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ABSTRACT 

Photovoltaic (PV) systems are one of the most common types of renewable energy. A key incentive for 

PV use is its’s ability to generate passive income/savings. The payback period is the number of years a 

system takes to offset its own cost. The accuracy and ease of estimating this value varies depending on 

the method used. This study investigates a range of payback models, including software and manual 

algebraic methods, to evaluate their practicality and accuracy, including their use of PV-related 

parameters. Methods are compared using a qualitative scale. Predicted energy output will be compared to 

data collected from a real PV system to determine accuracy. Accessibility is assessed based on ease of use 

and user requirements, including required skills. PV parameters tested include weather conditions, system 

degradation and panel angle. While software evaluation focuses on usability, parameters will be presented 

through the manual calculations. This is because the primary concern for the software is its ease of use; 

meanwhile, the manual method offers greater transparency and improved testing conditions for these 

calculations. Results showed that incorporating real weather data (solar irradiance), inflation and physical 

PV specifications produced outcomes that aligned with the observed data. Simpler models that ignored 

these factors tended to overpredict long-term energy output and savings, though they were easier to use 

and more practical for many users. Some users may still benefit from complex, more accurate models. 

This demonstrates the need for transparent, user-appropriate tools for PV system calculations and 

supports more informed decision-making for solar investments. It also highlights opportunities to 

improve current modelling practices across the renewable energy field.  
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CHAPTER 1: INTRODUCTION 1 

1.1. PV Payback Period 2 

Photovoltaic (PV) is a major type of renewable energy system that converts solar irradiance from the sun 3 

into electricity using the photovoltaic effect and semiconducting materials (Fahrenbruch & Bube 2012; 4 

Benda & Černá 2020). As the technology and relevancy of these systems continue to grow, the use of PV 5 

has become of increasing interest to multiple stakeholders, including both private homeowners and large-6 

scale energy companies. One concern that is often brought up is the financial gains and losses from using 7 

renewable energy, including PV (Delapedra-Silva et al. 2022). One of the simplest ways of displaying this 8 

dynamic is the payback period, which is defined as the amount of time required for a PV system to 9 

recover its initial cost through both saving resources and generating income from energy produced 10 

(Kagan 2024). 11 

Different users benefit from calculating the payback period in various ways. A homeowner may be 12 

primarily interested in how long it will take for the rooftop system to pay for itself through reduced 13 

monthly electricity bills. In contrast, a business owner may be more focused on return on investment or 14 

decreasing operational costs over time. Engineers use the payback period to support system design, 15 

considering cost efficiency. Researchers and policymakers evaluate economic feasibility using payback 16 

calculations, either as a case study or to support policy decisions. Lastly, industry professionals often use 17 

these calculations in marketing or when presenting a system to a client. All these users need accurate and 18 

flexible methods to calculate the payback period to suit their requirements (O'Flaherty et al. 2012; Kessler 19 

2017; Gorshkov et al. 2018; de Souza et al. 2019; Kohli et al. 2022). 20 

Methods can be grouped into manual and software-based options. Manual methods require the user to 21 

gather data and apply mathematical techniques directly. This includes using basic equations that involve 22 

system costs, reported annual energy output, and electricity prices to test a system's feasibility quickly 23 

when software tools aren’t available. In contrast, software tools typically offer detailed simulations, 24 

energy predictions, degradation analysis, and other financial information to help estimate payback 25 

periods. However, the two methods vary in the skills and resources required. Manual methods can be 26 

challenging for those without data access, while using software may require extensive learning and often 27 

significant costs. Additionally, many popular software programs used in the PV industry and research do 28 

not focus on payback period calculations, leading to potential confusion with unrelated options that users 29 

may encounter (González-Peña et al. 2021; Milosavljević et al. 2022). 30 
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These methods all require a list of assumptions and parameters that significantly affect the results. This 31 

includes solar irradiance in the area, degradation, temperature effects and electricity rates (Lambert et al. 32 

2006; Mahendra Lalwani 2010; Sinha & Chandel 2014). These factors need to be evaluated and tested, 33 

their importance also differs based on the system size, its geographical location and usage (Natural 34 

Resources Canada 2005; Blair et al. 2018). Therefore, some parameters may be more important to 35 

incorporate than others based on both the system and the user’s preferences and needs. Understanding the 36 

importance of these factors and their impact on results is essential for accurate and useful analysis. 37 

This research project aims to perform a qualitative study into the various modern payback period 38 

calculation methods and the importance of the factors involved. This includes the ability to apply PV 39 

specifications, weather data and any recent advances or changes in technology. The research question is: 40 

“How do different payback period methods meet the practical needs of photovoltaic (PV) users?” 41 

In addition to this general question, several sub-questions will be addressed, including: 42 

• Do existing commercial payback models take into account recent advances in photovoltaic (PV) 43 

technology? 44 

• Which assumptions and parameters have the greatest impact on the accuracy of payback period 45 

estimates? 46 

• How do manual methods compare to software-based tools in terms of usability, accessibility, and 47 

complexity? 48 

• Which user types (e.g., homeowners, engineers, researchers) benefit most from specific types of 49 

payback models? 50 

• What limitations or trade-offs exist between model accuracy and simplicity? 51 

This aims to focus on both the technical ability, both the likeliness to succeed and the accessibility of each 52 

tested method for a range of different PV users. 53 
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1.2. Scope of Study 54 

This research focuses on small to medium scale PV systems such as those found in residential, 55 

commercial and institutional areas. The components are as follows: 56 

• A literature review of the existing payback period methods, both manual and software based. 57 

• Testing and evaluation of selected methods, covering a range of complex and accessible options. 58 

• Qualitative analysis of each method’s output, including payback period and details about the 59 

system itself. 60 

• A discussion on the usability, complexity, and data requirements for each method. 61 

• An investigation of key parameters and assumptions. Both their effects on payback period results 62 

and the ease with which they can be incorporated into each method. 63 

Not included will be: 64 

• Large-scale utility PV systems with advanced grid-tied behaviour or wholesale market modelling, 65 

these systems often have professionals who are trained to be able to evaluate all aspects including 66 

payback. 67 

• Financial tools such as discounted cash flow (DCF), internal rate of return (IRR), or net present 68 

value (NPV). These are outside the practical scope for many small system users and add 69 

complexity not essential to the central research question. 70 

• Policy-based or tax incentive modelling, these vary greatly based on region and data can be 71 

difficult to access for most private users. 72 

• Extensive geographic modelling: instead, this study uses assumptions and available public data 73 

for solar irradiance and system characteristics and that is what most private users will inevitably 74 

use as well. 75 

Many such exclusions must be made due to limited access to real-world data and time constraints. The 76 

focus is on general usability and therefore will focus on the more realistic methods people will use. 77 

Private users will likely also need to adhere to the same restrictions and scope. 78 
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1.3. Justification 79 

As PV systems become more common and generally cheaper, the methods used to assess their economic 80 

feasibility efficiently is important (Fazal & Rubaiee 2023). A method needs to be accurate, but it must 81 

also be accessible and up to date. The output, degradation, and installation of PV modules vary and the 82 

resources to determine which of these factors need to be considered are lacking; therefore, a model based 83 

on outdated assumptions can result in inaccurate information about the financial outcomes of using PV 84 

(Krechowicz et al. 2022; Nguyen & Müsgens 2022). 85 

The differing needs of users, including technical professionals and everyday consumers, mean that tools 86 

must be easy to use, accessible, and flexible in their methods. Therefore, it is important to periodically 87 

review the capabilities of existing payback models and assess whether they meet current requirements.  88 

This project allows for further insight into the methods most used in PV research and in the industry at 89 

large. Comparing the tools used, the parameters that have the most significant impact on accuracy and the 90 

reliability of results. Finally, by examining the outputs and practical considerations of differing methods, 91 

the importance of transparency and simplicity will become clear. Is having an accessible, reliable, and 92 

user-controlled method still a central principle when making decisions on energy solutions? 93 
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CHAPTER 2: LITERATURE REVIEW 94 

2.1. Introduction 95 

This literature review will explore the research question: “How do different payback period methods meet 96 

the practical needs of photovoltaic (PV) users?” This inquiry is significant in the context of rapid 97 

technological advancement, as new developments can introduce a variety of parameters and factors that 98 

need to be carefully considered. Given these changes, it is essential to reassess and potentially update the 99 

calculation methods traditionally employed in these models. 100 

In this review, we will examine the commonly used techniques for determining payback periods 101 

associated with PV technology. This will include a detailed discussion of the various factors that 102 

influence these calculations, such as installation costs, energy savings, maintenance requirements, and the 103 

impact of government incentives. It is vital for these factors to reflect the current state of technology to 104 

ensure that the models remain relevant and accurate. Different users vary in their need for the payback 105 

period; a homeowner requires a quick and straightforward answer to decide on their system. An engineer 106 

or analyst would require a more detailed analysis. 107 

This literature review will provide a broad overview of payback period methods, and it will highlight 108 

some of the major factors that influence the results. It will review some of the available types of PV 109 

software and possible tools. This aims to help stakeholders in the renewable energy sector make better 110 

decisions. 111 

2.1.1. Photovoltaics 112 

PV cells convert heat or solar irradiance into electricity. They generate a small amount of energy, and a 113 

solar panel contains many of these cells, combined into a circuit, to provide usable amounts of electricity 114 

to the user. Brimblecombe and Rosemeier (2017) define a PV panel as layers of semiconductive material. 115 

PV systems produce energy steadily over time with relatively low maintenance, and the produced energy 116 

can be used directly, stored, or added to the grid (Al-Waeli et al. 2019).  117 

The factors that affect the performance of PV energy systems over time are reviewed by Brimblecombe 118 

and Rosemeier (2017) and include degradation, temperature, solar irradiance, cloud coverage, type and 119 

size of the PV system, system setup and orientation, and peripheral devices such as solar trackers (Vyas et 120 

al. 2023). 121 
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The data used in these calculations is based on manufacturer ratings, which measure the performance of a 122 

PV model under standard test conditions involving 1000W/m2 at 25°C. Manufacturers typically test for 123 

power output, efficiency, degradation rate, and temperature coefficient to gauge system performance 124 

under different temperatures. This data is crucial for assessing how the PV system will change with 125 

temperature variations and its impact on overall power production, especially for models designed for 126 

specific environments (Stein & Klise 2009; Dada & Popoola 2023).  127 

To answer the research question, it is necessary to discuss software tools for renewable energy, payback 128 

period methods, and current developments in PV as of 2024. It will discuss the currently available 129 

software, the pros and cons, and its abilities to accurately calculate payback. 130 

2.1.2. Importance of Payback Period in PV 131 

Brenndorfer (1985) defines the payback period as the time it takes for a system's initial investment to be 132 

recouped through its operation. They suggest that the objective is not to recoup the initial cost but the 133 

profit that the system gains. Many authors, such as O'Flaherty et al. (2012); de Souza et al. (2019); Cohen 134 

(2024) give comprehensive discussions on these calculations. The calculations use data from the solar 135 

panel system provider, including initial cost, estimated performance, and projected savings. It determines 136 

the years needed for the cumulative cash flow to equal or exceed the initial cost. Software can be used for 137 

detailed analysis. 138 

Typically, calculations for payback on a private house would use a model based on average performance 139 

in their region. Kagan (2024) gives an example where the system costs $5,000 and generates electricity 140 

worth $100 each month; the payback period would be 4.2 years. Another example is given by Farmer 141 

(2023) for a large solar farm where the payback could be 5-10 years for a $1,300,000 project producing 142 

$15,000 to $40,000 a year for each MW of power the farm produces and sells.  143 

Homeowners would use information on the payback period to make an investment decision about their 144 

PV installation (Cucchiella et al. 2017). In this case they would mostly rely on the salesman to give them 145 

the calculations. Any calculations they would like to do themselves would need to be simple and user 146 

friendly. A different scenario would be an industry professional who would like to install a larger PV 147 

system, and the interest would need to be beneficial for their company (Barnard et al. 2021). In the case of 148 

the latter, the company has the capacity to hire a professional who would have the capability to use a 149 

more sophisticated payback analysis model. 150 
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2.1.3. Software Tools 151 

Software tools assist users in completing various tasks quickly and easily. The user provides the software 152 

with values that describe the system, including system specifications, weather data, and the location and 153 

placement of the system. The software then uses an algorithm to determine the appropriate equation to 154 

simulate the system's energy output. Next, the user inputs any known financial information, and the 155 

software uses these data to calculate the payback period. 156 

Sinha and Chandel (2014); Vashishtha et al. (2022) give overviews of software tools used in renewable 157 

energy, specifically hybrid systems involving solar. The ideal software can apply all assumptions, 158 

specifications, and data, and offers the flexibility of customisation. The varying methods that different 159 

software tools use are diverse and include determining a system's average performance, simulating the 160 

system's performance, estimating financial worth, assessing current financial worth, analysing weather 161 

data specific to different regions, and selecting appropriate solutions for various scenarios (Kazem et al. 162 

2022). Software that analyses PV systems generally considers capacity, orientation, tilt, regional 163 

irradiance, performance ratios, and degradation rates over time (Man Yu 2015). 164 

2.1.4. Overview of Existing Methods 165 

A review by (Delapedra-Silva et al. 2022) discusses various methods for financial assessment, 166 

emphasising the importance of software tools for handling financial analysis in the field. Kohli et al. 167 

(2022) delves into using advanced software tools for financial analysis in the context of solar rooftop PV 168 

systems. Kohli et al. (2022) introduce real options analysis for identifying investment opportunities, 169 

providing risk management, and conducting value analysis for projects with high uncertainty and 170 

flexibility. The text also mentions the levelized cost of energy, which is a widely used metric for 171 

comparing the monetary value of different energy systems in hybrid systems (Martinez-Cesena & Mutale 172 

2011; Gupta et al. 2020).  173 

Machine learning (ML) and artificial intelligence (AI) are rapidly advancing technologies capable of 174 

independent analysis and prediction improvement (Nosratabadi et al. 2019; Kohli et al. 2022). Stochastic 175 

Modelling incorporates randomness, uncertainties, and probabilities to calculate payback under various 176 

outcomes (Awerbuch & Berger 2003). Hybrid methods combine techniques to enhance accuracy or 177 

provide multiple calculations, often by integrating elements from existing models. For example, 178 

Stochastic Modelling can be combined with other methods or integrated with machine learning and AI to 179 

improve the reliability of data used in calculations (Wang et al. 2019; Delapedra-Silva et al. 2022). 180 

 



 

8 
 

There are also different types of calculators that could be used, such as an omni calculator, multi-181 

purposed financial calculators, excel-based calculators, hybrid simulators and AI/Machine learning-based 182 

calculators. Many websites, SolarReviews (SolarReviews 2024) and EnergySage (EnergySage 2024) for 183 

example, also provide online calculators which could be a good option for giving software adjacent tools 184 

to users who want a fast payback period calculation.  185 

Domestic and business solar systems have distinct requirements. Businesses can engage skilled 186 

professionals for longer projects and often need larger systems for solar farms and factories. In contrast, 187 

domestic users focus on cost-effectiveness and clear guidance, typically opting for smaller systems with 188 

shorter payback periods (Dharshing 2017). 189 

2.2. Review of Payback Period Methods 190 

It is important to review traditional, non-software-based methods of calculating payback periods (Lefley 191 

1996). There are many scenarios where a user may not have access to software or potentially don’t need 192 

to calculate data for renewable energy systems often enough to justify it (Raugei et al. 2012).  193 

2.2.1. Pros and Cons of the Payback Period Model 194 

The payback method has a drawback in that it does not account for the change in the value of money over 195 

time. It only considers cash inflows until the initial investment is recovered, disregarding any inflows and 196 

potential changes after this payback period (Lefley 1996). Manual methods can be used to calculate 197 

reasonable values, but they can be difficult when dealing with some of the complexities, such as changes 198 

in energy costs and system degradation. Software tools have the capacity to include a more extensive 199 

range of parameters but vary in their respective usability.  200 

The main advantage of using a payback model is risk assessment by evaluating the financial risk of a 201 

long-term or short-term system (Gorshkov et al. 2018). It focuses on liquidity, emphasizing the recovery 202 

of liquid assets (money) and presenting the initial cost and the payback as raw cash. Additionally, it is 203 

important to calculate before starting a project, as it can be used as a tool to consider the success and 204 

validity of a single project or to help compare the risk of multiple projects (Delapedra-Silva et al. 2022)  205 

One major disadvantage is the lack of information on changes in cash flow (Brenndorfer 1985). It may 206 

not reflect overall savings accurately. Most methods don't consider the time value of money or inflation, 207 

making it an inadequate metric for system profitability. Payback doesn't account for system lifespan, can 208 

be misleading for investors, and is less useful when comparing projects of different sizes. As a result, 209 

payback period results become more of a range than a specific value (Andrew et al. 2007). 210 
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Overall, the issues with the payback period can be resolved by conducting additional analyses. Many of 211 

the required values can be calculated using the system specifications as provided by the manufacturer, 212 

along with data and assumptions that have been made about the system. Implementing this using software 213 

would be straightforward, as most programs include databases that already provide these values and use 214 

built-in analyses (Short et al. 1995; Brealey et al. 2014; Damodaran 2014). 215 

2.2.2. Assumptions and Physical Parameters 216 

It's important to define the assumptions and parameters to calculate a value such as payback accurately 217 

(Stein & Klise 2009; Delapedra-Silva et al. 2022). The most important factors are the solar irradiance, 218 

initial investment, maintenance costs, annual cash flow, system lifespan and degradation. These are 219 

influenced by factors such as the type of PV, base material, and environmental conditions (Boyle 2012; 220 

Kohli et al. 2022). The initial investment also has an additional issue, such as the method of financing as 221 

either a cash purchase or loan investment. 222 

Solar exposure is the most crucial factor in PV energy generation. Therefore, the location and placement 223 

of the panels are the most important considerations in the project. It is essential to use an energy model 224 

that incorporates location, as well as having access to climate databases (Sengupta et al. 2018). Another 225 

important consideration is to use an energy model that can allow for PV modules to lose efficiency over 226 

time due to degradation (Aghaei et al. 2022).  227 

The electricity price is affected by inflation, and discounts for initial costs or annual savings may apply 228 

(Crismale 2024). The model must have consistent long-term performance that is affected by inflation and 229 

degradation, as well as fixed maintenance costs and accurate weather data (O'Shaughnessy et al. 2018). 230 

Energy costs are complex and highly dependent on the region and relevant market. Some markets are 231 

highly unsteady in their price changes (Delapedra-Silva et al. 2022). 232 

It is necessary to account for any additional technology for the system. If the system is using solar 233 

trackers (Singh et al. 2018), the time the system is in direct sunlight would increase, but the amount of 234 

usage energy being generated per day would decrease.   235 

Several factors, such as energy storage, environmental degradation, microclimate data, and electricity 236 

price changes, should be considered when evaluating the viability of renewable energy projects. Alsadi 237 

and Khatib (2018) notes that many analyses overlook important aspects such as maintenance costs, 238 

potential income from selling carbon offsets, and non-electricity benefits. Additionally, the likely increase 239 

in efficiency over time due to technological advancements is often not considered (Alsadi & Khatib 240 

2018). 241 
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Different types of PV systems also require different data (see Table 2.1). Most software would be able to 242 

gather data for common types of PV, so the ability of a method to adjust for this is essential. To properly 243 

account for different types of PV, a model needs to access the temperature coefficient, efficiency, power 244 

output, average maintenance costs, degradation rate and initial costs (Sharma et al. 2018). The model may 245 

also assume that the proposed project will include any other factors that certain types of PV may have. 246 
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Table 2.1: Key factors specific to each system model, efficiency is the amount of energy that is converted to electricity, low = <10%, medium = 10% to 247 
20%, and high is greater than 20%. Degradation is the loss of energy production, low indicates slow degradation of 25-30 years, medium degradation 248 
is between 10-20 years, high degradation is less than 10 years.  249 
 250 

PV Technology  Efficiency  Cost Factors  Lifespan  Degradation  Other Factors Payback Considerations  

Crystalline Silicon  
(c-Si) 2,4,5,6,7 

High 4,5,6,7 Decreasing cost. 5 

Consistent mass 

production 7 

Long (25-30 

years) 5 
Low  5,7 Industry-standard, high 

availability 5 
Can be long due to high cost. 4 

Short payback due to mature market and 

widespread adoption  
Thin-Film  2,4,6,7 
(CdTe, CIGS, a-Si)  

Moderate 2,4,6,7 Lower material 

costs, but 

installation can be 

complex 4,6,7 

Medium (20-

25 years)  
Moderate  It is flexible and suitable 

for use in unconventional 

spaces. High temperature 

tolerant. Cadmium is highly 

toxic. 2,4,6 

Longer payback in residential areas but 

good for large-scale installations  

Dye-Sensitized Solar 

Cells (DSSC) 1,3,4 
Low 1,7 Low-cost 

materials, but 

shorter lifespan 1,7 

Short (10-15 

years) 1 
High  1 Flexible, works in low-light 

conditions 3,4 
Payback highly dependent on location 

and application (e.g., indoor use)  

Thermophotovoltaics 

(TPV) 2 
Moderate to 

High  
High cost due to 

specialised 

technology  

Long lifespan  Low  Waste heat can be used for 

power generation.  
Payback is tied to specific industrial 

applications with available waste heat.  

Organic PV   
(OPV) 3,4,7 

Low  3,7 
   

Very low-cost 

production but 

lower efficiency 4,7 

Short (5-10 

years)  
  

High  Lightweight, flexible, easily 

printable  
Long payback due to shorter lifespan 

and low efficiency  

Perovskite PV 3,4,7 High 

(potential) 4,7 
Manufacturing still 

developing, 

potential for low 

costs  

Medium  Still being 

researched  
Promising, has potential for 

tandem cells  
Could lead to very short payback 

periods if stability improves  

Quantum Dot Solar Cells 

(QDSC) 3,4 
Low to 

Moderate 4  
Experimental, high 

current costs   
Unknown (still 

developing)  
Still being 

tested  
Potential for integration in 

many devices  
Payback period is uncertain due to 

technology maturity  
Carbon Nanotube 

(CNT) 6 
Moderate to 

High  
Expensive 

materials 

currently  

Long  Low   
  

  

High potential for flexible 

electronics  
Could have short payback if production 

scales, but high initial costs  

Hybrid PV Systems 2,6 High 2,6 Varies widely 

based on the types 

combined 2 

Long  Low to 

Moderate  
Can combine high-

efficiency PV with storage 

or concentrators  

Payback depends on system 

configuration, with potential for short 

payback if optimised for specific 

environments  

Sources: 1Sharma et al. (2018); 2Ahmad et al. (2020); 3Dambhare et al. (2021); 4Singh et al. (2021); 5Ballif et al. (2022); 6Dada & Popoola (2023); 251 
7Fazal & Rubaiee (2023)  252 
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2.2.3. Calculating Payback Period Without Using Software 253 

Some users may want a simple payback estimation or only need to calculate payback once and don’t want 254 

or need to commit to software. A financial consultant is one option due to their expertise in the industry. 255 

Academic, research, industry, and case study type resources all can provide a history of other PV systems 256 

in the same or similar regions with some comments and reviews on the performance, including payback 257 

period. It is also possible for those with analytical skills to do calculations using calculation software such 258 

as Excel, an option for those less concerned with accuracy.  259 

Brenndorfer (1985) discusses ways to calculate payback using a formula with details on cash flow and 260 

rate of return.  The most basic payback period calculation starts with the following formula as stated in 261 

Kagan (2024):  262 

Payback Period =  
Initial Investment

Net Annual Cash Inflow
 263 

Boyle (2012) suggests a range of factors that contribute to the cost, suggesting ways to account for the 264 

change in cash flow rate (see Table 2.2). The initial cost includes materials and installation.  The 265 

estimated energy produced per year is specific to the type of PV system used and maintenance and 266 

operational costs need to be accounted for to get the annual cash flow. The payback period is when the 267 

cumulative cash flow meets or exceeds the initial investment (Brenndorfer 1985; Kagan 2024).    268 

2.2.4. Calculators Provided by Manufacturer/Company 269 

Australian companies such as the National Solar Energy Group and Arise Solar offer various methods to 270 

calculate payback for their solar energy systems (Arise Solar 2022; Solarquotes 2024). These methods 271 

include utility programs that provide data and rates for selling the energy produced by a PV system back 272 

to the grid (Tushar et al. 2023). The programs estimate system performance based on similar systems in 273 

the area and offer a selling rate. A simple payback period can be calculated using this rate and the 274 

estimated performance. Companies often have websites, such as the one provided by Arise Solar (2022), 275 

where users can input primary data to get a rough payback period estimate. There are also solar 276 

communities where users can compare different solar plans and setups, providing a more social estimate 277 

of the system's value. 278 
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These methods use data directly from the manufacturer and utility company, making factors like initial 279 

and energy costs more accurate. However, they do not offer the specific or customisable options that 280 

some software might provide and are designed for casual, private users. They are often used as part of the 281 

sales process and may be biased, as they rely on data from other solar systems or assume optimal 282 

performance (Mickovic & Wouters 2020). 283 

Table 2.2 presents a list of common factors that have an influence on the costs of the system that should 284 

be incorporated into the analysis of the payback period. Each factor has a specific impact on costs, such as 285 

an ongoing expense, an upfront expense or a long-term operational expense. The impact on revenue is an 286 

indication of whether the cost factor will influence the savings and/or income of the system, for example 287 

an upfront cost will have no impact on revenue and savings.288 
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Table 2.2: Factors affecting costs and their relative impact on savings and expenses. 289 

Factor Impact on Costs (Expense) Impact on Revenue (Savings/Income) Notes 

Installation Costs 1 Increases upfront costs (labour, 

equipment, permits) 

None directly High initial expense influences overall 

system cost 

Energy Produced 
1,2,3 

None directly (maintenance may 

increase with energy production) 

Reduces electricity bills or generates income from 

feed-in tariffs 

More energy produced shortens 

the payback period 

Maintenance 1 Ongoing operational costs None directly Regular maintenance prolongs system 

lifespan but adds recurring costs 

Inverter 

Replacement 1,4 

Increases costs (periodic expense) None directly Typically needs replacement every 10-

15 years, a significant cost to factor in 

Degradation Rate 
1,3,4 

None directly Reduces potential savings over time as energy 

production decreases 

Higher degradation means less revenue 

from energy production over time 

Government 

Incentives 1 

Reduces upfront or operational 

costs (grants, tax credits, rebates) 

None directly (but incentivises installation) Key to lowering payback time through 

subsidies or tax reductions 

Feed-in Tariffs  

(FiTs) 2 

None directly Generates revenue by selling excess energy back to 

the grid 

Improves financial viability of the 

system, reducing payback time 

Energy Storage 

(Batteries) 1,2,4 

Increases upfront costs Can reduce electricity bills by optimising usage 

(charging during off-peak hours, discharging during 

peak hours) 

High upfront and replacement costs, 

but can improve overall system 

performance 

Land/Space Use May incur additional costs (renting 

space, structural modifications) 

None directly Cost depends on location (rooftop, land 

purchase, etc.) 

System Lifespan 3,4 It affects long-term cost 

(replacement of system 

components) 

Generates revenue over a longer time if lifespan is 

extended 

Longer lifespan reduces the need for 

early replacement, maximising income 

potential 

Sources: 1Gupta et al. (2020); 2Delapedra-Silva et al. (2022); 3Fazal & Rubaiee (2023); 4Cohen (2024) 290 
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2.3. Review of Software Tools in Renewable Energy 291 

Several software packages exist for calculating payback and similar financial assessments. Sinha and 292 

Chandel (2014) present a review of software tools that automate routine tasks, offer customised 293 

outputs and reports, and are typically supported by customer service (Lalwani et al. 2010). PV 294 

technology evolves over time, which may necessitate new assumptions and parameters. Given the 295 

numerous options available, it is essential to provide a general overview of the PV system model of 296 

interest. This overview will help clarify the main ideas and facilitate a better understanding of the 297 

topic at hand. By outlining the fundamental aspects, better choices can be made to make informed 298 

decisions. Software-based methods allow better flexibility and precision when considering scenario 299 

modelling, long-term cash flow and risk analysis. One possible downside is that software can require 300 

a high level of technical skills (Vashishtha et al. 2022). 301 

2.3.1. Common Software 302 

The most used software programs for simulating renewable energy systems are Hybrid Optimisation 303 

of Multiple Energy Resources (HOMER) (Lambert et al. 2006), System Advisor Model (SAM) (Blair 304 

et al. 2018), and Renewable-energy and Energy-efficiency Technology Screening software 305 

(RETScreen) (Natural Resources Canada 2005). HOMER calculates payback by comparing different 306 

scenarios and optimising for cost, basing its assumptions, such as fuel price and resources, on any 307 

available performance in the area (Lambert et al. 2006).  RETScreen calculates payback and 308 

completes feasibility studies using algorithms that can handle complex models and data to determine 309 

values and statistics based on the total initial cost, annual cost, and yearly savings and income 310 

(Natural Resources Canada 2005). SAM calculates payback based on realistic, nonconstant cash flow. 311 

An advantage of SAM is that it is possible to input detailed information (Blair et al. 2018). Detailed 312 

software features are described in Table 2.3. 313 

Other standard software programs include Hybrid Power System Simulation Model (HYBRID), 314 

Improved Hybrid Optimization by Genetic Algorithms (iHOGA), Transient System Simulation Tool 315 

(TRNSYS), Intelligent Generator of Hybrid Systems Optimization (iGRHYSO), and Photovoltaic 316 

Concentrator 3D Simulation Software (PC3D) (Turcotte 2001; Stein & Klise 2009; Mahendra 317 

Lalwani 2010). These programs are capable of simulating hybrid systems and comparing different 318 

solutions. They provide access to data on manufacturing cost, capital cost, installation cost, and 319 

average performance for each system. Some software programs take a modular approach, allowing 320 

users to add or remove components to compare different configuration options. One software 321 

program, iHOGA, utilises a 'genetic algorithm' that selects all possible options for a renewable energy 322 

system and then eliminates until the best solution is found, similar to the process of natural selection 323 

(Sinha & Chandel 2014; Maheri 2021). 324 
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Software tools are varied, so it's crucial for users to consider their specific needs and priorities when 325 

choosing among them. Some offer extensive user bases, support services and continuous development 326 

(Bahramara et al. 2016), advanced system performance modelling and customizable system 327 

configurations (Blair et al. 2018). Tools that utilize climate data analysis and technology cost 328 

assessment are incredibly important in the renewable energy sector (Natural Resources Canada 2005). 329 

Climate data analysis examines weather patterns, temperature changes, sunlight, wind speeds, and 330 

other environmental factors. By understanding climate trends, these tools can find the best places for 331 

renewable energy projects. Technology cost assessment checks the financial side of renewable energy 332 

technologies. This includes costs for starting up, running, maintaining, and potential profits. Together, 333 

these tools are important for making sure renewable energy projects are both good for the 334 

environment and financially smart. 335 

Some users prioritise the payback period, while others focus on factors such as energy production, 336 

environmental impact, versatility, and initial cost. Certain software tools can provide analysis using 337 

more than one objective, allowing users to select their preferences and quickly identify the best results 338 

(Kazem et al. 2022). They can also optimise systems that combine continuous and discrete data, 339 

conduct sensitivity analysis at a component level, and integrate financial models for taxes, loans, and 340 

cash flow using metrics such as internal rate of return and net present value (Arribas et al. 2011). 341 

Additionally, they can simulate off-grid and hybrid systems with battery storage, incorporate load 342 

profile inputs, and consider building integration. Furthermore, some emphasize grid interactions and 343 

offer 3D modelling capabilities, enabling users to customize module data (Dada & Popoola 2023). 344 

Alsadi and Khatib (2018) reviewed several of the available software and identified the following key 345 

information (Table 2.3). HOMER is user-friendly and provides quick system comparisons but lacks 346 

consideration for financial factors like the change in the value of money over time and inflation. SAM 347 

attempts to account for the time value of money but overlooks long-term benefits after the payback 348 

period. RETScreen excels in financial analysis but is reliant on extensive user input. HYBRID is easy 349 

to use and quick to create designs but ignores long-term benefits after the payback period. iHOGA 350 

provides detailed solutions but is complex. TRNSYS offers detailed results but has a steep learning 351 

curve. iGRHYSO is simple to use but lacks long-term considerations, and PC3D overlooks long-term 352 

benefits and economic factors (Alsadi & Khatib 2018).  353 
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Table 2.3: Key features of software tools used for payback analysis. Complexity refers to the number of options that the system has 354 

available. Ease of use is defined for a user who is not a professional in the field of PV software, easy is no training, moderate is a 355 

small internet search and complex means some training required. 356 

Software 

Tool 

System 

Types 

Supported 

Financial 

Model 

Complexity 

Weather/Location Data Energy 

Storage 

Load & 

Demand 

Modelling 

Hybrid 

Systems 

Ease of Use Unique Features 

HOMER 
1,3,4,5,7,8 

Off-grid, 

grid-tied, 

hybrid 

Detailed, 

includes 

sensitivity 

analysis 

Built-in global data Yes Yes Yes Moderate Optimises for the most cost-

effective design, 

incorporating both 

renewable and non-

renewable systems. 

SAM (System 

Advisor 

Model) 4,6,7,8 

Grid-tied, 

off-grid 

Highly detailed, 

includes 

incentives and 

policies 

NREL datasets can 

import weather files 

Yes Yes No Moderate to 

complex 

Detailed financial and 

performance modelling for 

utility-scale projects 

RETScreen 
1,2,3,4,5,7,8 

Grid-tied, 

off-grid, 

hybrid 

Basic to 

moderate 

NASA weather data, local 

climate data 

Yes Yes Yes Easy Includes benchmarking, 

energy efficiency, and GHG 

analysis; widely used for 

pre-feasibility 

HYBRID 
1,3,4,5,7 

Hybrid 

systems 

Moderate Built-in weather database Yes Yes Yes Moderate Focuses on hybrid system 

integration, especially PV-

diesel-battery configurations 

iHOGA 5,8 Off-grid, 

hybrid 

Moderate, 

includes 

financing and 

economic 

analysis 

External data input Yes Yes Yes Moderate Designed for optimising off-

grid systems with renewable 

sources and batteries 

TRNSYS 
1,4,5,7,8 

Hybrid, grid-

tied 

Complex, user-

defined options 

Customisable weather 

input 

Yes Yes Yes Complex Simulation-focused, great 

for research and custom 

systems, requires expertise 

iGRHYSO 5 Hybrid, off-

grid 

Moderate to 

complex 

External weather data Yes Yes Yes Moderate Specialises in hybrid 

systems, focuses on rural 

electrification projects 

PC3D 8 Off-grid Basic to 

moderate 

External weather input No Yes No Easy Simple, focused on 

educational use and small 

off-grid systems 

Sources: 1Turcotte (2001); 2Natural Resources Canada (2005); 3Lambert et al. (2006); 4Stein & Klise (2009); 5Sinha & Chandel 357 

(2014); 6Blair et al. (2018); 7Milosavljević et al. (2022); 8Alsadi & Khatib (2018)358 
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2.3.2. Other Software 359 

There are also less common software packages that have methods that are unused by the more 360 

established software. One example is Integration of Simulation, Evaluation, and Layout (INSEL), 361 

which collects meteorological data to generate potential irradiance, temperature and humidity in 362 

selected regions (Sinha & Chandel 2014). Photovoltaic System Software (PVSyst) has a program that 363 

allows the user to input information on surrounding objects to estimate potential shading at various 364 

times of day (Kohli et al. 2022). Some software, such as the Quick Energy Simulation Tool (eQuest), 365 

uses step-by-step guides that guide the user to input the correct data (Xing et al. 2015). Some software 366 

has incorporated a marketplace, allowing users to compare provider quotes and prices.  367 

There are also simple payback calculators. Many calculators exist on the internet, either on provider's 368 

websites or educational sources (Kazem et al. 2022). This often uses assumptions from the average of 369 

all PV systems across all regions to give a rough estimate of the payback period. While larger projects 370 

do not benefit from this, private users looking for a small PV system for their house can use this to 371 

approximate how long it will take to pay off their initial investment (Solar Bright 2022). This will 372 

typically be between 3-5 years and is used as a sales technique to get consumers to purchase solar 373 

panels. 374 

2.4. Recent Developments 375 

Different PV technologies also have an impact on calculation methods. New, developing technologies 376 

may one day become common enough that regular payback period analysis may need to be 377 

performed. It is important, therefore, to review the different types of PV. 378 

The first-generation PV systems primarily use silicon, including monocrystalline, polycrystalline, 379 

amorphous, and ribbon silicon (Green 2003). These systems are standard, with lower production and 380 

market costs, average performance, and low degradation rates. These are the baseline for most PV-381 

related studies and require minimal customisation in payback period calculations. 382 

The second generation of PV technology includes various types of thin-film solar cells such as 383 

cadmium telluride, copper indium gallium selenide, and gallium arsenide (Dambhare et al. 2021). 384 

These systems generally have lower efficiency and shorter lifespans than first-generation systems but 385 

offer a better temperature coefficient and lower installation costs. Additionally, these technologies 386 

provide significant versatility, which may still be worth considering for users. 387 
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The third generation of PV includes new technologies such as dye-sensitised solar cells, 388 

thermophotovoltaics (TPV), organic PV, perovskite, Quantum Dot Solar Cell (QDSC), and carbon 389 

nanotubes (see Table 2.1) (Al-Waeli et al. 2019; Jarząbek & Jarząbek 2022; Lapotin et al. 2022; Dada 390 

& Popoola 2023). Each of these requires specific modifications for accurate payback period analysis. 391 

For example, thermophotovoltaics transfers heat, so precise temperature data is essential. At the same 392 

time, cloud coverage and the ratio of the measured output to the expected output are less critical 393 

(Lapotin et al. 2022). Some third-generation technologies offer advantages beyond performance such 394 

as improved efficiency, reduced costs and the use of novel materials, which affect payback period 395 

calculations (Sharma et al. 2018). Other technologies like organic PV and QDSC’s are not widely 396 

used and have specific characteristics often not accounted for in standard calculators, such as tuneable 397 

spectral absorption in the case of quantum dot (Dada & Popoola 2023). 398 

There are potential new developments that could lead to a fourth generation, such as hybrid systems 399 

(Turcotte 2001). Research is being conducted on the possibility of self-repairing and synthetic PV, 400 

which would also be considered fourth generation (Meng et al. 2021). It is unclear how these 401 

technologies will impact payback period calculations, but the existing model may eventually become 402 

inadequate for these new technologies. 403 

2.5. Conclusion  404 

In conclusion, most payback models can be updated to accommodate new PV systems technologies. 405 

The most crucial aspect influenced by PV technology is the overall power output, which directly 406 

impacts annual cash flow. If the model has access to weather/climate data and enables a prediction of 407 

power output that can estimate the change in power output over time, the payback model remains as 408 

valid as it was 10 years ago. Software technologies, AI, and machine learning have evolved, leading 409 

to enhanced modelling (Nosratabadi et al. 2019; Kohli et al. 2022). Additionally, a range of factors 410 

such as solar trackers and fixed tilt mechanisms, assumptions, and physical parameters can be 411 

incorporated to refine payback calculations. Manual calculations offer simplicity but are restricted in 412 

the amount of data they can use which can lead to a loss of accuracy. Software tools have better 413 

precision and can run many simulations in a short time frame but can be complex and require data 414 

inputs. 415 
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The payback period is important for assessing financial risk for renewable energy projects. After the 416 

payback period ends, the user can start saving money on electricity and making passive income 417 

(Karjalainen & Ahvenniemi 2019). To evaluate these projects correctly, it’s important to understand 418 

the factors affected by technology and the environment. Software tools can help with the analysis, but 419 

users must choose options for their specific needs. As solar panel technologies improve, it’s important 420 

to keep updating assessment models to reflect new performance data. Software methods are more 421 

capable of considering recent advances in PV technology due to customer feedback and the support 422 

staff. 423 

There are several gaps in the current literature on software-based payback period calculations. There 424 

is no standardised method, this may lead to inconsistency and incomparable results. The complexity 425 

of using some of the software may lead to less accuracy due to a lack of understanding by the user. 426 

Static payback methods might be incapable of including updated market trends or technological 427 

advances. 428 

The objective of this research is to investigate how different payback period methods meet the 429 

practical needs of PV users. Homeowners are generally only interested in paying off their system in a 430 

way that makes financial sense; they won’t generally need to calculate it themselves. Researchers and 431 

Engineers, on the other hand, would benefit from this study because they need to incorporate a more 432 

sophisticated model to gain an in-depth understanding of their PV system and the relevant financial 433 

factors. The advantage of software tools is that they are constantly updated to include advances as 434 

needed, giving them a distinct advantage over manual methods. A PV system modelled on a real-life 435 

system will be used for analysis. The accompanying real-world data will be used to conduct tests on 436 

the models and determine the factors that have the most significant influence on the payback period. 437 
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CHAPTER 3: METHODOLOGY 438 

3.1. Introduction 439 

This chapter's content is organised into three sections: first, a detailed description of the data is 440 

provided; second, the equations used are explained; and finally, a comparison of the methods is 441 

conducted. 442 

3.1.1. The Research Question  443 

The research question is: “How do different payback period methods meet the practical needs of 444 

photovoltaic (PV) users?” Some of the more common methods of calculating the payback period will 445 

be used to determine the validity of using these methods' long term. 446 

3.1.2. Approach  447 

This research will use real data collected from a rural university in Queensland, Australia, employing 448 

software-based and manual analysis methods. A variety of assumptions and parameters will be 449 

considered and selected specifically due to the resources available for each testing method. After 450 

examining these methods, a comparative analysis will be conducted on the results.  During this 451 

comparison, both the accuracy of each approach and the user experience based on the relative ease of 452 

obtaining results will be assessed. These evaluations are crucial for discussing the validity of the 453 

existing payback period methods, as they will provide insights into which method proves most 454 

effective and reliable in this context. 455 

3.1.3. Scope  456 

The study will clearly define its focus by identifying which payback period methods will be tested and 457 

the rationale for selecting them. Common software, HOMER, SAM and RETScreen will be tested as 458 

the standard examples of payback software. PC3D will be tested as an example of a method using 459 

macros, which are defined as a set of instructions that can be run using a single command. Manual 460 

methods that involve substituting values into mathematical equations will be used to verify and 461 

compare the results. The specific situations or contexts that these methods apply will be described. 462 

Data Collection 463 

3.1.4. Data Sources  464 

Data used in this research is sourced from a rural university located in the southern region of 465 

Queensland, Australia. This includes power output, purchased electricity, cost and system 466 

specification for the “Solar Carpark.”  467 

Weather data from the Bureau of Meteorology, BOM (Bureau of Meteorology 2024), taken from a 468 

nearby weather station, was also used for comparison. These data include maximum, minimum and 469 

average temperatures, solar irradiance, and cloud cover. Data obtained from BOM are highly valuable 470 

and have been used in previous studies. 471 
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3.2. Available Data  472 

The variables to be used in the calculations include the initial money spent to set up the system, 473 

ongoing expenses for maintenance and operation, the amount of energy the system is expected to 474 

generate and the total time the system is expected to last before it needs replacement or major repairs. 475 

The carpark data contains values for electricity used, measured in kilowatt-hours (kWh), every day 476 

from January 1, 2020, to August 31, 2024. This dataset also includes the day of the week for each 477 

usage record. 478 

The solar panels that generate this electricity were constructed in 2017. The panels do not have solar 479 

trackers or tilt mechanisms. Information about whether the system has a fixed tilt was not acquired 480 

and could not be measured. Since they were first installed, no solar panels have been replaced or 481 

upgraded. The maintenance of the solar panel system has been limited. These panels follow the 482 

current convention of relying on rain to wash away dirt and debris.  483 

3.2.1. Size of PV System  484 

The carpark system contains 4037 panels manufactured by JinkoSolar Holdings Co Ltd JKM-285M-485 

60 (Jinko Solar 2017). Table 3.1 lists the major components.  486 

Table 3.1: Manufacturers Specifications for PV solar panels installed on the carpark (Jinko Solar 487 

2017) 488 

Solar Panel Brand Jinko JKM285M-60 

System Size 1090kW 

Quantity of Panels 4037 x 270W 

Cell Type Mono-crystalline PERC (Passive Emitter and Rear Cell) 

Number of cells 60 

Dimensions (mm) 1650 x 992 x 40 

Weight (kg) 19 

Front Glass 3.2mm anti-reflection coating, High transmission, Low 

iron, Tempered glass 

Frame Anodised aluminium alloy 

Junction Box IP67 rated 

Output cables TUV 1x4mm2, Length 900mm 

Panel NOCT = 45 °C 45 °C 

Temperature Coefficient (Pmax)  -0.37 / °C 

Degradation  

 

3%, linear degradation of 0.8% / year (based on the 

warranty) 
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3.2.2. Cost of the PV System  489 

The university's initial cost totalled $3,825,935.20. This total covers the important expenses needed 490 

for the project to begin, such as designing resources, high-tech equipment and infrastructure (Table 491 

3.2). No information was supplied for ongoing maintenance costs; therefore, we are assuming zero 492 

costs. This means we are not including regular upkeep, repairs, or support expenses that might arise 493 

during the project's duration. 494 

Although financial details are important for transparency and planning, we do not have the exact split 495 

of funding between the government and the university. Estimates from the contractor about funding 496 

sources were not provided and therefore should be noted as a limitation.  497 

Table 3.2 breaks down the costs to give a clearer view of the financial situation. Notably, $1.7 million 498 

is allocated for site preparation, which is crucial for setting up the groundwork for the project's future 499 

phases.  500 

Table 3.2: Breakdown of the expenses for the Solar Carpark project. 501 

Item Expense 

Carpark structure $710,757.00 

Micropiles $273,827.28 

HV installation Works $264,768.75 

Installation $314,504.73 

Engineering and Project Management  $25,652.91 

Total including GST $1,748,461.75 

  

Modules $929,918.16 

Inverters $215,424.68 

External Protection $47,070.00 

Structural Engineering $4,707.00 

Data Monitoring $7,320.41 

Other Components $173,935.51 

Engineering and Project Management $38,479.37 

Installation $471,757.10 

Total including GST $2,077,473.45 

Total Cost of Project $3,825,935.20 

 

3.2.3. Continuous Costs 502 

It has been advised that there have been no maintenance or repairs to the system. 503 
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3.2.4. Earnings 504 

A Queensland electricity company, CS Energy, charges approximately $0.06 to $0.07 per kilowatt-505 

hour (kWh). Demand charges also apply, which increases the effective cost per kWh by 506 

approximately 70%. 507 

In addition, Large-scale Generation Certificates (LGCs) are created from eligible solar energy 508 

generation and can be sold at current market rates, typically ranging from $45 to $55 per megawatt-509 

hour (MWh). An LGC is a tradable certificate issued under Australia's Renewable Energy Target 510 

scheme for every megawatt-hour of renewable electricity generated by an accredited large-scale 511 

power station (Clean Energy Regulator 2025). Monitoring electricity prices over time can help 512 

identify trends and account for inflation.  513 

3.2.5. Known Parameters 514 

It is important to use the same specifications if possible to enable the comparisons of the different 515 

methods. Table 3.3 shows the parameters that were specified by the project data manager. 516 

Table 3.3: Known parameters used in all calculations 517 

System Cost Assumed by all Methods $3,825,935.20 

Energy Output Assumed by all Methods 199.8 kWh/day 

PV capacity 1090 kW 

Inverter capacity 1140 kW 

Electricity offset $0.065 per kWh 

LGC revenue $50 per MWh ($0.05 per kWh) 

System lifespan 25 years 

Degradation 3%kW/year in year 1, linear decrease of 

0.8%kW/year after 

Electricity inflation 5%/year 

 

3.2.6. Data Validation and Statistical Analyses 518 

The data were assessed to ensure accuracy. They were compared to standards or benchmarks and also 519 

assessed using statistical methods. These techniques help to find any inconsistencies or errors. By 520 

applying these procedures, we can be satisfied that the data we work with is reliable and valid. 521 

Statistical analyses were performed on the daily observations for temperature and solar irradiance to 522 

see how they affect the energy output from the car park. An analysis of variance was performed to test 523 

the significance of seasonal variation. A multiple linear model was used to assess the importance of 524 

each parameter to energy output. 525 
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The objective of testing various payback period methods is to evaluate their effectiveness in 526 

determining the time required for an investment to generate sufficient cash flows to recover its initial 527 

cost. Criteria include: the simplicity and ease of understanding of the method, the accuracy of the cash 528 

flow projections, the relevance of the method in different investment scenarios, and its ability to 529 

account for the time value of money. The goal is to clearly understand which payback period methods 530 

most accurately reflect the PV system that was used in the carpark data.  531 

3.2.7. Software-Based Methods 532 

Four software packages were used to simulate energy output and calculate a payback using the Jinko 533 

panels, as specified in Table 3.1. Full specifications for HOMER software can be found in Lambert et 534 

al. (2006). Instructions and screenshots are presented in Appendix A. The SAM software is fully 535 

described in National Renewable Energy Laboratory (2024). SAM opens with a menu that gives many 536 

options for the type of system; see Appendix B for details. The methods for using RETScreen are 537 

fully described in Natural Resources Canada (2005), see Appendix C for full details.  PC3D is a 538 

simulator that uses Microsoft Excel (Basore 2020). Excel is a familiar, easy-to-use interface for 539 

specifying parameters and exploring the solution space (see Appendix D).  540 

3.3. Calculations Using Manual Methods 541 

Manual methods use known equations to calculate values by substituting the known factors. There are 542 

numerous ways of calculating payback. This section fully describes the equations for payback directly 543 

and uses equations to predict energy output, which in turn can be incorporated into a payback 544 

simulation. 545 

The Carpark data includes costs, electricity prices and LGC revenue, therefore, a simple payback 546 

period can be calculated using the formula (Kagan 2024) as stated in section 2.2.3: 547 

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑  =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑓𝑟𝑜𝑚 𝑆𝑜𝑙𝑎𝑟
      (3.1) 548 

Using the System Cost from the Data collected as the Total System Cost. The car park data can also 549 

be used to estimate the energy generated in a year. 550 

  𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = 𝑃𝑉 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 × ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟  (3.2) 551 

Where the capacity factor is an estimated efficiency of the Jinko panels, given by 18.33% (Jinko Solar 552 

2017). 553 

Annual Savings can be calculated with: 554 

             𝐴𝑛𝑛𝑢𝑎𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑂𝑢𝑡𝑝𝑢𝑡 × 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑘𝑊ℎ   (3.3) 555 

The Total Value per kWh can be calculated by adding the Electrical Offset Value and LGC revenue 556 

provided in the data.  557 
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The carpark data and the system specifications will be used along with equations 3.1 to 3.5 to 558 

manually calculate the energy output and payback values to enable comparison with the software. 559 

3.3.1. Calculations of Energy Prediction 560 

The carpark data supplied provides, Energy output of the PV, Initial costs for payback and 561 

Temperature coefficient from the Jinko fact sheet (Jinko Solar 2017), see Table 3.1. The equations 562 

used as general underlying calculations followed by most software are presented in Riley et al. (2016). 563 

These equations are used in most software packages and can be modified to include sophisticated 564 

assumptions (Riley et al. 2016). 565 

t = time (years) 566 

D = degradation rate of PV system (% / year)  567 

R = the rate increase in electricity costs (% / year) 568 

P = the initial cost of the PV system upon installation ($) 569 

I = the inflation rate of the dollar (% / year) 570 

Et = electrical energy generated by the system in year t (MWh) 571 

Ct = the cost of electrical energy which is offset by the PV system in year t ($) 572 

Vt = the value of the electrical energy offset by the PV system in year t ($). This is different than the 573 

cost Ct since the cost is in nominal year 1 dollars while the value is adjusted for inflation where, in 574 

general, future dollars are worth less than present dollars. 575 

The energy generated in subsequent years must be reduced for degradation: 576 

𝐸𝑡 = 𝐸1 [1 −
𝐷

100
(𝑡 − 1)]         (3.4) 577 

The cost of electricity that is offset by PV production for any year: 578 

𝐶𝑡 = [𝐶1 (1 +
𝑅

100
)

𝑡−1
] 𝐸𝑡       (3.5) 579 

The value of the energy in year t: 580 

𝑉𝑡 = 𝐶𝑡/ [(1 +
1

100
)

𝑡−1
]          (3.6) 581 

Once the value of the energy offset in each year (Vt) is determined, the payback period can be 582 

calculated by determining the amount of time required for the cumulative value of the energy to 583 

exceed the initial cost of the PV system, i.e. the lowest value of n that satisfies: 584 

∑ 𝑉𝑡 ≥ 𝑃𝑛
𝑡=1         (3.7) 585 
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The HOMER software uses the following equation to simulate PV solar energy as presented by 586 

Chisale et al. (2022). This equation incorporates solar irradiance and temperature variables. 587 

𝑃𝑉𝑝𝑜𝑤𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑃{𝑝𝑣,𝑆𝑇𝐶}𝑓𝑃𝑉
𝐺𝑇

𝐺{𝑇,𝑆𝑇𝐶}
[1 + 𝐾𝑃(𝑇𝑐 − 𝑇𝑆𝑇𝐶)]  (3.8) 588 

Where: 589 

𝑃{𝑝𝑣,𝑆𝑇𝐶} is the photovoltaic array at peak power (kWp) 590 

𝑓𝑃𝑉 is the derating factor (%) 591 

𝐺𝑇 is the solar irradiance striking the PV array (kW/m2)  592 

𝐺{𝑇,𝑆𝑇𝐶} is the solar irradiance under standard test conditions (1 kW/m2) 593 

𝐾𝑃 is the temperature coefficient of power (% / °C) 594 

𝑇𝐶 is the photovoltaic temperature (°C) 595 

𝑇𝑆𝑇𝐶   is ambient temperature (25°C) 596 

3.3.2. Adjusting for Panel Peripherals  597 

The panels in the carpark data are known to have a tilt. It is important to adjust for this value. Tilting 598 

the panels will enable more of the surface area to be exposed to the sun, especially in winter months 599 

when the sun is lower. Figure 3.1 illustrates the calculations required to adjust the solar irradiance for 600 

solar panel tilt. 601 

 

Figure 3.1: Diagram of tilt angle and its effect on irradiance 602 

(Source: Honsberg and Bowden (2025)) 603 
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The irradiance provided by BOM is represented in Figure 3.1 by Shorizontal. The tilt angle of the solar 604 

panel is represented in Figure 3.1 by β. Smodule, the irradiance perpendicular to the panel is calculated 605 

by: 606 

𝑆𝑚𝑜𝑑𝑢𝑙𝑒 =
𝑆ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙sin (𝛼+𝛽)

sin(𝛼)
                                 (3.9)                                                                                 607 

The angle of the sun 𝛼 = 90 − 𝜑 + 𝛿 where 𝜑 is the latitude and 𝛿 is the declination angle. The 608 

location of the carpark has a latitude of approximately 27.56°S, therefore the declination angle is 609 

given by Honsberg and Bowden (2025) as 610 

𝛿 = 23.45° × sin (
360

365
× (𝑑 + 284))             (3.10) 611 

Where d is the day of the year (1,…,365). 612 

The recommended tilt angle for latitudes above 20 is multiplied by 0.85 (Negro 2022). 613 

3.4. Comparison Criteria 614 

This study will present two different types of model comparisons: a quantitative comparison of the 615 

real-world carpark observed data against the results from manual models and software predictions. 616 

Secondly, the software types will be compared using qualitative analysis of complexity, usability, 617 

ease of use and software requirements. 618 

3.4.1. Comparisons of the Carpark Data and the Software Output 619 

The carpark energy data was compared to the predicted energy outputs from three different software 620 

packages and compared to values obtained by manual computation using the equations described 621 

below. Comparisons will be conducted between the carpark data and the degradation, temperature, 622 

solar irradiance, inflation and finally panel angle (tilt). Payback periods will then be found for each 623 

method and compared to the simple system specifications using a percentage error. For the 624 

degradation comparisons, the expected degradation from the system specifications will be shown 625 

against multiple years of carpark data and compared using a percentage error: 626 

%𝐸𝑟𝑟𝑜𝑟 = 100 × (
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
)   (3.11) 627 

Finally, a linear regression will be fitted using long-term monthly weather data to predict values using 628 

each software type and the observed values against the baseline system spec model using a manual 629 

calculation. 630 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 =  𝐴 + 𝛽. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝜖  (3.12) 631 
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Where the baseline energy values are calculated manually using the system specifications, 𝐴 is a 632 

constant that corresponds to the intercept, the predicted energy is the energy that has been calculated 633 

using software or the observed carpark energy, 𝛽 is the gradient of the fitted line and finally 𝜖 is the 634 

residual. 635 

Calculations were performed using statistical software R, and Microsoft Excel. The predicted energy 636 

output from the software was compared to the manual energy predictions. Different scenarios were 637 

accounted for by varying the equations. 638 

3.4.2. Comparing Software Types 639 

To answer the research question, a set of comparison criteria is presented in Table 3.4. 640 

Accessibility is a subjective measure. Several key components can be considered. Firstly, the 641 

difficulty involved in installation and setup affects the user experience. Secondly, the learning curve 642 

includes such aspects as the clearness of the documentation and the intuitiveness of the user interface. 643 

Additionally, the amount of time it takes to generate meaningful results can impact the accessibility of 644 

a tool or system. Lastly, the required background knowledge, which may encompass fields such as 645 

engineering, finance, or modelling, further shapes an individual's ability to use the software.  646 

The comparison of methods may include, but not exclusively: 647 

• Accuracy, comparison with expected results using the system specifications. 648 

• Complexity, the level of difficulty. 649 

• Usability, how user-friendly was the software?  650 

• Computational Requirements, amount of memory or calculation time. 651 

There will also be an analysis of the assumptions and parameters, their effect on the results, ease of 652 

incorporation, and the required data.  653 

• Temperature and solar irradiance and their role in the model. 654 

• Degradation 655 

• Energy Cost 656 

• Panel orientation and tilt 657 

• Shading and soil type 658 

• Maintenance costs.  659 
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Table 3.4 Criteria for method comparison 660 

Criterion Description Measurement 

Approach 

Justification/Notes 

Accuracy How closely the output of 

the method aligns with the 

data collected from the 

solar carpark 

Percentage error against 

the system spec value 

Objective allows 

comparison based on data  

Accessibility  Ease of use, availability 

and skill requirements 

Qualitative examination 

based on user 

experience.  

Subjective shows the 

real-world application of 

the methods 

Input 

Requirements 

Quantity and complexity 

of data inputs 

Number of inputs and 

time/difficulty of 

collecting required 

information 

Affects feasibility and 

limits the number of 

potential users 

Cost How available and costly 

are the tools required for 

the method 

Free, requires a license 

or system requirements 

Affects accessibility and 

the number of potential 

users 

Parameters 

used 

Does the method account 

for a variety of factors and 

the quality of the 

assumptions used 

List of the available 

factors 

Links to parameter 

evaluation 

 

 

 

  



 

31 
 

CHAPTER 4: RESULTS 661 

4.1. Summary 662 

The models tested include the software HOMER, SAM, RETScreen, PC3D and manual 663 

computational methods. The manual methods explore introducing different factors into the 664 

calculations such as degradation, temperature, solar irradiance and tilt angle. The methods were tested 665 

by entering values collected from a university PV system located in southern Queensland, Australia 666 

(referred to hereafter as “carpark data”). The aim is to answer the research question: “How do 667 

different payback period methods meet the practical needs of photovoltaic (PV) users?” The data 668 

itself will also be analysed to determine which parameters hold the most importance to calculating the 669 

payback period. 670 

4.2. Statistical Analyses  671 

The daily energy output from the carpark is plotted in Figure 4.1 along with the Maximum daily 672 

temperature and daily solar exposure as downloaded from BOM. Figure 4.1 shows that the energy 673 

generated by the car park, the maximum daily temperature, and the solar exposure all follow a 674 

sinusoidal pattern of high in the summer and low in the winter. The energy data show an unusual dip 675 

in early 2023 (in orange). This is an area that can be investigated. The energy and Solar Exposure data 676 

show a wider spread of values than the Temperature data, which appears to be tighter. 677 

Monthly averages for each measurement are plotted in Figure 4.2, which shows that when using mean 678 

values for each month, the three measurements line up consistently. 679 

Figure 4.3 shows high correlations between each of the three measurements. The lowest correlation is 680 

between Temperature and energy output; the area of difference that was noticed in Figure 4.1 is 681 

noticeable here, with the outliers visible in the Energy means. The correlation between Energy output 682 

and solar irradiance is very high (0.90), indicating that solar irradiance affects energy output more 683 

than temperature. 684 
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Figure 4.1: Daily measurements from 1/1/2020 to 31/8/2024 for energy and 1/1/2020 to 685 

23/10/2024 for the temperature and solar exposure data; the colours represent years. The three 686 

measurements are: Top maximum daily temperature (°C); Middle: Solar Exposure (𝑘𝑊ℎ/𝑚2); 687 

Bottom: Energy output from carpark data (kWh). Temperature and Solar exposure source 688 

(www.bom.gov.au). 689 

 
Figure 4.2: Monthly means for carpark output, Max Temperature and Solar Irradiance. The scale 690 

on the y axis is different for each measurement. 691 

 

http://www.bom.gov.au/
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Figure 4.3: Pairs plot of the daily data of each measurement, histograms on the diagonal and 692 

Pearson correlations in the upper triangle. 693 

To test for significance differences in energy output between temperature and month an analysis 694 

of variance was performed using the model 695 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑀𝑜𝑛𝑡ℎ + 𝑌𝑒𝑎𝑟 + 𝑀𝑜𝑛𝑡ℎ: 𝑌𝑒𝑎𝑟 + 𝑒 696 

The analysis of variance for Energy Output in Table 4.1 shows a significant interaction between 697 

month and year. This means that Month and Year combinations affect energy output.  698 

Table 4.1: AOV table for energy output by month and year 699 

 Df Sum of Sq Mean Sq F value Pvalue 

Month 11 1056866744   96078795 62.4601  <0.001 

Year 4 49716108    12429027 8.0800  <0.001 

Month: Year 40 330237648     8255941 5.3671  <0.001 

Residual 1592 2448880951   1538242   

A multiple linear regression for energy output using Temperature and solar irradiance gives a 700 

relationship of 701 

𝐸𝑛𝑒𝑟𝑔𝑦 = 1011.771 − 41.545 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 852.350 𝑆𝑜𝑙𝑎𝑟 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 702 

With an R-squared value of 0.8221. 703 

This shows that the strong relationship between energy and weather can be modelled and there is 704 

a possibility that energy can be predicted from the weather. 705 

Adding Monthly means into the equation makes Temperature non-significant.  706 

𝐸𝑛𝑒𝑟𝑔𝑦 =  −452.422 + 884.223 𝑆𝑜𝑙𝑎𝑟 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝑀𝑒𝑎𝑛 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 707 

This means that if we can predict the energy output for each month we can create a model using 708 

those averages and Solar Exposure. 709 
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4.2.1. Comparing the Car Park Data with Output from the Models 710 

Figure 4.4 shows a positive linear relationship between the observed carpark data and the predicted 711 

energy output from equation 3.8, using daily temperature and irradiance values. Table 4.9 indicates 712 

that the predicted energy that incorporates a tilt angle for the solar panels has less percentage change 713 

for a tilt of 23°. The right-side figure in Figure 4.4 shows that the relationship between the tilted 714 

predictions is straighter but the fitted line is not centred. The fitted linear regression for the left figure 715 

has a coefficient of 1.18, the tilted predictions have a coefficient of 1.10. 716 

 

Figure 4.4: plot of daily carpark data versus the model that uses temperature and irradiance 717 

(equation 4.8). The figure on the left has no tilt and the figure on the right has a tilt of 23 degrees. The 718 

red line is a fitted line from a regression analysis. 719 

Figure 4.4 also highlights that some of the observed values appear not to be in line with the rest. The 720 

plot of the raw data (Figure 4.1) shows that this corresponds to approximately early 2023. Without 721 

any prior knowledge of these points, it was assumed that the system failed to produce the correct 722 

energy at that time. 723 

Figure 4.5 shows the energy predictions from all the methods. All methods follow the same pattern of 724 

higher energy production in summer than in winter. However, the largest variation in energy occurs in 725 

winter. The comparison baseline is given by the green line, and the observed carpark data is the 726 

turquoise line with the shading representing the confidence interval of the observed data. The wide 727 

confidence interval shows that the carpark data was highly variable. The predictions from HOMER 728 

and RETScreen lie close to the turquoise line, but SAM gives values much lower in winter than the 729 

other methods. The values mostly lie inside the confidence interval of the observed carpark data, with 730 

only SAM lying outside the area in the winter months. The calculated baseline values are always less 731 

than the carpark data, and the value for June is below the shaded area. 732 

y=1.18x 

R2=0.976 

y = 1.10x 

R2 = 0.987 
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Figure 4.5: Comparison of the predicted energy output in one year using the long-term averages for 733 

temperature and solar irradiance. Shading represents the confidence interval of the observed carpark 734 

data. 735 

Simple linear regression was computed using equation 3.12. This was used to compare each of the 736 

methods with the baseline values, the fitted lines are shown in Figure 4.6. All methods show a linear 737 

relationship with the manually calculated values; the values from SAM are the most deviated from 1, 738 

with a gradient of 1.63, and RETScreen is the closest to 1, with a gradient of 1.16. 739 
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Figure 4.6: Linear regression of each prediction method and the observed carpark data against the 740 

manual calculations using system specifications. The numbers in brackets are the gradients of each 741 

fitted line. 742 

4.3. Payback Comparisons 743 

Table 4.2 presents a summary of all the methods used to calculate the payback period for the system 744 

as specified in Table 3.1, with the costs as specified by Table 3.2. The differences in initial costs are a 745 

result of the differing software methods. The baseline value is taken as the system specification as 746 

given by equations 3.1 to 3.3, where there was no inclusion of temperature, solar irradiance or cost 747 

inflation. The capacity factor gives the percentage of annual energy given by each method against the 748 

baseline value. 749 

4.4. Methods Comparison 750 

Table 4.2 gives the payback results along with the predicted annual energy and savings from all 751 

calculation methods. The estimated payback periods range from 16 years, the manual method that 752 

includes a percentage value for energy cost inflation. The longest payback period was 22 years, 753 

resulting from a manual calculation with only degradation. The capacity factor refers to the amount of 754 

predicted annual energy produced by the methods. There is a large range of different values from 755 

73.2% up to 105% of the baseline value, which is the value calculated from the system specifications.  756 
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An assessment of each calculation method is given in Table 4.3. The baseline comparison method is 757 

the simple payback calculated value of 19 years using equation 4.3. Table 4.3 shows that each of the 758 

software gives values with percentage accuracies greater than 95%. Complexity and usability are 759 

qualitative factors based on user experiences. All the software had a component of learning 760 

requirement, which is subject to the prior knowledge of the user.  761 

The inclusion of different parameters has a large effect on the payback period; Table 4.4 describes the 762 

effects. Parameters that cause the system to create less energy, such as degradation and shading, have 763 

the potential to increase the payback period. Weather parameters such as temperature and solar 764 

irradiance, and peripherals such as orientation and tilt, give a more accurate energy prediction, which 765 

leads to a more accurate payback period. Increased costs through maintenance will increase the 766 

payback period, which is also affected by the cost of the energy. 767 
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Table 4.2: Payback results given by all analysis methods alongside the predicted or calculated annual energy output, annual savings, and initial costs. The capacity 768 

factor refers to the percentage of the annual energy output from the system specifications and the annual energy output from each method (equation 3.11). 769 

Method Results 

Payback 

 

Annual energy output 

(kWh/year) 

Annual savings/revenue 

($/year) 

Initial Cost 

($) 

Capacity Factor 

(%) 

Software  

HOMER 19 years 1,840,000 279,000 5,970,000.00 105 

SAM 20 years 1,300,000 192,000 4,000,000.00 75 

RETScreen 19.3 

years 

1,720,000 144,000 3,820,000.00 98 

PC3D NA NA NA NA NA 

Manual Methods  

System specifications 19 years 1,750,000 201,000 3,825,935.20 100 

Data 20.8 

years 

1,602,386 184,274. 3,825,935.20 91.6 

Degradation 22 years Decreases per year from 1,750,221 

to 1,422,382 

Decreases from 198020 to 

163573 

3,825,935.20 90.1 

Degradation + Cost inflation 16 years Decreases per year from 1,750,221 

to 1,517,148 

Increases from 198020 to 

307371 

3,825,935.20 90.8 

 

Predicted long term weather data + 

degradation + cost inflation 

19 years Decreases per year from 1,406,17 

to 1,189,894 

Increases from 16170 to 

275314 

3,825,935.20 73.2 
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Table 4.3: Comparisons between different methods, complexity refers to the level of prior knowledge that a user needs, usability is how straightforward the method 770 

is to run and retrieve, and requirements are a list of data and/or computer requirements. 771 

Method Results 

Accuracy Complexity Usability  Requirements 

HOMER  99% Some of the information is not easy to 

understand without guidance, but there is 

comprehensive help available online. 

The capital amount of the system is not the 

same as the value that was put in. 

The menus are good. There is a very schematic 

diagram that shows the components that have 

been included in the model. User experience is 

– provide a rating on a scale  

The Jinko Solar module information was 

automatically filled in. 

Knowledge of the system specifications and 

load requirements. Output is in USD, so 

inflation and electricity prices need to be input 

manually. 

SAM 95% Requires some investigations before inputting 

financial values. Was difficult given the 

scarce amount of data we were given. 

The menus are easy to follow. The Jinko Solar 

module information was automatically filled in. 

Needs costs need to be in terms of kWdc/units 

so values need to be transformed. 

RETScreen 98% Allows inputs for every type of fuel and every 

type of end use. Gives more outputs than are 

needed. Can input electricity use. 

The menus are easy to follow. Requires prior 

knowledge of end use. The Jinko Solar module 

information was automatically filled in. 

System Specifications and individual 

component costs and loads. 

PC3D NA Quite difficult to use, no fill in boxes to guide 

you through the process. 

No database lookups for modules  

There are no financial aspects Module specifications as presented in Table 

3.1. 

 

Manual NA Depending on which parameters are used the 

complexity can vary, requires a variety of 

mathematical techniques and can be time 

consuming if all possible variables are to be 

addressed 

Manual Methods vary between simple and 

complex mathematical equations that depend on 

the user’s comprehension of these processes.  

Requires information on weather data, PV 

specifications and financial data such as 

various costs of energy and materials.  

Also, a calculator, Excel or similar tool. 

 

 



 

40 
 

Table 4.4: List comparison of different assumptions and their effects on calculating the payback period. 772 

Assumption Results 

Effects on Results Ease of Incorporating Data Required Notes 

Temperature and 

solar irradiance 

 Decrease in payback, more 

accurate 

Requires a moderately 

complex equation and data 

Daily data from BOM, easy to find 

and download 

Not possible to predict future temperatures, so 

we need to use long-term monthly averages 

Degradation Increase in payback Requires a simple equation  Degradation facts from the 

manufacturer's specifications 

Can be assumed from the decrease in annual 

energy outputs. 

Energy cost Large decrease in payback 

when accounting for inflation 

Requires a simple equation Purchase cost, sell-back costs and 

estimated annual inflation 

Can be difficult to find due to different electricity 

companies and variations in price for 

government versus residential 

Panel Orientation 

and Tilt 

Change in irradiance resulting 

in more accurate energy 

predictions 

Requires a moderately 

complex equation and 

measurements to be taken 

Latitude  Simple calculation using latitude and 

trigonometry 

Shading and 

Soiling 

Shade would lower the energy 

output. High soil/ground 

temperature would decrease 

panel efficiency. 

Requires complex equations, 

measurements taken from 

the area and data 

Cloud cover can be obtained from 

BOM. No information available on 

shade. Ground/soil temperature can 

be measured 

Shade caused by trees would be easy to calculate. 

Soil/ground temperature can be measured if 

planned in advance. 

Maintenance Costs Will reduce the amount of 

savings and increase in 

payback time 

Requires a simple equation 

and can be included in the 

basic payback formula 

Need to know how much was spent 

on maintenance each year. 

Might be difficult to predict and build a model 

that allows it to change each year.  
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4.4.1. HOMER  773 

HOMER can simulate thousands of different systems and connects to the internet to download the 774 

system of interest, which in this case is the Jinko mono-crystalline PERC. It can input weather data, 775 

although it must be in a specific format and only for a single year. The specifications used do not 776 

mention a converter or battery, but they reference a Sunny-power inverter, indicating that a converter 777 

and battery will need to be selected. HOMER provides a comprehensive report for a range of input 778 

values and can calculate payback. The average monthly use from the data is input as the monthly load, 779 

and it is possible to simulate a range of power outputs using the specifications. With a limited amount 780 

of information about the solar car park system, certain elements, such as battery storage, must be 781 

selected without the required information. However, if these values remain constant across all 782 

simulations, it is still feasible to compare a range of inputs. 783 

4.4.2. SAM 784 

SAM finds its own weather using a file system that doesn’t appear to be able to be put in as a csv file, 785 

although it was quite easy to put in the latitude and longitude and find the correct location. Comparing 786 

this data with that from the Bureau of Meteorology (BOM), they appear to be accurate. When first 787 

opening SAM, it’s required to know which section to start in, for solar car park, Photovoltaic > single 788 

owner was selected, but there were many other options. It was quite simple to find the required 789 

modules Jinko 285, put in the user-defined section to change the parameters and number of solar cells. 790 

This part of the process was user-friendly and didn’t require prior experience with the program.  791 

The Inverter was easy to select, but none of the parameters could be changed, so SAM relied on data 792 

from each manufacturer, assuming no modifications had been made. The inverter was SMA America: 793 

STPS60US-20, which is the equivalent to the Sunny Tripower 60. There are a lot of comprehensive 794 

options for inflation, depreciation, etc. and the user can choose to either use the defaults or input their 795 

own. The cost of the system doesn’t seem to be able to be input by the user, instead SAM calculates it 796 

from the specified modules. This is the price today not the price in 2017 when our panels were 797 

installed.  798 

4.4.3. RETScreen 799 

Has the capacity to itemise all the facilities and appliances connected to the PV system and their 800 

respective electricity use. A single value that represents how much we use from the spreadsheet data 801 

was selected for solar car park. The demo version of the software doesn’t allow the project to be 802 

saved. It would be good for someone wanting to put up a new solar on their roof, but for a larger 803 

commercial complex, bulk values would be better than itemising everything. The components, Jinko 804 

Solar panels etc. were easy to find. The summary of the data based on the size of the panels and the 805 

weather from BOM was of good quality. 806 
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4.4.4. PC3D 807 

PC3D is an open-source numerical analysis program for simulating the internal operation of silicon 808 

solar cells. It uses Excel to provide a familiar, easy-to-use interface for specifying parameters and 809 

exploring the solution space. It is ideal for those seeking to obtain a better understanding of solar cell 810 

physics but having limited time to learn a new program. Easy to download and install if the user owns 811 

Excel. Simulates how the solar cell works using multiple parameters. It is easy to see instructions on 812 

each cell that define what each cell is. Doesn’t calculate any financial information, no 813 

payback. Specifications need to be put in manually with no capacity for looking up the Jinko 814 

specifications. Data is not available for recombination or illumination, so those uses could not be 815 

tested.  816 

4.4.5. Manual Methods 817 

4.5.5.1 Expected Payback Using System Specifications 818 

The manufacturer's specifications (Table 3.1) can be used to find the expected energy output and then 819 

the expected payback using equations 3.1 to 3.3. 820 

PV capacity = 1090kW, hours/year = 8760 and capacity factor = 0.1833 821 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = 𝑃𝑉 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 × ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 822 

        = 1090 × 0.1833 × 8760 823 

≈ 1750000 𝑘𝑊ℎ/𝑦𝑒𝑎𝑟          (4.1) 824 

Electricity savings as 6c-7c, on average this is $0.065       825 

LGC revenue is between $45 and $55 per MWh, this converts to $0.05 per kWh 826 

Therefore, the total value per kWh is $0.065 + $0.05 = $0.115 827 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑂𝑢𝑡𝑝𝑢𝑡 × 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑘𝑊ℎ 828 

= 1750000 × 0.115 829 

≈ $201000          (4.2) 830 

The payback period can now be calculated as 831 

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑  =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑓𝑟𝑜𝑚 𝑆𝑜𝑙𝑎𝑟
 832 

=
3825935.20

201000
≈ 19 𝑦𝑒𝑎𝑟𝑠       (4.3) 833 

Using the specifications from the Jinko manufacturer, the payback period would be approximately 19 834 

years (Table 4.2). 835 
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4.5.5.2 Expected Payback from Data 836 

Using the observed car park data, the average annual energy output was 1,602,386 ± 86721 kWh/year 837 

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑  =
3825935.20

1602386×0.115
≈ 20.8 ± 1.2 𝑦𝑒𝑎𝑟𝑠  (4.4) 838 

The average energy output recorded is 147,000 kWh lower than the expected value from the system 839 

specifications, increasing the payback period by approximately 1.8 years (a change of 9.5%) (Table 840 

4.2). 841 

4.5.5.3 System Degradation 842 

Degradation D = 3% in year 1, linear 0.8% per year after that (Table 4.1). Energy predicted using 843 

degradation can be found using equation 3.4, with year 1 = 2020, and using the values given in the 844 

carpark data the total Energy in 2020 was 1712478 kWh. 845 

𝐸𝑡 = 𝐸1 [1 −
𝐷

100
(𝑡 − 1)]                    (4.5)                                                                                          846 

The unbalanced data does not have 365 observations per year. Data can be adjusted using the 847 

following 848 

Energy = 1712478
365

363
= 1721913 𝑘𝑊ℎ per 365-day year. This value is E1 in equation 4.5. 849 

For t=2 (year 2, 2021) the energy can be predicted from the output from year 1. This formula assumes 850 

that degradation was the only factor that caused a change in energy output.  851 

𝐸2 = 1721913[1 − 0.03] = 1670255 𝑘𝑊ℎ per 365-day year. 852 

From the carpark data, the total annual energy for 2021 = 1662643 kWh, which is 0.46% lower than 853 

the predicted degradation value. 854 

After the first year the degradation slows to 0.8%, so the predicted energy output for t=3 (2022) is 855 

𝐸3 = 𝐸2[1 − 0.008] = 1670255[1 − 0.008] = 1656893 𝑘𝑊ℎ.  856 

Table 4.5 shows the resultant value of following this process starting at the 2020 carpark total energy 857 

value and adjusting each yearly total for 365 days. Figure 4.7 shows that the observed annual energy 858 

from the carpark data decreases much faster than the expected degradation from the specifications. 859 

Note that the data for 2024 is only up to August and therefore may not represent the full year. 860 
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Table 4.5: Observed total annual energy output converted to a 365-day year, energy of the 861 

predictive model based on the degradation with 2020 as the initial yearly total and the percentage 862 

of error (equation 3.11). 863 

t Year Number of 

days 

Total Energy 

Output 

Output per 365 

days 

D Energy with 

degradation 

% 

Error 

1 2020 363 1712478 1721913 0 1721913 
 

2 2021 361 1644423 1662643 0.03 1670255 0.46 

3 2022 329 1427185 1583351 0.008 1656893 4.44 

4 2023 332 1441558 1584845 0.008 1643638 3.58 

5 2024 242 1001695 1510821 0.008 1630489 7.34 

 

Figure 4.7: Observed total annual energy from the car park data and the predicted degradation of the 864 

data using equation (4.5) starting from the 2020 total. 865 
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Table 4.6: To calculate the payback period use equation (4.2) to find the energy cost for each 866 

predicted annual energy assuming no change in cost per kWh. 867 

t D Energy Cost Cumulative sum 

1 0 1750221 201275.50 201275.50 

2 0.03 1697715 195237.23 396512.73 

3 0.008 1684133 193675.34 590188.07 

4 0.008 1670660 192125.93 782314.00 

5 0.008 1657295 190588.92 972902.92 

6 0.008 1644036 189064.21 1161967.14 

7 0.008 1630884 187551.70 1349518.84 

8 0.008 1617837 186051.29 1535570.12 

9 0.008 1604894 184562.88 1720133.00 

10 0.008 1592055 183086.37 1903219.37 

11 0.008 1579318 181621.68 2084841.05 

12 0.008 1566684 180168.71 2265009.76 

13 0.008 1554150 178727.36 2443737.12 

14 0.008 1541717 177297.54 2621034.66 

15 0.008 1529384 175879.16 2796913.82 

16 0.008 1517148 174472.13 2971385.95 

17 0.008 1505011 173076.35 3144462.30 

18 0.008 1492971 171691.74 3316154.03 

19 0.008 1481027 170318.20 3486472.24 

20 0.008 1469179 168955.66 3655427.90 

21 0.008 1457426 167604.01 3823031.91 

22 0.008 1445766 166263.18 3989295.09 

The payback period is when the cumulative sum of the energy value first exceeds the initial cost of 868 

$3,825,935.20 (equation 3.7), from Table 4.6, this is 22 years (Table 4.2). This means that when 869 

assuming no change in energy costs and allowing for system degradation the energy output will 870 

decrease over time extending the payback period.  871 
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Table 4.7: Payback calculations using degradation and the initial year as data from 2020. 872 

t D Energy Cost Cumulative Sum 

1 0 1721913 198020.01 198020.01 

2 0.03 1670255 192079.41 390099.42 

3 0.008 1656893 190542.78 580642.20 

4 0.008 1643638 189018.43 769660.63 

5 0.008 1630489 187506.29 957166.92 

6 0.008 1617445 186006.24 1143173.15 

7 0.008 1604505 184518.19 1327691.34 

8 0.008 1591669 183042.04 1510733.38 

9 0.008 1578936 181577.70 1692311.08 

10 0.008 1566305 180125.08 1872436.16 

11 0.008 1553774 178684.08 2051120.25 

12 0.008 1541344 177254.61 2228374.85 

13 0.008 1529013 175836.57 2404211.43 

14 0.008 1516781 174429.88 2578641.31 

15 0.008 1504647 173034.44 2751675.75 

16 0.008 1492610 171650.16 2923325.91 

17 0.008 1480669 170276.96 3093602.88 

18 0.008 1468823 168914.75 3262517.62 

19 0.008 1457073 167563.43 3430081.05 

20 0.008 1445416 166222.92 3596303.98 

21 0.008 1433853 164893.14 3761197.11 

22 0.008 1422382 163573.99 3924771.11 

When using the observed carpark data, the payback period is still 22 years. The difference between 873 

the predicted data in Table 6 and the observed data in Table 4.7 is after 22 years the cost of the data is 874 

$64,523.89 more than the cost of the prediction. 875 

4.5.5.4 Electricity Price Increase 876 

The estimated electricity price increase for Queensland is approximately 5% per annum (Ergon). The 877 

system is degrading while simultaneously increasing in value due to rising electricity costs. 878 

R = 5%/year 879 

In year 1 C = 0.115 (total value per kWh) and using equation 3.5: 880 

𝐶𝑡 = [𝐶1 (1 +
𝑅

100
)

𝑡−1
] 𝐸𝑡                                                                                                 881 

For year 4 (2023), t=4 and Et = 1547676 882 

                𝐶4 = [0.115(1 + 0.05)3] × 1547676 = $206037.30   (4.6) 883 

The value of energy can be calculated using equation 3.6: 884 

        𝑉𝑡 =
𝐶𝑡

[(1+
1

100
)

𝑡−1
]

=
206037.30

(1+
1

100
)

2 = $199977.70               (4.7)                                                      885 
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Table 4.8: Predicted energy output and cost projected using the calculations from equation (4.2) as 886 

the initial total annual energy 887 

t D Energy with degradation Energy cost Energy value Cumulative sum 

1 0 1750221 201275.50 201275.50 201275.50 

2 0.03 1697715 204999.09 202969.40 404244.90 

3 0.008 1684133 213527.06 209319.73 613564.63 

4 0.008 1670660 222409.78 215868.74 829433.37 

5 0.008 1657295 231662.03 222622.66 1052056.03 

6 0.008 1644036 241299.17 229587.88 1281643.91 

7 0.008 1630884 251337.22 236771.03 1518414.94 

8 0.008 1617837 261792.84 244178.91 1762593.85 

9 0.008 1604894 272683.43 251818.57 2014412.42 

10 0.008 1592055 284027.06 259697.25 2274109.66 

11 0.008 1579318 295842.58 267822.43 2541932.09 

12 0.008 1566684 308149.63 276201.82 2818133.92 

13 0.008 1554150 320968.66 284843.39 3102977.31 

14 0.008 1541717 334320.95 293755.32 3396732.62 

15 0.008 1529384 348228.71 302946.08 3699678.70 

16 0.008 1517148 362715.02 312424.39 4012103.09 

The payback period, when the cumulative sum of the energy value first exceeds the initial cost of 888 

$3,825,935.20, is less than 16 years. By adding the increasing cost of the energy on top of the system 889 

degradation, the payback period has decreased from 22 to 16 years (a decrease of 27%) (Table 4.2). 890 

Table 4.9: Predicted energy output using carpark for the initial year with degradation and allowing 891 

for cost inflation. 892 

t D Energy with degradation Energy cost Energy value Cumulative sum 

1 0 1721913 198020.01 198020.01 198020.01 

2 0.03 1670255 201683.38 199686.52 397706.52 

3 0.008 1656893 210073.41 205934.13 603640.66 

4 0.008 1643638 218812.46 212377.22 816017.88 

5 0.008 1630489 227915.06 219021.90 1035039.77 

6 0.008 1617445 237396.32 225874.46 1260914.24 

7 0.008 1604505 247272.01 232941.42 1493855.66 

8 0.008 1591669 257558.53 240229.49 1734085.15 

9 0.008 1578936 268272.96 247745.58 1981830.74 

10 0.008 1566305 279433.12 255496.83 2237327.57 

11 0.008 1553774 291057.54 263490.59 2500818.16 

12 0.008 1541344 303165.53 271734.46 2772552.62 

13 0.008 1529013 315777.22 280236.25 3052788.87 

14 0.008 1516781 328913.55 289004.04 3341792.91 

15 0.008 1504647 342596.35 298046.14 3639839.05 

16 0.008 1492610 356848.36 307371.15 3947210.20 
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The payback period when using observed data is closer to 16 years than the prediction in table 4.8. 893 

The difference in cost is $64,892.88 less for the observed data and $368.99 more then degradation 894 

without energy price increase 895 

4.5.5.5 Temperature and Solar Irradiance 896 

To include temperature and solar irradiance into the prediction of energy calculation, use equation 3.8 897 

with 898 

P = photovoltaic array at peak power = 1090 kWp 899 

f = derating factor = 3% (year 1) 900 

GT = solar irradiance striking the PV array = 5.31 kWh/m2 (for Toowoomba on average across the 4 901 

years) 902 

G(T,STC) = solar irradiance under standard test conditions = 1 kW/m2 903 

Kp = temperature coefficient = -0.39%/degC 904 

Tc = photovoltaic temperature = 45 degC 905 

TSTC = ambient temperature = 25 degC 906 

𝑃𝑉𝑝𝑜𝑤𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑃{𝑝𝑣,𝑆𝑇𝐶}𝑓𝑃𝑉

𝐺𝑇

𝐺{𝑇,𝑆𝑇𝐶}
[1 + 𝐾𝑃(𝑇𝑐 − 𝑇𝑆𝑇𝐶)] 907 

= 1090 × 0.008 × 5.31 × (1 − 0.0039(45 − 25)) 908 

≈ 160.09𝑘𝑊𝑝                                             (4.8) 909 

Power output is proportional to solar irradiance, temperature coefficient and change in temperature. 910 

Both factors change monthly. Figure 4.8 shows a graph of the predicted power output per month using 911 

the observed BOM temperatures and solar irradiances from 2020. 912 
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Figure 4.8: Power output (bottom) calculated by equation (4.8) using the observed temperatures 913 

and solar irradiances from 2020 carpark data (top and middle). 914 

Since the temperature and solar irradiance can’t be predicted for dates in the future, long-term 915 

averages were used along with equation 4.8 to predict the energy. These were compared to the across-916 

year averages from the carpark data as presented in Table 4.10. The observed temperatures and solar 917 

irradiance values were all within 10% of their respective long-term averages. The observed energy 918 

output values were all higher than those predicted using equation 4.8 with the winter months showing 919 

the largest percentage changes from the predicted values. The observed 5-year irradiances are mostly 920 

lower than the long-term average, but they are all less than 7% different. However, the observed 921 

energy output is up to 50% higher than the predicted values, especially in the winter months, with 922 

June's output being 50% higher than predicted.  The total energy across the average year was 17% 923 

larger than the predicted value. Table 4.11 shows the payback period using the total annual energy 924 

predicted from the average long-term temperatures and irradiances from Table 4.10, along with 925 

degradation and cost inflation. Using these values, the payback period is between 18 and 19 years. 926 
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Table 4.10: Long-term monthly temperatures and solar irradiance. Energy calculated from equation 927 

4.8. Averages from the 5 years of carpark data and percentage change (equation 3.11) for all 928 

observed values. 929 
Month Maximum 

Temperature 

(°C) 

Average 

Irradiance 

(kW/m2) 

Month 

total 

calculate 

(kWh) 

Observed 

Temperaure 

(°C) 

%Δ Observed 

Irradiance 

(kW/m2) 

%Δ Month 

Total 

Observed 

(kWh) 

%Δ 

Jan 28.4 6.9 157000 28.3 -0.4 6.7 -3.0 166343 6 

Feb 27.6 6.2 128810 27.6 0.0 6.2 -0.1 145753 13 

Mar 26.1 5.5 123945 25.5 -2.4 5.2 -6.2 135681 9 

Apr 23.2 4.7 101248 22.9 -1.1 4.6 -2.5 116741 15 

May 19.8 3.8 83363 19.2 -3.1 3.7 -2.6 100898 21 

Jun 17.0 3.3 69210 17.2 1.5 3.5 6.1 103605 50 

Jul 16.7 3.6 77917 16.3 -2.2 3.5 -1.7 105892 36 

Aug 18.9 4.5 98335 19.7 4.0 4.5 -1.0 133533 36 

Sep 22.3 5.5 118028 21.8 -2.2 5.4 -2.5 148095 25 

Oct 24.6 6.3 141077 24.7 0.2 6.2 -2.4 161677 15 

Nov 26.3 6.8 148423 25.9 -1.5 6.5 -4.2 157995 6 

Dec 27.7 7.0 158811 27.7 0.0 7.1 1.2 171472 8 

Annual 

Total 

 
 

1406172 
    

1647688 17 

Table 4.11: Payback table using the predicted total annual energy from Table 4.10, degradation and 930 

cost inflation. 931 
t D Energy with 

degradation 

Energy cost Energy value Cumulative sum 

1 0 1406172 161709.79 161709.79 161709.79 

2 0.03 1363986 164701.42 163070.71 324780.50 

3 0.008 1353075 171553.00 168172.73 492953.23 

4 0.008 1342250 178689.60 173434.37 666387.60 

5 0.008 1331512 186123.09 178860.63 845248.23 

6 0.008 1320860 193865.81 184456.67 1029704.90 

7 0.008 1310293 201930.63 190227.79 1219932.69 

8 0.008 1299811 210330.94 196179.47 1416112.16 

9 0.008 1289412 219080.71 202317.36 1618429.52 

10 0.008 1279097 228194.47 208647.29 1827076.81 

11 0.008 1268864 237687.36 215175.27 2042252.08 

12 0.008 1258713 247575.15 221907.48 2264159.56 

13 0.008 1248643 257874.28 228850.33 2493009.89 

14 0.008 1238654 268601.85 236010.40 2729020.29 

15 0.008 1228745 279775.69 243394.49 2972414.78 

16 0.008 1218915 291414.36 251009.60 3223424.38 

17 0.008 1209164 303537.19 258862.97 3482287.35 

18 0.008 1199490 316164.34 266962.05 3749249.40 

19 0.008 1189894 329316.78 275314.53 4024563.93 
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4.5.5.6 Adjusting for Panel Peripherals  932 

The latitude of the carpark is approximately 27.56°S, the declination can be calculated using equation 933 

3.10. Figure 4.9 shows the change in irradiance for panel tilt angles of 0, 10, 30, 45, 60 and the 934 

optimum angle of 23.43 degrees. Larger tilt angles increase solar irradiance value in winter and less in 935 

summer. Table 4.12 shows that on day 30 (30th January), the solar irradiance decreases when the angle 936 

increases, but for day 210 (29th July) the solar irradiance increases when the tilt angle increases. 937 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Solar irradiance adjusted for tilt angle, the value in brackets indicates tilt angle (β). 938 

Table 4.12: Calculations of solar irradiance using equation (3.9) for 30 days apart 939 
day Declin

ation 

(10) 

α S module 

(β=0°) 

S module 

(β=10°) 

S module 

(β=30°) 

S module 

(β=45°) 

S module 

(β=60°) 

Optimum 

(β=23.43°) 

30 -18.07 81.07 7.10 7.19 6.71 5.81 4.52 6.96 

60 -8.33 71.33 5.80 6.05 6.00 5.49 4.60 6.10 

90 3.57 59.43 5.60 6.09 6.50 6.30 5.67 6.45 

120 14.55 48.45 4.70 5.35 6.15 6.27 5.96 5.97 

150 21.73 41.27 3.70 4.38 5.31 5.60 5.50 5.07 

180 23.25 39.75 3.60 4.30 5.28 5.61 5.55 5.02 

210 18.71 44.29 3.50 4.07 4.82 5.01 4.86 4.64 

240 9.29 53.71 4.50 5.01 5.55 5.52 5.11 5.44 

270 -2.55 65.55 5.40 5.74 5.90 5.55 4.83 5.93 

300 -13.73 76.73 6.00 6.15 5.90 5.24 4.23 6.07 

330 -21.32 84.32 7.80 7.82 7.14 6.06 4.57 7.47 

360 -23.36 86.36 6.40 6.37 5.75 4.81 3.55 6.03 
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Table 4.13: Total annual energy output in kWh from the carpark data. Predicted total annual energy 940 

output using daily temperature and solar irradiance. Predicted energy output using solar irradiance 941 

that had been adjusted for tilt angle. Percentage erros were calculated using equation 3.11. 942 
Year Solar 

Carpark 

Predicted  

(no tilt) 

%Δ Predicted 

 (23° tilt) 

%Δ Predicted 

 (45° tilt) 

%Δ Predicted 

 (60° tilt) 

%Δ 

2020 1721913 1406010 -18 1547856 -10 1452606 -16 1264436 -27 

2021 1662643 1349996 -19 1490265 -10 1401980 -16 1222935 -26 

2022 1583351 1300392 -18 1454879 -8 1384916 -13 1220192 -23 

2023 1584846 1430073 -10 1570037 -1 1469802 -7 1276689 -19 

2024 1510821 1235550 -18 1476653 -2 1483588 -2 1364773 -10 

Table 4.13 shows that the predicted annual energy using equation 4.8 with observed temperature and 943 

solar irradiance is between -19 % and -10 % less than the observed values. When adjusting the solar 944 

irradiance using equation 3.9, the error for a tilt angle of 23° decreases to between -1% and -10%. The 945 

23° tilt predictions are a better model for the carpark data. 946 

To predict the payback period when using predictions based on temperature and irradiance we will 947 

assume average monthly values for all years. 948 

4.5.5.7 Temperature Compensation Calculations  949 

The temperature effect on voltage and power from PV panels is linear and increases as temperature 950 

increases. If the difference between the standard test conditions and the operating temperature is low, 951 

the energy output will decrease (see equation 4.8). Using the temperature coefficients as given by the 952 

Jinko specifications, we can see how the voltage and power are affected. Using the system 953 

specifications, the maximum voltage would decrease from 32V to 29.67V and the Voc (maximum 954 

voltage with no load connected) would decrease from 38.7V to 36.46V (equation 4.9). Similarly for 955 

power, under normal conditions the power of 270W would decrease to 248.94W (equation 4.10). 956 

For the Jinko panels Voc = 38.7V and temperature coefficient of Voc = -0.29%/°C 957 

38.7 x (-0.0029) = -0.112 V/°C 958 

Using the nominal cell operating temperature of 45°C, at 25° the temperature difference is multiplied 959 

by -0.112; 45°-25°=20° x -0.112 = -2.25V    960 

This means that the maximum voltage power (Vmp) of 32.0V would reduce to  961 

32 - 2.25=29.7V, and the Voc of 38.7V would reduce to 38.7 – 2.25 = 36.4V. (4.9) 962 

Jinko gives a maximum power of 270W and the temperature coefficient of Pmax = -0.39%/°C 963 

270 x (-0.0039) = -1.053 964 

At a cell temperature of 45°C 965 

(45-25) x (-1.053) = -21.06W, 270W-21.06W = 249W (4.10) 966 
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CHAPTER 5: DISCUSSIONS AND CONCLUSION 967 

5.1. Summary 968 

It is important to examine the current methods used in various scientific fields due to the progressing 969 

technology involved. For the payback period in the renewable energy field, the most common 970 

methods are either to use software (the most common being HOMER) or to use a simple manual 971 

method. Some methods use a variety of data and parameters to find accurate payback periods, while 972 

others use the most basic. While these changes affect accuracy, they can also affect ease of use. The 973 

following discussion will focus on the software, its accuracy, ease of use and quality of data. 974 

Additionally, discussions will be presented on the manual methods, including an analysis of the most 975 

impactful factors and the complexity of including these parameters. 976 

5.2. User Review of the Software 977 

The software tested for calculating payback period includes HOMER, SAM, RETScreen and PC3D. 978 

While the first three are examples of common software, the latter is a less common software used to 979 

test the viability of using macros-based software. This will also answer the question of how manual 980 

methods compare to software-based tools in terms of accuracy, accessibility, and versatility. 981 

5.2.1. HOMER 982 

The HOMER software system is a common tool for energy simulation due to its ability to simulate 983 

different systems. It enables users to search the internet to download location and system 984 

specifications, thus prefilling the parameters. It can input weather data, however, it only allows one 985 

year, which is a limitation when wanting to simulate multiple years of energy output for the payback 986 

period. Using long-term averages is only accurate in average years, although future weather cannot be 987 

predicted, it would be advantageous to predict the power output over a range of different weather 988 

options. Another good facility is the capacity to upload user-defined power loads, which allows users 989 

to research multiple scenarios. In this study we used mean monthly power outputs as the required load 990 

input. This has resulted in realistic outputs. 991 

For new users, it was not straightforward to use, it requires knowledge to interpret the required inputs. 992 

The data used for this study was missing a lot of information needed for HOMER to operate 993 

appropriately, such as battery storage and inverters, which made it difficult to simulate systems that 994 

could be compared to the provided data. This adds some inaccuracies to the simulation. The HOMER 995 

instruction manual states that these components are necessary, which causes doubt about the output.  996 

Based on US dollars, users from outside the USA need to be careful to change the financial aspects 997 

accordingly, especially if the payback period is the desired outcome, since HOMER uses databases to 998 

gather the electricity prices. However, it does present the user with the possibility to input their own 999 

financial data.   1000 
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HOMER has a methodology for calculating payback periods, based on the performance of other solar 1001 

systems in the area. The list of output scenarios was not extensive for the specific system considered 1002 

in this study. It would be an excellent software choice for manufacturing companies that are 1003 

simulating data to provide a report to customers who are seeking to buy solar panels. The companies 1004 

have all required information for their calculations and are open to multiple outputs rather than trying 1005 

to compare the results to a known system. 1006 

The main advantage of HOMER is for hybrid systems that include both solar panels and battery 1007 

storage. Since the data in this study does not include battery storage, HOMER was not used to its full 1008 

capacity. While HOMER is a powerful tool for solar simulation, there are areas that cast doubt on its 1009 

accuracy due to the lack of knowledge that is held in its proprietary nature. This means the uncertainty 1010 

of the calculation is still not as well-known as expected.  HOMER provided a payback period of 19 1011 

years, equal to the expected value (Table 4.2).  1012 

5.2.2. SAM 1013 

Like HOMER, SAM features a menu system that enables users to search for their location and system 1014 

specifications. This simplifies the process of retrieving weather and system information. SAM doesn’t 1015 

allow users to input a CSV file, which is a downside when you need to predict energy output using 1016 

user-defined weather data. You can put in a latitude and longitude, and it will collect the data from 1017 

BOM, which is accurate. Users also need some understanding of the system when entering the 1018 

specifications. There are numerous options available when first starting the software, which can be 1019 

confusing if you want a simple simulation of a known system. A company wanting to provide 1020 

multiple scenarios to a potential client would benefit from this flexibility. Finding the Jinko 285 was 1021 

straightforward, and the capacity to modify the number of panels was a nice feature of SAM.  1022 

The lack of information associated with inverters and how they are used with the software caused 1023 

some issues in not understanding what the impact the lack of an inverter does to the calculated 1024 

outputs. A similar inverter was put into the program, but it is unknown how much this affected the 1025 

simulation. SAM's output includes spreadsheets detailing simulated energy output and annual 1026 

financial specifications. While the payback period is not explicitly stated, users can track the balance 1027 

and note when it reaches zero, allowing them to draw conclusions about the payback period. Looking 1028 

at the yearly output in a table enables a deeper understanding of the year-to-year values. 1029 

SAM gave a payback period of 20 years which was one year longer than the expected value (Table 1030 

4.2). 1031 
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5.2.3. RETScreen 1032 

RETScreen has a very user-friendly interface with easy-to-follow options for inputting location and 1033 

system specifications. The location option provides a map that can be used to fine tune the exact 1034 

location without having to know the latitude and longitude as in the case of SAM. It contains very 1035 

comprehensive electricity use options for all different types of electrical use in either a house or a 1036 

workplace or factory. This would be a great resource for someone wanting to customise their purchase 1037 

of solar panels.  1038 

As with HOMER and SAM it was simple to find the Jinko solar panels used in this study. RETScreen 1039 

also has an extra input for the tilt angle, which can provide more accurate simulations. The final data 1040 

comes as a large and comprehensive set of spreadsheets for financial and power outputs, either daily, 1041 

monthly or yearly. One issue arose with the demo version; you cannot save the outputs to enable 1042 

analyses and comparisons with the other methods. The resulting payback of 19.3 years was within 2% 1043 

of the expected value of 19 years (Table 4.2). 1044 

For the scenario presented in this study, RETScreen was the most satisfactory software out of the 3 1045 

common ones, surpassing HOMER and SAM, during the investigations of these systems, all these 1046 

factors were generally more satisfactory to use, manage and interpret from a personal level as well as 1047 

a comparative viewpoint. All three software packages have many more extensive functions that were 1048 

not explored here.  1049 

5.2.4. Other Software 1050 

Another software option is the open-source program PC3D. This runs as an Excel macro, so users of 1051 

Excel would be familiar with its interface, removing the complication of learning a new type of 1052 

software. Downloading and installing is easy. The cells within the program have pre-defined 1053 

instructions available. 1054 

The downside is that there are no options for selecting a specific system such as the Jinko 285. 1055 

Instead, you need to give the program all the specific details, which may be complicated for novice 1056 

users. Calculating the payback period is not a feature of PC3D. However, it can be used to predict 1057 

energy output from many different scenarios. The software had no facility to input financial data, 1058 

electricity prices, or construction costs. 1059 

5.3. Parameter Analysis 1060 

When doing a manual calculation, it needs to be decided which parameters to account for and which 1061 

data to use. To discuss the most optimal method of performing payback period analysis, it is 1062 

necessary to discuss these individual assumptions, including the specifications of the PV itself, the 1063 

weather and other exterior factors. 1064 
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The real-life carpark data showed that the energy output had seasonal variability, high in summer and 1065 

low in winter, the same variable pattern as both maximum daily temperatures and daily solar 1066 

irradiance, proving that these are important parameters in computing energy output. A multiple linear 1067 

regression model showed a significant interaction between month and year, indicating that the energy 1068 

output varies per year, which is an indication of possible degradation of the system. The manually 1069 

calculated daily energy showed strong agreement with the observed daily carpark values when 1070 

incorporating an adjustment for panel angle. It was also evident that the observed data had a section of 1071 

error where the system produced unrealistically low energy. This is an issue that needs to be 1072 

addressed when using real-life data, but this research has shown that it is easy to detect these values 1073 

and compensate for them. 1074 

When plotting the real-life energy output against predicted output from each of the software types, 1075 

there were a lot of similarities, which gives confidence that the calculations for energy output are 1076 

similar and the observed differences in payback period are due to other properties. 1077 

5.3.1. PV Specifications 1078 

The system specifications cover the information relating to the PV setup itself. Theoretically a user 1079 

should have access to a selection of system types and will be able to choose, making access to this 1080 

information quite easy. This includes the raw system specifications themselves, the information that 1081 

can be used to estimate performance and financial parameters. 1082 

5.3.1.1 System Specifications 1083 

Based on the manual methods, the system size, number of panels and panel wattage all have the most 1084 

effect on the predicted energy output. As seen in equations 3.1 to 3.3, the total energy output is 1085 

proportional to the wattage; the larger the number of panels, the more energy is produced and, hence, 1086 

more energy to sell back to the grid, resulting in a larger annual savings from the system. 1087 

The mounting system, or a fixed angle tilt, affects solar ratio, which is shown in equations 3.9 and 1088 

3.10. Panels that are flat will get the most solar irradiance in the summer months when the sun is more 1089 

directly overhead. However, in winter, when the sun is lower, a panel that is tilted will have more 1090 

solar exposure, resulting in a higher solar irradiance. Panel tilt is affected by latitude (equation 3.9). 1091 

The amount of energy produced is indirectly proportional to the temperature (equation 3.8), so there 1092 

needs to be a balance between the tilt angle and the solar collected. Summer will always tend to create 1093 

more energy due to higher solar irradiance caused by the sun’s closer proximity to the Earth. By 1094 

tilting the panels more, a higher amount of energy can be collected during the colder months. The 1095 

optimum tilt angle of panels in Southern Queensland is 23.43° (Negro 2022), at this angle the panels 1096 

are exposed to a similar amount of solar all year round (Table 4.12). There is a need to combine this 1097 

information with other sources since the payback calculation is based on total annual energy 1098 

accumulation. 1099 
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5.3.1.2 Performance Parameters 1100 

Degradation is evident in the recorded performance as the yearly energy produced does consistently 1101 

decline across the five years of data (each year of the observed data has been adjusted to 365 days). 1102 

The temperature coefficient, as seen in equation 5, affects PV power output by being multiplied by the 1103 

output from the previous year and the degradation factor of 3% in the first year and 0.8% linearly 1104 

thereafter. Figure 4.1 shows that the carpark data degrades faster than the predicted degradation when 1105 

started with the same total annual output. This may be explained by the fact that the system was 1106 

originally constructed in 2016, whereas the data starts in 2020, therefore a lot of the initial year 1107 

degradation had already occurred before the data was observed. The degradation formula is heavily 1108 

reliant on the previous year; if a year was not representative, the pattern of degradation would not be 1109 

comparable to the predicted values. It is possible that 2020 may have been a non-representative year. 1110 

5.3.1.3 Financial Parameters 1111 

The total system cost as used throughout this study has been calculated on many different aspects 1112 

(Table 2.2). The PV panels themselves only accounted for around 30% of the cost. Adding in 1113 

components such as inverters and battery storage will add not just to the total cost but also to the 1114 

ongoing maintenance. A lot of the cost was in labour and infrastructure relating to the car park itself. 1115 

The information used in this study assumed no ongoing maintenance costs (as informed by the data 1116 

provider). Any ongoing costs would add more complexity to the calculations. An ongoing percentage 1117 

could be accounted for quite simply. However, a large expense such as having to replace a panel or 1118 

infrastructure would cause the payback calculation to be void, and a new calculation would need to be 1119 

done. 1120 

5.3.2. Weather Data 1121 

The reported PV capacity gave a result of 19 years; the actual average performance that was recorded 1122 

gave a result of 20.5 years. This means that external factors and degradation affected the payback 1123 

period by 7.3%. Weather data such as temperatures (Maximum, Minimum, average and percentiles), 1124 

solar irradiance and cloud cover are readily available as a public source from the Bureau of 1125 

Meteorology website (Bureau of Meteorology 2024). However, the recording station may not be close 1126 

to the area required. Other sources may be obtained through private sources such as an institution that 1127 

has a constant thermometer setup.  1128 
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5.3.2.1 Solar Irradiance 1129 

Observed Solar irradiance can be easily downloaded from the Bureau of Meteorology (Bureau of 1130 

Meteorology 2024) as either daily, monthly or yearly values. Defined as the amount of radiant light 1131 

energy per meter squared, it is an essential component of the energy production of solar panels. The 1132 

observed solar irradiance, as seen in Figure 4.2, shows a direct comparison with the predicted power 1133 

output. This was confirmed by the statistical analysis that showed a correlation of 0.84 between the 1134 

observed solar irradiance and the observed energy output from the carpark data. A multiple linear 1135 

regression also confirmed a highly significant proportion of energy is provided by solar irradiance. 1136 

This is not surprising considering the direct relationship given in equation 8. This means that 1137 

predicting an accurate payback period requires some level of reliable irradiance data to be accounted 1138 

for. 1139 

Weather data is essential to all prediction calculations. As seen by Figures 4.2 and 4.5, the energy 1140 

output shows a similar pattern to the temperature and solar exposure, i.e. high in summer and low in 1141 

winter. Climate needs to be considered to ensure a linear energy output since the payback calculations 1142 

use either an average yearly value or a total yearly value. In the case of unbalanced data such as 2024, 1143 

an average might be non-representative due to the missing portion of data, for example, if the only 1144 

data was summer, the average would be inflated, and if they were only winter the data would give a 1145 

deflated average yearly energy output. 1146 

5.3.2.2 Temperature and Climate 1147 

Temperature compensation values were given by the specifications. These values (section 4.5.5, 1148 

Temperature and solar irradiance) show that power and voltage both decrease when there is a large 1149 

difference between the operating temperature and the temperature of the standard test conditions. 1150 

These differences are also present in the energy output equation 4.8. This shows that when the 1151 

operating cell temperature is greater than the standard test condition of 25°C there will be a 1152 

detrimental effect on the energy output. There is an assumption here that the ambient temperature is 1153 

always less than 45°C. The smaller the difference between the operating temperature and the ambient 1154 

air temperature, the less negative effect on the predicted power output. Conversely, in very cold 1155 

temperatures, the temperature coefficient will be multiplied by a larger value, resulting in low power 1156 

output (equation 4.8).  1157 
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Very hot weather will increase the temperature of the cells, causing a decrease in energy production 1158 

due to the temperature coefficient, as PV cells perform at a lower capacity. However, temperature 1159 

correlated directly with solar irradiance, which had a greater effect on output. Therefore, Figure 4.2 1160 

appears as if temperature correlates with output. Solar irradiance can be affected by the angle of the 1161 

sun's rays, time of day, and cloud cover, and it also affects temperature, but temperature also relies on 1162 

the type of surface and humidity. The reflection ability and the moisture on the surface also affect 1163 

temperature. The two factors can affect each other; for example, a dark surface will absorb more 1164 

irradiance, leading to a higher temperature. They can also differ late or early in the day when the sun's 1165 

rays are at an angle, causing less irradiance, but there can still be a high temperature. It is important to 1166 

account for temperature as it is required for equation 3.8, and it does have a notable effect on power 1167 

production and, therefore, the payback period. 1168 

Figure 4.7 shows very high correlations between energy output, temperature and solar irradiance, with 1169 

the latter having a higher correlation. This is evidenced in equation 4.8, where there is a direct 1170 

relationship between energy and irradiance, but temperature varies according to the temperature 1171 

coefficient and the difference between ambient temperature and photovoltaic temperature. 1172 

Temperature can vary by up to 12°C throughout the year on average (Table 4.11). Changing the 1173 

weather data in the equations shows that these changes can affect the results by up to 89600kW (Table 1174 

4.11). This means that the payback period will always be an approximation, as the true value will 1175 

always vary. The observed carpark data varies by 70573.6kW, showing a difference of 21% between 1176 

the predicted value using equation 8 and the observed value. This is based on data from only four 1177 

years; as such, this effect is compounded with higher payback periods as there are more weather 1178 

cycles that will affect the result, so a 20-year payback will vary more than a 3-year payback. 1179 

5.3.2.3 Seasonal Variability 1180 

Energy output varies by season. The raw energy output data, as plotted in Figure 5 clearly shows a 1181 

sinusoidal pattern across the years, high in summer and low in winter, and that temperature and solar 1182 

irradiance follow a similar pattern. An analysis of variance shows significant interaction for energy 1183 

output between month and year. This shows that the effects of months can vary from year to year. 1184 

This is typical of observed weather patterns, no two years are the same, for example sometimes July is 1185 

warmer than June and vice versa. This relationship is confirmed by the predicted energy output as 1186 

shown in Figure 4.2. It can also be seen in Figure 6 that the monthly averages for each factor show 1187 

similar high and low for seasons, but there is some variation within the seasons.  1188 
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Payback period in terms of years, relies heavily on the total annual energy output. It is known that 1189 

weather has strong yearly effects (CSIRO 2024). Using a data set that is limited to five years shows 1190 

only information that is relevant to those five years and cannot inform other years. The predictions 1191 

should be updated regularly to allow for seasonal and yearly changes. Table 4.10 shows the long-term 1192 

averages for temperature and irradiance and the percentage changes in the five years of data. 1193 

Although the observed temperature and solar irradiance over the five years of the data was within 7% 1194 

of the long-term averages (Table 4.10), the observed carpark data was highly variable, especially in 1195 

the winter months. One possible reason is that the five years had warmer than usual winter nights. 1196 

Another reason is that the predicted values in Table 4.10 do not account for the tilt angle of the 1197 

carpark data. As discussed in section 4.5.5, adjusting for panel peripherals, the tilt angle changes the 1198 

amount of solar irradiance in winter when the sun is lower, therefore creating higher than predicted 1199 

energy in winter as shown in Table 4.10.  1200 

When looking at the observed carpark data it must be noted that some of the data in incomplete.  In 1201 

2024, the average output would not be representative since the data used stops in October. There are 1202 

also missing values within all factors. The payback period presented in this study is conservative and 1203 

needs to be read in conjunction with error. Also note an obvious section of low energy output in early 1204 

2023 as shown in figures 4.5 and 4.8. These values need to be investigated and possible removed from 1205 

the analysis. 1206 

5.3.2.4 Extreme Weather and Degradation Risks 1207 

The average rate of extreme weather, including hail, lightning, heatwaves, snow and flooding, varies 1208 

greatly from region to region. Storm events that can cause damage, such as heavy storms, will 1209 

increase the amount of maintenance and decrease the amount of operating time depending on the 1210 

severity of the repairs. Meanwhile, weather events such as snow and heat waves will affect the 1211 

temperature of the system; see the temperature coefficient for the effects of that. Finally high rainfall 1212 

and flooding can cause damage as well as accelerating degradation and aging as electrical components 1213 

corrode. Extreme weather needs to be considered if in an area with a high level of one or more of 1214 

these factors (high rainfall in coastal areas, etc) and degradation may need to be adjusted for this. 1215 

Other factors can affect degradation rates as well, including the combination of components used, 1216 

amount inverters replacements needed and battery degradation for systems to which that applies. 1217 
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5.3.3. Financial Data 1218 

The payback period is heavily reliant on the value of the energy that is produced. The initial 1219 

calculations have used the values as reported by the data provider. Without an accurate value, the 1220 

payback calculations can be misleading. In Australia, the cost of electricity can vary significantly 1221 

(Australian Energy Regulator 2024), and there is no guarantee that the values will be valid. The 1222 

calculations reported in this study have used a static value per kWh and an inflation of 5% in Tables 1223 

4.8 and 4.9, which also show the lowest payback years. The inflation value has caused the largest 1224 

difference in the payback period (a decrease of 16%). This was based on a simple calculation that 1225 

involved constant inflation value but did not allow for changes in inflation and/or market values. It is 1226 

essential to update the calculations regularly to compensate for these changes. 1227 

5.3.4. Parameter Priority 1228 

If a user requires a simple payback period calculation for a manual method, only a few parameters 1229 

will be selected. Therefore, determining which assumptions and parameters have the greatest impact 1230 

on the accuracy of payback period estimates is needed. Weather and seasonal variation play a major 1231 

role in the energy production due to temperature, number of hours of sunlight and solar irradiance. 1232 

However, during a year, the total energy output needed for the payback period calculation involves 1233 

the total annual values. Yearly factors such as degradation will play a greater role in the yearly values 1234 

and therefore the payback period. Above all of the parameters, the financial information is vital to the 1235 

payback period calculation. The energy output fluctuates for seasons while slowly degrading at the 1236 

same time, and the cost of energy can rise, so over time, less energy might not be equated with less 1237 

cost. This was clear in Table 4.9, where the energy output decreased due to degradation, but the cost 1238 

increased due to inflation, resulting in the shortest payback period. 1239 

5.4. Method Analysis 1240 

Regular analysis of methods is important as technology, human understanding, and resources for 1241 

calculations continue to evolve. Different users require models with differing focuses. To discuss the 1242 

usefulness of methods, it is essential to consider both the accuracy of the results and their 1243 

accessibility. Part of this research is determining the limitations and trade-offs between accuracy and 1244 

simplicity. Therefore, versatility will also be evaluated; in this context, versatility means the 1245 

combined ability to be accurate and easy to use. This can also be used to determine which types of 1246 

users benefit the most from specific types of payback models.  1247 
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5.4.1. Models Focused on Accuracy 1248 

Theoretically, software such as HOMER could be more accurate if the forced changes made by the 1249 

program are applied. HOMER forced the addition of a battery and converter component due to its 1250 

primary function as a hybrid simulation tool. Therefore, if these systems are integrated, the software 1251 

in question might achieve greater accuracy than when compared to the current tests completed in this 1252 

study. However, this cannot be determined with the current data. Furthermore, if these modules are 1253 

unavailable, attempting to estimate payback with a program that compels the user to add non-existent 1254 

components would not yield more accurate results than other methods. The other software, SAM and 1255 

RETScreen were found to be better for payback analysis specifically. 1256 

Manual methods have the highest potential for accuracy, depending on the factors applied and the 1257 

quality of the data. However, they can also be the least accurate if the simplest methods are employed. 1258 

For manual methods, accuracy is determined by the amount of time and complexity the user decides 1259 

to invest. 1260 

The payback period will be the most accurate when the predicted power output is also the most 1261 

accurate. Higher accuracy is achieved when more known parameters are available to add to the energy 1262 

model. Solar irradiance plays a major part in predicting energy output; having access to high-quality 1263 

irradiance is essential to providing more confidence in energy predictions. Similarly, this study has 1264 

shown that incorporating the tilt angle provides more accurate conversions of solar irradiance and thus 1265 

higher accuracy. 1266 

5.4.2. Models Focused on Accessibility 1267 

Some software costs money while some are free. Most software types that do cost money offer a free 1268 

version of a limited time which may be an option for user who only want to use the program once. 1269 

While some are intuitive in basic use they all offer challenges. HOMER forces the user to apply 1270 

components that may not be available. SAM in general has a difficult user interface. RETScreen’s 1271 

free version does not allow the user to save their progress and so any calculations need to be 1272 

performed in a short amount of time. Other software such as macros may be difficult for people with 1273 

limited IT skills, and the one tested, PC3D, was unable to provide a payback period result in the end. 1274 

The manual methods are accessible; however, this can change depending on the methods used. Data 1275 

can be difficult to find depending on region and other software such as excel may be required to 1276 

effectively use certain methods. Simply put, the more accurate a manual method the more complex 1277 

and therefore the less accessible it becomes. 1278 
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5.4.3. Models Focused on Versatility 1279 

Versatility refers to how adaptable a method is to many different functions. Manual methods are the 1280 

most versatile since they can be changed to best suit the user and their situation. The accuracy will 1281 

vary, but the accessibility is quite high. For software, the versatility is also high when considering that 1282 

they can be used on most computers and can be adjusted using the program and not manually. 1283 

HOMER can only be used on one computer, however, and the demo version of RETScreen can’t save 1284 

progress, so that lowers the accessibility due to the high cost of the software. SAM can be installed on 1285 

multiple computers and doesn’t have either of these restrictions; however, its user interface is more 1286 

complex.  For accuracy, apart from forcing the user to adapt certain modules, HOMER is still the 1287 

most widely used for energy simulations. RETScreen and SAM are more suited to payback 1288 

calculations and provided accurate results like the simple payback period manual method. Other 1289 

software such as PC3D were complex and not suited for the task of calculating payback period. For a 1290 

user who isn’t well educated about PV systems and simply wants to calculate the payback period, 1291 

these more complex systems are naturally less suitable for this type of user. 1292 

5.5. Different Tools for Different Users 1293 

The assessment of accuracy, accessibility and versatility presented in this study can be a valuable tool 1294 

in the decision-making of users. A homeowner who wants to buy a small, simple PV system for their 1295 

home rooftop or garden would likely settle for the payback given to them by their supplier. They 1296 

would use the information on payback as a tool to decide if purchasing a solar system is beneficial. 1297 

This simple payback would likely be calculated with the stats from the PV panel data sheet, 1298 

estimating annual energy produced and deducting that from the energy the household uses to estimate 1299 

savings. On the other hand, an employee from a professional industry will have a method granted to 1300 

them by their supervisors and/or company. They would source a professional with a greater 1301 

understanding of PV and likely use payback as a project planning tool rather than a decision-making 1302 

tool.  1303 

The users that benefit the most from a variety of payback period methods are users who need a larger, 1304 

more complex system but aren’t PV experts themselves. An example of this would be a librarian who 1305 

wants to install a solar array for the public library where they work. To do this, they would need to 1306 

submit a proposal to the city council, and part of that proposal would need to be the payback period. 1307 

The user in this case can’t use a simple payback model but does not have the tools or prior experience 1308 

that the most complex methods require. This research provides the most benefit to these types of 1309 

users.  1310 
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5.6. Conclusion 1311 

5.6.1. Conclusion of Research 1312 

Various methods for calculating payback, including both software and manual methods, were 1313 

evaluated to determine usability, complexity and accuracy. The effects of different environmental and 1314 

economic factors were also analysed to determine their importance and impact on the results. Each 1315 

method tested (HOMER, SAM, RETScreen, PC3D and the manual methods) showed differing levels 1316 

of complexity, accessibility and feasibility as a payback period method. While there are unique 1317 

attributes that each method brings, there are collections of trends and insights that may be of interest 1318 

to researchers and industry. 1319 

Most importantly, the results show that manual methods offer a variety of benefits when calculating a 1320 

single value.  While software may provide better coverage for a full analysis of everything the system 1321 

has to offer. Payback period calculations specifically and on their own are better suited for manual 1322 

methods, which are comparable to software while being more reliable and less complex. When used 1323 

in small-scale or early-stage planning (which is when the payback period is most often performed) it 1324 

is more feasible to perform a simple manual method than to download a software package. Manual 1325 

methods allow the user full control over the assumptions and data used, which improves confidence in 1326 

the result and reduces the risk of incorrectly entering values or using incorrect default values 1327 

embedded in the software tools. Assuming the core input variables, such as system cost, annual 1328 

energy production, and local electricity rates, can be collected by the user manual payback period 1329 

estimation would be the preferred option for most. 1330 

The commercial and academic software tools tested do have some benefits. Some have detailed 1331 

modelling environments that can estimate system behaviour over time, such as degradation and 1332 

weather effects. If in the early stages of planning a system, these tools might provide additional 1333 

benefits outside of the payback period, such as selecting additional modules, such as inverters and 1334 

batteries, or even mounting systems. They could even help the user select the best type of PV for their 1335 

situation. However, they also come with steep learning curves, complex interfaces, default 1336 

assumptions, inconsistent support for local data, and restrictive software licensing. Also, most of these 1337 

systems are designed for larger, industrial or community-based systems, making them less desirable 1338 

for smaller, household-scale PV systems. 1339 
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The assumptions and parameters used in calculations were also found to differ in importance. Solar 1340 

irradiance was the most important, as it is the amount of solar energy a system is exposed to that 1341 

determines the energy produced. This directly determines annual energy output, giving it a linear 1342 

effect on annual savings and revenue. Therefore, accurate irradiance data is important for weather 1343 

predictions if considered. Other important factors included degradation, temperature and change in the 1344 

value of electricity. The complexity involved in using these factors when calculating payback varies 1345 

depending on the data and mathematical techniques available to the user. Some software tools support 1346 

some of these parameters either by default or via request. Manual methods can apply all of these at the 1347 

user’s discretion however some may be more difficult to find data for then others. This also differs 1348 

depending on locations as some areas have more detailed weather and electricity analysis than others. 1349 

The comparison also showed the balance between complexity and usability. Looking at payback 1350 

exclusive software can be highly complex with high usability while manual analysis has a tighter 1351 

scope but is generally less difficult to perform. Individual consumers, installers and potentially policy 1352 

makers may prefer a manual analysis when assessing the financial risk. 1353 

5.6.2. Limitations  1354 

One major limitation of this method is a general lack of inclusivity. There are many methods for 1355 

calculating payback period and time, and this process only tests a few. Another limit is the fact that 1356 

none of the software types tested are designed specifically for payback period, except for the manual 1357 

analysis. The software types used are all meant for general analysis of renewable energy systems, with 1358 

payback simply being a feature. However, when it comes to large-scale PV projects, these are the 1359 

tools used to determine payback, along with several other factors. The fact that most of the tools used 1360 

are not designed for payback needs to be considered further. Would it be worth creating a new tool for 1361 

this one purpose when other tools perform this function alongside many others?  1362 

There were limitations with the tests and analysis performed. The scope of software covered only 1363 

three commonly used types and one more obscure tool. There are many other modelling tools and 1364 

hybrid methods, some of which integrate new technology such as machine learning and AI, that may 1365 

offer unique techniques that have not been evaluated but are outside the scope of this study. Another 1366 

issue is that the data used for energy production, cost, and local conditions were taken from a variety 1367 

of sources and were not collected specifically for this study. There were also assumptions that, while 1368 

realistic, were not completely accurate, such as inflation and degradation (degradation of the panels 1369 

was known, but not how much they had degraded before data was collected).  1370 
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Pricing models and financial factors such as taxes, interest rates, and other variables cannot be fully 1371 

addressed, as these can change based on region, the global energy market, and overseas policies. No 1372 

data on discounted payback period metrics or NPV, and limited financial analysis. While the software 1373 

may be able to adjust for this to an extent, the manual methods cannot. Manual methods also did not 1374 

account for many different time-varying system behaviours or accurate degradation; they simply used 1375 

an average rate provided by panel sheet data. Also, a user’s ability to collect and correctly input 1376 

necessary information was assumed, which may not always be true in practice. 1377 

5.6.3. Future Directions 1378 

Due to the varied results, it would be beneficial to test more software tools if possible. This includes 1379 

emerging solutions like open-source platforms or mobile applications for homeowners and small 1380 

business owners interested in installing a PV system. A wider range of locations would also be 1381 

beneficial; investigations on how different methods perform across various regions and climates could 1382 

add extra insight. 1383 

Hybrid approaches could also be used to see if the versatility of manual methods can be boosted by 1384 

software through the visualisation of data and automated calculations. While difficult to account for 1385 

across the globe, investigating ways to include time-based financial analysis could also help users 1386 

whose main concern is cash flow. 1387 

It may also be useful to incorporate user experience testing. Including different types of users such as 1388 

engineers, consumers and policy makers. Seeing how each would theoretically interact with different 1389 

methods and evaluating ease-of-use and if needs were met. A more comprehensive view of parameter 1390 

sensitivity, especially for more complex systems, would also allow better understanding of which 1391 

factors are more important to include in testing as well as decreasing the uncertainty of results. 1392 

5.6.4. Final Remarks 1393 

The different payback period methods meet the practical needs of PV users by highlighting context, 1394 

purpose, and user skill level in their calculations. This study has revealed that for PV users, the 1395 

appropriateness of the payback period method is less influenced by technological advancements and 1396 

more by access to data and the technical skill of the user. 1397 

For small to medium-scale PV systems, manual calculations are preferred due to their simplicity and 1398 

reliability, providing an easy method for users who may not have extensive technical training. Larger 1399 

industrial systems benefit more from complex software for calculations. This complexity is justified 1400 

because payback period calculations represent only one of many financial metrics considered by 1401 

professionals who usually have specialised training in the chosen methodology by their organisation. 1402 
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In all cases, high-quality, location-specific data is important for accurate estimates and meaningful 1403 

conclusions. Transparency and simplicity are crucial, ensuring that the approach used for payback 1404 

calculations is accessible, reliable, and controlled by users to support informed decision-making 1405 

regarding energy solutions.  1406 

The research question was “How do different payback period methods meet the practical needs of 1407 

photovoltaic (PV) users?” It was found that transparent methods that allow for both complex and 1408 

simple equations that can operate with a limited amount of data while also accepting any additional 1409 

user-contributed information are what is most desired. A manual method suits these needs however 1410 

may still be intimidating for certain users. Recent developments have a limited effect on payback, 1411 

however the requirements for estimating energy output for systems such as TPV and QDSC can be 1412 

widely different, as they use vastly different processes to generate energy and therefore would require 1413 

different calculations and data than what was tested in this study. The assumptions and parameters 1414 

that have the greatest impact on payback are solar irradiance and changes in the cost of energy over 1415 

time, so for a simple but accurate calculation, these are the parameters that should take priority in the 1416 

choice of payback calculation. Manual methods prove to be the more transparent and customisable 1417 

option; however, software often allows the user to access data and processes they may not be familiar 1418 

with. Private users installing a small system benefit the most from a simple payback that uses the 1419 

system specifications and either savings based on the reductions from their current energy bill or 1420 

revenue from a planned payment plan. Industry personnel benefit from partnerships with specific 1421 

software that they can use to receive training. Meanwhile, non-PV experts who wish to install a more 1422 

complex system may need to look at their options and find one with a balance between accuracy and 1423 

simplicity. The trade-offs between those two are simple; accurate calculation methods are often more 1424 

complex as they require more steps, more data and more complex calculations, some of which can 1425 

only reasonably be performed by software. Meanwhile, simple methods are easier for non-experts but 1426 

may not account for enough of the parameters to be considered fully accurate. It is important to note, 1427 

however, that since the payback period is a predictive model it will always be classified as an 1428 

estimation. Some users only need a rough estimate to decide on financial feasibility, while others, 1429 

typically those planning larger, more expensive systems, will need an estimate with a much smaller 1430 

margin of error. 1431 
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APPENDICES  1625 

6.1. APPENDIX A: HOMER 1626 

The following is a detailed description of how to use the HOMER software. It includes a step-by-step 1627 

set of instructions along with screenshots of the software. No captions are used as the screenshots lie 1628 

within their description. 1629 

Design input specifications from left to right are: 1630 

If you have not started a project before, choose setup assistant, then use the map to find your location. 1631 

1. Select “Grid” from the schematic and manually input the electricity prices. 1632 

2. LOAD: The average monthly use from our data was input as the monthly electricity load. Use the 1633 

Add/Remove table to add each type of load. Add in the information for the converter, 19 x Sunny-1634 

power 60 inverter. These were put in as battery (ABB Flywheel 60) and converter (ABB 1635 

MGS100) using a search. Each component has an input box for the cost. Fill these in using the 1636 

values given for the inverters. 1637 

3. COMPONENTS: Panel specifications Jinko Solar JKM-285M-60 can be input by searching the 1638 

database under the tab labelled Add/Remove. Fill in the costs of the panels in the cost box. 1639 

4. CALCULATE: When all items have been input use the calculate button to run the simulation. 1640 

This button must be selected after each design change. 1641 

5. Weather data needs to be in a specific format and only a single year. 1642 

 

Design parameters  1643 

How much would it cost to buy electricity from the grid and how much does the system sellback for? 1644 

This example is assuming 70c cost and 40c sellback (70%)  1645 

 

Input Electric Load based on the data  1646 
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Our system  1647 

Put in the components: Jinko 285, capacity of 1090kW, and total cost of $4719218.50  1648 
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Deferable load  1649 

The input are the monthly averages from the CarPark data  1650 

  

Storage  1651 

Battery specification for LGchemRESU and price of $215424.00  1652 
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System converter  1653 

Unknown, this is a generic setup  1654 

  

  

  

After inputs are finished, click on Calculate (upper right hand side), the following scenarios are given  1655 
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Select the second one (that has all of the components)  1656 

  

  

 

  

Simple Payback using the assumed inputs  1657 
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6.2. APPENDIX B: SAM 1658 

The following is a step-by-step set of instructions in the use of the SAM software. Firstly there are 1659 

written instructions followed by screenshots of the software. No captions are present on the 1660 

screenshots as they are contained within the set of instructions. 1661 

Select Photovoltaic and then Single Owner from the list of options. The components are selected by 1662 

moving down the list of options in a panel on the left-hand side. 1663 

By inputting the longitude and latitude coordinates, SAM will search for the weather using a file 1664 

system that doesn’t appear to be able to be input as a CSV file. The next item on the list is to input the 1665 

module, search for the required Jinko Solar 285M, using the user defined options, change any of the 1666 

parameters as required and input the number of solar cells.  1667 

Following the list, search for the Sunny-Power 60 Inverter; SAM relies on data from each 1668 

manufacturer, assuming no modifications have been made.  1669 

There are a lot of comprehensive options for inflation depreciation etc and the user can choose to 1670 

either use the defaults or input their own. The cost of the system doesn’t seem to be able to be 1671 

inputted, instead SAM calculates it from the specified modules. This is the price today not the price in 1672 

2017 when our panels were installed. Run the analysis to determine the payback period.  1673 

SAM inputs and outputs click on each of the options from the list on the left hand side 1674 

Location and Resource: Climate Data  1675 
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Module: Select user entered specification, search for the jinko Solar panels, input the specific 1676 

information.   1677 

  

Inverter: select the required inverter from the list, the specifications are automatic. 1678 
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System Design: manually enter values for 19 inverters and 4037 PV panels. 1679 

  

Installation costs are generated based on the modules you selected  1680 
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OUTPUT  1681 
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1682 
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6.3. APPENDIX C: RETScreen 1683 

Below are detailed instructions on how to use the RETScreen software. Screenshots of the software 1684 

follow written step-by-step instructions. No captions are connected to the screenshots since they are 1685 

embedded in the instructions. 1686 

To start the analysis, fill in the fields from the tabs: 1687 

1. Location: input the location and type of facility, this will search database to find climate data.          1688 

Input the Jinko PV system from their database.  1689 

2. Facility: this tab lets you specify the type of buildings, commercial or residential 1690 

3. Energy: A lot of the energy inputs are unable to be used such as the end use of the electricity, 1691 

such as heating/cooling and lighting in offices/labs/exterior. I don't have any of that information. 1692 

The only part of this tab is to input the photovoltaic information. Select the level 2 options and 1693 

use the search engine to find the Jinko solar panels and the Sunny-Power 60 inverter. To make it 1694 

comparable to HOMER, use the average output for each month from our data as the load. 1695 

4. Cost: this is a simple tab that lets you manually put in the total financial costs. 1696 

First enter the location and click on the search button, a map will open where you can pinpoint the 1697 

actual location. 1698 
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The energy tab has a lot of information about the end use of the electricity which is unknown 1699 

 

Click on photovoltaic energy and use the database to select Jinko PV system and input the number of 1700 

panels 1701 
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Fill in the inverter information manually based on the known specifications 1702 

 

 

Simple Payback summary 1703 
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Financial analysis 1704 

 

1705 
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6.4. APPENDIX D: PC3D 1706 

For this package, there are no databases, so each value needs to be manually entered. The PC3D 1707 

website outlines a series of examples, one of which is a mono-crystalline PERC. This example can be 1708 

used to fill in each of the values. The cells that contain a small red triangle contain information about 1709 

that parameter. 1710 

It has easy-to-use instructions embedded on each cell that define what each cell is. Doesn’t calculate 1711 

any financial information, no payback. The information we have from Jinko Holdings contains size 1712 

and weight parameters for a mono-crystalline PERC and power, voltage, and current specifications. 1713 

These allow calculations for simulated energy output. There are spreadsheets for recombination and 1714 

illumination, which cannot be used since we don’t have information on those. 1715 

 

 

 

 


