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Abstract 
 

Sewer networks are complex public infrastructure assets designed to deliver wastewater from 

property connection points to wastewater treatment facilities. Like all assets, sewer networks 

require ongoing inspection and rehabilitation to maintain an acceptable level of service which 

often requires generous resource allocation due to the complex infrastructure. For many 

municipalities and service authorities, large segments of existing sewer networks are 

approaching end of life, increasing the demand for maintenance and resources. Maintenance 

and rehabilitation of sewer networks are primarily founded on investigation programs that 

determine the existing asset condition, and consequently, the rehabilitation method. Current 

practice generally involves deploying a robotic closed circuit television video (CCTV) camera 

to inspect the network; this is an efficient process in isolation; however it commonly requires 

an extensive manual review process to determine faults within the network. 

In this research,  an automated fault detection model is developed to review and analyse CCTV 

inspection footage, and then locate and categorise faults within the data. The study utilises 

emerging deep transfer learning technology to locate and categorise abnormalities in the input 

data, based on a predetermined calibration dataset. The smart sewer detection model is adapted 

from the YOLOv2 object detection framework; twelve common convolutional neural networks 

were evaluated to determine the optimal feature extraction network, with Res-Net 101 

determined to be the preferred network. Performance evaluation of the model included a mAP 

of 89.3%, and detection speed of 46.3fps which exceeds real-time capability.  The success of 

this project will provide value in improved efficiencies, reliable and consistent fault detection 

and overall economic benefit to industry, and other users who may employ the findings of this 

research. Overall, the smart sewer detection model demonstrates capacity to significantly 

decrease the time required for data review and improve the overall accuracy of decision-making 

process by removing human error. 
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1 Introduction 

 

1.1. Research Significance 

 

This research is expected to provide a variety of benefits, including but not limited to: 

• Increased efficiency in review of sewer inspection data and consequently, development 

of asset rehabilitation programs. 

• Increased accuracy and reliability of fault detection through systematic analysis and 

decision making.  

• Provide direct economic benefit and improved delivery timelines to industry, due to the 

reduced human input required in review and analysis of data.  

• Real-time fault detection capabilities suitable for deployment in the field. 

1.2. Project Aim and Objectives  

 

The aim of this project is to reduce inefficiencies in asset data review through the development 

of an autonomous object detection model via deep learning. The project seeks to develop a 

methodology for the implementation of deep learning object detection to data extracted from 

closed-circuit television (CCTV) sewer inspection data.  

The project will contribute to previous research conducted on computer vision by applying 

deep learning techniques to automate fault detection in sewer pipelines. The objective of 

providing improved efficiency to industry through computer vision application has not been 

well explored to date, particularly in relation to sewer infrastructure.  
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Utilising CCTV data sourced from an NSW local government sewer inspection program, the 

autonomous model shall aim to detect and classify various faults in sewer pipelines via multi-

class object detection, providing tangible value to industry. This will provide the framework to 

reduce the extensive user input currently required to assess and categorise sewer pipeline 

condition from CCTV inspection data.  

Considering the above, the objectives of this project include: 

• To develop an extensive database utilising existing sewer pipeline inspection CCTV 

footage. 

• Develop an autonomous object detection model for sewer pipeline faults, utilising 

computer vision technology and deep transfer learning. 

• Evaluate and refine the developed model to achieve a high-confidence level and 

detection speed (i.e., average precision >0.8, real-time detection). 

Despite the proposed scope of this project primarily relating to inspection data gained from 

Albury City Council’s sewer rehabilitation program, value exists for other authorities and asset 

owners through the project objectives. The proposed research aims to reduce inefficiencies for 

a diverse range of users by providing a reliable, systematic analysis tool that will be applicable 

to a wide range of sewer pipelines.
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1.3. Background 

 

1.3.1. Sewer Networks 

A sewer network is a complex system of pipes and associated infrastructure designed to transfer 

wastewater flow from the customer to a treatment plant. Sewer networks are generally managed 

and maintained by the municipal council or in some instances, a privatised authority. The size 

of these systems is influenced by factors of the service area, including area and number of 

connections; wastewater networks commonly include thousands of kilometres of pipeline. The 

large magnitude and complexity of many sewer networks results in complex maintenance 

programs that are both time consuming and expensive. 

Similar to other public infrastructure assets, wastewater networks require inspection, 

rehabilitation, and renewal programs to ensure the required level of service to the paying 

customer is maintained. As many sewer mains possess a nominal diameter less than 600mm, 

manual entry is not possible and thus, conventional inspection methods include various forms 

of camera/CCTV survey. This camera survey is commonly completed with a remotely 

controlled robotic camera, or in smaller instances, manually with a series of rods or continuous 

reel. Most commonly, analysis of collected data involves manually viewing and annotating the 

recorded videos; a time consuming and mundane task that relies on the ability of the user to 

provide accurate and reliable results.  

Inspection programs aim to identify the condition of the existing asset, inclusive of any 

recognised faults or issues. Common sewer faults may include: 

• Spalling or flaking of the pipe; 

• Cracking; 

• Voids or collapses; 

• Infiltration; 

• Deposits; and 

• Root ingress/blockages. 

The lifespan of sewer mains can often be renewed or extended without the need to construct a 

new sewer main through conventional excavation techniques, due to a variety of rehabilitation 

methodology available. Rehabilitation of existing sewer mains can be completed utilising a 

variety of techniques, typically tailored to the identified fault type. Common methods of 
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rehabilitation include jetting and root cutting, patching, insitu relining and pipe-bursting; all 

methods are considered trenchless techniques, meaning rectification of a defect is completed 

without the requirement of highly invasive replacement works. Notwithstanding, in some 

instances where severe defects exist, namely sagging or inclined pipe segments, conventional 

trenched excavation must still be undertaken (Loss et al., 2018). The primary benefits presented 

by trenchless rehabilitation methods include reduced renewal cost, reduced works duration and 

significantly less disruption to the community and surrounding locality with most techniques 

simply requiring access to existing sewer manholes (Loss et al., 2018). Furthermore, trenchless 

pipe rehabilitation is often the only viable option in areas of high service congestion, such as 

inner-city urban environments (Lueke and Ariaratnam, 2001).  

The sewer pipeline CCTV data utilised in this dissertation is provided by Albury City Council; 

a regional NSW council located near the border of New South Wales and Victoria. Albury’s 

municipality spans in excess of 300km2, with a population of approximately 55,000 people 

(Population Australia, 2022). A service population and area of this magnitude requires a 

complex wastewater system to deliver the required level of service to the community, with 

AlburyCity’s sewer network including approximately 509 kilometres of gravity sewer mains 

(Albury City Council, 2019). Sewer inspections are conducted through an annual CCTV and 

cleaning program; this data is then used to develop a rehabilitation works program that is 

delivered via external specialist contractors. Analysis of the data obtained through inspection 

is completed manually by a member of staff; this process can take several weeks to complete 

each year. This process has been identified as a significant inefficiency due to the resource 

commitment required because of the large magnitude of data obtained. Due to the onerous 

nature of this data review, it is highly likely that numerous inaccuracies exist due to fatigue 

experienced by the person(s) completing the data review. Consequences of inaccurate asset 

data include unforeseen costs due to inaccuracies in the resultant works program, or complete 

omission due to overestimated remaining asset life. A smart analysis technique built upon 

machine learning will facilitate efficient, consistent and accurate review of raw asset data will 

provide fundamental benefit to the overarching asset management system. 

1.3.2. Autonomous Fault Detection 

Autonomous image and video detection is an emerging technology becoming prominent within 

the infrastructure industry and modern society as a whole. The abilities of autonomous 

detection technologies subsidise the requirement for human resourcing in tasks such as data 

review and repetitive recognition activities. Autonomous recognition of images and videos is 
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achieved through techniques such as image classification and object detection, which rely on 

deep learning networks. Deep learning is a function of machine learning; a fundamental 

subfield of artificial intelligence (Ongsulee, 2017). Whilst automated classification has existed 

for decades in varying formats, application has diversified exponentially in recent years with 

the progression of deep learning, in lieu of prior handcrafting techniques (Bharadi et al., 2017).   

Neural Networks were first proposed in 1944, being defined as “a computing system made up 

of a number of simple, highly interconnected processing elements, which process information 

by their dynamic state in response to external inputs” (Bharadi et al., 2017). These neural 

networks are the foundation to machine learning techniques, including deep learning. The most 

common form of neural network currently utilised for autonomous image detection are 

Convolutional Neural Networks (CNNs); CNNs are primarily used to solve difficult image-

driven pattern recognition tasks (O'Shea and Nash, 2022), which aligns closely with the intent 

of this research.  

CNNs are typically considered to be closely related with traditional Artificial Neural Networks 

(ANNs), however notable differences exist. Whilst both ANNs and CNNs self-optimise 

through learning, CNNs are primarily used in the field of pattern recognition within images; 

hence, image specific features can be integrated into the network architecture (O'Shea and 

Nash, 2022). Image recognition deep learning benefits from the nature of CNNs, as the program 

learns complex concepts, by building out from simpler ones (Goodfellow, Bengio and 

Courville, 2016). 

Neural Networks and Deep Learning form the basis of fault detection through techniques such 

as image classification and object detection. Image classification utilises deep learning to 

categorise images into defined classes based on the content of the image; supervised or 

unsupervised classification describe the method in which this occurs. Supervised classification 

relies on a pre-classified training dataset to calibrate the network, whereas unsupervised 

classification functions without user provided sample classes (Manoj krishna et al., 2018). 

Deep learning consists of several modules, with the primary being feature extraction and 

feature classification; these fundamental components enable classification of complex visual 

data (Manoj krishna et al., 2018). 
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1.4. Dissertation Structure  

This dissertation is comprised of six chapters. Each individual chapter represents a key 

component that has been completed to achieve the project aim and objectives detailed in 

Section 1.2. The structure of this dissertation is summarised below: 

Chapter 1: Introduction 

Chapter one introduces the subject of this dissertation and the research proposed, including the 

research significance as well as the related aims and objectives. The introduction provides a 

background into sewer network management and rehabilitation, which is then followed by an 

overview of autonomous fault detection through artificial intelligence. 

Chapter 2: Literature Review 

Chapter two reviews the history and associated literature of sewer infrastructure, asset 

management, artificial intelligence, and computer vision techniques. The chapter begins by 

discussing the history of sewer networks and the asset management principles behind network 

maintenance, including inspection programs, defects, and rehabilitation techniques. Following 

this, Chapter two completes a detailed review of artificial intelligence; machine learning and 

deep learning subsets. The intricacies of computer vision techniques such as convolutional 

neural networks and object detection are investigated, including the prior application to 

industry. The chapter concludes by discussing data processing techniques and the influence 

they have on computer vision techniques, before providing feasibility and justification of the 

research proposal.  

Chapter 3: Methodology 

Chapter three details the methodology implemented to achieve the project aim and objectives, 

employing information gained through the literature review completed in Chapter two. The 

methodology begins with an overview of the proposed smart sewer pipeline object detection 

model, then presents the proposed method for optimisation and evaluation, 

Chapter 4: Data Analysis & Discussion 

Chapter four focuses on implementation of the methodology outlined in Chapter three, 

including analysis and review of the results obtained. The data analysis process is separated 

into multiple stages, namely the preliminary analysis and detailed analysis of CNNs, which is 

then followed by network training optimisation. Chapter four then reviews application of the 

model to other defect classes and concludes with a formalised discussion of research findings 

and outcomes. 
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Chapter 5: Conclusion 

Chapter five concludes this dissertation by outlining the connection between research outcomes 

and the project aims and objectives. Benefit of this research to industry is discussed, as well as 

suggested future research. 
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2. Literature Review 

This chapter reviews the history and associated literature of sewer infrastructure, asset 

management within Albury City Council and the industry wholistically. Artificial intelligence 

is investigated in detail with particular regard to image classification through deep learning, as 

well as associated data management. The chapter concludes by reviewing the feasibility and 

justification of this dissertation. 

 

2.1. History of sewer networks 

Sewer networks are a critical component in modern day society and are a fundamental 

infrastructure required in the effective management of wastewater. The term ‘sewer network’ 

refers to the infrastructure that conveys wastewater from property connections to wastewater 

treatment plants; specifically, a sewer network is a complex system of pipes, manholes and 

pump stations which convey wastewater effluent (Weiner and Matthews, 2003). Components 

of sewer networks typically operate via gravity flow, however where this is not possible due to 

topographic conditions, pump stations may be implemented to create a sewer rising main. A 

sewer rising main refers to a sewer main that operates under pressure from a pump or 

pumpstation, meaning it can overcome increases in terrain conditions (Weiner and Matthews, 

2003). 

Sewer networks share characteristics of other civil infrastructure assets, being that they possess 

a finite lifespan, require recurring maintenance both scheduled and unscheduled and 

eventually, rehabilitation or renewal. As sewer networks provide an essential service to the 

public that is subsidised through rates and or taxes, it is imperative that the sewer network 

provides a satisfactory level of service with respect to performance and reliability. Above 

ground assets such as road pavements or structures are typically renewed in their entirety when 

approaching end of life; however, the renewal process is often more complicated for sub-
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surface assets. The inherent nature of a piped system, being that in many cases it is buried 

amongst other services, means renewal by means of conventional replacement can result in 

significant cost and/or impact to customers. Considering this, it is noted that “proactive and 

preventive repair strategies for urban drainage systems are often more cost effective than the 

traditional approach of reactive sewer maintenance” (Fenner 2000). Trenchless rehabilitation 

techniques such as pipe relining, pipe bursting or patching are explained in detail in Section 

2.4, however it is noted that these are typically preferred methods of renewing underground 

sewer pipelines in contrast to the traditional approach where a new pipeline is constructed 

through open trenching. Whilst trenchless rehabilitation methods offer a variety of benefits, it 

is imperative that it is supported by a well-managed asset management program to ensure 

correct prioritisation and scheduling (Tagherouit, Bennis and Bengassem, 2011). 

A successful rehabilitation program ensures that renewal of assets is effectively prioritised. 

Prioritisation of individual assets ensures that rehabilitation occurs at the correct point in the 

assets service life; this should occur at the end of the effective service life, but prior to failure 

that may inhibit efficient renewal (Tagherouit, Bennis and Bengassem, 2011). In respect to 

sewer networks, it is most efficient to rehabilitate pipelines prior to major structural defects 

such as voids occurring. Considering this, an effective asset management program is dependent 

upon several factors, including knowledge of the systems condition (Tagherouit, Bennis and 

Bengassem, 2011). A proactive inspection program ensures that information about the target 

asset is accurate, which is imperative for effective asset management. For this to occur, asset 

inspection must be scheduled on a recurring interval; This allows the life expectancy of an asset 

to be tracked and will identify irregular defects that may create issues prior to the expected end 

of life.  

Implementation of a strategic long term inspection program will provide a stable basis for the 

development of an efficient rehabilitation program, minimising annual and overall costs 

throughout the asset’s lifespan (Park 2009). Historically, many managing authorities have 

lacked a cohesive plan for the management of water and wastewater systems (Fenner 2000); 

however, inspection programs have improved in-line with the development of new 

technologies such as robotic CCTV devices, which have offered improved efficiencies to the 

development of these programs (Fenner 2000).  

Historically, evaluation of captured CCTV data is a manual process that relies on an asset 

engineer or officer to view and annotate the data, to which a condition rating is applied and/or 
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faults are identified (Hassan et al. 2019). From this evaluated data, a works program can be 

derived to rehabilitate sewer mains that are in poor condition or possess faults.  

2.2. Inspection techniques for sewer mains 

Sewer mains are commonly of a diameter between 150mm and 450mm, however the diameter 

of large trunk mains can exceed 1200mm. The diameter of sewer mains means that access by 

an inspector is almost always impossible, and where possible, highly restricted due to the nature 

of the system. Considering this, alternative techniques must be employed to undertake 

inspection of pipeline assets. Robotic CCTV and Sewer Scanner Evaluation Technology 

(SSET) are common forms of sewer inspection utilised in modern society (Yang et al. 2011). 

These systems are used to record video footage or produce still images of sewer pipelines; this 

data is then used to assess the structural integrity and inform the overall condition of the asset. 

For instances outside of large-scale survey, users may utilise manual cameras that require push-

rod style operation; this method is generally employed to investigate isolated faults that would 

not require the automated analysis proposed by this research. Notwithstanding, it is important 

that the developed program is versatile and reliable, and thus, should possess the capability to 

analyse all common image or video types that may be encountered. 

 

 

 

 

 

 

 

 

Figure 2.1: Collapsed sewer main invert (Albury City Council 2021) 

Sewer inspection is generally completed by entering the sewer main at a nominated manhole, 

then surveying the length of the chosen segment, terminating the survey at the next manhole 

(downstream or upstream). This method of inspection generally accounts for all required sewer 

mains, however in some instances branch lines may not have manhole access and cannot be 
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accessed by a conventional CCTV robot. In the instance where inspection of a branch line is 

required, a ‘lateral launch camera’ can be employed to survey these lines (Pipeworks Inc 2017). 

The footage obtained from the CCTV survey is recorded in programs such as WinCan, which 

can allow the operator to associate relevant asset information, record pipeline grade and add 

comments (WinCan, 2022).  

2.3. Sewer Pipeline Defects 

Sewer mains are subject to various possible defects that affect the performance or integrity of 

the network over the lifetime of the asset (Moradi 2020). Depending on the type of defect, the 

sewer main may experience an abrupt decrease in the level of service, or the lifespan may 

gradually decrease as a defect worsens. Daher (2015) developed a Defect-based Condition 

Assessment Model and Protocol of Sewer Pipelines, which included comprehensive defect 

categories and types. The defects were arranged in a hierarchal structure, with high level 

categories describing the area in the network in which the defect occurs, i.e. pipe segment, pipe 

joints and manholes; defects were then further categorised as operational or structural. Similar 

categorisation is found across various research, with Moradi (2020) also employing the 

operation/structural categorisation model.  

Structural defects are defects relating to the condition and integrity of the asset itself; typically, 

in inspection program will categorise these defects and provide a rating on the severity. 

Structural pipeline defects may include the following, amongst others: 

• Cracking – visible crack in the pipe wall. 

• Fracture – complete crack where pieces of the pipe wall appear to become segmented, 

without being dislodged. 

• Spalling – Breaking of the surface into small pieces, visually similar to spalling of other 

concrete elements and often caused by expansion of internal reinforcement or other 

exterior forces. 

• Hole or collapse – Segment of the pipe wall has become dislodged, size dependent. 

• Void – Pipe Invert is severely damage/non-existent. 

• Deformation – Internal pipe is no longer a circular cross section, often caused by 

external forces. 

• Roughness defect – Pipe invert and or wall has worn, increasing the friction coefficient, 

and reducing the integrity of the pipe wall. 
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Operational defects are typically defined as defects of environmental cause due to insufficient 

maintenance, and may include the following: 

• Root ingress – Tree root intruding through pipe joints, cracks, or holes. 

• Infiltration – Ground water ingress into the sewer pipeline. 

• Exfiltration – Wastewater leakage out of the pipeline. 

• Deposits – Settled or attached foreign materials which restrict the pipes flow. 

Images of Common Defects (Albury City Council, 2021): 

Defect Name Image 

Cracking 

 

Fracture 
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Collapse 

 

Void 

 

Root Ingress 
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Deposits 

 

Table 2.1: Sewer Pipeline Defects (Albury City Council Sewer Inspection Program, 2021) 

 

 

 

 

 

 

 

 

 

  

  

Figure 2.2: Sewer Pipeline Defects presented by Moradi (2020) 

In addition to the structural and operation defects presented by Moradi (2020), defects 

occurring during installation or rehabilitation are also possible. Whilst these defects would 

typically be identified during a final inspection upon conclusion of construction or 

rehabilitation works, it is still possible for these defects to exist in a commissioned pipeline. 

Construction defects may include the following (Daher 2015): 

• Obstructions – construction materials left within pipes or manholes may become stuck, 

creating an obstruction. 
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• Sagged joints – pipe segments can be knocked off grade during trench backfilling, 

creating a sag in the pipeline that will cause effluent to pool; this commonly occurs due 

to inadequate haunching. 

• Improper jointing – joints can be improperly seated during construction; if this is not 

detected during pressure testing, it can lead to early occurrence of other defects such as 

root ingress and infiltration/exfiltration.  

Defects present in sewer pipelines vary significantly in nature and magnitude as outlined above, 

meaning various repair methods are required to rehabilitation different defects. Additionally, 

defects also present varying similarities and differences with respect to visual attributes; the 

impact of this on autonomous recognition through AI will be further discussed in Section 2.5. 

2.4. Pipeline Rehabilitation Techniques 

Successful rehabilitation of sewer pipelines requires a variety of rehabilitation techniques 

orientated to the various pipeline defects reviewed in Section 2.3. Rehabilitation methods each 

require difference equipment and incur different resources, hence it is important to understand 

the relationship between defect classification and appropriate rehabilitation technique. 

Common pipe rehabilitation techniques are presented below: 

• Pipeline Cleaning is a maintenance technique and the most common form of pipeline 

rehabilitation. This method involves the use of a high-pressure jetting apparatus that is 

pushed through the pipeline segment, removing debris, deposits and obstructions. 

Generally, jetting units have specialised heads that facilitate the removal and cutting of 

roots. It is noted that high pressure jetting is utilised prior to the implementation of other 

rehabilitation methods such as pipe relining (Trenchlesspedia, 2022). 

• Insitu Pipe Relining is a trenchless rehabilitation technique that involves insertion of 

a flexible liner material into the host pipe, which is then cured through methods such 

as steam or ultraviolet light (UV). Upon completion of the curing process, property 

junctions connected to the rehabilitated pipeline can be cut out utilising a camera-

guided cutting unit based on CCTV survey completed prior to relining (Westaway, 

2001).  

In addition to cured-in-place pipe (CIPP) liners, spiral-wound pipeline is also a common 

pipe relining technique, particularly for larger diameter pipelines. Spiral-wound pipe 

relining requires a winding machine to install a strip liner to the host pipe; an adhesive 

resin is used to secure the strip liner together to the host pipe (Ishmuratov et al., 2013). 
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Pipe relining is a suitable repair method for most defects found in sewer pipelines, 

however it is noted that the repair method may be unsuitable for large voids or collapses. 

This is due to the relining method requiring support of the host pipe during the 

curing/setting process. 

• Isolated Patching is similar in principle to CIPP pipe relining techniques; however, it 

is intended to address isolated pipe failures. Patching is commonly undertaken with 

pneumatic inflation to expand the patch to the host pipe, to which the resin coating then 

adheres to the host pipe (BMC Corp, 2022). 

• Pipe Bursting is the most extensive trenchless repair method used to rehabilitate 

existing pipeline segments between manholes/pits; the technique may also be known as 

“pipe cracking” and “pipe splitting”, as technique causes the host pipe to split and 

fracture during installation of the new pipe (Rameil, 2007). Conventional pipe bursting 

utilises a combination of hydraulic and pneumatic force to pull the new pipe (typically 

HDPE) through the host pipe, whilst simultaneously breaking the host pipe apart to 

expand its internal diameter. Pipe bursting can also be completed through a ‘static’ 

method, where a hydraulicly driven bursting rod is driven down the host pipe to break 

it apart, then pull back a new pipe whilst it retracts and fragments the host pipe (Rameil, 

2007). Property junction connections require excavation and fusion welding to 

reconnect to the new pipe, meaning there is notably more impact on the locality and 

users when compared with pipe relining techniques. Notwithstanding, pipe bursting is 

considered a superior technique for large structural defects such as faults and collapses.  

• Excavation Repairs may still be required in instances where trenchless repair methods 

are not feasible. If the existing host pipe has a severe sag/deflection, trenchless repair 

methods will adopt this defect when they are installed. It is common to excavate and 

repair an isolated section of a pipeline, in combination with a trenchless technique.  

Additionally, for small segments or open sites, it may be more cost effective to trench 

and lay a new sewer pipeline than it would be to undertake pipe relining or pipe 

bursting. 

2.5. Artificial Intelligence  

Artificial Intelligence (AI) is defined as an intelligent machine(s) capable of demonstrating 

intelligence similar to that of the human brain, to undertake rational decision making and enable 

problem solving (IBM Cloud Education, 2022). Numerous industries are utilising AI to 
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improve efficiency and effectiveness in existing tasks, as well as in the development of 

emerging technologies such as driverless cars and robotics. AI encompasses the sub-fields of 

machine learning and deep learning, which are relevant to autonomous fault detection (IBM 

Cloud Education, 2022).  

2.5.1. Machine Learning 

Machine learning is a sub field of AI originating in the mid-1900s defined by El Naqa and 

Murphy (2015) as an “evolving branch of computational algorithms that are designed to 

emulate human intelligence by learning from the surrounding environment”.  Machine learning 

relies on structured data to learn and develop algorithms that can then be applied to tasks 

requiring problem solving and critical analysis. Generally, a training dataset will be classified 

by a human operator which is then utilised to train the machine learning program; this process 

is commonly known as supervised machine learning (Guyon and Elisseeff, 2008).  

The initial categorisation process is part of the dimensionality reduction process known as 

feature extraction (Chatterjee, 2021). Feature extraction involves the selection and combination 

of variables within raw data, which are then referred to as features; this process reduces the 

complexity of the data whilst still maintaining the value and accuracy of the data set. The 

purpose of the feature extraction process can be summarised as the removal of redundant data, 

thus requiring less resources to complete the analysis process (Chatterjee, 2021). 

Machine learning has a diverse range of applications in modern society, including language 

detection, speech recognition, self-driving cars, share trading and image recognition, amongst 

others (Pedamkar, n.d.). Advanced applications of machine learning utilise a subset commonly 

referred to as ‘Deep Learning’, which is based on artificial neural networks (ANNs). This form 

of machine learning uses a ‘deep’ neural network consisting of numerous layers, capable of 

learning through its own data processing (Gayhardt et al., 2022).  

2.5.2. Deep Learning & Neural Networks 

IBM (2020) define deep learning as “neural networks that attempt to mimic the human brain 

through a combination of data inputs, weights, and bias. These elements work together to 

accurately recognise, classify, and describe objects within the data. The neural networks are 

made up of multiple layers of interconnected nodes; as the network learns, new layers build 

upon the previous to optimise and refine the network’s ability”. The nature of deep learning 

allows the technology to be utilised across a broad range of applications, commonly image 

recognition, text recognition in documents, health issue recognition, and have even been used 
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in self-driving vehicles (Balas et al. 2019). Deep learning networks interpret and classify user 

input data (i.e. image, videos and/or text) through an intelligent Artificial Neural Network 

(ANN). ANNs allow unlabelled data to be grouped or sorted according to recognised 

similarities and patterns among the data samples; however, in terms of classification, the 

network is trained through supervised learning on a labelled dataset to produce categorical 

outputs (Oppermann, 2019). A significant advancement of deep learning in contrast to 

conventional machine learning, is the omitted requirement for feature extraction in pre-

processing; this is represented diagrammatically in Figure 2.3: 

Figure 2.3: Comparison of machine learning and deep learning processes (Oppermann, 2019) 

To provide further context on the intelligence of deep learning, Oppermann (2019) explains 

that a machine learning model must first be taught the unique features of a car by means of 

manual extraction and input; in the case of deep learning, the manual feature extraction step is 

completely unnecessary as “the deep learning model would recognize these unique 

characteristics of a car and make correct predictions”. In the example explained by Oppermann 

(2019), the user would simply need to define the categories as ‘Car’ and ‘Not Car’. This 

research investigation aims to apply the deep learning technologies described to identify and 

classify sewer faults from data collected through CCTV survey.  

2.5.2.1. Deep Transfer Learning 

Deep transfer learning describes the process of applying a pretrained deep learning network to 

a new task, with the intent of increased efficiency in contrast to standard learning techniques 

by leveraging the networks existing knowledge and capability. Pan and Yang (2010) provided 

a definition that “transfer learning aims to extract the knowledge from one or more source tasks 
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and applies the knowledge to a target task”. This is differentiated from conventional multitask 

learning as the primary aim of transfer learning is the target task, in contrast to the intent to 

learn the source and target tasks simultaneously (Pan & Yang, 2010); this is represented in 

Figure 2.4 below, adapted from the research by Pan and Yang (2010): 

 

 

 

 

  

 

Figure 2.4: Comparison of traditional machine learning and transfer learning (Pan & Yang, 2010) 

The transfer learning technique provides benefit to the feature extraction component of an 

object detection model. The deep CNNs traditionally utilised for feature extraction leverage 

transfer learning in the network training process. Common CNNs are reviewed in Section 

2.6.4.1 and tested in the methodology to determine the preferred architecture for feature 

extraction of sewer faults. The deep CNN architectures available at this time of this research 

are generally high performing and complex, however selection is application specific, with the 

speed, accuracy and requirements of each CNN varying between applications (Talukdar et al., 

2018).  

2.5.3. Computer Vision Techniques 

Computer vision is a form of artificial intelligence and a subset of machine learning that enables 

a computer system to interpret information from digital images, videos, and other visual data 

(IBM, n.d.). Computer vision techniques are integrated into many modern day technologies, 

including autonomous vehicles, facial recognition, medical imagery analysis, and other 

industrial applications such as manufacturing and agriculture (Marr, 2019). Within the field of 

computer vision, there are several different technologies, separated by differing features and 

applications. Common types of machine learning include image classification, object detection, 

image segmentation, edge detection and others (arm, n.d.); techniques relevant to this research 

are further discussed below. 
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2.5.3.1. Image Classification 

Image classification is a form of computer vision that is defined as the task of identifying what 

an image represents (TensorFlow, 2022). Commonly image classifiers are CNN architectures, 

that can be developed and trained by various conventional processes such as supervised 

learning, unsupervised learning, and transfer learning. The image classification domain is one 

of the most widely researched in the computer vision field, with various competitions recurring 

annually considered to be large drivers for the rapid progression of the field (Pathak et al., 

2018).  

Image classification functions by interpretating various attributes of the data, and classifying 

the image based on recognised patterns and features. Whilst this ability of image classification 

has many applications, image classification does not have the functionality to localise the 

feature or area of interest within the image. Whilst the inability to localise objects within images 

may restrict image classification, it has consequentially become the foundation of 

developments in object detection technology (Pathak et al., 2018). Many deep learning CNNs 

that have emerged in the image classification field are adapted as backbone architecture for 

object detection models, to undertake the feature extraction process. 

2.5.3.2. Object Detection 

Object detection builds on the functionality of image classification technology, with the 

addition of feature localisation. An object detection model classifies the instance within its 

respective class and estimates the location of the feature within the image through an annotation 

output known as a bounding box or region of interest (ROI) (Pathak et al., 2018). Object 

detection technology is becoming increasingly prominent in society due to the extensive 

applications it has. Object detection is the primary technology utilise in some computer vision 

applications outlined earlier in this report, including autonomous vehicles and license plate 

recognition. Figure 2.5 provides a visual comparison between object detection and image 

classification techniques: 
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Figure 2.5: Comparison of object detection and image classification (Hulstaert, 2018) 

Deep CNNs are extensively used founding structures for object detection models, containing 

many complex layers capable of completing the feature extraction process. These CNNs are 

often adapted from an image classification setting, by substituting the classification layers for 

an object detection framework such as ‘You Only Look Once’ (YOLO), ‘Single Shot Multibox 

Detector’ (SSD) or ‘Fast-CNN’. Conventional layers within an object detection model are 

outlined below in Table 2.2, and displayed diagrammatically in Figure 2.6: 

Layer Description 

Input Layer Contains the image data to be and is the input of the CNN 

Convolutional 

Layer 

The convolutional layer is the primary building block of a CNN, 

containing filters which are developed through the training process. 

This layer extracts features from the data. There are various types of 

convolutional layers, including high and low level. 

Batch 

Normalisation 

Layer 

Batch normalisation is not utilised in all CNNs, however is designed 

to normalising layer outputs. Specifically, batch normalisation scales 

the output of the layer, explicitly normalising the activations of each 

input variable per mini-batch (Singla, 2020). 

Activation 

layer/function 

(ReLU) 

An activation function is the last component of a convolutional layer, 

which produces a feature map (Pokhrel, 2019). Activation layers are 

not technically layers as no weights or parameters are learned, hence 

are frequently omitted from network diagrams (Rosebrock, 2021).  

Pooling Layer 

Pooling layers are designed to reduce the size of the network by 

sampling the data of previous layers, as to preserve useful 

information and remove redundant data.  

Fully Connected 

Layer 

Fully connected layers make up the final network layers; they 

combine information from former layers to facilitate classification. 

Output Layer 
Results of all previous layers is passed through the classifier in the 

form of a category or probability, resulting in an output result. 
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Table 2.2: Description of generic layers within a CNN (Zhang et al., 2019)  

Figure 2.6: Basic CNN Structure by Zhang et al. (2019) 

Figure 2.6 represents a conventional CNN structure that may be appropriate for a task such as 

image classification, however it is not representative of the architecture of an object detection 

model. For the CNN to be adapted to an object detection model, the fully connected layer and 

output layer are removed, and a convolution network is employed to detect the ROI and 

associated confidence level; this component of the model is typically labelled the ‘detection 

head’. An example of this is the standard YOLOv2 architecture presented below in Figure 

2.7; YOLOv2 was released in December 2016 by Redmon and Farhadi (2017) and utilised 

the Darknet-19 CNN as a classification model. The YOLOv2 object detection model is 

reviewed in detail in Section 2.6.4.2 of this literature review and forms the basis of the 

detection model developed by this research. 

Figure 2.7: Network architecture of YOLOv2, adapted by Liu et al. (2018) 

2.5.3.3. Semantic Segmentation and Instance Segmentation 

Semantic segmentation is a form of deep learning algorithm that classifies every pixel within 

an image by a label or category (Lamba, 2019). The process allows an image to be partitioned 

into semantically meaningful parts, with categories represented by varying colour blocks (Long 

et al., 2019). That precise functionality of semantic segmentation means that the output is more 

precise than conventional object detection in many applications. In the application of 
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autonomous driving vehicles, object detection is capable of detecting and locating required 

information in the field of view; semantic segmentation allows precise interpretation of the 

geometrical space around objects (Xu et al., 2018). Instance segmentation is an extension of 

semantic segmentation, where each occurrence of a feature within an image is differentiated; a 

comparison between object detection, semantic segmentation and instance segmentation is 

shown in Figure 2.8: 

Object Detection 

 
Semantic Segmentation 

 
Instance Segmentation 

 
Figure 2.8: Comparison of object detection, semantic segmentation and instance segmentation, adapted from 

ByteBridge (2021) 
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The pixel level nature of semantic segmentation results in instances where the technology 

makes an incorrect categorisation due to the image data. Blurred images, semi-transparent 

objects, vignetting, and camouflaging are factors that may inhibit the performance of semantic 

segmentation detection (Thoma, 2016). Wang & Cheng (2019) investigated the application of 

semantic segmentation to sewer pipe defects and noted that application of the technique was 

very limited to this application. The ‘DilaSeg’ model developed by Wang & Cheng (2019) 

demonstrated effective detection with high levels of accuracy, however detection speed was on 

average less than four frames per second.  

2.5.4. Neural Network Models 

This section of the literature review builds upon the deep learning technologies discussed, to 

provide information and context to the methodology implemented to achieve the research aims 

and objectives. Various existing CNNs and object detection models will be reviewed to 

determine suitability for application to sewer pipeline fault detection, the preferred of which 

will be further analysed in the methodology section of this dissertation. 

2.5.4.1. Feature Extraction CNNs 

CNNs are an integral component of conventional computer vision models as discussed 

throughout Section 2.6.3. Forming the backbone of many detection models, performance of 

popular CNNs is readily available through extensive research papers and other resources 

available. The intent of this literature review section is to summarise the performance of 

prominent CNNs in similar applications such as concrete crack detection; this will inform 

analysis of various CNN application to sewer pipeline fault detection in the methodology. 

A survey paper was published in the ‘Journal of Big Data’ by Alzubaidi et al. (2021) providing 

results of a comprehensive review of current deep learning technologies, including many CNN 

architectures. Additionally, Hamishebahar et al. (2022) published a journal article at the 

beginning of 2022, reviewing current deep-learning based crack detection methods which is 

highly relevant to this research.   

Table 2.3 below provides information relating to the numerous high-performing CNNs 

currently implemented in various applications of deep learning; the networks are then discussed 

in further detail. 
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Feature Extraction Network Number of Layers 

AlexNet 8 Layers 

VGG-16 16 Layers 

VGG-19 19 Layers 

GoogLeNet 22 Layers 

SqueezeNet 18 Layers 

InceptionV3 48 Layers 

Res-Net 18 18 Layers 

Res-Net 50 50 Layers 

Res-Net 101 101 Layers 

Darknet-19 19 Layers 

Darknet-53 53 Layers 

Inception-ResNet-V2 164 Layers 

Xception 71 Layers 

Table 2.3: Summary of common CNNs (MathWorks, n.d.) 

AlexNet 

The AlexNet CNN is a well-known deep CNN that was first proposed in 2012 (Hamishebahar 

et al., 2022). The AlexNet CNN is eight layers deep, including five convolutional layers and 

three fully connected layers; ReLU is utilised as an activation function to enhance the rate of 

convergence (Hamishebahar et al., 2022). AlexNet has been applied in many instances within 

the civil engineering industry; in the review by Hamishebahar et al. (2022), AlexNet accounted 

for approximately 30% of CNNs used for image classification. In the research presented by 

Moradi (2020), AlexNet was compared with VGGNet, ResNet and GoogLeNet; whilst the 

within 3-5% for each metric, AlexNet was the least favourable feature extraction network (SSD 

framework) when measured for classification loss, localisation loss and total loss.  

VGG-16 & VGG-19 

Visual geometry group (VGG) was developed two years after AlexNet, demonstrating 

increased depth over the prior CNN (Alzubaidi et al., 2021). The VGG CNN has two common 

architectures, VGG-16 and VGG-19, which are distinguished by their respective network 

depth. VGG extended the use of small filter sizes from ZefNet, further demonstrating the 

efficiency of this architecture format. Whilst VGG is generally well respected, it is noted to 
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have a high computational cost due to the approximate 140 million parameters within the 

network (Alzubaidi et al., 2021). Moradi (2020) utilised VGG-16 as a backbone for the SSD 

object detection framework in an early experiment, achieving an mAP of 79.6% on four defect 

classes. 

GoogLeNet (Inception-V1) 

GoogLeNet, also known as Inception-V1, emerged in 2014 and won the ILSVRC competition 

achieving an error rate of 6.67% (Szegedy et al., 2015). GoogLeNet introduced ‘Inception 

modules’ which form the fundamental structure of the network; these inception modules are 

stacked on each other, with max-pooling layers introduced to reduce grid resolution as required 

(Szegedy et al., 2015). This approach saw GoogLeNet achieve high-level accuracy, whilst 

maintain lower computational cost (Alzubaidi et al., 2021). GoogLeNet has been implemented 

extensively in object detection applications and inspired the original YOLO framework that 

was later released (Redmon et al., 2016). In Moradi’s (2020) research into the application of 

object detection to sewer fault detection, GoogLeNet was found to be the highest performing 

CNN when compared to AlexNet, VGG-16 and ResNet. 

SqueezeNet 

Released in 2016, the SqueezeNet CNN sought to achieve equivalent levels of accuracy to 

prominent CNNs whilst reducing the number of network parameters (Iandola et al., 2016). 

Through the significant reduction in network parameters, SqueezeNet offers more efficient 

distributed training and improved deployment prospects. When compared with AlexNet, 

SqueezeNet boasts a reduction in network parameters by a factor of 50, whilst maintaining or 

exceeding the top-1 and top-5 accuracy of AlexNet (Iandola et al., 2016). Ullah et al. (2021) 

undertook a comparative study of asphalt crack detection using SqueezeNet, AlexNet and 

ResNet18; SqueezeNet performed least favourably, with very poor precision and recall metrics 

achieved for most crack types. SqueezeNet performance was more favourable in object 

detection (YOLOv2 structure) of concrete cracking, outperforming AlexNet, VGG and some 

ResNet variants (Ullah et al., 2021).  

Inception-V3 

Inception-V3 builds upon GoogLeNet (Inception-V1) and Inception-V2 with the aim to 

maintain the generalisation ability of a deeper network, while reducing the inherent 

computational cost typically proportionate to network depth (Alzubaidi et al., 2021). Inception-

V3 is 48 layers deep and utilises asymmetric small-size filters in lieu of large size filters, and 
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employs a 1 x 1 convolution prior to the large-ze filters within the network (Szegedy et al., 

2016). Inception-V3 demonstrated improvements against the top published CNN results for the 

ILSVRC classification benchmark in its release paper, reducing the top-5 and top-1 error by 

25% and 14% respectively (Szegedy et al., 2016).  

ResNet 

Residual Network (ResNet) was the winner of the ILSVRC in 2015, with numerous variations 

of the CNN available with network depths between 18 and 1202 layers (Alzubaidi et al., 2021). 

Common versions of the network are the 18-, 34-, 50-, 101- and 152-layer versions, detailed 

below in Figure 2.9; the ResNet-50 version comprises of 49 convolutional layers and one fully 

connected layer (He et al., 2016). 

Figure 2.9: Architectures for common versions of Res-Net CNN (He et al., 2016) 

The specific variant presented at ILSVRC 2015 was ResNet-152; despite having a depth 8x 

VGG, the computational complexity remains lower. ResNet-18 was the preferred CNN for 

concrete crack detection using YOLOv2 framework in research by Teng et al. (2021); 

competing CNNs included AlexNet, GoogLeNet and VGG-16. 

Darknet-19 & Darknet-53 

Darknet-19 is a CNN that was introduced as the backbone of the YOLOv2 (YOLO9000) object 

detection model. The Darknet-19 CNN architecture is noted as similar to VGG models and 

comprises of 19 convolutional layers and five maxpooling layers (Redmon & Farhadi, 2017). 

Darknet-19 supported the YOLOv2 model to outperform competing object detection in both 

mean average precision (mAP) and detection speed on the VOC 2007 dataset (Redmon & 

Farhadi, 2017). 
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The Darknet-53 CNN was introduced in the release of YOLOv3, as an update to the Darknet-

19 predecessor, described as a hybrid approach with emerging residual network technology 

(Redmon & Farhadi, 2018). In the release paper, Darknet-53 claimed to outperform ResNet-

101 and ResNet-152 in accuracy and FPS metrics (Redmon & Farhadi, 2018); whilst noted as 

a high performing CNN, performance against other CNNs varies subject to application. In the 

comparison study completed by (Alzahrani et al., 2021), Darknet-53 was ranked ten of nineteen 

CNNs. 

Inception-Resnet-v2 

Inception-Resnet-v2 was introduced by Szegedy et al. (2016), building upon prior released of 

the Inception network such as InceptionV3. Inception-ResNet-v2 is similar to other members 

of the Inception CNN family, however, incorporates residual connections in lieu of the filter 

concatenation stage in the architecture (Szegedy et al., 2016). In research on the application of 

the YOLOv2 detector to crack detection in concrete, Inception-Resnet-v2 was tested as a 

feature extraction network; the CNN achieved top three results of those tested by Teng et al. 

(2021). 

Xception 

The Xception CNN utilises extreme inception architecture, achieving extra learning efficiency 

and better performance when compared to other Inception networks, without minimising the 

number of parameters. The Xception network is 71 layers deep, reliant on depthwise separable 

convolution layers; these layers were defined by Chollet (2017) as ‘similar properties to 

inception modules, yet are as easy to use as regular convolution layers’. In the research paper 

presented by Xu et al. (2021), Xception outperformed InceptionV3, ResNet50 and VGG19 in 

concrete crack detection, utilising a dataset of approximately 98,000 images.  

2.5.4.2. Object Detection Models  

Object detection models are an extension of conventional CNNs, having the ability to detect, 

categorise and localise features within a target image, as detailed in Section 2.6.3.2. This 

research intends to evaluate the performance of current object detection models, in the 

application of sewer fault detection. Review of various object detection structures will inform 

the proposed analysis in the methodology section of this dissertation. 

Research by Moradi (2020) on the application of deep learning to sewer fault detection, 

included comparison of YOLOv1 (Redmon et al. 2016), SSD (Liu et al. 2015), R-CNN 

(Girshick et al. 2014), Fast R-CNN (Girshick 2015), and Faster R-CNN (Ren et al. 2017). In 
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this research SSD was the most favourable detection framework, however real time detection 

frame rate was not achieved (Moradi, 2020). Improved versions of the YOLO framework are 

reviewed below, and later form the basis of the methodology of this project. 

R-CNN, Fast R-CNN & Faster R-CNN 

The R-CNN family of object detection models commenced with the release of R-CNN in 2015 

by Girshick et al. (2014). The functionality of R-CNN is based on region proposals, which are 

taken from the input image, and then interpreted and classified through a CNN (Parthasarathy, 

2017). Fast R-CNN sought to improved shortcomings of the previous version; changes resulted 

in the convolution operation only being required once per image, in lieu of the prior 2000 region 

proposals (Gandhi, 2018). Faster R-CNN saw this introduction of a region proposal network 

(RPN), which sought to resolve the bottleneck created by the prior region proposal computation 

(Ren et al., 2017). Whilst improvements in detection speed were made in the evolution to Faster 

R-CNN, the network is still unable to achieve real-time detection ability (Redmon et al., 2017). 

YOLO (v1) 

The ‘You Only Look Once’ (YOLO) object detection framework was presented by Redmon et 

al. (2016) and has since become a prominent object detection model. YOLO considers object 

detection as a single regression problem, differing from other models such as R-CNN; this 

means that YOLO goes directly from the input data to a ROI bounding box and associated 

confidence value (Redmon et al. 2016). A reduced version of the model known as Fast YOLO 

was also released, which contains 9 layers instead of 24. The YOLO network is several times 

faster than comparable detection models at its time of release, whilst still maintain comparable 

accuracy; a comparison of object detectors at the release of YOLO is adapted from Redmon et 

al. (2016) below: 

Detection Model mAP FPS Real-Time 

YOLO 63.4 45 Yes 

Fast-YOLO 52.7 155 Yes 

YOLO (VGG-16) 66.4 21 No 

Faster R-CNN (VGG-16) 73.2 7 No 

Faster R-CNN (ZF) 62.1 18 No 

Fast R-CNN 70 0.5 No 

Table 2.4: Comparison of YOLO and Fast/Faster R-CNN on VOC 2007 dataset (Redmon et al., 2017) 
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SSD 

Single Shot MultiBox Detector (SSD) was introduced in late 2016 by Liu et al. (2016). 

Similarly to YOLO, SSD negates the need for a region proposal component required by R-

CNN and similar; for SSD, all computations are captured in a single network (Liu et al., 2016). 

In comparison to other detectors at its time of release, SSD300 was the only real-time detection 

framework to achieve AP greater than 70% (Liu et al., 2016). Research into the application of 

deep learning to sewer fault detection by Moradi (2020) found SSD to be the preferred 

detection framework over YOLO, Fast R-CNN, and Faster R-CNN. 

YOLOv2 (YOLO9000) 

YOLOv2 (also known as YOLO9000) sought to resolve the primary shortcomings of YOLO, 

namely localisation errors and low recall (Redmon & Farhadi, 2017). The release of YOLOv2 

introduced a new CNN as the feature extraction known as Darknet-19; this CNN is discussed 

in Section 2.6.4.1 of this dissertation. The comparison included in the release paper by Redmon 

& Farhadi (2017) is presented below in Table 2.5: 

Table 2.5: Comparison of YOLOv2 other detectors on VOC 2007+2012 dataset (Redmon & Farhadi (2017) 

Other YOLO Detectors 

The YOLO detector has demonstrated significant progression in recent years, with several 

updated versions being released. YOLOv3 introduced the Darknet-53 backbone, which 

included residual network characteristics (refer Section 2.6.4.1); YOLOv3 showed an increase 

in AP of 9.8%, however a reduction in FPS of 50% on the COCO dataset (Reyes et al., 2019). 

Detection Model mAP FPS Real-Time 

YOLOv2 (544 x 544) 78.6 40 Yes 

YOLOv2 (416 x 416) 76.8 67 Yes 

YOLOv2 (288 x 288) 69.0 91 Yes 

SSD300 74.3 46 Yes 

YOLO 63.4 45 Yes 

SSD500 76.8 19 No 

YOLO (VGG-16) 66.4 21 No 

Faster R-CNN (VGG-16) 73.2 7 No 

Faster R-CNN (ZF) 62.1 18 No 

Fast R-CNN 70 0.5 No 



44 

 

 

The YOLOv4 release in July 2022 saw improvements in AP and FPS of 10% and 12% 

respectively (Bochkovskiy et al., 2020). More recently, version 7 of the YOLO object detector 

framework, YOLOv7 (Wang et al., 2022) was released at the beginning of 2022. This detection 

framework “surpasses all known object detectors in both speed and accuracy in the range from 

5 FPS to 160 FPS” (Wang et al., 2022). 

2.5.4.3. Network Training Hyperparameters  

Training hyperparameters are described as network variables that influence how the network 

is trained; they are set prior to training and relate to how the network is optimised 

(Radhakrishnan, 2017). Optimising a neural network by tuning hyperparameters through 

iterative analysis is an important step in achieving an efficient and accurate model (Stewart, 

2020); for example, a high learning rate may result in the model never achieving maximum 

accuracy. Table 2.6 provides description of common training hyperparameters that can be 

adjusted during the model training process; the definitions are adapted from the MathWorks 

(n.d.) online help centre: 

Training Hyperparameter Description 

Optimiser The optimiser setting selects the solver algorithm to be used, 

including ‘sgdm’, ‘rmsprop’ and ‘adam’. 

Mini-Batch Options 

MaxEpochs An epoch is a full pass of the training algorithm over the 

entirety of the training dataset; ‘MaxEpochs’ defines the 

maximum number of epochs the network training can 

complete before finishing. 

MiniBatchSize The mini-batch is a subset of the training dataset used to 

evaluate the loss function gradient and update the layer 

weights. The ‘MiniBatchSize’ describes the size of the mini-

batch. 

Shuffle ‘Shuffle’ allows the training data to be shuffled ‘once’ before 

training, ‘every-epoch’, or ‘never’. Shuffling the data every 

epoch is a common technique implemented to reduce 

overfitting. 
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Validation 

ValidationFrequency Sets the number of iterations between evaluation of 

validation metrics. 

ValidationPatience Sets the number of times that the validation loss can be larger 

or equal to that of the previously smallest loss before network 

training stops. The value can be set to ‘inf’ to never stop the 

training due to the described occurrence. 

OutputNetwork Specifies whether the final network is based on the last 

iteration, or the iteration with the lowest validation loss. 

Solver Options 

InitialLearnRate Sets the initial learning rate for the network. Learning rate 

control the magnitude of weight adjustments to the network 

during training. 

LearnRateSchedule Defines if the learning rate remains constant or drops during 

training. ‘Piecewise’ will set the learning rate to drop at a set 

internal, by a set factor during training. 

LearnRateDropPeriod Describes the interval at which the learning rate will be 

reduced by the ‘LearnRateDropFactor’. 

LearnRateDropFactor Defines the factor by which the learning rate is dropped at 

each drop period; the value is applied to the learning rate as 

a multiplier. 

L2Regularisation A regularisation term for the weights to the loss function, to 

assist in reducing overfitting; also known as ‘weight decay’. 

Momentum Applicable to the ‘sgdm’ solver only, ‘Momentum’ is a 

contribution of the parameter update step of the previous 

iteration to the current iterations. The intent of the function 

is to build momentum as the gradient trends correctly.  

GradientDecayFactor Applicable to the ‘adam’ solver only, it defines the decay rate 

of gradient moving average. 
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SquaredGradientDecayFactor Decay rate of the squared gradient moving average for the 

‘adam’ and ‘rmsprop’ solvers. 

ResetInputNormalisation Sets the option to reset input layer normalisation. 

BatchNormalisationStatistics Sets the mode to evaluate the statistics in batch normalisation 

layers, specified as a running estimate given by update steps 

(‘moving’), or population statistics by passing through the 

training data once more ‘population’. 

Hardware Options 

ExecutionEnvironment Selects the hardware resource for training the network: ‘cpu’, 

‘gpu’, ‘multi-gpu’, ‘parallel’ or ‘auto’ (selects gpu if 

available, otherwise cpu). 

Table 2.6: Training options for object detection model training, adapted from MathWorks (n.d.) 

It is noted that further training hyperparameters exist in addition to those described in Table 

2.6 above, however excluded training hyperparameters are considered unimportant, as they not 

deemed to influence the investigations of this dissertation and have remained constant through 

all trials. Key hyperparameters outlined in the table above are detailed further below; 

‘MiniBatchSize’ and ‘MaxEpochs’ will be investigated through iterative analysis in Section 4 

of this dissertation: 

Optimiser 

The training optimiser, or gradient descent optimisation algorithm, is the algorithm that adjusts 

and optimises hyperparameters such as weights within the CNN to fit the training dataset 

(Ruder, 2016). There are many optimisers available, with SGD, SGDM, Adam and RMSProp 

being some of the most common.  

SGD adjusts weights by subtracting the product of the gradient and the learning rate from its 

rates. Although simplistic in contrast to other solvers, SGD is supported by theoretical 

foundation, as well as extensive practical application (Park, 2021). SGDM is adds a momentum 

function to the SGD optimiser, where the weights are modified by the moving average of 

gradients; this intends to support convergence when the gradient trends in the desired direction 

(Park, 2021).  
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RMSProp is similar to SGDM; it adaptively adjusts each parameter based on the gradients 

(Park, 2021). It seeks to resolve the issue of vanishing or exploding gradients by using a moving 

average of squared gradients to normalise the gradient (Sanghvirajit, 2021). 

The Adaptive Moment Estimation (Adam) optimiser is an increasingly popular algorithm that 

adaptively computes learning rates for each parameter. Adam is described as a combination of 

SGDM and RMSProp, as it maintains an exponentially decaying average of past gradients, 

whilst also storing an exponentially decaying average of past square gradients (Ruder, 2016). 

MiniBatchSize 

MiniBatchSize is the size of a subset of the training data population used to evaluate the 

gradient of a loss function and update the weights. Whilst noting inconsistency in initial 

research findings, Kandel & Castelli (2020) found that a lower MiniBatchSize would typically 

result in increased accuracy of the CNN, providing the initial learning rate was low enough. 

From this, the conclusion was drawn that the highest accuracy will generally be achieved from 

a lower MiniBatchSize and low learning rate, however good accuracy can still be achieved 

with a higher MiniBatchSize when coupled with a higher learning rate (Kandel & Castelli, 

2020). Whilst the aforementioned research indicates smaller MiniBatchSize generally leads to 

increased accuracy, there are many contradicting examples such as research by Peng et al. 

(2018), and research by Bochkovskiy et al. (2020); considering this, it can be inferred that 

effect of MiniBatchSize varies between application and should be optimised for the selected 

task. 

InitialLearnRate 

InitialLearnRate is a hyperparameter which restricts how much change the model will be made 

to the model in response to the error rate each time the model weights are updated (Brownlee, 

2020). Learning rate is considered to be on the of the most critical hyperparameters in CNN 

training due to its influence on model performance; a learning rate that is too large may result 

in poor performance due to model effectively skipping the optimal solution, whereas a low 

learning rate may restrict the model from learning the target data effectively (Brownlee, 2020). 

MaxEpochs 

An epoch is a term used in machine learning to describe the number of passes the model will 

make through the entirety of the training dataset. If the training process does not extend for 

enough epochs, the model may not converge; however, too many epochs may result in the 

model overfitting, as it begins to learn information such as noise and background information 
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(Afaq & Rao, 2020). Notwithstanding, it is not possible to derive a universally ideal number 

of epochs, as it varies between models and datasets (Afaq & Rao, 2020). 

2.5.4.4. Model Overfitting & Underfitting 

Model ‘fitting or ‘fit’ describes how well a network is trained to a particular target application, 

and its ability to generalise new data. The terminology of ‘underfitting’ and ‘overfitting’ are 

commonly utilised to describe a networks training performance, both of which are undesirable 

attributes (Jabbar & Khan, 2014). Underfitting and overfitting phenomenon are detailed below 

and referred to in application in Chapter four of this dissertation. 

 Underfitting 

Underfitting of a model refers to an inability to learn the relationship between input and output 

variables, resulting in high error rate for seen and unseen data (IBM Cloud Education, 2021). 

Underfitting is typically easy to identify, as the model generally performs poorly in all 

applications. Underfitting can be reduced by increased dataset size and improved data quality, 

increased training time, decreased regularisation and increased network complexity (IBM 

Cloud Education, 2021). 

Overfitting 

Overfitting describes when a model begins memorising regularity or noise contained within 

the training dataset, decreasing its performance on unseen data (Jabbar & Khan, 2022). 

Overfitting is a common issue amongst CNN models and is typically attributed to a limited 

training dataset size, significant similarities within the training data, or overtraining of the 

model (IBM Cloud Education, 2021). Overfitting can be detected in several ways, with the 

most common being inspection of training and validation loss information; if validation loss 

begins to increase whilst training loss continues to decrease, it can be inferred that the model 

is likely overfitting (Carremans, 2018). To reduce overfitting, the following techniques are 

recommended by Ruizendaal (2017) and Rice et al. (2020): 

• Increase the dataset 

• Implement data augmentation 

• Early stopping of training 

• Add regularisation 

• Select a suitable architecture, avoiding overly complex (deep) networks 
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2.5.4.5. Evaluation Metrics 

Evaluation metrics refer to the quantitative means by which a deep learning network, such as 

an image classification or object detection model, can be scored based on its performance and 

ability. ‘Average Precision (AP)’ and ‘mean Average Precision (mAP)’ are frequently utilised 

to assess and rank the performance of object detection models, such as those outlined in Section 

2.6.4.2 (Koech, 2022). In addition to AP and mAP, ‘F1-Score’ is another common evaluation 

metric utilised in machine learning; similarly to AP and mAP metrics, the calculation of a 

model’s F1-Score is completed using ‘precision’ and ‘recall’ data (LT, 2022). These common 

evaluation metrics and associated variables are discussed below. 

True Positive 

A true positive (TP) is defined as the correct detection of a ground-truth bounding box (Padilla 

et al., 2020); this occurs when the model successfully detects a fault that exists. 

False Positive 

A false positive (FP) is defined as an incorrect detection of an object that does not exist, or a 

detection that is misplaced from the ground truth data beyond the acceptable IOU (Padilla et 

al., 2020). 

False Negative 

A false negative (FN) is an undetected ground-truth within the data that is missed by the 

detection model (LT, 2020). In the application to sewer fault detection, false negative 

occurrences are highly undesirable, as it may mean that a critical fault has been missed by the 

model. 

Intersection Over Union 

An intersection over union (IOU) is a metric utilised to determine whether a detection if true 

or false, based on how closely the placed bounding box correlates to the ROI of the ground-

truth (Padilla et al., 2020). Typically, an acceptable IOU value will be assigned to define the 

requirement for a TP to occur. 

 

 

 

 

Figure 2.10: IOU calculation 
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Precision 

In machine learning and its subfields, precision is defined as “the ability of a model to identify 

only relevant objects” (Padilla et al., 2020). Precision is the percentage of positive predictions 

that are correct, it does not consider positive ground truths that may have been missed within 

the dataset; this means that precision measures the extent of error caused by FPs (LT, 2022). 

The formula for calculation of precision is (Padilla et al., 2020): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

Recall 

Recall is typically considered the counterpart to the precision metric and is defined by LT 

(2022) as the model’s ability to find all relevant cases. In contrast to precision, the recall metric 

measures the extent of error caused by false negatives (LT, 2022) The formula for calculation 

of recall is (Padilla et al., 2020): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 

F1-Score 

The F1-Score is a common metric that combines precision and recall; it is defined as weight 

average or ‘harmonic mean’ between the two variables (LT, 2020). F1-Score is very prominent 

in the assessment and ranking of CNNs; the formula for calculation F1-Score is provided below 

(LT, 2020): 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 Average Precision 

Average Precision (AP) is an evaluation metric most commonly utilised in the performance 

assessment of object detection models. AP is described as the area under a precision-recall 

curve, where precision is plotted against recall values between 0 and 1 (Hui, 2019). As defined 

by (Padilla et al., 2020), a detector is considered good if it maintains high precision whilst the 

recall increases; this will result in a high AUC and thus, high AP. An example of a precision 

recall curve is provided below in Figure 2.11: 



51 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.11: Precision-recall curve for YOLOv2 detector 

The formula for AP is defined by Gad (2021): 

𝐴𝑃 = ∑ [𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) − 𝑅𝑒𝑐𝑎𝑙𝑙(𝑘 + 1)] × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)

𝑘=𝑛−1

𝑘=0

 

Where, 

𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑛) = 0 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑛) = 1 

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 

 Mean Average Precision 

Mean Average Precision (mAP) is calculated as the average of AP across all classes the model 

must detect. (Hui, 2019). The formula for calculation of mAP is (Padilla et al., 2020): 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 

Where, 

𝐴𝑃𝑖 = 𝐴𝑃 𝑜𝑓 𝑡ℎ𝑒 𝑖′ ′𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 
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2.5.5. Application of Deep Learning  

Deep learning-based automation is considered by many to be an emerging technology; 

application to various civil engineering elements has quickly become a prominent area of 

research. High levels of success have been found in applying deep learning networks to 

recognition of faults in road pavements, with accuracy and precision values found to exceed of 

90% in networks of basic construction (Pauly et al. 2017). The investigation completed by 

Pauly et al. (2017) involved the collection of 500 RGB images, which were then sampled into 

smaller tiles, creating two image subsets totalling 240,000 images for analysis. The two subsets 

each had testing patches totalling 60,000; these were pre-classified as cracks and non-cracks, 

which were then used to teach the deep learning algorithm. As a network of this size is 

considered to be relatively ‘shallow’, the results were found to be of a satisfactory standard. 

Pauly et al. (2017) concludes that “an increase in the depth of the deep networks leads to better 

performances in terms of accuracy and recall”. Similarly, Mandal et al. (2018) completed an 

investigation on the application of deep learning networks to road fault detection, however this 

research considered several fault types. The investigation by Mandal et al. (2018) considered a 

total of eight fault types, utilising an image dataset of 9,053 raw images. The results obtained 

demonstrated values between 65% and 80% for precision, accuracy, and recall; whilst the 

accuracy is notably less than the previous mentioned study by Pauly et al. (2017), it is 

considered to be of increased complexity and may not have had the required dataset size to 

produce more accurate findings. The authors concluded that investigation was widely valuable 

and would likely benefit significantly from an increased dataset. The research completed by 

Mandal et al. (2018) is recognised as highly valuable to the investigation proposed by this 

paper, as the variety of faults is similar in nature to the requirements of deep learning 

application to sewer fault detection. Sewer fault detection has a variety of potential faults 

including spalling, cracking, collapses, voids, root ingress and water infiltration amongst others 

(Moradi 2020). Due to the appearance of sewer fault types being largely different in appearance 

to one another, a higher overall success rate is anticipated in contrast to classification of road 

faults, as differing road fault classifications are often similar in appearance. A review of 

computer vision techniques applied to automated sewer fault detection was completed by 

Moradi (2019); it was found that deep learning technologies accounted for only nine percent 

of recent research into automated sewer fault detection, as shown below in Figure 2.12: 
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Figure 2.12: Review of computer vision technologies to automated sewer pipeline fault detection by Moradi 

(2019) 

2.5.5.1. Application of Object Detection to Sewer Pipeline Faults 

Cheng and Wang (2018) investigated the application of deep learning techniques to fault 

detection in sewer pipeline CCTV images. The research reviewed the use of deep learning 

neural networks in similar applications, considering both image classification and object 

detection techniques; Cheng and Wang (2018) found value in the application of deep learning 

techniques across various fields of civil infrastructure. Based on the literature review 

completed, Cheng and Wang (2018) applied the ‘faster R-CNN’ neural network, noting that it 

“demonstrated high precision and recall value and achieved the highest mean average 

precision” in other applications. The research trialled various data sizes, network types and 

parameters, finding all factors to influence the defect detection models performance.  

 

 

 

 

Figure 2.13: mAP and AP of the model using different dataset sizes Cheng and Wang (2018) 
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The results above indicate increased performance of the network when the image dataset is 

increased. Whilst the average precision (AP) value for detection of root ingress defects was 

72.3%, it is recognised that all other categories demonstrated an upwards trend with respect to 

the dataset size. Considering this, the research completed by Cheng and Wang (2018) is highly 

relevant to this research and demonstrates the feasibility and value the application to deep 

learning to industry presents.  

Moradi (2020) investigated the application of object detection to sewer pipeline faults with the 

intent to develop a suitable framework capable to real-world effectiveness. Research by Moradi 

(2020) involved the comparison of four CNNs, and five object detection frameworks; the object 

detection models included the R-CNN (Fast and Faster), SSD and YOLOv1. Experiments 

completed indicated that the SSD detector framework coupled with the GoogLeNet CNN 

backbone was the most preferred model, achieving an AP of 76.3% for crack defects, and an 

overall mAP of 81.3% for all classes. A comparison of the detection frameworks within the 

research by Moradi (2020) is provided below in Table 2.7: 

Framework 

Average Precision (AP) 

mAP 
Crack Deposit Infiltration 

Joint 

Displacement 

R-CNN 68.1 71.8 43.5 69.8 63.8 

Fast R-CNN 77.0 78.4 59.6 82.6 74.4 

Faster R-

CNN 

84.3 82.0 67.8 88.6 80.7 

YOLO 77.4 77.0 43.3 85.3 70.8 

SSD 76.3 88.2 74.9 85.7 81.3 

Table 2.7: Comparative results for different object detection frameworks, adapted from Moradi (2020). 

Whilst research by Moradi (2020) was generally successful and provided reinforcement of 

the on the validity of this application, real-time object detection capability was not achieved 

by the proposed framework. Further, the object detection frameworks included in the 

comparison are not representative of more efficient frameworks available, such as improved 

versions of YOLO. 

2.6. Data Processing & Sampling 

AI is demonstrated as a highly intelligent technology, capable of analysis a diverse range of 

data; however, this does not negate the value data processing techniques may provide to an 

applied scenario. To train a network and make predications on new input data, all data must be 

consistent with the network input size (MathWorks, 2022). Additionally, certain image 
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adjustment techniques such as contrast and brightness may improve the definition of the feature 

within the image, improving the accuracy of the network. Image pre-processing can be 

completed in isolation to the network, or it can be an integrated process. MathWorks (2022) 

notes the following with respect to the MATLAB software: 

• “Commonly, pre-processing occurs as a separate step that you complete before 

preparing the data to be fed to the network. The advantage of this approach is that the 

pre-processing overhead is only required once, then the pre-processed images are 

readily available as a starting place for all future trials of training a network” 

(MathWorks, 2022). 

• “Preprocessing can be applied during training; the transformed images are not stored in 

memory. This approach is convenient to avoid writing a second copy of training data 

to disk if your preprocessing operations are not computationally expensive and do not 

noticeably impact the speed of training the network” (MathWorks, 2022). 

Data processing requirements are subject to vary between application and associated target 

categories. In the context of this research, data processing techniques such as brightness and 

contrast will be investigated if the standard parameters impact success of the neural network. 

This is discussed further in the methodology of this dissertation. 

2.6.1. Data Augmentation 

Data augmentation is a common technique utilised in machine learning to improve network 

accuracy and robustness by increasing diversity of the training dataset through random 

transformation on the original data (MathWorks, n.d.). Data augmentation is beneficial to 

detector performance as it introduces data that differs from the raw dataset, increasing detector 

robustness and its performance in detecting unseen data; further, data augmentation techniques 

assist in reducing overfitting through the increased data population and variability (Shorten & 

Khoshgoftaar, 2019). Broadly, data augmentation is defined as techniques to increase the 

amount of data by generating additional examples from existing training data (Dickson, 2021); 

it includes methods such as  random horizontal flipping, scaling of images and image colour 

adjustments (i.e. contrast, hue etc.), amongst others. When data augmentation is implemented 

to improve model performance, it is imperative that the transformation processed is performed 

on the image datastore and the label datastore; this ensures that ground truths within the data 

remain accurate and do not negatively impact training of the model. Common data 

augmentation techniques relative to this research are defined below and shown in Figure 2.14: 
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Figure 2.14: Randomised Data Augmentation Examples 

 Image Flipping 

Image flipping is a common data augmentation technique that involves mirroring (flipping) the 

image over the horizontal or vertical axis (Sonogashira et al., 2020). Application of 

conventional image flipping techniques increases the dataset by a factor of three. 

Rotation 

Transformation by rotation is another common form of data augmentation where the 

positioning of data within the image is modified. This technique involves rotating the image 

from its native orientation by a factor between 1 and 359 degrees; commonly, 90-, 180- and 

270-degree rotation is applied (Shorten & Khoshgoftaar, 2019). 

 Translation 

Translation is a third geometric transformation commonly utilised to augment image datasets. 

Translation refers to shifting the image in a direction (up, down, left, right or a combination), 

cropping the extents and filling the space with a constant colour such as black or white (Shorten 

& Khoshgoftaar, 2019).  

 Colour Transformations 

Augmentation by colour transformations relates to various common image adjustments such 

as contrast, brightness, hue, saturation, blur and noise, amongst others (Han et al., 2022). 

Colour transformations not only assist in creating more data, but can also be applied generally 

as a pre-processing technique to improve disability of features within the raw data (Shorten & 

Khoshgoftaar, 2019).  

Jittering 

Jittering is a form of colour transformation, where variable specific techniques mentioned 

above are applied on a random basis (Shorten & Khoshgoftaar, 2019). An example of this 
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might include contrast adjustment, increased brightness, and increased blue hue applied to the 

raw image; the next iteration would typically then differ from this. 

2.6.2. Data Annotation Techniques 

Data annotation describes the labelling process undertaken to facilitate supervised machine 

learning (Pokhrel, 2020). Conventional data annotation involves the user cycling through 

individual images or video frames to label features within the raw data, by utilising a bounding 

box or similar appropriate ground-truth dependent on the proposed training model (Pokhrel, 

2020). This process is tedious and time consuming (Adhikari & Huttunen, 2021), however 

quality data annotation is essential in achieving an accurate and reliable model (Pokhrel, 2020). 

To reduce the extensive time resourcing required by conventional data annotation, various 

automation tools have been created to improve efficiency of the annotation process. Adhikari 

and Huttunen (2021) developed a semi-automated process that leverages object detection 

technology to predict bounding boxes in raw data, which are confirmed or corrected manually, 

further improving the detection model. This research saw a reduction of up to 75% of manual 

annotation required for the dataset tested (Adhikari & Huttunen, 2021). Similarly, earlier 

research by Schreiner et al. (2006) involved generation of a suggested annotation, which would 

be verified by the operator; a one-minute video could be annotated in approximately thirty-five 

seconds using this method (Schreiner et al., 2006).  

MATLAB Video Labeller App 

The Video Labeller App allows the user to annotate raw video data by marking a region of 

interest (ROI) using various labelling tools; an example of the annotation process is provided 

below in Figure 2.15. The software tool facilitates an output in the ‘MAT-file’ format; this is 

known as a ‘ground truth’ and can be used as a direct input into various algorithms such as 

image classifiers, segmentation networks and in the instance of this research, object detection 

networks (MathWorks, n.d.). 
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Figure 2.15: Video Labeller App Annotation Example (MathWorks, n.d.). 

Labelling tools within the Video Labeller App feature a manual method and an automation 

algorithm; the manual method requires the user to annotate the ROI(s) within individual video 

frames, where the automation algorithm tracks an initial ROI through proceeding video frames. 

There are multiple annotation algorithms included in the Video Labeller App, including custom 

options; the available algorithms are summarised in Table 3.1: 

Labelling Automation Algorithm Description 

ACF People Detector 

A pretrained object detection algorithm 

designed to detect people using aggregate 

channel features (ACF). 

Point Tracker 

Tracks a ROI(s) using the Kanade-Lucas-

Tomasi (KLT) feature-tracking algorithm; it 

works particularly well for tracking objects 

that do not change shape and for those that 

exhibit visual texture. 

Temporal Interpolator 
Estimates ROIs in intermediate frames 

using interpolation of ROIs in key frames. 
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Custom Algorithm 

Custom algorithm allows the user to adjust 

automation parameters to improve 

performance of automated data annotation. 

Table 2.8: Video Labeller App Automated Labelling Algorithms (MathWorks, n.d.). 

2.6.3. Training, Validation and Test Datasets 

The training and evaluation process of deep learning object detection models commonly 

requires the total dataset to be separated into three distinct samples, namely the training, 

validation, and test datasets (Shah, 2017). The ratio by which the population dataset is separated 

can influence performance of the detector model; the three samples and respective influence 

on model performance are detailed in the following paragraphs. 

Training Dataset 

The training dataset describes the sample of data that is used to train the model; the model sees 

the complete data and attempts to learn from this data (Shah, 2017). In most cases, the size and 

diversity of the training dataset is directly related to performance of the model; if limited data 

and/or data with a high degree of similarities is used for training, the model may experience 

overfitting. Model overfitting describes the occurrence where the model begins to memorise 

the training dataset, rather than learning the key attributes of the data (Boesch, n.d.). A model 

that demonstrates overfitting will perform poorly when new data is tested. 

Validation Dataset 

The validation dataset is an additional data sample utilised in the model training process. The 

purpose of the validation dataset is to evaluate the model fit without bias during the training 

process, allowing hyperparameters within the model to be adjusted (Shah, 2017).  

Test Dataset 

The test dataset is the sample of data that is used to evaluate the final model fit, produced by 

the training process utilising the training and validation datasets (Shah, 2017). The test dataset 

is not introduced to the model during the training process, hence the results produced can be 

considered unbiased. 

2.7.  Feasibility and Justification 

The literature review completed demonstrates the growing importance of a reliable sewer 

network in modern society. Sewer pipelines have a finite design life like all infrastructure 

assets, meaning they require monitoring throughout the expected lifespan and eventually 

renewal. To effectively manage complex infrastructure such as a sewer network, a proactive 
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and efficient asset management must be implemented to track the performance of network 

components. Accuracy and precision in asset management are imperative in maintaining a high 

level of service for the subject infrastructure. Efficiency directly influences the resulting 

economic performance of the system; that is, an inefficient system will impose direct cost to 

the user in both administration and to the physical asset.  

Sewer pipelines should be inspected via robotic CCTV inspection or an equivalent means at a 

recurring interval to track the health of the asset over its lifespan. Sewer pipelines are subject 

to a large variety of possible defects throughout their lifecycle, including structural defects, 

operational defects, and construction defects. Different types of defects typically require 

varying repair methods, subject to the severity of the defect. By understanding the complexity 

and magnitude of the resourcing required to manage complex sewer infrastructure, the gap for 

increased efficiency and streamlined processes can be appreciated. Reducing the resources 

required to review and assess asset inspection data will provide direct economic benefit to the 

organisation. Furthermore, a developed deep learning network has the potential to match or 

outperform a human user who may experience fatigue or reduced concentration through the 

extensive review process; thus, additional economic benefit is provide through increased 

accuracy in the classified data.  

The extensive capability of deep learning neural networks and computer vision technology 

offers significant potential as a substitute to conventional sewer asset inspection practices. 

Whilst some research into the application of deep learning recognition of sewer faults exists, 

studies were found to be isolated and, in most instances, lacked the completeness required for 

application in a real-world setting. Real-time detection ability is essential for this research to 

provide industry benefit; where this has been achieved by others, accuracy of the model 

typically suffers, and vice-versa. High levels of success were demonstrated in several studies 

that applied deep learning capability to road fault detection; this related research provides 

confidence in the potential for success of the proposed project.  

The primary objective of the proposed research is to apply the advanced capabilities of deep 

learning neural networks to object detection in sewer pipelines, reducing the extensive labour 

required for traditional analysis. This research aims to develop a smart sewer fault detection 

model that is accurate and robust, whilst capable of demonstrating real-time detection speed. 
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3. Methodology 

This chapter details the methodology implemented to achieve the project aim and objectives, 

employing information gained through the literature review completed in Chapter two. The 

proposed methodology aims to utilise a deep learning neural network to identify, locate and 

classify faults in sewer pipelines via CCTV inspection data.  

The project methodology is comprised of two primary components; the model architecture, and 

the model development and evaluation. The first component defines the proposed architecture 

for the smart sewer detection model based on the literature review completed in Chapter two; 

the second component details the methodology implemented to develop and evaluate the smart 

sewer detection model. Figure 3.1 presents an overview of the model development and 

evaluation methodology: 

 

Figure 3.1: Model development & evaluation methodology 
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3.1. Architecture of Smart Sewer Detection Model 

This section explains the components of the smart sewer pipeline fault detection model 

developed in this research. The common structure of an object detection model is defined as a 

feature extraction network, and an object detector; both components contain many layers that 

contribute to the overall network architecture. Figure 3.2 presents the proposed components of 

the smart sewer detection model, with the feature extraction network to be determined by 

Section 3.2 of the methodology. The final architecture of the smart sewer detection model is 

presented in Chapter four. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Flow Diagram of Smart Sewer Detection Model 

3.1.1. YOLOv2 Object Detector 

The review of literature included various common object detection frameworks, including 

YOLO, R-CNN (Fast & Faster) and SSD. As a primary aim of this research is to develop an 

object detection model with real-time detection capability, this research focuses on 

implementation of improved YOLO object detectors such as YOLOv2.  

Implementation of the YOLOv2 object detector framework to widespread applications has 

reinforced its ability to perform at a high detection speed, well in excess of real-time detection, 
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whilst still maintaining high accuracy. This methodology utilises the refined ability of the 

YOLOv2 model to achieve real-time detection ability; a characteristic essential for effective 

practical implementation, however generally unachieved in comparable research (Li et al., 

2022). 

3.1.2. CNN Backbone 

The feature extraction network interoperates input data provided by the model, extracts relevant 

features, and classifies the data, to then facilitate localisation by the object detector framework. 

As described within the literature review, there are many CNN architectures available for use 

in transfer learning; selecting a high performing CNN directly influences overall model 

performance, however, requires extensive analysis to maximise results. The implemented 

methodology evaluates various CNN architectures to determine the highest performing 

network in this application, then seeks to optimise hyperparameters within the preferred 

architecture. The analysis techniques implemented to determine the preferred CNN is detailed 

in Section 3.3.2.  

3.2.  Model Development and Evaluation 

This section of the methodology describes the process implemented to develop, train, and 

evaluate the object detection model, including the analysis completed on components of the 

model. Specifically, this section will discuss the structure of the model framework, evaluation 

of feature extraction networks, and associated training hyperparameters. 

3.2.1. Data Preparation  

Data pre-processing describes the process undertaken to interpret and manipulate raw CCTV 

inspection data for use in training, validation, and testing of the developed fault detection 

program. This section of the methodology presents the various techniques employed to produce 

the quality dataset used within this research. 

3.2.1.1. Data Collection & Annotation 

The inspection data utilised in this research was obtained from Albury City Council’s 2020-21 

sewer CCTV inspection program; this is further discussed in Section 3.4.2.  

Following compilation of raw data obtained through sewer asset inspection programs, the data 

must be manually annotated to facilitate training, validation, and testing of the network. 

Annotation of raw data can be completed through a variety of techniques discussed in Section 
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2.7.2, with the implemented method being the ‘Video Labeller App’, within the MATLAB 

Deep Learning Toolbox (MathWorks n.d.)  

The point tracker algorithm was utilised to complete annotation of the dataset for this research 

project with moderate success. A combination of manual and automated labelling using the 

point tracking algorithm was employed to complete efficient annotation  of the dataset, whilst 

maintaining accuracy required for quality training data. Figure 3.3 represents a label summary 

graph for an annotated sewer CCTV inspection video, where the y-axis shows the quantity of 

ROIs present in a frame, and the x-axis represents the video duration (seconds): 

Figure 3.3: Label summary graph for CCTV inspection data annotated via Video Labeller App (MathWorks, 

n.d.) 

3.2.1.2. Video Sampling 

CNNs detailed within this research require input data to be in the form of common image 

formats, meaning video data must be processed prior to being input to the CNN. Automated 

image sampling has been incorporated into the fault detection model; ground truth data is 

interpreted by the model, then converted into an image datastore and box label data store which 

contain the image frames and ROIs respectively. This sampling occurs at a rate of five frames 

per second, which was found to produce noticeable differences between successive frames, 

while maximising the size of the dataset. A higher sampling rate may increase the likelihood 

of model overfitting, due to the similarity between successive frames; overfitting is discussed 

further in Chapter four of this research project. 

3.2.1.3. Image Resizing 

Object detection networks are generally developed to a target data input resolution; 

consequentially, optimal performance is typically achieved when resolution of the input image 

aligns with the network architecture (Solawetz, 2020). YOLO object detection networks 

incorporate functionality to resize images automatically, however it is understood that this can 

directly affect processing time and accuracy; further, an object detection model that is trained 
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on a specific image size may demonstrate varying reliability when test data an alternative 

resolution is input (Wu et al., 2018).  

The YOLO object detection networks require an image input size that is a multiple of 32 (i.e. 

224x224, 448x448, 608x608 etc) (Solawetz, 2020). For the YOLOv2 network, the minimum 

input size required is 224x224 pixels (MathWorks, 2022). The raw data obtained from Albury 

City Council’s asset database primarily included .mp4 video files with a resolution of 768x576 

pixels; consequentially, pre-processing will be undertaken to resize the data to conform with 

the network requirements. There are two common pre-processing methods utilised to data to 

the required resolution: 

1. Compress image to required dimensions; this option is simplistic, however reduces 

image quality and can create undesirable distortion if the aspect ratio varies 

significantly. 

2. Convert image into multiple tiles to align with the required dimensions; this technique 

preserves image quality and increases the number of images. This method is common 

for image classification models; however, can inhibit the performance of object 

detection models as it reduces the complexity of image background variance which may 

be desirable for a robust detection network. 

It is proposed that option one will be adopted for its simplicity and effectiveness; the conversion 

from the native aspect ratio of 4:3 to a square image does not overly distort the data in this 

application. To automate the data resizing process, a transformation function was included in 

the MATLAB program, which transforms the image datastore to the nominated resolution. 

This can be found within the MATLAB program in Appendix 3 of this research paper. An 

example of a resized image is provided below: 
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Original Image (768x576 pixels): 

 

Figure 3.4: Sewer Inspection Image with cracking (Albury City Council Sewer Inspection Program, 2021) 
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Resized Image (448x448 pixels): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Sewer Inspection Image with cracking (resized) (Albury City Council Sewer Inspection Program, 

2021) 

3.2.1.1. Training, Validation and Test Datasets 

The primary dataset utilised for model development is focused on pipeline cracking defects. 

The population of this dataset is 3834 images, which are separated into training, validation, and 

test datasets as summarised in Table 3.1 below: 

Dataset Percentage Images 

Training 70% 2684 

Validation 10% 383 

Test 20% 767 
Table 3.1: Training, Validation and Test Datasets 

The dataset is limited to cracking defects due to the constrained timeline in which this 

research has been undertaken. Notwithstanding, analysis of model performance on other 

defect classes is completed in Section 4.4 of this dissertation, however the evaluation process 

of this was limited due to time constraints. Cracking defects were selected as the primary 

defect class due to the complex nature and variability associated with the visual appearance 
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of cracks. Further, the literature review undertaken indicated that model performance is 

consistently lower on cracking defects than other classes; this is reflected in research by 

Moradi (2020), Cheng and Wang (2018), and Yi et al. (2020); as such, it is likely that the 

model will exhibit equivalent or improved performance on other defects when trained on a 

multiclass dataset. 

3.2.1.2. Training Data Augmentation 

Augmentation of the training data was completed autonomously by including a function within 

the model to augment training data prior to the network training. The function applies various 

augmentation techniques including flipping, scaling and colour jitter as defined within the 

literature review; this effectively increases the training dataset by a factor of 4. The 

augmentation function utilised by the model is included in Appendix 4; an example of 

augmented training data is provided below in Figure 3.6: 

 

 

 

 

Figure 3.6: Example of training data after transformation function  
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3.2.2. Comparative Analysis of CNNs  

The literature review completed identified several pre-trained CNNs that may be suitable as 

feature extraction networks for this application; these nominated CNNs are: 

Feature Extraction Network 

Small-size CNNs (less than 30 layers) Medium-size CNNs (greater than 30 layers) 

AlexNet Xception 

GoogLeNet Res-Net 50 

VGG-16 Inception-ResNet-V2 

VGG-19 InceptionV3* 

SqueezeNet Res-Net 101 

Res-Net 18  

Darknet-19  

Table 3.2: Summary of CNNs for analysis 

Preliminary training options are to be utilised to evaluate the performance of the CNNs, using 

the YOLOv2 object detector framework. The training hyperparameters will then be refined 

with the preferred feature extraction network utilised in the final object detection model. The 

preliminary training hyperparameters are outlined in Section 4.2.2. 

Analysis of the twelve CNNs listed in Table 3.2 above will be completed on a reduced dataset 

due to resourcing constraints (Comparison 1); several of the highest performing CNNs will 

then be selected for extensive analysis on the primary dataset to determine the preferred CNN 

backbone (Comparison 2).  

3.2.3. Optimisation of Training Hyperparameters 

The object detection training process utilises test and validation datasets to train the detection 

model for the target task. The training process can be controlled through a range of training 

options known as hyperparameters. Training hyperparameters help the model estimate and 

develop the final parameters of the trained model. Section 3.3.3.1 provides a detailed 

explanation of key hyperparameters utilised for training.  

3.2.3.1. Model Training Hyperparameters 

Detailed explanation of the hyperparameters used in conventional training process is provided 

in Section 2.6.4.3 of this dissertation. A summary of the initial hyperparameters utilised in this 

research is shown below in Table 3.3; where hyperparameter values are noted as ‘varies’, 
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further analysis has been completed to determine the preferred value for this application. 

Results of the hyperparameter tuning and final values are discussed within Section 4.4 of this 

dissertation. 

Training Hyperparameter Hyperparameter Value 

Optimiser ‘adam’ 

MaxEpochs Varies 

MiniBatchSize Varies (‘8’ typically) 

Shuffle ‘every-epoch’ 

ValidationFrequency ‘50’ 

ValidationPatience ‘Inf’ 

OutputNetwork ‘last-iteration’ 

InitialLearnRate 0.0001 

LearnRateSchedule ‘none’ 

LearnRateDropPeriod N/A 

LearnRateDropFactor N/A 

L2Regularisation 0.005 

Momentum N/A 

GradientDecayFactor ‘0.9’ 

SquaredGradientDecayFactor ‘0.999’ 

ResetInputNormalisation ‘false’ 

BatchNormalisationStatistics ‘moving’ 

ExecutionEnvironment ‘gpu’ 
Table 3.3: Training options for object detection model training, adapted from MathWorks (n.d.)  

Key hyperparameters identified from the literature review include ‘MaxEpochs’ and 

‘MiniBatchSize’; iterative analysis will be undertaken to determine the preferred value for 

these hyperparameters in the application of sewer pipeline fault detection. 

3.2.4. Evaluation of Detector Performance 

The smart sewer pipeline detection model must be evaluated at various stages throughout the 

methodology, including during adjustment of hyperparameters, and testing of the finalised 

model. Evaluation of the detection model is completed using a predetermined testing dataset 

that has not been seen by the network during training and validation. A test dataset is a dataset 

with known outcomes, that is input to the system as raw data; the success rate is then evaluated 

against the known outcomes to determine the systems performance. The performance is 

measured based on the following metrics as detailed in the literature review: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 

 

𝐴𝑃 = ∑ [𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) − 𝑅𝑒𝑐𝑎𝑙𝑙(𝑘 + 1)] × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)

𝑘=𝑛−1

𝑘=0

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 

The detection speed will also be recorded by capturing the time taken for the model to process 

the test dataset; this will be used to derive a performance metric of frames per second. Whilst 

the threshold for ‘real-time’ detection is not explicitly defined, the target FPS for this research 

is greater than 30fps, as most sewer inspection CCTV videos are between 25 and 30fps. 

3.2.1. Multiclass Object Detection 

This dissertation primarily focuses on ‘cracking’ defects due to the constrained timeline in 

which it must be completed. Notwithstanding, the smart sewer detection model will be applied 

to a revised multiclass dataset to determine its performance in such a task. As hypothesised in 

Section 3.2.1.1, supporting literature indicates the model should exhibit increased AP results 

on alternative defect classes, due to the complexity of cracking defects. Performance of the 

smart sewer detection model will be evaluated utilising metrics detailed above.   

3.3. Project Resources 

Various resources will be required to achieve the aims and objectives outlined in the proposed 

research. The primary elements required for this research are outlined below; additional 

commonly available computer software such as Microsoft Excel was also implemented in this 

research. Further, this project requires extensive data classification and analysis to develop a 

high performing deep learning network; consequentially, the project will require extensive 

allocation of personal time; timeline information is provided in the Project Specification 

appended to this report (refer Appendix 1).  
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3.3.1.   MathWorks MATLAB 

The literature review completed indicates that MathWorks MATLAB provides appropriate 

functionality and capability for this project. MathWorks Inc (2021) offers the Deep Learning 

Toolbox™ which “provides a framework for designing and implementing deep neural 

networks with algorithms, pretrained models, and apps”. 

3.3.2. CCTV Sewer Inspection Data 

The inspection data utilised in this research was obtained from Albury City Council’s 2020-21 

sewer CCTV inspection program. This program included over 10 lineal kilometres of sewer 

pipelines, including varying material types, internal diameters, and pipe condition; this allowed 

an extensive dataset to be developed for use in this research. Acknowledgement to Albury City 

Council is noted for this contribution.  

3.3.3. Computer System for Analysis 

Computer Component Specification 

Custom Workstation 

System Model Custom  

CPU Intel i7-4790k 

4 Cores 

8 Threads 

8MB Cache 

4.40GHz (Max Boost) 

GPU Nvidia RTX3080 

8704 CUDA Cores 

10GB GDDR6X VRAM 

RAM 16GB DDR3 

Operating System Windows 10 

Nvidia DGX  

System Model Nvidia DGX Station A100 

CPU AMD 7742 

64 Cores 

3.4GHz (Max Boost) 

GPU 4x Nvidia A100 

RAM 512GB DDR4 

Operating System Ubuntu Linux OS 
Table 3.4: Summary of Computing Resources  
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3.4. Project Consequences & Ethical Assessment  

The Code of Ethics developed by Engineers Australia (2019) states that “As engineering 

practitioners, we use our knowledge and skills for the benefit of the community to create 

engineering solutions for a sustainable future. In doing so, we strive to serve the community 

ahead of other personal or sectional interests”. The Code of Ethics defines the values and 

principles by which professional engineers undertake the practice of engineering; the four key 

elements outlined by Engineers Australia are (Engineers Australia, 2019):  

a) Demonstrate integrity 

b) Practice competently 

c) Exercise leadership 

d) Promote sustainability 

In undertaking all elements of this dissertation, the Code of Ethics by Engineers Australia 

(2019) has been strictly adhered to. 

3.5. Risk Assessment 

Refer to Appendix 2 for the risk assessment undertaken for this project. The risk assessment 

template has been adapted from the University of Southern Queensland template. As the 

working environment of this project is essentially limited to computer use, the potential risks 

are limited to personal safety, ergonomics, and project delivery timelines. 
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4. Data Analysis & Discussion 

This chapter details the results and findings derived from the development of the smart sewer 

pipeline fault detection model. Firstly, the preliminary architecture and hyperparameters are 

discussed, as well as the initial dataset. Then, analysis of various CNNs is completed to 

determine a preferred feature extraction backbone for the model. Following this, analysis of 

training hyperparameters is undertaking to optimise the smart sewer pipeline fault detection 

model. This section is concluded by a discussion of findings and associated outcomes. 

 

4.1. Initial Model Structure & Parameters   

This section proposes the preliminary model structure and training hyperparameters used for 

analysis. This preliminary model will be optimised through multiple phases of analysis as 

outlined in the methodology of this dissertation. 

Preliminary architecture of the smart sewer pipeline fault detection model utilises the YOLOv2 

detection framework as defined in Section 3.1; this is used to facilitate comparison of various 

CNN backbones as shown in Section 4.2 below. 

4.1.1. Initial Training Hyperparameters 

General training parameters utilised throughout this research are defined in Section 3.2.3 of 

this paper. Additionally, the literature review and methodology determined several key 

hyperparameters that will be optimised through iterative analysis after a preferred model 

structure has been determined; initial values for the key hyperparameters are defined below: 

Training Hyperparameter Hyperparameter Value 

MaxEpochs 30 

MiniBatchSize 8 

Detection MiniBatchSize 64 
Table 4.1: Key training hyperparameters for analysis 
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Training hyperparameters not listed above are defined Section 3.2.3 of this paper and remain 

constant throughout the investigations undertaken. 

4.2. Analysis of CNNs 

As discussed previously in Chapter three, a total of twelve CNNs were selected for evaluation 

to determine the preferred feature extraction backbone for the smart sewer pipeline fault 

detection model. The analysis was completed in two primary stages, being an initial 

preliminary comparison of the twelve CNNs, following by extensive further analysis of the 

preferred CNNs from the first stage. In all cases, the CNNs were trained using deep transfer 

learning, with consistent training hyperparameters as outlined in Section 4.1.1.  

4.2.1. Comparison 1: Preliminary Analysis 

In the first comparison, the twelve CNNs were integrated with the YOLOv2 object detection 

framework and evaluated using a reduced dataset of 527 images to allow all CNNs to be 

assessed within the available timeline; results of the initial investigation are summarised below 

in Table 4.2: 

Feature Extraction 

Network 
Average Precision 

Training Time 

(hh:mm:ss) 

Detection Speed 

(frames per 

second) 

Small-size CNNs (less than 30 layers) 

AlexNet 0.61 00:13:20 54.50fps 

GoogLeNet 0.67 00:15:55 48.07fps 

VGG-16 0.72 00:17:43 31.05fps 

VGG-19 0.72 00:19:35 30.06fps 

SqueezeNet 0.73 00:14:44 49.25fps 

Res-Net 18 0.75 00:15:44 53.91fps 

Darknet-19 0.82 00:17:38 37.06fps 

Medium-size CNNs (greater than 30 layers) 

Xception 0.71 00:27:19 36.70fps 

Inception-ResNet-V2 0.76 01:44:53 38.26fps 

InceptionV3* 0.78 00:34:01 43.54fps 

Res-Net 50 0.82 00:22:46 43.91fps 

Res-Net 101 0.83 00:42:06 42.01fps 

Table 4.2: Summary of initial CNN backbone analysis 
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As shown in the table above, Darknet-19, Res-Net 50 and Res-Net 101 were determined to be 

the preferred CNN backbones in the preliminary analysis. The three CNNs each achieved an 

average precision greater than 80%, whilst maintaining real-time detection speeds between 37 

and 44 frames per second. Precision-recall curves from the preliminary analysis are provided 

below in Figures 4.1-4.3 for the preferred networks: 

 Darknet-19 

The Darknet-19 CNN is the native feature extraction network for the YOLOv2 object detector; 

an average precision of 82% was achieved in the preliminary evaluation trial: 

 

 

 

 

 

 

  

Figure 4.1: Darknet-19 CNN preliminary evaluation:  

Res-Net 50 

The Res-Net 50 CNN was integrated using layer ‘activation_40_relu‘ as the feature layer; an 

average precision of 82% was achieved in the preliminary evaluation trial: 

 

 

 

 

 

 

 

Figure 4.2: Res-Net 50 CNN preliminary evaluation 
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Res-Net 101 

The Res-Net 101 CNN is the deepest network of the three preferred and was integrated with 

‘res4b22_relu‘ as the feature layer. Res-Net 101 achieved the highest average precision of 

83% in the preliminary evaluation trial: 

 

 

 

 

 

 

  

Figure 4.3: Res-Net 101 CNN preliminary evaluation 

4.2.2. Comparison 2: Detailed Analysis 

From the initial comparison trials completed above, three networks were selected for further 

evaluation on the primary dataset (3834 images). This comparison was repeated four times to 

identify any outliers or instability within the preliminary models; Figure 4.4 below presents 

the mean of the four iterations completed:  

 

 

 

 

 

 

 

 

Figure 4.4: CNN Comparison on primary dataset 
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The Res-Net 101 CNN backbone attained the highest average precision score of the three 

networks, being 81.8%. Whilst the result of Res-Net 50 was within a narrow margin, 

Darknet-19 returned a notably lower average precision score of 75.5%. The Res-Net 101 

precision-recall curve for the median average precision iteration is provided below in Figure 

4.5:  

 

 

 

 

 

 

  

 

  

Figure 4.5: Precision-recall curve for median Res-Net 101 result 

The training and validation loss information is plotted in Figure 4.6 to show the network 

training behaviour. This figure shows slight overfitting beginning to occur; whilst it is 

considered negligible in this instance, it indicates that the network is not improving from 

further iterations. It can be inferred that an increase in the training dataset would further 

improve model performance in this instance. 
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Figure 4.6: Plot of Training & Validation Loss for Res-Net 101 

In addition to the average precision metric, model detection speed when utilising the three 

different CNNs was recorded for comparison. It was found that all three detectors maintained 

a speed over 30 frames per second; thus, all models exhibit real-time detection ability. 

 

 

 

 

 

 

 

 

Figure 4.7: CNN Comparison on primary dataset 

From the comparison of CNN architectures completed, it can be concluded that the Res-Net 

101 CNN is the preferred feature extraction backbone for the smart sewer pipeline detection 

model. The average precision result of 81.8% represents strong performance in detecting and 

localising cracking faults within the CCTV data, whilst still maintaining a detection speed 

greater than 30 frames per second.  
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4.3. Evaluation of Hyperparameters  

As the structure of the smart sewer pipeline detection model has been determined based on the 

preferred CNN backbone, the network training parameters can now be optimised to further 

improve detector performance and robustness. This will be completed by undertaking multiple 

iterative analysis’ where key hyperparameters are individually evaluated to determine optimal 

settings. Chapter three defines the key hyperparameters selected for analysis; these are restated 

below in Table 4.3: 

Training Hyperparameter Description 

MaxEpochs 

An epoch is a full pass of the training algorithm over the 

entirety of the training dataset; ‘MaxEpochs’ defines the 

maximum number of epochs the network training can 

complete before finishing. 

MiniBatchSize 

The mini-batch is a subset of the training dataset used to 

evaluate the loss function gradient and update the layer 

weights. The ‘MiniBatchSize’ describes the size of the 

mini-batch. 

Table 4.3: Hyperparameters for model training, reduced from Section 2.5.4.3 (MathWorks, n.d.) 

Evaluation of training hyperparameters was completed using the Nvidia DGX A100 Station at 

the University of Southern Queensland. As detailed in Section 3.3.3, the DGX is a server grade 

system designed for artificial intelligence and deep learning; this system facilitates network 

training options that may not be possible on a conventional computer system, such as large 

values for the ‘MiniBatchSize’ hyperparameter. 

Whilst the CNN comparison determined Res-Net 101 to be the preferred CNN backbone for 

the smart sewer pipeline detection model, the high-speed multi-GPU functionality of the DGX 

allows up to four training instances to run parallel; hence, training hyperparameters were also 

evaluated on the Res-Net 50 and Darknet-19 versions of the model for further comparison. 

4.3.1. MiniBatchSize  

The research undertaken in Chapter two indicated that the effect ‘MiniBatchSize' on detector 

performance varies depending on the specific application, hence, it is imperative to complete 

optimise this hyperparameter for the selected task.  

The MiniBatchSize variable was analysed for values between 4 and 64; similarly to the CNN 

backbone evaluation, the analysis was repeated four times to achieve a representative sample. 

Figure 4.8 below presents the results of the analysis on the ‘MiniBatchSize’ hyperparameter: 
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Figure 4.8: Analysis of ‘MiniBatchSize’ training hyperparameter 

The results presented in Figure 4.8 generally indicate a favourable trend toward the higher 

‘MiniBatchSize’ of 32 and 64, with only Res-Net 50 indicating a preferred value of 16. By 

inspection, it is noted that one Res-Net 50 trial resulted in an average precision of 68% for 

‘MiniBatchSize’ 32, which is generally inconsistent with other iterations and may be an 

outlier. Notwithstanding, it is maintained in the comparison above as it cannot be excluded 

without doubt; however is noted that exclusion of the iteration would increase the average 

precision to 80.7% for Res-Net 50 (MiniBatchSize=32).  

The highest performance was achieved with the preferred Res-Net 101 CNN, returning an 

average precision of 85.8% and 86.0% for ‘MiniBatchSize’ 32 and 64 respectively. The Res-

Net 50 CNN performed best on a ‘MiniBatchSize’ of 64, returning an average precision of 

84.3%. 

The trend between increased ‘MiniBatchSize’ and average precision infers a positive linear 

correlation, meaning that an increase in the hyperparameter will likely result in improved 

detector performance within the range tested. From the literature review undertaken in Chapter 

two, this is likely due to the accuracy of gradient adjustments being increased, as the calculation 

is completed using more data due to the larger batch size (Peng et al., 2018). Analysis of larger 

‘MiniBatchSize’ values (128, 256 etc) was not undertaken due to time resourcing constraints.  

8
0

.3
%

8
0

.3
%

8
1

.0
%

7
7

.5
% 7

9
.8

%

7
9

.3
%

8
1

.8
%

8
2

.5
%

8
5

.8
%

8
6

.0
%

7
4

.8
%

7
5

.5
%

8
2

.3
%

8
2

.8
% 8
4

.3
%

M S B = 4 M B S = 8 M B S = 1 6 M B S = 3 2 M B S = 6 4

A
V

ER
A

G
E 

P
R

EC
IS

IO
N

 (
A

P
)

MINI BATCH SIZE

ANALYSIS OF CNNS

ResNet-50 ResNet-101 Darknet-19



82 

 

 

Based on the literature review, it is expected that detector performance would eventually 

decrease with increased batch size (Kandel & Castelli, 2020); further, the results obtained 

indicate limited benefit increasing from a MiniBatchSize of 32 to 64, meaning it is plausible 

that a decrease would be realised if the hyperparameter was increased to 128 or larger. 

Additionally, it is noted that high performance computing capability is required to utilise larger 

batch sizes, with the Nvidia RTX3080 GPU experiencing unreliability for a ‘MiniBatchSize’ 

larger of 32 or larger for this model when tested. 

Considering the above, it is proposed that a ‘MiniBatchSize’ of 32 is adopted when completing 

further analysis on other training hyperparameters. The adopted value considers the 

computational cost benefits of the smaller ‘MiniBatchSize’ and recognises the increase from 

32 to 64 yields insignificant benefit to detector performance.  

4.3.2. Maximum Epochs 

As discussed in Chapter two, ‘MaxEpochs’ describes the maximum number of epochs 

permitted in the training process of the model, where an epoch is complete pass through the 

entire dataset. ‘MaxEpochs’ effectively defines the amount of time the model spends learning 

the data; as detailed in Section 2.5.4.3, limited epochs will reduce model performance as it will 

not learn adequately, whereas a high ‘MaxEpochs’ setting will promote overfitting.  

Similarly to the ‘MiniBatchSize’ comparison, the three preferred CNNs were evaluated to 

determine the optimal ‘MaxEpochs’ hyperparameter for this application. Comparison between 

10, 20, 30, 40 and 50 epochs were completed, with key training hyperparameters for this 

analysis are defined below in Table 4.4: 

Training Hyperparameter Hyperparameter Value 

Training Dataset 3834 Images 

MaxEpochs 10, 20, 30, 40 & 50 

MiniBatchSize 32 

Detection MiniBatchSize 64 

InitialLearnRate 0.0001 
Table 4.4: Key training hyperparameters for analysis 

The analysis was again repeated four times to achieve a representative sample; Figure 4.9 and 

Table 4.5 below present the results of the analysis on the ‘MaxEpochs’ hyperparameter: 
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Figure 4.9: Analysis of ‘MaxEpochs’ training hyperparameter 

Analysis of ‘MaxEpochs’ 

‘MaxEpochs’ 10 20 30 40 50 

Res-Net 50 69.3% 79.8% 79.8% 81.0% 81.5% 

Res-Net 101 80.5% 82.8% 84.8% 84.5% 83.8% 

Darknet-19 73.8% 81.0% 82.5% 84.0% 83.3% 

Table 4.5: ‘MaxEpochs’ Analysis Summary Tabulated 

The results presented above demonstrate that the preferred value for ‘MaxEpochs’ varies 

between the three CNNs, however the variance in the average precision metric between the 

hyperparameter values of 30, 40 and 50 is insignificant. All model variations performed 

worse at ‘MaxEpoch’ values of 10 and 20, than values of 40 or 50.   

The Res-Net 50 network returned the highest average precision value (81.5%) when trained 

for 50 epochs; however, the performance increase over 20 ‘MaxEpochs’ was limited to 1.7%. 

It is noted that detector performance was still increasing at 50 ‘MaxEpochs’, however it is 

considered unlikely that further increases in performance would be achieved without the 

possibility of overfitting. 

The Res-Net 101 network again achieved the highest average precision value (84.8%) of all 

CNNs, with the optimal ‘MaxEpochs’ value being 30. An average precision of 84.5% and 

83.8% were achieved for ‘MaxEpoch’ values of 40 and 50 respectively; whilst this is a minor 

negative trend, it is considered to be within typical training variance. It can be concluded that 
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‘MaxEpoch’ values greater than 30 do not significantly improve performance of the trained 

model in this application. A recall-precision curve for the iteration where an average 

precision of 85.6% was returned is presented below in Figure 4.10: 

  

 

 

 

 

 

 

 

  

Figure 4.10: Precision-recall curve for Res-Net 101 trained for 30 epochs 

The Darknet-19 variation of the detection model achieved an optimal result of 84.0% at a 

‘MaxEpochs’ value of 40. Performance of the detector reduces slightly (0.7%) at a value of 

50 epochs; however this is considered too small to infer a conclusion. 

In summarising the analysis, it can be generally concluded that ‘MaxEpoch’ values of 30-50 

are preferred for the smart sewer fault detection model. A value of 40 epochs will be adopted 

for the proposed model, and further analysis moving forward. In practice, 40 epochs 

demonstrated consistent performance across all CNNs tested and is unlikely to promote 

overfitting of the model. Further, utilising a value of 40 epochs increases resiliency to 

complex datasets that may require additional learning time.  

4.4. Alternative Defect Classes 

The primary dataset used for the analysis in Sections 4.2 and 4.3 contained only images of 

cracking defects within the sewer pipelines; the primary reason for this was due to the limited 

timeframe in which this research was undertaken. Notwithstanding, the realised time available 

allowed the smart sewer detection model to be trained and tested utilising an alternative dataset 

containing two additional defect classes. 
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4.4.1. Multiclass Detection Performance 

To determine the performance of the smart sewer detection model on alternative defect classes, 

additional data was prepared and annotated containing defects such as root intrusions and 

deposits. The revised dataset containing 3626 images was used to analyse performance of the 

model on three defect classes simultaneously. Table 4.6 shows the occurrence of each defect 

class within the dataset (note, frames containing multiple defects of the same type are only 

counted as one occurrence): 

Defect Class Occurrence Percentage of Total 

Crack 1931 46.3% 

Deposit 735 17.6% 

Root Intrusion 1502 36.1% 

   

Combined 4168 100% 

Table 4.6: Multiclass Dataset Information 

Analysis of the multiclass dataset was completed utilising the model developed in earlier 

sections of this Chapter; key information relating to the model and associated training 

hyperparameters is restated in Table 4.7 below for clarity. Data pre-processing techniques 

such as data augmentation and division of training, validation and test subsets remain 

consistent with the methodology detailed in Chapter 3. 

Variable Value 

Smart Sewer Detection Model 

Object Detection Framework YOLOv2 

Feature Extraction Network Res-Net 101 

Feature Extraction Layer ‘res4b22_relu’ 

Key Training Hyperparameters 

‘Optimiser’ Adam 

‘InitialLearnRate’ 0.0001 

‘MiniBatchSize’ 16 

‘MaxEpochs’ 40 

Table 4.7: Summary of model information for multiclass analysis 
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The findings of average precision for the three defect classes are presented below in Table 

4.8, as well as the mean average precision (mAP) for the detection model; the associated 

precision-recall curves for the median iteration are provided in Figures 4.11 – 4.13. The 

analysis was repeated four times to achieve a representative sample and determine stability of 

the model. From the results presented below, it is evident that the smart sewer detection 

model is adaptable to other defect classes, having achieved significantly higher performance 

for ‘root intrusion’ and ‘deposit’ defects than ‘cracking’ defects. Further, the average 

detection speed of the trained model is 46.7fps.  

Smart Sewer Detection Model – Multiclass Analysis 

AP 
mAP 

Crack Deposit Root Intrusion 

77.5% 96.3% 94.8% 89.3% 

Table 4.8: Multiclass Object Detection Results 

Precision-Recall Curve: ‘Cracking’ Defects 

 

 

 

 

 

 

 

Figure 4.11: Precision-recall curve for ‘cracking’ defects 
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Precision-Recall Curve: ‘Deposit’ Defects 

 

 

 

 

 

 

 

 

Figure 4.12: Precision-recall curve for ‘deposit’ defects 

 Precision-Recall Curve: ‘Root Intrusion’ Defects 

 

 

 

 

 

 

 

 

Figure 4.13: Precision-recall curve for ‘root intrusion’ defects 

A graph showing the training and validation loss behaviour is provided below in Figure 4.14. 

Similar to Figure 4.6, the training behaviour indicates a negligible degree of overfitting; whilst 

this has minimal impact on detector performance, it is possible that the number of epochs could 

have been reduced to shorten training time with no impact to model performance. 

Notwithstanding, time constraints did not facilitate further investigation. 
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Figure 4.14: Training & validation loss for multiclass defect training 

 

4.5. Discussion  

The outcomes of this research satisfy the intended aim and objectives set out within Chapter 

one, having developed an accurate and precise framework capable of real-time detection. The 

smart sewer detection model is an innovative technology capable of rapidly and accurately 

detecting a range of faults within sewer pipelines. To create this model, deep transfer learning 

and object detection technology was utilised; the model was trained on a comprehensive dataset 

derived from raw CCTV data, and then tested on unseen data to evaluate its performance.  

Through the methodology of comparative CNN analysis and hyperparameter optimisation, an 

adapted version of the YOLOv2 object detection model was created, utilising the Res-Net 50 

CNN as the feature extraction network. The Res-Net 101 network was preferred out of the 

twelve CNNs in the comparative analysis, which included common networks such as AlexNet 

and Darknet-19. This smart sewer detection model achieved a mAP of 89.3% and detection 

speed of 46.7fps in the final multiclass analysis. 
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4.5.1. Smart Sewer Detection Model  

The smart sewer detection model that was developed in this research utilises the YOLOv2 

object detection framework, with adaption of the Res-Net 101 CNN as the feature extraction 

network in lieu of the native Darknet-19 CNN. A comparative study was completed on twelve 

common CNNs, of which the initial selection was informed through the literature review in 

Chapter two; the CNNs were evaluated based on the average precision metric, as well as 

detection speed. Figure 4.15 below presents the finalised architecture of the smart sewer 

detection model: 

Figure 4.15: Architecture of ‘Smart Sewer Detection Model’ 

4.5.2. CNN Evaluation Findings 

Utilising the YOLOv2 framework, the twelve CNNs were evaluated by metrics of average 

precision and detection speed on a preliminary dataset containing 527 images. AlexNet 

achieved the highest detection speed of 54.5fps, however the average precision was the lowest 

of all CNNs at 61%. GoogLeNet was the only other CNN to return an average precision score 

below 70.0%. The three preferred CNNs from the preliminary comparison were Darknet-19, 

Res-Net 50 and Res-Net 101, all returning an average precision score greater than 80.0%; the 

remaining seven CNNs scored between 70.0% and 80.0%. All twelve networks that were 

evaluated achieved a real-time detection speed (>30fps); the slowest results were VGG-16 and 

VGG-19 which achieved 31.05fps and 30.06fps respectively. The slower detection speeds 

achieved by the VGG CNNs can be attributed to the large number of parameters and high 

computational cost, which was discussed further in Chapter two (Alzubaidi et al., 2021). The 

preferred networks Darknet-19, Res-Net 50 and Res-Net 101 returned detection speeds of 

37.06fps, 43.91fps and 42.01fps respectively. 
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Following on from the preliminary analysis, the three preferred CNNs were further evaluated 

to determine the most suitable network for use in the smart sewer detection model. The three 

CNNs were evaluated on an increased dataset of 3834 images; this analysis was repeated four 

times to demonstrate stability of the model. This investigation was completed using the Nvidia 

A100 DGX Station at the University of Southern Queensland; use of this computing system 

allows multiple simultaneous trials to be completed. Results of the analysis indicated that Res-

Net 101 is the preferred CNN, returning an average precision value of 81.8%; Res-Net 50 and 

Darknet-19 achieved an average precision of 80.3% and 75.5% respectively. From the results, 

it can be inferred that the increased depth of Res-Net 101 is beneficial in this application; 

however, the Res-Net 101 CNN was slower in the detection speed metric than other CNNs, 

likely due to the network size. Res-Net 101 achieved a detection speed of 30.2fps, where Res-

Net 50 and Darknet-19 achieved 34.1fps and 36.3fps respectively. Notwithstanding, all three 

CNNs evaluated in the comparison demonstrated real-time detection capability, thus Res-Net 

101 was determined to be the preferred feature extraction network due to its higher average 

precision. Whilst the dataset utilised for evaluation contained only cracking defects, it is 

hypothesised that Res-Net 101 would be favourable in multiclass object detection and other 

tasks of increased complexity due to its added network depth.  

4.5.3. Network Hyperparameter Optimisation Findings 

Following the evaluation of CNNs discussed above, several investigations were undertaken to 

determine the optimal network training hyperparameters. Chapter two reviewed training 

parameters and their associated influence on the network training process; from this, two 

primary hyperparameters were identified for optimisation through an iterative analysis, namely 

‘MiniBatchSize’ and ‘MaxEpochs’. These hyperparameters were selected for evaluation as the 

literature review undertaken indicated that optimal values vary significantly between 

applications and cannot be inferred from general research. Analysis of the hyperparameters 

was completed on each of the three CNNs discussed in Section 4.5.2, as multi-gpu functional 

of the DGX station allowed this to be completed within the required research timeline. 

The first hyperparameter analysed was the ‘MiniBatchSize’, which was evaluated for values 4, 

8, 16, 32 and 64. ‘MiniBatchSize’ refers to the size of the data sample the network uses to 

calculate and adjust weightings; generally, a large ‘MiniBatchSize’ performs faster with 

reduced accuracy, and a smaller value performs slower with increased accuracy. The results 

from this investigation are restated in Table 4.9: 
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Average Precision (AP) for various ‘MiniBatchSize’ 

CNN 
‘MiniBatchSize’ 

4 8 16 32 64 

Res-Net 50 80.3% 80.3% 81.0% 77.5% 79.8% 

Res-Net 101 79.3% 81.8% 82.5% 85.8% 86.0% 

Darknet-19 74.8% 75.5% 82.3% 82.8% 84.3% 

Table 4.9: AP results for various ‘MiniBatchSize’ 

The results of this analysis show that a higher value for the ‘MiniBatchSize’ hyperparameter 

will generally promote increased model performance, except for the Res-Net 50 network where 

a value of 16 was favourable. Values larger than 64 were not included the evaluation due to the 

time constraints associated with this research; notwithstanding, it is noted that a high value (i.e. 

128, 256) requires very high computational capability, and cannot be utilised on most common 

computers for this application. The workstation computer (RTX3080 GPU) utilised in this 

research experienced unreliability in the training process with a ‘MiniBatchSize’ of 32 or larger 

for the three CNNs, meaning there may be instances where a value of 16 is appropriate when 

used in practical applications. All variations of the model demonstrated strong performance 

with a ‘MiniBatchSize’ of 16, meaning it is a suitable value for this hyperparameter when 

limited computational capability is available. This is particularly valuable when assessing the 

benefit of this research from an industry perspective, as access to high performance computing 

equipment varies significantly. In reviewing the results of this analysis, it was determined that 

a ‘MiniBatchSize’ of 32 was preferred for the smart sewer detection model, as it provides 

balance between performance and computational cost.  

Following analysis of the ‘MiniBatchSize’ hyperparameter, the optimal value for ‘MaxEpochs’ 

was investigated; this was completed on the DGX station by implementing the same 

methodology discussed above. The analysis on the number of training epochs indicated a 

general trend to the higher values of 30-50, with the optimal value for each CNN within this 

range. From the results of the investigation, it can be inferred that negligible performance 

increase, if any, would be derived from a ‘MaxEpochs’ value beyond 50. Higher values are 

also likely to promote overfitting of the model, meaning the models ability to generalise would 

be reduced, impacting its performance in a practical application. Based on the findings of the 

investigation, it was determined that a value of 40 was preferred for the ‘MaxEpochs’ 

hyperparameter. This value intends to balance model performance and overfitting, whilst still 

allowing contingency for datasets with complexity greater than that utilised in this research. 
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4.5.4. Multiclass Object Detection 

Multiclass object detection was not the primary focus of this research due to the additional time 

associated with data annotation and model optimisation for multiple defect classes being 

beyond the forecast time available. Notwithstanding, the ability of the model to perform in a 

multiclass application is critical to its value in practical application and will be essential in 

achieving industry utilisation of  this technology. Following development of the smart sewer 

detection model discussed above, it was determined that there was availability to investigate 

the model’s performance on a multiclass dataset, containing three different types of pipeline 

defects. 

Application of the smart sewer detection model to the multiclass dataset yielded strong results, 

with the model achieving a mAP of 89.3% and detection speed of 46.7fps. This aligns with the 

hypothesis discussed in Section 3.2.1.1, where model performance on other defect classes was 

anticipated to be better than cracking defects due to their complexity and variability. The results 

achieved reflect high recall, precision, and detection speed, appropriate for use in practical 

application. An example of an image output from the smart sewer detection model is presented 

below in Figure 4.16: 

 

 

 

 

 

 

 

 

  

  

Figure 4.16: Example of multiclass detection 

Overall, the results achieved on the multiclass dataset indicate that the model is robust and able 

to adapt to new datasets and defects well. This provides strong indication that the model would 

exhibit strong performance if implemented on data obtained from a completely different 



93 

 

 

municipality, where minor differences in background data and defect behaviour may exist. To 

further investigate the model’s ability to generalise, raw data from videos not included in the 

training, validation or test datasets was input to the model and visually inspected; the model’s 

ability to detect defects within this data was generally consistent with its performance on the 

test dataset.  

4.5.1. Limitations of Research 

Due to the timeframe associated with completion of this dissertation, several limitations within 

this research exist. The application of object detection technologies to sewer pipeline faults or 

any related industry task requires extensive time allocation for data annotation and model 

development; considering this, the scope of research primarily focused on cracking defects 

within sewer pipelines to align with the required timeline. Whilst later application of the model 

to multiclass object detection was highly successful, it is possible that further optimisation of 

the model could occur. Specifically, a multiclass dataset should be utilised to undertake the 

evaluation of CNNs and training hyperparameters completed in this research. Additionally, it 

is noted that further increase in the size of the dataset would likely yield further improvements 

to model performance.  

The dataset developed in this research is primarily derived from vitrified clay (VC) sewer 

pipelines, due to the asset inspection program from which this data was collected including 

predominantly VC pipelines. While this is not considered a significant limitation, it is important 

that a diverse range of material types are utilised when training the smart sewer detection model 

for industry application, as to alleviate any bias that may exist. 

Whilst this research provides meaningful contribution to industry, practical implementation 

would require a user-friendly graphical interface to be developed based on this proposed model. 

Development of a graphical user interface (GUI) would allow the model to be utilised by any 

person(s) involved with management of sewer assets. Development of a GUI is discussed 

further in Section 5.3.1. 

 

 

 

  



94 

 

 

 

 

 

 

 

5. Conclusion 

 

5.1. Research Outcomes 

Consistent with the aims and objectives of this dissertation, the results demonstrate that a 

successful object detection model has been developed for sewer pipeline defects, utilising 

computer vision technology and deep transfer learning. The smart sewer detection model is 

capable of accurate and precise location of sewer pipeline faults at a speed exceeding the 

threshold of real-time capability. 

Raw CCTV inspection data was obtained from industry to develop a comprehensive dataset 

utilised for model training, validation, and testing. Two primary datasets were created for this 

research, one which contained only cracking defects, and a second dataset containing three 

defects for multiclass analysis. In combination, the two datasets contain over 7400 annotated 

images that were extracted from the CCTV data after annotation. Annotation of the raw video 

data was completed using the MATLAB Video Labeller App; a semi-autonomous data 

annotation tool. 

The smart sewer detection model is an object detection model that leverages deep transfer 

learning capabilities. The model is based on the YOLOv2 object detection framework, with the 

Res-Net 101 CNN adapted as the feature extraction network. The research included a 

comprehensive analysis of twelve CNNs to determine the most appropriate, maximising the 

performance of the detection model for this application. The smart sewer detection model 

achieved initial performance metrics of 81.8% for average precision, and 30.2fps for detection 

speed; this was further refined through training optimisation. 

Performance of the smart sewer detection model was refined by optimising training 

hyperparameters through an iterative analysis. The key hyperparameters identified through the 

literature review were ‘MiniBatchSize’ and ‘MaxEpochs’; the optimal values for each were 
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found to be heavily dependent on the specific task. The iterative analysis was completed using 

the DGX Station at the University of Southern Queensland; this facilitated concurrent trials 

due to its multi-gpu capability. The analysis found that values of 32 for ‘MiniBatchSize’, and 

40 for ‘MaxEpochs’ were preferred by the model for this application. Optimisation of these 

training parameters provided an increase in average precision of 3.0% over the results obtained 

with preliminary hyperparameters. 

Analysis of the smart sewer detection model was completed on a multiclass dataset as an 

extension to the investigation outlined above. The multiclass dataset contained ‘cracking’, 

‘deposit’ and root ‘intrusion’ defects; the model achieved a mAP of 89.3% and a detection 

speed of 46.7fps.  

Overall, the smart sewer detection model developed in this research aligns wholly with the 

project aim and objectives, providing valuable prospect of industry application that would 

deliver direct economic and qualitative benefit to users. 

5.2. Benefit to Industry  

Sewer pipelines are essential infrastructure that assist in maintaining public health, and like all 

civil infrastructure assets, require ongoing maintenance and renewal. As detailed throughout 

this dissertation, the inspection and data review process associated with renewal of sewer 

infrastructure is extremely tedious, requiring extensive time allocation to review and categorise 

data.  

The smart sewer detection model developed in this research demonstrates the ability to 

autonomously detect, locate and classify faults with CCTV inspection data, with high accuracy 

and detection speed. The ability of this model has potential to supplement and/or replace the 

human resources currently required to evaluate sewer inspection data. Further, the model is not 

subject to fatigue or common human errors, meaning it provides a consistent, systematic 

analysis of data. Considering this, the smart sewer detection model has potential to provide 

direct economic benefit to industry by reducing the required human input, and further, by 

improving the decision-making process through a systematic approach. 

5.3. Future Research  

Several areas of future research have been identified in completing this dissertation, including 

improving existing limitations, improved dataset scale and quality, field deployment, 

development of a GUI and automated rehabilitation suggestions. 
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Improving the limitations of research outlined in Section 4.5.1 is of foremost importance, as it 

will provide further improvements to the object detection model before application to other 

future works discussed below. The primary limitation to be addressed is the basis of developing 

the model with focus on one defect class; it is recommended to test the three CNNs again 

utilising an improved dataset with all relevant pipeline defects required by industry. 

Completing this will ensure optimisation of the employed model is maximised. 

5.3.1. Field Deployment 

Industry discussion within this dissertation primarily relates to supplementing the data review 

process that follows after inspection of sewer mains is complete. While significant potential 

for application of this technology exists in that area, benefit may also exist in field deployment. 

Use of this technology in a field application would allow operational staff to autonomously 

assess pipeline condition in real-time whilst inspecting. It is suggested that a device such as a 

Nvidia Jetson Nano may be appropriate for this application, however it is suggested that the 

network is pretrained on a computer with higher computational capability.  

5.3.2. Graphical User Interface 

For technology to be adopted by modern industry, it is essential that it is intuitive and user 

friendly. Whilst this research focuses on the development of the object detection model 

framework, it is known that a supporting GUI is required for the model to be practical to 

industry. It is envisaged that the GUI would interpret an .CSV file or similar from the detection 

model and reassociate it with the raw CCTV data for ease of interpretation. Development of 

this GUI would see the smart sewer detection model form an end-to-end solution for industry, 

that entirely alleviates the requirement for human assessment of the inspection data. 

5.3.3. Suggested Repair Methodology 

As a means of further extension to the proposed GUI discussed above, automation of suggested 

rehabilitation techniques based on the model’s detection results is proposed. This would further 

expand the benefit to industry provided by this research. The post-processing component of the 

program would derive a suggested rehabilitation method based on an assigned defect output. It 

is suggested that this would be completed in accordance with the literature review, by applying 

the appropriate rehabilitation methods for each nominated defect. The detected fault type could 

be assigned a suggested rehabilitation method through a look-up table or similar means; a 

generalised example of this relationship is provided below: 



97 

 

 

Defect Rehabilitation Methodology 

Cracking Insitu Relining 

Hole Insitu Relining 

Collapse Pipe Bursting 

Void Pipe Bursting 

Root Ingress Root cutter and Heavy Clean 

Deposit Heavy Clean 

Table 5.1: Example relationship between defect and rehabilitation method. 
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Appendix 

5.4. Appendix 1 – Project Specification 

ENG4111/4112 Research Project 

Project Specification 

For:  Kyal Sharpe   

Title: Development of a smart sewer pipeline fault detection method using CCTV 

inspection data and deep learning 

Major:  Civil Engineering  

Supervisors: Andy Nguyen 

Enrollment: ENG4111 – EXT S1, 2022 

  ENG4112 – EXT S2, 2022 

Project Aim: To develop an autonomous system that processes CCTV inspection data of 

sewer pipelines, identifies faults, and proposes a suitable repair method based 

on the fault identified. 

Programme: Version 1, 16th March 2022  

1. Conduct research and expand upon my current literature review to determine/develop 

a strategy for the deep learning program. 

2. Investigate and review data management to determine the most appropriate input 

format, including video sampling techniques.  

3. Research and analyse current methods of sewer fault identification, including any 

industry standard fault categorization systems.    

4. Begin developing deep learning prototype program based on previous points 

5. Develop/classify a training dataset from CCTV inspection data, then attempt to train 

deep learning program on the training dataset. 

6. Undertake test/validation phase with a new dataset to determine the 

effectiveness/efficiency of the program.  

7. Compare the effectiveness/efficiency of the program with current industry techniques 

(i.e. manual review and recognition) 

8. Prepare, develop, finalise and submit thesis. 

If time and resource permit: 

9. Automatically determine a suitable repair method based on the fault classification 

obtained. 

10. Determine approximate cost estimation based on the fault type and repair method. 
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Gaant Chart (March 2022) 

5.5. 
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Appendix 2 – Risk Assessment 

 

University of Southern Queensland 

Generic Risk Management Plan 

Workplace (Division/Faculty/Section): 

School of Engineering 

Assessment No: 

ENG4111/2 

Assessment Date: 

13/10/2022 

Review Date: (5 years maximum) 

01//03//2022 

Context: What is being assessed?  Describe the item, job, process, work arrangement, event etc:  

This risk management plan relates to identification and management of risks associated with completion of the ENG4111/2 research project for student 

Kyal Sharpe (0061109786) 

Assessment Team – who is conducting the assessment? 

Assessor(s): 

Belal Yousif, Andy Nguyen 

Others consulted: (eg elected health and safety representative, other personnel exposed to risks) 

Nil 

 



113 

 

 

Step 1 -  Identify the hazards (use this table to help identify hazards then list all hazards in the risk table) 

General Work Environment 

 Sun exposure  Water (creek, river, beach, dam)  Sound / Noise 

 Animals / Insects  Storms / Weather/Wind/Lightning  Temperature (heat, cold) 

 Air Quality  Lighting  Uneven Walking Surface 

 Trip Hazards  Confined Spaces  Restricted access/egress 

 Pressure (Diving/Altitude)  Smoke    

Other/Details:       

Machinery, Plant and Equipment 

 Machinery (fixed plant)  Machinery (portable)  Hand tools 

 Laser (Class 2 or above)  Elevated work platforms  Traffic Control 

 Non-powered equipment  Pressure Vessel  Electrical 

 Vibration  Moving Parts  Acoustic/Noise 

 Vehicles  Trailers  Hand tools 

Other/Details:       

Manual Tasks / Ergonomics 

 Manual tasks (repetitive, heavy)  Working at heights  Restricted space 

 Vibration  Lifting Carrying  Pushing/pulling 

 Reaching/Overstretching  Repetitive Movement  Bending 

 Eye strain  Machinery (portable)  Hand tools 

Other/Details:       

Biological    (e.g. hygiene, disease, infection) 

 Human tissue/fluids  Virus / Disease   Food handling 

 Microbiological  Animal tissue/fluids   Allergenic 

Other/Details:       

Chemicals     Note: Refer to the label and Safety Data Sheet (SDS) for the classification and management of all chemicals. 

 Non-hazardous chemical(s)  ‘Hazardous’ chemical (Refer to a completed hazardous chemical risk assessment) 

 Engineered nanoparticles  Explosives  Gas Cylinders 

Name of chemical(s) / Details:       

Critical Incident – resulting in: 

 Lockdown  Evacuation  Disruption 

 Public Image/Adverse Media Issue  Violence  Environmental Issue 

Other/Details:       

Radiation    

 Ionising radiation  Ultraviolet (UV) radiation   Radio frequency/microwave 

 infrared (IR) radiation   Laser (class 2 or above)    

Other/Details:       

Energy Systems – incident / issues involving: 

 Electricity (incl. Mains and Solar)  LPG Gas  Gas / Pressurised containers 

Other/Details:       

Facilities / Built Environment 

 Buildings and fixtures  Driveway / Paths  Workshops / Work rooms 

 Playground equipment  Furniture  Swimming pool 

Other/Details:       

People issues 

 Students  Staff  Visitors / Others 

 Physical  Psychological / Stress  Contractors 

 Fatigue  Workload  Organisational Change 
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 Workplace Violence/Bullying  Inexperienced/new personnel   

Other/Details:       

Step 1 (cont) Other Hazards / Details (enter other hazards not identified on the table) 

Project Proposal Rejection 

Resource Allocation Not Available 

Failure to achieve scheduled progress and submission deadline 

      

 

Risk Matrix 
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Risk register and Analysis 

 

Step 1 

(cont) 

Step 2 Step 2a Step 3 Step 4 

Hazards: 

From step 1 

or more if 

identified 

 

The Risk:  

What can happen if exposed 

to the hazard with existing 

controls in place? 

Existing Controls: 

What are the existing controls that 

are already in place? 

Risk Assessment: 

(use the Risk Matrix on 

p3) 

Consequence x 

Probability = Risk Level 

Additional controls: 

Enter additional controls if required 

to reduce the risk level 

Risk assessment  with 

additional controls: 

(use the Risk Matrix on 

p3 – has the consequence 

or probability changed?) 

Controls 

Implemente

d? 

Yes/No 

   Consequ

ence 

Probab

ility 

Risk 

Level 

 Consequ

ence 

Probab

ility 

Risk 

Level 

Example           

Working in 

temperatures over 

350 C 

Heat stress/heat stroke/exhaustion leading to 

serious personal injury/death 

Regular breaks, chilled water available, loose clothing, 

fatigue management policy. 

catastrophic possible high temporary shade shelters, essential tasks only, close 

supervision, buddy system 

catastrophic unlikely mod Yes 

Eye Strain Short term or long term damage to 

vision, physical pain 

Informal breaks from computer   Moderate Possible High Formalise a schedule of 15 minute breaks 

and a longer break depending on study 

duration. Ensure hydraton and fresh air. 

Moderate Unlikely Moderat

e 

Yes 

Repetitive 

Movement 

Possible cramping, muscle strain 

and/or extended damage 

Nil Minor Possible Moderat

e 

Formalise a schedule of 15 minute breaks, 

ensure stretching is completed.  

Minor Unlikely Low Yes 

Stress Mental stress and /or exhaustion 

due to deadlines and complexity of 

task 

Study schedule Moderate Possible High Develop a formal study schedule and 

associated timeline, monitor throughout the 

duration and adjust when required in 

discussion with supervisor if necessary. 

Moderate Unlikely Moderat

e 

Yes 
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Step 1 

(cont) 

Step 2 Step 2a Step 3 Step 4 

Hazards: 

From step 1 

or more if 

identified 

 

The Risk:  

What can happen if exposed 

to the hazard with existing 

controls in place? 

Existing Controls: 

What are the existing controls that 

are already in place? 

Risk Assessment: 

(use the Risk Matrix on 

p3) 

Consequence x 

Probability = Risk Level 

Additional controls: 

Enter additional controls if required 

to reduce the risk level 

Risk assessment  with 

additional controls: 

(use the Risk Matrix on 

p3 – has the consequence 

or probability changed?) 

Controls 

Implemente

d? 

Yes/No 

   Consequ

ence 

Probab

ility 

Risk 

Level 

 Consequ

ence 

Probab

ility 

Risk 

Level 

Example           

Working in 

temperatures over 

350 C 

Heat stress/heat stroke/exhaustion leading to 

serious personal injury/death 

Regular breaks, chilled water available, loose clothing, 

fatigue management policy. 

catastrophic possible high temporary shade shelters, essential tasks only, close 

supervision, buddy system 

catastrophic unlikely mod Yes 

Workload Fatigue and stress due to high 

workload completing research 

project amongst other subjects and 

full-time employment 

Study schedule Moderate Possible High Develop a formal study schedule and 

associated timeline, monitor throughout the 

duration and adjust when required in 

discussion with supervisor if necessary. 

Moderate Unlikely Moderat

e 

Yes 

Scheduled 

Progress 

Failure to achieve required 

progress and deadlines due to time 

management, poor results or 

unforeseen circumstances 

Supervision whilst completing project Moderate Unlikely Moderat

e 

Fortnightly meetings with supervisor Moderate Unlikely Moderat

e 

Yes 
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Step 5 – Action Plan (for controls not already in place) 

Control Option Resources Person(s) responsible Proposed 

implementation date 

Formal study schedule w/ 15 breaks Personal time 

management 

Kyal Sharpe 01/03/2022 

Develop formal study plan with timeline 

for the year 

Personal time 

management 

Kyal Sharpe 01/03/2022 

Fortnightly supervisor meeting Personal time, 

supervisor time 

Kyal Sharpe, Dr 

Andy Nguyen 

01/03/2022 

                        

                        

                        

Step 6 – Approval 

Drafter’s Comments: 

Nil 

 

Drafter Details:  

Name: Kyal Sharpe 

 

Signature: Kyal Sharpe 

 

Date: 01/03/2022 

Assessment Approval: (Extreme or High = VC, Moderate = Cat 4 delegate or above, Low = 

Manager/Supervisor)  

I am satisfied that the risks are as low as reasonably practicable and that the resources required will be 

provided. 

 

Name: Dr Andy Nguyen  Signature: Date: 01/03/2022 

Position Title: Senior Lecturer (Structural Engineering) 
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5.6. Appendix 3 – Smart Sewer Detection Model Code 

 

Smart Sewer Detection Model (YOLOv2 Adapted) 

Load Data Sources 

%% Multiple Data Sources - Loads several Ground Truths and combine for 
trainingData input 
 
% Source 1 
data1=load('VIDEO1.mat’); 
gTruth1=data1.('gTruth') 
trainingData1=objectDetectorTrainingData(gTruth1); 
 
% Source 2 
data2=load('VIDEO2.mat’); 
gTruth2=data2.('gTruth') 
trainingData2=objectDetectorTrainingData(gTruth2); 
 
% Source 3 
data3=load('VIDEO3.mat’); 
gTruth3=data3.('gTruth'); 
trainingData3=objectDetectorTrainingData(gTruth3); 
 
% Source 4 
data4=load('VIDEO4.mat’); 
gTruth4=data4.('gTruth'); 
trainingData4=objectDetectorTrainingData(gTruth4); 
 
% Source 5 
data5=load('VIDEO5.mat’); 
gTruth5=data5.('gTruth'); 
trainingData5=objectDetectorTrainingData(gTruth5); 
 
% Source 6 
data6=load('VIDEO6.mat’); 
gTruth6=data6.('gTruth'); 
trainingData6=objectDetectorTrainingData(gTruth6); 
 
% Source 7 
data7=load('VIDEO7.mat’); 
gTruth7=data7.('gTruth'); 
trainingData7=objectDetectorTrainingData(gTruth7); 
 
% Source 8 
data8=load('VIDEO8.mat’); 
gTruth8=data8.('gTruth'); 
trainingData8=objectDetectorTrainingData(gTruth8); 
 
% Source 9 
data9=load('VIDEO9.mat’); 
gTruth9=data9.('gTruth'); 
trainingData9=objectDetectorTrainingData(gTruth9); 
 
% Combine 
u = transpose(table2array(trainingData1)); 
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v = transpose(table2array(trainingData2)); 
w = transpose(table2array(trainingData3)); 
x = transpose(table2array(trainingData4)); 
y = transpose(table2array(trainingData5)); 
z = transpose(table2array(trainingData6)); 
a = transpose(table2array(trainingData7)); 
b = transpose(table2array(trainingData8)); 
c = transpose(table2array(trainingData9)); 
 
Combine_transpose = [a b c u v w x y z]; 
trainingDataCell = transpose(Combine_transpose); 

Creating Training, Test & Validation Datasets 

% Split the dataset into training, validation & test sets (70%, 10%, 20%) 
rng(0); 
shuffledIndices = randperm(height(trainingData)); 
idx = floor(0.7 * length(shuffledIndices) );  
 
trainingIdx = 1:idx; 
trainingDataTbl = trainingData(shuffledIndices(trainingIdx),:); 
 
validationIdx = idx+1 : idx + 1 + floor(0.1 * length(shuffledIndices) );  
validationDataTbl = trainingData(shuffledIndices(validationIdx),:); 
 
testIdx = validationIdx(end)+1 : length(shuffledIndices);  
testDataTbl = trainingData(shuffledIndices(testIdx),:); 

Create Datastores For Processing 

% Create datastores for loading the image and label data during training & 
% evaluation 
 
imdsTrain = imageDatastore(trainingDataTbl{:,"imageFilename"}); 
bldsTrain = boxLabelDatastore(trainingDataTbl(:,2:end)); 
 
imdsValidation = imageDatastore(validationDataTbl{:,"imageFilename"}); 
bldsValidation = boxLabelDatastore(validationDataTbl(:,2:end)); 
 
imdsTest = imageDatastore(testDataTbl{:,"imageFilename"}); 
bldsTest = boxLabelDatastore(testDataTbl(:,2:end)); 

 

% Combine image and box label datastores 
 
trainingData = combine(imdsTrain,bldsTrain); 
validationData = combine(imdsValidation,bldsValidation); 
testData = combine(imdsTest,bldsTest); 

Create Object Detection Network 

%% Create YoloV2 Object Detector Network 
inputSize = [448 448 3]; %Specify input size used for training 
numClasses = 3; 
 
% Resize data and nominate number of anchors 
trainingDataForEstimation = 
transform(trainingData,@(data)preprocessData(data,inputSize)); 
numAnchors = 9; 
[anchorBoxes,meanIoU] = 
estimateAnchorBoxes(trainingDataForEstimation,numAnchors); 
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% Create the Detector 
 
featureExtractionNetwork = resnet101;  
 
featureLayer = 'res4b22_relu';  
 
lgraph = 
yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLa
yer); 

 

Apply Data Augmentation Function 

%% Data Augmentation 
augmentedTrainingData = transform(trainingData,@augmentData); 
 
augmentedData = cell(4,1); 
for k = 1:4 
    data = read(augmentedTrainingData); 
    augmentedData{k} = insertShape(data{1},"rectangle",data{2}); 
    reset(augmentedTrainingData); 
end 

Pre-Process Training Data 

%% Preprocess Training Data 
preprocessedTrainingData = 
transform(augmentedTrainingData,@(data)preprocessData(data,inputSize)); 
preprocessedValidationData = 
transform(validationData,@(data)preprocessData(data,inputSize)); 

Specify Training Options 

%% Specify Training Options 
options = trainingOptions("adam",... 
    GradientDecayFactor=0.9,... 
    SquaredGradientDecayFactor=0.999,... 
    InitialLearnRate=0.0001,... 
    LearnRateSchedule="none",... 
    MiniBatchSize=16,...     
    L2Regularization=0.0005,... 
    MaxEpochs=40,... %Default value 70 
    BatchNormalizationStatistics="moving",... 
    DispatchInBackground=false,... 
    ResetInputNormalization=false,... 
    Shuffle="every-epoch",... %usually 'every-epoch' 
    VerboseFrequency=20,... 
    CheckpointPath=tempdir,... 
    CheckpointFrequency=5,... 
    ValidationData=preprocessedValidationData, ... 
    ExecutionEnvironment="gpu"); 

Train YOLOv2 Object Detector or Load Trained Detector 

%% Train YOLO v2 Object Detector 
doTraining = true; 
if doTraining        
    % Train the YOLO v2 detector. 
    [detector,info] = 
trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options); 
    TrainedDetector = detector; 
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    save 'TrainedDetector'; % Saves trained YOLO v2 detector to filepath 
else 
    % Load pretrained detector from the file path 
    pretrained = load('TrainedDetector.mat'); 
    detector = pretrained.TrainedDetector; 
     
end 

Evaluate Detector Using Test Dataset 

%% Evaluate Detector Using Test Set 
tic; % Start Timer 
 
preprocessedTestData = 
transform(testData,@(data)preprocessData(data,inputSize)); 
detectionResults = detect(detector, preprocessedTestData, "MiniBatchSize" ,64); 
 
newt=toc; % Stop Timer 
fps=height(testDataTbl)./newt; % Calculate detection FPS (testdata/detection 
time) 
 
[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, 
preprocessedTestData); 
 
classID=1; 
figure 
plot(recall{classID},precision{classID}) 
xlabel('Recall') 
ylabel('Precision') 
grid on 
title(sprintf('Average Precision (Crack) = %.2f',ap(classID))) 
 
classID=2; 
figure 
plot(recall{classID},precision{classID}) 
xlabel('Recall') 
ylabel('Precision') 
grid on 
title(sprintf('Average Precision (Deposit) = %.2f',ap(classID))) 
 
classID=3; 
figure 
plot(recall{classID},precision{classID}) 
xlabel('Recall') 
ylabel('Precision') 
grid on 
title(sprintf('Average Precision (Root) = %.2f',ap(classID))) 

Detect Specified Image 

%% Test Image 
I = imread("IMAGE.png"); 
I = imresize(I,inputSize(1:2)); 
[bboxes,scores,labels] = detect(detector,I); 
 
I = insertObjectAnnotation(I,'rectangle',bboxes,labels,Color=["cyan","yellow"]); 
figure 
imshow(I) 
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Helper Functions 

function data = preprocessData(data,inputSize) 
% Resize the images and scale the pixels to between 0 and 1. Also scale the 
% corresponding bounding boxes. 
 
for ii = 1:size(data,1) 
    I = data{ii,1}; 
    imgSize = size(I); 
     
    bboxes = data{ii,2}; 
 
    I = im2single(imresize(I,inputSize(1:2))); 
    scale = inputSize(1:2)./imgSize(1:2); 
    bboxes = bboxresize(bboxes,scale); 
     
    data(ii,1:2) = {I,bboxes}; 
end 
end 
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5.7. Appendix 4 – Data Augmentation Function 

 

Data Augmentation Function 

function data = augmentData(A) 
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get 
% scaled outside the bounds are clipped if the overlap is above 0.25. Also, 
% jitter image color. 
 
data = cell(size(A)); 
for ii = 1:size(A,1) 
    I = A{ii,1}; 
    bboxes = A{ii,2}; 
    labels = A{ii,3}; 
    sz = size(I); 
 
    if numel(sz) == 3 && sz(3) == 3 
        I = jitterColorHSV(I,... 
            contrast=0.0,... 
            Hue=0.1,... 
            Saturation=0.2,... 
            Brightness=0.2); 
    end 
     
    % Randomly flip image. 
    tform = randomAffine2d(XReflection=true,Scale=[1 1.1]); 
    rout = affineOutputView(sz,tform,BoundsStyle="centerOutput"); 
    I = imwarp(I,tform,OutputView=rout); 
     
    % Apply same transform to boxes. 
    [bboxes,indices] = bboxwarp(bboxes,tform,rout,OverlapThreshold=0.25); 
    labels = labels(indices); 
     
    % Return original data only when all boxes are removed by warping. 
    if isempty(indices) 
        data(ii,:) = A(ii,:); 
    else 
        data(ii,:) = {I,bboxes,labels}; 
    end 
end 
end 

 




