




Abstract

Physical layer radio frequency (RF) fingerprinting has been used in military and civilian

applications to identify RF transmitters for spectrum management purposes, and has been

considered as a mechanism to improve assurance that a transmitter is not an impostor.

It relies on the presence of observable device-specific variations to expected signal output,

even between transmitters of the same type. Minor fluctuation in component values

during transmitter assembly–and even placement of those components–can result in minor

variances to frequency synthesis systems, modulator subsystems, and RF amplifiers, all

which can be observed and used to characterise the transmitter. The complexity of the

variations makes these characteristics inherently difficult to reproduce, and technically

difficult to obscure.

RF fingerprinting of Bluetooth devices has been explored in the literature, but there is

not sufficient information to reproduce the transient extraction stage used to produce the

high-results of others. Additionally, there has been little reported work on the effects

of expected environmental variables (temperature, motion, low signal to noise ratio) on

classification success. This dissertation expands the existing literature by investigating

the implementation and performance of a physical layer RF fingerprinting system, and

the effect of real-world environmental conditions on system performance.

A downconverter was constructed to shift the entire Bluetooth band (2400–2480 MHz)

down to 20–100 MHz, allowing acquisition of the entire band with low-cost acquisition

hardware (i.e. a PicoScope 5444B). An RF fingerprinting system, specifically the transient

detection sub-system and feature extraction sub-system, is implemented in MATLAB®.

Energy Criterion is confirmed as an excellent method for detecting the start of a transient

portion. Additionally, a new method for detecting the end of the transient is introduced,

based on the settling time of the envelope. These two methods successfully extracted



ii

the transients from several waveforms reliably; however, some transmitter types were ob-

served to produce waveforms with significant ripple to the steady-state envelope, causing

unreliable operation of the transient detection system.

To support classification a feature extraction system was implemented in MATLAB®.

Features are extracted from the energy envelope and the time-frequency-energy distri-

bution (TFED) of the signal. A link is identified between inconsistent transient length

detection and inconsistent features. Classifiers were implemented using MATLAB®’s

Classification Learner app, with the optimum classifier found to be a Support Vector

Machine, which confirms existing literature.

A new dataset of turn-on transients was acquired for 17 devices using the constructed

downconverter and acquisition system. This dataset, and an existing reference dataset,

were used to assess the transient detection, feature extraction, and classifier sub-systems,

and the results compared. After optimisation, classifiers were able to correctly attribute

waveforms from the reference dataset to a specific device with an accuracy of 32.6%, while

correct attribution when using the acquired dataset was 69.9%. When the classifiers were

used to attribute waveforms to a device-type, as opposed to specific device, prediction

success increased to 92.6%. This research was unable to reproduce the extremely high

results (over 99% success) reported in the literature. Further work in the field, specif-

ically improvement to the transient detection stage, is required to make RF fingerprint

classification of Bluetooth devices more viable.
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Chapter 1

Introduction

This chapter provides an overview and background of the dissertation and supporting

research project, and a summary of the implications resulting from the outcomes of the

dissertation.

1.1 Introduction

Media Access Control (MAC) addresses are unique addresses used to identify a particular

node in a network. The MAC address is intended to be a static identifier for the interface,

unique to that device. In a wireless network, it is necessary for at least one node to

broadcast its presence, along with their MAC address, to allow other devices to connect

and begin communications.

MAC addresses were intended to be static identifiers per interface; however, in the realm

of personal devices, the use of a static MAC address can be used to identify and track

people based on the devices they carry. This is especially applicable to wireless systems,

where devices need to announce their presence to begin communications with others. To

address this privacy concern, vendors implement MAC address randomisation. Under this

scheme, the MAC address is frequently changed to a random address to thwart passive

tracking, with mechanisms present to allow legitimate and authenticated communications

to continue (Martin, Mayberry, Donahue, Foppe, Brown, Riggins, Rye & Brown 2017).

Despite the intention of MAC randomisation, it is not wholly sufficient for true device
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anonymisation. MAC addresses are a convenient identifier for the device, but they are

not the only unique identifier. Like human biometrics, transmitters possess characteristic

traits that can be used to identify or infer the identity of a transmitter. These traits could

occur at the physical layer, the data-link layer, or the application layer. The identification

of devices based on these characteristics is known as RF fingerprinting.

Physical layer RF fingerprinting has been used in military and civilian applications to

identify RF transmitters for spectrum management purposes and has been considered

as a mechanism to improve assurance that a transmitter is not an impostor (Ureten &

Serinken 2007, Frederick 1995, Elmrabet, Arjoune, el Ghazi, Majd & Kaabouch 2018). It

relies on the presence of observable device-specific variations to expected signal output,

even between transmitters of the same type. Minor fluctuation in component values dur-

ing transmitter assembly–and even placement of those components–can result in minor

variances to frequency synthesis systems, modulator subsystems, and RF amplifiers, all

which can be observed and used to characterise the transmitter. The complexity of the

variations makes these characteristics inherently difficult to reproduce, and technically

difficult to obscure (Polak, Dolatshahi & Goeckel 2011, Ureten & Serinken 2007). This

dissertation describes the construction and implementation of a physical layer RF finger-

printing system for Bluetooth devices, based on observation of their turn-on transient,

and documents the performance.

1.2 Definition of the Problem

In their paper, Ali, Uzundurukan & Kara (2019) describe the realisation of a system for

physical layer RF fingerprinting of Bluetooth devices, and report classification success

of over 99%. Despite the detail provided within the publication, there is no indication

that the system or high success rates have been reproduced by the broader academic

community. There is also insufficient information in the literature to allow reproduction

of the transient extraction stage used to produce these high success rates.

In addition to reproduction of the work of others, there has been little research reported

on the effects of expected environmental variables (temperature, motion, low signal to

noise ratio) on classification success. Several real-world effects are known to induce minor

changes in transmitter signals, and received signals, and therefore could cause variance
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in the effectiveness of such a system. The output frequency of an oscillator is often a

function of its temperature, so it is expected that changes in temperature could cause

minor drift in output frequency, resulting in clock and frequency error (Helluy-Lafont,

Boe, Grimaud & Hauspie 2020). Additionally, changes in the relative distance between

a transmitter and receiver during transmission can introduce an apparent frequency and

phase shift due to the Doppler effect. Existing methods for fingerprinting are known to

use instantaneous phase and frequency information as features for classifying devices (Ali

et al. 2019, Aghnaiya, Ali & Kara 2019), yet it is not known how these minor fluctuations

in frequency affect the accuracy of RF fingerprinting systems. Given the application of

this system is the identification of non-cooperative transmitters, it is insufficient to assume

signatures are provided in perfect conditions. There is currently no literature that explains

how real-life environmental conditions these effects could affect the reliability or accuracy

of RF fingerprinting systems. There are also no known datasets that allow exploration

into how the physical environment (temperature, movement, background RF noise) affect

classification.

1.3 Research Objectives

This dissertation expands the existing literature by investigating the implementation and

performance of a physical layer RF fingerprinting system, and the effect of real-world

environmental conditions on system performance. The RF fingerprinting system uses a

downconverter to facilitate acquisition with equipment capable of sampling at 500MS s−1.

The downconverter, transient detection sub-system, and feature extraction sub-system are

implemented based on the findings of a number of related works (Ali, Uzundurukan &

Kara 2017, Ali et al. 2019, Uzundurukan, Dalveren & Kara 2020b, Uzundurukan, Ali,

Dalveren & Kara 2020).

The specific goals of the dissertation are:

1. Design and build an RF front-end downconverter to allow acquisition of Bluetooth

signals using equipment with low sampling rates (i.e. 500MS s−1).

2. Research and implement a system to automatically extract the ‘turn-on’ transient

from a captured Bluetooth signal at various sample rates.
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3. Acquire a collection of ‘real-world’ fingerprint data.

4. Assess the accuracy of the classifier to correctly identify a device for a given turn-on

transient using an existing dataset and acquired dataset, and compare these results

to those in the literature.

1.4 Consequential Effects

1.4.1 Accurately Identifying Devices

As RF fingerprints are believed to be immutable, and difficult to forge, the outcomes of

this research can benefit a range of use-cases. For network security uses, RF fingerprint-

ing could be used as an additional authentication measure, providing a higher-degree of

assurance that a wireless network node is genuine. For policing uses, RF fingerprinting

could be applied to attribute transmissions or interest to a particular transmitter (and

therefore party), which could be helpful when combatting identity theft or distribution

of child exploitation material. For spectrum management uses, RF fingerprinting could

be used to attribute illegal transmissions or interference to a particular transmitter, even

before the transmission location is identified.

This research also has applicability within government and enterprise settings, where it is

common to have restrictions on the specific electronic devices allowed in particular areas.

For example, the Australian Government’s Information Security Manual requires sites im-

plement security measures to detect unauthorised RF devices in areas processing Secret

or Top Secret information (Australian Cyber Security Centre 2020); unfortunately MAC

randomisation makes it difficult for site owners to passively monitor for authorised de-

vices, let alone non-cooperative unauthorised devices. The requirement to automatically

discriminate authorised and unauthorised transmitters without user participation could

also have applicability to schools, sensitive research areas, and corrections institutions.

1.4.2 Reduced Barrier to Entry for Future Researchers

Prior research from others was reliant on equipment capable of direct sampling at rates of

up to 20 GS/s, resulting in high equipment costs, and high computation costs to process
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the data. These restrictions imposed a barrier to entry to RF fingerprinting. One of the

elements of this research is to implement the RF fingerprinting system using equipment

with low sampling rates. This makes RF fingerprinting more accessible, by lowering the

cost of establishing a system. While this could result in more systems being used for

positive purposes, it also makes the system more accessible for nefarious purposes.

1.4.3 Ethical Issues

The ethics behind security and vulnerability research is inherently complex. Despite the

promising applications, this research improves ability to attribute of devices employing

privacy-enhancing features, which ultimately translates to a reversal of the ‘anti-tracking’

features of modern Bluetooth specifications; this therefore re-introduces the risk of track-

ing people by correlating the wireless devices they carry. Depending on the circumstances,

this may not seem a significant risk; however, there remains an enduring potential to com-

promise personal privacy.

Utilitarian ethics theory requires actions be evaluated to determine how much good they

do. The evaluation considers only the consequence of the action, not the original intention

(Russell, Hogan & Junker-Kenny 2012). The aim is to create the greatest good for the

greatest number. Under this theory, researchers aim to maximise happiness. It could be

argued that publication of vulnerability research benefits those with ill-intent, and thus

increases danger to the public. When vulnerabilities are already well known, however,

continuing the research is unlikely to cause further harm. Rather, it raises vendor and

public awareness of the vulnerabilities, so mitigations can be developed. RF fingerprinting

is already a well-known and researched method for enhancing security of wireless network

links, so this proposed research is unlikely to increase the danger or harm to the public.

Deontological ethics theory contrasts Utilitarianism, requiring people to follow a set of

moral rules, act from duty, and possess a good intent, rather than a good outcome (Russell

et al. 2012). Applying this framework, researching and disclosing vulnerabilities in privacy,

which to allow the public to make educated decisions about the privacy or security offered

by their products, is a sound decision. Bringing further attention to RF fingerprinting

techniques allows the public to be better informed on limitations of privacy-enhancing

features within their devices, and allows them to make more informed choices about

trusting the claims of such put forward by vendors of this technology.
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After the application of Utilitarianism and Deontological frameworks, the research is still

ethically justified.

1.5 Risk Assessment

To ensure this research was undertaken safely, hazards were identified, the risks assessed

and managed to ensure any residual risk was as low as reasonably practicable. The USQ

Safety Risk Management System was used as the framework for assessing and documenting

risks. Where a risk control measure is detailed in the USQ Laboratory & Workshop Safety

Manual v2.2, this control is applied to control the risk.

The risks identified in the Risk Management Plan are fairly standard for working in a

laboratory environment. The RF equipment being tested are standard consumer Blue-

tooth devices, so there was no significant risk of dangerous RF. The only notable risks

identified related to potential entrapment within the RF shielded room, and workstation

ergonomics due to the prolonged amount of computer-based work.

All identified risks were assessed as Low after basic control were applied.

A copy of the complete risk assessment can be found in Appendix B.

1.6 Project Timeline

To ensure the research project was completed within the required time-frame, and the

objectives of the project specification were met, a project timeline was developed. The

project timeline includes sequencing, and approximate start and end dates, for each major

event.

A Gantt chart of the project timeline can be found in Appendix C.
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1.7 Resource Requirements

A number of resources were required to complete the research project. These are broadly

categorised as:

• RF downconverter;

• low-cost acquisition hardware;

• computer with MATLAB® for feature extraction and classification;

• sample Bluetooth devices; and

• environment suitable for conducting controlled testing.

A complete list of equipment required for the research project can be found in Appendix D.





Chapter 2

Literature Review

2.1 Introduction

To undertake any further research into RF fingerprinting of Bluetooth devices, and the

potential implications when using samples acquired under non-ideal conditions, it is nec-

essary to review the existing body of literature. This chapter provides a review of the

literature relevant to RF fingerprinting of Bluetooth devices, with a focus on the use of

turn-on transients for this purpose.

2.2 RF Fingerprinting

The unique fingerprinting of transmitters may be of interest to nation-states for defence

reasons, so the body of work may be larger than has been discovered.

RF fingerprinting methods can be broadly categorised as physical layer techniques, or

higher layer techniques; within the physical layer techniques, methods can be further

categorised as transient methods (Ureten, Serinken et al. 1999, Ellis & Serinken 2001,

Hall 2006, Ureten & Serinken 2007, Mohamed, Dalveren & Kara 2020), or steady-state

methods (Brik, Banerjee, Gruteser & Oh 2008, Candore, Kocabas & Koushanfar 2009,

Polak et al. 2011, Nguyen, Zheng, Han & Zheng 2011).

Early attempts at RF fingerprinting focussed on physical layer characterisation of the
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transient ‘turn on’ stage of the transmitter (see Figure 2.1). Hippenstiel & Payal (1996)

reported success in identifying push-to-talk radio transmitters by applying wavelet trans-

form and Euclidean distance algorithm; however, the scale of the testing was small and

the conditions unknown. Ureten & Serinken (2007) applied RF fingerprinting techniques

to the start-up transient of IEEE 802.11b Wi-Fi signals. The Hilbert Transform was

employed to yield instantaneous frequency and amplitude of the transient, and a proba-

bilistic neural network used for classification. When tested in a controlled environment,

the system was able to classify transmitters with an error rate of 2%.

Figure 2.1: Unique waveforms captured from four Wi-Fi radios (Ureten & Serinken 2007).

The effort on RF fingerprinting of IEEE 802.11 devices increased in response to vendors

introducing MAC address randomisation. Although earlier work focused on physical layer

fingerprinting, research began to focus on higher layer methods–specifically the data link

layer (or MAC layer). Some argued that this was because physical layer fingerprint-

ing requires prior knowledge about the transmitter to create a trained dataset (Robyns,

Bonné, Quax & Lamotte 2017). Others noted the plethora of vendor-specific imple-

mentation idiosyncrasies which lend themselves to unique identification, even with MAC

address randomisation (Becker, Li & Starobinski 2019, Celosia & Cunche 2020, Martin
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et al. 2017, Oliveira, Schneider, Souza & Shen 2019). The fundamental issue with data

link layer fingerprinting is that it is not immutable. While the current variance of im-

plementation makes this a rich area for identification, the drawback is that fingerprint

characteristics are implemented in software and thus can be modified by the vendor, or the

device owner. This means researchers need to keep their signature library updated with

all patches for all devices, but also makes it hard to prove ownership as the characteristics

could be changed at any time.

Polak et al. (2011) argued many higher layer characteristics could be modified in software,

and would therefore not be admissible in court; they instead focused on steady-state errors

in the digital to analogue converters (DACs) and non-linearity in the power amplifiers to

realise immutable physical layer fingerprinting.

Others have researched steady-state physical layer fingerprinting techniques, though this

work largely focuses on the IEEE 802.11 WiFi domain. Brik et al. (2008) developed PAR-

ADIS, a system which compared frames with the ‘ideal’ version of itself in the modulation

domain, allowing identification of frequency error, SYNC correlation, I/Q offset, phase er-

ror and magnitude error to be extracted and converted to multi-dimension vectors, which

could then be processed in a support vector machine (SVM) classifier; this study reported

identification of 130 devices with 99% accuracy, with robustness for mobility, ambient

noise and transmitter ageing. Desmond, Yuan, Pheng & Lee (2008) attempted to infer

clock-skew based on probe requests but discovered inconsistent performance, as timing

between probe requests are highly dependent on internal device processes which cannot

be inferred remotely. Wenhao, Zhi, Kui, Bocheng & Sixu (2015) attempted to use time-

domain and frequency-domain characteristics to fingerprint devices and explore the effects

of environmental changes. They argued physical layer fingerprinting is prone to misclas-

sification in real-world application; however, it is noteworthy that their fingerprinting

extraction was based on time-domain and frequency-domain analysis. Despite this, many

have reported success performing RF fingerprinting using wavelet transform (Hippenstiel

& Payal 1996, Hall, Barbeau & Kranakis 2006, Klein, Temple & Mendenhall 2009, Danev,

Zanetti & Capkun 2012, Xu, Zheng, Saad & Han 2015) and discrete Gabor transform

(Lukacs, Collins & Temple 2015) to extract useful characteristics from signal transients.

The viability of using low-cost software defined radio (SDR) to complete RF fingerprinting

on Bluetooth devices has also been investigated. In research by Helluy-Lafont et al.

(2020), three features were used: preamble duration, hopping clock skew, and carrier
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clock skew. The authors argue clock skew is highly affected by variances in temperature,

suggesting further research could be completed in this area. However, the SDR used

had limited bandwidth (28MHz) and was unable to cover the entire Bluetooth band.

Rather than increasing SDR bandwidth, others designed modular RF front-end systems to

downconvert Bluetooth signals to the band 20–100 MHz (Uzundurukan, Ali & Kara 2017).

These systems have been shown to be effective at reproducing Bluetooth signals at lower

frequencies (Uzundurukan, Ali, Dalveren & Kara 2020); the benefit of this method is that

the entire Bluetooth band can be sampled with a sampling rate as low as approximately

200MS s−1.

2.3 RF Fingerprinting of Bluetooth Devices

Recent research indicates Bluetooth devices can be reliably identified through their char-

acteristic turn-on transient. The Hilbert-Huang transform (HHT) has been used to gen-

erate time-frequency-energy distributions (TFEDs), which can be used to extract fea-

tures which support identification, even under high SNR (Ureten & Serinken 2007, Ali

et al. 2019, Uzundurukan, Ali, Dalveren & Kara 2020). Using TFEDs, Ali et al. (2019)

identified 13 features which can be used to classify Bluetooth turn-on transients, and

report greater than 98.95% accuracy when using the Linear Support Vector Machine (L-

SVM) classifier, with Complex Tree and Linear Discriminant Analysis (LDA) classifiers

performing slightly worse.

Aghnaiya et al. (2019) investigated the viability of Variational Mode Decomposition

(VMD) as an alternative to the Empirical Mode Decomposition function underpinning

the Hilbert-Huang Transform. Fingerprint signals were decomposed using VMD, and

higher order statistical features (variance, skewness and kurtosis) are calculated from

the instantaneous amplitude, frequency and phase, resulting in nine features per record.

When compared to existing feature extraction using the HHT (Ali et al. 2019), the VMD

technique showed increased classification accuracy of 8% with an SVM classifier.
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2.4 Transient Detection

The literature indicates that the accurate detection of the transient portion of a signal is

a major challenge (Uzundurukan, Ali, Dalveren & Kara 2020).

There are a number of potential methods for detecting the start of the transient portion

of an RF signal. Variance fractal dimension threshold detection (VFDTD) can work well

for signals with high SNR where there is an abrupt change in amplitude at the beginning

of the transient, though it can be challenging to determine appropriate thresholds for

a range of conditions (Hall, Barbeau & Kranakis 2003). Bayesian step change detection

(BSCD) remains popular in the literature, and has been employed to automatically detect

transmission transients from VHF two-radio radios (Ureten et al. 1999). Hall et al. (2003)

also developed a novel transient detection algorithm which analysed the phase of the

signal, and relied on the slope of the phase being linear throughout the transient; this

method was shown to be superior to VFDTD and BSCD methods at detecting cellular-

phone radios.

A comprehensive review by Mohamed et al. (2020) investigated the accuracy and compu-

tational complexity of several popular transient detection algorithms. The study inves-

tigated the performance of VFDTD and BCSD, mean change point detection (MCPD),

and the phase detection (PD) algorithms developed by Hall et al. (2003). Additionally,

two implementations of the Energy Criterion algorithm used in the power field were also

investigated (Wagenaars, Wouters, Van der Wielen & Steennis 2008). The experiment

showed EC-𝛼 exhibited superior accuracy while also requiring the least elapsed-time to

detect the transient.

While Energy Criterion can be used to reliably detect the start-point of a transient,

detecting the end-point (that is, the location where the signal moves from transient to

steady-state) is also challenging. Bluetooth signals exhibit multiple local energy maxima,

both within the transient and steady-state portion, making envelope detection challenging.

Successful implementations of transient detection identify the steady-state by its gradient,

find the length of the transient for each record in a class, and then calculate the median

transient length of multiple records within a class to improve accuracy (Ali et al. 2019).
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2.5 Classifier

The performance of classifiers in RF fingerprinting applications has not been extensively

studied. The most prominent review was completed by Ali et al. (2019), who compared

Complex Decision Tree, Linear Support Vector Machine (L-SVM), and Linear Discrimi-

nant Analysis. Their results show CDT is least suited to accurate classification, followed

by LDA, with L-SVM performing the best overall. This is also supported by results from

Aghnaiya et al. (2019), which show good performance of L-SVM classifiers when applied

to features extracted by Variational Mode Decomposition.

Uzundurukan, Ali, Dalveren & Kara (2020) compared the performance of non-linear Sup-

port Vector Machine (SVM) and Neural Network classifiers on RF Fingerprinting of Blue-

tooth devices, while Helluy-Lafont et al. (2020) compared logistic regression, multi-layer

perception, random-forests, and SVM. In each analysis, SVM with a linear kernel func-

tion (L-SVM) showed to have superior classification accuracy compared to other classi-

fiers. Some researchers indicate multi-class SVM classifiers achieve accuracy of more than

99.8% for sets containing more than twenty records (Helluy-Lafont et al. 2020).

SVM classifiers work by mapping all input data records into n-dimension hyperspace. A

kernel function is used to turn the input data into a point in the hyperspace, reducing

computational effort and time required to classify records. Once the kernel function is

applied, a hyperplane is drawn between the records to separate the classes. The hyper-

plane becomes the decision point for binary classification–everything on one side of the

plane is one classification, everything on the other side is the other. The hyperplane is

chosen to maximise the margin between the classes, as shown in Figure 2.2. SVM al-

gorithms were originally developed for binary classification problems, though they can

be extended for multi-class classification through ‘one-to-one’ or ‘one-to-rest’ approaches

(Hsu & Lin 2002).
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2.7 Conclusion

This chapter has presented existing research relating to RF fingerprinting systems, with

particular focus on identification of WiFi and Bluetooth transmitters. Methods for ex-

tracting critical identifying features from the turn-on transient portion of a waveform

are explored, with Empirical Mode Decomposition and Variable Mode Decomposition

showing promise as methods to transform the waveform into a time-frequency-energy dis-

tribution. Potential solutions for transient detection are explored, with Energy Criterion

highlighted as the prominent method for detecting the transient start. Additionally, the

selection of classifiers for similar systems is explored, with Support Vector Machine clas-

sifiers showing the best performance for classification of similar features. An opportunity

for further work is identified, specifically in quantifying how environmental variables affect

RF fingerprinting systems.



Chapter 3

Methodology

3.1 Introduction

This chapter presents the methodology used to implement a physical-layer RF finger-

printing system for Bluetooth devices, and methodology to verify system performance.

The processes for construction/implementation and verification of each major subsystem

is also detailed.

3.2 Proposed Objectives

The proposed objectives to be addressed by this research are outlined below.

1. Design and build an RF front-end downconverter to allow acquisition of Bluetooth

signals using equipment with low sampling rates (i.e. 500MS s−1).

2. Research and implement a system to automatically extract the ‘turn-on’ transient

from a captured Bluetooth signal at various sample rates.

3. Assess the accuracy of the classifier to correctly identify a device for a given turn-on

transient for an existing dataset, and compare these results to those in the literature.

4. Using the RF downconverter built earlier, acquire a collection of ‘real-world’ finger-

print data under controlled conditions, specifically:
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(a) under a range of (transmitter) temperatures;

(b) while the transmitter is moving toward or away from the receiver; and

(c) in the presence of ambient (background) noise (i.e. lower SNR).

5. Assess the accuracy of classifiers to correctly identify a device for a given turn-on

transient when presented with ‘real-world’ fingerprint data. Compare and contrast

these results against the performance of classifier when using controlled fingerprint

data.

The realisation of these objectives provides valuable insight into the viability of imple-

menting the RF fingerprinting system using lower-cost hardware to detect authorised

and unauthorised Bluetooth transmitters, even when the transmitters deploy advertising

address or MAC address randomisation.

3.3 RF Downconverter

This section provides a high-level plan for construction of the RF downconverter, and

the methodology for verifying its performance. The actual construction and verification

testing results are detailed in Chapter 4.

3.3.1 RF Downconverter Construction

Both Bluetooth Classic and Bluetooth Low Energy (BLE) operate in the 2.4 GHz ISM

band, with all channels (including frequency guard bands) occupying less than 80 MHz

of contiguous bandwidth. The Bluetooth Classic system operates on 79 RF channels. RF

channels are 1 MHz wide, and spaced every 1 MHz, such that channel centre frequency

can be defined by:

𝑓 = 2402 + 𝑘 MHz, where 𝑘 = 0, ..., 78 (3.1)

Similarly, the BLE system operates at the same frequency ranges, and relies on 1 MHz

RF channels, but increases the spacing between channels to 2 MHz, which reduces the

number of RF channels to 40. Three of these RF channels (channels 37, 38, and 39) are
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used as primary advertising channels. Channel centre frequency in BLE can be defined

by:

𝑓𝐵𝐿𝐸 = 2402 + 2𝑘 MHz, where 𝑘 = 0, ..., 39 (3.2)

Note that the BLE channel ordering is not sequential, so 𝑘 in Equation 3.2 does not

directly map to channel number.

To prevent aliasing introduced by insufficient sampling of the signal, it is necessary to

sample faster than the Nyquist rate (Leis 2011). The formula for Nyquist rate is shown

in Equation 3.3:

𝑓𝑠 ≥ 2𝑓𝑚𝑎𝑥 (3.3)

where 𝑓𝑠 is the sampling frequency and 𝑓𝑚𝑎𝑥 is the highest frequency components of the

signal being sampled.

The Nyquist rate required to sample the highest-frequency Bluetooth signals (assuming

direct sampling) is 𝑓𝑠 ≥ 4.961 GHz; additionally, this is the minimum sampling rate,

and in practice a higher rate is used. This will necessitate the use of expensive sampling

equipment.

To reduce the sampling rate, a downconverter is used to shift the entire Bluetooth spec-

trum to a lower band. When two signals are mixed together through fundamental mixing,

the output can be expressed by the general form:

𝑓𝑜𝑢𝑡 = 𝑚 · 𝑓1 ± 𝑛 · 𝑓2 (3.4)

where 𝑚 and 𝑛 are integer values. This will generate both an upper sideband (USB) at

𝑓1+𝑓2, a lower sideband (LSB) at 𝑓1−𝑓2, and a number of intermodulation components

due to mixing of integer harmonics of the inputs frequencies. In downconversion two

signals are mixed with the intention of using the generated LSB as the output. It is often

convenient to use the simplified use case formula:

𝑓𝐼𝐹 = |𝑓𝐿𝑂 − 𝑓𝑅𝐹 | (3.5)

By tuning the VCO to generate a 2380 MHz signal, the downconverter can shift the

Bluetooth signals into the band 20–100 MHz. This makes the Nyquist rate 200 MHz,

which is trivial to sample using lower cost equipment.
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introduce any observable errors.

3.4 Acquisition System

This section provides a high-level plan for implementing the acquisition system, and the

methodology for verifying its performance. The actual implementation is detailed in

Chapter 4, and verification testing results are detailed in Chapter 6.

3.4.1 Acquisition System Construction

Earlier works by Uzundurukan, Dalveren & Kara (2020b) used two different method for

collection of Bluetooth signals. The first method used direct sampling of the spectrum

using an oscilloscope with high-sampling rates (5GS s−1, 10GS s−1, 20GS s−1). The

second method, which is reproduced in this project, uses a modular RF downconverter

to shift the frequencies of interest to a range that can be sampled using lower-grade

equipment.

The acquisition system is research will use a PicoScope 5444B PC oscilloscope for Blue-

tooth signal acquisition (Pico Technology 2016). The 5444B has 200 MHz analogue band-

width, so can sample the entire Bluetooth band after downconversion. It can sample a

single channel at rates up to 500MS s−1 in 12-bit resolution, or up to 1GS s−1 at 8-bit

resolution; this exceeds the Nyquist rate requirement of 200MS s−1.

3.4.2 Acquisition System Verification

The acquisition system verification is identical to the RF downconversion verification test-

ing. The first test involves applying a known frequency input (𝑓𝑅𝐹 ) to the downconverter

RF input, and passing the output of the downconverter to Channel A of the PicoScope

5444B. The PicoScope software is set to display the incoming signal in both the time-

domain (scope view) frequency-domain (spectrum analyser view). Triggers should be not

placed on the PicoScope at this stage, to ensure triggers do not inadvertently block signals

being detected. The signal is observed in the time-domain to ensure there is no distortion

or superposition of the VCO test signal. The signal is also observed in the frequency
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domain to confirm the acquisition system is able to cleanly detect the entire frequency

range of interest.

Once the VCO test signal is observed and verified, experimentation can be conducted

using real Bluetooth signals. The objective of these experiments is identify the trigger

settings that allow the acquisition system to reliably detect Bluetooth signals.

3.5 Transient Detection Software

This section provides a high-level plan for implementing the transient detection system,

and the methodology for verifying its performance. The actual implementation is detailed

in Chapter 4, and verification testing results are detailed in Chapter 6.

3.5.1 Transient Detection Software Construction

The transient-detection system is implemented in MATLAB®. A single waveform vector

is passed into the function, and is parsed to identify the start and end of the transient

period. The start and end instants are returned.

Based on work by Mohamed et al. (2020), the Energy Criterion method is the most

promising candidate for detecting the transient start point. Ali et al. (2019) published

the pseudoscode for an algorithm that estimates transient end point based on local energy

maxima after the transient start point, and refines the estimate based on averaging a

number records from within a given class. The published pseudocode includes six unknown

parameters, which need to be determine experimentally as part of the construction.

3.5.2 Transient Detection Software Verification

The transient detection system is verified through two separate processes. The first stage

is to evaluate the placement of the transient start and end points. The transient detection

system is applied to a number of Bluetooth waveforms. For each waveform, and the

detected transient start and end points are plotted and inspected. The start and end

points should be consistently located at the intuitive location for each waveform.
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Once the start and end points appear to be placed consistently in the correct location, the

second stage can be completed. The transient extraction system is applied to a dataset of

Bluetooth waveforms, and the results are inspected in a box-plot. Given transient length

remains constant for a given device, an effective transient extraction system should show

tight grouping of transient length for each device. This can be displayed as a box-plot.

This sub-system can be evaluated using a dataset of Bluetooth turn-on transients assem-

bled by others (Uzundurukan, Dalveren & Kara 2020b).

3.6 Feature Extraction System

3.6.1 Feature Extraction System Construction

The feature-extraction system is implemented in MATLAB®, based on the work com-

pleted by Ali et al. (2019) and verified by others (Uzundurukan, Dalveren & Kara 2020b).

Thirteen features are extracted for each record for dimensionality reduction. The features

extracted are shown in Table 3.1.
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Table 3.1: Overview of the thirteen features to be extracted from each record for classification.

Feature group Feature name Feature

label

Transient signal and

energy envelope

Duration of transient 𝑓1

Total energy of transient energy 𝑓2

Total energy of transient energy envelope 𝑓3

Variance of transient energy envelope 𝑓4

StD of instantaneous phase of transient signal 𝑓5

TFED of the transient

signal along time axis

Entropy of instantaneous phase of transient sig-

nal

𝑓6

Length of transient energy distribution 𝑓7

Slope of transient energy distribution 𝑓8

Variance of sum of transient energy distribution 𝑓9

Maximum of sum of transient energy distribution 𝑓10

Third order polynomial fitting coefficient of sum

of transient energy distribution

𝑓11

TFED of the transient

signal along frequency

axis

Maximum of sum of transient energy distribution 𝑓12

Variance of sum of transient energy distribution 𝑓13

3.6.2 Feature Extraction System Verification

The feature extraction sub-system is responsible for performing dimensionality reduction–

that is, analysing each record (waveform) and extracting the smallest number of dimen-

sions that account for the observed properties of that record. Dimensionality reduction

is an important step, as the reduction of information being used by the classifier reduces

the risk of over-fitting the model, decreases training time, and improves accuracy.

Because dimensionality reduction is necessarily an abstraction of the waveform data, it

is difficult to intuitively inspect results and confirm their accuracy. Additionally, the



3.7 Classifier 25

feature extraction performance cannot be easily verified, as there is no known reference

implementation or dataset. However, it is possible to confirm each feature within a class

remains consistent; this can be achieved by viewing each feature in a box-plot, grouped

by class (device).

This sub-system can be evaluated using a dataset of Bluetooth turn-on transients assem-

bled by others (Uzundurukan, Dalveren & Kara 2020b).

3.7 Classifier

3.7.1 Classifier Construction

The process for developing classification models, and then assessing the performance of

those models, is identical for each dataset and predicted value permutation. The general

process is:

• Store all features calculated by the feature extraction stage in a table.

• Create a (DeviceID column, and store the device identified against each record.

• Create a (DeviceModel column, and store the device type (e.g. ’iPhone7’) against

each record.

• Ingest the table to the MATLAB Classification Learner app, selecting the correct

predictive value (DeviceID for classification to a particular device, DeviceModel for

classification to a particular model of device), and use cross-fold validation (𝑘 = 5).

Take care not to include the unused predictive value as a feature.

• Using default values, generate models for all classifier types.

• Using default values, create an optimised version of the best-performing classifier

from the last run.

By using either the DeviceID or DeviceModel as predictive values, it is possible to build

classifiers to attribute turn-on transients to a particular transmitter (e.g. this particular

Apple iPhone 7), and to attribute turn-on transients to a particular type or transmitter

(e.g. any Apple iPhone 7).
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3.8 Experiment Design

This section describes the design of the proposed experiment to assess the efficacy of the

RF fingerprinting system when input datasets are collected under conditions that are not

optimal.

3.8.1 Experiment design

The experiment requires collection of Bluetooth turn-on transients under a range of con-

trolled conditions. Due to the nature of RF fingerprinting, it is not necessary that the

Bluetooth devices are of the same type, but it is equally not necessary that they be dif-

ferent. Within this research, turn-on transients are captured from 17 devices representing

nine unique device models.

The intention of the research was to vary one independent variable at a time, creating

datasets that allow the effect of the variation to be determined. Measurements were to

be collected for the following variables:

• high signal to noise ratio reference (labelled Dataset A);

• transmitter temperature variance (labelled Dataset C);

• movement/velocity variance (labelled Dataset B); and

• lower signal to noise ratio (labelled Dataset D).

Due to the permutations involved in capturing multiple samples per variable value for

multiple devices, many discrete samples are required.

Once the datasets are captured, two separate models are built: the first model is built

from the reference dataset, which was captured under extremely controlled conditions;

the second model is built based on the remaining datasets, introducing variation in the

measurements.

Once the two classifier models are built, datasets are created for each value of each variable

being tested. For example, to test the effect of temperature, a dataset is built to include

features from all devices for a temperature of 5 °C; a second dataset would be produced
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for 10 °C, and so on. This process is repeated for each variable type and variable value

recorded. Each dataset can then be applied to each model, allowing the performance of

the classifier to be evaluated for each value of each variable.

3.8.2 Dataset collection

Unfortunately, COVID-19 lockdowns affected ability to access equipment and locations

required to collect this data within the project time-frame. As a result, this research only

presents the high SNR reference dataset, Dataset A.

The data collection methodology is based on those described within Uzundurukan, Dalv-

eren & Kara (2020b) and Uzundurukan, Ali, Dalveren & Kara (2020).

High SNR reference samples are collected for each device. The transmitter and receiver

will be placed in a low-noise environment, such as an RF shielded room. Both the trans-

mitter and receiver will operate at room temperature. The transmitter is positioned

approximately 30 cm from the receiver antenna. Bluetooth will be activated, and the

turn-on transient captured. This process will be completed for all transmitters. This

dataset is labelled Dataset A.

For the temperature variance testing, the transmitter and receiver are placed in a low-

noise environment. The transmitter is positioned approximately 30 cm from the receiver

antenna. The transmitter is heated or cooled to within 1 °C of the target temperature,

taking care to ensure the receiver equipment remains at room temperature. Bluetooth is

activated, and the turn-on transient captured. This process completed for all transmitters,

across the range 5–35 °C (with a step-size 5 °C steps). These ranges are consistent with

stated manufacturer ranges for smart-phone devices. This dataset is labelled Dataset B.

The radial walk testing process is adapted from recommended methods for characterising

intrusion detection sensors (Bowen, Sohinki, Potter & Vaughn 2017) (see Figure 3.3).

The transmitter and receiver will be placed in a relatively low noise, but real-world, envi-

ronment. Due to the distances required, it is not possible to eliminate background noise.

Both the transmitter and receiver will operate at room temperature. The transmitter is

located a specified distance from the receiving antenna. The maximum distance between

the transmitter and receiver must be close enough to allow detection of the turn-on tran-
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sient. The transmitter will then be moved toward the receiver at a given velocity; while

moving, Bluetooth is activated, and the turn-on transient captured. This capture should

include a minor Doppler shift in the received waveform. This process is completed for all

transmitters, across the velocity range 0.5 m/s, 1 m/s, 2 m/s. This dataset is labelled

Dataset C, and includes subsets for each velocity under test.

Doppler shift in an observed signal arises when the distance between the transmitter and

observer is not constant, and can be given by:

𝑓 ′ = 𝑓 ×
(︂

1

1 + 𝑣
𝑐

)︂
(3.6)

where:

𝑓 ′ is the observed frequency resulting from the Doppler shift

𝑓 is the transmit frequency

𝑣 is the velocity of the observer in the direction away from the transmitter

𝑐 is the velocity of the wave in the given medium.

The Bluetooth Core Specifications (Bluetooth Special Interest Group 2019) includes tol-

erance for initial channel frequency error (up to ±75 kHz from the centre frequency), plus

tolerance for frequency drift within a packet (up to ±40 kHz). A Bluetooth transmitter

moving at 30 m/s (108 km/h) with respect to the observer would have a Doppler shift of

less than 250 Hz. Given the magnitude of the allowable drift compared to the magnitude

of the frequency change caused by Doppler shift at expected human speeds, it is highly

that a transmitter will be accurate enough for a sub-300 Hz frequency shift to be detected.

Figure 3.2 shows the expected frequency shift for Bluetooth devices moving for a range

of speeds.

Given the relatively low speeds being employed, it is expected the Doppler shift introduced

on the Bluetooth signals will be imperceptible to the acquisition system, and will therefore

have no effect on the accuracy of the classifier.

For the lower SNR testing, the transmitter and receiver will be placed in an environment

where other WiFi and Bluetooth devices are operating. Both the transmitter and receiver

will operate at room temperature. The transmitter will be located 30 cm from the receiver

antenna. Bluetooth will be activated, and the turn-on transient captured. This process

will be completed for all transmitters. This dataset will be labelled Dataset D.
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Figure 3.2: Predicted Doppler shift of Bluetooth devices at expected human speeds. Calcu-

lated by application of Equation 3.6 for Bluetooth frequency range and velocities of up to

30m s−1.

The support vector machine training process splits the dataset for tuning purposes. Brik

et al. (2008) report seven records (minimum) are required per transmitter to develop an

effective training set. This means the following number of samples must be acquired, per

device, to facilitate an effective model:

• Reference (ideal conditions): seven samples per device.

• Temperature: one samples per temperature per device (seven samples per device).

• Velocity: Three samples per velocity per device (nine samples per device).

Based on the above, each device must produce 23 unique samples. It is expected that the

Bluetooth devices will transmit very rapidly, so many transients can be acquired during

a single test.
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Figure 3.3: Overhead plot showing radial walk testing paths for Doppler testing (Bowen,

2017).

3.8.3 Interpretation of results

The results from a classifier are expressed as a confusion matrix, which summarises pre-

dictions the classifier made, and highlights how many were correct or not. Confusion

matrices are good for understanding the classifiers performance on the dataset, but not

for intuitively comparing classifiers. However, classifiers can also be assigned an accuracy

score, expressed as a percentage, which describes how often the classifier is correct overall.

The classifier accuracy score is better for intuitively comparing classifiers.

The experiment aimed to identify:

• the effect of transmitter temperature variance on RF fingerprinting;

• the effect of transmitter movement on RF fingerprinting; and

• the effect of ‘real-world’ input signals RF fingerprinting.

Each dataset was to be statistically analysed to determine if there is a link between that

variable and the success of the RF fingerprinting system. However, due to COVID-19

lockdowns, these datasets could not be acquired, and the results could not be compared.
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3.9 Project plan

The research project is broken down into six major phases:

• Collection and setup

• Construction of acquisition system

• Acquisition of datasets under different conditions

• Classification of acquired RF fingerprints

• Analysis of results

• Dissertation writing

A Gantt chart showing the project timeline is presented in Appendix C.

3.10 Chapter summary

This chapter has described the high-level methodology for construction of physical-layer

RF fingerprinting system for Bluetooth devices, including a brief overview of the project

plan to realise this. Methodology describing the realisation of critical subsystems, and

methods for verifying performance of those subsystems, are also provided. Finally, method-

ology for the collection of samples and interpretation of the classification results is de-

scribed.





Chapter 4

System Design

4.1 Introduction

This chapter describes the system design used to develop a Radio Frequency (RF) finger-

printing system, consistent with that described in Chapter 3. This chapter proposes the

overall system design, and details implementation of the RF downconverter, acquisition

system, transient detection system, and feature extraction.

4.2 System Model

A system flow chart that addresses the major components of the RF fingerprinting system

is presented in Figure 4.1. Red blocks indicate a hardware component or subsystem.

Blue blocks indicate the PicoScope software. Green blocks indicate code implemented in

MATLAB®.
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4.3 RF Downconverter

A modular downconverter unit was created, based on the earlier work by Uzundurukan

et al. (2017) and Uzundurukan, Ali, Dalveren & Kara (2020). Components were selected

for modularity, suitability, and accessibility. The LNA used was a Mini Circuits ZQL-

2700MLNW+, as it exhibits 25 dB gain across the range 2200–2700 MHz, has a very low

noise figure (less than 1.5 dB), and good gain flatness. The bandpass filter used was a

Mini Circuits VBF-2435+, which has a passband of 2340–2530 MHz. The lowpass filter

used a Mini Circuits VLFX-105, as it has passband from DC to 105 MHz, which is just

wider than the expected bandwidth output from the mixing stage.

The original intention was to a VCO to produce the local oscillator frequency source of

2500 MHz, consistent with the downconverter used by others. However, when applied to

the Bluetooth frequencies of interest (2400–2480 MHz), this approach results in spectral

inversion.

Spectral inversion, also known as frequency inversion, occurs when a mixing operation

with high-side local oscillator (LO) injection is performed (cases where 𝑓𝐿𝑂 > 𝑓𝑅𝐹 ), and

the lower sideband (LSB) is used as the output. The general formula for mixer output,

shown in Equation 3.4 is reproduced below.

𝑓𝑜𝑢𝑡 = 𝑓1 ± 𝑓2 (4.1)

Take 𝑓1 to be the input RF frequency 𝑓𝑅𝐹 , and 𝑓2 to be the local oscillator frequency

𝑓𝐿𝑂. For downconversion through high-side LO injection, 𝑓𝑅𝐹 − 𝑓𝐿𝑂 results in a neg-

ative frequency, which is reflected around the DC point to yield the absolute (positive)

frequency. For cases where 𝑓𝐿𝑂 remains fixed and 𝑓𝑅𝐹 varies, the reflection means that

𝑓𝐼𝐹 decreases as 𝑓𝑅𝐹 increases. This is illustrated in Figure 4.2. To overcome spectral

inversion, the local oscillator frequency of 2380 MHz was selected.

The local oscillator generator was a VCO, built using the Crystek Microwave CVC055CC-

2380-2380 which provides a narrow tuning range centred around 2380 MHz, with very

small adjustment (approximately ±2.5 MHz). An LM7805 linear regulator was used to

supply power to the VCO, and to provide the tuning voltage upper rail. To provide the

tuning voltage, a small circuit was created using a multi-turn trimpot as voltage divider.

Because of the high-impedance on the VCO tuning input, loading effects were negligible,
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Figure 4.3: Photograph of Voltage Controlled Oscillator used to produce continuous wave

frequencies to test the performance of the downconverter system.

frequency range (DC–250 MHz).

The second test involves using the downconverter to shift Bluetooth signals into the

sampling range of the downconverter, and observing the frequency components and overall

shape of Bluetooth waveforms. This is performed to confirm the downconverter does not

introduce any observable errors.
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Figure 4.4: Photograph of the constructed downconverter system (top layer) showing 5V

linear regulator and tuning circuit for the voltage controlled oscillator.

Figure 4.5: Photograph of the constructed downconverter system (bottom layer) showing the

low-noise amplifier, bandpass filter, mixer, local oscillator, and low-pass filter.
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4.4 Acquisition System

The PicoScope 5444B was selected as the acquisition system because it met the exceeded

the minimum sampling rate and resolution (200MS s−1 at 8-bits), and supported rapid

automatic ingestion by a PC. While other hardware-based acquisition tools also meet

these criteria, the PicoScope 5444B was also readily available to the author. It also has

the benefit of being USB-powered when using two or less channels, and can be externally

powered by a 5 V DC supply; these features make it suitable for field deployment where

mains power is not available, which was required for some of the testing.

The PicoScope was set to sample at 500MS s−1, with a hardware resolution of 12 bits.

The downconverter was connected to Channel A, and AC coupling was selected. Initially,

a sample window size of 2500 samples (5 µs) was used with the trigger-point at 50% of

the capture. A photograph of the complete acquisition system is shown in Figure 4.6.

The rapid triggering mode was used, to ensure all Bluetooth transients were collected.

Without rapid triggering, there is a hold-off time after a transient is detected. A number of

Bluetooth Low Energy devices were observed to transmit advertising packets on Channels

37, 38 and 39 in rapid succession. When using trigger modes other than rapid, the first

transient is detected correctly, but the others are masked by the hold-off time of the

PicoScope.

The PicoScope software allows macros and alarms to be used to automate tasks. To

prevent having to manually save capture data to disk when the buffer was full, the ’Alarms’

functionality was used. This was achieved by enabling alarm actions for the Buffers Full

event, creating two alarm actions:

• Save All Buffers

• Restart Capture
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Figure 4.6: The acquisition system, showing RF downconverter connected to the Pico-

Scope 5444B.

4.5 File processing system

The PicoScope acquisition system saves multiple waveform buffers within a single pro-

prietary PicoScope .psdata file. To enable processing by MATLAB®, the PicoScope

command line application is to convert the waveforms in each buffer to .mat format. Be-

cause the metadata of the original file is not carried over into the new file, output files are

named based on the file’s modified date metadata in ISO8601 format, and are appended

with the buffer number of the file. For example, the tenth buffer from a capture file saved

on 1 March 2000, 15:47:17 would be named 20000301T154717 010.mat. There is also a

collision detection system to prevent overwrites in case multiple .psdata files have the

same timestamp.

Once the files are converted, they are parsed to determine if there is a transient present.

The script looks for a basic transient shape (low amplitude for the first 20% of the

waveform, high-amplitude for the last 30%). If a transient is detected, the file is moved

to the final output location. If a transient is not detected, the file is deleted.

A MATLAB® script was created to automate the actions of the file processing system.
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4.6 Transient Detection System

Reliable detection of the transient portion of the waveform is thought to be critical to

extracting consistent and meaningful features for classification. Indeed, feature 𝑓1 is the

transient length.

The transient detection algorithm can be broken down into six steps:

• Apply bandpass filter to waveform (passband of 20–100 MHz).

• Perform DC-offset correction and amplitude normalisation.

• Calculate the signal envelope via the Hilbert transform.

• Smooth the envelope using a median filter.

• Detect start of transient portion of the signal.

• Detect the end of the transient portion of the signal.

After applying the bandpass filter to each waveform, any DC-offset within the signal is

corrected, and the amplitude is normalised. The envelope of the waveform is calculated

by applying MATLAB®’s hilbert() function. This results in a bi-level signal envelope

that closely resembles a step-response. However, the envelope can contain noise, which

frustrates the transient detection algorithms. To remove the noise, a one-dimensional

median filter is applied.

Once the signal envelope is smoothed, the transient start and end instants can be detected.

The literature indicates this is a well-known problem, but solutions have the potential to

be computationally-expensive.

The Energy Criterion (EC) algorithm is used to detect the transient start point. EC has

low computational cost, and has been successful in estimate the time of arrival of partial

discharge pulses within the power field (Wagenaars et al. 2008). More recently, this

technique has been evaluated for its ability to detect turn-on transients in RF waveforms

(Mohamed et al. 2020). EC uses the energy content of the signal to determine transient

starting points. It combines the energy of the signal (a cumulative sum of energies) with

a negative trend, resulting in a global minimum at the point where the transient starts.



42 System Design

The EC algorithm can be expressed as

𝐸
′
𝑖 =

𝑖∑︁
𝑘=0

(︀
𝑥2𝑘 − 𝑖𝛿

)︀
, 𝑖 = 1, ..., 𝑁 (4.2)

where 𝑁 is the discrete signal length, and 𝛿 is a negative trend expressed by

𝛿 =
𝐸𝑁

𝑁𝜗
(4.3)

and 𝜗 is a factor which reduces the delaying effect of 𝛿.

The EC method has been compared experimentally to other common methods for RF sig-

nal transient detection, including variance fractal dimension threshold detection, Bayesian

step change detection, phase detection, and mean change point detection; EC is superior

in terms of computational speed and detection accuracy at higher signal to noise ratio

levels (Mohamed et al. 2020). Based on this finding, EC is used with 𝜗 = 35 to reliably

detect the start of transients in the dataset.

Detecting the end of the transient is also challenging. In their earlier research on this

issue, Ali et al. (2019) published pseudocode for an algorithm that estimates transient

end point based on local energy maxima, and refines the estimate based on averaging a

number records from within a given class. Despite the reportedly promising results, this

algorithm could not be reproduced based on the information present in the literature.

There are six parameters needed by the algorithm, which are not reported. Additionally,

it is unclear how multiple received waveforms are attributed to a single transmitter to

allow averaging to occur; without this critical step, it is unclear how averaging occurs

without prior knowledge of the true class.

Within this project, the transient end point is detected by treating the signal envelope as a

bi-level step-response. Detection of the end of the transient portion using settling time is a

novel technique, which is not believed to have been implemented by others. The transient

end instant can be calculated as the sample when the signal envelope enters and remains

within a given percentage of the final steady-state. MATLAB®’s settlingtime() and

midpoint() functions can be used to achieve this. An example waveform with transient

detection markers is shown at Figure 4.7.
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Figure 4.7: Example of automated transient detection system operation. The signal envelope

is extracted, then Energy Criterion is used to find the transient start and settling time is used

to find the steady-state start/transient end.

4.7 Feature Extraction System

There is significant research into potential features which can be used to classify RF

signals, but this project implements a feature extraction consistent with Ali et al. (2019).

The general process used is:

• apply a digital band-pass filter (FIR) to waveform record;

• detect the transient portion of the record;

• calculate the energy envelope of the transient;

• calculate the time-frequency-energy distribution (TFED) of the transient, through

empirical mode decomposition and Hilbert-Huang Transform; and

• calculate 13 features described in Table 3.1.

Once the transient start location and transient length are calculated, it is possible to

extract features from the records. The time-frequency-energy distribution (TFED) is
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calculated through empirical mode decomposition, and the Hilbert-Huang Transform;

the MATLAB®’s emd() and hht() functions, respectively, are used to achieve this.

Table 4.1 provides an overview of the method used to extract features from each transient.

Note that the following terms are used in the overview:

• envelope refers to the waveform signal envelope of the transient, as calculated by

the hilbert() function.

• imfinse refers to the instantaneous energies of the intrinsic mode functions, as

calculated by the hht() function.

• x step refers to the distance (time) between samples.

A complete copy of the MATLAB® code used to parse waveform files, detect turn-on

transients, and extract these features is included in Appendix E.
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Table 4.1: Overview of method for calculating features from transients.

Feature

label

Feature name Calculation method

𝑓1 Duration of transient endIndex - startIndex

𝑓2 Total energy of transient en-

ergy

sum(sum(imfinse))

𝑓3 Total energy of transient en-

ergy envelope

sum(envelope .^2)

𝑓4 Variance of transient energy en-

velope

var(envelope)

𝑓5 StD of instantaneous phase of

transient signal

std(atan(imag(envelope) ./ real(envelope)))

𝑓6 Entropy of instantaneous phase

of transient signal

entropy(atan(imag(envelope) ./ real(envelope)))

𝑓7 Length of transient energy dis-

tribution

y step = diff(imfinse(:,1))

distance = sum(sqrt(x step^2 + y step.^2))

𝑓8 Slope of transient energy distri-

bution

slope(polyfit(x step, sum(imfinse’, 1), 1))

𝑓9 Variance of sum of transient en-

ergy distribution

var(sum(imfinse’, 1))

𝑓10 Maximum of sum of transient

energy distribution

max(sum(infinse’, 1))

𝑓11 Third order polynomial fitting

coefficient of sum of transient

energy distribution

[p3, ~, ~] = polyfit(x step, sum(imfinse’, 1), 3);

p3(1)

𝑓12 Maximum of sum of transient

energy distribution

max(sum(imfinse))

𝑓13 Variance of sum of transient en-

ergy distribution

var(sum(imfinse))
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4.8 Classifier

The classifier stage is implemented using MATLAB®’s Classification Learner app.

The entire dataset is ingested in the Classification Learner app, where the app then uses

k-fold cross-validation (𝑘 = 5) to split the dataset into training and validation sets. This

is acceptable, as the features of each waveform are calculated completely independently

of each other, so there is no possibility of introducing bias to the dataset.

The Classification Learner app trains classification models for all model types, and reports

the success rates for the initial pass. It is noted that others have reported SVM models to

be the most effective for classifying Bluetooth devices based on their turn-on transients

(Ali et al. 2019). Once the models have been trained, the most successful model type is

then tuned for hyper-parameter optimisation.

4.9 Chapter Summary

This chapter has presented a proposed design for a system to identify Bluetooth trans-

mitters through RF fingerprinting. The major components and subsystems are based on

the methodology outlined in Chapter 3.
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Data Collection

5.1 Introduction

This chapter describes the process followed for collection of signals containing Bluetooth

turn-on transients, and details the devices signals were collected from. Details on the

reference datasets provided by Uzundurukan, Dalveren & Kara (2020a), which are used

to benchmark and validate the constructed system, are also provided.

5.2 Existing Reference Dataset

Uzundurukan, Dalveren & Kara (2020a) collected a dataset of Bluetooth turn-on tran-

sients from 27 smartphones, which reflects 16 different smartphone models over four man-

ufacturers. The dataset includes waveforms sampled via direct sampling at 5GS s−1,

10GS s−1 and 20GS s−1; a fourth dataset includes waveforms sampled at 250MS s−1 af-

ter downconversion using a modular RF front-end. Note that not all devices are sampled

at each sampling rate. Where a device is sampled, 150 unique records are provided. The

devices included in the reference datasets are described in Table 5.1.

This project aims to build an RF fingerprinting system with a relatively lower sampling

rate (500MS s−1). Therefore, the 10GS s−1 and 20GS s−1 reference datasets are not used

within this project. The 500MS s−1 and 5GS s−1 reference datasets are used to allow the

MATLAB® code to be tested prior to acquisition subsystem being completed.
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Table 5.1: Summary of the devices included in the existing reference dataset.

Brand Model
Unique device count

250 MS/s 5 GS/s

Apple iPhone 4S 2 -

Apple iPhone 5 2 2

Apple iPhone 5S 2 2

Apple iPhone 6 2 2

Apple iPhone 6S 3 3

Apple iPhone 7 2 -

Apple iPhone 7 plus 2 -

Apple G4 2 2

Apple V20 2 -

Samsung J7 2 -

Samsung Note 2 2 -

Samsung Note 3 2 2

Samsung S5 2 2

Samsung S7 Edge 2 -

Sony Xperia M5 2 2

Xiaomi Mi6 2 -
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5.3 Collected Dataset

The downconverter and PicoScope 5444B system were used to capture a number of Blue-

tooth turn-on transients under controlled conditions. Samples were collected from 16

unique devices, representing nine different models over seven device manufacturers. The

devices included in the collected datasets are described in Table 5.2.

It was noted that the devices transmit advertising information rapidly after Bluetooth

is enabled. As an indicative example, when the Bluetooth was enabled on an Apple

iPhone 7, the sampling system was triggered 2176 times within one minute (approximately

36 triggers per second). It is noted that this occurred just after Bluetooth was enabled

so the device would have been scanning for known devices. Additionally, some captures

would be false-triggers. Nevertheless, it gives an idea of the rapid nature and ubiquity of

Bluetooth advertising transmissions.

When a dataset was collected, several thousand Bluetooth turn-on transients were col-

lected per device. However, to reduce the processing overhead, each dataset is trimmed

to 200 turn-on transients per device.

Table 5.2: Summary of the devices included in the collected datasets.

Brand Model Unique device count

Apple iPhone 7 2

Apple iPhone X 1

Essager BT001 Bluetooth receiver 2

Fitbit Charge 2 1

Tile Mate 1

Samsung Galaxy A51 1

Samsung Galaxy S8 1

Unihertz Jelly Pro 1

Unbranded BLS-TX3 Bluetooth transmitter 6
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Figure 5.1: Photograph of the data acquisition system deployed in an RF-shielded room to

collect Bluetooth turn-on transients. The laptop was placed in flight-mode during acquisition.

5.3.1 High SNR Dataset (Dataset A)

Samples were collected in an RF shielded room, which provided an environment free

of background RF noise. All samples were collected at room temperature 25 °C, and

equipment was given at least 15 minutes to warm up and stabilise.

A rubber-duck style antenna, resonant at 2.4GHz with a gain of 2.2 dB i, was used to

couple Bluetooth signals into the downconverter. A Keysight E36313A linear power

supply was used to provide regulated power to the RF downconverter. As the PicoScope

5444B was only sampling on Channel A, it was possible to power it from the USB port;

however, the supplied 5 V power supply was connected to lessen the likelihood of power-

related issues. The PicoScope was set to trigger on Bluetooth turn-on transients, buffer

them in local storage, and then upload them to a laptop via USB3 when the buffer filled.

The PicoScope software running on the laptop automatically saved the file to disk, cleared

the PicoScope buffer, and restarted the capture.

All devices were kept outside the RF shielded room, with Bluetooth disabled (if possible).

This ensured only the Bluetooth device under evaluation could be sampled. One by one,

each device was placed approximately 30 cm from the antenna, and then Bluetooth was

enabled; the data was captured, Bluetooth was disabled, and the device was placed outside

the RF shielded room.

This dataset is labelled Dataset A.
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5.3.2 Temperature Variance Dataset (Dataset B)

The original intention was to collect a dataset for all devices where transmitter temper-

ature was controlled, to determine if variance in temperature had any influence in the

classification of devices through Bluetooth RF fingerprinting. Unfortunately, COVID-19

lockdowns affected ability to access the equipment required to realise this testing.

5.3.3 Doppler Shift Dataset (Dataset C)

The original intention was to collect a dataset for all devices where transmitter was moving

at a controlled velocity, to determine if minor variation in frequency due to Doppler shift

had any influence in the classification of devices through Bluetooth RF fingerprinting.

Unfortunately, COVID-19 lockdowns affected ability to access sites suitable for conducting

this testing.

Additionally, the calculations performed in Section 3.8.2 predict Bluetooth devices will ex-

perience less than 300 Hz frequency shift at speeds less than 108 km/h, but the Bluetooth

transmitters are allowed up ±40 kHz drift within a single packet. Given the relatively

small contribution of Doppler shift, it is unlikely to have any noticible effect on the clas-

sification of devices.

5.3.4 Lower SNR Dataset (Dataset D)

The original intention was to collect a dataset for all devices where higher levels of back-

ground noise are present, to determine how the presence of other Bluetooth and WiFi

transmitters (lower SNR) influences the classification of devices through Bluetooth RF

fingerprinting.

This was very quickly abandoned, as it was not possible to discriminate turn-on transients

of background Bluetooth devices from the device under test, making it impossible to

train a classifier or curate a dataset for validation. Thought was given to artificially

reducing the SNR through addition of additive white Gaussian noise (AWGN), however

time constraints did not permit this.
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5.4 Chapter Summery

This chapter has described the provenance of the reference dataset used to develop tran-

sient extraction and feature extraction systems, and to evaluate the classifier performance.

Additionally, the process that was used collect Dataset A (the high-SNR dataset) at

500 MS/s is described. Unfortunately due to time and resource constraints, it was not

possible to collect the other datasets (Datasets B, C and D) under different environ-

mental conditions.



Chapter 6

Results and Discussion

6.1 Introduction

This chapter presents the results of the hardware analysis of the downconverter and ac-

quisition subsystem, the software testing of the transient detection and feature extraction

system, and the performance of the classifier to existing and acquired datasets.

6.2 Downconverter

This section describes the results of the hardware verification of the hardware downcon-

verter. The downconverter is evaluated with two different double-balanced mixer options,

and the results compared.

6.2.1 Downconverter Using Mini Circuits ZX05-63LH-S+ Mixer

Two mixers were evaluated in the downconverter design. A passive double-balanced mixer

with bandwidth of 750–6000 MHz (Mini Circuits ZX05-63LH-S+) was investigated first.

The test VCO was used to apply a known frequency to the input of the downconverter,

and the output was inspected using the PicoScope 5444B. Inspection of the output sig-

nal showed the downconverter stage functioned as intended, and successfully shifted the

2.4 GHz signals down to the <100 MHz range. When viewing the output signal in the
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time domain, the waveform appeared to be sinusoidal with no observable DC-offset. Fig-

ure 6.1 shows a plot of the downconverter output in the time domain, and Figure 6.2

shows the same signal in the frequency domain.

It is highly desirable for the downconverter to shift the frequencies of interest to a lower

band without introducing additional artefacts or biases. When applying a testing signal

from the VCO, it was evident that the downconverter output contained intermodulation

components within the area of interest (20–100 MHz). These intermodulation compo-

nents were most prominent when the difference between 𝑓𝐼𝐹 and 𝑓𝐿𝑂 was at a minima

(that is, when 𝑓𝐼𝐹 = 2400 MHz). However, when compared to the magnitude of the

fundamental carrier, the intermodulation products were relatively small (−24.75 dBc).

The Total Harmonic Distortion (THD) of the system (for an input of 𝑓𝐼𝐹 = 2400 MHz)

was calculated as −23.24 dBc. Figure 6.5 shows the intermodulation products observed

during this test.

Despite the presence of intermodulation products during the previous test, when a real

waveform was applied the output appeared to be an accurate reproduction of the in-

put waveform. The THD of the system for a real Bluetooth waveform input (𝑓𝑅𝐹 =

2402 MHz) was observed to be −43.86 dBc. Inspection of the data captured using the

PicoScope and the RF front-end show the downconverter stage is working well, and has

successfully shifted the entire Bluetooth band (2400–2480 MHz) down to 20–100 MHz.
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Figure 6.1: Bluetooth turn-on transient of Samsung Galaxy S8 as output by the downconverter

using the ZX05-63LH-S+ mixer, shown in the time domain.
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Figure 6.2: Bluetooth turn-on transient of Samsung Galaxy S8 as output by the downconverter

using the HMC175 mixer, shown in the frequency domain.

6.2.2 Downconverter Using HMC175-based Mixer

In an attempt to further reduce some intermodulation components observed with the

ZX05-63LH-S+ mixer, a second mixer was evaluated in the downconverter design. The

second mixer was a passive double-balanced mixer based on the Analog Devices HMC175

integrated circuit. Testing was performed in the same manner as previously described.

Inspection of the output signal showed the downconverter stage functioned as intended,

and successfully shifted the 2.4 GHz signals down to the <100 MHz range. When viewing

the output signal in the time domain, the waveform appeared to be sinusoidal with no

observable DC-offset.

In the frequency domain, the intermodulation components were attenuated. Figure 6.5

shows the comparison between the ZX05-63LH-S+ mixer and the HMC175-based mixer

for a narrow-band input test frequency.

This mixer caused a reduction in the fundamental output power (by approximately

2 dBm), but also significantly reduced the THD under the same conditions to −39.23 dBc.

Figure 6.5 shows the intermodulation products observed during this test.

When subjected to real waveform testing, however, obvious distortion of the waveform

was observed. It appeared that the output was the superposition of the downconverted

RF signal plus a slow-moving step offset voltage, which varied proportionally with the

power of the signal. This resulted in the expected RF waveform following a inverse step-

response type shape. The amount of DC-offset only varied during the transient stage of

the signal, when the power increased. Because the transient portion of the waveform is the
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area of interest, this is problematic. Applying a digital bandpass filter (with a passband

of 20–100 MHz) was able to remove the slow-moving distortion at higher frequencies, but

was not effective at lower frequency signals. The filtered signal remained asymmetrical.

Additionally, when a real Bluetooth waveform was processed by the downconverter, har-

monic components not identified during the initial testing were visible. Figure 6.4 shows

the frequency components of a real Bluetooth waveform input (𝑓𝑅𝐹 = 2402 MHz). Rela-

tive to the power of the fundamental, these components appeared to be much larger than

those observed in waveforms collected by the system reliant on the ZX05-63LH-S+ mixer.

The THD of the system using this mixer increased to −5.99 dBc.
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Figure 6.3: Bluetooth turn-on transient of Samsung Galaxy S8 as output by the downconverter

using the HMC175 mixer, shown in the time domain.
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Figure 6.4: Bluetooth turn-on transient of Samsung Galaxy S8 as output by the downconverter

using the HMC175 mixer, shown in the frequency domain.
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Figure 6.5: Comparison of frequency components in output of downconverter using ZX05-

63LH-S+ and HMC175-based mixers for single-frequency unmodulated input, shown in the

frequency domain.

6.2.3 Comparison of Mixers

While the HMC-175 mixer appeared superior under simulated testing with the VCO,

obvious distortions in the output were observed when lower-power Bluetooth signals were

used as an input; the waveform exhibited a distortion based on its power, the frequencies

of interest were attenuated, and total harmonic distortion increased across the output

frequency range increased.

Conversely, the ZX05-63LH-S+ mixer performed worse under simulated testing with the

VCO, but ultimately performed better when lower-power Bluetooth signals were used; no

distortion of the waveform was observed, frequencies of interest had a higher power, and

total harmonic distortion was reduced.
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6.3 Acquisition System

The acquisition system worked as expected, with no major concerns identified. The

downconverter appeared to function as expected, shifting Bluetooth signals down to the

20–100 MHz, allowing sampling by the PicoScope 5444B.

It was noted that the trigger settings used in the PicoScope could be improved. There was

a general difficulty in finding a single trigger setting that would reliably detect Bluetooth

transients from all channels. As the device transmits on different channels, the frequency

of the downconverted waveform varies, as expected; however this can pose challenges for

triggers that include window time or dwell time. Care must be taken to ensure trigger

settings do not inadvertently block transient being detected dependant on their channel

(frequency).

Additionally, after capturing it was discovered that some Bluetooth devices have noisy

steady-state waveforms, hampering effective identification of the transient end point in

the transient detection stage. This would normally be improved by filtering, but the

waveforms captured are limited by the amount of steady-state samples acquired. The

acquired signals were 5 µs in length, with the trigger point located halfway into the buffer.

To overcome this, the sample length should be increased to at least 10 µs (5000 samples

per trigger), and the trigger-point should be moved to 30% of the buffer, increasing the

steady-state waveform collected.

6.4 Transient Detection

Accurate transient detection remains a challenge for RF Fingerprinting techniques.

Experimentation showed the EC function could be applied to the envelope of the signal,

as opposed to the waveform itself; this allowed the delaying parameter to be set much

higher (𝜗 = 120) than the recommended 35 required when EC is applied directly to the

waveform.

A one-dimension median filter (equivalent to 1200 ns, or 600 samples at 500 MS/s) was

applied to each waveform envelope to remove noise, and enhance the ability of the software

to locate the beginning of the steady-state, which was defined as the point at which the
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Figure 6.6: Boxplot of feature 𝑓1, transient length, for the reference dataset.

signal entered and stayed within 3.5% of the steady-state value.

If a settling point cannot be determined, the value is set to NaN and the record is excluded

from the dataset. There are numerous reasons why a settling point cannot be found, but

the majority encountered seem to result from unstable steady-state; the envelope of the

signal appears to exhibit ripple which, in some devices, exceeds the tolerance used to

identify steady-state.

When applied to Dataset A the transient detection algorithm was able to find a transient

in 94.0% of the waveform records. Of those records where a transient could not be

identified, the iPhone X was the most difficult to process, with 121 of 400 records (30.25%)

failing. The transient length was calculated for all records over all classes, and the results

were visualised in a boxplot. The boxplot can be seen in Figure 6.7. There are a number

of outliers, but considering there are 200 records per class the number of outliers is

comparatively low.

When applied to the Reference Dataset the transient detection algorithm was able

to find a transient in 98.24% of the waveform records. In this dataset, the most difficult

device to reliably detect transient length was an Apple iPhone 6. A transient was detected

in every case, but there was significant variance in the length of the transient across the
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Figure 6.7: Boxplot of feature 𝑓1, transient length, for Dataset A.

records. The transient length was calculated for all records over all classes, and the results

were visualised in a boxplot. The boxplot can be seen in Figure 6.6. As with the results

for Dataset A, there are still a number of outliers, but considering there are 150 records

per class the number of outliers is comparatively low.

The Apple iPhone 7 is the only device type present in bothDataset A and theReference

Dataset. By inspection of the boxplots in Figure 6.6 and Figure 6.7, it can be seen that

the transient length extractor works reliably on this device type, and has assigned all

iPhone 7 devices with very similar transient lengths. The median transient length for

Phone 7 records in the Reference Dataset are 776 ns and 778 ns (less than one sample

resolution), whereas those in Dataset A are 764 ns and 760 ns (within two samples). This

finding shows the transient length extractor produces constant results, despite differences

in sampling rate.

However, many devices in both datasets have large variances in transient length. As this

occurs across both datasets, it indicates this is not an artefact or error introduced by

the sampling system; rather, it indicates there is a problem in the transient detection

algorithm (or its parameters). Given the reliance of all features on this critical algorithm,

refinement in this space may increase performance of the classification stage.
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6.5 Feature Extraction

By analysing the distribution of some features, it can be seen that some appear to have

similar distributions, indicating they may be duplicated dimensions; for example, the

distributions for features 𝑓3 and 𝑓12, shown in Figure 6.8 and Figure 6.9 respectively,

appear substantially similar. However, there is noticeable difference between feature 𝑓4

and 𝑓12, shown in Figure 6.10 and Figure 6.9 respectively, indicating they are probably

good candidates as dimensions use in the classification stage. Figure 6.11 shows a scatter

plot of 𝑓4 and 𝑓12 for the Reference Dataset. The clustering of points by class indicates

these two features are stronger features for classification, however the overlapping of

devices in the centre-left of the plot (attributed to other devices of the same type) indicate

the current implementation of this features extraction is insufficient for device-specific

classification.

Classes 𝑓5 and 𝑓6 are derived from the instantaneous phase characteristics of the transient,

and are reported to be two of the most robust features for classification (Ali et al. 2019).

While these may be effective when calculated using waveforms captured at high sampling

rates, they appear less meaningful when calculated using waveforms captured at or close

to the Nyquist rate. The Reference Dataset is captured at 250MS s−1, which was

close to the Nyquist rate of 200MS s−1. By inspection of the distributions for 𝑓5 and 𝑓6

(see Figure 6.12 and Figure 6.13 respectively), it is clearly seen that all classes have wide,

overlapping distributions. In isolation, these features do not appear to be good candidates

as features for classification. At higher sampling rates these feature may be useable, but

they appear unhelpful at 250MS s−1.

Inspection of the boxplots indicate the feature extraction system is highly dependant on,

and influenced by, the results of the transient extraction system. From Figure 6.6, it is

clear that ’Class 09 iPhone 6’ has an abnormally large variance of feature 𝑓1 transient

length. By reviewing the other boxplots from the same dataset, it can be seen that ’Class

09 iPhone 6’ displays abnormality in many other features (see feature 𝑓3 in Figure 6.8,

feature 𝑓12 in Figure 6.9, and feature 𝑓4 in Figure 6.10).
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Figure 6.8: Boxplot of feature 𝑓3, total energy of transient energy envelope, for the reference

dataset.
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Figure 6.9: Boxplot of feature 𝑓12, maximum of sum of transient energy distribution along

frequency axis, for the reference dataset.
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Figure 6.12: Boxplot of feature 𝑓5, StD of transient energy envelope, for the reference dataset.
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Figure 6.13: Boxplot of feature 𝑓6, entropy of instantaneous phase, for the reference dataset.
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6.6 Classifier Performance

By using either the DeviceID or DeviceModel as predictive values, it is possible to build

classifiers to attribute turn-on transients to a particular transmitter (e.g. this particular

Apple iPhone 7), and to attribute turn-on transients to a particular type or transmitter

(e.g. any Apple iPhone 7).

6.6.1 Reference Dataset, Device Attribution Classification Results

When applied to the Reference Dataset, the classifier performed poorly. It was able

to successfully classify a turn-on transient to a particular device only 32.6% of the time.

Figure 6.14 shows the confusion matrix. The classifier did perform better than random

chance–for a multi-class classification problem of 𝑛 classes, the probability of guessing

correctly is 𝑃 = 1
𝑛 . In this case, there are 𝑛 = 33 classes, so it is expected that only

3.03% of random guesses would be correct, on average.



66 Results and Discussion

01
02

03
04

05
06

07
08

09
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33

P
re

di
ct

ed
 C

la
ss

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33True Class

R
ef

er
en

ce
 D

at
as

et
 c

o
n

fu
si

o
n

 m
at

ri
x 

(Q
S

V
M

, n
o

t 
o

p
ti

m
is

ed
)

14
.1

%

5.
3%

1.
1%

0.
7%

1.
1%

1.
4%

4.
6%

1.
8%

0.
7%

0.
4%

0.
7%

0.
7%

2.
5%

7.
4%

7.
0%

3.
5%

4.
2%

2.
8%

3.
2%

4.
2%

6.
7%

4.
2%

6.
3%

15
.5

%

3.
1%

26
.4

%

0.
6%

0.
6%

0.
6%

0.
6%

2.
5%

13
.8

%

2.
5%

10
.1

%

6.
9%

5.
7%

8.
8%

5.
0%

3.
1%

1.
3%

8.
2%

67
.1

%

3.
7%

3.
7%

1.
2%

4.
9%

1.
2%

1.
8%

1.
8%

2.
4%

3.
0%

2.
4%

0.
6%

0.
6%

1.
8%

3.
7%

3.
0%

76
.0

%

5.
0%

3.
0%

3.
0%

4.
0%

1.
0%

4.
0%

1.
0%

0.
7%

25
.9

%

3.
5%

18
.2

%

5.
6%

2.
1%

1.
4%

0.
7%

0.
7%

0.
7%

2.
1%

24
.5

%

6.
3%

1.
4%

1.
4%

2.
1%

1.
4%

1.
4%

0.
6%

6.
1%

32
.3

%

7.
9%

3.
0%

0.
6%

1.
8%

4.
9%

4.
9%

1.
8%

3.
0%

4.
9%

3.
7%

3.
0%

9.
1%

1.
8%

1.
2%

0.
6%

3.
0%

1.
8%

1.
8%

0.
6%

0.
6%

0.
6%

1.
3%

12
.5

%

7.
2%

19
.1

%

9.
2%

5.
9%

0.
7%

2.
6%

2.
6%

4.
6%

2.
0%

12
.5

%

7.
2%

1.
3%

0.
7%

2.
0%

2.
6%

3.
3%

0.
7%

1.
3%

0.
7%

2.
3%

0.
6%

6.
9%

1.
7%

4.
0%

27
.4

%

4.
0%

1.
1%

9.
1%

7.
4%

2.
3%

5.
1%

2.
9%

0.
6%

3.
4%

1.
1%

6.
3%

5.
7%

4.
6%

3.
4%

92
.4

%

0.
8%

0.
8%

0.
8%

2.
5%

1.
7%

0.
8%

3.
0%

2.
0%

1.
0%

2.
5%

1.
5%

3.
0%

2.
0%

25
.9

%

5.
1%

4.
1%

2.
0%

3.
0%

4.
6%

1.
0%

4.
1%

3.
6%

3.
6%

4.
1%

2.
0%

2.
5%

3.
6%

9.
1%

3.
6%

3.
0%

1.
2%

3.
1%

0.
6%

1.
2%

33
.7

%

31
.3

%

13
.5

%

0.
6%

3.
7%

9.
2%

0.
6%

0.
6%

0.
6%

0.
8%

1.
5%

1.
5%

0.
8%

0.
8%

34
.6

%

31
.5

%

13
.1

%

3.
8%

1.
5%

7.
7%

1.
5%

0.
8%

4.
4%

3.
2%

0.
6%

2.
5%

10
.8

%

10
.8

%

52
.5

%

1.
3%

7.
0%

3.
8%

1.
3%

0.
6%

1.
3%

1.
0%

3.
6%

12
.0

%

1.
6%

0.
5%

1.
0%

2.
6%

1.
0%

3.
6%

0.
5%

26
.6

%

8.
9%

9.
9%

15
.6

%

1.
0%

1.
0%

0.
5%

1.
0%

5.
7%

0.
5%

1.
0%

0.
5%

0.
7%

4.
3%

1.
4%

1.
4%

5.
0%

0.
7%

2.
9%

2.
9%

5.
0%

2.
2%

10
.1

%

35
.3

%

10
.8

%

9.
4%

4.
3%

0.
7%

2.
2%

0.
7%

1.
8%

5.
8%

0.
6%

4.
7%

1.
2%

0.
6%

1.
2%

5.
8%

6.
4%

1.
8%

9.
9%

11
.7

%

25
.1

%

12
.9

%

0.
6%

3.
5%

0.
6%

1.
2%

2.
9%

0.
6%

1.
2%

0.
6%

1.
3%

1.
9%

9.
1%

1.
3%

2.
6%

2.
6%

0.
6%

0.
6%

3.
2%

2.
6%

1.
9%

0.
6%

16
.2

%

7.
1%

7.
8%

20
.8

%

3.
2%

2.
6%

0.
6%

1.
9%

7.
1%

0.
6%

0.
6%

0.
6%

1.
3%

0.
6%

0.
6%

64
.6

%

32
.9

%

0.
6%

0.
6%

0.
7%

1.
4%

0.
7%

31
.5

%

65
.0

%

0.
7%

1.
2%

0.
6%

22
.8

%

1.
8%

14
.6

%

13
.5

%

2.
9%

1.
2%

1.
8%

0.
6%

0.
6%

18
.7

%

7.
6%

1.
8%

0.
6%

0.
6%

2.
3%

2.
9%

2.
3%

1.
8%

3.
5%

1.
8%

1.
2%

0.
6%

4.
7%

15
.8

%

6.
4%

4.
7%

1.
8%

2.
3%

0.
6%

1.
2%

4.
7%

22
.2

%

4.
1%

1.
2%

2.
3%

2.
3%

3.
5%

4.
7%

3.
5%

2.
9%

0.
6%

3.
5%

3.
3%

17
.8

%

3.
3%

1.
1%

3.
3%

1.
1%

2.
2%

1.
1%

4.
4%

8.
9%

4.
4%

4.
4%

10
.0

%

8.
9%

4.
4%

7.
8%

7.
8%

5.
6%

14
.9

%

6.
1%

0.
7%

0.
7%

6.
8%

1.
4%

0.
7%

2.
7%

3.
4%

5.
4%

9.
5%

10
.1

%

4.
7%

6.
8%

2.
0%

4.
1%

6.
1%

8.
1%

6.
1%

8.
3%

6.
5%

2.
4%

1.
2%

1.
2%

3.
0%

7.
7%

0.
6%

0.
6%

0.
6%

1.
2%

1.
8%

0.
6%

5.
3%

11
.2

%

17
.8

%

6.
5%

2.
4%

1.
8%

3.
0%

7.
1%

1.
8%

7.
1%

0.
6%

1.
3%

9.
9%

4.
6%

0.
7%

3.
3%

1.
3%

1.
3%

1.
3%

5.
9%

2.
0%

0.
7%

2.
0%

6.
6%

3.
9%

16
.4

%

4.
6%

3.
9%

11
.2

%

5.
3%

1.
3%

1.
3%

3.
9%

1.
3%

5.
9%

2.
9%

8.
8%

1.
0%

1.
0%

1.
0%

1.
0%

1.
0%

1.
0%

1.
0%

2.
9%

6.
9%

4.
9%

3.
9%

16
.7

%

14
.7

%

6.
9%

8.
8%

11
.8

%

3.
9%

3.
0%

5.
3%

1.
8%

1.
8%

1.
2%

3.
0%

1.
2%

2.
4%

1.
8%

4.
1%

5.
3%

3.
6%

4.
7%

12
.4

%

20
.1

%

7.
7%

5.
3%

5.
3%

10
.1

%

4.
5%

0.
9%

0.
9%

4.
5%

6.
3%

4.
5%

0.
9%

4.
5%

1.
8%

5.
4%

2.
7%

4.
5%

9.
0%

10
.8

%

15
.3

%

12
.6

%

6.
3%

4.
5%

10
.5

%

1.
8%

7.
0%

3.
5%

8.
8%

5.
3%

3.
5%

5.
3%

8.
8%

5.
3%

8.
8%

21
.1

%

10
.5

%

9.
0%

0.
6%

1.
1%

3.
9%

0.
6%

3.
4%

12
.4

%

1.
7%

2.
2%

7.
3%

5.
1%

11
.8

%

7.
9%

27
.5

%

5.
6%

6.
3%

9.
0%

0.
9%

0.
9%

2.
7%

1.
8%

0.
9%

0.
9%

6.
3%

8.
1%

6.
3%

2.
7%

5.
4%

9.
9%

9.
9%

5.
4%

3.
6%

18
.9

%

2.
2%

0.
7%

0.
7%

1.
5%

1.
5%

0.
7%

76
.9

%

15
.7

%

0.
8%

3.
4%

0.
8%

0.
8%

0.
8%

22
.7

%

70
.6

%

14
.1

%
26

.4
%

67
.1

%

32
.9

%

76
.0

%

24
.0

%

25
.9

%
32

.3
%

67
.7

%

19
.1

%
27

.4
%

92
.4

%

7.
6%

25
.9

%
33

.7
%

66
.3

%

31
.5

%

68
.5

%

52
.5

%

47
.5

%

26
.6

%
35

.3
%

64
.7

%

25
.1

%
20

.8
%

64
.6

%

35
.4

%

65
.0

%

35
.0

%

18
.7

%
22

.2
%

8.
9%

9.
5%

17
.8

%
11

.2
%

16
.7

%
20

.1
%

15
.3

%
8.

8%
27

.5
%

18
.9

%
76

.9
%

23
.1

%

70
.6

%

29
.4

%
85

.9
%

73
.6

%
74

.1
%

80
.9

%
72

.6
%

74
.1

%
73

.4
%

74
.9

%
79

.2
%

81
.3

%
77

.8
%

91
.1

%
90

.5
%

82
.2

%
88

.8
%

83
.3

%
79

.9
%

84
.7

%
91

.2
%

72
.5

%
81

.1
%

P
P

V

F
D

R

Figure 6.14: Confusion matrix of Reference Dataset without device-type grouping, using SVM

classifier after optimisation (32.6% classification success).
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6.6.2 Dataset A, Device Attribution Classification Results

When applied to Dataset A, the classifier performed better than for the Reference

Dataset, but still lower than others have reported. It was able to successfully classify a

turn-on transient to a particular device 69.6% of the time. Figure 6.15 shows the confusion

matrix.

It is unclear why these results are markedly different that those for the Reference

Dataset, though it could be due to the increased sampling rate. Some of the features

used during extraction rely on instantaneous phase information, which becomes less mean-

ingful as the sampling rate approaches the Nyquist rate. Another possible reason is the

difference in classes; the Reference Dataset includes 33 classes, whereas Dataset A

only includes 17.
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Figure 6.15: Confusion matrix of Dataset A without device-type grouping, using SVM classi-

fier after optimisation (69.6% classification success).

6.6.3 Classifying Based on Device-type

Inspection of the confusion matrices in Section 6.6.1 and Section 6.6.2 show the classifier

struggles to correctly predict a class when there is more than one device of the same
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Figure 6.16: Confusion matrix of Dataset A with device-type grouping, using SVM classifier

(92.6% classification success).

type. However, where there is only one device of a given type (as is the case for the Tile

Mate, class 10 in Figure 6.15) the classifier predicts that class quite well. To investigate

this further, a new classifier was built to attribute turn-on transients to a given device

type; that is, it is sufficient to classify a transient as being generated from an iPhone 7,

as opposed to a specific iPhone 7. To achieve this the same datasets were used, but the

predictive value was changed to DeviceModel. In this scenario, the classification problem

becomes simplified.

The SVM classifier with a quadratic kernel function (QSVM) performed the best prior

to optimisation, with 92.6% of turn-on transients correctly attributed to the device type.

This classifier is significant more accurate compared to the per-device attribution clas-

sifiers, the results of which are shown in Section 6.6.2. Figure 6.16 shows the confusion

matrix for the classifier with classification based on device-type.

6.7 Discussion

This project has recreated a functional Bluetooth RF fingerprinting system capable of

attributing turn-on transients to a given device, or device-type. However, it has not been
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able to replicate the success of others, nor was it possible to fully explore how the phys-

ical environment (temperature, movement, background RF noise) affects classification.

Despite not acquiring turn-on transients under these conditions, the calculations in Sec-

tion 3.8.2 provide a compelling case that minor shift in frequency due to movement of

a device during transmission is unlikely to be discernible, at least for speeds a human is

likely to be travelling.

The constructed downconverter and acquisition system performed as expected. Investiga-

tion showed the Mini Circuits’ ZX05-63LH-S+ mixer was better at reproducing low-power

RF signals compared to a mixer based on the HMC156 IC. The triggering settings in the

PicoScope could be improved, to improve detection while lowering false triggers; alter-

nately, an external triggering device could be created to trigger the PicoScope 5444B.

Accurate and consistent detection of the transient start and end point remains a challenge.

Some of the waveforms captured in Dataset A did not include enough steady-state

after the transient, which hampered identification of the end of the transient. During

this project, such short waveforms were simply discarded, but future researcher should

endeavour to capture enough steady-state to allow detection of the transient end, even

after filtering of the envelope. The author believes a sample length of 10 µs, with the

transient start trigger-point at approximately 30% of the buffer, should be sufficient.

Given the reliance of all features on accurate transient detection, refinement in this space

may increase performance of the classification stage.

In all cases, the classifiers built to attribute devices based on their Bluetooth turn-on

transients differed markedly from the results reported by others, who claim success rates of

greater than 99% with the Reference Dataset (Uzundurukan, Dalveren & Kara 2020b).

It is noted that these published results do not include sufficient information to allow

transient detection and feature extraction to be implemented in an identical manner, so

the observed discrepancy in results could be attributed to difference in implementation.

Additionally, in their implementation of a similar system, Ali et al. (2019) briefly explain

a mechanism that uses multiple samples to determine the start and end transient more

accurately, and then extract the features. This approach is claimed to result in a classifier

success rate of over 99%; however, there was insufficient information to determine how

the authors were able to attribute multiple unknown transients to a single transmitter

prior to successful classification. The implementation of such a system would reduce the
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variance in transient length, which has been shown to greatly influence the extraction of

features for classification.

6.8 Chapter Summary

This chapter has reviewed the performance of the acquisition system, the transient ex-

traction system, and the feature extraction system; final performance of the end-to-end

system has been reviewed through the results of the classifier. Results are presented for

Reference Dataset and the acquired Dataset A, and include per-device-attribution

and device-type attribution tests.



Chapter 7

Conclusions and Further Work

This chapter provides a summary of the results achieved, mapped against the original

project specifications. A number of potential future research areas that could build on

this work are explored.

7.1 Recommendations for Further Research

This section explores a number of potential further research areas that could build on this

work.

7.1.1 Collection of Data

The original intention was to collect a number of datasets under varied environmental

conditions, which could be used by future researchers to better understand the efficacy

of RF fingerprinting systems outside of ideal laboratory conditions. As has been noted

earlier, existing research on the topic focuses exclusively on ideal laboratory conditions;

there are no publicly known datasets of Bluetooth turn-on transients that have been

acquired under such conditions.

Such datasets are advantageous to researchers, as they allow evaluate and verification

of RF fingerprinting systems in real-world environments, without having to reproduce

the testing. Due to lockdowns relating to the COVID-19 pandemic it was not possible
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to access the necessary facilities and equipment, and consequently those datasets were

not acquired. However, the collection of such datasets would be advantageous to future

researchers.

7.1.2 Improve Transient Detection Algorithm

Accurate and consistent detection of the transient start and end point remains a challenge,

especially for waveforms that exhibit stead-state amplitude variance or those that grow

to steady-state very slowly. Both of these features have caused problems for reliably

identifying the start of the steady-state of the waveform (end of the transient).

7.1.3 Initial Correlation of Turn-on Transients

Some researchers have overcome some of the challenges in transient detection by averaging

the detected transient length from multiple turn-on transients from a single device (Ali

et al. 2019). However, the literature does not sufficiently explain how the researchers were

able to attribute multiple unknown transients to a single device in order to perform the

averaging. Further research in this area could allow the transient extraction stage to be

made much more robust.

One potential method for initial correlation of turn-on transients is to estimate the phys-

ical distance between the transmitter and receiver, on the assumption that this will not

vary substantially over a short period of time. This issue has application in other domains,

and so is explored within the literature (Castillo-Cara, Lovón-Melgarejo, Bravo-Rocca,

Orozco-Barbosa & Garćıa-Varea 2017, Giuliano, Cardarilli, Cesarini, Di Nunzio, Falluc-

chi, Fazzolari, Mazzenga, Re & Vizzarri 2020).

A second potential method is to perform temporal correlation of transient signals based

on a shared Bluetooth Low Energy (BLE) advertising address. The BLE advertising ad-

dress includes features to prevent tracking and surveillance–the address can be generated

randomly and changed frequently. However, for practical purposes the address remains

static for a period of time. If advertising addresses can be decoded and attributed to

a captured turn-on transient, it may be possible to attribute transients to a single but

unknown device, allowing averaging of the transient length to be completed.
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An extension of this second method is to correlate turn-on transients to a single device

despite an advertising address change. Assuming the area around the receiver is relatively

quiet (in terms of Bluetooth traffic) and the number of devices is not in constant flux,

it may be possible to track a Bluetooth device after address change by correlating the

presence of a new address with the disappearance of another. This method has been

built on in the address-carryover algorithm developed by Becker et al. (2019), though

additional tokens were extracted from advertising data to make the process more robust.

7.1.4 Improve Downconverter

The modular RF downconverter has been shown to be an effective at shifting the entire

Bluetooth band (2400–2480 MHz) down to 20–100 MHz, allowing the entire Bluetooth

band to be sampled using low-cost equipment (compared to the cost of equipment required

for direct sampling of the RF). The modular design was chosen by researchers because

the components are accessible, reusable, and relatively low-cost. However, the system

could be refined through the design of a fit-for-purpose downconverter with the following

improvements:

• reduce size and mass to simplify deployment;

• ability to be powered from less than 15V;

• reduce current consumption;

• include circuitry to prevent introduction of distortion due to power supply ripple or

instability;

• reduce intermodulation distortion and harmonics at output; and

• improve stability of local oscillator to temperature variance.

7.2 Conclusions

This project has described the design and implementation of an RF fingerprinting system

based on Bluetooth turn-on transients. The project specification, shown in Appendix A,
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includes a number of primary goals. A review of the progress made to these goals in

included below.

A downconverter, which allows the Bluetooth band (2400–2480 MHz) to be shifted to 20–

100 MHz, has been described and constructed. The downconverter facilitated sampling of

the entire Bluetooth band using a PicoScope 5444B; sampling was completed at 500 MS/s

at 12-bits of resolution, exceeding the minimum sampling rate and resolution required.

A system for automatically extracting the turn-on transient from a sampled waveform

was implemented in MATLAB®. Energy Criterion was confirmed as an excellent method

for detecting the start of a transient portion. Additionally, a new method for detecting

the end of the transient, based on the settling time of the envelope. These two methods

successfully extracted the transients from a number of waveforms reliably; however, some

device types generate waveforms that cause unreliable operation of the transient detection

system.

To support classification of the Bluetooth transients, a feature extraction system was

implemented in MATLAB®, based on the thirteen features described by Ali et al. (2019).

Inspection of those features as boxplots shows a link between inconsistency in the transient

detection stage (realised as a wide spread of values) and inconsistency in the features.

Classifiers were implemented using MATLAB®’s Classification Learner app. In each case,

the optimum classifier was a Support Vector Machine, confirming the results of others

(Ali et al. 2019, Uzundurukan, Ali, Dalveren & Kara 2020, Helluy-Lafont et al. 2020).

Due to lockdowns relating to the COVID-19 pandemic it was not possible to access the

necessary facilities and equipment required to collect datasets under controlled conditions,

and thus this original goal has not been achieved. As these datasets have not been

acquired, it is not possible to fully explore how the physical environment (temperature,

movement, background RF noise) affects classification. Despite not acquiring turn-on

transients under these conditions, the calculations in Section 5 provide a compelling case

that minor shift in frequency due to movement of a device during transmission is unlikely

to be discernible, at least for speeds a human is likely to be travelling.

The performance of the classifier was assessed using a Reference Dataset provided by

Uzundurukan, Dalveren & Kara (2020a), and Dataset A acquired using the downcon-

verter and acquisition system described earlier. After optimisation, the classifier was able
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to correctly attribute waveforms from theReference Dataset to a specific device with an

accuracy of 32.6%. When attributing waveforms from the acquired dataset, Dataset A,

device-specific attribution accuracy was 69.9%; the reason for the performance improve-

ment is not yet understood, but could be due to the increased sampling rate, as some

features rely on instantaneous phase information that becomes less meaningful when sam-

pled close to the Nyquist rate. Compared to the results reported in the literature, this

research was unable to reproduce the extremely high results (over 99% success) reported

by others (Ali et al. 2019, Aghnaiya et al. 2019, Uzundurukan, Ali, Dalveren & Kara 2020).

However, when the classifier was used to attribute waveforms to a device-type, as opposed

to specific device, prediction success increased to 92.6%.

This project has implemented a functional and successful RF fingerprinting system for

classifying transmitters based on their Bluetooth turn-on transient, however the results

of others could not be reproduced. Nevertheless, the results show that RF fingerprinting

based on turn-on transient shows promise as a method for transmitter attribution; ad-

ditionally, attribution is greatly simplified if classifying to a device model, instead of a

specific device.
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ENG 4111/2 Research Project

Project resources

Eli Priest, u1082889

The resources required for this project are broadly categorised as:

• RF downconversion front-end;

• low-cost RF acquisition hardware;

• computer equipment and software, for processing;

• mobile devices with Bluetooth for testing; and

• environment suitable for conducting controlled testing.

A list of specific equipment to complete the project can be found in Table D.1.

Table D.1: Project resources.

Qty Item Cost Source/supplier

1 ISM2400 band 2.2 dBi omnidirectional antenna (WRL-00145 or similar) $12.33 Core electronics

1 Voltage controlled oscillator module, 2500 MHz (ZX95-2650-S+ or similar) ∼$60.00 Student

1 Low noise amplifier module, 2500–2700 MHz (ZQL-2700MLNW+ or similar) $128.34 cseonline.com.au

1 Mixer module, 750–6000 MHz (ZX05-63LH-S+ or similar) $87.98 cseonline.com.au

1 Low pass filter, 0–105 MHz (VLFX-105+ or similar) $73.30 cseonline.com.au

1 Band pass filter, 2340–2530 MHz (VBF-2435+) $64.05 cseonline.com.au

- Various SMA / banana adaptors and cables ∼$40 cseonline.com.au

1 Linear power supply, triple output (Keysight E36313A or similar) Nil Student

1 Dataset of RF fingerprints acquired by others Nil Uzundurukan, Dalveren & Kara 2020

1 Digital oscilloscope, >250 MHz (PicoScope 5444B or similar) Nil Employer

1 PC running MATLAB Nil Student

10 Mobile devices (phones) with Bluetooth Nil Student’s colleagues

1 Environmental climate chamber (5–35 °C) Nil Employer

1 RF shielded room Nil Employer

1 Large open-spaced warehouse/shed Nil Employer

1 Thermometer (resolution and accuracy at leave 0.1 °C) Nil Employer
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E.1 Overview of code blocks

main

traverse_folders

loadDir

filter_500

EC

extractFeaturedEMD

class2vec

processFiles

traverse_folders

convertFile

filter_500

isTransient

RF fingerprinting
This column shows the hierarchy of code
files required by the RF fingerprinting
system. This includes code to automatically
traverse dataset folders, perform digital
filtering, extract the transient, calculate
features, and store results in a table.

File conversion
This column shows the hierarchy of code
files required to convert PicoScope files
into MATLAB readable files. This includes
code to automatically traverse dataset
folders, perform file conversion, and
determine if a transient shape is present -
if it is, then keep the file; otherwise,

Figure E.1: Overview of code blocks used in RF fingerprinting system.
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E.2 RF fingerprinting system

E.2.1 main.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−09−01

5 c l e a r ;

6 c l c ;

7 c l o s e a l l ;

8

9 %% De f i n i t i o n s and cons tant s

10 % Spec i f y the base f o l d e r ho ld ing the da ta s e t s

11 b a s e f o l d e r = 'D:∖ f i n g e r p r i n t i n g ∖DatasetA' ;

12

13 % Sampling ra t e o f the acqu i red samples (Hz)

14 f s = 500 e6 ;

15

16 % Spec i f y the cons tant s and s e t t i n g r e l e van t to t r an s i e n t de t e c t i on .

17 % Vartheta , f o r s t a r t o f t r a n s i e n t de t e c t i on

18 extractorParams (1 ) . EC param = 120 ;

19 % Se t t l i n g s t a t e t o l e r an c e ( percent )

20 extractorParams (1 ) . s e t t l eTo l = 4 ;

21 % Window s i z e o f the 1−d median f i l t e r

22 extractorParams (1 ) . tWindSize = 1200e−9;

23 extractorParams (1 ) . mfWindSize = round ( extractorParams (1 ) . tWindSize *

f s ) ;

24 % Upper l im i t f o r s e t t l i n g time ( in seconds )

25 extractorParams (1 ) . MaxSettleTime = 5e−6;

26

27 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 % Se t t i n g s f o r bypass ing or f o r c i n g recanning o f the f i l e s or data

29 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 % Force re−ex t r a c t i on o f c l a s s i f i c a t i o n data f o r each waveform?

31 % true = f o r c e f o r c e read ing o f waveforms from f i l e s , and c r ea t e

a new save f i l e f o r r e t r i e v a l l a t e r .

32 % f a l s e = do not f o r c e re−reading , but do i t i f a save f i l e does

not e x i s t .

33 extractorParams (1 ) . r e scan = true ;

34

35 % Force re−ex t r a c t i on o f c l a s s i f i c a t i o n data f o r each waveform?

36 % true = f o r c e re−ex t r a c t i on o f c l a s s i f i c a t i o n data , and c r ea t e a

new save f i l e f o r r e t r i e v a l l a t e r .

37 % f a l s e = do not f o r c e re−ext rac t i on , but do i t i f a save f i l e

does not e x i s t .

38 extractorParams (1 ) . r e e x t r a c t = true ;

39
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40 %% Id en t i f y number o f unique c l a s s e s , and f i l e path o f saved r e co rd s

41 % Finds a l l f o l d e r s , r e f e r en c ed from the ba s e f o l d e r , which are s to r ed

in the form <device>∖< r e c o r d f i l e >

42 % Each dev i ce f o l d e r r ep r e s en t s a c l a s s

43

44 % Generate a complete l i s t o f d i r e c t o r i e s that might hold waveform

f i l e s by t r av e r s i n g from a given l o c a t i o n .

45 ar rayOfDev i ceF i l e s = ...

46 t r a v e r s e f o l d e r s ( b a s e f o l d e r ) ;

47

48 % Run loadDir ( ) to scan a l l o f the d i r e c t o r i e s and ex t r a c t the

f i l t e r e d and un f i l t e r e d waveforms

49 char data = {} ;
50 f o r n = 1 : l ength ( ar rayOfDev i ceF i l e s )

51 % Open the f i l e s , and ex t r a c t the f i l t e r e d and un f i l t e r e d

waveforms

52 devicePath = arrayOfDev i ceF i l e s (n) . path ;

53 f p r i n t f ( 'Found record f o l d e r : %s ∖n' , devicePath ) ;

54 [ ˜ , c l a s s (n) , char ] = loadDir ( devicePath , extractorParams (1) , f s ) ;

55

56 % Place data in a c e l l array , not an array , as i t i s not c e r t a i n

that a l l c l a s s e s i n c lude the same number o f r e co rd s .

57 char data {end+1} = char ;

58 end

59

60 % Prepare the array f o r i n g e s t i o n in to the C l a s s i f i c a t i o n Learner

61 a l l d e v i c e f e a t u r e s = [ ] ;

62 f o r nClass = 1 : l ength ( c l a s s )

63 % I t e r a t e through each dev i c e r e c o rd in the c l a s s s t r u c t . Convert

the f1 to f13 parameters to a matrix , with each row

correspond ing to one record . Append a dev i c e index to the

beg inning o f the row , so that i t takes the form :

64 % dev i c e a r r ay = [ dev f1 f2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f10 f11 f12 f13 ] ;

65 d ev f e a tu r e s = c l a s s 2v e c ( c l a s s ( nClass ) ) ;

66 dev id = ones ( l ength ( d ev f e a tu r e s ) , 1) * nClass ;

67 dev i c e a r r ay = [ dev id , d ev f e a tu r e s ] ;

68 a l l d e v i c e f e a t u r e s = [ a l l d e v i c e f e a t u r e s ; d ev i c e a r r ay ] ;

69 end

70

71 % Report the number o f waveforms with a NaN

72 f p r i n t f ( 'Fai l ed scanning %d waveforms (%.2 f%%)∖n' , max(sum( isnan (

a l l d e v i c e f e a t u r e s ) ) ) , (max(sum( isnan ( a l l d e v i c e f e a t u r e s ) ) ) *100/

l ength ( a l l d e v i c e f e a t u r e s ) ) ) ;

73

74 % Place a l l data to be proce s s ed by the c l a s s i f i e r i n to a tab l e

75 T = ar ray2 tab l e ( a l l d e v i c e f e a t u r e s ) ;

76 T. Prope r t i e s . VariableNames ( 1 : 1 4 ) = {'Class number' , ' f 1 ' , ' f 2 ' , ' f 3 ' , ' f 4 '

, ' f 5 ' , ' f 6 ' , ' f 7 ' , ' f 8 ' , ' f 9 ' , ' f 10 ' , ' f 11 ' , ' f 12 ' , ' f 13 ' } ;
77 T. Label = [ a r rayOfDev i ceF i l e s (T. Class number ) . dev i c e ] ' ;
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78

79 % Get the dev i ce type from the f o l d e r name . This a l l ows the c l a s s i f i e r

to e i t h e r check device−to−dev i c e comparisons ( c l a s s=DeviceID ) or

model−to−model comparisons ( c l a s s=DeviceModel ) .

80 % Note : f o l d e r s must be l a b e l l e d in the format <DevID>−<DeviceModel>

81 % For example ”01− iPhone7” r e f e r s to dev i c e ID '01' with Device Model

' iPhone7 ' .

82 s p l i t L ab e l = s p l i t (T. Label , '−' ) ;

83 T. DeviceID = sp l i t L ab e l ( : , 1 ) ;

84 T. DeviceModel = sp l i t L ab e l ( : , 2 ) ;

85 % Remove the unused dev i ce c l a s s i d e n t i f i e r a s s i gned by the loadDir

s tage

86 T. Class number = [ ] ;

87

88 d i sp ( 'End o f program . ' ) ;

89 %[EOF]
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E.2.2 traverse folders.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−09−01

5

6 %% Traverse path func t i on

7 func t i on [C] = t r a v e r s e f o l d e r s ( b a s e f o l d e r )

8 % This func t i on i d e n t i f i e s a l l c l a s s s ub f o l d e r s r e l a t i v e to the base

f o l d e r g iven .

9 %

10 % Input :

11 % ba s e f o l d e r the s t a r t i n g po int f o r the f o l d e r t r a v e r s a l

f unc t i on

12 %

13 % Output :

14 % C a st ruc t , with he ight equal to the number o f

dev i c e f o l d e r s found .

15 % C. dev i ce the name o f the dev i ce f o l d e r

16 % C. path the f u l l path to the dev i c e f o l d e r

17 sub1 = getSubFolders ( b a s e f o l d e r ) ;

18 f i l e c o u n t = 0 ;

19 f o r i = 1 : he ight ( sub1 )

20 fu l lPa th = f u l l f i l e ( sub1 ( i ) . f o l d e r , sub1 ( i ) . name) ;

21 f i l e c o u n t = f i l e c o u n t +1;

22 C( f i l e c o u n t ) . dev i c e = { sub1 ( i ) . name } ;
23 C( f i l e c o u n t ) . path = fu l lPa th ;

24 end

25 end

26

27 %% getSubFolders func t i on

28 func t i on [ subFolders ] = getSubFolders ( f o l d e r )

29 % Reads out the contents o f a f o l d e r , and re tu rn s a s t r u c t f o r each

sub f o l d e r found . Removes l i n k s to cur rent and parent d i r e c t o r y (

'. ' and ' . . ' ) .

30 %

31 % Input :

32 % f o l d e r the path to the f o l d e r being scanned

33 %

34 % Output :

35 % subFolders a vec to r o f s t r u c t which d e s c r i b e s the sub f o l d e r s

with in the g iven f o l d e r . Each s t r u c t with in the vec to r has the

36 % form :

37 % name

38 % f o l d e r

39 % date

40 % bytes

41 % i s d i r
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42 % datenum

43

44 f i l e s = d i r ( f o l d e r ) ;

45 dirMask = [ f i l e s . i s d i r ] & ˜strcmp ({ f i l e s . name} , ' . ' ) & ˜strcmp ({
f i l e s . name} , ' . . ' ) ;

46 subFolders = f i l e s ( dirMask ) ;

47 end

48 %[EOF]
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E.2.3 loadDir.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−09−01

5

6 func t i on [ waveform data , f e a tu r e s , char data ] = loadDir ( f o l d e r , params

, f s )

7 % This func t i on scans a g iven f o l d e r f o r . txt and . csv f i l e s ( which

are assumed to conta in va l i d waveform f i l e s ) and par s e s them . The

waveforms are f i l t e r e d us ing the low−pass f i l t e r s u i t a b l e f o r the

sampling rate , and the h i l b e r t trans form i s app l i ed to ex t r a c t the

enve lope .

8 %

9 % A s t ru c t i s c r ea ted to hold data from each record ( f i l e ) be ing

proce s sed .

10 % f o l d e r = the f o l d e r o f the record

11 % name = the f i l ename o f the record

12 % Fs = the sampling f requency

13 % wave = the u n f i l t e r e d wave , normal ised , but otherwi s e as

read from the f i l e

14 % f i l tWave = wave , a f t e r low−pass f i l t e r i n g

15 % hilbertWave = the complex H i l b e r t Transform o f f i l tWave

16 % sta r t Index = the index o f hi lbertWave r ep r e s en t i ng the s t a r t o f

the t r an s i e n t

17 % endIndex = the index o f hi lbertWave r ep r e s en t i ng the end o f

the t ran s i en t , as detec ted in the s i n g l e forward−pass

18 %

19 % Inputs :

20 % f o l d e r the path ( abso lu t e or r e l a t i v e ) o f the f o l d e r

ho ld ing the c l a s s r e co rd s

21 % params the extractorParams s t ru c tu r e

22 % Outputs :

23 % waveform data the s t r u c t array ho ld ing the waveforms and

trans forms o f each record

24 % f e a t u r e s the s t r u c t ho ld ing d e t a i l s o f the f e a t u r e s

ex t rac t ed from the waveform

25

26 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 % record data − should be s to r ed in data .mat

28 anyth ing changed f l ag = f a l s e ;

29

30 % Check i f t h i s f o l d e r has a l r eady been proces sed and saved to

f i l e . I f so , r e turn that . Otherwise , do a new scan and save to

f i l e .

31 r e co rdF i l eLoca t i on = f u l l f i l e ( f o l d e r , 'data .mat' ) ;

32

33 % Check i f the re i s a l r eady a record data f i l e in the f o l d e r
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34 i f i s f i l e ( r e co rdF i l eLoca t i on ) && params (1) . r e scan==f a l s e

35 % I f the f i l e e x i s t s open the f i l e

36 f p r i n t f ( '∖ tOpening r e co rd s f i l e ∖n' ) ;
37 waveform data = load ( r eco rdF i l eLocat i on , '−mat' ) . waveform data

;

38 % Return here

39

40 e l s e

41 % I f the f i l e does not ex i s t , do a f u l l scan

42 anyth ing changed f l ag = true ;

43 f p r i n t f ( '∖ tPars ing r e co rd s ∖n' ) ;
44

45 % Get a l i s t o f a l l s u i t a b l e f i l e s in the s p e c i f i e d f o l d e r

46 waveformFiles1 = d i r ( f u l l f i l e ( f o l d e r , ' * . tx t ' ) ) ;

47 waveformFiles2 = d i r ( f u l l f i l e ( f o l d e r , ' * .mat' ) ) ;

48 % Remove the data f i l e s used to s t o r e c r i t i c a l in fo rmat ion

from the l i s t , as they cannot be parsed as a waveform .

49 toRemove = ismember ({waveformFiles2 . name} , {' c l a s s . mat' , 'data

.mat' , 'char . mat'}) ;
50 waveformFiles2 ( toRemove ) = [ ] ;

51

52 f i l e s I nCu r r e n tD i r = [ waveformFiles1 ; waveformFiles2 ] ;

53

54 % I t e r a t e through a l l f i l e s in the l i s t f i l e I nC i r r e c tD i r

55 f o r n = 1 : he ight ( f i l e s I nCu r r e n tD i r )

56 cu r r en tF i l e = f i l e s I nCu r r e n tD i r (n) ;

57 cur rentF i l ePath = f u l l f i l e ( c u r r e n tF i l e . f o l d e r , c u r r e n tF i l e

. name) ;

58

59 % Import the f i l e contents us ing the c o r r e c t decoder f o r

the type .

60 [ f i l e p a t h , name , ext ] = f i l e p a r t s ( cur rentF i l ePath ) ;

61 i f ext == ' . tx t '

62 % When import ing from t e x t f i l e the re i s no time data ,

so the sampling f requency f s must be s p e c i f i e d .

63 [ time , wave ] = importFromRef ( currentFi l ePath , f s ) ;

64 e l s e i f ext == ' . csv '

65 [ time , wave ] = importFromPico ( cur rentF i l ePath ) ;

66 e l s e i f ext == ' . mat'

67 % MATLAB f i l e s from the PicoScope do not in c lude a

time s e r i e s , but they do inc lude in fo rmat ion that

a l l ows one to be c a l c u l a t ed

68 A = load ( currentFi l ePath , '−mat' ) ;

69 wave = A.A;

70 time = ( ( 0 :A. Length −1) * A. Tinte rva l ) + A. Tstart ;

71 end

72

73 % Calcu la te the sample f requency based on the timestamps

74 Fs = 1/mean( d i f f ( time ) ) ;
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75 Fs MHz = round (Fs/1 e6 ) ;

76

77 % F i l t e r the wave us ing the c o r r e c t ob j e c t f o r the g iven

sampling rate , Fs MHz

78 i f Fs MHz == 500

79 grpDelay = round (mean( grpde lay ( f i l t e r 5 0 0 ) ) ) ;

80 f i l tWave = f i l t e r ( f i l t e r 5 0 0 , wave ) ;

81 f i l tWave = f i l tWave ( grpDelay : end ) ;

82 e l s e i f Fs MHz == 250

83 grpDelay = round (mean( grpde lay ( f i l t e r 2 5 0 ) ) ) ;

84 f i l tWave = f i l t e r ( f i l t e r 2 5 0 , wave ) ;

85 f i l tWave = f i l tWave ( grpDelay : end ) ;

86 e l s e

87 f p r i n t f ( 'No f i l t e r a v a i l a b l e f o r Fs = %d MHz.∖n' ,

Fs MHz) ;

88 f i l tWave = wave ;

89 end

90

91 % Normalise the waveform − remove DC o f f s e t , and r e s c a l e

to [−1 , 1 ]

92 f i l tWave = f i l tWave − mean( f i l tWave ) ;

93 f i l tWave = f i l tWave / max( abs ( f i l tWave ) ) ;

94

95 % Calcu la te the enve lope us ing the Hibert trans form

96 hilbertWave = h i l b e r t ( f i l tWave ) ;

97 env = abs ( hi lbertWave ) ;

98

99 % Apply a 1−d median f i l t e r to the s i g n a l enve lope . Use

the ' truncate ' opt ion to a l low var i ab l e−l ength window

padding at the edges , l e s s e n i n g underest imat ion o f the

s i g n a l .

100 envF i l t e r ed = med f i l t 1 ( env , params . mfWindSize , ' t runcate ' )

;

101

102 % Find the s t a r t o f the t r an s i e n t

103 %nTransStart = EC( f i ltWave , params . EC param) ;

104 nTransStart = EC( envFi l t e red , params . EC param) ;

105 waveform data (n) . s t a r t Index = nTransStart ;

106

107 % Find the end o f the t r s a n s i e n t based on the s e t t l i n g

po int . S e t t l i n g po int i s r e f e r en c ed from the midpoint ,

so t h i s a l s o needs to be c a l c u l a t ed .

108 nMidPoint = c e i l ( midcross ( envF i l t e r ed ) ) ;

109 nSettleWind = length ( envF i l t e r ed ) − nMidPoint − 1 ;

110 % Set the maximum length the t r an s i e n t can be found in . It

' s e i t h e r the end o f the waveform ( r e f e r en c ed from

nMidPoint ) or the maximum length o f time s to r ed in

MaxSettleTime .

111 i f nSettleWind > (Fs * params . MaxSettleTime )
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112 nSettleWind = round (Fs * params . MaxSettleTime ) ;

113 end

114 % In t e r p o l a t e the i n s t an t o f the s e t t l i n g time , in samples

. Note that i t i s i n t e rpo l a t ed , so might not be an

i n t e g e r .

115 [ ˜ , ˜ , SINST ] = s e t t l i n g t im e ( envFi l t e red , nSettleWind , '

t o l e r an c e ' , params . s e t t l eTo l ) ;

116 nTransEnd = round (SINST) ;

117

118 % I f a s e t t l i n g po int could not be found , then the

t r an s i e n t cannot be used . Set the badDataFlag .

Otehrwise , r epo r t the s t a r t and end indexes .

119 i f i snan (SINST)

120 waveform data (n) . endIndex = NaN; %Placeho lder to

overcome e r r o r s

121 waveform data (n) . badDataFlag = true ;

122 e l s e

123 waveform data (n) . s t a r t Index = nTransStart ;

124 waveform data (n) . endIndex = nTransEnd ;

125 waveform data (n) . f o l d e r = cu r r en tF i l e . f o l d e r ;

126 waveform data (n) . name = cu r r en tF i l e . name ;

127 waveform data (n) . Fs = Fs ;

128 waveform data (n) . transWave = f i l tWave ( waveform data (n)

. s t a r t Index : waveform data (n) . endIndex ) ;

129 waveform data (n) . hi lbertWave = hilbertWave (

waveform data (n) . s t a r t Index : waveform data (n) .

endIndex ) ;

130 waveform data (n) . badDataFlag = f a l s e ;

131 end

132 end

133 end

134 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
135 % c l a s s d a t a − should be s to r ed in c l a s s . mat in the dev i ce f o l d e r

136 c l a s sF i l e L o c a t i o n = f u l l f i l e ( f o l d e r , ' c l a s s . mat' ) ;

137 i f i s f i l e ( c l a s sF i l e L o c a t i o n ) && params (1 ) . r e scan==f a l s e

138 % I f the f i l e e x i s t s open the f i l e

139 f p r i n t f ( '∖ tOpening c l a s s f i l e ∖n' , c l a s sF i l eL o c a t i o n ) ;

140 f e a t u r e s = load ( c l a s sF i l eLo ca t i on , '−mat' ) . f e a t u r e s ;

141 % Return here

142 e l s e

143 f p r i n t f ( '∖ tCa l cu l a t i ng c l a s s data∖n' , c l a s sF i l eL o c a t i o n ) ;

144 anyth ing changed f l ag = true ;

145 % I f the f i l e does not ex i s t , p roc e s s the c l a s s in fo rmat ion

146 f e a t u r e s (1 ) . f o l d e r = f o l d e r ;

147 f e a t u r e s (1 ) . f i l e L i s t = f i l e s I nCu r r e n tD i r ;

148 end

149

150 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151 % char data − should be s to r ed in char . mat
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152 charF i l eLoca t i on = f u l l f i l e ( f o l d e r , 'char . mat' ) ;

153 i f i s f i l e ( cha rF i l eLoca t i on ) && anyth ing changed f l ag == f a l s e &&

params (1 ) . r e e x t r a c t == f a l s e

154 % I f the f i l e e x i s t s open the f i l e

155 f p r i n t f ( '∖ tOpening f e a t u r e s f i l e ∖n' , cha rF i l eLoca t i on ) ;

156 char data = load ( charF i l eLocat ion , '−mat' ) . char data ;

157 % Return here

158 e l s e

159 % Calcu la te the other f e a t u r e s

160 f p r i n t f ( '∖ tCa l cu l a t i ng f e a t u r e s ∖n' ) ;
161 f o r n = 1 : l ength ( waveform data )

162 char data (n) = extractFeaturesEMD ( waveform data (n) ) ;

163 end

164

165 % Create ve c t o r s f o r the i nd i v i dua l c h a r a c t e r i s t i c s ( f 1 to f13

) and save those ve c to r s in c l a s s d a t a .

166 f e a t u r e s (1 ) . f 1 = [ char data ( : ) . f 1 ] ;

167 f e a t u r e s (1 ) . f 2 = [ char data ( : ) . f 2 ] ;

168 f e a t u r e s (1 ) . f 3 = [ char data ( : ) . f 3 ] ;

169 f e a t u r e s (1 ) . f 4 = [ char data ( : ) . f 4 ] ;

170 f e a t u r e s (1 ) . f 5 = [ char data ( : ) . f 5 ] ;

171 f e a t u r e s (1 ) . f 6 = [ char data ( : ) . f 6 ] ;

172 f e a t u r e s (1 ) . f 7 = [ char data ( : ) . f 7 ] ;

173 f e a t u r e s (1 ) . f 8 = [ char data ( : ) . f 8 ] ;

174 f e a t u r e s (1 ) . f 9 = [ char data ( : ) . f 9 ] ;

175 f e a t u r e s (1 ) . f10 = [ char data ( : ) . f 10 ] ;

176 f e a t u r e s (1 ) . f11 = [ char data ( : ) . f 11 ] ;

177 f e a t u r e s (1 ) . f12 = [ char data ( : ) . f 12 ] ;

178 f e a t u r e s (1 ) . f13 = [ char data ( : ) . f 13 ] ;

179

180 % Save the r e s u l t i n g f i l e f o r f u tu r e r e t r i e v a l

181 save ( c l a s sF i l eLo ca t i on , ' f e a t u r e s ' , '−mat' ) ;

182 save ( r e co rdF i l eLoca t i on , 'waveform data' , '−mat' ) ;

183 save ( charF i l eLocat ion , ' char data ' , '−mat' ) ;

184 end

185 end

186 %[EOF]
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E.2.4 EC.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−04−12

5

6 func t i on [ index ] = EC(x , v )

7 % This func t i on c a l c u l a t e the Energy Cr i t e r i on o f a s i g n a l .

8 % Implemented based on formulae from 'Performance Assessment o f

Trans ient S i gna l Detect ion Methods and Supe r i o r i t y o f Energy

Cr i t e r i on (EC) Method' by I . S . MOHAMED, Y. DALVEREN, and A.

KARA (2020)

9 %

10 % Input :

11 % x the time−varying s i g n a l ( amplitude )

12 % v the f a c t o r used to reduce the de lay e f f e c t o f

d e l t a ( other r epor t su c c e s s with d e f au l t o f 30)

13 % Output :

14 % index the index o f the lowest energy po int ( should

map the t r an s i e n t s t a r t i n g po int ) .

15

16 i f narg in < 2

17 f p r i n t f (2 , ' [ Error ]∖ tno paramater passed . Using d e f au l t v=35∖n
' ) ;

18 v = 35 ;

19 end

20

21 N = length (x ) ;

22 Ei = cumsum(x . ^ 2 ) ;

23 de l t a = Ei ( end ) / (v * N) ;

24 E i no i s e = [ 0 :N−1]'* de l t a ;

25 Ei = Ei − ( E i no i s e ) ;

26

27 [ ˜ , index ] = min ( Ei ) ;

28

29 end

30 %[EOF]
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E.2.5 extractFeaturesEMD.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−09−01

5

6 func t i on c l a s s = extractFeaturesEMD ( dev i c e r e c o rd )

7 % This takes a d ev i c e r e c o rd s t ruc t , and c a l c u l a t e s t h i r t e e n f e a t u r e s

to be used in the c l a s s i f i e r . The f e a t u r e s are as de f ined in '

Assessment o f Features and C l a s s i f i e r s f o r Bluetooth RF

Fingerpr in t ing ' by Ali , Aysha M. / Uzundurukan , Emre / Kara , Al i

(2019)

8 %

9 % Input :

10 % The dev i c e r e c o rd s t r u c t must in c lude the f o l l ow i n g v a r i a b l e s :

11 % transWave the 1d vec to r ho ld ing the amplitude data o f the

waveform , only with in the t r an s i e n t stage , and a f t e r bandpass

f i l t e r i n g has been app l i ed .

12 % sta r t Index the index r ep r e s en t i ng the s t a r t o f the t r an s i e n t in

f i l tWave

13 % endIndex the index r ep r e s en t i ng the end o f the t r an s i e n t in

f i l tWave

14 % Output :

15 % c l a s s s t r u c t ho ld ing f e a t u r e s f 1 to f13 . Each f e a tu r e i s a s i n g l e

number .

16

17 % Takes in a dev i c e r e co rd , and determines the c h a r a c t e r i s t i c s

18 i f d ev i c e r e c o rd . badDataFlag == true

19 s t r = s p r i n t f ( '∖tBad data f l a g found : %s ∖n' , d e v i c e r e c o rd .

name) ;

20 f p r i n t f ( s t r ) ;

21 c l a s s (1 ) . f 1 = NaN;

22 c l a s s (1 ) . f 2 = NaN;

23 c l a s s (1 ) . f 3 = NaN;

24 c l a s s (1 ) . f 4 = NaN;

25 c l a s s (1 ) . f 5 = NaN;

26 c l a s s (1 ) . f 6 = NaN;

27 c l a s s (1 ) . f 7 = NaN;

28 c l a s s (1 ) . f 8 = NaN;

29 c l a s s (1 ) . f 9 = NaN;

30 c l a s s (1 ) . f10 = NaN;

31 c l a s s (1 ) . f11 = NaN;

32 c l a s s (1 ) . f12 = NaN;

33 c l a s s (1 ) . f13 = NaN;

34 e l s e

35 % Empicial mode decomposit ion , EMD. Since the s i g n a l i s not

smooth , s p e c i f y 'pchip ' as the i n t e r p o l a t i o n method .

36 imf = emd( dev i c e r e c o rd . transWave , ' I n t e r p o l a t i o n ' , 'pchip ' ) ;
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37

38 % Calcu la te the time−f requency−energy d i s t r i b u t i o n f o r the

waveform us ing the Hi lber t−Huang trans form (HHT) . Use

normal i sed f requency .

39 [ hs , f , t , im f i n s f , im f i n s e ] = hht ( imf ) ;

40

41 % f1 , t r a n s i e n t durat ion ( in samples )

42 c l a s s (1 ) . f 1 = dev i c e r e c o rd . endIndex − dev i c e r e c o rd .

s t a r t Index ;

43

44 % f2 , t o t a l energy o f t r a n s i e n t energy

45 % Calcu lated by summing the ins tantaneous energy c a l c u l a t ed by

HHT

46 % Normalised by t r an s i e n t l ength

47 c l a s s (1 ) . f 2 = sum(sum( im f i n s e ) ) / c l a s s (1 ) . f 1 ;

48

49 % f3 , t o t a l energy o f t r a n s i e n t energy enve lope

50 % Normalise by t r an s i e n t l ength to remove b ia s

51 c l a s s (1 ) . f 3 = sum( dev i c e r e c o rd . transWave . ^ 2 ) / c l a s s (1 ) . f 1 ;

52

53 % f4 , Variance o f t r an s i e n t energy enve lope

54 c l a s s (1 ) . f 4 = var ( abs ( d ev i c e r e c o rd . hi lbertWave ) ) ;

55

56 % Instantaneous phase o f t r an s i e n t s i g n a l

57 i n s t pha s e = atan ( imag ( d ev i c e r e c o rd . hi lbertWave ) . / r e a l (

d ev i c e r e c o rd . hi lbertWave ) ) ;

58

59 % f5 , StD o f in s tantaneous phase o f t r an s i e n t s i g n a l

60 c l a s s (1 ) . f 5 = std ( i n s t pha s e ) ;

61

62 % f6 , Entropy o f i n s t . phase o f t r an s i e n t s i g n a l

63 c l a s s (1 ) . f 6 = entropy ( i n s t pha s e ) ;

64

65 % f7 , Length o f t r an s i e n t energy d i s t r i b u t i o n

66 % Calcu la te the d i s t anc e between the l a s t po int and the next

us ing pythagoras , and take the sum of the vec to r .

67 % Normalise by t r an s i e n t l ength to remove b ia s

68 d = d i f f ( im f i n s e ( : , 1 ) ) ;

69 d i s t ance = sq r t (mean( d i f f ( t ) ) . ^2 + d . ^ 2 ) ;

70 c l a s s (1 ) . f 7 = sum( d i s t ance ) / c l a s s (1 ) . f 1 ;

71

72 % Sum of t r an s i e n t energy d i s t r i bu t i o n , time ax i s

73 sum time = sum( imf inse ' , 1) ;

74

75 % f8 , Slope o f t r a n s i e n t energy d i s t r i b u t i o n

76 p = p o l y f i t ( t , sum time , 1) ;

77 s l ope = p (1) ;

78 c l a s s (1 ) . f 8 = s l ope ;

79
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80 % f9 , Variance o f sum of t r an s i e n t energy d i s t r i bu t i o n , time

ax i s

81 % Normalise by t r an s i e n t l ength to remove b ia s from sum time

82 c l a s s (1 ) . f 9 = var ( sum time ) / c l a s s (1 ) . f 1 ;

83

84 % f10 , Maximum of sum of t r an s i e n t energy d i s t r i bu t i o n , time

ax i s

85 % Normalise by t r an s i e n t l ength to remove b ia s from sum time

86 c l a s s (1 ) . f10 = max( sum time ) / c l a s s (1 ) . f 1 ;

87

88 % f11 , Third order polynomial f i t t i n g c o e f f i c i e n t o f sum of

t r an s i e n t energy d i s t r i b u t i o n .

89 % Uses l e a s t−squares method to es t imate th i rd−order

c o e f f i c i e n t

90 % No requirement to normal i s e t h i s by t r an s i e n t l ength

91 [ p3 , ˜ , ˜ ] = p o l y f i t ( t , sum time , 3) ;

92 f11 = p3 (1 ) ;

93 c l a s s (1 ) . f11 = f11 ;

94

95 % Sum of t r an s i e n t energy d i s t r i bu t i o n , f requency ax i s

96 sum freq = sum( imf i n s e ) ;

97

98 % f12 , Maximum of sum of t r an s i e n t energy d i s t r i bu t i o n ,

f requency ax i s

99 c l a s s (1 ) . f12 = max( sum freq ) ;

100

101 % f13 , Variance o f sum of t r an s i e n t energy d i s t r i bu t i o n ,

f requency ax i s

102 c l a s s (1 ) . f13 = var ( sum freq ) ;

103 end

104 end

105 %[EOF]
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E.2.6 class2vec.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−09−01

5

6 func t i on [ out ] = c l a s s 2v e c ( c l a s s S t r u c t u r e )

7 % This func t i on conver t s a s t r u c tu r e o f Class Data in to a vec to r o f

c l a s s data .

8 % The c l a s s S t r u c t u r e i s expected to inc lude f i e l d s f 1 to f13 .

9

10 % Get the s i z e o f the ar rays in the c l a s s St ruc ture

11 c l a s s l e n = length ( c l a s s S t r u c t u r e . f 1 ) ;

12

13 % Create an array f o r output

14 out = ze ro s ( c l a s s l e n , 13) ;

15

16 out ( : , 1 ) = c l a s s S t r u c t u r e . f 1 ;

17 out ( : , 2 ) = c l a s s S t r u c t u r e . f 2 ;

18 out ( : , 3 ) = c l a s s S t r u c t u r e . f 3 ;

19 out ( : , 4 ) = c l a s s S t r u c t u r e . f 4 ;

20 out ( : , 5 ) = c l a s s S t r u c t u r e . f 5 ;

21 out ( : , 6 ) = c l a s s S t r u c t u r e . f 6 ;

22 out ( : , 7 ) = c l a s s S t r u c t u r e . f 7 ;

23 out ( : , 8 ) = c l a s s S t r u c t u r e . f 8 ;

24 out ( : , 9 ) = c l a s s S t r u c t u r e . f 9 ;

25 out ( : , 1 0 ) = c l a s s S t r u c t u r e . f10 ;

26 out ( : , 1 1 ) = c l a s s S t r u c t u r e . f11 ;

27 out ( : , 1 2 ) = c l a s s S t r u c t u r e . f12 ;

28 out ( : , 1 3 ) = c l a s s S t r u c t u r e . f13 ;

29 end

30 %[EOF]
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E.2.7 importFromRef.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−03−27

5

6 func t i on [ time , wave ] = importFromRef ( f i l ename , Fs , dataLines )

7 % This func t i on imports a waveform from a text f i l e o f ASCII−encoded

f l o a t amplitude values , where each value occup i e s a row .

8 % There i s no time informat ion , so a time−s e r i e s i s generated by the

func t i on based on the sampling f requency Fs ( g iven in seconds ) .

9 %

10 % Input :

11 % f i l ename f u l l −path o f t ex t f i l e to open , i n c l ud ing

extens i on

12 % Fs sampling f requency ( in seconds )

13 % dataLines two−element array o f the f i r s t and l a s t rows to be

read from the f i l e . I f blank , the func t i on d e f a u l t s to [ 1 , I n f ]

14 % Output :

15 % time vec to r o f time−s e r i e s ( in seconds )

16 % wave vec to r o f wave va lue s

17

18 % I f dataLines i s not s p e c i f i e d , d e f i n e d e f a u l t s − a l l rows o f the

f i l e

19 i f narg in < 3

20 dataLines = [ 1 , I n f ] ;

21 end

22

23 % I f Fs i s not s p e c i f i e d , d e f i n e d e f a u l t s − 500 MS/ s

24 i f narg in < 2

25 Fs = 500 e6 ;

26 end

27

28 opts = del imitedTextImportOptions (”NumVariables ” , 1) ;

29 % Spec i f y range and d e l im i t e r

30 opts . DataLines = dataLines ;

31 opts . De l im i t e r = ”” ;

32

33 % Spec i f y column names and types

34 opts . VariableNames = ”wave ” ;

35 opts . VariableTypes = ”double ” ;

36

37 % Spec i f y f i l e l e v e l p r op e r t i e s

38 opts . ExtraColumnsRule = ” ignore ” ;

39 opts . EmptyLineRule = ” read ” ;

40 opts . Consecut iveDe l imi te r sRule = ” j o i n ” ;

41

42 % Import the data
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43 tb l = readtab l e ( f i l ename , opts ) ;

44

45 % Return the time s e r i e s and the wave data

46 wave = tb l . wave ;

47 N = length (wave ) ; % Number o f samples

48 Duration = N/Fs ; % S igna l Duration

49 time = l i n s p a c e (0 , Duration ,N) ; % Time vec to r

50 end

51 %[EOF]
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E.2.8 filter 250.m

1 func t i on Hd = f i l t e r 2 5 0

2 % Returns a d i s c r e t e−time f i l t e r ob j e c t .

3 % Generated by MATLAB(R) 9 .9 and S igna l Proce s s ing Toolbox 8 . 5 .

4 % Equ i r ipp l e Lowpass f i l t e r des igned us ing the FIRPM func t i on .

5 % Al l f requency va lues are in MHz.

6

7 Fs = 250 ; % Sampling Frequency

8

9 Fpass = 100 ; % Passband Frequency

10 Fstop = 105 ; % Stopband Frequency

11 Dpass = 0.057501127785 ; % Passband Ripple

12 Dstop = 0 . 0001 ; % Stopband Attenuation

13 dens = 20 ; % Density Factor

14

15 % Calcu la te the order from the parameters us ing FIRPMORD.

16 [N, Fo , Ao , W] = firpmord ( [ Fpass , Fstop ] / ( Fs /2) , [ 1 0 ] , [ Dpass , Dstop

] ) ;

17

18 % Calcu la te the c o e f f i c i e n t s us ing the FIRPM func t i on .

19 b = firpm (N, Fo , Ao , W, {dens }) ;
20 Hd = d f i l t . d f f i r (b ) ;

21 % [EOF]
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E.2.9 filter 500.m

1 func t i on Hd = f i l t e r 5 0 0

2 % Returns a d i s c r e t e−time f i l t e r ob j e c t .

3 % Generated by MATLAB(R) 9 .9 and DSP System Toolbox 9 . 1 1 .

4 % Chebyshev Type I I Bandpass f i l t e r des igned us ing FDESIGN.BANDPASS.

5 % Al l f requency va lues are in MHz.

6

7 Fs = 500 ; % Sampling Frequency

8

9 Fstop1 = 15 ; % F i r s t Stopband Frequency

10 Fpass1 = 20 ; % F i r s t Passband Frequency

11 Fpass2 = 102 ; % Second Passband Frequency

12 Fstop2 = 105 ; % Second Stopband Frequency

13 Astop1 = 90 ; % F i r s t Stopband Attenuation (dB)

14 Apass = 1 ; % Passband Ripple (dB)

15 Astop2 = 90 ; % Second Stopband Attenuation (dB)

16 match = 'stopband' ; % Band to match exac t l y

17

18 % Construct an FDESIGN ob j e c t and c a l l i t s CHEBY2 method .

19 h = fd e s i gn . bandpass ( Fstop1 , Fpass1 , Fpass2 , Fstop2 , Astop1 , Apass , ...

20 Astop2 , Fs ) ;

21 Hd = des ign (h , 'cheby2' , 'MatchExactly' , match ) ;

22 % [EOF]
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E.3 File conversion system

E.3.1 processFiles.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−08−31

5

6 c l o s e a l l ;

7 c l e a r ;

8

9 %% F i l e conver s i on

10 % Convert from Picoscope capture f i l e s to MATLAB f i l e s . The timestamp

f o r the capture i s used in the f i l ename , f o r fu tu r e use . Check the

waveform f i l e to conf i rm i s a t r an s i e n t i s present , us ing the

i sTran s i en t ( ) func t i on . I f the re i s no t ran s i en t , the f i l e i s

d e l e t ed .

11

12 inputBasePath = 'C:∖ f i n g e r p r i n t i n g ∖ captures 5Aug ∖unprocessed ' ;
13 outputBasePath = 'C:∖ f i n g e r p r i n t i n g ∖ captures 5Aug ∖ p r o c e s s e f 2 ' ;

14

15 f o l d e r L i s t = t r a v e r s e f o l d e r s ( inputBasePath ) ;

16 numFolders = length ( f o l d e r L i s t ) ;

17

18 f p r i n t f ( 'Found %d f o l d e r s ∖n' , numFolders ) ;

19

20 f o r a = 1 : numFolders

21 f p r i n t f ( 'Current f o l d e r i s %s ∖n' , f o l d e r L i s t ( a ) . path ) ;

22

23 % Get the number o f va l i d f i l e s in that f o l d e r

24 f i l e L i s t = ge tp sda t aF i l e s ( f o l d e r L i s t ( a ) . path ) ;

25 numFiles = he ight ( f i l e L i s t ) ;

26 f p r i n t f ( 'Found %d f i l e s ∖n' , numFiles ) ;

27

28 % Determine output f o l d e r . Create the f o l d e r , i f r equ i r ed

29 cur r en tFo lde rS t ruc tu r e = s t r s p l i t ( f o l d e r L i s t ( a ) . path , f i l e s e p ) ;

30 currentSubFolder = cur r en tFo lde rS t ruc tu r e {end } ;
31 outputPath = f u l l f i l e ( outputBasePath , currentSubFolder ) ;

32 f p r i n t f ( 'Using output path %s ∖n' , outputPath ) ;

33 i f ˜ e x i s t ( outputPath )

34 f p r i n t f ( 'Device f o l d e r does not e x i s t . Creat ing . . . ' ) ;

35 s t a tu s = mkdir ( outputPath ) ;

36 i f s t a tu s == true

37 f p r i n t f ( 'Success ∖n' ) ;
38 e l s e

39 f p r i n t f ( 'Fai l ed ∖n' ) ;
40 end
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41 end

42

43 f o r b = 1 : numFiles

44 % Do the f i l e conver s i on

45 cu r r en tF i l e = f u l l f i l e ( f i l e L i s t (b) . f o l d e r , f i l e L i s t (b) . name) ;

46 f p r i n t f ( '%d/%d∖ t%d/%d : %s ∖n' , a , numFolders , b , numFiles ,

c u r r e n tF i l e ) ;

47 [ s , subFolderName ] = conve r tF i l e ( cu r r en tF i l e , outputPath ) ;

48

49 % PicoScope p l a c e s a l l o f the output f i l e s in a sub fo lde r ,

which I do not want . I ' l l move them in a second . For now ,

check i f the f i l e s a c t u a l l y conta in a t r an s i e n t . I f not ,

d e l e t e them .

50 f i l e sToCheck = getWaveformFiles ( f u l l f i l e ( outputPath ,

subFolderName ) ) ;

51 numFilesToCheck = length ( f i l e sToCheck ) ;

52 f o r c = 1 : numFilesToCheck

53 % Open the waveform from the f i l e

54 f i l eToPar s e = f u l l f i l e ( f i l e sToCheck ( c ) . f o l d e r ,

f i l e sToCheck ( c ) . name) ;

55 A = load ( f i l eToParse , '−mat' , 'A' ) ;

56 A = A.A;

57

58 % Check i f the re i s bad data ( Inf , −I n f ) , which i n d i c a t e s

the waveform was overrange f o r the PicoScope and data

was c l i pped . Waveforms with bad data cannot be checked

f o r a t r an s i e n t . I f a waveform has bad data , i t w i l l be

d i s ca rded .

59 badData = any ( i s i n f (A) ) ;

60

61 % I f the data i s not bad , then check f o r a t r an s i e n t .

Apply the f i l t e r f i r s t , to ensure any slow−moving

supe rpo s i t i on o f f s e t s are co r r e c t ed .

62 i f badData == f a l s e

63 f i l tWave = f i l t e r ( f i l t e r 5 0 0 , A) ;

64 t r an s i e n tS t a tu s = i sTran s i en t ( f i l tWave ) ;

65 e l s e

66 t r an s i e n tS t a tu s = f a l s e ;

67 end

68

69 % I f the re i s a va l i d t r an s i e n t ( which a l s o means the data

i s good ) then keep the f i l e , o the rw i se d e l e t e the f i l e

.

70 i f t r an s i e n tS t a tu s == f a l s e

71 d e l e t e ( f i l eToPar s e ) ;

72 e l s e

73 f p r i n t f ( 'Trans ient found : %s ∖n' , f i l e sToCheck ( c ) . name)

;

74 end
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75 end

76

77 % PicoScope c r e a t e s s ub f o l d e r s f o r each waveform f i l e , which I

do not want . Move a l l o f the ' .mat' f i l e s one l e v e l up (

where I want them) and d e l e t e the sub f o l d e r .

78 f i lesToMove = getWaveformFiles ( f u l l f i l e ( outputPath ,

subFolderName ) ) ;

79 f o r d = 1 : l ength ( f i lesToMove )

80 e x i s t i n gF i l e = f u l l f i l e ( f i lesToMove (d) . f o l d e r , f i lesToMove

(d) . name) ;

81 proposedFi l e = f u l l f i l e ( outputPath , f i lesToMove (d) . name) ;

82

83 counter = 1 ;

84 whi l e e x i s t ( proposedFi le , ' f i l e ' )

85 % The f i l e e x i s t s − need to modify the name

86 [ fPath , fName , fExt ] = f i l e p a r t s ( proposedFi l e ) ;

87 fName = [ fName , ' ' , num2str ( counter ) ] ;

88 proposedFi l e = f u l l f i l e ( fPath , [ fName , fExt ] ) ;

89 f p r i n t f ( 'F i l e c o l l i s i o n . Using name %s ∖n' , [ fName ,

fExt ] ) ;

90 counter = counter + 1 ;

91 end

92

93 move f i l e ( e x i s t i n gF i l e , p roposedFi l e ) ;

94 end

95

96 pathToDelete = f u l l f i l e ( outputPath , subFolderName ) ;

97 removeStatus = rmdir ( pathToDelete ) ;

98 i f removeStatus == f a l s e

99 f p r i n t f ( 'Error d e l e t i n g f o l d e r %s ∖n' , pathToDelete ) ;

100 end

101

102 end

103 end

104

105 %% getWaveformFiles func t i on

106 func t i on [ waveformFiles ] = getWaveformFiles ( f o l d e r )

107 % Reads out the contents o f a f o l d e r , and re tu rn s a s t r u c t f o r each .

mat found . Removes l i n k s to cur rent and parent d i r e c t o r y ( '. ' and

' . . ' ) .

108 %

109 % Input :

110 % f o l d e r the path to the f o l d e r being scanned

111 %

112 % Output :

113 % waveformFiles a vec to r o f s t r u c t which d e s c r i b e s the s ub f o l d e r s

with in

114 % the given f o l d e r . Each s t r u c t with in the vec to r

has the
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115 % form :

116 % name

117 % f o l d e r

118 % date

119 % bytes

120 % i s d i r

121 % datenum

122

123 waveformFiles = d i r ( f u l l f i l e ( f o l d e r , ' * .mat' ) ) ;

124 end

125

126 %% ge tp sda taF i l e s func t i on

127 func t i on [ f i l e L i s t ] = ge tp sda t aF i l e s ( f o l d e r )

128 % Reads out the contents o f a f o l d e r , and re tu rn s a s t r u c t f o r each .

psdata found . Removes l i n k s to cur rent and parent d i r e c t o r y ( '. '

and ' . . ' ) .

129 %

130 % Input :

131 % f o l d e r the path to the f o l d e r being scanned

132 %

133 % Output :

134 % waveformFiles a vec to r o f s t r u c t which d e s c r i b e s the s ub f o l d e r s

with in

135 % the given f o l d e r . Each s t r u c t with in the vec to r

has the

136 % form :

137 % name

138 % f o l d e r

139 % date

140 % bytes

141 % i s d i r

142 % datenum

143

144 f i l e L i s t = d i r ( f u l l f i l e ( f o l d e r , ' * . psdata ' ) ) ;

145 end

146 %[EOF]
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E.3.2 convertFile.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−07−21

5

6 func t i on [ s tatus , subFolderName ] = conve r tF i l e ( i nF i l e , outPath )

7 % This func t i on conver t s a g iven . psdata f i l e to Matlab f i l e . The

f i l ename i s generated with the date−time stamp o f the f i l e c r e a t i on

date ( in ISO 8601 format ) . F i l e conver s i on i s handled by the

p i coscope executab l e .

8 %

9 % Input :

10 % i nF i l e the f u l l f i l e −path o f the . psdata f i l e to be

parsed

11 % outPath the f u l l path to the output d i r e c t o r y

12 %

13 % Output :

14 % s ta tu s the s t a tu s passed back from the p i co scope system

15 % c a l l

16

17 % Dest inat i on format . csv , txt , png , bmp, g i f , a [ nimated ] g i f , psdata ,

p s s e t t i ng s , mat . This i s a mandatory argument .

18 format = 'mat' ;

19

20 % [<n>[:<m> ] ] | a l l Waveform number n , waveform range n to m or a l l

b u f f e r s

21 % Defau l t i s cur r ent waveform .

22 bu f f e r = ' a l l ' ;

23

24 % View to convert . Defau l t i s cur rent view .

25 viewport = 'IF' ;

26

27 % The date−time s t r i n g format to use in Matlab ' s da t e s t r ( ) f unc t i on . I

use ISO8601 , which s t o r e s 01−Mar−2000 15 : 45 : 17 as '20000301T154517

' .

28 date s t r fmt = 30 ;

29

30 % Generate the date−time stamp s t r i n g from metadata o f inFul lPath

31 F i l e I n f o = d i r ( i nF i l e ) ;

32 v = F i l e I n f o . datenum ;

33 t imeda t e s t r i ng = da t e s t r (v , date s t r fmt ) ;

34 subFolderName = t imeda t e s t r i ng ;

35

36 % Dest inat i on f i l e , i n c l ud ing the timestamp

37 d e s tF i l e = f u l l f i l e ( outPath , [ t imedate s t r ing , ' . ' , format ] ) ;

38

39 % Use PicoScope so f tware to complete the conver s i on
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40 cmd = [ 'p icoscope ' , ...

41 ' /c ”' , i nF i l e , '”' , ... % F i l e s to convert

42 ' /d ”' , d e s tF i l e , '”' , ... % Ful l−name o f output f i l e s ,

i n c l ud ing extens i on

43 ' / f ' , format , ... % Output format

44 ' /q ' , ... % Quite mode − no prompting

45 ' /b ' , bu f f e r , ... % Bu f f e r s to convert

46 ' /v ' , viewport , ... % Viewport to convert

47 '' ] ;

48 f p r i n t f ( 'Ca l l i ng : %s ∖n' , cmd) ;

49 s t a tu s = system (cmd) ;

50 end

51 %[EOF]
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E.3.3 isTransient.m

1 % Author : E l i P r i e s t

2 % Student ID 61082889

3 % Unive r s i ty o f Southern Queensland

4 % Last r e v i s i o n : 2021−07−21

5

6 func t i on [ i sTrans i en tBoo l ] = i sTran s i en t ( inWave )

7 % This func t i on determines i f a g iven waveform vecto r conta in s a c l ean

turn−on t r an s i e n t .

8 %

9 % Input :

10 % inWave the time−varying s i g n a l ( amplitude )

11 %

12 % Output :

13 % i sTrans i en tBoo l the boolean r e s u l t .

14 % true = t r an s i e n t detec ted

15 % f a l s e = t r an s i e n t not detec ted ( or not c l ean )

16

17 % The enve lope o f a turn−on t r an s i e n t has the f o l l ow i ng ba s i c shape :

18 %

19 % /

20 % /

21 % /

22 % /

23 %

24 % I t can be assumed that the s t a r t o f the enve lope w i l l be below some

thresho ld , and the end o f the enve lope w i l l be above some other

th r e sho ld . The waveform i s co r r e c t ed f o r DC o f f s e t , normal ised , and

the peak enve lope i s ex t rac t ed .

25

26 f i l t e r s i z e = 24 ; % S i z e o f smoothing f i l t e r used in enve lope

ex t r a c t i on

27 DEBUG = f a l s e ; % Toggles the p l o t t i n g o f the waveform and the

c r i t i c a l t h r e sho ld s

28

29 % The por t i on o f the s i g n a l that forms the ' s ta r t ' and 'end ' . These

va lue s are normal i sed by s i g n a l l ength .

30 lowerBound = 0 . 2 ;

31 upperBound = 0 . 7 ;

32 % The normal i sed th r e sho ld s f o r the maximum a l l owab l e magnitude during

the s i g n a l ' s t a r t ' and s i g n a l 'end' pe r i od s .

33 lowerThreshold = 0 . 2 5 ;

34 upperThreshold = 0 . 7 ;

35

36 inWaveMean = mean( inWave ) ;

37 i f abs ( inWaveMean) > 1e−6

38 % The waveform hasn ' t been co r r e c t ed f o r DC o f f s e t , so c o r r e c t i t .

39 inWave = inWave − inWaveMean ;



E.3 File conversion system 121

40 end

41

42 inWaveMax = max( abs ( inWave ) ) ;

43 i f inWaveMax ˜= 1

44 % The waveform hasn ' t been normal ised , so normal i se i t .

45 inWave = inWave / inWaveMax ;

46 end

47

48 % Calcu la te the enve lope o f the downsampled s i g n a l

49 env = enve lope ( inWave , f i l t e r s i z e , 'peak' ) ;

50

51 % Test to determine i f f i r s t waveform f o l l ow s the c o r r e c t waveform

52 n = length ( inWave ) ;

53 lowerBoundSample = f l o o r (n * lowerBound ) ;

54 upperBoundSample = f l o o r (n * upperBound ) ;

55 expectedStar t = max( abs ( env ( 1 : lowerBoundSample ) ) ) <= lowerThreshold ;

56 expectedEnd = min ( abs ( env ( upperBoundSample : end ) ) ) >= upperThreshold ;

57

58 i f DEBUG==true

59 lowes t y = min ( [ 0 , min ( env ) ] ) ;

60 h i ghe s t y = max ( [ 1 , max( env ) ] ) ;

61 xv low = [ lowerBoundSample lowerBoundSample 1 1 lowerBoundSample ] ;

62 yv low = [ lowest y , lowerThreshold , lowerThreshold , lowest y ,

l owes t y ] ;

63 xv h i = [ l ength ( env ) upperBoundSample upperBoundSample l ength ( env )

l ength ( env ) ] ;

64 yv h i = [ upperThreshold upperThreshold h i ghe s t y h i ghe s t y

upperThreshold ] ;

65 xv = [ xv low NaN xv hi ] ;

66 yv = [ yv low NaN yv hi ] ;

67

68 p l o t ( env ) ;

69 hold on ;

70 p l o t ( xv , yv , 'k−−' ) ;

71 hold o f f ;

72

73 t i t l e ( 'Plot o f waveform peak enve lope ' ) ;

74 x l ab e l ( 'Sample' ) ;

75 y l ab e l ( 'Normalised amplitude ' ) ;

76 end

77

78 % I f both cond i t i on s are s a t i s f i e d , we probably have a t r an s i e n t

waveform !

79 i sTrans i en tBoo l = expectedStar t && expectedEnd ;

80 %[EOF]




