

University of Southern Queensland

Faculty of Health, Engineering and Sciences

UAS AUTONOMOUS DROP ZONE ASSESSMENT

AND ADAPTIVE DELIVERY

A dissertation submitted by

Mr Christopher Bourke

In fulfilment of the requirements of

Bachelor of Engineering (Honours) (Mechatronics)

October 2022

University of Southern Queensland Christopher Bourke

2

Abstract
The aim of this dissertation was to research and implement a stereoscopic machine vision sensor system

on an uncrewed aerial system. The variables affecting the quality and computational cost of the stereo

algorithm were assessed and optimised to be employed on a low-cost companion computer, the

Raspberry Pi 4 (4GB). The algorithms used proved computationally expensive and the results tested the

limit of the companion computer’s abilities to reach the minimum operating speeds required for UAS

logistic delivery missions. The outcomes demonstrated an accurate and dense disparity map on

benchmark datasets but the image sizes and tuning in field testing demonstrated a limited efficacy in

application.

Measured distance error slightly increased across the effective ranges where disparity was calculated.

The cumulative errors from field of view and focal length, taken from the manufacturers specifications

rather than directly assessed, and the baseline measurement which all effect the distance measurement

after disparity is calculated.

From the implementation and assessment carried out in this paper it is evident that the largest factor

affecting the calculation speed of the system is the captured image size and represents the limiting factor

in employing this implementation in its current configuration.

Limitations of Use
University of Southern Queensland Faculty of Health, Engineering and Sciences

ENG4111 & ENG4112 Research Project Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering and Sciences,

and the staff of the University of Southern Queensland, do not accept any responsibility for the truth,

accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council

of the University of Southern Queensland, its Faculty of Health, Engineering and Sciences or the staff

of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise.

The sole purpose of the course pair entitles “Research Project” is to contribute to the overall education

within the student’s chosen degree program. This document, the associated hardware, software,

drawings, and any other material set out in the associated appendices should not be used for any other

purpose: if they are so used, it is entirely at the risk of the user.

Certification
I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this

dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any

other course or institution, except where specifically stated.

Christopher Bourke

Student Number:

Acknowledgements
Dr. Tobias Low

Mr Philip Moss

To my wife. Thank you.

Table of Contents
Abstract ... 2

Limitations of Use ... 3

Certification .. 4

Acknowledgements ... 5

Table of Contents .. 6

List of Figures ... 9

List of Tables .. 10

Chapter 1 - Introduction .. 13

1.1 Outline of the study ... 13

1.2 Introduction ... 13

1.3 The Problem .. 13

1.4 Research Objectives .. 13

1.5 Conclusion .. 14

Chapter 2 - Literature Review ... 15

2.1 Introduction ... 15

2.2 UAS in logistics .. 15

2.2.1 The last mile problem .. 15

2.2.2 Logistic UAS civilian and military .. 16

2.2.3 Increased investment .. 17

2.3 Delivery profiles and efficiency .. 17

2.4 Sensor suites used in UAS .. 18

2.4.1 Machine Vision .. 18

2.4.2 Stereo vision ... 19

2.4.3Monocular depth ... 21

2.4.4 Optical flow ... 23

2.5 Hardware ... 24

2.5.1 Companion computer ... 24

2.5.2 Camera system ... 25

2.5.3 UAS Platform ... 25

2.6 Conclusions ... 25

Chapter 3 - Research Design and Methodology ... 26

3.1 Hardware ... 26

3.2 Methodology ... 27

3.3 Design of test .. 30

Chapter 4 - Implementation Discussion and Results .. 33

4.1 UAS frame .. 33

4.2 Stereo Vision Implementation .. 33

4.2.1 Image Capture .. 33

4.2.2 Calibration and Rectification Assessment ... 34

4.2.3 Disparity Map .. 35

4.2.4 Middlebury Dataset Assessment .. 37

4.2.5 Stereo Algorithm .. 38

4.2.6 Depth Measurement and Accuracy .. 39

4.2.7 Stereo Outdoor ... 40

4.3 UAS Based Stereo ... 41

4.3.1 StereoSGBM Algorithm .. 41

4.3.2 StereoBM Algorithm.. 42

4.4 Optical Flow Results ... 42

4.4.1 Data Blending .. 42

Chapter 5 - Future Work ... 43

Chapter 6 - Conclusions .. 44

Reference list .. 45

Appendix A – Project Specification .. 50

Appendix B - OpenCV Calibration Image .. 53

Appendix C - MATLAB Poor Disparity ... 54

Appendix D - Poor Chessboard Capture ... 55

Appendix E - Optical Flow Dense Farnebeck Implementation .. 56

Appendix F – MATLAB Calibration and Rectification with Error .. 57

Appendix G – Stereo UAS Build and Gimbal Control ... 58

Appendix H - Distance Measurement Setup ... 59

Appendix I - Calibration Chessboard Capture A1Appendix I - Stereo Calibration Code 60

Appendix J - Stereo Pyramid Test .. 62

Appendix K - Stereo Calibrator Program ... 66

Appendix L - Stereo Semi Global Block Matching Distance Measurement (USB) 69

Appendix M - Calibration Image Capture (USB) ... 73

Appendix N – Continually Calculated Release Point Algorithm Example 75

Appendix O – Calibration Program UAS Implementation ... 77

Appendix P – Stereo Program UAS Implementation ... 80

Appendix Q – MATLAB ORB Feature Rectification Program .. 84

Appendix R – MATLAB Disparity Calcuation Program ... 86

Appendix S - State Machine Diagram Mission Execution ... 87

Appendix T – USQ Safety Risk Management System ... 88

 .. 89

 .. 90

 .. 91

 .. 92

List of Figures
Figure 1 - Pinhole Camera Model Detailing a Real-World point, P, and the point projected on the

image Plane at (u,v).(Opencv 2022) ... 18
Figure 2 - Stereo Vision Concept showing image planes and disparity of viewed object in space

(Hariyama, Masanori & Kameyama 2008) ... 19
Figure 3 - Monocular Vision Error with Inferred Depth ... 22
Figure 4 - Velocity of image point from optical flow (NYU 2012) .. 23
Figure 5 - Stereo Calibration and Rectification procedure (Ni Vision Concepts 2022) 28
Figure 6 - Depth calculation from stereo disparity (OpenCV 2022) .. 29
Figure 7 - Stereo Calibration (top) and Operating Operations (bottom) ... 33
Figure 8 - Disparity Map After ORB Feature Rectification ... 36
Figure 9 - Middlebury Dataset Reference, stereoBM Disparity Map and Truthtable 38
Figure 10 - Image Pyramid Disparity Assessment. Full Resolution, Half Resolution, Quarter

Resolution, Eighth Resolution from Left to Right .. 39
Figure 11 - Initial StereoSGBM Distance Measurement 0.08m Baseline 640x480 Image 40
Figure 12 - OpenCV Calibration Image 9x6 Chessboard Error! Bookmark not defined.
Figure 13 - DisparitySGM Disparity Map 640x480 Error! Bookmark not defined.
Figure 14 - Poor Chessboard Corner Capture Error! Bookmark not defined.
Figure 15 - Farneback Dense Optical Flow. Translating Subject Error! Bookmark not defined.
Figure 16 - Farneback Dense Optical Flow, Translating Camera System Error! Bookmark not

defined.
Figure 18 - Gimbal Control and UAS Frame Mount Error! Bookmark not defined.
Figure 17 - Stereo Vision UAS Implementation with Gimbal and Avionics....... Error! Bookmark not

defined.
Figure 19 - Basic Sate Machine Diagram for Mission Execution Error! Bookmark not defined.

List of Tables
Table 1 - Stereo Machine-Vision Implementation Cost……………………………………………… 28

Table 2 - Resolution of captured image and the effect of frames per second and CPU usage……….. 39

Table 1 - Distance Measurement Results. 0.8m baseline 5m target 1m intervals …………………….41

Nomenclature

Δz - change in depth detected by the stereo setup

z - Calculated distance fom the camera setup

b – Baseline or distance between the cameras in the stereo camera setup

f- focal length of the cameras

Δd - the physical change in distance from the camera setup

Glossary of Terms

API – Application Programming Interface

CASA – Civil Aviation Safety Authority

CNN – Convolutional Neural Network

CSI – Camera Serial Interface

DLT - Direct Linear Transformation

GUI – Graphic User Interface

StereoBM – OpenCV Stereo block matching algorithm

StereoSGBM – OpenCV Stereo semi global block matching algorithm

TFMic – Tensor Flow for Microcontollers

USB – Universal Serial Bus

Chapter 1 - Introduction
“In a properly automated and educated world, then, machines may prove to be the true humanizing

influence. It may be that machines will do the work that makes life possible and that human beings will

do all the other things that make life pleasant and worthwhile.”

― Isaac Asimov, Robot Visions

1.1 Outline of the study
The development of UAS technology and its integration into society drive each other as convenience,

safety and applications expand. Studies and functions that expand the applications of UAS technology

especially in the hobby space will drive consumer interest and therefore investment for the future. This

study aims to implement a stereo machine-vision based distance measurement solution used to modify

a logistic UAS delivery.

1.2 Introduction
Uncrewed aerial systems (UAS) are being employed in multiple sectors and the continuation of

development of machine vision and autonomous machine learning means that UAS will be used more

broadly and with greater effect in the future.

Logistic delivery has been investigated as an avenue of UAS implementation and is being developed as

a commercial solution sporadically since 2013 and, more recently, growth has begun in Australia with

two major competitors, Wing and Swoop Aero taking part in CASA trails (Civil Aviation Safety

Authority 2022). The employment of these systems is highly regulated in accordance with CASA

regulations and while autonomous navigation and control have been the focus of many research papers,

efficient delivery has been traded against safety of operations and, critically, the increase in trust of

UAS.

The delivery method can be refined by assessing not only UAS position but also the vector required to

safely deliver to a selected delivery point. This research seeks to assess the use of implemented stereo

vision as a distance measurement method and utilise this method as a primary means of assessing a

delivery area while retaining accuracy and maximising efficiency of UAS endurance.

1.3 The Problem
Distance measurement to obstacles and for positioning are required as one of the numerous safeties for

UAS operation, particularly in controlled airspace (Civil Aviation Safety Regulation 1998). Many such

sensors are active types which transmit a signal to sense distance. These technologies have certain

limitations in application and accuracy especially in changing environments often requiring frequency

allocation and infrastructure. This study seeks to utilise passive sensors, likely to reduce transmitter

noise in the environment, without a delivery marker to expand the flexibility of the delivery system to

better operate in dynamic or remote environments with greater options for expansion.

1.4 Research Objectives
The aim of this research is to design and implement a UAS based delivery system which can

autonomously assess a designated delivery point for obstruction and transition its delivery method

accordingly. The objectives are:

1. Conduct initial research on UAS machine vision applications. Explore UAS delivery methods and

the legislation surrounding autonomy in UAS applications.

2. Review methods of calculating depth from stereo vision including the factors most affecting the

accuracy and resolution of the output. Investigate differing algorithms for stereo vision.

3. Conceptualise the components of a suitable integrated system including UAS platform, machine

vision components, companion computer, ground control, store delivery and testing systems.

4. Select hardware and a suitable software development environment. The requirements for necessary

capability and costs to inform selection.

5. Develop a machine vision algorithm for optimized disparity mapping.

6. Construct an initial prototype to facilitate data collection. Including UAS control programs and fail-

safes.

7. Refine stereo vision matching algorithms and post process data output for optimum use in a UAS

platform.

8. Integrate and deploy the prototype and algorithms at a suitable location and record data for

evaluation.

9. Process and evaluate experimental data.

Employment on a UAS platform dictates a low power companion computer and camera system to

maintain typical mission planning and execution in addition to delivery point assessments.

Depth resolution of 2m at 40m slant range to the delivery point forms the basis of a realistic operational

envelope, avoiding obstructions, i.e., trees and buildings while maximising UAS flight times. The

design will maximise this sensing distance while retaining the depth resolution.

The delivery method decision times and depth calculations must be valid for operation at a frequency

of at least 3 per second. These decision times will inform maximum approach speeds 5 -15 m/s is an

acceptable range.

1.5 Conclusion
The aims of this research are to define the factors that impact the implementation of effective

autonomous UAS delivery and move to design and test a system that satisfies the research base and

demonstrates the required technical engineering ability. The expected outcome of this implementation

should yield tangible results supporting the stereo-vision hypothesis discussed below while also

highlighting the practicalities of any implementation of autonomy or machine vision. The literature

review in Chapter 2 will investigate the current state of play of UAS in the logistics area, the typical

sensors required for sensing the environment, the background and applications of machine and stereo

vision, including the hardware that may be required.

Chapter 2 - Literature Review

2.1 Introduction

Research has been conducted into computer vision systems since the late 1960s (Alam 2020). There

has been a continual refinement of this process branching out into other emerging technology streams,

such as machine learning, with numerous vision systems employed throughout all areas of technology.

This literature review will explore the current state of UAS in logistic chains and how the technology

is shaping this area, the infrastructure and policy in place to support the growth of UAS and also the

commercial trends in the investment and deployment of these technologies will also be reviewed.

The typical sensors combined with UAS and how they are utilised to produce safe and effective

deliveries including mandated controls and in differing deployment environments (agriculture,

logistics, hobby, etc.). This will focus on the flexibility and adaptability of technologies and particularly

the use of stereo machine-vision.

Computer vision and stereo vision will be assessed in deciding a direction for the improvement and

implementation of a UAS model and the factors that would affect its capability. Factors that affect the

design of the model will be reliant on commonly accessible “hobby grade” equipment as this will be

the driver for future development and employment.

2.2 UAS in logistics

2.2.1 The last mile problem

The “last mile” issue facing logistic chains is a problem that arises due to the complexity of the final

portion of the delivery of an item to the consumer. Whereas manufacturers focus their attention on the

distribution of their products in the design of warehouses and despatch facilities and global logistics are

similarly robust and fit for purpose, the complexities of optimum routing, speed and accuracy of

delivery, package security and overall cost are far more difficult to assess and control in the “last

mile”(Ranieri 2018)(Diaz 2021).

Ranieri (2018) cites 28% of total cost attributed to last mile delivery while Diaz (2021) cites up to 53%

of total shipping costs. Increases in efficiency in this area would obviously lead to substantial increase

in profits for logistics companies. It is likely, therefore that investment in this area would be prioritised.

Populations world-wide are increasing but not expanding, becoming more dense (Macrotrends 2022)

leading to logistics chains requiring more refined last mile solutions. This could mean larger vehicles

or more frequent delivery trips. The most energy efficient solution could be the expanded commercial

use of logistics UAS in high density urban environments. The COVID-19 pandemic served as a warning

for population density (Bowditch, 2020), however, and may curb this trend altering the direction of

urban densities. Investment trends of the Australian Government appear to reinforce population density

to maximise the infrastructure investment. This obviously makes disease vectors more effective and

may change this approach to population density which could have effect on the use cases for UAS.

Muller, Janke and Rudolph (2018) make the distinction from pure technical solutions to UAS

investment to state that any improvements to automation or transitioning to electric transport would not

be an effective long-term solution rather suggesting “policy-supported reduction of disruption of

efficiency limitations.” This seems like a forward-thinking approach that has merit given the levels of

technical ability for UAS delivery and automation is currently at a high standard and used in a wide

variety of areas, it is more likely the adoption of this technology from a governance standpoint, whereby

aging laws controlling operations from 1998 (Civil Aviation Safety Authority) do not take into account

the future deployment of these technologies on a larger scale.

2.2.2 Logistic UAS civilian and military

European Cockpit Association (2020) posits that the uptake of UAS in the near future is not feasible

and even whether their use would be wanted. Further, the integration of fully autonomous systems into

spaces where humans operate raises issues regarding “…fundamental philosophical, legal, safety,

security, and societal issues”. The paper relies on the goal of automation being a force multiplier for

human operation and not a standalone activity. There is a myriad of automated operations now across

every field of human endeavour and the stated necessity for a human to remain in command could be

viewed as a function of trust in the UAS not one guided by academic UAS research. Interestingly Pani

(2020), shows that 61% of respondents responded positively to the increase in cost required by

automated delivery services, when surveyed around the period of the COVID-19 pandemic.

Drone systems have been developed as an enhancement to logistics chains in military and commercial

factory settings using ground-based rovers and airborne systems (Ergene 2016) (Rana, Praharaj, &

Nanda 2016) (Levin 2016) (Statt 2017). Recently the Civil Aviation Safety Authority has approved the

use of UAS for small scale commercial delivery, Wing Aviation Pty Ltd for small scale fast-food related

deliveries and Swoop Aero for medical supplies and related deliveries (Civil Aviation Safety Authority

2021). The ranges are 10km for the Wing drone and up to 60km for Swoop Aero, both UAS have

differing delivery profiles that likely informs the ranges as appropriate. As developments continue in

the fields on drone sensors, navigation, machine vision and necessary hardware the use of UAS will

become widespread.

Shao (2020) cites the viability of UAS in the logistics chain and presents an analysis of the “expected

level of safety (ESL) and the factors that contribute to this figure in both the air and ground domain.

Two cases studies are reviewed which does not form an exhaustive list of scenarios but forms a robust

basis for future assessments of safety and risk.

Autonomous deliveries are attempting to refine the last mile problem with autonomous UAS increasing

efficiency and manoeuvrability in dense urban settings while also reducing CO2 emissions (Rodrigues

et al 2022). Bicycle and pedestrian courier deliveries are filling this gap currently and the automation

can increase speed of deliveries for small items.

The research demonstrates that last mile problem is affected by multiple factors far outside of any single

company’s control. Population density, infrastructure, consumer trends, legislation around delivery

requirements, vehicle standardisation, real estate availability, ecommerce trends, etc.

In military applications, where the appetite for risk and the requirement for accurate and direct

deployment in insecure and volatile environments is paramount, the use of UAS has diversified from

surveillance to logistics. With 90% of deliveries being less than 50lb(23kg) (Defense Brief Edittorial

2020) medium scale UAS are being investigated as serious alternatives to large scale logistics assets.

In 2020 testing from Naval Air Warfare Center Aircraft Division tested commercially developed UAS

with the criteria to move 20lb of cargo 25 miles, 65 platforms were assessed and only 2 managed to

partially meet the criteria demonstrating the complex nature of practical implementation from a

relatively simple design brief.

The Australian Department of Defence’s Strategic Update (2020) and the Defence White Paper(2016),

that describes the strategic direction of Australia’s defence including acquisition and long term policy,

describes limited forecast acquisition of UAS focussing solely on tactical combat systems rather than

logistics. This direction could be a result of the extremely large distance required to cross the country

and to get to the areas of interest across the world that are currently serviced by the traditional platforms

available in defence and given coalition agreements the utilisation of other nation’s assets in country

may be more viable.

2.2.3 Increased investment

The state of infrastructure Australia is not currently setup for established logistics UAS. The Australian

Government (2021) has published the National Emerging Aviation Technologies policy which

describes the intended increase in utilisation of UAS with policy and infrastructure support required to

safely introduce and sustain long term logistics chains. The policy cites “safer, cheaper and more

efficient movement of people and goods” with intentions of targeting regional and remote areas which

represent 28% of the Australian population (Australian Institute of Health and Welfare 2022). The

policy also describes the practical requirements of RF allocation and management with typical operation

vastly increasing the requirements of civilian frequency availability and security of RF radiation, also

suggesting dedicated UAS corridors to refine traffic control and increase safety in dense populations.

The Government’s Emerging Aviation Technology Partnership (2021) is a $32.6 million allocation over

two years aimed to address community needs particularly in regional Australia. The Victorian

Government’s Advanced Air Mobility Industry Vision Statement (2022) reflects the Federal

Government’s direction including regulatory innovation prioritising agility and action proportionate to

risk, this is a departure from the current state of policy control dated 1998, notably climate action is a

primary driver for this initiative which supports the research found in the literature.

2.3 Delivery profiles and efficiency
UAS delivery methods gained popularity in 2013 with Wing, Zipline and Skypro with Amazon’s Prime

Air also getting investments from large logistics chains such as DHL, FedEx and UPS in America.

These drones’ delivery methods have not developed as quickly as expected especially the last mile

taking up 40% of delivery costs (Wendover productions 2021) a large part of this is the difficulty to

implement advancements creating cohesive environment for operations with air traffic control systems

such as CASA and FAA.

Early delivery solutions relied on landing the UAS in a relatively uncontrolled area which required a

high level of autonomy to ensure safety. Newer designs use a hover and winch approach for private

residences (Wing 2021) or drop a parachute fitted payload from height(Swoop Aero 2022). The

difference in ranges of these two approaches while having similar UAS platforms speaks to the

efficiency of the delivery methods.

Australia currently has two commercial logistics UAS operators trialling with CASA approval, Wing

and Swoop Aero (Civil Aviation Safety Authority 2021). These companies deliver small payloads from

medical equipment and supplies to fast food like Uber Eats with delivery ranges varying from 10 –

60km(Wing 2021)(Swoop Aero 2022).

The Wing UAS utilise a hover delivery method with a winch cable. Transporting small payloads in

cardboard containers to personal addresses. Swoop Aero use a VTOL delivery to a “nest” focussing on

a ArUco marker style landing zone indicator. The biggest issue surrounding the utilisation of these

drones for delivery is the deconfliction with other air traffic and the safety surrounding beyond line-of-

sight operation, especially in the delivery stages (Civil Aviation Safety Authority 2021). The factors

that most affect the community is noise from the UAS during the delivery which the Department of

Infrastructure, Transport, Regional Development and Communications manages in accordance with the

Air Navigation (Aircraft Noise) Regulations 2018(Department of Infrastructure, Transport, Regional

Development and Communications 2022). There is also an inherent risk of being under flight paths as

delivery vectors change to service any number of people in the area that they are approved to operate

in or pointedly, the risk of UAS collision with varying obstructions that are undetected in the real-world

such a existing infrastructure.

Importantly, the approval of these operations is predicated on the minimisation of noise pollution due

to the relatively low-level operation of the delivery drones. Specifically, from the Aircraft Noise

regulations 2018, the approval for operations can be revoked by the Secretary if a remotely piloted

aircraft “…is likely to have a significant noise impact on the public.” Reduction of operational time

over the public particularly in the delivery phase would reduce the risk of noise pollution.

Zhang et al (2021) investigated the energy consumption of differing UAS profiles during delivery and

flight. The research indicates that delivery operations yield largely fluctuating energy usages although

the models reviewed in the paper do not accurately represent the actual energy usage. It is more simple

and likely more efficient to utilise a cruise speed, fixed altitude delivery method using a ballistic model

for payload delivery. This paper does present several models estimating the energy required for steady

drone flight per unit distance (Epm) and as a conservative model indicates that an increase in speed and

a reduction in maneuverers results in the furthest range and lowest Epm. Rodrigues (2022) cites a ~30%

energy saving when removing vertical take-offs from the UAS path. Robust path planning (Debnath,

Omar & Latip 2019) (Bouzid, Bestaoui & Siguerdidjane 2017) (Galvez, Dadios & Bandala 2014) and

numerous other methods present autonomous path planning in a 3D space, referenced from the

travelling saleman and working into machine learning supported path optimisation.

2.4 Sensor suites used in UAS
Distance detection is a primary navigation tool used in almost all autonomous applications. A

majority of the technology available are active sensors that transmit a signal in order to detect

distance. This paper seeks to implement a passive sensor in stereo machine-vision and to assess its

performance and flexibility.

2.4.1 Machine Vision

The pinhole camera model is a simplification of the complex interaction between the outside world and

the lenses or internals of the camera system and how it affects the light striking the camera sensor.

Figure 1 - Pinhole Camera Model Detailing a Real-World point, P, and the point projected on the image Plane at

(u,v).(Opencv 2022)

The matrix A represents the essential matrix that effects the real-world points made up of the focal

length in the 2D plane, fx and fy, and the principal point of the image plane, cx and cy.

The representation of the point in the image plane [u v 1]T is the position in the image plane scaled by

the factor, s. the essential matrix modifies the world coordinates on the real-world point, P, represented

by the real-world coordinates Xc Yc Zc

The distortion is modelled using the methods described by Louhichi, Fournel, Lavest and Aissia (2007)

(OpenCV 2022)and can be solved to yield the distortion coefficients as

2.4.2 Stereo vision

Stereo vision is a passive sensor that uses machine vision and two cameras to calculate depth disparity

in viewed image like many biological vision systems. This method relies on feature matching and

known camera factors, intrinsic and extrinsic, to create disparity maps, refer to Figure 2. The limitation

of the stereo disparity falls inversely with distance from the camera and like most machine vision

applications low light operations and low texture environments fail feature matching and therefore are

not effectives (Zou & Li 2010).

Stereo vision relies on two, or more, views of an object and the estimation of depth occurs because of

the comparative placement of the viewed object in each image plane. Figure 2 references the general

setup that enables a disparity between the left and right images planes. There are a number of important

features that inform the disparity including the objects distance from the cameras, resolution of the

cameras, baseline between the cameras, in addition to intrinsic camera values like focal length and lens

corrections.

Figure 2 - Stereo Vision Concept showing image planes and disparity of viewed

object in space (Hariyama, Masanori & Kameyama 2008)

In order to utilise the images, the most important factor is the ability to match each object in the captured

images. There are a number of feature matching techniques available in computer vision applications

and a number of variables affecting the capture of images; extrinsic (world to camera): focal length,

field of view, lens intrinsic (camera to image and image to pixel representation): field of view, aperture

(as it pertains to the pinhole camera model), resolution (OpenCV 2022).

The Middlebury Computer Vision Pages contain multiple stereo datasets developed from the research

of D. Scharstein, R. Szeliski, and R. Zabih (2001) and updated periodically. The datasets contain

rectified pairs of varying scenes with the details of intrinsic and extrinsic and stereo depth variables.

The 2021 dataset has multiple pairs that will form a basis for assessment for the stereo algorithm (D.

Scharstein et al, 2014). The computer vision page also presents the research papers, algorithm

performance evaluation, and running environment for each algorithm. It is noted that a majority of top

performing algorithms utilise high performance GPUs which, as detailed in the hardware assessment,

will likely be unobtainable given the aim to deploy this model on a low-cost companion computer.

Stereo vision implementations that have utilised a lower power computer often capture low resolution

image pairs with many papers capturing 320 x 240 pixel images for stereo disparity assessment (konlige,

1998)(Cooper et al., 2017). Other papers 640x480 images with higher power computers. There have

been successful implementations of low power stereo vision systems Gehrig, Eberli, Meyer (2009)

which report some extremely fast frame rates while implementing stereo vision which are well over the

assumed requirements for successful UAS deployment.

Research (Sun 1997) (Kumar & Desai 1994) (Chang & Chen 2018) demonstrates the application of

image pyramids to increase the speed of the stereo matching process although Chan and Chen combine

the pyramidal approach with a 3D Convolutional Neural Network (CNN). The advantage of the

pyramidal approach is that broad detail and context is preserved at lower resolutions but also presents

vastly less search area to minimise cost.

Camera Calibration

Camera calibration is a critical first stage for any machine vision application. Calibration of the cameras

in the system seek to estimate the variables involved in transferring information from the external world

to the image plane of the camera. These variables are noted as intrinsic and extrinsic parameters and

deal with the effects of the physical sensors and lenses contained in the system. Intrinsic factors

represent the camera internal characteristics such as focal length, sensor size, image centre and any

distortion, radial or tangential, applied as a function of internal lens placement. The extrinsic parameters

relate to the position of the camera system in the outside world and its orientation. With these parameters

estimated after the calibration stage the elements of the 2D image can be accurately transposed to the

3D world forming the basis of machine vision-based sensing of the real world. Zhang (2000) presents

the widely accepted method for camera calibration in their paper whereby multiple images (at least two)

of a calibration target are procured and the image is referenced against the known targets configuration

so these parameters can be estimated and applied to all subsequent images captured by the system. A

chessboard or ArUco marker are the default selections that can be used as a calibration target as these

provide high contrast and sharp edges or corners that are clear and simply identified in machine vision

algorithms (OpenCV 2022). Remondino & Fraser (2006) present a number of approaches to camera

calibration. The capture of a known calibration target is demonstrated in a number of approaches as in

(Heikkilä & Silven 1997) (Tsai 1987) (Zhang 2000) also utilising the pinhole camera model to simplify

the extrinsic and intrinsic variables which are used to calculate the essential matrix. Zhang (2000)

presents a method for image camera calibration based around the pinhole camera model which has been

adopted as the standard for future research into fast and accurate calibration algorithms. OpenCV

utilises the pinhole camera model and leverages heavily from the implementation suggested by Zhang.

A direct linear transformation (DLT) is one of the methods used for estimating intrinsic variables Qi,

Li, & Zhenzhong (2010) summarises the typical approaches and suggests an artificial neural network

to further calculate the cameras radial and tangential distortion for a more realistic non-linear model

rather than the simplified pinhole camera model.

Critically, many web cameras are automatically implemented with auto focus functionality enabled and

when a calibration target is being moved for capture the camera system can often refocus to best display

the target. This function alters the intrinsic parameters of the camera in between calibration target

capture and therefore causes the estimation of these assumed static variables to be incorrect (Ricolfe-

Viala & Esparza 2021). It is therefore imperative that the autofocus is disabled when camera calibration

and operation is underway. While studies have suggested ways in which auto focus can be implemented

during the calibration and operation stages the simplicity in fixing the camera focus particularly where

fine detail is not required should mean a reduction in algorithm complexity and computational cost.

Rectification

Image rectification is the correction of subsequent images using the estimations of the extrinsic and

intrinsic parameters found in the calibration operation. This step is required to accurately represent the

captured images as a representation of the outside world critical for machine vision applications but

moreso for stereo applications where each system is referenced to its partner.

The stereo rectification process seeks to not only correct the distortion in the images but also to align

the captured image pairs to their partner along epipolar lines and reprojecting the image pairs on a

common plane. This reprojection along a common plane makes stereo matching and disparity

calculation simpler (Pollefeys,Koch & Van Gool 1999).

Epipolar lines

The epipolar plane is defined between the epipolar lines from each camera and the line between the

camera’s projection centres. The result of the creation of epipolar lines creates a method of aligning

observed images between two misaligned camera systems. Effectively observed images exist along the

same epipolar line in each image plane. This is the basis of simple stereo matching algorithms which

track along the defined epipolar line with some criteria to match the blocks for stereo assessment.

Stereo typical search functions

The research conducted into stereo matching algorithms has some almost universal reference points that

many of the current implementations refer to in their development. Birchfield and Tomasi (1999)

discusses the calculation of a dense disparity map quickly while dealing with untextured regions and

post-processing for complete and neat edges of images. Hirschmuller’s (2005)(2007) research into

developing the semi global stereo block matching algorithm that forms the basis of OpenCV’s disparity

map calculations (OpenCV 2022)and Konolige’s (2010) StereoBM function.

2.4.3Monocular depth

Carrio et al (2020) presents a method of stereo vision implementation with a machine learning model

which identifies a UAS and trains a model from the resulting high resolution (1920 x 1080 pixel)

disparity and the depth when viewed from the camera system. Similar approaches are demonstrated in

other works which yield accurate results on low power computers (Thorat, 2019). The depth

calculations are used to train an early stopping strategy from a 470-image dataset prior to data

augmentation to increase the training data and validation sets. This approach utilises a far more powerful

computer to capture high resolution images and train the model. The object detection reduces the

requirement for dense disparity maps instead highlighting an target and applying stereo matching and

distance calculation to it solely. This reduces the image processing cost and leaves overhead for other

functions. This application can be implemented on a low power computer to interpret the model

particularly the application in Tensor Flow for Microcontrollers (TFmic). Importantly, this model uses

a Nvidia Jetson TX2 a device designed for AI execution with considerably more power, 2.5 times more

than the Nvidia Jetson Nano, one of the prospective companion computers investigated, as reported by

Nvidia (2022). The camera system is a ZED pre-calibrated camera system with a narrow 12cm baseline

which autonomously filters disparities to yield continuous disparity maps. The system has a default

range from 0.4 – 25m and a maximum range of 40m. With this setup effective training of the machine

learning model could be trained for distances up to the experimental goal of 40m but the prohibitive

cost of $449 excludes this camera system from selection. There is a similar option in the Intel Real

Sense ($499) which has been excluded for the same reasons and a recommended range of up to 6m

(Intel Corporation, 2022).

Cherry (2021) demonstrates a reliance on scaling and definition, relative size, absolute and familiar

size, elevation, texture gradient, motion parallax, aerial perspective, linear perspective, overlap, shading

and lighting. In the employment of a CNN in this study the weights attributed to these variables were

not investigated. The work by Saxena, Schulte and Ng (2007), demonstrate detailed depth maps using

monocular and stereo cues using Laws’ masks and oriented edge filters to assess texture variations.

They cite the requirement in biological systems that learnt cues ie. the colour of the sky or grass, the

significance of occlusion, blurring and haze that develop as cues to depth and requires the overall

context if the image is to be effective. The detail of the stereo correspondence is minimal, but it is

defined the sum or absolute difference (SAD) minimising which finds 0.2px disparity which is very

accurate. This method is used in other matching criteria in the literature and seems a robust, simple and

efficient approach.

Miangoleh et al (2021) presented an algorithm that uses varying resolutions in an image pyramid to

develop areas of contextual information that is then blended with higher resolution information that

may sacrifice these contextual clues by utilising a smaller field of view. This develops the approach

from the MiDAS approach which attempts to optimise the scene structure and high frequency

suggesting their approach detail depth discontinuity disagreement ratio.

The trade-off is an intelligent complimentary filter style combination of data that results in high quality

depth estimates that exceed MiDAS trained algorithms. The problem is that this algorithm erroneously

estimate depth where no physical depth exists eg. Images of a scene or possibly a reflection. This may

mean that this type of algorithm may give false indications in dense urban environments where many

points of reflection exist.

The MiDAS algorithms might be difficult to implement on a Rpi but this is the basis for likely the future

of depth calculation there are multiple other indication of effective use of machine learning aiding stereo

algorithms.

Poggi et al (2008) developed an algorithm that could effectively run at 1.7s per frame on the Rpi 3 from

a web camera. Other frequency 2Hz and 150MB of memory. Again, using a pyramidal feature detection

to cover the requirement for local and general features that imply depth. Importantly using 720p web

Figure 3 - Monocular Vision Error with Inferred Depth

cameras have enough disparity and via a robust training network which is enough to output a very

accurate depth map.

The report is transparent with its resource allocation and cost and is likely the time for calculation would

only be improved with more up to date architectures such as the Rpi 4. However, the drawbacks due to

networks training costs and the resources required preclude it from selection as a part of this project.

Further work is expected in this field and will likely form the basis of future applications.

The implementation may be improved using machine learning models trained externally and

transitioned to more economical routines as with TensorFlow Lite for Microcontrollers (TFmic). This

implementation can convert larger models trained through Tensor Flow into Tensor Flow Lite and then

into an even smaller version in the TFMic versions to be run on the Cortex-M series, for

microcontrollers. The Raspberry pi 4 has a more powerful Cortex-A72 Processor designed for a higher

performance standard but also runs an operating system which could bog down the processing speed

(Sirin Software 2018).

2.4.4 Optical flow

Optical flow is another monocular distance measurement option. The basics of the optics and structure

from movement, there are several methods available to recreate structure from motion that relies on

tracking a point from one frame to another across a time step.

Lucas-Kanade(LK) method relies on small movements within a neighbourhood of pixel to track a pixel

along a path. With this movement the speeds of the viewing camera and the viewed object can yield

structure with which to reconstruct the image and infer depth of the viewed object. Javidnia and

Corcoran (2017) state a criterion for accurate LK optical flow calculations. Small motion steps, texture

rich features and smooth movements. The method uses ORB feature matching to gather correspondence

and utilises the Huber loss function for structure optimisation which effectively reduces the effect of

outliers of estimates.

The optical flow method would likely suffer for distance estimation, given that a larger distance from

the camera will result in a smaller movement in the image plane. The cost in implementation would be

reduced by relying on a region of interest, that is the delivery point, but would increase the likelihood

of inaccuracies because of the “barber pole” effect of reduced contextual information regarding flow in

the scene.

The equation to infer depth from movement relies on robust tracking of a point between two 2D image

frames and data relating to the velocity of the viewed object, velocity of the camera observing the scene,

the focal length of the camera and the position of the point in the image relayed in Baraldi, Micheli and

Uras’ work (1989). This paper uses newspaper sheets to enhance the texture or optical interest in the

scene to better track individual points. This indicates that in an outdoor environment this method may

work well when viewing a ground level delivery point. The experiment also displaces the optical and

translation axes to reduce noise in the calculated depth as a function of the focus of expansion. The

focus of expansion being the point where closing flow vectors meet (O’Donovan 2005).

Equations have been reiterated in several papers, Refer below

Figure 4 - Velocity of image point from optical flow (NYU 2012)

This equation presents the velocity of the points in the image plane and rely on focal length, object

velocity in the world and the translation velocity along the Z dimension along the path of travel, and

the physical depth of the object in the path.

To infer depth, the image plane velocity (vx/vy) can be estimated given two consecutive images with a

small time between them to ensure that the tracked points are within a small neighbourhood. This

change in position in the image and the change in time (dt) can then be used to estimate image plane

velocity and with a known translation of both object and camera the depth can be calculated, which

obviously relies on the same point being identified correctly in each image relating to the stereo vision

disparity measurement. The camera translation speed Vz will be the velocity of the UAS, the delivery

point will be stationery which will reduce the complexity of the calculations.

To enable image matching between the two images colours of the point must be the same. The

translation of the viewing camera can not only create occlusion of the image point or in a dynamic

world shadow or light may change because of the cameras angle inducing a reflection or change in the

surface in the world. HSV colour schemes are less likely to be affected than RGB colour schemes

(Mamdouh 2020).

The implementation of the L-K sparse optical flow occurs using pyramidal iterations, looking at high

level disparities then refining the resolution to reinforce found movement and introduce finer details.

Sparse optical flow can result in robust tracking (NYU 2012) and is useful when larger movements are

expected between image capture.

2.5 Hardware
Of note is the relatively high-end hardware that a majority of the most accurate and efficient algorithms

use when compared on the Middlebury Vision (Scharstein, D, Szeliski, R, Hirschmüller, H 2022). Li et

al (2020) UAS mostly reliant on cloud computing and mobile edge computing (MEC) might be a viable

solution to alleviate the latency on the network. This would have flow on effects for infrastructure

investment and the wider employment of UAS for monitoring and offboard computing. This may not

be possible in regional and remote areas of Australia where remote network infrastructure is unlikely

to be appropriate for MEC or offboard computing applications. The placement of markers, common in

the popular UAS delivery guidance models may also not be suitable in remote areas in emergency

situations or where access is difficult, or personnel are not available. Therefore, a delivery method that

does not use a marker would have a large amount of flexibility if the method can be accurately

implemented.

2.5.1 Companion computer

The companion computer will be required to calculate the stereo disparity maps and also make decisions

via a state machine to pass updates to the mission on the autopilot. The listed examples of the companion

computers from the Ardupilot documentation shows numerous ARM-based single board computers

with the ability to communicate via MAVLink protocols. There are numerous options that could fit this

broad brief, the other influencing criteria are cost, CPU and GPU capacity, camera inputs, power

requirement, I/O interface and availability.

The initial shortlist was as below:

• Jetson Nano Development Kit

o GPU (stereo projects) and GPIO pins

• Raspberry pi compute io 4

o Can’t fit an external GPU to it

• Raspberry pi 4

o Has a little GPU might be a problem

The stereo algorithms investigated leveraged heavily on GPU operation given the nature of the matrix

operations and so a more sophisticated computational capacity is preferable. The Jetson Nano presents

the most powerful GPU of the list and carries a duplicated GPIO set as the Raspberry Pi presenting

itself as a preference for selection.

2.5.2 Camera system

There are a number of self-contained stereo camera systems that are pre-calibrated such as the ZED

series and the Intel Real Sense. These units demonstrate excellent stereo depth with convenient API

control for data collection but are expensive and often have reduced distance given their narrow baseline

as detailed in the literature.

There are a number of camera systems available predominately transferring data via USB or CSI. The

camera systems should be compatible with the data transfer connections of the companion computer.

The CSI ports are capable of higher data transfer rates than USB 3.0 (Kumar 2022) and are available

on many of the low power typical companion computers utilised with UAS.

The cameras available from Raspberry pi are low cost and reliable and come in a variety of resolutions.

Given the assessment of an increase in captured image resolution the highest resolution camera

available is from the Raspberry Pi HQ camera.

Capturing synchronous images has been demonstrated to be imperative when stereo matching (Zhang

2010) and hardware synchronisation is not always reliable and can introduce lags in real-time operation.

Camera multiplexers have been used successfully in some of the studies in the literature and should be

a focus for procurement if required.

The camera system requires mounting and control via the UAS meaning a gimbal or mount must be

procured. In this case given the flexibility of the final camera system a customised gimbal system could

be appropriate given the complexity that multi-DOF gimbals would introduce into the system.

2.5.3 UAS Platform

The platform requires a minimum payload capacity of approximately 1kg (Placek, 2022) to enable it to

lift the delivery payload as well as the companion computer, avionics, and the stereo camera rig. A

generic commercially available frame would be sufficient.

2.6 Conclusions
For this design the approach is a simple direct point approach at a fixed speed and altitude. The height

will be set to avoid ground level obstruction and minimise the effects of wind, approximately 40m, for

the least climb and the simplest approach to a point maintaining a fixed altitude. The delivery method

will be a cruise speed level altitude release in the case where there is no obstruction. Distance from the

target to release the payload will be calculated by a simple 2D continually calculated release point

algorithm. In the case of obstruction, the delivery method will be modified to a hover over the delivery

point and drop, while not the most efficient, it should result in an accurate delivery.

Chapter 3 - Research Design and Methodology

3.1 Hardware
The basis of the design is to utilise common hobby equipment and implement the stereo distance

measurement. In that respect the following selections have been made for investigation:

Companion Computer – Raspberry Pi 4, typical, low cost, companion computer utilised for a diverse

range of applications.

 Raspberry Pi 4 Model B 4GB RAM (PiAustralia 2022)

• 1.5GHz Quad Core Cortex A72 ARMv8

• 4GB of LPDDR4 SDRM

• Integrated Graphics(OpenGL ES)

• Two USB 3 ports

• Two USB 2 ports

• Two microHDMI ports

• WiFi, Bluetooth and Gigabit Ethernet

• One CSI port

Arducam stereo Hat – This module fits onto the GPIO and allows for twin synchronous image capture

and transfer via CSI ports also an external power supply.

Raspberry Pi HQ cam (SONY IMX477) – The HQ camera modules use a CSI connection and are

capable of 12.3-megapixel, 4056 x 3040 pixel images with a 1/2.3” sensor format.

Lenses – LN050 16mm focal length lenses with 24°(horizontal) field of view (FOV)

Stereo Gimbal – A 3D designed and printed integrating a SG90 servo and a rigid 1-DOF positioning

the cameras in a fixed plane.

UAS frame – S500 quad copter frame with Cube Orange autopilot

Release mechanisms – Eflite EFLA405 servoless payload release modules (4)

Given the global climate of logistics and chip shortages at the beginning of 2022 there was considerable

difficulty in purchasing any of the companion computers required for this implementation. A Raspberry

Pi 4 B (4GB) was procured with which to begin and although this was a tertiary choice. The cost of the

build is detailed in Table 1 below.

 Table 2 - Stereo Machine-Vision Implementation Cost

Item Quantity Cost

Raspberry pi 4 B

(4GB)

1 $92.40

Arducam Stereo

Camera Hat

1 -

Raspberry Pi HQ

Camera (Sony

IMX477

2 -

LN050 16mm

Lens

2 $224.99 (kit cost)

CSI ribbon cables 2 $3

SG90 servo 1 $2

E flite servoless

payload release

4 $58.16

Total - $380.55

3.2 Methodology
The stereo distance measurement process follows the typical methods detailed in the literature following

the work detailed in OpenCV’s library (2022). Initially it is vital that the cameras are calibrated, and

the camera images rectified prior to operation. After the calibration and rectification process is

completed, the operational images can be captured and corrected using the calculated extrinsic and

intrinsic variables and the stereo matching algorithms can create a depth map. Using the depth map

created by the matching algorithm the depth can then be calculated as a function of the focal length,

field of view and baseline of the camera system. The following details the stages of the process required

to calculate depth from stereo images.

 Calibration

The first step of the machine vision accrual of images in the understanding of the intrinsic and extrinsic

factors that affect the captured images. There are several factors that arise from the lens and camera

sensor manufacture known as intrinsic factors.

Generate the reprojection error which is the pixel difference between the 2D vectors as they would exist

in the 3d plane

 Undistort

Use the calibration data and apply it to the new images thereby accurately displaying the images as they

should appear in the world.

 Rectify

The rectification method is critical in the ability to match the windows and create an accurate disparity

map. This step ensures that both image planes are aligned horizontally so that matching algorithms can

search along a single line of pixels rather than use a larger window or a more global search pattern.

 Disparity map

The stereo disparity maps created in this implementation will be made using the functions available in

OpenCV’s library and follow the methods of Konolige (2010). Using the OpenCV stereo matching

algorithms StereoBM the pixel row is checked for matches between the left and right image and if a

match is found the difference in the relative positions in the image plane is the disparity for estimating

depth.

StereoBM algorithm is a customised block matching approach implementaed by Konolige(2010) an

epipolar search matching blocks and minimising the error using SAD, SSD or NCC. The semiglobal

block is adapted from Hirschmuller’s (2007) work and extends the search pattern to eight directions

reducing reliance on accurate rectification and yielding better results but being more expensive.

The stereo disparity calculation algorithm StereoBM uses a block matching algorithm where a defined

window tries to match a segment of the left and right images along epipolar lines of the rectified images.

The algorithm relies on the sum of absolute difference (SAD), which minimises the effect of large

outliers in a search area (Konolige 2010), in relation to the error in block comparison to find a minimum

and suggest the most accurate match other comparisons are available such as sum of squared difference

and normalised cross correlation which perform slightly differently particularly with block size is small

(Ambrosch et al. 2007). In regions of optical uniformity or with areas of repeating patterns along

epipolar lines it can be clearly assumed that errors in this matching function will yield a low-quality

disparity map. It is therefore important that the environment is optically interesting as with most

machine vision applications. Importantly the stereo matching variables are only applicable to one image

set and as the target or environment change further tuning is required.

Figure 5 - Stereo Calibration and Rectification procedure (Ni Vision

Concepts 2022)

Depth calculation is a simple geometric triangulation after the creation of a disparity map that relies

heavily on the object depth and the focal length and baseline of the camera setup. The detection of

change of depth or depth resolution is given by the equation below for disparity calculated as the change

in position of the subject between the left and right image(Δz), depth(z), the distance between the

cameras (b), the focal length f and the change in distance from the stereo setup(Δd).

In order to maximise the baseline within reason or the s500 platform so the stereo camera system would

not impair the movement or risk damage to the camera or UAS. High resolution cameras to increase

the ability for differentiation and disparity calculation. The Arducam Stereo Camera Hat outputs a

composite image from the two cameras at a resolution 4056x3040 pixel image containing the left and

right image 2028 x 3040 image per side. The general approach is listed in stages below:

• Take a stream of images and use the read() operation to select the image

• Use the calibrated corrections to remap and undistort

• Make it greyscale to be used for stereoBM

• Use StereoBM because it’s quick and decently accurate also stereoSGM which is more accurate

and only a little bit more expensive as an option to prepare the disparity map

• Use the focal length, and baseline to calculate the depth.

• Combine the Optical flow depth assessment

• Dense optical flow on a ROI around the commanded delivery point

Figure 6 - Depth calculation from stereo disparity (OpenCV 2022)

Modify the approach to elongate the translation that is perpendicular to the approach vector. This should

increase the accuracy of data from depth from optical flow. A fixed height approach should satisfy this

requirement.

Blend using EKF, this should ensure that there is some credulity to the data.

If the distance measured is less than the GPS distance to the point by the minimum variation calculated

by the optics then the decision to alter the delivery method is made.

The continually calculated release point is calculated as a function of the vertical and horizontal speeds,

the altitude and the payload variables returning the distance from the target required for release. During

a cruise release the GPS position will trigger a delivery rather than the stereo system.

When modified to a hover delivery when the UAS arrives at the GPS position of the target the payload

is released then the mission reverts to the cruise delivery for the next point.

Regulatory restrictions of UAS operation detailed by CASA are detailed below and will inform the

deployment and testing phases of this implementation. The controlled environment of the testing areas

will mitigate the risks as defined in Appendix 15.

Information regarding the operation and registration of UAS is defined through the CASA regulations

(CASA 2021). A number of points are to be observed for UAS flights;

• UAS must be registered for research and development purposes.

• Must use a remote pilot licence or an RPA operator accreditation. While this design doesn’t

consider night flying other registration and requirements are in place in accordance with the

CASA beyond visual line of sight (BVLOS) Limits as to

• Flying within 30m of people (not closer than 15m) must have a remote piloted operator’s

certificate (ReOC) and a remote Pilot Licence (RePL).

• To operate within 15m weight under 150kg, consent from personnel, minimise safety risks,

document practices (RPAS operations manual), no closer than 15m do not fly above any person.

• All personnel with 30m must give consent.

• Dual redundant battery systems with mountings

• Proven ability to fly safely with 1 motor inoperative with maximum take-off weight

• GPS hold and return home function with 7 GNSS satellites

• Not within 5.5km (3nm) of controlled aerodrome

• BVLOS operation requires RPA flight auth, include risk assessments, complete a flight

assessment

3.3 Design of test
The following breaks down the expected iterative testing process to prove and assess each stage of the

implementation.

Test 1:

Assess the stereo algorithms in the creation of the disparity maps. Use variable Middlebury Dataset

images; artroom, ladder and pendulum.

The disparity map will be assessed qualitatively to assess the clarity and discrimination of the subject

and how it compares to the truth table provided with the image pairs.

• Density and discrimination

• Speed of changes made through tuning indicating calculation of a single frame.

• The values of the variables to be used for similar scenes during UAS testing.

➢ These are rectified HD (1920x1080) resolution images that output a robust disparity map using

the OpenCV stereo algorithms when they are optimally tuned.

➢ The subjects affect the variables that are used. Close detail as in artroom displays a poor

disparirty map when attempting to observe the close detail this is acceptable in that the targets

are at a range meaning that large disparities, which indicate a close subject, is not what this

system would use. To maximise the viewing window using a small, 3 by default, minDisparity

which sets up the comparison pixel window and sacrifices close detail detection. The noise

created by this sacrificed can be offset by increasing the uniquenssRatio.

➢ Optimal variables for depth resolution as seen in Ladder and Pendulum indicate that a lower

minDisparity, a middling numDisparity, a small block size, a high uniqueness ratio and a very

high P1, P2 to post process the disparity map.

➢ This ensures that the results reject noise and capture as much

➢ (genuine?trustable?dependable?) results while also rejecting noise.

➢ Transport these variables to a camera setup and test again.

Test 2:

Assess the cameras setup using the same variables that we identified in test 1.

Using the test rig on a marked and measured area looking at a chessboard calibration image on a box at

ranges out to the maximum disparity detection and assessing the accuracy of the distance calculated.

• Density

• Speed (USB at varying resolutions)

• Distance accuracy

• I increased the GPU memory from standard 128 to 256MB that worked to capture full

resolution could this be managed between disparity and image capture?

Test 3:

Outdoor setup and control of UAS decent. Using the stereo camera setup as an altimeter the UAS will

hold a GPS position and descend through an arbitrary decision height. 30m descend through 20m to

10m. On the 20m detection the UAS will indicate that it has detected the distance (spin? RTL - success

or fail landing pad)

• Observe success

• Assess accuracy via tlogs

Test 4:

Fly at an interlocking plastic brick wall. Designate a delivery point behind the wall to trigger a decision

to hover or cruise delivery drop.

Fly straight past with no detection or hover with detection

• Assess success

• vary speed/height until failure

1. Utilising a closed testing area with enough space to safely operate the UAS and setup the testing

required.

2. Use interlocking bricks approximately 30 x 10cm, a “Lego” style block to build a wall to act as

the obstruction built to a height of approximately 2m at an initial distance from 3m from the

delivery point.

3. GPS RTK to layout the positions for release, positioning of wall and the designated delivery

position.

4. Setup a mission via ArduPilot to match the positions including secondary and tertiary delivery

point closer to the obstruction to test the resolution of the depth measurement.

5. Setup video recording devices for the drop zone, wall and the UAS. Tripods to enable sufficient

field of view for review.

6. Run the mission and assess the position of the dropped object and the change in delivery

method.

7. Move the delivery position and remap the GPS position and change approach speeds 5, 10, 15

m/s

8. Review footage and assess the outcomes.

Chapter 4 - Implementation Discussion and Results

4.1 UAS frame
The frame has a payload carry weight of 4kg and a typical endurance 60 minutes and speed of 15m/s

these values are suitable for a test bed and to carry and deploy the test payloads (tennis balls) for flight

testing. The camera gimbal does not exhibit a large increase in weight given its manufacture from 30%

infill PLA 3D print and the negligible weights of the hollow carbon fibre gimbal rod, camera mounts

and gimbal servo. The cameras do present a slight increase to the weight and their eccentric loading on

the gimbal rod has been managed through the design of the camera mounts to provide a slight

downwards attitude to minimise the load on the servo when typically, over larger transit distances the

servos will be horizontal as a function of the height and the ground distance to the target.

Given the performance of this frame is largely restricted because of the stereo processing speed the

speeds and endurance of this frame are not directly assessed as a measurable indicator of this design.

The fixture of the cameras on the gimbal rod are likely to exhibit modal vibration which may affect the

position and calibration of the stereo setup.

After flight testing has occurred a reassessment of the calibration is to be carried out, further securing

the cameras would reduce the requirement to recalibrate should the individual cameras not move

relative to each other although the vibration may reduce the efficacy of the calibration and therefore the

disparity during specific flight envelopes. Review of the flight profile versus the disparity calculation

may elucidate the effects of the gimbal’s modal vibration.

4.2 Stereo Vision Implementation
The stereo distance measurement order of operations is detailed below the detailed programs written to

carry out this process are detailed in Appendices I – R.

4.2.1 Image Capture

The image capture occurs continuously throughout the algorithm using a video capture mode which

enables the sensor to stay active in between shots to enable the highest frame rate over still capture. The

camera synchronicity was tested by capturing images of a running stopwatch. On review of the captured

image pairs, it was evident that the image pairs are not captured synchronously with the USB OpenCV

camera read function yielding a 0.08s delay between cameras. After implementing the grab commands

for both cameras and then utilizing the retrieve commands on the raw camera data, both of which are

called during a single read command, the delay between image pairs was reduced to 0.03s between

pairs. The image capture in the UAS implementation through the Arducam Stereo Cam Hat was tested

in the same way and proved to be a synchronous capture of image pairs suitable use without correction.

The delay in captured image pairs when coupled with a translating camera system would have a large

effect on the disparity map captured during this movement. The simple epipolar search of the StereoBM

function, even after the calibration and rectification has taken place, would be unlikely to account for

the y-axis misalignment of the image pairs and therefore would be unlikely to produce high quality

disparity maps unless the block size was increased in order to account for this misalignment. The testing

of the corrections required were outside of the scope of this implementation but research (Ambrosch et

Figure 7 - Stereo Calibration (top) and Operating Operations (bottom)

al. 2007)(Konolige 2010)(OpenCV 2022) has shown that an increased block size will result in a more

computationally taxing matching algorithm if it would work at all.

Image capture resolution is a simple designation in the capture program but must be consistent between

the calibration and stereo matching programs as discussed below.

The USB cameras used in the initial test build had auto focus enabled as a default setting which

constantly readjusts the focal length to ensure the highest quality recording of images with varying

subject depths, but the adjustment of focal length alters the intrinsic variables of the camera system

therefore rendering the corrections and rectifications incorrect. OpenCV has functions to control a

number of settings of the camera system, and while a number were utilized, attempts to disable the auto

focus were unsuccessful via code. Open Broadcaster Software is an open-source video and streaming

program which allows extensive customization of the streamed images. With this application the focal

length could be fixed thus preserving the calibration data captured.

4.2.2 Calibration and Rectification Assessment

Calibration and rectification are the most important steps when attempting to employ stereo machine

vision to interact with the outside world. The process was broken down into creation of an appropriate

calibration target, capturing calibration images, calculating calibration variables. The rectification

process remaps the images onto a common plane using the camera intrinsic and extrinsic variables. The

processes followed here are heavily influenced by the tutorials published by OpenCV (2022) regarding

this process, I have also taken influence and combined implementations from Nicolai Nielsen(2022)

and LearnOpenCV (Sadekar 2021). The processes were incrementally deployed using the USB camera

test bed this required variations to the approach and developed limitations discussed below.

OpenCV employs a chessboard, among other calibration targets, that can be customized prior to use. A

9 x 6 interior corner chessboard calibration pattern was used printed on an A4 sheet as shown in

Appendix 1. This image must be displayed to the camera system on a single plane and it was taped to a

cardboard sheet prior to any attempts to capture the images.

The literature review Hirschmuller (2007) cited a chessboard image held in landscape orientation

covering 50% of the image and capturing at least 2 images provided the best calculation of intrinsic and

extrinsic parameters and to ensure that all areas of the image area are captured with the chessboard

calibration target in both camera images. The capture and calibration method used in this way adds

image points to all areas of the camera field of view which results in a larger useable corrected image

area.

This led to complexity when trying to balance the capture of the chessboard target in all corners of both

images. If the size of the image is not large enough the calibrator program may not detect or worse

incorrectly append the chessboard corners thereby returning erroneous calibration data resulting in poor

rectification refer Appendix 3

In practice the original capture of the calibration target at a distance of approximately 2m resulted in no

chessboard corners found from a 640x480 image from approximately 20 – 40 captured image pairs.

After extensive testing varying the light, distance and captured resolution, up to 720p, no successful

calibratable images were found. Adjusting the approach to calibration I utilized MATLAB’s Image

Processing and Computer Vision module and the Stereo Calibrator App. Using this toolbox, I was able

to consistently capture calibration image pairs and by designating chessboard corners calibration was

successful for over 95% of captured images, refer Appendix 5

The reprojection error, or the accuracy of the corrections applied as a result of the calibration variables,

resulted in approximately 5 pixels which is a poor result. The application of these corrections in the

undistortion and rectification of test image stills to create a disparity map created exceedingly poor

disparity maps and extensive tuning of algorithm variables could not return a useable disparity map.

Further testing revealed that one of the cameras had a significant distortion area in the center of the

captured image which was a considerable departure from the expected image quality especially when

compared to the matched camera pair.

After a new USB camera pair was purchased with a higher maximum resolution, 1080p, chessboard

calibration images were captured again using the OpenCV methods and were successful. The calibration

images were captured initially with a 0.08m baseline at a 640x480 pixel resolution and the find

chessboard corners method captured successful and accurate corners for >95% of captured images. 40

images were captured and reprojection error was calculated at 0.02 pixels which is exceedingly

accurate, but likely inaccurate. The results of the calibration and rectification can be assessed by

reviewing the reprojection error of the calibrated images. The reprojection error when using 640x480

images is calculated at 0.04 pixels which is an excellent result indicating that the calculated intrinsic

and extrinsic variables have been accurately to correct the calibration images. This in turn allows for

accurate rectification resulting in captured images that represent the outside world. The result of this

reprojection error was calculated following the tutorials from OpenCV (2022) but given the excellent

result doubts were introduced as to the certainty of this result. Regardless the calibration, undisortion

and rectification of the image pairs yielded good quality rectified images which were qualitatively

compared using stereo anaglyphs prior to calculation of the disparity map.

For subsequent tests that extended the baseline to ~0.30m introduce further complications when

balancing the detectable distance of the A4 calibration target, the distance from the camera system and

the requirement to capture the calibration target in both image pairs in all areas of both images. Initially

the increase in distance utilizing the low resolution caused failures in chessboard captures and

incorrectly add image points through confusion of chessboard corners, refer Appendix 3.

The was as a function of the distance from the camera system and the captured image resolution so to

balance the computational cost the calibration target was enlarged, initially to an A3 size for smaller

baselines and eventually with the final implementation and the distance required given the baseline and

the narrow field of view of the Raspberry Pi HQ camera lenses four A3 sheets were used to capture the

calibration target at distances of approximately 5m as required. The result of the narrow field of view

lead to a difficulty to capture all areas of the original camera image which reduced the calculated image

points through the calibration process and therefore a reduced usable area available after undistortion

and rectification.

The process of calibration and rectification as it is the most crucial stage of the depth calculation

procedure also exposes the algorithm to the largest variance. Poor quality calibration images and poor

technique in capture add cumulative errors since the assumption is that all captured images represent a

true and accurate representation from which to calculate the extrinsic and intrinsic parameters.

Ground level testing demonstrated retention of the camera calibration variables without the need to

recalibrate. The likelihood that recalibration is required after flight is high given the large amount of

vibration likely to affect the gimbal assembly. Further, any changes in the camera system baseline, focal

adjustment and image resolution all require a repetition of the entire calibration process prior to use.

4.2.3 Disparity Map

In initial testing attempts when reacting a disparity map in MATLAB following the calibration and

rectification methods applied by the Stereo Camera Calibrator App. Utilising the captured calibration

images as the reference images with which to create the disparity map and the rectification is applied

to this image pair. A stereo anaglyph is produced to ensure that the distortion and rectification have

been applied correctly before these rectified pairs are passed to the disparitySGM algorithm with some

default parameters for disparity range and uniqueness factor. A qualitative assessment of the initial

disparity maps even when varying the variables were very poor. Speckling was severe with little to no

continuity along any detail from the reference images, Appendix 5.

Since calibration was difficult and returned poor disparity maps, attempts were made to create disparity

map without calibration utilising object recognition through Oriented FAST and rotated BRIEF (ORB)

matching through MATLAB’s detectORBFeatures function as detailed by Rublee et al (2012). This is

a simple concept where ORB features are matched between the left and right stereo image pairs and an

estimated fundamental matrix is calculated allowing for a rudimentary rectification by aligning the

matched SIFT features on the same epipolar lines. A disparity map can then be created after these points

are aligned in the best estimate as per the disparitySGM algorithm. Figure 6 shows the result of the

ORBmatching uncalibrated rectification disparity map result and represents a good approximation of

disparity, even without tuning, because of the ORB feature rectification and therefore does represent a

possible avenue for future work.

After the new camera system was obtained OpenCV was used to produce disparity maps using the

StereoBM and the StereoSGBM functions. Given the success of the calibration and rectification stages

through OpenCV’s implementation the disparity maps could be created and assessed. To being the

implementation the StereoSGBM function was used, given its extended search patterns, in order to

maximise the chance of a high-quality disparity map being produced if calibration and rectification had

a higher reprojection error. Initially, default variables were used as a proof of concept and the disparity

map was qualitatively assessed, the results were poor. To make the tuning of these disparity map

variables more efficient and to gain some indication of the speed of processing a GUI was created

(Sadekar, 2021). This GUI allowed for adjustment of the variables to tune the disparity map for

qualitative assessment through a continuous loop and vastly increased to speed of the tuning process

while also making clearer how each variable affected the map’s quality. It was through this process that

good quality maps were created and the key variables for varying image compositions were identified.

The variables that can tune the stereo matching and disparity map creation are detailed below. The

alteration of these variables makes dramatic differences to the clarity and continuity of the disparity

map, and the effective range of detection.

StereoBM variables

Block Size – How much of the image is attempted to be match with each pass

Disp12maxdiff – Defines the maximum difference in the comparison between matches going from right

to left and from left to right.

Figure 8 - Disparity Map After ORB Feature Rectification

Mindisparity – An initial offset from which to start the block match. This will enhance the disparity

detected from subjects in the foreground but will often overlook element in the background where

disparity is small.

Numdisparities – how far along the search area, usually the epipolar line, to translate the window in

search of a match

Prefiltercap, Prefiltersize – Pre-processing variables that enhance the texture in a region and normalise

the brightness of the image prior to block matching which increases the accuracy of the algorithm.

speckleRange, speckleWindowSize – Speckles are produced at the edges of subjects in the image or

where the algorithm incorrectly attributes a match. These post-processing variables remove the speckle

by ensuring that it is below a certain size or how distinct it is from its neighbours.

TextureThreshold – The minimum allowable texture from any region of the captured image. The area

is rejected if under this threshold.

Uniquenessratio – A weighted comparison between the next best minimum match in the search

algorithm in terms of percentage.

StereoSGBM variables

The variables for the semi global algorithm are the similar to the block matching model with the addition

of below:

P1 – post processing penalty variable controlling immediately neighbouring pixels

P2 – post processing penalty variable controlling broader neighbouring pixels. P2 is greater than P1.

4.2.4 Middlebury Dataset Assessment

The Middlebury dataset as detailed in the literature represents a common set of images with which to

assess the stereo algorithms accuracy in creating a disparity map. The results using the StereoBM

algorithm using the rectified images supplied in the dataset yield a dense and accurate disparity map as

seen in Figure 6. The tuning required between datasets is different given the change in the requirements

of the range of the targets in the reference image. The StereoSGBM algorithm does provide a slightly

denser disparity map but does not appreciable increase the quality of the result. This is likely because

of the calibration and importantly rectification of the images that provides a greater chance of finding a

match along epipolar lines. This result while proving the efficacy of both stereo disparity algorithms

but also reiterates the importance of calibration and rectification stages of the routine.

if it was a larger resolution image. This is a trade-off between synchronicity and computational cost.

While the result of asynchronous image capture hasn’t been reviewed in this implementation. Maximum

resolution available for still images is 4056 x 3040 pixel with a standard resolution retaining the same

aspect ratio of 1.33 or 1.77.

The systems performance indicates that the CPU usage is not directly tied to the FPS, while there is a

trip point where increasing the captured resolution does begin to affect the CPU usage the baseline of

the program seems to be 61% CPU usage with the stereo algorithm only. Increased memory allocated

to the GPU does allow the system to capture higher resolution images but there is a clear reduction in

the frame rates which is directly correlated to the resolution. The largest resolution with the smallest

CPU usage and the highest frame rate occurs at the 1504 x 1136 image resolution and will be adopted

for this test. Unfortunately, this does indicate that the Raspberry Pi HQ cameras are not the optimum

hardware for this application as the computational cost and frame rate does not offer a larger resolution

of captured image as was hypothesized, especially not enough for UAS applications.

Thermal effects of the computation push the temperature to 75°C in a temperature-controlled office at

20°C. Raspberry Pi operates at a maximum temperature of 85°C and begins to throttle performance at

80°C. It is likely that in operation in an outdoor environment the likelihood of an increased temperature

and thermal throttling further decreasing the companion computers operation.

Image pyramids to assess the differences in the stereo disparity created. On the ladder dataset by

pyramiding down reduces the resolution of the image, given the pre-rectified nature of the supplied

image pairs there is no requirement to recalculate any extrinsic of intrinsic variables to apply the stereo

disparity calculations. The results demonstrate a smooth but diminishingly detailed map when

compared to the original 1080x1920 pixel image.

Figure 10 - Image Pyramid Disparity Assessment. Full Resolution, Half Resolution, Quarter

Resolution, Eighth Resolution from Left to Right

The results of these tests demonstrate the increase in disparity as a function of resolution which was the

minor hypothesis of this research. This evidence supports the hypothesis and reinforces the decision to

attempt to implement high resolution stereo disparity as an effective approach. It is clear from the

research and the implementation thus far that the increase in resolution should be optimised against the

run time of the stereo disparity loop.

4.2.6 Depth Measurement and Accuracy

In the second stage of testing where the calibrated stereo setup is used to measure distance in a real-

world environment the results proved an acceptable accuracy for detected disparity. The measurement

in an interior environment with fluorescent lighting given a 640x480 pixel captured image with a 0.08m

baseline and a 56.6° horizontal field of view. The target was moved throughout the testing intervals as

described in the table below.

 Table 4 - Distance Measurement Results. 0.8m baseline 5m target 1m intervals

target

distance

(cm)

measurement

1

2 3 4 avg

measure

avg

error

100 86.4 84.4 85.3 87.2 85.825 14.175

150 130.6 128.9 127.3 129.3 129.025 20.975

200 193.2 187.2 189.6 188.4 189.6 10.4

250 243.8 238.7 235.5 237.6 238.9 11.1

300 307.4 317 310.5 323.7 314.65 -14.65

350 340.2 338.1 315.4 323.8 329.375 20.625

400 389.5 391.2 388.3 390.7 389.925 10.075

450 423.7 432.7 430.1 435.6 430.525 19.475

500 486.9 457.6 488.2 476.8 477.375 22.625

Figure 11 - Initial StereoSGBM Distance Measurement 0.08m Baseline 640x480 Image

The results indicate a consistent accuracy when disparity is successfully mapped to a tolerance far

smaller than is required by the delivery method. The variance in the disparity can measure a change in

distance of 20mm. The accuracy of the results does indicate a consistent under reading of approximately

12.8mm that is consistent across the detection range. The result of this error could be explained through

the assumptions of the geometry and the accuracy of the output as a function of the measured baseline,

horizontal field of view and distance to the target. This does indicate that the calibration stage is vitally

important to the measurement of distance as well as the pure collection of data.

This interim test had limitations calculating disparity and identifying the target, the calibration

chessboard, at distances greater than 5m with the baseline of 0.08m. While the test provided a proof of

concept the limited distance is assumed to be as a function of baseline which further tests prove.

4.2.7 Stereo Outdoor

The outdoor stereo implementation when using the stereoSGBM algorithm showed a sparse disparity

map with a particularly strong disparity indication along the centre of the image. The increase in

baseline from initial testing at 0.08m to 0.26m provided a sizeable increase in the disparity map

-20

-15

-10

-5

0

5

10

15

20

25

0 100 200 300 400 500 600

Target Distance vs Average Measured Error (cm)

detection range with positive detections out to approximately 40m. The algorithm performs well in

identifying obvious and optically interesting targets and shows strong disparity indications and

discrimination for these objects. This result indicates that the likelihood of capturing mid distance (10-

40m) obstructions is high and when the disparity is found that distance measurement can be inferred

but what not pursued in this test.

The frame rates and calculations occur at a speed that clearly track obstructions particularly objects with

large optical differences between surrounding objects and without complex repeating patterns as with

typical machine vision applications.

4.3 UAS Based Stereo

4.3.1 StereoSGBM Algorithm

After initial success with the disparity maps calculated with the USB camera test setup OpenCV’s semi

global block matching algorithm was implemented using the UAS companion computer and the

Raspberry Pi HQ cameras capturing images through the Arducam Stereo Hat.

This implementation demonstrated far slower frame rates with exceedingly high CPU usage, measured

with the “htop” function. This function returned an average CPU utilisation of 85% on average with

considerably higher operating temperatures 75°C in a climate-controlled workshop space at 18°C. The

Raspberry Pi system has a two-stage thermal protection function where soft throttling occurs at 80°C

and significant throttling of the CPU occurs at 85°C. The likelihood that this temperature would be

reached is unknown given the added complexity of the heat sink and their effect of the thermal

protection while in flight. The CPU usage however while not running the autopilot program proves that

this algorithm is far too computationally expensive and could not be appropriately balanced or tuned

for operation.

The StereoSGBM method, while it produced far better disparity maps at distances closer to the

operating requirements in the original testing setup with a laptop and USB cameras, fails to run at the

required FPS only achieving 1FPS average. This FPS is too low to be used with a UAS especially when

Figure 10 - Outdoor stereoSGBM Algorithm Results 640 x 480 Resolution 0.26m Baseline

Figure 9 - StereoSGBM 0.26m Baseline 640x480 Disparity and Differentiation

decision making distances are critical and the underlying aim of improving efficiency by maximising

operating speed.

4.3.2 StereoBM Algorithm

The implementation of the UAS stereo system using the StereoBM method. The results vary and the

tuning to focus the horopter to maximise the detected distance proves good detection but reduced

fidelity i.e., the disparity can no longer differentiate approximately 0.20m at 15m but does produce

strong indications that can measure distance accurately 10%. This error seems constant through the

detected ranges after tuning therefore it is likely that the errors are cumulative considering the cameras

stated focal length, FOVH and the specific variables tuned which can significantly affect the disparity

detected.

In field trials the horopter using the stereoBM algorithm is far more restricted than the stereoSGBM

algorithm. This means that disparity is not detected when objects are too close or too far away from the

stereo camera setup. This viewing band close the horopter is 7m deep and calculates clear gradients in

the disparity which can measure distance. This occurs as a function of the stereo parameters primarily

the numdisparities and the mindisparities variables. These variables can synthesise a baseline using the

mindisparities variable to setup the minimum search distance in the image plane for matching.

The distance measurement is very accurate when taken along the horopter results are within 0.50m at

15m 3.3% error but taking measurements closer or further from this distance e.g., along a plane that is

oblique to the image plane provides a rapidly changing disparity and therefore increasing error when

observing non-crossing and crossing disparities. It is unclear from the qualitative assessment whether

this disparity changes exponentially.

By designating a region of interest close to the centre of the image plane the errors relating to this

changing disparity could be minimised although through reducing the effective area reduces the ability

to scope every obstruction.

4.4 Optical Flow Results
The results were poor using dense optical flow and OpenCV the frame rates using a 640x480 image

were approximately 5FPS, but the effective distance and disparity was poor see Appendix E. The

effective range tested demonstrated discernible differences in flow over approximately 1m from the

camera system. Given the deviation from the implementation scope as a result of the pursuit of stereo

vision implementation as a priority further development of the optical flow algorithm were not pursued

as a viable contributor to the final distance calculation. Sparse flow could be used but does raise the risk

of missing transitory obstacles or obstacles that are not sufficiently optical interesting or dissimilar to

their environment.

4.4.1 Data Blending

Data blending was not attempted during this implementation given the unusable results from the initial

optical flow tests and the limitations of scope when attempting to prioritise stereo vision.

Chapter 5 - Future Work
This research and particularly implementation has been illuminating in separating the theory and

application of machine vision deployment. The resolution of the captured images was the limiting factor

in terms of frame rate and accuracy and further work would be appropriate to refine this implementation.

The collection of data in the function of high-resolution image represents an inefficient allocation of

resources and given the limitations of the companion computers where a more intelligent use of

resources and data is applied. While the combination of data could be a viable option whether that is

optical flow or depth cues.

Marker emplacement or object detection would reduce the requirement for dense stereo and

dramatically reduces the computational cost after that marker has been identified. This approach would

reduce the computational overhead and increase the efficacy of CNN and sparse optical flow

implementations.

Similarly, the ability to train a complex, complete model offboard from the UAS system and implement

it with variable “light weight” machine learning applications e.g. TFMic. The implementation of

complete machine learning models is very efficient and may be a valid approach although the training

element would be large given the various environments it would be applied in.

Another avenue could be to utilise higher powered GPU or FGPA driven hardware as a focus could be

a solution to the limited companion computer hardware. Since the simplistic matrix operations

representing block matching and disparity calculation a GPU would be more suited to stereo

applications, this is supported in the literature. Similarly, offboard computation, mobile edge computing

and threading for image capture and assessment could improve the frequency of the algorithm but the

approach to increase the computational power of the system and not approach the data from a more

refined position would be inefficient when compared to the other approaches mentioned here and in the

literature.

Chapter 6 - Conclusions
The research has demonstrated the basics of stereo vision applications and highlights the variables

critical to the complex computation of depth from a stereo machine vision arrangement.

The hardware selected to accurately represent common companion computers proved to be

underpowered for the application and did not produce a suitable disparity map to be used with a UAS,

particularly up to the speeds and over distances required for operation. The stereo setup could be utilised

in an indoor rover where speed and ranges would both be reduced as well as the ability for higher

computational power as it relates to weight.

The stereo algorithm has been demonstrated to be effective when the algorithms are executed on a

typical laptop computer on pre-rectified image pairs from the Middlebury Stereo data sets and in

ground-based trials. This method demonstrated detailed and accurate disparity maps from which depth

could be accurately inferred. The initial field test application utilising USB cameras and the laptop

demonstrated detailed disparity maps out to a range of approximately 40m at a frame rate of

approximately 10 FPS with an accuracy of approximately 5m. This build demonstrated the proof of

concept to a point where implementation on a UAS was pursued.

The second iteration of the camera system, while having the ability to capture images of high resolution,

failed to capture these resolutions at a frame rate required for UAS operation when considering the

computational cost of disparity mapping with the semi global search algorithm. The additional

computational weight of the stereo rectification and disparity calculation and also the requirement to

interact with the UAS autopilot meant that the system was not produce the frame rate required and the

algorithm was changed to a less intense block matching algorithm.

This iteration after tuning provided sparse but accurate disparity and distance measurements at a range

of 20m with a steady offset error of approximately 0.3m likely because of the inconsistencies with the

manufacturer’s specifications regarding focal length, horizontal field of view and the accuracy of the

measured baseline. The algorithm produced an approximate 5 FPS capturing 640x480 pixel images.

CPU usage was measured at an average of 60% and kept system temperature below the threshold of

thermal throttling at an approximate 60°C at 20°C ambient temperature, this operating temperature

would likely be reduced once airflow is available for cooling.

Further, the implementation of the optical flow element was unsatisfactory with poor accuracy and a

minimal effective range of 0.5m.

While the hypothesis was supported through the image pyramid testing in that a greater disparity is

detected with a larger resolution. The computational cost when capturing and assessing larger resolution

images is prohibitive especially when using a low power companion computer in the Raspberry Pi 4

(4GB). It is clear that the implementation is not appropriate for UAS deployment given the limitations

of the hardware and the computational cost of the fairly generic dense stereo vision algorithm and more

importantly the practical limitations of the physical implementation against the theoretical approach led

to extensive reconsiderations of approach, replacement of components and severely limited the scope

of this implementation. The future work suggested in this research demonstrates the myriad of other

approaches focusing on a more efficient use of the data captured rather than an increase in the data itself

or an increase in computational power. This is a key factor in applying complex machine vision

applications to lighter computing tools and microcontrollers.

Reference list
Alam, I 2020, ‘The Advancements of Computer Vision: How Is It Used Today?’, Techserious, viewed

29 Sep 2022, <https://techserious.com/computer-vision/&imp=46959>

Ambrosch, K., Kubinger, W., Humenberger, M. and Steininger, A., 2007, June. Hardware

implementation of an SAD based stereo vision algorithm. In 2007 IEEE Conference on Computer

Vision and Pattern Recognition (pp. 1-6). IEEE.

Australian Institute of Health and Welfare 2022, ‘Rural and remote health’, viewed 20 Aug 2022,

<https://www.aihw.gov.au/reports/rural-remote-australians/rural-and-remote-

health#Profile%20of%20rural%20and%20remote%20Australians>

Baraldi, Patrizia & De Micheli, Enrico & Uras, Sergio, 1989, Motion and Depth from Optical Flow.

10.5244/C.3.35, viewed 03 Mar 22, available at

https://www.researchgate.net/publication/239760421_Motion_and_Depth_from_Optical_Flow

Bell, R 2022, ‘Last Mile Delivery Explained: Trends, Challenges, Costs & More’, Merchants Fleet,

viewed 20 Jul 2022, < https://www.merchantsfleet.com/industry-insights/what-is-last-mile-

delivery/#:~:text=What%20Is%20the%20Last%20Mile%20Problem%3F%20The%20last,and%20cus

tomer%20expectations%2C%20just%20to%20name%20a%20few.>

Birchfield, S, Tomasi, C 1999, “Depth discontinuities by pixel-to-pixelstereo”, International Journal of

Computer Vision, vol. 35, no. 3,pp. 269–293.

Bouzid, Y., Bestaoui, Y. and Siguerdidjane, H., 2017, September. Quadrotor-UAV optimal coverage

path planning in cluttered environment with a limited onboard energy. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (pp. 979-984). IEEE.

Bowditch, G 2020, ‘A COVID-19 wake-up call: Get smarter about population density’, Financial

Review, viewed 04 Jul 2022, < https://www.afr.com/companies/infrastructure/a-covid-19-wake-up-

call-get-smarter-about-population-density-20200415-p54k09>

Brox, T, Bruhn, A, Papenberg, N, Weickert, J 2004, High Accuracy Optical Flow Estimation Based on

a theory for Warping, Mathematical Image Analysis Group Faculty of Mathematics and Computer

Science Saarland University, Building 27, 66041 Saarbr¨ucken, Germany, viewed 31Mar22, available

at < https://link.springer.com/content/pdf/10.1007/978-3-540-24673-2_3.pdf>

Chang, J.R. and Chen, Y.S., 2018. Pyramid stereo matching network. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 5410-5418).

Cherry, K 2021, Monocular Cues for Depth Perception, Verywell Mind, Cognititve psychology, viewed

25 Mar 22, available at <https://www.verywellmind.com/what-are-monocular-cues-2795829>

Civil Aviation Safety Authority 2022, ‘Drone delivery services’, Industry Initiatives, viewed 10 Apr

2022, <https://www.casa.gov.au/drones/industry-initiatives/drone-delivery-services>

Civil Aviation Safety Authority 2022, Drones, Commonwealth of Australia, viewed 28 Feb 22,

<https://www.casa.gov.au/drones>

Civil Aviation Safety Regulation 1998 (Cwlth)

Cooper, James, Mihailo Azhar, Trevor Gee, Wannes Van Der Mark, Patrice Delmas, and Georgy

Gimelfarb. "A raspberry pi 2-based stereo camera depth meter." In 2017 Fifteenth IAPR International

Conference on Machine Vision Applications (MVA), pp. 274-277. IEEE, 2017.

Debnath, S.K., Omar, R. and Latip, N.B.A., 2019. A review on energy efficient path planning

algorithms for unmanned air vehicles. Computational Science and Technology, pp.523-532.

Department of Infrastructure, Transport, Regional Development and Communications 2022, Managing

Drone Noise, viewed 14 Mar 22, available at <https://www.infrastructure.gov.au/infrastructure-

transport-vehicles/aviation/emerging-aviation-technologies/managing-drone-noise>

Diaz, C 2022, ‘Five ways to solve last mile problems in 2022’, Netlogistik, viewed 10 Jul 2022, <

https://www.netlogistik.com/en/blog/5-ways-to-solve-last-mile-problems-in-2022>

Ergene, Y., 2016. Analysis of unmanned systems in military logistics. Naval Postgraduate School Naval

Postgraduate School United States.

Eser, A, 2020, The Depth I: Stereo Calibration and Rectification, Python in Plain English, viewed 15

Mar 2021, available at: https://python.plainenglish.io/the-depth-i-stereo-calibration-and-rectification-

24da7b0fb1e0#:~:text=Rectification%20is%20basically%20calibration%20between%20two%20came

ras.%20If,camera%20and%20P2%20%28x2%2Cy%29%20for%20the%20second%20camera.

European Cockpit Association, 2020. Unmanned Aircraft Systems and the Concepts of Automation and

Autonomy. ECA Briefing Paper, pp.1-7.

Galvez, R.L., Dadios, E.P. and Bandala, A.A., 2014, November. Path planning for quadrotor UAV

using genetic algorithm. In 2014 International Conference on Humanoid, Nanotechnology, Information

Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-6). IEEE.

Gehrig, S, Eberli, F, Meyer, T 2009, October. A real-time low-power stereo vision engine using semi-

global matching. In International Conference on Computer Vision Systems (pp. 134-143). Springer,

Berlin, Heidelberg.

Hariyama, M., Yokoyama, N. and Kameyama, M., 2008. Design of a trinocular-stereo-vision VLSI

processor based on optimal scheduling. IEICE transactions on electronics, 91(4), pp.479-486.

Hariyama, Masanori & Yokoyama, Naoto & Kameyama, Michitaka. (2008). Design of a Trinocular-

Stereo-Vision VLSI Processor Based on Optimal Scheduling. IEICE Transactions on Electronics. 91-

C. 479-486. 10.1093/ietele/e91-c.4.479.

Hamrouni, S., Louhichi, H., Aissia, H.B. and Elhajem, M., 2012. A new method for stereo-cameras

self-calibration in Scheimpflug condition. In 15th international symposium on flow visualization (pp.

1-10).

Heikkilä, J. and Silven, O., 1997: A four-step camera calibration procedure with implicit image

correction. CVPR97

Hirschmüller, H 2005, ‘Accurate and efficient stereo processing by semi-global matching and mutual

information’, IEEE Conference on Computer Vision and Pattern Recognition. pp. 807–814.

Hirschmuller, H 2007, ‘Stereo processing by semiglobal matching and mutual information’ IEEE

Transactions on pattern analysis and machine intelligence, 30(2), pp.328-341.

Intel Corporation 2022, ‘Stereo Depth’, Intel Real Sense, viewed 15 Mar 2022,

<https://www.intelrealsense.com/stereo-depth/>

Javidnia, H. and Corcoran, P., 2017. Accurate depth map estimation from small motions. In Proceedings

of the IEEE International Conference on Computer Vision Workshops (pp. 2453-2461).

Konolige, K., 1998. Small vision systems: Hardware and implementation. In Robotics research (pp.

203-212). Springer, London.

Kumar, K, Desai, U 1994. New algorithms for 3D surface description from binocular stereo using

integration. Journal of the Franklin Institute, 331(5), pp.531-554.

Kumar, P 2022, ‘MIPI Cameras vs USB Cameras: a Detailed Comparison’, Blog Posts, e-con Systems,

Industrial Vision (Computer Vision), Sensors, weblog post,24 Jan 2022, viewed 03 Mar 22,

<https://www.edge-ai-vision.com/2022/01/mipi-cameras-vs-usb-cameras-a-detailed-comparison/>

Louhichi, H., Fournel, T., Lavest, J.M. and Aissia, H.B., 2007. Self-calibration of Scheimpflug cameras:

an easy protocol. Measurement Science and Technology, 18(8), p.2616.

Macrotrends 2022, ‘Australia Population Density 1950-2022’, Macrotrends, viewed 07 Jul 22,

<https://www.macrotrends.net/countries/AUS/australia/population-

density#:~:text=The%20current%20population%20density%20of,a%200.98%25%20increase%20fro

m%202020.>

Mamdouh, T 2020, ‘Color spaces (RGB vs HSV) - Which one you should use?’, HubPages, viewed 13

Apr 2022, < https://discover.hubpages.com/technology/Color-spaces-RGB-vs-HSV-Which-one-to-

use>

MathWorks 2022, Stereo Search Function, [Online]. Available at URL

https://au.mathworks.com/help/visionhdl/ug/stereoscopic-

disparity.html?searchHighlight=stereoSGBM&s_tid=srchtitle_stereoSGBM_1.

Miangoleh, S.M.H., Dille, S., Mai, L., Paris, S. and Aksoy, Y., 2021. Boosting monocular depth

estimation models to high-resolution via content-adaptive multi-resolution merging. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9685-9694).

Nielsen, N 2022, ‘Computer Vision’, Robotics - Computer Vision, Deep Learning and Artificial

Intelligence, viewed 30 Apr 2022, <https://github.com/niconielsen32>

Nvidia 2022, ‘Jetson TX2 NX Module’, Nvidia Developer, viewed 07 Jul

2022,<https://developer.nvidia.com/embedded/jetson-tx2-nx.

NYU, Szeliski, R, Lazebnik, S, Seitz, S, Efros, A, Liu, C, Durand, F 2012, ‘Lecture 13 Optical Flow’,

viewed 22 Mar 22, <https://cs.nyu.edu/~fergus/teaching/vision_2012/13_opticalflow.pdf>

O’Donovan, P 2005, Optical Flow: Techniques and Applications, The University of Saskatchewan,

viewed 17 Mar 22, <http://www.dgp.toronto.edu/~donovan/stabilization/opticalflow.pdf>

OpenCV 2022, ‘Camera Calibration and 3D Reconstruction’ , OpenCV 4.6.0, viewed 20 Mar 2022,

<https://docs.opencv.org/4.6.0/d9/d0c/group__calib3d.html>

OpenCV 2022, Depth Map from Stereo Images, image, viewed at

https://docs.opencv.org/4.x/dd/d53/tutorial_py_depthmap.html

Pani, A., Mishra, S., Golias, M. and Figliozzi, M., 2020. Evaluating public acceptance of autonomous

delivery robots during COVID-19 pandemic. Transportation research part D: transport and

environment, 89, p.102600.

Perez, T., Williams, B. and de Lamberterie, P., 2012. Evaluation of robust autonomy and implications

on UAS certification and design. In Proceedings of the 28th Congress of the International Council of

the Aeronautical Sciences (pp. 1-9). Optimage Ltd./International Council of the Aeronautical Sciences-

ICAS.

Pettigrew S, Fritschi L, Norman R. 2018, The Potential Implications of Autonomous Vehicles in and

around the Workplace. Int J Environ Res Public Health. 15(9):1876. Published 2018 Aug 30.

doi:10.3390/ijerph15091876

PiAustralia 2022, Raspberry Pi Starter Kit, Raspberry Pi Starter Kit, viewed 03 Feb 2022,<

https://raspberry.piaustralia.com.au/products/raspberry-pi-starter-kit#4gb>

Placek, M, 2022. What was the approximate weight of this particular purchase?, viewed 13 jun 22,

available at: https://www.statista.com/statistics/974065/cross-border-delivery-package-weight-

worldwide/#:~:text=This%20statistic%20shows%20the%20results%20of%20a%20global,between%2

00.2%20kg%20to%200.5%20kg.%20Read%20more

Pollefeys, M., Koch, R. and Van Gool, L., 1999, September. A simple and efficient rectification method

for general motion. In Proceedings of the Seventh IEEE International Conference on Computer

Vision (Vol. 1, pp. 496-501). IEEE.

Qi, W., Li, F. and Zhenzhong, L., 2010, May. Review on camera calibration. In 2010 Chinese Control

and Decision Conference (pp. 3354-3358). IEEE.

Quénot, G., Rambert, A., Lusseyran, F. and Gougat, P., 2001, September. Simple and accurate PIV

camera calibration using a single target image and camera focal length. In 4th international symposium

on of particle image velocimetry. Springer, Göttingen, Germany (pp. 17-19).

Rana, K., Praharaj, S. and Nanda, T., 2016. Unmanned Aerial Vehicles (UAVs): An Emerging

Technology for Logistics. International Journal of Business and Management Invention, 5(5), pp.86-

92.

Ranieri, L., Digiesi, S., Silvestri, B. and Roccotelli, M., 2018. A review of last mile logistics innovations

in an externalities cost reduction vision. Sustainability, 10(3), p.782.

Remondino, F. and Fraser, C., 2006. Digital camera calibration methods: considerations and

comparisons. International Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, 36(5), pp.266-272.

Rodrigues et al., 2022, Patterns 3, 100569, August 12, 2022 ª 2022 The Author(s), viewed 12 August

2022, <https://doi.org/10.1016/j.patter.2022.100569>

Rodrigues, T.A., Patrikar, J., Oliveira, N.L., Matthews, H.S., Scherer, S. and Samaras, C., 2021. Drone

flight data reveal energy and greenhouse gas emissions savings for small package delivery. arXiv

preprint arXiv:2111.11463.

Rodrigues, T.A., Patrikar, J., Oliveira, N.L., Matthews, H.S., Scherer, S. and Samaras, C., 2022. Drone

flight data reveal energy and greenhouse gas emissions savings for very small package delivery.

Patterns, 3(8), p.100569.

Rublee, E., Rabaud, V., Konolige, K. and Bradski, G., 2011, November. ORB: An efficient alternative

to SIFT or SURF. In 2011 International conference on computer vision (pp. 2564-2571). Ieee.

Sadekar, K 2021, ‘Depth Estimation using Stereo Camera and OpenCV (Python/C++)’, LearnOpenCV,

viewed 16 Feb 2022, <https://learnopencv.com/depth-perception-using-stereo-camera-python-c/>

Saxena, A., Schulte, J. & Ng, A., 2008. Depth Estimation Using Monocular and Stereo Cues, Stanford,

CA, USA: Computer Sceince Department, Standford University.

Scharstein, D, Szeliski, R, Hirschmüller, H 2022, ‘Middlebury, Stereo Vision

Page’,vision.middlebury.edu, viewed 29 Apr 2022, < https://vision.middlebury.edu/stereo/>

Scharstein, D, Hirschmüller, H, Kitajima, Y., Krathwohl, G, Nesic,N., Wang, X, and Westling,P, 2014.

High-resolution stereo datasets with subpixel-accurate ground truth. In German Conference on Pattern

Recognition (GCPR 2014), Münster, Germany

Shao, P.C., 2020. Risk assessment for UAS logistic delivery under UAS traffic management

environment. Aerospace, 7(10), p.140.

Simpson, W., 1993. Optic Flow and Depth Perception, s.l.: Spat Vis. 1993;7(1):35-75. doi:

10.1163/156856893x00036. Erratum in: Spat Vis 1993;7(2):199. PMID: 8494808..

Sirin Software 2018, ‘The ARM Processors: A, R, and M Categories and Their Specifics’, Technology,

weblog post, 05 Apr 2018, viewed 30 Apr 2022, < https://sirinsoftware.com/blog/the-arm-processor-a-

r-and-m-categories-and-their-specifics/>

Slesareva, N., Bruhn, A. and Weickert, J., 2005, August. Optic flow goes stereo: A variational method

for estimating discontinuity-preserving dense disparity maps. In Joint Pattern Recognition Symposium

(pp. 33-40). Springer, Berlin, Heidelberg.

Sun, C 1997, December. A fast stereo matching method. In Digital Image Computing: Techniques and

Applications (pp. 95-100). Auckland, New Zealand: Massey University.

Sutton, D and Green, R., 2010, November. Evaluation of real time stereo vision system using web

cameras. In 2010 25th International Conference of Image and Vision Computing New Zealand (pp. 1-

10). IEEE.

Tensor Flow 2022, TensorFlow Lite for Microcontrollers, For Mobile and Edge, viewed 30 Apr 2022,

<https://www.tensorflow.org/lite/microcontrollers>

Yoo, H. & Chankov, S., 2018. Drone-Delivery Using Autonomous Mobility: An Innovative Approach

to Future Last-mile Delivery Problems, s.l.: IEEE International Conference on Industrial Engineering

and Engineering Management (IEEM), 2018, pp. 1216-1220, doi: 10.1109/IEEM.2018.8607829..

Zbontar, J. and LeCun, Y., 2016. Stereo matching by training a convolutional neural network to

compare image patches. J. Mach. Learn. Res., 17(1), pp.2287-2318.

Zhang, J., Campbell, J.F., Sweeney II, D.C. and Hupman, A.C., 2021. Energy consumption models for

delivery drones: A comparison and assessment. Transportation Research Part D: Transport and

Environment, 90, p.102668.

Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Transactions on pattern

analysis and machine intelligence, 22(11), pp.1330-1334.

Zou, L. and Li, Y., 2010, November. A method of stereo vision matching based on OpenCV. In 2010

International Conference on Audio, Language and Image Processing (pp. 185-190). IEEE.

Appendix A – Project Specification
ENG4111/4112 Research Project

Project Specification

For: Christopher Bourke

Title: Stereovision Autonomous Drop Zone Assessment and UAS Delivery Modification

Major: Mechatronic Engineering

Supervisors: Dr. Tobias Low

 Sirigalpatabandige Ruveen Perera

Enrollment: ENG4111 – EXT S1, 2021

 ENG4112 – EXT S2, 2021

Project Aim: To develop and implement a medium range stereo vision-based distance

measuring system on a UAS platform to assess a drop zone for payload delivery.

Programme: Version 1, 17th March 2021

Conduct initial research on UAS machine vision applications. Explore UAS delivery methods

and the legislation surrounding autonomy in UAS applications.

Review methods of calculating depth from stereo vision including the factors most affecting

the accuracy and resolution of the output. Investigate differing algorithms for stereo vision.

Conceptualise the components of a suitable integrated system including UAS platform,

machine vision components, companion computer, ground control, store delivery and testing

systems.

Select hardware and a suitable software development environment. The requirements for

necessary capability and costs to inform selection.

Develop a machine vision algorithm for optimized disparity mapping.

Construct an initial prototype to facilitate data collection. Including UAS control programs

and fail-safes.

Refine stereo vision matching algorithms and post process data output for optimum use in a

UAS platform.

Integrate and deploy the prototype and algorithms at a suitable location and record data for

evaluation.

Process and evaluate experimental data.

If time and resources permit:

Refine detection and data processing algorithms, depending on what is achieved earlier. Look

at differing hazards (water, object avoidance)

Integrate further assessment algorithms, feature based objects identification (human), water

detection, investigate rudimentary object avoidance.

Project Resources

Camera system

 Raspberry Pi HQ camera module (2)

 SONY IMX477

16mm 10MP telephoto lens (2)

Companion computer

Primary

 NVIDIA Jetson Nano Developer Kit-B01

Secondary

 Raspberry Pi compute 4 IO module

 Raspberry Pi compute 4 module

Tertiary

Arducam Stereo Camarray Hat

 Raspberry Pi 4

Stereo Camera Gimbal

 3D printed as required.

UAS platform

 S500 quadrotor

Software

 Python – general programming

 Raspberry pi OS – companion computer

 OpenCV – Machine vision

 MATLAB – Machine vision

 Creo – 3D printing and drafting

 Ardupilot – UAS control, testing and monitoring UAS

Dronekit – Programming mission and behaviour

 YOLO (object detection post primary research) – Object detection, machine vision

Testing equipment

 Ground control stations

 Video recording equipment (ground and UAS based)

Appendix B - OpenCV Calibration Image

Appendix C - MATLAB Poor Disparity

Appendix D - Poor Chessboard Capture

Appendix E - Optical Flow Dense Farnebeck Implementation

Appendix F – MATLAB Calibration and Rectification with Error

Appendix G – Stereo UAS Build and Gimbal Control

Appendix H - Distance Measurement Setup

Appendix I - Calibration Chessboard Capture A1

Appendix I - Stereo Calibration Code
import cv2 as cv

import numpy as np

cap = cv.VideoCapture(0)

##cap.set(3,1080)

##cap.set(4,720)

ret, frame1 = cap.read()

prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY)

hsv = np.zeros_like(frame1)

hsv[...,1] = 255

while True:

 ret, frame2 = cap.read()

 new = cv.cvtColor(frame2, cv.COLOR_BGR2GRAY)

 flow = cv.calcOpticalFlowFarneback(prvs,new, None, 0.5, 3, 15, 3 ,5, 1.2, 0)

 mag, ang = cv.cartToPolar(flow[...,0], flow[...,1])

 hsv[...,0] = ang*180/np.pi/2

 hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX)

 bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR)

#Create and ROI and draw it on the reference

windowSize = [200,200] #window size

bgrSize = bgr.shape

#crop original to new shape

bgr = bgr[int((bgrSize[0]/2)-

(windowSize[0]/2)):int((bgrSize[0]/2)+(windowSize[0]/2)),int((bgrSize[1]/2)-

(windowSize[1]/2)):int((bgrSize[1]/2)+(windowSize[1]/2))]

cv.rectangle(frame2, (int((bgrSize[1]/2)-(windowSize[1]/2)), int((bgrSize[1]/2)-

(windowSize[1]/2))), (int((bgrSize[0]/2)+(windowSize[0]/2)), int((bgrSize[0]/2)+(windowSize[0]/2)))

, (0,0,255), 5)

 cv.imshow('reference', frame2)

 cv.imshow('frame2',bgr)

 k = cv.waitKey(30) & 0xff

 if k == 27:

 break

 elif k == ord('s'):

 cv.imwrite('opticalflowb.png',frame2)

 cv.imwrite('opticalflowhsv.png',bgr)

 prvs = new

cap.release()

cv.destroyAllWindows()

Appendix J - Stereo Pyramid Test

import cv2 as cv

import numpy as np

#ladder specific details

f = 1733.68 #pixels

b = 0.0022113 #m

############MIDDLEBURY BENCHMARK TEST ################

ladL = cv.imread('ladder1_l.png')

ladR = cv.imread('ladder1_r.png')

artL = cv.imread('artroom2_l.png')

artR = cv.imread('artroom2_r.png')

penL = cv.imread('pendulum1_l.png')

penR = cv.imread('pendulum1_r.png')

#this is the exit for the window

def nothing(x):

 pass

def draw_circle(event, x, y, flags, param):

 global mouseX, mouseY

 global f, b

 if event == cv.EVENT_FLAG_LBUTTON:

 cv.circle(disparityNorm,(x,y),5,(0,0,255),2)

 mouseX, mouseY = x,y

 print(mouseX,mouseY)

 disparity = disparityNorm[mouseY,mouseX]

 print('disparity: ' + str(disparity))

 #this is already done

 #f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180)

 depth = (b*f)/disparity

 print('depth: ' + str(depth))

#create a window

cv.namedWindow('stereo refine',cv.WINDOW_NORMAL)

cv.resizeWindow('stereo refine', 600,600)

#create a slider (parameter, window, min, max, escape function)

cv.createTrackbar('minDisparity','stereo refine',15,100,nothing)

cv.createTrackbar('numDisparities','stereo refine',3,50,nothing)

cv.createTrackbar('blockSize','stereo refine',7,50,nothing)

cv.createTrackbar('P1','stereo refine',500,500,nothing)

cv.createTrackbar('P2','stereo refine',4000,4000,nothing)

cv.createTrackbar('disp12MaxDiff','stereo refine',0,25,nothing)

cv.createTrackbar('preFilterCap','stereo refine',0,62,nothing)

cv.createTrackbar('uniquenessRatio','stereo refine',0,50,nothing)

cv.createTrackbar('speckleWindowSize','stereo refine',0,400,nothing)

cv.createTrackbar('speckleRange','stereo refine',0,200,nothing)

window_size = 3

min_disp = 16

num_disp = 112-min_disp

stereo = cv.StereoSGBM_create(min_disp,

 numDisparities = num_disp,

 blockSize = 16,

 P1 = 8*3*window_size**2,

 P2 = 32*3*window_size**2,

 disp12MaxDiff = 1,

 speckleWindowSize = 100,

 speckleRange = 32

)

while True:

 #select the image from the benchmarks

 imgL = ladL

 imgR = ladR

#pyramid down

 imgLH = cv.pyrDown(imgL)

 imgLH = cv.resize(imgLH,(480,640))

 imgRH = cv.pyrDown(imgR)

 imgRH = cv.resize(imgRH,(480,640))

 imgLQ = cv.pyrDown(imgLH)

 imgLQ = cv.resize(imgLQ,(480,640))

 imgRQ = cv.pyrDown(imgRH)

 imgRQ = cv.resize(imgRQ,(480,640))

 imgLE = cv.pyrDown(imgLQ)

 imgLE = cv.resize(imgLE,(480,640))

 imgRE = cv.pyrDown(imgRQ)

 imgRE = cv.resize(imgRE,(480,640))

 imgRGray = cv.cvtColor(imgR,cv.COLOR_BGR2GRAY)

 imgLGray = cv.cvtColor(imgL,cv.COLOR_BGR2GRAY)

 imgRGrayH = cv.cvtColor(imgRH,cv.COLOR_BGR2GRAY)

 imgLGrayH = cv.cvtColor(imgLH,cv.COLOR_BGR2GRAY)

 imgRGrayQ = cv.cvtColor(imgRQ,cv.COLOR_BGR2GRAY)

 imgLGrayQ = cv.cvtColor(imgLQ,cv.COLOR_BGR2GRAY)

 imgRGrayE = cv.cvtColor(imgRE,cv.COLOR_BGR2GRAY)

 imgLGrayE = cv.cvtColor(imgLE,cv.COLOR_BGR2GRAY)

 #get tuning values

 minDisparity = cv.getTrackbarPos('minDisparity','stereo refine')

 numDisparities = cv.getTrackbarPos('numDisparities','stereo refine')*16

 blockSize = cv.getTrackbarPos('blockSize','stereo refine')*2 + 5

 P1 = cv.getTrackbarPos('P1','stereo refine')

 P2 = cv.getTrackbarPos('P2','stereo refine')

 disp12MaxDiff = cv.getTrackbarPos('disp12MaxDiff','stereo refine')

 preFilterCap = cv.getTrackbarPos('preFilterCap','stereo refine')

 uniquenessRatio = cv.getTrackbarPos('uniquenessRatio','stereo refine')

 speckleWindowSize = cv.getTrackbarPos('speckleWindowSize','stereo refine')*2

 speckleRange = cv.getTrackbarPos('speckleRange','stereo refine')

 #set tuning values

 stereo.setMinDisparity(minDisparity)

 stereo.setNumDisparities(numDisparities)

 stereo.setBlockSize(blockSize)

 stereo.setP1(P1)

 stereo.setP2(P2)

 stereo.setDisp12MaxDiff(disp12MaxDiff)

 stereo.setPreFilterCap(preFilterCap)

 stereo.setUniquenessRatio(uniquenessRatio)

 stereo.setSpeckleWindowSize(speckleWindowSize)

 stereo.setSpeckleRange(speckleRange)

######SETUP A REGION OF INTEREST#######

 #I could make this an inverse function of the distance to the target

 picRes = np.shape(imgLGray)

 height = picRes[0]

 width = picRes[1]

 #ROIres = (640,480)

 #distanceFunction = 1/distanceToTarget

###since the resolution is so large use a smaller ROI###

 #imgLGray = imgLGray[int(width/2 - 480/2):int(width/2 + 480/2), int(height/2 - 640/2): int(height/2

+ 640/2)]

 #imgRGray = imgRGray[int(width/2 - 480/2):int(width/2 + 480/2), int(height/2 - 640/2): int(height/2

+ 640/2)]

imgLGray = imgLGray[:int(height/2), :int(width/2)]

imgRGray = imgRGray[:int(height/2), :int(width/2)]

imgLGrayH = imgLGrayH[:int((height/2)/2), :int((width/2)/2)]

imgRGrayH = imgRGrayH[:int((height/2)/2), :int((width/2)/2)]

 cv.imshow('imgLGray',imgLGray)

cv.imshow('imgLGray half',imgLGrayH)

######add a ROI square on the original image######

 #make a 640x480 rectangle centred in the image

rectStart = ((int(width/2 - 480/2)),(int(height/2 - 640/2)))

rectEnd = ((int(width/2 + 480/2)),(int(height/2 + 640/2)))

imgL = cv.rectangle(imgL, rectStart, rectEnd, (0,0,255),2)

 disparity = stereo.compute(imgLGray,imgRGray)

 disparityH = stereo.compute(imgLGrayH,imgRGrayH)

 cv.imshow('disparity half',disparityH)

 cv.imshow('disparity',disparity)

 disparityQ = stereo.compute(imgLGrayQ,imgRGrayQ)

 disparityE = stereo.compute(imgLGrayE,imgRGrayE)

#set the type as a float 32

 disparityFloat = disparity.astype(np.float32)/16.0

 disparityFloatH = disparityH.astype(np.float32)/16.0

 disparityFloatQ = disparityQ.astype(np.float32)/16.0

 disparityFloatE = disparityE.astype(np.float32)/16.0

 disparityNorm = (disparityFloat - min_disp)/num_disp

 disparityNormH = (disparityFloatH - min_disp)/num_disp

 disparityNormQ = (disparityFloatQ - min_disp)/num_disp

 disparityNormE = (disparityFloatE - min_disp)/num_disp

 disparityNorm = cv.resize(disparityNorm, (480,640))

 cv.imshow('disparityNorm',disparityNorm)

disparityNorm = disparityNorm[200:400, 200:400]

closest = np.max(disparityNorm)

nearPt = (f*b)/closest

print(str(nearPt))

 cv.imshow('disparity ROI',disparityNorm)

 cv.imshow('disparityNorm Half',disparityNormH)

 cv.imshow('disparityNorm Quarter',disparityNormQ)

 cv.imshow('disparityNorm Eighth',disparityNormE)

 #cv.imshow('disparity Float', disparityFloat)

 #cv.imshow('disparity', disparity)

 imgL = cv.resize(imgL, (480,640))

 cv.imshow('left', imgL)

 #cv.imshow('left rectified', leftRec)

 #cv.imshow('right rectified', rightRec)

 #cv.applyColorMap(depth, depth, cv.COLORMAP_JET)

#WEIGHTED BLEND

 combo = cv.addWeighted(disparityNorm,1.0,disparityNormH,1.0,0.0)

 combo = cv.addWeighted(combo,1.0,disparityNormQ,1.0,0.0)

 combo = cv.addWeighted(combo,1.0,disparityNormE,1.0,0.0)

 cv.imshow('combo', combo)

 cv.imwrite('disprity_combo.png',combo)

 cv.imwrite('disparityNorm.png',disparityNorm)

#depth is failing becuase of zero division

 #cv.imshow('depth',depth)

 cv.setMouseCallback('disparityNorm',draw_circle)

 if cv.waitKey(1) == 27:

 break

cv.destroyAllWindows()

Appendix K - Stereo Calibrator Program
import numpy as np

import cv2 as cv

import glob

################ FIND CHESSBOARD CORNERS - OBJECT POINTS AND IMAGE POINTS

#############################

chessboardSize = (9,6)

frameSize = (640, 480)

termination criteria

criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)

objp = np.zeros((chessboardSize[0] * chessboardSize[1], 3), np.float32)

objp[:,:2] = np.mgrid[0:chessboardSize[0],0:chessboardSize[1]].T.reshape(-1,2)

objpoints = []

imgpointsL = []

imgpointsR = []

###ensure the images are added as pairs

imagesLeft = glob.glob('images/stereoLeft/*.png')

imagesRight = glob.glob('images/stereoRight/*.png')

for imgLeft, imgRight in zip(imagesLeft, imagesRight):

 imgL = cv.imread(imgLeft)

 imgR = cv.imread(imgRight)

 grayL = cv.cvtColor(imgL, cv.COLOR_BGR2GRAY)

 grayR = cv.cvtColor(imgR, cv.COLOR_BGR2GRAY)

 # Find the chess board corners

 retL, cornersL = cv.findChessboardCorners(grayL, chessboardSize, None)

 retR, cornersR = cv.findChessboardCorners(grayR, chessboardSize, None)

 #add points

 if retL and retR == True:

 objpoints.append(objp)

 cornersL = cv.cornerSubPix(grayL, cornersL, (11,11), (-1,-1), criteria)

 imgpointsL.append(cornersL)

 cornersR = cv.cornerSubPix(grayR, cornersR, (11,11), (-1,-1), criteria)

 imgpointsR.append(cornersR)

 # Show captured corners

 cv.drawChessboardCorners(imgL, chessboardSize, cornersL, retL)

imgL = cv.resize(imgL,(640,480))

 cv.imshow('img left', imgL)

 cv.drawChessboardCorners(imgR, chessboardSize, cornersR, retR)

imgR = cv.resize(imgR,(640,480))

 cv.imshow('img right', imgR)

 cv.waitKey(500)

cv.destroyAllWindows()

############## CALIBRATION

retL, cameraMatrixL, distL, rvecsL, tvecsL = cv.calibrateCamera(objpoints, imgpointsL, frameSize,

None, None)

heightL, widthL, channelsL = imgL.shape

newCameraMatrixL, roi_L = cv.getOptimalNewCameraMatrix(cameraMatrixL, distL, (widthL,

heightL), 1, (widthL, heightL))

###reprojection errors#####

mean_error = 0

for i in range(len(objpoints)):

 imgpointsLP, _ = cv.projectPoints(objpoints[i], rvecsL[i], tvecsL[i], cameraMatrixL, distL)

 error = cv.norm(imgpointsL[i], imgpointsLP, cv.NORM_L2)/len(imgpointsLP)

 mean_error += error

print("Left total error: {}".format(mean_error/len(objpoints)))

retR, cameraMatrixR, distR, rvecsR, tvecsR = cv.calibrateCamera(objpoints, imgpointsR, frameSize,

None, None)

heightR, widthR, channelsR = imgR.shape

newCameraMatrixR, roi_R = cv.getOptimalNewCameraMatrix(cameraMatrixR, distR, (widthR,

heightR), 1, (widthR, heightR))

mean_error = 0

for i in range(len(objpoints)):

 imgpointsRP, _ = cv.projectPoints(objpoints[i], rvecsR[i], tvecsR[i], cameraMatrixR, distR)

 error = cv.norm(imgpointsR[i], imgpointsRP, cv.NORM_L2)/len(imgpointsRP)

 mean_error += error

print("Right total error: {}".format(mean_error/len(objpoints)))

########## Stereo Vision Calibration ###

flags = 0

flags |= cv.CALIB_FIX_INTRINSIC

criteria_stereo= (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)

retStereo, newCameraMatrixL, distL, newCameraMatrixR, distR, rot, trans, essentialMatrix,

fundamentalMatrix = cv.stereoCalibrate(objpoints, imgpointsL, imgpointsR, newCameraMatrixL,

distL, newCameraMatrixR, distR, grayL.shape[::-1], criteria_stereo, flags)

########## Stereo Rectification ###

rectifyScale= 1

rectL, rectR, projMatrixL, projMatrixR, Q, roi_L, roi_R= cv.stereoRectify(newCameraMatrixL, distL,

newCameraMatrixR, distR, grayL.shape[::-1], rot, trans, rectifyScale,(0,0))

stereoMapL = cv.initUndistortRectifyMap(newCameraMatrixL, distL, rectL, projMatrixL,

grayL.shape[::-1], cv.CV_16SC2)

stereoMapR = cv.initUndistortRectifyMap(newCameraMatrixR, distR, rectR, projMatrixR,

grayR.shape[::-1], cv.CV_16SC2)

print("Writing parameters")

cv_file = cv.FileStorage('stereoMap.xml', cv.FILE_STORAGE_WRITE)

cv_file.write('stereoMapL_x',stereoMapL[0])

cv_file.write('stereoMapL_y',stereoMapL[1])

cv_file.write('stereoMapR_x',stereoMapR[0])

cv_file.write('stereoMapR_y',stereoMapR[1])

cv_file.release()

print("done")

Appendix L - Stereo Semi Global Block Matching Distance Measurement

(USB)

import sys

import cv2 as cv

import numpy as np

import time

import imutils

from matplotlib import pyplot as plt

Function for stereo vision and depth estimation

import calibration

import time

#ladder specific details

fov = 56.6 #degrees horizontal

b = 0.29 #m

def nothing(x):

 pass

def draw_circle(event, x, y, flags, param):

 global mouseX, mouseY

 global fov, b, width

 if event == cv.EVENT_FLAG_LBUTTON:

 cv.circle(disparityNorm,(x,y),5,(0,0,255),2)

 mouseX, mouseY = x,y

 print(mouseX,mouseY)

 disparity = disparityNorm[mouseY,mouseX]

 print('disparity: ' + str(disparity))

 f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180)

 depth = (b*f_pixel)/disparity

 print('depth: ' + str(depth))

Open both cameras

cap_right = cv.VideoCapture(2, cv.CAP_DSHOW)

cap_left = cv.VideoCapture(1, cv.CAP_DSHOW)

###resolution change####

##cap_right.set(3,1920)

##cap_right.set(4,1080)

##cap_left.set(3,1920)

##cap_left.set(4,1080)

###################refinement##

cv.namedWindow('stereo refine',cv.WINDOW_NORMAL)

cv.resizeWindow('stereo refine', 600,600)

#create a slider (parameter, window, min, max, escape function)

cv.createTrackbar('minDisparity','stereo refine',0,500,nothing)

cv.createTrackbar('numDisparities','stereo refine',100,500,nothing)

cv.createTrackbar('blockSize','stereo refine',9,1920,nothing)

cv.createTrackbar('P1','stereo refine',500,500,nothing)

cv.createTrackbar('P2','stereo refine',4000,4000,nothing)

cv.createTrackbar('disp12MaxDiff','stereo refine',25,25,nothing)

cv.createTrackbar('preFilterCap','stereo refine',0,62,nothing)

cv.createTrackbar('uniquenessRatio','stereo refine',13,100,nothing)

cv.createTrackbar('speckleWindowSize','stereo refine',400,400,nothing)

cv.createTrackbar('speckleRange','stereo refine',200,200,nothing)

###do something with these##

##window_size = 3

##min_disp = 16

##num_disp = 112-min_disp

stereo = cv.StereoSGBM_create()

while True:

 #maybe use grab() and retrieve() here?

cap_right.grab()

cap_left.grab()

retL,imgL = cap_right.retrieve()

retR,imgR = cap_left.retrieve()

 retL,imgL = cap_left.read()

 retR,imgR = cap_right.read()

 if retL and retR:

 ##CHANGE##

 imgRGray = cv.cvtColor(imgL,cv.COLOR_BGR2GRAY)

 imgLGray = cv.cvtColor(imgR,cv.COLOR_BGR2GRAY)

################## CALIBRATION

 frame_right, frame_left = calibration.undistortRectify(imgRGray, imgLGray)

##

cv.imshow('left rec', frame_left)

cv.imshow('right rec', frame_right)

 #get tuning values

 minDisparity = cv.getTrackbarPos('minDisparity','stereo refine')

 numDisparities = cv.getTrackbarPos('numDisparities','stereo refine')

 blockSize = cv.getTrackbarPos('blockSize','stereo refine')

 P1 = cv.getTrackbarPos('P1','stereo refine')

 P2 = cv.getTrackbarPos('P2','stereo refine')

 disp12MaxDiff = cv.getTrackbarPos('disp12MaxDiff','stereo refine')

 preFilterCap = cv.getTrackbarPos('preFilterCap','stereo refine')

 uniquenessRatio = cv.getTrackbarPos('uniquenessRatio','stereo refine')

 speckleWindowSize = cv.getTrackbarPos('speckleWindowSize','stereo refine')

 speckleRange = cv.getTrackbarPos('speckleRange','stereo refine')

 #set tuning values

 stereo.setMinDisparity(minDisparity)

 stereo.setNumDisparities(numDisparities)

 stereo.setBlockSize(blockSize)

 stereo.setP1(P1)

 stereo.setP2(P2)

 stereo.setDisp12MaxDiff(disp12MaxDiff)

 stereo.setPreFilterCap(preFilterCap)

 stereo.setUniquenessRatio(uniquenessRatio)

 stereo.setSpeckleWindowSize(speckleWindowSize)

 stereo.setSpeckleRange(speckleRange)

 disparity = stereo.compute(frame_right,frame_left)

#set the type as a float 32

 disparityFloat = disparity.astype(np.float32)/16.0

 min_disp = minDisparity

 num_disp = numDisparities

 disparityNorm = (disparityFloat - min_disp)/num_disp

#get a distance calculation f(mm)*b(m) = focal length and baseline

 disparityNorm = cv.resize(disparityNorm, (640,480))

 cv.imshow('disparityNorm',disparityNorm)

 #cv.imshow('disparity Float', disparityFloat)

 #cv.imshow('disparity', disparity)

 imgL = cv.resize(imgL, (640,480))

 cv.imshow('left', imgL)

 cv.imshow('left rectified', frame_left)

 #cv.imshow('right rectified', rightRec)

 #cv.applyColorMap(depth, depth, cv.COLORMAP_JET)

#depth is failing becuase of zero division

 #cv.imshow('depth',depth)

 dim = disparityNorm.shape

 width = dim[1]

 cv.setMouseCallback('disparityNorm',draw_circle)

 key = cv.waitKey(1)

 if key == ord('q'):

 break

 else:

 camL = cv.VideoCapture(1)

 camR = cv.VideoCapture(2)

cap_right.release()

cap_left.release()

cv.destroyAllWindows()

Appendix M - Calibration Image Capture (USB)
import cv2

import time

capL = cv2.VideoCapture(2)

capR = cv2.VideoCapture(0)

######resolution changes######

##cap.set(3,1920)

##cap.set(4,1080)

##cap2.set(3,1920)

##cap2.set(4,1080)

num = 0

countdown = 5

while capL.isOpened():

 time.sleep(1)

succes1, img = cap.read()

succes2, img2 = cap2.read()

 capL.grab()

 capR.grab()

 retL, imgL = capL.retrieve()

 retR, imgR = capR.retrieve()

 k = cv2.waitKey(5)

 if k == 27:

 break

elif k == ord('s'): # wait for 's' key to save and exit

cv2.imwrite('images/stereoLeft/imageL' + str(num) + '.png', img)

cv2.imwrite('images/stereoright/imageR' + str(num) + '.png', img2)

print("images saved!")

num += 1

 imgL = cv2.resize(imgL,(640,480))

 imgR = cv2.resize(imgR,(640,480))

img = cv2.putText(img, str(countdown),(10,75),cv2.FONT_HERSHEY_SIMPLEX, 3, (0,255,0),

5)

cv2.imshow('Img 1',img)

cv2.imshow('Img 2',img2)

 countdown = countdown - 1

 if countdown <= 0:

 cv2.imwrite('images/stereoLeft/imageL' + str(num) + '.png', imgL)

 cv2.imwrite('images/stereoright/imageR' + str(num) + '.png', imgR)

 print("images saved!")

 num += 1

 countdown = 5

 img = cv2.putText(imgL, str(countdown),(10,75),cv2.FONT_HERSHEY_SIMPLEX, 3, (0,255,0),

5)

 cv2.imshow('Img 1',imgL)

 cv2.imshow('Img 2',imgR)

capL.release()

capR.release()

cv2.destroyAllWindows()

Appendix N – Continually Calculated Release Point Algorithm Example
"""

this is a CCRP draft

should take altitude, speed (vertical and horizontal), the drag and

reynolds number etc.

"""

import math

import random

"""

#pull the sensor data

Vehicle.location.global_frame #WGS84 coordinates and alt (MSL)

Vehicle.location.global_relative_frame #WGS84 plus altitude from a

point

Vehicle.velocity #three components [vx, vy, vz]

Vehicle.airspeed #m/s double

Vehicle.heading #int 0-360

Vehicle.attitude #p,y,r

"""

#dummy data

data = [random.randrange(1,30) for i in range(20)]

print(data)

#vertical

h = -30 #m altitude

uv = 0 #Vehicle.velocity[1] # m/s vertical speed

g = -9.81

disc = uv * uv - 4 *0.5*g* -h

sqrtval = math.sqrt(abs(disc))

 # checking condition for discriminant

if discri > 0:

 time = ((-uv + sqrtval)/(2 * 0.5*g))

 time2 = ((-uv - sqrtval)/(2 * 0.5*g))

 if time2 > 0:

 time = time2

 print('time: ' + str(time))

elif discri == 0:

 print(-uv / (2 * 0.5*g))

#horizontal

#these details are for a tennis ball

ux = 10 #Vehicle.velocity[0]#horizontal speed m/s

mass = 0.0577 #kg

Cd = 0.15 #for the streamlined (3d) body

rho = 1.2041 #kg/m^3 density of air

A = math.pi*0.067**2

dragF = Cd*rho*ux**2*A/2

ax = dragF / mass

for ux in data:

 dist = ux*time + 0.5*ax*time**2

 print('dist: ' + str(dist))

#decision to release

'''

while the heading is on target:

 if stereo depth == gps dist:

 cruise release

 elseif stereo depth < gps dist:

 hover release

'''

Appendix O – Calibration Program UAS Implementation
import cv2 as cv

import numpy as np

import glob

criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30,

0.001) #after 30 iterations or the specified accuracy has been met

count = 0

#create blank object point arrays (width*height,colour channel)

objp = np.zeros((9*6,3), np.float32)

objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)

objpoints = []

imgpointsL = []

imgpointsR = []

#getting files from a folder

images = [image for image in

glob.glob('/home/pi/Desktop/project/good_stuff/calibration_photos/*.png

')] #my chessboard split photos

#make sure the files load as actual pairs

images.sort()

for image in images:

 image = cv.imread(image)

 #this is (height, width, channels)

 shape = image.shape

 width = int(shape[1]/2)

 height = shape[0]

 il = image[0:height,0:width]

 ir = image[0:height, width:2*width]

 grayL = cv.cvtColor(il, cv.COLOR_BGR2GRAY)

 grayR = cv.cvtColor(ir, cv.COLOR_BGR2GRAY)

 retL, cornersL = cv.findChessboardCorners(grayL, (9,6), None)

 retR, cornersR = cv.findChessboardCorners(grayR, (9,6), None)

 if retL and retR == True:

 count = count + 1

 objpoints.append(objp)

 cornersL = cv.cornerSubPix(grayL, cornersL, (11,11), (-1,-1),

criteria)

 imgpointsL.append(cornersL)

 cornersR = cv.cornerSubPix(grayR, cornersR, (11,11), (-1,-1),

criteria)

 imgpointsR.append(cornersR)

 cv.drawChessboardCorners(il, (9,6), cornersL, retL)

cv.resize(il, (640,480))

 cv.imshow('imgL', il)

 cv.drawChessboardCorners(ir, (9,6), cornersR, retR)

cv.resize(ir,(640,480))

 cv.imshow('imgR', ir)

##assess any innaccurate chessboard captures

 cv.waitKey(500)

cv.destroyAllWindows()

######make corrections given chessboard detections############

retL, mtxL, distL, rvecsL, tvecsL = cv.calibrateCamera(objpoints,

imgpointsL, grayL.shape[::-1], None ,None) #the image size is (w,h) and

shape gives (h,w)

heightL, widthL, channelsL = il.shape

newCameraMtxL, roiL = cv.getOptimalNewCameraMatrix(mtxL, distL,

(widthL, heightL), 1, (widthL, heightL))

######reprojection error#######

mean_error = 0

for i in range(len(objpoints)):

 imgpointsLP, _ = cv.projectPoints(objpoints[i], rvecsL[i],

tvecsL[i], mtxL, distL)

 error = cv.norm(imgpointsL[i], imgpointsLP,

cv.NORM_L2)/len(imgpointsLP)

 mean_error += error

print("Left total error: {}".format(mean_error/len(objpoints)))

retR, mtxR, distR, rvecsR, tvecsR = cv.calibrateCamera(objpoints,

imgpointsR, grayR.shape[::-1], None ,None)

heightR, widthR, channelsR = ir.shape

newCameraMtxR, roiR = cv.getOptimalNewCameraMatrix(mtxR, distR,

(widthR, heightR), 1, (widthR, heightR))

mean_error = 0

for i in range(len(objpoints)):

 imgpointsRP, _ = cv.projectPoints(objpoints[i], rvecsR[i],

tvecsR[i], mtxR, distR)

 error = cv.norm(imgpointsR[i], imgpointsRP,

cv.NORM_L2)/len(imgpointsRP)

 mean_error += error

print("Right total error: {}".format(mean_error/len(objpoints)))

flags = 0

flags |= cv.CALIB_FIX_INTRINSIC

criteria_stereo = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER,

30, 0.001)

retS, newCameraMtxL, distL, newCameraMtxR, distR, rot, trans,

essentialMtx, fundamentalMtx = cv.stereoCalibrate(objpoints,

imgpointsL, imgpointsR, newCameraMtxL, distL, newCameraMtxR, distR,

grayL.shape[::-1], criteria_stereo, flags)

rectifyScale = 1

rectL, rectR, projMtxL, projMtxR, Q, roiL, roiR =

cv.stereoRectify(newCameraMtxL, distL, newCameraMtxR, distR,

grayL.shape[::-1], rot, trans, rectifyScale,(0,0))

stereoMapL = cv.initUndistortRectifyMap(newCameraMtxL, distL, rectL,

projMtxL, grayL.shape[::-1], cv.CV_16SC2)

stereoMapR = cv.initUndistortRectifyMap(newCameraMtxR, distR, rectR,

projMtxR, grayR.shape[::-1], cv.CV_16SC2)

print(str(count) + " images found")

print("writing params")

cv_file = cv.FileStorage('stereoMap.xml', cv.FILE_STORAGE_WRITE)

cv_file.write('stereoMapL_x', stereoMapL[0])

cv_file.write('stereoMapL_y', stereoMapL[1])

cv_file.write('stereoMapR_x', stereoMapR[0])

cv_file.write('stereoMapR_y', stereoMapR[1])

cv_file.release()

print('done')

Appendix P – Stereo Program UAS Implementation
import numpy as np

from picamera.array import PiRGBArray

from picamera import PiCamera

import time

import cv2 as cv

########setup##########

#call camera

camera = PiCamera()

camera.resolution = (1920,720)

camera.vflip = True

camera.framerate = 32

fov = 24

b = 0.29

rawCapture = PiRGBArray(camera, size =(1920,720))

#let the camera wake up

time.sleep(0.5)

#read cal data from previous

#got to read the stereo)rectify_maps.xml

#the same as the other ones

cv_file = cv.FileStorage("stereoMap.xml", cv.FILE_STORAGE_READ)

stereoMapL_x = cv_file.getNode("stereoMapL_x").mat()

stereoMapL_y = cv_file.getNode("stereoMapL_y").mat()

stereoMapR_x = cv_file.getNode("stereoMapR_x").mat()

stereoMapR_y = cv_file.getNode("stereoMapR_y").mat()

#this is the exit for the window

def nothing(x):

 pass

########splitter##########

def splitter(img):

 shape = img.shape

 width = int(shape[1]/2)

 height = shape[0]

 il = img[0:height,0:width]

 ir = img[0:height, width:2*width]

 return il,ir

def draw_circle(event, x, y, flags, param):

 global mouseX, mouseY

 global fov, b, width

 if event == cv.EVENT_FLAG_LBUTTON:

 cv.circle(disparityNorm,(x,y),5,(255,0,0),2)

 mouseX, mouseY = x,y

 print(mouseX,mouseY)

 disparity = disparityNorm[mouseY,mouseX]

 print('disparity: ' + str(disparity))

 f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180)

 depth = (b*f_pixel)/disparity

 print('depth: ' + str(depth))

#######Stereo##########

#create a window

cv.namedWindow('stereo refine',cv.WINDOW_NORMAL)

cv.resizeWindow('stereo refine', 200,200)

#create a slider (parameter, window, min, max, escape function)

cv.createTrackbar('blockSize','stereo refine',10,100,nothing)

cv.createTrackbar('disp12MaxDiff','stereo refine',0,100,nothing)

cv.createTrackbar('minDisparity','stereo refine',23,480,nothing)

cv.createTrackbar('numDisparities','stereo refine',3,50,nothing)

cv.createTrackbar('preFilterCap','stereo refine',62,62,nothing)#63 max

+ 1

cv.createTrackbar('preFilterSize','stereo refine',250,250,nothing)#255

max + 1

#preFilterType = 'XSobel (default), 'NormalizedResponse'

#ROI1 = [0,0,100,100]

#ROI2 = [0,0,100,100]

cv.createTrackbar('speckleRange','stereo refine',200,200,nothing)

cv.createTrackbar('speckleWindowSize','stereo refine',400,400,nothing)

cv.createTrackbar('textureThreshold','stereo refine',100,100,nothing)

cv.createTrackbar('uniquenessRatio','stereo refine',10,200,nothing)

stereo = cv.StereoBM_create() #defaults

#######capture##########

while True:

 for frame in camera.capture_continuous(rawCapture, format="bgr",

use_video_port=True):

 start = time.time()

 image = frame.array

image = cv.resize(image, (480,640))

cv.imshow('image', image)

 imgL,imgR = splitter(image)

cv.imshow('left', imgL)

cv.imshow('right', imgR)

#########you've got to designate an ROI ######################

 #maybe use undistort here

 leftRec = cv.remap(imgL, stereoMapL_x, stereoMapL_y,

cv.INTER_LANCZOS4, cv.BORDER_CONSTANT,0)

 rightRec = cv.remap(imgR, stereoMapR_x, stereoMapR_y,

cv.INTER_LANCZOS4, cv.BORDER_CONSTANT,0)

 #get tuning values

 blockSize = cv.getTrackbarPos('blockSize','stereo refine')+5

 disp12MaxDiff = cv.getTrackbarPos('disp12MaxDiff','stereo

refine')

 minDisparity = cv.getTrackbarPos('minDisparity','stereo

refine')

 numDisparities = cv.getTrackbarPos('numDisparities','stereo

refine')*16

 preFilterCap = cv.getTrackbarPos('preFilterCap','stereo

refine')+1

 preFilterSize = cv.getTrackbarPos('preFilterSize','stereo

refine')+5

 speckleRange = cv.getTrackbarPos('speckleRange','stereo

refine')

 speckleWindowSize =

cv.getTrackbarPos('speckleWindowSize','stereo refine')

 textureThreshold = cv.getTrackbarPos('textureThreshold','stereo

refine')

 uniquenessRatio = cv.getTrackbarPos('uniquenessRatio','stereo

refine')

 #set tuning values

 stereo.setBlockSize(int(np.floor(blockSize)//2*2+1))

 stereo.setDisp12MaxDiff(disp12MaxDiff)

 stereo.setMinDisparity(minDisparity)

 stereo.setNumDisparities(numDisparities)

 stereo.setPreFilterCap(preFilterCap)

 stereo.setPreFilterSize(int(np.floor(preFilterSize)//2*2+1))

 stereo.setSpeckleRange(speckleRange)

 stereo.setSpeckleWindowSize(speckleWindowSize)

 stereo.setTextureThreshold(textureThreshold)

 stereo.setUniquenessRatio(uniquenessRatio)

##Greyscale for disparity matching

 leftRec = cv.cvtColor(leftRec,cv.COLOR_BGR2GRAY)

 rightRec = cv.cvtColor(rightRec,cv.COLOR_BGR2GRAY)

 disparity_BM = stereo.compute(rightRec, leftRec)

 disparityFloat = disparity_BM.astype(np.float32)/16.0

 disparityNorm = (disparityFloat - minDisparity)/numDisparities

 dims = disparityNorm.shape

 height = dims[1]

 width = dims[0]

 cv.rectangle(disparityNorm, (int(height/2-200), int(width/2-

200)), (int(height/2+200),int(width/2+200)), (255, 255, 255), 2)

 disparityNorm = cv.resize(disparityNorm,(640,480))

 cv.imshow('disparityNorm',disparityNorm)

 leftRec = cv.resize(leftRec,(640,480))

 cv.imshow('leftRec',leftRec)

 #FPS calculation

 end = time.time()

 duration = end - start

 fps = 1/duration

print('FPS:', fps)

dim = disparityNorm.shape

width = dim[1]

cv.setMouseCallback('disparityNorm',draw_circle)

roi = disparityNorm[int(height/2-100):int(width/2-

100),int(height/2+100):int(width/2+100)]

cv.imshow("roi",roi)

 max_disp = np.max(roi)

 f_pixel = (width * 0.5) / np.tan(fov * 0.5 * np.pi/180)

 depth = (b*f_pixel)/max_disp

 print(str(depth))

 rawCapture.truncate(0)

 key = cv.waitKey(1)

 if key == ord('q'):

 break

 else:

 camera.capture_continuous(rawCapture, format="bgr",

use_video_port=True)

 rawCapture.truncate(0)

 cv.destroyAllWindows()

 camera.close()

 break

Appendix Q – MATLAB ORB Feature Rectification Program
I1 = imread('C:\Users\CTBou\Documents\python_trash\left

images\HD\left12', 'png');

I1 = rgb2gray(I1);

%gauss = fspecial('gaussian',5,1);

%lap = [0 -1 0;-1 4 -1; 0 -1 0];

%I1 = conv2(I1, gauss, 'same');

%I1 = conv2(I1, lap,'same');

I2 = imread('C:\Users\CTBou\Documents\python_trash\right

images\HD\right12', 'png');

I2 = rgb2gray(I2);

%I2 = conv2(I2, gauss, 'same');

%I2 = conv2(I2, lap,'same');

figure;

imshowpair(I1,I2,'montage');

title('I1 (left); I2 (right)');

figure;

imshow(stereoAnaglyph(I1,I2));

title('Composite Image (Red - Left Image, Cyan - Right Image');

%%

blobs1 = detectORBFeatures(I1);

blobs2 = detectORBFeatures(I2);

figure;

imshow(I1);

hold on;

plot(selectStrongest(blobs1, 30));

title('30 Strongest ORB Features in I1');

figure;

imshow(I2);

hold on;

plot(selectStrongest(blobs2, 30));

title('30 strongest ORB features in I2');

%%

[features1, validBlobs1] = extractFeatures(I1, blobs1);

[features2, validBlobs2] = extractFeatures(I2, blobs2);

indexPairs = matchFeatures(features1,features2,'Metric','SAD',

'MatchThreshold',10, 'MaxRatio', 0.5);

matchedPoints1 = validBlobs1(indexPairs(:,1),:);

matchedPoints2 = validBlobs2(indexPairs(:,2),:);

figure;

showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);

%%

[fMatrix, epipolarInliers, status] =

estimateFundamentalMatrix(matchedPoints1, matchedPoints2, 'Method',

'Norm8Point',...

 'Numtrials', 10000, 'DistanceThreshold', 0.1, 'Confidence', 99.99);

if isEpipoleInImage(fMatrix, size(I1)) || isEpipoleInImage(fMatrix',

size(I2))

 error(['either not enough matching points were found or the

epipoles are inside the images.']);

end

inlierPoints1 = matchedPoints1(epipolarInliers, :);

inlierPoints2 = matchedPoints2(epipolarInliers, :);

figure;

showMatchedFeatures(I1,I2, inlierPoints1, inlierPoints2);

%%

[t1, t2] = estimateUncalibratedRectification(fMatrix,

inlierPoints1.Location, inlierPoints2.Location, size(I2));

tform1 = projective2d(t1);

tform2 = projective2d(t2);

[I1Rect, I2Rect] = rectifyStereoImages(I1,I2, tform1, tform2);

figure;

imshow(stereoAnaglyph(I1Rect, I2Rect));

%%

disparityRange = [0, 8*16]; %0 to 128

uniquenessRatio = 20; %typically 5-15, 0 to disable

disparityMapI = disparitySGM(I1Rect,I2Rect,'DisparityRange',

disparityRange, 'UniquenessThreshold', uniquenessRatio);

figure;

imshow(disparityMapI, [0,15]);

colormap jet

colorbar

Appendix R – MATLAB Disparity Calcuation Program
%load('stereoParams.mat')

I1 = imread('BFS_left','jpg');

I2 = imread('BFS_right','jpg');

%[I1,I2] = rectifyStereoImages(I1,I2,stereoParams);

%I1 = rgb2gray(J1);

%I2 = rgb2gray(J2);

I1 = rgb2gray(I1);

I2 = rgb2gray(I2);

figure;

imshow(stereoAnaglyph(I1,I2));

%figure;

%imshow(stereoAnaglyph(J1,J2));

disparityRange = [0, 16*5];

disparityMapI = disparitySGM(I1,I2,'DisparityRange', disparityRange,

'UniquenessThreshold', 10);

figure;

imshow(disparityMapI, [0,64]);

title('Disparity Map');

colormap jet

colorbar

Appendix S - State Machine Diagram Mission Execution

