed-rates. It is assumed that this manifests as severe correlation between the

two feedrates in the FSOS model, making the regression unstable. The sensitivity study to

follow hopes to address these issues, as will some proposed future work and the concluding

4.3 Testing 71

chapter. Besides this, the DCS model implementation appears to be functioning correctly,

and the correction term is proven to be of value in stabilising the model outputs, and a

good addition to the overall scheme.

4.3.2 Hyperparameter Sensitivity Simulation

Using a large data set observations extracted from the PI Historian that covered a 180

day period at 5s intervals, the simulation script given in Listing D.13 was constructed

to emulate the same functions as the FSOS online application. This allowed the entire

period to be pushed through the solver, one sample at a time, but at a far greater pace

than what can be achieved in real time.

With this approach, multiple passes of the data can be made using different solver config-

urations for each. The significant hyperparameters in regards to the FSOS model are the

window size, and the forgetting factor. For this experiment, fixing the forgetting factor

and modifying the window size will demonstrate how the window size in particular effects

both the stability of the coefficients and the RMSE of the total oversize prediction.

By setting the forgetting factor to zero, only the long term model will be used. Simulations

were then performed with progressively larger windows sizes of 100 000, 250 000, 500 000,

1 000 000 and 1 500 000 observations.

Following the simulation, a moving RMSE of 100000 samples, was calculated for each of

the window sizes, with the results in Figure 4.12, below.

72 Implementation and Results

500n=100000

Moving RMSE over 100000 samples

500n=250000

500n=500000

500n=1000000

0 0.5 1 1.5 2 2.5 3
Sample Number #106

500n=1500000

Figure 4.12: Moving RMSE of the five simulation runs of different window sizes (Forgetting

Factor fixed at zero)

The results of this analysis are somewhat inconclusive, though the it appears that window

sizes less than 500000 samples result in lower RMSE values. Some reasoning behind this

is that as screen performance changes overtime, resulting in longer window periods being

less adaptive to recent changes.

The coefficients were also captured, during this process. Figure 4.13 below shows the

trend of coefficient estimates over the duration of the simulation using a window size of

100 000 samples.

4.3 Testing 73

0.5a1

Model Coefficients (n=100000)

0.5a2

0.5a3

0.5a4

0.5a5

0.5a6

0.5a7

0.5a8

0.5b1

#10-3

0.5b2

#10-3

0.5b3

#10-3

0.5b4

#10-3

0.5b5

#10-3

0.5b6

#10-3

0.5b7

#10-3

0.5 1 1.5 2 2.5 3
Sample Number #106

0.5b8

#10-3

Figure 4.13: Trend of model coefficient estimates with window size, n = 100 000 (Forgetting

Factor fixed at zero).

For brevity, the same results for the 1.5 million sample window size is shown in Figure 4.14.

74 Implementation and Results

0.5a1

Model Coefficients (n=1500000)

0.5a2

0.5a3

0.5a4

0.5a5

0.5a6

0.5a7

0.5a8

0.5b1

#10-3

0.5b2

#10-3

0.5b3

#10-3

0.5b4

#10-3

0.5b5

#10-3

0.5b6

#10-3

0.5b7

#10-3

0.5 1 1.5 2 2.5 3
Sample Number #106

0.5b8

#10-3

Figure 4.14: Trend of model coefficient estimates with window size n, = 1 500 000 (Forgetting

Factor fixed at zero).

Comparison of the previous two figures suggests that the intuition that a larger window

size dampens the coefficient response appears to be correct. Larger window sizes result

in much less variation in the coefficients over time. Conversely, this results in an increase

in model error as the coefficients are less likely to adapt to a changing environment.

4.3 Testing 75

4.3.3 Visual Inspection

A visual inspection of the screens was carried out, with a particular interest in the screens

that have a high predicted oversize ratio. The hope was that it would be relatively simple

to identify which screens had more oversize material than their counterparts.

One screen that appears to consistently have higher predicted oversize than the other

was Screen 2A. Footage was taken of the screen, as shown in Figure 4.15, and while it

did seem to have high oversize it was difficult to definitively say that it was significantly

larger than the other screens. A more detailed review would be required.

Figure 4.15: Fine screen 201 Feed presentation

4.3.4 Discussion

Through the implementation and testing activities several challenges have been identified

and there are clear opportunities for improvement. The main concerns are in respect

to the stability of the model output, specifically at smaller solver window sizes. While

increasing the window size clearly increases the stability of the model coefficients, it has

the side-effect of reducing the ability of the model to respond to changes in fine screen

performance in the short-term. Given that real-time measurement of fine screen efficiency

forms the cornerstone of this project, such a compromise is clearly undesirable.

A more robust approach to fine tuning the model hyperparmeters is likely required, as

comparing the moving RMSE of each model in simulation proved inconclusive. Some

form time-series appropriate cross-validation strategy may be more appropriate. Aside

76 Implementation and Results

from the solver hyperparameters, the test results suggest that input validation could be

improved. As the quality of the model outputs depend on the data available for regression,

a more nuanced statistical analysis of the inputs at the validation step is warranted. This

would result in a larger quantity of informative data in the mode, allowing a reduction in

window size.

4.4 Screen Feed Ratio Optimisation

4.4.1 Overview

Based on the fine screen oversize model developed in the previous sections, the effects

of increasing the feed rate on the screen efficiency and subsequent mill feed rates can be

analysed, as first discussed in Section 3.5. An algebraic analysis of a single pair of screens

will first show how the individual feed rates effect mill feed, through increased oversize.

This will then be extended to look at the problem from the perspective of the feed split

ratio, an existing, manually set parameter in the control system that defines how the feed

is shared between the two screens in a pair. A formula as a function of feed rate and

screen model coefficients will be ultimately derived.

4.4.2 Analysis

Let z be the mass flow of total feed to a single mill, comprising of the undersize material

from two finescreens, A and B.

The total screen feed (oversize + undersize), Mt is split across screens A and B, at rates

that shall be denoted by x and y respectively.

Mt = x+ y (4.2)

And the mill feed, z, is thus given by the total screen oversize subracted from the total

feed as shown in Equation 4.3, below.

4.4 Screen Feed Ratio Optimisation 77

z = Mt −Mo (4.3)

Given that Mo = xoversize + yoversize and from Equation 3.22,

z = x+ y − (α1x+ β1x
2 + α2y + β2x

2)

= x− α1x− b1x
2 + y − α2y − b2y

2 (4.4)

Using the modelled results for Screens 1A and 1B, from the solver developed in previous

sections, a test case can be crafted from the recently calculated coefficients.

α1 = 0.430, β1 = 1.815 × 10−5

α2 = 0.222, β2 = 1.574 × 10−4

A Matlab®script given in Listing D.14 was used to plot the function using these coeffi-

cients across the range of possible feedrates for each screen. As can be seen in Figure 4.16,

the result is a smooth concave surface in three dimensions, best described as a partial

elliptic paraboloid.

The maximum mill feed, z can then be found at the global maximum where the partial

derivatives with respect to x and y are both zero.

∂z

∂x
= 1 − α1 − 2β1x (4.5)

0 = 1 − α1 − 2β1x

x =
1 − α1

2β1
(4.6)

78 Implementation and Results

Figure 4.16: Effect of increasing screen feed on mill feed for a pair of screens. Black contours

are lines of constant total feed.

∂z

∂y
= 1 − α2 − 2β2y (4.7)

0 = 1 − α2 − 2β2

y =
1 − α2

2β2
(4.8)

A line that traverses the maximum possible mill feed as the total screen feed increases,

must follow a path where ∂z
∂x = ∂z

∂y and assume the form:

y = mx+ c (4.9)

Where the slope m,

m =
ymax − y0
xmax − 0

(4.10)

4.4 Screen Feed Ratio Optimisation 79

For the y-intercept term c, letting ∂z
∂x = ∂z

∂x and x = 0 gives,

1 − α2 − 2β2y0 = 1 − α1 − 2β1(0)

α1 − α2 = 2β2y0

y0 =
α1 − α2

2β2
= c (4.11)

With the maximum point and y-intercept defined, the slope can now be found as,

m =

1−α2
2β2

− α1−α2
2β2

1−α1
2β1

m =
(1 − α1)/2β2
(1 − α1)/2β1

∴ m =
β1
β2

(4.12)

This gives the completed Equation 4.13 for the optimum screen feed on to screen B, for

a given feed to screen A, shown as the magenta line in Figure 4.16.

y =
β1
β2
x+

α1 − α2

2β2
(4.13)

The surface shown in Figure 4.16 can then be projected onto new axes in terms of a ratio,

r, of feed to Screen A, as a proportion of total feed Mt.

Letting x = Mtr and y = Mt(1 − r), and substituting into Equation 4.4, yeilds the

transformed surface shown in Figure 4.17.

The optimum ratio for any given total feed rate can the be determined by substituting

x = Mtr and y = Mt(1 − r), into Equation 4.13, yielding,

Mt(1 − r) =
β1
β2
Mtr +

α1 − α2

2β2
(4.14)

After isolating the r term on the LHS, the equation becomes:

r =
Mt − α1−α2

2β2

Mt(1 + β1/β2)
(4.15)

Giving a formula for the optimum screen feed split at a given total feed rate in terms of

the coefficients of fine screen efficiency. The specific optimum path for the example case

given, follows the magenta line in Figure 4.17.

80 Implementation and Results

Figure 4.17: Effect of changing the screen feed ratio, r, on mill feed for a given total feed to

a pair of screens, Mt. The magenta line plots the optimum ratio, ro, that maximises Mt at

any given feed rate, which is a function of the model coefficicents.

4.4.3 Discussion

Provided that there is some certainty around the accuracy of the regressed coefficients of

αn and βn, the above analysis highlights a clear relationship between screen feed ratio,

efficiency and available mill feed. This ultimately demonstrates a viable method to opti-

mise the screen feed rates based on the model. Importantly, an equation for the optimum

ratio (Eq. 4.15) was derived that would be relatively straightforward to implement in the

DCS. While not all screen pairs would exhibit such strong curvature, this particular test

case indicates that somewhat aggressive control of the ratio may be required, starting

from all feed onto screen B initially and then pivoting towards 70% feed onto screen B

at higher total feed-rates. Such an implementation would require careful management of

the bounds and rate-of-change to safeguard the process from adrupt disturbances.

Also not included in this analysis, is the effect of preferentially feeding one screen over

another on screen wear-rates and potential conflicts with existing maintenace strategies.

Further investigation into this relationship would need to be carried out to ensure that that

4.5 Alarm and Monitoring 81

there is a net positive benefit in implementing the optimising control strategy. Regardless,

the simulated response provides good justification for continued development.

4.5 Alarm and Monitoring

At the time of preparing this paper, the alarm and monitoring scheme had not been

completed. While time was a factor, the stability of the current solution still leaves room

for improvement, making it challenging to determine baseline performance. Additionally,

field verifications will need to take place so that correct conclusions can be drawn be-

tween increased predicted oversize and actual screen performance. With these matters

addressed, the implementation of such a scheme would still prove beneficial.

4.6 Chapter Summary

This chapter has provided comprehensive detail on the implementation of an online pa-

rameter estimation scheme, and discussed the effective verification of the model through

simulation. While the intended field verification activity prescribed in Section 3.4 unfor-

tunately did not take place, the analysis performed still served as a thorough assessment,

and highlighted several opportunities for refinement. In addition to this, a detailed anal-

ysis of how modifying the feed ratio can be used to optimise total mill feed has been

provided, culminating in the derivation of an optimising algorithm that, given a stable

model, is ready for DCS implementation.

Chapter 5

Conclusions and Further Work

5.1 Conclusions

This research project set out to address the following major objectives:

1. Review existing theory, models and methods for determining fine screen efficiency.

2. Define the structure of the model that best represents the system.

3. Research and compare algorithms used for parameter estimation, in the context of

the defined model structure and fine screen efficiency in general.

4. Using the selected algorithm(s), develop an application to identify the parameters

of the system model online, as a measure of fine screen efficiency.

5. Verify the performance of the model against actual plant operation.

6. Use the derived model to assess the impact of adjusting the fine screen feed ratio

on mill throughput.

In addition to defining the project objectives, Chapter 1 of this dissertation provided an

overview of the plant in which this research took place and the motivations behind the

project. Objective 1 was addressed by the literature review in Chapter 2 that discussed,

in detail, the theory regarding ore classification alongside a broader overview of linear

modeling and techniques for parameter estimation.

84 Conclusions and Further Work

Using this information, the methodology in Chapter 3 set out to first define a static fine

screen oversize model based on the mass balance of the system. It was shown that this

could easily be extended to both a dynamic system and a quadratic model, and how such

model fits into the linear regression paradigm, fully addressing Objective 2. Chapter 3 also

fully addressed Objective 3, with the comparison and selection of a suitable parameter

estimation algorithm, while laying down the groundwork for the development of an online

estimating application.

In addressing Objective 4, Chapter 4 thoroughly discussed the complete implementation

of the online estimator, with reference to the code listings in Appendix D. In addition to

the Matlab® implementation, the required DCS components were also presented. For

both facets, conceptual diagrams and screenshots of the application helped to illustrate

the details. Following the main implementation sections, Chapter 4 attempted to verify

the performance by observing the response on the DCS with historian trends. This

was complemented by an analysis of the models sensitivity to the sliding window size.

Although this does not precicely address Objective 5 due to the absence of the stated

field verification, the process was still informative and suggested that some work still

needs to be done to improve the solution. Despite this, Objective 6 was fully addressed

in Section 4.4 and an insightful algorithm to optimise the mill feed based on the model

was fully specified.

Other than time constraints, the main challenge to completing this project successfully

mostly pertained to an underestimation of the amount of statistical theory that would

be required. While it is believed that the model structure is analytically correct, more

thought into the input characteristics and techniques to test the suitability of the data

would result in better data validation processes. Ultimately, the project would have

greatly benefited from a more rigorous statistical analysis overall that was simply beyond

the scope of the original objectives.

The ultimate aim of this project, as stated in Section 1.4, was to develop an algorithm to

perform the online parameter estimation of a fine screen efficiency model. To this end,

and given that in general, the main objectives have been mostly met, this project should

be considered a success. While the model itself has presented mixed results, it has clearly

been demonstrated that the method to develop an inferential measurement of fine screen

efficiency is a feasible one and with some refinements be able to be incorporated in an

optimising control strategy.

5.2 Further Work 85

5.2 Further Work

While most of the major objectives were met, time constraints and lack of knowledge

resulted in some omissions and issues that need to be addressed in the future. While the

implementation generally does provide good estimates of the fines screen oversize, the

stability of the solver still needs to be improved further if the online optimiser described

in Section 4.4 were to be implemented.

To improve the model stability and accuracy, the following further work is recommended:

� Investigate the implementation of small excitation of the feed to each screen to

generate more variability in input data.

� A more rigorous statistical analysis of the input characteristics and requirements.

� From 2, improve the input validation scheme using more robust statistical tech-

niques.

� Explore other potential estimation algorithms that may be more to immune to high

input covariance.

� Explore recursive estimation schemes such as the Kalman Filter.

If the model stability is improved, field verification as per the original Objective 5, can

be carried out. Once the model is verified as accurate and predicable, some final works

can be completed:

� Implement the online optimisation scheme as per Objective 7.

� Implement an alarm and monitoring scheme, as per Objective 8.

� Refine the application to make it more portable and less reliant on Matlab®.

References

Atlassian (2021), What is Agile, The Agile Coach, Atlassian. viewed 09 Oct 2021, https:

//www.atlassian.com/agile.

Bergmeir, C., Hyndman, R. J. & Koo, B. (2018), ‘A note on the validity of cross-validation

for evaluating autoregressive time series prediction’, Computational Statistics & Data

Analysis 120, 70–83. viewed 23 May 2021, https://www.sciencedirect.com/

science/article/pii/S0167947317302384.

Brownlee, J. (2018), ‘A gentle introduction to k-fold cross-validation’, Machine Learn-

ing Mastery . viewed 23 Sep 2021, https://machinelearningmastery.com/

k-fold-cross-validation/.

Cerqueira, V., Torgo, L. & Mozetič, I. (2020), ‘Evaluating time series forecast-

ing models: an empirical study on performance estimation methods’, Machine

Learning 109(11), 1997–2028. viewed 23 May 2021, https://doi.org/10.1007/

s10994-020-05910-7.

Chang, W.-D. (2007), ‘Nonlinear system identification and control using a real-

coded genetic algorithm’, Applied Mathematical Modelling 31(3), 541–550.

viewed 01 May 2021, https://www.sciencedirect.com/science/article/pii/

S0307904X05002519.

Cliffydcw (2012), Software Development Life Cycle, digital image of model, Wikime-

dia Commons. viewed 09 Oct 2021, https://commons.wikimedia.org/wiki/File:

SDLC_-_Software_Development_Life_Cycle.jpg#filelinks.

Coello, C. A. C. & Lechuga, M. S. (2002), ‘Mopso: a proposal for multiple objective

particle swarm optimization’, 2, 1051–1056 vol.2. viewed 02 May 2021, https:

//ieeexplore.ieee.org/document/1004388.

88 REFERENCES

Control Station (2018), What is a Distributed Control System?, blog post, Con-

trol Station. viewed 11 October 2021, https://controlstation.com/blog/

what-is-a-distributed-control-system/.

Dangprasert, P. & Avatchanakorn, V. (1996), ‘Genetic algorithms based on an in-

telligent controller’, Expert systems with applications 10(3), 465–470. viewed

10 Apr 2021, https://www-sciencedirect-com.ezproxy.usq.edu.au/science/

article/pii/0957417496000267.

Darlington, R. B. & Hayes, A. F. (2016), Regression Analysis and Linear Models: Con-

cepts, Applications, and Implementation, Guilford Publications, New York, UNITED

STATES. viewed 23 May 2021, http://ebookcentral.proquest.com/lib/usq/

detail.action?docID=4652287.

De Veaux, R. D., Velleman, P. F. & Bock, D. E. (2016), Stats: Data and Models, Global

Edition, 4 edn, Pearson.

Dobson, A. J. & Barnett, A. G. (2018), An Introduction to Generalized Linear Models,

CRC Press LLC, Milton, UNITED KINGDOM. viewed 24 May 2021, http://

ebookcentral.proquest.com/lib/usq/detail.action?docID=5488477.

Fister, D., Fister, I., Fister, I. & Šafarič, R. (2016), ‘Parameter tuning of pid controller

with reactive nature-inspired algorithms’, Robotics and Autonomous Systems 84, 64–

75. viewed 19 Apr 2021, https://www.sciencedirect.com/science/article/

pii/S0921889016301439.

Fleming, P. J. & Purshouse, R. C. (2002), ‘Evolutionary algorithms in control sys-

tems engineering: a survey’, Control Engineering Practice 10(11), 1223–1241.

viewed 01 Apr 2021, http://www.sciencedirect.com/science/article/pii/

S0967066102000813.

Frost, J. (2017a), ‘The difference between linear and nonlinear regression models’,

Statistics by Jim . viewed 11 September 2021, https://statisticsbyjim.com/

regression/difference-between-linear-nonlinear-regression-models/.

Frost, J. (2017b), ‘Explained: Neural networks’, MIT News Of-

fice . viewed 11 September 2021, https://news.mit.edu/2017/

explained-neural-networks-deep-learning-0414.

REFERENCES 89

IBM Cloud Education (2020), ‘Neural networks’, IBM Cloud Learn Hub . viewed 11

September 2021, https://www.ibm.com/au-en/cloud/learn/neural-networks.

IEEE (2017), ‘ISO/IEC/IEEE international standard - systems and software engineering

– software life cycle processes’, ISO/IEC/IEEE 12207:2017(E) First edition 2017-

11 pp. 1–157. viewed 09 Oct 2021, https://ieeexplore-ieee-org.ezproxy.usq.

edu.au/document/8100771.

Johnson, R. (2012), Matlab and TDD. viewed 23 May 2021, https://www.mathworks.

com/matlabcentral/fileexchange/37383-matlab-and-tdd.

Jung, Y. & Hu, J. (2015), ‘A k-fold averaging cross-validation procedure’, Journal of

Nonparametric Statistics 27(2), 167–179. viewed 23 May 2021, https://doi.org/

10.1080/10485252.2015.1010532.

King, M. (2016), Process control : A Practical Approach, second edition edn, Wiley,

Chichester, England.

Kumar, M. & Rashid, E. (2018), ‘An efficient software development life cycle model

for developing software project’, International Journal of Education and Manage-

ment Engineering 8(6), 59. viewed 09 Oct 2021, https://www.proquest.com/

scholarly-journals/efficient-software-development-life-cycle-model/

docview/2150541798/se-2?accountid=14647.

Lever, J., Krzywinski, M. & Altman, N. (2016), ‘Points of significance:

Model selection and overfitting’, Nature Methods 13(9), 703–704.

viewed 30 May 2021, https://www.proquest.com/scholarly-journals/

points-significance-model-selection-overfitting/docview/1817862312/

se-2?accountid=14647.

Lewin, D. R. (2005), ‘Evolutionary algorithms in control system engineering’, IFAC Pro-

ceedings Volumes 38(1), 45–50. viewed 30 May 2021, https://www.sciencedirect.

com/science/article/pii/S147466701636880X.

Li, X., Sha, J. & Wang, Z.-l. (2016), ‘A comparative study of multiple linear regression,

artificial neural network and support vector machine for the prediction of dissolved

oxygen’, Hydrology Research 48(5), 1214–1225. viewed 28 Aug 2021, https://doi.

org/10.2166/nh.2016.149.

90 REFERENCES

Mahmoud, M. S., Sabih, M. & Elshafei, M. (2015), ‘Using opc technology to support

the study of advanced process control’, ISA Trans 55, 155–67. viewed 10 Oct 2021,

https://www.ncbi.nlm.nih.gov/pubmed/25702044.

Mathworks (2021a), ‘crossval’, ga . viewed 11 May 2021, https://au.mathworks.com/

help/stats/crossval.html.

Mathworks (2021b), ‘cvpartition’, ga . viewed 11 May 2021, https://au.mathworks.

com/help/stats/cvpartition.html.

Mathworks (2021c), ‘fitlm’, Mathworks MATLAB Documentation . viewed 23 May 2021,

https://au.mathworks.com/help/stats/fitlm.html.

Mathworks (2021d), ‘fitrnet’, ga . viewed 11 May 2021, https://au.mathworks.com/

help/stats/fitrnet.html#.

Mathworks (2021e), ‘fitrsvm’, ga . viewed 11 May 2021, https://au.mathworks.com/

help/stats/fitrnet.html.

Mathworks (2021f), ‘Least-squares (model fitting) algorithms’, Mathworks MATLAB Doc-

umentation . viewed 11 May 2021, https://au.mathworks.com/help/optim/ug/

least-squares-model-fitting-algorithms.html.

Mathworks (2021g), ‘lsqlin’, Mathworks MATLAB Documentation . viewed 11 May 2021,

https://au.mathworks.com/help/optim/ug/lsqlin.html.

Mathworks (2021h), ‘mldivide’, Mathworks MATLAB Documentation . viewed 11 May

2021, https://au.mathworks.com/help/matlab/ref/mldivide.html.

Mathworks (2021i), ‘Opc toolbox’, ga . viewed 11 October 2021, https://au.mathworks.

com/help/opc/index.html.

Mathworks (2021j), ‘particalswarm’, Global Optimization Toolbox . viewed 11 May 2021,

https://au.mathworks.com/help/gads/particleswarm.html.

Mathworks (2021k), ‘particalswarm’, ga . viewed 11 May 2021, https://au.mathworks.

com/help/gads/ga.html.

Mathworks (2021l), ‘polyfit’, Mathworks MATLAB Documentation . viewed 11 May 2021,

https://au.mathworks.com/help/matlab/ref/polyfit.html.

REFERENCES 91

Mathworks (2021m), ‘Ways to write unit tests’, Mathworks MATLAB Documentation

. viewed 23 May 2021, https://au.mathworks.com/help/matlab/matlab_prog/

ways-to-write-unit-tests.html.

Mathworks (2021n), ‘What is MATLAB?’, ga . viewed 11 October 2021, https://au.

mathworks.com/discovery/what-is-matlab.html.

Newmont Corporation (2021), ‘Operations & Projects, Boddington’. viewed 20 May

2021, https://www.newmont.com/operations-and-projects/global-presence/

australia/boddington-au/default.aspx.

OPC Foundation (n.d.), ‘What is OPC?’. viewed 11 October 2021, https://

opcfoundation.org/about/what-is-opc/.

Pramoditha, R. (2020), ‘k-fold cross-validation explained in plain english’, Towards

Data Science . viewed 23 May 2021, https://towardsdatascience.com/

k-fold-cross-validation-explained-in-plain-english-659e33c0bc0.

Rencher, A. C. & Christensen, W. F. (2012), Methods of Multivariate Analysis, John

Wiley & Sons, Incorporated, Somerset, UNITED STATES. viewed 23 Jun 2021,

http://ebookcentral.proquest.com/lib/usq/detail.action?docID=875890.

Renders, J. M., Nordvik, J. P. & Bersini, H. (1992), ‘Genetic algorithms for process

control: A survey’, IFAC Proceedings Volumes 25(10), 323–328. viewed 17 Apr 2021,

https://www.sciencedirect.com/science/article/pii/S1474667017508411.

Rotich, N., Tuunila, R., Elkamel, A. & Louhi-Kultanen, M. (2016), ‘Dynamic population

balance and flow models for granular solids in a linear vibrating screen’, AIChE

Journal 62(11), 3889–3898. viewed 22 May 2021, https://doi-org.ezproxy.usq.

edu.au/10.1002/aic.15318.

Shaffer, B. (2020), ‘QR Matrix Factorization’, Towards Data Ss-

cience . viewed 22 Jun 2021, https://towardsdatascience.com/

qr-matrix-factorization-15bae43a6b2.

Shanmugam, B. K., Vardhan, H., Raj, M. G., Kaza, M., Sah, R. & Hanuman-

thappa, H. (2021), ‘Artificial neural network modeling for predicting the screen-

ing efficiency of coal with varying moisture content in the vibrating screen’,

International Journal of Coal Preparation and Utilization pp. 1–19. viewed

92 REFERENCES

22 Jun 2021, https://www-tandfonline-com.ezproxy.usq.edu.au/doi/pdf/10.

1080/19392699.2021.1871610?needAccess=true.

Sharp, T. (2020), ‘An Introduction to Support Vector Regression (SVR)’, To-

wards Data Science . viewed 23 May 2021, https://towardsdatascience.com/

an-introduction-to-support-vector-regression-svr-a3ebc1672c2.

Standards Australia (2017), ‘Management of alarm systems for the process indus-

tries’, AS IEC 62682:2017 . viewed 13 Oct 2021, https://au.i2.saiglobal.com/

management/display/index/0/1185139.

Sullivan, J. (2012), Screening Theory and Practice, Triple/S Dynamics, Inc. viewed

20 May 2021, https://www.sssdynamics.com/wp-content/uploads/2018/01/

screeningtheory.pdf.

Vanwinckelen, G. & Blockeel, H. (2012), ‘On estimating model accuracy with re-

peated cross-validation’, BeneLearn 2012: Proceedings of the 21st Belgian-

Dutch Conference on Machine Learning pp. 39–44. viewed 23 May 2021,

https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1655861&

context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US.

Weisberg, S. (2013), Applied Linear Regression, John Wiley & Sons, Incorporated, Som-

erset, UNITED STATES. viewed 22 Jun 2021, http://ebookcentral.proquest.

com/lib/usq/detail.action?docID=1574352.

Wills, B. A. & Finch, J. (2015), Wills’ Mineral Processing Technology : An Introduction

to the Practical Aspects of Ore Treatment and Mineral Recovery, Elsevier Science &

Technology, Oxford, United Kingdom. viewed 21 May 2021, http://ebookcentral.

proquest.com/lib/usq/detail.action?docID=4003232.

Yokogawa (n.d.a), ‘CENTUM OPC Server (Exaopc)’. viewed 11 October

2021, https://www.yokogawa.com/au/solutions/products-platforms/

solution-based-software/data-connectivity/centum-opc-server-exaopc/

#Details__Functions.

Yokogawa (n.d.b), ‘Distributed Control System (DCS)’. viewed 11 October

2021, https://www.yokogawa.com/au/solutions/products-platforms/

control-system/distributed-control-systems-dcs/#Details.

REFERENCES 93

Zelinka, I. & Chen, G. (2018), Evolutionary Algorithms, Swarm Dynamics and Complex

Networks : Methodology, Perspectives and Implementation, Emergence, Complexity

and Computation, 26, 1st ed. 2018. edn, Springer Berlin Heidelberg, Berlin, Heidel-

berg. viewed 22 Apr 2021, https://doi-org.ezproxy.usq.edu.au/10.1002/aic.

15318.

Zhang, B., Gong, J., Yuan, W., Fu, J. & Huang, Y. (2016), ‘Intelligent prediction of

sieving efficiency in vibrating screens’, Shock and Vibration 2016, 9175417. viewed

10 Oct 2021, https://doi.org/10.1155/2016/9175417.

Zhang, Y., Wang, S. & Ji, G. (2015), ‘A comprehensive survey on particle swarm op-

timization algorithm and its applications’, Mathematical Problems in Engineering

2015, 931256. viewed 30 Mar 2021, https://doi.org/10.1155/2015/931256.

Appendix A

Project Specification

96 Project Specification

ENG4111, S1 2021 Project Specification Alex Kapor
 0061052615

ENG4111/4112 Research Project
Project Specification

For: Alex Kapor

Title: Apply Advanced Process Control to Fine Screening Circuit At Large Mineral
Processing Plant

Major: Instrumentation, Control & Automation

Supervisor: Catherine Hills
Charlie Fabianto, Newmont Mining Corporation

Enrolment: ENG4111 – EXT S1, 2021

ENG4112 – EXT S2, 2021

Project Aim: To model the performance of eight parallel fine screens by developing a
method to calculate the efficiency of each screen in real-time, and to use this
information to optimise the circuit and ultimately improve mill throughput.

Programme: Version 2, 8/04/2021

1. Define the model requirements and its structure based on the physical system.
2. Review plant historical data alongside existing control and measurement strategies.
3. Review literature for existing approaches to measurement of fine screen efficiency
4. Define the key performance indicators (KPI) of a successful optimization method.
5. Define data requirements and implement any required changes to plant historian and

OPC interfaces.
6. Research and compare techniques for extracting multiple variables from noisy data and

select one or more appropriate algorithms.
7. Develop a computational model of the real-time individual fine screen efficiency
8. Verify performance of the model against the actual plant operation.
9. Use model to assess how adjusting the fine screen feed ratio will impact total

throughput and develop an algorithm for calculating the optimal adjustment.

If time and resources permit…

10. Provided that the accuracy of the solution is acceptable, implement online optimiser (in
DCS)

11. Measure and report plant performance against KPIs.
12. Implement alarming and monitoring scheme for fine screen efficiency to inform

maintenance and operations of any deterioration in performance.
13. Deploy program as a portable package, complete with a set of tools modules and guides

for future use by onsite engineering staff.

Appendix B

Risk Assessment

Appendix C

Ethical Clearance

102 Ethical Clearance

There are no Ethical Clearances applicable to this project.

Appendix D

Code Listings

All of the following code listings were written by the researcher in Matlab®.

104 Code Listings

Cross-Validation Script

The script file validateModels.m executes k-fold cross-validation of the candidate models.

This was used during the performance evaluation phased of the research project.

Listing D.1: validateModels.m (Script)

1 % validateModels.m

2 %

3 % Cross Validate Models

4 % Alex Kapor 31/07/2021

5 % This script uses k-fold cross validation to validate the performance

6 % of each algorithm in solving the model of fine screen oversize ratio.

7 %

8 % It requires an appropriate dataset from the PI historian data archive

9 % and function handles for each algorithm to be tested.

10 %

11 % Required toolboxes:

12 % - Statistics and Machine Learning Toolbox

13 % - Parallel Computing Toolbox

14

15 % Clears workspace and closes all windows.

16 clear; close all; clc;

17

18 % Check output folders exist

19 projectPath = [userpath,'\Project'];

20 outdir = [projectPath, '\output\'];

21

22 if ~exist(outdir, 'dir')

23 mkdir(outdir)

24 end

25

26 % Use saved pi data

27 %predictorSet (108088x8), responseSet (108088x1)

28 load('data\sanitisedCVdata 20210630 200d.mat');

29

30 % Models to test

31 CvMdl = struct('name', { "Linear Using mldivide", ...

32 "Linear Using lsqlin", ...

33 "Linear Using PSO", ...

105

34 "Linear Using GA", ...

35 "Quadratic Using lsqlin", ...

36 "Quadratic Using PSO", ...

37 "Quadratic Using GA"

38 }, ...

39 'handle', { @cv linear mldivide, ...

40 @cv linear lsqlin, ...

41 @cv linear pso, ...

42 @cv linear ga, ...

43 @cv quad lsqlin, ...

44 @cv quad pso, ...

45 @cv quad ga

46 } ...

47);

48 longestName = max(strlength([CvMdl.name]));

49

50 % Generate crosss-validation partitions. Use same seed for repeatability.

51 rng(1986);

52 NUM OF FOLDS = 10;

53 CvPartition = cvpartition(length(predictorSet), 'Kfold', NUM OF FOLDS);

54

55 % Set up parallel pool

56 p = gcp;

57

58 % Set options for parallel cross-validation using same

59 % rand substreams to maintain reproducibility.

60 s = RandStream('mlfg6331 64', 'seed', 1986);

61 opts = statset('UseParallel', true, 'Streams', s, 'UseSubstreams', true);

62 selected = 1:2; %numel(CvMdl)

63 % Test cross validate all models, and save relevant results.

64 for i = selected

65 fprintf('Cross-Validation in progress (%-*s)...', longestName, ...

66 CvMdl(i).name);

67

68 % Actual validation

69 results = crossval(CvMdl(i).handle, predictorSet, responseSet, ...

70 'Partition', CvPartition, 'Options', opts);

71

72 % To pass multiple results from models back through crossval function,

73 % cell arrays must be used. Made a bit tidier by adding to structure.

74 CvMdl(i).mse = [results{:,1}];

75 CvMdl(i).duration = [results{:,2}];

76 CvMdl(i).coefficients = results{:,3};

106 Code Listings

77

78 % Summary Statistics

79 CvMdl(i).mse ave = mean(CvMdl(i).mse);

80 CvMdl(i).mse std = std(CvMdl(i).mse);

81 CvMdl(i).duration ave = mean(CvMdl(i).duration);

82 CvMdl(i).duration std = std(CvMdl(i).duration);

83

84 fprintf('Done\n');

85 end

86

87 fprintf('\nK-fold Cross-Validation Results (K=%d, n=%d):\n\n', ...

88 NUM OF FOLDS, CvPartition.TrainSize(1));

89

90 % Summarise and export results

91 varNames = {'Name', 'Mean RMSE', 'Std Dev of RMSE', ...

92 'Mean Exec Time (s)', 'Std Dev of Exec Time'};

93

94 summary = table([CvMdl(selected).name]', ...

95 [CvMdl(selected).mse ave]', ...

96 [CvMdl(selected).mse std]', ...

97 [CvMdl(selected).duration ave]', ...

98 [CvMdl(selected).duration std]', ...

99 'VariableNames', varNames);

100 disp(summary);

101 writetable(summary, [outdir,'CvSummary.xlsm']);

102 save([outdir, 'CvResults.mat'], 'summary', 'CvMdl');

107

Model Comparison Script

The script file compareModels.m was used to compare the two best static models derived

from cross-validation. This script simply trains two competing models on the whole static

data set and generates a set of figures for each in order to visually inspect and compare

performance.

Listing D.2: compareModels.m (Script)

1 % compareModels.m

2 % Trains two competing models and then compares them graphically

3 %

4 % Alex Kapor 31/07/2021

5 % This script trains two competing models on the full data set and

6 % generates a set of figures in order to compare their performance.

7 %

8 % It requires an appropriate dataset from the PI historian data archive.

9 %

10 % Required toolboxes:

11 % - Statistics and Machine Learning Toolbox

12 clear; close all; clc;

13

14 % Check output folders exist

15 projectPath = [userpath,'\Project\'];

16 mdl1dir = [projectPath, 'vectors\static linear\'];

17 mdl2dir = [projectPath, 'vectors\static quad\'];

18 outdir = [projectPath, 'output\'];

19 if ~exist(mdl1dir, 'dir')

20 mkdir(mdl1dir)

21 end

22

23 if ~exist(mdl2dir, 'dir')

24 mkdir(mdl2dir)

25 end

26

27 if ~exist(outdir, 'dir')

28 mkdir(outdir)

29 end

30 saveExt = '.pdf';

31

108 Code Listings

32 % Use saved pi data

33 load('data\sanitisedCVdata 20210630 200d.mat');

34 %predictorSet (108088x8), responseSet (108088x1)

35

36 % Generate figure to visualise data set

37 figure('Name', 'Test Data', 'units', 'normalized', ...

38 'position', [0.1 0.1 0.5 0.8]);

39 % Plot of all predictor variable observations

40 topleft = 1:8*3;

41 topleft(3:3:end) = [];

42 subplot(9,3,topleft);

43 s = stackedplot(predictorSet);

44 s.DisplayLabels = {'FS101', 'FS102', 'FS201', 'FS202', ...

45 'FS301', 'FS302', 'FS401', 'FS402'};

46 s.Title = {'Predictor Variables'};

47 s.Position = s.Position + [0 -0.015 0 0];

48

49 % Plot of response variable observations

50 p = subplot(9,3,[25 26]);

51 plot(responseSet);

52 ylabel(p, 'Total OS');

53 xlabel(p, 'Observations');

54 title('Response Variable');

55 p.Position = p.Position + [0 -0.025 0 0];

56

57 % Generate a histogram for each variable

58 % Predictor variables

59 hAx = gobjects(9,1);

60 ymax = 0;

61 for idx = 1:8

62 hAx(idx) = subplot(9,3,idx*3);

63 h = histogram(predictorSet(:,idx), 31);

64 ymax = max([ymax h.Values]);

65 hAx(idx).Position = hAx(idx).Position + [0 -0.015 0 0];

66 end

67

68 % Response variable

69 hAx(9) = subplot(9,3,9*3);

70 h = histogram(responseSet, 31);

71

72 % Set all predictor histograms to same x range.

73 % set ALL histograms to have the same y range.

74 ymax = max([ymax h.Values]);

109

75 xmax = round(max(predictorSet,[], 'all')+50, -2);

76 ymax = round(ymax+500,-3);

77 xlim(hAx(1:8), [0 xmax]);

78 ylim(hAx(1:9), [0 ymax]);

79 hAx(9).Position = hAx(9).Position + [0 -0.025 0 0];

80 sgtitle('Overview of Training Data');

81

82 % Train models

83 % Model 1

84 lb1 = zeros(8,1);

85 ub1 = ones(8,1);

86 coeff1 = lsqlin(predictorSet, responseSet, [], [], [], [], lb1, ub1);

87 model(1) = RecircModel(coeff1, @(X, b) X*b, "Linear", ...

88 predictorSet, responseSet);

89 %Model 2

90 lb2 = zeros(16,1);

91 ub2 = ones(16,1);

92 predictors quad = [predictorSet predictorSet.ˆ2];

93 coeff2 = lsqlin(predictors quad, responseSet, [], [], [], [], lb2, ub2);

94 model(2) = RecircModel(coeff2, @(X, b) [X X.ˆ2]*b, "Quadratic", ...

95 predictorSet, responseSet, @(X, b) b(1:8)' + X.*b(9:16)');

96

97 % Generates all figures

98 f1 = visualiseModel(model(1));

99 f2 = visualiseModel(model(2));

100

101 % Export graphics and results table

102 graphtitles = {'scatter', 'recirc', 'residuals', 'histogram'};

103 for idx = 1:4

104 fname1 = [mdl1dir, graphtitles{idx}, saveExt];

105 fname2 = [mdl2dir, graphtitles{idx}, saveExt];

106 set(f1(idx), 'renderer', 'painters');

107 set(f2(idx), 'renderer', 'painters');

108 exportgraphics(f1(idx), fname1);

109 exportgraphics(f2(idx), fname2);

110 end

111

112 summaryTbl = table([model(:).name]', [model(:).rmse]', [model(:).bias]', ...

113 'VariableNames', {'Model', 'RMSE', 'Bias'});

114

115 writetable(summaryTbl, [outdir, 'two models compared.xlsm']);

116 save([outdir, 'compareModels.mat'], 'model', 'summaryTbl');

110 Code Listings

Recirc Model Class Definition

The class definition RecircModel.m is a simple custom class built to encapsulate the

trained models for easier analysis. The class has properties for the model functions,

coefficients, observations and predictions, and subsequently calculates several statistics of

interest.

Listing D.3: RecircModel.m (Class)

1 classdef RecircModel

2 %RECIRCMODEL Class to defiine a recirc model and it's coefficents.

3 % Also calculates predictions statistics if provided with predictor

4 % response data.

5 % Alex Kapor 31/07/2021

6

7 properties

8 name string = "Unnamed Model";

9 coefficients double

10 recirc func function handle = @(X, b) b(1:8)' + X.*0';

11 mdl func function handle = @(X, b) X*b;

12 predictors double

13 actual response double

14 predicted response double

15 residuals double

16 residuals std double % standardized

17 rmse double

18 bias double

19 n double

20 end

21

22 methods

23 function obj = RecircModel(b, f, varargin)

24 %RECIRCMODEL Construct an instance of this class

25 % RECIRC(b, f)

26 % Construct with coefficents (b) and model function (f) only.

27 %

28 % RECIRC(b, f, predictors, response)

29 % As above plus predictor and response matrices

30 %

31 % RECIRC(b, f, predictors, response, rf)

111

32 % As above, plus function handle to calculate screen recirc.

33 obj.coefficients = b;

34 obj.mdl func = f;

35 if nargin >= 3

36 obj.name = varargin{1};

37 end

38 if nargin >= 5

39 obj.predictors = varargin{2};

40 obj.actual response = varargin{3};

41 obj.predicted response = predict(obj);

42 obj.n = length(obj.predicted response);

43 obj.residuals = getResiduals(obj);

44 obj.residuals std = standardize(obj);

45 [obj.rmse, obj.bias] = stats(obj);

46 end

47 if nargin == 6

48 obj.recirc func = varargin{4};

49 end

50 end

51

52 function prediction = predict(obj, varargin)

53 %PREDICT(X) Predict response for given predictors

54 % Always uses stored coefficents.

55 % If no arguments passed, uses stored predictor values.

56 if nargin > 1

57 prediction = obj.mdl func(varargin{1}, obj.coefficients);

58 else

59 prediction = obj.mdl func(obj.predictors, obj.coefficients);

60 end

61 end

62

63 function res = getResiduals(obj)

64 %GETRESIDUALS Returns residuals for stored

65 % prediction vs response variables

66 res = obj.actual response - obj.predicted response;

67 end

68

69 function recirc = getRecirc(obj, varargin)

70 % Calculated recirc for each screen and observation

71 % (Always same dimensions as 'obj.predictors')

72 if nargin > 1

73 pred = varargin{1};

74 else

112 Code Listings

75 pred = obj.predictors;

76 end

77

78 recirc = zeros(size(pred)) + ...

79 obj.recirc func(pred, obj.coefficients);

80 end

81 % Statistics

82 function [RMSE, bias] = stats(obj)

83 RMSE = sqrt(sum(obj.residuals.ˆ2)./obj.n);

84 bias = mean(obj.residuals);

85 end

86 function res s = standardize(obj)

87 std s = std(obj.residuals);

88 res s = obj.residuals./std s;

89 end

90 end

91 end

113

Visualise Model Function

The Matlab® function visualseModel.m is a function that accepts objects of the

RecircModel class and outputs a set of figures for graphical analysis.

Listing D.4: visualiseModel.m (Function)

1 function figure hdls = visualiseModel(rmodel)

2 %VISUALISE MODEL Generates figures to help visualise model fitness.

3 % Alex Kapor 31/01/2021

4

5 arguments

6 rmodel RecircModel % Requires object of RecircModel custom class

7 end

8

9 % Plot labels in LaTex format

10 labels = {'$\beta {1}$ (FS101)', '$\beta {2}$ (FS102)', ...

11 '$\beta {3}$ (FS201)', '$\beta {4}$ (FS202)', ...

12 '$\beta {5}$ (FS301)', '$\beta {6}$ (FS302)', ...

13 '$\beta {7}$ (FS401)', '$\beta {8}$ (FS402)'};

14

15 % Vector of figure handle objects for external use

16 figure hdls = gobjects(5,1);

17

18 % Scatterplot of Predicted Resonse vs Actual Response

19 figure hdls(1) = figure('Name', rmodel.name, 'units', 'normalized', ...

20 'position', figPos(0.575, 16/9));

21 scatter(rmodel.actual response, rmodel.predicted response);

22 xlim([0 7000]);

23 ylim([0 7000]);

24 hold on;

25 x = [0 7000];

26 plot(x,x);

27 hold off;

28 title('Predicted Total Oversize');

29 xlabel('Actual (tph)');

30 ylabel('Predicted (tph)');

31 get(gcf, 'Position')

32

33 % Plot of modelled oversize ratio, with calculated coefficents

114 Code Listings

34 figure hdls(2) = figure('Name', rmodel.name, 'units', 'normalized', ...

35 'position', figPos(0.575, 16/9));

36 set(gcf,'PaperPositionMode','auto')

37 subplot(1,3,[1 2]);

38 x = (0:100:1800)'.*ones(1,8);

39 plot(x, rmodel.getRecirc(x), 'LineWidth', 0.75);

40 hT = legend(labels, 'Location', 'northwest', 'Interpreter', 'latex');

41 set(hT, 'FontSize', 12)

42 xlim([0 1800]);

43 ylim([0 1]);

44 title('Estimated Oversize Ratio (\beta {n})');

45 xlabel('Feedrate (tph)');

46 ylabel('\beta {n}');

47 get(gcf, 'Position')

48

49 % Display calculated coefficents ($\beta {n}$)

50 subplot(1,3,3);

51 strc = cell(8,1);

52 lfmt = '$\\beta {%1d} = %1.3f$';

53 qfmt = '$\\beta {%1d} = %1.3f + %1.3f\\sc{E}ˆ{%03d} x {%1d}$';

54 for idx = 1:8

55 % Pure linear model

56 if length(rmodel.coefficients) == 8

57 strc{idx} = sprintf(lfmt, idx, rmodel.coefficients(idx));

58 % Quadratic terms

59 elseif length(rmodel.coefficients) == 16

60 exponent = floor(log10(rmodel.coefficients(idx+8)));

61 base = rmodel.coefficients(idx+8)/(10ˆexponent);

62 strc{idx} = sprintf(qfmt, idx, rmodel.coefficients(idx), ...

63 base, exponent, idx);

64 else

65 strc{1} = 'Unexpected num. of coeff.';

66 end

67 end

68

69 h = text(-0.2, 0.50, strc, 'FontName', 'FixedWidth', ...

70 'FontSize', 12, ...

71 'HorizontalAlignment', 'left', ...

72 'Interpreter', 'latex');

73 h.FontSize = 12;

74 axis off;

75 get(gcf, 'Position')

76

115

77 % Scatter plot of residuals

78 figure hdls(3) = figure('Name', rmodel.name, 'units', 'normalized', ...

79 'position', figPos(0.3, 4/3));

80 scatter(rmodel.actual response, rmodel.residuals);

81 % Any gradient between residuals and response may indicate non-linearities.

82 lin = fitlm(rmodel.actual response, rmodel.residuals);

83 x = [0 7000]';

84 y = predict(lin, x);

85 hold on;

86 plot(x,y);

87 hold off;

88 ylim([-1000 1000]);

89 title('Residuals Plot');

90 xlabel('Actual Total Oversize (tph)');

91 ylabel('Residual')

92 get(gcf, 'Position')

93

94 % Histogram of Residuals

95 figure hdls(4) = figure('Name', rmodel.name, 'units', 'normalized', ...

96 'position', figPos(0.3, 4/3));

97 histogram(rmodel.residuals, linspace(-1000,1000, 22));

98 title('Residual Distribution');

99 xlabel('Residual');

100 ylabel('Frequency');

101 get(gcf, 'Position')

102 end

116 Code Listings

Create OPC Read Group

The Matlab® function createReadGroup.m is a method belonging to the main GUI

app class, and creates an OPC group for the reading of OPC data. The list of OPC tags

is taken from the application workspace and added to the group.

Listing D.5: createReadGroup.m (Class Method)

1 function createReadGroup(app)

2 % CREATEREADGROUP Class method to create an OPC group for reading from

3 % the DCS and adding the tags to the group. Group starts as 'inactive',

4 % and must be enabled seperately by calling app after OPC connection

5 % is established.

6 %

7 % Once enabled, read operations are asynchronous at 'OpcInputRate'

8 % intervals.

9 %

10 % Function can only be called from the main FSOS GUI app.

11 %

12 % Alex Kapor 2021

13 %

14

15 % Remove any group alread initialised

16 app.deleteGroup(app.OpcReadGroup)

17

18 % Create new group

19 label = "OpcReadGrp";

20 app.OpcReadGroup = addgroup(app.OpcDaObj, label);

21 app.OpcReadGroup.UpdateRate = app.Cfg.OpcInputRate;

22

23 % Start with group set to inactive

24 set(app.OpcReadGroup, 'Active', 'off');

25

26 % Now add items to group

27 n = app.UITableInputGroup.Data.Tag ~= "";

28 try

29 fsos.opc.addItems(app.OpcReadGroup, ...

30 app.UITableInputGroup.Data.Tag(n));

31 app.MsgTextArea.Value = sprintf("Items added to '%s'",...

32 label);

117

33 pause(1);

34 app.InputGroupTab.ForegroundColor = [0,0,0];

35 catch ME

36 msg = 'Unable to add tags to group "%s":\n%s';

37 app.MsgTextArea.Value = sprintf(msg, label, ME.message);

38 app.InputGroupTab.ForegroundColor = [1,0,0];

39 return

40 end

41

42 % Initialise the input buffer object

43 app.InputFilter = fsos.cls.Fopdt(...

44 'Channels', 9,...

45 'TimeConstant', 2, ...

46 'DelaySeconds', 0, ...

47 'SamplePeriod', app.Cfg.OpcInputRate);

48

49 % Configure update timer

50 set(app.InputTimer, 'Period', app.Cfg.OpcInputRate);

51 end

118 Code Listings

Create OPC Write Group

The Matlab® function createWriteGroup.m is a method belonging to the main GUI

app class, and creates an OPC group for the writing of OPC data. The list of OPC tags

is taken from the application workspace and added to the group.

Listing D.6: createWriteGroup.m (Class Method)

1 function createWriteGroup(app)

2 % CREATEWRITEGROUP Class method to creates an OPC group for writing

3 % from the DCS and adding the tags to the group. Group starts as

4 % 'inactive', and must be enabled seperately by the calling app after

5 % OPC connection is established.

6 %

7 % Subscription is also turned off as the write operations will be

8 % performed ad-hoc and asynchronously.

9 %

10 % Function can only be called from the main FSOS GUI app.

11 %

12 % Alex Kapor 2021

13 %

14

15 % Remove any group alread initialised

16 app.deleteGroup(app.OpcWriteGroup)

17

18 % Create new group

19 label = "OpcWriteGrp";

20 app.OpcWriteGroup = addgroup(app.OpcDaObj, label);

21

22 % Start with group set to inactive

23 set(app.OpcWriteGroup, 'Active', 'off');

24 set(app.OpcWriteGroup, 'Subscription', 'off');

25

26 % Now add any non-blank tags to group

27 n = app.UITableOutputGroup.Data.Tag ~= "";

28 try

29 fsos.opc.addItems(app.OpcWriteGroup, ...

30 app.UITableOutputGroup.Data.Tag(n));

31 app.MsgTextArea.Value = sprintf("Items added to '%s'",...

32 label);

119

33 pause(1);

34 app.OutputGroupTab.ForegroundColor = [0,0,0];

35 catch ME

36 msg = 'Unable to add tags to group "%s":\n%s';

37 app.MsgTextArea.Value = sprintf(msg, label, ME.message);

38 app.OutputGroupTab.ForegroundColor = [1,0,0];

39 return

40 end

41 end

120 Code Listings

ValidateInput

The Matlab® class definition ValidateInput.m is a class that inherits the matlab.System

class, making it a ‘System Object’. The class allows the creation of an input validation

object that checks the validity/usability of input data. This object acts as a connector

between the raw OPC data and the aggregated solver class.

Listing D.7: ValidateInput.m (Class)

1 classdef ValidateInput < matlab.System

2 % VALIDATEINPUT This MATLAB System Object determines whether an

3 % observation should be used in the model training set.

4 %

5 % In addition to eliminating outliers, it ensures that the standard

6 % deviation across observation predictor variables is high enough

7 % as well as whether the response variable is non-zero.

8 %

9 % Alex Kapor 14-10-2021

10 %

11

12 % Private constant properies

13 properties(Access = private, Constant)

14 pNumOfPredictors = 8

15 pNumOfResponse = 1

16 pNumChannels = 9;

17 pPredictorRange = 1:8;

18 pResponseRange = 9;

19 end

20

21 % Public, tunable properties

22 properties

23 SdCutoff (1, 1) {mustBePositive} = 100

24 TpCutoff (1, 1) {mustBePositive} = 500

25 OutlierCutoff (1, 1) {mustBePositive} = 3

26 MaxLowSdCount (1, 1) {mustBePositive, mustBeInteger} = 10

27 MaxLowTpCount (1, 1) {mustBePositive, mustBeInteger} = 2

28 end

29

30 properties (Nontunable)

31 WindowLength (1, 1) {mustBePositive, mustBeInteger} = 10

121

32 end

33

34 properties (SetAccess = private)

35 SdScrFd = 0 % Standardised by the mean

36 MedianScrFd = 0

37 Mean = 0

38 Sd = 0

39 State = '-'

40 end

41

42 properties(DiscreteState)

43 LowTpCount

44 LowSdCount

45 Buffer

46 end

47

48 methods

49 function obj = ValidateInput(varargin)

50 % Support name-value pair arguments when constructing object

51 setProperties(obj,nargin,varargin{:})

52 end

53 end

54

55 methods(Access = protected)

56 function setupImpl(obj)

57 % Set counters

58 obj.LowTpCount = 0;

59 obj.LowSdCount = 0;

60

61 % Initialise Buffer

62 obj.Buffer = NaN(obj.WindowLength, obj.pNumChannels);

63

64 end

65

66 function y = stepImpl(obj, u)

67 % Implement algorithm. Calculate y as a function of input u and

68 % Early return for bad/missing data

69 if (any(isnan(u)) | | ~isequal(size(u), [1 obj.pNumChannels]))

70 y = [];

71 obj.State = 'BAD';

72 return

73 end

74

122 Code Listings

75 % Apply moving average filter

76 obj.Buffer = [obj.Buffer(2:end, :); u];

77 obj.Mean = mean(obj.Buffer, 1, 'omitnan');

78 obj.Sd = std(obj.Buffer, [], 1, 'omitnan');

79

80 % Check observation qualities

81 checkForLowSd(obj, obj.Mean(obj.pPredictorRange));

82 checkForLowTp(obj, obj.Mean(obj.pResponseRange));

83 obj.MedianScrFd = mean(u(1:8), 'omitnan');

84

85 % Consider any measurement more than 'OutlierCutoff' standard

86 % deviations away from current mean for that stream to be an outlier.

87 outlier = any(abs(obj.Mean - u) > obj.OutlierCutoff*obj.Sd);

88

89 % Determine whether to pass current input through, or not

90 if (obj.LowSdCount >= obj.MaxLowSdCount)

91 obj.State = 'LOW VAR';

92 elseif (obj.LowTpCount >= obj.MaxLowTpCount)

93 obj.State = 'LOW FEED';

94 elseif outlier

95 obj.State = 'OUTLIER';

96 else

97 obj.State = 'GOOD';

98 end

99

100 % Data is good to go

101 if (isequal(obj.State,'GOOD'))

102 y = u;

103 else

104 y = [];

105 end

106 end

107

108 function resetImpl(obj)

109 % Initialize / reset discrete-state properties

110 obj.LowTpCount = 0;

111 obj.LowSdCount = 0;

112 obj.Buffer(:) = NaN;

113 end

114

115 function checkForLowSd(obj, u)

116 % Count low spread events across predictor variables

117 % Spread defined as standardised std. omitting any near zero values.

123

118 result = 100*std(u(u>10))/mean(u(u>10));

119 if result < obj.SdCutoff

120 obj.LowSdCount = min(obj.MaxLowSdCount*2, obj.LowSdCount+1);

121 elseif result > obj.SdCutoff

122 obj.LowSdCount = max(0, obj.LowSdCount-1);

123 end

124 if ~isnan(result)

125 obj.SdScrFd = result;

126 else

127 obj.SdScrFd = -1;

128 end

129 end

130

131 function checkForLowTp(obj, u)

132 % Count low throughput events on response variable

133 if (u < obj.TpCutoff)

134 obj.LowTpCount = min(obj.MaxLowTpCount*2, obj.LowTpCount+1);

135 else

136 obj.LowTpCount = max(0, obj.LowTpCount-1);

137 end

138 end

139 end

140 end

124 Code Listings

Aggregator

The Aggregator.m Matlab® class definition, is another system object that defines an

‘Aggregator’ whose purpose is to encapsulate the solver objects alongside the model’s

data buffer. Additionally, the Aggregator allows the mixing of two models, a long-term

model and short-term one, through the use of online tunable forgetting factor and model

cut parameters.

Listing D.8: Aggregator.m (Class)

1 classdef Aggregator < matlab.System

2 % AGGREGATOR Oversees data-fitting process to estimate the

3 % coefficients of the plant model. This combines a long term model

4 % with a shorter one, using a forgetting factor to perform weighting

5 % of the final output.

6 %

7 % Alex Kapor 14-10-2021

8

9 % Public, tunable properties

10 properties

11 UpperBounds double {mustBeVector} = 1.0

12 LowerBounds double {mustBeVector} = 0.0

13 % Weighting of observations in buffer.

14 ForgettingFactor double ...

15 {mustBeInRange(ForgettingFactor,0,1)} = 0.2

16 ModelCut double {mustBeInRange(ModelCut, 0, 1)} = 0.33

17 end

18

19 % Public, non-tunable properties

20 properties(Nontunable)

21 WindowSize (1,1) {mustBePositive,mustBeInteger} = 100000 %(m)

22 NumOfPredictors (1, 1) {mustBePositive,mustBeInteger} = 8 %(p)

23 NumOfCoefficients (1,1) {mustBePositive,mustBeInteger} = 16 %(n)

24 InitialCoefficients double {mustBeVector} = 0

25 InitialData {mustBeNumeric} = []

26 NumOfSolvers double {mustBeNumeric} = 2

27 PredictFcn = @fsos.mdl.quadPredict

28 end

29

30 properties(DiscreteState)

125

31 Buffer

32 end

33

34 properties(Access = private)

35 BufferWidth double

36 SolverLong

37 SolverShort

38 end

39

40 %Read only properties

41 properties (SetAccess = private)

42 Coefficients

43 Response

44 Residuals

45 Rmse

46 Bias

47 UpdateTime

48 end

49

50 %% Public Methods

51 methods

52

53 % Constructor

54 function obj = Aggregator(varargin)

55 % Support name-value pair arguments when constructing object

56 setProperties(obj,nargin,varargin{:})

57 end

58

59 %Public user functions

60 function update(obj)

61 thistic = tic();

62 buf = obj.Buffer.all();

63

64 % Only split the buffer if we have more than 10000 samples.

65 if length(buf)>10000

66 cut = floor(length(buf)*(1 - obj.ModelCut));

67 else

68 cut = 1;

69 end

70

71 [b1, ~] = obj.SolverLong.fit(buf(:,1:9));

72 [b2, ~] = obj.SolverShort.fit(buf(cut:end,1:9));

73

126 Code Listings

74 obj.Coefficients = (1-obj.ForgettingFactor)*b1'+...

75 obj.ForgettingFactor*b2';

76

77 % Calculate statistics

78 totals = obj.predictTotalOs(buf(cut:end, 1:8));

79 obj.Response = [buf(cut:end, 9), totals];

80 obj.Residuals = obj.Response(:,2) - obj.Response(:,1);

81 obj.Rmse = sqrt(mean(obj.Residuals.ˆ2));

82 obj.Bias = mean(obj.Residuals);

83 obj.UpdateTime = toc(thistic);

84 end

85

86 function out = predictTotalOs(obj, u)

87 if isequal(obj.NumOfPredictors, size(u,2))

88 tmp = obj.predictScreenOs(u);

89 out = sum(tmp,2);

90 else

91 error('Incorrect input size passed to predictTotalOs.');

92 end

93 end

94

95 function out = predictScreenOs(obj, u)

96 if isequal(obj.NumOfPredictors, size(u,2))

97 split = obj.predictSplit(u);

98 out = u.*split;

99 else

100 error('Incorrect input size passed to predictScreenOs.');

101 end

102 end

103

104 function out = predictSplit(obj, u)

105 if isequal(obj.NumOfPredictors, size(u,2))

106 out = obj.PredictFcn(obj.Coefficients, u);

107 else

108 error('Incorrect input size passed to predictSplit.');

109 end

110 end

111

112 function out = rmse(obj)

113 out = obj.SolverLong.rmse();

114 end

115

116 function out = oldest(obj)

127

117 firstrow = obj.Buffer.first();

118 out = now - firstrow(10);

119 end

120

121 function out = samples(obj)

122 out = obj.Buffer.stored;

123 end

124

125 end

126

127 methods(Access = protected)

128 %% Common functions

129 function setupImpl(obj)

130 % Buffer width required is number of predictors + response

131 % variables plus one to hold a timestamp

132 obj.BufferWidth = obj.NumOfPredictors + 2;

133 if isscalar(obj.UpperBounds)

134 obj.UpperBounds = repelem(obj.UpperBounds, ...

135 obj.NumOfCoefficients);

136 end

137

138 if isscalar(obj.LowerBounds)

139 obj.LowerBounds = repelem(obj.LowerBounds, ...

140 obj.NumOfCoefficients);

141 end

142

143 if isscalar(obj.InitialCoefficients)

144 obj.InitialCoefficients = repelem(obj.InitialCoefficients,...

145 obj.NumOfCoefficients);

146 end

147 end

148

149 function y = stepImpl(obj,u)

150 % Step's main function is just to add new data to the buffer.

151 % Always returns the latest coefficient estimate,

152 % but this is updated through update method.

153

154 % Append a timestamp to data and push to buffer

155 if ~isempty(u)

156 u = [u now];

157 obj.Buffer.push(u);

158 end

159 y = obj.Coefficients;

128 Code Listings

160 end

161

162 function resetImpl(obj)

163 % Initialize / reset discrete-state properties

164 obj.Buffer = fsos.cls.CircularBuffer(obj.WindowSize, ...

165 obj.BufferWidth, ...

166 obj.InitialData);

167

168 obj.Coefficients = obj.InitialCoefficients;

169

170 obj.SolverLong = fsos.mdl.Solver(16, @fsos.mdl.quadSolver, ...

171 @fsos.mdl.quadPredict, ...

172 'LowerBounds', obj.LowerBounds, ...

173 'UpperBounds', obj.UpperBounds);

174

175 obj.SolverShort = fsos.mdl.Solver(16, @fsos.mdl.quadSolver, ...

176 @fsos.mdl.quadPredict, ...

177 'LowerBounds', obj.LowerBounds, ...

178 'UpperBounds', obj.UpperBounds);

179 obj.UpdateTime = -1;

180 end

181

182 %% Backup/restore functions

183 function s = saveObjectImpl(obj)

184 % Set properties in structure s to values in object obj

185

186 % Set public properties and states

187 s = saveObjectImpl@matlab.System(obj);

188

189 % Set private and protected properties

190 s.BufferWidth = obj.BufferWidth;

191 end

192

193 function loadObjectImpl(obj,s,wasLocked)

194 % Set properties in object obj to values in structure s

195

196 % Set private and protected properties

197 obj.BufferWidth = s.BufferWidth;

198

199 % Set public properties and states

200 loadObjectImpl@matlab.System(obj,s,wasLocked);

201 end

202

129

203 %% Advanced functions

204 function validatePropertiesImpl(obj)

205 % Validate related or interdependent property values

206

207 % Check initial coefficients vector

208 if ~(isscalar(obj.LowerBounds) | | ...

209 (isvector(obj.LowerBounds) && ...

210 (obj.NumOfCoefficients == length(obj.LowerBounds))))

211 error(['Lower bounds must be scalar or vector ',...

212 'of length equal to number of coefficients']);

213 end

214

215 if ~(isscalar(obj.UpperBounds) | | ...

216 (isvector(obj.UpperBounds) && ...

217 (obj.NumOfCoefficients == length(obj.UpperBounds))))

218 error(['Upper bounds must be scalar or vector ',...

219 'of length equal to number of coefficients']);

220 end

221

222 if any(obj.LowerBounds > obj.UpperBounds)

223 error('Lower bounds must be less than upper bounds');

224 end

225

226 if ~(isscalar(obj.InitialCoefficients) | | ...

227 (isvector(obj.InitialCoefficients) && ...

228 (obj.NumOfCoefficients == length(obj.InitialCoefficients))))

229 error(['Initial coefficient must be scalar or vector ',...

230 'of length equal to number of coefficients']);

231 end

232

233 if ~isempty(obj.InitialData) && ...

234 (size(obj.InitialData, 2) ~= (obj.NumOfPredictors + 2))

235 error("Initial data incorrect size for buffer")

236 end

237 end

238

239 function ds = getDiscreteStateImpl(obj)

240 % Return structure of properties with DiscreteState attribute

241 if ~isempty(obj.Buffer)

242 ds.Buffer = obj.Buffer.all();

243 end

244

245 ds.Coefficients = obj.Coefficients;

130 Code Listings

246 ds.Residuals = {obj.SolverLong.Residuals, ...

247 obj.SolverShort.Residuals};

248 ds.UpdateTime = obj.UpdateTime;

249

250 end

251

252 function processTunedPropertiesImpl(obj)

253 % Perform actions when tunable properties change

254 % between calls to the System object

255 changed = isChangedProperty(obj, 'LowerBounds') | | ...

256 isChangedProperty(obj, 'UpperBounds');

257 if changed

258 obj.LowerBounds = min(obj.LowerBounds, obj.UpperBounds);

259 obj.UpperBounds = max(obj.LowerBounds, obj.UpperBounds);

260 end

261 end

262 end

263 end

131

Solver

The Solver.m Matlab® class definition, defines a ‘Solver’ object whose purpose is to

encapsulate a solver instance, its upper and lower bounds, and its most recent coefficients.

The actual solver and predictor functions are passed to the Solver class constructor on

object instantiation.

Listing D.9: Solver.m (Class)

1 classdef Solver < handle

2 %SOLVER Estimates the model parameters using the specified algorithm.

3 % Requires handles to solver and predictor functions,

4 % lower and upper bounds.

5 %

6 % Alex Kapor 14-10-2021

7 %

8

9 % Public properties

10 properties

11 LowerBounds double {mustBeVector} = -1.0

12 UpperBounds double {mustBeVector} = 1.0

13 NumOfPredictors (1, 1) {mustBePositive,mustBeInteger} = 8 %(p)

14 NumOfCoefficients (1,1) {mustBePositive,mustBeInteger} = 8 %(n)

15 Coefficients

16 Residuals

17 Rmse

18 SolverFcn

19 PredictFcn

20 end

21

22 % Public methods

23 methods

24 function obj = Solver(numOfCoeff, solverFcn, predictFcn, varargin)

25 % Main constructor

26

27 % Parse name value pairs

28 p = inputParser;

29 isaFcn = @(x) isa(x,'function handle');

30 checkLength = @(x) isscalar(x) | | ...

31 isequal(size(x),[1 numOfCoeff]);

132 Code Listings

32 addRequired(p, 'NumOfCoeff', @isscalar)

33 addRequired(p, 'SolverFcn', isaFcn);

34 addRequired(p, 'PredictFcn', isaFcn);

35 addParameter(p, 'LowerBounds', obj.LowerBounds, checkLength);

36 addParameter(p, 'UpperBounds', obj.UpperBounds, checkLength);

37 parse(p, numOfCoeff, solverFcn, predictFcn, varargin{:});

38

39 obj.NumOfCoefficients = p.Results.NumOfCoeff;

40 obj.SolverFcn = p.Results.SolverFcn;

41 obj.PredictFcn = p.Results.PredictFcn;

42

43 % If lower bound argument is scalar, create a vector.

44 obj.LowerBounds = p.Results.LowerBounds;

45 if isscalar(obj.LowerBounds)

46 obj.LowerBounds = repelem(obj.LowerBounds, ...

47 obj.NumOfCoefficients);

48 end

49

50 % If upper bound argument is scalar, create a vector.

51 obj.UpperBounds = p.Results.UpperBounds;

52 if isscalar(obj.UpperBounds)

53 obj.UpperBounds = repelem(obj.UpperBounds, ...

54 obj.NumOfCoefficients);

55 end

56

57 end

58

59 function [b, r] = fit(obj, u)

60 % REGRESS Summary of this method goes here

61 % Detailed explanation goes here

62

63 % Estimate the model coefficients

64 [obj.Coefficients, obj.Residuals] = obj.SolverFcn(u(:,1:8), u(:,9), ...

65 obj.LowerBounds, ...

66 obj.UpperBounds);

67

68 % Store coefficients and calculate stats

69 b = obj.Coefficients;

70 r = obj.rmse();

71 end

72

73 function out = predict(obj, u)

74 % PREDICT the oversize ratio for given feed

133

75 out = obj.PredictFcn(obj.Coefficients, u);

76 end

77

78 function out = rmse(obj)

79 % RMSE calculate the root mean square error

80 out = sqrt(mean(obj.Residuals.ˆ2));

81 end

82 end

83 end

134 Code Listings

Quadratic Model Solver Function

The Matlab® function quadSolver.m is a function that accepts a set predictor and

response observations, and optional upper and lower bounds, and returns the coefficients

for the solved quadratic oversize model.

Listing D.10: quadSolver.m (Function)

1 function [beta, residual] = quadSolver(predictors, response, lb, ub)

2 % QUADSOLVER Solver quadratic oversize model using contrained LS.

3 % predictors = fine screen feed observations

4 % (time-aligned to total oversize)

5 % response = total oversize observations

6 % lb, ub = Upper and lower coefficient bounds

7 %

8 % Alex Kapor 01-08-2021

9 %

10

11 arguments

12 predictors double {mustHaveNColumns(predictors, 8)}

13 response double {mustHaveNColumns(response, 1)}

14 lb (1, 16) double = -ones(1,16)

15 ub (1, 16) double = +ones(1,16)

16 end

17

18 assert(size(response, 1) == size(predictors, 1), ...

19 "Requires predictor and response to be equal length");

20 assert(isequal(size(lb),[1 16]) && isequal(size(ub),[1 16]), ...

21 "Lower or upper bound vector dimensions incorrect");

22

23 options = optimoptions('lsqlin', 'Display', 'none');

24

25 % Constrained Least squares with upper and lower bounds

26 C = [predictors, predictors.ˆ2];

27 d = response;

28 [beta,~,residual,~,~,~] = lsqlin(C, d, [], [], [], [], ...

29 lb, ub, [], options);

30 end

135

Quadratic Model Prediction Function

The Matlab® function quadPrediction.m is a function that accepts a vector of eight

predictor values (fine screen feed) and a set of 16 coefficients, and returns the predicted

oversize ratio based on the quadratic oversize model.

Listing D.11: quadPredict.m (Function)

1 function out = quadPredict(beta, predictors)

2 %QUADPREDICT Predict oversize ratio from quadratic model coefficients

3 % beta = Wuadratic oversize model coefficients

4 % predictors = Screen feed rates

5 %

6 % Alex Kapor 14-10-2021

7 %

8 arguments

9 beta (1,16) double {mustBeNumeric}

10 predictors double {mustHaveNColumns(predictors, 8)}

11 end

12

13 % Predicted oversize ratio for the current input

14 out = beta(1:8) + beta(9:16).*predictors;

15 end

136 Code Listings

Circular Buffer

The Matlab® class CircularBuffer.m defines a first-in, first-out buffer that minimises

copy and move operations when new data is added. This is achieved by holding an index

to the oldest row in the matrix, and simply overwriting it when the buffer is full.

Listing D.12: CircularBuffer.m (Class)

1 classdef CircularBuffer < handle

2 %CIRCULARBUFFER A fairly basic circular buffer of any size, suitable

3 % for buffering 1D vectors of any length or numerical type.

4 % Reduces copy operations by overwriting oldest data first.

5 %

6 % Alex Kapor

7 % 04/08/2021

8 %

9 % obj = circularBuffer(bufferSize, blockWidth, intitialiser)

10 % bufferSize = Length of buffer. Number of blocks to buffer.

11 % blockWidth = Length of vector to be buffered.

12 % initialiser (optional) = Defaults to NaN(double)

13 %

14 % Methods:

15 % push(data)- Adds a block to the buffer.

16 % pop() - Remove the oldest block from the buffer and return it.

17 % first() - Return data from the oldest block without removing it.

18 % last() - Return data from the newest block without removing it.

19 % all() - Returns the entire buffer in chronological order.

20 % at(n) - Return data from nth oldest block(s)

21 % replace(n, data) - Replace nth block with given data

22 % isFull()

23 % isEmpty()

24 %

25

26 properties

27 buffer

28 len

29 blockWidth

30 stored

31 index

32 bufferType = 'double';

137

33 end

34

35 methods

36 function obj = CircularBuffer(bufferSize, blockWidth, initialData)

37 %CIRCULARBUFFER Construct an instance of this class

38 % Detailed explanation goes here

39 arguments

40 bufferSize

41 blockWidth

42 initialData {mustBeNumeric} = []

43 end

44 obj.len = bufferSize;

45 obj.blockWidth = blockWidth;

46 obj = initialise(obj, initialData);

47 end

48

49 function obj = initialise(obj, initialData)

50 %INITIALISE Initialises the buffer with the data

51 obj.bufferType = class(initialData);

52 obj.buffer = nan(obj.len, obj.blockWidth, ...

53 obj.bufferType);

54 if ~isempty(initialData)

55 % Initialise all elements with value and type provided

56 assert(size(initialData, 2) == obj.blockWidth,...

57 'Incorrect number of columns on initialisation data.');

58

59 if size(initialData, 1) > obj.len

60 warning(['Initialisation data too long for buffer. ',...

61 'Some values may have been dropped']);

62 obj.buffer = initialData((end-obj.len+1):end, :);

63 obj.stored = obj.len;

64 else

65 obj.buffer = initialData;

66 obj.stored = size(initialData,1);

67 end

68 obj.index = obj.stored+1;

69 else

70 % No initialiser

71 obj.stored = 0;

72 obj.index = 1;

73 end

74

75 end

138 Code Listings

76

77 function push(obj, block)

78 %PUSH new element onto bottom of queue

79 obj.buffer(obj.index, :) = block;

80 increment(obj);

81 end

82

83 function block = pop(obj)

84 %POP Remove oldest element from the queue and return its value

85 % Sets vacated block to NaN

86 idx = obj.top();

87 block = obj.buffer(idx, :);

88 obj.buffer(idx, :) = nan(1, obj.blockWidth, obj.bufferType);

89 obj.stored = obj.stored - 1;

90 end

91

92 function block = first(obj)

93 %FIRST Get data from oldest element in the queue

94 block = obj.buffer(obj.top(), :);

95 end

96

97 function block = last(obj)

98 %LAST Get data from youngest element in the queue

99 block = obj.buffer(obj.bottom(), :);

100 end

101

102 function blocks = all(obj, varargin)

103 %ALL Return entire buffer contents in correct order

104 % Return all columns or optionally a range of columns.

105 if nargin == 2

106 columns = varargin{1};

107 else

108 columns = 1:obj.blockWidth;

109 end

110 stt = obj.top();

111 stp = obj.bottom();

112 if (stt <= stp)

113 blocks = obj.buffer(stt:stp, columns);

114 else

115 blocks = [obj.buffer(stt:end, columns);

116 obj.buffer(1:stp, columns)];

117 end

118 end

139

119

120 function block = at(obj, n, varargin)

121 %AT Return data at the nth row.

122 % Return all columns or optionally a range of columns.

123 if nargin == 3

124 columns = varargin{1}; % As range of columns

125 else

126 columns = 1:obj.blockWidth; % All columns

127 end

128 idx = obj.position(n);

129 block = obj.buffer(idx, columns);

130 end

131

132 function replace(obj, block, n, varargin)

133 %REPLACE data at nth row(s) (and optionally column(s)) with

134 % data given in 'block'.

135 if (nargin == 4)

136 columns = varargin{1}; % As range of columns

137 else

138 columns = 1:obj.blockWidth; % All columns

139 end

140 assert(numel(columns)==size(block,2), ...

141 'Column mismatch! Required = %d, Supplied = %d\n', ...

142 numel(columns), size(block,2));

143

144 idx = obj.position(n);

145 obj.buffer(idx, columns) = block;

146 end

147

148 function bool = isFull(obj)

149 %ISFULL Return boolean true if buffer is full

150 bool = obj.stored==obj.len;

151 end

152

153 function bool = isEmpty(obj)

154 %ISEMPTY Return boolean true if buffer is empty

155 bool = obj.stored==0;

156 end

157 end

158

159 methods (Access = private)

160 function obj = increment(obj)

161 %INCREMENT number of stored elements and write pointer

140 Code Listings

162 obj.index = mod(obj.index, obj.len) + 1;

163 obj.stored = min(obj.len, obj.stored + 1);

164 end

165

166 function idx = top(obj)

167 %TOP Get index of oldest element in queue

168 idx = obj.position(1);

169 end

170

171 function idx = bottom(obj)

172 %BOTTOM Get index of the youngest element in the queue

173 idx = obj.position(obj.stored);

174 %idx = mod(obj.index + obj.length - 1, obj.length);

175 end

176

177 function idx = position(obj, n)

178 %POSITION Get actual index for given nth oldest elementob

179 idx = mod(obj.index - obj.stored + n-2, obj.len) + 1;

180 end

181 end

182 end

141

FSOS Test Simulation Script

The Matlab® script testSolver.m simulates the typical run of the FSOS application,

with an offline dataset. This allows the testing the implementation on a large period of

data as if it were done in realtime, except at a much faster pace.

Listing D.13: testSolver.m (Class)

1 % FSOS - Fine Screen Oversize Solver

2 % Sensitivity test - Online estimation simulator

3 %

4 % Alex Kapor 2021

5 %

6

7 % Load in saved data chunks

8 filelist = ["datachunk(6)-20210414+30d.mat",...

9 "datachunk(5)-20210514+30d.mat",...

10 "datachunk(4)-20210613+30d.mat",...

11 "datachunk(3)-20210713+30d.mat",...

12 "datachunk(2)-20210812+30d.mat",...

13 "datachunk(1)-20210911+30d.mat"];

14

15 % Make a single matrix

16 data = nan(3110407,10);

17 stt = 1;

18 for f = 1:length(filelist)

19 load(filelist(f));

20 stp = stt + length(pidata.values)-1;

21 data(stt:stp,:) = [pidata.values datenum(pidata.timestamps)];

22 stt = stp;

23 end

24

25 %% Perform FSOS simulation

26 samples = length(data);

27

28 % Fix the coefficient bounds

29 lb = [0.2*ones(1,8) zeros(1,8)];

30 ub = [0.8*ones(1,8) 0.01*ones(1,8)];

31

32 % Window sizes to test

142 Code Listings

33 windowSizes = [1e5 2.5e5 5e5 1e6 1.5e6];

34 for windowSize = windowSizes

35 fprintf("Window Size = %d\n", windowSize);

36 % Create aggregator object (Forgetting factor Initially zero - long period model only)

37 solver = fsos.cls.Aggregator('WindowSize', windowSize, 'NumOfCoefficients', 16, ...

38 'LowerBounds', lb,...

39 'UpperBounds', ub,...

40 'ForgettingFactor', 0.0);

41 % Initialise solver

42 solver(zeros(1,9));

43

44 % Input validation

45 validator = ValidateInput();

46

47 % Record sim results

48 updateRate = 10000;

49 printRate = 25000;

50 coeff = nan(samples,16);

51 scrn recirc = nan(samples,8);

52 recirc = nan(samples,1);

53 goodcount = 0;

54 goodtimes = nan(samples,1);

55 for idx = 1:samples

56 % Validate inputs

57 validated = validator(data(idx,1:9));

58 if ~isempty(validated)

59 % If good, add to solver

60 solver(validated);

61 goodcount = goodcount + 1;

62 goodtimes(goodcount) = data(idx,10);

63 end

64

65 % Record current coefficients, recirc and total oversize.

66 coeff(idx,:) = solver.Coefficients;

67 scrn recirc(idx,:) = solver.predictSplit(data(idx,1:8));

68 recirc(idx) = solver.predictTotalOs(data(idx,1:8));

69

70 % Print display every 25000 samples

71 if mod(idx,printRate) == 0

72 fprintf('Sample Time(%d): %s\n', idx, datestr(data(idx,10)));

73 end

74

75 % Update model every 10000 samples

143

76 if mod(idx,updateRate) == 0

77 solver.update();

78 end

79 end

80 % Collate results for this test run

81 goodtimes(isnan(goodtimes)) = [];

82 filename = sprintf('results-ff-w%d.mat', windowSize);

83 save(filename, 'coeff', 'scrn recirc', 'recirc', 'goodtimes');

84 end

144 Code Listings

Screen Feed Ratio Optimisation

The Matlab® script feedratio.m is a script that explores how the manipulation of the

screen feed ratio impacts the ball mill feed, as discussed in Section 4.4. A series of surface

plots are generated to visualise the optimisation space, and demonstrate the optimum

solution for a given total feed rate.

Listing D.14: feedratio.m (Script)

1 % feedratio.m

2 %

3 % Alex Kapor 31/09/2021

4 % This script analyses the impact of modify the screen feed ratio on mill

5 % feed.

6 %

7 % The coefficents of a1, b1, a2 and b2 were taken from the oversize solver,

8 % specically for screens 1A and 1B.

9 %

10 clc; clear; close all;

11

12 % Model coefficients

13 a1 = 0.43;

14 b1 = 1.815e-5;

15 a2 = 0.2220;

16 b2 = 1.574e-4;

17

18 % Create model objects for both screens

19 screenA = model(a1, b1);

20 screenB = model(a2, b2);

21

22 % Constraints

23 maxScreenFeed = 1750;

24 maxMillFeed = 1850;

25

26 % Anon functions for the oversize mass flow of a pair of screens

27 oversize = @(feeda, feedb) (screenA.os feed(feeda) + screenB.os feed(feedb));

28 % Undersize is just the total feed subtract the oversize.

29 undersize = @(feeda, feedb) (feeda+feedb) - (oversize(feeda,feedb));

30

31 % Calculate total mill feed for given feed rates to screens A and B

145

32 xy = 0:10:maxScreenFeed; % Screen A & B Feed (same bounds)

33 z = zeros(length(xy),length(xy)); % Mill Feed

34 for p = 1:length(xy)

35 for q = 1:length(xy)

36 z(q,p) = undersize(xy(p),xy(q)); % Mill feed is undersize ore stream

37 end

38 end

39

40 % Remove points that exceed maximum allowed mill tonnes

41 z(z>maxMillFeed) = NaN;

42

43 % Plot as 3D Surface

44 fig = figure('Name', 'Effect of Screen Feed Rates on Mill Feed', 'Position', [0 0 1100 800]);

45 surf(xy,xy,z, 'EdgeColor', 'none', 'FaceAlpha', 0.8);

46 xlabel('Screen A (tph)');

47 ylabel('Screen B (tph)');

48 zlabel('Feed to Mill (tph)');

49 zlim([0 maxMillFeed]);

50 ylim([0 maxScreenFeed]);

51 xlim([0 maxScreenFeed]);

52 hold on;

53

54 % Plot optimum screen feed line

55 % Function maximises mill feed as total feed is increased linearly,

56 m = b1/b2;

57 c = (a1-a2)/(2*b2);

58 xr = 0:10:maxScreenFeed;

59 yr = m*xr + c;

60 zr = undersize(xr,yr); % Actual mill feed at these rates

61 plot3(xr,yr,zr, 'm', 'LineWidth', 1);

62

63 % Generate constant total feed lines

64 feedrates = 500:500:3000;

65 step = 1;

66 for rate = feedrates

67 % rate = x + y (with bounds applied)

68 x1 = max(0,(rate-maxScreenFeed)):step:min(maxScreenFeed, rate);

69 y1 = rate-x1;

70 z1 = undersize(x1,y1);

71 ln = plot3(x1,y1,z1, 'k', 'LineWidth', 1);

72

73 % Show datatips on limited range

74 if rate >=1000 && rate <=2500

146 Code Listings

75 maxidx = find(z1==max(z1));

76 if length(maxidx) > 1

77 maxidx = floor(median(maxidx));

78 end

79 dtt = ln.DataTipTemplate;

80 dtt.DataTipRows(1).Label = 'Screen A';

81 dtt.DataTipRows(2).Label = 'Screen B';

82 dtt.DataTipRows(3).Label = 'Mill Feed';

83 dtt.DataTipRows(end+1) = dataTipTextRow('A + B',x1+y1);

84 datatip(ln, x1(maxidx), y1(maxidx), z1(maxidx));

85 end

86 end

87

88 exportgraphics(fig, 'ratiocontrol1.png', 'Resolution', 400);

89

90 % Transformed onto Ratio vs Total Feed Axes

91 feed = 0:10:3500;

92 s1ratio = 0:0.01:1;

93 z2 = zeros(length(s1ratio),length(feed));

94 for p = 1:length(feed)

95 for q = 1:length(s1ratio)

96 feeda = feed(p)*s1ratio(q);

97 feedb = feed(p) - feeda;

98 z2(q,p) = undersize(feeda,feedb);

99 end

100 end

101 % Remove points that exceed maximum allowed mill tonnes

102 z2(z2>maxMillFeed) = NaN;

103

104 % Plot as 3D Surface

105 fig = figure('Name', 'Effect of Feed Ratio on Mill Feed', 'Position', [0 0 1100 800]);

106 surf(feed,s1ratio,z2, 'EdgeColor', 'none', 'FaceAlpha', 0.8);

107 xlabel('Total Feed, M {t} (tph)');

108 ylabel('Screen A Ratio, r');

109 zlabel('Feed to Mill, M {u}(tph)');

110 zlim([0 maxMillFeed]);

111 ylim([0 1]);

112 xlim([0 2*maxScreenFeed]);

113

114 % Plot optimum screen feed ratio

115 % Function maximises mill feed as total feed is increased.

116 r = (feed - c)./(feed+feed*m);

117 z3 = undersize(feed.*r, feed.*(1-r));

147

118 hold on;

119 ln = plot3(feed,r,z3, 'm', 'LineWidth', 1);

120 loc = floor(length(feed)/3);

121 tex = ['\fontsize{14}{0} $$r o=\frac{M t-(\alpha 1-\alpha 2)/2\beta 2}'...

122 '{M t(1 + \beta {1}/\beta {2})}$$'];

123 text(feed(loc), r(loc), z(loc)+200, tex, ...

124 'HorizontalAlignment', 'right',...

125 'Interpreter', 'latex');

126

127 exportgraphics(fig, 'ratiocontrol2.png', 'Resolution', 400);

148 Code Listings

Simple Quadratic Oversize Model Class

The Matlab® class model.m is a very basic class used to encapsulate the basic quadratic

oversize model, its coefficients and functions to calculate oversize ratio and oversize mass

flow from a given feed.

Listing D.15: model.m (Class)

1 % model.m

2 %

3 % Alex Kapor 31/09/2021 - This simple class encapsulates the coefficients of a

4 % quadratic oversize model and provides functions to calculate either oversize

5 % ratio or oversize mass flow from a given feed rate.

6

7 classdef model

8 % MODEL Basic quadratic model object

9 properties

10 a % Alpha

11 b % Beta

12 end

13 methods

14 function obj = model(a ,b)

15 %MODEL Construct an instance of this class

16 obj.a = a ;

17 obj.b = b ;

18 end

19 function out = os ratio(obj,feed)

20 %OS RATIO = alpha + beta*feed;

21 out = obj.a + obj.b.*feed;

22 end

23 function out = os feed(obj,feed)

24 %OS FEED = os ratio*feed

25 out = obj.os ratio(feed).*feed;

26 end

27 end

28 end

Appendix E

Graphical User Interface

150 Graphical User Interface

Figure E.1: Screenshot of GUI developed for this project.

