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Abstract 
 

Trains have existed since the 19th century. The locomotives and rolling stock have advanced greatly 

since the first iterations. The infrastructure that support these mighty machines has not kept up 

with the rapid rate of advancement. The purpose of this paper was to investigate a new method of 

automatic locomotive control using the latest in machine vision technology.  

 

Automatic trains are very niche, used almost exclusively in light rail. The gap in automation between 

rail and other modes of transport steadily grows. Many things contribute to this, but a key factor is 

that the vast majority of infrastructure was build before the turn of the 21st century with little 

consideration for new technologies. The latest automation uses short range wireless 

communication and complex servers to operate the trains. This makes such methods troublesome 

to implement into cross country freight networks. 

 

The latest advancements in artificial intelligence and machine vision have brought algorithms with 

complex neural networks at the core. Many industries have already begun implementing such 

algorithms. Most prominently in the transportation industry, the technology has been implemented 

into cars to create an ‘autopilot’ feature. Tesla’s range of cars and soon trucks is the most successful 

implementation to date. 

 

The algorithm that was tested for viability was YOLOv2. Six variations were created, tested then 

compared against each other. Data collected from a train driving simulator was used as training data 

and testing data. MATLAB was used to build and test these algorithms.  

 

Results showed that the smaller algorithm that was created was superior in all cases. The results 

also proved that YOLOv2 based algorithms can identify rail signals. This has opened many paths for 

future work, from neural network and algorithm optimisation to taking the work done here and 

applying it to real locomotives.           
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Chapter 1 

 

Introduction 
 

 

 

Trains have existed since the 19th century. The first 

commercially successful locomotive, the Salamanca, was 

built by Mathew Murray in 1812, used to transport coal 

from Middleton to Leeds in England. Since then, trains have 

evolved with the advancements in technology. Electric 

power was implemented into locomotives during the 1880s, 

mainly using overhead wires to deliver the required power. 

Diesel locomotives would start to be prototyped at the turn 

of the 20th century but would not become what is now 

commonplace today till 1914 when Hermann Lemp 

developed the prototype diesel-electric locomotive control 

system.  

 

The infrastructure for railroad industry has also evolved during this time. Different methods of 

signage and signalling, different rail gauges, new track layouts and interlocks. Compared to the 

advancement of the locomotives and rolling stock however, the implementation of advanced 

concepts into the existing infrastructure severely lagged. The automation of locomotive control was 

first implemented in the 1960s with the opening of the Victoria line in the London underground but 

has remained a comparatively niche technology. This is in stark contrast to other transportation 

sectors, planes and boats have had auto-pilot functionality for decades and cars are now being 

outfitted with auto-drive functionality. 

 

1.1 Statement of Task 
 

This project is to examine existing methods of railroad automation, find, and develop an early 

solution that bypasses the requirement of a large infrastructure overhaul using the latest in 

machine vision techniques.  

 

 

 

Figure 1: The Salamanca, the first commercially 
successful locomotive (The Mechanic’s Magazine, 
1829) 
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1.2 Objectives of work 
 

There are 5 core objectives this project is to complete: 

• Explore the current state of train control and railway infrastructure.  

• Highlight the unique challenges of railway automation. 

• Review the advancements in machine vision. 

• Investigate possible system/algorithms for implementation 

• Develop a prototype algorithm that detects rail signals as a proof of concept. 

 

1.3 Overview of Dissertation 
 

This dissertation is organised as follows: 

 

Chapter 2 reviews the evolution of railroad infrastructure. 

Chapter 3 investigates key literature surrounding railroad automation and machine vision. 

Chapter 4 discusses the methodology undertaken in this dissertation. 

Chapter 5 is dedicated to the experimentation results.  

Chapter 6 analyses the results contained in chapter 5. 

Chapter 7 discusses the relevance of the results and the far-reaching consequences. 

Chapter 8 suggest further work and concludes the dissertation. 
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Chapter 2 

 

Background 
 

 

 

Early railway infrastructure was very simple, consisting of rails and mechanical switching points. This 

posed some challenges when running multiple trains on the same stretch of track. The solution of 

the time was to break the route down into sections of track between switching points. When a train 

conductor received the timetable for the train, not only did it have the expected times of arrival at 

subsequent stations but also the times of when the train ‘controlled’ each section of track on its 

route.     

 

While this worked, accidents occurred that required adjustments to the method, such as extending 

the allotted time and having trains meet at the switch points. As rail networks grew, tracks soon had 

dedicated directions, one-way tracks. To allow for more utilisations of the track, it was broken down 

into smaller segments known as a ‘block.’ Initially, a man would stand at the entrance of each block 

with a stopwatch. This man was to measure the interval between trains and inform the following if 

it was too close to the previous train and had to decrease speed. While this did allow for more 

efficient use of the tracks, due to the lack of information beyond the watchmen, collisions did occur.  

 

 

Figure 2: Example of a block system with signals (The Railway Technical Website, 2019) 

 

With the invention of the telegraph in 1841, information could now, for the first time in history, 

move faster than a train. This alleviated some of the inflexibility of the original system by allowing 

changes to the schedule to occur while the trains were in operation. With the telegraph also came 

the next universal infrastructure upgrade, mechanical signals, and signal boxes. 
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With the ability to communicate nearly instantaneously, major junctions and blocks that occurred 

on main lines had signal boxes installed. These were buildings that housed the mechanical levers for 

the switch points and new mechanical signals. Signalmen would change the signal to display 

‘Danger’ to protect a block after a train had entered the block. Signal boxes would communicate 

with others up and down the line, tracking a train’s movements and informing them of when to 

change the mechanical signal as the block cleared. This flow of information allowed for more 

efficient and safer train movement and relegated the need to exclusively rely on a timetable to 

smaller branch lines that did not have many trains operating. Today, exclusive reliance on 

timetabling is unheard of and would only happen in the rarest of situations.   

 

With blocks being standardised by the introduction of 

mechanical signals, specialised rules were developed to 

improve their efficiency. These rules have crystallised into two 

universal block types, absolute and permissive. An absolute 

block is the standard block type. It requires that on a ‘danger’ 

signal, the proceeding block is not to be entered. This rule can 

be broken only in certain circumstances such as a train 

breakdown with express permission from the signalman. A 

permissive block allows for a train to pass a ‘danger’ signal but 

at a significantly reduced speed. Most countries have 

restricted permissive blocks to freight trains.     

 

Advancements in electrical understanding and lens making in 

the late 19th century gave way to the introduction of electric 

signals and automatic block systems. This eliminated the need 

for oil lamps and, more significantly, manned signal boxes. A 

basic automatic block detects a train using a track circuit. 

Either a low DC voltage or very specific frequency AC voltage is applied to the rails at the end of a 

block. At the block entrance is a relay or other circuitry that connects the rails together. When the 

block is clear, the relay is energised. When a train is in the block, the circuit is shorted across the 

steel axles, deenergising the relay and causing a ‘danger’ signal to display at the entrance of the 

block. Automatic blocks are connected to allow for warning signals to be displayed multiple blocks 

before the obstructed block.  

 

Signals have evolved greatly over time from flags and hand signals to oil lamps and mechanical 

signals to electric lights. Within the modern electric signals there is a myriad of different designs, 

from the most basic stop/go light to an array of lights that can give the drivers vastly more 

information. The Searchlight signal is one of the oldest designs still in operation today as its first 

implementation dates to the 1920s with the patent existing in the 1918. Originally it used a single 

light source and when the track condition changed, the lens would move, providing the new track 

signal. Modernised versions have replaced this setup with a single lens but using different light 

emitting diodes to provide the colour required. As standard the light is surrounded by a large black 

Figure 3: British lower-quadrant semaphore 
stop signal (absolute) with subsidiary arm 
(permissive) below (David Friel, 2005) 
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dish, which gives the impression that the searchlight signal is but a modernisation on an even older 

design, the Hall enclosed disk signal. Searchlight signals have a tricolour code that informs the train. 

Red for Stop, there is danger ahead, Orange/yellow for proceed with caution and Green for proceed 

as normal. This design has faded in popularity and was replaced as the most popular signal type by 

the vertical colour light signal.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Searchlight Signal, Atlanta, Georgia, USA (Todd Sestero,2006) 
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Chapter 3 

 

Literature Review 
 

 

 

3.1 Failure to update infrastructure  
 

Early 20th century steam trains began to push the boundaries of speed with several locomotive 

models exceeding 120km/h while fully laden, few even surpassed 180km/h. This rapid speed 

increase caused concern for regulators. Many deaths in the industry caused a wave of legislation to 

be enacted in the United States of America. These required the implementation of new technologies 

and equipment onto existing trains. The 1922 ruling by the Interstate Commerce Commission 

required the installation of ‘automatic train control’ systems. By today’s standards, the 

implemented systems were less for control and more for train protection. Designed to display the 

previous signal in the cab via various methods, it provided as reminder for the engineer or on faster 

trains the primary method of information as the wayside signage would pass by too quickly. Even 

this old system has not made it to every active railway line.  

 

A more advanced system that automatically stops the train if a Signal Passed At Danger (SPAD) event 

occurs does not exist on most mast transit trains in Australia. A close call occurred in Brisbane on 

September 5th 2017 due to lacking an automatic stop function. The offending passenger train 1W33 

was approaching Roma Street Station when it passed the stop indicator of Signal RS57. 1W33 passed 

through points 226 and entered platform 8. This put it on a collision course with oncoming 

passenger train 15X2 that had just left Central Station moments earlier. The SPAD alarm was raised 

at the Queensland Rail Management Centre. Emergency calls were made to both drivers and the 

trains stopped with only 550 metres separation. No damage to the rolling stock or injuries were 

reported. Infrastructure damage was caused as points 226 was not set for train 1W33 to pass 

through (Australian Transport Safety Bureau, 2017). 
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If train 1W33 had passed Signal RS57 one minute earlier, there would have been a collision as 

another train, train 1K56, was at platform 8 of Roma Street Station exchanging passengers. This 

event caused serious delays across the entire network for hours as the points had to be repaired. 

Unfortunately, SPAD events are not uncommon and have been on the rise in 2021. Reported by the 

Brisbane times, SPAD events had doubled between August 2020 and March 2021. From 1.7 to 2.4 

SPADs per million train kilometres (Felicity Caldwell,2021). This needs to change.  

 

3.2 Current Train Automation 
 

There are two different types of train automation. First is Automatic Train Protection (ATP), the 

other is Automatic Train Operation (ATO). The previously mentioned SPAD automatic stop is one 

such example of a train-based ATP. An infrastructure example of an ATP is an interlock system that 

displays a ‘danger’ signal if the proceeding switch points are incorrectly positioned.  

 

An ATO is the generally perceived idea when discussing vehicle automation. In the railroad industry 

there are multiple levels that define the degree of automation (or Grades of Automation, GoA) 

present. This rating system has 5 levels, GoA 0 to GoA 4. GoA 0 is a train with zero automatic 

assistance, the safety and reliability of the train rests on the operation team. Below is a graphic 

produced by the International Association of Public Transport to better illustrate the higher levels 

of automation in a metro situation. 

       

Figure 5: Train 15X2 route from Central Station towards eastern entry of Roma Street Station, Platform 8 (Australian Transport 
Safety Bureau, 2017) 
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The first instance of train control automation was the Victoria Line of the London Underground. 

Opened in 1969 by Queen Elizabeth II, to relieve the congestion on other lines of the London 

Underground network. This system was developed from an existing ATP called pulse code cab 

signalling that had been created in the 1920s by Union Switch and Signal for Pennsylvania Railroad 

(PRR).  

 

It works by applying electrical pulses to the running rails that would be detected by a train via 

induction. Different pulse rates are used to convey information in the train cab. PRR used this 

technology for in cab signalling and for automatic train stop that had been required by the Interstate 

Commerce Commission for passenger transit.  

 

The British engineers took this design and took it a step further by mostly eliminating the need of a 

driver. Instead of displaying the information for the driver to act on, the system would control the 

train directly. The only thing the driver needed to do was restart the train after it had reached the 

station. In 2012 the pulse code cab signal system was replaced by the more advanced 

Communication Based Train Control (CBTC) system that it operates today. 

 

A CBTC system as defined by the Institute of Electrical and Electronic Engineers 1474 standard is a 

“continuous, automatic train control system utilising high-resolution train location determination, 

independent from track circuits; continuous, high capacity, bidirectional train-o-wayside data 

communications; and trainborne and wayside processors capable of implementing automatic train 

protection (ATP) functions, as well as automatic train operation (ATO) and automatic train 

supervision (ATS) functions”(Institute of Electrical and Electronic Engineers, 2004).  

Figure 6: Grade of Automation Diagram (International Association of Public Transport,2012) 
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The Thales SelTracTM G7 is one of the latest CBTC designs. Such a system has three major 

subsections: Operations, Wayside, and Trainborne. Operations is the human aspect as well as the 

central intelligence of the system. Wayside is the all the infrastructure required for a CBTC system 

to operate. Communication relays, GPS correction equipment, data lines, switch point controllers, 

and many other critical systems. The trainbourne system receives information through the wayside 

and controls the train directly.  

 

 

Figure 7: typical high-level architecture of a modern CBTC system (RailSystem,unknown) 

  

The overwhelming majority of these systems exist only in metros and light rail. One of the few 

examples of heavy freight utilising such a system is the Autohaul system in Western Australia. This 

system was implemented by Hatachi Rail and Rio Tinto in the Pilbara region of Western Australia to 

facilitate the transportation of 360 million tonnes of iron ore annually.   

 

3.3 Machine Vision and Neural Networks 
 

Computer vision in a classical sense is about manipulating collected data through various techniques 

to achieve a very specialised outcome. A basic example is determining physical defects in a metal 

can. The can to be inspected is captured from side on. The image is then put through a series of 

filters that strip the colours away and inspects the perimeter pixels to confirm if the can walls aren’t 

dented. This would happen multiple times a second as the can is rotated. This era of computer 

vision, while still useful in many circumstances, has stated to close.  
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The new era is far closer to artificial intelligence due to the many advancements that have been 

made. Machine learning algorithms is one such advancement. This technology can be seen in use 

across many IT application. The most prominent applications that everyone has experienced is 

targeted advertisement and the YouTube suggested videos. While specifics of these algorithms are 

hidden away to either protect intellectual property or to avoid possible scrutiny, these algorithms 

are very good at what they do. One method is to implement re-enforcement learning. This adjusts 

the internal weights and values of an algorithm as the algorithm is used. Raising the value of a factor 

when a video is watched for example.  

 

This machine learning didn’t influence many changes in computer vision but led to the new field of 

deep learning and this has had incredible effects in the short time that it has taken to apply it to 

computer vision.   

 

Deep learning refers to the use of neural networks to accomplish a task. A neural network is a stack 

of interconnected nodes that interpret data by passing data from one layer of nodes to the next 

with weighting and thresholds determining what is to be passed along. This method of data 

interpretation was heavily inspired by the human brain, as it mimics the biological communication 

between neurons in the brain.  

 

 

Figure 8: abstract neural network (University of Waterloo, 2020) 
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The neural network structure can be broken down into three distinct layers, input layer, hidden 

layers, output layer. The input and output layers are self-explanatory, they interface with the 

algorithm that uses the neural network. The hidden layers is where the work occurs as these define 

the complexity of the neural network. Both the number and the width of the hidden layers count 

toward the overall complexity.   

 

Before a neural network can be implemented into any algorithm, not just machine vision, it must 

be trained. This is where the weights are applied to the paths that link the nodes and the thresholds 

that determine if the data is to be passed along. Training is commonly in the form of data that has 

been pre-processed either by a human or other simpler algorithms to contain the expected output 

of the neural network.  Once trained, the neural network is ready to be meshed with final algorithm.  

 

3.3.1 Machine vision algorithms 
 

Many algorithms have been developed that use neural networks as the foundation. All Convolution 

Neural Networks (CNN) classify objects with some providing localisation in the form of bounding 

boxes for that object. Classification refers to determining ‘what’ the object is in the image.  

Localisation determines where the object is and is generally displayed with a bounding box. Two 

common veins of CNNs are the algorithms based on classifications and algorithms based on 

regression. 

 

Region-based Convolutional Neural Network or RCNN is an example of the former. Developed by 

Ross Girshick et al. and presented in their 2014 paper titled: “Rich feature hierarchies for accurate 

object detection and semantic segmentation”. The algorithm is described to operate in four stages,  

Our system (1) takes an input image, (2) extracts around 2000 bottom-up region proposals, (3) 

computes features for each proposal using a large convolutional neural network (CNN), and then (4) 

classifies each region using class-specific linear SVMs (Girshick et al.,2014). 

 

 

Figure 9: R-CNN process diagram (Ross Girshick, 2014) 
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RCNN provided not only a speed advantage compared to earlier object detection methods but also 

double the accuracy. Even with the speed increase, real time object detection was still infeasible for 

RCNN as images could still take multiple seconds to compute with the worst cases requiring 20 

seconds. It also required some substantial computer hardware to run at these speeds.  Variants of 

RCNN have been created to reduce the computing power required and generally speed up the 

process such as Fast-RCNN and Faster-RCNN.       

 

Algorithms based on regression on the other hand, they skip finding ROIs and run the class prediction and 

bounding boxes for the entire image in a single run. This reduces processing time significantly and gives an 

incredible speed advantage but trades some accuracy for that speed. This makes it viable to use in real-time 

detection. You Only Look Once (YOLO) is one example of a algorithms based on regression. First introduced 

in 2016 by Joseph Redmon et all in their paper titled: “You Only Look Once: unified, Real-time Object 

Detection”(Redmon et al., 2016).  

 

YOLO takes a fundamentally different approach to object detection. Instead of trying to speed up 

existing frameworks like Faster-RCNN, YOLO is designed from the ground up for speed. The 

presented algorithm worked as follows,  

(1) resizes the input image to 448 × 448, (2) runs a single convolutional network on the image, and 

(3) thresholds the resulting detections by the model’s confidence (Redmon et al., 2016). 

 

 

Figure 10:YOLO process diagram (Joseph Redmon, 2016) 

 

YOLO has also received iterative changes by varies groups with YOLOv5 being the latest.  

 

3.3.2 Machine vision present in the rail industry  
 

Machine vision has already entered the rail industry but not into the direct control of the 

locomotives. The majority of implementations have been into the inspection and maintenance of 

the rolling stock and hardware. Transportation Technology Center Inc released a briefing on the 

research that had been conducted under the Association of American Railroad Strategic Research 

Initiatives Program into the application of machine vision. The brief published in 2014, explains and 

showcases the capability of the machine vision systems that are being developed. These systems 

allow for detection of minute details that an inspector might overlook or cannot see without 

magnification, increasing efficiency and safety by better informing train operators of when 



23 
 

maintenance is due. Many other companies have been developing similar systems as efficiency and 

safety are high priorities for train operating companies.    

 

Pree et al (2012) investigated autonomous trains in open loop situations then built a prototype. The 

primary focus of the paper is the system architecture and the obstacle recognition that was 

implemented on the prototype. Unfortunately, this work has not been examined in its entirety as 

the full report is not available to the public. What has been seen of this document is the use of 

machine vision in the obstacle recognition system. While not the focus of this project, the inclusion 

of obstacle recognition is a logical next step.  

 

3.3.3 Machine vision in the transport industry  
 

In the broader transport industry, machine vision for autonomous vehicles is a hot topic. Around 

the turn of the century there were many papers produced exploring the growth of machine vision 

research. Dickmanns (2002) highlights the impressive developments that was made before the 21st 

century but it also shows a major problem that all engineers must contends with, insufficient 

technology. Many projects of this era were halted outright, or the scope was reduced due to 

insufficient computing power. Majority of the advancements in this era were made with the use of 

black and white CCD-cameras with relatively simple edge feature extraction.  To handle more 

complex scenarios, it was estimated that computational capability would need to improve by at 

least 3 magnitudes as colour and texture processing was envisioned to be desirable. With the 

accurate prediction that ‘Moore’s Law’ would continue, companies have returned to the topic of 

autonomous vehicles. 

 

The most recent implementations of machine vision in autonomous vehicles have been coupled 

with other sensors such as LIDAR. A project undertaken in Japan by researchers at the Nagoya and 

Nagasaki universities explored the possibilities of an open-source solution to autonomous vehicles 

(Kato et al., 2015). In this investigation, machine vision was used to detect and track objects that 

were moving with the vehicle in the test environment. Not only could this system recognise the 

moving elements in the environment but also the stationary elements such as traffic lights and 

signals.  

 

Tesla, one of the most famous vehicle manufacturing companies, has implemented machine vision 

to great success into their vehicles. Their website gives a sample of how complex a system can be. 

The Autopilot neural network that operates the vehicles autonomous mode is comprised of 48 

different neural networks that required 70000 GPU hours to train. Many layers of additional 

algorithms and code exist beyond the neural networks to provide the decision making and vehicle 

control.   
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3.4 Review summary 
 

Condensing the collected information, automatic train operation has been used since the 1960s and 

the latest methods of automation make rail operation safer and more efficient than ever. Implement 

of automation into existing infrastructure requires substantially more work than implementing it 

into new infrastructure, leaving many existing without the upgrade. This puts the general public at 

risk due to human error that can occur by the operators. 

 

Machine vision has received a significant advancement with the application of neural networks. 

Many publicly available algorithms exist but are primarily based on either RCNN or YOLO 

architecture. Machine vision has not had much implementation to the rail industry but has seen 

success in the wider transport industry with companies such as Tesla. 
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Chapter 4 

 

Methodology 
 

 

 

4.1 Research questions 
 

These are the guiding questions that have shaped the experimentation and evaluation: 

- Can advanced machine vision techniques be used to detect Searchlight signals? 

- If so, what algorithm provides the best results? 

- How does using different neural networks effect the performance of the algorithms?    

 

4.2 Data collection 
 

Data collection is important but with attaching cameras to real trains unrealistic for this stage, a 

train driving simulator was used. Options in this genre of simulators is light with only one major 

developer producing the most content. Train Simulator 2022 by Dovetail games was selected out of 

experience and ease of access.  

 

The route selected was the Southern Pacific railroad Donner Pass, specifically the track connecting 

the Roseville railyard and the Sparks railyard. The Donner pass is one of the most important sections 

of tracks as it has become a major arterial passage for the United States of America. Crossing the 

Sierra Nevada mountain range to link Sacramento, California to Spark, Nevada, providing a critical 

link in the First Transcontinental Railroad.  

 

Construction began in late October of 1863 by the Central Pacific Railroad at Sacramento, California. 

The line would not be completed and opened until December 13th, 1867. Central pacific would only 

operate this line for 18 years before Southern Pacific in 1885 would acquire the right to permanently 

operate and maintain the line. A second line was built in the 1920s and would become known as 

“Track #2”. This track reduced the grade of the pass to between 1.3% and 2.4%, a significant 

reduction from Track #1’s grade average of 2.5%.  
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Today, this stretch of railroad is operated and maintained by Union Pacific Railroad who acquired 

this section in 1995 when the parent company, Union Pacific Corporation, acquired Southern Pacific 

Transport Company. 

 

Donner Pass currently operates Searchlight signals in conjunction with trackside speed signs, and 

this is accurately modelled within the simulator. While the simulator is an excellent recreation of 

the Donner Pass, there are practical limitations that prohibit this method of prototyping new 

machine vision algorithms from being solely used. First is the game engine that this simulator uses. 

The original release of this game engine was late 2013. Below is a screenshot aboard a train waiting 

at a signal, beside it is a signal in the real world. 

 

 

Figure 12: Screenshot of train simulator in action with 
Searchlight signals ahead 

Comparing figures 11 and 12, it can be seen that there is a sizeable difference between the two. 

Video game graphics have progressed substantially since the era that this simulator’s engine was 

made. A newer simulator was released in 2020 called Train Sim World 2(TSW2) by the same 

developers. This simulator has more realistic graphics, but it comes at a significant trade off in 

useability that made it unsuitable for use in this project.  

Figure 11: Searchlight signal showing an ‘all clear’ signal () 
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Second is that only a single camera can be replicated and there only select locations that it can be 

placed. In a physical system, there would be multiple cameras to cover all possible blind spots. The 

camera location during data collection was on the left-hand cab exterior of an EMD SD70M 

locomotive, set with a 4x zoom.  Two hundred images were collected in daylight with an additional 

250 captured across the transition from day to night. A single video was captured and edited to 

create a testing video for completed machine vision.  

 

4.3 Machine Vision creation and testing overview 
 

Two programs were considered for the development of the neural network-based algorithm. First 

was MATLAB, the other was OpenCV. MATLAB was quickly chosen over OpenCV due to the 

experience with the program and documentation available. This choice did cause the training and 

run time of the algorithm to take longer as MATLAB only supports Nvidia GPU acceleration, and the 

test rig comprised of an AMD 5600X CPU and RX580 GPU.   

 

All images collected were manually marked in the MATLAB Image labeller to obtain the ground truth 

table for training and validation of the created machine vision algorithms. The different signal 

colours were separated into their own categories to simplify the training and validation. The 

following table shows the breakdown of the datasets that were used to train and validate. 

 

Table 1: Training data sets explanation 

Data set Image count Content  

Daylight 200 Daylight 

‘Night’ 250 Transitional lighting  

All Conditions 550 All collected content 

 

 

Two different algorithms were to be built and tested. One was a Faster-RCNN, the other was a 

YOLOv2. These were built with the neural network Resnet 50 as the core. For the training of all 

algorithms, the image data sets was randomly divided into 2 subsets, one for training and one for 

validation. Once trained, it was tested using the collected video with MATLAB code capturing the 

video, running the algorithm, and displaying the output in both a visual form and in matrix.     

 

With the initial results, it was decided that continuing to work with the Faster-RCNN algorithm 

would require far more time, expertise and hardware to become operational. So, focus was shifted 

to the YOLOv2 algorithm. A second YOLOv2 algorithm was created with a simpler Resnet 18 neural 

network to compare how the different networks affected the algorithm output. Once trained, each 

algorithm variation was tested with 75 images, 50 daylight images, 25 night. From this point 

forward, YOLO18 and YOLO50 will be used to reference the different algorithms to avoid confusion. 
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YOLO18 and YOLO50 both had 3 variations, each was trained on a single dataset and compared 

against the other variations.  

 

4.4 Neural Network Modifications and Algorithm training 
 

Neural networks are very complex and require extensive knowledge to get the most out of them. 

This is one of the reasons a Faster-RCNN algorithm was abandoned for this project as it required 

significant modification to any neural network that was to be paired with it.  For this reason, very 

limited modifications were done to both neural networks to make them compatible with the 

YOLOv2 algorithm. The modification is the meshing point between the neural networks and the 

algorithm. This involves selecting a node to attach the mesh point to along with setting up many 

particulars that are critical for the algorithm to work.  

 

The mesh points: 

Resnet18 – res4a_relu 

Resnet50 – activation_40_relu 

 

The other critical components that were determined at this point of creation was image input size, 

the number of different objects, and the anchor box sizes. The MATLAB code to accomplish this is 

in the appendix.  

 

Image resolution(pixels): 640 x 640  

Number of objects: 3 

Anchor box size(pixels): 32 x 32, 16 x 64, 64 x 16  

The training also had a few settings that were standardised across the entire testing: 

Training images per iteration: 10 

Maximum passes through entire training dataset: 50 

Learning rate: 0.001 

 

4.5 Training data explanation 
 

MATLAB outputs both a table and a simplified graphic that serve to explain the how the well the 

neural network has taken to the training. Key terms to understanding the following tables: Root 

Mean Square Error (RMSE), loss, epoch and mini-batch. Epoch is the number of passes through the 

entire data set. Mini-batch is a sample of the total data set used to iterate the algorithm that has a 
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defined size. RMSE describes the errors in the predictions. Loss is the combination of three errors, 

localisation, confidence and classification.  

With these terms explained, it is expected that as the training progressed, the RMSE and loss values 

would trend toward zero with the difference between the mini-batch and validation being 

minimised. A training that matches this expectation shows that the algorithm has received 

worthwhile training.      
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Chapter 5 

 

Results 
 

 

5.1 Training results 
 

Table 2:YOLO18 Day Training Results 

 

Table 3: YOLO18 Night Training Results 
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Table 4: YOLO18 All conditions Training Results 

 

 

Table 5: YOLO50 Day Training results 
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Table 6: YOLO50 Night Training results 

 

 

Table 7: YOLO50 All conditions Training results 
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Figure 15: YOLO18 Day False Positive 

Figure 16: YOLO18 Day No Pickup 
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Figure 21: Daylight trained YOLO50 tested against the Daylight data 

 

 

Figure 22: Night trained YOLO18 tested against the Daylight data 
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Figure 23:Night trained YOLO50 tested against the Daylight data 

 

 

Figure 24: All conditions trained YOLO18 tested against the Daylight data 
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Figure 25: All conditions trained YOLO50 tested against the Daylight data 

 

 

 

 

 

Table 8: Daylight data F-score table 

 Green Signal F-score Orange Signal F-score Red Signal F-score Combined F-score 

YOLO18 Day 0.5402 0.4864 0.5398 0.5222 

YOLO50 Day 0.4484 0.5060 0.4573 0.4706 

YOLO18 Night 0.3216 0.3741 0.3162 0.3373 

YOLO50 Night 0.1655 0 0.2561 0.1405 

YOLO18 All 
conditions 

0.5103 0.4864 0.5520 0.5163 

YOLO50 All 
conditions 

0.0601 0 0 0.0200 
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Figure 26: Daylight trained YOLO18 tested against the Night data 

 

 

Figure 27: Daylight trained YOLO50 tested against the Night data 
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Figure 28: Night trained YOLO18 tested against the Night data 

 

 

Figure 29: Night trained YOLO50 tested against the Night data 
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Figure 30: All conditions trained YOLO18 tested against the Night data 

 

 

Figure 31: All conditions trained YOLO50 tested against the Night data 
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Table 9: Night data F-score table 

 Green Signal F-score Orange Signal F-score Red Signal F-score Combined F-score 

YOLO18 Day 0.4194 0.3486 0.4024 0.3486 

YOLO50 Day 0.2696 0 0.2317 0.1671 

YOLO18 Night 0.5593 0.5973 0.5540 0.5669 

YOLO50 Night 0.5165 0.5397 0.5016 0.5193 

YOLO18 All 
conditions 

0.4496 0.5423 0.5143 0.5021 

YOLO50 All 
conditions 

0.1181 0.1250 0 0.0810 

 

 

Figure 32: Daylight trained YOLO18 tested against the All conditions data 
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Figure 33: Daylight trained YOLO50 tested against the All conditions data 

 

 

Figure 34: Night trained YOLO18 tested against the All conditions data 
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Figure 35: Night trained YOLO50 tested against the All conditions data 

 

 

Figure 36: All conditions trained YOLO18 tested against the All conditions data 
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Figure 37:All conditions trained YOLO50 tested against the All conditions data 

 

 

Table 10: All conditions F-score table 

 Green Signal F-score Orange Signal F-score Red Signal F-score Combined F-score 

YOLO18 Day 0.5069 0.4148 0.4928 0.4715 

YOLO50 Day 0.4089 0.3979 0.3910 0.3993 

YOLO18 Night 0.4043 0.4731 0.4286 0.4353 

YOLO50 Night 0.2752 0.2801 0.3643 0.3066 

YOLO18 All 
conditions 

0.4883 0.5057 0.5364 0.5104 

YOLO50 All 
conditions 

0.0743 0.0435 0 0.0393 
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Chapter 6 

 

Analysis 
 

 

 

6.1 Training Data Analysis 
 

As stated, it was expected that as the training progressed, the RMSE and LOSS values would trend 

toward zero with the difference between the mini-batch and validation being minimised. This 

expectation was roughly followed with only one egregious deviation, the training data for the 

YOLO50 day and night. While the differences between the mini-batch and validation values were 

the smallest of any training, it did not progress below one. This showed, without the need to test, 

that this algorithm will operate with significant error. The most likely cause of this was that the size 

of the training data was insufficient and the different data sets did not have enough data points for 

the larger neural network to learn from.  

 

Other trends provided by the training data, is that the smaller algorithm does not require as much 

time to train. This was expected behaviour and gives a positive outlook toward any future work 

optimising the neural network. A surprise was that YOLO18 day and night algorithm had less 

difference between the Mini-Batch and Validation values than the individualised algorithms. This 

was not expected as the difference between the brightest daylight and darkest night images would 

cause some incorrect weightings between interactions and translate into errors in the validation 

pass, but the opposite has occurred. It would seem that the additional data has provided a 

significantly more balanced training and reduced the difference.  

 

6.2 Testing results Analysis 
 

The test results tell an interesting story.   

 

Overall, the smaller algorithm in every training configuration was better. There are many possible 

reasons for this. The most likely reason is that the training size was not large enough for the larger 

algorithm. Another theory as to why the larger algorithm did not perform is that its size worked 

against it. With the less varied background that comes with the older game engine, the thresholding 

and weighting that occurs in training could become counter productive the deeper the neural 

network. 
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Chapter 7 

 

Discussion 
 

 

 

7.1 Results Discussion 
 

Beyond the statistical and trend analysis of the results, what do they mean? The results answer two 

of the three research questions, it also answers the overarching question of can current machine 

vision techniques capture and interpret rail signals with control automation the logical step 

afterwards.  

 

The results also provide clarity on how algorithms interact with different neural network that also 

react differently depending on the training provided. If this was only a checkpoint in a multi-year 

project, these results indicate 2 important lessons that should be taken aboard. 

 

First is the importance of large and varied training data. Too little data can lead to ineffective training 

and a narrow band of data can significantly limit the flexibility of the algorithm.  Second, starting 

small with the neural networks. Many hours were dedicated to the training of the algorithms with 

the YOLO50 variants taking the majority of the time. This fact stings as these variants were all lacking 

compared to their comparable YOLO18 algorithm.         

 

7.2 Consequences of Implementation 
 

With all advancements in automation, there are valid concerns that technology will replace humans, 

this project is no different. A standard freight train has two-person crew, the conductor, and the 

engineer(driver). Development of the proposed research area will lead to a shift in jobs. Early 

implementation would not see many jobs move as this technology will still be in its infancy. As 

confidence in the technology improves, that is where the job shift will occur as the technology will 

make the engineer role mostly redundant on the vast majority of railroad. Engineers will still be 

required in the railyards or when the technology has a fault that cannot be rectified before the train 

is required to depart.   

 

The flip side is that once this technology has matured, it will provide a far safer environment than 

having a driver in direct control of a train and will greatly increase efficiency. A system that is always 
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vigilant, never needs to rest, coupled with existing ATP systems, it could bring safety and automation 

to the countries that cannot afford large infrastructure overhauls. Bringing an aftermarket product 

for rail automation will breathe new life into aging locomotives and rollingstock.   
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Chapter 8 

 

Conclusions 
 

 

8.1 Future work 
 

There are two fields of future work that this dissertation has spawned, first is the practical work of 

physical implementation, second is refinement of the algorithm and associated neural network/s.  

The practical work is seemingly straight forward, repeat this work but with data collected from 

relevant train lines. This would require industry connections to complete such a task. Another 

section in this area is the determination of the physical hardware and the mounting techniques.  

     

There is still much work to be done regarding the algorithms and neural networks. This paper only 

looked at a YOLOv2 as the algorithm with an attempt at using Faster-RCNN. As YOLO has proven to 

be capable, using a classifier algorithm like Faster-RCNN is not necessary in future work beyond the 

conformation that regression algorithms are the better choice when speed and accuracy are 

required. Use of more advanced versions of YOLO would yield useful data as the incremental 

changes could have unintended effects. The testing of other regression algorithms that are created 

would be interesting as only two distinctive algorithms exist at the time of writing, the two being 

YOLO and Single Shot Detection. 

 

Only two neural networks were tested, and these were prebuilt. There are so many variables inside 

just one neural network that it could be an entire dissertation. Optimisation of network complexity, 

where the algorithm is meshed with the neural network, training amounts, hardware compatibility. 

All have tremendous depth that was barely scratched in this work. Building a custom neural network 

optimised to be used with object detection algorithms, much like Tesla and their self-driving cars. 

The mesh points that were used may be completely incorrect and another node might provide 

superior performance. Anchor box size may restrict what the detector can identify accurately. There 

is significant work to be done to improve the understanding of both neural networks and their 

associated integration with machine vision algorithms.     

 

 

 

 



53 
 

8.2 Conclusion 
 

To conclude, the 5 objectives were set in the introduction: 

• Explore the current state of train control and railway infrastructure.  

 - Accomplished in chapter 2 

• Highlight the unique challenges of railway automation. 

- Accomplished in chapter 3 

• Review the advancements in machine vision. 

- Accomplished in chapter 3 

• Investigate possible system/algorithms for implementation 

- Accomplished in chapter 3 

• Develop a prototype algorithm that detects rail signals as a proof of concept. 

 - Accomplished in chapter 4 -> 7 

To reiterate, advanced machine vision techniques have matured to the point where implementation 

onto locomotives is a possibility.  There is still much work to be done before implementation is to 

occur on mass. Optimisation of the neural networks and algorithms are still required along with 

determination of physical hardware to make the system functional.   
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Appendix A – Project Specification 
 

ENG4111/4112 Research Project 

Project Specification 

For: Anthony Wallin   

Title: Application for machine vision for autonomous locomotive operation   

Major: Mechatronics   

Supervisors:     Dr Tobias Low 

   Dr Derek Long  

Enrollment: ENG4111 – DIR S1, 2021 

  ENG4112 – DIR S2, 2021 

Project Aim: To investigate existing machine vision algorithms then prototype a program capable 

of operating a simulated locomotive as a proof of concept for real world 

applications.    

Programme: Version 1.2, 5th April 2021  

1. Review available regions for testing, make selection then collect information about 

infrastructure in the region.   

 

2. Review machine vision algorithms used in similar applications and identify candidate 

approach/es.  

 

3. Testing methodology development. Design a testing matrix for the evaluation of each 

section of coding. Use test footage gathered to test machine vision code. 

  

4. Build program for the recognition of signals using MATLAB as the prototyping environment.  

 

5. Extend program to encompass trackside signage. This will mainly encompass the speed 

signs. 

 

6. Build a program capable of interfacing with the simulator. 

 

7. Transfer the prototyped machine vision algorithms from MATLAB to the control program 

for complete system testing.  

 

8. Complete system evaluation. Once working, the system will be marked against a criterion 

of accuracy, speed, and reliability. The accuracy of data collection and interpretation. The 

speed at which the data is collected and interpretated. And the overall stability of the 

system in endurance testing.   

If time and resources permit: 
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9. Design and acquisition of hardware. 

  

10. Physical implementation and testing.   
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Appendix B – Code 
 

 

 

Neural Network creation 
 

%{ 
YOLO V2 Object Detection Creator 
Author: Anthony Wallin 

  
Description: 
Code to create a  YOLO V2 Object Detector 
%} 

  

inputSize = [640 640 3]; 
numClasses = 3; 
featureExtractionNetwork = resnet18; 
featureLayer = 'res4a_relu'; 
anchorBoxes = [ 
    32 32 
    16 64 
    64 16 
    ]; 
lgraph = 

yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLa

yer); 

  
save YOLOV218 

 

Algorithm training 
 

Prototype training 
Author: Anthony Wallin 

  

Description: 
Code for training an YOLO V2 object detector 
%} 
%Set 0 for initial Training 
%Set 1 for futher Training 
%Set 2 for Testing 
Train = 0 

  
%extracting the ground truth table 
data = load('SignalDataIV.mat'); 
SignalDataset = data.gTruth; 

  
% Display first few rows of the data set. 
SignalDataset(1:4,:) 

  
% Add the fullpath to the local data folder. 
SignalDataset.imageFilename = fullfile(SignalDataset.imageFilename); 

  
%Image shuffling and distribution  
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rng(0); 
shuffledIndices = randperm(height(SignalDataset)); 
idx = floor(0.6 * length(shuffledIndices) ); 

  
trainingIdx = 1:idx; 
trainingDataTbl = SignalDataset(shuffledIndices(trainingIdx),:); 

  
validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) ); 
validationDataTbl = SignalDataset(shuffledIndices(validationIdx),:); 

  
testIdx = validationIdx(end)+1 : length(shuffledIndices); 
testDataTbl = SignalDataset(shuffledIndices(testIdx),:); 

  
imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'}); 
bldsTrain = boxLabelDatastore(trainingDataTbl(:,2:4)); 

  
imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'}); 
bldsValidation = boxLabelDatastore(validationDataTbl(:,2:4)); 

  

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'}); 
bldsTest = boxLabelDatastore(testDataTbl(:,2:4)); 

  
trainingData = combine(imdsTrain,bldsTrain); 
validationData = combine(imdsValidation,bldsValidation); 
testData = combine(imdsTest,bldsTest); 

  
%{ 
Data Verification 
data = read(trainingData); 
I = data{1}; 
bbox = data{2}; 
annotatedImage = insertShape(I,'Rectangle',bbox); 
annotatedImage = imresize(annotatedImage,2); 
figure 
imshow(annotatedImage) 
%} 
if Train == 0; 
%Data Augmentation and preprocessing 
%Aug = imageDataAugmenter('RandXTranslation',[-5,5],'RandYTranslation',[-5,5]); 
inputSize = [640,640]; 
PTD = 

transform(trainingData,@(data)preprocessData(data,inputSize));%Preprocessed 

Training 
PVD = 

transform(validationData,@(data)preprocessData(data,inputSize));%Preprocessed 

Validation 

  
%{ 
%Data Verification 
data = read(PTD); 
I = data{1}; 
bbox = data{2}; 
annotatedImage = insertShape(I,'Rectangle',bbox); 
annotatedImage = imresize(annotatedImage,2); 
figure 
imshow(annotatedImage) 
%} 

  
%Detector Training 
options = trainingOptions('adam', ... 
        'MiniBatchSize',10, .... 
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        'InitialLearnRate',1e-3, ... 
        'MaxEpochs',50, ...  
        'CheckpointPath',tempdir, ... 
        'ValidationData',PVD,... 
        'plots','training-progress',... 
        'shuffle','every-epoch'); 

  
SignalDetectorXVI = load('YOLOV250.mat'); 
lgraph = SignalDetectorXVI.lgraph; 

     
[SignalDetectorXVI,info] = trainYOLOv2ObjectDetector(PTD,lgraph,options) 

  
elseif Train == 1; 
        %extracting the ground truth table 
        data = load('SignalDataIV.mat'); 
        SignalDataset = data.gTruth; 

  
        % Display first few rows of the data set. 
        SignalDataset(1:4,:) 

  

        % Add the fullpath to the local data folder. 
        SignalDataset.imageFilename = fullfile(SignalDataset.imageFilename); 

  
        %Image shuffling and distribution  
        rng(0); 
        shuffledIndices = randperm(height(SignalDataset)); 
        idx = floor(0.6 * length(shuffledIndices) ); 

  
        trainingIdx = 1:idx; 
        trainingDataTbl = SignalDataset(shuffledIndices(trainingIdx),:); 

  
        validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) ); 
        validationDataTbl = SignalDataset(shuffledIndices(validationIdx),:); 

  

        testIdx = validationIdx(end)+1 : length(shuffledIndices); 
        testDataTbl = SignalDataset(shuffledIndices(testIdx),:); 

  
        imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'}); 
        bldsTrain = boxLabelDatastore(trainingDataTbl(:,2:4)); 

  
        imdsValidation = imageDatastore(validationDataTbl{:,'imageFilename'}); 
        bldsValidation = boxLabelDatastore(validationDataTbl(:,2:4)); 

  
        imdsTest = imageDatastore(testDataTbl{:,'imageFilename'}); 
        bldsTest = boxLabelDatastore(testDataTbl(:,2:4)); 

  
        trainingData = combine(imdsTrain,bldsTrain); 
        validationData = combine(imdsValidation,bldsValidation); 
        testData = combine(imdsTest,bldsTest); 

         
        %Data Augmentation and preprocessing 
        %Aug = imageDataAugmenter('RandXTranslation',[-

5,5],'RandYTranslation',[-5,5]); 
        inputSize = [640,640]; 
        PTD = 

transform(trainingData,@(data)preprocessData(data,inputSize));%Preprocessed 

Training 
        PVD = 

transform(validationData,@(data)preprocessData(data,inputSize));%Preprocessed 

Validation 
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        %Detector Training 
        options = trainingOptions('adam', ... 
        'MiniBatchSize',10, .... 
        'InitialLearnRate',1e-3, ... 
        'MaxEpochs',50, ...  
        'CheckpointPath',tempdir, ... 
        'ValidationData',PVD,... 
        'plots','training-progress',... 
        'shuffle','every-epoch'); 

  
        SignalDetectorV = load('SignalDetectorV.mat'); 
        lgraph = SignalDetectorV; 

     
        [SignalDetectorXI,info] = trainYOLOv2ObjectDetector(PTD,lgraph,options) 
else 
        load('SignalDetectorIII.mat') 
        inputSize = [640,640]; 
        I = imread('SS16.jpg'); 
        I = imresize(I,inputSize(1:2)); 
        [bboxes,scores,label] = detect(SignalDetectorIII,I) 
        I = insertObjectAnnotation(I,'rectangle',bboxes,scores); 
        figure 
        imshow(I) 

         

         
end 

 

 

Algorithm Testing 
 

%{ 
Train Signal Detection function 
Author: Anthony Wallin 

  
Description: 
Used to capture simulator screen, apply a machine vision algorithm to the  
capture, then output requested signal status 
Version 1.0   
%} 

  
% Take screen capture 
robot = java.awt.Robot(); 
pos = [0 0 1920 800]; % [left top width height] 
rect = java.awt.Rectangle(pos(1),pos(2),pos(3),pos(4)); 
cap = robot.createScreenCapture(rect); 

  
% Convert to an RGB image 
rgb = 

typecast(cap.getRGB(0,0,cap.getWidth,cap.getHeight,[],0,cap.getWidth),'uint8'); 
imgData = zeros(cap.getHeight,cap.getWidth,3,'uint8'); 
imgData(:,:,1) = reshape(rgb(3:4:end),cap.getWidth,[])'; 
imgData(:,:,2) = reshape(rgb(2:4:end),cap.getWidth,[])'; 
imgData(:,:,3) = reshape(rgb(1:4:end),cap.getWidth,[])'; 

  
% Load Trained Detector 
SignalDetector = load('SignalDetectorV.mat','SignalDetectorV'); 
Detector = SignalDetector.SignalDetectorV; 
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%Resize Image 
inputSize = [640,640]; 
I = imgData; 
I = imresize(I,inputSize(1:2)); 

  
%Run Signal Detection  
[bboxes,scores,label] = detect(Detector,I); 
I = insertObjectAnnotation(I,'rectangle',bboxes,label); 
figure 
imshow(I) 

  
% Organisation of collected data 
label = double(label); 
combined = [bboxes label]; 
combined = sortrows(combined); 

  
%Signal logic 
n = 0; 
Buffer = zeros(1,5); 
SignalMatrix = zeros(3,4); 
while combined ~= 0 
    n = n+1; 
    Signal = combined(combined(:,1)<(combined(1,1)+30),:); 
    Signal = sortrows(Signal,2); 
    Signal = [Signal;Buffer]; 
    combined = combined(combined(:,1)>(combined(1,1)+30),:); 
    k = 1; 
    while Signal(k,5) ~=0 
        SignalMatrix(k,n) = Signal(k,5); 
        k = k+1; 
    end 
end  
%Output 
SignalMatrix 

 

Creation of F-score 
 

%{ 
F-score  
Author: Anthony Wallin 

  
Description: 
create F-score graphs 
%} 

  
data = load('SignalDataVI.mat'); 
SignalDataset = data.gTruth; 

  
imds = imageDatastore(SignalDataset.imageFilename(51:75)); 
blds = boxLabelDatastore(SignalDataset(51:75,2:end)); 

  
SignalDetector = load('SignalDetectorXI.mat','SignalDetectorXI'); 
Detector = SignalDetector.SignalDetectorXI; 

  
results = detect(Detector,imds); 

  
[ap, recall, precision] = evaluateDetectionPrecision(results, blds); 
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figure 
plot(recall{1}, 

precision{1},'green',recall{2},precision{2},'black',recall{3},precision{3},'red'

,'LineWidth',2); 
legend('Green Signal','Orange Signal','Red Signal','location','southwest'); 
xlabel('Recall'),ylabel('Precision'); 
grid on; 
title('YOLO50 All Conditions Night'); 

  

  

fg = 2*(recall{1}.*precision{1})./(recall{1}+precision{1}); 
fo = 2*(recall{2}.*precision{2})./(recall{2}+precision{2}); 
fr = 2*(recall{3}.*precision{3})./(recall{3}+precision{3}); 
f(1) = mean(fg); 
f(2) = mean(fo,'omitnan'); 
f(3) = mean(fr) 

  
fA = mean(f,'omitnan') 
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Appendix C – Raw data 
 

 

 

test image YOLO18 Day YOLO50 Day YOLO18 All 
Conditions 

YOLO50 
All 
Conditions 

YOLO18 Night YOLO50 Night 

1 1 1 1 4 1 4 

2 1 1 1 4 4 4 

3 1 2 1 4 2 2 

4 1 1 3 4 1 2 

5 3 4 4 4 4 4 

6 4 4 4 4 4 4 

7 3 4 4 4 4 4 

8 2 2 2 4 4 4 

9 2 1 1 4 2 4 

10 1 1 1 2 2 4 

11 4 4 4 4 4 4 

12 2 1 1 4 2 4 

13 1 1 1 4 1 1 

14 2 2 4 4 4 4 

15 1 1 1 4 4 4 

16 2 4 1 4 2 4 

17 1 1 1 4 1 4 

18 1 1 1 4 4 4 

19 1 1 2 4 4 4 

20 1 1 1 4 1 4 

21 1 1 1 4 1 4 

22 1 1 2 4 1 4 

23 4 4 4 4 4 4 

24 1 1 1 4 2 4 

25 2 2 2 4 4 4 

26 1 1 1 4 1 4 

27 2 2 2 4 1 4 

28 1 1 1 1 1 1 

29 1 1 1 4 4 4 

30 1 1 1 4 1 1 

31 2 1 2 4 4 4 

32 1 1 1 2 1 2 

33 2 2 2 4 2 4 

34 1 1 1 4 1 2 
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35 1 1 1 4 1 4 

36 1 1 1 4 1 2 

37 1 1 1 4 1 4 

38 1 1 1 4 1 1 

39 1 2 2 4 2 4 

40 1 1 1 4 2 4 

41 1 1 1 4 2 4 

42 2 2 3 4 4 4 

43 1 1 1 4 2 2 

44 2 2 4 4 4 4 

45 1 1 1 4 2 4 

46 3 3 4 4 4 4 

47 1 2 2 4 2 4 

48 1 1 1 4 1 1 

49 1 1 2 4 4 4 

50 1 1 1 4 2 2 

51 1 1 1 4 1 1 

52 4 4 3 4 4 4 

53 2 2 2 4 2 2 

54 1 1 1 4 1 1 

55 2 2 2 4 2 4 

56 1 1 1 4 1 1 

57 4 4 4 4 4 4 

58 1 1 1 4 1 1 

59 1 1 1 4 1 1 

60 1 1 1 1 1 1 

61 1 1 1 4 1 1 

62 1 1 1 4 1 1 

63 1 1 1 1 1 1 

64 2 2 2 4 2 4 

65 1 2 1 4 1 1 

66 1 1 1 4 1 1 

67 4 4 4 4 4 4 

68 1 2 1 4 1 1 

69 2 2 1 2 1 1 

70 1 1 1 4 1 1 

71 2 2 1 4 1 1 

72 1 1 1 2 1 1 

73 1 1 1 4 1 1 

74 2 2 1 2 1 1 

75 1 2 1 2 1 1 

Complete 49 46 49 3 37 24 

Partial 17 19 13 6 17 8 

False 
positive 

3 1 3 0 0 0 

No pickup 6 9 10 66 21 43 



65 
 

Accuracy  65.33333333 61.33333333 65.3333333 4 49.33333333 
 

       

Day 
      

Complete 33 33 30 1 18 5 

Partial 11 10 10 2 14 7 

False 
positive 

3 1 2 0 0 0 

No pickup 3 6 8 47 18 38        

Night 
      

Complete 16 13 19 2 19 19 

Partial 6 9 3 4 3 1 

False 
positive 

0 0 1 0 0 0 

No pickup 3 3 2 19 3 5 

 

 

 




