

1

2

University of Southern Queensland

Faculty of Health, Engineering and Sciences

Development Of an Adaptive Control Mechanism to Enable

Automated Irrigation on Gantry Robots

A dissertation submitted by

Corey Ahlers

In fulfilment of the requirements of

ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering (Honours) (Electrical and Electronic)

Submitted October, 2022

3

ABSTRACT

Currently there is a need for automated Space Agriculture systems to detect signs of early plant stress,

to ensure both food safety and security on board space missions. Astronauts are hindered by the need

to maintain constant communication to accurately diagnose plant stresses and maintain nutritional and

psychologically beneficial plant life; so, a need for launch ready automation software has become

apparent. Without a system capable of detecting early plant stresses to ensure food safety and security,

further resources are required to address these problems manually. This increase of resources includes

the time needed to facilitate communication with Earth based specialists to diagnose specimens,

resulting in a loss of valuable time in preventing plant stress.

From the examined literature, the area of automated Space Agriculture has had little practical

application with most automated agricultural projects such as irrigation and monitoring, performed on

Earth through gantry topologies. Gantry topologies refer to a structure consisting of an overhead bridge

beam supported by a platform, which allows a manipulator to move along multiple axis. Therefore,

there is a knowledge gap in formulating a system that is capable monitoring and adapting to the

condition of plant specimens through an automated adaptive control algorithm to maintain existing

plants in microgravity environments.

Through this knowledge gap, the project aimed to answer if greenhouse gantry topologies are capable

of reliably interpreting and adapting automatically in real time, facilitating plant life in isolated

conditions. This question was answered through the development of an adaptive control plugin that was

used in conjunction with a FarmBot Genesis XL gantry topology. The FarmBot topology was able to

capture a total of 30 images of individual plant specimens which were used by the adaptive control

plugin. The adaptive control plugin was able to process these plant specimens and adapt upon the change

in specimen area with recommendations of applied water to each specimen.

Results showed that although the adaptive plugin was able to process data, inconsistencies were found

in the processing and storage of plant area, specimen recognition and generated adaptive water values.

These inconsistences formed recommendations on the further operation and development of the

FarmBot and adaptive control topologies.

Keywords: Space agriculture, Machine Vision, Robotics, Automation, Adaptive Control.

4

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111 & ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health,

Engineering and Sciences, and the staff of the University of Southern

Queensland, do not accept any responsibility for the truth, accuracy or

completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of

Health, Engineering and Sciences or the staff of the University of Southern

Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitles “Research

Project” is to contribute to the overall education within the student’s chosen

degree program. This document, the associated hardware, software, drawings,

and any other material set out in the associated appendices should not be used for

any other purpose: if they are so used, it is entirely at the risk of the user.

5

Certification

I certify that the ideas, designs and experimental work, results, analyses and

conclusions set out in this dissertation are entirely of my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted

for assessment in any other course or institution, except where specifically stated.

Corey Ahlers

Student Number:

6

ACKNOWLEDGEMENTS

I would like to acknowledge Dr Jacob Humpal and Dr Cheryl McCarthy for their continued

support through the creation of this dissertation and for providing the FarmBot Genesis XL that

is used throughout this project.

7

Table Of Contents

ABSTRACT……………………………………………………………………………………… 3

CERTIFICATION………………………………………………………………………………. 5

List Of Figures…………………………………………………………………………………… 10

List Of Tables……………………………………………………………………………………. 12

Glossary Of Terms………………………………………………………………………………. 13

Chapter 1: Background…………………………………………………………………………. 14

1.2 Project Development Scope and Aim……………………………………………………. 14

1.3 Overview of Research Objectives and Questions………………………………………... 15

1.4 Literature Review………………………………………………………………………… 16

 1.4.1 Current Gantry Robot Applications……………………………………………… 16

 1.4.2 Current Manipulators……………………………………………………………. 16

 1.4.3 Other Precision Agriculture……………………………………………………… 17

 1.4.4 Effects of Microgravity in Precision Agriculture………………………………… 18

 1.4.5 Current Availability of Small-Scale Gantry Robots……………………………… 18

1.5 Knowledge Gap…………………………………………………………………………… 18

1.6 Dissertation Outline………………………………………………………………………. 19

Chapter 2: Topology Construction……………………………………………………………… 20

2.1 Overview of FarmBot Topology Components…………………………………………… 20

2.2 Construction of Mobile Bed and FarmBot Topology…………………………………… 20

 2.2.1 Attachment of the Cross Slide…………………………………………………… 21

 2.2.2 Attachment of Drive Trains……………………………………………………… 22

2.3 Implementation of System Electronics and Plumbing……………………………………. 22

 2.3.1 The Z axis Electronics……………………………………………………………. 23

 2.3.2 The Y axis Electronics……………………………………………………………. 23

 2.3.3 The X axis Electronics……………………………………………………………. 23

8

2.4 Initialisation of The Physical Topology…………………………………………………… 25

Chapter 3: Adaptive Control Development……………………………………………………... 26

3.1 Libraries and Functions…………………………………………………………………… 26

 3.1.1 Determination of Program Language……………………………………………... 26

 3.1.2 Determination of Machine Vision Libraries……………………………………… 26

3.2 Machine Vision Implementation…………………………………………………………... 26

3.3 Calculation of Area………………………………………………………………………... 28

3.4 Specimen Identification and Information Formatting……………………………………... 28

3.5 Adaptive Control Implementation………………………………………………………… 29

 3.5.1 Generation of Initial Water Values………………………………………………. 29

 3.5.2 Second Iteration and Adaptive Control…………………………………………... 29

 3.5.3 Third Iteration and Continued Control…………………………………………… 31

3.6 HTML Wrapping and data parsing………………………………………………………... 32

 3.6.1 PyJWT……………………………………………………………………………. 32

 3.6.2 Flask HTML Hosting……………………………………………………………... 32

Chapter 4: Simulated Testing……………………………………………………………………. 33

4.1 Simulated Testing Methodology…………………………………………………………... 33

4.2 Simulated Testing Results………………………………………………………………… 35

4.3 Observed Simulated Testing Inconsistencies……………………………………………... 37

Chapter 5: Results………………………………………………………………………………... 39

5.1 Overview of Final Testing Methodology…………………………………………………. 39

5.2 Final Testing Results and Recommendations……………………………………………... 41

 5.2.1 Recommendation 1: Number Identification Through Deep Learning…………… 44

 5.2.2 Recommendation 2: Application of Different Colour…………………………… 44

Chapter 6: Discussion and Further Work……………………………………………………… 45

6.1 Current State of Gantry Topology and Adaptive Control Plugin………………………… 45

6.2 Further Physical Work…………………………………………………………………… 45

9

 6.2.1 Redesign of the FarmBot Irrigation Tool………………………………………... 45

6.3 Further Digital Work……………………………………………………………………… 45

 6.3.1 The Database……………………………………………………………………... 46

 6.3.2 The Server………………………………………………………………………… 46

 6.3.3 The GUI…………………………………………………………………………… 46

 6.3.4 Integration of Adaptive Control as an Application………………………………. 47

Chapter 7: Summary and Conclusion…………………………………………………………… 48

References…………………………………………………………………………………………. 50

Appendix…………………………………………………………………………………………… 53

10

List Of Figures

Figure 1: Virtual optimisation of robotic arms with varying degrees of freedom.

Figure 2: Measurement of the required cut.

Figure 3: Incremental raising of the gantry tracks.

Figure 4: Installation of the Y axis Drive Train.

Figure 5: Completed installation of the Y axis cable carrier and cables.

Figure 6: The completed installation of the X axis cable carrier and cables.

Figure 7: The completed FarmBot Electronics Box.

Figure 8: Calculated Contour Overlayed onto Received Example Image

Figure 9: Binary black and white Image used for contour creation and area calculation

Figure 10: An example of a specimen label featuring a dice pattern representing “2”.

Figure 11: All potential decisions within the initial stages of the adaptive control plugin

Figure 12: Updated potential decisions as the adaptive control moves into continued control.

Figure 13: An example of a specimen used in the adaptive plugin.

Figure 14: The folder the plugin draws from.

Figure 15: The contents of the “Official_Test” folder.

Figure 16: Obtained growth over specimen iterations

Figure 17: Applied water over specimen iterations.

Figure 18: A sample output of the adaptive control plugin, demonstrating data corruption

Figure 19: A sample threshold of the adaptive control plugin.

Figure 20: A diagram of the final test layout. Where circles represent plants and squares represent

labels.

Figure 21: Final testing environment demonstrating grow light positioning.

Figure 22: Final testing environment following diagram arrangement

Figure 23: Example of a plant specimen captured using the FarmBot and camera

Figure 24: Resulting error after analysis of physical data.

11

Figure 25: A produced output of the systems area analysis

Figure 26: False positives shown in the resulting detection count for specimen labelling.

Figure 27: Adaptive control output of analysed growth over iterations.

Figure 28: Adaptive control output of applied water over iterations

Figure 29: Concept start-up of the FarmBot API with added adaptive control application tab.

Figure 30: Proposed Layout of the Adaptive Control Plugin.

12

List Of Tables

Table 1: An overview of each of the identified problems within the FarmBot topology and their

resolutions.

Table 2: Overview of each specimens designed characteristics.

Table 3: Final simulated results table, showing discrepancies in the change in water.

13

Glossary Of Terms

1. Gantry: A gantry refers to a style of robot that consists of a central platform which supports a

bridge-like structure housing a manipulator.

2. Topology: A topology refers to the way a series of interrelated system parts are arranged.

3. FarmBot: The FarmBot is an open-source gantry topology that utilises an online user API to

control the robot and its onboard hardware.

4. API: An API stands for an Application Programming Interface, an application used to interface

with further software through system commands.

5. HSV: HSV stands for Hue Saturation Colour, which is a way of categorising a colour based on

its hue and saturation characteristics.

6. RGB: RGB stands for Red, Green, and Blue, categorising colours based on how much of these

colours there are within a colour.

7. Manipulator: A robotic manipulator is a mechanical device situated on the end effector of a

robotic topology. Manipulators are responsible for providing a means for a system to interact

with its physical environment.

8. Cross Slide: A cross slide refers to a motorised plate, facilitating travel along the Y axis of a

gantry topology.

9. Drive Trains: Drive trains refer to an elastic belt that is situated across an axis motor. Drive

trains allow machine components such as the cross slide to move along an axis.

10. LED: An LED refers to a Light Emitting Diode, an electrical component that produces light

through an applied voltage.

11. Adaptive: Adaptive is an adjective that describes an ability to adapt. In this project, the word

adaptive in “adaptive control plugin” refers to the automated behaviour style of the system.

14

Chapter 1: Background

From the early 1950’s space travel has proven to be humanity’s final frontier. Developments in

technology and rocket design prevalent during the great space race between America and the Soviet

Union have demonstrated the ability for humanity to reach the Moon (History.com, 2020). However,

as the required travel distance grows, difficulties arise as the overall journey’s travel time influences

the sustainability of both physical and psychological systems.

These difficulties include bone loss, space adaptation syndrome and the various psychological impacts

of remaining confined to a small area in zero gravity for prolonged periods of time (Wheeler, 2018).

However, one of the lesser-known challenges of long-term space travel is the cultivation of plants.

Plants rely heavily on the presence of gravity to disperse and drain water from its roots; in a

microgravity setting, water holds its position within the soil, leading to saturation (NASA, 2010).

Further issues include the inefficient designation of crew labour and speciality, the efficient use of

physical resources such as energy water and nutrients, assured food safety, and the need for high crop

yields (Keeter, 2020; Ngo, 2003). In addition, the same stresses experienced by plant life on Earth such

as pathogens and parasites pose a problem. These current problems of efficient resource use and food

safety problems seen in Space Agriculture are capable of being solved through machine vison and

automatic robotic systems; the need for development of these systems has become apparent to progress

humanity’s goal for long term space travel.

To achieve this goal, it is necessary to draw upon inspiration from automated agricultural projects here

on Earth and apply the same principles into the Space Agriculture setting (Shafi, 2020). Primarily,

advancements in traditional automated agriculture can be divided into the categories of detection,

maintenance, and irrigation, each of which pose unique challenges. For example, traditional means of

mass crop irrigation prove to be ineffective in small-scale space agriculture settings due to how water

behaves in micro-gravity (Nagura, 2019). Traditional irrigation also promotes plant pathogens through

direct leaf exposure to moisture (Dixon, 2015). Therefore, it has become necessary to develop a self-

sufficient system capable of addressing these various hurdles. The proposed research aims to utilise a

gantry robot topology to inject water directly into the soil to irrigate plant specimens, maintaining the

plant specimens through automated adaptive water application and area monitoring.

1.2 Project Development Scope and Aim

The main goal of this project is to supply adaptive control software for plant irrigation in Space; with

an aim to provide initial steps in alleviating existing problems, while creating a foundation to combat

future problems. The initial steps of this project focus on the automated monitoring and adaptive

application of water to plant specimens to answer the question: Are greenhouse gantry topologies

capable of reliably interpreting and adapting automatically in real time, facilitating plant life in isolated

conditions?

Furthermore, this project aims to evaluate the viability of current commercial gantry topologies,

investigating their physical capabilities to develop and implement a machine vision based adaptive

control system. Evaluating the resulting topology based on factors such as accuracy and long duration

reliability.

15

1.3 Overview of Research Objectives and Questions

A series of research objectives and sub-questions have been designed to streamline project

development. These research objectives and sub-questions primarily focus on answering questions

around administering and monitoring of plant specimens.

This project’s overarching research question is investigated through the following sub-questions:

1. What commercial gantry topologies are available for the project application?

2. Will the FarmBot’s existing programs and technology suit the application?

3. Can the FarmBot API function in an isolated environment in conjunction with a third-party

plugin?

4. Can the developed adaptive control plugin reliably measure plant area?

5. Can the selected gantry topology accurately and reliably apply water to plant specimens

autonomously?

6. What future development is required to further facilitate true automatic plant analysis and

maintenance?

To answer these research questions, the following research objectives were created to form the basis of

this project’s methodologies. If time permits, further research objectives include the development of

software systems to assist in the processing and refinement of data collection algorithms.

These objectives are listed as follows:

1. Conduct literature review on precision agriculture topologies, microgravity agriculture, current

gantry agriculture applications and manipulators.

2. Identify core components of a remote automated microgravity greenhouse based on existing

gantry topologies, including sensors, algorithms, manipulators, and server communications.

3. Identify a suitable topology for a microgravity greenhouse with gantry robot which can operate

locally with reduced reliance on external communications.

4. Develop a localised, stable system software and hardware framework and integrate with an

existing gantry robot.

5. Construct a functional prototype of the desired gantry topology and assess physical capabilities

of the prototype for plant monitoring actions.

6. Test candidate methodologies for monitoring of plants over a minimum of one week to evaluate

topology performance.

7. Gather and evaluate experimental data on topology components and report on functionality

within physical, software and system level performance.

With further objectives if time is permitted:

8. Refine data collection and processing algorithms to increase validity and reliability of

experimental data as required.

9. Further develop and implement graphical user interface to enhance functionality for future

research of plant monitoring in a microgravity greenhouse with gantry robot.

16

1.4 Literature Review

The main objectives of automated greenhouse topologies are to implement an autonomous adaptive

control system to generally manage, monitor, and maintain small-scale crops needs such as irrigation.

Where the literature differs in comparison to the project is in the application of the project. Currently,

there are a variety of simple gantry machines capable of operating here on Earth. It has been found that

these gantry machines are capable of being used in conjunction with machine vision to further evaluate

and broadcast basic plant conditioning (Takara, 2021). Furthermore, there are different forms of

automated gantry robots that differ in functionality and robustness; for example, a single gantry system

that can irrigate can also be capable of pruning plants (Zhao, 2021).

There are also specific Arduino and Raspberry Pi libraries and architectures used to make automation

possible throughout the literature. These libraries and projects are open source and able to be

implemented into the final project design providing a stable basis to build off, saving time on areas in

development that would otherwise require additional resources to accomplish (Takara, 2021). The

manipulator is also prevalent in the literature, with designs based on durability within the system itself.

These designs take pre-existing styles of manipulators and change their material properties, allowing

them to be used in other environments. In the context of multipurpose and interchangeable

manipulators, the literature is sparse and only currently emerging (Tian, 2020). As it currently stands,

multipurpose manipulators appear to be the best option due to their flexibility and efficiency in

conducting tasks. By utilising a multipurpose manipulator robot topologies can switch tools mid process

rather than breaking routine to change tools.

1.4.1 Current Gantry Robot Applications

In modern day robotics there are a variety of different applications that the gantry robot architecture has

been used in; these applications are mostly in assembly operations such as construction cranes (Golovin,

2020), welding (Zych, 2021) and motherboard manufacturing. The gantry robot is a precise and accurate

robotic topology; however, the use of these robotic topologies greatly decreases when applied to the

agricultural industry. Current gantry applications in agriculture range in both precision and scale, where

the two factors often directly correlate with each other. Larger scale indoor growing operations typically

introduce an inaccurate quadrant spraying approach, aiming to reduce the amount of water lost in

comparison to traditional irrigation methods by increasing its effective area. In smaller scale greenhouse

operations, precision is of the utmost importance which compromises overall speed in favour of

individual quality and accuracy (Wrest Park History Contributors, 2009).

The use of gantry robot topologies differs depending on both the application and manipulator. For

example, for both small and large applications gantry robots allow operators to utilise a highly stable

movable base to conduct machine vision monitoring of plants for pathogen activity and general

specimen health (Sharath, 2021). This principle is also used for plant harvesting; however, this

application is only seen in small-scale operations.

1.4.2 Current Manipulators

An important component of the gantry topology is its primary method of interaction with the physical

environment. This component is a manipulator, which can take a variety of forms based on the

environment the robot needs to interact with.

17

Presently the literature describes multiple possible manipulators that could be used for this project,

which can be broken down into separate categories. Firstly, there are manipulators that can be used for

a specific purpose and interchanged at the operators will (Baohua, 2020). These manipulators are

currently seen in large and small-scale automated agriculture. However, these manipulator systems are

often inefficient compared to multipurpose manipulators when the need for a separate manipulator is

constant (Tian, 2020). For example, a dedicated plant watering manipulator that occasionally needs to

perform monitoring or data collection tasks such as assessing soil moisture, will see a reduction in

efficiency in comparison to a multipurpose manipulator capable of performing these tasks

interchangeably.

In comparison, the literature strongly suggests that the use of a multipurpose manipulator is more

efficient, and less resource intensive compared to interchangeable manipulators. Although,

multipurpose manipulators can prove to be redundant in scenarios where the flexibility of on hand tools

is not of a strong priority (Arian, 2017). This redundancy can prove to be ineffective in terms of cost

and expansion of implementation. However, for pre-allocated tasks or systems that largely rely on

efficient timing, multipurpose manipulators can prove invaluable.

1.4.3 Other Precision Agriculture

Throughout the literature there are many examples of different forms of precision agriculture robot

topologies on Earth that differ from the proposed gantry robot topology design. One application is a

form of non-intrusive cloud-based design of agricultural automation (Tan, 2016). Unlike the gantry

robot topology, this form of robot is purely sensor and information based with no means of physically

interacting with the environment, instead relying on peripheral systems and pre-existing hardware to

act upon the issues flagged by the robot. Robots that operate through the IoT (Internet of Things)

framework also fall into this category of precision agriculture (Maroli, 2021). These robots do not fit

within the scope of the gantry design, as they are intended for larger scale agriculture. Due to the sensor

driven nature of these systems, an implementation of this approach to precision agriculture would result

in an overcomplication of the current application.

Within the literature there also variations of the traditional gantry topology that have been modified to

suit a particular application. These forms of precision agriculture function similarly to the proposed

gantry system; however, they differ greatly as their degrees of freedom increase (Zhao, 2016). An

example of this concept is the optimisation process of a robotic arm for harvesting applications, testing

topology effectiveness in relation to degrees of freedom as shown in Figure 1 (Bloch, 2018).

Figure 1: Virtual optimisation of robotic arms with varying degrees of freedom

18

By applying more degrees of freedom to the robot, it becomes more flexible in its capability to interact

with plant specimens; however, its size and peripheral supporting structure grow respectively per

additional degree of freedom. Although this design would suit the application based on what plant

specimens were actively being maintained, the loss of modularity and the increased complexity of the

overall system itself greatly hinder the system’s ability to be easily implemented and maintained in long

duration Space missions.

1.4.4 Effects of Microgravity in Precision Agriculture

There are a variety of studies and examples of prolonged observation of plant growth within varying

magnitudes of microgravity; these studies demonstrate that there are many benefits experienced by

plants during their growth cycle that occur through the introduction of microgravity. The first benefit

microgravity has on plant growth is the significantly reduced amount of water and nutrient leeching

required to achieve plant maturity (Maggi, 2010). This reduced rate of 90% moisture leeching leads to

higher moisture retention within the soil of the plant, indicating that the required amount of water in

irrigation systems will be 90% less than on Earth (Maggi, 2010).

The next beneficial side effect of plant growth in microgravity is their increased resulting maturity size.

Through exposure to microgravity, plant specimens can grow taller due to the decreased gravitational

resistance of transporting nutrients through the main stem of the plant. In addition, this reduction in

gravitational resistance indicates that the distributed water can be utilised more effectively in

microgravity environments (Shusaku, 2021). This demonstrated increase in growth rate in microgravity

situations is corroborated in studies on mung beans (Shusaku, 2021) and corn, producing increased

growth rates of up to 77% when compared to controls (Oluwefami, 2019).

Plants cultivated in microgravity also suffer detrimental health effects from the stress induced in this

different environment. Through the introduction of a microgravity environment, plants can suffer from

poor aeration of roots to chromosomal aberrations leading to challenges in plant growth and

development (Wheeler, 2009).

1.4.5 Current Availability of Small-Scale Gantry Robots

Throughout the examined literature, there is a great divide in the availability of small-scale gantry robot

topologies. Typically, available gantry topologies examined have a potential range of motion under 0.25

𝑚2 and are suited to desktop applications and high precision prototyping, rather than practical larger-

scale automation (RS Components, 2022). In addition, most of the examined potential gantry

architectures are governed by the company responsible for manufacturing the gantry topology, featuring

the use of their own proprietary software and diagnostic tools. Beyond this 0.25 𝑚2 coverage, the

availability of gantry topologies extends to factory and large-scale automation applications requiring

custom ordering and fabrication (Sage Automation, 2022).

Due to limitations induced by this proprietary software, customisation and further development or

integration of system API’s and software are unachievable and drastically reduce the viability of using

these gantry topologies in this project. The FarmBot, a consumer-available gantry topology, features

open-source software and a potential out-of-box maximum area of 18 𝑚2. This large operating area, in

addition to its user API, provided the most suitable platform for system customisation and

implementation in the project.

1.5 Knowledge Gap

19

After evaluating the literature there are a variety of small hurdles that cumulate to form a profound

knowledge gap. The main knowledge gap derives from the systems application itself. Gantry robots are

currently capable of functioning in nominal conditions here on Earth and in Space. However, within the

literature, there is a lack of examples of independent monitoring and control of plants in extreme isolated

conditions, forming the basis of this projects research question and goals. Achievement of localised

independency is the area of the current knowledge gap regarding the application of gantry systems in

the Space Agriculture sector. Although there is evidence of gantry systems automatically watering

crops; there is not a system capable of autonomously adapting the amount of water applied to a plant

based on its current circumstance. This system would allow for further independence of the gantry robot

system and further the ideal goal of a self-sufficient system capable of maintaining plant life for the 3-

year journey to Mars.

There is also a considerable knowledge gap in the use of multipurpose manipulators in small-scale space

agriculture setting. There is evidence for multipurpose manipulators being used in both automated and

manually controlled agricultural settings, however these settings are generally large in scale, where the

use of a multipurpose manipulator is in harvesting the crop. Therefore, a system that is capable

monitoring and adapting to the condition of plant specimens through an automated precise irrigation

manipulator forms the basis of the knowledge gap.

This research will establish whether a combination of localised independence and multipurpose

manipulation can achieve the self-sustaining plant agriculture required for long duration space travel.

1.6 Dissertation Outline

With the knowledge gap and aim of the project identified, this dissertation addressed these aspects

through a series of chapters leading to a final discussion and summary. These chapters have been

organised to linearly outline the formation of the adaptive control plugin to its application to live data.

1. Chapter 2 - Topology Construction: This chapter describes the assembly of the gantry topology

and its camera feed.

2. Chapter 3 – Adaptive Control Development: Chapter 3 builds upon chapter 2, describing the

development of the adaptive control plugin and its algorithms.

3. Chapter 4 - Simulated Testing: After developing the adaptive control plugin, chapter 4 details

the plugins initial application to a simulated test scenario.

4. Chapter 5 – Results: Chapter 5 combines chapters 2 and 3, gathering live data using the gantry

topology and processing it using the adaptive control plugin.

5. Chapter 6 – Discussion: Chapter 6 discusses the results obtained within chapter 5, forming

recommendations on the functionality of the adaptive control plugin.

6. Chapter 7 – Summary and Conclusion: Chapter 7 concludes the dissertation with a summary of

the project, evaluating how chapters 2 through 6 have addressed the projects objectives.

20

Chapter 2: Topology Construction

Before describing the adaptive control component of the project; Chapter 2 recounts the construction

of the FarmBot topology and the mobile bed utilised throughout Chapter 5 in Figures 21 and 22.

Furthermore, Chapter 2 details the problems that occurred throughout construction process and

initialisation, in addition to the steps taken to resolve these problems.

2.1 Overview of FarmBot Topology Components

The FarmBot system in its entirety can be reduced into two categories. The first category of the FarmBot

system is the mobile bed that the gantry topology is built upon, which consists of two RACK-IT™

shelving units joined with four adjustable threaded rods. Whereas the second category of the FarmBot

topology is the FarmBot components and electronics that are built upon the shelving units.

2.2 Construction of Mobile Bed and FarmBot Topology

Construction of the FarmBot gantry topology began with the assembly of each of the two RACK-IT™

shelving units. These shelving units were set to hold the main bed the FarmBot at the centre of the

shelving units, providing an ergonomic position to make alterations to the shelving units.

Next, four equally spaced holes were drilled into the inner side of each of the shelving units to house

four 500mm threaded rods. These threaded rods allow the shelving units to be incrementally adjusted

to suit the desired 1.5 m Z axis of the FarmBot gantry topology.

 After the shelving units were in the correct position, installation of the FarmBot tracks began. For

installation to be possible, permanent alterations to the provided FarmBot tracks had to be made to

satisfy the dimensions of the shelving units. To accomplish this installation, the length of the shelving

units was recorded at 2.65 m and the difference between the provided 3 m tracks was calculated as 305

mm. This offset was measured, and the required cut was performed (Figure 2).

Figure 2: Measurement of the required cut

21

2.2.1 Attachment of the Cross Slide

After construction of the mobile bed and the FarmBot gantry tracks, the topology Z component was

installed. The construction of the Z component began with construction of the FarmBot wheel plates

according to the provided FarmBot documentation.

However, when installing each of the two-wheel plates, it was discovered that there was no allocated

room for the wheel plates to reside in. This limitation meant that the FarmBot gantry tracks had to be

raised to accommodate for each of the wheel plates, which was accomplished by incrementally raising

the track level to suit the wheel plates shown (Figure 3).

Figure 3: Incremental raising of the gantry tracks.

After raising and determining that the FarmBot wheel plates could now travel along each of the gantry

tracks, the shelving units were locked into place. This allowed the horizontal Y bar to be installed across

each of the supports.

Next, the Cross Slide plate responsible for housing both the Z and Y motors was assembled following

the provided FarmBot documentation. However, much like the installation process of the FarmBot

gantry tracks, it was discovered that there was not enough room within the FarmBot working

environment to accommodate for the height of the Z axis.

This limitation resulted in a deconstruction of the FarmBot gantry topology and tracks, as the shelving

units had to be readjusted to accommodate for the lack in height. This re-adjustment allowed the

FarmBot to successfully house the Z axis component.

22

2.2.2 Attachment of Drive Trains

After the cross slide and Z axis bar were successfully installed, the final stage in completing the

mechanical design of the FarmBot topology was to install the drive trains. This was done by threading

the provided G2 timing cables through the beams situated on the wheel plates and along the tracks of

the topology. Each end of the G2 timing cable was then locked to either end of the FarmBot tracks,

ensuring the cable was tight. This process was then repeated on the Y axis bar through the cross slide

which is shown in Figure 4.

Figure 4: Installation of the Y axis Drive Train.

2.3 Implementation of System Electronics and Plumbing

The final stage of assembling the main FarmBot topology was the assembly of the systems cable carriers

and connection of the system electronics. This began with altering the length of the Y axis cable carrier

to suit the smaller size of the gantry topology. Originally three metres in length, the Y axis cable carrier

and electronics were reduced to one and a half metres for the construction of the FarmBot. However,

due to how the cable trays were constructed, they were able to be simply unclipped and repositioned to

meet the new size requirements of the FarmBot.

After adjusting the Y axis cable carriers and installing the X and Z axis cable carriers onto each of the

corresponding rails, rubber tube was positioned along each cable carrier forming an uninterrupted

pipeline to the gantry’s water supply.

23

2.3.1 The Z axis Electronics

The first electronics to be installed into the system were the electronics situated along the X axis. These

consisted of the data cable for the universal tool mount, the camera, the vacuum pump, the Z axis

encoder, and motor cables. Each of these cables were then threaded through the Z axis cable carrier

with the Z axis motor and encoder cables installed onto the Z axis motor unit.

2.3.2 The Y axis Electronics

Next, the Y axis electronics were positioned within the Y axis carrier cable to be connected to the Z

axis counterpart. These electronics consisted of extensions for the Z axis motor and motor encoder, an

extension of the universal multitool cable, an extension of the vacuum pump cable and the Y axis

encoder and motor cables.

Like the process used in installing the Z axis electronics, each of these cables were threaded through

the cable carrier with the Y axis encoder and motor carriers installed into the Y axis motor situated on

the system cross slide (Figure 5).

Figure 5: Completed installation of the Y axis cable carrier and cables.

2.3.3 The X axis Electronics

The X axis electronics unlike the Y and Z axis electronics are not situated within the X axis cable carrier

situated along the left side of the FarmBot topology. This cable carrier is reserved as the primary track

for the systems power supply and water source to connect to the system electronics cabinet (Figure 6).

24

Figure 6: The completed installation of the X axis cable carrier and cables.

Instead, the X axis electronics consist of two pairs of motor power and encoder cables threaded through

the cable carrier supports of the Y axis bar. This allows the system to maintain room and mitigate flow

issues within the Y axis cable carrier. Finally, these cables were threaded into the electronics cabinet

resulting in the arrangement in Figure 7.

Figure 7: The completed FarmBot Electronics Box.

25

2.4 Initialisation of The Physical Topology

After completing the physical construction of the FarmBot, the system was initialised. It was through

the initialisation process that multiple issues with the gantry topology were identified. To summarise

these problems and the solutions derived to overcome them, the following table summarises these

problems:

Table 1: An overview of each of the identified problems within the FarmBot topology and their resolutions.

Problem

Encountered

Resolution

Camera Failure Upon initialisation, the provided endoscopic camera failed to

establish connection to the FarmBot’s on board Raspberry Pi.

This prompted the use of a traditional webcam to be implemented.

Z-Axis Motor During the initialisation process, the Z-axis motor failed to

reliably drive the Z-axis cross slide. This failure caused the Z-axis

motor to consistently stall, remaining at a fixed position.

This was resolved by disconnecting the Z-axis motor to fix the Z

axis at a constant height for monitoring.

Connection to FarmBot When working to establish a connection to the FarmBot API,

there were multiple issues with maintaining a reliable internet

connection through an iPhone hotspot.

It was discovered that iPhone hotspots will sporadically pause the

connection to save internet data. This issue was resolved through

the application of an internet modem and pre-paid data plan.

Bilge Pump After establishing a reliable connection to the FarmBot, it was

found that the intended Bilge Pump was unable to remain in a

fixed position due to the length of the provided cabling.

This was resolved by placing tanks at each section of the physical

topology, moving the bilge pump to the appropriate tank when

required.

Inverted Y Axis While performing initial tests of the FarmBot’s functionality, it

was found that the Y-axis motor was inverted. This issue was

resolved by inverting the polarity of the motor using the

FarmBot’s settings.

26

Chapter 3: Adaptive Control Development

The adaptive control plugin was developed in parallel with the FarmBot topology and mobile bed

construction. Chapter 3 details the development of the adaptive control plugin, including the design

choices made and functionality.

3.1 Libraries and Functions

3.1.1 Determination of Program Language

When beginning the creation of the adaptive control element in this project, the first stage of

development began with the identification and implementation of necessary libraries that would make

image processing and calculation possible. In addition, it was also important to decide on the primary

language that the program was to operate in.

Analysing potential programming languages that the plugin could operate within, there were two

languages that the system could operate in that could utilise machine vision libraries, these were C++

and Python. Although C++ is capable of compiling and parsing data faster than Python, the decision of

what language should be used was decided upon the context of where the plugin is situated within the

FarmBot API and backend servers.

The adaptive control plugin is situated within the front end of the FarmBot server, which allows the

plugin to bypass most of the FarmBot’s data management responsibilities. This meant that after

implementation of the plugin, its main responsibilities were to manage and parse its own calculated

adaptive data between the FarmBot API. Given the context of the programs operation, Python was the

language employed by the plugin due to its automatic data management, simplistic language formatting

and ease of implementation into embedded systems.

 3.1.2 Determination of Machine Vision Libraries

After determining the programming language the plugin would operate in, a machine vision toolbox

had to be decided on for the identification and measurement of plant area. Ideally, the machine vision

toolbox had to be open source for ease of access and be capable of development within the Visual Studio

Code development environment.

Through analysis of possible machine vision toolboxes supported by the Python language, the decision

of a machine vision toolbox was between two equally applicable toolboxes. The first of these was Open

CV, an open-source computer vision toolbox capable of utilising the Python language with over 2500

optimized algorithms in vision detection and machine learning (OpenCV, 2022). The second toolbox

considered for the project application was PyTorch CV, an open-source branch of PyTorch specifically

designed for computer vision applications in image classification, segmentation, and detection

(Pytorchcv, 2022).

Although both toolboxes are capable of implementation into the plugin design, Open CV was utilised

for the project due to its large community support and range of development resources that made

implementation of the toolbox into the adaptive control design simple.

3.2 Machine Vision Implementation

27

After establishing and initialising the Open CV toolbox in Visual Studio Code, images received by the

FarmBot’s onboard camera could now be analysed. Analysis of images received by the FarmBot begins

by reading each image using the “imread” function, which formats the colour data and size into an array

readable by the program.

These images are then converted from their traditional Red Green Blue classification (RGB) into a Hue

Saturation Value (HSV) colour format. Hue Saturation Value colour encoding allows the system to

identify colours in varying levels of light and saturation as opposed to a combination of red, green, and

blue. By using HSV formatting as opposed to RGB formatting, images received by the FarmBot are

capable of analysing colour in varying conditions of light and potential glare experienced by the camera

due to the FarmBot’s onboard LED lighting.

 The next stage in plant detection within the received FarmBot images was to create a high and low

green threshold. This threshold allows the plugin to evaluate each HSV colour value in the received

images and create a binary image based on which individual pixels fell within the threshold range. Later

in the development of the adaptive control plugin, these green thresholds had to be changed to allow

detection for paler plant specimens rather than brighter green specimens.

By creating a black and white binary image, the plugin could evaluate the contours of the identified

plant through edge detection of the black and white image. Through identification of the plant’s

contours, calculation of its area is much faster due to the mitigation of noise present in the received full

colour images of the FarmBot. An example of the completed product of the programs first stage, used

in initial development is shown in Figure 8.

Figure 8: Calculated Contour Overlayed onto Received Example Image

28

Figure 9: Binary black and white Image used for contour creation and area calculation

3.3 Calculation of Area

After completion of the first stage of the program, the second stage used the previously created contours

to determine the area within them. This is done by initialising a new function containing a FOR loop

equal to the size of the number of contours present within the image.

For each iteration completed by the FOR loop, the area of a contour is evaluated using OpenCV’s

“cv.contourArea” function, which returns the contour area in pixels and stores the result into a pre

allocated “Areas” array. For every iteration the determined area is appended to the array, with the final

iteration of the loop returning the final “Areas” array.

3.4 Specimen Identification and Information Formatting

After the plant specimen has been identified with its area calculated, the next section of the plugin is

responsible for the identification of what plant specimen is currently being examined. To identify which

plant specimen was under examination there were a variety of methods that could be employed, with

each method equally viable.

For this application, there were two possible methods that the plugin could use to identify a plant

specimen. The first method utilised the application of numerical digits to identify each plant specimen,

due to its easy replication and unique shape for feature detection. However, for this method to be

implemented successfully, a machine learning process would have to be employed to iteratively train

the plugin to accurately recognise the digit present.

The second method instead utilises a dice pattern to interpret what specimen is under examination, using

the same feature detection and contour recognition methods used in calculating the area. These dice

patterns feature black adequately spaced circles on a white background as shown in Figure 10.

30

adaptive control algorithm makes its first assumption, that following a normal probability distribution,

the optimal water value for the plant specimen is most likely within the 45% to 65% range.

Following this logic, the algorithm then performs a series of checks to categorise an appropriate

threshold to further control water application. The algorithm begins by assessing if the currently

examined plant specimen’s water level is situated above or below 50%. This is then compared with the

current plant specimens’ difference in area to determine if the current specimen should have its applied

water increased or decreased.

Next, the current plant specimen has its potential water application reduced to a window of ±10% within

the limits of the 25% to 75% range. The algorithm then takes all the acquired information and produces

one of four decisions in Figure 11.

Figure 11: All potential decisions within the initial stages of the adaptive control plugin.

After every plant specimen has been evaluated, each applied water percentage is altered to reflect the

decision produced by the algorithm and submitted to the FarmBot API.

31

 3.5.3 Third Iteration and Continued Control

When the plugin reaches its third iteration, the adaptive control process is altered to reflect the smaller

scope of each plant specimens applied water percentage. The third and subsequent iterations of the

adaptive control algorithm begin in the same way as the previous iterations before it, analysing the

growth and reduction of each plant specimen based on its applied water percentage.

However, when forming a decision on updating the plant specimens applied water percentage the

algorithm now operates on a new set of decisions (Figure 12):

Figure 12: Updated potential decisions as the adaptive control moves into continued control.

Following the new set of potential decisions, the algorithm continues to evaluate each plant specimen,

adjusting its applied water percentage accordingly. The adaptive control of each plant specimen is

considered as complete once the algorithm has moved between increasing and decreasing the plant

specimen’s water by 1% two times. This is because the program cannot reduce its resolution any further,

achieving its most precise result.

32

3.6 HTML Wrapping and data parsing

After the adaptive control algorithms and image functions had been created, the final stage in

completing the adaptive control plugin was to build the framework needed to parse data from the

FarmBot API to the plugin. To achieve this, additional libraries were applied to the plugin to allow the

plugin to be hosted locally through a HTML address.

3.6.1 PyJWT

The first stage in utilising incoming information from the FarmBot API was to be able to decrypt the

received token to establish a secure connection between both programs. To facilitate the decryption

process PyJWT was utilised within the plugin. PyJWT is an open-source Python library specifically

designed for the purpose of receiving and decrypting Javascript tokens based on the RFC 7519 web

token standard.

3.6.2 Flask HTML Hosting

With the system able to decrypt incoming tokens and receive the JavaScript information sent from the

FarmBot API, the final stage in facilitating a connection between the two programs was to wrap the

plugin as a HTML program with a corresponding local address. To achieve this stage Flask was utilised

to generate the local HTML address and host the adaptive control plugin. Flask is an open-source library

supported by the Python language, capable of HTML web design and web hosting.

33

Chapter 4: Simulated Testing

Chapter 4 of this report takes the completed adaptive control plugin and applies it to a series of 6

different butterleaf plant specimens. Each of these plant specimens demonstrate the characteristics of a

unique growth scenario, testing the functionality of the adaptive control plugin in a range of scenarios.

This section also discusses the inconsistencies found through simulated testing; further recommending

methods of resolving these found inconsistencies.

4.1 Simulated Testing Methodology

Through the completion of the adaptive control plugin, the first phase of testing could begin. This phase

of testing consisted of taking pre-fabricated pictures and inputting them into the adaptive control plugin

to visulise how the program would respond to live data. These images were obtained through a video

timelapse of a buttertleaf lettuce specimen’s growth over 21 days. Using these images, the dice pattern

used for specimen identification was placed in the top right corner of the image to allow the program to

label the image shown in Figure 13.

Figure 13: An example of a speciemen used in the adaptive plugin.

Consisting of 5 specimens, the adaptive plugin iterated through each specimens growth 6 times. This

resulted in a total of 36 images that were evaluated by the adaptive control plugin, with each iteration

saving the current state of the specimens growth and water application based on its performance. To

achieve this, the adaptive control plugin searches within the directory “Official_Test” in Figure 14,

and cycles through the contents of each folder within Figure 15.

34

Figure 14: The folder the plugin draws from.

Figure 15: The contents of the “Official_Test” folder.

These folders represent the simulated stages of growth that each specimen will undergo, each holding

5 images for the simulated 5 plant specimens. To test how the adaptive control plugin would react, each

plant specimens growth pattern was organised in a way that would simulate a possible plant reaction

based on the initially prescribed water amount. An overview of each plants characteristic is described

below (Table 2):

Table 2: Overview of each specimens designed characteristics.

Plant

Specimen

Simulated Characteristic

1 Plant specimen 1 was curated to represent the best case scenario of ideal growth. Within

each iteration, this plant specimen does not experience any reduction in size, continuing

to grow until it reaches the systems complete state.

2 Plant specimen 2 was curated to represent overwatering. In this scenario, plant specimen

2 grows consistently until the third iteration, where it decreases in size until the final

iteration.

This specimen was designed to test the adaptive controls ability to handle drastic

changes in growth past the third iteration.

3 Plant specimen 3 was curated to represent a fluctuation in growth toward the later stages

of simulation. Plant specimen 3 shows continual growth until the third iteration, where

it will fluctuate in size until the final iteration.

This specimen was designed to test the adaptive controls ability to regulate fluctuation

past the third iteration.

4 Plant specimen 4 was curated to test the adaptive controls ability to calculate larger

plant sizes as well as identify specimen numbers in fluctuating backgrounds.

35

In this scenario plant specimen 4 shows rapid growth in differing backgrounds until the

final iteration.

5 Plant specimen 5 was curated to test the adptive controls ability to recognise smaller

changes in size. Within the program, plant area is rounded to the nearest 0.5, 0 or 1.

This allowed the plugin to demonstrate how it handles changes in size, which can lead

to false completion conditions.

Once the program had completed its analysis over the 5 iterations, the results were manually entered

into an Exel™ spreadsheet and the results were obtained.

4.2 Simulated Testing Results

After collating the image datasets for each of the plant specimens and processing them with the

algorithm, the received data was processed in Excel™ to obtain the following results (Figure 16):

Figure 16: Obtained growth over specimen iterations.

When initially implementing the dataset into the adaptive control plugin, the system was able to

accurately perceive each specimen’s growth patterns, store them, and output them accordingly. As

shown in the graph above, each specimen correlates with its designed purpose, demonstrating a broad

range of potential growth cycles for each specimen.

Next, the applied water amount for each specimen over each iteration was obtained through the output

of the adaptive control plugin and inputted into excel to receive the following output (Figure 17):

36

Figure 17: Applied water over specimen iterations.

After analysing the data obtained from the program, there are two discrepancies that can be seen in the

output of the program. Firstly, for specimen 1, the applied water surpassed the hard limit of 75% from

the initial dataset, achieving a final applied water level of 77%. Due to this abnormality, upon

completion of the simulation the pre-determined completion state planned for specimen 1 was unable

to be reached.

In addition, specimen 3 appears to spike by a large amount between the first and second iterations,

achieving an increase of 18% in applied water level. This abnormality greatly surpasses the initial

expected applied water level incrementation of 5% doubling it to reach the same applied water levels

as specimen 5, which can be seen in comparison to other specimens (Table 3).

Table 3: Final simulated results table, showing discrepancies in the change in water.

37

4.3 Observed Simulated Testing Inconsistencies

After simulating the adaptive control plugin using the 5 different plant specimen scenarios, there are

inconsistencies in the program that become apparent. These inconsistencies stem from how the adaptive

control plugin identifies and stores specimen data within the program. Analysis is completed based on

the current iteration within the program. This iteration count is the basis of scheduling and organisation

within the adaptive control plugin.

When simulating the program, it was discovered that if there is considerable noise within the captured

image of the plant specimen, the system will identify false positives of what appear to be dice pattern

dots. This misidentification leads to essentially recording the same plant specimen twice within the final

array with a different size but with the same prescribed water value as the specimen it is mimicking.

This misidentification of plant numbers does not appear to become a problem until the program moves

to store the previously held values for comparison later in the program. Although the adaptive control

plugin can recover the correct specimen number of the plant specimen, the residual corruption left by

the previous iteration can cause the plant specimen to increase its prescribed water value. This increase

in water value causes the plant specimens prescribed water value to misplaced by more than 10 percent

shown below in Figure 18.

Change in Water

5

Observed Area

13339

Percieved Area Change

12282.5

Prescribed Water (%)

30

1

1

1

1

-1

1

-1

1

-1

1

Change in Water

1

-1

-1

1

1

Change in Water

-1

0

-1

0

0

Change in Water

0

5

18

5

Change in Water

Iteration No.

2

Specimen No.

0

0

0

0

0

77

34

47

31

48

76

33

46

30

49

Prescribed Water (%)

75

34

45

31

48

Prescribed Water (%)

74

35

46

30

47

Prescribed Water (%)

75

35

47

47

Prescribed Water (%)

75

30

29

25

42

0

-4406.5

27255.5

20132.5

4810 5

18342

2268 5

28693

7701

0

Percieved Area Change

28645.5

-2268.5

18687

-46678

5405

Percieved Area Change

2268 5

-28645.5

-16488.5

71713.5

-59947

Percieved Area Change

4057 5

34869

27840

68822

Percieved Area Change

0

0

0

0

0

54115.5

2721 5

86742

66208

19933.5

54115.5

7128

59486.5

46075.5

15123

Observed Area

35773.5

4859 5

30793.5

38374.5

15123

Observed Area

7128

7128

12106.5

85052.5

9718

Observed Area

4859 5

35773.5

28595

69665

Observed Area

802

904.5

755

1056 5

843

1

2

3

4

5

6

6

6

6

6

1

2

3

4

5

Specimen No.

1

2

3

4

5

Specimen No.

1

2

3

4

5

Specimen No.

1

2

3

5

Specimen No.

4

1

2

3

4

5

5

5

5

5

5

Iteration No.

4

4

4

4

4

Iteration No.

3

3

3

3

3

Iteration No.

2

2

2

2

Iteration No.

1

1

1

1

1

Iteration No. Specimen No. Observed Area Percieved Area Change Prescribed Water (%)

Simulated Thesis Inputs And Outputs

Change in Water

38

Figure 18: A sample output of the adaptive control plugin, demonstrating data corruption.

Another flaw seen in the execution of the adaptive control plugin can be derived from how the program

rounds its output values. When the system is operating, the calcualted result will be rounded to the

nearest whole or half number which has resulted in an error seen in the applied water levels of specimen

1.

Figure 19: A sample threshold of the adaptive control plugin.

Within the adaptive control plugin, there are many points within the program where the system must

evaluate if an application of water will place the currently applied water outside the scope of initial

water values shown in Figure 19.

On the condition that anymore applied water will break this condition, the program blocks the system

from applying anymore water. It is because of the “>=” (greater than or equal to) operator that the

system can surpass this check by producing a value between 70 and 75. The program evaluates that the

current applied water does not surpass 75, increasing its value and rounding the result.

This inconsistency in the adaptive control plugin could be resolved through increasing the resolution of

the current thresholds in the program to include floating values. By including floating values, this would

allow the program to evaluate floating points within values, preventing false positives. Although, the

addition of floating-point values would also increase the amount of memory required for processing.

39

Chapter 5: Results

Chapter 5 utilises the created adaptive control plugin and applies it to living plant specimens. The

methodologies of the final test are discussed, and the results of the test are evaluated. This chapter

discusses how the inconsistencies found through simulated testing translate into a real scenario, with

recommendations made on further mitigating these inconsistencies.

5.1 Overview of Final Testing Methodology

After the completion of the adaptive control plugin and the FarmBot gantry topology, final testing could

now be performed using the FarmBot and the adaptive control plugin. For the final test, the FarmBot

topology was arranged to house a total of 30 lettuce specimens. Twelve of these lettuce samples were

chosen to be cos lettuce variety to represent a smaller lettuce sample, while the remaining 18 were

chosen as butterleaf lettuce variety, to reflect the same plant specimen used in simulated testing. These

plants were then laid out in groups of 6 over 2 beds with their labels placed next to the corresponding

specimen shown in Figure 20.

Figure 20: A diagram of the final test layout. Where circles represent plants and squares represent labels.

These groups of 6 were grouped following the same methodology as the simulated test, with 30 plants

manually swapped with the original 6 to simulate plant growth. By manually swapping and the

capturing plant specimens, a physical demonstration of the adaptive control plugins abilities to calculate

and adapt irrigation amounts to plant area was able to be demonstrated.

40

On top of each of these plant beds, a Viper spectra grow light was placed in the centre of each bed on a

medium intensity level to provide adequate lighting to each of the plant specimens. Once this was

complete, the FarmBot API was used to position the camera above each specimen to capture an image

(Figure 23). Images of the final testing environment and a captured image example are shown in Figures

21 and 22.

Figure 21: Final testing environment demonstrating grow light positioning.

41

Figure 22: Final testing environment following diagram arrangement.

Figure 23: Example of a plant specimen captured using the FarmBot and camera.

5.2 Final Testing Results and Recommendations

Once the physical data had been collected, each specimen’s growth data was collated and sorted into

their corresponding iteration folders. However, when applying the collected data into the adaptive

control plugin results were unable to be generated. This failure to compile the characteristics of each

image derives from a design choice made when first creating the adaptive control plugin.

When analysing each plant specimen, the corresponding specimen number used for organisation and

storage is displayed using a dice pattern. While utilising this methodology under simulated and ideal

conditions yields usable results. When applied to a realistic environment, noise seen around the

extremities of the captured image produce false positives of the dice pattern, resulting in Figure 24.

Figure 24: Resulting error after analysis of physical data.

Due to the overloading of the number detection portion of the program, the system iteration count was

utilised to cycle through each growth stage of the plant specimens. This allowed the system to display

the contoured images in Figure 25 and their resulting binary images in Figure 26.

42

Figure 25: A produced output of the systems area analysis

Figure 26: False positives shown in the resulting detection count for specimen labelling.

It was found that due to the broad values specified in the programs HSV colour thresholds, noise can

be seen when calculating the area for the plant in addition to its corresponding label identification.

However, because the data within the images was able to be processed, the images were implemented

into the adaptive control plugin to produce the following output (Figure 27):

44

5.2.1 Recommendation 1: Number Identification Through Deep Learning.

The first recommendation that can be made to overcome this mis-identification issue is the

implementation of a trained model to identify numbers rather than count dots. In this scenario, when

creating specimen labels, a font would be chosen with numbers 0 through to 9 printed on a white

background.

These images would then be selected and displayed to the trainer in a random order, with the user

inputting the corresponding image to the system. Once the system could correctly identify the desired

number, the process would be repeated under realistic conditions to refine its identification capabilities.

This method would be able to bypass the problems faced in the current version of the adaptive control

plugin by increasing the complexity of the shape the system needs to identify.

5.2.2 Recommendation 2: Application of Different Colour.

The second recommendation that can be made on the identification method used within the adaptive

control plugin, is the application of different colours used in the current dice pattern arrangement. With

this iteration of the specimen identification method, noise experienced through the extremities of the

camera and debris of soil would be avoided by the program due to the change of colour used in the

specimen labels.

The colour chosen to replace the currently used black would need to be bold enough to be perceived in

high saturation environments while also differing enough from the surrounding colours to avoid false

positives from noise. A suggested colour for this application would be red, due to the contrast it has

with the green specimens and black environment.

45

Chapter 6: Discussion and Further Work

6.1 Current State of Gantry Topology and Adaptive Control Plugin

At its current state, the FarmBot gantry topology and the accompanying adaptive control plugin can

analyse plant specimens and apply water according to the current state of the plant specimen. However,

there are a variety of improvements and adjustments that need to be made to both the physical gantry

topology and the algorithms of the adaptive control plugin.

The FarmBot gantry topology still proves to be a viable system for maintaining and monitoring plant

specimens. However, due to the current state of some components in the FarmBot topology, there is

further work to be done in repairing or replacing components of the FarmBot to allow it to function as

intended. If these physical limitations can be overcome, the viability of applying the same tests in this

project on a larger scale is certain.

The adaptive control plugin can analyse and produce data of the plant specimen currently being

examined; although there are multiple improvements that could be made to the system to allow greater

functionality and accuracy. Through simulated and physical testing, one of the critical flaws the

adaptive control plugin has is its inability to perceive and interpret depth.

When designing the adaptive control plugin, it was assumed that lettuce specimens would grow with

their leaves fanning out facing upwards towards the camera; however, in practice that is not the case.

During the growth cycle of a lettuce specimen, leaves initially grow upwards before becoming large

enough to move to the sides of the plant. As the angle of these initial leaves isn’t completely

perpendicular to the camera, calculations of area are induced with minimal error. Through

implementation of a stereo vision camera, the adaptive control plugin would benefit greatly from the

ability to decern what is a leaf and what is the stem of the plant.

Another aspect of the adaptive control plugin made apparent during testing was the systems lack of

awareness of other specimens. Regardless of the starting point, each plant specimen will undergo the

same process to determine the optimal water value for a plant specimen. It is hypothesised that through

the implementation of a form of communication between plant specimens, the process used to find the

optimal water value could be further refined.

In this scenario, if a neighbouring plant specimen was on the optimal growth path based on the amount

of water applied to the specimen, the system would adjust its current trajectory to match the highest

performing plant specimen.

6.2 Further Physical Work

6.2.1 Redesign of the FarmBot Irrigation Tool

The first area of potential work that could be done on the FarmBot’s physical design is the redesign of

the current irrigation tool that the FarmBot uses. This would include the design of an irrigation tool that

injects into the soil of the plant specimen, rather than the traditional spray method the FarmBot employs.

6.3 Further Digital Work

46

Before utilising a compatible plugin for the FarmBot API was considered, development commenced

with initial research of the chosen FarmBot gantry topologies GitHub repository. This including its

main end-user release of the API and the more obscure testing and development branch of the program.

Analysis of these branches began by first evaluating the core components of the FarmBot program to

further investigate and identify pivotal subroutines and functions that could possibly hinder the

integration of the system into a localised environment. This analysis provided valuable insight into the

methods that the FarmBot API utilises in developing the routines and functions constantly used in

average system operation. Specifically, it was identified that the previously anticipated subroutines and

functions within the code are instead built upon the initial setup up parameters of the physical FarmBot

gantry topology, relying on the provided dimensions to build custom routines that fit the physical

parameters of the gantry topology.

Following the programs progression of development there were a variety of key files and documents

that provided a clearer scope on the pivotal areas of the FarmBot API’s code. This analysis revealed

that there are three main components to the FarmBot’s Web Application: The Database, The Server,

and the GUI.

6.3.1 The Database

The first component of the FarmBot API is the database that is constructed upon launch of the API to

house and manage the systems relevant data. The database is responsible for the maintenance and

cataloguing of the users custom created routines, the users garden bed mapping, and characteristics as

well as information and care of the individual plant specimens within the users’ garden. This data is

managed by PostgreSQL, an open-source database management system that utilises the SQL language

to safely store and manage complicated data workloads (PostgreSQL,2022). The system can manage a

variety of data types and formats, which is why PostgreSQL is seen throughout the entirety of the

FarmBot’s directory.

6.3.2 The Server

The second component of the FarmBot API is the server that houses the database and GUI assets used

continuously during system operation. For the FarmBot API to maintain live access and communication

with the physical topology the server utilises Ruby on Rails, a server-side web application framework

responsible for launching and maintaining the HTML website server connection the physical FarmBot

topology receives information from. Ruby on Rails can reliably interface with PostgreSQL due to both

applications having the ability to interface with a variety of different data types and formats, this way

the server can actively retrieve information from the system database without having to compromise

the systems data integrity.

6.3.3 The GUI

Finally, the main component of the FarmBot API is the systems GUI or graphical user interface. The

GUI in Figure 29 relies heavily on the performance of both the Ruby on Rails server performance and

the data management of the PostgreSQL database application, to actively pull and display different

areas of the FarmBot API from the user’s garden bed to the numerical data and analytics acquired from

the FarmBot’s operation. The GUI acts as the main area of user interaction and the basis of further

customisation of the system.

47

6.3.4 Integration of Adaptive Control as an Application

Through analysis of each of the FarmBot API’s core components, it is possible to make the FarmBot

and the adaptive control plugin in its current state more intuitive and easier to visualise by integrating

it as an application into the FarmBot API.

This would allow the system to utilise physical resources more effectively by utilising the data

management of the pre-existing Raspberry Pi used by the FarmBot topology. In addition, this would

also make accessing and altering the adaptive control plugin to be more intuitive and less tedious.

Figure 29: Concept start-up of the FarmBot API with added adaptive control application tab.

Ideally the implementation of the adaptive control plugin would be situated along the top of the page,

similarly to the pre-existing applications already used in the FarmBot API. After selecting the adaptive

control application, the parameters of the plugin’s functionality could be changed along the left had side

of the page. In the centre of the page, graphs showing each plant specimens current growth and their

applied water levels would be displayed. It is envisioned that the final adaptive control GUI, would take

the following layout shown in Figure 30.

Figure 30: Proposed Layout of the Adaptive Control Plugin.

48

Chapter 7: Summary and Conclusion

Through the completion of this project there are a variety of conclusions that can be made on the results

achieved by the adaptive control plugin and how they reflect upon the projects specifications. These

specifications, in addition to the actions to achieve them are summarised in this chapter.

1. Conduct literature review on precision agriculture topologies, microgravity agriculture, current

gantry agriculture applications and manipulators.

During the initial stages of the project’s development, a literature review was conducted on current

precision agriculture topologies, their applications, and technologies. This provided a valuable scope of

the state of current automated agricultural systems and their technologies. Furthermore, this literature

review greatly aided in identifying potential pre-existing topologies within the market.

2. Identify core components of a remote automated microgravity greenhouse based on existing

gantry topologies, including sensors, algorithms, manipulators, and server communications.

 Through evaluation of these pre-existing topologies, core components that facilitate automated

agricultural functionality were identified. These core components were identified over an array of

commonly seen automated functionality components, from physical hardware to software functionality

and communications methods.

3. Identify a suitable topology for a microgravity greenhouse with gantry robot which can operate

locally with reduced reliance on external communications.

Through the identification of these core components, the FarmBot Genesis XL was identified as the

most suitable robotic topology for projects application. This FarmBot was chosen due to its ability to

operate within a local area using only one external communication dependency to the internet. This set

the FarmBot apart from other topologies, that primarily used cloud computing and IoT systems with a

higher reliance on external communications.

5. Construct a functional prototype of the desired gantry topology and assess physical capabilities

of the prototype for plant monitoring actions.

After identifying the FarmBot as a suitable topology for the application, the robotic prototype was able

to be constructed and initialised. This initialisation allowed the physical capabilities of the FarmBot to

be assessed, providing valuable insight into the limitations of the FarmBot’s ability to monitor plant

specimens.

4. Develop a localised, stable system software and hardware framework and integrate with an

existing gantry robot.

Using the FarmBot’s electrical hardware in conjunction with a provided internet modem, a stable and

reliable connection was able to be established between the FarmBot’s hardware and the internet modem.

This stability within the hardware components, allowed the created adaptive control plugin to receive

image data from the FarmBot for use in its system software.

6. Test candidate methodologies for monitoring of plants over a minimum of one week to evaluate

topology performance.

49

Before applying the adaptive control plugin to living specimens, its methodologies were tested using

data obtained from a 21-day timelapse of a butterleaf specimens’ growth. This testing demonstrated key

flaws seen within final adaptive control plugin topology and helped formulate recommendations and

further work for continued development of the plugin’s topology.

7. Gather and evaluate experimental data on topology components and report on functionality

within physical, software and system level performance.

Following the simulated testing trials, living butterleaf and cos lettuce specimens were arranged as per

the designed layout. This layout allowed the FarmBot topology gather experimental data to be used in

the adaptive control plugin. The gathered experimental data was evaluated, highlighting significant

design flaws within the algorithms and performance of the adaptive control plugin.

Furthermore, through application of the FarmBot’s monitoring capabilities to living specimens, flaws

within the physical topology components were able to be identified. These flaws were reported upon

with potential substitutions evaluated and subsequently implemented into the final design.

8. Refine data collection and processing algorithms to increase validity and reliability of

experimental data as required.

Over the course of this projects design, the adaptive control plugin topology went through multiple

iterations of development. These changes revolved around refining data collection and reliability

through image thresholds and changes in how the system can process multiple images. These iterations

in development allowed the resulting adaptive control plugin to successfully process plant growth

images and output them to the system serial window.

9. Further develop and implement graphical user interface to enhance functionality for future

research of plant monitoring in a microgravity greenhouse with gantry robot.

Finally, concepts for the FarmBot graphical user interface were developed for use in further

implementation of the adaptive control topology to merge with the pre-existing FarmBot API. These

GUI concepts were evaluated with arguments raised on the benefits of further development into this

area in the system topology.

50

References

1. Keeter, B, 2020, Long-Term Challenges to Human Space Exploration, NASA, P viewed

15/09/2021, <https://www.nasa.gov/centers/hq/library/find/bibliographies/Long-

Term_Challenges_to_Human_Space_Exploration>.

2. Tan, L, 2016, Cloud-based Decision Support and Automation for Precision Agriculture in

Orchards, Issue 16, Elsevier, Science Direct, viewed 20/09/2021,

<https://www.sciencedirect.com/science/article/pii/S240589631631624X>.

3. Baohua, Z, Xie, Y, Wang, K, Zhen, Zhang, 2020, State-of-the-art robotic grippers, grasping and

control strategies, as well as their applications in agricultural robots: A review, Volume 177,

Elsevier, Science Direct, viewed 21/09/2021, <

https://www.sciencedirect.com/science/article/pii/S0168169920311030>.

4. Shafi, U, Rafia, M, García-Nieto, J, Ali Hassan, S, Ali Raza Zaidi, S, Iqbal, N, 2019, Precision

Agriculture Techniques and Practices: From Considerations to Applications, 1st Edition, MDPI,

MDPI, viewed 20/09/2021, < https://www.mdpi.com/1424-8220/19/17/3796>.

5. Tian, C, Zhang, D, 2020, A new family of generalized parallel manipulators with configurable

moving platforms, Volume 153, Elsevier, Science Direct, 21/09/2021,

<https://www.sciencedirect.com/science/article/pii/S0094114X20302184>.

6. Ngo, Q, Lacey, R, Chunajiu, H, 2003, Growing Plants for NASA — Challenges in Lunar and

Martian Agriculture©, IPPS, Departments of Horticultural Sciences and Biological &

Agricultural Engineering, Texas A&M University, College Station, Texas 77843-2133, viewed

02/10/2021, <https://aggie-

horticulture.tamu.edu/Faculty/davies/research/abstracts/pdfs/IPPS-2003-53-NASA.pdf>.

7. Wheeler, R, 2018, NASA Activities in Controlled Environment Agriculture, NASA, Kennedy

Space Centre, Florida, viewed 02/10/2021,

<https://ntrs.nasa.gov/api/citations/20180007212/downloads/20180007212.pdf>.

8. Yamashita, M, Hashimoto, H, Wada, H, 2009, On-Site Resources Availability for Space

Agriculture on Mars, 1st Edition, Springer, Springer, viewed 03/10/2021,

<https://link.springer.com/chapter/10.1007/978-3-642-03629-3_18>.

9. Hava, H, Zhou, H, Mehlenbeck, C, King, A, Lombardi, E, Baker, K, Kaufman, A, Nikolaus, C,

2020, SIRONA: Sustainable Integration of Regenerative Outer-space Nature and Agriculture.

Part 2 — Design Development and Projected Performance, 1st Edition, Elsevier, Science Direct,

viewed 03/10/2021,

<https://www.sciencedirect.com/science/article/abs/pii/S0094576520304185>.

10. Sharath, G, Hiremath, N, Manjunatha, G, 2021, Design and analysis of gantry robot for pick

and place mechanism with Arduino Mega 2560 microcontroller and processed using pythons,

Volume 45, Materialstoday:PROCEEDINGS, Science Direct, viewed 06/10/2021,

<https://www.sciencedirect.com/science/article/pii/S2214785320396413>.

11. Takara, G, Trimble, Z, Brown, S, Gonzalez, H, Mora, C, Arata, R, 2021, An inexpensive robotic

gantry to screen and control soil moisture for plant experiments, Volume 9, Elsevier, Science

Direct, viewed 10/10/2021,

<https://www.sciencedirect.com/science/article/pii/S2468067221000031>.

12. History.com, 2020, The Space Race, A&E Television Networks, New York, viewed 09/10/2021,

<https://www.history.com/topics/cold-war/space-race>.

51

13. Zhao, Y, 2016, Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse, Issue

16, Elsevier, Science Direct, viewed 02/10/2021,

<https://www.sciencedirect.com/science/article/pii/S2405896316315932 >.

14. Zych, A, 2021, Programming of Welding Robots in Shipbuilding, Volume 99, Elsevier, Science

Direct, viewed 02/10/2021,

<https://www.sciencedirect.com/science/article/pii/S2212827121004091 >.

15. Golovin, I, 2020, Modeling and discrepancy based control of underactuated large gantry

cranes, Issue 2, Elsevier, Science Direct, viewed 02/10/2021,

<https://www.sciencedirect.com/science/article/pii/S2405896320324800 >.

16. Wrest Park History Contributors, 2009, Chapter 8 Horticultural engineering, Edition, Elsevier,

Science Direct, viewed 02/10/2021,

<https://www.sciencedirect.com/science/article/pii/S1537511008003474 >.

17. Arian, A , 2017, Kinematic and dynamic analysis of the Gantry-Tau, a 3-DoF translational

parallel manipulator, Volume 51, Elsevier, Science Direct, viewed 02/10/2021,

<https://www.sciencedirect.com/science/article/pii/S0307904X17304043>.

18. Maroli, A, 2021, Applications of IoT for achieving sustainability in agricultural sector: A

comprehensive review, Volume 298, Elsevier, Science Direct, viewed 02/10/2021,

<https://www.sciencedirect.com/science/article/pii/S0301479721015504 >.

19. Maggi, F, Pallud, C, 2010, Space agriculture in micro- and hypo-gravity: A comparative study

of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the

space station, Volume 58, Pages 1996-2007, Elsevier, Science Direct, viewed 06/01/2022, <

https://www.sciencedirect.com/science/article/abs/pii/S0032063310003077>.

20. Maggi, F, Pallud, C, 2010, Martian base agriculture: The effect of low gravity on water flow,

nutrient cycles, and microbial biomass dynamics, Volume 46, Pages 1257-1265, Elsevier,

Science Direct, viewed 06/01/2022, <

https://www.sciencedirect.com/science/article/abs/pii/S0273117710004849>.

21. Shusaku, N, Masayasu, N,Akifumi, I, 2021, Mechanism for enhancing the growth of mung bean

seedlings under simulated microgravity, Volume 7, ProQuest, ProQuest, viewed 07/01/2022,

<https://www.proquest.com/docview/2551800362?fromopenview=true&pqorigsite=gschol

ar>.

22. Oluwafemi, F. A., & Olubiyi, R. A. (2019). Investigation of Corn Seeds Growth under Simulated

Microgravity. ARID ZONE JOURNAL OF ENGINEERING, TECHNOLOGY AND ENVIRONMENT,

15(SPi2), 110-115. Retrieved from https://azojete.com.ng/index.php/azojete/article/view/17

23. Rubyonrails.org, 2022. Ruby on Rails. [online] Ruby on Rails. Available at:

<https://rubyonrails.org/> [Accessed 15 May 2022].

24. PostgreSQL.org, 2022. PostgreSQL: About. [online] Postgresql.org. Available at:

<https://www.postgresql.org/about/> [Accessed 15 May 2022].

25. RS Components, 2022. DLE-RG-0001 | Igus Linear Robot 3 Axis, 500 x 500 x 100mm | RS

Components. [online] Au.rs-online.com. Available at: <https://au.rs-

online.com/web/p/gantry-robots/1268963> [Accessed 16 May 2022].

26. Sage Automation, 2022. Gantry Robots - Sage Automation Inc.. [online] Sage Automation Inc.

Available at: <https://www.sagerobot.com/gantry-robots/> [Accessed 16 May 2022].

27. RS Components, 2022. Gantry Robots | 2 & 3 Axis Gantry Robots | RS Components. [online]

Au.rs-online.com. Available at: <https://au.rs-online.com/web/c/automation-control-

gear/industrial-robots/gantry-robots/> [Accessed 15 May 2022].

52

28. Arduino, 2022. Libraries - Arduino Reference. [online] Arduino.cc. Available at:

<https://www.arduino.cc/reference/en/libraries/> [Accessed 9 Jun. 2022].

29. Raspberry Pi Ltd, 2022. Raspberry Pi Documentation - Raspberry Pi OS. [online]

Raspberrypi.com. Available at:

<https://www.raspberrypi.com/documentation/computers/os.html> [Accessed 9 Jun. 2022].

30. Nagura, 2019, ‘Water movement on the convex surfaces of porous media under microgravity,

Advances in Space Research, vol. 63., no. 1., pp. 589-597, viewed 09/06/2022, <

https://www.sciencedirect.com/science/article/abs/pii/S0273117718307518>.

31. Dixon, 2015, ‘Water, irrigation and plant diseases’, CAB Reviews Perspectives in Agriculture

Veterinary Science Nutrition and Natural Resources, vol. 10., no. 9., viewed 09/06/2022, <

https://www.researchgate.net/publication/276472454 Water irrigation and plant disease

s>.

32. SimpliLearn, 2022, C++ Vs Python: Overview, Uses & Key Differences, SimpliLearn, viewed

14/08/2022, < https://www.simplilearn.com/tutorials/cpp-tutorial/cpp-vs-

python#:~:text=C%2B%2B%20is%20faster%20than%20Python,a%20faster%20compilation%

20of%20code.&text=Python%20is%20slower%20than%20C,the%20process%20of%20compil

ation%20slower.>.

33. PytorchCv, 2022, pytorchcv 0.0.67: Computer vision models on PyTorch, Pypi.org, viewed

15/08/2022, <https://pypi.org/project/pytorchcv/>.

34. OpenCV, 2022, About, opencv.org, viewed 15/08/2022, <https://opencv.org/about/ >.

35. Bloch, V, Degani, A, Bechar, A, 2018, A methodology of orchard architecture design for an

optimal harvesting robot, 1st Edition, Elsevier, ResearchGate, viewed 06/09/2022,

<https://www.researchgate.net/publication/322864949_A_methodology_of_orchard_archit

ecture_design_for_an_optimal_harvesting_robot>.

36. Levine, H., 2010. The Influence of Microgravity on Plants. Available at:

https://www.nasa.gov/pdf/478076main_Day1_P03c_Levine_Plants.pdf

53

Appendix

Appendix A: Project Specification

ENG4111/4112 Research Project

Project Specification

For: Corey Ahlers U1119246

Title: Localised system topology for robotic monitoring of plant specimens for deep space

missions

Major: Electrical and Electronic

Supervisors: Dr Jacob Humpal, Dr Cheryl McCarthy

Enrollment: ENG4111 – EXT S1, 2022

 ENG4112 – EXT S2, 2022

Project Aim: This project aims to develop and evaluate a localised system topology for a gantry

robot in a microgravity greenhouse, for the purpose of reducing remote

communications for monitoring plant specimens on space missions.

Programme: Version 3, 16th March 2022

1. Conduct literature review on precision agriculture topologies, microgravity agriculture,

current gantry agriculture applications and manipulators.

2. Identify core components of a remote automated microgravity greenhouse based on

existing gantry topologies, including sensors, algorithms, manipulators, and server

communications.

3. Identify a suitable topology for a microgravity greenhouse with gantry robot which can

operate locally with reduced reliance on external communications.

4. Develop a localised, stable system software and hardware framework and integrate with an

existing gantry robot.

5. Construct a functional prototype of the desired gantry topology and assess physical

capabilities of the prototype for plant monitoring actions.

6. Test candidate methodologies for monitoring of plants over a minimum of one week to

evaluate topology performance.

7. Gather and evaluate experimental data on topology components and report on functionality

within physical, software and system level performance.

If time and resources permit:

8. Refine data collection and processing algorithms to increase validity and reliability of

experimental data as required.

54

9. Further develop and implement graphical user interface to enhance functionality for future

research of plant monitoring in a microgravity greenhouse with gantry robot.

Appendix B: Provided Server Initialisation Code

Appendix C: Provided Server Initialisation Code

IMPORTANT NOTE: Resources are limited and Farmbot, inc. cannot provide

longterm support to self-hosted users. If you have never administered a

Ruby on Rails application, we highly advise stopping now. this presents an

55

extremely high risk of data loss. Free hosting is provided at

https://my.farm.bot and eliminates the risks and troubles of self-hosting.

You are highly encouraged to use the my.farm.bot servers. Self hosted

documentation is provided with the assumption that you have experience with

Ruby/Javascript development.

Self-hosting a Farmbot server is not a simple task.

Remove old (possibly broke) docker versions

sudo apt remove docker-engine

sudo apt remove docker docker.io containerd runc

Install docker

sudo apt update

sudo apt install ca-certificates curl gnupg lsb-release -y

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o

/usr/share/keyrings/docker-archive-keyring.gpg

echo "deb [arch=$(dpkg --print-architecture) signed-

by=/usr/share/keyrings/docker-archive-keyring.gpg]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee

/etc/apt/sources.list.d/docker.list > /dev/null

sudo apt update

sudo apt install docker-ce docker-ce-cli containerd.io docker-compose-plugin -y

sudo docker run hello-world # Should run!

Install docker-compose

sudo mkdir -p /usr/local/lib/docker/cli-plugins

56

sudo curl -SL "https://github.com/docker/compose/releases/download/v2.4.1/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/lib/docker/cli-plugins/docker-

compose

sudo chmod +x /usr/local/lib/docker/cli-plugins/docker-compose

sudo docker compose version # test installation

Install FarmBot Web App

⚠ SKIP THIS STEP IF UPGRADING!

git clone https://github.com/FarmBot/Farmbot-Web-App --depth=5 --branch=main

cd Farmbot-Web-App

cp example.env .env # ⚠ SKIP THIS STEP IF UPGRADING!

== This is a very important step!!! ==

Open `.env` in a text editor and change all the values.

== Nothing will work if you skip this step!!! ==

nano .env # ⚠ SKIP THIS STEP IF UPGRADING!

^ This is the most important step

READ NOTE ABOVE. Very important!

Install the correct version of bundler for the project

sudo docker compose run web gem install bundler

Install application specific Ruby dependencies

57

sudo docker compose run web bundle install

Install application specific Javascript deps

sudo docker compose run web npm install

Create a database in PostgreSQL

sudo docker compose run web bundle exec rails db:create db:migrate

Generate a set of *.pem files for data encryption

sudo docker compose run web rake keys:generate # ⚠ SKIP THIS STEP IF UPGRADING!

Build the UI assets via ParcelJS

sudo docker compose run web rake assets:precompile

Run the server! ٩(^‿^)۶

NOTE: DONT TRY TO LOGIN until you see a message similar to this:

"✨ Built in 44.92s"

THIS MAY TAKE A VERY LONG TIME ON SLOW MACHINES (~3 minutes on DigitalOcean)

You will just get an empty screen otherwise.

This only happens during initialization

sudo docker compose up

At this point, setup is complete. Content should be visible at ===============

http://YOUR_HOST:3000/.

You can optionally verify installation by running unit tests.

Create the database for the app to use:

sudo docker compose run -e RAILS_ENV=test web bundle exec rails db:setup

Run the tests in the "test" RAILS_ENV:

sudo docker compose run -e RAILS_ENV=test web rspec spec

58

Run user-interface unit tests REQUIRES AT LEAST 4 GB OF RAM:

sudo docker compose run web npm run test

=== BEGIN OPTIONAL UPGRADES

 # To update to later versions of FarmBot,

 # shut down the server, create a database backup

 # and run commands below.

 git pull https://github.com/FarmBot/Farmbot-Web-App.git main

 sudo docker compose build

 sudo docker compose run web bundle install # <== ⚠ UPGRADE USERS ONLY

 sudo docker compose run web npm install # <== ⚠ UPGRADE USERS ONLY

 sudo docker compose run web rails db:migrate # <== ⚠ UPGRADE USERS ONLY

=== END OPTIONAL UPGRADES ^

Appendix D: Example Environment File

You will hit issues if any of these are set to the wrong value.

Please read each line of this file before starting the server.

When you are done, save this file as `.env` at the root of the

Farmbot-Web-App

directory.

Again, PLEASE READ ALL ENTRIES. This is the most important setup

step.

==

===========

59

Where is your MQTT server running? 99% of setups will use the same

value

found in API_HOST. Heroku users will not use the same value.

Use a REAL, PUBLIC IP ADDRESS if you are controlling real bots.

MQTT_HOST=98.76.54.32

Set the max pool size for Passenger.

Only needed if using Heroku. FarmBot, Inc. uses Heroku. Self

hosters do not.

MAX_POOL_SIZE=2

If your server is on a domain (eg=my-own-farmbot.com), put it

here.

DONT USE `localhost`.

DONT USE `127.0.0.1`.

DONT USE `0.0.0.0`.

Use a real ip or domain name.

API_HOST=12.34.56.78

3000 for local development. 443 is using SSL. You will need `sudo`

to use PORT

80 on most systems.

API_PORT=3000

Every server needs to set this. This is the password to the entire

database.

NOTE: Must be less than 100 characters long.

POSTGRES_PASSWORD=

MUST REPLACE. MUST BE A VERY RANDOM VALUE.

128 CHARACTERS LONG, HEXADECIMAL STRING (0-9, A-F)

DEVISE_SECRET=Used for devise. Generate a new value using `openssl

rand -hex 64`.

Every server has a superuser.

60

Set this to something SECURE.

ADMIN_PASSWORD=

Secret key used by Rails.

Generate a new value using `openssl rand -hex 64`

SECRET_KEY_BASE=

Set this to production in most cases.

Setting this line to production will disable debug backtraces.

Please delete this line if you are submitting a bug report, as

production mode

will not give detailed crash reports.

RAILS_ENV=production

Set this if you don't want to deal with email verification of new

users.

(self hosted users)

NO_EMAILS=TRUE

If you wish to opt out of https:// (we wish you wouldn't), you

can

delete this line. Be aware that by not using SSL, users will

transmit their

passwords without encryption, making it very easy for attackers

to see

user passwords. Consider buying a domain and using a free

certificate from

Let's Encrypt.

FORCE_SSL=Remove this if not using HTTPS://

MOST USERS SHOULD DELETE THE REST OF THIS FILE.

Continue reading if you:

* work at FarmBot, Inc.

61

* need email notification support

* pay for managed database / file hosting (Google Cloud)

* use the test suite to write new features

* run your own NervesHub instance for custom FBOS updates

If running a FarmBot setup for personal use or none of the above

apply, you

can safely delete the rest of this file.

Only relevant if you use Heroku or pay a 3rd party vendor for

Redis hosting.

Most users can delete this.

If your Heroku Redis vendor uses a custom `REDIS_URL` ENV var such

as

`REDISTOGO_URL`, set the value here. If you delete this line,

the app will

default to `REDIS_URL`.

WHERE_IS_REDIS_URL=REDISTOGO_URL # Just an example. Change or

delete.

Delete this if you don't use 3rd party Redis hosting. See

WHERE_IS_REDIS_URL

REDIS_URL=redis://redis:6379/0

For email delivery. Who is your email host?

SMTP_HOST=smtp.sendgrid.net

Optional with default of 587

SMTP_PORT=587

FarmBot, Inc. uses SendGrid to send emails.

Delete these if you aren't a send grid customer.

SENDGRID_PASSWORD=Used by FarmBot, Inc

62

SENDGRID_USERNAME=Used by FarmBot, Inc

If you're using other SMTP server (like Gmail) use this.

#SMTP_USERNAME=email@gmail.com

#SMTP_PASSWORD=password

Used by people who pay for managed database hosting.

Most users should delete this.

DATABASE_URL=postgres://user:password@host:5432/db_name

Google Cloud Storage API Bucket for image data.

Deleting this will save to disk.

Most self hosting users will want to delete this.

GCS_BUCKET=GOOGLE_CLOUD_STORAGE_BUCKET_NAME_FOR_IMAGE_FILES

Google Cloud Storage ID for image data.

Deleting this will save images to disk.

Most self hosting users will want to delete this.

GCS_ID=GOOGLE_CLOUD_STORAGE='interop' id

Most self hosting users will want to delete this.

GCS_KEY=GOOGLE_CLOUD_STORAGE='interop' key

Can be deleted unless you are a Rollbar customer.

ROLLBAR_ACCESS_TOKEN=____

ROLLBAR_CLIENT_TOKEN=____

This can be set to anything.

Most users can just delete it.

This is used for people writing modifications to the software,

mostly.

DOCS=Set this to any value if you want to generate API docs after

running tests

63

Most self hosting users will want to delete this.

HEROKU_SLUG_COMMIT=This is set by Heroku, used by Frontend to show

current version.

If you are a software developer and you wish to run integration

tests, set the

ENV below to true.

Most users will not want this enabled.

RUN_CAPYBARA=true

Self hosting users can delete this line.

If you are not using the standard MQTT broker (eg=you use a 3rd

party

MQTT vendor), you will need to change this line.

MQTT_WS=ws://DELETE_OR_CHANGE_THIS_LINE/ws

If you are using a shared RabbitMQ server and need to use a VHost

other than

/, change this ENV var.

MQTT_VHOST=/

If you run a server with multiple domain names (HINT=You probably

don't),

you can list the names here. This is used by FarmBot employees so

that they

can securly host the same server on multiple domain names

ex=my.farm.bot, my.farmbot.io

EXTRA_DOMAINS=staging.farm.bot,whatever.farm.bot

Some hosts (Eg=FarmBot, Inc.) run the RabbitMQ management API on

a

non-standard host.

Include the protocol! (http vs. https)

DELETE THIS LINE if you are a self-hosted user.

64

RABBIT_MGMT_URL=http://delete_this_line.com

Allow only certain users on the server. If the user's email domain

is not

on the list of trusted domains, they can not use the server.

The example below only allows users with `@farmbot.io` or

`@farm.bot` emails

to use the server.

DELETE THIS LINE IF YOU RUN A PUBLIC SERVER.

TRUSTED_DOMAINS=farmbot.io,farm.bot

Self hosting users can safely delete this (a new key will be

created).

This key is used to exchange secrets between bots and MQTT servers

(important

if you don't use SSL)

SERVER WONT WORK IF YOU FORGET TO DELETE THIS EXAMPLE TEXT BELOW.

ADD A REAL RSA_KEY OR DELETE THIS LINE!!

RSA_KEY=Change this! Keys look like `-----BEGIN RSA`

Prevents JS/CSS build system from cleaning out old assets on start.

This speed up boot time by one minute, but may put you at risk of

loading stale versions of the application.

NO_CLEAN=true

FarmBot uses DataDog for log analytics and for assesing overall

system health.

Do not add this key if you do not use DataDog on your server.

DATADOG_CLIENT_TOKEN=??

Comma separated list of emails that wish to receive a daily

report of new FarmBot installations (not new users, but

actual FarmBot installations).

65

CUSTOMER_SUPPORT_SUBSCRIBERS=alice@protonmail.com,bob@yahoo.com

URL to send user-generated feedback to.

FEEDBACK_WEBHOOK_URL=http://localhost:3000/change_this

Email address of a "publisher account" that is used to

publish shared sequences via `rake sequences:publish <id>`

AUTHORIZED_PUBLISHER=foo@bar.com

Appendix E: Final Adaptive Control Plugin

Initialisation of libraries and functions

import cv2 as cv

import numpy as np

import os

import math

Initialise global variables

No_of_plant_specimens = 5 # Change this value for specimen count

Initial_State = 0; # Upon initialisation the state is 0

NOTE: CHANGE THS CODE TO STATE BASED

##

Initialisation of Values / Beginning of Program

Phase 1: Create, draw-from and assign water by volume amounts to specimens

66

NOTE: This is another database that should be agreed upon with Jacob and

Cheryl.

However for now, the range will be from 25% to 75%

Potential_Initial_Water_Volumes = list(range(25,75))

def Water_Values_Selection():

 Selected_values = []

 for count in range(No_of_plant_specimens):

 Selected_value = np.random.choice(Potential_Initial_Water_Volumes)

 Selected_values.append(Selected_value)

 return Selected_values

Assembling the Water Values array used in initialisation

Water_Values_Array = np.array(Water_Values_Selection())

Finding Minimum and assigning it as a guaranteed 25

Minimum_Water_Value = np.min(Water_Values_Array)

Water_Values_Array[Water_Values_Array == Minimum_Water_Value] = 25

Finding Maximum and assigning it as a guaranteed 75

Maximum_Water_Value = np.max(Water_Values_Array)

Water_Values_Array[Water_Values_Array == Maximum_Water_Value] = 75

print("Water values are", Water_Values_Array)

##

NEED TO SET UP A WHILE LOOP HERE TP CHANGE FOR LOOP CHARACTERISTICS

67

Phase 1: Collect and identify plant image and area

rootdir = "C:\\Users\\Corey\\Desktop\\Plugin_Test_Folder\\Official_Test"

Collect the image from designated folder (These will be Farmbot scans)

path =

"C:\\Users\Corey\\Desktop\\Plugin_Test_Folder\\Official_Test\\Official_Test_1"

NOTE: This is a secondary pathway used for simulating purposes

path_2 = "C:\\Users\Corey\\Desktop\\Plugin_Test_Folder\\Official_Test_2"

Current_Iteration = 0; # Set Base count responsible for building final results

array

Final_Assigned_Values = np.empty(shape=(No_of_plant_specimens,3))

Previous_Values = np.empty(shape=(No_of_plant_specimens,3)) # Initialise

previous values array

Past_Iteration_Water = np.zeros(No_of_plant_specimens) # Initialise previous

values array

Past_Iteration_Area = np.zeros(No_of_plant_specimens) # Initialise previous

values array

Past_Iteration_Water_HOLD = np.zeros(No_of_plant_specimens) # Initialise

previous values array

Past_Iteration_Area_HOLD = np.zeros(No_of_plant_specimens) # Initialise

previous values array

Iteration_Count = 0 # When the system begins the count is zero. This lets the

intial water values only be used once

Final_Array_Log = np.empty(shape=(No_of_plant_specimens,3))

Array_Selection_Area = np.array([1,4,7,10,13]) # This is composed for the 5

specimens NOTE: Possibly automate the creation of this array

Array_Selection_Water = np.array([2,5,8,11,14])

Iterate through images based on how many scans are present

68

for subdir, dirs, files in os.walk(rootdir):

Second file pathway for LOOP here!

 for file in files:

 # Select current working image based on file pathway

 input_path = os.path.join(subdir, file)

 image = cv.imread(input_path)

 # Convert working image to HSV

 hsv_image = cv.cvtColor(image, cv.COLOR_BGR2HSV)

 # Defining thresholds for detection

 low_green = np.array([36, 0, 0])

 high_green = np.array([85, 255, 255])

 # Creating a mask to store allowed colours in threshold

 Green_mask = cv.inRange(hsv_image, low_green, high_green)

 Green = cv.bitwise_and(image, image, mask=Green_mask)

 # Now that we've detected the image isolate its contours

 contours, _ = cv.findContours(Green_mask, cv.RETR_TREE,

cv.CHAIN_APPROX_NONE)

 # Connect the countour points together

 cv.drawContours(image, contours, -1, (0,0,255), 2) # -

1 draws all contours

69

 # Calculate the area of the contour

 def find_contour_areas(contours):

 areas = []

 for count in contours:

 contour_area = cv.contourArea(count)

 areas.append(contour_area)

 return areas

 # Output areas in pixels

 #print("Contour areas individual",

find_contour_areas(contours))

 Combined_Area = sum(find_contour_areas(contours))

 #print("Total combined contour area", Combined_Area)

 # Phase 2: Draw from the same image bank and identify

dice dots and count

 # Collect the image from the images folder (These will

be the Farmbot Dice Scans)

 dice_image = cv.imread(input_path)

 # Convert image to hsv colour standard

 hsv_dice_image = cv.cvtColor(dice_image,

cv.COLOR_BGR2HSV)

 # Define thresholds for detection

 # NOTE: This will need to be tweaked in practive based

on light saturation and angle

 low_black = np.array([0, 0, 0])

 high_black = np.array([0, 0, 75]) # for now using grey

 #Create mask to identify values within range for mask

70

 Black_mask = cv.inRange(hsv_dice_image, low_black,

high_black)

 Black = cv.bitwise_and(dice_image, dice_image,

mask=Black_mask)

 # Identify contours to count dice dots

 DiceContours, _ = cv.findContours(Black_mask, cv.RETR_TREE,

cv.CHAIN_APPROX_NONE)

 # Connect the contours

 cv.drawContours(dice_image, DiceContours, -1, (0,0,255),

2)

 # Now that we have detected the circles, we need to

count them

 # To do this we just count how many contours were

detected

 Number_Detected = len(DiceContours)

 # print("This is the number:", Number_Detected)

 # Phase 4: Take the Plant area, Number and assigned

water to put them into an intial array that the system will build on

 # First Column: Plant Number

 # Second Column: Plant Area

 # Third Column: Assigned Water Value

 # Need to save a copy of the past values from the second

iteration

 if Initial_State == 0: # If the system is in intialisation

 Calculated_Image_Array = np.array([Number_Detected,

Combined_Area, Water_Values_Array[Number_Detected-1]])

71

 #Begin slicing calculated values into the array

 Final_Assigned_Values[Current_Iteration, :] =

Calculated_Image_Array

 else:

 if Initial_State == 1: # If the system has passed

initialisation and is now adapting

 # From this point the system has passed

intialisation and can now move to adapt (Adaptive state)

 #NOTE: THIS COMPARISON IS DONE USING THE

CURRENT ITERATION VALUE

 Calculated_Image_Array =

np.array([Number_Detected, Combined_Area, Water_Values_Array[Number_Detected-

1]])

 # Iteration 1 | Scenario 1: Examined specimen

is below 50% and has reduced in size

 # Process: Identify plant specimen number,

Identify change in growth, recognise previous water

 # level value and INCREASE it by 5%

 # Call current selections

 Selected_Area =

Previous_Values[Current_Iteration,1]

 Selected_Water =

Previous_Values[Current_Iteration,2]

72

 Past_Iteration_Area[Current_Iteration] =

Previous_Values[Current_Iteration,1] # Guarenteed starting comparisson AREA

 Past_Iteration_Water[Current_Iteration] =

Previous_Values[Current_Iteration,2] # Guarenteed starting comparisson

 if (Calculated_Image_Array[1] < Selected_Area):

Theres been a visable reduction in size

 # Reduction in size and below 50%

 if Selected_Water <= 50:

 if ((Calculated_Image_Array[2] + 5)

>= 75):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] + 5

 else: # If water isnt below 50% it must

be above

 if ((Calculated_Image_Array[2] - 5)

<= 25):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] - 5

 if (Calculated_Image_Array[1] > Selected_Area):

Theres been a visable increase in size

 # Reduction in size and below 50%

 if Selected_Water <= 50:

 if ((Calculated_Image_Array[2] + 5)

>= 75):

73

 Calculated_Image_Array[2]

= Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] + 5

 else: # If water isnt below 50% it must

be above

 if ((Calculated_Image_Array[2] + 5)

>= 75):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] + 5

 Final_Assigned_Values[Current_Iteration, :] =

Calculated_Image_Array # Re-slice array to reflect corrections

 #Calculated_Image_Array =

np.array([Number_Detected, Combined_Area, Water_Values_Array[Number_Detected-

1]])

 else:

 if Initial_State == 2: # Moving into second

area and further control

 # Phase 2: Adaptive Control of delivered

water levels depandant on plant area

 # Step 1: Memorise previous specimen

table

 # Step 2: Correlate plant increase with

postive water result.

74

 # Step 3: Correlate plant decrease with

negative water result.

 # Step 4: Implement condition where a

plant can only be watered +/- 10% of its initial starting value.

 # Step 4: Justify increase or decrease:

Is the plant being over watered, or under watered?

 # Step 5: Based on justification, make

appropriate judgement. e.g: the plant is dying but is being watered in the top

10% range. Instead of maxing it, drop the water level.

 # Create values to select from past values

 Selected_Area =

Previous_Values[Current_Iteration,1]

 Selected_Water =

Previous_Values[Current_Iteration,2]

 Past_Iteration_Area_HOLD[Current_Iteration]

= Previous_Values[Current_Iteration,1] # Guarenteed starting comparisson AREA

 Past_Iteration_Water_HOLD[Current_Iteration]

= Previous_Values[Current_Iteration,2] # Guarenteed starting comparisson

 Calculated_Image_Array =

np.array([Number_Detected, Combined_Area, Selected_Water])

 Previous_Area =

Past_Iteration_Area[Current_Iteration]

 Previous_Water =

Past_Iteration_Water[Current_Iteration]

 Increased_5 = Previous_Water + 5

 Increase_1 = Previous_Water + 1

 #print("Past water is:", Previous_Water)

 # Iteration 2: This iteration is the major

turning point for each specimen. If there is no continued

75

 # visable growth it is reduced by 10%.

If the plant shows growth the scope is reduced

 # This iteration is checking: was 5% of

water increased or reduced, has it grown or shrunk

 # Applied 5% more, Increased

 if (Selected_Water == Increased_5): # Theres

been a visable increase in water

 # Increase in size and applied

1%

 if (Previous_Area < Selected_Area):

 #print("Passed Size Check")

 if ((Calculated_Image_Array[2]

+ 1) >= 75):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] + 1

 else: # Increase in water and

reduction in size

 if ((Calculated_Image_Array[2]

- 10) <= 25):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] - 5

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] - 10

 if (Previous_Water == Increase_1): # Theres

been a visable increase in water

 #print("Passed Increase Check + 1")

76

 # Increase in size and applied

1%

 if ((Calculated_Image_Array[2] + 1)

>= 75):

 Calculated_Image_Array[2] =

Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2] =

Calculated_Image_Array[2] + 1

 else: # Increase in water and reduction in

size

 if ((Calculated_Image_Array[2] - 1)

<= 25):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] - 1

 if (Previous_Water == Previous_Water - 10):

Theres been a visable increase in water

 #print("Passed Increase Check -

10")

 # Increase in size and applied

1%

 if (Previous_Area < Selected_Area):

 if ((Calculated_Image_Array[2]

+ 1) >= 75):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2]

 else:

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] + 1

77

 Final_Assigned_Values[Current_Iteration, :]

= Calculated_Image_Array # Re-slice array to reflect corrections

 else:

 if (Initial_State > 2):

 # Create values to select from past

values

 Selected_Area =

Previous_Values[Current_Iteration,1]

 Selected_Water =

Previous_Values[Current_Iteration,2]

 Calculated_Image_Array =

np.array([Number_Detected, Combined_Area, Selected_Water]) # CURRENT ASSESSOR

 Previous_Area =

Past_Iteration_Area_HOLD[Current_Iteration]

 Previous_Water =

Past_Iteration_Water_HOLD[Current_Iteration]

 #print("Past water is:", Previous_Water)

 # Iteration 2: This iteration is the

major turning point for each specimen. If there is no continued

 # visable growth it is reduced by

10%. If the plant shows growth the scope is reduced

 # This iteration is checking: was

5% of water increased or reduced, has it grown or shrunk

 # Applied 5% more, Increased

 #print("Going for check")

78

 # print("Selected_Area:", Selected_Area,

"Previous Area:", Previous_Area)

 if (Previous_Area < Selected_Area): #

Theres been a visable increase in water

 #print("Passed Increase Check

+ 1")

 # Increase in size and

applied 1%

 Calculated_Image_Array[2] =

Calculated_Image_Array[2] + 1

 Past_Iteration_Area_HOLD[Curre

nt_Iteration] = Previous_Values[Current_Iteration,1]

 else: # Increase in water and reduction

in size

 Calculated_Image_Array[2] =

Calculated_Image_Array[2] - 1

 Past_Iteration_Area_HOLD[Curre

nt_Iteration] = Previous_Values[Current_Iteration,1]

 if (Previous_Water == Previous_Water -

10): # Theres been a visable increase in water

 #print("Passed Increase Check

- 10")

 # Increase in size and

applied 1%

 if (Previous_Area < Selected_Area):

 Calculated_Image_Array[2]

= Calculated_Image_Array[2] + 1

 Past_Iteration_Area_HOLD[C

urrent_Iteration] = Previous_Values[Current_Iteration,1]

 if (Previous_Area == Selected_Area): #

Set simulation to end

79

 Initial_State == -1

 Final_Assigned_Values[Current_Iteration, :]

= Calculated_Image_Array # Re-slice array to reflect corrections

 #print(contours)

 cv.imshow("image",image)

 cv.imshow("Green", Green_mask)

 #cv.imshow("dice_image", dice_image)

 #cv.imshow("Identified Dots", Black_mask)

 # Increment Count

 if Current_Iteration < No_of_plant_specimens - 1: #

Indicies start at 0

 Current_Iteration = Current_Iteration + 1

 else:

 print("Iteration:",

Initial_State) # This is the point

where all 5 plants are evaluated and the final array for the sample set is

generated

 Initial_State = Initial_State + 1 # New State

 Current_Iteration = 0 # Reset count so a new array

can begin

 print(Final_Assigned_Values)

 # Now that the array has been fully calculated,

write to Array log text file

80

 a_file = open("Array_Log.txt", "w")

 for row in Final_Assigned_Values:

 np.savetxt(a_file, row)

 a_file.close()

 Previous_Values = Final_Assigned_Values # Save

previous values

 # np.concatenate((Final_Array_Log, Previous_Values))

Create Log of all arrays generated

 if Initial_State == -1:

 print("Simulation Complete")

 break # End the simulation once a plant reaches

the end

 # Debug Code to destroy all windows

 cv.waitKey(0)

 cv.destroyAllWindows()

