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Abstract 
Pattern recognition using machine learning algorithms is a mature discipline, but it is still in the 

research phase in the civil engineering field (Farrar & Worden, 2012). Adding to this body of 

research contributes to the improvement of our asset management decision-making. 

KiwiRail (The New Zealand railway network manager) has an existing process of evaluating axle 

overloads captured by weigh-in-motion sites that could benefit from further research. This project 

aims to evaluate how a machine learning model may help. 

Overloading is very relevant internationally and has been nominated as one of the top five historical 

causes of bridge collapse (Zhang et al, 2022). Weigh-in-motion systems capture axle weights and 

axle spacings but further analysis, such imparted bending moment on any given span length, is a 

post-processing function. In cases when immediate actions are required following an axle overload 

then an immediate structural analysis considering also the adjacent axles would be of benefit. 

A machine learning model was developed in MATLAB by a process of supervised learning via a 

simple analytical model constructed in Excel. With enough training data the intent was to obtain an 

accurate machine learning model such that it could assess a given set of axle loads and spacings and 

determine if a bending moment limit had been breached or not. A common 6m span length was 

chosen as the focus area and variables for model input were carefully considered. 

As a project outcome a highly accurate machine learning model was established once the training 

data volume got to approximately 5,000 sets. To get to this stage many variations of training inputs 

were used and volume of training data was incrementally increased to monitor the effect on 

accuracy.  

A potential future development of this work is to expand the focus area to other span lengths to 

observe accuracy when more axles are incorporated into the variable set. The analytical model 

developed for this project was limited to the 6m span length and the required assumptions made it 

up to 3% non-conservative in outputs. An improved analytical training model is required before the 

focus area can be expanded. 

In conclusion, although moving load analysis lends itself to traditional formula and analytical 

processing applications this study has shown that a machine learning model may potentially become 

a viable alternative.   
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1 Introduction 

Modern societies have enjoyed the benefits that civil structures, such as dams, bridges and 

power stations, have given us. As these systems move towards the end of their original design 

lives, economical solutions are required to meet new demands and to manage risk. Structural 

health monitoring (SHM) is a growing field to cater to this need, and at the heart of this field is 

data. The use of computers to process this data in beneficial ways is increasing all the time and 

machine learning is at the leading edge of this. 

Pattern recognition using machine learning algorithms is a mature discipline, but it is still in the 

research phase in the civil engineering field (Farrar & Worden, 2012). Adding to this body of 

research contributes to continuous improvement of our asset management decision making. 

KiwiRail (The New Zealand railway network manager) has an existing process of evaluating 

axle overloads captured by weigh-in-motion systems that could benefit from further research. 

This project aims to evaluate how a machine learning model may help.     

 

1.1 Background  

There are approximately 1,500 rail bridges in the New Zealand rail network with an average 

age approaching 80 years. Asset condition and capacity has been managed to meet the operating 

load service requirements as they increase over time. Having awareness and understanding of 

bridge capacity is important on one hand, just as having knowledge of loading is important on 

the other. Weigh-in-motion sites are installed throughout New Zealand as a mitigation tool for 

managing the risk of overloaded wagons. While overloads are undesirable they can happen and 

processes are in place to respond to such occurrences.  

In the existing overload response process there is a time lag between when a moving force (axle 

load) is recorded and when this load can be structurally evaluated. If this axle load is above a 

certain threshold, then conservative protocol is immediately adopted which can have significant 

commercial implications for the business. Often by the time structural evaluation occurs the 

train controller may have had to make several operational decisions, such as: 

• stopping the train from continuing 

• assessing the train driver’s hours and arranging replacement staff 

• contacting customers and rearranging freight movements 
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• arranging the structure inspectors to undertake inspections (for safety reasons these only 

occur during daylight, so the line is at least closed until then). 

The commercial implications of such an event would be in the tens of thousands of dollars plus 

the reputational damage in the eyes of the customer.   

More immediate analysis of loads could potentially reduce conservatism and therefore reduce 

the need for temporary line closures.         

Load evaluation of moving forces over bridge structures has a historical bias towards analytical 

methods because established stress evaluation formulae can be combined with given variables 

to produce accurate results. Machine learning as a method of load evaluation has therefore not 

been required, but that is not to say that it cannot be an effective alternative.   

 

1.2 Project aim and objectives 

This project aims to establish if algorithms based on a machine learning model can be an 

effective alternative to an analytical model for evaluating axle loads over bridge structures and 

for providing real-time advice following an axle overload, i.e., ‘ok to proceed’ or ‘not ok to 

proceed’.      

The objectives of this project are to: 

• develop an analytical training model for axle load assessment, and 

• train a machine learning model for axle load assessment. 

 

1.3 Research significance 

The expected benefits of this research include, but are not limited to: 

• an advancement in the body of research regarding application of machine learning in the 

civil engineering field, and 

• a reduction in railway line closure following individual train axle overload. 

An advantage of rail loading, as opposed to road, is that the exact location of the loads on the 

structure are known. They are confined to the line of the tracks and the defined axle separation 

of the train vehicles. Patterns in allowable loading considering variables of both axle loading 

and axle spacing may be established. This could be of benefit because certain wagons (i.e. those 
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with larger spaces between axles) may be evaluated as ‘ok to proceed’ even if they are loaded 

higher than more squat wagons. This could enable wagons that are capable of higher axle loads 

to realise their capacity potential and therefore make more revenue.  

Further to this point, James (2003) proposes a concept where customers prepared to weigh their 

loads can be allowed a higher axle load. This could be differentiated dependent upon the wagon 

type used.   

 

1.4 Dissertation structure 
 

This dissertation is divided into seven chapters. Each chapter details a key process undertaken 

to achieve the specified project aims. The structure of this dissertation is briefly explained 

below: 

Chapter 1: Introduction 

Chapter 1 introduces the subject matter of this dissertation and provides a brief 

background regarding the project context within the New Zealand railway environment.  

This is followed by highlighting the significance of this research and outlines this 

project’s aims and objectives. 

Chapter 2: Literature Review 

Chapter 2 reviews the history of rail bridging in New Zealand and the tools and 

processes in place for managing loading. Current and historical analytic techniques and 

machine learning application is also reviewed to assess and determine applicable 

strategies for resolving this project’s aims and objectives. 

Chapter 3: Methodology 

Chapter 3 details the methodology in which this project will be delivered. It also 

describes the definition of a focus area and process by which to meet the project 

objectives.  
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Chapter 4: Analytical model development 

Chapter 4 describes how the analytical model was developed and provides the 

results of this process. The analytical model is the key tool for providing training 

data for the subsequent machine learning model. 

Chapter 5: Machine learning model development 

Chapter 5 describes how the supervised machine learning model was developed 

and the results and iterations.   

Chapter 6: Discussion 

Chapter 6 examines the results in more detail. Limitations of the study are 

discussed along with details as to how this project advances the field of industry.  

Chapter 7: Conclusion 

Chapter 7 concludes the achievements of the research with respect to satisfying 

the project aims and objectives. The capacity for future works is also discussed 

with recommendations. 
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2 Review of literature 

This section will review literature in the following areas: 

• weigh-in-motion context 

• analytical moving load models  

• machine learning models.  

 

2.1 Weigh-in-motion context 

This section contains further review of the background to better convey the context of 

the study, from the rail bridge history through to the overload axle response process. 

 

2.1.1 Rail bridge construction history 

There are approximately 1,500 rail bridges in New Zealand with a total bridge length of 

more than 60 km and an average bridge age approaching 80 years. The construction date 

profile is shown in Figure 1. 

 

Figure 1: Bridge length, per year constructed 

 

2.1.2 Rail bridge rating 

The design standards and construction material have been variable over time and at the 

same time the operational demand for the network has increased. At each step change 
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along the way the bridging capacity has been subject to assessment of its fitness for 

purpose. Currently KiwiRail bridges are strength rated using a concept called Maximum 

Rating, as prescribed in AREMA code. This has been the codified process since 1994 

and it essentially translates to a utilisation of 0.8 of the material yield strength. 

KiwiRail adopts the Maximum Rating concept for their load assessment of structures 

based on two main reasons: 

• KiwiRail has a rigorous inspection regime, and  

• the load cycles are not significant and fatigue evaluation of structures on the line 

have been undertaken to identify the risk structures. 

 

2.1.3 Overloads and low-strength bridges 

The other significant aspect to note, aside from fatigue implications, is that of strength. 

When the allowable stress is relatively high then occasional overloads can be more 

problematic. Increasing instances of timber pier cap failures occurred around the late 

1990s and early 2000s.  

 

2.1.4 Capital investment 

The Crown took ownership back of the network in the early 2000s and consequently 

investment in the aging infrastructure proceeded. In fact, all the bridge length observed 

in Figure 1 constructed after the year 2000 related directly to the replacement of bridges 

with life-expired timber piers. This amounted to more than 4,000 m of bridge 

replacement containing approximately 800 timber piers. There remains twice this 

number of timber piers still on the active network. As part of the network upgrade the 

timber caps and spans were given a more in-depth strength assessment and assigned a 

capacity rating. A better understanding of the loads was also sought and that is where 

the weigh-in-motion sites came in.  

 

2.1.5 Weigh-in-motion sites 

A mitigation tool that was put in place, and one most relevant to this research project, 

was the installation of weigh-in-motion sites for the management of overloads.   
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Figure 2: Rolleston coupled weigh-in-motion site 

 

 

Figure 3: Coupled weigh-in-motion sites nationwide 

This system records every axle load and the spacing between them. A trigger action response 

plan has been codified whereby specific actions are taken based on varying degrees of axle 

overloads. The response sometimes involves the closure of a line while offending wagons 

are removed and bridges are inspected, based on a pre-populated, conservative listing.   
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The railway line is closed for 12 to 24 hours while this process occurs. At the same time 

as the engineer is analysing the overload data the train controller is arranging for the 

removal of the overloaded wagon and inspection of the line based on a conservative pre-

populated ‘Structures at risk’ list.   

There are occasions when the structural analysis shows that the overload was not any 

more of a demand on the bridges than the ordinary passing of a locomotive. By this stage 

often decisions have been made, and there is still a perception that an axle overload is a 

structure overload.  

Given the historical context and relatively low factor of safety on KiwiRail bridges the 

need for monitoring of overloads is justified. However, basing all trigger response 

actions on axle loads alone sometimes results in closing the railway line and incurring 

costs unnecessarily.   

 

2.1.7 Overloading abroad 

The accelerated damage on infrastructure from overloaded axles is not unique to New 

Zealand, or indeed the railway system. Weigh-in-motion data was used in a study that 

examined vehicle overloading in Pakistan (Raheel et al, 2018). Overloads are a well-

studied and known cause of premature failure of pavements. Rather than a response 

process involving any immediate network closure and inspection, the study 

recommendations point towards design.  The study concluded that axle configuration 

and axle load are the most important variables and therefore truck designs with the most 

sympathetic configurations were recommended along with increasing pavement 

thickness. 

Overloading is very relevant internationally and has been nominated as one of the top 

five historical causes of bridge collapse (Zhang et al, 2022; Figure 5), particularly as 

bridges age.   
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Figure 5: Bridge failures due to overload (Zhang et al, 2022) 

 

2.2 Analytical moving load models 

There are several analytical methods used to convert axle loads and spacings into a range 

of span bending moments and shear forces.  

The techniques outlined in a structural requirements document (Young, 2011) 

prescribed the following typical methods: 

• principle of superposition 

• method of sections 

• method of functions.  

This last method is currently used by KiwiRail for the purpose of evaluating given train 

configurations and the granting of running rights. It is discussed in the next section. 

  

2.2.1 Method of functions application 

In 2011, an application called Cognos was developed by Cortell Consultants for 

KiwiRail to undertake moving load analysis on any given equipment configuration, 

including specified overloaded wagon configurations. Information found online 

(element61, 2021) describes IBM Cognos TM1 as an On-Line Analytical Processing 

software tool with a multidimensional analysis application known as the OLAP cube 

(Figure 6).   
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Figure 6: Illustration of an OLAP cube (Chin, 2020)  

This is the tool that has been available for the last 10 years to the structural engineer for 

undertaking step 9 in the process shown in Figure 4. It requires an engineer, available 

around the clock, to manually type axle loads and spacings into rows on a single input 

screen with a limit of six axle load inputs (Figure 7).   

 

Figure 7: Component input screen for KiwiRail Cognos tool  

It is therefore not practical to use for developing a large volume of results as is best for 

supervised learning. Going back to the vendor to redevelop the application is an option; 

however, the online analytical processing (OLAP) cube, such as that utilised in the 

Cognos application, has been moved away from (Chin, 2020). The main reasons given 

for this is that memory is cheap and computing power is readily available. Fifteen years 

ago, a moving force simulation could involve up to three weeks of continuous simulation 

per span (James, 2003). Modern computing power makes this now less of an issue.  

Columnar databases can perform similar workloads to OLAP cubes at equally good 
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performance (Chin, 2020). It is also concluded that most columnar databases have 

settled on SQL as the query standard.   

Aside from Cognos, there are many moving load analysis software packages available, 

such as STAAD Pro, SAP and LUSAS. While implementing an improved analytical 

model for overload response is an avenue to explore, the purpose of this research is to 

establish the effectiveness of a machine learning model in this environment. Therefore, 

an analytical model that is simple to apply to thousands of rows of axle load data for the 

purpose of creating a supervised machine learning environment that can automate the 

analysis is the basic requirement for this project.  

 

2.3 Machine learning models 
 

2.3.1 Machine learning in general 
 

Machine learning as a field started to flourish in the 1990s and has been on the rise ever 

since. The songs that music applications suggest to users is based on machine learning 

that recognises patterns of listening behaviour. The social media business model is built 

on machine learning. To quote Edward Tufte from the documentary Social Dilemma: 

“There are only two industries that call their customers ‘users’: illegal drugs and 

software”, meaning our profile and behaviours are being used to train machine learning 

models and algorithms to keep us, the customer, engaged. It is all about pattern 

recognition and prediction.       

In the field of civil engineering and science there are examples of machine learning in 

various stages of research and implementation. Hydrologists are researching using deep 

learning by way of video analysis and a rising bubble method to establish an automated 

calculation of river discharge rate (Bulleid and Wilding, 2019). In another example, 

video analysis and machine learning is being implemented for the purpose of identifying 

target weeds for eradication from waterways (Bulleid and Clements, 2021). 

Another innovative product that has progressed past research into a commercial venture 

is VAPAR. It is an automated condition assessment tool that combines CCTV footage 

and machine learning to classify defects in pipelines (Palmer-Derrien, 2021). The 

innovative nature of VAPAR is an auto-coding algorithm that can quickly take large 
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volumes of imagery and assign defect categories to it automatically. In this way it can 

provide more consistent and comprehensive information from which better investment 

decisions can be made. 

VAPAR now processes over 200 km of wastewater pipes for dozens of clients. 

Considering that the total global length of wastewater infrastructure is massive, this 

represents a very insignificant market share presently. For example, the United 

Kingdom-based company United Utilities manages a network of approximately 80,000 

km (Vapar, 2019). However, as the technology becomes proven more consistently and 

widely, the potential for exponential growth exists. The market approach is key to 

capturing that untapped market. 

What is given in this section is a small sample of machine learning examples to illustrate 

that machine learning is here and the use of it will only increase with time. The next 

section describes examples relevant to this specific research topic. 

 

2.3.2 Machine learning for moving force models 
 

Little research has been found regarding machine learning and moving load analysis. 

Supervised machine learning “can be much more readily accomplished for rotating 

machinery” (Farrar & Worden, 2012).   

Perhaps the lack of research can be explained by the fact that there hasn’t been a need. 

Where input variables are given and standard formulation is available, then alternatives 

to an exacting analytical model can be rationalised away as surplus to requirements.     

Separate to analysing records of loads from weigh-in-motion systems, attempts to 

instrument structural elements themselves have come up against difficulties not 

encountered in the likes of a controlled machine room: the impracticalities of access and 

safety, to name but two. The vastness of a structure is another consideration. Installing 

permanent systems for acquiring data from a bridge can come at a significant cost. 

Analysing loading data presents a cheap alternative to instrumenting the structure itself, 

and while it cannot convey the response of the structure, the imparted loading effect is 

just as important to understand. And the loading data is readily available in vast 

quantities as a simple set of forces and distances between them. 
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Ways in which to develop a machine learning model for this application have been 

researched and introducing flaws into a computer simulation has been one such idea 

(Farrar & Worden, 2012). Potentially something along these lines could be adopted in 

this research in a ‘ok to proceed / not ok to proceed’ manner rather than flawed/non-

flawed. The classification learning application is likely a good method to proceed with 

in this case. 

Examining the available data and critically assessing how best to utilise the variables to 

create an accurate machine learning model is the challenge. Adjusting the manner in 

which the data are viewed is something James (2003) illustrated with the concept of 

converting data from distances and forces into turning points.  Critically assessing along 

the way what are the key variables and how to present them is a key consideration for 

this project. 
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3 Methodology 

The project objectives will be delivered by the following steps, which are elaborated 

upon in subsequent sections: 

• Define the focus area – narrow down parameters to establish a focus area for the 

research project. 

• Develop an analytical load evaluation model – to enable pre-processing of 

weigh-in-motion data such that it can be used for supervised machine learning.  

• Develop a machine learning model – process the data, test, adjust, repeat. 

 

3.1 Define the focus area 

If it is assumed that an arbitrary train length is 100 m and the idea that this is evaluated 

for any given span as it moves across at 0.1 m intervals, then there are 1,000 calculations 

to perform for this train. To evaluate for a range of spans at 0.5 m increments from 2 m 

to 80 m span length then to assess any given train over all possible span length options 

is in excess of 150,000 calculations for one train record. And weigh-in-motion data is 

available for many thousands of trains. It clearly requires a targeted set of parameters to 

be defined to allow an entry point into this research.  

 

3.1.1 Select a span length 

A common span length that has been installed on the New Zealand rail network is the 

20’ (6 m) long steel plate girder (SPG) span. Using this as the default span length will 

assist in simplifying the study.  

 

3.1.2 Select a load configuration 

Over the course of time a large variation in the axle spacings between the various 

locomotives and wagons has developed. Ignoring the locomotive and using a common 

wagon configuration for which there is plenty of data available to work will best suit the 

study. With these focus areas defined, the points of interest become those as shown in 

the box in Figure 8.          
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Figure 8: Study focus area  

 

3.1.3 Stress of choice 

A further definition to focus the study is to select the type of stress to consider from the 

given loads. Typically, spans are rated for both shear force and bending moment capacity 

and these are compared with the shear force and bending moment from the applied load. 

For the purpose of simplification, this study will focus on bending moment stresses only 

as the bending is the governing stress in these typical girders.     

 

3.2 Plan for an analytical model 

For the purpose of this project an analytical model is required to be developed that can 

pre-process data to allow supervised machine learning and testing to occur.   

 

3.2.1 Available data 

Permission to use real data has been granted and a large volume of historical data are 

available in Excel form, as shown in the example in Figure 9.   

 

 Figure 9: Sample of data exported from weigh-in-motion site 

 

3.2.2 Model selection and plan 

With a large volume of Excel data available, with axle pitch and axle weight arranged 

in columnar form, a pragmatic method to develop the analytical results required would 
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be an Excel model integrated into the axle load data, row by row. The following steps 

are planned to be implemented into the Excel model: 

- Establish, by means of a series of ‘if ‘statement columns, the rows that have axle 

groups in the defined study focus area from Figure 8 

- Use the principle of super position method to establish the maximum bending 

moment as the axle on the row of interest is upon the span. 

- Establish a result of ‘ok’ or ‘not ok’ column for the axle when it is considered as a 

group, rather than an individual axle. 

 

3.3 Plan for a machine learning model 

With a set of data ready for import the development of a supervised machine learning 

model can begin. The method used to undertake this development is shown in Figure 

10. 

 

Figure 10: Overview of the classification workflow (Matlabacademy, 2021) 

 

3.4 Risk assessment 
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A preliminary risk assessment has been completed as is available in Appendix B.   

 

3.5 Project resources 
 

Resources required to complete this project are: 

• Weigh-in-motion datasets obtained from KiwiRail weigh-in-motion supplier, 

Track IQ   

• Permission to use weigh-in-motion data for this research project  

• MATLAB R2021a programming software including the machine learning 

module 

• Microsoft Excel. 
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4 Analytical model development 

A sophisticated analytical moving load programme is surplus to requirements for this 

project and a simplified Excel model applied directly to the weigh-in-motion data export 

has been developed. This model will rely on some assumptions, for the purpose of 

simplification, but will result in a large dataset with results of ‘ok’ and ‘not ok’ axles 

identified to an acceptable level of accuracy for the purpose of the project.   

 

4.1 Principle of superposition 

A model was developed in Excel whereby the principle of superposition was utilised 

directly on the weigh-in-motion data file. A series of ‘if’ statements was used to target 

the axles shown in Figure 8. At this stage in development a simplification was required 

which meant taking forward this assumption: 

• The maximum bending moment will occur at mid-span. 

This assumption will require testing, but it allowed the developed formula to be 

transposed to every recorded axle load, row by row. The formula first identified if the 

row axle was from the focus area. If it was, it was assessed as being located at mid-span 

with contributions from rows above and below contributing to the mid-span moment in 

the same manner as P1 and P3 in the concept shown in Figure 11. 

 

Figure 11: Principle of superposition  

When the formula cells were added to the Excel load file it now returned total bending 

moment stress as each axle landed on the middle of the 6 m span. The largest bending 
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moment is when either of the center two axles are at mid-span, as at this point there were 

three axles contributing. This can be seen in Figure 12, with the colour scheme showing 

the contribution of adjacent rows to the row that is being summed.    

 

Figure 12: Analytical model using principle of superposition  

If it is taken that the line axle load allowance is 177 kN (18t) then the resulting bending 

moment can now be set as 100% load allowance. This bending stress can be set as the 

control stress to which all other load configurations are compared. Note that when the 

first and last axle are at mid-span then only 81% of this load allowance is utilised.   

An online bending moment tool was used as a calculation check and this confirmed the 

model accuracy with the given assumptions and input parameters resulting in the same 

maximum bending moment stress of 466.4 kN.m (Figure 13).  
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Figure 13: Control model calculation check (beamguru.com/online/beam-calculator/) 

An initial check of the assumption about the maximum bending moment occurring at 

mid-span was made by running the loads through the Cognos tool. This tool 

incrementally evaluates the specific load over the length and returns the maximum 

bending moment irrespective of where it occurs on the span. The maximum bending 

moment is found to be 466.57 kN, as shown in Figure 14.   

 

Figure 14: Cognos moving load model application 
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The non-symmetry of loads in the study focus area accounts for the small difference 

(466.4 kN.m vs 466.57 kN.m), with this maximum moment likely to occur just to the 

side of mid-span. It can be concluded, however, that the error introduced by this 

assumption is negligible. This assumption should be revised again later when loads and 

spacings vary more.  

 

4.2 Variable assignment for classification 

An important step in pre-processing is the delineation of axles in the focus area to a 

status of either ‘ok’ or ‘not ok’. As the instances of actionable overloads (those more 

than 15% over the assigned axle load limit) are few, the load limit of 18 t itself will be 

used for no reason other than it will provide a larger ‘not ok’ status dataset to use for 

supervised machine learning.  

The hypothesis is:  

• The percentage overload of an axle does not correlate to the same percentage 

overload of a structure. 

This is best illustrated by using an example from the model.  Figure 15 shows an example 

of an axle that is greater than 18 t and therefore appears to be an overload, yet when it 

is evaluated as a group the bending moment it induces on the structure is less than the 

control group given in Figure 13. 

 

Figure 15: Overloaded axle that does not correlate to overloaded structure 

Therefore, the group of four axles in Figure 15 would constitute an example set of 

variables that can be taken forward to the supervised machine learning model as ‘ok’.  
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4.3 Axle load distribution over bogie  

Upon development of model it became a curiosity as to why each axle on a bogie 

returned a similar but slightly different axle load.  Examining a total of 3,600 axles gave 

an interquartile range within +/- 4%   

Upon speaking to KiwiRail wagon designers it was confirmed that the design is based 

on spreading the load evenly across the two axles.  Discrepancies can occur when brakes 

are activated but otherwise the two loads should be considered equal.   

The application of the loads was thus reduced from four variables to two as per the 

following figure:   

 

Figure 16: Variable assignment for loads 

This is an example of critically assessing the variables in an attempt to reduce them and 

keep only key variables. The weigh-in-motion axle load data could now be applied to 

the model. The distance between the loads was considered next.   

 

4.4 Axle spacing distribution 

A sample of 3000 wagons of all types was taken from the weigh-in-motion data to 

establish a set of variables for the axle spacings. The bogie axle spacing, shown as v 3 

in Figure 17, had small variation compared with the wagon axle spacing, shown as v 4. 

The variability in the sample can be seen in Figure 18. 

 

Figure 17: Variable assignment for spacings 
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Figure 18: Range of spacings for wagon and bogie axles 

To enable development of a training data set that covered an appropriate range of axle 

spacings a methodic process was followed. The variations in wagon and axle spacing 

were broken into the following inputs: 

• variable 3 Bogie axle – 1650, 1700, 1750, 1770, 1800, 1850  

• variable 4 Wagon Axle - 1900, 1950, 2000, 2010, 2050, 2100, 2200, 2500, 2800 

The analytical training model could now be developed. 

 

4.5 Analytical model output 

The analytical model was applied to the data set containing a wide range of loads, both 

under and over the 18t set limit.  The spacing variables were set to a specific combination 

and the results exported. The spacing variables were then adjusted multiple times until 

model outputs for every combination as per the following table was established:     

 

Figure 19: Matrix of spacing combinations for model development. 

1850 a a a a a a a a a

1800 a a a a a a a a a

1770 a a a a a a a a a

1750 a a a a a a a a a

1700 a a a a a a a a a

1650 a a a a a a a a a

1900 1950 2000 2010 2050 2100 2200 2500 2800
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v 4 - wagon spacing (mm)
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The final analytical model file consisted of approximately 200,000 axle rows evaluated 

as ‘ok’ or ‘not ok’, each based on the loads and spacings between them.        

 

Figure 20: variables assigned 

Using the method of superposition each row was evaluated with given variables and the 

percentage of resulting bending moment compared to the control established. If any 

axles across the group exceeded 100% then the four variables used as part of that group 

were displayed in column assigned as ‘not ok’ (Figure 21).  

 

Figure 21: developed analytical model with an overload identified 

The second group of axles from Figure 21 can be seen again in Figure 22, this time 

moving into the ‘ok’ column due to the increase in axle spacing and subsequent 

reduction in bending moment.  

 

Figure 22: changing spacing changes the model outcome 

The completed data set to take forward to machine learning training constituted 

approximately 42,000 sets of variables in the ‘ok’ column and 6,000 sets of variables in 

the ‘not ok’ column.   

 

  

wagon no. axle no. axle (t) % of control  'ok' column  'not ok' column variables  'ok' column  'not ok' column

CE 002547 2 18.1 82% 18.1 0 v1 = 18.1 0

CE 002547 1 18.1 99% 18.1 0 v4 = 2100 0

CE 003045 4 17.8 98% 17.8 0 v2 = 17.8 0

CE 003045 3 17.8 80% 17.8 0 v3 = 1750 0

CE 003045 2 18.4 83% 0 18.4 v1 = 0.0 18.4

CE 003045 1 18.4 101% 0 18.4 v4 = 0.0 2100

CE 003736 4 18.3 100% 0 18.3 v2 = 0.0 18.3

CE 003736 3 18.3 83% 0 18.3 v3 = 0.0 1750
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5 Machine learning model development 

The classification learning application within MATLAB software was used. This section 

presents the process as described in the methodology section and repeated here: 

• organise and pre-process data 

• build model 

• evaluate 

• iterate.  

5.1 Organise and pre-process data 

The Excel file, complete with the analytical results including the ‘ok’ and ‘not ok’ 

assignment was uploaded to MATLAB. An m file was developed in MATLAB to 

rearrange the data into rows (Figure 23) such that each row contained a set of variables 

and a result assignment. 

 

 

Figure 23: Data generation ‘m’ file 

The train data file could now be developed following the running of this code. It was 

constructed of rows containing the four variables with the focus area along with a fifth 

classification indicator. The classifier ‘1’ is for load groups that are ‘ok’ and ‘0’ for load 

groups that are ‘not ok’. Example rows are shown in Figure 24. 
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Figure 24: sample of data file organised for model input 

 

With the data now organised for loading into the classification learning application it 

was exported and a random number assigned to an adjacent column.  A random sample 

of 10,000 rows was removed (approximately 20%) to use as the test set. The rest was 

taken forward to train the model.   

 

5.2 Build the model 

The train data were imported into the classification learner application and the model as 

shown in Figure 25.  

 

Figure 25: classification learner application 

Various classification learner models can be selected to learn the result pattern and after 

user testing three were selected to evaluate: the decision tree, the k-nearest neighbor and 

the Neural Network.   

 

Figure 26: classification models selected for project 

An initial training set of just 50 rows, randomly taken from the training data, was used 

and the three models were trained.      
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5.3 Evaluate the model 

Upon training, the model assigns a validation score to indicate how close the trained 

model predications are to the ‘true’ cases, these true cases being the ‘ok’ or ‘not ok’ 

assignments given at the analytical model stage. A validation confusion matrix is a tool 

that gives a further breakdown of the accuracy and an example for the Neural Network 

model is shown in Figure 27.   

 

Figure 27: validation confusion matrix using training set of 50 

The matrix tells me that the model has been trained such that on only two occasions does 

the model disagree with the supplied training data. The model now requires testing.    

When originally organising the data a random set of 10,000 was set aside for model 

testing. When the test was completed the accuracy of the model was more exposed with 

approximately 1200 cases of incorrect predictions (more than 10% of the test data).  

 

Figure 28: confusion matrix using training set of 50 and test set of 10,000 
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The other model performance test performed is the receiver operating characteristic 

(ROC) curve which dates from World War II when it was used for analysis of radar 

signals. It is still used as an intuitive tool for comparing the effectiveness of different 

classifiers. An area under curve (AUC) of 1.0 would be a high-performance model. In 

the case of the original model, built from 50 samples, the AUC score of 0.68 indicates 

this is not an effective model (Figure 29). 

 

Figure 29: ROC curve using training set of 50 and test set of 10,000 

 

5.4 Iterate the model 

When organising the data earlier in this section it was conveyed that training data of 

approximately 40,000 sets was available. Using only 50 of these sets in the first model 

iteration was deliberately done so that model accuracy could be recorded as training data 

sets increased.   

Training data sets were subsequently applied to models with increasing set numbers of 

500, 5000 and 40,000.  The same data set of 10,000 was used on all of these models. 

Results of increasing accuracy with training volume are shown in Figure 30.    

 

Figure 30: Data accuracy graphs as training set volume increases  
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The Neural Network model was shown to give the most accurate model but the Known 

Nearest Neighbor also showed the benefits of increasing points of reference. The 

Confusion Matrix and ROC curve for the most accurate model are given in Figure 31 

and 32.  

 

Figure 31: confusion matrix using training set of 40,000 and test set of 10,000 

 

 

Figure 32: ROC curve using training set of 40,000 and test set of 10,000 

 

With an accurate model at hand it was then exported into Matlab (Figure 33) where any 

new set of variables could be directly evaluated.     
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Figure 33: trained model used in Matlab directly on new data 

 

During the course of the project an actual overload occurred on a wagon traversing the 

network and this caused business interruption while it was removed. Notwithstanding 

there are assumptions and limitations of this project work, but as far as bending moment 

applied on 6m spans goes, the model states that this overload, when considered with the 

associated key variables, was not a bridge overload (Figure 34).      

 

Figure 34: real 15% overload axle tested on model 

 

  



39 
 

6 Discussion 

 

6.1 Overall findings 

An accurate machine learning model was successfully created to evaluate if a bending 

moment threshold has been exceeded by any combination of loads and spacings. The 

Neural Network classification learner model was found to be 99.9% accurate, given 

sufficient training data. The volume of training data required to see high accuracy was 

approximately 5,000 sets. 

The hypothesis that an axle overload does not represent a span overload was proven and, 

in many circumstances, an axle overload within a group imparted less bending moment 

than regular loads at closer spacings. This idea is not a new finding and simple static 

analysis could demonstrate this clearly. The finding is that a machine learning model 

can successfully be trained to immediately evaluate and confirm this hypothesis.    

 

6.2 Limitation of results 

One of the simplifications required to develop the analytical training model was to 

assume a bending moment maximum value at midspan. This was validated during the 

project development by a sophisticated analytical model (Cognos) where negligible 

error was found when spacing and load variables were respectively similar.  A validation 

is now made on the model where load and spacing variables are quite distinct from each 

other. The actual overload in Figure 34 was such a scenario. This load is visually 

represented in Figure 35.   

 

Figure 35: training model axle position assumption for maximum bending moment 

calculation 

The midspan bending moment when one of the heavy axles was at midspan was 

evaluated as 452.2 kN.m using the Excel analytical training model. At 98% of the 
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reference bending moment of 466.4 kN.m the machine learning model rightly confirmed 

this as an ‘ok’ set of axles. An engineer, by observation, would examine Figure 35 and 

estimate that the maximum moment will be when the two heavy axles are centrally 

located.  When checked using the Cognos model, which incrementally evaluates 

bending moment across the span, the result confirms this and shows the training model 

is non-conservative in this scenario.       

 

Figure 36: real 15% overload axle tested on Cognos application 

The error from the project assumption that the maximum bending moment occurs at 

midspan when an axle is also at midspan can therefore be estimated as up to 3% non-

conservative. This error value is based on the analytical model bending moment (452.5 

kN.m) and the more accurate Cognos-sourced bending moment (465.75 kN.m). 

The second limitation is that bending moment only was used as the stress of choice in 

this study but shear force is also a significant consideration which has not been 

evaluated. 

The focus span length of 6m proved to be a good sample size to develop a model using 

four input variables but the spans on the network that the load may traverse range from 

1.5m to 75m.  To have a model that gives full coverage of the network there are perhaps 

90 variations required. 
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Figure 37: green cell showing machine learning model limitation 

 

As the span length studied increases more axles will load the span concurrently. This 

will increase the variables which may reduce the accuracy of models on longer spans.  

The Excel analytical model developed for this project is limited to considering four axles 

only.     

The final limitation to note is that the study is still an offline assessment.  Data was 

manually exported from the weigh-in-motion sites, preprocessed into variable sets and 

then run through the trained model. These are essentially steps 8 & 9 from the current 

overload process, repeated below in Figure 38.   

Span Length

Vehicle 

Moment 

(kNM)

Vehicle 

Shear (kN) Span Length

Vehicle 

Moment 

(kNM)

Vehicle 

Shear (kN) Span Length

Vehicle 

Moment 

(kNM)

Vehicle 

Shear (kN)

1.5 8.0 26.0

1.8 9.0 28.0

2.0 10.0 30.0

2.3 11.0 32.0

2.5 12.0 34.0

2.8 13.0 36.0

3.0 14.0 38.0

3.5 15.0 40.0

4.0 16.0 45.0

4.5 17.0 50.0

5.0 18.0 55.0

5.5 19.0 60.0

6.0 20.0 65.0

6.5 22.0 70.0

7.0 24.0 75.0
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Figure 38: Initial part of structural evaluation of overload process 

 

To reap the operational benefits and achieve a reduction in railway line closure following 

individual train axle overload the model would need to intercept the weigh-in-motion 

data and undertake evaluation before a determination of structural overload is given.   
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7 Conclusion 

 

7.1 Project Achievements 

 

The objectives of this project were to: 

• develop an analytical training model for axle load assessment, and 

• train a machine learning model for axle load assessment. 

An analytical training model was created to evaluate bending moment due to various 

load and spacings across a 6 m span.  The analytical model was evaluated as having an 

error of up to 3% non-conservative due to some assumptions made for simplification 

purposes. 

The classification learner application was used to develop a model with the analytical 

model output used for supervised learning and model testing. A highly accurate model 

was successfully established once the training data volume got to approximately 5,000 

sets.   

 

7.2 Future Work 

 

Data consisting of axle loads and spacings between these loads are available in large 

quantity. This project has shown how a machine learning model can be trained to 

improve the categorisation of a single axle structure overload alert by considering the 

associated axle grouping over a considered span length.  

Some future work avenues that could be explored to continue to evaluate opportunities 

are:  

- Make an improved analytical training model. The model doesn’t particularly have 

to use the weigh-in-motion data for the training aspect. So long as a well-considered 

range in expected variables is used then it could be produced in any moving load 

analysis tool. 

- Evaluate a machine learning model accuracy over a wider range of span lengths and 
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include shear force.   

- Putting machine learning aside, an analytical model could be programmed to 

undertake moving load analysis directly following the passage of a train.   

- Integration with weigh-in-motion suppliers to improve their customer offering by 

giving added value to the information output.  Even if overloads may not be an issue 

perhaps there is merit in this with regard to less conservative fatigue load cycle 

accumulation. Cycles can be accumulated based on real data rather than 

characteristic trains.  Fatigue life extension could be a benefit.   
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Appendix A: Project specification 
 

ENG4111/4112 Research Project 

Project Specification 

For:  Michael Keenan  

Title: Using weigh-in-motion data and machine learning for rail bridge load 

assessment 

Major:   Civil  

Supervisors: Andy Nguyen (USQ) and Yang Yu (external supervisor) 

Confidentiality:  Use of KiwiRail Weigh-in-Motion Data will require approval. 

Enrollment: ENG4111 – EXT S1, 2022 

  ENG4112 – EXT S2, 2022 

 

Project Aim: Establish if a machine learning model can be effective for this type of 

application.  

 

Programme: Version 1, 12th March 2022  

1. Conduct literature research on CWIM, rail bridge loading and machine learning 

application in engineering context.  

2. Narrow down focus area and establish aim of project.  

3. Develop analytical load evaluation model. 

4. Develop machine learning model. 

5. Assess machine learning effectiveness for assessing overloads. 

6. Evaluate results. 

7. Write the report.  

If time and resource permit: 

8. Validate the developed model with a larger dataset. 

9. Assess integration of analytical and machine learning model for decision making in 

this type of application.  
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