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Abstract 
The aim of this dissertation was to research and implement a stereoscopic machine vision sensor system 

on an uncrewed aerial system. The variables affecting the quality and computational cost of the stereo 

algorithm were assessed and optimised to be employed on a low-cost companion computer, the 

Raspberry Pi 4 (4GB). The algorithms used proved computationally expensive and the results tested the 

limit of the companion computer’s abilities to reach the minimum operating speeds required for UAS 

logistic delivery missions. The outcomes demonstrated an accurate and dense disparity map on 

benchmark datasets but the image sizes and tuning in field testing demonstrated a limited efficacy in 

application.  

Measured distance error slightly increased across the effective ranges where disparity was calculated. 

The cumulative errors from field of view and focal length, taken from the manufacturers specifications 

rather than directly assessed, and the baseline measurement which all effect the distance measurement 

after disparity is calculated. 

From the implementation and assessment carried out in this paper it is evident that the largest factor 

affecting the calculation speed of the system is the captured image size and represents the limiting factor 

in employing this implementation in its current configuration. 
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Chapter 1 - Introduction 
“In a properly automated and educated world, then, machines may prove to be the true humanizing 

influence. It may be that machines will do the work that makes life possible and that human beings will 

do all the other things that make life pleasant and worthwhile.” 

― Isaac Asimov, Robot Visions 

1.1 Outline of the study 
The development of UAS technology and its integration into society drive each other as convenience, 

safety and applications expand. Studies and functions that expand the applications of UAS technology 

especially in the hobby space will drive consumer interest and therefore investment for the future. This 

study aims to implement a stereo machine-vision based distance measurement solution used to modify 

a logistic UAS delivery. 

 

1.2 Introduction 
Uncrewed aerial systems (UAS) are being employed in multiple sectors and the continuation of 

development of machine vision and autonomous machine learning means that UAS will be used more 

broadly and with greater effect in the future. 

Logistic delivery has been investigated as an avenue of UAS implementation and is being developed as 

a commercial solution sporadically since 2013 and, more recently, growth has begun in Australia with 

two major competitors, Wing and Swoop Aero taking part in CASA trails (Civil Aviation Safety 

Authority 2022). The employment of these systems is highly regulated in accordance with CASA 

regulations and while autonomous navigation and control have been the focus of many research papers, 

efficient delivery has been traded against safety of operations and, critically, the increase in trust of 

UAS. 

The delivery method can be refined by assessing not only UAS position but also the vector required to 

safely deliver to a selected delivery point. This research seeks to assess the use of implemented stereo 

vision as a distance measurement method and utilise this method as a primary means of assessing a 

delivery area while retaining accuracy and maximising efficiency of UAS endurance. 

1.3 The Problem 
Distance measurement to obstacles and for positioning are required as one of the numerous safeties for 

UAS operation, particularly in controlled airspace (Civil Aviation Safety Regulation 1998). Many such 

sensors are active types which transmit a signal to sense distance. These technologies have certain 

limitations in application and accuracy especially in changing environments often requiring frequency 

allocation and infrastructure. This study seeks to utilise passive sensors, likely to reduce transmitter 

noise in the environment, without a delivery marker to expand the flexibility of the delivery system to 

better operate in dynamic or remote environments with greater options for expansion. 

1.4 Research Objectives 
The aim of this research is to design and implement a UAS based delivery system which can 

autonomously assess a designated delivery point for obstruction and transition its delivery method 

accordingly. The objectives are: 

1. Conduct initial research on UAS machine vision applications. Explore UAS delivery methods and 

the legislation surrounding autonomy in UAS applications. 

 

2. Review methods of calculating depth from stereo vision including the factors most affecting the 

accuracy and resolution of the output. Investigate differing algorithms for stereo vision. 



 

3. Conceptualise the components of a suitable integrated system including UAS platform, machine 

vision components, companion computer, ground control, store delivery and testing systems. 

 

4. Select hardware and a suitable software development environment. The requirements for necessary 

capability and costs to inform selection. 

 

5. Develop a machine vision algorithm for optimized disparity mapping. 

 

6. Construct an initial prototype to facilitate data collection. Including UAS control programs and fail-

safes. 

 

7. Refine stereo vision matching algorithms and post process data output for optimum use in a UAS 

platform. 

 

8. Integrate and deploy the prototype and algorithms at a suitable location and record data for 

evaluation. 

 

9. Process and evaluate experimental data.  

Employment on a UAS platform dictates a low power companion computer and camera system to 

maintain typical mission planning and execution in addition to delivery point assessments. 

Depth resolution of 2m at 40m slant range to the delivery point forms the basis of a realistic operational 

envelope, avoiding obstructions, i.e., trees and buildings while maximising UAS flight times. The 

design will maximise this sensing distance while retaining the depth resolution. 

The delivery method decision times and depth calculations must be valid for operation at a frequency 

of at least 3 per second. These decision times will inform maximum approach speeds 5 -15 m/s is an 

acceptable range. 

1.5 Conclusion 
The aims of this research are to define the factors that impact the implementation of effective 

autonomous UAS delivery and move to design and test a system that satisfies the research base and 

demonstrates the required technical engineering ability. The expected outcome of this implementation 

should yield tangible results supporting the stereo-vision hypothesis discussed below while also 

highlighting the practicalities of any implementation of autonomy or machine vision. The literature 

review in Chapter 2 will investigate the current state of play of UAS in the logistics area, the typical 

sensors required for sensing the environment, the background and applications of machine and stereo 

vision, including the hardware that may be required. 

  



Chapter 2 - Literature Review 
 

2.1 Introduction 
 

Research has been conducted into computer vision systems since the late 1960s (Alam 2020). There 

has been a continual refinement of this process branching out into other emerging technology streams, 

such as machine learning, with numerous vision systems employed throughout all areas of technology. 

This literature review will explore the current state of UAS in logistic chains and how the technology 

is shaping this area, the infrastructure and policy in place to support the growth of UAS and also the 

commercial trends in the investment and deployment of these technologies will also be reviewed.  

 

The typical sensors combined with UAS and how they are utilised to produce safe and effective 

deliveries including mandated controls and in differing deployment environments (agriculture, 

logistics, hobby, etc.). This will focus on the flexibility and adaptability of technologies and particularly 

the use of stereo machine-vision. 

 

Computer vision and stereo vision will be assessed in deciding a direction for the improvement and 

implementation of a UAS model and the factors that would affect its capability. Factors that affect the 

design of the model will be reliant on commonly accessible “hobby grade” equipment as this will be 

the driver for future development and employment. 

 

2.2 UAS in logistics 

2.2.1 The last mile problem 

The “last mile” issue facing logistic chains is a problem that arises due to the complexity of the final 

portion of the delivery of an item to the consumer. Whereas manufacturers focus their attention on the 

distribution of their products in the design of warehouses and despatch facilities and global logistics are 

similarly robust and fit for purpose, the complexities of optimum routing, speed and accuracy of 

delivery, package security and overall cost are far more difficult to assess and control in the “last 

mile”(Ranieri 2018)(Diaz 2021). 

Ranieri (2018) cites 28% of total cost attributed to last mile delivery while Diaz (2021) cites up to 53% 

of total shipping costs. Increases in efficiency in this area would obviously lead to substantial increase 

in profits for logistics companies. It is likely, therefore that investment in this area would be prioritised.  

Populations world-wide are increasing but not expanding, becoming more dense (Macrotrends 2022) 

leading to logistics chains requiring more refined last mile solutions. This could mean larger vehicles 

or more frequent delivery trips. The most energy efficient solution could be the expanded commercial 

use of logistics UAS in high density urban environments. The COVID-19 pandemic served as a warning 

for population density (Bowditch, 2020), however, and may curb this trend altering the direction of 

urban densities. Investment trends of the Australian Government appear to reinforce population density 

to maximise the infrastructure investment. This obviously makes disease vectors more effective and 

may change this approach to population density which could have effect on the use cases for UAS.  

Muller, Janke and Rudolph (2018) make the distinction from pure technical solutions to UAS 

investment to state that any improvements to automation or transitioning to electric transport would not 

be an effective long-term solution rather suggesting “policy-supported reduction of disruption of 

efficiency limitations.” This seems like a forward-thinking approach that has merit given the levels of 

technical ability for UAS delivery and automation is currently at a high standard and used in a wide 

variety of areas, it is more likely the adoption of this technology from a governance standpoint, whereby 



aging laws controlling operations from 1998 (Civil Aviation Safety Authority) do not take into account 

the future deployment of these technologies on a larger scale. 

2.2.2 Logistic UAS civilian and military 

European Cockpit Association (2020) posits that the uptake of UAS in the near future is not feasible 

and even whether their use would be wanted. Further, the integration of fully autonomous systems into 

spaces where humans operate raises issues regarding “…fundamental philosophical, legal, safety, 

security, and societal issues”. The paper relies on the goal of automation being a force multiplier for 

human operation and not a standalone activity. There is a myriad of automated operations now across 

every field of human endeavour and the stated necessity for a human to remain in command could be 

viewed as a function of trust in the UAS not one guided by academic UAS research. Interestingly Pani 

(2020), shows that 61% of respondents responded positively to the increase in cost required by 

automated delivery services, when surveyed around the period of the COVID-19 pandemic. 

Drone systems have been developed as an enhancement to logistics chains in military and commercial 

factory settings using ground-based rovers and airborne systems (Ergene 2016) (Rana, Praharaj, & 

Nanda 2016) (Levin 2016) (Statt 2017). Recently the Civil Aviation Safety Authority has approved the 

use of UAS for small scale commercial delivery, Wing Aviation Pty Ltd for small scale fast-food related 

deliveries and Swoop Aero for medical supplies and related deliveries (Civil Aviation Safety Authority 

2021). The ranges are 10km for the Wing drone and up to 60km for Swoop Aero, both UAS have 

differing delivery profiles that likely informs the ranges as appropriate. As developments continue in 

the fields on drone sensors, navigation, machine vision and necessary hardware the use of UAS will 

become widespread. 

Shao (2020) cites the viability of UAS in the logistics chain and presents an analysis of the “expected 

level of safety (ESL) and the factors that contribute to this figure in both the air and ground domain. 

Two cases studies are reviewed which does not form an exhaustive list of scenarios but forms a robust 

basis for future assessments of safety and risk. 

Autonomous deliveries are attempting to refine the last mile problem with autonomous UAS increasing 

efficiency and manoeuvrability in dense urban settings while also reducing CO2 emissions (Rodrigues 

et al 2022). Bicycle and pedestrian courier deliveries are filling this gap currently and the automation 

can increase speed of deliveries for small items. 

The research demonstrates that last mile problem is affected by multiple factors far outside of any single 

company’s control. Population density, infrastructure, consumer trends, legislation around delivery 

requirements, vehicle standardisation, real estate availability, ecommerce trends, etc. 

In military applications, where the appetite for risk and the requirement for accurate and direct 

deployment in insecure and volatile environments is paramount, the use of UAS has diversified from 

surveillance to logistics. With 90% of deliveries being less than 50lb(23kg) (Defense Brief Edittorial 

2020) medium scale UAS are being investigated as serious alternatives to large scale logistics assets. 

In 2020 testing from Naval Air Warfare Center Aircraft Division tested commercially developed UAS 

with the criteria to move 20lb of cargo 25 miles, 65 platforms were assessed and only 2 managed to 

partially meet the criteria demonstrating the complex nature of practical implementation from a 

relatively simple design brief. 

The Australian Department of Defence’s Strategic Update (2020) and the Defence White Paper(2016), 

that describes the strategic direction of Australia’s defence including acquisition and long term policy, 

describes limited forecast acquisition of UAS focussing solely on tactical combat systems rather than 

logistics. This direction could be a result of the extremely large distance required to cross the country 

and to get to the areas of interest across the world that are currently serviced by the traditional platforms 

available in defence and given coalition agreements the utilisation of other nation’s assets in country 

may be more viable. 



2.2.3 Increased investment 

The state of infrastructure Australia is not currently setup for established logistics UAS. The Australian 

Government (2021) has published the National Emerging Aviation Technologies policy which 

describes the intended increase in utilisation of UAS with policy and infrastructure support required to 

safely introduce and sustain long term logistics chains. The policy cites “safer, cheaper and more 

efficient movement of people and goods” with intentions of targeting regional and remote areas which 

represent 28% of the Australian population (Australian Institute of Health and Welfare 2022). The 

policy also describes the practical requirements of RF allocation and management with typical operation 

vastly increasing the requirements of civilian frequency availability and security of RF radiation, also 

suggesting dedicated UAS corridors to refine traffic control and increase safety in dense populations. 

The Government’s Emerging Aviation Technology Partnership (2021) is a $32.6 million allocation over 

two years aimed to address community needs particularly in regional Australia. The Victorian 

Government’s Advanced Air Mobility Industry Vision Statement (2022) reflects the Federal 

Government’s direction including regulatory innovation prioritising agility and action proportionate to 

risk, this is a departure from the current state of policy control dated 1998, notably climate action is a 

primary driver for this initiative which supports the research found in the literature. 

2.3 Delivery profiles and efficiency 
UAS delivery methods gained popularity in 2013 with Wing, Zipline and Skypro with Amazon’s Prime 

Air also getting investments from large logistics chains such as DHL, FedEx and UPS in America. 

These drones’ delivery methods have not developed as quickly as expected especially the last mile 

taking up 40% of delivery costs (Wendover productions 2021) a large part of this is the difficulty to 

implement advancements creating cohesive environment for operations with air traffic control systems 

such as CASA and FAA. 

Early delivery solutions relied on landing the UAS in a relatively uncontrolled area which required a 

high level of autonomy to ensure safety. Newer designs use a hover and winch approach for private 

residences (Wing 2021) or drop a parachute fitted payload from height(Swoop Aero 2022). The 

difference in ranges of these two approaches while having similar UAS platforms speaks to the 

efficiency of the delivery methods. 

Australia currently has two commercial logistics UAS operators trialling with CASA approval, Wing 

and Swoop Aero (Civil Aviation Safety Authority 2021). These companies deliver small payloads from 

medical equipment and supplies to fast food like Uber Eats with delivery ranges varying from 10 – 

60km(Wing 2021)(Swoop Aero 2022). 

The Wing UAS utilise a hover delivery method with a winch cable. Transporting small payloads in 

cardboard containers to personal addresses. Swoop Aero use a VTOL delivery to a “nest” focussing on 

a ArUco marker style landing zone indicator. The biggest issue surrounding the utilisation of these 

drones for delivery is the deconfliction with other air traffic and the safety surrounding beyond line-of-

sight operation, especially in the delivery stages (Civil Aviation Safety Authority 2021). The factors 

that most affect the community is noise from the UAS during the delivery which the Department of 

Infrastructure, Transport, Regional Development and Communications manages in accordance with the 

Air Navigation (Aircraft Noise) Regulations 2018(Department of Infrastructure, Transport, Regional 

Development and Communications 2022). There is also an inherent risk of being under flight paths as 

delivery vectors change to service any number of people in the area that they are approved to operate 

in or pointedly, the risk of UAS collision with varying obstructions that are undetected in the real-world 

such a existing infrastructure. 

Importantly, the approval of these operations is predicated on the minimisation of noise pollution due 

to the relatively low-level operation of the delivery drones. Specifically, from the Aircraft Noise 

regulations 2018, the approval for operations can be revoked by the Secretary if a remotely piloted 



aircraft “…is likely to have a significant noise impact on the public.” Reduction of operational time 

over the public particularly in the delivery phase would reduce the risk of noise pollution. 

Zhang et al (2021) investigated the energy consumption of differing UAS profiles during delivery and 

flight. The research indicates that delivery operations yield largely fluctuating energy usages although 

the models reviewed in the paper do not accurately represent the actual energy usage. It is more simple 

and likely more efficient to utilise a cruise speed, fixed altitude delivery method using a ballistic model 

for payload delivery. This paper does present several models estimating the energy required for steady 

drone flight per unit distance (Epm) and as a conservative model indicates that an increase in speed and 

a reduction in maneuverers results in the furthest range and lowest Epm. Rodrigues (2022) cites a ~30% 

energy saving when removing vertical take-offs from the UAS path. Robust path planning (Debnath, 

Omar & Latip 2019) (Bouzid, Bestaoui & Siguerdidjane 2017) (Galvez, Dadios & Bandala 2014) and 

numerous other methods present autonomous path planning in a 3D space, referenced from the 

travelling saleman and working into machine learning supported path optimisation. 

 

2.4  Sensor suites used in UAS 
Distance detection is a primary navigation tool used in almost all autonomous applications. A 

majority of the technology available are active sensors that transmit a signal in order to detect 

distance. This paper seeks to implement a passive sensor in stereo machine-vision and to assess its 

performance and flexibility. 

2.4.1 Machine Vision 

The pinhole camera model is a simplification of the complex interaction between the outside world and 

the lenses or internals of the camera system and how it affects the light striking the camera sensor.  

Figure 1 - Pinhole Camera Model Detailing a Real-World point, P, and the point projected on the image Plane at 

(u,v).(Opencv 2022) 



The matrix A represents the essential matrix that effects the real-world points made up of the focal 

length in the 2D plane, fx and fy, and the principal point of the image plane, cx and cy. 

The representation of the point in the image plane [u v 1]T is the position in the image plane scaled by 

the factor, s. the essential matrix modifies the world coordinates on the real-world point, P, represented 

by the real-world coordinates Xc Yc Zc  

 

The distortion is modelled using the methods described by Louhichi, Fournel, Lavest and Aissia (2007) 

(OpenCV 2022)and can be solved to yield the distortion coefficients as  

2.4.2 Stereo vision 

Stereo vision is a passive sensor that uses machine vision and two cameras to calculate depth disparity 

in viewed image like many biological vision systems. This method relies on feature matching and 

known camera factors, intrinsic and extrinsic, to create disparity maps, refer to Figure 2. The limitation 

of the stereo disparity falls inversely with distance from the camera and like most machine vision 

applications low light operations and low texture environments fail feature matching and therefore are 

not effectives (Zou & Li 2010). 

Stereo vision relies on two, or more, views of an object and the estimation of depth occurs because of 

the comparative placement of the viewed object in each image plane. Figure 2 references the general 

setup that enables a disparity between the left and right images planes. There are a number of important 

features that inform the disparity including the objects distance from the cameras, resolution of the 

cameras, baseline between the cameras, in addition to intrinsic camera values like focal length and lens 

corrections.  

Figure 2 - Stereo Vision Concept showing image planes and disparity of viewed 

object in space (Hariyama, Masanori & Kameyama 2008) 



In order to utilise the images, the most important factor is the ability to match each object in the captured 

images. There are a number of feature matching techniques available in computer vision applications 

and a number of variables affecting the capture of images; extrinsic (world to camera): focal length, 

field of view, lens intrinsic (camera to image and image to pixel representation): field of view, aperture 

(as it pertains to the pinhole camera model), resolution (OpenCV 2022). 

The Middlebury Computer Vision Pages contain multiple stereo datasets developed from the research 

of D. Scharstein, R. Szeliski, and R. Zabih (2001) and updated periodically. The datasets contain 

rectified pairs of varying scenes with the details of intrinsic and extrinsic and stereo depth variables. 

The 2021 dataset has multiple pairs that will form a basis for assessment for the stereo algorithm (D. 

Scharstein et al, 2014). The computer vision page also presents the research papers, algorithm 

performance evaluation, and running environment for each algorithm. It is noted that a majority of top 

performing algorithms utilise high performance GPUs which, as detailed in the hardware assessment, 

will likely be unobtainable given the aim to deploy this model on a low-cost companion computer. 

Stereo vision implementations that have utilised a lower power computer often capture low resolution 

image pairs with many papers capturing 320 x 240 pixel images for stereo disparity assessment (konlige, 

1998)(Cooper et al., 2017). Other papers 640x480 images with higher power computers. There have 

been successful implementations of low power stereo vision systems Gehrig, Eberli, Meyer (2009) 

which report some extremely fast frame rates while implementing stereo vision which are well over the 

assumed requirements for successful UAS deployment. 

Research (Sun 1997) (Kumar & Desai 1994) (Chang & Chen 2018) demonstrates the application of 

image pyramids to increase the speed of the stereo matching process although Chan and Chen combine 

the pyramidal approach with a 3D Convolutional Neural Network (CNN). The advantage of the 

pyramidal approach is that broad detail and context is preserved at lower resolutions but also presents 

vastly less search area to minimise cost. 

Camera Calibration 

Camera calibration is a critical first stage for any machine vision application. Calibration of the cameras 

in the system seek to estimate the variables involved in transferring information from the external world 

to the image plane of the camera. These variables are noted as intrinsic and extrinsic parameters and 

deal with the effects of the physical sensors and lenses contained in the system. Intrinsic factors 

represent the camera internal characteristics such as focal length, sensor size, image centre and any 

distortion, radial or tangential, applied as a function of internal lens placement. The extrinsic parameters 

relate to the position of the camera system in the outside world and its orientation. With these parameters 

estimated after the calibration stage the elements of the 2D image can be accurately transposed to the 

3D world forming the basis of machine vision-based sensing of the real world. Zhang (2000) presents 

the widely accepted method for camera calibration in their paper whereby multiple images (at least two)  

of a calibration target are procured and the image is referenced against the known targets configuration 

so these parameters can be estimated and applied to all subsequent images captured by the system. A 

chessboard or ArUco marker are the default selections that can be used as a calibration target as these 

provide high contrast and sharp edges or corners that are clear and simply identified in machine vision 

algorithms (OpenCV 2022). Remondino & Fraser (2006) present a number of approaches to camera 

calibration. The capture of a known calibration target is demonstrated in a number of approaches as in 

(Heikkilä & Silven 1997) (Tsai 1987) (Zhang 2000) also utilising the pinhole camera model to simplify 

the extrinsic and intrinsic variables which are used to calculate the essential matrix. Zhang (2000) 

presents a method for image camera calibration based around the pinhole camera model which has been 

adopted as the standard for future research into fast and accurate calibration algorithms. OpenCV 

utilises the pinhole camera model and leverages heavily from the implementation suggested by Zhang.  

 



A direct linear transformation (DLT) is one of the methods used for estimating intrinsic variables Qi, 

Li, & Zhenzhong (2010) summarises the typical approaches and suggests an artificial neural network 

to further calculate the cameras radial and tangential distortion for a more realistic non-linear model 

rather than the simplified pinhole camera model. 

Critically, many web cameras are automatically implemented with auto focus functionality enabled and 

when a calibration target is being moved for capture the camera system can often refocus to best display 

the target. This function alters the intrinsic parameters of the camera in between calibration target 

capture and therefore causes the estimation of these assumed static variables to be incorrect (Ricolfe-

Viala & Esparza 2021). It is therefore imperative that the autofocus is disabled when camera calibration 

and operation is underway. While studies have suggested ways in which auto focus can be implemented 

during the calibration and operation stages the simplicity in fixing the camera focus particularly where 

fine detail is not required should mean a reduction in algorithm complexity and computational cost. 

Rectification 

Image rectification is the correction of subsequent images using the estimations of the extrinsic and 

intrinsic parameters found in the calibration operation. This step is required to accurately represent the 

captured images as a representation of the outside world critical for machine vision applications but 

moreso for stereo applications where each system is referenced to its partner. 

The stereo rectification process seeks to not only correct the distortion in the images but also to align 

the captured image pairs to their partner along epipolar lines and reprojecting the image pairs on a 

common plane. This reprojection along a common plane makes stereo matching and disparity 

calculation simpler (Pollefeys,Koch & Van Gool 1999).  

Epipolar lines 

The epipolar plane is defined between the epipolar lines from each camera and the line between the 

camera’s projection centres. The result of the creation of epipolar lines creates a method of aligning 

observed images between two misaligned camera systems. Effectively observed images exist along the 

same epipolar line in each image plane. This is the basis of simple stereo matching algorithms which 

track along the defined epipolar line with some criteria to match the blocks for stereo assessment. 

Stereo typical search functions 

The research conducted into stereo matching algorithms has some almost universal reference points that 

many of the current implementations refer to in their development. Birchfield and Tomasi (1999) 

discusses the calculation of a dense disparity map quickly while dealing with untextured regions and 

post-processing for complete and neat edges of images. Hirschmuller’s (2005)(2007) research into 

developing the semi global stereo block matching algorithm that forms the basis of OpenCV’s disparity 

map calculations (OpenCV 2022)and Konolige’s (2010) StereoBM function. 

2.4.3Monocular depth 

Carrio et al (2020) presents a method of stereo vision implementation with a machine learning model  

which identifies a UAS and trains a model from the resulting high resolution (1920 x 1080 pixel) 

disparity and the depth when viewed from the camera system. Similar approaches are demonstrated in 

other works which yield accurate results on low power computers (Thorat, 2019). The depth 

calculations are used to train an early stopping strategy from a 470-image dataset prior to data 

augmentation to increase the training data and validation sets. This approach utilises a far more powerful 

computer to capture high resolution images and train the model. The object detection reduces the 

requirement for dense disparity maps instead highlighting an target and applying stereo matching and 

distance calculation to it solely. This reduces the image processing cost and leaves overhead for other 

functions. This application can be implemented on a low power computer to interpret the model 



particularly the application in Tensor Flow for Microcontrollers (TFmic). Importantly, this model uses 

a Nvidia Jetson TX2 a device designed for AI execution with considerably more power, 2.5 times more 

than the Nvidia Jetson Nano, one of the prospective companion computers investigated, as reported by 

Nvidia (2022). The camera system is a ZED pre-calibrated camera system with a narrow 12cm baseline 

which autonomously filters disparities to yield continuous disparity maps. The system has a default 

range from 0.4 – 25m and a maximum range of 40m. With this setup effective training of the machine 

learning model could be trained for distances up to the experimental goal of 40m but the prohibitive 

cost of $449 excludes this camera system from selection. There is a similar option in the Intel Real 

Sense ($499) which has been excluded for the same reasons and a recommended range of up to 6m 

(Intel Corporation, 2022). 

Cherry (2021) demonstrates a reliance on scaling and definition, relative size, absolute and familiar 

size, elevation, texture gradient, motion parallax, aerial perspective, linear perspective, overlap, shading 

and lighting. In the employment of a CNN in this study the weights attributed to these variables were 

not investigated. The work by Saxena, Schulte and Ng (2007), demonstrate detailed depth maps using 

monocular and stereo cues using Laws’ masks and oriented edge filters to assess texture variations. 

They cite the requirement in biological systems that learnt cues ie. the colour of the sky or grass, the 

significance of occlusion, blurring and haze that develop as cues to depth and requires the overall 

context if the image is to be effective. The detail of the stereo correspondence is minimal, but it is 

defined the sum or absolute difference (SAD) minimising which finds 0.2px disparity which is very 

accurate. This method is used in other matching criteria in the literature and seems a robust, simple and 

efficient approach.  

Miangoleh et al (2021) presented an algorithm that uses varying resolutions in an image pyramid to 

develop areas of contextual information that is then blended with higher resolution information that 

may sacrifice these contextual clues by utilising a smaller field of view. This develops the approach 

from the MiDAS approach which attempts to optimise the scene structure and high frequency 

suggesting their approach detail depth discontinuity disagreement ratio. 

The trade-off is an intelligent complimentary filter style combination of data that results in high quality 

depth estimates that exceed MiDAS trained algorithms. The problem is that this algorithm erroneously 

estimate depth where no physical depth exists eg. Images of a scene or possibly a reflection. This may 

mean that this type of algorithm may give false indications in dense urban environments where many 

points of reflection exist. 

The MiDAS algorithms might be difficult to implement on a Rpi but this is the basis for likely the future 

of depth calculation there are multiple other indication of effective use of machine learning aiding stereo 

algorithms. 

Poggi et al (2008) developed an algorithm that could effectively run at 1.7s per frame on the Rpi 3 from 

a web camera. Other frequency 2Hz and 150MB of memory. Again, using a pyramidal feature detection 

to cover the requirement for local and general features that imply depth. Importantly using 720p web 

Figure 3 - Monocular Vision Error with Inferred Depth 



cameras have enough disparity and via a robust training network which is enough to output a very 

accurate depth map. 

The report is transparent with its resource allocation and cost and is likely the time for calculation would 

only be improved with more up to date architectures such as the Rpi 4. However, the drawbacks due to 

networks training costs and the resources required preclude it from selection as a part of this project. 

Further work is expected in this field and will likely form the basis of future applications. 

The implementation may be improved using machine learning models trained externally and 

transitioned to more economical routines as with TensorFlow Lite for Microcontrollers (TFmic). This 

implementation can convert larger models trained through Tensor Flow into Tensor Flow Lite and then 

into an even smaller version in the TFMic versions to be run on the Cortex-M series, for 

microcontrollers. The Raspberry pi 4 has a more powerful Cortex-A72 Processor designed for a higher 

performance standard but also runs an operating system which could bog down the processing speed 

(Sirin Software 2018). 

2.4.4 Optical flow 

Optical flow is another monocular distance measurement option. The basics of the optics and structure 

from movement, there are several methods available to recreate structure from motion that relies on 

tracking a point from one frame to another across a time step. 

Lucas-Kanade(LK) method relies on small movements within a neighbourhood of pixel to track a pixel 

along a path. With this movement the speeds of the viewing camera and the viewed object can yield 

structure with which to reconstruct the image and infer depth of the viewed object. Javidnia and 

Corcoran (2017) state a criterion for accurate LK optical flow calculations. Small motion steps, texture 

rich features and smooth movements. The method uses ORB feature matching to gather correspondence 

and utilises the Huber loss function for structure optimisation which effectively reduces the effect of 

outliers of estimates. 

The optical flow method would likely suffer for distance estimation, given that a larger distance from 

the camera will result in a smaller movement in the image plane. The cost in implementation would be 

reduced by relying on a region of interest, that is the delivery point, but would increase the likelihood 

of inaccuracies because of the “barber pole” effect of reduced contextual information regarding flow in 

the scene. 

The equation to infer depth from movement relies on robust tracking of a point between two 2D image 

frames and data relating to the velocity of the viewed object, velocity of the camera observing the scene, 

the focal length of the camera and the position of the point in the image relayed in Baraldi, Micheli and 

Uras’ work (1989). This paper uses newspaper sheets to enhance the texture or optical interest in the 

scene to better track individual points. This indicates that in an outdoor environment this method may 

work well when viewing a ground level delivery point. The experiment also displaces the optical and 

translation axes to reduce noise in the calculated depth as a function of the focus of expansion. The 

focus of expansion being the point where closing flow vectors meet (O’Donovan 2005). 

Equations have been reiterated in several papers, Refer below 

Figure 4 - Velocity of image point from optical flow (NYU 2012) 



This equation presents the velocity of the points in the image plane and rely on focal length, object 

velocity in the world and the translation velocity along the Z dimension along the path of travel, and 

the physical depth of the object in the path. 

To infer depth, the image plane velocity (vx/vy) can be estimated given two consecutive images with a 

small time between them to ensure that the tracked points are within a small neighbourhood. This 

change in position in the image and the change in time (dt) can then be used to estimate image plane 

velocity and with a known translation of both object and camera the depth can be calculated, which 

obviously relies on the same point being identified correctly in each image relating to the stereo vision 

disparity measurement. The camera translation speed Vz will be the velocity of the UAS, the delivery 

point will be stationery which will reduce the complexity of the calculations. 

To enable image matching between the two images colours of the point must be the same. The 

translation of the viewing camera can not only create occlusion of the image point or in a dynamic 

world shadow or light may change because of the cameras angle inducing a reflection or change in the 

surface in the world. HSV colour schemes are less likely to be affected than RGB colour schemes 

(Mamdouh 2020). 

The implementation of the L-K sparse optical flow occurs using pyramidal iterations, looking at high 

level disparities then refining the resolution to reinforce found movement and introduce finer details. 

Sparse optical flow can result in robust tracking (NYU 2012) and is useful when larger movements are 

expected between image capture. 

2.5 Hardware 
Of note is the relatively high-end hardware that a majority of the most accurate and efficient algorithms 

use when compared on the Middlebury Vision (Scharstein, D, Szeliski, R, Hirschmüller, H 2022). Li et 

al (2020) UAS mostly reliant on cloud computing and mobile edge computing (MEC) might be a viable 

solution to alleviate the latency on the network. This would have flow on effects for infrastructure 

investment and the wider employment of UAS for monitoring and offboard computing. This may not 

be possible in regional and remote areas of Australia where remote network infrastructure is unlikely 

to be appropriate for MEC or offboard computing applications. The placement of markers, common in 

the popular UAS delivery guidance models may also not be suitable in remote areas in emergency 

situations or where access is difficult, or personnel are not available. Therefore, a delivery method that 

does not use a marker would have a large amount of flexibility if the method can be accurately 

implemented. 

2.5.1 Companion computer 

The companion computer will be required to calculate the stereo disparity maps and also make decisions 

via a state machine to pass updates to the mission on the autopilot. The listed examples of the companion 

computers from the Ardupilot documentation shows numerous ARM-based single board computers 

with the ability to communicate via MAVLink protocols. There are numerous options that could fit this 

broad brief, the other influencing criteria are cost, CPU and GPU capacity, camera inputs, power 

requirement, I/O interface and availability. 

The initial shortlist was as below:  

• Jetson Nano Development Kit 

o GPU (stereo projects) and GPIO pins 

• Raspberry pi compute io 4 

o Can’t fit an external GPU to it 

• Raspberry pi 4 

o Has a little GPU might be a problem 



The stereo algorithms investigated leveraged heavily on GPU operation given the nature of the matrix 

operations and so a more sophisticated computational capacity is preferable. The Jetson Nano presents 

the most powerful GPU of the list and carries a duplicated GPIO set as the Raspberry Pi presenting 

itself as a preference for selection. 

 

2.5.2 Camera system 

There are a number of self-contained stereo camera systems that are pre-calibrated such as the ZED 

series and the Intel Real Sense. These units demonstrate excellent stereo depth with convenient API 

control for data collection but are expensive and often have reduced distance given their narrow baseline 

as detailed in the literature.  

There are a number of camera systems available predominately transferring data via USB or CSI. The 

camera systems should be compatible with the data transfer connections of the companion computer. 

The CSI ports are capable of higher data transfer rates than USB 3.0 (Kumar 2022) and are available 

on many of the low power typical companion computers utilised with UAS. 

The cameras available from Raspberry pi are low cost and reliable and come in a variety of resolutions. 

Given the assessment of an increase in captured image resolution the highest resolution camera 

available is from the Raspberry Pi HQ camera. 

Capturing synchronous images has been demonstrated to be imperative when stereo matching (Zhang 

2010) and hardware synchronisation is not always reliable and can introduce lags in real-time operation. 

Camera multiplexers have been used successfully in some of the studies in the literature and should be 

a focus for procurement if required. 

The camera system requires mounting and control via the UAS meaning a gimbal or mount must be 

procured. In this case given the flexibility of the final camera system a customised gimbal system could 

be appropriate given the complexity that multi-DOF gimbals would introduce into the system. 

2.5.3 UAS Platform 

The platform requires a minimum payload capacity of approximately 1kg (Placek, 2022) to enable it to 

lift the delivery payload as well as the companion computer, avionics, and the stereo camera rig. A 

generic commercially available frame would be sufficient. 

2.6 Conclusions 
For this design the approach is a simple direct point approach at a fixed speed and altitude. The height 

will be set to avoid ground level obstruction and minimise the effects of wind, approximately 40m, for 

the least climb and the simplest approach to a point maintaining a fixed altitude. The delivery method 

will be a cruise speed level altitude release in the case where there is no obstruction. Distance from the 

target to release the payload will be calculated by a simple 2D continually calculated release point 

algorithm. In the case of obstruction, the delivery method will be modified to a hover over the delivery 

point and drop, while not the most efficient, it should result in an accurate delivery.  

  



Chapter 3 - Research Design and Methodology 

3.1 Hardware 
The basis of the design is to utilise common hobby equipment and implement the stereo distance 

measurement. In that respect the following selections have been made for investigation: 

Companion Computer – Raspberry Pi 4, typical, low cost, companion computer utilised for a diverse 

range of applications.  

 Raspberry Pi 4 Model B 4GB RAM (PiAustralia 2022) 

• 1.5GHz Quad Core Cortex A72 ARMv8 

• 4GB of LPDDR4 SDRM 

• Integrated Graphics(OpenGL ES) 

• Two USB 3 ports 

• Two USB 2 ports 

• Two microHDMI ports 

• WiFi, Bluetooth and Gigabit Ethernet 

• One CSI port 

Arducam stereo Hat – This module fits onto the GPIO and allows for twin synchronous image capture 

and transfer via CSI ports also an external power supply. 

Raspberry Pi HQ cam (SONY IMX477) – The HQ camera modules use a CSI connection and are 

capable of 12.3-megapixel, 4056 x 3040 pixel images with a 1/2.3” sensor format. 

Lenses – LN050 16mm focal length lenses with 24°(horizontal) field of view (FOV) 

Stereo Gimbal – A 3D designed and printed integrating a SG90 servo and a rigid 1-DOF positioning 

the cameras in a fixed plane. 

UAS frame – S500 quad copter frame with Cube Orange autopilot 

Release mechanisms – Eflite EFLA405 servoless payload release modules (4) 

Given the global climate of logistics and chip shortages at the beginning of 2022 there was considerable 

difficulty in purchasing any of the companion computers required for this implementation. A Raspberry 

Pi 4 B (4GB) was procured with which to begin and although this was a tertiary choice. The cost of the 

build is detailed in Table 1 below. 

    

  



   Table 2 - Stereo Machine-Vision Implementation Cost 

Item Quantity Cost 

Raspberry pi 4 B 

(4GB) 

1 $92.40 

Arducam Stereo 

Camera Hat 

1 - 

Raspberry Pi HQ 

Camera (Sony 

IMX477 

2 - 

LN050 16mm 

Lens 

2 $224.99 (kit cost) 

CSI ribbon cables 2 $3 

SG90 servo 1 $2 

E flite servoless 

payload release 

4 $58.16 

Total - $380.55 

 

3.2 Methodology 
The stereo distance measurement process follows the typical methods detailed in the literature following 

the work detailed in OpenCV’s library (2022). Initially it is vital that the cameras are calibrated, and 

the camera images rectified prior to operation. After the calibration and rectification process is 

completed, the operational images can be captured and corrected using the calculated extrinsic and 

intrinsic variables and the stereo matching algorithms can create a depth map. Using the depth map 

created by the matching algorithm the depth can then be calculated as a function of the focal length, 

field of view and baseline of the camera system. The following details the stages of the process required 

to calculate depth from stereo images. 

 Calibration 

The first step of the machine vision accrual of images in the understanding of the intrinsic and extrinsic 

factors that affect the captured images. There are several factors that arise from the lens and camera 

sensor manufacture known as intrinsic factors. 

Generate the reprojection error which is the pixel difference between the 2D vectors as they would exist 

in the 3d plane 

 Undistort 

Use the calibration data and apply it to the new images thereby accurately displaying the images as they 

should appear in the world. 

 Rectify 

The rectification method is critical in the ability to match the windows and create an accurate disparity 

map. This step ensures that both image planes are aligned horizontally so that matching algorithms can 

search along a single line of pixels rather than use a larger window or a more global search pattern. 



 

 Disparity map 

The stereo disparity maps created in this implementation will be made using the functions available in 

OpenCV’s library and follow the methods of Konolige (2010). Using the OpenCV stereo matching 

algorithms StereoBM the pixel row is checked for matches between the left and right image and if a 

match is found the difference in the relative positions in the image plane is the disparity for estimating 

depth. 

StereoBM algorithm is a customised block matching approach implementaed by Konolige(2010) an 

epipolar search matching blocks and minimising the error using SAD, SSD or NCC. The semiglobal 

block is adapted from Hirschmuller’s (2007) work and extends the search pattern to eight directions 

reducing reliance on accurate rectification and yielding better results but being more expensive. 

The stereo disparity calculation algorithm StereoBM uses a block matching algorithm where a defined 

window tries to match a segment of the left and right images along epipolar lines of the rectified images. 

The algorithm relies on the sum of absolute difference (SAD), which minimises the effect of large 

outliers in a search area (Konolige 2010), in relation to the error in block comparison to find a minimum 

and suggest the most accurate match other comparisons are available such as sum of squared difference 

and normalised cross correlation which perform slightly differently particularly with block size is small 

(Ambrosch et al. 2007). In regions of optical uniformity or with areas of repeating patterns along 

epipolar lines it can be clearly assumed that errors in this matching function will yield a low-quality 

disparity map. It is therefore important that the environment is optically interesting as with most 

machine vision applications. Importantly the stereo matching variables are only applicable to one image 

set and as the target or environment change further tuning is required.  

Figure 5 - Stereo Calibration and Rectification procedure (Ni Vision 

Concepts 2022) 



Depth calculation is a simple geometric triangulation after the creation of a disparity map that relies 

heavily on the object depth and the focal length and baseline of the camera setup. The detection of 

change of depth or depth resolution is given by the equation below for disparity calculated as the change 

in position of the subject between the left and right image(Δz), depth(z), the distance between the 

cameras (b), the focal length f and the change in distance from the stereo setup(Δd). 

     

 

 

 

In order to maximise the baseline within reason or the s500 platform so the stereo camera system would 

not impair the movement or risk damage to the camera or UAS. High resolution cameras to increase 

the ability for differentiation and disparity calculation. The Arducam Stereo Camera Hat outputs a 

composite image from the two cameras at a resolution 4056x3040 pixel image containing the left and 

right image 2028 x 3040 image per side. The general approach is listed in stages below: 

• Take a stream of images and use the read() operation to select the image 

• Use the calibrated corrections to remap and undistort 

• Make it greyscale to be used for stereoBM 

• Use StereoBM because it’s quick and decently accurate also stereoSGM which is more accurate 

and only a little bit more expensive as an option to prepare the disparity map 

• Use the focal length, and baseline to calculate the depth. 

• Combine the Optical flow depth assessment 

• Dense optical flow on a ROI around the commanded delivery point 

Figure 6 - Depth calculation from stereo disparity (OpenCV 2022) 



Modify the approach to elongate the translation that is perpendicular to the approach vector. This should 

increase the accuracy of data from depth from optical flow. A fixed height approach should satisfy this 

requirement. 

Blend using EKF, this should ensure that there is some credulity to the data. 

If the distance measured is less than the GPS distance to the point by the minimum variation calculated 

by the optics then the decision to alter the delivery method is made. 

The continually calculated release point is calculated as a function of the vertical and horizontal speeds, 

the altitude and the payload variables returning the distance from the target required for release. During 

a cruise release the GPS position will trigger a delivery rather than the stereo system. 

When modified to a hover delivery when the UAS arrives at the GPS position of the target the payload 

is released then the mission reverts to the cruise delivery for the next point. 

Regulatory restrictions of UAS operation detailed by CASA are detailed below and will inform the 

deployment and testing phases of this implementation. The controlled environment of the testing areas 

will mitigate the risks as defined in Appendix 15. 

Information regarding the operation and registration of UAS is defined through the CASA regulations 

(CASA 2021). A number of points are to be observed for UAS flights; 

• UAS must be registered for research and development purposes.  

• Must use a remote pilot licence or an RPA operator accreditation. While this design doesn’t 

consider night flying other registration and requirements are in place in accordance with the 

CASA beyond visual line of sight (BVLOS) Limits as to  

• Flying within 30m of people (not closer than 15m) must have a remote piloted operator’s 

certificate (ReOC) and a remote Pilot Licence (RePL).  

• To operate within 15m weight under 150kg, consent from personnel, minimise safety risks, 

document practices (RPAS operations manual), no closer than 15m do not fly above any person.  

• All personnel with 30m must give consent. 

• Dual redundant battery systems with mountings 

• Proven ability to fly safely with 1 motor inoperative with maximum take-off weight 

• GPS hold and return home function with 7 GNSS satellites 

• Not within 5.5km (3nm) of controlled aerodrome 

• BVLOS operation requires RPA flight auth, include risk assessments, complete a flight 

assessment 

 

3.3 Design of test 
The following breaks down the expected iterative testing process to prove and assess each stage of the 

implementation. 

Test 1: 

Assess the stereo algorithms in the creation of the disparity maps. Use variable Middlebury Dataset 

images; artroom, ladder and pendulum. 

The disparity map will be assessed qualitatively to assess the clarity and discrimination of the subject 

and how it compares to the truth table provided with the image pairs. 

• Density and discrimination 

• Speed of changes made through tuning indicating calculation of a single frame. 



• The values of the variables to be used for similar scenes during UAS testing. 

➢ These are rectified HD (1920x1080) resolution images that output a robust disparity map using 

the OpenCV stereo algorithms when they are optimally tuned. 

➢ The subjects affect the variables that are used. Close detail as in artroom displays a poor 

disparirty map when attempting to observe the close detail this is acceptable in that the targets 

are at a range meaning that large disparities, which indicate a close subject, is not what this 

system would use. To maximise the viewing window using a small, 3 by default, minDisparity 

which sets up the comparison pixel window and sacrifices close detail detection. The noise 

created by this sacrificed can be offset by increasing the uniquenssRatio. 

➢ Optimal variables for depth resolution as seen in Ladder and Pendulum indicate that a lower 

minDisparity, a middling numDisparity, a small block size, a high uniqueness ratio and a very 

high P1, P2 to post process the disparity map. 

➢ This ensures that the results reject noise and capture as much  

➢ (genuine?trustable?dependable?) results while also rejecting noise. 

➢ Transport these variables to a camera setup and test again. 

Test 2: 

Assess the cameras setup using the same variables that we identified in test 1. 

Using the test rig on a marked and measured area looking at a chessboard calibration image on a box at 

ranges out to the maximum disparity detection and assessing the accuracy of the distance calculated. 

• Density 

• Speed (USB at varying resolutions) 

• Distance accuracy 

• I increased the GPU memory from standard 128 to 256MB that worked to capture full 

resolution could this be managed between disparity and image capture? 

Test 3: 

Outdoor setup and control of UAS decent. Using the stereo camera setup as an altimeter the UAS will 

hold a GPS position and descend through an arbitrary decision height. 30m descend through 20m to 

10m. On the 20m detection the UAS will indicate that it has detected the distance (spin? RTL - success 

or fail landing pad) 

• Observe success 

• Assess accuracy via tlogs 

Test 4: 

Fly at an interlocking plastic brick wall. Designate a delivery point behind the wall to trigger a decision 

to hover or cruise delivery drop. 

Fly straight past with no detection or hover with detection 

• Assess success 

• vary speed/height until failure 

 

1. Utilising a closed testing area with enough space to safely operate the UAS and setup the testing 

required. 

2. Use interlocking bricks approximately 30 x 10cm, a “Lego” style block to build a wall to act as 

the obstruction built to a height of approximately 2m at an initial distance from 3m from the 

delivery point. 



3. GPS RTK to layout the positions for release, positioning of wall and the designated delivery 

position. 

4. Setup a mission via ArduPilot to match the positions including secondary and tertiary delivery 

point closer to the obstruction to test the resolution of the depth measurement. 

5. Setup video recording devices for the drop zone, wall and the UAS. Tripods to enable sufficient 

field of view for review. 

6. Run the mission and assess the position of the dropped object and the change in delivery 

method. 

7. Move the delivery position and remap the GPS position and change approach speeds 5, 10, 15 

m/s 

8. Review footage and assess the outcomes.  



Chapter 4 - Implementation Discussion and Results 

4.1 UAS frame 
The frame has a payload carry weight of 4kg and a typical endurance 60 minutes and speed of 15m/s 

these values are suitable for a test bed and to carry and deploy the test payloads (tennis balls) for flight 

testing. The camera gimbal does not exhibit a large increase in weight given its manufacture from 30% 

infill PLA 3D print and the negligible weights of the hollow carbon fibre gimbal rod, camera mounts 

and gimbal servo. The cameras do present a slight increase to the weight and their eccentric loading on 

the gimbal rod has been managed through the design of the camera mounts to provide a slight 

downwards attitude to minimise the load on the servo when typically, over larger transit distances the 

servos will be horizontal as a function of the height and the ground distance to the target.  

Given the performance of this frame is largely restricted because of the stereo processing speed the 

speeds and endurance of this frame are not directly assessed as a measurable indicator of this design. 

The fixture of the cameras on the gimbal rod are likely to exhibit modal vibration which may affect the 

position and calibration of the stereo setup.  

After flight testing has occurred a reassessment of the calibration is to be carried out, further securing 

the cameras would reduce the requirement to recalibrate should the individual cameras not move 

relative to each other although the vibration may reduce the efficacy of the calibration and therefore the 

disparity during specific flight envelopes. Review of the flight profile versus the disparity calculation 

may elucidate the effects of the gimbal’s modal vibration. 

4.2 Stereo Vision Implementation 
The stereo distance measurement order of operations is detailed below the detailed programs written to 

carry out this process are detailed in Appendices I – R. 

4.2.1 Image Capture 

The image capture occurs continuously throughout the algorithm using a video capture mode which 

enables the sensor to stay active in between shots to enable the highest frame rate over still capture. The 

camera synchronicity was tested by capturing images of a running stopwatch. On review of the captured 

image pairs, it was evident that the image pairs are not captured synchronously with the USB OpenCV 

camera read function yielding a 0.08s delay between cameras. After implementing the grab commands 

for both cameras and then utilizing the retrieve commands on the raw camera data, both of which are 

called during a single read command, the delay between image pairs was reduced to 0.03s between 

pairs. The image capture in the UAS implementation through the Arducam Stereo Cam Hat was tested 

in the same way and proved to be a synchronous capture of image pairs suitable use without correction. 

The delay in captured image pairs when coupled with a translating camera system would have a large 

effect on the disparity map captured during this movement. The simple epipolar search of the StereoBM 

function, even after the calibration and rectification has taken place, would be unlikely to account for 

the y-axis misalignment of the image pairs and therefore would be unlikely to produce high quality 

disparity maps unless the block size was increased in order to account for this misalignment. The testing 

of the corrections required were outside of the scope of this implementation but research (Ambrosch et 

Figure 7 - Stereo Calibration (top) and Operating Operations (bottom) 



al. 2007)(Konolige 2010)(OpenCV 2022) has shown that an increased block size will result in a more 

computationally taxing matching algorithm if it would work at all.  

Image capture resolution is a simple designation in the capture program but must be consistent between 

the calibration and stereo matching programs as discussed below. 

The USB cameras used in the initial test build had auto focus enabled as a default setting which 

constantly readjusts the focal length to ensure the highest quality recording of images with varying 

subject depths, but the adjustment of focal length alters the intrinsic variables of the camera system 

therefore rendering the corrections and rectifications incorrect. OpenCV has functions to control a 

number of settings of the camera system, and while a number were utilized, attempts to disable the auto 

focus were unsuccessful via code. Open Broadcaster Software is an open-source video and streaming 

program which allows extensive customization of the streamed images. With this application the focal 

length could be fixed thus preserving the calibration data captured. 

4.2.2 Calibration and Rectification Assessment 

Calibration and rectification are the most important steps when attempting to employ stereo machine 

vision to interact with the outside world. The process was broken down into creation of an appropriate 

calibration target, capturing calibration images, calculating calibration variables. The rectification 

process remaps the images onto a common plane using the camera intrinsic and extrinsic variables. The 

processes followed here are heavily influenced by the tutorials published by OpenCV (2022) regarding 

this process, I have also taken influence and combined implementations from Nicolai Nielsen(2022) 

and LearnOpenCV (Sadekar 2021). The processes were incrementally deployed using the USB camera 

test bed this required variations to the approach and developed limitations discussed below. 

OpenCV employs a chessboard, among other calibration targets, that can be customized prior to use. A 

9 x 6 interior corner chessboard calibration pattern was used printed on an A4 sheet as shown in 

Appendix 1. This image must be displayed to the camera system on a single plane and it was taped to a 

cardboard sheet prior to any attempts to capture the images. 

The literature review Hirschmuller (2007) cited a chessboard image held in landscape orientation 

covering 50% of the image and capturing at least 2 images provided the best calculation of intrinsic and 

extrinsic parameters and to ensure that all areas of the image area are captured with the chessboard 

calibration target in both camera images. The capture and calibration method used in this way adds 

image points to all areas of the camera field of view which results in a larger useable corrected image 

area. 

This led to complexity when trying to balance the capture of the chessboard target in all corners of both 

images. If the size of the image is not large enough the calibrator program may not detect or worse 

incorrectly append the chessboard corners thereby returning erroneous calibration data resulting in poor 

rectification refer Appendix 3 

In practice the original capture of the calibration target at a distance of approximately 2m resulted in no 

chessboard corners found from a 640x480 image from approximately 20 – 40 captured image pairs. 

After extensive testing varying the light, distance and captured resolution, up to 720p, no successful 

calibratable images were found. Adjusting the approach to calibration I utilized MATLAB’s Image 

Processing and Computer Vision module and the Stereo Calibrator App. Using this toolbox, I was able 

to consistently capture calibration image pairs and by designating chessboard corners calibration was 

successful for over 95% of captured images, refer Appendix 5 

The reprojection error, or the accuracy of the corrections applied as a result of the calibration variables, 

resulted in approximately 5 pixels which is a poor result. The application of these corrections in the 

undistortion and rectification of test image stills to create a disparity map created exceedingly poor 

disparity maps and extensive tuning of algorithm variables could not return a useable disparity map. 



Further testing revealed that one of the cameras had a significant distortion area in the center of the 

captured image which was a considerable departure from the expected image quality especially when 

compared to the matched camera pair. 

After a new USB camera pair was purchased with a higher maximum resolution, 1080p, chessboard 

calibration images were captured again using the OpenCV methods and were successful. The calibration 

images were captured initially with a 0.08m baseline at a 640x480 pixel resolution and the find 

chessboard corners method captured successful and accurate corners for >95% of captured images. 40 

images were captured and reprojection error was calculated at 0.02 pixels which is exceedingly 

accurate, but likely inaccurate. The results of the calibration and rectification can be assessed by 

reviewing the reprojection error of the calibrated images. The reprojection error when using 640x480 

images is calculated at 0.04 pixels which is an excellent result indicating that the calculated intrinsic 

and extrinsic variables have been accurately to correct the calibration images. This in turn allows for 

accurate rectification resulting in captured images that represent the outside world. The result of this 

reprojection error was calculated following the tutorials from OpenCV (2022) but given the excellent 

result doubts were introduced as to the certainty of this result. Regardless the calibration, undisortion 

and rectification of the image pairs yielded good quality rectified images which were qualitatively 

compared using stereo anaglyphs prior to calculation of the disparity map. 

For subsequent tests that extended the baseline to ~0.30m introduce further complications when 

balancing the detectable distance of the A4 calibration target, the distance from the camera system and 

the requirement to capture the calibration target in both image pairs in all areas of both images. Initially 

the increase in distance utilizing the low resolution caused failures in chessboard captures and 

incorrectly add image points through confusion of chessboard corners, refer Appendix 3. 

The was as a function of the distance from the camera system and the captured image resolution so to 

balance the computational cost the calibration target was enlarged, initially to an A3 size for smaller 

baselines and eventually with the final implementation and the distance required given the baseline and 

the narrow field of view of the Raspberry Pi HQ camera lenses four A3 sheets were used to capture the 

calibration target at distances of approximately 5m as required. The result of the narrow field of view 

lead to a difficulty to capture all areas of the original camera image which reduced the calculated image 

points through the calibration process and therefore a reduced usable area available after undistortion 

and rectification. 

The process of calibration and rectification as it is the most crucial stage of the depth calculation 

procedure also exposes the algorithm to the largest variance. Poor quality calibration images and poor 

technique in capture add cumulative errors since the assumption is that all captured images represent a 

true and accurate representation from which to calculate the extrinsic and intrinsic parameters. 

Ground level testing demonstrated retention of the camera calibration variables without the need to 

recalibrate. The likelihood that recalibration is required after flight is high given the large amount of 

vibration likely to affect the gimbal assembly. Further, any changes in the camera system baseline, focal 

adjustment and image resolution all require a repetition of the entire calibration process prior to use. 

4.2.3 Disparity Map 

In initial testing attempts when reacting a disparity map in MATLAB following the calibration and 

rectification methods applied by the Stereo Camera Calibrator App. Utilising the captured calibration 

images as the reference images with which to create the disparity map and the rectification is applied 

to this image pair. A stereo anaglyph is produced to ensure that the distortion and rectification have 

been applied correctly before these rectified pairs are passed to the disparitySGM algorithm with some 

default parameters for disparity range and uniqueness factor. A qualitative assessment of the initial 

disparity maps even when varying the variables were very poor. Speckling was severe with little to no 

continuity along any detail from the reference images, Appendix 5. 



Since calibration was difficult and returned poor disparity maps, attempts were made to create disparity 

map without calibration utilising object recognition through Oriented FAST and rotated BRIEF (ORB) 

matching through MATLAB’s detectORBFeatures function as detailed by Rublee et al (2012). This is 

a simple concept where ORB features are matched between the left and right stereo image pairs and an 

estimated fundamental matrix is calculated allowing for a rudimentary rectification by aligning the 

matched SIFT features on the same epipolar lines. A disparity map can then be created after these points 

are aligned in the best estimate as per the disparitySGM algorithm. Figure 6 shows the result of the 

ORBmatching uncalibrated rectification disparity map result and represents a good approximation of 

disparity, even without tuning, because of the ORB feature rectification and therefore does represent a 

possible avenue for future work. 

After the new camera system was obtained OpenCV was used to produce disparity maps using the 

StereoBM and the StereoSGBM functions. Given the success of the calibration and rectification stages 

through OpenCV’s implementation the disparity maps could be created and assessed. To being the 

implementation the StereoSGBM function was used, given its extended search patterns, in order to 

maximise the chance of a high-quality disparity map being produced if calibration and rectification had 

a higher reprojection error. Initially, default variables were used as a proof of concept and the disparity 

map was qualitatively assessed, the results were poor. To make the tuning of these disparity map 

variables more efficient and to gain some indication of the speed of processing a GUI was created 

(Sadekar, 2021). This GUI allowed for adjustment of the variables to tune the disparity map for 

qualitative assessment through a continuous loop and vastly increased to speed of the tuning process 

while also making clearer how each variable affected the map’s quality. It was through this process that 

good quality maps were created and the key variables for varying image compositions were identified.  

The variables that can tune the stereo matching and disparity map creation are detailed below. The 

alteration of these variables makes dramatic differences to the clarity and continuity of the disparity 

map, and the effective range of detection. 

StereoBM variables 

Block Size – How much of the image is attempted to be match with each pass 

Disp12maxdiff – Defines the maximum difference in the comparison between matches going from right 

to left and from left to right. 

Figure 8 - Disparity Map After ORB Feature Rectification 



Mindisparity – An initial offset from which to start the block match. This will enhance the disparity 

detected from subjects in the foreground but will often overlook element in the background where 

disparity is small. 

Numdisparities – how far along the search area, usually the epipolar line, to translate the window in 

search of a match 

Prefiltercap, Prefiltersize – Pre-processing variables that enhance the texture in a region and normalise 

the brightness of the image prior to block matching which increases the accuracy of the algorithm. 

speckleRange, speckleWindowSize – Speckles are produced at the edges of subjects in the image or 

where the algorithm incorrectly attributes a match. These post-processing variables remove the speckle 

by ensuring that it is below a certain size or how distinct it is from its neighbours. 

TextureThreshold – The minimum allowable texture from any region of the captured image. The area 

is rejected if under this threshold. 

Uniquenessratio – A weighted comparison between the next best minimum match in the search 

algorithm in terms of percentage. 

StereoSGBM variables 

The variables for the semi global algorithm are the similar to the block matching model with the addition 

of below: 

P1 – post processing penalty variable controlling immediately neighbouring pixels 

P2 – post processing penalty variable controlling broader neighbouring pixels. P2 is greater than P1. 

  

4.2.4 Middlebury Dataset Assessment 

The Middlebury dataset as detailed in the literature represents a common set of images with which to 

assess the stereo algorithms accuracy in creating a disparity map. The results using the StereoBM 

algorithm using the rectified images supplied in the dataset yield a dense and accurate disparity map as 

seen in Figure 6. The tuning required between datasets is different given the change in the requirements 

of the range of the targets in the reference image. The StereoSGBM algorithm does provide a slightly 

denser disparity map but does not appreciable increase the quality of the result. This is likely because 

of the calibration and importantly rectification of the images that provides a greater chance of finding a 

match along epipolar lines. This result while proving the efficacy of both stereo disparity algorithms 

but also reiterates the importance of calibration and rectification stages of the routine. 





if it was a larger resolution image. This is a trade-off between synchronicity and computational cost. 

While the result of asynchronous image capture hasn’t been reviewed in this implementation. Maximum 

resolution available for still images is 4056 x 3040 pixel with a standard resolution retaining the same 

aspect ratio of 1.33 or 1.77. 

The systems performance indicates that the CPU usage is not directly tied to the FPS, while there is a 

trip point where increasing the captured resolution does begin to affect the CPU usage the baseline of 

the program seems to be 61% CPU usage with the stereo algorithm only. Increased memory allocated 

to the GPU does allow the system to capture higher resolution images but there is a clear reduction in 

the frame rates which is directly correlated to the resolution. The largest resolution with the smallest 

CPU usage and the highest frame rate occurs at the 1504 x 1136 image resolution and will be adopted 

for this test. Unfortunately, this does indicate that the Raspberry Pi HQ cameras are not the optimum 

hardware for this application as the computational cost and frame rate does not offer a larger resolution 

of captured image as was hypothesized, especially not enough for UAS applications.  

Thermal effects of the computation push the temperature to 75°C in a temperature-controlled office at 

20°C. Raspberry Pi operates at a maximum temperature of 85°C and begins to throttle performance at 

80°C. It is likely that in operation in an outdoor environment the likelihood of an increased temperature 

and thermal throttling further decreasing the companion computers operation. 

Image pyramids to assess the differences in the stereo disparity created. On the ladder dataset by 

pyramiding down reduces the resolution of the image, given the pre-rectified nature of the supplied 

image pairs there is no requirement to recalculate any extrinsic of intrinsic variables to apply the stereo 

disparity calculations. The results demonstrate a smooth but diminishingly detailed map when 

compared to the original 1080x1920 pixel image. 

 

Figure 10 - Image Pyramid Disparity Assessment. Full Resolution, Half Resolution, Quarter 

Resolution, Eighth Resolution from Left to Right 

The results of these tests demonstrate the increase in disparity as a function of resolution which was the 

minor hypothesis of this research. This evidence supports the hypothesis and reinforces the decision to 

attempt to implement high resolution stereo disparity as an effective approach. It is clear from the 

research and the implementation thus far that the increase in resolution should be optimised against the 

run time of the stereo disparity loop. 

4.2.6 Depth Measurement and Accuracy 

In the second stage of testing where the calibrated stereo setup is used to measure distance in a real-

world environment the results proved an acceptable accuracy for detected disparity. The measurement 

in an interior environment with fluorescent lighting given a 640x480 pixel captured image with a 0.08m 

baseline and a 56.6° horizontal field of view. The target was moved throughout the testing intervals as 

described in the table below. 



 

  Table 4 - Distance Measurement Results. 0.8m baseline 5m target 1m intervals 

target 

distance 

(cm) 

measurement 

1 

2 3 4 avg 

measure 

avg 

error 

100 86.4 84.4 85.3 87.2 85.825 14.175 

150 130.6 128.9 127.3 129.3 129.025 20.975 

200 193.2 187.2 189.6 188.4 189.6 10.4 

250 243.8 238.7 235.5 237.6 238.9 11.1 

300 307.4 317 310.5 323.7 314.65 -14.65 

350 340.2 338.1 315.4 323.8 329.375 20.625 

400 389.5 391.2 388.3 390.7 389.925 10.075 

450 423.7 432.7 430.1 435.6 430.525 19.475 

500 486.9 457.6 488.2 476.8 477.375 22.625 

 

Figure 11 - Initial StereoSGBM Distance Measurement 0.08m Baseline 640x480 Image 

The results indicate a consistent accuracy when disparity is successfully mapped to a tolerance far 

smaller than is required by the delivery method. The variance in the disparity can measure a change in 

distance of 20mm. The accuracy of the results does indicate a consistent under reading of approximately 

12.8mm that is consistent across the detection range. The result of this error could be explained through 

the assumptions of the geometry and the accuracy of the output as a function of the measured baseline, 

horizontal field of view and distance to the target. This does indicate that the calibration stage is vitally 

important to the measurement of distance as well as the pure collection of data. 

This interim test had limitations calculating disparity and identifying the target, the calibration 

chessboard, at distances greater than 5m with the baseline of 0.08m. While the test provided a proof of 

concept the limited distance is assumed to be as a function of baseline which further tests prove. 

4.2.7 Stereo Outdoor 

The outdoor stereo implementation when using the stereoSGBM algorithm showed a sparse disparity 

map with a particularly strong disparity indication along the centre of the image. The increase in 

baseline from initial testing at 0.08m to 0.26m provided a sizeable increase in the disparity map 
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detection range with positive detections out to approximately 40m. The algorithm performs well in 

identifying obvious and optically interesting targets and shows strong disparity indications and 

discrimination for these objects. This result indicates that the likelihood of capturing mid distance (10-

40m) obstructions is high and when the disparity is found that distance measurement can be inferred 

but what not pursued in this test. 

The frame rates and calculations occur at a speed that clearly track obstructions particularly objects with 

large optical differences between surrounding objects and without complex repeating patterns as with 

typical machine vision applications. 

4.3 UAS Based Stereo 

4.3.1 StereoSGBM Algorithm 

After initial success with the disparity maps calculated with the USB camera test setup OpenCV’s semi 

global block matching algorithm was implemented using the UAS companion computer and the 

Raspberry Pi HQ cameras capturing images through the Arducam Stereo Hat. 

This implementation demonstrated far slower frame rates with exceedingly high CPU usage, measured 

with the “htop” function. This function returned an average CPU utilisation of 85% on average with 

considerably higher operating temperatures 75°C in a climate-controlled workshop space at 18°C. The 

Raspberry Pi system has a two-stage thermal protection function where soft throttling occurs at 80°C 

and significant throttling of the CPU occurs at 85°C. The likelihood that this temperature would be 

reached is unknown given the added complexity of the heat sink and their effect of the thermal 

protection while in flight. The CPU usage however while not running the autopilot program proves that 

this algorithm is far too computationally expensive and could not be appropriately balanced or tuned 

for operation. 

The StereoSGBM method, while it produced far better disparity maps at distances closer to the 

operating requirements in the original testing setup with a laptop and USB cameras, fails to run at the 

required FPS only achieving 1FPS average. This FPS is too low to be used with a UAS especially when 

Figure 10 - Outdoor stereoSGBM Algorithm Results 640 x 480 Resolution 0.26m Baseline 

Figure 9 - StereoSGBM 0.26m Baseline 640x480 Disparity and Differentiation 



decision making distances are critical and the underlying aim of improving efficiency by maximising 

operating speed.  

4.3.2 StereoBM Algorithm 

The implementation of the UAS stereo system using the StereoBM method. The results vary and the 

tuning to focus the horopter to maximise the detected distance proves good detection but reduced 

fidelity i.e., the disparity can no longer differentiate approximately 0.20m at 15m but does produce 

strong indications that can measure distance accurately 10%. This error seems constant through the 

detected ranges after tuning therefore it is likely that the errors are cumulative considering the cameras 

stated focal length, FOVH and the specific variables tuned which can significantly affect the disparity 

detected.  

In field trials the horopter using the stereoBM algorithm is far more restricted than the stereoSGBM 

algorithm. This means that disparity is not detected when objects are too close or too far away from the 

stereo camera setup. This viewing band close the horopter is 7m deep and calculates clear gradients in 

the disparity which can measure distance. This occurs as a function of the stereo parameters primarily 

the numdisparities and the mindisparities variables. These variables can synthesise a baseline using the 

mindisparities variable to setup the minimum search distance in the image plane for matching. 

The distance measurement is very accurate when taken along the horopter results are within 0.50m at 

15m 3.3% error but taking measurements closer or further from this distance e.g., along a plane that is 

oblique to the image plane provides a rapidly changing disparity and therefore increasing error when 

observing non-crossing and crossing disparities. It is unclear from the qualitative assessment whether 

this disparity changes exponentially. 

By designating a region of interest close to the centre of the image plane the errors relating to this 

changing disparity could be minimised although through reducing the effective area reduces the ability 

to scope every obstruction. 

4.4 Optical Flow Results 
The results were poor using dense optical flow and OpenCV the frame rates using a 640x480 image 

were approximately 5FPS, but the effective distance and disparity was poor see Appendix E. The 

effective range tested demonstrated discernible differences in flow over approximately 1m from the 

camera system. Given the deviation from the implementation scope as a result of the pursuit of stereo 

vision implementation as a priority further development of the optical flow algorithm were not pursued 

as a viable contributor to the final distance calculation. Sparse flow could be used but does raise the risk 

of missing transitory obstacles or obstacles that are not sufficiently optical interesting or dissimilar to 

their environment. 

4.4.1 Data Blending 

Data blending was not attempted during this implementation given the unusable results from the initial 

optical flow tests and the limitations of scope when attempting to prioritise stereo vision. 

  



Chapter 5 - Future Work 
This research and particularly implementation has been illuminating in separating the theory and 

application of machine vision deployment. The resolution of the captured images was the limiting factor 

in terms of frame rate and accuracy and further work would be appropriate to refine this implementation. 

The collection of data in the function of high-resolution image represents an inefficient allocation of 

resources and given the limitations of the companion computers where a more intelligent use of 

resources and data is applied. While the combination of data could be a viable option whether that is 

optical flow or depth cues. 

Marker emplacement or object detection would reduce the requirement for dense stereo and 

dramatically reduces the computational cost after that marker has been identified. This approach would 

reduce the computational overhead and increase the efficacy of CNN and sparse optical flow 

implementations. 

Similarly, the ability to train a complex, complete model offboard from the UAS system and implement 

it with variable “light weight” machine learning applications e.g. TFMic. The implementation of 

complete machine learning models is very efficient and may be a valid approach although the training 

element would be large given the various environments it would be applied in. 

Another avenue could be to utilise higher powered GPU or FGPA driven hardware as a focus could be 

a solution to the limited companion computer hardware. Since the simplistic matrix operations 

representing block matching and disparity calculation a GPU would be more suited to stereo 

applications, this is supported in the literature. Similarly, offboard computation, mobile edge computing 

and threading for image capture and assessment could improve the frequency of the algorithm but the 

approach to increase the computational power of the system and not approach the data from a more 

refined position would be inefficient when compared to the other approaches mentioned here and in the 

literature. 

  



Chapter 6 - Conclusions 
The research has demonstrated the basics of stereo vision applications and highlights the variables 

critical to the complex computation of depth from a stereo machine vision arrangement. 

The hardware selected to accurately represent common companion computers proved to be 

underpowered for the application and did not produce a suitable disparity map to be used with a UAS, 

particularly up to the speeds and over distances required for operation. The stereo setup could be utilised 

in an indoor rover where speed and ranges would both be reduced as well as the ability for higher 

computational power as it relates to weight. 

The stereo algorithm has been demonstrated to be effective when the algorithms are executed on a 

typical laptop computer on pre-rectified image pairs from the Middlebury Stereo data sets and in 

ground-based trials. This method demonstrated detailed and accurate disparity maps from which depth 

could be accurately inferred. The initial field test application utilising USB cameras and the laptop 

demonstrated detailed disparity maps out to a range of approximately 40m at a frame rate of 

approximately 10 FPS with an accuracy of approximately 5m. This build demonstrated the proof of 

concept to a point where implementation on a UAS was pursued.  

The second iteration of the camera system, while having the ability to capture images of high resolution, 

failed to capture these resolutions at a frame rate required for UAS operation when considering the 

computational cost of disparity mapping with the semi global search algorithm. The additional 

computational weight of the stereo rectification and disparity calculation and also the requirement to 

interact with the UAS autopilot meant that the system was not produce the frame rate required and the 

algorithm was changed to a less intense block matching algorithm. 

This iteration after tuning provided sparse but accurate disparity and distance measurements at a range 

of 20m with a steady offset error of approximately 0.3m likely because of the inconsistencies with the 

manufacturer’s specifications regarding focal length, horizontal field of view and the accuracy of the 

measured baseline. The algorithm produced an approximate 5 FPS capturing 640x480 pixel images. 

CPU usage was measured at an average of 60% and kept system temperature below the threshold of 

thermal throttling at an approximate 60°C at 20°C ambient temperature, this operating temperature 

would likely be reduced once airflow is available for cooling. 

Further, the implementation of the optical flow element was unsatisfactory with poor accuracy and a 

minimal effective range of 0.5m. 

While the hypothesis was supported through the image pyramid testing in that a greater disparity is 

detected with a larger resolution. The computational cost when capturing and assessing larger resolution 

images is prohibitive especially when using a low power companion computer in the Raspberry Pi 4 

(4GB). It is clear that the implementation is not appropriate for UAS deployment given the limitations 

of the hardware and the computational cost of the fairly generic dense stereo vision algorithm and more 

importantly the practical limitations of the physical implementation against the theoretical approach led 

to extensive reconsiderations of approach, replacement of components and severely limited the scope 

of this implementation. The future work suggested in this research demonstrates the myriad of other 

approaches focusing on a more efficient use of the data captured rather than an increase in the data itself 

or an increase in computational power. This is a key factor in applying complex machine vision 

applications to lighter computing tools and microcontrollers. 
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Appendix A – Project Specification 
ENG4111/4112 Research Project 

Project Specification 

For: Christopher Bourke  

Title: Stereovision Autonomous Drop Zone Assessment and UAS Delivery Modification 

Major:   Mechatronic Engineering 

Supervisors: Dr. Tobias Low 

  Sirigalpatabandige Ruveen Perera 

Enrollment: ENG4111 – EXT S1, 2021 

  ENG4112 – EXT S2, 2021 

 

Project Aim: To develop and implement a medium range stereo vision-based distance 

measuring system on a UAS platform to assess a drop zone for payload delivery. 

 

Programme: Version 1, 17th March 2021  

Conduct initial research on UAS machine vision applications. Explore UAS delivery methods 

and the legislation surrounding autonomy in UAS applications. 

 

Review methods of calculating depth from stereo vision including the factors most affecting 

the accuracy and resolution of the output. Investigate differing algorithms for stereo vision. 

 

Conceptualise the components of a suitable integrated system including UAS platform, 

machine vision components, companion computer, ground control, store delivery and testing 

systems. 

 

Select hardware and a suitable software development environment. The requirements for 

necessary capability and costs to inform selection. 

 

Develop a machine vision algorithm for optimized disparity mapping. 

 

Construct an initial prototype to facilitate data collection. Including UAS control programs 

and fail-safes. 

 



Refine stereo vision matching algorithms and post process data output for optimum use in a 

UAS platform. 

 

Integrate and deploy the prototype and algorithms at a suitable location and record data for 

evaluation. 

 

Process and evaluate experimental data. 

If time and resources permit: 

Refine detection and data processing algorithms, depending on what is achieved earlier. Look 

at differing hazards (water, object avoidance) 

 

Integrate further assessment algorithms, feature based objects identification (human), water 

detection, investigate rudimentary object avoidance. 

 

Project Resources 

Camera system 

 Raspberry Pi HQ camera module (2) 

  SONY IMX477 

16mm 10MP telephoto lens (2) 

Companion computer 

Primary 

 NVIDIA Jetson Nano Developer Kit-B01 

Secondary 

 Raspberry Pi compute 4 IO module 

 Raspberry Pi compute 4 module 

Tertiary 

Arducam Stereo Camarray Hat 

 Raspberry Pi 4 

Stereo Camera Gimbal 

 3D printed as required. 

UAS platform 

 S500 quadrotor 

Software 



 Python – general programming 

 Raspberry pi OS – companion computer 

 OpenCV – Machine vision 

 MATLAB – Machine vision 

 Creo – 3D printing and drafting 

 Ardupilot – UAS control, testing and monitoring UAS 

 

Dronekit – Programming mission and behaviour 

 YOLO (object detection post primary research) – Object detection, machine vision 

Testing equipment 

 Ground control stations 

 Video recording equipment (ground and UAS based) 

 

 

  



Appendix B - OpenCV Calibration Image 

 

  

 



Appendix C - MATLAB Poor Disparity 

 

  

 



Appendix D - Poor Chessboard Capture 

 

  

 



Appendix E - Optical Flow Dense Farnebeck Implementation 

 

 

 

 

 

 

 

 



 

Appendix F – MATLAB Calibration and Rectification with Error 

 

 



Appendix G – Stereo UAS Build and Gimbal Control 

  

 

 



Appendix H - Distance Measurement Setup 

  



Appendix I - Calibration Chessboard Capture A1



Appendix I - Stereo Calibration Code 
import cv2 as cv 

import numpy as np 

 

cap = cv.VideoCapture(0) 

 

 

##cap.set(3,1080) 

##cap.set(4,720) 

 

ret, frame1 = cap.read() 

prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY) 

hsv = np.zeros_like(frame1) 

hsv[...,1] = 255 

while True: 

    ret, frame2 = cap.read() 

    new = cv.cvtColor(frame2, cv.COLOR_BGR2GRAY) 

    flow = cv.calcOpticalFlowFarneback(prvs,new, None, 0.5, 3, 15, 3 ,5, 1.2, 0) 

    mag, ang = cv.cartToPolar(flow[...,0], flow[...,1]) 

    hsv[...,0] = ang*180/np.pi/2 

    hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX) 

    bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR) 

 

#Create and ROI and draw it on the reference 

# 

#    windowSize = [200,200] #window size 

#    bgrSize = bgr.shape 

#crop original to new shape 

#    bgr = bgr[int((bgrSize[0]/2)-

(windowSize[0]/2)):int((bgrSize[0]/2)+(windowSize[0]/2)),int((bgrSize[1]/2)-

(windowSize[1]/2)):int((bgrSize[1]/2)+(windowSize[1]/2))] 

#    cv.rectangle(frame2, (int((bgrSize[1]/2)-(windowSize[1]/2)), int((bgrSize[1]/2)-

(windowSize[1]/2))), (int((bgrSize[0]/2)+(windowSize[0]/2)), int((bgrSize[0]/2)+(windowSize[0]/2))) 

, (0,0,255), 5) 

 

 

    cv.imshow('reference', frame2)  

    cv.imshow('frame2',bgr) 

    k = cv.waitKey(30) & 0xff 

    if k == 27: 

        break 

    elif k == ord('s'): 

        cv.imwrite('opticalflowb.png',frame2) 

        cv.imwrite('opticalflowhsv.png',bgr) 

    prvs = new 

     

 

cap.release() 

cv.destroyAllWindows() 

 

  



Appendix J - Stereo Pyramid Test 
 

import cv2 as cv 

import numpy as np 

 

#ladder specific details 

f = 1733.68 #pixels 

b = 0.0022113  #m 

 

############MIDDLEBURY BENCHMARK TEST ################ 

ladL = cv.imread('ladder1_l.png') 

ladR = cv.imread('ladder1_r.png') 

 

artL = cv.imread('artroom2_l.png') 

artR = cv.imread('artroom2_r.png') 

 

penL = cv.imread('pendulum1_l.png') 

penR = cv.imread('pendulum1_r.png') 

 

#this is the exit for the window 

def nothing(x): 

    pass 

 

def draw_circle(event, x, y, flags, param): 

    global mouseX, mouseY 

    global f, b 

    if event == cv.EVENT_FLAG_LBUTTON: 

        cv.circle(disparityNorm,(x,y),5,(0,0,255),2) 

        mouseX, mouseY = x,y 

        print(mouseX,mouseY) 

        disparity = disparityNorm[mouseY,mouseX] 

        print('disparity: ' + str(disparity)) 

 

        #this is already done 

        #f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180) 

         

        depth = (b*f)/disparity 

        print('depth: ' + str(depth)) 

 

#create a window 

cv.namedWindow('stereo refine',cv.WINDOW_NORMAL) 

cv.resizeWindow('stereo refine', 600,600) 

 

#create a slider (parameter, window, min, max, escape function) 

cv.createTrackbar('minDisparity','stereo refine',15,100,nothing) 

cv.createTrackbar('numDisparities','stereo refine',3,50,nothing) 

cv.createTrackbar('blockSize','stereo refine',7,50,nothing) 

cv.createTrackbar('P1','stereo refine',500,500,nothing) 

cv.createTrackbar('P2','stereo refine',4000,4000,nothing) 

cv.createTrackbar('disp12MaxDiff','stereo refine',0,25,nothing) 

cv.createTrackbar('preFilterCap','stereo refine',0,62,nothing) 

cv.createTrackbar('uniquenessRatio','stereo refine',0,50,nothing) 

cv.createTrackbar('speckleWindowSize','stereo refine',0,400,nothing) 

cv.createTrackbar('speckleRange','stereo refine',0,200,nothing) 



 

 

window_size = 3 

min_disp = 16 

num_disp = 112-min_disp 

 

stereo = cv.StereoSGBM_create(min_disp, 

                              numDisparities = num_disp, 

                              blockSize = 16, 

                              P1 = 8*3*window_size**2, 

                              P2 = 32*3*window_size**2, 

                              disp12MaxDiff = 1, 

                              speckleWindowSize = 100, 

                              speckleRange = 32 

                              ) 

 

while True: 

 

    #select the image from the benchmarks 

    imgL = ladL 

    imgR = ladR 

     

##    #pyramid down 

    imgLH = cv.pyrDown(imgL) 

    imgLH = cv.resize(imgLH,(480,640)) 

    imgRH = cv.pyrDown(imgR) 

    imgRH = cv.resize(imgRH,(480,640)) 

     

    imgLQ = cv.pyrDown(imgLH) 

    imgLQ = cv.resize(imgLQ,(480,640)) 

    imgRQ = cv.pyrDown(imgRH) 

    imgRQ = cv.resize(imgRQ,(480,640)) 

 

    imgLE = cv.pyrDown(imgLQ) 

    imgLE = cv.resize(imgLE,(480,640)) 

    imgRE = cv.pyrDown(imgRQ) 

    imgRE = cv.resize(imgRE,(480,640)) 

     

    imgRGray = cv.cvtColor(imgR,cv.COLOR_BGR2GRAY) 

    imgLGray = cv.cvtColor(imgL,cv.COLOR_BGR2GRAY) 

    imgRGrayH = cv.cvtColor(imgRH,cv.COLOR_BGR2GRAY) 

    imgLGrayH = cv.cvtColor(imgLH,cv.COLOR_BGR2GRAY) 

    imgRGrayQ = cv.cvtColor(imgRQ,cv.COLOR_BGR2GRAY) 

    imgLGrayQ = cv.cvtColor(imgLQ,cv.COLOR_BGR2GRAY) 

    imgRGrayE = cv.cvtColor(imgRE,cv.COLOR_BGR2GRAY) 

    imgLGrayE = cv.cvtColor(imgLE,cv.COLOR_BGR2GRAY) 

 

    #get tuning values 

    minDisparity = cv.getTrackbarPos('minDisparity','stereo refine') 

    numDisparities = cv.getTrackbarPos('numDisparities','stereo refine')*16 

    blockSize = cv.getTrackbarPos('blockSize','stereo refine')*2 + 5 

    P1 = cv.getTrackbarPos('P1','stereo refine') 

    P2 = cv.getTrackbarPos('P2','stereo refine') 

    disp12MaxDiff = cv.getTrackbarPos('disp12MaxDiff','stereo refine') 

    preFilterCap = cv.getTrackbarPos('preFilterCap','stereo refine') 



    uniquenessRatio = cv.getTrackbarPos('uniquenessRatio','stereo refine') 

    speckleWindowSize = cv.getTrackbarPos('speckleWindowSize','stereo refine')*2 

    speckleRange = cv.getTrackbarPos('speckleRange','stereo refine') 

     

    #set tuning values 

    stereo.setMinDisparity(minDisparity) 

    stereo.setNumDisparities(numDisparities) 

    stereo.setBlockSize(blockSize) 

    stereo.setP1(P1) 

    stereo.setP2(P2) 

    stereo.setDisp12MaxDiff(disp12MaxDiff) 

    stereo.setPreFilterCap(preFilterCap) 

    stereo.setUniquenessRatio(uniquenessRatio) 

    stereo.setSpeckleWindowSize(speckleWindowSize) 

    stereo.setSpeckleRange(speckleRange)        

 

 

######SETUP A REGION OF INTEREST####### 

    #I could make this an inverse function of the distance to the target 

     

    picRes = np.shape(imgLGray) 

    height = picRes[0] 

    width = picRes[1] 

 

    #ROIres = (640,480) 

    #distanceFunction = 1/distanceToTarget 

###since the resolution is so large use a smaller ROI### 

    #imgLGray = imgLGray[int(width/2 - 480/2):int(width/2 + 480/2), int(height/2 - 640/2): int(height/2 

+ 640/2)] 

    #imgRGray = imgRGray[int(width/2 - 480/2):int(width/2 + 480/2), int(height/2 - 640/2): int(height/2 

+ 640/2)] 

##    imgLGray = imgLGray[:int(height/2), :int(width/2)] 

##    imgRGray = imgRGray[:int(height/2), :int(width/2)] 

##    imgLGrayH = imgLGrayH[:int((height/2)/2), :int((width/2)/2)] 

##    imgRGrayH = imgRGrayH[:int((height/2)/2), :int((width/2)/2)] 

     

    cv.imshow('imgLGray',imgLGray) 

##    cv.imshow('imgLGray half',imgLGrayH) 

######add a ROI square on the original image###### 

    #make a 640x480 rectangle centred in the image 

##    rectStart = ((int(width/2 - 480/2)),(int(height/2 - 640/2))) 

##    rectEnd = ((int(width/2 + 480/2)),(int(height/2 + 640/2))) 

##     

##    imgL = cv.rectangle(imgL, rectStart, rectEnd, (0,0,255),2) 

 

    disparity = stereo.compute(imgLGray,imgRGray) 

    disparityH = stereo.compute(imgLGrayH,imgRGrayH) 

    cv.imshow('disparity half',disparityH) 

    cv.imshow('disparity',disparity) 

    disparityQ = stereo.compute(imgLGrayQ,imgRGrayQ) 

    disparityE = stereo.compute(imgLGrayE,imgRGrayE) 

 

#set the type as a float 32 

    disparityFloat = disparity.astype(np.float32)/16.0 

    disparityFloatH = disparityH.astype(np.float32)/16.0 



    disparityFloatQ = disparityQ.astype(np.float32)/16.0 

    disparityFloatE = disparityE.astype(np.float32)/16.0 

 

    disparityNorm = (disparityFloat - min_disp)/num_disp 

    disparityNormH = (disparityFloatH - min_disp)/num_disp 

    disparityNormQ = (disparityFloatQ - min_disp)/num_disp 

    disparityNormE = (disparityFloatE - min_disp)/num_disp 

 

 

    disparityNorm = cv.resize(disparityNorm, (480,640)) 

    cv.imshow('disparityNorm',disparityNorm) 

 

##    disparityNorm = disparityNorm[200:400, 200:400] 

##    closest = np.max(disparityNorm) 

##    nearPt = (f*b)/closest 

##    print(str(nearPt)) 

##     

    cv.imshow('disparity ROI',disparityNorm) 

    cv.imshow('disparityNorm Half',disparityNormH) 

    cv.imshow('disparityNorm Quarter',disparityNormQ) 

    cv.imshow('disparityNorm Eighth',disparityNormE) 

    #cv.imshow('disparity Float', disparityFloat) 

    #cv.imshow('disparity', disparity) 

    imgL = cv.resize(imgL, (480,640)) 

    cv.imshow('left', imgL) 

    #cv.imshow('left rectified', leftRec) 

    #cv.imshow('right rectified', rightRec) 

    #cv.applyColorMap(depth, depth, cv.COLORMAP_JET) 

 

#WEIGHTED BLEND 

    combo = cv.addWeighted(disparityNorm,1.0,disparityNormH,1.0,0.0) 

    combo = cv.addWeighted(combo,1.0,disparityNormQ,1.0,0.0) 

    combo = cv.addWeighted(combo,1.0,disparityNormE,1.0,0.0) 

 

    cv.imshow('combo', combo) 

     

    cv.imwrite('disprity_combo.png',combo) 

    cv.imwrite('disparityNorm.png',disparityNorm) 

#depth is failing becuase of zero division 

    #cv.imshow('depth',depth) 

 

    cv.setMouseCallback('disparityNorm',draw_circle) 

         

     

    if cv.waitKey(1) == 27: 

        break 

 

cv.destroyAllWindows()          

 

 

 

 

 

 



Appendix K - Stereo Calibrator Program 
import numpy as np 

import cv2 as cv 

import glob 

 

 

 

################ FIND CHESSBOARD CORNERS - OBJECT POINTS AND IMAGE POINTS 

############################# 

 

chessboardSize = (9,6) 

frameSize = (640, 480) 

 

# termination criteria 

criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001) 

 

objp = np.zeros((chessboardSize[0] * chessboardSize[1], 3), np.float32) 

objp[:,:2] = np.mgrid[0:chessboardSize[0],0:chessboardSize[1]].T.reshape(-1,2) 

 

objpoints = []  

imgpointsL = []  

imgpointsR = []  

 

 

###ensure the images are added as pairs 

imagesLeft = glob.glob('images/stereoLeft/*.png') 

imagesRight = glob.glob('images/stereoRight/*.png') 

 

for imgLeft, imgRight in zip(imagesLeft, imagesRight): 

 

    imgL = cv.imread(imgLeft) 

    imgR = cv.imread(imgRight) 

    grayL = cv.cvtColor(imgL, cv.COLOR_BGR2GRAY) 

    grayR = cv.cvtColor(imgR, cv.COLOR_BGR2GRAY) 

 

    # Find the chess board corners 

    retL, cornersL = cv.findChessboardCorners(grayL, chessboardSize, None) 

    retR, cornersR = cv.findChessboardCorners(grayR, chessboardSize, None) 

 

    #add points 

    if retL and retR == True: 

 

        objpoints.append(objp) 

 

        cornersL = cv.cornerSubPix(grayL, cornersL, (11,11), (-1,-1), criteria) 

        imgpointsL.append(cornersL) 

 

        cornersR = cv.cornerSubPix(grayR, cornersR, (11,11), (-1,-1), criteria) 

        imgpointsR.append(cornersR) 

 

        # Show captured corners 

        cv.drawChessboardCorners(imgL, chessboardSize, cornersL, retL) 

##        imgL = cv.resize(imgL,(640,480)) 

        cv.imshow('img left', imgL) 



        cv.drawChessboardCorners(imgR, chessboardSize, cornersR, retR) 

##        imgR = cv.resize(imgR,(640,480)) 

        cv.imshow('img right', imgR) 

        cv.waitKey(500) 

 

 

cv.destroyAllWindows() 

 

############## CALIBRATION 

####################################################### 

 

retL, cameraMatrixL, distL, rvecsL, tvecsL = cv.calibrateCamera(objpoints, imgpointsL, frameSize, 

None, None) 

heightL, widthL, channelsL = imgL.shape 

newCameraMatrixL, roi_L = cv.getOptimalNewCameraMatrix(cameraMatrixL, distL, (widthL, 

heightL), 1, (widthL, heightL)) 

 

###reprojection errors##### 

mean_error = 0 

for i in range(len(objpoints)): 

    imgpointsLP, _ = cv.projectPoints(objpoints[i], rvecsL[i], tvecsL[i], cameraMatrixL, distL) 

    error = cv.norm(imgpointsL[i], imgpointsLP, cv.NORM_L2)/len(imgpointsLP) 

    mean_error += error 

print( "Left total error: {}".format(mean_error/len(objpoints))) 

 

retR, cameraMatrixR, distR, rvecsR, tvecsR = cv.calibrateCamera(objpoints, imgpointsR, frameSize, 

None, None) 

heightR, widthR, channelsR = imgR.shape 

newCameraMatrixR, roi_R = cv.getOptimalNewCameraMatrix(cameraMatrixR, distR, (widthR, 

heightR), 1, (widthR, heightR)) 

 

mean_error = 0 

for i in range(len(objpoints)): 

    imgpointsRP, _ = cv.projectPoints(objpoints[i], rvecsR[i], tvecsR[i], cameraMatrixR, distR) 

    error = cv.norm(imgpointsR[i], imgpointsRP, cv.NORM_L2)/len(imgpointsRP) 

    mean_error += error 

print( "Right total error: {}".format(mean_error/len(objpoints))) 

 

 

########## Stereo Vision Calibration ############################################# 

 

flags = 0 

flags |= cv.CALIB_FIX_INTRINSIC  

 

criteria_stereo= (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001) 

 

retStereo, newCameraMatrixL, distL, newCameraMatrixR, distR, rot, trans, essentialMatrix, 

fundamentalMatrix = cv.stereoCalibrate(objpoints, imgpointsL, imgpointsR, newCameraMatrixL, 

distL, newCameraMatrixR, distR, grayL.shape[::-1], criteria_stereo, flags) 

 

 

########## Stereo Rectification ################################################# 

 

rectifyScale= 1 



rectL, rectR, projMatrixL, projMatrixR, Q, roi_L, roi_R= cv.stereoRectify(newCameraMatrixL, distL, 

newCameraMatrixR, distR, grayL.shape[::-1], rot, trans, rectifyScale,(0,0)) 

 

stereoMapL = cv.initUndistortRectifyMap(newCameraMatrixL, distL, rectL, projMatrixL, 

grayL.shape[::-1], cv.CV_16SC2) 

stereoMapR = cv.initUndistortRectifyMap(newCameraMatrixR, distR, rectR, projMatrixR, 

grayR.shape[::-1], cv.CV_16SC2) 

 

print("Writing parameters") 

cv_file = cv.FileStorage('stereoMap.xml', cv.FILE_STORAGE_WRITE) 

 

cv_file.write('stereoMapL_x',stereoMapL[0]) 

cv_file.write('stereoMapL_y',stereoMapL[1]) 

cv_file.write('stereoMapR_x',stereoMapR[0]) 

cv_file.write('stereoMapR_y',stereoMapR[1]) 

 

cv_file.release() 

 

print("done") 

 

 

  



Appendix L - Stereo Semi Global Block Matching Distance Measurement 

(USB) 
 

import sys 

import cv2 as cv 

import numpy as np 

import time 

import imutils 

from matplotlib import pyplot as plt 

 

# Function for stereo vision and depth estimation 

import calibration 

 

import time 

 

#ladder specific details 

fov = 56.6 #degrees horizontal 

b = 0.29  #m 

 

def nothing(x): 

    pass 

 

def draw_circle(event, x, y, flags, param): 

    global mouseX, mouseY 

    global fov, b, width 

    if event == cv.EVENT_FLAG_LBUTTON: 

        cv.circle(disparityNorm,(x,y),5,(0,0,255),2) 

        mouseX, mouseY = x,y 

        print(mouseX,mouseY) 

        disparity = disparityNorm[mouseY,mouseX] 

        print('disparity: ' + str(disparity)) 

 

        f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180) 

         

        depth = (b*f_pixel)/disparity 

        print('depth: ' + str(depth)) 

         

# Open both cameras 

cap_right = cv.VideoCapture(2, cv.CAP_DSHOW)                     

cap_left =  cv.VideoCapture(1, cv.CAP_DSHOW) 

 

###resolution change#### 

##cap_right.set(3,1920) 

##cap_right.set(4,1080) 

##cap_left.set(3,1920) 

##cap_left.set(4,1080) 

 

 

###################refinement###################################################### 

 

cv.namedWindow('stereo refine',cv.WINDOW_NORMAL) 

cv.resizeWindow('stereo refine', 600,600) 

 



#create a slider (parameter, window, min, max, escape function) 

cv.createTrackbar('minDisparity','stereo refine',0,500,nothing) 

cv.createTrackbar('numDisparities','stereo refine',100,500,nothing) 

cv.createTrackbar('blockSize','stereo refine',9,1920,nothing) 

cv.createTrackbar('P1','stereo refine',500,500,nothing) 

cv.createTrackbar('P2','stereo refine',4000,4000,nothing) 

cv.createTrackbar('disp12MaxDiff','stereo refine',25,25,nothing) 

cv.createTrackbar('preFilterCap','stereo refine',0,62,nothing) 

cv.createTrackbar('uniquenessRatio','stereo refine',13,100,nothing) 

cv.createTrackbar('speckleWindowSize','stereo refine',400,400,nothing) 

cv.createTrackbar('speckleRange','stereo refine',200,200,nothing) 

 

###do something with these## 

##window_size = 3 

##min_disp = 16 

##num_disp = 112-min_disp 

 

stereo = cv.StereoSGBM_create() 

                               

while True: 

 

    #maybe use grab() and retrieve() here? 

##    cap_right.grab() 

##    cap_left.grab() 

##     

##    retL,imgL = cap_right.retrieve() 

##    retR,imgR = cap_left.retrieve() 

     

    retL,imgL = cap_left.read() 

    retR,imgR = cap_right.read() 

     

    if retL and retR: 

        ##CHANGE## 

        imgRGray = cv.cvtColor(imgL,cv.COLOR_BGR2GRAY) 

        imgLGray = cv.cvtColor(imgR,cv.COLOR_BGR2GRAY) 

 

################## CALIBRATION 

######################################################### 

 

        frame_right, frame_left = calibration.undistortRectify(imgRGray, imgLGray) 

 

##################################################################################

###### 

 

 

##        cv.imshow('left rec', frame_left) 

##        cv.imshow('right rec', frame_right) 

 

         

    #get tuning values 

        minDisparity = cv.getTrackbarPos('minDisparity','stereo refine') 

        numDisparities = cv.getTrackbarPos('numDisparities','stereo refine') 

        blockSize = cv.getTrackbarPos('blockSize','stereo refine') 

        P1 = cv.getTrackbarPos('P1','stereo refine') 

        P2 = cv.getTrackbarPos('P2','stereo refine') 



        disp12MaxDiff = cv.getTrackbarPos('disp12MaxDiff','stereo refine') 

        preFilterCap = cv.getTrackbarPos('preFilterCap','stereo refine') 

        uniquenessRatio = cv.getTrackbarPos('uniquenessRatio','stereo refine') 

        speckleWindowSize = cv.getTrackbarPos('speckleWindowSize','stereo refine') 

        speckleRange = cv.getTrackbarPos('speckleRange','stereo refine') 

                 

         

## 

        #set tuning values 

        stereo.setMinDisparity(minDisparity) 

        stereo.setNumDisparities(numDisparities) 

        stereo.setBlockSize(blockSize) 

        stereo.setP1(P1) 

        stereo.setP2(P2) 

        stereo.setDisp12MaxDiff(disp12MaxDiff) 

        stereo.setPreFilterCap(preFilterCap) 

        stereo.setUniquenessRatio(uniquenessRatio) 

        stereo.setSpeckleWindowSize(speckleWindowSize) 

        stereo.setSpeckleRange(speckleRange) 

         

         

        disparity = stereo.compute(frame_right,frame_left) 

 

#set the type as a float 32 

        disparityFloat = disparity.astype(np.float32)/16.0 

 

        min_disp = minDisparity 

        num_disp = numDisparities 

         

        disparityNorm = (disparityFloat - min_disp)/num_disp 

 

#get a distance calculation f(mm)*b(m) = focal length and baseline 

         

         

        disparityNorm = cv.resize(disparityNorm, (640,480)) 

 

         

        cv.imshow('disparityNorm',disparityNorm) 

        #cv.imshow('disparity Float', disparityFloat) 

        #cv.imshow('disparity', disparity) 

        imgL = cv.resize(imgL, (640,480)) 

        cv.imshow('left', imgL) 

        cv.imshow('left rectified', frame_left) 

        #cv.imshow('right rectified', rightRec) 

        #cv.applyColorMap(depth, depth, cv.COLORMAP_JET) 

 

#depth is failing becuase of zero division 

        #cv.imshow('depth',depth) 

        dim = disparityNorm.shape 

        width = dim[1] 

         

        cv.setMouseCallback('disparityNorm',draw_circle) 

         

        key = cv.waitKey(1) 

        if key == ord('q'): 



            break 

 

    else: 

        camL = cv.VideoCapture(1) 

        camR = cv.VideoCapture(2) 

 

 

cap_right.release() 

cap_left.release() 

 

cv.destroyAllWindows() 

 

 

  



Appendix M - Calibration Image Capture (USB) 
import cv2 

import time 

 

capL = cv2.VideoCapture(2) 

capR = cv2.VideoCapture(0) 

 

######resolution changes###### 

##cap.set(3,1920) 

##cap.set(4,1080) 

##cap2.set(3,1920) 

##cap2.set(4,1080) 

 

num = 0 

countdown = 5 

 

while capL.isOpened(): 

        

    time.sleep(1) 

     

##    succes1, img = cap.read() 

##    succes2, img2 = cap2.read() 

 

    capL.grab() 

    capR.grab() 

 

    retL, imgL = capL.retrieve() 

    retR, imgR = capR.retrieve() 

 

 

    k = cv2.waitKey(5) 

 

    if k == 27: 

        break 

##    elif k == ord('s'): # wait for 's' key to save and exit 

##        cv2.imwrite('images/stereoLeft/imageL' + str(num) + '.png', img) 

##        cv2.imwrite('images/stereoright/imageR' + str(num) + '.png', img2) 

##        print("images saved!") 

##        num += 1 

 

    imgL = cv2.resize(imgL,(640,480)) 

    imgR = cv2.resize(imgR,(640,480)) 

     

##    img = cv2.putText(img, str(countdown),(10,75),cv2.FONT_HERSHEY_SIMPLEX, 3, (0,255,0), 

5) 

##    cv2.imshow('Img 1',img) 

##    cv2.imshow('Img 2',img2) 

    countdown = countdown - 1 

    if countdown <= 0: 

        cv2.imwrite('images/stereoLeft/imageL' + str(num) + '.png', imgL) 

        cv2.imwrite('images/stereoright/imageR' + str(num) + '.png', imgR) 

        print("images saved!") 

        num += 1 

        countdown = 5 



 

    img = cv2.putText(imgL, str(countdown),(10,75),cv2.FONT_HERSHEY_SIMPLEX, 3, (0,255,0), 

5) 

    cv2.imshow('Img 1',imgL) 

    cv2.imshow('Img 2',imgR) 

 

     

capL.release() 

capR.release() 

cv2.destroyAllWindows() 

 

 

  



Appendix N – Continually Calculated Release Point Algorithm Example 
""" 

this is a CCRP draft 

should take altitude, speed (vertical and horizontal), the drag and 

reynolds number etc. 

""" 

 

import math 

import random 

 

 

""" 

#pull the sensor data 

Vehicle.location.global_frame #WGS84 coordinates and alt (MSL) 

Vehicle.location.global_relative_frame #WGS84 plus altitude from a 

point 

Vehicle.velocity #three components [vx, vy, vz] 

Vehicle.airspeed #m/s double 

Vehicle.heading #int 0-360 

Vehicle.attitude #p,y,r 

 

""" 

#dummy data 

 

 

 

data = [random.randrange(1,30) for i in range(20)] 

 

print(data) 

 

 

 

#vertical 

 

h = -30 #m altitude 

uv = 0 #Vehicle.velocity[1] # m/s vertical speed 

g = -9.81 

 

 

disc = uv * uv - 4 *0.5*g* -h  

 

sqrtval = math.sqrt(abs(disc))  

 

       

 

    # checking condition for discriminant 

 

if discri > 0:  

 

    time = ((-uv + sqrtval)/(2 * 0.5*g)) 

 

    time2 = ((-uv - sqrtval)/(2 * 0.5*g))  

 

    if time2 > 0: 

        time = time2 

    print('time: ' + str(time)) 

 

elif discri == 0:  



 

 

    print(-uv / (2 * 0.5*g))  

 

 

#horizontal 

#these details are for a tennis ball 

 

ux = 10 #Vehicle.velocity[0]#horizontal speed m/s 

mass = 0.0577 #kg 

Cd = 0.15 #for the streamlined (3d) body 

rho = 1.2041 #kg/m^3 density of air 

 

A = math.pi*0.067**2 

 

dragF = Cd*rho*ux**2*A/2 

 

ax = dragF / mass 

 

for ux in data: 

    dist = ux*time + 0.5*ax*time**2 

    print('dist: ' + str(dist)) 

 

#decision to release 

 

''' 

while the heading is on target:  

     if stereo depth == gps dist: 

  cruise release 

 elseif stereo depth < gps dist: 

           hover release 

''' 

 

 

  



Appendix O – Calibration Program UAS Implementation 
import cv2 as cv 

import numpy as np 

import glob 

 

criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 

0.001) #after 30 iterations or the specified accuracy has been met 

 

count = 0 

 

#create blank object point arrays (width*height,colour channel) 

objp = np.zeros((9*6,3), np.float32) 

objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) 

 

objpoints = [] 

imgpointsL = [] 

imgpointsR = [] 

 

#getting files from a folder 

images = [image for image in 

glob.glob('/home/pi/Desktop/project/good_stuff/calibration_photos/*.png

')] #my chessboard split photos 

 

 

#make sure the files load as actual pairs 

images.sort() 

 

 

for image in images: 

     

    image = cv.imread(image) 

    #this is (height, width, channels) 

    shape = image.shape 

    width = int(shape[1]/2) 

    height = shape[0] 

 

    il = image[0:height,0:width] 

    ir = image[0:height, width:2*width] 

 

     

    grayL = cv.cvtColor(il, cv.COLOR_BGR2GRAY) 

    grayR = cv.cvtColor(ir, cv.COLOR_BGR2GRAY) 

      

    retL, cornersL = cv.findChessboardCorners(grayL, (9,6), None) 

    retR, cornersR = cv.findChessboardCorners(grayR, (9,6), None) 

     

    if retL and retR == True: 

        count = count + 1 

         

        objpoints.append(objp) 

         

        cornersL = cv.cornerSubPix(grayL, cornersL, (11,11), (-1,-1), 

criteria) 

        imgpointsL.append(cornersL) 

         

        cornersR = cv.cornerSubPix(grayR, cornersR, (11,11), (-1,-1), 

criteria) 

        imgpointsR.append(cornersR) 



         

         

        cv.drawChessboardCorners(il, (9,6), cornersL, retL) 

#         cv.resize(il, (640,480)) 

        cv.imshow('imgL', il) 

     

        cv.drawChessboardCorners(ir, (9,6), cornersR, retR) 

#         cv.resize(ir,(640,480)) 

        cv.imshow('imgR', ir) 

 

##assess any innaccurate chessboard captures         

        cv.waitKey(500) 

         

cv.destroyAllWindows() 

 

######make corrections given chessboard detections############ 

 

retL, mtxL, distL, rvecsL, tvecsL = cv.calibrateCamera(objpoints, 

imgpointsL, grayL.shape[::-1], None ,None) #the image size is (w,h) and 

shape gives (h,w) 

heightL, widthL, channelsL = il.shape 

newCameraMtxL, roiL = cv.getOptimalNewCameraMatrix(mtxL, distL, 

(widthL, heightL), 1, (widthL, heightL)) 

 

######reprojection error####### 

mean_error = 0 

for i in range(len(objpoints)): 

    imgpointsLP, _ = cv.projectPoints(objpoints[i], rvecsL[i], 

tvecsL[i], mtxL, distL) 

    error = cv.norm(imgpointsL[i], imgpointsLP, 

cv.NORM_L2)/len(imgpointsLP) 

    mean_error += error 

print("Left total error: {}".format(mean_error/len(objpoints))) 

 

 

 

retR, mtxR, distR, rvecsR, tvecsR = cv.calibrateCamera(objpoints, 

imgpointsR, grayR.shape[::-1], None ,None) 

heightR, widthR, channelsR = ir.shape 

newCameraMtxR, roiR = cv.getOptimalNewCameraMatrix(mtxR, distR, 

(widthR, heightR), 1, (widthR, heightR)) 

 

mean_error = 0 

for i in range(len(objpoints)): 

    imgpointsRP, _ = cv.projectPoints(objpoints[i], rvecsR[i], 

tvecsR[i], mtxR, distR) 

    error = cv.norm(imgpointsR[i], imgpointsRP, 

cv.NORM_L2)/len(imgpointsRP) 

    mean_error += error 

print("Right total error: {}".format(mean_error/len(objpoints))) 

 

 

 

flags = 0 

flags |= cv.CALIB_FIX_INTRINSIC 

 

criteria_stereo = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 

30, 0.001) 



 

retS, newCameraMtxL, distL, newCameraMtxR, distR, rot, trans, 

essentialMtx, fundamentalMtx = cv.stereoCalibrate(objpoints, 

imgpointsL, imgpointsR, newCameraMtxL, distL, newCameraMtxR, distR, 

grayL.shape[::-1], criteria_stereo, flags) 

 

rectifyScale = 1 

rectL, rectR, projMtxL, projMtxR, Q, roiL, roiR = 

cv.stereoRectify(newCameraMtxL, distL, newCameraMtxR, distR, 

grayL.shape[::-1], rot, trans, rectifyScale,(0,0)) 

 

stereoMapL = cv.initUndistortRectifyMap(newCameraMtxL, distL, rectL, 

projMtxL, grayL.shape[::-1], cv.CV_16SC2) 

stereoMapR = cv.initUndistortRectifyMap(newCameraMtxR, distR, rectR, 

projMtxR, grayR.shape[::-1], cv.CV_16SC2) 

 

print(str(count) + " images found") 

print("writing params") 

 

cv_file = cv.FileStorage('stereoMap.xml', cv.FILE_STORAGE_WRITE) 

 

cv_file.write('stereoMapL_x', stereoMapL[0]) 

cv_file.write('stereoMapL_y', stereoMapL[1]) 

cv_file.write('stereoMapR_x', stereoMapR[0]) 

cv_file.write('stereoMapR_y', stereoMapR[1]) 

 

cv_file.release() 

 

print('done') 

 

 

 

  



Appendix P – Stereo Program UAS Implementation 
import numpy as np 

from picamera.array import PiRGBArray 

from picamera import PiCamera 

import time 

import cv2 as cv 

 

 

########setup########## 

#call camera 

camera = PiCamera() 

camera.resolution = (1920,720) 

camera.vflip = True 

camera.framerate = 32 

 

fov = 24 

b = 0.29 

 

rawCapture = PiRGBArray(camera, size =(1920,720)) 

 

#let the camera wake up 

time.sleep(0.5) 

 

 

#read cal data from previous 

#got to read the stereo)rectify_maps.xml 

#the same as the other ones 

cv_file = cv.FileStorage("stereoMap.xml", cv.FILE_STORAGE_READ) 

 

stereoMapL_x = cv_file.getNode("stereoMapL_x").mat() 

stereoMapL_y = cv_file.getNode("stereoMapL_y").mat() 

stereoMapR_x = cv_file.getNode("stereoMapR_x").mat() 

stereoMapR_y = cv_file.getNode("stereoMapR_y").mat() 

 

#this is the exit for the window 

def nothing(x): 

    pass 

 

########splitter########## 

def splitter(img): 

     

    shape = img.shape 

    width = int(shape[1]/2) 

    height = shape[0] 

 

    il = img[0:height,0:width] 

    ir = img[0:height, width:2*width] 

     

    return il,ir 

 

def draw_circle(event, x, y, flags, param): 

    global mouseX, mouseY 

    global fov, b, width 

    if event == cv.EVENT_FLAG_LBUTTON: 

        cv.circle(disparityNorm,(x,y),5,(255,0,0),2) 

        mouseX, mouseY = x,y 

        print(mouseX,mouseY) 

        disparity = disparityNorm[mouseY,mouseX] 



        print('disparity: ' + str(disparity)) 

 

        f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180) 

         

        depth = (b*f_pixel)/disparity 

        print('depth: ' + str(depth)) 

 

# #######Stereo########## 

# #create a window 

cv.namedWindow('stereo refine',cv.WINDOW_NORMAL) 

cv.resizeWindow('stereo refine', 200,200) 

#  

# #create a slider (parameter, window, min, max, escape function) 

cv.createTrackbar('blockSize','stereo refine',10,100,nothing) 

cv.createTrackbar('disp12MaxDiff','stereo refine',0,100,nothing) 

cv.createTrackbar('minDisparity','stereo refine',23,480,nothing) 

cv.createTrackbar('numDisparities','stereo refine',3,50,nothing) 

cv.createTrackbar('preFilterCap','stereo refine',62,62,nothing)#63 max 

+ 1 

cv.createTrackbar('preFilterSize','stereo refine',250,250,nothing)#255 

max + 1 

#preFilterType = 'XSobel (default), 'NormalizedResponse' 

#ROI1 = [0,0,100,100] 

#ROI2 = [0,0,100,100] 

cv.createTrackbar('speckleRange','stereo refine',200,200,nothing) 

cv.createTrackbar('speckleWindowSize','stereo refine',400,400,nothing) 

cv.createTrackbar('textureThreshold','stereo refine',100,100,nothing) 

cv.createTrackbar('uniquenessRatio','stereo refine',10,200,nothing) 

 

 

stereo = cv.StereoBM_create() #defaults 

 

#######capture########## 

while True: 

     

     

     

    for frame in camera.capture_continuous(rawCapture, format="bgr", 

use_video_port=True): 

         

        start = time.time() 

          

        image = frame.array 

#         image = cv.resize(image, (480,640)) 

#         cv.imshow('image', image) 

        imgL,imgR = splitter(image) 

         

#         cv.imshow('left', imgL) 

#         cv.imshow('right', imgR) 

 

#########you've got to designate an ROI ###################### 

 

    #maybe use undistort here 

        leftRec = cv.remap(imgL, stereoMapL_x, stereoMapL_y, 

cv.INTER_LANCZOS4, cv.BORDER_CONSTANT,0) 

        rightRec = cv.remap(imgR, stereoMapR_x, stereoMapR_y, 

cv.INTER_LANCZOS4, cv.BORDER_CONSTANT,0) 

         



    #get tuning values 

        blockSize = cv.getTrackbarPos('blockSize','stereo refine')+5 

        disp12MaxDiff = cv.getTrackbarPos('disp12MaxDiff','stereo 

refine') 

        minDisparity = cv.getTrackbarPos('minDisparity','stereo 

refine') 

        numDisparities = cv.getTrackbarPos('numDisparities','stereo 

refine')*16 

        preFilterCap = cv.getTrackbarPos('preFilterCap','stereo 

refine')+1 

        preFilterSize = cv.getTrackbarPos('preFilterSize','stereo 

refine')+5 

        speckleRange = cv.getTrackbarPos('speckleRange','stereo 

refine')     

        speckleWindowSize = 

cv.getTrackbarPos('speckleWindowSize','stereo refine') 

        textureThreshold = cv.getTrackbarPos('textureThreshold','stereo 

refine') 

        uniquenessRatio = cv.getTrackbarPos('uniquenessRatio','stereo 

refine') 

         

 

    #set tuning values 

        stereo.setBlockSize(int(np.floor(blockSize)//2*2+1)) 

        stereo.setDisp12MaxDiff(disp12MaxDiff) 

        stereo.setMinDisparity(minDisparity) 

        stereo.setNumDisparities(numDisparities) 

        stereo.setPreFilterCap(preFilterCap) 

        stereo.setPreFilterSize(int(np.floor(preFilterSize)//2*2+1)) 

        stereo.setSpeckleRange(speckleRange) 

        stereo.setSpeckleWindowSize(speckleWindowSize) 

        stereo.setTextureThreshold(textureThreshold) 

        stereo.setUniquenessRatio(uniquenessRatio) 

 

##Greyscale for disparity matching 

        leftRec = cv.cvtColor(leftRec,cv.COLOR_BGR2GRAY) 

        rightRec = cv.cvtColor(rightRec,cv.COLOR_BGR2GRAY) 

 

        disparity_BM = stereo.compute(rightRec, leftRec) 

        disparityFloat = disparity_BM.astype(np.float32)/16.0 

        disparityNorm = (disparityFloat - minDisparity)/numDisparities 

         

        dims = disparityNorm.shape 

        height = dims[1] 

        width = dims[0] 

         

        cv.rectangle(disparityNorm, (int(height/2-200), int(width/2-

200)), (int(height/2+200),int(width/2+200)), (255, 255, 255), 2) 

        disparityNorm = cv.resize(disparityNorm,(640,480)) 

        cv.imshow('disparityNorm',disparityNorm) 

         

        leftRec = cv.resize(leftRec,(640,480)) 

        cv.imshow('leftRec',leftRec) 

     

 

 

        #FPS calculation 

        end = time.time() 



        duration = end - start 

        fps = 1/duration 

#         print('FPS:', fps) 

         

#         dim = disparityNorm.shape 

#         width = dim[1] 

#          

#          

#         cv.setMouseCallback('disparityNorm',draw_circle) 

         

         

#         roi = disparityNorm[int(height/2-100):int(width/2-

100),int(height/2+100):int(width/2+100)] 

#         cv.imshow("roi",roi) 

         

        max_disp = np.max(roi) 

        f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180) 

        depth = (b*f_pixel)/max_disp 

        print(str(depth)) 

         

         

        rawCapture.truncate(0) 

         

        key = cv.waitKey(1) 

             

        if key == ord('q'): 

            break 

         

        else: 

            camera.capture_continuous(rawCapture, format="bgr", 

use_video_port=True) 

            rawCapture.truncate(0) 

             

             

    cv.destroyAllWindows() 

    camera.close() 

    break 

 

         

 

 

 

         

  



Appendix Q – MATLAB ORB Feature Rectification Program 
I1 = imread('C:\Users\CTBou\Documents\python_trash\left 

images\HD\left12', 'png'); 

I1 = rgb2gray(I1); 

%gauss = fspecial('gaussian',5,1); 

%lap = [0 -1 0;-1 4 -1; 0 -1 0]; 

%I1 = conv2(I1, gauss, 'same'); 

%I1 = conv2(I1, lap,'same'); 

 

I2 = imread('C:\Users\CTBou\Documents\python_trash\right 

images\HD\right12', 'png'); 

I2 = rgb2gray(I2); 

%I2 = conv2(I2, gauss, 'same'); 

%I2 = conv2(I2, lap,'same'); 

 

figure; 

imshowpair(I1,I2,'montage'); 

 

title('I1 (left); I2 (right)'); 

figure; 

imshow(stereoAnaglyph(I1,I2)); 

title('Composite Image (Red - Left Image, Cyan - Right Image'); 

 

%% 

blobs1 = detectORBFeatures(I1); 

blobs2 = detectORBFeatures(I2); 

 

figure; 

imshow(I1); 

hold on; 

plot(selectStrongest(blobs1, 30)); 

title('30 Strongest ORB Features in I1'); 

 

figure; 

imshow(I2); 

hold on; 

plot(selectStrongest(blobs2, 30)); 

title('30 strongest ORB features in I2'); 

 

%% 

[features1, validBlobs1] = extractFeatures(I1, blobs1); 

[features2, validBlobs2] = extractFeatures(I2, blobs2); 

 

indexPairs = matchFeatures(features1,features2,'Metric','SAD', 

'MatchThreshold',10, 'MaxRatio', 0.5); 

matchedPoints1 = validBlobs1(indexPairs(:,1),:); 

matchedPoints2 = validBlobs2(indexPairs(:,2),:); 

figure; 

showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2); 

 

%% 

[fMatrix, epipolarInliers, status] = 

estimateFundamentalMatrix(matchedPoints1, matchedPoints2, 'Method', 

'Norm8Point',... 

    'Numtrials', 10000, 'DistanceThreshold', 0.1, 'Confidence', 99.99); 

if isEpipoleInImage(fMatrix, size(I1)) || isEpipoleInImage(fMatrix', 

size(I2)) 



    error(['either not enough matching points were found or the 

epipoles are inside the images.']); 

end 

 

inlierPoints1 = matchedPoints1(epipolarInliers, :); 

inlierPoints2 = matchedPoints2(epipolarInliers, :); 

 

figure; 

showMatchedFeatures(I1,I2, inlierPoints1, inlierPoints2); 

 

%% 

[t1, t2] = estimateUncalibratedRectification(fMatrix, 

inlierPoints1.Location, inlierPoints2.Location, size(I2)); 

tform1 = projective2d(t1); 

tform2 = projective2d(t2); 

 

[I1Rect, I2Rect] = rectifyStereoImages(I1,I2, tform1, tform2); 

figure; 

imshow(stereoAnaglyph(I1Rect, I2Rect)); 

 

%% 

disparityRange = [0, 8*16]; %0 to 128 

uniquenessRatio = 20; %typically 5-15, 0 to disable 

disparityMapI = disparitySGM(I1Rect,I2Rect,'DisparityRange', 

disparityRange, 'UniquenessThreshold', uniquenessRatio); 

figure; 

imshow(disparityMapI, [0,15]); 

colormap jet 

colorbar 

 

 

  



Appendix R – MATLAB Disparity Calcuation Program 
%load('stereoParams.mat') 

I1 = imread('BFS_left','jpg'); 

I2 = imread('BFS_right','jpg'); 

%[I1,I2] = rectifyStereoImages(I1,I2,stereoParams); 

%I1 = rgb2gray(J1); 

%I2 = rgb2gray(J2); 

I1 = rgb2gray(I1); 

I2 = rgb2gray(I2); 

figure; 

imshow(stereoAnaglyph(I1,I2)); 

%figure; 

%imshow(stereoAnaglyph(J1,J2)); 

disparityRange = [0, 16*5]; 

disparityMapI = disparitySGM(I1,I2,'DisparityRange', disparityRange, 

'UniquenessThreshold', 10); 

figure; 

imshow(disparityMapI, [0,64]); 

title('Disparity Map'); 

colormap jet 

colorbar 



Appendix S - State Machine Diagram Mission Execution 
  

 





 



 



 



 




