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Abstract 

 

This dissertation concerns the design and construction of a chassis for the Formula 

SAE-Aust race vehicle – to be entered by the Motorsport Team of the University 

of Southern Queensland. 

 

The chassis chosen was the space frame – this was selected over the platform and 

unitary styles due to ease of manufacture, strength, reliability and cost.  A 

platform chassis can be very strong, but at the penalty of excessive weight.  The 

unitary chassis / body is very expensive to set up, and is generally used for large 

production runs or Formula 1 style vehicles.  The space frame is simple to design 

and easy to fabricate – requiring only the skills and equipment found in a normal 

small engineering / welding workshop.   

 

The choice of material from which to make the space frame was from plain low 

carbon steel, AISI-SAE 4130 (‘chrome-moly’) or aluminium.  The aluminium, 

though light, suffered from potential fatigue problems, and required precise heat / 

aging treatment after welding.  The SAE 4130, though strong, is very expensive 

and also required proper heat treatment after welding, lest the joints be brittle.  

The plain low carbon steel met the structural requirements, did not need any heat 

treatments, and had the very real benefits of a low price and ready availability.  It 

was also very economical to purchase in ERW (electric resistance welded) form, 

though CDS (cold drawn seamless) or DOM (drawn over mandrel) would have 

been preferable – though, unfortunately, much more expensive. 

 

The frame was designed using the USQ 2004 frame as a model for dimension, 

with a bit added to the cockpit for driver comfort and safety, and a 100 mm 

reduction to the wheelbase.  The basic design targets were a 20% reduction in 

weight and a 40% increase in torsional rigidity.  The weight target was met – 38 

kg versus 49 kg – as was the torsional target – 485 N.m/° versus 214 N.m/° (yet to 

be physically verified).  The finished space frame also possesses an elegant 

simplicity that is pleasing to the eye. 
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Chapter 1 
 

1. Introduction 

 

The introduction to this project is to be covered in the following manner: 

 

i. Formula SAE-Aust Competition 

ii. Project Details 

 

 

1.1. Formula SAE – Aust Competition 

 

The objective of the Formula SAE competition is to give engineering 

students from around the world the opportunity to participate in a team-

based competition to design, fabricate and actually race (compete) a small 

formula type racing car.  The rules of the competition are fairly open to 

encourage innovation and to help minimise costs.  (Any form of motor 

sport that is highly restricted becomes very costly – e.g. Pro-Stock Drag 

Racing, NASCAR, Formula 1 etc - as each team is forced to highly 

develop every component – at great expense - to remain competitive).  

There exists, however, strict safety rules (everything about the car and the 

competition race course is focused primarily on safety – to the extent that 

a vehicle that complies with the letter of the rules but, in the opinion of the 

judges is not safe, will not be allowed to race) and a simple requirement 

that the engine is less than 0.610 litre swept capacity and must ‘breathe’ 

through a 20 mm diameter restrictor.  

 

To add meaning to the competition, the assumption is made that the whole 

exercise is for the manufacture and evaluation of a prototype race vehicle 

to cater for the non-professional weekend racer.  To this end, a business 

presentation must be given regarding the feasibility of manufacturing 4 

such vehicles per day, and that the prototype vehicle should cost less than 

$US25,000.  In simple terms, the vehicle must be effective and efficient, 
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not only to race but to build and maintain.  Expensive and exotic materials, 

specialised and difficult manufacturing processes and an end product that 

is difficult to repair (or dangerous if repaired incorrectly) or modify should 

be avoided. This philosophy shall be carried through this dissertation. 

 

The judging categories are as follows: 

 

 

 Static Events 

  Presentation   75 

  Engineering Design 150 

  Cost Analysis  100 

 

 Dynamic Events 

  Acceleration   75 

  Skid-Pad   50 

  Autocross  150 

  Fuel Economy   50 

  Endurance  350

 Total Points                      1,000  

   

 Table 1:  Judging Categories & Points 

 

The 2005 Formula SAE Series consists of three separate competitions – 

the United States of America, the United Kingdom (GB) and Australia  

(for the Australasian countries).  However, any team may compete in any 

competition. 
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1.2. Project Details 

 

This Report covers the design and construction of the chassis for the 

Formula SAE Racer.  The details for this are given below from the Project 

Specification: 

  

1. Research SAE rules to determine safety and design requirements. 

2. Review and critique designs used by other teams. 

3. Determination of layout, suspension type and dimensions in 

consultation with Team. 

4. Selection of materials to be used. 

5. Determination of work processes (including quality control) for 

construction of frame. 

6. Determination of imposed loads – suspension, engine, torsional 

etc. 

7. Research and design a suitable mounting bracket for suspension, 

engine etc. 

8. Testing of joint strength of selected material in configurations used 

in chassis. 

9. Determination of optimal frame design (with regards to weight, 

deflection and torsional stiffness) by Finite Element Analysis. 

10. Liaise with Team and Faculty Workshop in the construction of the 

frame. 

11. Testing (and modification, if necessary) of frame to ensure 

compliance with design and safety objectives. 

 

This entails research into the dynamic loads on a chassis, existing Formula 

SAE chassis designs, types of chassis, materials selection, construction 

methodology and physical testing of the completed chassis. 
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Chapter 2 
 

2. The Chassis – what is it and what does it do? 

 

In general, the chassis is the supporting frame of a structure whether it 

is an automobile or a television set.  However, the dynamics of an 

automobile are somewhat more severe than a television set (unless, of 

course, the TV. set is being hurled from a hotel’s tenth floor by some 

deranged ‘pop star’.)   

 

The purpose of the auto chassis is to link up the suspension mounting 

points, final drive, steering, engine / gearbox, fuel cell and occupants.  

The auto chassis requires rigidity for precise handling, light weight to 

minimise both construction and running costs and inertia, and 

toughness to survive the quite severe fatigue loads imposed by the 

driver, road surface and power plant (Fenton, 1980, p2). 

 

The discussion on the basic types of chassis that can be used for the 

Formula SAE chassis will be carried out in the following order: 

 

1. Platform 

2. Space frame 

3. Monocoque / unitary 

4. Evolution of the sports chassis 

5. Chassis strength 
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2.1. Platform Chassis 

 

The original and oldest form of chassis – used for thousands of years – 

even before the invention of the wheel (a sled has a chassis).  This is a 

clay model (probably a toy) from the Harrapa Civilisation  (Indus 

Valley) from 4000 years ago. 

 

               

                              
  

Figure 1:  Clay Model – 2000 BC (Owen&Bowen,1967) 

 

The platform chassis did not change much over the following 3800 years – 

below is the Cugnot Steam Tractor, which was used for hauling heavy 

artillery during one of those indeterminable European wars that seem to 

have started when the Romans left and have continued until this day.  

However, this was also the beginning of the Industrial Revolution. 
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      Figure 2:  Cugnot Steam Tractor 1770 AD 

 

This was a turning point in chassis design – it was the first known self-

propelled road vehicle. The dynamics of this new development led to 

new and better things – like the horseless carriage just over 100 years 

later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 3:  The Horseless Carriage 1890 AD 
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This development quickly led to the modern motorcar shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 4:  The Modern Motorcar (Owen&Bowen,1967) 

 

This was an important development for it led to the necessity of 

understanding the dynamics of the motor vehicle.  What was suitable for a 

horse drawn cart was no longer suitable for a powered vehicle – and now 

those levels of power were becoming considerable, along with the 

demands of the motorist for safe and predictable handling, along with 

comfort and reliability.  Bullock carts were no longer good enough, though 

Henry Ford continued to build cars with bullock cart rear suspension in 

Australia until the late 1980s. 
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The first type of chassis was the platform – shown below in Figure 

5:  The Platform Chassis. 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 5: The Platform Chassis 

 

This design suited the production methods of the early 20th century 

where a chassis and drive train were manufactured and then sent to 

a coachbuilder for the body to be attached to the top. (Still unable 

to leave the horse and cart mentality behind). 

 

The platform chassis is simple to design and manufacture, but 

tends to be heavy if rigid.  Also, with the platform chassis, the 

body is ‘along for the ride’ and contributes little to the overall 

rigidity of the vehicle.  The platform chassis consists mainly of 

longitudinal beams – which need depth and mass for rigidity. 

 

This design particularly suits trucks / trailers where an open 

platform is needed to carry loads of varying shape, size and mass.  

The manufacture of a platform chassis may be fully automated or 

by hand, depending on production requirements (e.g. mass 

produced trucks or specialised sports cars). 
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2.2. The Space Frame Chassis 

 

The space frame uses a series of triangulated tubes to produce a 

structure – with each member in compression or tension.  Historically, 

the Fokker Triplane of the Red Baron (Manfred von Richtofen) in 

1917 made use of the space frame.(Bowen, 1980, p121). 

 

The space frame can be simple or complex, as shown below: 

  Figure 6:  Simple Space Frame 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  Complex Space Frame (Mercedes) 
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The difficulty of manufacture, maintenance and repair of the complex 

space frame shown in Figure 7 (a Mercedes sports car) has virtually seen 

the demise of such efforts in road going motor vehicles. 

 

However, the potential simplicity of the space frame as shown in Figure 6 

has ensured the continuing development of the space frame in the formula 

type race cars and also in specialist professional drag racing classes.  

Recent developments in Europe and the USA in hydroforming and 

automated procedures for construction have led to renewed interest in the 

spaceframe for mass produced vehicles due to the lack of expensive 

tooling and the ability to have a new vehicle designed and into production 

much more quickly (a marketing plus). 

 

 

 

2.3. Unitary Construction 

 
Monocoque can be defined as a type of vehicle construction in which 

the body is integral with the chassis.  This means the chassis is less 

well defined (as in the platform chassis) and the body provides similar 

(or greater) strength as does the space frame. 

 

In the monocoque, the body is not ‘along for the ride’ (as in the 

platform chassis) and contributes to the overall strength.  This allows a 

large reduction in the mass of the platform parts of the monocoque.  

(The strength is directly related to the second moment of area – with a 

monocoque, because of the distance apart of the members, the actual 

areas of the material can be a lot less). 
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An excellent example was the 1960’s Ford GT40 – noted for its 

exceptional rigidity, race winning ability and good looks.   

 

 

 

 

 

 

 

 

 

 

    Figure 8:  Ford GT40(Ford) 

 

With proper design, the monocoque combines light weight, high strength 

and torsional rigidity.  However, the economical construction of such 

vehicles is more suited to the long production runs of the modern motorcar 

– especially with automated (robotic) assembly lines. 

 

 

2.4. Evolution of the Sports Chassis 

 

As an interesting aside here, the evolution of the sports chassis followed a 

similar route as the normal road vehicle. (Fenton, 1980,p4) 

The early race cars had platform chassis – and were big, heavy and slow.  

Then, after WW2, technology began to change with, initially, the addition 

of bracing tubes to the platform structure (thereby allowing a lighter 

platform with added rigidity).  These bracing tubes became more 

numerous and the platform structure became less obvious – this evolution 

can be seen quite clearly below in Figure 9: Evolution of the Sports 

Chassis: 

 

 

 

 23



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 9:  Evolution of the Sports Chassis (Fenton,1980) 

 

This evolutionary process with the tubes continued until the space 

frame, then it was discovered that the unitary / monocoque type shell 

construction combined exceptional rigidity with light weight.  One of 

the earliest, and best examples, was the twice Le Mans (24 hour 

endurance race) winning Ford GT40 of the early 1960’s.  Current 

racing vehicles using a unitary chassis make much use of expensive 

composites (carbon fibre etc). 
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2.5. Chassis Strength 

 

The automotive chassis is affected by load transfers – longitudinal, 

lateral and diagonal.  How little the chassis is actually affected by 

these loads is a measure of the chassis’ worth. 

Thompson, Rajic and Law in their Design of a Winston Cup Chassis 

for Torsional Stiffness state that increased torsional stiffness of a race 

car chassis improves vehicle handling by allowing the suspension 

components to control a larger percentage of a vehicle’s kinematics – 

that is, the suspension can allowed to do its job properly (ed C Smith, 

2004,p133).  In their efforts, the torsional rigidity of the chassis was 

increased by 232% (baseline more than tripled) for a weight penalty of 

5%.  Of course, this is still subject to cost-benefit analysis – if the 

chassis was sufficiently rigid at the lower figure, then all that has 

happened is the vehicle has incurred a 5% weight penalty – which, in 

some classes of racing would be sufficient to make the vehicle 

uncompetitive.  An example would be in US Pro Stock Drag Racing, 

where a 5% weight penalty would take the standing quarter mile 

elapsed time (e.t.) from 6.70 s to 6.81 s – in a typical 16 car field, the 

e.t.’s would range from 6.70 for the quickest to 6.75 for the slowest 

qualifier.  Obviously, in this case, the time penalty for the 5% extra 

weight would make the car totally uncompetitive. 

 

In order for a racing car, or any car, to handle properly it must be 

possible to actually tune the handling balance (Deakin et al, p107).  

This means that the front and rear axles can be tuned to give the same 

lateral acceleration ie a balanced chassis. 

From this, an understeering car (which has insufficient traction at the 

front) may have this tendency lessened by reducing the load transfer at 

the front and increasing the load transfer at the rear.  The catch is that 

this load transfer can only be accomplished if the chassis is stiff 

enough to transmit the torques involved. 
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2.5.1. Longitudinal Load Transfer: 

This occurs under acceleration or braking and, as stated earlier, all 

forces can be regarded as acting through the vehicle’s centre of 

gravity.  This is shown below in Figure 10:  Longitudinal Load 

Transfer. 

 

 

   

 
  Figure 10:  Longitudinal Load Transfer (C Smith,1984) 

 

Longitudinal load transfer is given by the following formula: 

 

  LLT  =  (long accel x force down at axle x cg height) / wheelbase 

 

Eg accel 0.8g:  LLT =  (0.8 x 7848N x 0.3302m) / 2.540m = 816N 

 

From the equation, it is obvious that longitudinal load transfer can be 

reduced by lengthening the wheelbase, lowering the centre of gravity, 

adding lightness (Chapman) or softening initial acceleration. (This 

assumes, naturally, that the chassis is strong enough to transmit these 

forces and not simply flex all out of shape).  
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Under braking, in particular, excessive load transfer can cause many 

problems – unloading the rear tyres (and reducing their braking ability) 

and loading up the front tyres (and uses up some of the suspension travel – 

allowing possible bottoming of parts of the vehicle). 
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2.5.2. Lateral Load Transfer: 

 

This is caused by the centrifugal force generated by cornering, and 

exacerbated by braking (in the corners).   

 
Figure 11:  Lateral Load Transfer Considerations (C Smith,1984)  
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The basic lateral load transfer (LLT) equation is: 

 

  LLT =  (lat accel x force down at axle x cg height) / track 

 

Lateral load transfer can be reduced by lowering the centre of gravity 

or widening the track.  The lateral load transfer can be generated in the 

following four ways: 

 

1. The side forces generated by the tyres as they resist centrifugal 

force – these (instantaneous) forces are reacted on the sprung 

mass through the roll centres. 

2. The physical compression of the outside springs from roll and 

by the deflection of the anti-roll bars (if fitted) this occurs over 

a finite time period. 

3. By the jacking tendency of any independent suspension. 

4. Lateral displacement of the c.g. due to roll – a minor effect. 

 

 

The lateral forces act through the centre of gravity of the sprung mass 

and produce a moment around the roll centre.  The roll couple will be 

resisted by the suspension springs and the anti-roll bars. 

Chassis roll can cause unwanted changes on the wheel camber angles 

and, since these changes occur over a finite period of time, the result is 

instability and inconsistency in the vehicles handling behaviour. 

Chassis roll may be reduced by stronger suspension springs, the use of 

anti-roll bars or by raising the roll centre relative to the centre of 

gravity.  However, this last option has the undesirable effects of 

causing unfavourable wheel camber changes and high jacking thrusts.  

Neither of these is conducive to good handling. 
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Figure 12:  Vertical Jacking on Suspension (C Smith,1984) 

 

The desirable situation is for the mass centroid axis and the roll axis to 

be parallel.  When this occurs, the front and rear roll couples will be 

about equal and the vehicle will have linear front and rear roll 

generation and lateral load transfer – with the potential for predictable 

handling. Smith (1984) considers that having the front roll couple 

somewhat greater than the rear will cause some natural understeer and 

excess traction capacity at the rear for acceleration. 

One of the important facets of this is to keep the centre of gravity as 

low as possible – the aim being to reduce the roll moment couple. 

 

2.5.3.  Diagonal Load Transfer: 

This occurs when positive or negative acceleration is applied during 

lateral acceleration (cornering).  With deceleration, the weight is 

transferred diagonally from the inside rear tyre to the outside front tyre 

– to the detriment of handling.  Rear cornering power is lost by 

transferring load to the front, and front cornering power is lost by 
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generating an understeer torque about the vehicle’s c.g. and possibly 

also by overloading the front tyre or compressing the suspension 

spring to the point of unsuitable camber angle. 

 

2.5.4. Required Chassis Torsional Rigidity and Strength 

 

Deakin et al conclude that a Formula SAE racer, which has a total 

suspension roll stiffness of 500 – 1500 Nm/degree, requires a chassis 

stiffness between 300 and 1000 Nm/degree to enable the handling to 

be tuned (and noting that a flexible chassis will cause understeer). 

 

This tends to follow USQ experience with the 2004 SAE car, which 

has a measured torsional rigidity of 214 Nm/degree – along with, 

amongst other traits, understeer.  The 2004 USQ car appears to drive 

reasonably well, apart from the understeer and other minor 

construction matters, so this figure of 300 Nm/degree as a minimum 

appears to be founded in practice. 

 

Fenton (1980,p7) gives a torsional stiffness for a normal family saloon 

as a minimum of 6500 Nm/degree and also gives the following 

formula for torsional stiffness of a chassis: 

 

    C  =  cd / D  

 

Where   C  =  torsional stiffness in N/mm 

    c   =  spring rate 

    d   =  road wheel deflection 

    D  =  torsional deflection of chassis 

 

For a typical SAE racer, this equates to a torsional stiffness of 1000 

N/mm, which for a track of width of 1200mm, becomes about 1090 

Nm/degree, the upper end of Deakin et al’s figure for an SAE racer. 
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Gaffney and Salinas, in their Introduction to Formula SAE Suspension 

and Frame Design, claimed a torsional rigidity of 2900 Nm/degree for 

the University of Missouri (Rolla) SAE racer, whereas the Laval 

University’s 2004 SAE team claimed 2000Nm/degree for their car.  

These figures appear to be theoretical (and rather high) – their frames 

were not actually subjected to physical testing as was the 2004 USQ 

car. 

 

Whilst there is a bit of conflict in the above figures – some seem rather 

higher than others – the fact remains that the 2004 USQ car, which was 

physically tested to 214 Nm/degree, had a reasonable level of 

handling.  This is not to say that the 2004 USQ car had a chassis of 

sufficient rigidity – there is still an understeer problem and Deakin et 

al’s figure of a minimum of 300 Nm/degree would appear to be a 

realistic minimum.  It is intended to aim higher than this minimum. 

Longitudinal strength appears to be of secondary concern  - if the 

chassis has adequate torsional rigidity, it will have quite sufficient 

longitudinal strength – and the factor that most affects handling is the 

efficient (or otherwise) transference of lateral loads. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 32



Chapter 3 
3. The SAE Chassis – A Particular Case 

 

In the ‘real world’, every engineering project is subject to constraints. 

The SAE chassis is no different in this respect and, as such, is subject 

to the following constraints: 

 

3.1.  General Constraints 

 

1. Low in cost 

2. Easy to maintain 

3. Reliable 

4. Low production rate 

5. Safe to repair 

 

3.1.1. Low in Cost 

 

The Formula SAE Competition sets a benchmark cost of $US25,000 as 

the maximum cost of the production of the vehicle.  Any part that is 

manufactured from raw materials must be costed on the basis of the 

price per pound (or kilogram) in the Costing Table with the labour and 

machining activities likewise costed.  

Engine / transmission is costed in accordance as to whether the engine 

is ‘low performance’ (2 valve industrial type engines – Briggs & 

Stratton), ‘high performance’ (2 valve motorcycle engines – early air 

cooled engines) or ‘ultra-high performance’(3 or 4 valve motorcycle 

engines).  In order to not disadvantage any team that does not have 

access to generous sponsorship from companies like Carpenter Steels 

or BHP, any part used, whether new, used or donated / pirated must be 

costed at its full new retail price (without any ‘discounts’) with any 

modifications to that part costed in accordance with set Costing Tables 

(see below). 
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  Table 2:  Formula SAE Costing Tables 
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3.1.2. Easy to Maintain 

  

This means precisely what it says – the frame type used must be easy 

to maintain.  In this case, maintenance can mean cosmetically (keep it 

looking good – very important from a sales perspective, and pride of 

ownership) and protection from corrosion.  In this case, the coating 

that looks good can also provide excellent corrosion resistance.  

 Ease of maintenance also means that, since this is a racing car, and 

racing cars occasionally fall over or run into hard objects, the frame 

must be easy to repair or modify.  Since just about every weekend 

racer will have a welder of some sort (stick, MIG or oxy-acetylene) in 

his shed / workshop (or, even worse, a mate who’s a welder), but 

won’t have the knowledge or ability to perform specialist welding 

(TIG) or proper heat treatment, this should also be taken into account.  

In plain English, this means avoiding the ‘chrome-moly’ steels and 

favouring the plain carbon steels. 

 
3.1.3. Reliability 

  

Always keep the intended use and user in mind – a very important rule 

when designing virtually anything.  In this case, it is for trouble free 

use by a non-technical weekend racer.  What may be necessary for 

Formula 1 could prove to be quite unsuitable for this class of racing.  

With regards to the reliability of the frame, the following points are 

important: 

 

i:   The frame will not be inspected after every race for 

cracks or any other fatigue related problems. 

ii. The frame will occasionally be ‘adjusted’ with large 

hammers or the oxy torch. 

iii. The only defect that may be noticed will be a complete 

failure of a frame member. 

iv. The frame will be expected to last for the lifetime of the 

race car with little to no maintenance. 
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3.1.4. Low Production Rate 

 

It is stipulated in the Formula SAE Rules that the production rate 

should be based on 4 vehicles per day for a limited production run – 

how ‘limited’ that run is, is not stated.  However, it would be safe to 

assume that the run would not be for one week, and would, in all 

likelihood, extend for a period of at least a few months. 

 

Though this is a limited production run, it must be remembered that 

this is a low cost weekend racer – not Formula 1.  The entire Formula 

SAE racer would cost less than a set of Formula 1 brakes.  This means 

that there is an economic constraint within the production rate 

constraint.  It is not justifiable to set up to make a very limited 

production race vehicle using Formula 1 techniques.  Simply put, hand 

built exotic carbon fibre and ‘unobtanium’ composite monocoque  

vehicles, whilst only low production rate, are probably out of 

contention.  The fabrication methods will have to utilise readily 

available technology (read ‘low tech’) that requires only normally 

available skilled operators.  Also, jigging and any other one-off tooling 

needed for the vehicle will have to be kept simple and to a minimum. 

The profit margins are small, so costs must be tightly controlled. 

 

3.1.5. Safe to Repair 

 

To a certain degree, this is covered by ease of maintenance. As 

mentioned earlier, the clientele are the low budget weekend racers who 

are after a vehicle that can be raced with a minimum of maintenance.  

They do not generally have access to specialised welding and heat 

treatment knowledge and facilities.  However, this will not stop many 

of these people from attempting any frame repairs (or modifications) 

with whatever equipment they do have – generally a stick or MIG 

welder or with the oxy-acetylene.  So, the best way around this is to 

use materials that can be safely welded at home with the above 

equipment.  
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3.2. Specific Constraints 

 

These constraints which, whilst not applying directly to the chassis 

(apart from #6 – ‘specified crash protection’), must be considered in 

the design of the chassis. 

 

1. Ground clearance – no touch ground 

2. Wheels – minimum 203.2 mm (8”) 

3. Suspension – fully operational with min 50mm travel 

4. Steering – mechanical to at least 2 wheels 

5. Brakes – must operate on all 4 wheels 

6. Specified crash protection 

 

3.2.1. Ground Clearance 

  

The Formula SAE rules ( 3.2.1.) specify that no part of the vehicle 

shall touch the ground during the normal track events.  

Since no minimum or maximum clearance is specified, it gives the 

designer freedom in this area to juggle roll centres, centre of gravity, 

suspension geometry, track width and wheelbase to achieve handling 

‘utopia’. 

 

3.2.2. Wheels 

 

The Formula SAE rules ( 3.2.2.1.) specify a minimum wheel (rim) 

diameter of 203.2 mm ( 8” – USA imperial).  There is no maximum 

wheel diameter stated. As above, this gives the designer freedom to 

play around with these variables. 

 

3.2.3. Suspension 

 

Rule 3.2.3. states that the vehicle must have an ‘operational’ 

suspension – as opposed to a set up that looks like a suspension, but is 

set up so firmly that it is basically ‘no suspension’, and handles like a 
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go-kart.  The rules also stipulate a minimum of 50.8 mm ( 2”) 

suspension travel – with the driver seated.  Obviously, this constraint 

must be considered with the ground clearance and the wheel diameter. 

 

3.2.4. Steering 

 

Rule ( 3.2.4.) states that the steering must be to at least 2 wheels and 

must be connected mechanically – no electronic steering allowed. 

Also specified is the provision of mechanical stops to ensure the 

steering linkages do not lock and that the bits that go round and round 

do not hit the bits that do not. The chassis must have a suitable rigid 

part to which the steering rack may be attached. 

 

3.2.5. Brakes 

 

Rule ( 3.2.5.) covers the braking system and stipulates a dual circuit 

hydraulic system – electronically actuated brakes are not allowed. 

The braking system must be adequately protected. 

 

3.2.6. Specified Crash Protection 

 

The one area for which no compromise is allowed is safety.  The rules 

stipulate certain minimum safety standards by specifying minimum 

steel sizes for the various parts of the frame.  The main points will be 

outlined here, with a full copy of the rules in the Appendix.  
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The main points are shown below in Table 3:   Specified Steel Sizes 

for Formula SAE Frame: 

   Table 3:  Specified Steel Sizes for Formula SAE Frame 

 

If alternative steel sizes are to be used, they must comply with the 

requirements of Rule ( 3.3.3.2.2 ) Steel Tubing Requirements shown in 

Table 4 below. 

 

 
Table 4:  Alternative Steel Tubing 

 

An important point to note here is that steel must be used for the main 

roll hoop and main roll hoop bracing – there is a total prohibition on 

the use of aluminium, titanium or composites for these components. 
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         Figure 13:  Side View of Formula SAE Frame 
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3.3. Selection of Chassis Type 

 

This will be addressed by summarising the types of chassis available, 

along with their advantages and disadvantages. 

 

1. Platform 

2. Spaceframe 

3. Monocoque 

 

3.3.1. Platform 

  

Good:   

1. Easy to design 

2. Inexpensive components 

3. Easy to manufacture 

4. Can be made with considerable longitudinal rigidity 

 

Bad: 

1. Heavy if rigid (beam construction) 

2. Body along for ride  

 

 

3.3.2. Spaceframe 

  

Good:   

1. Lightweight 

2. High strength / rigidity 

3. Design simplicity 

 

Bad: 

1. Labour intensive 

2. Specialised welding / heat treatment may be necessary. 

3. Suitable for short production runs only. 
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3.3.3. Monocoque 

 

Good: 

1. Lightweight 

2. Very strong / rigid 

 

Bad: 

1. Generally expensive – tooling etc 

2. Specialist skills / equipment 

3. Suitable for mass production 

4. Suitable for limited expensive runs (Formula 1)  

 

 

3.3.4. Selection of Chassis Type 

 

The selection of chassis type required consideration of the above 

general points, along with the specific requirements of the SAE Rules. 

These were: 

1. Safety rules requiring steel hoops, braces etc. 

2. Max production rate of 4 per day 

3. Construction of 1 prototype 

 

There were also the following pragmatic considerations: 

 

1. Economics (‘cheap’). 

2. Able to be manufactured in small workshop. 

3. Able to be modified after construction.   

  

 

 

 

And the winner is……. 
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 The Space Frame 
 

Why?  

1. The safety regulations require considerable amount of steel tubing 

2. Simplicity of design and manufacture 

3. Light weight 

4. Potential strength and torsional rigidity 

5. Suitable for small production runs 

6. Very suitable for the construction of a ‘one off’ prototype 

7. Prototype can be easily modified as required 

8. Prototype can be manufactured and modified very cheaply 

9. Can be built in any small workshop.  

 

Having decided on the type of chassis to be used, the next step was to 

decide on the details.  This is covered in Chapter 4. 
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Chapter 4 
 

4.   Materials for the SAE Chassis – Options and Selection 

 

 This Chapter considers the various materials that may be suitable for 

the construction of the frame – not only the physical properties, but 

also fabrication and economic considerations.  The chapter is set out in 

the following manner: 

 

1. Normal Operating Conditions 

2. Required Properties of Fabrication Materials 

3. Availability of Materials 

4. Economic Considerations 

5. Suitable Materials List 

6. Fabrication Methods 

7. Heat Treatment Requirements 

8. Surface Treatments / Coatings 

9. Selection of Materials for Chassis 

 

 

4.1. Normal Operating Conditions 

 

 This section looks at the following: 

 

1. What the SAE Frame Does 

2. Operating Environment 

3. Loads – Dynamic and Static. 

 

 

 

 

 

 

 44



4.1.1. What the SAE Frame Does 

 

The frame is a structure that holds all the components (and the 

occupant) of the vehicle in the correct place.  This includes the engine, 

drive train, suspension, fuel tank, steering etc under fairly arduous 

conditions.   

One of these in particular – the suspension – requires that the frame 

has a high degree of torsional rigidity.  This is to allow only the 

suspension to do the suspension’s job – and not have the frame acting 

as a ‘de facto’ suspension. 

On top of this, the frame has the task of protecting the occupant under 

any normally foreseeable event (rollover, collision etc). 

 

 

4.1.2. Operating Environment 

 

The operating environment of the frame is not particularly hostile, but 

it is fairly demanding – both for performance and longevity. 

The frame will be exposed to the elements – rain, ambient 

temperatures in the range 0°C to 45°C, wind, all levels of humidity and 

sunshine (including heat and ultraviolet radiation). 

The frame will also be exposed to its own mechanical environment – 

oils, solvents, petrol, ethanol and other petrol additives as well as heat 

caused by the engine (particularly the exhaust) and the braking system.   

Considering that the exhaust headers and the brake discs can actually 

glow red hot during severe operating conditions (for steel, this is in the 

range of roughly 560°C to 840°C) means that some thought must be 

given to firstly the placement of these 2 items and secondly, to their 

supporting structure. 

In the first case, careful placement of header pipes and adequate 

clearance allowed for in the frame design will mean that little heat 

energy is transferred to the frame.  Adequate airflow to the brake discs 

will help alleviate any problems in this area. 
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4.1.3. Loads 

 

The loads on the chassis can be divided into the following: 

 

1. Static Loads 

2. Dynamic Loads 

 

These loads will be dealt with in detail in Chapter 5. 

 

 

4.1.3.1. Static Loads 

   

The static loads are those that are due to the self-weight of the various 

components of the vehicle.  These include: 

 

1. Engine 

2. Driver 

3. Suspension 

4. Frame 

5. Ancillary components 

 

It is important that the load paths from the various components of the 

vehicle are correctly determined and the frame designed accordingly.  

These static loads, when the vehicle is in motion, may be subjected to 

accelerations in the order of 4.5g under ‘normal’ operating conditions. 
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4.1.3.2. Dynamic Loads 

 

 These are the loads imposed on the frame during the normal course of 

vehicle operation eg cornering, braking, accelerating etc. 

 They include: 

 

1. Accelerating 

2. Braking 

3. Cornering 

4. Bumps / dips 

5. Engine torque reactions 

6. Drive train 

 

Because of the potential magnitude of dynamic loads, it is important 

that these be considered carefully in the design process.   

A rough estimation is forces of the order of 4.5g (bump) and 2.0g 

(normal cornering/accelerating) with a mass of 300kg – 13,000 N and 

6,000 N respectively distributed in various directions through the 

frame and suspension to the ground.  This rough estimate of magnitude 

would be sufficient for materials selection – though any surprises in 

force magnitude further into the design process may call for revisions 

in materials choice. 

The over-riding consideration for the materials selection process is the 

fatigue loading to which the frame will be subjected.  
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4.2. Required Properties of Fabrication Materials 

 

 The operating environment subjects the frame to fluctuating loads – up 

to 13,000 N distributed unevenly through out the chassis, with a 

normal external operating environment (and localized temperatures in 

the vicinity of 250°C to 300°C). 

  

 The major properties of the materials are set out below in Table 5:  

Properties Required for SAE Frame. 

  

 This covers the mechanical, physical, chemical and dimensional 

properties of the materials. Many of these values are not quantified, 

because there is a reasonable degree of flexibility in the requirements.  

Aluminium does not have the tensile strength of steel (about one third) 

but has a density of roughly one third that of steel – so for the same 

weight, aluminium would be on par with steel for strength.  Fatigue, of 

course, is another matter.  

 Stiffness is another flexible requirement (pardon the pun) – extra struts 

/ webs may compensate for a lack of stiffness in a material, if other 

factors are more favourable.  

 Excessive creep may only mean a shortened life for an otherwise 

excellent material – again, a compromise. 

 A higher density may be offset by much higher tensile and fatigue 

strengths e.g. steel vs aluminium. 

 Dimensional stability is, of course, of much importance with a frame – 

the suspension settings must not change with different ambient and 

other conditions. 
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Properties     
     
Mechanical     
Hardness High degree of hardness  
Fatigue Very high fatigue resistance  
Tensile High tensile strength   
Impact High impact strength   
Creep Low creep characteristics  
Wear Very good wearing ability  
Stiffness High stiffness   
Compression High compressive strength  
Shear Very high shear strength  
     
     
Physical     
Density Low to medium density  
Electrical na    
Magnetic na    
Conduction High thermal conductivity - dissipation 
Expansion Low thermal expansion  
Flammability Very low    
Melting Point High - above 600°C   
     
     
Chemical     
Environmental Resistant to solvents, oils, weather. 
resistance     
Composition na    
Bonding na    
Structure na    
     
     
Dimensional     
Flatness Must maintain machined surfaces 
Surface finish Able to be easily machined  
Stability Must be stable at operating temperatures 
Tolerances To 0.5mm    
     
Table 5:  Properties Required for SAE Frame  
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4.3. Availability of Materials 

  

 The availability of potential materials is quite important – both for the 

construction of the prototype and the on-going production of 4 per day. 

 These considerations are listed in Table 6:  Availability of Materials 

for SAE Frame below.  

   

 Availability    
    
On Hand   Yes 
    
Order from Warehouse  Yes 
    
Minimum Order Requirements No 
    
Limited suppliers (proprietary) No 
    
Special Processing Required   
Casting   No 
Forging   No 
Extrusion   Yes 
Moulded   No 
Tooling Required   No 
    
Table 6:  Availability of Materials for SAE Frame 

 

 

 

 

 

 

 

 

  
Because an over-riding consideration for the whole SAE Project is 

economy, ready availability of materials is quite important – both for 

on-going modifications during the development of the frame and for 

any repair work which may be necessary during the testing period.   

 The use of proprietary materials (eg Vasco300 etc) should normally be 

avoided due to price and availability concerns in this country. 

  

 Keeping this in mind, for the purposes of this Project, materials 

available locally ‘off the shelf’ would be most desirable. 
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4.4. Economic Considerations 

  

 As mentioned previously, the design philosophy behind the Formula 

SAE Project is, to put it bluntly, “cheap”.  However, this is cheap in 

$$cost, not in performance or quality.  The economic considerations 

are shown below in Table 7:  Economic Considerations for SAE 

Frame. 

   

 

 

 

 

 

 

 
 

From

quan

to be

 

4.5. Suit

   

With
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Economics    
    
Raw Material Cheap   
    
Quantity Required    
Millions No   
Thousands No   
Number / year No   
Few Small regular quantities 
    
Fabricability    
Formability Good bending  
Weldability Very good weldability  
Machinability Not critical  
    
Table 7:  Economic Considerations for SAE Frame 
 the above, it can be seen that commercially small regular 

tities of a cheap material is required.  This material should be easy 

nd and to weld. 

able Materials List 

 reference to the above physical parameters, the following 

rials would be feasible: 

1. Aluminium 

2. Low C steel 

3. Alloy steels (‘chrome-moly’) 
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Other exotic materials such as titanium alloys, though eminently 

suitable for the chassis of a high-performance racing car, are ruled out 

on cost, availability and processing/fabricating difficulties. 

The physical properties of a selection of metals, including aluminium 

and the above steels are shown below in Table 8:  Metals Properties 

 

 
  Table 8:  Metals Properties (Beer, Johnston & DeWolf) 
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4.5.1. Aluminium 

  

Aluminium’s properties, as shown above, seem, superficially at least, 

to be ideal for the chassis of the SAE vehicle.  It is light in weight, 

with yield strengths available in the range of 230 MPa to 500 MPa       

( with commercially ‘pure’ aluminium possessing a yield strength of a 

fairly useless  95 MPa ). 

 

The strongest normally available alloy – 7075 – requires the T6 heat 

treatment specification for its strength – and this is a big drawback for 

all aluminium alloys.  After any welding, the aluminium must be heat 

treated / aged correctly to regain its rated strength – otherwise the 

strength (and the structure) is severely compromised. 

 

The other drawback with aluminium is fatigue.  Figure 14: Stress – 

Loading Cycles Curves shows aluminium (2024) and steel (1020HR).  

The steel has an endurance limit – a stress level for which an infinite 

number of load reversals may be endured.  The aluminium (this 

particular alloy can be used for frames), on the other hand, does not 

possess an endurance limit, and will eventually fail – the number of 

load cycles being totally dependent on the magnitude of the load 

(barring, of course, stress risers and other metallurgical imperfections). 

 

 
 Figure 14: Stress – Loading Cycles Curves (Beer,Johnston&DeWolf) 
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The aluminium alloy (7075-T6) mentioned above is used in the 

fabrication of high performance connecting rods (con-rods) used 

extensively in drag racing.  However, for this application, the rods are 

highly polished to eliminate any potential stress risers, and still have a 

limited life span – suitable for racing where an engine is rebuilt 

regularly, and the con rod is regarded as a ‘consumable’.  Such a rod is 

shown below in Figure 15:  Manley Aluminium Con Rod: 

 

 
Figure 15:  Manley Aluminium Con Rod (Lunati) 

 

A frame constructed from aluminium (6061-T6 with a yield strength of 

240 MPa would be suitable) would not be able to be polished to the 

same degree as the con rod – with the welds providing a particularly 

problematic area.  

 

From the above, it can be seen that aluminium would be able to 

provide a light strong frame, but has the real disadvantage of requiring 

proper heat treatment and has a limited fatigue life. 

 

4.5.2. Low Carbon Steel 

 

Low carbon steesl show all the properties required for the chassis – 

with the exception of density.  Yield strengths in the range of 250 MPa 

to 350 MPa are readily commercially available. 

 

Somers (1993) considers weldability as being divided into two general 

classes: 

1. Fabrication Weldability 

2. Service Weldability 
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He goes on to state that fabrication weldability addresses the question:  

“can one join these materials by welding without introducing 

detrimental discontinuities?” 

This is the area covering hydrogen-assisted cold cracks, hot cracks, 

reheat cracks, lamellar tearing and porosity. 

He also states that service weldability concerns the question  

“Will the finished weldment have properties adequate to serve the 

intended function?” 

 This area deals with the effect of the welding thermal cycle on the 

heat- affected zone (HAZ), and as such, is dependent on both heat 

input and material thickness. 

 

 RB Smith (1993,p645), with regard to the above, considers that an 

ambient pre-heat and inter-pass temperature for low carbon steel 

(AISI-SAE 1017,1018,1019,1020,1021,1022,1023) for thicknesses less 

than 50mm with no requirement for post-weld heat treatment to be 

satisfactory.  For the thicknesses to be used, this means no special heat 

treatment is necessary – a time and cost benefit. 

 

 As well, from Figure 14: Stress – Loading Cycles Curves above, it can 

be seen that steel has an endurance limit – the stress level at which the 

steel may be able to sustain an infinite number of load reversals. 

 

 In consideration, it can be seen that the low carbon steels are cheap, 

readily available, easily welded with no requirement for heat 

treatments in the tube thicknesses being considered.  The only 

drawback with these steels is the density (weight). 
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4.5.3. Alloy Steels 

  

In this section, the heat treatable low alloy (HTLA) steels are 

considered, in particular AISI-SAE 4130 steel (known as ‘chrome-

moly’). HTLA steels show all the properties required for the chassis – 

with the exception of density.  Yield strengths of 650 MPa are readily 

commercially available, though considerably more expensive than the 

low carbon steels. 

 

Somers (1993) considers that these steels, though possessing good 

weldability, require proper heat treatment.  This view is supported by 

C Smith (1984) – who considers that 4130 steel, properly heat-treated, 

is virtually unbeatable for applications such as a racing chassis.  An 

important consideration here is that if any welding is done 

subsequently to the frame, proper heat treatment must follow, or the 

integrity of the frame will be compromised. 

 

Again, from Figure 14: Stress – Loading Cycles Curves above, it can 

be seen that all steels have an endurance limit – the stress level at 

which the steel may be able to sustain an infinite number of load 

reversals. With an alloy steel such as 4130, this load would be 

considerably higher than for the low carbon steels. 

 

In consideration, it can be seen that the HTLA steels are readily 

available, though expensive, are reasonably easily welded but have a 

very real necessity for the proper heat treatment processes.  As well, 

there is the disadvantage of high density.  In summary, an excellent but 

expensive choice. 
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4.6. Fabrication Methods 

  

Each of the materials, aluminium, low C steel and alloy steel, is 

available in tubular sections in electric resistance welded (ERW) – 

steel only, cold drawn seamless (CDS) and drawn over mandrel 

(DOM), each being of higher quality and even higher price. 

Each of the materials can be cut mechanically (cold saw, band saw, 

hole saw etc) and each can be welded using the appropriate method for 

that material – all methods being readily available to any workshop. 

 

For this prototype space frame, there would only be one feasible 

fabrication method – hand built welded. The basic frame components – 

hoops, floor frame etc – would be marked out accurately on the floor 

and then members carefully cut and assembled using this ‘pattern’.  

The main hoops would be separately fully welded, then the other frame 

members would be ‘tacked’ into position until the full frame is cut and 

assembled.  Once this is finished, final checks for dimensions would 

be done, then the frame fully welded. This has the advantages of 

allowing minor changes to be made during frame construction (if 

unforeseen problems arise) and requiring no tooling / jig costs. 

 

Each of the materials is readily fusion welded, especially by the arc 

welding (AW) processes. Tungsten Inert Gas (TIG) welding would be 

the most appropriate. This will be discussed later in more detail. 

    

 The production of 4 frames per day would require the use of pre-cut 

components with jigs, and the frame would also be ‘hand welded’.  

Automated welding and assembly techniques would have no place in 

this process, as the low output would not offset the costs associated 

with current automation technology.  Maybe sometime soon in the 

future…….try Dana Corporation and Audi. 
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4.7. Heat Treatment Requirements 

  

 Heat treatment will be discussed for each of the materials in the 

following order: 

 

1. Low Carbon Steel 

2. Alloy Steels 

3. Aluminium 

 

 

4.7.1. Low Carbon Steel 

 

The low carbon steels generally do not respond to, or need, heat 

treatment (C Smith, 1984) – so no need – and this simplifies the 

fabrication process with these materials.   

 

4.7.2. Alloy Steels 

 

As mentioned in  4.5.3.  Alloy Steels above, the heat treatable low 

alloy (HTLA) steels only are considered, in particular AISI-SAE 4130 

steel (popularly known as ‘chrome-moly’).  

 

The major problem with these steels is in the heat affected zone (HAZ) 

with cracking in the coarse-grained region – to avoid this, the 

appropriate preheat and interpass temperature should be used. The post 

weld heat treatment (PWHT) of a chromium-molybdenum weldment is 

also referred to as a stress relief heat treatment.  This is designed to 

reduce the residual stresses and to improve the fracture toughness of 

the HAZ and the weld metal. (Chen & Pollack, 1993) 

 

With these steels, proper welding techniques and heat treatment 

processes are imperative, and must be performed. 
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4.7.3. Aluminium 

 

 As mentioned above, the aluminium alloy 6061-T6 would be suitable 

for the construction of a space frame.  The ‘T6’ refers to the heat 

treatment / aging process required for this particular alloy. The T6 

treatment is properly called “solution heat-treated and artificially aged” 

which means the alloy is heated to around 500°C for around 30 mins 

then quenched in water (at 80°C) – the alloy is then “artificially aged” 

where the alloy is heated to 200°C for 7 hours (which would bring the 

hardness to around 105 to 130 Brinell). (Oberg, Jones & Horton, 1980 

p2242). 

 

 With the various aluminium alloys, it is imperative that proper welding 

techniques and solution heat treatment / artificially aging processes are 

used. 
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4.8. Surface Treatments / Coatings  

 

 Surface treatments / coatings will be discussed for each of the 

materials in the following order: 

 

1. Low Carbon Steel 

2. Alloy Steels 

3. Aluminium 

 

Metal products are almost always coated by one of the following: 

 

1. Plating & related processes – hot dipping etc 

2. Conversion coatings 

3. Physical Vapour Deposition 

4. Chemical Vapour Deposition 

5. Organic Coatings 

6. Ceramic coatings 

7. Thermal / mechanical coating 

 

Of these processes, for the SAE racer, only #1, #2, & #5 are relevant. 

Vapour depositions tend to be used for precision work (aluminium 

coatings on telescope mirrors, integrated circuits etc) and ceramic 

coatings would not be able to flex with the frame (and would crack) 

and thermal/mechanical coatings are expensive and tend to be used in 

aggressive environments and for wear/erosion protection. (Groover 

2002) 
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Groover (2002) gives the main reasons for coating a metal as: 

 

1. Corrosion protection 

2. Enhance the appearance (marketing reasons) 

3. Increase wear resistance 

4. Decrease friction 

5. Increase or decrease electrical conductivity 

6. Preparation of surface for further processing 

7. Rebuild worn or corroded surfaces 

 

For the frame of the SAE vehicle, #1 and #2 from the above list are the 

only relevant ones and will be discussed further. 

 

 

4.8.1. Low Carbon Steel 

  

For low C steel, the major environmental problem is corrosion. 

 The marketing value in applying a cosmetic coating is also very 

important.  

  

 Of the methods outlined above, the only suitable plating method 

would be hot dipping (galvanising).  However, for cosmetic reasons 

for a racing car, this is a poor choice.  Zinc is also dangerous to weld 

without proper breathing protection and, if later modifications are 

made to the frame, the integrity of the coating is compromised (the 

various commercially available ‘cold gal’ paints cannot match the 

protection and appearance given by the hot dip zinc.) 

 

 The conversion coatings, such as phosphate and chromate, are more 

suitable as primers for subsequent painting, and the other conversion 

coating, anodising, is normally used for aluminium and magnesium. 

 

 The organic coatings include polymers and resins, either natural or 

synthetic, which can be applied as liquids or powders and then 
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subsequently dried or cured.  These are more commonly known as 

‘paint’ – acrylic lacquers, ‘2-pack’ (epoxy and polyurethane paints) 

automotive enamels etc.  These coatings are available with a wide 

range of properties and an even wider range of colours. 

 Powder coating uses a dry powder that is electrostatically fixed to the 

frame, then melted to allow subsequent re-solidification on the surface 

as a coating.  These too are available in a wide range of colours. 

  

 The obvious choice for the frame would be a phosphate based primer 

with a suitable acrylic lacquer finish – both cosmetically acceptable 

and providing good corrosion resistance.  Powder coating, though 

cosmetically superior, has the disadvantage of not being easily repaired 

in the weekend warrior’s workshop. 

 

 

4.8.2. Alloy Steels 

  

 The discussion above in  4.8.1. Low Carbon Steel is totally relevant to 

the alloy steels in question here.  Corrosion protection and cosmetics 

are both equally important, as is the ability to ‘touch up’ the coating 

after any repair work, both in the factory and in the workshop.  A good 

primer with an acrylic lacquer would be very acceptable – and pick a 

colour that will easily show up any cracks that may develop in the 

frame (i.e. don’t pick black!). 
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4.8.3. Aluminium 

 

 Though aluminium is a very reactive metal, the aluminium oxide that 

forms on the surface is also a very effective coating to protect against 

any further corrosion. 

 

 Conversion coating – anodising – is suitable for aluminium, but for 

this particular usage, would probably not be appropriate.  

Cosmetically, an anodised frame (a nice Barbie Pink perhaps?) would 

be out of place on this type of vehicle.  Anodising a frame would be 

expensive, and difficult to ‘touch up’ or repair satisfactorily. 

 

 The various organic coatings (paints) tend not to be very successful, or 

popular, on aluminium racing car frames.  Generally, such frames are 

left to run in the ‘as bought’ condition. 

 

 The only real coating choice for an aluminium SAE frame would be no 

coating.  This, too, has the added advantage of allowing the frame to 

be effectively inspected for fatigue cracking – a very real problem for 

aluminium frames. And, if the owner has sufficient patience and skills 

or can afford to pay one of the commercial aluminium polishers, mill-

finish aluminium can be polished to a very impressive lustre. 
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4.9. Selection of Materials for Chassis 

  

 The original materials choice list gave the following: 

 

1. Aluminium 

2. Low Carbon Steel 

3. Alloy steel 

 

 

4.9.1. Aluminium 

 

The aluminium was light, but not as strong as the steels, and has 

problems with fatigue, along with fussy heat treatments / aging and 

difficulty in welding. Subsequent ‘Owner modifications’ would most 

certainly not have any necessary heat treat / aging done and, as a 

consequence, would be severely structurally compromised. 

Aluminium tends to be more expensive than low carbon steel, but less 

expensive than the alloy steel in question here. 

Aluminium does not need any protective coatings, but looks a little 

‘spartan’ without a cosmetic coat. 

 

 

4.9.2. Low Carbon Steel 

 

The low carbon steel was heavy but strong, with a potential ‘infinite’ 

fatigue life, easy to weld and needing no special heat treatments. It is 

very agreeable to  ‘Owner modifications’. 

Low carbon steel is inexpensive and readily available ‘off the shelf’ in 

a large range of sizes – though some of the less popular sizes are only 

available on ‘special order’. 

Though prone to rust, low carbon steel is easily painted, and with the 

correct coating choice, is easily and successfully repaired. 
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4.9.3. Alloy Steel 

 

The alloy steel (AISI-4130) was heavy, very strong with again, a 

potential ‘infinite’ fatigue life.  However, it is more difficult to weld 

and must be properly heat-treated. Subsequent ‘Owner modifications’ 

would most certainly not have any necessary heat treatment done and, 

as a consequence, would also be severely structurally compromised. 

The alloy steel (4130) is expensive and not readily available ‘off the 

shelf’  - it must be generally specially ordered on a job lot basis from 

specialist suppliers in the capital cities. (Though the country of 

manufacture should be chosen carefully). 

 

Though prone to rust, alloy steel is easily painted, and with the correct 

coating choice, is easily and successfully repaired. 

 

 

4.9.4. Final Materials Choice 

  

 From the above, it was decided to use steel.  The choice was to use one 

of the following: 

 

   SAE 11002200  DDOOMM  335500  ((llooww  CC  sstteeeell))  oorr  
      SSAAEE  44113300  CCDDSS  665500  ((‘‘cchhrroommee  ––  mmoollyy’’))  
 

 Of these two, the final choice was: 

   

     11002200  DDOOMM  335500  
  
  
  BBeeccaauussee::  
      IItt  iiss  ccoonnssiiddeerraabbllyy  cchheeaappeerr  
      IItt  iisseeaassyy  ttoo  wweelldd  aanndd  ffoorrmm  
      RReeppaaiirrss//mmooddiiffiiccaattiioonnss  ccaann  ssaaffeellyy  bbee  ddoonnee  bbyy  OOwwnneerr  
      CCaann  bbee  eeaassiillyy  ppaaiinntteedd  iinn  wwiiddee  rraannggee  ooff  ccoolloouurrss 
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Chapter 5 
 

5. The SAE Chassis – Design & Construction Methodology 

 

This chapter looks at the design of the chassis, including the design 

criteria used.  It also looks at the selection of the work processes to be 

used in the construction of the frame, along with relevant quality 

control methodology – both for the prototype frame and for the 

subsequent SAE production rate of 4 frames per day. 

 

This chapter is set out in the following order: 

 

1. Design 

2. Work Processes 

3. Quality Control Methodology 

 

 

5.1. Design 

 

 The design process was approached in the following order: 
 

1. Design Criteria 
2. Design Process 

 
 
 
5.1.1. Design Criteria 
 

 The design criteria were approached in two areas: 

 

1. Dimensions 

2. Applied Loads 
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5.1.1.1. Dimensions 

 

 It was decided at the beginning of the design process that there would 

be minimal changes between the 2004 car and the 2005 car.  This was 

so decided as the 2004 car was reasonably successful (except for a few 

minor design faults) and the philosophy for 2005 was to be evolution 

of the car and devolution of responsibilities. 

 

 The aim was simple – less weight and more power.  Each of these has 

the simple effect of improving the power to weight ratio – and hence 

accelerative performance.  Less weight also benefits handling and 

braking – less weight means less inertia which, in turn, means better 

cornering and braking. 

 

 With this in mind, it was decided to keep the dimensions fairly similar 

– with a slight reduction in wheelbase, the rationale being that a 

shorter wheelbase gives better cornering at the expense of high-speed 

stability.  The course is not designed for high speed, so this is no loss 

at all.  Even the ‘drag strip’ component of the competition is only 75 m 

long – allowing terminal speeds in the vicinity of 100 kph for the faster 

cars. The same car, over a proper quarter mile (400 m) drag strip, 

would reach a terminal speed of around 165 kph. 

 

 From the above, it was deduced that the following dimensions would 

apply: 

 

   Wheelbase 1650 mm 

   Front Track 1285 mm 
   Rear Track 1165 mm 

  

This is shown below in Figure 16:  Dimensions of 2005 SAE Car 
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     Figure 16:  Dimensions of 2005 SAE Car 

  

 It was also decided to give the car a bit more space in the width of the 

driver’s compartment – for where the larger driver’s knees normally 

reside.  This is shown below in Figure 17:  Mid-Rail Dimensions of 

2005 SAE Car: 

   Figure 17:  Mid-Rail Dimensions of 2005 SAE Car 
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 This extra width is shown below in Figure 18:  Main Hoop 

 

 
Figure 18:  Main Hoop 

 

 Once the basic dimensions had been decided, it was then necessary to 

set a weight target, in accordance with the evolutionary philosophy 

espoused earlier. The 2004 chassis had weighed in at around 50 kg – a 

fairly excessive figure.  This being the case, a target of a 20% weight 

reduction, whilst not only not compromising strength but actually 

enhancing it, was set.  So, the aim was  – a considerably stronger 

frame with much less weight. 

  

 The weight target:  40 kg (max). 

  

 Simply put, this meant that, since 20% less steel was going to be used 

to achieve a greater strength, a more intelligent usage of the steel was 

required.   
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5.1.1.2. Applied Loads 

 

The chassis of the SAE Racer has to withstand certain loads and 

transmit others – all the time maintaining its structural integrity.  

Sounds simple and, if done properly, is simple.  A good chassis should 

have a simplicity and elegance that should appeal to the eye. 

 

 The types of loads applied to the SAE chassis (and, for that matter, any 

chassis) are as follows: 

 

1. Static Loads 

2. Dynamic Loads 

 

1. Static Loads 

 

These are the loads carried by the chassis with the vehicle sitting on 

the tarmac, fuelled up and ready to go – with a driver, fully outfitted, 

strapped into position. The static loads distributed by the chassis are 

shown below in Figure 19:  Static Loads on 2005 SAE Chassis 

 

 

   Figure 19:  Static Loads on 2005 SAE Chassis 
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This calculation is based on the rather conservative (read ‘heavy’) total 

weight estimate of 400 kg (fuelled with driver). 

This would be made up of the following: 

 

  1.  Engine / gearbox     75 kg 

  2.  Driver   120 kg 

  3.  Chassis     40 kg 

  4.  Peripherals   135 kg 

  5.  Bodywork     30 kg 

     Total  400 kg 

  

These static weights, though important, are just that – static.  It would 

be most unlikely, even for a Ford, for the engine to just fall onto the 

ground (though it did happen to the front end on some early 1960s 

Falcons due to premature ball joint failure).   

What is important is the dynamic loads that these static weights put on 

the chassis when the car is doing what it was intended to do – race. 

 

 

2. Dynamic Loads 

 

As mentioned above, these are the loads that are generated when the 

vehicle is moving - this incudes accelerating, braking, cornering and 

hitting the odd bump, gutter or pothole. 

 

Fenton (1980, p14) gives the following figures (which include a factor 

of safety of 1.5): 

 

 + / -  4.5 g vertical (hitting a bump) 

 + / -  1.5 g fore and aft (braking & accelerating) 

 + / -  1.5 g cornering  LH or RH 
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   Figure 20:  Dynamic Load Distribution   

 

 

These figures need to be qualified somewhat for an SAE vehicle.  The 

figures from the 2004 USQ entry for the standing 75 m are in the order 

of 5.7 seconds.  From Table 9: Drag Strip Performance below, some 

interesting information emerges.  The time of 5.47 s shown equates to 

the time of 5.7 s when 0.2 s is added for delay in the initial start. 
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Weight 360 kg        
Horsepower 37 hp  speed speed     
Distance (m) n k time mph m/s dt dv a = dv/dt a (g) 

          
0 0 0 0 0 0 0 0 0 0 
5 80.467 0.034 0.90 18.97 8.48 0.90 8.48 9.43 0.96 

10 40.234 0.136 1.43 23.91 10.69 0.53 2.20 4.17 0.43 
15 26.822 0.306 1.87 27.36 12.23 0.44 1.55 3.49 0.36 
20 20.117 0.544 2.27 30.12 13.46 0.40 1.23 3.11 0.32 
25 16.093 0.849 2.63 32.44 14.50 0.36 1.04 2.86 0.29 
30 13.411 1.223 2.97 34.48 15.41 0.34 0.91 2.67 0.27 
35 11.495 1.665 3.29 36.30 16.23 0.32 0.81 2.53 0.26 
40 10.058 2.175 3.60 37.95 16.96 0.31 0.74 2.41 0.25 
45 8.941 2.752 3.89 39.47 17.64 0.29 0.68 2.31 0.24 
50 8.047 3.398 4.17 40.88 18.27 0.28 0.63 2.23 0.23 
55 7.315 4.111 4.45 42.20 18.86 0.27 0.59 2.15 0.22 
60 6.706 4.893 4.71 43.44 19.42 0.27 0.56 2.09 0.21 
65 6.190 5.742 4.97 44.61 19.94 0.26 0.53 2.03 0.21 
70 5.748 6.659 5.22 45.73 20.44 0.25 0.50 1.98 0.20 
75 5.364 7.645 5.47 46.79 20.92 0.25 0.48 1.93 0.20 

Table 9: Drag Strip Performance 
 

 Some interesting facts emerge from this Table – the first is that to shift 

360 kg down the strip in that time requires 37 hp. Various 

dynamometers can be calibrated in imaginative ways to give widely 

varying results – but the drag strip gives a rather unbiased (and, at 

times, unflattering) estimate of power based on weight shifted (or work 

done) and allows a real comparison of different engine outputs.  All 

that is needed is the elapsed time and the total vehicle weight.  An 

important point to note here is that these calculations are based on 

correct gearing for the vehicle and the distance travelled.  With the 

USQ 2004 SAE vehicle, to do the time of 5.7 seconds required 37 

horsepower – the engine may have produced more, but the gearing and 

driving style did not use any more than 37 hp. (A good example would 

be, even if the gearing was correct, when the engine made maximum 

power at 8500 rpm but the driver took the engine to 7500 rpm).   

 

The other interesting information to come from the table is the actual 

acceleration of the car.  Some writers assume particularly high and 

constant acceleration rates for the SAE racer (and, presumably, for any 

vehicle). 
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A perusal of the table will show a high initial acceleration, which 

quickly reduces as the car traverses the drag strip.  Appendix 1 & 2 

give some more graphs and tables for lighter weights and higher 

engine outputs. 

 

Figure 21:  Speed vs Distance Travelled below shows how speed 

initially increases quite quickly (from zero) but then the rate of 

increase (acceleration) tapers off. 
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  Figure 21:  Speed vs Distance Travelled 

 

 

Figure 22:  Acceleration vs Distance Travelled shows an initial high 

rate of acceleration, which reduces fairly quickly to much less than the 

assumed 1 g.  These realistic amounts of acceleration can be used in 

determining longitudinal and lateral load transfer during cornering 

scenarios (useful for calculating suspension geometry changes).  It is 

worth noting here that the calculations are done every 5 metres and the 

accuracy is based on that distance. 

 

 74



Graph of Acceleration vs Distance Travelled
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  Figure 22:  Acceleration vs Distance Travelled 

 

 

Figure 23:  Acceleration (g) vs Distance Travelled below show the 

acceleration again, but this time in ‘g’ (same curve, different scale).  
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Figure 23:  Acceleration (g) vs Distance Travelled 

  
Table 10:  Drag Strip Time Sheet below shows the level of 
performance of the USQ 2004 SAE car.  A quarter mile time of 16.81 
is not ‘earth-shattering’  - being on par with most passenger cars 
available today.  The quicker Ford / Commodore V8s run 13.5 to 14.0 
seconds, with the author’s modified street vehicles normally running 
10.3 to 10.8 seconds (which equates to 0-160 kph in 6 seconds).   

 
The Formula SAE cars feel quick because of their size and proximity 
to the ground. 
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Dragstrip         60' 2.341 

330' 6.82 

660' 10.64 

1/2 track speed 64.52 
1000' 13.98 

E.T. (1320') 16.81 

m.p.h. 81.7 

 

 

 

 

 

Table 10:  Drag Strip Time Sheet 

 

 From all the above, it may be deduced that Fenton’s values are 

reasonable – even though normal driving acceleration goes nowhere 

near 1 g, the initial acceleration may well exceed that figure 

considerably (if only for a very short period of time).  Braking 

decelerations of the order of 1 g are not uncommon in passenger cars 

(even 30 years ago, a Toyota Corolla could achieve a 1 g stop) and 

should be easily achieved (one would hope) in a Formula SAE vehicle 

– old jungle saying – the fastest vehicle is the one with the best brakes. 

 

 Another important factor with acceleration is the loss of traction due to 

the lifting effect on the right rear wheel.  Milliken & Milliken (2002, 

p478) give, as a comparison (a passenger vehicle), figures of 0.56 g for 

an open differential and 0.625 g for a locked differential (no 

differential) 

 

 The formula given is: 
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where: 

    

   µ = traction co-efficient 

   a = distance from front axle to CG. 

   h = distance from ground to CG. 

   l = wheelbase 

 

  

For a Formula SAE car, similar to the 2005 USQ vehicle, the 

following calculations would be representative: 

µ = 1.2 for racing slick 

   a = 0.825 m 

   h = 0.265 m. 

   l = 1.65 m. 

  

These numbers give a maximum accelerative force of: 

 

  AXmax = 0.74 g   

   

 From this, and the realistic acceleration curves given earlier, it would 

be fairly safe to assume the following: 

 

1. The vehicle would have traction problems in a full power drag 

type start. 

2. The vehicle would not have straight line traction problems once 

its speed exceeded 10 m/s (35 kph) 

 

Of course, it must be realised, that the level of driving skill is critical to 

the amount of traction a vehicle exhibits.  Poor and undisciplined 

drivers tend to produce large amounts of power oversteer and can also 

produce huge amounts of understeer where none existed for the good 

driver. 
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Torsional Rigidity. 

 

The main consideration for the chassis with regard to acceptable 

handling is the torsional rigidity.  The efficient transfer of loads by the 

suspension – and the consistency of that suspension’s performance – is 

dependent, to a very large degree, on the torsional rigidity of the 

chassis.  A flexible chassis acts as a ‘de facto’ suspension – and how 

do you tune and adjust a ‘rubbery’ chassis? English cars of the forties 

and fifties were notorious for their flexible chassis – prompting, no 

doubt, Colin Chapman’s (of Lotus fame) oft quoted statement  

“ Any suspension will work if you don’t let it”. 

Would he have been referring to making an English car handle 

acceptably by stiffening up the suspension to the point that the only 

working suspension was the flexibility of the chassis? 

 

However, in the Formula SAE racer, it is intended to have a chassis 

rigid enough to allow the suspension to function correctly – and to be 

tuned (that is, changes can be made to the suspension to produce the 

desired changes in handling – reliably and with repeatability).  

 

Deakin et al conclude that a Formula SAE racer, which has a total 

suspension roll stiffness of 500 – 1500 Nm/degree, requires chassis 

stiffness to be between 300 and 1000 Nm/degree to enable the 

handling to be tuned (and noting that a flexible chassis will cause 

understeer). 

 

This tends to follow USQ experience with the 2004 SAE car, which 

has a measured torsional rigidity of 214 Nm/degree – along with, 

amongst other traits, understeer.  The 2004 USQ car appears to drive 

reasonably well, apart from the understeer and other minor 

construction matters, so this figure of 300 Nm/degree as a minimum 

appears to be founded in practice. 
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Fenton (1980,p7) gives a torsional stiffness for a normal family saloon 

as a minimum of 6500 Nm/degree and also gives the following 

formula for torsional stiffness of a chassis: 

 

    C  =  cd / D  

 

Where   C  =  torsional stiffness in N/mm 

    c   =  spring rate 

    d   =  road wheel deflection 

    D  =  torsional deflection of chassis 

 

For a typical SAE racer, this equates to a torsional stiffness of 1000 

N/mm, which for a track of width of 1200mm, becomes about 1090 

Nm/degree, the upper end of Deakin et al’s figure for an SAE racer. 

 

Gaffney and Salinas, in their Introduction to Formula SAE Suspension 

and Frame Design, claimed a torsional rigidity of 2900 Nm/degree for 

the University of Missouri (Rolla) SAE racer, whereas the Laval 

University’s 2004 SAE team claimed 2000Nm/degree for their car.  

These figures appear to be theoretical (and rather high) – their frames 

were not actually subjected to physical testing as was the 2004 USQ 

car. 

 

Whilst there is a bit of conflict in the above figures – some seem rather 

higher than others – the fact remains that the 2004 USQ car, which was 

physically tested to 214 Nm/degree, had a reasonable level of 

handling.  This is not to say that the 2004 USQ car has a chassis of 

sufficient rigidity – there is still an understeer problem and Deakin et 

al’s figure of a minimum of 300 Nm/degree would appear to be a 

realistic minimum.  It is intended to aim higher than this minimum. 
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Longitudinal Rigidity. 

 

Longitudinal strength appears to be of secondary concern  - if the 

chassis has adequate torsional rigidity, it will have quite sufficient 

longitudinal strength – and the factor that most affects handling is the 

efficient (or otherwise) transference of lateral loads. Small longitudinal 

deflections, in themselves, have no effect on the lateral load transfers 

which strongly affect handling through the changes in suspension 

geometry. 

 

 

 Summary: 

  

From the above, it can be seen that the primary design criteria are: 

 

1. Wheelbase 1650 mm 

2. Front Track 1285 mm 

3. Rear Track  1265 mm 

4. Weight  -  40 kg (max) 

5. Torsional Rigidity – 300 N.m / ° (minimum) 

 

 Other design considerations, for example, engine mounting brackets, 

will be done for each case, taking into account the masses involved 

and the accelerative and other forces acting on that component. 
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5.1.2. Design Process 

 

The design process followed a fairly logical sequence (as it should). 

This process is set out below: 

 

1. Sketch 

2. Autocad 

3. Finite Element Analysis 

4. Commonsense 

5. Redo the above until acceptable. 

 

 

5.1.2.1. Sketch 

  

 This was the imaginative part.  The load paths and subsequent frame 

triangulation had to be determined at this stage.  This was done the old 

fashioned way – on paper with a pencil and a large eraser. 

  

 The first series of sketches resulted in the following drawing: 

 

 
  Figure 24:  Space Frame – Mark 1 

This was followed by the following series of drawings: 
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  Figure 25:  Space Frame – Mark 2 

 

 
  Figure 26:  Space Frame – Mark 3 
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  Figure 27:  Space Frame – Mark 4 

 

 The sketching culminated in the layout shown below. 

 
  Figure 28:  Final Chassis Layout. 

   

This series of drawings actually included all of the above processes 

– the iterative process of refinement. 
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5.1.2.2. Autocad 

 

This was the process of actually turning the sketch into a proper 

drawing – with Autocad being the most convenient tool with which to 

do this. Because the frame is a 3-dimensional construct, and Autocad 

works in 2-dimensions, this was an opportune time to draw plans that 

would be useful in the workshop when manufacturing time came. 

 

It was decided to draw the following views: 

 

1. Floor Rail Frame 

2. Mid-Rail Frame 

3. Hoops 

4. Anthropometrical Data 

5. Full Frame – plan & elevations  

 

These drawings are shown below – for the sake of brevity, only the 

final versions of these are shown, and that these included the other 

iterative steps described earlier (FEA etc). 

 

 
  Figure 29:  Final Floor Rail Frame 
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  Figure 30:  Final Mid-Rail Frame Plan 

 

 
  Figure 31:  Final Hoops Elevation 
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  Figure 32:  Anthropometrical Data 

 

 

 
  Figure 33:  Final Frame – Plan & Elevations 
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5.1.2.3. Finite Element Analysis 

 

 The Finite Element Analysis (FEA) part of the process proved to be 

educational and informative – with the answers being of the 

commonsense variety that left the thought “Why didn’t I do it that way 

in the first place?” 

 

 The co-ordinates of each junction in the frame were determined, then 

these were used to build up a 3-dimensional object in ANSYS7. 

 Since the torsional rigidity was of primary concern, it was decided to 

test the frame by restraining the front suspension mounting points and 

applying a moment (4 x 1000N) to the rear suspension mounting 

points, as shown below in Figure 34:  SAE Frame showing Torsional 

Loads. 

 

 

 
Figure 34:  SAE Frame showing Torsional Loads 
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The resultant deflections are shown below in Figure 35:  First Design with 

Torsional Rigidity Test. 

  

 

 
Figure 35:  First Design with Torsional Rigidity Test 

 

 

 An inspection of Figure 35:  First Design with Torsional Rigidity Test  

above shows that, even though the deflection in the diagram is 

exaggerated, the movement is concentrated in the rear suspension 

section.  The obvious modification is to move the main hoop brace 

bars to the rear of the frame from their original position in front of the 

rear suspension section.  The results of this are shown below in  

 Figure 36:  Modified SAE Frame with Torsional Rigidity Test 
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Figure 36:  Modified SAE Frame with Torsional Rigidity Test 

 

 

The chassis for Jettison 1 (USQ 2005 car) was tested for longitudinal 

deflection by clamping the rear to a bench and a load of 850 N applied 

to the front of the bulkhead where a deflection of 14 mm was recorded.  

A test of deflection from where the suspension is mounted would be 

more relevant for this purpose. 

 

To get a measure of the longitudinal strength of the frame, the rear was 

restrained and 4000N applied to the front of the frame.  The results of 

this are shown below in Figure 37:  Longitudinal Strength of Frame 
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   Figure 37:  Longitudinal Strength of Frame 

  

 

Finite Element Analysis Results 

 

Torsional rigidity  
 
 The moment applied of 4000N at a distance of 156 mm from the 

longitudinal central axis equates to 624 N.m. 

 The amount of deflection in the 156 mm was 3.5 mm and this equates 

to a total deflection of 1.285° 

  

Hence: 

Torsional rigidity  =  624 N.m / 1.285°  =  485 N.m / degree 

 
 Longitudinal rigidity 
 
 The load applied was 4000N at the front of the frame. 
 The deflection indicated by the ANSYS7 analysis was 9.2mm. 
  
 Hence: 

 Longitudinal rigidity = 4000N / 9.2mm =435 N/mm 

  (Jettison equated to 53 N/mm) 
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 The only other design feature that was somewhat different to the 2004 

Car was the 10° rake to the sides.  This is shown below in Figure 38:  

10° Rake to Frame: 

 

 
   Figure 38:  10° Rake to Frame 

  

This was done for the express purpose of making suspension geometry 

somewhat easier to design.  Whilst equal length and parallel 

suspension arms keep the wheel camber constant in cornering, they 

play havoc with the roll centres and track widths.  Since the roll centre 

is the point about which the centre of gravity (CG) tends to rotate 

(generating a moment) it is critical that this point has no large or 

sudden changes.  This moment is what determines the down force on 

the tyres, and a sudden increase on one tyre would mean a sudden 

decrease on the opposite wheel – with a resultant unexpected loss of 

traction.  Changes to the track widths can only occur when a tyre slides 
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– that is, breaks traction.  This is also unadvisable during hard 

cornering. 

 

It is more advisable to use unequal and non-parallel suspension arms 

which, whilst not controlling wheel camber to the same degree, can 

keep the track widths constant and reduce the migration of the roll 

centres during cornering. 

 

To make this design easier, it was decided to rake the sides of the 

frame – and also to make the longitudinal mounting frame members of 

50 x 25 x 2.0 rectangular hollow section (RHS), both for the added 

strength and for the convenience of having a flat surface to which to 

fix brackets. 

 

 Figure 39:  Suggested Static Suspension Geometry 
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  Figure 40:  Suspension Geometry with 3° Roll 

 

From the above 2 diagrams, it can be seen that, even during 3° roll 

(which is pretty severe cornering), the track width changes only by      

1 mm and the roll centre’s vertical position only changes by 1 mm 

with a 50 mm horizontal migration.  These changes would have little 

detrimental effect on the handling of the vehicle.  Please note that this 

is only a suggested suspension geometry and is shown only for the 

purpose of showing the advantages of the unequal length, non-parallel 

wishbone suspension geometry, which is easier to design and fit with 

raked sides. 
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5.2. Work Processes 

 The work processes to be used for the manufacture of the frame were 

as follows: 

 

1. Set Out 

2. Steel Cutting 

3. Tube Bending 

4. Welding Processes 

5. Use of Jigs 

 

 

5.2.1. Set Out 

  

 Since this was the prototype, it had been decided that the frame was to 

be ‘hand built welded’ – this would mean little or no jigging, and 

cutting and fitting members following a logical construction process. 

 The first step would be to mark out a full size floor plan on the 

workshop floor.  The following drawing was used for this purpose. 

 

   Figure 41:  Floor Set Out Plan 
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 The next step was to draw the various hoops needed on the floor – 

these hoops were to be used to build the frame around.  Particularly 

important as the rules stipulated that the main hoop must run, uncut, 

from the bottom of the frame on one side to the bottom of the frame on 

the other side.  These are shown in the drawings below: 

 

Figure 42:  Hoop Construction Drawing 

 

 
   Figure 43:  Rear Hoops – 2 
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5.2.2. Steel Cutting 

 

There were 2 types of cut needed for the construction of this frame – 

curved and straight.  The straight cuts were to be simply done by a 

friction cutter (drop saw).  Any heat effects from this process would be 

negligible compared to the subsequent effects of welding. 

 

 The curved – generally circular at various angles – needed something 

better than hand cutting each to shape.  To make this process a lot 

simpler and quicker, it was decided to manufacture a pipe notcher that 

used standard, and readily commercially available, hole saw blades. 

This was successfully done by Bronson Hansen, a final year 

mechanical engineering student. 

 

  
         Figure 44:  Typical Pipe Notcher 

  

 The pipe notcher that was made can also handle RHS and SHS as well 

as round tube, along with the capacity to cut the holes at any angle up 

to around 50°.  Using this device, a typical hole took around 30 

seconds to cut – this was, of course, followed up by 10 to 15 seconds 

of  cleaning the cut on a linisher. 

 The individual lengths of pipe were to be marked on the floor and then 

cut to size – hand fitting each piece to its proper place. 
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5.2.3. Tube Bending. 

 

 In the Formula SAE Rules, the following requirement applies to tube 

bending: 

 

 3.3.4.1.(B)  The minimum radius of any bend, measured at the tube 

centreline, must be at least three times the tube outside diameter.  

Bends must be smooth and continuous with no evidence of 

crimping or wall failure.  

 

This initially caused some problems, with the first set of hoops 

displaying severe crimping.  However, the second set was bent at 

Toowoomba Specialised Welding using a Bramley Pipe Bender, as 

shown below. 

 

 
    

Figure 45:  Bramley Pipe Bender 

  

 The hoops were successfully bent using this pipe bender and showed 

no signs of crimping or any other form of distress.  (As an aside, this 

bender was also used to bend the runners of the inlet manifold 

designed by Melinda Plank for the 2005 Car).  It was initially 

suggested that mandrel bending would be the only process that would 

prove satisfactory, but this was not the case. 
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5.2.4. Welding Processes 

  

 Groover (2002) states that welding is divided into 2 major categories – 

fusion welding and solid state welding.  Since solid state welding 

requires pressure or heat and pressure, the process is not suitable for 

notched tubing in a 3-dimensional frame. 

 

 Fusion welding is accomplished by the melting of the two parts to be 

joined – in most normal methods, a filler material is also added.  

Groover also lists the following fusion welding methods: 

 

1. Arc welding – consumable and non-consumable electrodes 

2. Resistance welding 

3. Oxyfuel gas welding 

4. Others – electron & laser beam, electroslag & thermite 

 

Of these, category 1 methods are the most commonly used for this type 

of fabrication.  Categories 2 and 4 are for specialised applications – 

seam welding of tubing etc. Category 3 can be used for this type of 

fabrication, but tends to add a bit too much heat to the tubes. 

 

 
  Figure 46:  SMAW or stick welding  (Groover) 

 

Arc welding commonly consists of the consumable methods of 

shielded metal arc welding (SMAW), commonly known as ‘stick 

welding’ – shown above - and gas metal arc welding (GMAW) or MIG 

welding and the non-consumable electrode methods of gas tungsten 
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arc welding (GTAW), normally called TIG Welding (Tungsten Inert 

Gas), and plasma arc welding (PAW). 

 
   Figure 47:  GMAW or MIG welding (Groover) 

 

 
   Figure 48:  GTAW or TIG Welding (Groover) 

 

 So the choice came down to one of the 3 methods shown above.  In 

reality, not actually possessing a stick welder made the choice between 

MIG and TIG welding.  Stick welding tends to be a little messy and 

requires the manual removal of the protective slag. 

 

 MIG and TIG welding both provide a good quality weld that is free 

from slag, as both use protective gasses.  TIG, however, has the added 

advantage of being able to be done with or without a filler material – 

depending on the job.  The TIG method produces a higher quality 

spatter free weld, and is very suitable for welding the various steel 
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alloys and aluminium.  It is, however, more expensive than MIG 

welding.  

 

 Given the above considerations, it was decided to ‘tack’ the frame 

together with a MIG welder and finish the welds with a TIG welder. 

 

 

5.2.5. Use of Jigs 

 

 For the prototype, it was decided to mark out a pattern on the floor for 

the various components of the frame, then hand cut and fit each of the 

members. 

 

 This method worked quite well for the prototype allowing, as it did, 

any minor modifications that may have been expedient to make with 

minimal fuss.  After all, this is what a prototype is for – to uncover any 

problems that may not be obvious during the design phase.  Hence, no 

jigs were used during the manufacture of the prototype. 

 

 However, for the proposed manufacture of 4 frames per day (which is 

what would have to happen if 4 cars were made per day), various jigs 

would be necessary. 

 

The jigs needed will be discussed later. 
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5.3. Quality Control Methodology 

  

 Evans and Lindsay (1989) refer to quality engineering as the process 

of designing quality into a product and predicting potential quality 

problems before production.  This came about because of the 

realisation that the traditional method of inspecting for quality only 

removed defects after the fact (if at all) – and that did nothing to 

reduce the (often very high) cost of such defects. This realisation led 

to, amongst other things, the formulation of various statistical quality 

control methods such as process control charts and acceptance 

sampling (Grant & Leavenworth, 1980).  Design and manufacturing 

must be co-ordinated to produce an item that can be manufactured with 

consistent acceptable quality and minimal waste of both materials and 

labour. Another important factor these days is product liability – the 

product must be made to specifications (providing those specifications 

are correct – which is also part of the quality process). 

 

 For this to happen, the following are important: 

 

1. The basic design should be simple and easy to make 

2. Worksheets should be simple and no ambiguity. 

3. Worksheets should give ‘ownership’ to the relevant worker. 

4. Worksheets should include ‘signed off’ quality control checks. 

  

The prototype is an important part of this process – its construction can 

show up problems not foreseen, as can the subsequent physical testing 

of the prototype, regardless of what the computer models show. 
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Chapter 6 
 

6. The SAE Chassis – Manufacture 

 

This chapter deals with the actual manufacturing of the SAE frame, 

which was done at the workshop of Toowoomba Specialised Welding, 

with the help of fellow mechanical engineering student, Bronson 

Hansen and Toowoomba Specialised Welding’s Michael Garner 

(Proprietor) and his ‘off-sider’ Craig Rodgers. 

 

This section deals with the following: 

 

1. Worksheets  

2. Quantity take-off 

3. Manufacturing Process 

4. Problems Encountered (& Solutions). 

5. The SAE Frame 

 

It should be kept in mind that the Formula SAE Competition calls for a 

production capability of 4 frames per day and, even though this 

prototype was hand built, a small workshop such as Toowoomba 

Specialised Welding could handle such a production rate without any 

expensive tooling and with current equipment. 

 

 

6.1. Worksheets 

 

 The worksheets used for the prototype were taken directly from the 

plans drawn for the frame – it made sense to draw useful plans. 

 A typical, and most useful, one is shown below – this was used to 

mark the basic frame out on the floor of the workshop. 
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   Figure 49:  Floor Plan for Frame 

 

 As mentioned in the previous chapter, the hoops were also marked out 

on the floor.  This process had to be done carefully, with much double-

checking – this part had to be correct. This process was done by 2 

people – each checking / confirming the other’s interpretations of the 

plans.  

 

    Figure 50:  Rear Hoops 
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   Figure 51:  Hoops for Frame 

 

The above were used as worksheets for the construction of the frame.  

The hoops were cut, bent and then welded together.  These were then 

held in the vertical position whilst the horizontal components of the 

frame were measured, cut and then tacked into position.  This was 

done with reference to the worksheet below: 

 

   Figure 52:  Full Frame 
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 Quality control, or management, started with the design of the frame – 

it had to be built by the designer, so simplicity was the key.  There was 

no part of the frame that was super critical in dimensions or location – 

and this made for manageable fabrication tolerances (for a prototype).  

The worksheets gave only those dimensions that were critical to the 

fabrication process, and in a manner that made construction easy.  

Hoops were kept vertical, and all ‘in-fill’ members were kept straight. 

The other factor, which helped with the quality management, was the 

selection of only 2 sizes of tubular steel – the larger (black) size being 

used for the hoops (for mandated safety reasons) and the smaller 

unpainted one being used for the rest of the tubular frame.  The front 

and rear suspension mounting longitudinal members were of 

50x25x2.0 RHS – these were easy to spot.  This sizing policy made the 

use of the correct size member very easy and also determinable with a 

casual inspection – no need for careful measurements or metallurgical 

testing. 

 

 

6.2. Quantity Take-off 

 

 The quantity take-off was simplified by the use of only 2 tube sizes 

and 1 RHS size.  The Autocad program facilitated the measuring of 

individual member lengths.  These individual lengths were then tallied 

with special regard to the commercially available lengths – 6.1 m in 

these sizes, and an order raised through the USQ Workshop. 
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6.3. Manufacturing Process 

 

 The manufacturing process was described above in the Worksheet 

Section – it simply consisted of, for the prototype, of marking out the 

basic floor frame, then using the hoops to ‘lay the keel’, and then 

‘going for it’. 

 For a production rate of 4 per day, a different method would have to be 

used.  The following would be necessary: 

 

1. All members would be pre-cut and stored in special bays.  If 

the steel is paid for monthly, then a month’s production of 

frames (80) could be cut at a time. Special test members would 

be necessary to check lengths and angles at appropriate times. 

 

2. Jigs would be made for the hoops. 

 

3. A jig would be made for the floor frame 

 

4. Go – No Go gauges would be needed for each section of the 

frame. 

 

5. One worker would specialise in tacking / assembling the 

frames, signing off each frame. 

 

6. One worker would specialise in TIG finish-welding the frames, 

signing off each frame. 

 

7. When the frame is finished, the worker would use appropriate 

Go – No Go gauges to ensure the frame was within 

specifications, and signed off accordingly. 

 

The fine details of the above would be determined, if and when, the 

on-going order for 4 frames per day was received. 
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6.4. Problems Encountered (& Solutions) 

 

 The problems encountered in the manufacturing of the frame were 

minimal due to the planning and thought that went into the design.      

(I had to say that, didn’t I?)  The only consequential problem 

encountered was the initial bending of the hoops by the USQ 

Workshop. There appeared to have been some sort of communication 

problem – a 6.1 m length of tube was sourced of which 1.5 m was in 

excess of requirements.  This 1.5 m length was supposed to be bent 

first to check the quality of the bending before the rest of the tube was 

bent.  However, all the hoops were bent, with obvious crimping.  It 

was initially thought that this may be acceptable, but a subsequent 

reading of the Formula SAE Rules clarified the situation – not usable.  

Unfortunately, this caused a delay in the manufacturing of the frame of 

the order of 6 or so weeks.  The window of opportunity in Toowoomba 

Specialised Welding’s Workshop had only been ‘open’ for that 

particular weekend.     
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6.5. The SAE Frame 

 

It would be appropriate here to show some photographs of the finished 

frame.  It would also be relevant to show here a photograph of the 

USQ 2004 frame for comparative purposes (with apologies to the 2004 

USQ Team for the unflattering photograph – unfortunately the only 

one available). 

 

 

 
  Figure 53:  Frame from USQ 2004 Car 
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    Figure 54:  2005 Frame 

 

 
    Figure 55:  2005 Frame 
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    Figure 56:  2005 Frame 
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Chapter 7 
 

7. The SAE Chassis – Testing & Appraisal 

 

This chapter deals with the actualities of the 2005 Frame (shown 

below). 

 

 
   Figure 57:  2005 Frame 

 

When time permits, the frame is to be subjected to physical testing in 

order to validate, or otherwise, the FEA results and to point out any 

areas where the frame may need strengthening. 

 

This is to be done through the use of a specifically built test rig. 

 

1. Test Rig 

2. Testing Procedure 
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7.1. Test Rig 

 

 

A fairly simple apparatus and method is proposed for testing the torsional 

rigidity of this frame – and other future frames.  It is best if the actual 

displacement at small intervals along the frame can be determined.  This 

will show which areas of the frame have the highest deflection 

(“weakest”).  

 
Figure 58:  Frame with Test Plates in Position 

 
Figure 59:  Frame with Moment Applied 

The test rig consists of 2 plates for each end of the frame – at the 

suspension mounting points.  The plates have a length of tube, of 
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sufficient size to allow a 50 mm x 3 mm circular tube to pass through 

with a fairly close fit, welded to them.  A length (around 1.2 M) of 50 

mm tube is passed through the plate tubes into the frame.   

 

7.2. Testing Procedure  

  

 The testing procedure is, obviously, set out in point form: 

 

1.  The frame is set up with the plates bolted or clamped to the front 

and rear suspension mounting positions.  In the first instance, the 

moment is to be applied to the rear of the frame.  Accordingly, the 

front of the frame is to be fixed to the test bed.  This is done by passing 

a length of 50 mm tube through both the front plates and fixing each 

end of the tube to the test bed.  Properly done, this procedure will 

effectively restrain the front suspension mounts. 

 

2.  Next, a length (around 1.2 M) of 50 mm tube is passed through the 

plate tubes into the rear of the frame.  This tube is to be used to apply 

the load for testing purposes. 

 

3.  Prior to any load being applied, the bottom rail of the frame is 

marked every 200 mm with a felt pen.  After this is done, a careful 

measurement (recorded) is made of the distance from the surface of the 

test bed to the bottom of the frame at each of the marked (200 mm 

apart) positions on both sides of the frame.   

  

4.  To this is applied a load to generate at moment, e.g. 100 kg weight 

applied at a distance of 1.0M from the centre of the frame.  Of course, 

this weight must be loaded carefully to avoid any impact loadings 

which may cause irreparable damage to the frame. 

5.  Once the load is applied, go and have a cup of coffee / tea.  This 

will give the frame a chance to stabilise and anything weak will 

become self-evident (i.e. break). It will also put the tester in a fresh 

state of mind for doing the measurements accurately. 
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6.  Carefully measure (and record) the new distances between the 

bottom of the frame rail and the test bed on both sides. Calculate the 

difference in measurements. 

 
  Figure 60:  Frame with Load Applied (Exaggerated) 

 

7.  The actual overall torsional rigidity of the frame can be determined 

by the measurement taken at the points directly underneath the load 

carrying 50 mm tube.  An exaggerated example is shown above. 

Typical realistic figures could be as below: 

 

  Applied Moment:  1000N.m 

  Deflection:   3.0 mm 

  Centre to edge (radius)   156.0 mm 

  Rotation:  Sin-1(3.0/156.0)  =  1.102° 

  Torsional Rigidity: 1000 N.m / 1.102°  =  910 N.m / ° 

 

Longitudinal testing 
 

This set up can be used for longitudinal testing, but any frame that 

displays acceptable torsional rigidity will have sufficient longitudinal 
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stiffness because the triangulation necessary to achieve torsional 

strength will also give sufficient longitudinal strength. 

 

However, if a measure of longitudinal strength is required, the same 

test rig can be used. Two transverse lengths of 75 mm x 75 mm angle 

must be used – one each side of the end that is to be “fixed”.  The fixed 

end is then bolted securely to the test bed.  The load is applied to both 

ends of the 50 mm tube at the other end and deflections again 

measured.  The longitudinal strength is the load per mm deflection. 

This set up is shown below. 

    Figure 61:  Longitudinal Test Rig 

 

As mentioned earlier, the results of the torsional testing may be 

directly entered into a graph showing the cumulative frame deflection 

along the frame.  This would give very valuable information on the 

rigidity of the frame along its length.  Knowing where the weakest 

points are allows worthwhile modifications to be made – prior to the 

addition of all the other components of the racing car. 
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7.3. Quality and Appearance 

 

Critical to the success of any product, regardless of the actual worth of 

the product, is the aesthetic value.  For a product to sell, it must ‘look 

the part’.   

 

For the frame, this means: 

 

1. It must obviously look like what the clientele expects 

for a space frame. 

2. It must possess an elegance of design. 

3. It must demonstrate quality in manufacture. 

4. It must perform adequately. 

5. It must be reasonably priced. 

 

Below is a ProEngineer version of the frame: 

 
Figure 62:  ProEngineer Version of Frame (N.Arvind.Doss) 
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These considerations shall now be addressed. 

 

1. It must obviously look like what the clientele expects for a 

space frame. 

This one is fairly easily addressed:  the frame does actually look like a 

space frame.  It has triangulation in all sections, and has fairly well 

defined load paths integrated into the design. 

 

2. It must possess an elegance of design. 

The design is not cluttered – a thinking examination of the frame’s 

members and their purposes will quickly show the necessity of each 

member.  The frame is unencumbered with complexity and (in the eye 

of this beholder, at least) possesses a beauty born of simplicity. 

 
   Figure 63:  A Study in Frontal Elegance 

 

3. It must demonstrate quality in manufacture. 

The frame was TIG welded by a welding tradesman – all joints pass a 

visual inspection with regards to fit and weld quality.  All members on 

each side demonstrate the symmetrical nature of the frame along the 

longitudinal axis.  There are no delicate adjustments by Thor. 
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4. It must perform adequately. 

This is a measure of the car’s actual road behaviour and cannot be 

really determined until the car is finished and road tested.  However, 

the torsional rigidity figures from the FEA indicate that the frame 

would perform more than adequately.  The frame from the 2004 USQ 

SAE racer tested at 214 N.m and is probably best described as a 

tubular platform chassis rather than a space frame, due to its almost 

total lack of triangulation.  This frame still worked to a reasonable 

degree on the road.  The 2005 frame is also 39 kg as opposed to 49 kg 

for the 2004 frame. 

 

5. It must be reasonably priced. 

Since the frame is fabricated from low carbon steel and is simple in 

design, it would have to be cheaper than the exotic alternatives.  If this 

frame fulfils the requirements satisfactorily, then any money spent in 

excess of what this frame costs is wasted.   

 

Materials            
Supplier's Name & Ph# Quantity (m) $/unit Cost 

    50x25x2 RHS 5.20 10.00 $52.00 
    27x2.7 CHS 8.19 4.00 $32.76 
    25.4x1.65 CHS 27.41 3.00 $82.23 
    40x40x2 flat 1.20     

Operations Costs  Quantity $/unit   
Supplier's Name & Ph# Cuts (m) 4.60 16.00 $73.60 
Toowoomba Specialised Welding # Drilled Holes 84.00 0.35 $29.40 
Ph 0422 576 460  # bends 8.00 0.75 $6.00 

    # end preps 138.00 0.75 $103.50 
    Welds (m) 14.15 14.00 $198.10 

        

Operations Labour       
Supplier's Name & Ph#  Hours $/hr   
Toowoomba Specialised Welding Setout 2.00 35.00 $70.00 
Ph 0422 576 460  Assembly 10.00 35.00 $350.00 

           
          

        Total Cost   $997.59
Table 11:  Costing Data for Frame 

 

The pricing given above is, of course, cost price.   
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Summary: 

 

This is a simple and elegant frame that should perform more than 

adequately.  It is relatively light and strong, and, being fabricated from low 

carbon steel, is cheap to produce and, if the need arises, can be easily 

repaired or modified in any reasonable home workshop.  It is the ideal 

frame for the ‘sportsman’ racer for whom this type of vehicle is intended. 
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Chapter 8 
 

8. Auxiliary Mounting Brackets 

 

This chapter looks at the design of the auxiliary mounting brackets to 

be used on the SAE frame: 

 

1. Suspension Brackets 

2. Engine Mounts 

 

 

8.1. Suspension Bracket 

 

 To design a suspension bracket, the following must be done: 

 

1. Determine loads 

2. Design bracket 

 

 

8.1.1. Loads 

 

 As mentioned earlier in this worthy tome, the static loads are not as 

critical as the dynamic loads, which are the ones that break and bend 

things. 

 

 To determine these loads, the static weight (with driver) shall be taken 

as 400 kg, the equivalent being 4000 N (for convenience). 
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Vertical Bump Force: 

 

The first force to be calculated is the vertical force acting at the wheel 

due to hitting a bump – this is + / - 4.5 g.  Assuming 50 / 50 weight 

distribution, then there would be 1000 N force downward at each 

wheel.  Taking the acceleration of the wheel to be  4.5g  gives: 

 

  Since:   F  =  Fstatic x acceleration 

   

  Then:  F  =  1000 N x (4.5)  =  4500 N 

 

 However, this force is distributed over 4 brackets, so: 

 

  Force on each Bracket: F  =  4500 N / 4  =  1125 N(vertical) 

 

  

 Braking Force: 

 

 Under this category are actually braking and acceleration, but since 

braking can be done at a much higher rate of (negative) acceleration 

over a longer period of time than can the opposite, then calculations 

for braking only should be satisfactory. 

 

 Fenton (1984) gives a design rate for deceleration of –1.5g.   The total 

force needed for a 1.5 g stop is: 

 

  Since:  Force  =  m x a   

    Force  =  400 kg x 9.81 m/s2 x  1.5 

  Then:  Force  =  6000 N (longitudinally)

  

 However, as before, this force is distributed over 4 brackets, but not 

evenly this time.  The front brakes, due to longitudinal load transfer 

and the resultant increased traction on the front tyres, in a properly set 
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up vehicle will provide approximately two thirds of the stopping 

power.  Hence, the force will be divided as follows: 

 

  Force on Front Wheels:    Total Force x  0.667 

  Force on Front Wheels: 6000 N  x  0.6667 

  Force on Front Wheels: 4000 N 

  Force on each Front Wheel 2000 N 

 

  Force on Each Bracket  =  2000N / 4  =  500 N (longitudinally)

 

   

 Braking Moment: 

 

The other important component of braking forces is the moment that is 

applied to the suspension during braking.  This can be calculated as 

follows: 

   

   Brake Rotor Diameter  0.150 m 

   Force Applied   500 N 

 

   Moment Generated  500 N x 0.150m 

    

Moment Generated  =  75 N.m 
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 Cornering Force: 

 

 Fenton (1980, p14) gives + / - 1.5 g for cornering forces.   

 

   

  Since:  Force  =  m x a   

    Force  =  400 kg x 9.81 m/s2 x  1.5 

  Then:  Force  =  6000 N (laterally) 

 

  Force on Front Wheels:    Total Force x  0.5 

  Force on Front Wheels: 6000 N  x  0.5 

  Force on Front Wheels: 3000 N 

  Force on each Front Wheel 1500 N 

 

  Force on Each Bracket  =  1500N / 4  =  375 N(transverse). 

 

Summary of Forces on Bracket 
 

For simplicity, and to allow for the ‘worst case scenario’, it will be 

assumed that each bracket on the car will be subject to the same forces. 

 

  Bump   1125 N(vertical) 

  Braking Force 500 N (longitudinally)

  Braking Moment 75 N.m 

  Cornering  375 N(transverse) 
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   Figure 64: Typical Bracket 

 

The forces shown above are resolved into the forces shown below on a 

single side of the bracket – the other side of the bracket has a 

component of the vertical force shown here acting in the opposite 

direction, with the resultant force being somewhat less than in this 

case. 

 
   Figure 65:  Forces Acting on Bracket 
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Shear Stress: (Double Shear) 

 

Resultant Force   =  √ (3200 2  +  400 2 ) =  3225 N 

 

Bolt: τ ave   =  F / 2 x A  =  3225 / (2 x 113)   

Bolt: τ ave =  14.3 MPa 

 

Bracket: τ ave   =  F / 2 x A  =  3225 / (2 x 2 x 42)  

Bracket: τ ave  =  19.2 MPa 

 

 

 

Tensile Stress: 

 

Tensile stress σ  =  (F / A) x K    (K  =  stress conc. factor) 

σ ave  =  (3225 / 84) x 2.5   (Pilkey, 1997) 

σ ave  =  96 MPa   

   

Bending Stress: 

 

Bending stress σ =  (M y) / I 

σ ave  =  (5000 x 1.5) / 90 MPa 

σ ave  =  83.3 MPa 

 

Steel Properties: (Beer & Johnston, p747) 

 

Structural (ASTM-A36) 

  Yield   250 MPa (tension) 

  Yield  145 MPa (shear) 

  Ultimate 400 MPa (tension) 
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 Summary on Bracket Strength 

  

 These brackets should not suffer from shear failure in normal use.  The 

bending and tensile stresses are well within limits – about 70 % of 

yield strength.  The only point to examine further would be if, under a 

combination of all these forces simultaneously, the brackets may flex 

enough to cause momentary binding – probably the worst time for 

such an occurrence.  

 This factor would need to be figured into the clearances for the 

brackets / suspension arms. 

 

 

8.2. Engine Mounts 

 

 A weight of 75 kg has been assigned to the engine / gearbox assembly, 

as fitted to the vehicle (fuel, water, oil). 

 Keeping the engine in place would not be difficult, even for an 

engineering student.  What would be more important is to keep the 

engine in place during an impact, a deceleration in the order of –30 g, a 

figure for which the SAE car, with impact attenuator attached, should 

achieve.  This is a matter of some importance in a mid-engined 

vehicle, considering the already crowded cockpit and the inability 

(weight-wise) of the SAE car to have an armoured firewall sufficient 

to stop / deflect a ballistic engine. 

 

 The engine / gearbox will be held rigidly in place with a total of 8 

brackets being, as it is, a stressed member of the frame. 

 

 Force  =  mass x acceleration   or   F  =  ma 

 F  =  75 x 9.81 x 30  =  22,100 N 

 

 Force on each bracket  =  22100 / 8  =  2760 N 
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 The brackets will be arranged in a triangulated fashion to facilitate the 

use of the engine as part of the chassis, so it would be reasonable to 

assume that the brackets are subject to either compression or tension 

loads only. 

 It is suggested that 12 mm x 5 mm low carbon steel be used for the 

engine mounts, with a maximum length of 200 mm. 

 

 Tensile stress  σ  =  F / A  =  2760 / 60  =  46 MPa 

 Tensile stress  σ  =   46 MPa 

 

 Shear stress 8 mm bolt  =  F / A  =  2760 / 50.27  =  55 MPa 

 Shear stress 8 mm bolt  =  55 MPa 

 

 Shear stress in bracket  =  F / A  =  2760 / 120  =  23 MPa 

 Shear stress in bracket  =  23 MPa 

 

 Buckling Pcr  =  (π2 E I) / Le2  =  (π2 x 200e9 x 1.25e-7) / 0.12 

 Buckling Pcr   =  24 700 N 

  

Summary on Engine Mounts 

 

The suggested mount should not fail in shear, though it would be 

advisable to use a high strength (and ductile) bolt. With a good quality 

bolt, the engine mounts would probably withstand decelerations in the 

order of 100 g.  

 

8.3. Summary 

 

From the above calculations, it can be seen that the brackets chosen are 

quite capable of withstanding the loads imposed.  These brackets are 

all fabricated from plain low carbon steel and, accordingly, are cheap 

to make and reliable in use. 
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Chapter 9 
 

9. Conclusions 

 

The success or otherwise of the SAE Race Car is largely dependent on 

the frame -  as with any building, the whole is only as strong as its 

footings / foundations.  The best suspension in the world cannot 

function properly on a too-flexible chassis. 

 

It would be pertinent here to discuss how well the frame met the 

original objectives of: 

 

1. Mass less than 40 kg  

The finished frame weighed in at 38 kg 

 

2. Torsional rigidity in excess of 300 N.m/° 

The FEA analysis gave a figure of 485 N.m/° (to be physically 

verified) but this is without the engine, which is intended to be a 

structural component. 

 

3. Ease of manufacture 

The prototype was cut and tacked together by 2 final year 

students, the finish welded by a tradesman welder. 

 

4. Ease of maintenance 

Plain low carbon steel – can be welded at home with safety; 

easily painted and repaired. 

 

5. Low cost 

Cost price under $1,000. 
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Areas for Improvement 
 

It would also be timely to discuss possible future areas for 

improvement.   

 

The basic frame dimensions need to be determined and agreed on by 

all early in the Project – then there must be no arguments over 

wheelbase, track etc afterwards. 

 

A more in-depth Finite Element Analysis to look at each member in 

turn, and determine the minimum size (and mass) for each tube would 

be appropriate, as would the subsequent timely ordering of the various 

sizes calculated above (many would not be locally available ‘off the 

shelf’).    

This process would, of course, be more expensive but could pare off a 

few more kilograms and add more strength. 

 

It would be important for future frame builders to source their 

fabricator early and get to know them, ask pertinent questions and 

listen and learn.  

Though the FEA above may show a certain size tube ( e.g. 0.7 mm 

wall thickness) will be sufficient, the fabricator (who, in true USQ 

Motorsport Club tradition, will most likely be doing the job for 

nothing) may be a little less enthusiastic about welding it.   

 

It is absolutely imperative that the design process includes input 

from the fabricator.  There is no point in designing something that 

cannot be made. 

 

Summary 
 

An interesting project that has achieved the objectives originally set 

out – light in weight and torsionally rigid (to be verified), easy to build 

and maintain as well as having the added advantage of low cost. 

 129



References 
 

Beer, F., Johnston, E.R., & DeWolf, J.T., 2002, Mechanics of Materials, 

3rd edn, McGraw Hill, New York. 

 

Bowen, E 1980, Knights of the Air, Time Life Books, Alexandria, Virginia 

 

Chen CC, & Pollack, A., 1993, Influence of Welding on Steel Weldment 

Properties, in Vol 6, Welding, Brazing & Soldering, ASM Handbook.  

 

Deakin, A, Crolla, D, Ramirez, JP,  & Hanley, R, The Effect of Chassis 
Stiffening on Race Car Handling Balance, quoted in Smith, C, 2004, 
Racing Chassis and Suspension Design, Society of Automotive Engineers, 
Warrendale, PA.  
 

Evans, JR & Lindsay, WM, 1989, The Management and Control of 

Quality, West Publishing Company, St Paul. 

 

Fenton, J 1980, Vehicle Body Layout and Analysis, Mechanical 
Engineering Publishing Ltd, London p4-8. 
 

Genta, G., 1997, Motor Vehicle Dynamics, Modelling & Simulation, 

World Scientific, Singapore. 

 

Grant, EL & Leavenworth, RS, 1980, Statistical Quality Control, 5th Edn., 

McGraw-Hill International Book Company, Sydney 

 

Groover, M.P., 2002, Fundamentals of Modern Manufacturing, Materials, 

Processes, & Systems, 2nd edn, John Wiley & Sons, Inc Hoboken, NJ. 

 

Lunati Cams Handbook 1992, Connecting Rods, Lunati Cams Inc. 

 

Milliken, WF & Milliken DL, 2002, Chassis Design, Principles and 

Analysis, Professional Engineering Publishing, Warrendale. 

 

 130



Oberg, E, Jones, FD & Horton, HL  1979, Machinery’s Handbook, 
Industrial Press Inc, New York. 
 

Owen, W & Bowen, E 1967, Wheels, Time Life International (Nederland) 
NV 
 

Pilkey, WD, 1997, Peterson’s Stress Concentration Factors, 2nd Edn., 
John Wiley & sons, New York. 
 

Smith, C., 1984, Engineer to Win, MBI Publishing Company, Osceola, 

USA. 

 

Smith, R.B., 1993, Arc Welding in Carbon Steels, in Vol 6, Welding, 

Brazing & Soldering, ASM Handbook. 

  

Somers, B.R., 1993, Introduction to the Selection of Carbon and Low-

Alloy Steels, in Vol 6, Welding, Brazing & Soldering, ASM Handbook. 

 

Thompson, LL, Raju, S, & Law, EH, Design of a Winston Cup Chassis for 
Torsional Stiffness, quoted in Smith, C, 2004, Racing Chassis and 
Suspension Design, Society of Automotive Engineers, Warrendale, PA   

 
Thompson, LL, Pipasu, HS, Raju, S, & Law, EH, The Effects of Chassis 
Flexibility on Roll Stiffness of a Winston Cup Race Car, quoted in Smith, 
C, 2004, Racing Chassis and Suspension Design, Society of Automotive 
Engineers, Warrendale, PA   

 
 

 

 

 

 
 

 

 

 

 

 

 

 131



Appendix A  -  Project Specification 
 
 
 
 

University of Southern Queensland 
Faculty of Engineering and Surveying 

 
ENG 4111/2 Research Project 

                 PROJECT SPECIFICATION 

 
 
FOR:   Anthony Michael  O’NEILL 
TOPIC:   Chassis Design for SAE Racer 
SUPERVISOR:  Chris Snook 
 
 
PROJECT AIM: This project aims to design a rigid and lightweight chassis for the SAE 

Racer. 
 
 
PROGRAM: Issue A, 15th March 2005. 
 

1. Research SAE rules to determine safety and design requirements. 
 
2. Review and critique designs used by other teams. 
 
3. Determination of layout, suspension type and dimensions in consultation with Team. 
 
4. Selection of materials to be used. 

 
5. Determination of work processes (including quality control) for construction of frame. 
 
6. Determination of imposed loads – suspension, engine, torsional etc. 

 
7. Research and design a suitable mounting bracket for suspension, engine etc. 
 
8. Testing of joint strength of selected material in configurations used in chassis. 
 
9. Determination of optimal frame design (with regards to weight, deflection and torsional 

stiffness) by Finite Element Analysis. 
 
10. Liaise with Team and Faculty Workshop in the construction of the frame. 
 
11. Testing (and modification, if necessary) of frame to ensure compliance with design and 

safety objectives. 
 
 
 
AGREED:____________________(Student)  ______________________(Supervisor) 
 
       (date) ____/____/____ 
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Appendix 1:  Performance Graphs - 300 kg & 50hp 
 

 

Weight 300 kg        
Horsepower 50 hp  speed speed     

d n k time mph m/s dt dv a = dv/dt a (g) 
          

0 0 0 0 0 0 0 0 0 0 
5 80.467 0.034 0.77 22.29 9.97 0.77 9.97 13.02 1.33 

10 40.234 0.136 1.22 28.09 12.56 0.45 2.59 5.76 0.59 
15 26.822 0.306 1.59 32.15 14.37 0.38 1.82 4.82 0.49 
20 20.117 0.544 1.93 35.38 15.82 0.34 1.45 4.30 0.44 
25 16.093 0.849 2.24 38.12 17.04 0.31 1.22 3.95 0.40 
30 13.411 1.223 2.53 40.51 18.11 0.29 1.07 3.69 0.38 
35 11.495 1.665 2.80 42.64 19.06 0.27 0.95 3.49 0.36 
40 10.058 2.175 3.06 44.58 19.93 0.26 0.87 3.33 0.34 
45 8.941 2.752 3.31 46.37 20.73 0.25 0.80 3.19 0.33 
50 8.047 3.398 3.55 48.02 21.47 0.24 0.74 3.07 0.31 
55 7.315 4.111 3.79 49.58 22.16 0.23 0.69 2.97 0.30 
60 6.706 4.893 4.01 51.03 22.81 0.23 0.65 2.88 0.29 
65 6.190 5.742 4.23 52.41 23.43 0.22 0.62 2.81 0.29 
70 5.748 6.659 4.45 53.72 24.02 0.21 0.59 2.73 0.28 
75 5.364 7.645 4.66 54.97 24.58 0.21 0.56 2.67 0.27 

          
 Table of Time, Speed and Acceleration for 75 metre Standing Start    
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Performance Graphs for 300 kg & 50 hp (cont) 
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Appendix 2:   Performance Graphs for 250 kg &  
70 hp 
 
 

Weight 250 kg        
Horsepower 70 hp  speed speed     

d n k time mph m/s dt dv a = dv/dt a (g) 
          

0 0 0 0 0 0 0 0 0 0 
5 80.467 0.034 0.64 26.50 11.85 0.64 11.85 18.40 1.88 

10 40.234 0.136 1.02 33.39 14.93 0.38 3.08 8.14 0.83 
15 26.822 0.306 1.34 38.22 17.09 0.32 2.16 6.81 0.69 
20 20.117 0.544 1.62 42.07 18.80 0.28 1.72 6.07 0.62 
25 16.093 0.849 1.88 45.31 20.26 0.26 1.45 5.58 0.57 
30 13.411 1.223 2.13 48.15 21.53 0.24 1.27 5.22 0.53 
35 11.495 1.665 2.36 50.69 22.66 0.23 1.13 4.93 0.50 
40 10.058 2.175 2.58 53.00 23.69 0.22 1.03 4.70 0.48 
45 8.941 2.752 2.79 55.12 24.64 0.21 0.95 4.51 0.46 
50 8.047 3.398 2.99 57.09 25.52 0.20 0.88 4.34 0.44 
55 7.315 4.111 3.18 58.93 26.35 0.20 0.82 4.20 0.43 
60 6.706 4.893 3.37 60.67 27.12 0.19 0.78 4.08 0.42 
65 6.190 5.742 3.56 62.31 27.85 0.18 0.73 3.96 0.40 
70 5.748 6.659 3.74 63.87 28.55 0.18 0.70 3.86 0.39 
75 5.364 7.645 3.92 65.35 29.22 0.18 0.66 3.77 0.38 

          
 Table of Time, Speed and Acceleration for 75 metre Standing Start    
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Performance Graphs for 250 kg and 70 hp (cont) 
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Appendix 3:  Costing Data & Calc’s for SAE Frame 
 

      

Chassis 
Costing 

Quantities       
  RHS Circular Circular    #     

  
50x25
x2.0 27x2.7 25.4x1.65  length  length of drilled  # # end # weld 

 Section Name # off # off # off metres # cuts cut holes 1" bends preps welds lengths

 Main Hoop   1   2.70 2 0.03   4       

 Front Cockpit Hoop   1   1.00 2 0.03   2 2 2 0.09 
     2   0.30 4 0.03     4     
       1 0.44     2   2 2 0.09 

 
Front Bulkhead 

Hoop   1   0.64 2 0.03   2 2 2 0.09 
     2   0.30 4 0.03     4     

       1 0.44     2   2 2 0.09 
 Main Hoop Internal     1 0.68     2   2 2 0.09 
       1 0.84     2   2 2 0.09 
       1 0.75     2   2 2 0.09 
       4 0.44     8   8 4 0.105 
                     4 0.125 
 Main Hoop Braces     2 1.40     4   4 4 0.105 

 Front Hoop Braces     2 0.84     4   4 4 0.105 
 Front Side Braces     2 0.49 4 0.07     4 4 0.15 
       2 0.35 4 0.05     4 4 0.12 
       2 0.34 2 0.07 2   4 2 0.15 
                     2 0.12 
 Front Centre Struts     2 0.16 4 0.03     4 4 0.09 

       2 0.34 2 0.03 2   4 4 0.09 
       1 0.20     2   2 2 0.09 
       1 0.44 2 0.03     2 2 0.09 
 Cockpit Floor     2 0.79     4   4 4 0.09 
       2 0.76     4   4 4 0.09 
 Cockpit Sides     2 0.76     4   4 4 0.12 
       2 0.77     4   4 4 0.09 
       2 0.75     4   4 4 0.09 

 
Engine 

Compartment     2 0.65     4   4 4 0.105 
       2 0.64     4   4 4 0.105 
       2 0.67     4   4 2 0.105 
       2 0.70     4   4 2 0.15 
 Rear Drive Hoops   2   0.43 4 0.12     4 2 0.12 
     2   0.34 4 0.12     4 2 0.12 
     4   0.28 8 0.12     8 4 0.12 
 Drive Side Bracing     4 0.26 8 0.075     8 8 0.105 
 Longitudinal Bars 4     0.85 8 0.05 8   8 8 0.15 
   4     0.45 8 0.05 8   8 8 0.15 

 
Suspension 

Brackets            
 40x40x2 flat 24   0.05 48 0.04 24  24 24 0.04 
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Appendix 3 (continued) 
 

Materials 
           

Supplier's Name & Ph# Quantity (m) $/unit Cost 
    50x25x2 RHS 5.20 10.00 $52.00 
    27x2.7 CHS 8.19 4.00 $32.76 
    25.4x1.65 CHS 27.41 3.00 $82.23 
    40x40x2 flat 1.20     

Operations Costs  Quantity $/unit   
Supplier's Name & Ph# Cuts (m) 4.60 16.00 $73.60 
Toowoomba Specialised Welding # Drilled Holes 84.00 0.35 $29.40 
Ph 0422 576 460  # bends 8.00 0.75 $6.00 

    # end preps 138.00 0.75 $103.50 
    Welds (m) 14.15 14.00 $198.10 

        

Operations Labour       
Supplier's Name & Ph#  Hours $/hr   
Toowoomba Specialised Welding Setout 2.00 35.00 $70.00 
Ph 0422 576 460  Assembly 10.00 35.00 $350.00 

           
          

        Total Cost   $997.59 
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Appendix 4:   Formula  SAE-A 
 

University of Southern Queensland 
USQ Motorsport 

 
Car 13 

 
Design Report 

 
 

1. Overview 
 

Due to the great luck from last year, the car’s number (13) has been retained. 
The Formula SAE vehicle is a product of the USQ Motorsport Club, members 
of which have designed and built the car throughout 2005.  In this, the Team 
has had much assistance from the USQ Mechanical Workshop in the 
production / fabrication of many of the components.  The USQ Motorsport 
Club is based at the USQ, a regional University in a city with only a small 
industrial base – a factor which severely limits sponsorship opportunities. 
Since this was only the second year in the competition for the USQ, the design 
philosophy was to improve the car by making small improvements in all 
components.  The basic aim was to reduce weight wherever possible whilst 
increasing the useable power of the engine through inlet and exhaust tuning. 
The USQ Motorsport Team is still small (but growing) at this stage, so mutual 
help and encouragement has been a major factor in its success.  With time, the 
membership base will grow in numbers and experience, as more first and 
second year engineering students become involved, and more improvements 
will flow from this. 
 
 
 
2. Chassis 
 
The vehicle uses a simple space frame chassis which was designed using 
ProEngineer solid modelling software and full-scale timber mock-ups for 
verification of ergonomic dimensions. The frame consists of 31.75mm x 
2.1mm ERW tubular steel with a yield strength of 250 MPa and was 
fabricated using the TIG – GTAW process.  
The chassis design has been analysed using non-destructive testing and Finite 
Element Analysis (FEA) using the ANSYS package.  The non-destructive 
testing consisted of torsional and bending tests – and these confirmed that the 
FEA model was giving a reasonable approximation of the true stresses in the 
chassis. 
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3. Suspension and Steering 
 
The 2005 USQ Motorsport car uses unequal length A-arms with an in-board 
coil over damper unit which is actuated by a pushrod.  The lengths and angles 
are designed to give minimal change, both front and rear, to the track and roll 
centres, in order to keep the handling predictable and safe. 
 
The car’s uprights and hubs are student designed and have been manufactured 
from steel.  The uprights have a ‘built-in’ 5.7° of castor and a 3.5° king pin 
inclination which reduces the offset to 20 mm.  This is intended to give good 
feedback to the driver whilst minimising steering kickback. 
 
The steering system used is a modified rack and pinion assembly from a 1983 
Honda Civic sedan.  The geometry is 100% Ackermann with 18° steering 
angle.  The tie rods are parallel with the upper A-arms to minimise bump 
steer.  The turning radius is 5m for 210° steering wheel rotation. 
 
4. Brakes 
 
The braking system on the car features production items from a 1994 Yamaha 
YZF600 motorcycle. This consists of a cross-drilled rotor and four-pot calliper 
acting on each of the front wheels and a single rotor and two-pot calliper 
acting on the rear axle. The system is operated by two identical ¾ inch master 
cylinders that provide pressure to the callipers through a pedal with 
mechanically adjustable bias control for brake force distribution. 

 
 

5. Drivetrain 
 
The car’s drivetrain consists of a chain and sprocket drive to a solid rear axle, 
which transmits torque to the wheels through equal length constant velocity 
(CV) shafts.  

 
The final drive ratio was increased by using a 13-tooth front sprocket and a 
custom-made 60-tooth rear sprocket. This will increase the final gear ratio to 
4.61 and improve acceleration and torque.  

 
The centre rear axle was specifically designed to minimise weight whilst 
maintaining reliability, and for that reason was manufactured from hollow bar 
steel. The decision not to integrate a differential into the car may have some 
negative effects on the cornering performance, however a narrower rear track 
and stiff spring rates will minimise these effects.  
 
The advantages of a solid rear axle are: 

 
1. Cost effective solution offering excellent strength and high reliability. 
2. Can offer superior traction in straight-line acceleration. 
3. Can further reduce weight by using a single brake assembly. 
4. Requires no maintenance. 
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Also, to minimise weight, small CV assemblies from a Suzuki SS80V were 
sourced. These CV joints also feature an internal spline, which reduces the 
manufacturing costs of the CV shafts and rear axle as only mating external 
splines are required to be machined into these shafts and are much less 
demanding. 
 
 
6. Engine 

 
USQ Motorsport’s 2005 entry is powered by a 600 cc Yamaha motorbike 
engine.  This engine was sourced from a 1994 model YZF600, and is naturally 
aspirated with a 16-valve, DOHC, inline 4-cylinder configuration. 

 
Inlet 
The inlet manifold is student-designed and built, and features a streamlined 
design with four long intake runners meeting at a single plenum.  The runners 
are constructed from 25 mm bore mild steel, and are each 275 mm long.  This 
critical diameter is designed to provide optimum flow velocity (and cylinder 
filling) in the desired rpm range, while the gently swept, pipe-bent runners 
provide a direct path to each inlet, and are tuned to take advantage of reflected 
pressure waves for increased intake charge. 

 

 
 Figure 1:  Intake Restrictor 

 
The plenum offers interchangeable spacers to provide a variety of plenum 
volumes, from 60 cc to 500 cc.  A dividing plate is incorporated into the 
plenum to group companion cylinders (cylinders 2 & 3, 1 & 4) and assist with 
prevention of inter-cylinder charge robbery as well as maximise throttle 
response.  The mandatory inlet restrictor features a converging-diverging 
conical shape, machined from a single piece of aluminium, tapering to the 
specified 20 mm circular diameter between the nozzle and diffuser (Figure 1). 
 
Fuel Delivery 
The engine is naturally aspirated and introduces fuel through a carburettor.  
USQ Motorsport is currently developing an electronic fuel injection (EFI) 
system to achieve improved power characteristics and better fuel economy.  
The design of the inlet manifold makes provisions for both carburetion and 
injection systems, with a throttle body adaptor plate, and mountings for 
injectors, utilising a multi-point configuration. 
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Exhaust 
Custom headers are student-designed and built to increase power by taking 
advantage of wave scavenging characteristics.  Free-flow joiners, linking the 
four primary pipes and the secondary pair, have been fabricated using 180° 
mandrel bends, cut and welded.  A ‘4-into-2-into-1’ configuration offers 
superior low- and mid-range torque and a more even delivery of power, and 
utilises 750 mm-long primaries and 500 mm-long secondaries, each tuned for 
specific rpm bands.  Companion cylinder grouping is again utilised, similar in 
principle to the intake system.  An ‘off-the-shelf’ muffler, rated to meet 
FSAE-A noise level requirements, is used. 

 

 
 
7.  Bodywork 

 
The external body will consist of 4 sections: 

 
1: Side pods. These will be moulded from 'E' glass cloth and vinyl ester resin 
(probably Dow Chemicals "Derakane" 510A )  
2: Scuttle panel. Forms the instrument panel and runs forward to the steering 
gear. 
3: Nose. Runs from the scuttle forward. 
Other bodywork; 
Radiator inlet ramps- run from the front wishbone attachments to the inner end 
of the radiator core between the upper and lower longitudinal rails. 
Cooling pipe cover (across cockpit floor) covers the pipe connecting the 
radiators together.  
Anti-fouling plates to protect drivers' feet from the front suspension elements.  
"Stressed skin" shear panels in cockpit sides. 
Upper wishbone arrestor plates.  

 
8. Cockpit Design 

 
The vehicle’s cockpit has been designed fully in accordance with the 
anthropometric requirements with excellent adjustability and simplicity.  The 
pedal box is constructed for good adjustability as the seat is in a fixed 
position. 
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Appendix 5:  Formula SAE-AUS Rules - Frame 

 
 
 
 
 
 
 
 

 144



 
 
 
 
 
 
 
 
 

 145



 
 
 
 
 
 

 146



 
 
 
 
 
 
 
 

 147



 
 

 148



 

 149



 
 
 
 

 150



 
 
 

 151



 
 
 
 
 

 152



 
 
 
 
 
 
 

 153



 
 
 
 
 
 
 
 

 154



 
 

 155



 
 

 
 
 
 
 
 
 

 156



 
 
 

 157



 
 
 
 

 158



 
 
 
 
 
 

 159



 
 
 
 
 
 
 

 160



 
 
 
 
 
 
 
Appendix 6:  Data from ProEngineer   
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(courtesy of N Arvind Doss) 
 
 
 
VOLUME =  4.5944516e+06  MM^3 
SURFACE AREA =  4.7314475e+06  MM^2 
DENSITY =  7.8000000e-09 TONNE / MM^3 
MASS =  3.5836722e-02 TONNE  
 
CENTER OF GRAVITY with respect to _ARV1 coordinate frame: 
X   Y   Z     5.0703858e-01  1.1318377e+02  1.2415124e+03  MM 
 
INERTIA with respect to _ARV1 coordinate frame:  (TONNE * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  7.6338034e+04 -1.6107711e-01 -2.1317352e+01 
Iyx Iyy Iyz -1.6107711e-01  7.5621078e+04 -5.1333637e+03 
Izx Izy Izz -2.1317352e+01 -5.1333637e+03  4.3569448e+03 
 
INERTIA at CENTER OF GRAVITY with respect to _ARV1 coordinate frame:  
(TONNE * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  2.0641908e+04  1.8955399e+00  1.2416733e+00 
Iyx Iyy Iyz  1.8955399e+00  2.0384032e+04 -9.7621725e+01 
Izx Izy Izz  1.2416733e+00 -9.7621725e+01  3.8978469e+03 
 
PRINCIPAL MOMENTS OF INERTIA:  (TONNE * MM^2) 
I1  I2  I3   3.8972688e+03  2.0384596e+04  2.0641922e+04 
 
ROTATION MATRIX from _ARV1 orientation to PRINCIPAL AXES: 
      -0.00007       -0.00734       -0.99997 
       0.00592        0.99996       -0.00734 
       0.99998       -0.00592       -0.00003 
 
ROTATION ANGLES from _ARV1 orientation to PRINCIPAL AXES (degrees): 
angles about x  y  z  90.245        -89.580         90.584  
 
RADII OF GYRATION with respect to PRINCIPAL AXES: 
R1  R2  R3 3.2977372e+02  7.5420067e+02  7.5894609e+02  MM 
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