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Abstract

In this project thin steel plates containing elliptical holes were subjected to uniaxial

tension and the strains produced at various locations around the plates measured using

strain gauges. The loading applied was great enough for a significant amount of plastic

deformation to occur across the plate section.

The mechanical properties of the steel were determined by conducting a series of tensile

tests on standard ”dogbone” samples.

Plane stress, finite element models were created using the student editions of both

ANSYS v5.5 and ABAQUS V6.4.

Comparisons between the experimental and model results of the strains in the plates

were made.
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Chapter 1

Introduction

Finite Element Analysis (FEA) is commonly used in industry today for a wide range of

stress analysis applications. As a result of this popularity there are many different com-

mercial software packages available each offering various analysis possibilities. Results

obtained from finite element models however often need to be qualified before confi-

dence in accepting their predictions can be established. A common activity to verify

the results from a model of a component or structure is by making comparisons with

the experimentally measured response of a real component when subjected to similar

conditions. Such ”benchmarking” tests can provide valuable insight about not only the

performance of the model but also the qualification of any assumptions made during

the modelling process.

Undergraduate programmes in Mechanical Engineering offered by the University of

Southern Queensland contain basic courses in stress analysis using both analytical and

numerical methods. Students get an introduction into the use of a commercial finite

element modelling software package, currently ANSYS, by analysing some simple sys-

tems. In all cases a very limited amount of experimental stress analysis is performed

to verify theortical results by actually measuring the response of a real system, and

in general the stress analysis problems encountered largely focus on the assumption of

linear, elastic material properties.

This project was undertaken to gain further insight into the methodology required to,

obtain measurements of the responses of real systems, model real systems using com-
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mercial finite element modelling software, and assess the methods used by comparing

model and experimental results.

In this project it was proposed that the response of mild steel plates containing single

elliptical holes and loaded in tension be analysed in both the elastic and plastic ranges

of the steel. A comparison between the strains measured, using strain gauges, and those

obtained by FEA would be undertaken at various positions on the plate surface. To

obtain a wider understanding of the model building process and evaluate the differences

between commercial software packages the student editions of both ABAQUS (version

6.4) and ANSYS (version 5.5) were to be used.



Chapter 2

General Project Theory and

Literature Review

2.1 Mechanical Properties of Mild Steel

2.1.1 Elastic Behaviour

To better understand the behaviour of a mild steel plate under the influence of an

applied axial load it is beneficial to review the concepts of stress and strain. When a

material is subjected to a load a stress is created within the material. This stress acts

to balance the influence of the applied loading keeping the system in equilibrium. For

a body subjected to uniaxial loading the stress state of the material making up the

body is simplified to a case of uniaxial stress. The direction of the principle stress is

located along the same plane as the loading is applied. For states of uniaxial stress

the magnitude of the principal stress can be expressed as the magnitude of the load

divided by the sectional area over which it is applied. It should be noted that these

relationships only apply in cases where the loading is uniformly distributed over the

entire cross section. The loading of a body also gives rise to deformation of the material,

as the loading is increased this deformation also increases. The ratio of the deformation

of a unit length of the material under load to a unit length of the material in its unloaded

state is refered to as the strain. Between a range of stress levels steel can be said to
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behave elastically. Any deformation caused by the applied loading will completely

disappear when the loading is removed.

2.1.2 Plastic Behaviour

At a certain level of stress a defined change in the linear relationship between stress

and strain occurs. The largest value of stress at which the steel still behaves elastically

is referred as its upper yield strength (UYS). A large amount amount of strain can

now be produced by a near constant and significantly lower stress. The Stress level

at which a large increase in strain can be acheived with little or no required increase

in stress is known as the lower yield strength (LYS). The strain that can be produced

before a further increase in loading is needed is known as the yield point elongation

(YPE), this can be observed in Figure 2.1. Sometimes if the strain rate of the material

is low the upper yield point characteristic will be suppressed (Davis 2004). In general

the yield stress (σy) of the material is taken to be equal to the LYS. After a period of

YPE the material begins to work harden and a further increase in stress is required to

cause increased strains. The maximum stress that the material can withstand before

failing is known as its ultimate strength (σu). Mild steel at normal temperatures, as

encountered in this project, can be said to be a ductile material, under the influence

of loading a significant amount of deformation can occur before the ultimate failure of

the material.

2.1.3 Stress-Strain Relationships

One standard method for determining the mechanical properties of a material is to

plot the engineering stress-strain relationship of a specimen as it is loaded uniaxially

to failure. Determination of the engineering stress and strain make use of the original

undeformed cross sectional area and length of the test specimen. When a sample of

low carbon mild steel, such as AISI 1010, is subjected to such a unidirectional load a

characteristic behaviour between the engineering stress and engineering strain can be

observed, as in Figure 2.1.



2.1 Mechanical Properties of Mild Steel 5

Figure 2.1: Typical Stress-Strain Diagram for a Mild Steel.

Whenever a material is elongated to many times its maximum elastic strain the en-

gineering stress-strain relation becomes somewhat fictitious because it is based on a

cross sectional area that is different than that which actually exists. This is due to

the reduction in area as a result of Poisson’s ratio induced strains. In this case a more

accurate representation can be obtained by determining the true stress (σtrue). The

true stress can be found from the engineering stress (σ) and engineering strain (ε) by,

σtrue = σ(1 + ε)

Similarly the engineering strain is not a realistic measure when large strains are in-

volved. In these cases it is more appropriate to use true strain (εtrue) values. Again

the true strain values can be determined from the engineering strain values by the

relationship,

εtrue = ln(1 + ε)

The elastic modulus or Youngs modulus (E) of steel is defined as the ratio of the

engineering stress to engineering strain in the linear elastic region of the materials

response. The elastic modulus however can also be defined with negligible error as the

ratio of true stress to true strain due to the small strains generally encountered at the

yield point.



2.1 Mechanical Properties of Mild Steel 6

2.1.4 Poisson’s Ratio

For a plate subjected to an axial load a certain amount of strain will be produced in the

direction of the applied loading, this however is not the only direction in which strains

are produced. Strains are also produced in directions perpendicular to the direction of

the loading. These lateral strains are smaller in magnitude and are related to the axial

strain by a relationship known as Poissons ratio (ν). Poissons ratio is defined as the

ratio of lateral strain to axial strain. Thus for a plate subjected to an axial load as the

length of the plate increases the width and thickness will decrease.

2.1.5 Yield Criteria

For most practical applications failure of the material can be said to have occurred with

the onset of yielding, therefore a method is required that can predict the initiation of

yielding in the material. Firstly a consideration of the stress state of the material should

be taken. In this case as the plate is loaded in one direction a state of uniaxial stress

is created. The value of stress likely to cause yielding in this case will be equal to the

yield stress found from testing a sample of the same material in a tensile test machine,

as the stress states are identical. Although this simple criterion is sufficient for simple

calculations for uniaxial stress states a more general approach is required for cases of

biaxial or triaxial stress. As finite element analysis programs are generally concerned

with these more general stress states a further discussion on general failure criteria is

warranted.

There are two commonly used theories to predict yielding in ductile materials, these

being the Maximum Shearing Stress Criterion and the Maximum Distortion Energy

Criterion, which is also known as the Von Mises criterion. The maximum shearing

stress criterion states that a given material will yield only when the maximum shear

stress in the material is greater than the maximum shear stress in a tensile test speci-

men of the same material at its yield point. The maximum distortion energy criterion

predicts that failure by yielding will occur when the distortion energy per unit volume

in the material is greater than the distortion energy in a tensile test specimen at the
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Figure 2.2: Failure Criterion For Mild Steel.

point of yielding. A comparison of both these criterion can be seen for a case of plane

stress in Figure 2.2. It should be pointed out that the material would yield if the stress

state falls outside bounded region for each criterion. It has been observed that the Von

Mises Criterion corelates better with experimental results (Spencer 1968) however in

the case of uniaxial stress it should also be observed that both theories would provide

identical results.

2.1.6 Work Hardening

No load reversals will be applied in this project however the properties of steel when

subjected to yielding in repeated load reversals also needs to be considered as these

properties are needed for input into the finite element models. For isotropic, ductile

materials yielding is assumed to occur at the same stress in both tension and compres-

sion. Therfore if a material has become work hardened by the application of a tensile

force the yield strength of the material when subjected to a compressive force should

also exhibit the same increase. This characteristic is known as Isotropic Hardening.
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However in practice the yield strength of steel when subjected to a load reversal is less

than that of the previous loading. This is known as the Bauschinger effect. Materials

that exhibit this behaviour are said to display kinematic hardening. As the plates in

this project will not be subjected to reversed loading hardening will not need to be

accounted for.

2.2 Determination of Steel Properties

To be able to make good comparisons between experimental and modelled results it is

necessary that the mechanical properties of the material be accurately determined. For

mild steels the elastic modulus, poisson’s ratio, and yield strength are generally well

known and can be found within manufacturers catalogues or from material specification

handbooks. Even though these properties can be easily found from these sources they

are generally quoted as a range of values subjected to the manufacturing processes

such as hot, cold rolled, or annealed and do not give an indication of the materials

post yield characteristics. To obtain an accurate representation of the specific material

tensile tests should be conducted on samples cut from the same plate as the experi-

mental test specimens. By obtaining the stress-strain characteristics of the material an

accurate material model can be formed for eventual FEA use.

Tensile testing of specimens should be carried out in accordance with Australian Stan-

dards. In this case AS1391, Methods for the Tensile Testing of Metals. This standard

stipulates the dimensions of standard testpieces and outlines testing procedures and

methodologies for the determination of the mechanical properties.

2.3 Stress Concentrations

When a plate containing a hole is loaded uniaxially the stress, and strain, distribution

across a section passing through the hole will not be uniform. Instead highly localised

stresses will occur around the outside edges of the hole that have a magnitude consider-

ably greater than that given by just dividing the load magnitude by the cross sectional

area. An area where this occurs is known as a stress concentration. If the loading
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on the plate is continually increased the material in this area of higher stress will be

the first to yield. As the material yields the load is redistributed to the surrounding

material and the plastic zone, where yield takes place, will continue to expand.

2.4 Strain Measurement

2.4.1 General Gauge Characteristics & Requirements

It is an essential component of this project to be able to measure the strain caused

by loading. A common method of measuring strains on the surface of components

and one that is the most suitable in the majority of cases (BSSM 1979) is by using

foil strain gauges. Foil strain gauges have the following characteristics, sensitivity and

temperature coefficient of resistance. The sensitivity of a foil strain gauge is termed

the gauge factor(GF) and is the ratio between the fractional change of resistance and

the strain producing it,

GF = (∆R/R)/(∆L/L)

where ,R, is the resistance of the gauge and ,L, is the grid length. One major undesire-

able characteristic of foil strain gauges is that the resistance of the grid will change with

temperature as well as elongation, this is why the temperature coefficient of resistance

is important. Unless this effect is accounted for large errors can be introduced into the

strain measurements. For guages designed for use at room temperatures however this

variation in the gauge factor will be negligible as long as the tests are conducted at

room temperature.

The advantages of using foil gauges include, relatively easy installation, the ability

for direct strain readout using the correct associated circuitry, and good precision and

accuracy. The main criteria for selecting a suitable gauge type for measuring the strain

in the plates are,

• Grid configuration

• Grid size
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• Maximum elongation

• Grid resistance

For a uniaxial stress state a single grid gauge is suitable for measurements and should

be aligned parallel to the axis of the principle stress, which is in turn will be in plane

with the applied loading. These strain measurements can be then applied directly with

the relationship to the elastic modulus to determine the principal stress value in this

plane. This relationship is only valid however in the linear, elastic region.

The grid size must be sized in response to the strain gradients likely to be encoun-

tered. High strain gradients are expected around the stress concentration therefore

selection of a small grid size for these areas will increase the accuracy of measurements

by eliminating some of the strain averaging effects that are characteristic of foil gauges.

This effect can be better observed by viewing Figure 2.3.

Figure 2.3: Strain averaging effect by gauge measurement.

The disadvantages of selecting a small gauge for accuracy is however offset by the

reduction in the maximum elongation possible. Typically the smaller the grid length

the lower the maximum permissible elongation therefore a gauge length must be chosen
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that optimizes this relationship. In practice the choice of gauge length will also be

determined by gauge cost and availability.

2.4.2 Ancillary Strain Measurement Requirements

This project makes use of an automated strain measurement and recording system pro-

duced by Vishay Measurements Group. The use of this system considerably expedites

strain data collection by allowing the user to measure and record strains from multiple

strain gauges during the testing time period. This data can then be exported by the

system in a standard Microsoft Excel format. This system allows the use of both stan-

dard 120Ω and 350Ω resistance strain gauges. The Connection of the strain gauges to

the system input card must be through standard 9 pin, male, D-shell connectors.

2.4.3 Strain Gauge Bonding

For accurate strain measurements to be taken the gauges must be bonded to the plates

adequately. This requires carefull preparation of the bonding surfaces. The purpose of

this is to produce a chemically clean surface having a roughness suitable for the gauge

installation requirements, a neutral surface alkalinity, and visible gauge layout lines.

There are five basic operations that need to be performed to prepare the bond surface.

These are, in order of execution,

• Solvent degreasing

• Surface abrading

• Application of gauge layout lines

• Surface Conditioning

• Surface neutralizing

Degreasing is performed to remove oils, greases and other soluble chemical residues.

Degreasing can be accomplished by the application of aerosol degreasing agents. The



2.4 Strain Measurement 12

surface must then be abraded to remove any loosely bonded surface adherents, such

as rust or scale, and to develop a suitable surface texture. This can be achieved by

grit blasting or by using silicon carbide paper. The area must be finished using silicon

carbide paper of the appropriate grit size to provide the required surface roughness

value. For general stress analysis work a surface roughness value between 1.6-3.2um

RMS is recommended, this can be achieved using a 320 grit paper (BSSM 1979). The

area for guage location can then be marked. It is appropriate to burnish the surface

rather than score it. This can be acheived using a fine, round pointed object. The area

should be marked with perpendicular intersecting lines so that they can be aligned

with the gauge backing aligning markings. For this project it will be necessary that

these markings be made parrallel to both edges of the plate so that alignment with the

principle stress can be achieved. It is recommended that the surface now be conditioned

using a conditioner recommended by the gauge manufacturer. The purpose of this is

to remove all the fine traces of contaminants from the bond surface. The procedure

for this involves wetting the surface with the conditioning agent and then cleaning the

area using cotton tipped applicators untill the tips no longer become discoloured. The

conditioner must then be cleaned off using a clean gauze sponge. The final step involves

bringing the surface back to a near neutral alkalinity. A neutralizing agent can be

applied to the surface then again cleaned with cottom tipped applicators and once again

dried using a clean gauze sponge. The surface is now ready for strain gauge bonding.

It is recommended that bonding take place within 45 minutes of surface prearation

(BSSM 1979). The gauges are bonded using an adhesive agent. Strain measurement

with bonded resistance strain gauges relies upon the assumption that the surface strain

is passed through the adhesive layer to the gauge. The selection of a suitable adhesive

is important as the wrong selection can influence the gauge characteristics. Different

gauge manufacturers supply suitable adhesives for bonding their gauges to different

materials and there rcommendations should be heeded (BSSM 1979). To bond the

gauges to the plate a thin layer of adhesive can be applied to both surfaces, the gauge

can then be placed in position and a pressure applied untill the adhesive has cured.

The time to cure is dependant upon adhesive type and should be found from the

manufacturers information.



2.5 Finite Element Analysis 13

2.5 Finite Element Analysis

2.5.1 Modelling Approach

The geometry and loading of the plate allows a range of possible modelling approaches.

The fact that the plate is loaded uniaxially and has a constant cross section allows

the use of plane stress modelling using two dimensional element types. The plate

could also be sucessfully modelled using shell elements or even solid brick elements

however it is recomended that the simpler plane stress modeling techniques be used

where it is appropriate as simpler models are generally more accurate, both from a

solution standpoint and due to the fact there is less chance of input error (Adams &

Askenazi 1999). The use of geometrical symmetry can also be used in this problem.

It is reccomended that if symmetry exists in a problem then it should be used as

it will result in shorter run times, more accurate boundary conditions, and greater

solution accuracy (Adams & Askenazi 1999). The plates have two planes of symmetry

both passing through the centre of the elliptical hole. By using plane stress modelling

techniques combined with the use of symmetry only a quarter of the cross section will

need to be modelled. This has the advantage of the model requiring a much lower

number of nodes and elements, which is of vital importance when using the student

editions of both Abaqus and Ansys as they are limited to model sizes not exceeding

1000 nodes.

2.5.2 Loading & Boundary Conditions

The loading and boundary conditions used must accurately model those applied during

the tensile tests. Loading and boundary conditions can either be applied onto the

solid model or directly to the elements or nodes of the meshed model. The former

approach is the best option as it automatically assigns the equivalent condition to each

individual node or element face which has the advantage of allowing the mesh to be

modified without loss of this data thus increasing the speed of any subsequent mesh

modifications.



2.5 Finite Element Analysis 14

The axial force applied to the plate can be approximated by applying a uniformly

distributed, negative pressure to the end of the model edge. In reality the force is

applied by contact between the grips and plate and due to these practicalities it is

likely that the pressure distribution will not be completely uniform however due to St

Venant’s theorem this approximation should still provide an accurate representation of

the load distribution at the measurement points as they are at a distance from the load

application.

The magnitude of the pressure load can be calculated simply by applying the relation-

ship, P = F/A, where, P, is the pressure, F is the applied force, and A is the cross

sectional area at the clamped ends of the plate. It should be noted that this pressure

value is uniform over the entire section and therefore will remain the same magnitude

even though quarter symmetry is being used.

As symmetry will be used to decrease the model size it is necessary that this condition

be accounted for. To achieve this, symmetry boundary conditions can simply be applied

to the solid model edges that lie on symmetry planes. This will act to constrain the

displacement of nodes along these edges in the direction perpendicular to the symmetry

planes.

2.5.3 Assignment of a Material Model

It is commonly assumed that mild steel is a homogeneous and isotropic material. When

plasticity is to be expected the material model used must take into account both the

elastic and plastic characteristics of the mild steel. Material properties used to build

FEA material models generally require that the true stress and true strain properties

be used and this is indeed the case for both the software packages used (ABAQUS

Inc. 2003)(ANSYS Inc. 1998). For low strains, less than several times the elastic limit,

the engineering and true stress and strain values are nearly identical and therefore the

engineering values can be used. For analysis of large strains however it is vital that the

true stress and strain values be used for material model input.

A common material model used for steel is the elastic-perfectly plastic model. This

bilinear model assumes that the material will behave elastically, with a proportionality



2.5 Finite Element Analysis 15

Figure 2.4: Elastic-Perfectly Plastic material model for analysis of plastic strains.

constant of the elastic modulus, up to the yield stress of the material where it will

then model the plastic behaviour by allowing continued strain at the constant yield

stress. This relationship can be better observed by viewing Figure 2.4. This model is

an idealization of the actual properties of mild steel however it can provide a sufficiently

accurate representation if some restrictions for its use are not exceeded. The Elastic-

Perfectly Plastic model assumes that the material does not strain harden, for low carbon

steels that experience YPE this approximation is adequate where the magnitude of

plastic strains are not expected to reach far into the strain hardening range.

If the loading on the plate is increased high enough the limitations of the bilinear model

will be exceeded and can result in a loss of accuracy or divergence of the solution (Adams

& Askenazi 1999). To model the response of the plates at high loads and subsequent

large plastic strains it may become necessary to account for the strain hardening range

of the steel. In this case Adams & Askenazi (1999) suggests that a multilinear material

model may be required that takes into account both elastic, plastic and also hardening

regions by linking together a series of linear segments. A typical multilinear material

model can be seen in Figure 2.5. The ABAQUS Inc. (2003) analysis guides also show

this approach for typical problems involving plasticity for steels.
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Figure 2.5: Multilinear material model for analysis of large plastic strains.

The yield criteria for use in the model must also be selected. From discussion in previous

sections it has been shown that the Von-Mises criterion has provided the most accurate

comparisons with experimental results. Both ANSYS and ABAQUS use this criteria

as the default setting and this will be the criterion chosen for modelling. Allthough

there will be no load reversals both software packages require that a hardening rule be

chosen to fully characterize the material. From previous discussion it can been seen

that either kinematic or isotropic hardening could be chosen.

2.5.4 Element Selection & Meshing

A variety of two dimensional structural elements are available in both packages. Both

1st and 2nd order, plane stress, isoparametric element types are available in ANSYS and

ABAQUS. These are available in both triangular and quadrilateral form. The 8 node

elements give better nodal results and have a greater ability to model curved bound-

aries than other element types(Moaveni 2003, pg312). For this reason they will be used

exclusively for modelling. In ANSYS this 8 node element type is named PLANE82.

This element uses a 4 point gaussian integration rule. In ABAQUS the 8 noded plane
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stress quadrilateral is available with full(9 point rule) or reduced(4 point rule) integra-

tion and are named CPS8 and CPS8R respectively. It has been suggested that, as the

number of integration points used for element formulation is increased the accuracy of

the elements decreases, generally erring by being too stiff (Cook 1995). On the other

hand it has been suggested in the ANSYS user’s manual that to obtain better accuracy

when modelling plasticity it is beneficial to use more integration points.

So that a quality comparison can be made between software packages a mapped meshing

technique will be used. This will ensure that identical meshes are obtained for each

model removing a source of possible differences in results obtained. It will be beneficial

to refine the mesh around the position of expected high stress gradients so that a more

accurate solution can be obtained in these areas. The use of a mapped mesh has

benefits in this case as it allows these areas to be meshed with consistently sized and

well shaped elements also providing a smooth transition in element size over the plate

length. Another benefit of using a mapped mesh is that it allows the element size to

be refined in a systematic manner while determining the convergence of the numerical

solution.



Chapter 3

Determination of the Mechanical

Properties of the Plate Material

To determine accurate material properties some standard tensile tests were conducted.

Following the appropriate Australian Standard, AS 1391, two test specimens were man-

ufactured from the same 3mm thick plate as that of the experimental specimens. The

orientation of these test specimens in the parent plate matched that of the experimen-

tal specimens so that any anisotropic effects of the rolling process could be matched.

This can be better observed by viewing Figure 3.1. The dimensions of the tensile test

specimens were determined using the standard and can be viewed in Appendix B.

Figure 3.1: Orientation of Tensile Test Specimens in Parent Plate.
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The testing of the specimens was undertaken on an automated testing machine. The

load and extension of the samples could be monitored via sensors integral to the ma-

chine however due to the variation in cross sectional area of the specimens the strain

measurements were made by fixing an extonsometer to the specimens gauge length, as

shown in Figure 3.2.

Figure 3.2: Tensile Test Setup

Due to damage to the testing labarotoy’s high extension extensometer a substitute de-

vice had to be used. Limitations existed however with using this extonsometer. The

maximum permissible strain that could be measured was 0.3%. This limitation severely

restricted the ability to determine the steels characteristics accurately at strains in ex-

cess of the limit. The materials elastic modulus, upper and lower yield strengths could

however be determined from this strain range.

To obtain a more accurate representation of the material properties, and decrease

the chances of including an uncharacteristic sample, two samples were tested. The

stress-strain diagrams produced, along with the calculated properties, can be seen in

Figures 3.3 and 3.4.
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Figure 3.3: Stress-Strain Diagram for Test 1

Figure 3.4: Stress Strain Diagram for Test 2

It can be seen that the variation in the mechanical properties between samples was
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Figure 3.5: Extension of test specimen during testing.

small and corresponded well to the recognised range of values for AISI 1010 steel as

found from material property databases. By taking a rounded average of the properties

of each sample the mechanical properties found can be seen in Table 3.1.

Sample 1 Sample 2 Overall

E 209GPa 211GPa 210GPa

UYS 333MPa 327MPa 330MPa

LYS 301MPa 299MPa 300MPa

Table 3.1: Determined Mechanical Properties

Allthough the strain data restrictions limit the determination of accurate data above

0.3% the general behaviour of the material can be observed by viewing a typical force-

extension diagram, as shown in Figure 3.5, which shows the typical response for mild

steel up to approximately its ultimate strength. It can be seen that the steel does strain

harden after a period of constant load yielding.

Poisson’s Ratio was not determined during these tests and thus a recognised value for

mild steel of 0.3 (Beer & Johnson 1992)(Juvinall & Marshek 2000) can be assumed.



Chapter 4

Measurement of Strains in

Perforated Plates

The first step in conducting the experiment was to determine the dimensions and

material specifications of the experimental test plates. The design of the plates needed

consideration of factors such as,

• Testing machine limits.

• Manufacturing limits.

• Material availability.

• Strain gauge placement requirements.

• Provision of a near uniform stress distribution adjacent to the clamp face.

The 500kN tensile testing machine in the University of Southern Queensland’s Toowoomba

campus engineering materials testing laboratory was selected for use due to it’s ability

to provide automatic readout of extension and force values. This machine has me-

chanical wedge lock jaws that can accomodate up to 100mm wide plates providing the

thicknesses is greater than 1.5mm. By taking these limits into account it was proposed

that that the plate width be 95mm so that a small clearance between the edges of the

jaw could be maintained ensuring even loading be applied across the entire plate width.
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With the plate width set at 95mm the dimensions of the elliptical holes could now be

decided. The major criteria for selection of ellipse dimensions was to allow sufficient

space for multiple strain gauges to be mounted between the ellipse centreline and the

plate edge. On preliminary inspection of easily available strain gauge sizes it was de-

termined that the major radius of the ellipse could be 20mm and thus as the ratio of

major to minor radius was to be 2 the minor radius was set as 10mm. Manufacturing of

the ellipse would require a NC slot drilling operation which was deemed possible using

the available USQ workshop machine. The length of the plate was made upon consid-

eration of the clamping area required by the tensile testing machine and test length

required so that a near uniform stress distribution could be maintained adjacent to the

clamp jaws. This length was approximated by conducting some preliminary FEA using

a linear elastic model with approximate material properties. The FEA methodology

used is described further in Chapter 5. From this preliminary analysis an approximate

test length of 200mm would be needed. The length required for clamping was 90mm

at each end thus the total plate length required was to be 380mm. Workshop material

availability led to the use of 3mm thick AISI 1010 carbon steel plate. Fully dimensioned

drawings of plate dimensions can be found in Appendix B.

The aim of the project was to make a comparison between FEA and experimental

results. There were no particular locations that must be measured but rather there

existed areas on the plate where it was of interest to make comparisons. The obvious

choice for one such measurement is on the outside edge of the elliptical holes. To gain

insight into the approximate strain distribution in the plate some preliminary linear,

elastic FEA models were created. it was observed that the path of increasing strain led

from the edge of the hole to the outside edge at roughly 45 degrees. 4 strain gauges

were available for use on each test plate so it was proposed that two of these gauges

could be used to measure strains at locations around the stress concentration(positions

1 and 2), another measurement could be taken around the edge of the plate (position

3), and another to capture the averaged stress at a location far from the stress con-

centration(position 4). The results of the preliminary studies can be seen in Figure 4.1

which also shows the proposed gauge measurement positions.
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Figure 4.1: Axial strain distributions determined by preliminary FEA showing proposed

strain gauge positions.

With the measurement positions determined the strain gauges could now be bonded

to the surface. The gauges chosen were of a uniaxial grid configuration each having a

gauge length of 3.18mm, gauge factor of 2.08, and a maximum elongation of around 1.5-

2%. The gauges were bonded and connected to the measurement system as discussed

in Section 2.4. Both plates were tested and strain data gathered untill a significant

amount of plastic deformation was observed. The relationship between the axial force

and the strains produced can be observed in Figures 4 and 4.3.
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Figure 4.2: Strain data gathered from testing plate containing vertically oriented elliptical

hole.

Figure 4.3: Strain data gathered from testing plate containing horizontally oriented el-

liptical hole.

The strain results show the characteristics expected with the data nearest the holes

showing a significantly higher strain than at the other positions due to the stress con-
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centration effects. Positions 1 on both plates don’t exhibit the distinct linear elastic to

plastic transition as displayed in the other positions but instead show a curving tran-

sition which is indicative of the large strain gradients in this area and the averaging

effects of the strain gauge measurement. Positions 2-4 on both plates show an initial

linear response. This can be expected as these positions are not subject to the high

strain gradients caused by the discontinuity. It can be observed that as the loading

is increased the localised region of high strains expands toward position 2 and then

outward to position 3 with yielding occuring in this order.

A further observation of the strain data for position 4 in Figure 4 indicates that it is

possible to determine the steel’s mechanical properties if the assumption of a uniform

stress distribution across a section near the clamps is taken. An excellent correlation

between the stress-strain diagrams as found by testing the ”dogbone” specimens and

that from the strain gauge measuring point exists which suggests that the limitations of

the extonsometer can be neglected and that the yield point elongation is at least 1.6%.

It should be noted here that the distinct UYS shown by tensile testing the dogbone

specimens is not shown in the strain gauge data. This is most likely due to the fact

that this test was conducted a slower strain rate which can act to suppress this effect,

as discussed in Section 2.1. This comparison can be observed in Figure 4.4.

Figure 4.4: Comparison between ”dogbone” and testplate determined mechanical prop-

erties.
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It was also found that the actual maximum extension of the strain gauges was around

1.5% however in some cases such as position 2 in Figure 4 a lower maximum strain

reading was obtained. This was most likely a result of poor bonding between the plate

and gauge causing relative motion between the surfaces.



Chapter 5

Finite Element Analysis

5.1 Model Creation

A basically identical process was used to build the plane stress models in both analysis

packages. In both cases only a quarter of the plates geometry was required to be

modelled. Only the portion of each test plate between opposing clamps was considered

for model formulation. Symmetry boundary conditions were applied to both planes of

symmetry and a uniformly distributed presssure load applied to the model geometry so

that an equivalent axial loading as measured in the experimental procedure be applied.

The plane stress, 8 node isoparametric element types available in both packages were

used. In ANSYS this element type uses a 4 point integration rule. In the ABAQUS

package both full and reduced integration varieties were used which use 9 and 4 point

rules respectively. The models were meshed using a mapped meshing technique so that

identical models could be created in each case and a beneficial mesh density could be

obtained around the hole edge. Typical models used showing the meshing technique as

well as the loading and boundary conditions used can be observed in Figure 5.1.

An elastic-perfectly plastic material model was specified. The values used to define this

model were the elastic modulus and LYS as shown in Table 3.1. The engineering stress

value was used rather than the true stress value, the difference between them found to

be negligible at such low strain values. The default flow rule and yield criteria were
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Figure 5.1: Typical models used for analysis showing loads, symmetry boundary condi-

tions and mapped meshing technique used.
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used and, allthough of no importance in this analysis, isotropic hardening specified.

5.2 Solving & Data Output

In each case results were written at 10 equal load inrements during solving. This

was done so a force-strain curve could be plotted for comparison to the expermental

data. It was found that the use of the elastic-perfectly plastic material model restricted

the maximum load possible to be applied with excessive loads causing the solution to

diverge. This can be better defined in practical terms as the load at which an entire

plane through a cross section reached the elastic limit thereby, due to the assumption

of perfect plasticity, allowing plastic collapse. As a result of this the loading applied

in each case was kept just below this limit which was well below the actual loading

applied during testing of the plates.

The axial strains determined at the centroids of elements at the same coordinates as

the measurement points were used for comparison to the measured strains. Allthough

the elements at the measurement points were not the same size as the gauges it was

observed that the strain gradient at most measurement locations was low and therefore

an averaged elemental strain was assumed to present a reasonable portrayal of the

strain over the entire element. As strain gauges essentially take an averaged strain

measurement over their gauge area this technique was considered reasonable. For the

measurement positions close to the hole edge a high strain gradient exists and therefore

caution of using this approach is warranted. In these cases however the element size

closely matched the strain gauge grid size and therefore, similarly, the centroidal strains

were assumed as a reasonable representation of the whole measurement point.

5.3 Results & Discussion

A comparison between the axial strains from the analysis results and the experimental

results can be observed in Figures 5.2 to 5.9.
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Figure 5.2: Results of FEA by ANSYS and ABAQUS for vertically oriented hole compared

to experimental measurements at position 1.

Figure 5.3: Results of FEA by ANSYS and ABAQUS for vertically oriented hole compared

to experimental measurements at position 2.
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Figure 5.4: Results of FEA by ANSYS and ABAQUS for vertically oriented hole compared

to experimental measurements at position 3.

Figure 5.5: Results of FEA by ANSYS and ABAQUS for vertically oriented hole compared

to experimental measurements at position 4.
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Figure 5.6: Results of FEA by ANSYS and ABAQUS for horizontally oriented hole

compared to experimental measurements at position 1.

Figure 5.7: Results of FEA by ANSYS and ABAQUS for horizontally oriented hole

compared to experimental measurements at position 2.
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Figure 5.8: Results of FEA by ANSYS and ABAQUS for horizontally oriented hole

compared to experimental measurements at position 3.

Figure 5.9: Results of FEA by ANSYS and ABAQUS for horizontally oriented hole

compared to experimental measurements at position 4.
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It can be observed that results obtained by ANSYS and both element types in ABAQUS

were essentially identical during most of the load range. A variation in the results how-

ever can be observed at higher strains as observed in figures 5.2 and 5.6. It can be noted

that the full integration element type in ABAQUS tended to present stiffer results than

the reduced integration variety which was expected and discussed in Section 2.5.

In most cases a good correlation existed between the experimental model data. It can

be seen that, excluding positions 1, the modelled strains were well under the maximum

strain limits of the gauges and were not large enough to cause yielding at all measure-

ment positions which limited the ability to make a good comparison around the yield

points.

There are many factors that would influence the accuracy of both the experimental

and modelled data. This includes the inherent approximation characteristic of the

finite element method. Some factors that could have produced discrepancies in the

experimental results include,

• Innacuracies in the force measurement equipment

• Innacuracies due to strain gauge and measurement system tolerances

• Misalignment of strain gauges to plate axis

• Misalignment of plate axis to the plane of loading

• Slippage of gauges relative to plates due to poor bonding

The method used to collect strain data from the model for comparison was not ideal

and a potential source of error. This could be reduced by decreasing the element size

around the measurement points. The accuracy of the model, in general could likely be

improved by using a smaller mesh size, unfortunately this could not be achieved during

this project due to being restricted to the use of only 1000 nodes.

Potential errors could have also been created by modelling the applied load by assum-

ing a uniform pressure distribution across the plate end face. In reality the pressure

distribution accross the plate ends is not expected to be uniform but vary somewhat

due to the stiffness variations within the plate caused by the holes and the method of
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load application through contact by taper lock serrated jaws. As the ratio of the hole

dimensions and the distance to the endfaces was relatively large the assumption of a

uniform pressure distribution was likely however to cause insignificant error due to the

application of St Venant’s Principle.

Further assumptions made regarding the steels properties could also be a source of

errors. In reality it is possible that rolled steel plate would not be isotropic and ho-

mogeneous due to inclusions and anisotropic effects caused by the rolling process. The

mechanical properties of the steel are also likely to vary throughout the plate section.

Given the accurate testing of the material properties performed during this project,

and the small size of the plates, these effects would most likely be negligible.

To extend the loading that can be applied the use of a multilinear material model that

includes more plastic data points incorporating the strain hardening characteristics of

the steel could be used. A multi-linear material model was not used in this project.

This was largely due to the fact that accurate strain hardening data could not be deter-

mined due to the limitations of the extensometer. It is expected however that by using

a more comprehensive material model a significantly higher loading could be applied to

the model and subsequently a broader range of strain results obtained for comparison.



Chapter 6

Conclusions and Further Work

6.1 Achievement of Project Objectives

The project objectives were achieved and a comparison between the experimentally

measured strains in perforated steel plates under tension and those obtained from fi-

nite element analysis made. By using a plane stress modelling approach using 8 node

quadrilateral elements and by making some simplifying assumptions regarding mate-

rial behaviour and loading a good correlation between the results was obtained. By

reviewing the plastic behaviour of steel a model was formulated that succesfully pre-

dicted the yielding in the plates at low plastic strains. Both ANSYS v5.5 and ABAQUS

v6.4 software packages were used to create the models and the results obtained from

both packages found to compare favourably. It was found that both software packages

offered similar controls over the model building, solving, and post processing process

which enabled easy transition between packages. In general it was found that the

ABAQUS package was easier to learn and use however the help file system available in

the ANSYS package presented more information about element use and offered more

insight into analysis procedures.
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6.2 Further Work

It would be interesting to conduct some further work into modelling the plates at higher

loads and subsequently larger strains. In this project the maximum loading that could

be applied to the plates was limited by the use of an elastic-perfectly plastic material

model however by conducting some additional material tests a more comprehensive

material model could be defined which takes into account the extra strength of the

material after yielding caused by strain hardening. Further to this it would be of interest

to make comparisons with results obtained from models built using other element types

such as p-element varieties.
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Project Specification 
 
 
For:                 Ben Field 
 
Topic:              Stress Analysis of Axially Loaded Steel Plates by Experimental and 
                         Finite Element Methods. 
 
Supervisors:   Amar Khennane 
                        Chris Snook 
  
Project Aim:  The project aims to compare the experimentally measured strains in  
                         perforated steel plates with those obtained from two different  
                         commercial finite element modelling software packages, namely, 
                         ABAQUS and ANSYS. 
 
Programme:   Issue A, 25th April 2005 
 

1. Review the theory of plasticity in metals. 
2. Review and select finite element analysis modelling techniques suitable to 

model the physical situation. 
3. Design and manufacture appropriate test pieces for use in a tensile test 

machine. 
4. Measure the strains produced in critical areas of the test piece when being 

subjected to a tensile load. 
5. Model the experiment using both ABAQUS and ANSYS finite element 

modelling software packages using the suitable techniques found in (2). 
6. Compare the results of the finite element models to the experimental results 

obtained. 
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Dimensions of Test Samples
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