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Abstract

The population of the world is getting older on average and there are some suggestions that by 2066, the
population of Australians over the age of 65 could be as high as 20%. Researchers have also found that more
and more elderly people are choosing to spend their twilight years living in their own homes, a phenomenon
dubbed ‘aging in place’. One of the biggest hospitalisation injuries for the elderly is that which is caused by
falling. Falls account for 40% of injury related death in the elderly and researchers have also found that the
likelihood of death is vastly increased if the elderly person is unable to get back up after they fall. A term
called the ‘long lie’ is used to explain this phenomenon and the aim of this research will be to create a fall

detection technique that can detect the occurrence of the long lie and thus, prevent it.

This project has explored different types of research already conducted on capturing falls within the home and
analysed what types of technology were used. Of these fall detection techniques, this project is focussed on
using computer vision to detect falls. The method of image processing used for this project was foreground
extraction and the fall detection algorithm utilised shape analysis of the foreground mask to determine if a fall
occurred. This project explored the reliability and effectiveness of this type of algorithm and, after several
iterations, an algorithm is presented that was able to detect the occurrence of a fall in most scenarios in the
datasets provided. The final algorithm used a foreground detector provided by MATLAB’s computer vision
toolbox in conjunction with a blob detector that was able to analyse the foreground mask and produce outputs
based on the mask. The fall detection algorithm then uses a combination of these outputs to determine if a fall
has occurred. This algorithm is unique in that it uses a state-based system where if any of the fall conditions
exist, the state will change to a fall state. The system will remain in this state until the algorithm has detected
that the person has returned to the upright position. This provided a means to ensure that the algorithm could
detect the occurrence of a long lie. There were, however, many occasions when the algorithm either incorrectly
identified a fall or did not detect the fall at all. This was mainly due to problems with the foreground extraction
which led to the conclusion that if a suitable foreground extraction is not produced, then fall detection is not

going to be reliable.

This research also explores the influence of ethics and what impact computer vision systems have on society.
It will find that the major concerns surrounding computer vision systems and other artificial intelligence (Al)
is the threat to security and privacy. It was also discovered that very little has been done to produce ethical
standards in the Al industry and that it is incumbent on all stakeholders to ensure that a moral set of guidelines
are produced for the entire lifecycle of an Al product. The research will also show that trust in Al is achieved
by ensuring that users understand, not only the benefits of the technology, but also the risks associated with it

and how these risks are mitigated.



University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111 and 4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering and Sciences, and
the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or

completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the
University of Southern Queensland, its Faculty of Health, Engineering and Sciences or the staff of the

University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole
purpose of the course pair entitles “Research Project” is to contribute to the overall education within the
student’s chosen degree program. This document, the associated hardware, software, drawings, and any other
material set out in the associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

ii



Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this

dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other

course or institution, except where specifically stated.

Jabin Smith

Student Number [ ]

iii



Acknowledgements

Firstly, I would like to acknowledge my supervisor, Tobias Low, who has kept me on track with my algorithm
development and provided the appropriate feedback when necessary. He was also able to offer valuable

guidance for the development of the dissertation and other key deliverables.

Secondly, I want to acknowledge my employer, Chevron Australia, who have given me the time and resources
to be able complete this thesis. In addition to this, they have provided me with financial support for the tuition
fees throughout the last four years of my university studies. They have also assisted in finding placements for

me with the company’s engineering teams to gain the required level of experience I need to graduate.

Thirdly, I want to tribute this dissertation to my grandfather, Lewis William Smith, who has provided the
source of inspiration. Lew passed away in 2012 at the age of 92 after suffering a fall in his bathroom when he
was at home alone. He was discovered some hours later and taken to hospital where he would ultimately

succumb to his injuries several days later.

The most acknowledgement goes to my wife, Rebecca, who has endured my part-time studies over the last
nine years. Since I embarked on this journey at the start of 2013, she has suffered my anxiousness, mood-
swings and temper tantrums but has also, at times, shared in my elation and joy. Her support throughout this
journey has not gone unnoticed and I doubt I would have been able to complete my degree without her

encouragement and support. Thank you and much love to you Bec!

v



Table

Abstract

of Contents

Acknowledgements

List of Figures

List of Tables

Glossary

of Terms

Chapter 1 — Introduction

11

1.2

Background

Objectives

Chapter 2 — Literature Review

2.1
2.1.1
212
213

2.2

Fall detection techniques
Wearable Sensors
Ambience Sensors

Vision Sensors

Computer Vision Ethics

Chapter 3 — Research Design and Methodology

31

3.2
32.1
322
323

Research Design

Methodology
Algorithm Development
Algorithm Testing Requirements

Testing the algorithm using datasets

Chapter 4 — Results and Discussion

4.1
4.1.1
412
413
414
415
4.1.6
4.1.7

4.2

Algorithm design
Initial image segmentation
Fall detection using bounding box ratio
Segmentation using MATLAB foreground detector
Fall detection using blob bounding box, centroid distance, axis ratio and angle
Revised fall detection using HSV image conversion
State-based fall detection with upright angle reset

Revised state-based fall detection

Ethical Considerations

iv

vii

ix

N N A~ B

10

14

14

15
15
16
17

18

18
18
20
21
25
33
36
41

49



Chapter 5 — Conclusions

51 Ageing Population

5.2 Literature Review

53 Ethics

54 Algorithm Development
55 Results

5.6 Future Works
References

Appendix A - Project Specification

Appendix B — Project Risk Assessment

Appendix C - MATLAB Code

Appendix D - Fall Analysis Data — Dataset 569

vi

52

52

52

52

53

54

54

56

60

62

65

72



List of Figures

Figure 4.1 Image segmentation using background SUbtraCtion ............cccccecuervieriieeiiennienienieneeeeeeeeeeeiene 18
Figure 4.2 Poor image segmentation resulting in an inaccurate bounding box in dataset 581 ........c...ccccceueee. 19
Figure 4.3 Example of false fall detection due to poor image segmentation in dataset 569 ............c.ccccuvennenn. 19
Figure 4.4 Flow chart for bounding box fall detection method............cccooiiiiiiiniinniiiiieeeeeeeee 20
Figure 4.5 Image animations (left) with binarized image (right) in dataset 569 ..........ccccoccerieriinienneincnnenne 22
Figure 4.6 RGB image converted t0 HSV ..ot 24
Figure 4.7 Binary image with no morphological operations (left) and after dilation and erosion (right)........ 24
Figure 4.8 Morphological operations principle of operation (MathWorks 2021a) ......c.cccecerveriinninnenncnnenne 25
Figure 4.9 Diagram defining the centroid distance calculation ............cccccevueeiieriiiriinninienieeeeeeeeeeeeee 25

Figure 4.10 Image sequence (180 to 191) showing axis ratio and orientation angle change in dataset 569....27

Figure 4.11 Image sequence 416 to 424 showing standing t0 1ying POSE .......cccveereeerieeriiieririeeieeeceeeee e 29
Figure 4.12 Flow diagram for fall detector based on blob centroid distance, axis ratio and angle ................. 32
Figure 4.13 Effect of converting to HSV for shadow removal in dataset 569 .........c..ccccceeveriiriinnennenncnnenne 33

Figure 4.14 Image sequence (125 to 132) showing a missed fall due to an unusual lying pose in dataset 569

.......................................................................................................................................................................... 34
Figure 4.15 Foreground detection anomaly causing distorted ellipse and bounding box in dataset 569 ......... 35
Figure 4.16 Fall detection of near horizontal 1ying POSE ........cccvveriiirciieeiieiie e eree et ereesre et e e e eeeeeeeees 36
Figure 4.17 State diagram of fall detection algorithm..........coceiiiiiiiiiiiii e 36
Figure 4.18 Image sequence showing false positive due to mirror reflection ..........c.ccocceeveeienicniinnenncnnenn. 39
Figure 4.19 Image sequence showing false positives caused by an 0cclusion............cceceeveeviersieesensieinennenne 40
Figure 4.20 Image sequence showing false positives due to part of person being out of frame ...................... 40
Figure 4.21 Image sequence showing false detection due to minor axis variation ..........c..cceeeeveeeveeseerseeenuenne 41
Figure 4.22 Lowest part of image where entire body of person is ShOWn..........cccoceeviiiiiiiniiniinieeee 42

vii



Figure 4.23 Image showing partial shape of person in lower part of frame.........ccccceceiveriiiiiiiinninnienee 43

Figure 4.24 False positive caused by poor image segmentation in dataset 758 .......c.cccoceeverienienienseniennenne 45
Figure 4.25 False positive caused by incorrectly identified lying pose in dataset 786 ........c..cceceevueeverriennnene 45
Figure 4.26 False positive caused by upright thresholds not being met in dataset 786........c...cccceeverveerniennene 45
Figure 4.27 False positive due to poor foreground extraction in dataset 832 ..........cccceeveriernenneniennennennienne 46
Figure 4.28 False detection due to upright thresholds not being met in dataset 832.........ccccecveevieeecierceennnnnn. 46
Figure 4.29 Person not detected due to dark background in dataset 1954 ...........coceeviiiiniiniiniienneneeeeee 47
Figure 4.30 Image sequence showing false negative due to slow movement of person in dataset 1954 ......... 47

Figure 4.31 Images showing change in camera exposure and effect on foreground mask in dataset 2123 .....48

Figure 4.32 Image showing error in foreground extraction in dataset 2123 ........cccccocceiverieriinnennenseiieeiene 48

viii



List of Tables

Table 4.1 Dataset 569 results €Xample (EXIIACT)......ccvvrrrvueeriieerireeriieeeteeeseeesteeeseeeseeeesreessseessseesssesesseessseesssees 23
Table 4.2 Image centroid distance, axis ratio and angle standard deviation data around a fall at image 124..26
Table 4.3 Image centroid distance, axis ratio and angle standard deviation data around a fall at image 187..28

Table 4.4 Image centroid distance, axis ratio and angle standard deviation data around a fall at image 423..28

Table 4.5 Results of initial fall algorithm on dataset 569............cccveviiiecieiiiieee e 30
Table 4.6 Results of initial fall algorithm on remaining datasets ............cceeveeerirerieeerieereeriee e eceeeee e 31
Table 4.7 Image data around a fall at image 124 using revised fall detector ..........ccevvveercveercieercieeecie e 33
Table 4.8 Image data around a fall at image 187 using revised fall detector .........cccevvvvervveercieeecieeecie e 35
Table 4.9 Results of revised algorithm on dataset 569 ...........ccccveveiiieciiiecieeiieeee e eeee e 35
Table 4.10 Image data from dataset 569 showing orientation angle at time of lying pose .........ccccecvvrevveennenn. 37
Table 4.11 Image data from dataset 569 showing orientation angle after person gets up after lying .............. 37
Table 4.12 Image data showing orientation angle in third lying pose in dataset 569 ...........ccceevvveecverceennnnn. 38
Table 4.13 Performance results using state-based algorithm ..........cccccoeveiiiiiiiiiiiieccieeeeeeeeeeee e 39
Table 4.14 Image data showing false positive information from reflected image .........cceceeveevervenvenicnnenne 39
Table 4.15 Image sequence data showing variation in major and MINOT AXIS ......cecveevverruerrierriersierrieereeeeeeeens 42
Table 4.16 Image data between image containing entire person (400) and partial person (408)..................... 42
Table 4.17 Results of revised state-based algorithm on dataset 569 ............cccoevvreeiierceencieneeeee e 44
Table 4.18 Results of revised state-based algorithm on other datasets ..........ccoccveveeeercieerceenceeecee e 44
Table 4.19 Overall results of revised state-based algOrithm ...........cccceeeciiiiiiiiiiirecieeeeeeere e 49

X



Glossary of Terms

Ageing in place
C/C++

Computer Vision
Depth Image
False negative
False positive
Foreground extraction
Foreground mask
GMM

HMM

HSV

Image binarization
Image Dataset
Long lie
MATLAB
Occlusion

RGB
Segmentation
True negative

True positive

Phenomenon where elderly people are choosing to remain in their homes as they
grow old.

A common general purpose computer programming language.

A field of artificial intelligence that allows computers to analyse and learn
digital imagery.

Image where each pixel relates to a distance from the image plane to an object in
the RGB image.

Incorrect detection of a fall scene.

Incorrect detection of a non-fall scene.

Process of segmenting an image to create the foreground mask.

Binary image containing pixels that belong to moving objects in the scene.
Gaussian Mixture Model. A probabilistic model for representing normally
distributed subpopulations.

Hidden Markov Model. A probabilistic model used for labelling images.

Hue Saturation Value provides a numerical readout of an image that corresponds
to the colours contained in it.

Process of segmenting an image into the background and foreground.
Collection of images that are used to train the algorithm.

Extended period of time where an elderly person remains on the ground after a

fall.

Programming software used for numeric computing and other computer science
applications.

A partial or complete obstruction in an image.

Red, green and blue. The primary colours from which all other colours are
derived.

Process of partitioning a digital image into multiple segments.

Correct detection of non-fall scene.

Correct detection of a fall scene.



Chapter 1 — Introduction

1.1 Background

It is safe to say that Australia’s, and indeed the world’s, population is rapidly ageing. In fact, data from the
Australian Bureau of Statistics (ABS) shows that from 2001 until 2019 the percentage of the population over
the age of 65 has increased from 12.5% to 15.9%, a rise of over 3%. Some states, however, showed
significantly higher growth in this statistic, such as Tasmania which showed an increase of 6.3% (Australian
Bureau of Statistics 2020). Further to this, prediction data by the ABS show that with high life expectancy,
high fertility and high net overseas migration, the percentage of people aged over 65 could be as high as 20%
by 2066 (Australian Bureau of Statistics 2020). Adding to this, many elderly people are now also choosing to
remain in their own homes as they get older in a phenomenon known as ‘ageing in place’(Anderson et al. 2018,
Roy et al. 2018). While this phenomenon has a positive outcome in terms of relieving pressure on aged care
institutions, it creates another issue in trying to service the health care needs of the elderly within their homes
(El-Bendary et al. 2013). This is particularly risky when considering the likelihood of the elderly falling within

their homes and carers not being present to help them get up or get them urgent medical attention if required.

Falling is one of the most damaging injuries an elderly person can suffer and is the leading cause of
hospitalisation injury in people over the age of 65. Further to this, falls also account for 40% of injury related
deaths in people over the age of 85 (Lord and Sherrington 2001). Attar et al. (2021) have also found in their
research, that falls are a major contributor to death in elderly persons and is a primary factor for hospitalisation,
especially in those that suffer from dementia. In their study of nearly 280 elderly persons, they found that the
types of falls, for example, falling forward or backward, were evenly distributed and that no one fall type was
significantly more prevalent than another. They did notice, however, that hip fractures were the leading type
of fracture and that the most common location for a fall event was in the home. They also found that there was

a significant association with fall occurrences to smoking and dementia.

As aresult of often living alone, when the elderly fall, they are often incapable of getting themselves to their
feet again. This leads to spending long periods in the place where they fell, further exacerbating their injuries.
Lord and Sherrington (2001) define this extended period spent on the ground as the ‘long lie’ and found in
their research that the incidence of the long lie results in a far greater chance of the casualty dying as a result
of their injuries. A study by Wild et al. (1981) also found that the occurrence of the long lie increased the
mortality of the casualty. They found that 11 of their 20 test subjects that suffered the long lie died within a
short period after their fall event, while only 21 people passed away out of 105 that did not suffer from a long
lie. The aim of the research and outcomes for the Engineering Research Project will be centred around the
prevention of the long lie by detecting falls within the home and then raising the alarm. The detection of falls
will primarily focus on using computer vision and the aim is to develop an effective algorithm to use within

an embedded computer vision system.



Computer vision can be described as the technique that allows computers to understand the contents of digital
images and videos. From this comprehension of image content, machines can then be used to automate tasks
ordinarily undertaken by humans using their own vision system (Lauronen 2017). When it comes to fall
detection using computer vision, there are several predominant methods. Gutiérrez et al. (2021) has conducted
a comprehensive study of recent vision-based fall detection research and found that a multitude of different
techniques were used. They discovered that some of the main methods used to analyse the image were
foreground extraction, skeleton joint tracking using Microsoft Kinect, depth characterisation and person
detection through Convolutional Neural Networks (CCN) with You Only Look Once (YOLO) technology.
Methods for detection of falls were numerous and included shape analysis techniques such as bounding box
ratio, ellipse orientation and ratio, linear and angular acceleration, motion history images and centroid velocity.
There were also some researchers who used machine and deep learning systems for fall detection. This
included techniques such as Support Vector Machines (SVM), k-nearest neighbour (knn), Hidden Markov
Models (HMM) and Artificial Neural Networks (ANN). The image analysis method utilised in this research
project will use foreground extraction and several shape analysis techniques will be investigated for the fall

detection algorithm.

1.2 Objectives

Whilst the overall aim for this research project is to develop a working algorithm that can be used within an
embedded system to detect falls and prevent the long lie, there are several other objectives that will need to be

accomplished along the way. These objectives along with their rationale are listed below.

e Background research on methods of fall detection — this will need to be undertaken prior to any
development of a fall detection algorithm. Previous works undertaken in this field will help understand

how computer vision can detect human motion including falls.

e Develop initial fall detection algorithm — Using the previous research, the next objective will be to
develop an algorithm that can be used to test fall image data. Whilst this pilot algorithm is not intended
to be fully effective, it will give a preliminary starting point for testing and upon which a more robust
algorithm can be developed. This objective also includes researching a suitable development
environment and then learning and understanding how to use the environment to develop the

algorithm.

e Algorithm testing — Using a known dataset, the initial algorithm will be tested, and its performance

analysed. The results of this testing will be used as a baseline for future algorithm revisions.

e Algorithm refinement and retesting — The objective of this stage is to refine the algorithm until an
acceptable level of reliability is found. At each stage of refinement, the algorithm will be retested
against the same dataset. It is envisioned that there will be several iterations of the algorithm at this

stage.



Develop prototype (time permitting) — This objective will be a ‘stretch’ target provided there is enough
time after an effective algorithm is developed and tested. It is anticipated that the algorithm will be
able to be reproduced onto a microprocessor type development board with an attached camera. The

prototype will then be tested in live scenarios to measure its performance.



Chapter 2 — Literature Review

When it comes to the detection of falls there have been many researchers that have attempted to find a definitive
fall detection system which can automatically and accurately detect falls. Mubashir et al. (2013) has found that
this research has centred around three main techniques for fall detection. Wearable sensors, where a user will
wear a garment that has some type of sensor attached to it. Ambience sensors, where devices attempt to sense
events through audio and visual data, and vision sensors, where computer vision is used detect a person and
monitor their actions. Whilst the research in this project is focused on using computer vision for fall detection,

a review into the research of all the fall detection techniques will be made below.

Computer vision is a wonderfully powerful tool that has multiple uses and can provide significant benefits to
the community, however, when misused it can deliver a terribly negative impact. The second part of this

literature review will focus on the ethical aspects of computer vision and how it relates to fall detection.

2.1 Fall detection techniques

2.1.1 Wearable Sensors

There are a myriad of research articles for fall detection of the elderly that focus on wearable technology with
varying degrees of success. A wearable device that alerts emergency contacts via Bluetooth to a laptop was
designed and created by Tomkun and Nguyen (2010). The system uses a tri-axial accelerometer and comes
with visual, audible and vibration alert options to alert the wearer of an abnormal body tilt. The system
performed with credible results, however, there were still some instances where the system mistook falls for

non-fall events.

Li et al. (2009) propose a wearable system using both tri-axial accelerometers and gyroscopes which they
claim will improve the reliability and accuracy of detection of falls. They hoped that this system would be able
to differentiate between unintentional and intentional changes in posture. While they claim that their algorithm
returns an accuracy of around 90%, there are some detection issues with the system unable to differentiate the

wearer getting into bed and when a fall occurs against a wall with a sitting posture.

A wearable wrist-watch style fall detection device is proposed by Degen et al. (2005). The device carries two
acceleration sensors which measure acceleration on all three axes and the in-built algorithm uses the resultant
force, or norm, from the forces due to gravity and movement. From the acceleration norm, the velocity can be
estimated and when the velocity reaches a certain threshold and an impact is detected and no movement is
detected for a period, a fall is confirmed. Then the watch will sound an audible alarm. The results from this
technology were mixed, when falling forward the watch was able to detect a fall 100% of the time, whereas

falling backwards and to the side yielded a fall detection in approximately half of the tests.



Wang et al. (2014) created a wearable device that incorporates an accelerometer as well temperature, humidity,
and a separate heart rate monitor. Real-time data from the sensors is processed by an onboard micro-controller
unit (MCU) and a customer interface monitors the information from the MCU. To improve the reliability of
the signal data being sent from the MCU to the receiving base station in another room, sensor access points
are set up throughout the home. Like other wearable technology, falls are detected by accelerometer thresholds,
however, in this case heart rate monitoring and lie angle are also used to detect if a fall has occurred. The

authors of this research claim an accuracy of around 97.5% for this wearable device detection system.

Ramachandran et al. (2018) used a combination of risk category algorithms coupled with machine learning to
improve the accuracy in fall detection. Risk category was determined by conducting surveys and finding 23
different risk factors. Based on the probability of each risk, low, medium and high-risk categories were created
for each subject. They then conducted experiments with wearable sensor technology to gather data on falls
first without the risk category information, then secondly with the risk category data. They found that with the
risk category data applied to the fall algorithms, there were less cases of the fall detection system producing

false falls.

Boutellaa et al. (2019) describe a system of multiple wearable sensors that uses a covariance matrix as a feature
extractor on the fused raw signals and a nearest neighbour classifier system to determine a fall. Using the
covariance matrix, a directional relationship is formed between the sensor vectors and then measured using a
Euclidean metric and two geodesic metrics. The algorithm was then tested on two available datasets with

accuracy around the 92% mark.

A fall detection system using machine learning algorithms is discussed by Vallabh et al. (2016). They
implement accelerometers, gyroscopes and magnetometers, which are commonly found in modern
smartphones, to collect body movement data and then classify the movement using a threshold decision tree.
The paper goes on to test different machine learning algorithms other than the threshold decision tree to test
their performance compared to the threshold decision tree. The machine learning methods investigated include
Artificial Neural Network (ANN), Support Vector Machine (SVM), Least Squares Method (LSM), k-nearest
neighbour(k-nn) and the Naive-Bayes Method. Each method was tested using a dataset obtained from a web
based medical institution. The algorithms were required to differentiate between Activities of Daily Living
(ADL) and falls. The research found that the k-nn method showed the greatest accuracy and was an

improvement on the threshold decision tree.

Wearable devices do present a cost advantage and are not complicated to setup, however, they are deemed to
be relatively intrusive (Mubashir et al. 2013). Whilst reasonable success in fall detection can be found with
wearable devices, the main problem with the technology is getting the target audience to wear them. Research
has found that old people regularly forget to wear the device so the technology becomes unreliable (El-Bendary

etal. 2013).



2.1.2 Ambience Sensors

Liu et al. (2020) propose a system that detects motion using infrared array sensors and cite low cost, low
complexity and high accuracy as benefits of this system. The system first detects the position of the person in
the room by using bicubic interpolation and background subtraction on the infrared image to remove other
heat sources. Then using time and detection area algorithms on the image data fall detection can be found. The
system yielded fairly reliable results and future work should incorporate a larger detection area and greater

sensor numbers should be employed.

Suryadevara et al. (2012a) developed a system to monitor the usage of home appliances and thus create a
pattern of usage for elderly people in the home environment. The network incorporates sensors that
communicate with each other and to a base station in a mesh network topology using Zigbee communication
protocol. At the higher level, a software module collates the data from the low-level sensor and develops the
behavioural pattern from which irregular behaviour can be detected. In further research, Suryadevara et al.

(2012b) show how this sensor network data can be used to determine the ‘Wellness’ of the elderly person.

Daim and Lee (2020) use IR-UWB radar sensors to detect human motion. To detect human motion in the area
of transmitted electromagnetic signals, IR-UWB sensors take advantage of diffraction, shadowing, scattering
and reflection caused by a person moving. The received electromagnetic signals are analysed and any change
in amplitude coupled with the time of arrival help detect the human motion. In order for the sensors to be used
as motion detectors, however, the output needs to be manipulated. Daim and Lee (2020) have modelled this
system by taking the received signal, digitising it through an analogue to digital convertor, then putting the
digitised signal through a band pass filter. From this signal the amplitude and time delay are found and from
the time delay, the distance to the object can be found. The results of their experiments found that IR-UWB
sensors could accurately determine different objects at certain distances. They also found that at other distances

the sensor system produced large errors.

A floor vibration detection system is applied in research by Alwan et al. (2006). The vibration is detected by
a special vibration monitor which incorporates a piezo-electric sensor in contact with the floor. The principle
of operation is that different movements around a room create unique vibration signatures. It is hypothesised
then, that a falling person hitting the floor will have a significantly different vibration signature to normal
activities and other objects hitting the floor. The device was tested experimentally using human like dummies
and other common objects. The results of test confirmed that the device could successfully detect a human fall

within a certain distance range.

Ambient sensors are found to be reasonably cost effective and considered less intrusive than the other two
methods, however, they are subject to false alarms and generally have a low fall detection accuracy (Mubashir

etal. 2013).



2.1.3 Vision Sensors

There has been a number of researchers that have been investigating the use of cameras and computer vision
to detect falls in the elderly as well as human motion in general. Gutiérrez et al. (2021) has conducted a
comprehensive review of fall detection systems using computer vision as they believe that no systematic
review has taken place in this field. They found that most detection techniques utilise a three-step approach to
their systems. The first being image pre-processing to optimise the image so that later stages have a clean
image to look at. The next step is characterisation, where the features of the image are analysed and quantified
so that they can be classified in the last stage of the process. As suggested, the third step is classification where

the system classifies the movement within the image.

Toreyin et al. (2005) conducted research using Hidden Markov Models (HMM) to model human movement
and detect falls in video footage. HMMs can be described as random probability models that are used to
characterise systems with randomly changing variables (Gutiérrez et al. 2021). The research by Téreyin et al.
(2005) also involved examining the addition of audio data to the video footage and seeing if that would improve
the accuracy of the fall detection. The system works by creating a time series signal describing the motion of
the person. This is built using a bounding box that has been determined by detection of motion with the video
image. The time series signal is converted to a wavelet transform, which are better at ignoring the stationary
parts of the signal, and then added to the HMM. Wavelet data of the audio signal is then fused with the HMM
of the video to determine fall events. The results of the testing of this system show that while the video HMM
can detect a fall, without the audio addition the results are susceptible to false positives. That is, falls are

detected by the system when there was not actually a fall.

Huang et al. (2009) describe a system that utilises an omni-directional camera to monitor the health of the
elderly in the home or health care institutions. Their research presents a system suitable for a less simplified
environment where lighting intensity and static objects are accounted for. The results of testing show that the
use of an omni-directional camera does increase the accuracy of camera-based fall detection systems when

compared to systems using standard cameras.

A system that uses low cost digital cameras installed in the homes of elderly persons who are living alone is
proposed by de Miguel et al. (2017). The system they developed utilises a Raspberry Pi microprocessor
development board with a camera module designed for use with the Raspberry Pi. The detection algorithm
uses a data model based on the angle, ratio and ratio derivative, where the ratio is ratio of the rectangular
movement detection area, and the ratio derivative is measuring the change in this rectangular ratio over time.
A background subtractor is used to define the contour of the subject and uses a Gaussian type of technique to
‘learn’ the environment and disregard static objects. A Kalman filter is also used on the image to remove noise
and interference and can predict future image states based on past images. A Kalman filter is a method used
to make estimations of variables more precise by combining several inaccurate variable observations. In this
system it is used to track the person through the image sequence (Gutiérrez et al. 2021). Optical flow is also

employed in this system and is used to detect motion from one frame to the next whilst removing static objects.

7



The designers have also included a system to alert relevant parties in the event of a fall using email and
messaging services. The results of the testing showed that this system was around 96% accurate, however,

improvements are required to allow for occlusions, state differentiation and changes in lighting intensity.

Similar to most other vision based fall detection systems, the system designed by Foroughi et al. (2008)
employs background subtraction to detect moving regions in an image. However, this system analyses three
main features of the image to detect the state of the subject in the image. The approximated ellipse is used to
approximate the shape of the subject in the frame and the changing ratio of the ellipse determine what state the
person is in. Projection histograms can represent the 2-D shape of the silhouette and temporal changes in head
position can be tracked to differentiate between the subject’s states. Testing this system proved that using the

three vision detection methods provided reliable results including an accuracy of around 91%.

A camera node network fall detection system is proposed by Williams et al. (2010) and involves a series of
cameras installed around the home all connected via ethernet back to a central processing node. As with
previous research, the background subtraction method is used to create a foreground image of the moving
subject. The research involved analysing three different methods of detection. The first is the bounding box
ratio method where the image blob created by the background subtraction is bound by a rectangular box and
if the aspect ratio is less than one, a fall is detected. The second detection method researched was Hidden
Markov Models (HMM) which essentially involves training the detector through simulations to differentiate
posture states. The last method the authors looked at was a more simplified HMM that trains the system by
gathering ‘normal’ sequences. Any variations in new sequences will be detected by the system as something

unusual and will then run some tests to determine if a fall has actually occurred.

The multi-modal features of a Microsoft Kinect sensor is used to detect human falls in research conducted by
Tran et al. (2017). They use the skeletal modelling feature of the Kinect along with the RGB output to model
human activity. Upon receival of every image frame, the skeleton-based detector is called and the vertical
velocity and the height to the ground plane from the human centre is determined. Due to the variance in the
3D poses of the human body, skeletal information is not always available, so in this case the fall detection
algorithm determines a motion map from the RGB image. A fall is detected in the skeleton mode when
thresholds in the distance and velocity are met. When a skeleton image is not available, the motion map is
improved with a kernel descriptor and input into a Support Vector Machine (SVM) that has been trained using
previous datasets. An SVM is a set of supervised learning algorithms that are used for regression and

classification (Gutiérrez et al. 2021).

A system that combines a wearable sensor with vision and also utilises the features of the Kinect sensor is the
system proposed by Kwolek and Kepski (2016). A fall is detected by an accelerometer worn on the user which
triggers a fuzzy inference system that is used to determine human movement and classify body pose.
Essentially, the fuzzy system is used to verify that a fall has occurred. The system works by taking the Kinect
depth image and subtracting it from a constantly updating background reference depth image. They use several

parameters for the fuzzy logic to determine if a fall has occurred. The height to width ratio of the bounding
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box that describes the person, the height of the box in the current frame to the max height of the box in previous
frames, the distance of the bounding box centroid to the floor and the largest standard deviation from the
centroid to x and y coordinates of the image. The fuzzy logic employs two Mandani engines and a Sugeno

engine to differentiate between activities of daily living (ADL) and falls.

In earlier work by Kwolek and Kepski (2015) a similar system was developed as described above, however,
instead of using fuzzy logic to determine the fall classification, a k-nearest neighbour (k-nn) classifier based
on a collection of representative examples was used. The system was then tested using the UR fall detection

dataset and results found for sensitivity, specificity, precision and accuracy.

Convolutional Neural Networks (CNN) is another machine learning technique researchers are employing to
help detect falls in computer vision. Gutiérrez et al. (2021) explain CNNs as an Artificial Neural Network
(ANN) that can extract local descriptors, or maps, out of a confined part of an image and use them to
characterise the image contents. Both Nufiez-Marcos et al. (2017) and Maldonado-Bascén et al. (2019) use
CNN’s in their fall detection algorithms. Nufiez-Marcos et al. (2017) claim that CNN’s can learn a set of
features if enough training examples are given. They train a CNN with optical flow images. Optical flow
algorithms represent the motion of objects between two image frames as displacement vector fields. They used
a 3-step training process which starts with training on the Imagenet dataset which has 1000 classes and 14
million images. The CNN is then retrained with optical flow stacks on the UCF101 dataset consisting of 101
human actions on 13320 videos. The weights are then frozen in the CNN for the third stage which enables fine

tuning of the remaining layers to yield the fall or no fall classification.

Maldonado-Bascén et al. (2019) use CNN’s on images gained from a mobile assistive robot with an onboard
camera. They use a You Only Look Once (YOLO) detector based on a CNN to detect a person in the frame
then applied a Support Vector Machine (SVM) to classify the person as a fall or non-fall. The steps for
detection is that a person is detected in the image frame by the YOLO detector and a bounding box is applied
with the coordinates used as the feature extraction. Fall classification is then applied to the bounding box by
the SVM based on the aspect ratio of the bounding box, the normalised bounding box width and the normalised
bounding box lower edge. These normalised parameters help the SVM determine if a person has actually

fallen, or if they are just resting.

Rougier et al. (2007) developed a novel method for fall detection by analysing a motion history image of the
detected person in conjunction with the change in shape of the person. They argue that no serious fall occurs
without significant change in movement and shape so the characteristics of the motion history image can be
analysed for changes in movement. Like a lot of the methods discussed, they use foreground extraction to
derive the human shape then an approximated ellipse is developed to yield information about the orientation
and outline of the human form in the image. The motion history image is then quantified to represent the
movement over recent frames in the image sequence. When the threshold for motion history is met, the

algorithm analyses the standard deviation of the orientation angle and the ellipse axis ratio and if either of



these parameters meet a set threshold, a fall is detected. The motion history then determines if that person is

motionless and in need of assistance.

Computer vision continues to be a field that fascinates many researchers due to its complexities and challenges.
Whilst it has the potential to be used in many applications such as surveillance, medical, sports, behavioural
biometrics, robotics and even art and entertainment, its main challenges are overcoming the effects of lighting

and shadows, occlusions and variation in object data (Kale and Patil 2016).

2.2 Computer Vision Ethics

When developing any type of project that will be introduced into the public arena it is vital that all potential
impacts, both good and bad, are considered for the entire lifecycle of the product. This is especially accurate
for projects that are intending to use computer vision at the core of their developments. This leads to a
requirement of an understanding of ethics and what ethical complications will affect computer vision systems.
Ethics can be described as the standards of behaviour expected from society and is based on social conventions
for morality, that is, what is perceived as right or wrong by the communities we live in (Lauronen 2017).
Coupland et al. (2009) and Lauronen (2017) cite Quinn (2004) who described ethics as a rational examination
into people’s moral beliefs and behaviours and when applied to technology, there is a need to comprehensively

understand the impact to these standards.

The benefits of artificial intelligence (Al) are many and in an article from Standards Australia (2019) in 2016
there were 314,000 applications for inventions with over 1.6 million research papers. Further to this, Al
spending is predicted to be nearly USD$80 billion in 2022 and contribute over USD$15 billion by 2030. They
predict that AI will enhance the economic and social well-being and Coupland et al. (2009) believe that Al has
the ability to enhance the quality of life for the elderly using it for supporting ambient assisted living (AAL).
With all technology, however, there is always the potential for it to be used for more sinister and malicious
purposes. Senior et al. (2003) argued back at the start of this century that computer vision applications were
becoming more ubiquitous, particularly in the public space with surveillance camera technology. Even at that
time, they were able to present issues where automated algorithms were being used to obtain information from
surveillance camera installations. They believed that this information could be used to acquire details about
the identity of a person and other privacy intrusive information. PricewaterhouseCoopers (2020)
commissioned a guidance paper for business leaders in the computer vision industry and recognised that facial
recognition technology can be discriminatory and intrusive. They went on to highlight a method used by the
Chinese government that uses facial recognition along with gait recognition technology in surveillance video
to identify a person. Skirpan and Yeh (2017) also highlight some concerning cases with the use of computer
vision systems. They state an instance where a computer vision application showed discriminative and biased
behaviour when undertaking facial recognition of dark-skinned people and firmly believe this has led to

unwarranted and prejudicial attention from law enforcement agencies.
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There are many concerning ethical categories when referring to Al and computer vision applications. Lauronen
(2017) has categorised the ethical issues facing computer vision into six different categories. Espionage, where
data is collected by spying without consent. Identity theft, where images are classified as containing personal
data. Malicious attacks, where systems are broken into to spread malicious content. Copyright infringement is
the use of intellectual property without the right to. Discrimination is the incorrect identification of a person’s
colour, gender or race, for example, and misinformation is regulating media communication, e.g. photos, to
not represent something truthfully. In their research, Blank (2019) argues that due to the rapid expansion of
computer vision and machine learning, new technology is being developed without the consideration of ethics.
They present three main issues with computer vision and machine learning. Human rights, namely how we use
a person’s identity. Error rates, how we deal with false positives while ensuring accuracy of the system and
bias, where we deal with incorrect classification of people. Standards Australia (2019) also identified bias as
one of the key issues with Al systems as well trust in the systems, market dominance, privacy and security
while Coupland et al. (2009) identifies the management of the data collection, the informed consent of the
person the data being collected on, the privacy of the person, the surveillance methods and user involvement
in development as being key issues for computer vision systems. PricewaterhouseCoopers (2020) add that
corporations need to develop their own ethics and regulation and list interpretability of the system by the user
as well as robustness and security of the system as significant concerns. They also declare that internal
governance needs to be implemented to ensure ethical concerns are being dealt with appropriately. Skirpan
and Yeh (2017) have also identified similar issues to the other researchers, however they add spoofing which
is getting automated systems to act nefariously to inputs, and the effect of psychological harms where people
become anxious from the constant feeling of being watched. The American Civil Liberties Union (ACLU) is
also concerned about the effect of computer vision, particularly when used in surveillance applications. They
worry also that automated algorithms can be used for sinister intentions and have listed criminal abuse,
institutional abuse, abuse for personal purposes, discriminatory targeting and voyeurism where surveillance

applications can be compromised (Senior et al. 2003).

The consequences of a computer vision application that does not consider its ethical impacts can be
considerable and if not addressed, human rights violations could arise (Blank 2019). Coupland et al. (2009)
argue that the elderly are particularly more vulnerable to the malicious use of computer vison due to their
physicality and lack of technical know-how. Skirpan and Yeh (2017) speculate that there a multitude of
possibilities where computer vision applications adversely affect the end user of the technology. Events such
as online infrastructure being brought down by hacked IoT cameras, online photos being used by external
agencies for unintended purposes and invasion of privacy from captured personal videos are all possibilities
that impact the integrity of computer vision. Senior et al. (2003) have concerns about the data that is available
from computer vision systems. They worry about what data is present in these systems and who can see the
data without consent from the owner plus the length of time data is stored for. The stored videos may also

contain other ‘metadata’ which further puts the privacy of the user at risk.
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Coupland et al. (2009) highlight the moral issues coming from the development of computer vision and how
they will impact the lives of the elderly. The believe that all computer vison applications should be developed
for the good of the user and issues concerning ethics during development and after development need to be
identified. Due to the rapid speed in Al development, Blank (2019) has found that little regard has been given
to the consequences of the technology and that time for reflection is required to take stock of what
developments exist and what impacts they can have on society. They also state that without addressing these
ethical issues, trust will be lost, meaning the technology may suffer a public backlash. They also point out that
an ‘ethical infrastructure’ needs to be developed amongst all the stakeholders of Al. This responsibility is
incumbent on governments, technology developers and society in general. Government agencies need to build
the regulations and standards and provide incentives for following them. Technology developers must produce
their own internal standards and society must set the expectations for Al technology and ensure that
transparency is maintained (Blank 2019). Skirpan and Yeh (2017) also believe that new computer vision
technology needs to be developed with a moral compass and that researchers and engineers need to be
responsible for establishing the norms, otherwise legislation and market forces will not be quick enough to
avoid the risk. As of 2019, standardisation of Al is in its infancy globally and Standards Australia (2019)
believe that Al will benefit from the introduction of standards. They believe that these standards will help the
community benefit from the digital economy and efficiency and productivity will be expanded. They expect
that interoperability can then be considered and that standards will ensure the overall quality of the product.
Despite no presence of a specific computer vision standard, in the UK, the Data Protection Privacy Act 1998
contains the principles for which data should be secured. They mention principles such as not keeping the data
any longer than necessary, processing the data for specific and limited purposes, fairly and legally processing
the data and that the data is processed in accordance with subjects’ rights. Internationally, the Institution for
Electrical and Electronic Engineers (IEEE) have consulted with academic, government and industry
institutions to release a series of papers in their Global Initiative on The Ethics of Autonomous and Intelligent
Systems program. In this initiative they detail the key values to consider with Al developments. The OECD
have also released a series of guiding principles that outline ethical development of Al and deal with issues

such as growth, legal responsibilities, transparency, security and accountability (Standards Australia 2019).

There are several methods that can help improve the integrity of computer vision systems. Senior et al. (2003)
present a model for video privacy that illustrates several privacy aspects of the technology, what data is present,
consent, who sees the data, how long is the data kept, how raw is the data and what form is the data in. For
each of these aspects they present methods that can be used to address them. To limit what data is present, a
system can use unfocussed lens as well as low-resolution cameras. It is easier to gain consent in a private
setting but much more difficult in the public environment. For this they suggest a system that uses data from
the video to verify the person trying to access the video. They believe that data should be stored in the digital
medium and have a high level of encryption applied to it as well as encryption during the capture stage. Access
should also be limited to those who need to see it via access control methods with multiple access authorisation

levels. Finally, they suggest that controlling how raw the data is can be the most effective way at preventing
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privacy issues. By masking many of the details in the video, the amount of information that can be gathered
from it is limited. Some more solutions for dealing with ethical threats are presented by Skirpan and Yeh
(2017). They argue that licensing and professional certifications could be implemented for developers of
systems where the impacts can have life changing consequences. The development of black box tests, auditing
systems and unbiased datasets are also mentioned as methods to prevent possible ethical issues. They also
suggest that third party groups test the systems to see if there are any weaknesses that can be exposed prior to
implementing in the public space. They could also employ independent agencies that can act as certifiers of

systems who would then apply their seal of approval once satisfied with the integrity.

The benefits of implementing a computer vision system that has considered all the ethical implications are
obvious but Standards Australia (2019) argue that an Al system can benefit and enhance social wellbeing if it
can be trusted at protecting privacy and maintaining security. The problem is, however, that an ethical system
can be rather complex to develop. In their research, Blank (2019), found that implementation of an ethical Al
system enables the developers to take advantage of the social impact the Al delivers and also means that they
can avoid future costs from mistakes that weren’t realised during the development phase. They highlight a
framework method from Al4People that uses the field of bioethics applied to Al systems to help developers
implement an ethical Al system. This framework incorporates how the technology will benefit society,
ensuring the technology does no harm, that autonomy of the person is maintained and ensuring the system is
fair and does not commit undue injustices. A fifth principle, outside of bioethics, is also applied that deals with

accountability of the system and how well it can be explained to the user.

In finishing ethical considerations, the future of computer vision systems used in the public and private spaces
will need to address all implications to society, whether they be positive or negative. This assessment needs to
incorporate the entire lifecycle of the technology from concept, through development, into implementation and

through to disposal.
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Chapter 3 — Research Design and Methodology

3.1 Research Design

The literature review has shown that there have been several different methods for detecting falls using
computer vision, however, all the methods of computer vision can be broadly gathered into several separate
computer vision categories. One category is a method that uses image segmentation to separate foreground
objects, which is usually the object of interest, from the background. This was traditionally done using
background subtraction, where the image to be analysed is subtracted from a reference image. However, newer
algorithms have recently been developed that use machine learning to create the foreground mask. de Miguel
et al. (2017), Foroughi et al. (2008) and Rougier et al. (2007) all use the background subtraction method to
define the region of interest in the image frame. Once image segmentation is complete, the features of the
resulting blob can be analysed to determine if a fall has occurred. Image analysis and fall detection has also
been done using more advanced techniques that fit into the domain of deep learning. Deep learning, when used
in the context of computer vision, can generally be described as a system that uses artificial neural networks
to analyse an image. By training the computer with a multitude of different images of a unique feature, for
example images of fallen people, the neural networks begin to recognize those features and can start to learn
the difference between an image with that feature and those without. Nufiez-Marcos et al. (2017) and
Maldonado-Bascén et al. (2019) both use deep learning techniques in their fall detection algorithms. Whilst
deep learning is a field that warrants further research for fall detection, this project utilises image segmentation
to separate the region of interest and then extract the features that might determine a fall event from that region.
It is hoped that with further research after this project some of the deep learning techniques could be applied

to improve the performance of the fall detection algorithm.

A common method for determining a fall from a segmented image has been using the features of the bounding
box that surrounds the person in an image generated by the image analysis software. Toreyin et al. (2005) use
the bounding box to create a time series that describes the motion of the person in the image and de Miguel et
al. (2017) use the ratio and ratio derivative of the bounding box sides to define the movement of the person
over time. Williams et al. (2010) also use the aspect ratio of the bounding box so that if the ratio is less than
one, a fall is detected. This method relies on the person falling in manner that is not perpendicular with the
camera’s horizontal axis. This method was also adopted by Kwolek and Kepski (2016) who used the ratio to
verify a fall had occurred after detection by a wearable sensor. The original algorithm adopted in this project
utilised the features of the bounding box generated by the region property function in MATLAB. To determine
a fall, the ratio of the bounding box vertical lengths to the horizontal lengths were analysed and if the horizontal
lengths were greater than the vertical, a fall was detected. It was found that this method had limitations when
used as a fall detector by itself and would need additional features used in conjunction with it to become a

reliable fall detection technique.
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The characteristics of the human shape were used to verify a fall in the work by Rougier et al. (2007). To do
this, an approximated ellipse was used to represent the human shape in a segmented image and the changes in
angle and axis ratio helped determine if the person had fallen. This method has been utilised in conjunction
with the bounding box ratio in the second iteration of the fall algorithm for this project. The MATLAB blob
analyser function generates the information to create the ellipse and the centroid of the blob created by the
foreground mask. The standard deviations of the ellipse angles and the axis ratios from the most recent frames

are both used to help identify a fall in the image sequence.

This project hoped to construct some sort of prototype that could utilise the developed algorithm and be tested
on real scenarios. The literature review showed that de Miguel et al. (2017) developed their fall detection
system to be utilised on the Raspberry Pi platform with an attached camera. This project will hope to use a

similar system in future development.

This project will attempt to build on some of the computer vision fall detection methods highlighted in the

literature review and will hope to answer the following questions,

e s foreground extraction suitable for use with fall detection algorithms?
e Is shape analysis for fall detection methods suitable?

e Can computer vision realistically be adopted as a fall detection method for elderly people?

3.2 Methodology

3.2.1 Algorithm Development

A qualitative approach was used for the consideration of the fall detection algorithm. Research has shown that,
in the field of computer vision, there are many different methods for analysing the posture of humans and then
using algorithms for ascertaining what that posture or change in posture means. This project has based its
algorithm on and extended the work by Rougier et al. (2007) who uses human motion history plus other
methods to establish if the image sequence has shown a fall. This research seemed easily understood and

aspects of their methods have been used in this project.

Algorithm development was carried out using MATLAB software. The decision surrounding the choice of
integrated development environment was made based on previous learned knowledge of MATLAB, as well
as having access to appropriate licensing through USQ. Further to this, MATLAB can be easily converted into
C/C++ computer language protocol for use in a microprocessor embedded system. MATLAB also has a suite
of computer vision, image processing and deep learning tools that can be used to develop a reliable fall

detection algorithm.

The initial stages of program development involved developing a method for image segmentation. By

segmenting the image, a foreground mask that displays a person or any object as a white blob on a black
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background is produced. Further processing was then conducted on the image to remove any unwanted features
and provide a clean foreground mask. The features of the blob produced by the image segmentation are then

analysed to produce several outputs that can be used to determine if the person in the image has indeed fallen.

The actual fall detection algorithm program has been separated from the main program to run as function when
called by the main program. This has been done so that revisions made in the main program can easily be
carried out without affecting the fall detection algorithm. For example, if the image segmentation was adjusted
in the main program, the new parameters generated by this segmentation would be sent to the same fall

detection algorithm and improvements or deficiencies could be quickly detected.

Another part of the program produces a video with added image annotations including shapes and text that
show the viewer when the algorithm has detected a fall. Also, when a fall is detected in one or a series of
images, the program adds a true value to the image label spreadsheet which was included with the fall image
dataset. This value is then compared with the label for that particular image in the image label spreadsheet for

evaluating the performance of the algorithm.

3.2.2 Algorithm Testing Requirements

The effectiveness of the algorithm must be understood to determine if the algorithm can not only reliably detect
a fall, but also establish if the person has recovered or not. Further to this, the algorithm must show a high
level of repeatability and be adaptable across different scenarios. For this, the system used by Kwolek and
Kepski (2015) has been adopted where there are three measures used to determine how well the algorithm has
performed — accuracy, sensitivity and specificity. The accuracy is a measure of how often the algorithm has
correctly detected an actual fall (true positive) and an actual non-fall (true negative). The sensitivity is a
measure of how often the algorithm has correctly detected an actual fall (true positive) compared to how often
it missed a fall (false negative). Specificity, on the other hand, is a measure of how often the algorithm correctly

detects a non-fall situation (true negative) compared to how often it incorrectly detected a fall (false positive).

For the algorithm to be deemed successful all performance measures must be satisfactory. No one measure can
be high while the other two are low for the algorithm to be reasonably reliable. For example, if the sensitivity
is high while the specificity and accuracy are low it would signal that the algorithm is detecting falls in a lot
of frames including the frames where there are no falls present. For the purposes of this project, the
performance measures would need to be upwards of 90% for the algorithm to be reliable. This threshold is

based on the research conducted by Gutiérrez et al. (2021) for similar fall detection methods.

Further to this, the performance of the image segmentation must be analysed as well. This can only be done
by visually checking the binary image output as the algorithm runs through the image sequence. This is
necessary to ensure that falls that are detected are due to correct analysis of the human shape and not due to

some random shapes produced by the image segmentation.
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3.2.3 Testing the algorithm using datasets

As mentioned above, the algorithms that have been developed have been tested on publicly available datasets
provided by Adhikari et al. (2017b). The authors have provided 20 datasets which contain over 22,000 images.
Each dataset has a series of RGB and depth images which have been taken using a Microsoft Kinect camera.
A label.csv file is also included which labels each of the images based on the different poses the subject person

is performing in the image.

The bulk of the algorithm development was carried out using one dataset. When the algorithm was at the stage
of testing it was tested on other datasets. However, not every dataset was suitable for the algorithm, for
instance, if the subject person started in the first frame of the image sequence, a reliable foreground mask could
not be established. The algorithm was able to be tested on the remaining appropriate datasets, however, and

results were compared with the label spreadsheet.
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Chapter 4 — Results and Discussion

4.1 Algorithm design

This chapter will detail the design of not only the fall detection algorithm, but also the image segmentation
and pre-processing that was conducted to get the image to a stage that could be used in the algorithm. The
programming of the image processing and algorithm went through several iterations before reaching the final
outcome and at each stage, the algorithm was tested on the same datasets to determine if any changes had

created an improvement in fall detection.

4.1.1 Initial image segmentation

Effective image segmentation is vital to the success of the fall detection algorithm, as a poorly segmented
image will yield a shape that does not resemble the posture of the subject human in the frame. Many of the
datasets acquired from Adhikari et al. (2017b) included a reference image, which was simply an image of the

empty room. The initial image segmentation technique utilised a basic form of background subtraction where

Figure 4.1 Image segmentation using background subtraction

the subject image is subtracted from the reference image. The purpose of the background subtraction is so that
any objects that are always present in the image will be ignored and only changes to the image, such as a
person walking into frame, will be presented in the foreground mask. In lieu of a reference image, some of the
datasets had no person in the initial image so this was used as the reference image. Unfortunately, some of the
image datasets did not come with a reference image or had a person in the initial image, so these datasets were

unable to be used for this algorithm.
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After the initial background subtraction, the image is converted to grayscale and blurred to allow for better
segmentation. The next step involves ‘binarizing’ the image where the image is processed so that any pixel
above a certain threshold will be given a value of one, and the remaining pixels get a value of zero. This creates
a raw binary mask where most of the white pixels, those with a value of one, should depict the outline of a
shape that was not present in the reference image. In this case it should take on a humanoid shape. The image
then has the MATLAB function bwareaopen, applied to it that ‘opens’ the image. This essentially removes
any connected pixels below a size threshold and then any holes are filled in the remaining connected pixels so
that the image is left with only the largest, connected blobs. A property filter function is then applied so that
only the one largest blob is left in the image. Figure 4.1 shows an example of the blob after complete image

segmentation.

A connected components function is then applied to the image that finds connected components within the
image and returns a structure with fields that describe the component. A region property function is then
applied to the connected components structure that can return multiple properties of the connected component

such as, centroid location, area in pixels, bounding box and axis lengths. Properties from this function were

used in the initial fall detection algorithm.

Figure 4.2 Poor image segmentation resulting in an inaccurate bounding box in dataset 581
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4.1.2 Fall detection using bounding box ratio

One of the simplest methods of determining changes in the posture of a human is to analyse the changes in
bounding box surrounding the human shape. For the initial fall detection algorithm, the vertical length was
compared to the horizontal length and if the ratio was less than one, a fall was detected. The process is
described in the flow chart in Figure 4.4 and it was shown that while this detection method was often able to
detect a change of state to a lying pose, there were a number of times it was unable to detect a fall due to the
bounding box ratio staying above one. Further to this, image segmentation using the background subtraction
method was not very effective, particularly in poor lighting conditions and where the contrast between the
foreground and background was low. This meant that the bounding box ratio would sometimes change to a
value below one when the subject person was in a standing position. Figure 4.3 shows an example of a poorly
segmented image from dataset 569 that has created a false fall detection using background subtraction
segmentation method. At other times image segmentation would produce spurious blobs that would make the
bounding box appear larger than the subject person. Figure 4.2 from image dataset 581 shows an example of
when the image segmentation has produced a blob that doesn’t accurately represent the human subjects shape.
It is worth noting that despite the inaccurate bounding box size the ratio is lower than one and the algorithm
has correctly detected a fall, however, this type of fault has the potential to skew the performance of the
algorithm and give results that may seem legitimate when, in reality, it is not so. This is why it is important

when measuring the performance of the algorithm, that the quality of the image segmentation is considered.
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Figure 4.4 Flow chart for bounding box fall detection method
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4.1.3 Segmentation using MATLAB foreground detector

It can be seen above that when image segmentation is poor, the fall detection algorithm has a difficult time
correctly determining a fall. For the success of this project a more reliable method of image segmentation was
sought. In its computer vision toolbox, MATLAB has a function, vision.ForegroundDetector, which is a
foreground detector that uses Gaussian Mixture Models (GMM) to return a foreground mask and is derived
from the work by Kaewtrakulpong and Bowden (2001) and Stauffer and Grimson (2007). The foreground
detector has several parameters that can be set to make it work effectively. Adapt learning rate allows the
detector to update the learning rate with each frame, the learning rate is how rapidly the algorithm adjusts to
changing conditions. The number of training frames can also be adjusted and needs to be set to an appropriate
number so the algorithm can get a robust background image. The minimum background ratio determines what
pixels are to be considered background values and must be appropriately set to allow for multimodal
backgrounds. There is also the ability to set the number of gaussian modes as well as the initial variance of the

model.

Used in conjunction with the foreground detector is another function from the computer vision toolbox,
vision.BlobAnalysis. This function analyses all the connected regions, or blobs, in the binary image and
produces statistical outputs that can be used to describe the blobs. Whilst there are plenty of outputs that can
be used for computer vision projects, the properties used for this project were centroid, area, bounding box,
major axis length, minor axis length and orientation output. The centroid output returns the coordinates on the
image of the centre point of the blob and was used to determine the distance and therefore the speed, at which
the blob was moving between image frames. The area output port was used to filter any smaller blobs in the
image that would not be large enough to represent a human and as per the initial fall detection algorithm the
bounding box was used to represent the region of interest (ROI) for the blob. The major and minor axes outputs
are used to represent the ellipsis that defines the blob, and the orientation is used to represent the angle of the

major axis in relation to the x axis of the image.

To produce a foreground mask the foreground detector needs to be trained to detect the background model.
This meant that the datasets needed an image sequence at the start that contains just the background with no
human or other moving objects. This narrowed the available datasets even further than the original
segmentation method as the background subtraction method could rely on the one reference image that was
supplied with some of the datasets. The foreground detector relies on a number of training frames to be
effective and through trial and error the optimum number has been set at around 40. If this number is set too
small the foreground detector will detect minor lighting changes and shadows which would make the
segmentation unstable. The number of training frames could be set higher, however, the datasets would run
out of available images. Like the number of training frames, the learning rate was set with a fair amount of
trial and error. If the learning rate is set too high, the algorithm will quickly erode the foreground mask which
creates problems if the person in the frame is stationary for an extended period. If it is set too low, then any

minor change in the background image will remain in the frame causing nuisance blobs. The minimum
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background ratio was generally left around the default value of 0.7 for most of the datasets. This parameter

sets the minimum possibility that the algorithm will consider for pixels to be deemed background pixels and
when set too low the foreground mask would be smaller and sometimes undetected, especially in darker areas
of the image. Finally, the initial variance was generally set to auto. This was found to produce the best results

throughout most datasets.

As with the original image processing method, the program would read the individual image from the image
datastore. In this case, however, the foreground detector would produce the binarized image prior to being
opened and filled before image morphology is completed. The process changes slightly after this where the
outputs from the blob analysis are put into arrays so they can be utilised by the fall detection algorithm and

other processes.

Whilst not critical for the success of the algorithm, it is important that there is a visual representation of the
blob analysis outputs so that the person assessing the algorithm can see what is happening in real time. For
this reason, several animations have been included that will overlay on each image as it is read by the program.
Firstly, the major and minor axes are shown to illustrate how the detector is representing the angle of the
human as well as the height and width. Secondly, an ellipse has been drawn around the blob using the major
and minor axes outputs. The blob analyser does not produce an ellipse output, therefore the ellipse was

produced using the following equation (Cookie Robotics n.d.).

* cosg sing [a cost _
[Y] [ sin @ COSs (p] bsint Equatlou 4-1

Where, x and y are the coordinates for each point on the ellipse, ¢ represents the angle of the major axis in
relation to the x axis of the image, a and b are the lengths of the major and minor axes respectively and t is a
series of equally spaced values from O to 2n. What gets returned is a matrix with all the x and y coordinates to
draw an ellipse around the blob on the image. A bounding box around the object is also produced, purely to

highlight the image frames when a fall occurs. Colour changing text is also produced in the upper left corner
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of the image to show the viewer when a fall has been detected. An example of the annotated image is shown

on the left side of Figure 4.5 and on the right is the segmented image.

Table 4.1 Dataset 569 results example (extract)

mageNo- | 10 | Ko | Remit
122 2 0 TN
123 2 0 N
124 3 0 FN
125 3 1 TP
126 3 0 FN
127 3 0 FN
128 3 0 FN
129 3 0 FN
130 3 0 FN
131 3 0 FN
132 3 1 TP
133 3 1 TP

The final part of the main program takes the results from the fall detection algorithm and puts them into a
column on the label spreadsheet with each cell lined up with the corresponding image number. From there
simple excel formulas were used to compare the result with the image label and resolve if the fall detector had
correctly detected a transition from standing to falling. Table 4.1 shows an extract from the results for dataset
569 that shows the image number, the label given by the dataset, the fall detection result and then the

comparison result.

Adhikari et al. (2017b) developed their datasets mainly for use in deep learning applications using
convolutional neural networks (CNNs) where they were trying to train the computer for various poses, so the
following labels were included. 1 is standing, 2 is sitting, 3 is lying, 4 is bending, 5 is crawling and 0 is empty.
For the purposes of this project, the algorithm is only concerned if the person is in the lying pose. Therefore,
if the image label was 3 and detector result was 1, then a true positive (TP) is detected and if the image label

is not 3 and the detector result was 0O, then a true negative (TN) result was detected and so on.

Most of the tuning and debugging of the image segmentation program and the fall detection algorithm were
conducted using dataset 569. This dataset had reasonable lighting with few dark spots in the image and the
position of the camera was far enough back to give a wide enough view of the room. The only real challenges
were the bed creating an occlusion when the subject stood behind it and a mirror on a wall which reflected the

image of the person when they walked near it. Several iterations of the foreground detector segmentation
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Figure 4.6 RGB image converted to HSV

method were developed throughout the life of this project to optimise the foreground mask. Early on it was
discovered that shadows cast by the person were being detected by the foreground detector and distorting the
foreground mask. A MathWorks forum suggested that the foreground detector be used on a hue, saturation,
value (HSV) image (MathWorks 2016). An HSV image created from an RGB image by MATLAB will
produce an m-by-n-by-3 matrix where the third dimension is the hue, saturation and value figures for each
pixel in the image. The hue is a value from O to 1 that corresponds to a value on a colour wheel, saturation is
the level of hue value and value is the maximum value of the red, blue and green components of a specific
colour (MathWorks 2021c). The result of this change successfully eliminated the effect of shadows and image
segmentation was vastly improved. Figure 4.6 shows the resultant image of the RGB to HSV conversion and

the reduction in shadow casting is noticeable.

Figure 4.7 Binary image with no morphological operations (left) and after dilation and erosion (right)

Morphological operations to the binary image affect the segmentation by manipulating the size and shape of
the blob. Applying a dilating function to the image has the effect of opening the foreground mask and filling
any gaps between sections of the blob. Then, by applying an eroding function, the width of the blob is trimmed
to a size that should reflect the size of the person in the image. The left side of Figure 4.7 shows the foreground
mask without any morphological operations and on the right is the mask after the morphological operations

have been applied.
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Figure 4.8 Morphological operations principle of operation (MathWorks 2021a)

By applying the morphological operations any separation of the segmentation will be ignored and the shape
will stay in one piece and give one solid blob which represents the human shape. Morphological operations
use a specified shape that is applied to the binary image and filters the target pixel based on the value of the
neighbouring pixels. In a dilation operation the target pixel will be set based on the largest value pixel in the
neighbouring pixels, whilst the erosion will be looking for the minimum valve pixel (MathWorks 2021b).
Figure 4.8 shows the principle of operation. For this project, dilating and eroding the foreground mask

improved the performance of the fall detection algorithm and was used in the final program.

4.14 Fall detection using blob bounding box, centroid distance, axis ratio and angle

The next generation of fall detection algorithm adopted a method similar to Rougier et al. (2007) who utilised
the motion history image and the standard deviations of the orientation angle and the ellipse axis ratios. Instead
of using a motion history image, this algorithm uses the distance the centroid travelled between each frame.
The theory behind using this parameter is that during a fall event the blob should show a greater displacement
between frames and by setting an appropriate threshold the algorithm can detect the fall. To determine the

distance the centroid travels between each frame, the following formula was used,

d; J(x,— X; )2+(y[ Y )? Equation 4-2

Where d; is the centroid distance change from the previous image to the current image, x; and y; are the x and
y coordinates of the blob centroid in the current image while x;_; and y;_, are the x and y coordinates of the
blob centroid in the previous image. Figure 4.9 shows how the calculation for centroid distance is derived.

(Xi1, Yi~1)

Ay
(xi, Yi)

Figure 49 Diagram defining the centroid
distance calculation
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The objective of the orientation angle is to capture falls when the person is falling in a direction parallel with
the horizontal axis of the camera. That is, when the person falls the angle should change from somewhere
around 90° to an angle towards 0° or 180°, depending on the direction of fall. Axis ratio change, on the other
hand, is used to detect those falls which occur parallel with the vertical axis of the image. It is expected that
with these types of falls there would be not a lot of change in orientation angle. Standard deviation has been
used with these parameters to allow a certain level of variability in the object features. A sudden change in the
level of either of the parameters should increase the standard deviation and with correct setting of the

thresholds, falls should be easily detectable. The standard deviation of these parameters is calculated as

(e; 9)?
[ —
Z@; p)°
0'p —N

Where, ¢; is the orientation angle in radians of the blob in the ith image, @ is the mean of the angles in the

follows,

Equation 4-3

Equation 4-4

chosen dataset, N is the number of angles and axis ratios in the dataset and gy, is the standard deviation of the
angles in the selected dataset. p; is the axis ratio of the blob ellipse in the ith image and p is the mean axis ratio
and gy, is the standard deviation of the axis ratios in the dataset. For these parameters, N has been set at 5. It
was found that this number of images is enough to accurately detect a change in posture and not too large that

it might take longer for the variation to take effect.

Table 4.2 Image centroid distance, axis ratio and angle standard deviation data around a fall at image 124

fmage | Label | Fall | SO Axisstddey | AL S
120 | 2 0 | 1560357148 | 0306393007 | 0.109383081
121 | 2 0 | 1.163405087 | 0301346134 | 0.116292476
122 | 2 0 | 2434893413 | 0266909075 | 0.114863866
123 | 2 0 | 9424564613 | 0232503059 | 0084728255
124 | 3 0 | 5760408859 | 0272827704 | 0.098549742
125 | 3 1 | 6059147855 | 041687095 | 0.123030603
126 | 3 0 | 553645562 | 0495472985 | 0.141785674
127 | 3 0 | 2472377735 | 0575319511 | 0.124478138
128 | 3 0 | 1714939255 | 054991545 | 0.132643618
129 | 3 0 | 1535566164 | 0271602316 | 0.169630865
130 | 3 0 | 364241218 | 0225893382 | 0.17500733
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Setting the most appropriate thresholds for these parameters was a lot more complex and involved analysing
the standard deviations of the angles and axis ratios around the fall images. Using dataset 569, the centroid
distance and the standard deviation data from the orientation angle and the axis ratio in each image were
included in the output spreadsheet. This allowed easy analysis of the parameters by cross referencing the
images where a fall had occurred. For instance, in dataset 569 a lying pose occurs in images 124 to 150. By
analysing the centroid distance and the standards deviations of the angle and axis ratios around this point, some
idea of thresholds can start to be determined. Table 4.2 shows the centroid distance and standard deviation
data around image 124 where the fall begins to occur. It can be seen that after image 124 there is a noticeable
increase in the standard deviation of the axis ratio and a smaller increase in the angle standard deviation. There
is also a noticeable increase in the centroid distance at image 123 that could show the person has started to

transition from standing to lying and that a fall is taking place.

The next lying pose in this dataset occurs between images 187 and 218. Table 4.3 shows the results of the axis
ratio and angle standard deviations around image 187. Once again, there is a noticeable change in axis ratio
although on this occasion it is just before the change in pose. The angle standard deviation also changes slightly
just after the change in pose. Figure 4.10 shows the image sequence from image 180 to 191 including the
associated binary image. As shown in Table 4.3, the axis ratio standard deviation gradually increases and peaks
at around image 185. This is due to the lengthening of the blob as the subject person moves from the standing
pose to the lying pose. The standard deviation of the angle increases slightly at image 190 where the person
makes contact with the bed. Centroid distance also has an increase at this image, however, there are similar
sized increases in the images preceding the change in pose which are probably due to the subject moving on

to the bed in a kneeling pose prior to the lying pose.

Figure 4.10 Image sequence (180 to 191) showing axis ratio and orientation angle change in dataset 569.

27



Table 4.3 Image centroid distance, axis ratio and angle standard deviation data around a fall at image 187

I‘;fe Label | Fall g‘.l’:t‘:;’ci‘: Axis std dev An(giiism
180 | 1 0 | 8218887195 | 0.339565326 | 0.075092829
181 | 1 0 | 6784447853 | 0362334411 | 0078679621
182 | s 0 | 2103510673 | 0.351430695 | 0.085140495
183 | 5 0 | 301666616 | 0353659541 | 0082668536
184 | 5 0 | 7239624149 | 0416287117 | 0.08727426
185 | 5 0 | 1.043243411 | 0441055839 | 0.017690059
18 | 5 0 | 9367018826 | 0350925332 | 0028143606
187 | 3 0 | 4158301809 | 0264510263 | 0.03519436
188 | 3 0 | 5620140545 | 0.143986444 | 0044816998
189 | 3 0 | 2638985479 | 028882949 | 0093323026
190 | 3 1| 3.41988733 | 0314117238 | 0.120453008
191 | 3 1 | 0953639188 | 0308431589 | 0.110289501

Table 4.4 Image centroid distance, axis ratio and angle standard deviation data around a fall at image 423

I‘;foe Label | Fall g‘i":t‘:;’i‘: Axis std dev Ang:/“‘i
413 | s 0 | 2311564903 | 0076981551 | 0.675617847
414 | s 0 | 1673144656 | 0124675243 | 0.648456155
415 | s 0 | 2425606443 | 0130589467 | 0.295274149
416 | 5 0 | 1050091411 | 0.124613957 | 0.302941545
417 | s 0 | 1666258154 | 0101574546 | 0245005844
418 | 5 0 | 6748841473 | 0.080753686 | 0.161068901
419 | 5 0 | 1181243937 | 0050675003 | 0.08807488
20 | s 0 | 3.587555701 | 0.048753522 | 0.071793481
21| s 0 | 5.173046718 | 0.082081626 | 0.064667929
022 | s 0 | 5524813121 | 0.163266677 | 0.067040354
023 | 3 0 | 2948186969 | 0239744735 | 0.068164287
04 | 3 1| 5460879161 | 0370691563 | 0.057088843
025 | 3 1 | 0901023463 | 0364284319 | 0.061793704
026 | 3 1| 1749388901 | 0.32675667 | 0.038202394
07 | 3 0 | 1330919809 | 0202816471 | 0.030648461
08 | 3 0 | 1.108660239 | 0.198847495 | 0.033661214
029 | 3 0 | 269791442 | 0453914223 | 0.084306955
430 | 3 0 | 179097219 | 0467129323 | 0.093045996
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There is a third and final event in dataset 569 that can be used to train the fall detector at image 423 where the
subject goes into a lying posed that lasts until image 518. Table 4.4 shows the centroid distance and standard
deviation results around the start of the lying pose and once again there is a slight increase in axis ratio standard
deviation several frames after the start of the lying pose label at image 429. What is also notable is that there
is very minimal variation in orientation angle at the time of the change in pose. This is due to the manner in
which the subject moves to the lying pose and as such, the variation in angle comes before the movement to
the lying pose in image 418. The centroid distance also shows a change in magnitude just before the lying pose
also at image 418. Figure 4.11 shows the change in orientation angle prior to the lying pose from image
sequence 408 to 416 and the continuation of this sequence shows the movement from standing to lying

finishing in image 424.

“2..

Figure 4.11 Image sequence 416 to 424 showing standing to lying pose

The results of the centroid distance, axis ratio and orientation angle standard deviations show that it is possible
to create a fall detection algorithm using these parameters. However, the variability of each parameter means
that there are instances when the parameter might reach the threshold outside of a change from standing to
lying pose. For this reason, the algorithm was first designed so that a possible fall could only be detected when
at least two of the parameters had reached their threshold. That is, a possible fall is detected under the following

scenarios.
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o if the centroid distance and the standard deviation of the axis ratio exceed their thresholds
o if the centroid distance and the standard deviation of the angle exceed their thresholds

o if the centroid distance and the bounding box ratio exceed their thresholds

o if the axis ratio and angle standard deviations exceed their thresholds

o if the bounding box ratio and the standard deviation of the angle exceed their thresholds

o if the bounding box ratio and the standard deviation of the axis ratio exceed their thresholds
This algorithm was run using dataset 569 using the following thresholds with the results shown in Table 4.5.

e Centroid distance — 5 pixels
e Axis ratio standard deviation — 0.25

e Angle standard deviation — 0.5

Figure 4.12 shows the flow diagram for the algorithm where a fall detected flag is returned to the main program

if any of the above conditions are met.

Table 4.5 Results of initial fall algorithm on dataset 569

Dataset
569
TP 36
TN 404
FP 11
FN 119

Accuracy 77.2%
Sensitivity | 23.2%
Specificity | 97.3%

It would appear from these results that the algorithm has good accuracy, however, when viewed in conjunction
with the sensitivity it shows that it was not good at detecting a maintained lying pose. What was encouraging
though, was that when viewing the image sequence while running the fall detector over the dataset, it regularly
detected the change in pose from standing to lying. The problem was that the algorithm could not tell if the
person remained in the lying pose due to only small changes in axis ratio, angle, centroid distance and bounding
box ratio. This is evident in Table 4.2 and Table 4.4 where in the third column a fall flag has been added
approximately around the images that show the change in pose before changing back to no fall despite the
image being labelled a lying pose. This initial fall algorithm was then run on other datasets that could be used
with the MATLAB foreground detector and the results are shown in table 4.6. As was the case with dataset
569 this algorithm shows poor sensitivity predominantly due to the algorithm being unable to detect if a person

has remained in the lying pose.

There are several key observations that were taken away from this version of algorithm that would help in
future revisions. Firstly, the algorithm consistently detected a change in pose from standing to lying, however,

it was unable to maintain the fall detection if the person remained in the lying pose and movement was minimal.
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This characteristic will need to be addressed in future revisions as it is critical that the algorithm is able to
distinguish a person who has stayed fallen so it can prevent the ‘long-lie’. Secondly, there is a perceptible
difference in detection when the rate at which the person falls is faster. This could help distinguish between
actual falls and those where the person is just lying down. Also, with this version of fall detector HSV image
conversion was not conducted, so the foreground mask was affected by shadows which in turn affected all the
parameters utilised by the fall detector. Future versions of the detector would use the HSV image conversion
as detailed in section 4.1.3 above. It was also discovered when testing this algorithm that image segmentation
was affected by several factors including lighting variations in the image, for example, sunlight shining onto
the floor from an uncovered window. There were also some datasets that had dark areas in which the
foreground detector would struggle to find the person and others where the colour of clothing would cause low
contrast which would break or shorten the blob. These faults obviously affect the performance of the fall
detection algorithm and have mainly been addressed in later versions by manipulating some of the parameters

of the MATLAB foreground detector function.

Table 4.6 Results of initial fall algorithm on remaining datasets

Dataset Dataset Dataset Dataset Dataset
758 786 832 1954 2123
TP 57 48 54 182 90
TN 649 587 498 1457 1354
FP 33 12 48 114 74
FN 19 139 232 201 482
Accuracy 93.1% 80.8% 66.3% 83.9% 72.2%
Sensitivity 75.0% 25.7% 18.9% 47 5% 15.7%
Specificity 95.2% 98.0% 91.2% 92.7% 94 8%
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Figure 4.12 Flow diagram for fall detector based on blob centroid distance, axis ratio and angle
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4.1.5 Revised fall detection using HSV image conversion

The next iteration of fall detection algorithm still utilises the MATLAB foreground detector with the blob
analyser, however the number of training frames was increased to the maximum so a more solid background
could be achieved, and the minimum background ratio was altered so that the foreground mask was not affected
so much by lighting changes. Also, the images have been converted to HSV from the standard RGB. This was
done to alleviate the issues caused by shadowing and in turn hopefully improve the performance of the fall
detector. Figure 4.13 shows an example of the changes to the binary image when HSV images are used. In the
left image the shadow has changed the shape of the foreground mask which has resulted in a wider ellipse. On
the right is the same image number, but the image was converted to HSV prior to running the foreground

detector. The improvement in the binary mask is obvious.

Figure 4.13 Effect of converting to HSV for shadow removal in dataset 569

Table 4.7 shows the results of the revised image processing method on the centroid distances, axis ratio and
angle standard deviations for the change on pose around image 124. When compared with Table 4.2, the figures

appear more consistent, particularly the centroid distance, with the new image processing technique.

Table 4.7 Image data around a fall at image 124 using revised fall detector

I’;Zg_e Label | Fall gf;‘::l’:‘: g;‘:‘;{d;ﬁi Axis std dev An(giiev“d
120 | 2 0 | 2539114184 | 0564516129 | 0.235736408 | 0.089066824
121 | 2 0 |1459800299 | 0624 | 0261903668 | 009135033
122 | 2 0 | 4352537382 | 0753968254 | 0.293049089 | 0.105694117
123 | 2 0 | 3815235982 | 0725806452 | 0.194682603 | 0.096370515
124 | 3 0 | 4433299493 | 0794642857 | 0194859393 | 0.10270665
125 | 3 1| 6276742827 1 0322297111 | 0.131145398
126 | 3 0 | 4033276784 | 0904761905 | 0.490147203 | 0.140136706
127 | 3 0 | 1736443738 | 0938271605 | 0.638479927 | 0.120004729
128 | 3 0 | 1935286942 | 0.824175824 | 0.610359181 | 0.132043009
129 | 3 0 | 0571761309 | 0802083333 | 0.461580446 | 0.184036721
130 | 3 0 | 179525915 | 0941176471 | 030719427 | 0.192311318
131 | 3 0 | 4746498997 | 1194029851 | 0.151337972 | 0269320973
132 | 3 1| 2136955762 | 1428571429 | 0263439608 | 0.315775938
133 | 3 1| 8370122382 | 1148148148 | 038774422 | 0319619722
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The fall algorithm has also been revised to help detect if a person has stayed fallen. So, a fall is detected when,

e The bounding box average ratio from the previous five frames is greater than one.

e The standard deviation of the angle of the of the blob in the previous five frames is greater that the
threshold AND the standard deviation of the axis ratio from the previous five frames is greater than
the threshold.

e The centroid distance from the previous frame to the current frame is greater than the threshold AND
the standard deviation of the angle of the of the blob in the previous five frames is greater that the
threshold.

e The centroid distance from the previous frame to the current frame is greater than the threshold AND

the standard deviation of the axis ratio from the previous five frames is greater than the threshold.

The fall column in Table 4.7 shows that while the detector has picked up the initial change in pose at image
125, there is still a period where the person is in the lying pose and the detector has given a non-fall state. The
fall flag is then picked up again at image 132 and remains on for most of the remainder of the period when the
person is in the lying pose. This is due to the way the person falls on to the bed. The image sequence displayed
in figure 4.14 shows that after the person lands on the bed, their legs go up into the air which keeps the centroid
relatively still, the bounding box ratio doesn’t increase above threshold and the angle doesn’t vary enough to

trigger the threshold.

Figure 4.14 Image sequence (125 to 132) showing a missed fall due to an unusual lying pose in dataset 569

In the next fall sequence, the detector has picked up the change to a lying pose within one frame of the image
label, see Table 4.8, and alternates between on and off for the duration of this lying pose. After the person
stands up, however, the detector continues to incorrectly show a fall state for several image frames. This is due
to the foreground detector yielding an abnormal blob and distorting the ellipse and the bounding box as the
person gets up off the bed. It is unclear as to why the foreground detector has given this blob shape, however,
in Figure 4.15 it can be seen that it is likely that the detector has latched onto the movement of the stripe on
the sheet on the bed from the person lying on top of it. The blob appears to hold on to the stripe until the person
gets up off the bed.
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Figure 4.15 Foreground detection anomaly causing distorted ellipse and bounding box in dataset 569

The final change to lying pose in this dataset has been not only well detected by the fall detection algorithm,
but also easily maintained as the person remained in the lying position. As shown in Figure 4.16, this is mainly
due to the lying pose being a classical type where the person lies parallel with the horizontal axis of the camera

so was easily detected and retained by the bounding box ratio parameter.

Table 4.8 Image data around a fall at image 187 using revised fall detector

I‘;Zg_e Label | Fall ]C)f;::l’;‘ei gg":‘;{d;z% Axis std dev An(gii“’,“d
184 | 5 0 | 0864669149 | 0.603053435 | 0.141059103 | 0.069258427
185 | 5 0 | 1768559446 | 0621212121 | 0.044559543 | 0.046570321
18 | 5 0 | 0948221501 | 0.62406015 | 0.092045758 | 0.045743583
187 | 3 0 | 2599446257 | 0.661654135 | 0.082279605 | 0.051929381
188 | 3 1| 5977087777 | 1028301887 | 0216565707 | 0.10450184
189 | 3 1| 12.40263839 | 1066666667 | 0.618118655 | 0.225571926
190 | 3 1 | 6853161192 | 1208333333 | 0.637810827 | 0.236017701
191 | 3 0 | 2571406947 | 1058823529 | 0.615901415 | 0213014124
192 | 3 1| 5299633416 | 0922330097 | 0498925891 | 0.177829621
193 | 3 1| 4201669126 | 1.102040816 | 0339249531 | 0.127756741
194 | 3 1| 3.09942585 | 1082474227 | 0284524671 | 0.11330993
195 | 3 1| 3.157410386 | 0.871287129 | 0.124114494 | 0.081480531

Table 4.9 Results of revised algorithm on dataset 569

Dataset
569

TP 126

TN 330

FP 85

FN 29
Accuracy 80.0%
Sensitivity | 81.3%
Specificity | 79.5%

Overall, the revised fall detection algorithm has vastly improved on the previous fall detection algorithms. The

results of the testing conducted on dataset 569 shown in Table 4.9 will back that statement up, when compared
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with the results in Table 4.2. However, there is still much improvement to be made. While the sensitivity has
increased, meaning the algorithm is detecting more lying poses, it has come at the cost of specificity, which
means that there are a greater amount of false positives. The goal of the succeeding algorithm revisions will
be to analyse the images that are showing incorrect states and adapt the fall detection algorithm to ignore the

features that are causing them.

Figure 4.16 Fall detection of near horizontal lying pose

4.1.6 State-based fall detection with upright angle reset

The previous versions of fall detection algorithms using centroid distance, axis ratio and angle standard
deviations were both able to accurately detect a change in pose to within a few frames of the image label state.
However, both have struggled to accurately maintain the fall status after the person has fallen and before they
stand up. In this revision of algorithm, a state-based control will be used where after a fall is detected the state
will change to a fall condition and will remain in that state until the algorithm has detected that the person is

upright again. Figure 4.17 shows the state diagram and which conditions will trigger the change of state.

MeanCent&Angle'stdev«hresh AND MeanCent&Angle stdev>thresh OR
MeanCent& Axis ratio stdev<thresh AND MeanCent& Axis ratio stdev>thresh OR

Axis ratio stdev& Angle stdev <thresh A . o qaoe Angle stdev > thresh

T

Blob angle != upright

No Fall Fall
Blob angle = upright

Figure 4.17 State diagram of fall detection algorithm

To ascertain if a person is upright, the algorithm uses thresholds in the orientation angle. If the angle is outside
these thresholds on either side, then the person is deemed to be not upright. To determine the most appropriate
upright angle thresholds, the orientation angle was included in the image data spreadsheet and analysed. Table

4.10 shows the image data from the first fall event in dataset 569 and includes the orientation angle in radians.
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If the person was completely upright, then it would be expected that the orientation angle of the ellipse would
be around 1.57 radians, or 90°. In Table 4.10, the orientation angle at the time of the fall in image 124 is around
2.2 radians (126°). Of greater interest is the orientation angle after the person stands up following the lying
pose. This data will help determine the angle at which to reset the fall detector back to the no fall state. Table
4.11 shows the image data after the person sits up after a fall with the image where the label changes from
lying to sitting highlighted in green. The angle at the time of change in state from lying is similar to that seen
in Table 4.11 at time of change of state to lying of 2.1 radians. After the third lying event in dataset 569
between images 518 and 519, the orientation angle is much smaller than the first lying pose event, however, it

is of approximately equal angle from the vertical. This angle is approximately 0.53 radians or about 30°,

therefore, the thresholds for the upright angle have been set at 1.04 radians (60°) to 2.1 radians (120°).

Table 4.10 Image data from dataset 569 showing orientation angle at time of lying pose

R [ et | e [ ot | B [oaissaaes | Ao | ORion
120 2 0 1.318202773 | 1.964845576 | 0.183403298 | 0.068789236 | 1.967214989
121 2 0 1.052677671 | 1.656692282 | 0.205277701 | 0.068888816 | 2.001754183
122 2 0 2.135745492 | 1.502208646 | 0.197160032 | 0.075290364 | 2.090794567
123 2 0 3.051797195 | 2.080073453 | 0.163410376 | 0.081692263 | 2.136621181
124 3 0 3.763233589 | 2.983592092 | 0.125399688 | 0.090384589 | 2.216807643
125 3 1 5.640350822 | 4.151793869 | 0.309745453 | 0.119570063 | 2.35462853
126 3 1 4.641853197 | 4.681812536 | 0.523860152 | 0.14360782 | 2.480295362
127 3 1 1.530672647 | 3.937625555 | 0.654317192 | 0.140699048 | 2.490448997
128 3 1 2.909496506 | 3.027340783 | 0.595943307 | 0.149800452 | 2.105388315
129 3 1 2.037908663 | 2.159359272 | 0.423070644 | 0.241299184 | 1.864228116
130 3 1 0.813511876 | 1.920305681 | 0.215175041 | 0.294949115 | 2.675657944

Table 4.11 Image data from dataset 569 showing orientation angle after person gets up after lying

e oot | v | G | B Toasssaaes | Ao | Oerin
147 3 1 3.839181583 | 2.646102045 | 0.042515763 | 0.028722439 | 2.355057078
148 3 1 2.720373031 | 2.653706973 | 0.04813899 | 0.028302987 | 2.36146833
149 3 1 1403397962 | 2.654317525 | 0.072337362 | 0.038289064 | 2.276551314
150 3 1 0.524407886 | 1.54939296 | 0.077845731 | 0.060282327 | 2.221540115
151 2 1 1.235584235 | 1.054463361 | 0.078181135 | 0.08415225 | 2.138026665
152 2 1 1.775178828 | 1.178390316 | 0.065058148 | 0.094033783 | 2.100504595
153 2 1 4269687598 | 2.426816887 | 0.123267503 | 0.069035304 | 2.106943084
154 2 1 1.989523423 | 2.67812995 | 0.155348206 | 0.046769297 | 2.096424192
155 2 0 2464971419 | 2.908060813 | 0.154414186 | 0.033837361 | 2.034182168
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Table 4.12 Image data showing orientation angle in third lying pose in dataset 569

R el el e el R
514 3 1 3.313297308 | 2.738902869 | 0.393496303 | 0.011340561 | 0.54409155
515 3 1 7.328885415 | 4.434834802 | 0.441349657 | 0.012593345 | 0.53421047
516 3 1 8.826271427 | 6.489484717 | 0.506199278 | 0.06048659 | 0.700465265
517 3 1 3.069555039 | 6.408237294 | 0.331168051 | 0.117260425 | 0.836965409
518 3 1 3.057178466 | 4.984334977 | 0.221490622 | 0.193098134 | 1.048220036
519 2 1 1.066552343 | 2.397761949 | 024164003 | 0.21563661 | 1.116436747
520 2 1 2.188286899 | 2.104005903 | 0.168569462 | 0.168481219 | 1.125314111
521 2 1 1464091272 | 1.572976838 | 0.223256315 | 0.119532643 | 1.178796469
522 2 1 3.168278342 | 2.273552171 | 0.221006308 | 0.045074057 | 1.161060558
523 2 1 5.342035365 | 3.32480166 | 0.151455184 | 0.077805406 | 0.959439891

Knowing the angle thresholds for upright orientation, a fall is detected when the following conditions exist.

o The average centroid distance of the previous three frames is greater than the threshold AND the angle
standard deviation of the previous five frames is greater than the threshold AND the orientation angle
is not in the upright limits.

e The average centroid distance of the previous three frames is greater than the threshold AND the axis
ratio standard deviation of the previous five frames is greater than the threshold.

o The standard deviation of the angle of the of the blob in the previous five frames is greater than the
threshold AND the standard deviation of the axis ratio from the previous five frames is greater than

the threshold.

The centroid distance was averaged to smooth out some of the random spikes and create a more representative
distance travelled over time. The first criteria, which looks at the centroid distance with the angle standard
deviations is also dependent on the orientation angle being outside of upright limits. This means that a detected
fall due to centroid distance and orientation angle standard deviation will be ignored unless the orientation
angle is outside of the upright limits. This had the effect of removing several nuisance false positive tags from
the dataset. This condition was not added to the other two criteria because it may mask a change in pose to
lying that is parallel with the vertical axis of the camera which can only be detected by the axis ratio standard
deviation. The bounding box ratio criteria was removed from this algorithm as it was found to provide no
additional benefit to fall detection that the other criteria were already detecting and was, in fact, the cause of

several false positives.

This version of fall detection performed better in all three measures of performance as shown in Table 4.13.

Increasing the specificity to over 97% means that the algorithm is unlikely to miss a fall event. There are,
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however, still quite a few false positives which means that the algorithm is picking up anomalies with the blob

axis ratio, angles and centroid distance when the person is not in the lying pose.

Table 4.13 Performance results using state-based algorithm

Dataset
569

TP 151

TN 360

FpP 55

FN 4
Accuracy 89.6%
Sensitivity | 97.4%
Specificity | 86.7%

There are several false positives created when the subject person enters the room and walks past the mirror
just after image 60. Figure 4.18 shows the image sequence and it can be seen that the reflection causes a
distortion in the blob as she is walking past. Table 4.14 shows that these false positives are triggered by the

variation in the axis ratio along with the centroid distance or the angle variation.

Figure 4.18 Image sequence showing false positive due to mirror reflection

Table 4.14 Image data showing false positive information from reflected image

e [ [ v | ot | mome T asaaes | Mot | O
60 1 0 2.732659296 2.363956042 0.197504685 0.019028472 1.469677749
61 1 1 10.38606453 5.155535377 0.58608572 0.111508425 1.222855562
62 1 1 2.415900064 5.178207962 0.618893077 0.144759744 1.172225362
63 1 0 19.31768921 10.70655127 0.574528314 0.1355028 1.449189744
64 1 1 4860616315 8.864735197 0.573296313 0.134281549 1.486908975
65 1 0 3.774489666 9.317598398 0.570729326 0.142644328 1.515034037
66 1 1 4.276079915 4.303728632 0.441190864 0.137286892 1.56111323
67 1 0 8.653419571 5.567996384 0.209784592 0.037532722 1.524483181
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Random false positives are also created later in the image dataset that starts at image 297 and continues on and
off for the next several frames, see Figure 4.19. This is due to the subject person walking out from behind an
occlusion, which is the bed in this case. As her entire body comes into view, the ellipse major axis expands

and triggers the standard deviation threshold as well as the centroid distance threshold, thus creating a false

positive.

Figure 4.19 Image sequence showing false positives caused by an occlusion

One of the largest causes of false positives in dataset 569 is the series of images just before the subject person
lies down onto the bed for the last time after image 407. In this image sequence, shown in Figure 4.20, the
person is walking towards the head of the bed in the lower portion of the camera frame. As she reaches the
head, she turns and then proceeds to lay down on the bed. This sequence has multiple effects on the algorithm.
Firstly, the bottom portion of the person’s body is not within the frame, so the long axis of the ellipse is
automatically shortened which affects the axis ratio standard deviation. Secondly, as the person turns from a
side on image to one where she has her back facing the camera, the ellipse minor axis increases, further

exacerbating the axis ratio variation. Lastly, the orientation angle variation increases due to the person
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changing directions as she moves from standing to lying.

Figure 4.20 Image sequence showing false positives due to part of person being out of frame

The remainder of the false positives are those surrounding the change in pose from standing to lying. They can
range from one or two frames to several frames both when the person goes into the lying pose and when they
move into a standing pose. As the detection algorithm is tuned to detecting the movement changes that precede
and follow the fall event, these types of false positives should be expected, and an acceptable amount will be

tolerated.
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4.1.7 Revised state-based fall detection

The previous state-based fall detection algorithm was successfully able to detect a change in pose to lying,
maintain the fall state while the person remained in the lying pose, then reset the fall state once the person
returned to the standing position. There were still many images, however, where the fall detection algorithm
has incorrectly detected a fall. In this section, the state-based fall detection algorithm will be modified further

so that most of these false detections can be eliminated.

For this algorithm, centroid distance has been removed. This parameter did not improve the performance of
the algorithm because the distance changes between each frame is inconsistent. A significant change in
distance can be observed when the person is just walking normally around the room as well as during a change
in pose. Therefore, it has the potential of contributing to false fall detections as a suitable threshold is
impossible to calculate. This is shown by analysing Table 4.10 and Table 4.14. A fall event in Table 4.10
shows that the centroid distance travelled around 3 to 5 pixels. A person walking normally in Table 4.14 covers

a similar distance.

When a person falls parallel with the camera vertical axis, it is expected that the variation of the axis ratio
should occur mainly in the major axis with minimal changes in the minor axis. For this reason, a fall should
only be considered when the axis ratio standard deviation is above the threshold and the minor axis standard
deviation is below a threshold. This should help filter the out the non falls where the minor axis is varying

significantly, but the major axis is staying relatively the same.

Figure 4.21 Image sequence showing false detection due to minor axis variation

Take image sequence 393 to 397 in Figure 4.21 and Table 4.15 for example. The person is standing side on to
the camera and as they begin to move, they turn slightly to be more front on to the camera. This subtle
movement causes the minor axis of the ellipse to widen and trigger a false fall detection on axis ratio standard

deviation.

Another issue with axis ratio variation occurs when the subject person is in the lower portion of the image.
The person becomes partially removed from the image and as a result, the blob is truncated vertically. This
means that the major axis of the ellipse will vary significantly whilst the minor axis stays relatively the same.
To alleviate this, separate thresholds will be implemented when the person is operating in the lower portion of
the frame. Image 400 (Figure 4.22) shows the last frame before parts of the lower body go out of the image.
The centroid location at this point is 147, 173. Image 408 (Figure 4.23) shows the person at the bottom of the
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frame, this time with the lower portion of their body outside the image. The centroid location for this image is

67, 184. Therefore, fall detection thresholds should be adjusted when centroid y-axis location is below 170

pixels. Image size is 360 x 240.

Table 4.15 Image sequence data showing variation in major and minor axis

In;;ge Label | Fall | Axisstddev | Majoraxis | Minoraxis | Axis ratio
393 1 0 | 0096289691 | 141.603448 | 309939514 | 4.568745
394 1 0 |0.121720427 | 142.145179 | 33.6082228 | 4.229476
395 1 0 |0.157821637 | 14199376 | 343641865 | 4.132027
396 1 0 | 0387806034 | 135541973 | 39.1275832 | 3.464103
397 1 1 | 0412956157 | 135.770682 | 37.8690168 | 3.585271

Table 4.16 shows the minor and major axis information that should help derive some thresholds for when the
person is partially below the bottom of the frame. The table shows that there is a significant change in the

length of the major axis when the person is partially out of frame which also impacts the axis ratio standard

deviation.

Table 4.16 Image data between image containing entire person (400) and partial person (408)

II;de Label | Fall | Axisstddev | Major axis Minor axis Axis ratio
400 1 0 0.164425909 | 147.676259 | 48.1004694 3.070163
408 1 0 0.880640959 | 105.383044 | 84.1834256 1.251827

Person Deteded

Figure 4.22 Lowest part of image where entire body of person is shown
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Person Detécted

To help the algorithm understand when a person is clearly standing in an upright pose an upright axis ratio
threshold has been developed. This will help eliminate false positives caused by variations in the ellipse major
axis from anomalies such as occlusions and partial body capture. This parameter will be included in the
algorithm to only consider falls if this ratio is less than the threshold when looking at axis ratio standard

deviation type falls.
With this information the revised state-based fall detection algorithm works as follows.

e If the axis ratio standard deviation is above the threshold AND the axis ratio is less than the upright
axis ratio threshold AND the ellipse minor axis standard deviation is below the threshold AND the
orientation angle is within upright limits, then a fall is detected.

e If the orientation angle standard deviation is above the threshold and the orientation angle is outside
upright limits, then a fall is detected.

e Fall detection is removed when the orientation angle is within upright limits AND the upright axis

ratio is greater than the threshold.

The thresholds have also been revised for this dataset and have been set at the following levels.

e Orientation angle standard deviation — 0.1 radians (5.7°)

e Axis ratio standard deviation — 0.4

e Upright orientation angle limits — 1.05 to 2.1 radians (60° to 120°)
e Upright axis ratio threshold — 1.7

e Minor axis standard deviation — 5

When the centroid is located in the lower portion of the image the revised thresholds are as follows.

e Upright axis ratio threshold — 1.05
e Upright orientation angle limits — 0.96 to 2.18 radians (55° to 125°)
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The performance of this algorithm improved slightly from the previous algorithm, however, it achieved the
goal to reduce the amount of false positives being experienced by the algorithm running on dataset 569. The
results in Table 4.17 show that the revised algorithm was able to reduce the number of false positives by 35
which has improved the overall accuracy and the specificity. Upon inspection of the data the only remaining
false positives are those that are as a result of the movement detected by the fall detector prior to a fall and

before they get to a standing position after the fall.

Table 4.17 Results of revised state-based algorithm on dataset 569

Dataset
569
TP 151
TN 395
FP 20
EN 4

Accuracy 95.8%

Sensitivity | 97.4%
Specificity | 95.2%

This algorithm was then applied to other datasets that had an appropriate number of training frames at the
beginning of the dataset. The results of the algorithm on these datasets in Table 4.18 show that all of the
datasets show fairly good sensitivity, however, the accuracy and specificity yield mixed results. This is mainly
due to the presence of an excessive number of false positives, which tells us that while the algorithm is good

at detecting falls, it is overly sensitive to changes in pose that do not represent a fall.

Table 4.18 Results of revised state-based algorithm on other datasets

Dataset Dataset Dataset Dataset Dataset

758 786 832 1954 2123
TP 76 187 286 157 572
TN 665 357 436 667 992
FP 17 242 110 120 432
FN 0 0 0 33 0

Accuracy 97.8% 69.2% 86.8% 84.3% 78.2%
Sensitivity | 100.0% 100.0% 100.0% 82.6% 100.0%
Specificity | 97.5% 59.6% 79.9% 84.8% 69.5%

Dataset 758 appears to have good overall performance metrics and when the video is analysed it can be seen
that the bulk of the false positives come in the frames just prior to the person going into a lying pose and also
in the frames just after. There is also a series of false positives generated when the person changes to a sitting
pose on the bed. The example in Figure 4.24 shows that the false positives are due to poor foreground extraction

from the foreground detector which has, in turn, caused a distortion in the ellipse and generated the false
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Person Detected
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Figure 4.24 False positive caused by poor image segmentation in dataset 758

detection. In dataset 786 there a couple of scenarios that have led to the high number of false detections. The
first, shown in Figure 4.25, is when the person of interest sits down just in front of the couch in a semi-slouched
pose. While the dataset label for this image has this as a sitting pose, the fall detection algorithm has interpreted
this as a fall due to the characteristics of the pose. The second false positive scenario occurs when the person
sits up after lying pose, shown in Figure 4.26. Despite the orientation angle being close to upright, the axis

ratio is not above the threshold to be able to reset the fall detection flag. While these two scenarios are not

Person Detected

Figure 4.26 False positive caused by upright thresholds not being met in dataset 786
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ideal, their presence is not disastrous. In this dataset, the image in Figure 4.25 has been labelled as a sitting
pose, however, there is a high likelihood that a fall at this location could end up in this type of pose. In Figure
4.26, the person may have sat up after the fall, but still may not be able to get to their feet and would therefore
still need assistance. Dataset 832 suffers from false positives due to both poor foreground extraction as well as
an incorrectly identified pose due to the upright thresholds not being met after a lying pose. The image shown
in Figure 4.27 shows that the person is wearing a dark pair of pants that have blended in with the dark
background caused by the shadowing around the couch. This lack of contrast has made it difficult for the
foreground detector to detect the legs of the person and as such, the resultant foreground mask has been
truncated. The fall detection algorithm has then picked up on the change in axis ratio and generated an incorrect
fall detection. Like dataset 786, dataset 832 has also maintained a fall detection after the person has sat up after
a fall. Figure 4.28 shows this pose and like dataset 786, the error should be seen as a positive attribute because
the person has not fully recovered from the fall. Dataset 1954 is unique from the other datasets discussed here
due to the lack of lighting in the room shown in Figure 4.29. While the foreground detector has done a
surprisingly good job in detecting the person in darkened the room, it was unable to locate the person at all
when they were located in front of the dark coloured couch. This means there is a high potential for a fall to

go unnoticed by the detection algorithm and is a genuine weakness of the system. This dataset also suffered

Figure 4.27 False positive due to poor foreground extraction in dataset 832

Figure 4.28 False detection due to upright thresholds not being met in dataset 832
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Figure 4.29 Person not detected due to dark background in dataset 1954

from a series of false negatives despite good foreground extraction. The image sequence shown in Figure 4.30
shows the person slowly lying down onto the mattress on the ground over a series of twelve frames. Due to
the speed of this change of pose, the thresholds for axis ratio and orientation angle have not been triggered and
a fall is not detected. Once again, this error can be seen as a positive feature of the algorithm. If applied
correctly, only changes in pose that occur at a certain rate may be deemed a fall, not just any transition to a
lying pose as has been done in this algorithm. Dataset 2123 is also a unique dataset in that there are variations
in lighting intensity throughout the room due to light streaming in through a window. Exacerbating this issue
is that the camera automatically adjusts the exposure setting as the person moves around the room causing the

foreground detector to create erroneous foreground extractions. This, in turn, generates a multitude of false

Figure 4.30 Image sequence showing false negative due to slow movement of person in dataset 1954

detections. Take Figure 4.31, for example. In the image on the left the person is squatting prior to sitting down
onto the mat and the foreground mask is indicative of that pose being carried out. The image on the right is
three frames later where the camera exposure setting has automatically adjusted and the image has become

brighter. The result of this change has caused the foreground detector to include the mat and pillow as part of
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Figure 4.31 Images showing change in camera exposure and effect on foreground mask in dataset 2123

the foreground mask which has distorted the shape of the ellipse and caused the fall detector to trigger a fall.
This issue occurs several times throughout this dataset and usually lasts until the exposure returns to the setting
where the foreground detector was trained on. This can be in the order of 60 frames. This dataset also had a
segmentation issue at one point in the image sequence where the person sits at the dining table. The fall
detection algorithm successfully detects a no fall situation until the foreground detector spuriously fails to
effectively segment the image and only the legs of the person are successfully extracted into the foreground,
see Figure 4.32. The effect that this has on the fall detection algorithm is obvious as the resultant ellipse is

distorted from the full body ellipse.

Figure 4.32 Image showing error in foreground extraction in dataset 2123

The performance of the final fall detection algorithm on all the relevant datasets is shown in Table 4.19.
Overall, the algorithm has shown the capacity to detect falls effectively and reliably albeit with a few common
errors. To be able to effectively analyse the shape changes and discriminate between a fall and a no fall, the
fall detection algorithm requires a solid foreground mask. Poor foreground extraction has been seen to be one
of the major problems with false detections in all the datasets and must be addressed as a priority. There are
several reasons the foreground detector was unable to generate a consistent foreground mask and one of these
was lighting variations. Some of the datasets were dark and it was seen that the foreground detector struggled
to segment the person in certain locations. On the other hand, when the room had lighting variations, including
bright spots, the detector was unable to produce a consistent foreground extraction. One of the reasons for this
was automatic exposure adjustments by the camera. If foreground extraction is going to be the method used
for fall detection, then a method must be adopted that allows for the lighting changes and exposure settings be
manually adjusted as the light changes throughout the day. Lastly, the only series of false negatives were

produced when the person changes their pose slowly when laying down onto the mat. These could be
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eliminated if the labels for the datasets provided a label that described a rapid change in pose to lying. A real
fall would obviously generate a much larger change in parameters than one where the person just lies down.

By adjusting the thresholds accordingly, the algorithm would be able to differentiate between the two.

Table 4.19 Overall results of revised state-based algorithm

Overall Results
TP 1429
TN 3512
FP 941
EN 37

Accuracy 83.5%

Sensitivity | 97.5%

Specificity | 78.9%

4.2 Ethical Considerations

As with any engineering project, researchers and developers must consider all aspects of the design,
particularly the impact that the development will have on society right throughout the design’s lifecycle. This
Engineering Research Project has been researched and developed with the intention of improving the
livelihood of elderly people and enabling them to live independently in their own home into their final years.
Unfortunately, there are many aspects to this proposal that could have a negative impact on the lives of the

elderly if not addressed properly.

As seen in the literature review, there were several common issues that researchers found concerning the ethics
of using computer vision with any project where people were involved whether in the public or private space.
Of these issues, the most concerning and the most relevant to this project are the privacy, security, consent and
trust elements. In terms of privacy, Senior et al. (2003) list several aspects that should be contemplated with
computer vision applications. They believe that what data is present on the system is an aspect that should be
considered. If the available data in the captured image is limited, there is less chance that privacy can be
breached. Techniques that can help with this include, only limit the capture area to insensitive areas, allow the
camera to be easily obstructed or switched off by the user or use a low resolution or unfocussed camera lens.
The form of the data should be in a digital form, encrypted and only accessible to those with appropriate
authorisation. Online hackers have the ability to gain access to internet cameras and obtain all sorts of personal
information about the user, so a solid level of encryption is vital here. This will not only help deal with who
can see the captured data but will also help protect the entire system. Senior et al. (2003) believe that the most
crucial privacy aspect that should be considered is how raw the data is. They argue that by masking out privacy

invasive elements in the video, the privacy can be most effectively enhanced.
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Often considered alongside privacy, security is another issue with computer vision systems. Lauronen (2017)
found that espionage and identity theft are the two most concerning problems with computer vision systems.
Espionage is the act of spying with the intention of stealing information from an individual without their
consent while identity theft is stealing the identity of another for malicious purposes and gaining advantages
from them. Computer vision can reveal a great deal about the person including their gender, height and
ethnicity which can all be used to obtain their identity information more easily. Malicious attacks are also
closely aligned to security issues and Lauronen (2017) defines this as where criminals attempt to hack or break
into the computer system to spread malicious data including malware and other unwanted material. They cite
Rinner and Winkler (2014) who warn that the confidentiality of the image data must be preserved throughout

its lifecycle.

Understanding of the intention computer vision systems and how they will operate can be difficult for people
to understand, particularly for the elderly. This is where consent can become difficult. Informed consent is
something that Coupland et al. (2009) have found to be one the more significant ethical concerns. They have
found that informed consent builds a level of trust with the user and it important for protection of privacy.
They believe that an assistive technology targeted at the elderly needs to have mechanisms in place that deal
with helping the elderly understand how the system works and how their data is going to be used so they can

provide a firm level of informed consent.

Consent is built from trust of the system. If the elderly person understands how the computer vision system
works and can see the benefits it will provide to their life without subjecting them to any risk, then they will
trust the technology (Coupland et al. 2009). Trust of computer vision systems must be built by addressing the
issues mentioned above. Skirpan and Yeh (2017) have found that issues with privacy and bias from computer

vision systems has led to a decrease in public trust of the technology.

This project has highlighted the potential ethical issues with the proposed system from the beginning and has
been addressing them throughout the research phase to the development of the algorithm. Consideration of
ethical issues will need to continue through to development of a prototype and testing on some live data.
Following on from this, if there was a possibility that the system could be implemented in the public arena,
then consideration of ethical issues must be addressed for the entire lifecycle of the product. It was seen that a
publicly available dataset was used to test the algorithm on. By using a publicly available dataset any
requirement for consent does not need to be considered and any ethical problems can be avoided. This worked
well for initial configuration and testing of the algorithm, however, to be able to build and test a working

prototype, consent must be gained from the relevant parties.

A working model of this system will need to take care of the privacy and security of the person whose home
the system is installed in, particularly in sensitive areas like bathrooms and bedrooms. This can be achieved
by removing the ability for anyone to access the video stream created by the camera. Encryption and
authentication techniques can be implemented for any access of the system both locally and via remote
connection. However, for ultimate privacy and security, the video does not need to be streamed over the

internet at all. The requirement for this system to be successful is to alert relevant parties, be that friends,
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family, neighbours, or medical personnel, so there is no real requirement for the live video to be accessible

remotely.

Finally, for this system to gain the approval of the elderly people who will ultimately benefit from it, they need
to not only understand how this system can assist them but also all the risks associated with it. Only through

knowledge can trust be established.
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Chapter 5 — Conclusions

5.1 Ageing Population

This research project has highlighted that the population of Australia and the world is slowly getting older. It
was also discovered that as people approach their senior years, they are choosing to remain in their own homes,
a predicament referred to as ‘aging in place’. This phenomenon will place further strain on a health care system

that is already under stress, particularly in rural areas.

Elderly falls were shown to be one of the major causes of injury in elderly people living at home and the
probability of death increased when an elderly person was unable to return to their feet after suffering a fall.
A situation also known as the ‘long-lie’. The major objective of this project was to develop a fall detection
algorithm using computer vision that could not only detect a fall, but also ensure that the person did not spend

any longer on the ground than was necessary.

5.2 Literature Review

It was discovered in the literature review that there are already many methods for detection of human
movement, including fall detection that have been researched. Of these methods, most of them could be
categorised into three main classifications. One classification is wearable technology, where the person wears
a device, such as a watch or necklace, and the fall is detected by in-built sensors in the device. Another class
were ambient devices or sensor networks installed in the home. These ambient devices monitor the rooms
using technologies such as vibration, infra-red and appliance monitoring and will feed the data into some type
of logic solver which have in-built algorithms that will decide if a fall has occurred. Finally, computer vision
technologies use cameras installed in the home to monitor human movement. The images obtained from the
cameras are fed into a computer where they are analysed to decide if a fall has occurred. Some of the techniques
for analysing the images use foreground extraction and then analysing the changes in the shape produced from
the extraction for determining changes in pose, including fall detection. Other techniques used depth imagery
to extract skeletal models of the person. The skeletal model can then be analysed as the person moves around
the room and falls detected by certain skeletal poses. Some of the more advanced methods of fall detection use
machine learning and deep learning techniques. This was found to be done using Artificial Neural Networks
(ANNSs) with a Support Vector Machines (SVM) or other machine learning techniques, such as the You Only
Look Once (YOLO) system.

5.3 Ethics

As with any engineering innovation, the impact of the technology, both positive and negative, must be
considered. It was discovered in the literature review that there are many facets of the ethical impacts to the
general community when using computer vision technology. Some of the major concerns were found to be the

security and privacy of the data that is captured by computer vision technology. The researchers found that
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there are several approaches to ensuring that the system meets the moral and ethical standards of the
community. This included setting ethical standards at the developer level where companies or individuals
develop their own internal principles and assess the potential impacts of the technology from development
through the entire lifecycle of the product. Standards also need to be set at the Government level. It was
revealed that there has been very little establishment of standards worldwide when it comes to Al implemented
for use in society. A gap that definitely needs to be filled as more and more Al systems are introduced into the
future. Finally, the development of these standards need to be driven by the wider community. It is only once
all the risks of Al systems are understood and how these risks are mitigated can the community begin to trust

Al and take advantage of all the benefits it has to offer.

5.4 Algorithm Development

The development of the fall detection algorithm went through several iterations before arriving at the final
algorithm presented in chapter 4. All the iterations have utilised the foreground extraction method to create a
foreground mask of the RGB image. The fall detection algorithms then analysed the shape of the foreground
mask and different methods were employed to determine if the person in the image had changed to a lying
pose. This change to a lying pose was interpreted by the algorithm as a fall and a flag was added to a

spreadsheet for comparison with the image label.

The first algorithm iteration used background subtraction from a reference image to produce a foreground
mask. Then a bounding box was applied to the mask and the fall detection algorithm analysed the box for
changes in aspect ratio to determine if a fall had occurred. The main problems with this revision were that the
background subtraction was ineffective at properly segmenting the image and the bounding box was either not

able to capture all type of falls or would incorrectly detect a fall.

A more reliable foreground extraction was found using the MATLAB foreground detector function in
conjunction with the blob analyser function. The latter function also produced several outputs that were used
by the fall detection algorithm for fall detection analysis. An approximated ellipse was one of the outputs
created and it was with this that most of the shape analysis was conducted. The major and minor axes of the
ellipse were analysed for changes in ratio, the major axis orientation angle of the ellipse was also analysed for
changes and the centroid of the ellipse was analysed for distance travelled between frames. To getter a better
understanding of the variability of the parameters, the standard deviations of the axis ratio and orientation
angle were analysed using the previous five image frames. The algorithm required some threshold levels for
each of the parameters so it could tell when a fall was occurring. To achieve this the image sequence was run
with arbitrary thresholds in the algorithm and each parameters value in the current image was output to a
spreadsheet. By analysing the change in parameter values around the images where the change in pose

occurred, threshold values were able to be determined.

It was found that while the foreground detector was generally good at producing reliable foreground extraction,

there were several occasions where it produced some inconsistent blobs due to detection of shadows. To
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combat this, the RGB image was converted to an HSV image prior to image segmentation being carried out.
After this, the fall detection algorithm produced a lot more reliable results, however, there were still quite a
few false detections due to the algorithm not maintaining the fall status after the person had transitioned to a

lying pose and had not yet stood up again.

At that stage the fall detection algorithm was changed to a state-based algorithm where if any of the fall
conditions were met the state would change to the fall state. It would then remain in a fall state until an upright
condition was met. This upright condition was achieved by setting appropriate thresholds in the orientation
angle as well as axis ratio. These threshold levels were found using a process similar to the fall detection
thresholds. After this, the performance of the algorithm was vastly improved, however, there were still several
instances of false positives due to a variety of reasons. After some tweaking of the algorithm, most of these
false positives were eradicated for the dataset that the algorithm was developed on. The final fall detection
algorithm was then run on a few of the other datasets that had enough initial frames for the foreground detector
to be trained on. After analysis of the literature, it is believed that this state-based fall detection with upright

reset is unique from other fall detection techniques.

5.5 Results

It was discovered that, overall, the fall detection algorithm was effective at detecting the change in pose and
at maintaining the detection during a prolonged lying event. So, in answer to the second research question
presented in chapter 3, shape analysis appears to be an effective method for fall detection. However, there were
many occasions when the fall detection algorithm incorrectly detected a fall. It was discovered that one of the
main reasons for these incorrect detections, among others, was from poor foreground extraction and the main
cause of this was lighting variations in the images. As a result, it was established that to produce a reliable fall
detection using shape analysis, a solid foreground mask must be produced. Therefore, in answer to the first
research question posed in chapter 3, foreground extraction could only be considered if changes in lighting

conditions are accounted for.

Unfortunately, due to reasons mentioned above, the algorithm did not meet the benchmark setting of 90%
stipulated in Chapter 3 and in accordance with other similar systems uncovered in the research conducted by
Gutiérrez et al. (2021). Despite this, it is this author’s belief that this project has highlighted that computer

vision can be a viable system that is worthwhile of further research.

5.6 Future Works

At the beginning of this research project, it was anticipated that a working prototype, using a camera connected
to a microprocessor, would be able to be produced. The microprocessor, connected to a network, would have
been able to monitor the fall detection output and upon detection of a prolonged fall, raise an alarm.
Unfortunately, the time was not available to develop and implement this system so this could be a personal

exercise following graduation. Further work also needs to be conducted on the image processing and shape
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analysis to try and remove the high number of false positives that plagued most of the datasets. This would
involve using different datasets with a focus on trying to find datasets that have stable camera exposure settings
so that the foreground extraction is not affected. Finally, the future of computer vision appears to lie with
machine learning using deep learning techniques. Further development of the fall detection algorithm would
be using the datasets supplied by Adhikari et al. (2017b) to train the algorithm using Artificial Neural Networks

for detection of lying and other poses.
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For:

Title:

Major:

Supervisor:

Enrolment:

Project Aim:

Programme:

ENG4111/4112 Research Project
Project Specification

Jabin Smith
Monitoring Elderly Falls in the Home Using Computer Vision
Instrumentation, Control and Automation Engineering
Tobias Low
ENG4111 - EXT S1, 2021
ENG4112 - EXT S2, 2021

To develop a computer vision algorithm to monitor the instances of falls in the elderly

within their own homes.

Version 1, 9th March 2021

1. Review existing fall detection technology and recent research

2. Research potential equipment required to build a camera/microprocessor prototype. Determine costs

and lead time of purchasing the equipment as well as any other budgetary requirements.

N kAW

a.
b.
c.
d.
e.
f.

Review existing machine vision technologies and research

Review existing motion detection and human movement methods

Assess potential ethical and other social issues

Design effective machine vision algorithm that can determine the instances of falls in human beings

Design and conduct experiments to test the effectiveness of the algorithm

Experiment for fall/non-fall events

Experiment indoor/outdoor locations

Experiment in varying light conditions

Experiment varying camera angles (high, low, mid)
Experiment varying camera distances

Other experiments that become apparent during testing

8. Analyse the results of the experiments and make comments and recommendations about the

effectiveness of the algorithm

If time and resources permit:

9. Build camera/microprocessor prototype to accept the machine vision algorithm and test with live

data
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Appendix C — MATLAB Code

Main Program for Dataset 569

Fall Detector Version 3.4 Dataset 569

'he Algorithm for the fall detector uses the Matlab function
vision.ForegroundDetector to create a foreground mask and then uses
vision.BlobAnalysis to analyse the blob created by the detector. The
outputs of the blob analysis yield the centroid, area, bounding box,
major and minor axes of the blob's ellipsoid and the orientation angle.
These outputs are sent to the Possible Fall Detection function to
determine if the variables are showing the characteristics of a falling
person or a person in a lying pose. The results are compared the dataset
image labels in an excel spreadsheet.

|

o0 o0 o0 o0 o0 o© o0 o0 oo oo
o0 o0 o\© o0 o0 o\© o0 o\ oo

o\

2

oo o\

Algorithm Setup
clear;

gcreate image datastore

ds = imageDatastore(...
'/Users/jabinsmith/OneDrive/University/ERP2021/Fall Datasets/569/rgb’,...
'FileExtensions’',('.png'));

$read spreadsheet containing class label for each frame
class = readmatrix(...

'/Users/jabinsmith/OneDrive/University/ERP2021/Fall
Datasets/569/569 labels.csv');

¢global variables
global blobArea blobCent blobBox blobLl blobL2 blobAlpha axisRatio boxRatio
global centDist posFall axisStd alphaStd centMean

posFall = 0; ¢set possible fall initial value to 0
position = [0 0]; gvector for position of text

position2 = [0 20]; gvector for position of second line of text
position3 = [320 0]; gvector for position of image number

Z = zeros(1,2000); $register for ellipse coordinates

numIm = numel (ds.Files); $register for number of files in datastore
SE = strel('square',5); ¢structuring element for binary morphology

¢image foreground detector outputs the foreground mask

detector = vision.ForegroundDetector (' 'NumTrainingFrames', 43, ...
'NumGaussians',5, 'LearningRate’',0.0005, 'MinimumBackgroundRatio'...
,0.65, 'InitialVariance', (35/255)"2);

¢Blob analysis tool outputs blob characteristics

blob = vision.BlobAnalysis(...
'CentroidOutputPort’', true, 'AreaOutputPort’', true, ...
'BoundingBoxOutputPort', true, 'MajorAxisLengthOutputPort',6true,...
'MinorAxisLengthOutputPort ', true, 'OrientationOutputPort’, true,...
'MinimumBlobAreaSource', 'Property’', 'MaximumCount',1);

$create video file
video 569 V3_4 = VideoWriter(...
'/Users/jabinsmith/OneDrive/University/ERP2021/Fall
Datasets/569/video_569 4.mp4’',...
'MPEG-4"');
video_569 _V3_4.FrameRate = 10;
video 569 _V3_4.Quality = 100;
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open(video 569 V3 4);

gcreate figure to display images
f1l = figure( 'NumberTitle', 'off', 'Name', 'Dataset 569');
hold on;

¢loop to read, process and display each image in the dataset
for k = 1:numIm

imagel = readimage(ds,k);

imagehsv = rgb2hsv(imagel);

imageBW = detector (imagehsv);

imageBW = imfill (imageBW,8, 'holes');

imageBW = bwareaopen (imageBW,1490,8) ;

$¢imageBW = bwpropfilt (imageBW, "Area",1,"largest"”);

imageBW = imdilate(imageBW,SE) ;

imageBW = imerode (imageBW,SE) ;

$imageBW = imopen (imageBW,SE) ; $¢image morphology
$¢imageBW = imclose (imageBW,SE) ;
[area,cent, bbox,11,12,alpha] = blob(imageBW);

¢variables to place outputs from blob analyser
if isempty(area)
blobArea(k,:) = 0;
else
blobArea(k,:) = area;
end

if isempty(cent)
blobCent(k,:) = [0 O0];
else
blobCent (k,:) = cent;
end

if isempty (bbox)

blobBox(k,:) = [0 O O O0];
else

blobBox (k,:) = bbox;
end

if isempty(1l1)
blobLl(k,:) = 0;
else
blobLl(k,:) = 11;
end

if isempty(12)

blobL2(k,:) = 0;
else

blobL2(k,:) = 12;
end

if isempty(alpha)
blobAlpha(k,:) = pi/2;
else
blobAlpha(k,:) = alpha;
end

if blobAlpha(k,:) < 0
blobAlpha(k,:) = pi + blobAlpha(k,:);
end
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$Get coordinates for ellipsoid axis lines
[MAxis,mAxis] = axisCoord(blobCent (k,:),blobAlpha(k,:),blobLl(k,:),...
blobL2(k,:));

$Get coordinates for ellipsoid
Z = ellipse(blobAlpha(k,:),blobLl(k,:)/2,blobL2(k,:)/2,blobCent (k,:));

g¢Determine possible fall from blob data
Fall = posFall V4(blobCent,blobAlpha,blobLl,blobL2,blobBox, k) ;

$Insert image animations
if Fall == 1 && ~isempty(cent)
imagel = insertText (imagel,position2, 'Fall Detected', 'FontSize',...
12, 'BoxColor', 'red’);
imagel = insertShape(imagel, 'Rectangle’',bbox, 'color', 'red’,...
'LinewWidth',2);

class(k,3) = 1; ¢add fall flag to spreadsheet column
else
imagel = insertText (imagel,position2, 'No Fall Detected', 'FontSize'...
,12, 'BoxColor', 'green’);
class(k,3) = 0; ¢add no fall flag to spreadsheet column
end
¢Add text box when person is in frame
if ~isempty(cent)
imagel = insertText (imagel,position, 'Person Detected', 'FontSize',...
12, 'BoxColor', 'yellow');
end
¢insert bounding box
¢imagel = insertShape(imagel, 'Rectangle’',bbox, 'color', 'red');
g¢insert axis lines
imagel = insertShape(imagel, 'Line’', [MAxis;mAxis], 'color', 'cyan');
g¢insert ellipsoid
imagel = insertShape(imagel, 'Line’',Z);
g¢insert centroid marker
imagel = insertMarker (imagel,cent);
¢insert image number
imagel = insertText (imagel,position3,k, 'FontSize',12, 'BoxColor',...
'white', 'BoxOpacity',1, 'Anchorpoint’', 'RightTop');
¢display final image with foreground mask
image2 = imshowpair (imagel,imageBW, 'montage’);

writeVideo(video 569 V3 _4,image2.CData);

%add image data to spreadsheet for easier analysis
class(k,4) = centDist(k,:);
class(k,5) = centMean(k,:);
if k>5
class(k,6:7) = blobCent(k,:) - blobCent(k-5,:);
end
class(k,8) = axisStd(k,:);
class(k,9) = alphaStd(k,:);

class(k,10) = blobAlpha(k,:);
class(k,11) = blobLl1l(k,:);
class(k,12) = blobL2(k,:);
end
close(video_569 V3 4); ¢close video file

$create .xlsx file with test results
writematrix(class, '/Users/jabinsmith/OneDrive/University/ERP2021/Fall
Datasets/569/569 V3 _4 test results.xlsx');
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Fall Detection Function

Possible Fall Detection function version 4

Possible falls are detected if any of the following criteria are met.
Fall condition will also latch until blob angle is within upright person
limits.

o0 o0 oo oo
o0 o0 oo oo

- The standard deviation of the angle of the of the blob in the previous
five frames is greater that the threshold AND the standard deviation of
the axis ratio from the previous five frames is greater than the
threshold.

o0 o0 oo oo

s
8
%
s

- The centroid distance average from the previous 3 frames is greater
than the threshold AND the standard deviation of the angle of the of the
blob in the previous five frames is greater that the threshold AND the
current blob angle is not within the upright person limits

o0 o0 oo oo
o0 o0 oo oo

The centroid distance from the previous frame to the current frame is

$¢greater than the threshold AND the standard deviation of
$%the axis ratio from the previous five frames is greater than the
$%threshold.

function posFall = posFall V4 (cent,ang,majLen,minLen,box, k)
global axisRatio boxRatio centDist posFall axisStd alphaStd centMean

$take variables from main program and put into arrays local to this
gfunction.

blobCent = cent;

blobAngle = ang;

blobLl = majLen;

blobL2 = minLen;

blobBox = box;

s
s

$Ratio between major and minor axes

axisRatio(k,:) = blobL1(k,:)/blobL2(k,:);

$Ratio between horizontal and vertical sides of bounding box
boxRatio(k,:) = blobBox(k,3)/blobBox(k,4);

gCondition statement to prevent elevated deviations when no blob is present
¢in current frame.
if isnan(axisRatio(k,:))
axisRatio(k,:) = 3.0;
end

gCondition statement to prevent array errors when no blob is present in
current frame.
f isnan(boxRatio(k,:))
boxRatio(k,:) = O0;
end

s
s

i

Condition statements to allow calculation of standard deviations and
means when not enough frames have been processed

if ==

alphaStd(k,:) = std(blobAngle(1l:k,:),1);

axisStd(k,:) = std(axisRatio(1l:k,:),1);

L2Std(k,:) = std(blobL2(1:k,:),1);

centDist(k,:) = 0;

centMean(k,:) = 0;

oo oo

8
s

elseif k > 1 && k <= 5
alphastd(k,:) = std(blobAngle(l:k,:),1);
axisStd(k,:) = std(axisRatio(1l:k,:),1);
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L2Std(k,:) = std(blobL2(1:k,:),1);

centDist(k,:) = sqrt((blobCent(k,1) - blobCent(k-1,1))"2 + (blobCent(k,2)...
- blobCent (k-1,2))"2);

centMean(k,:) = mean(centDist(1:k,:));

elseif kK > 5
alphaStd(k,:) = std(blobAngle(k-4:k,:),1);
axisStd(k,:) = std(axisRatio(k-4:k,:),1);
L2Std(k,:) = std(blobL2(k-4:k,:),1);
centDist(k,:) = sqrt((blobCent(k,1) - blobCent(k-1,1))"2 + (blobCent(k,2)...
- blobCent (k-1,2))"2);
centMean(k,:) = mean(centDist(k-2:k,:));
else
alphaStd(k,:) = 0;
axisStd(k,:) = 0;
L2std(k,:) = 0
centDist (k, :)
centMean(k,:)
end

Il e

Ne

0
0

Ne

$8Thresholds for fall condition statements

centThresh = 4.0; %Centroid mean distance threshold
alphaThresh = 0.1; %Angle standard deviation threshold
axisThresh = 0.4; $%Axis ratio standard deviation threshold

upLeft = 2.09; $Upright angle threshold for left side of blob
upRight = 1.05; $Upright angle threshold for right side of blob

ratioThresh = 1.7;
L2Thresh = 5;
$Thresholds for when person is in lower portion of frame
if blobCent(k,2) > 170
ratioThresh = 1.05;
upLeft = 2.18;
upRight = 0.96;
end

o\

Fall Condition Statements
When a fall is detected the algorithm will latch a fall condition until
it deems that the person has returned to the upright position.

o0 o0 oo

switch posFall
case 0
if blobAngle(k,:) > upRight && blobAngle(k,:) < upLeft
if axisStd(k,:) > axisThresh && axisRatio(k,:) < ratioThresh...
&& L2Std(k,:) < L2Thresh
posFall = 1;
else
posFall = 0;
end
elseif alphaStd(k,:) > alphaThresh ...
&& (blobAngle(k,:) < upRight [| blobAngle(k,:) > upLeft)
posFall = 1;

else
posFall = 0;

end

case 1

69



if blobAngle(k,:) > upRight && blobAngle(k,:) < upLeft...
&& axisRatio(k,:) > ratioThresh
posFall = 0;
end
end

end

Axis Coordinates Function

function [MAxis, mAxis] = axisCoord(cent, alpha, 11, 12)

beta = pi + alpha;
theta = pi/2 - alpha;
phi = pi + theta;

X1 = cent(1) + (11/2) .* cos(alpha);

Yl = cent(2) - (11/2) .* sin(alpha);

X2 = cent(1) + (11/2) .* cos(beta);
- *

Y2 = cent(2) (11/2) .* sin(beta);

x1 = cent(1l) + (12/2) .* cos(theta);
yl = cent(2) + (12/2) .* sin(theta);
x2 = cent(1) + (12/2) .* cos(phi);
y2 = cent(2) + (12/2) .* sin(phi);

MAxis
mAxis
end

[X1 Y1 X2 Y2];
[x1 y1 x2 y2];

Axis Ratio Function

function axisStd = axisRatio(l1l, 12)

axisRat 11./12;
axisStd = std(axisRat);

end

Centroid Distance Function

function centDist = distance(cent)
centDist = sqrt((cent(1,1) - cent(2,1))"2 + (cent(1,2) - cent(2,2))"2);

end

Ellipse Draw Function

function Z = ellipse(phi,a,b,cent)

Z = zeros(1,2000);

t linspace(0,2*pi,1000) ;

Rot = [cos(phi) sin(phi);-sin(phi) cos(phi)];
Coords = [a*cos(t);b*sin(t)];

Y = Rot * Coords;
Y(1,:) = Y(1,:)+cent(1);
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Y(2,:) = Y(2,:)+cent(2);

Z(:,1:2:end) = Y(1,:,end);
Z(:,2:2:end) = Y(2,:,end);
end
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Appendix D — Fall Analysis Data — Dataset 569
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Image Fall Centroid Axis Ratio Angle std. Orientation Maj. Axis Min. Axis . .

No. Liz Flag Distance std. dev. dev. Angle Length Length fuds Ratlo FEL
1 6 0 0 0 0 1.570796327 0 0 TN
2 6 0 0 0 0 1.570796327 0 0 TN
3 6 0 0 0 0 1.570796327 0 0 TN
4 6 0 0 0 0 1.570796327 0 0 TN
5 6 0 0 0 0 1.570796327 0 0 TN
6 6 0 0 0 0 1.570796327 0 0 TN
7 6 0 0 0 0 1.570796327 0 0 TN
8 6 0 0 0 0 1.570796327 0 0 TN
9 6 0 0 0 0 1.570796327 0 0 TN

10 6 0 0 0 0 1.570796327 0 0 TN

11 6 0 0 0 0 1.570796327 0 0 TN
12 6 0 0 0 0 1.570796327 0 0 TN

13 6 0 0 0 0 1.570796327 0 0 TN

14 6 0 0 0 0 1.570796327 0 0 TN

15 6 0 0 0 0 1.570796327 0 0 TN

16 6 0 0 0 0 1.570796327 0 0 TN

17 6 0 0 0 0 1.570796327 0 0 TN

18 6 0 0 0 0 1.570796327 0 0 TN
19 6 0 0 0 0 1.570796327 0 0 TN

20 6 0 0 0 0 1.570796327 0 0 TN

21 6 0 0 0 0 1.570796327 0 0 TN

22 6 0 0 0 0 1.570796327 0 0 TN

23 6 0 0 0 0 1.570796327 0 0 TN

24 6 0 0 0 0 1.570796327 0 0 TN

25 6 0 0 0 0 1.570796327 0 0 TN

26 6 0 0 0 0 1.570796327 0 0 TN

27 6 0 0 0 0 1.570796327 0 0 TN

28 6 0 0 0 0 1.570796327 0 0 TN

29 6 0 0 0 0 1.570796327 0 0 TN

30 6 0 0 0 0 1.570796327 0 0 TN

31 6 0 0 0 0 1.570796327 0 0 TN

32 6 0 0 0 0 1.570796327 0 0 TN

33 6 0 0 0 0 1.570796327 0 0 TN

34 6 0 0 0 0 1.570796327 0 0 TN

35 6 0 0 0 0 1.570796327 0 0 TN

36 6 0 0 0 0 1.570796327 0 0 TN

37 6 0 0 0 0 1.570796327 0 0 TN

38 6 0 0 0 0 1.570796327 0 0 TN

39 6 0 0 0 0 1.570796327 0 0 TN

40 6 0 0 0 0 1.570796327 0 0 TN

41 6 0 0 0 0 1.570796327 0 0 TN

42 6 0 0 0 0 1.570796327 0 0 TN

43 6 0 0 0 0 1.570796327 0 0 TN

a4 1 0 0 0 0 1.570796327 0 0 TN

45 1 0 0 0 0 1.570796327 0 0 TN
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Image Fall Centroid Axis Ratio Angle std. Orientation Maj. Axis Min. Axis . .
No. Liz Flag Distance std. dev. dev. Angle Length Length fuds Ratlo FEL
46 1 0 0 0 0 1.570796327 0 0 TN
47 1 0 0 0 0 1.570796327 0 0 TN
48 1 0 0 0 0 1.570796327 0 0 TN
49 1 0 0 0 0 1.570796327 0 0 TN
50 1 0 0 0 0 1.570796327 0 0 TN
51 1 0 242.1331651 0.335331506 0.049280994 1.447593843 102.026394 26.5809419 3.838329 TN
52 1 0 3.207382333 0.354840377 0.073221763 1.401147795 107.699306 30.1893388 3.567462 TN
53 1 0 2.679120579 | 0.326737142 0.076030044 1.408254192 105.85248 32.1758948 3.289807 TN
54 1 0 4.503459742 0.284127278 0.062490165 1.421744847 105.179894 31.935834 3.293476 TN
55 1 0 2.091648325 | 0.265874215 0.026389015 1.472416361 101.258435 33.0079547 3.067698 TN
56 1 0 5.688398038 0.229416143 0.034603786 1.485911911 116.283759 31.2646594 3.719336 TN
57 1 0 2.189612941 0.211305146 0.036887217 1.503030151 111.340909 33.5728093 3.316401 TN
58 1 0 2.442391588 0.209980543 0.030175947 1.503881104 111.70751 33.4187208 3.342663 TN
59 1 0 1.734153308 0.217028878 0.015247797 1.515829592 110.455123 34.4266523 3.208419 TN
60 1 0 7.00968935 0.670041965 0.045707805 1.390407654 101.07595 56.8444878 1.778113 TN
61 1 0 3.922150164 0.736874353 0.109378291 1.229745013 110.227979 61.3177682 1.797652 TN
62 1 0 2.305358901 | 0.699851234 | 0.145727126 1.151865335 126.144853 63.0893323 1.999464 TN
63 1 0 2.803369459 0.533724929 0.159883188 1.076740392 138.445177 68.8472389 2.010904 TN
64 1 0 23.65301032 0.501305901 0.14645175 1.470029674 121.521189 38.8756623 3.125894 TN
65 1 0 4.268896653 | 0.531213383 0.169812024 1.498999421 118.263609 41.2612292 2.866216 TN
66 1 0 3.95632904 0.503026071 0.193607782 1.542106235 123.712041 40.4399462 3.059154 TN
67 1 0 8.143258394 | 0.507621684 | 0.175293969 1.53057577 138.011495 38.872781 3.550338 TN
68 1 0 7.623071951 0.280777322 0.025188636 1.51099409 136.885784 38.2847665 3.575463 TN
69 1 0 4.061477994 0.329483534 0.016396025 1.537374962 137.236518 36.9409471 3.715024 TN
70 1 0 5.816443175 0.230522805 0.010982094 1.523121248 132.040843 39.7798799 3.319287 TN
71 1 0 11.81172155 0.18809288 0.011898999 1.505358583 140.930295 441332733 3.193289 TN
72 1 0 6.435770789 | 0.277671092 0.012627075 1.503696562 136.931335 46.7263044 2.930498 TN
73 1 0 7.433910167 0.306718957 0.027781152 1.579581598 135.264427 47.3598299 2.8561 TN
74 1 0 8.778094199 | 0.185833117 0.055557609 1.648591372 137.996452 47.9073052 2.880489 N
75 1 0 9.652915228 0.125562022 0.067032414 1.659812076 138.852114 45.4450848 3.055382 TN
76 1 0 9.01705609 0.068749789 0.056089899 1.585785027 128.557774 43.8534947 2.931529 TN
77 1 0 6.9051915 0.092338332 0.032573179 1.630060578 130.388782 42.2656474 3.084982 TN
78 1 0 6.997476756 0.075977313 0.02993684 1.67131489 127.803094 42.9798789 2.973556 TN
79 1 0 11.83866589 | 0.132803532 0.030249707 1.652807714 121.403929 44.8111021 2.709238 TN
80 1 0 7.949592034 0.180752719 0.028981942 1.622879679 119.931429 46.2762441 2.591641 TN
81 1 0 8.856605398 0.236927274 0.031936216 1.576850606 113.824845 46.5333194 2.446093 TN
82 1 0 5.693907685 0.206620099 0.041338773 1.565336313 110.807 46.2179336 2.397489 TN
83 1 0 5.238291955 0.126768443 0.032760637 1.582203992 113.48446 47.7206773 2.378098 TN
84 1 0 5.679236943 | 0.106689476 0.023227577 1.618736611 112.249907 49.6002577 2.263091 TN
85 1 0 6.47235951 0.094612247 0.031059516 1.649292345 111.241918 50.8318599 2.188429 TN
86 1 0 4.793918887 | 0.158597351 0.047756647 1.698529927 109.925336 56.1014714 1.959402 N
87 1 0 4.555140835 0.225983661 0.05128385 1.722901891 107.296967 61.3919023 1.747738 TN
88 1 0 4.052093903 0.242221585 0.053293512 1.769538107 107.734144 65.8076753 1.637106 TN
89 1 0 3.174540179 | 0.237046316 0.048719089 1.783716249 106.59272 69.9322933 1.524227 TN
90 1 0 2.353067848 0.166025018 0.035870844 1.789657762 104.175673 69.0256618 1.509231 TN
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Image Fall Centroid Axis Ratio Angle std. Orientation Maj. Axis Min. Axis . .
No. Liz Flag Distance std. dev. dev. Angle Length Length fuds Ratlo FEL
91 1 0 1.982858161 0.087760054 0.034177357 1.828680516 108.458276 65.8703049 1.646543 TN
92 1 0 0.699200179 0.065184333 0.054835166 1.920929407 112.102677 67.4613062 1.661733 TN
93 1 0 3.432413123 | 0.063214291 0.106788737 2.06786889 115.56408 74.4406714 1.552432 TN
94 1 0 1.457630235 0.057891033 0.109634856 2.035162639 116.997758 74.6450437 1.567388 TN
95 1 0 0.303784934 | 0.110947511 0.084895029 1.958243153 121.477117 65.2032562 1.863053 TN
96 1 0 5.865454083 0.11688182 0.05269001 1.983203509 121.183733 69.0808965 1.754229 TN
97 1 0 8.995478213 0.116542173 0.162869093 1.615427226 111.8215 66.2515022 1.687833 TN
98 1 0 16.29833269 | 0.102246202 0.148093703 1.909675677 122.119334 74.9560982 1.629211 TN
99 1 0 11.64827646 0.077976718 0.202331552 1.482983627 110.118702 64.1437335 1.716749 TN
100 1 0 12.69463228 | 0.077843107 0.183994628 1.746544055 121.302178 65.1230691 1.862661 TN
101 1 0 4.851520338 0.126849169 0.141328332 1.686370608 122.327135 61.896813 1.976307 TN
102 1 0 3.265191004 0.187516729 0.136564451 1.705493401 126.133686 58.4466063 2.158101 TN
103 1 0 2.616536503 0.183898213 0.106124579 1.791403841 131.32289 59.3330659 2.213317 TN
104 1 0 2.825890953 0.134071136 0.064987776 1.867512633 135.611002 62.4950032 2.16995 TN
105 1 0 3.401838855 | 0.094479579 0.078075078 1.872069588 134.440374 66.9335485 2.008565 TN
106 1 0 3.806259159 0.069195304 0.063535926 1.85601583 135.210937 62.9446089 2.148094 TN
107 1 0 3.984067265 | 0.076471147 0.043337711 1.766364184 130.187855 63.4947148 2.050373 TN
108 1 0 4.716042143 0.11288644 0.058911117 1.729307054 132.1323 56.622449 2.333567 TN
109 1 0 0.691861415 0.158418064 0.060524381 1.735259968 131.42573 54.4165374 2.41518 TN
110 1 0 2.914019049 | 0.131437535 0.045352451 1.766545233 128.341692 55.9587547 2.293505 TN
111 4 0 4.316031482 0.217793367 0.034144673 1.673179479 125.792328 46.1629553 2.724963 TN
112 4 0 3.013232151 | 0.184159765 0.038641996 1.665498254 121.622806 44.9795923 2.703955 TN
113 4 0 2.029574287 0.169119054 0.043397964 1.65714209 115.551813 47.1640936 2.449995 TN
114 4 0 1.966780047 0.195536185 0.039840496 1.678568183 111.556697 49.2222333 2.266388 TN
115 4 0 0.584317686 0.19422715 0.018170748 1.710274929 110.259309 47.93544 2.300163 TN
116 2 0 1.46608759 0.156661532 0.03706252 1.758763374 110.832023 46.9089587 2.362705 TN
117 2 0 1.520876093 | 0.089882133 0.046922709 1.781495215 109.426721 50.1196381 2.18331 TN
118 2 0 1.668393795 0.145542004 0.065398059 1.8687115 117.779577 45.0924906 2.611955 TN
119 2 0 3.660170662 | 0.149078807 0.071819933 1.905340685 120.589368 48.3984361 2.491596 N
120 2 0 1.857600401 0.21619413 0.076362627 1.963495147 126.938561 45.0200968 2.819598 TN
121 2 0 1.463096258 0.247593468 0.079501009 2.01279291 132.092441 46.0259498 2.869956 TN
122 2 0 3.315843349 | 0.227722646 0.085709455 2.113012159 143.579183 45.5470895 3.152324 TN
123 2 0 4.571540749 0.211922258 0.086240794 2.130787797 131.191406 45.1100368 2.908253 TN
124 3 0 3.31205671 0.149422258 0.093090233 2.22846213 122.815774 45.532759 2.697306 FN
125 3 1 5.803085337 0.355294859 0.115853525 2.354967578 103.2516 49.2525349 2.096371 TP
126 3 1 4.480965843 0.550256933 0.118882277 2.411953967 88.9863486 53.8806951 1.651544 TP
127 3 1 2.397167562 0.592563717 0.121605921 2.46181038 81.4979384 60.0939863 1.356175 TP
128 3 1 1.903114629 0.531724703 0.1405227 2.071862728 81.8466024 65.4618749 1.250294 TP
129 3 1 2.137580725 | 0.334641795 0.164166383 2.091968238 80.5282516 67.8983873 1.186011 TP
130 3 1 0.470678976 0.167771903 0.195721667 2.542437155 79.6113008 64.6466998 1.231483 TP
131 3 1 4.788697226 | 0.133103435 0.285451614 2.825153827 84.5900251 54.290528 1.558099 TP
132 3 1 1.793418569 0.329899453 0.318759567 2.746194672 92.3624757 44.7764398 2.062747 TP
133 3 1 9.315060096 0.441697906 0.255419754 2.499570125 106.640335 46.6026749 2.288288 TP
134 3 1 4.372896925 | 0.383117684 | 0.151597633 2.427444569 93.5189307 46.2079551 2.023871 TP
135 3 1 0.390531752 0.237834825 0.168053628 2.425529644 94.0360881 46.5622008 2.01958 TP
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Image Fall Centroid Axis Ratio Angle std. Orientation Maj. Axis Min. Axis . .
No. Liz Flag Distance std. dev. dev. Angle Length Length fuds Ratlo FEL
136 3 1 0.824995371 0.101629487 0.119136904 2.474894799 96.9037879 47.4508223 2.042194 TP
137 3 1 0.291643242 0.10490146 0.03060159 2.486143293 96.8296543 47.8977038 2.021593 TP
138 3 1 1.183588034 | 0.009763985 0.024645711 2.461604548 98.1646414 48.7645955 2.013031 TP
139 3 1 1.322820522 0.013501032 0.020812438 2.451652112 96.8329591 47.295313 2.047411 TP
140 3 1 0.417073723 | 0.013138289 0.013652244 2.486193377 96.9324857 47.5274979 2.039503 TP
141 3 1 0.503723369 0.014291663 0.013960341 2.479485127 97.1968538 47.4420863 2.048747 TP
142 3 1 0.572205626 0.024948025 0.012358449 2.46733115 96.8189822 46.3112069 2.090617 TP
143 3 1 2.64448977 0.049077056 0.033417743 2.392957386 102.321804 47.1345292 2.170846 TP
144 3 1 3.304269177 0.049164923 0.033963668 2.440575434 96.226303 47.0143601 2.046743 TP
145 3 1 2.923733427 0.06458279 0.029784564 2.450051766 104.163092 47.236381 2.205145 TP
146 3 1 3.275257255 0.06844998 0.026566235 2.462429304 98.6181103 48.5656699 2.030614 TP
147 3 1 1.3382153 0.088364726 0.033526831 2.376799051 106.202185 47.0988142 2.25488 TP
148 3 1 1.7471003 0.089010273 0.040859118 2.361968263 105.34675 50.4270652 2.089091 TP
149 3 1 1.768756526 0.129880126 0.062828845 2.290303812 105.89772 56.0632347 1.888898 TP
150 3 1 0.975594634 | 0.119983124 | 0.083802876 2.214199807 104.176825 52.0081461 2.003087 TP
151 2 0 0.853880632 0.120636265 0.093047893 2.12859604 103.776633 49.3876531 2.101267 TN
152 2 0 0.811447925 | 0.113544562 0.096331821 2.106362121 107.371337 48.1147112 2.23157 TN
153 2 0 1.151925148 0.117220446 0.072424669 2.106444372 104.19139 48.7764588 2.1361 TN
154 2 0 1.917644852 0.082716208 0.053377194 2.049756667 99.382614 49.1704155 2.021187 TN
155 2 0 9.140086403 | 0.206075677 0.031030273 2.05581069 124.18412 47.5932548 2.60928 TN
156 2 0 5.281698425 0.222397735 0.029926425 2.035088303 127.403406 50.8425792 2.505841 TN
157 2 0 0.855740625 | 0.239506075 0.038036829 1.988065646 129.785623 50.7650763 2.556593 TN
158 2 0 0.72962969 0.215571867 0.061803196 1.889543146 121.482836 47.769875 2.543085 TN
159 2 0 1.263596229 0.118772119 0.080994166 1.849127614 114.346668 50.4044588 2.268582 TN
160 2 0 1.49680148 0.136695175 0.090519164 1.787103433 111.193949 49.4534036 2.248459 TN
161 2 0 2.365736591 0.131628967 0.080814761 1.759545687 114.182945 48.3560007 2.361298 TN
162 4 0 3.906114782 | 0.150208093 0.054772772 1.745618489 122.162379 46.5211506 2.625954 TN
163 1 0 4.554021631 0.134563981 0.037381172 1.756373683 126.902277 53.5662053 2.369073 TN
164 1 0 3.371404795 | 0.166095474 | 0.034284504 1.840749631 129.688867 61.0588004 2.124 N
165 1 0 0.877517567 0.177672793 0.039126251 1.824094586 134.280183 61.8541336 2.170917 TN
166 1 0 1.338735755 0.182688774 0.037051539 1.784875981 133.78754 60.5556405 2.209332 TN
167 1 0 3.163647964 | 0.106160544 | 0.044746149 1.717504869 133.203869 55.8352089 2.385661 TN
168 1 0 4.678942746 0.236316266 0.05978145 1.686554225 139.484274 50.3502695 2.770279 TN
169 1 0 2.636147038 | 0.376831584 | 0.049582458 1.727111148 147.744058 46.7163966 3.162574 TN
170 1 0 1.356146673 0.450944473 0.034273599 1.760908332 153.001638 44.9480383 3.403967 TN
171 1 0 3.247997805 0.352245579 0.02374757 1.726040998 148.588917 48.1169285 3.08808 TN
172 1 0 4.055188866 0.221007254 0.035993183 1.657103932 142.828039 42.9222107 3.327602 TN
173 1 0 2.768214806 0.160284856 0.043763868 1.64815429 140.960643 47.611694 2.960631 TN
174 1 0 0.847606152 | 0.222736074 | 0.049358167 1.762086204 143.88344 51.2578194 2.807053 TN
175 1 0 3.476804465 0.253518342 0.066050859 1.824657664 142.036782 55.1186489 2.576928 TN
176 1 0 3.847551529 | 0.244273369 0.081672679 1.843135595 141.571442 48.3156464 2.930137 N
177 1 0 4.193851248 0.136053416 0.072308028 1.829695027 135.774626 47.4648097 2.860532 TN
178 1 0 2.071455789 0.122453373 0.029662833 1.839862799 132.880799 48.9104672 2.716817 TN
179 1 0 6.023556942 | 0.152578703 0.009917134 1.816015636 123.989109 48.8007679 2.54072 TN
180 1 0 0.856457731 0.139668493 0.029573016 1.90223353 131.487058 49.4561303 2.65866 TN
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181 1 0 1.588762682 0.104836048 0.045676155 1.934060801 130.397372 49.3044885 2.644736 TN
182 5 0 3.344008031 0.05888642 0.081012871 2.045840476 122.666428 47.1551341 2.601338 TN
183 5 0 3.881806261 | 0.074470727 0.07871752 1.994382728 132.859956 48.0221921 2.766637 TN
184 5 0 0.878576006 0.067629128 0.052339739 2.011996293 133.356734 48.1734617 2.768261 TN
185 5 0 2.019505546 0.08160617 0.040103015 2.039341625 134.030364 47.6105735 2.815139 TN
186 5 0 1.412186472 0.095390567 0.033215777 2.091699086 135.943031 46.9985041 2.892497 TN
187 3 0 2.249929027 0.050606199 0.053292436 2.139173309 133.803159 48.5424954 2.756413 FN
188 3 0 1.657258723 | 0.159729105 0.078848972 2.234590912 119.900411 49.401383 2.427066 FN
189 3 1 9.768416393 0.609852103 0.142487975 2.44412915 103.665671 82.888193 1.250669 TP
190 3 1 4.563190452 | 0.614010245 0.173682965 2.538860274 110.566066 60.8730286 1.816339 TP
191 3 1 3.401854947 0.536115067 0.143532331 2.37758699 106.663961 62.6039509 1.70379 TP
192 3 1 2.136089978 0.375961118 0.104428274 2.316329007 109.78345 59.2679889 1.852323 TP
193 3 1 1.393655515 0.218641894 0.081561593 2.332570841 99.8797547 64.2486606 1.554581 TP
194 3 1 4.75997639 0.187946161 0.080601376 2.433925932 113.577426 53.4865283 2.123477 TP
195 3 1 2.859453835 | 0.190031079 0.043909804 2.324626897 104.163293 55.4309191 1.879155 TP
196 3 1 2.172757379 0.200152769 0.043123435 2.336567289 102.811096 62.8377744 1.636135 TP
197 3 1 1.931042211 | 0.217094003 0.078854534 2.18695835 100.698925 63.6800381 1.581326 TP
198 3 1 0.841243954 0.210089946 0.082951797 2.255031057 101.627941 63.7081465 1.595211 TP
199 3 1 0.676187334 0.109783681 0.053968809 2.290036893 102.320131 63.0201912 1.623609 TP
200 3 1 0.437947216 | 0.022086486 0.048956548 2.276063187 100.381111 63.4019668 1.583249 TP
201 3 1 3.356454758 0.154341095 0.037061897 2.224579767 105.009786 53.0392775 1.979849 TP
202 3 1 1.769502301 | 0.149535384 | 0.022715219 2.275053771 103.554069 58.9058124 1.75796 TP
203 3 1 1.977806083 0.147963055 0.022636812 2.256051259 101.694217 54.4885848 1.86634 TP
204 3 1 1.67853823 0.132444216 0.01965734 2.242354487 104.765185 56.632713 1.849906 TP
205 3 1 1.70954225 0.156113526 0.018862157 2.272173522 97.9359354 64.6303226 1.515325 TP
206 3 1 0.789681331 0.13009713 0.036871518 2.348756054 100.190087 60.3275974 1.660767 TP
207 3 1 2.283427692 | 0.129727637 0.059707178 2.397336333 107.513723 63.3081969 1.698259 TP
208 3 1 3.999502246 0.116966065 0.074206594 2.44016994 114.082408 63.3050921 1.802105 TP
209 3 1 2.490461085 | 0.106397741 0.082019304 2.214360571 110.391765 61.2258782 1.803025 TP
210 3 1 0.974489815 0.05854412 0.088247361 2.237421902 111.699918 62.709503 1.781228 TP
211 3 1 0.785415061 0.069526035 0.089514498 2.276424988 113.040312 58.9985733 1.915984 TP
212 3 1 5.449308991 | 0.047354167 0.091284582 2.406444955 116.238461 63.5354447 1.829506 TP
213 3 1 2.964488917 0.055502202 0.102570482 2.479030243 123.233279 70.2599082 1.753963 TP
214 3 1 0.928228052 | 0.056306359 0.091133492 2.416956655 121.058368 67.5958552 1.790914 TP
215 3 1 4.071914525 0.075224774 0.070256815 2.455400183 125.617436 74.2770095 1.691202 TP
216 3 1 2.819422499 0.078870068 0.026193613 2.443676943 125.08978 77.913226 1.605501 TP
217 3 1 2.567748639 0.076375023 0.031070982 2.508236166 122.882672 76.7095304 1.601922 TP
218 3 1 2.21963455 0.096146922 0.031628684 2.483377497 118.831895 78.9512681 1.50513 TP
219 2 1 2.569073317 | 0.099515063 0.022649041 2.480292472 117.972464 84.2410353 1.400416 FP
220 2 1 3.515951088 0.132953674 0.024699653 2.444853462 111.479574 88.8902873 1.254125 FP
221 2 0 9.076697477 | 0.203732067 0.163997369 2.072320359 117.005254 62.9007608 1.860156 N
222 2 1 6.813488891 0.259348771 0.157126299 2.297681193 107.191523 98.1430845 1.092196 FP
223 2 1 6.07779895 0.276752267 0.811826729 0.326211731 105.103144 92.2738956 1.139034 FP
224 2 1 0.899855109 | 0.288243376 0.949834256 | 0.370142551 103.777654 92.2463634 1.125005 FP
225 2 1 0.822768788 0.299599573 0.850987295 0.741449563 103.448789 94.5763642 1.093812 FP
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226 2 1 2.355160247 0.096636645 0.722379287 0.756687139 118.836836 88.0357172 1.349871 FP
227 2 1 4.635339647 0.092859744 0.235585439 0.92893131 106.673323 86.7998924 1.228957 FP
228 2 1 2.511649601 | 0.094068661 0.203294307 0.924296646 107.737413 84.7972781 1.270529 FP
229 2 0 4.608179798 0.101589853 0.110080937 1.028037712 107.644793 77.8724108 1.382323 TN
230 4 0 7.835892522 | 0.054818276 0.254321985 1.506772561 101.329471 76.829095 1.318895 TN
231 4 0 4.9089108 0.112061965 0.291381325 1.589163624 106.71199 68.8675672 1.549525 TN
232 4 0 3.861365502 0.193977848 0.319122914 1.72771992 120.304558 66.6838348 1.804104 TN
233 1 0 2.65437138 0.260103276 0.268076664 1.783515459 129.145591 64.2354601 2.010503 TN
234 1 0 5.675145459 0.271500838 0.147859479 1.928476506 136.618623 67.6766262 2.018697 TN
235 1 0 3.667852515 0.23568269 0.124614003 1.909328237 139.270674 61.8797564 2.250666 TN
236 1 0 8.473087245 0.359292488 0.08980198 1.715193494 133.604576 46.9317042 2.846787 TN
237 1 0 14.88570833 0.351929321 0.079860992 1.806174709 147.1097 54.0123985 2.723628 TN
238 1 0 8.899193949 0.506351402 0.088094802 1.731117513 147.231118 42.3685469 3.47501 TN
239 1 0 11.11612027 0.421383868 0.068821667 1.802645788 149.031793 46.2998875 3.218837 TN
240 1 0 4.621001438 | 0.274462408 0.037016826 1.75174754 147.435206 50.7504295 2.905103 TN
241 1 0 7.958353237 0.296237086 0.031776296 1.740068576 143.265886 52.7326246 2.716836 TN
242 1 0 14.01057889 0.26254951 0.032543163 1.809180382 130.100019 43.5669214 2.986211 TN
243 1 0 9.502812029 0.163898117 0.065577578 1.626696209 144.004184 47.4949526 3.031989 TN
244 1 0 8.305967894 0.201071444 0.076169956 1.611982734 138.836225 41.6365497 3.33448 TN
245 1 0 7.548528552 | 0.304430141 0.078760927 1.622765059 134.037027 37.2350951 3.59975 TN
246 1 0 6.224021295 0.232847215 0.076573504 1.611799774 128.88635 37.7394107 3.415166 TN
247 1 0 3.104266294 0.18329665 0.009233994 1.600501543 126.985409 38.0737852 3.335245 TN
248 1 0 1.610854798 0.138090291 0.007060941 1.610454104 125.65332 39.5772314 3.174889 TN
249 1 0 3.443251448 0.223147504 0.01110606 1.632819832 120.622053 41.0202017 2.940552 TN
250 1 0 2.836004922 0.212067593 0.011739752 1.626900793 118.674024 41.2815611 2.874747 TN
251 1 0 2.616513444 0.168340723 0.011649614 1.622281221 119.881829 40.0278533 2.99496 TN
252 1 0 5.277549996 | 0.127803951 0.021015748 1.573884946 119.271062 37.3195079 3.195944 TN
253 1 0 2.109286948 0.253951222 0.030915944 1.557176359 123.171575 34.4352605 3.576903 TN
254 1 0 405291216 0.32840361 0.034640246 1.540731405 121.762193 32.6806954 3.725814 N
255 1 0 1.145420068 0.340253609 0.032812341 1.527921714 123.932032 31.6196168 3.919467 TN
256 1 0 2.359116675 0.259407939 0.016020636 1.539441949 121.418075 31.4033557 3.866404 TN
257 1 0 6.46129139 0.176010323 0.027810453 1.606818762 113.215961 32.8350085 3.448026 TN
258 1 0 3.338090425 0.222035715 0.041793688 1.631798662 111.22829 33.0611166 3.364323 TN
259 1 0 4.258674036 | 0.253235752 0.054602246 1.671341913 111.8555 33.5326565 3.335718 TN
260 1 0 6.359563493 0.235672149 0.058872569 1.71313116 110.792493 35.080057 3.158276 TN
261 1 0 5.988629721 0.117091141 0.047821062 1.734279265 105.497638 33.4541876 3.153496 TN
262 1 0 7.287506224 0.295295962 0.036047685 1.668655024 89.9470832 35.3050094 2.547714 TN
263 1 0 4.126264196 0.354751627 0.038994989 1.621923535 82.9139275 33.6398351 2.464754 TN
264 1 0 1.895489022 | 0.311861602 0.052968103 1.593919216 82.4862251 32.2791257 2.555405 TN
265 1 0 2.676535871 0.246485301 0.052218705 1.600636843 81.7055086 30.294511 2.69704 TN
266 1 0 0.82049239 0.077076164 | 0.027478278 1.60019695 81.8089378 31.2949906 2.614122 N
267 1 0 0.445989006 0.079992327 0.00951161 1.606353956 82.2025834 31.0570033 2.646829 TN
268 1 0 0.972745427 0.073244471 0.004603966 1.606244971 83.5406952 30.1500688 2.770829 TN
269 1 0 0.96266024 0.070993569 0.024249213 1.663622332 84.6717716 30.2319846 2.800735 TN
270 1 0 3.82393891 0.23964826 0.048345155 1.725282431 81.6381559 38.2238074 2.135793 TN
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271 1 0 0.658626793 0.325263821 0.053556448 1.726775683 80.1084339 39.3044928 2.03815 TN
272 1 0 0.252613308 0.325971358 0.049114766 1.731907669 82.7406485 37.2841646 2.21919 TN
273 1 0 1.414296963 | 0.267177518 0.025954724 1.729102514 82.3788478 36.9978248 2.226586 TN
274 1 0 2.353616491 0.087696659 0.002397252 1.726131118 80.1230459 39.7208301 2.017154 TN
275 1 0 1.738793766 | 0.137211293 0.002631054 1.732670585 84.120447 35.2071403 2.389301 TN
276 1 0 0.924562343 0.119036944 0.002303813 1.729907179 82.5485285 37.9618598 2.174512 TN
277 1 0 0.820100298 0.121473418 0.016734696 1.687941806 82.7877584 36.5536065 2.264831 TN
278 1 0 2.482130116 | 0.121469121 0.022994173 1.759820547 84.218084 37.8275466 2.226369 TN
279 1 0 2.368100782 0.07955623 0.023013318 1.730345243 86.0660611 39.5984868 2.173468 TN
280 1 0 2.097546259 | 0.075027058 0.024212102 1.746649189 90.4099205 38.0406247 2.376668 TN
281 1 0 0.528675428 0.089527805 0.025921084 1.754365109 92.3311195 38.3180983 2.409596 TN
282 1 0 10.81708576 0.149821088 0.033995729 1.829073562 70.509278 35.351265 1.994533 TN
283 1 0 6.639466177 0.193122965 0.057588713 1.648778361 91.6571955 36.0363787 2.543463 TN
284 1 0 4.181042519 0.268901145 0.078188124 1.611722936 94.9213887 33.6042779 2.824682 TN
285 1 0 3.279600074 0.3324113 0.087871636 1.604579188 94.2549036 32.1019318 2.936113 TN
286 1 0 2.624342645 0.393566228 0.090875987 1.574093465 93.8391426 30.0119015 3.126731 TN
287 1 0 6.910035184 | 0.453747177 0.023874352 1.604236984 114.450504 29.4279807 3.889173 TN
288 1 0 4.163877353 0.510375414 0.012995725 1.596380568 120.287132 29.5646041 4.06862 TN
289 1 0 4.040726486 0.438664107 0.014944096 1.569805453 115.462327 31.2118619 3.699309 TN
290 1 0 2.925051685 | 0.323403586 0.017020644 1.558647177 113.959683 32.3063303 3.527472 TN
291 1 0 3.414109044 0.278342384 0.017438231 1.569747546 114.279535 34.9662824 3.268278 TN
292 1 0 4.552720213 | 0.340707606 0.016782595 1.601852111 116.270725 37.6215643 3.090534 TN
293 1 0 6.053289377 0.313861699 0.029534036 1.639416826 120.021555 42.6888248 2.811545 TN
294 1 0 3.063532338 0.269274853 0.029876757 1.617684298 121.213516 42.7056243 2.83835 TN
295 1 0 4.618504286 0.212439259 0.029013889 1.562037894 118.136537 44.1068283 2.678418 TN
296 1 0 7.10538167 0.302162677 0.034249221 1.547539137 99.0369968 45.4973158 2.176766 TN
297 1 0 3.180509581 | 0.246174223 0.045692554 1.515372836 119.314857 42.9175099 2.780097 TN
298 1 0 3.903274929 0.233782258 0.053324767 1.456130431 120.812578 45.9400929 2.629785 TN
299 1 0 3.516010576 0.21070698 0.043450983 1.460962506 123.804117 46.4400552 2.665891 N
300 1 0 4.657403848 0.205924358 0.034375883 1.50392443 120.637382 46.5411416 2.592059 TN
301 1 0 5.572520841 0.066192093 0.033939765 1.546054185 120.475664 44.3192661 2.718359 TN
302 1 0 6.619888737 | 0.151851468 0.054881958 1.602144309 129.253402 42.8476786 3.016579 TN
303 1 0 4.50094782 0.269434523 0.056282975 1.606869785 132.93173 40.0746247 3.317105 TN
304 1 0 5.1332479 0.419234518 0.038380161 1.578140788 140.365803 37.4250612 3.750583 TN
305 1 0 16.37405512 0.341317775 0.029914811 1.635142991 139.186399 43.4302566 3.204826 TN
306 1 0 4.082636621 0.253036144 0.021682896 1.635373625 131.837223 42.1136089 3.130514 TN
307 1 0 5.958228683 0.378227076 0.022388574 1.632106649 127.383602 49.5164326 2.572552 TN
308 1 0 7.164118141 0.392347864 0.022004371 1.611773432 137.442498 48.0143864 2.862527 TN
309 1 0 7.783832466 | 0.345036992 0.011785984 1.648297663 122.573874 53.6846814 2.283219 TN
310 1 0 11.04383938 0.315201065 0.027960206 1.695358261 133.248885 56.3079959 2.366429 TN
311 1 0 10.44376658 | 0.200414686 0.029995577 1.676375495 131.333898 52.8696976 2.484105 N
312 1 0 8.772979117 0.199018253 0.029143852 1.676742852 133.625914 52.5504242 2.542813 TN
313 1 0 7.068251276 0.106881794 0.020164045 1.707793079 126.918972 55.7595948 2.276182 TN
314 1 0 5.532184711 | 0.180231613 0.011938875 1.685625262 117.313859 57.7738296 2.030571 TN
315 1 0 4.106881092 0.296741992 0.028134329 1.750917786 111.97605 64.2377904 1.743149 TN
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316 1 0 1.625751795 0.311313513 0.032124623 1.753619472 113.741617 65.4429068 1.738028 TN
317 1 0 1.838222829 0.215769233 0.025831899 1.72502049 115.833485 66.3300867 1.746319 TN
318 1 0 1.29666144 0.132785991 0.03638644 1.661376172 114.342362 69.9498471 1.634633 TN
319 1 0 2.726541495 0.071035036 0.089331525 1.515422248 108.286084 68.8818814 1.572055 TN
320 1 0 4.857916481 | 0.066013593 0.088291827 1.583704046 113.857636 69.1222608 1.647192 TN
321 1 0 1.249695571 0.056063777 0.071317281 1.597843402 113.222595 69.128485 1.637857 TN
322 1 0 3.09004067 0.047262081 0.047747427 1.617919551 109.135868 71.5521707 1.525263 TN
323 1 0 4.509873109 | 0.051021565 0.045157976 1.651715964 112.657792 67.9681798 1.657508 TN
324 1 0 3.040683241 0.049241533 0.038954572 1.691665546 113.662866 69.0135336 1.646965 TN
325 1 0 0.585088959 | 0.085986622 0.041069692 1.704617275 118.008874 65.717098 1.79571 TN
326 1 0 4.918371674 0.141549516 0.047673391 1.757987121 118.576221 61.1827003 1.938068 TN
327 1 0 6.512863501 0.259678391 0.063981534 1.565976621 111.694707 47.4868054 2.352121 TN
328 1 0 9.72063483 0.32101397 0.063702998 1.655953598 124.336821 50.1423046 2.479679 TN
329 1 0 7.106009719 0.300933507 0.069784773 1.745265798 118.644621 46.5396847 2.549322 TN
330 1 0 7.966339878 | 0.320303195 0.073444033 1.743098603 131.003945 44.7085384 2.930177 TN
331 1 0 10.09146867 0.217449664 0.093840664 1.844281788 141.193667 49.8913923 2.830021 TN
332 1 0 5.101536535 | 0.180413186 0.060880627 1.7779907 136.976593 47.8642225 2.861774 TN
333 1 0 9.42987819 0.159297666 0.038667635 1.746165505 132.95137 51.8912889 2.562113 TN
334 1 0 10.40755149 0.128540217 0.044213709 1.715139667 132.889022 48.8263324 2.721667 TN
335 1 0 7.366053112 | 0.119282823 0.052012748 1.696981838 134.107616 46.458803 2.886592 TN
336 1 0 21.99798827 0.28341599 0.050610532 1.628015719 133.962303 39.3453068 3.404785 TN
337 1 0 3.848462672 | 0.372934797 0.059381613 1.584067491 135.979006 38.8442183 3.500624 TN
338 1 0 3.546596519 0.297510618 0.057636375 1.573321561 133.945649 41.9023352 3.196615 TN
339 1 0 6.315279269 0.288526579 0.043559472 1.626521718 138.709319 37.0847006 3.740338 TN
340 1 0 2.03609212 0.359132353 0.02354537 1.624005911 130.815919 48.8813181 2.676195 TN
341 1 0 7.598985627 0.391799874 0.021373601 1.610236995 127.618862 44.51296 2.867005 TN
342 1 0 3.98687679 0.393505809 0.027979213 1.557184082 125.867961 46.1290236 2.728607 TN
343 1 0 5.091107921 0.397121332 0.044168115 1.513540992 126.116785 45.5658131 2.767794 TN
344 1 0 4111287271 | 0.197054891 0.050266472 1.497964288 135.543619 42.001455 3.227117 N
345 1 0 3.636126097 0.287222445 0.046975451 1.479277328 136.977831 39.531449 3.465034 TN
346 1 0 0.865636859 0.455948663 0.030991203 1.468827404 138.629594 35.0912246 3.950549 TN
347 1 0 1.115690894 | 0.554704177 0.017683057 1.468032779 140.335904 32.1930473 4.359199 TN
348 1 0 1.144783517 0.490273711 0.01081614 1.480243886 138.464083 30.8478026 4.488621 TN
349 1 0 1.264089829 | 0.389581004 0.00608693 1.482468682 136.827712 30.7282364 4.452833 TN
350 1 0 0.447921121 0.210123066 0.010606537 1.49704652 136.182883 30.0794184 4.527444 TN
351 1 0 1.336576405 0.080569774 0.010948419 1.496719796 134.552878 31.2070022 4.311625 TN
352 1 0 0.621276352 0.094339418 0.008539251 1.501417181 135.124049 31.4582827 4.295341 TN
353 1 0 0.430671679 0.094770792 0.008102355 1.506875928 135.741322 31.5511312 4.302265 TN
354 1 0 0.630448611 | 0.107904246 0.004860078 1.50845152 134.307177 31.9796877 4.199765 TN
355 1 0 1.363231326 0.052142665 0.004442292 1.507321759 134.411273 32.0433679 4.194667 TN
356 1 0 0.424380018 | 0.060261583 0.003897391 1.513634248 134.787872 32.4847639 4.149264 N
357 1 0 0.771683721 0.051577421 0.002648914 1.511809148 134.897617 31.7968323 4.242486 TN
358 1 0 0.117334736 0.069115872 0.004294597 1.519423951 135.604784 31.1536678 4.352771 TN
359 1 0 0.127271111 | 0.069924016 0.005448344 1.522606386 134.971817 31.5448789 4.278724 TN
360 1 0 0.348166563 0.065939388 0.004490103 1.522491379 135.13325 31.8938493 4.236969 TN
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361 1 0 0.343452307 0.068143687 0.004590427 1.525030784 134.520607 32.4751274 4.142266 TN
362 1 0 0.287035209 0.073576334 0.003735461 1.530599403 134.621062 32.1862171 4.182569 TN
363 1 0 0.848778083 | 0.055092851 0.003359131 1.529240076 134.316861 32.4743414 4.136092 TN
364 1 0 0.448913178 0.040106254 0.003025703 1.528990165 134.633596 32.5965429 4.130303 TN
365 1 0 1.320067927 0.01846543 0.002230318 1.525373682 134.729213 32.5232899 4.142546 TN
366 1 0 0.556288826 0.019086948 0.00528293 1.516071461 136.02074 32.8984834 4.13456 TN
367 1 0 1.45668539 0.029607324 0.006700975 1.513151115 133.36245 32.8275789 4.062513 TN
368 1 0 0.373309048 | 0.031726256 0.007971682 1.507253199 133.489972 32.1544872 4.151519 TN
369 1 0 0.284015486 0.041019548 0.006394889 1.50902657 134.427018 32.0964562 4.18822 TN
370 1 0 0.559624364 | 0.066226377 0.003447641 1.507548797 134.372398 31.5098703 4.264454 TN
371 1 0 0.309977902 0.076943905 0.003608418 1.501917439 134.45507 31.4902385 4.269738 TN
372 1 0 0.447269328 0.045634586 0.002473926 1.505036963 134.665786 31.7838343 4.236927 TN
373 1 0 1.505774908 0.030472185 0.002621349 1.503318509 134.908488 31.6384267 4.264071 TN
374 1 0 0.513254963 0.012241854 0.001880466 1.504232759 135.531849 31.7442573 4.269492 TN
375 1 0 1.373024773 | 0.031039632 0.0013222 1.505678355 136.96282 32.6988523 4.188612 TN
376 1 0 0.122565745 0.043164688 0.000860385 1.503718938 137.89604 33.1558787 4.159022 TN
377 1 0 0.201868438 | 0.069867658 0.000944267 1.502977842 137.089251 33.5842643 4.081949 TN
378 1 0 0.326577047 0.065781221 0.003231141 1.511922019 138.340525 33.6790792 4.10761 TN
379 1 0 0.942641958 0.037783901 0.005374248 1.516967195 138.669444 33.4404908 4.146753 TN
380 1 0 1.356784585 | 0.027908913 0.009667934 1.529244016 137.837569 33.3283667 4.135743 TN
381 1 0 1.930706804 0.041979684 0.012270326 1.537423449 136.707109 32.4991006 4.206489 TN
382 1 0 1.82740671 0.057726712 0.009910092 1.534381554 134.430231 33.361966 4.029446 TN
383 1 0 2.239301125 0.063412507 0.007019044 1.527705583 132.590285 32.6544317 4.060407 TN
384 1 0 1.561871501 0.065426055 0.005680953 1.520986787 130.988744 32.3257332 4.052151 TN
385 1 0 1.062529979 0.064314033 0.007452974 1.518031579 131.68237 31.9201978 4.125362 TN
386 1 0 1.441730117 0.049503982 0.005888527 1.521141047 131.622745 31.6284421 4.161531 TN
387 1 0 1.385251135 | 0.060784877 0.009807174 1.545172966 132.467208 31.4446532 4.21271 TN
388 1 0 1.441742199 0.052756195 0.014241223 1.55218522 130.736675 31.7304582 4.120227 TN
389 1 0 0.019740793 | 0.066574703 0.01789746 1.564252987 131.60298 30.6093286 4.29944 N
390 1 0 0.552598005 0.060042225 0.016852067 1.568879381 131.910641 31.3196406 4.211755 TN
391 1 0 1.430446842 0.056694373 0.009088417 1.549125505 129.944136 30.837538 4.21383 TN
392 1 0 3.221409199 0.07862192 0.008043666 1.550321784 131.271458 30.1947073 4.347499 TN
393 1 0 3.818385586 0.121897018 0.007924166 1.553287753 141.378894 31.1132362 4.544011 TN
394 1 0 3.55810903 0.125167239 0.007732063 1.547689077 140.670623 33.0818152 4.252204 TN
395 1 0 3.568390836 0.13386796 0.001976983 1.548313926 139.740794 33.5504142 4.165099 TN
396 1 0 6.586540221 0.383877806 0.004139825 1.540776785 132.178885 38.6416045 3.420637 TN
397 1 0 3.983595262 0.42692931 0.008744012 1.566974915 132.694282 37.2239357 3.564757 TN
398 1 0 4.510510431 0.381539185 0.013479722 1.576693295 130.915387 39.0872408 3.349313 TN
399 1 0 9.988740199 | 0.321246378 0.012999486 1.563738339 139.518993 42.7144066 3.266322 TN
400 1 0 8.035475907 0.164425909 0.014269465 1.541921 147.676259 48.1004694 3.070163 TN
401 1 0 13.34008053 | 0.231044349 0.042919182 1.458867578 139.740613 37.4384012 3.732548 N
402 1 0 8.641332799 0.220792875 0.041204673 1.545381553 135.109067 41.8137757 3.231209 TN
403 1 0 10.86676416 0.353918915 0.113442825 1.796259168 146.80726 55.7539361 2.633128 TN
404 1 0 11.9774773 0.358571189 0.125437885 1.721205744 147.953162 44.2738466 3.341773 TN
405 1 0 6.784402193 0.390092637 0.123834281 1.703471252 152.206661 41.6723483 3.652462 TN
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406 1 0 18.102101 0.437790231 0.084588858 1.746642727 105.224255 42.1404264 2.496991 TN
407 1 0 26.18961612 0.607197613 0.032458354 1.719949046 126.231445 64.3922457 1.960352 TN
408 1 0 17.93868688 | 0.880640959 0.113588731 1.44095008 105.383044 84.1834256 1.251827 TN
409 1 0 2.975467544 0.889329573 0.141648537 1.430384966 105.715312 81.8136582 1.292147 TN
410 1 0 3.686006487 | 0.497018397 0.162369556 1.353114482 108.403616 84.5249599 1.282504 TN
411 1 0 2.087753606 0.265670393 0.148809169 1.28236072 112.494969 76.8330248 1.464149 TN
412 1 0 1.429428347 0.152084076 0.114718463 1.128369861 120.252102 72.6841609 1.654447 TN
413 5 0 0.9113539 0.208082772 0.167073989 0.963170648 128.573284 70.7379644 1.817599 TN
414 5 1 4.674938184 0.218125173 0.189907663 0.845952784 126.618607 67.9290542 1.863983 FP
415 5 1 3.42431972 0.222408903 0.184840559 0.777428 141.805786 66.5293324 2.131478 FP
416 5 1 3.474400887 0.176321008 0.146259362 0.716090929 142.677041 68.4484416 2.084445 FP
417 5 1 3.221921119 0.135348939 0.100475881 0.680641925 134.900786 73.9494091 1.824231 FP
418 5 1 3.745036138 0.145936484 0.083476971 0.600822526 127.777611 72.3152181 1.766953 FP
419 5 1 2.58395848 0.142483538 0.05753813 0.676255845 142.68594 74.5773041 1.913262 FP
420 5 1 1.796884435 | 0.140845009 0.038337387 0.649215198 128.912325 77.2279068 1.669245 FP
421 5 1 1.481560543 0.080515726 0.028622183 0.643013554 134.086487 76.2558586 1.758376 FP
422 5 1 3.469567473 | 0.098643928 0.025898185 0.665561279 140.482547 72.8995087 1.927071 FP
423 3 1 3.198803686 0.157615786 0.012570892 0.669633964 141.634856 66.5463647 2.128364 TP
424 3 1 7.684339816 0.363682301 0.015971572 0.625503126 155.699841 57.8541379 2.691248 TP
425 3 1 8.710938321 | 0.315804741 0.051436181 0.52868184 136.93627 62.2239577 2.2007 TP
426 3 1 4.508021556 0.268975769 0.059386264 0.545314315 141.030575 70.6398506 1.996473 TP
427 3 1 2.156073779 | 0.254993702 0.051929398 0.578801895 141.325922 70.4247455 2.006765 TP
428 3 1 5.323752078 0.327296781 0.060135763 0.444038307 143.017168 52.0902684 2.745564 TP
429 3 1 3.92908969 0.332445279 0.064371543 0.407776098 145.637619 53.6603954 2.714062 TP
430 3 1 5.022769609 0.32621918 0.064556285 0.530764419 146.369851 62.9352441 2.325722 TP
431 3 1 2.200432978 0.273052053 0.069313871 0.574024467 151.912304 60.352768 2.517073 TP
432 3 1 0.57189494 0.208040784 | 0.065716805 0.559872819 153.556646 52.3455815 2.933517 TP
433 3 1 3.99422722 0.202928454 0.061251221 0.562187445 158.800113 59.537946 2.667208 TP
434 3 1 2.049661063 | 0.216818951 0.015778772 0.573737214 160.147828 56.6318527 2.827875 TP
435 3 1 0.919448308 0.339095391 0.008751352 0.551059216 167.788829 47.8464473 3.506819 TP
436 3 1 1.008700128 0.365479267 0.012503035 0.536220714 164.496265 46.1829153 3.561842 TP
437 3 1 1.794472073 | 0.377095007 0.019581057 0.517907838 164.585835 47.674585 3.452276 TP
438 3 1 0.932392557 0.265355766 0.019836582 0.525556519 160.88408 47.9937573 3.352188 TP
439 3 1 1.106532547 | 0.070234144 | 0.011375368 0.538570598 161.084945 46.8422403 3.438882 TP
440 3 1 0.934416 0.066746656 0.008734932 0.518154573 162.696368 47.006548 3.461143 TP
441 3 1 0.840569337 0.039602235 0.01533981 0.491601 162.387799 47.1296586 3.445554 TP
442 3 1 0.429990767 0.052993582 0.030483006 0.45261313 159.788148 45.4360436 3.516771 TP
443 3 1 1.465748714 0.074748605 0.037654121 0.439447834 156.755768 47.6211753 3.291724 TP
444 3 1 0.856616582 | 0.078073649 0.028172275 0.466359386 162.081745 48.0733929 3.371548 TP
445 3 1 1.756991538 0.084360865 0.017392032 0.46768924 162.486448 46.3816547 3.503248 TP
446 3 1 2.647101842 | 0.129337919 0.010475694 | 0.461578766 168.009354 45.8145249 3.667164 TP
447 3 1 1.829652798 0.134809238 0.010558118 0.451788269 162.604589 45.5482179 3.569944 TP
448 3 1 2.309389532 0.096360662 0.006006806 0.467406549 164.745325 46.4827735 3.544223 TP
449 3 1 1.099990849 | 0.054023935 0.006313475 0.468567282 168.536336 47.2841801 3.564328 TP
450 3 1 1.145753364 0.047038593 0.0085654 0.477765018 166.62262 45.8200166 3.636459 TP
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451 3 1 0.474688895 0.031186224 0.009214947 0.476141453 165.755549 46.2097657 3.587024 TP
452 3 1 0.736649724 0.032103817 0.004243572 0.469377141 165.532243 45.9032758 3.60611 TP
453 3 1 0.636544462 0.03444345 0.003853537 0.469626168 166.406386 45.4529911 3.661066 TP
454 3 1 0.722980107 0.026383676 0.003381878 0.473850367 165.936616 45.5734809 3.641078 TP
455 3 1 0.228572838 | 0.036466033 0.002749412 0.474737239 165.711723 44.9325773 3.688008 TP
456 3 1 0.153572527 0.029933051 0.002249268 0.470353759 167.143671 45.3849515 3.682799 TP
457 3 1 0.408138115 0.020339794 0.007561613 0.453883017 163.541521 44.9393929 3.639157 TP
458 3 1 1.058497313 | 0.022209125 0.007891745 0.474028631 167.1011 45.3448039 3.685121 TP
459 3 1 2.151706759 0.043808469 0.007771788 0.463821982 164.467276 46.0194186 3.573867 TP
460 3 1 3.058921731 | 0.066726239 0.006875588 0.46721886 167.784775 44.4094207 3.778135 TP
461 3 1 2.638277468 0.090836194 0.007253181 0.472792854 162.786372 46.3201732 3.514373 TP
462 3 1 1.229402715 0.09087667 0.00421041 0.474446502 166.188241 45.5963034 3.644774 TP
463 3 1 1.136691236 0.088630515 0.005638242 0.459188922 163.946323 44.849401 3.655485 TP
464 3 1 0.992672072 0.084695728 0.005337844 0.467734451 165.524723 45.8178167 3.612672 TP
465 3 1 1.450345766 | 0.101310451 0.005661082 0.463644999 161.349518 47.6486948 3.386232 TP
466 3 1 0.985272 0.099336436 0.005637007 0.472661545 162.228056 45.8204611 3.540516 TP
467 3 1 0.883626962 0.09709661 0.004498507 0.464222493 164.769127 45.4009974 3.629196 TP
468 3 1 2.969763035 0.127454176 0.00331778 0.469155305 167.802585 44.4200676 3.77763 TP
469 3 1 1.535731551 0.138450844 0.003535808 0.464349051 166.681669 44.7862626 3.721714 TP
470 3 1 1.226336972 | 0.087664104 | 0.003173632 0.468254085 166.184214 46.389419 3.582373 TP
471 3 1 2.966597828 0.080106406 0.004749024 0.477267024 168.90654 44.6589384 3.782144 TP
472 3 1 1.758409165 | 0.122307019 0.009100968 0.489939 167.429217 48.2622708 3.469153 TP
473 3 1 2.282736947 0.109010987 0.011765662 0.494474712 165.920639 45.519529 3.645043 TP
474 3 1 0.405629206 0.138776851 0.021169811 0.530072346 163.777348 48.4267209 3.381962 TP
475 3 1 1.816226792 0.193317057 0.023495291 0.537057635 160.047105 49.5061078 3.232876 TP
476 3 1 0.261311414 0.152187751 0.026990814 0.561585786 160.560064 49.4191846 3.248942 TP
477 3 1 2.053310433 | 0.150124374 0.02158893 0.536209506 163.309943 49.3426755 3.30971 TP
478 3 1 2.363929248 0.066874647 0.030231164 0.470625448 161.066641 50.4971674 3.189617 TP
479 3 1 1.13194461 0.120107399 0.041188222 0.456336564 168.248138 47.6664366 3.529698 TP
480 3 1 1.990537737 0.137168459 0.046310701 0.444918015 166.030541 47.3506621 3.506404 TP
481 3 1 0.883045803 0.149897979 0.035623908 0.436054647 166.749463 46.4943836 3.586443 TP
482 3 1 2.538665228 | 0.140164073 0.011593664 | 0.450424673 165.379131 48.6521556 3.399215 TP
483 3 1 1.292600676 0.314101519 0.013602175 0.476557752 155.306709 56.7849347 2.734998 TP
484 3 1 9.109731453 | 0.316692313 0.026274155 0.395622969 155.747449 43.853534 3.551537 TP
485 3 1 6.240394747 0.540442433 0.046564534 0.535917919 140.196104 63.519487 2.207135 TP
486 3 1 6.890165142 0.483400102 0.076531459 0.310126295 142.799805 49.7869734 2.868216 TP
487 3 1 3.240701584 0.440446863 0.104973972 0.248722242 134.924839 52.1522414 2.587134 TP
488 3 1 1.322173897 0.482422569 0.108590706 0.247556139 130.644237 56.6366214 2.30671 TP
489 3 1 5.420031514 | 0.231142976 0.13833434 0.113076984 130.497688 53.1387326 2.455792 TP
490 3 1 3.949805008 0.233248387 0.075130216 0.133221187 134.628339 61.2379263 2.198447 TP
491 3 1 31.11010598 0.50874044 0.910960825 2.458698808 66.2646301 57.1958532 1.158557 TP
492 3 1 28.11444406 0.493505552 0.924340075 0.111243961 139.478473 55.9330197 2.49367 TP
493 3 1 2.145291778 0.516629733 0.929145511 0.190189112 127.070071 50.3719337 2.522636 TP
494 3 1 4.887045248 | 0.496002794 | 0.914800046 0.26826439 123.404711 59.7760397 2.064451 TP
495 3 1 5.911552946 0.496315748 0.904916033 0.230971232 125.374086 56.8517856 2.20528 TP
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496 3 1 2.504865085 0.173142273 0.067585255 0.307671899 126.054243 54.6815745 2.305242 TP
497 3 1 1.096310042 0.149284067 0.046516939 0.312738352 120.584537 53.01958 2.27434 TP
498 3 1 3.374965142 | 0.101989071 0.032506873 0.313535065 123.669264 52.3865232 2.360708 TP
499 3 1 4.56190005 0.17195109 0.039571973 0.352140188 137.489638 50.9685476 2.697539 TP
500 3 1 1.631216545 | 0.158279316 0.025493494 | 0.371262566 136.170203 53.9176875 2.52552 TP
501 3 1 2.343514149 0.216984003 0.047482345 0.441889065 137.829755 48.0522615 2.86833 TP
502 3 1 1.895732023 0.205200192 0.05366816 0.454299918 135.796744 46.7912128 2.902185 TP
503 3 1 8.678598321 | 0.197751728 0.074377164 | 0.562759403 149.660943 48.1057786 3.11108 TP
504 3 1 1.315980076 0.324061442 0.071440046 0.549395218 154.525915 44.0009628 3.511876 TP
505 3 1 2.152448923 | 0.231745377 0.052295347 0.550140712 152.180227 47.7835456 3.184783 TP
506 3 1 0.803951737 0.218571461 0.040545409 0.557367724 154.096653 45.0661798 3.419341 TP
507 3 1 1.02313933 0.161914751 0.006448216 0.544482339 154.506187 49.2591124 3.136601 TP
508 3 1 0.937341446 0.172816131 0.008275905 0.532394488 153.161618 50.0383737 3.060883 TP
509 3 1 0.985341474 0.135587077 0.00887471 0.554760582 154.067241 45.8625769 3.359324 TP
510 3 1 2.415278714 | 0.183496721 0.01406085 0.5198329 147.190986 50.2477384 2.929306 TP
511 3 1 1.651299113 0.1684173 0.011794025 0.541602916 153.87012 45.833312 3.357168 TP
512 3 1 0.217052353 | 0.173467658 0.01265476 0.550760991 149.63711 48.8160169 3.065328 TP
513 3 1 2.85863736 0.293453649 0.015201939 0.564778476 150.742587 58.5496708 2.57461 TP
514 3 1 3.169837698 0.31936928 0.017953442 0.570335425 149.242792 59.9432285 2.489736 TP
515 3 1 9.285795234 | 0.382157526 0.017006577 0.522740052 134.708652 57.4727342 2.343871 TP
516 3 1 8.057796251 0.333280795 0.055128384 0.683676697 122.572637 59.8987196 2.046332 TP
517 3 1 2.08913725 0.210288669 0.110261264 | 0.826606018 126.69067 60.5990304 2.090639 TP
518 3 0 3.432018189 0.193161989 0.172820507 0.994482011 117.937438 59.4511501 1.983771 FN
519 2 0 1.281235498 0.184591226 0.20356714 1.084178103 111.74165 63.1054696 1.770713 TN
520 2 0 1.758015472 0.18158107 0.149974067 1.044971946 111.737078 69.3476704 1.611259 TN
521 2 0 0.430974764 0.226231369 0.097447552 1.093004051 109.842115 74.1841312 1.480669 TN
522 2 0 4.601829036 | 0.197121382 0.037620429 1.018440442 111.926155 77.0073912 1.453447 TN
523 2 1 4.275003049 0.112463086 0.118131222 0.77259836 122.644192 77.4754201 1.583008 FP
524 2 0 5.278523473 | 0.059494638 0.123386381 1.117609411 109.40759 71.2564358 1.535406 N
525 4 0 5.465722565 0.04537155 0.155904317 1.242792365 107.92519 72.247093 1.493834 TN
526 4 0 4.146795715 0.045717606 0.259647293 1.559858091 111.595186 71.7729872 1.554835 TN
527 4 0 5.565755591 | 0.047425362 0.310118633 1.624529675 120.143169 73.4571577 1.635554 TN
528 4 0 3.870038069 0.204555938 0.234220758 1.730130514 133.177871 64.8649398 2.053156 TN
529 1 0 7.352372061 | 0.233660004 | 0.211471693 1.877672147 127.918673 63.8458768 2.003554 TN
530 1 0 12.38758821 0.212986096 0.123957518 1.852286926 124.509897 61.6373392 2.02004 TN
531 1 0 9.289940149 0.313318216 0.091210639 1.746491665 128.410888 49.1400563 2.613161 TN
532 1 0 12.52372245 0.525422898 0.058268599 1.77727309 142.805149 42.5551715 3.355765 TN
533 1 0 11.24154277 0.585645888 0.054324617 1.74890535 135.092916 41.1477911 3.283115 TN
534 1 0 11.14225417 0.49559648 0.038357074 1.788305673 141.598924 46.3929967 3.052162 TN
535 1 0 10.08770657 0.375485994 0.07344835 1.944402252 134.639486 56.1723286 2.396901 TN
536 1 0 12.66480207 | 0.352779113 0.083060667 1.696155526 140.630907 50.7796962 2.769432 N
537 1 0 9.349035282 0.303467759 0.109470051 1.615351052 135.293245 49.9865022 2.706596 TN
538 1 0 8.868529358 0.212689388 0.134079911 1.567124783 136.048891 47.9155286 2.839349 TN
539 1 0 9.106709183 | 0.240721453 0.139674557 1.577749432 132.171791 42.0066066 3.146452 TN
540 1 0 7.997666272 0.176177949 0.046156337 1.592034831 127.16948 41.1271526 3.092105 TN
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Image Fall Centroid Axis Ratio Angle std. Orientation Maj. Axis Min. Axis . .
No. Liz Flag Distance std. dev. dev. Angle Length Length fuds Ratlo FEL
541 1 0 4.711701495 0.161382008 0.016229014 1.591891362 123.376024 41.9088811 2.943911 TN
542 1 0 4.188424455 0.123521096 0.009523244 1.586636429 122.701603 42.9406642 2.857469 TN
543 1 0 6.911886788 | 0.112753347 0.005527701 1.591797863 118.34922 40.8802063 2.895025 TN
544 1 0 5.875727555 0.080734193 0.006088187 1.576252261 116.38952 39.0712509 2.978904 TN
545 1 0 4.179411879 | 0.047756391 0.016646512 1.547538112 114.282057 39.9683497 2.859314 TN
546 1 0 4.999652526 0.116804072 0.029068206 1.51378297 111.992522 42.6279389 2.627209 TN
547 1 0 5.518133277 0.116896588 0.049330973 1.453483432 111.428154 38.9472471 2.861002 TN
548 1 0 7.885595252 | 0.116056156 0.041908716 1.499674805 105.823225 36.6867877 2.884505 TN
549 1 0 6.778478123 0.192491125 0.030343318 1.510887761 106.899565 33.1137718 3.228251 TN
550 1 0 5.479907419 0.28633915 0.02367297 1.518240787 104.281081 30.3868758 3.43178 TN
551 1 0 2.512398319 0.343722191 0.02410132 1.517008842 107.432923 28.4755849 3.772808 TN
552 1 0 3.496839551 0.323518371 0.008902963 1.526466664 105.325166 28.4903556 3.696871 TN
553 1 0 3.291549761 0.214024405 0.006707723 1.52942877 102.825794 27.3448291 3.760338 TN
554 1 0 239.4838106 0.293385933 0.019777163 1.570796327 0 0 #DIV/0! TN
555 1 0 0 0.365069882 0.02314429 1.570796327 0 0 #DIV/0! TN
556 1 0 0 0.357505561 0.021012335 1.570796327 0 0 #DIV/0! TN
557 1 0 0 0.304135109 0.016547023 1.570796327 0 0 #DIV/0! TN
558 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
559 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
560 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
561 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
562 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
563 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
564 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
565 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
566 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
567 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
568 6 0 0 0 0 1.570796327 0 0 #DIV/0! TN
569 6 0 0 0 0 1.570796327 0 0 #DIV/0! N
570 6 1 199.0418938 0.632443774 0.62560456 3.134807727 377.096876 265.768824 1.418891 FP
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