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Abstract 

Vermin are a significant pest in Australia and throughout the world. When vermin ingress into a dwelling they 

are usually only detected after infestation has occurred. It is hypothesised that by analysing channel state 

information extracted from a WiFi network, it will be possible to detect and identify vermin when they are 

within the signal path of a typical WiFi network. A sensing utility function could be embedded into a WiFi 

system that detects vermin and alerts to their presence. This project determines if this concept is feasible by 

collecting channel state information from a WiFi system constructed using only commodity components.  

 

Current standards defining the protocols that WiFi devices use require the determination of channel state 

information. Channel state information provides a rich representation of the propagation of individual 

components of the signal used in a WiFi system. Significant changes are observed when a physical object 

obstructs the signal path between transceivers. These changes can be analysed and categorised to identify the 

event occurring in the signal path, enabling passive sensing. Previous studies have investigated a variety of 

potential applications of WiFi sensing with an emphasis on health and wellbeing applications. The concept of 

using WiFi sensing to detect vermin is novel and has not previously been investigated.  

 

To determine if WiFi based passive vermin sensing is feasible a WiFi network consisting of a single pair of 

transceivers was used to generate channel state information when a mouse is within the signal path. The 

collected channel state information was then analysed in comparison to channel state information collected from 

a control signal path, containing the same static objects but without a mouse present. The mouse caused 

conspicuous fluctuations in the magnitude measurements of the channel state information data and was able to 

be reliably identified by a Neural Network. The WiFi network utilised for testing was not modified in a way that 

inhibited normal communication functions. The findings of this project demonstrate that it is feasible to embed a 

sensing utility function into a typical WiFi network and vermin can be detected by a WiFi sensing system.  
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1. Introduction  

This project aims to determine if it is feasible to create a system that could detect vermin using only inputs that 

would be generated by a functioning WiFi network that complies with the modern suite of Institute of Electrical 

and Electronics Engineers (IEEE) 802.11 standards. It is hypothesized that in a typical domestic dwelling with a 

WiFi network, the channel state information (CSI) generated by the WiFi network would contain the required 

data to detect vermin. If this concept is correct, it may possible that tracking algorithms could be refined and 

optimised until they are suitably robust, generic and reliable to create a software alert system that could be 

deployed in conjunction with a WiFi network to monitor the dwelling for vermin and alert when any vermin are 

detected so that the occupants can act prior to infestation. Such a system would be readily accessible as WiFi 

usage in homes is already ubiquitous and it would create an additional useful utility to existing WiFi devices that 

would help protect homes and property against vermin.  

 

Testing conducted as part of the project aims to demonstrate that vermin sensing, and detection is possible. Also, 

a review of detection techniques employed in similar studies will be used to identify and analyse the key issues 

that would need to be overcome to create a system that is capable enough to be useful. 

 

Electronic devices such as smartphones are becoming increasingly essential to everyday life and after decades of 

advances in computer sciences, integrated circuit manufacture and other related fields, an electronic device is 

available for almost every conceivable application, from delivering pizzas to complex keyhole surgery. The 

world is also becoming more digitally interconnected than ever. In 2021 91% of Australian adults had a home 

internet connection and this proportion is growing in Australia and the world each year (ACMA 2021a).  

 

1.1 Increasing the Functionality of Modern Electronics    

While this technological and information revolution has led to significant improvements to quality of life and a 

varied range of improved outcomes, there are also challenges. In 2018 the total generation of E-waste 

throughout the world was approximately 49.8 million metric tons, and the generation of E-waste is growing at 

three times the rate of other streams of waste (Islam, Dias & Huda 2020). One of the ways innovators are 

working to abate the generation of E-waste is to increase the functionality of devices maximising their potential 

use and reducing the need for discrete singular purpose devices. Smartphones are perhaps the best example of 

this as they now contain cameras, GPS mapping, calculators, along with a wide range of other app and platform-

based functions, and new functions and applications are being considered and investigated continuously.  

 

The adoption of the current Institute of Electrical and Electronics Engineers (IEEE) suite of standards 

IEEE802.11, that describes the protocols utilised by wireless networking equipment, has unintentionally 

provided an opportunity to expand the functionality of typical WiFi devices beyond networking applications and 

into sensing applications. Prior to IEEE802.11n wireless networking devices, only determined received signal 
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strength indication (RSSI). RSSI will reveal characteristics of the signal propagation between transceivers but is 

a course metric in terms of sensing capability and is only based on the power in the baseband signal. 

IEEE802.11n (and all newer iterations of the standard) compliant WiFi devices determine and utilise CSI, which 

is a granular representation of the power and phase of each subcarrier component in the signal (IEEE 2013). By 

using similar principles to the way radar technology has been used in aviation for decades, it is possible to use 

radio frequency (RF) signals to discern quite a lot of information about the surrounding environment (Zhou et al. 

2015). Passive sensing systems based on the measurement of received RF signals within the frequency spectrum 

used by WiFi have been developed that show potential to detect the presence of humans, count, localise and 

track people and recognise gestures and activities (E. Cianca 2017).  

 

1.2 Idea Development  

The project concept of using CSI from wireless networks for detection and monitoring was proposed by 

Professor John Leis. A significant focus of the previous studies examining potential sensing applications of CSI 

from WiFi networks relate to health and wellbeing. A recent project conducted by Wang, R. et al. (2022) 

demonstrated that respiration rate could be measured somewhat reliably by using information captured form a 

WiFi network. Damodaran et al. (2020) and Wang, C. et al. (2022) were able to create somewhat effective fall 

detection systems that could potentially assist carers in monitoring the elderly or vulnerable.  

 

Due to the important nature of healthcare, devices used for medical applications are often designed using a best 

practice approach. While perhaps useful in supplementing the existing tools available for such health and 

wellbeing applications, CSI from WiFi networks is not designed for or optimised for sensing activities  (Zhang 

et al. 2022). A key barrier impeding the development of WiFi sensing systems is the reluctance of wireless chip 

vendors and manufactures to expose CSI and make available control of the features of WiFi devices that would 

enable sensing (Schäfer et al. 2021). If applications of WiFi sensing that provide useful utility value without any 

serious consequence in the case of error are proven feasible it may motivate vendors and manufacturers to assist 

in the development of WiFi sensing due to marketability.  

 

1.3 Why Pests and Vermin?  

Rats are often not seen in dwellings unless they are present in large numbers (Vermin-Managing Rats in Your 

Home  2019). A close friend recently suffered from an unexpected and severe vermin infestation. His 

Townsville, North Queensland, home was infested with Black Rats. If this friend had realised there were vermin 

in his home before sighting a Rat, the damage caused, and cost of eradication could have been significantly 

reduced. Vermin can procreate extremely quickly. Mice in particular are prolific breeders and can give birth to a 

litter of up to 10 young every 20 days (CSIRO 2021). Australia is also one of only 2 countries that experience 

mice plagues, so management technologies are of particular interest to Australians (CSIRO 2021). When 

residing in a dwelling vermin can cause harm in many ways including carry disease such as leptospirosis and 
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5. Determine if it is possible to detect vermin via CSI what limitations and constraints may impede the 

development of a system intended to be used as an additional utility function in a typical WiFi 

communication network. 

 

2. Literature Review   

2.1 Background to Wireless Communications Technologies  

Two of the most important technologies that have enabled modern wireless communication networks to 

facilitate high data rates are Orthogonal Frequency-Division Multiplexing (OFDM) and Multiple-Input 

Multiple-Output (MIMO) (Ma 2019). The suite of IEEE standards that are used to define modern WiFi 

equipment, typically 802.11 a/b/g/n/ac, require the implementation of OFDM-MIMO technology.  

 

2.1.1 Orthogonal Frequency-Division Multiplexing and Multiple-Input Multiple-Output 

OFDM is a modulation technique that encodes data streams in multiple channels across multiple frequencies, 

enabling high bandwidth transmissions (Leis 2018). Each channel encodes a bit stream mixed with a unique 

carrier frequency. The final transmitted signal is a summation of each channel, so contains many different 

frequency components (Leis 2018). Figure 2. depicts three channel frequency division multiplexing. An OFDM 

scheme is similar, but each channel would contain an additional orthogonal frequency component also i.e. a sine 

and cosine component.      

 

Figure 2. Block diagram of frequency division multiplexing 

   (Leis 2018) 

MIMO utilises multiple transmit and receive antennas in the same communication session. Using multiple 

antennas allows for a higher number of individual channels to be used, increasing the data rate (Ma 2019). 

Reliability can also be increased by MIMO as each signal path between a single transmit-receive antenna pair 

will be unique. Some paths will be impacted less by signal fading caused by obstructions within the signal path 

that create reflections, refractions, scattering or other affects that attenuate RF signals, increasing the chance of 
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one path transferring the data successfully (Paul & Ogunfunmi 2008). MIMO systems are also capable of 

overcoming and in fact leveraging off of multipathing, a phenomenon where reflections, refractions and 

scattering caused by objects within the signal path cause the transmitted signal to arrive at the receiver multiple 

times independently.   

 

 

Figure 3. MIMO communication channel  

(Abbas 2016) 

Using multiple antennas in an RF transmission will not necessarily provide any benefit. MIMO becomes 

beneficial when signal processing techniques are used in each device to take advantage of multipathing and 

channel capacity (Jansons & Dorins 2012). 

 

2.2 Channel State Information  

An OFDM-MIMO system will transmit multiple frequencies using multiple signal paths. Channel State 

Information (CSI) describes how each frequency component of the transmission will propagate via each signal 

path. It provides a very granular assessment of the transmission as each CSI component describes an individual 

carrier frequencies attenuation and response as it traverses a specific signal path between a transmit and receive 

antenna pair.      

 

The received signal in an MIMO system can be described by:  

Y(f, t) = H(f, t) ∙ X(f, t) + N 

 

Where Y(f, t) and X(f, t) are the received and transmitted signals respectively in the frequency domain, with 

carrier frequency f, measured at time t (Viswanathan 2014). The convolution of the transmitted signal with the 

CSI, H(f, t), including the addition of some noise N, results in the received signal.   
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Figure 4. Channel description of MIMO system  

           (Viswanathan 2014) 

In Figure 4. the H matrix in the Channel depiction is the CSI matrix. When an MIMO system also utilises 

OFDM each transmission within the common channel will be comprised of several induvial signals modulated 

using a carrier frequency then mixed into common signal to be transmitted across the channel.  

 

In a WiFi system, CSI will describe how an individual subcarrier propagates through a signal path between the 

antennas of two adapters (Wang et al. 2021). CSI is a set of values that will correspond to an ODFM subcarrier: 

CSIi = |CSIi|e
j(⊾CSIi) 

(Wang et al. 2021) 

Where CSIi  is the CSI of the ith OFDM subcarrier. 

 |CSIi| represents the gain,  ⊾CSIi represents the phase.  

The signal received by an OFDM-MIMO system can be described in terms of the subcarrier index:  

yi = Hixi + ni 

(He et al. 2020) 

Where i is the subcarrier index of the OFDM scheme,  xi  ∈ RNT  and yi  ∈ RNR are the transmitted and received 

signal respectively. NT and NR are the number of transmit and receive antennas respectively and ni is a vector 

representing the noise (He et al. 2020). Hi represents the CSI matrix for the ith OFDM subcarrier.  
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(He et al. 2020) 

2.2.1 Channel State Information for Sensing  

The capability of using high frequency radio systems (UHF, SHF and EHF) for sensing and localisation 

applications has been utilised for decades and is well understood. RSSI is determined almost universally in 

wireless communications systems and has been used as the input to sensing systems successfully. However, 

RSSI is much courser metric than CSI. RSSI’s utility value for sensing is reduced dramatically in complex 

situations (such as indoors with multiple objects in the signal path) due to multipath fading and temporal 

dynamics (Yang, Zhou & Liu 2013). RSSI would not be a suitable input for a system capable of detecting 

vermin reliably indoors and would likely be unsuitable for most other potential utility sensing functions of a 

WiFi network. 

 

The intent of determining CSI is to allow the WiFi devices to optimise communication by avoiding signal 

fading. When a physical object impacts the signal path there will be distinct changes in the CSI values (Wang et 

al. 2021). By recognising the pattern in which these changes occur when the signal path is impacted allows the 

event causing the change to be categorised and recognised, enabling passive sensing.  

 

Each antenna-to-antenna signal path within an MIMO-OFDM WiFi system will traverse the objects within the 

signal path in different ways and differing areas of the frequency spectrum are not uniformly impacted by the 

size and composition of physical objects. This makes it possible to discern information about the physical 

environment by analysing the signal (He et al. 2020).  

 

2.3 Survey and Analysis of WiFi Sensing Research  

WiFi devices that determine and utilise CSI have now been commonplace for over a decade and with WiFi 

networking becoming increasingly ubiquitous, the potential of using CSI (and WiFi systems in general) to create 

passive sensing systems has attracted the attention of researchers. Earlier projects focused on detection of 

humans and some basic characterising of actives such as being stationary or moving (Xiao et al. 2012; Wu et al. 

2015; Zhou et al. 2015; Palipana, Agrawal & Pesch 2016). Once the sensing potential was proven to be feasible, 

WiFi based intruder detection systems were noted as a potential application and investigated by (Gong et al. 

2015; Tian et al. 2018; Lin et al. 2020) . A more recent focus has been the potential of using WiFi sensing in 

healthcare applications in part driven by the emphasis the COVID19 pandemic placed on the importance of 

improving healthcare technology (Ge et al. 2022). Two of the most common aims are to accurately sense vital 

signs (He et al. 2020; Wang, Yang & Mao 2020; Kanda et al. 2022), and create fall detection systems (Wang, 

Yang & Mao 2017; Damodaran et al. 2020).  
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The targets and aims of WiFi sensing testing and experimentation are broad. Some novel studies examined 

whether fruit ripeness can be measured (Tan, Zhang & Yang 2018) and more recently if fire can be reliably 

detected using commodity WiFi devices (Li et al. 2021).  

 

In Tan, Zhang & Yang’s (2018) work, it was assumed that the relative permittivity of fruit would change as the 

fruit ripens due to physiological changes. The change in relative permittivity 𝜀, would then cause a change in the 

attenuation factor 𝛼, which would be detectable by analysis of CSI due to changes in refraction.  

Complex relative permittivity: 

𝜀∗ = 𝜀′ − 𝑗𝜀′′ 

Attention factor:  

𝛼 =
2𝜋

𝜆0
[
1

2
𝜀′ (√1 + (

𝜀′

𝜀′′
)
2

− 1)]

1
2

 

 

Where 𝜆0 is the wavelength of the WiFi signal, 𝛼 is the attenuation factor and 𝜀, is the relative permittivity.  

(Tan, Zhang & Yang 2018) 

Due to multipathing, it proved difficult to isolate the signal within the WiFi system that travelled directly 

through the fruit being tested for ripeness but by examining the power delay over a wide range of subcarriers it 

was able to be isolated and the system developed was able to detect the ripeness of kiwi fruit and avocados with 

90% accuracy (Tan, Zhang & Yang 2018).  

 

 

Figure 5. The challenge of isolating the signal refracted through a fruit 

(Tan, Zhang & Yang 2018) 

2.3.1 Challenges Derived from Using WiFi 

The problem which Tan, Zhang & Yang (2018) encountered was exacerbated by two factors that would not be 

present in a purpose-built RF sensing system, for example an aircraft radar system. An MIMO-OFDM WiFi 

system creates very complex and less predictable multipathing that is not optimal for interpreting and thus using 
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a simple sensing algorithm due to the number of antennas and frequencies used. Tan, Zhang & Yang (2018) also 

intended to use signals spread across 600MHz of bandwidth to interpret which signal passed through the fruit 

with sufficient accuracy. The radio hardware used in a modern WiFi device is capable of performing this sweep, 

however local regulations and the WiFi devices configuration may prohibit using 600MHz of contiguous 

bandwidth to transmit signals with uniform spacing as was required.  

 

2.3.2 How the Wireless Spectrum is Managed and Potential Impacts on Sensing  

Within Australia the Australian Communications and Media Authority (ACMA) determines which spectrum 

areas are available for different services and purposes (ACMA 2022). The ACMA also govern the use of each 

spectrum area by imposing rules such as the maximum transmission power at certain frequencies and whether a 

license must be held to use certain spectrum areas. This includes which frequencies are available for use in local 

area wireless broadband communication services including WiFi. Other regions throughout the world have 

similar governing bodies and while the spectrum areas used for WiFi in other regions are similar due to 

commonality in the IEEE802.11 standards, there are differences and the complete spectrum utilised by the 

standard may not be accessible and what is accessible may not by contiguous.  

 

The spectrum utilised is portioned and assigned channels. IEEE8021.11ac, often referred to as 5GHz WiFi 5, 

channels are referenced by the centre frequency and are 5MHz wide (IEEE Standrads Association 2013). 

Standard bandwidths of 20MHz, 40MHz, 80MHz and 160MHz are used and are referenced by the centre 

channel i.e. channel 36 at 20MHz bandwidth will use 5170MHz – 5190MHz.   

 

Figure 6. Possible channel usage in IEEE802.11ac from 5170MHz to 5835MHz  

(IEEE Standrads Association 2013) 

 

In Australia channel 32, centre frequency 5160MHz to channel 48 centre frequency 5240MHz can be used 

indoors with up to 200mW of transmit power without restrictions (ACMA 2021b). Many other areas of the 

spectrum are available for use in WiFi, but this highlights the difficulty of performing a bandwidth sweep in 

order to collect CSI for sensing. Within channels data is encoded via OFDM on subcarriers with a default 

spacing of 312.5kHz (IEEE Standrads Association 2013). There are also special purpose subcarriers that do not 

transmit data. These null and pilot subcarriers are designed to make decoding data less complex as well as for 

error and integrity checking (Gast 2013). These subcarriers, in particular the null subcarriers, which are only 

used as a DC offset will create outliers in the CSI samples that need to be handled or disregarded in analysis. 
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Figure 7. depicts the subcarrier arrangement for IEEE802.11ac with pilot subcarriers denoted by a zero 

horizontal axis value.  

 

Figure 7. Subcarrier arrangement for 802.11ac (and similar 802.11 variants)  

(Gast 2013) 

2.3.3 Detection Modelling and Analysis  

The choice of modelling techniques in experimental sensing applications varies considerably. Simple models 

comparing the variance of CSI amplitudes captured in a static environment with those captured when motion is 

occurring in the signal path have been shown to reliably detect the presence of humans (Tian et al. 2018). 

Palipana et. Al (2016) used a nonlinear model utilising kernel principal component analysis that yielded high 

accuracy in detecting humans and was tested successfully in gesture recognition experiments also. Kanda et al. 

(2022) used a similar method to analyse the magnitude of specific frequency components that are impacted by 

the chest fluctuations occurring during breathing. Testing demonstrated that respiratory rate could be estimated 

with an error rate of only 3.5 breaths per minute (Kanda et al. 2022).  
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Figure 8. The outlier removal algorithm used by Schäfer et al. (2021) 

(Schäfer et al. 2021) 

 

A variety of statistical analysis methods and machine learning techniques seem to be suitable for sensing with 

CSI as the input and all techniques tested by Schäfer et al.’s (2021) provide capable of detecting the target 

stimuli with reasonable accuracy (Schäfer et al. 2021). It is highly likely that the analysis technique or sensing 

algorithm used can be somewhat abstracted from the other parts of a CSI sensing system. Therefore, a CSI 

sensing system could leverage of any number of the myriad of generalised automated machine learning and data 

analysis tools available. However, effective pre-processing requires a deeper and specific understating of the 

nature of CSI and the operation of WiFi equipment and signal processing in general and thus is a more 

important focus area when developing a sensing system.  

 

2.4 Significance of Previous of Work to a Vermin Detection System  

It is reasonably clear that even a very minor physical change to the signal path of a WiFi system can be detected 

via CSI analysis, validating the potential that vermin can be detected. Although the capability to distinguish 

between a static signal path and a signal path containing vermin may not ever yield a useful system. The 

detection would need to be specific enough that vermin could be identified in a non-static environment and most 

common stimuli like human presence and movement would not trigger a false alarm. One possible solution is to 

estimate the height of the obstruction of the signal path. Lin et al. (2020) explored this technique in order to 

prevent false alarms caused by pets in a WiFI based intruder detection system. Estimating height with only a 

single pair of WiFi devices is difficult but by examining the geometry of the signal fading with a known 

transmitter and receiver height a technique was developed with reasonable accuracy.  
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Figure 9. Diagram of signal fading between WiFi devices used for height estimation   

(Lin et al. 2020) 

Another potential method to distinguish between vermin and humans is to estimate respiratory rate. There is a 

significant difference between the typical respiratory rate of humans and vermin. A typical respiratory rate for 

rats is 85 breaths per minute (Ades 2018). The model Kanda et al. (2022) used for human respiration could be 

able to estimate vermin’s respiration rate and earlier work by Wang et al. (2017) and Wang et al. (2020) could 

provide alternate models that could also be potentially adapted to sense vermin’s vital signs.  

 

This project only attempts to determine if passive WiFi sensing can determine when a mouse is in the LOS 

signal path within a static indoor environment with static antenna placement for the purpose of determining if 

the concept of passive WiFi vermin sensing is feasible. This is not sufficient to determine if a system could be 

constructed that could detect vermin in a more useful and generalised sensing system that could be deployed 

with a typical WiFi network in a realistic scenario. Integrating different sensing models and developing the 

algorithms to facilitate automated model training as well as addressing challenges like dynamic antenna 

placement and obstructions outside of the LOS signal path will be beyond the scope of this project.  

 

2.5 Limitations of using CSI for Sensing  

While a degree of sensing potential of WiFi systems is proven, all previous works encountered several practical 

challenges that either limit the capability of the sensing system or must be overcome to make the system 

function. Some of the key limitations are summarised by Zhang et al. (2022): accessibility, sampling frequency, 

unsynchronized transceivers, distortion and non-distributed data collection.    

 

Issues with accessibility of CSI data arise because WiFi devices are not designed to make CSI available 

externally (Zhang et al. 2022). CSI is only handled in low level functions of the device where software and 

firmware applications are proprietary.  

 

Issues with distortion, sampling and non-distributed data collection can be somewhat overcome in testing by 

controlling the WiFi network in a manner suitable for sensing. However, these issues are significant challenges 
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if the eventual goal is to design a system that is abstracted from specific hardware and can operate in parallel 

with normal communication functions.   

 

2.6 Constructing a Sensing System with WiFi 

Regardless of the exact purpose, the general framework and components of most WiFi sensing systems are 

similar. A system can be deconstructed into three main elements, data collection, signal pre-processing and 

modelling that then infers the sensing results (Wang et al. 2021).  

 

 

 

Figure 10. Model of a typical human activity WiFi sensing system 

(Wang et al. 2021) 

One of the most critical and difficult aspects of the project was constructing a WiFi network capable of 

determining and logging CSI samples. To be assured that CSI from any readily available, modern, commodity 

WiFi device can be accessed and logged the software and firmware vendors would need to offer information and 

assistance. Seeking assistance from vendors and manufacturers is not practical for the project, and in any case 

willingness to help researches extract CSI parameters is extremely unlikely, as much of the required information 

may be considered sensitive and generally the systems that would need to be modified are proprietary (Kanda et 

al. 2022; Yadav et al. 2022).  

 

Open-source tools that extract the CSI parameters from legacy WiFi chipsets are available. The tool documented 

by Halperin et al. (2011) is the oldest known and has been widely used in research projects. It is implemented 

via a Linux operating system and can only be used to extract CSI measurements from an Intel WiFi Link 5300 

wireless network interface card (NIC).  
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Figure 11. Intel WiFi Link 5300 Wireless Network Interface Card 

(Halperin et al. 2011) 

  

Obtaining and installing an Intel 5300 NIC the NIC on a suitable computer that can then be used for testing is 

within the resources available to the project but could prove challenging. Both the hardware and the operating 

system needed to implement the tool are legacy, and thus they are becoming more difficult to source and may 

not interact expectedly with modern equipment. While investigating hardware to procure for the project it was 

noted that a more modern miniaturisation of the Intel 5300 was all that was readily available for purchase. It 

could not be verified whether the miniaturised version is compatible with Halperin et al.’s (2011) tools. The 

seller’s notes on several online retailers also stated that the NIC “would not work” with IBM, Lenovo, ThinkPad 

and Hewlett Packard laptops. Although unverified and non-specific these notes likely indicate challenges in 

using the NIC with a modern computer.  
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CSI is extracted Cartesian form: 

𝐇P = 
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Where si is the index of the subcarrier, 𝐇  is the CSI matrix,  P  is the captured packet number and N is the 

number of antennas. 

 

The tools also enable CSI to be extracted from VHT 80MHz IEEE802.11ac bandwidth channels and provide 

greater resolution (10-14 bit as opposed to 8 bit) than the tools created by Halperin et al. (2011) designed for use 

in the Intel 5300 NIC (Halperin et al. 2011; Gringoli et al. 2019). As demonstrated by Tan, Zhang & Yang 

(2018) wider channel bandwidth can be an extremely important element to sensing systems and the increased 

resolution of the Nexmon tools in comparison to the earlier tools will also provide better granularity of changes 

in the signal path. The WiFi NICs Gringoli et al.’s (2019) Nexmon tools oeprate with are also modern and utlise 

the WiFi the IEEE802.11ac that is typical of many currently in use commidity WiFi devies as oppsoed to 

IEEE802.11n which is now a legacy standard.    

 

Importantly procuring and operating Raspberry Pi miniature computers was within the scope of time and 

funding available to the project. Raspberry Pi models 3B+ and 4B provide a complete hardware platform with 

the Broadcom bcm43455c0 WiFi NIC as a standard inclusion. The standard hardware platform makes 

implementing an operating system compatible with the Nexmon firmware that can extract CSI straightforward 

forward, as all available standard operating systems and Linux kernel versions can be downloaded as disc 

images from Raspberry Pi’s website.  

 

One potential limitation of using a Raspberry Pi and Broadcom bcm43455c0 as the input to a CSI based sensing 

system is that the WiFi chip only contains a single antenna and only a single spatial stream is handled at a time 

(Gringoli et al. 2019). It is assumed that this will limit the sensing capability in comparison to a device with 

multiple antennas. The extracted CSI will be in the form of vector as the dimensions of 𝐇 , reduce proportional 

to the number of antennas. The WiFi components of the Raspberry Pi 3B+ and 4 including the resonant cavity 

antenna are located within a metallised can stamped with the Raspberry Pi insignia as shown in Figure 14.  
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Figure 14. Schematic of Broadcom BCM43455 (Left) and Raspberry Pi 3B+ with WiFi 

components circled (Right) 

(Preliminary Data Sheet BCM43455  2016; Raspberry Pi Documentation  2023) 

 

3. Methodology    

3.1 Planning  

The most meaningful way to test and develop a sensing system was to test with live vermin. Testing with mice 

was the most practical as a supporter of the project owns domesticated pet mice which can be used as stimuli. 

The use of animal testing in research is permissible but must be undertaken in accordance with the Australian 

Code for the Care and use of Animals for Scientific Purposes 8th Edition 2013 to ensure any use of animals is 

ethical, humane and the animals are treated responsibly. Adherence to the University of Southern Queensland’s 

Animal Wellbeing and Ethics Policy is also a requirement and ensures obligations under Australian code are 

met. 

 

3.1.1 Animal Testing and Ethics  

The University of Southern Queensland’s Animal Wellbeing and Ethics Policy requires researchers to seek 

approval prior to any project that involves animals (UniSQ 2022). There are two mechanisms to seek approval, 

completion of the Animal Ethics Research Application Form and seeking a formal exemption from the Animal 

Ethics committee. A formal exemption was requested as the project could be completed in accordance with two 

key criteria:  

• no interference with animals 

• no abnormal disruption of habitat 

(UniSQ 2022) 

 

Testing required a mouse was located in the signal path between a pair of transceivers in the WiFi network 

which CSI was being extracted from. The WiFi devices are small and portable so were positioned as required 
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while the mouse remained within it’s usual habitat. Since the mouse is a pet, it is considered to be within it’s 

habitat provided it is not placed in unfamiliar enclosure or moved to a different location for the purpose of 

testing. As the mouse is kept indoors in a typical (for North Queensland, Australia) domestic dwelling and is 

accustomed to being in close proximity to people and everyday household objects such as WiFi devices this was 

achievable without inferring with the mouse and without causing abnormal disruption of it’s habitat. On this 

basis, application ETH2023-0118 was submitted to the University of Southern Queensland Animal Ethics 

Committee in March 2023 and was approved based on negligible or risk exempt status. A copy of the 

application and approval are included in Appendix C. 

 

3.1.2 Consequences  

The project is intended to assess the feasibility of, as well as provide some groundwork to the development of a 

system that can provide an additional utility function to a typical WiFi network. It is hoped that the results will 

determine if vermin can be detected by CSI and that the concept of detecting vermin passively in a system 

utilising WiFi equipment is potentially feasible. By detailing the configuration and arrangement of testing 

equipment, the testing process and collecting CSI data, it is expected that the project will provide insight for 

other researchers to continue WiFi sensing testing and inspire further idea generation for the targets of WiFi 

sensing systems.  

 

The benefits of additional utility functions being deployed into WiFi networks include improved quality of life 

via convenience and a potential reduction in E-waste and the manufacture of single purpose devices. It is also 

possible that the specific sensing function being examined in this project may help contribute to the control 

measures already used against vermin (further detail of these consequences can be found in Section 1).  

 

3.1.3 Risk Management  

Most of the works that contributed to the project required programming and word processing undertaken on a 

desktop computer. While this is an extremely low risk activity the considerable amount of time spent on these 

activities did justify the employment of control measures such as:  

• Monitors located at arm’s length and eye level.  

• Keyboard and mouse on flat surface at least 10cm from the edge of the desk.   

• Wireless mouse and keyboard that can be repositioned for best possible ergonomics based the monitor 

in use.  

• Adjustable ergonomic chair with footrest adjusted so that hips and knees are level. 

• Timer to remind of posture change every 30 minutes as well as breaks.  

(WorkSafe 2020) 

 

Configuring and operating the WiFi equipment during CSI capture was the highest risk activity undertaken 

during the project. Tasks requiring manual handling and working with electrical equipment were undertaken 
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Figure 15. Testing equipment arrangement  

 

The design and arrangement of the testing equipment drew on elements of the tests documented by Forbes, 

Massie & Craw (2020), Ibrahim & Brown (2021), Li et al. (2021) and Schäfer et al. (2021). A standalone WiFi 

network is created by configuring the router to act as an AP but not connect to any other networks. The 

Raspberry Pi 4 then joins this network hosted by the AP and traffic is generated between the Pi and the router. 

While tools exist that can enable frame injection with a high degree of control and that can turn the WiFi NIC in 

the Pi into a primitive from of SDR, such tools are complex to implement and not realistic simulations of 

network traffic that would be present in typical WiFi network. Simply pinging the router proved sufficient in 

order to generate traffic for proof-of-concept testing. If the system was ever to operate in parallel with normal 

communication functions, traffic generated solely for sensing needs to be sparse enough to not overwhelm 

communications traffic.  

 

The Raspberry Pi 3B+ operates the Nexmon CSI extraction tools created by Schulz, Wegemer & Hollick (2016) 

and Gringoli et al. (2019). The WiFi NIC is placed into monitor mode by the tools, so will capture all traffic 

accessible and determine the CSI of each packet based on the method implemented by Gringoli et al. (2019). 

Figure 16. depicts a high-level flowchart of the WiFi NIC firmware with the modifications made to extract CSI 

shown in bold typeface. The tools also contain filtering functions to ensure that only desired traffic from the Pi 4 

has the CSI logged for analysis. While it would be possible to extract CSI from the router as well, there is some 

ambiguity in relation to how CSI is resolved when the number of antennas, cores and spatial streams are not 

aligned between the transmit devices and the CSI extraction device (Link et al. 2019). By extracting CSI from 

another Pi with identical WiFi hardware any ambiguity caused by transceiver mismatch is avoided with the 

exception that it is not possible to determine which antenna on the router the Pi 4’s antenna is paired with. The 
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filtered CSI can then be captured and stored to USB drive to be transferred to the computer where the analysis 

will be undertaken.  

 

 

Figure 16. Flow chart of WiFi NIC firmware for CSI extraction  

(Gringoli et al. 2019) 

 

3.2.1 Setting up Raspberry Pi for CSI Extraction  

The lite version of the Raspberry Pi operating system version was selected for use with the modified firmware 

patches to extract CSI as the minimal operating system is less likely to perform automated functions without 

deliberate user input which may interfere with the CSI extraction. There are also far fewer instances of 

installation and usage issues reported as opposed to when using the full Raspberry Pi operating system (Link et 

al. 2019).  

 

An installation bundle with precompiled binaries can be used to make installation of the firmware more 

straightforward. The installation bundle used in the project requires Linux kernel version 5.10.92 which is the 

kernel version of the January 2022 release of the Raspberry Pi lite operating system. The disk image of the 

operating system is downloaded from the Raspberry Pi website (refer Table 3.) and flashed to a 16GB micro-SD 

card using BelnaEtcher. It is not recommended to use Raspberry Pi’s official flashing tool as it doesn’t allow 

selection of specific legacy operating systems.  

 

Once the SD-card is inserted in the Pi it can be powered on and then must be connected to the internet. Since 

there is no graphical user interface there is little value in connecting a monitor to the Pi during CSI extraction, 

but a monitor is required for initial set up. Using the raspi-config command in the root group (root group via: 

sudo su) the software configuration tool can be accessed and used to set the time zone and local area network 

region as well as the configuration needed to establish a connection to the internet i.e. SSID and password. To 
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control the Pi from a remote computer and remove the need for a monitor, mouse and keyboard to be connected 

during testing it is also necessary to enable secure shell in the interface options. 

 

 

Figure 16. The Raspberry Pi configuration tool 

 

Once the secure shell interface is enabled, the Pi can be interfaced with via a remote windows computer using 

PowerShell. An Ethernet connection and valid network settings must be established between the windows 

computer and the Pi. If the username and IP settings are left as default in the Pi, a Linux terminal can be 

accessed in the Pi via ssh pi@169.254.217.1 in PowerShell. The address of the Pi can be confirmed via 

hostname -I before attempting to connect via PowerShell if required. A wireless LAN connection cannot be used 

as the network connection for the remote terminal as the CSI extraction tools will disable normal wireless LAN 

operation in the Pi and attempting to connect to WiFi network will interfere with the CSI extraction tools. 

 

To store and transfer the CSI data captured to another computer and parse into MATLAB a USB thumb drive 

must also be mounted to the Pi. The lite operating system will not do this automatically once a drive is inserted. 

A directory must be created to mount the drive using the mkdir /mnt/ command. Then, once the drives partition 

ID is known it can be configured to mount automatically by parsing the drives details as arguments to the sudo 

nano /etc/fstab command. After the drive is mounted automatically, it is important to note that the USB drive 

must be inserted every time the Pi is booted. The computer used for analysis is utilising a windows operating 

system so the USB drive must be formatted using a file system common to both Windows and Linux. NFTS was 

used in the project.  

 

Figure 17. shows a connection via PowerShell to the Pi being established and some basic checks. The df -h 

command is run to verify the USB is mounted. The 8GB ScanDisk USB is mounted at “/dev/sda1” and labelled 

“usbhdd”. The USB directory is then opened and all files are listed using the ls -a command showing four .pcap 

files “output1”, “output”, “test1234” and “test2504” which contain CSI captures performed during testing and 

design of the CSI extraction system used in the project.  
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Figure 17. Accessing the Pi and checking USB drive mounting 

 

It is important to complete all set-up tasks, in particular the tasks requiring connection to the internet before 

attempting to install the CSI extraction tools. Connecting to the internet is not possible once the tools are 

running and it is important to never update any of the Pi operating system components, even if prompted, as the 

CSI tools are version sensitive. To installs the tools enter the root environment via sudo su and input: 

curl -fsSL https://raw.githubusercontent.com/nexmonster/nexmon_csi_bin/main/install.sh | sudo bash 

into the terminal.  

 

The tools take several minutes to install, and it is important to observe the terminal for any error messages 

during installation. Once installed avoid making any changes to the Pi’s wireless LAN interface to ensure the 

tools remain operational.  

 

3.2.2 Operating the Extraction Tools  

The CSI tools are operated via the Pi 3B+’s remote command line. The Pi can be positioned as required for 

testing and is reasonably robust and portable while within a case but requires connections to the power supply 

(right Figure 18.), the USB HD (top left Figure 18.) used to transfer CSI data and the Ethernet connection (top 

right Figure 18.) to the computer hosting the remote command line. The position of the Pi 3B+ does not impact 

the signal path being analysed in a CSI capture as it is extracting the CSI from the Pi 4. To execute a CSI 

extraction the Pi 3B+’s WiFi NIC needs to intercept the packets from the Pi 4 reliably, so must be in proximity. 

Within 4 or 5 meters is recommended, to ensure a reliable WiFi signal.  
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Figure 18. Raspberry Pi 3B+ with required connections for CSI capture 

 

To capture and log CSI from a specific device the channel and bandwidth of the WiFi network must be known 

and the MAC address of the device from which CSI is going to be captured form. The WiFi NIC’s MAC 

address of the Raspberry Pi 4 is: E4:5F:01:6A:CC:BC. The MAC address can be displayed by using the output 

of the ifconig command and locating the details of the WiFi NIC in the output.  The channel and bandwidth of 

the network can be set via the AP. In the project WiFi channel parameters are configured via the TP-Link 

webserver, accessed by connecting to the routers IPv4 address via a web browser.   

 

Using the Raspberry Pi 3B+ terminal the command to configure and run CSI extraction can then be inputted. 

The mcp (makecsiparams) command configures the extraction. The arguments passed to mcp define the 

parameters of the CSI extraction. A list of arguments is included in Table 4. Not all possible arguments must be 

passed to mcp as any not included will revert to default values.  
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Figure 19. Help view of the Nexmon utility 

 

3.2.3 CSI Capture Operating Instructions and Example 

A capture of 1000 CSI samples from the Raspberry Pi 4 on WiFi Channel 157 – 5785MHz, with 20MHz 

bandwidth was undertaken to test the CSI extraction system and detail the operation. The TP-Link router is 

configured so that it will only operate a single 5GHz network in the IEEE 802.11ac mode via the TP-Link 

webserver. The routers IP Address was set to 192.168.1.1. The selection of IP Address is not significant to the 

RF parameters of the CSI extraction but is used to access the TP-Link webserver and to generate traffic between 

the router and the Pi 4. Since the router facilitates dual-band operation, the 2.4GHz IEEE 802.11b/g/n functions 

are disabled to ensure there can be no unintentional connection and minimise sources of interference. This is 

configured by: Wireless 2.4GHz > Wireless > select Disable Option – as shown in Figure 20.  
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Figure 20. TP-Link webserver – disabling the 2.4GHz IEEE 802.11b/g/n network 

 

The 5GHz 802.11 a/n/ac networking functions are then enabled and set to operate via a fixed channel 157 and 

channel width 20MHz via: Wireless 5GHz > Wireless > select Enable Option, Channel 157 and Channel Width 

20Mhz – as shown in Figure 21.  

 

The network is named “CSI Test” for easy identification when connecting to the Pi 4. Since the Pi 4’s Broadcom 

WiFi NIC is complaint with IEEE 802.11ac the TP-Link router and the Pi 4 will utilise IEEE 802.11ac during 

their communication session (Ward 2012; Preliminary Data Sheet BCM43455  2016).  

 

 

Figure 21. TP-Link webserver, the 5GHz IEEE 802.11ac settings for test extraction  

 

The Raspberry Pi 4 needs to be connected to the WiFi network hosted by the TP-Link router and then generate 

wireless traffic so that the Pi 3B+ can record and log the CSI. Using the Pi operating system, the Pi 4 can be 
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Enter the root environment.   

 

2. Input:  

root@raspberrypi:/home/pi# mcp -C 1 -N 1 -c 157/20 -m E4:5F:01:6A:CC:BC -b0x88 

Comments:  

Configure CSI extraction to extract from a single core and spatial stream (all that is possible with a Pi) on 

channel 157 with 20MHz bandwidth. Filtering for MAC address E4:5F:01:6A:CC:BC, the address of the Pi 4 

for frames starting with 0x88. Frames starting with 0x88 are QoS frames including traffic generated by pings. 

This creates a method of filtering frames that are specifically generated for testing from other unwanted traffic.  

Output: 

ndABEQGIAQDkXwFqzLwAAAAAAAAAAAAAAAAAAAAAAAAAAA== 

 

3. Input:  

root@raspberrypi:/home/pi# ifconfig wlan0 up 

Comments:  

Turn on the WiFi NIC. 

 

4. Input: 

root@raspberrypi:/home/pi# nexutil -Iwlan0 -s500 -b -l34 -

vndABEQGIAQDkXwFqzLwAAAAAAAAAAAAAAAAAAAAAAAAAAA== 

Comments:  

Configure the extractor to extract from the WiFi NIC (wlan0) by passing the parameter string generated. The 

other arguments are custom values which remain static regardless of configuration.  

 

5. Input  

root@raspberrypi:/home/pi# iw dev wlan0 interface add mon0 type monitor 

Comments:  

Enable monitor mode on the WiFi NIC. 

 

6. Input: 

root@raspberrypi:/home/pi# ip link set mon0 up 

Comments:  

Turn on monitor mode.  

 

7. Input: 

root@raspberrypi:/home/pi# tcpdump -i wlan0 dst port 5500 -vv -w prtest.pcap -c 1000 

Comments:  
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bytes of row 0020 – circled bottom of Figure 24. 2 bytes forward of 0x111, is the MAC address of the Pi 4, 

“0x5f :01:6a:cc:bc”. These features align with Gringoli et al.‘s  (2019) description of the output of the extraction 

tools confirming capture is CSI data.   

 

Figure 24. Wireshark captured of CSI Data   

 

3.2.4 Parsing CSI Data for Analysis  

The CSI data must be parsed into MATLAB so that analysis can be undertaken, and detection techniques can be 

tested. Utilising the function created by Gringoli et al.  (2019) to read .pcap files the CSI samples captured in 

UDP packets can be ingested into MATLAB as numeric values. Gringoli et al.  (2019) created several 

MATLAB functions that are designed for use with the CSI extraction tools. All are generic and can be used with 

hardware other than the Broadcom bcm43455c0. Each different WiFi hardware option the CSI extraction tools 

are compatible with will format the raw CSI data differently, so the parsing process differs also. The functions 

also only enable basic plotting of each captured packet’s phase and amplitude. As the project requires a 

significant volume of data be ingested, visualised and manipulated in more complex ways, only Gringoli et al.’s  

(2019) functions to read .pcap files was utilised in the project. The functions were also modified to decode only 

UDP packets from the bcm43455c0 without requirement for any arguments to be parsed. A full code listing of 

the modified versions of  Gringoli et al.’s  (2019) functions is located in Appendix E.  
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%%  
%-------------------------------------------------------------------------- 
 
Verifying the operation of the tools is important to ensuring data collected in testing is valid. The first 

verification step is to ensure the output variable csi_raw is a matrix containing 1000 rows, one for each captured 

UDP packet and 64 columns, one for each subcarrier of a 20MHz bandwidth capture, with each entry being a 

complex number.  

 

 

Figure 25. Test capture CSI data ingested, csi_raw Variable  

 

The raw CSI data can then be visualised. The objective of visualising the raw data is simply to ensure that it 

contains the features that would be expected of a CSI data. The MATLAB code below was used to plot the CSI 

data from a single captured packet for inspection, the resulting plot is shown in Figure 26.    

3.2.6 Matlab Code, Plotting Raw CSI:  

%-------------------------------------------------------------------------- 
%                          Plotting Raw CSI  
%Plots Raw CSI Data for inspection, magnitudes of all captured frames and 
%magnitude and phase of any selected frame   
%-------------------------------------------------------------------------- 
%Create subcarrier index 
subc_index = -(size(csi_raw,2)/2):1:(size(csi_raw,2)/2-1); 
 
%Plot Raw CSI Magnitudes:  
figure (10) 
plot(subc_index , abs(csi_raw.')) 
grid on 
xlim([subc_index(1) subc_index(length(subc_index))]) 
xlabel('Subcarrier') 
ylabel('Magnitude') 
title('Raw Channel State Information') 
 
%Plot Raw CSI - Single Frame Magnitude and Phase: 
pack_no = 54; %select packet for plotting  
 



54 

figure (11) 
subplot(2,1,1); 
plot(subc_index , abs(csi_raw(pack_no, :)).') 
grid on 
xlim([subc_index(1) subc_index(length(subc_index))]) 
xlabel('Subcarrier') 
ylabel('Magnitude') 
title('Raw CSI From File: ' + convertCharsToStrings(File) + ... 
    ', Frame no.: '+ pack_no) 
subplot(2,1,2); 
plot(subc_index , rad2deg(angle(csi_raw(pack_no, :)).')) 
grid on 
xlim([subc_index(1) subc_index(length(subc_index))]) 
ylim([-180 180]) 
xlabel('Subcarrier') 
ylabel('Phase  °') 
%% 
%-------------------------------------------------------------------------- 
 

 

Figure 26. Plot of CSI data from test capture: Phase and Amplitude vs Subcarrier Index 

 

The subcarriers in the x-axis are indexed as they are described in IEEE 802.11ac, for explanation refer to the 

plot in Figure 7. from Gast (2013). The phase changes in Figure 26. are uniform increments of approximately 

15˚ per subcarrier. This can reasonably be considered expected behaviour of a CSI as there is uniform rotation 

between subcarriers (Ward 2012).  
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To keep the x-axis continuous, the subcarrier index is no longer similar to what is defined in IEEE 802.11ac and 

now represents the data subcarriers in order of frequency – lowest to highest in numerical order. While the CSI 

data appears to be extracted successfully, the validity of any testing undertaken in the project is highly 

dependent on the correct operation of the CSI tools. Ideally CSI measurements would have been taken from 

another source and compared to the CSI data extracted by the tools used in this project. This could be achieved 

via the use of instrumentation, such as a spectrum analyser taking measurements from the WiFi hardware or via 

assistance from a party with access to the development tools used to design and construct the WiFi hardware. 

While either of these methods would be complex and are outside the scope of the project, it is important to 

ensure that as much verification as possible is undertaken to ensure that the tools are functioning as intended.  

 

While less robust, another method of verification is to compare the CSI data extracted in the test against CSI 

data extracted form a different toolset used by other researchers. Figure 28. plots CSI data extracted from the 

Atheros CSI Tool created by Xie, Li & Li (2015). Like the test extraction performed in this project, Xie, Li & Li 

(2015) note that the channel was stable during the extraction. While the Atheros CSI Tool is slightly older than 

Gringoli et al.’s  (2019) tool, and operates with 802.11n as opposed to 80.211ac it should be similar.  

 

 

Figure 28. Test capture of four CSI samples from the Atheros CSI Tool 

(Xie, Li & Li 2015) 
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on testing) compared to the frequency of traffic required for sensing (≈10ms) this won’t adversely impact 

testing. If the frames are transmitted between the Pi 4 and another device not part of the test network, they may 

not appear in the capture at all as they will not necessarily be on the same channel the CSI extraction is 

occurring on. However, if they are transmitted over the same channel, they will be captured and will be an 

outlier to the other CSI measurements as they will not be generated from the same transceivers or signal path. In 

the next section of this dissertation the pre-processing methodology of the CSI data collected during testing is 

detailed which aims to remove such CSI captures prior to sensing analysis.  

 

3.3.2 Controlling Bandwidth and Channel  

The channel and bandwidth of the test network (and WiFi networks in general) are controlled by the router or 

AP. Prior to the selection of the Archer C20 TP-Link router other models were trialled. Initially, a Netgear 

Nighthawk AC1900 was intended to be used as it was the most feature rich and powerful router available to the 

project. However, unlike the TP-Link router, the Netgear router could not be configured to operate with a fixed 

channel width. Both the TP-Link and Netgear routers could be set to automatically find an optimal channel (the 

recommended setting) or be configured to remain on a fixed channel. But the configuration options available for 

channel width differed. The Netgear router provides three configuration options to set maximum speed that 

correspond to 20MHz(289Mbps), 40MHz(600Mbps) and 80MHz(1300Mbps) channel width see Figure 29. The 

TP-Link router allowed a specific channel width to be selected and set see Figure 21. 

 

 

  

Figure 29. Neatgear configuration webserver 

 

The Pi 4 can scan all networks (via: iwlist wlan0 scan) and display the parameters of each network in range, 

including the channel. Scanning formed an important part of testing to ensure the channel used was vacant and 
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to ensure that the Pi 4 was connected correctly to the TP-Link router and with strong signal strength. The output 

of a WLAN scan performed on the Pi 4 is shown in Figure 30. It is notable that the standard IEEE 802.11i listed 

in the scan in Figure 30. refers to an access standard and not a wireless networking standard such as IEEE 

802.11ac.  

 

 

Figure 30. Scan of WiFi network in range of the Pi 4  

 

Determining channel width is more difficult than determining channel number. The most robust method is to use 

CSI to verify the channel width throughout a capture. To do this the CSI extraction must be configured to 

measure 80MHz CSI samples (the highest width available). The channel bandwidth can then be identified using 

the value of the CSI measurements. Throughout the data subcarriers the magnitude of the CSI will fluctuate but 

should maintain a reasonably consistent value, well above zero and the noise floor. If CSI is captured from a 

transmission within the same channel region but with lower bandwidth, the magnitude of each subcarrier will be 

insignificant until a subcarrier is sampled that aligns with data a carrying subcarrier. For example, referring to 

Figure 31. if channel 155 is an 80MHz channel with 256 subcarriers and channel 157 is a 20MHz channel using 

64 subcarriers, then subcarriers 0-64 (of -128 – 128) of channel 155 will align with the 20MHz channel 157.  
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Figure 31. Overlapping WiFi channels of varying width  

(IEEE Standrads Association 2013) 

 

It is straightforward to determine the channel bandwidth when inspecting a plot of the subcarrier index vs CSI 

magnitude. With the CSI capture configured to sweep 80MHz, six packets were captured, 3 from a 20MHz 

channel width and 3 from an 80MHz channel width. Figure 32. is the resulting plot identifying the channel 

width.  

 

 

 

Figure 32. Plot to identify channel width  

 





63 

3.4 Testing Arrangement and Configuration of Test Network  

Ensuring that ethical standards are adhered to limits the location of testing to the animal’s normal habitat, in this 

case that is the room the mouse used in testing is normally kept. The room is approximately 3m by 4m with 

2.5m high ceilings. The room is a bedroom used mainly for keeping animals within a 5-bedroom brick veneer 

house, located in Townville, North Queensland. A rectangular area approximate 3m by 1.7m was free of 

obstacles and available to set up the test signal path. The mouse’s usual enclosure is a steel cage which would be 

undesirable to introduce to the signal path during testing as it may impact the CSI measurements. The owner 

explained that the mouse is often taken out of its enclosure for cleaning and socialising and kept on a 300mm by 

300mm mostly plastic tray with some husbandry items shown in Figure 33. (left). Usually, the tray is placed on 

top of the mouse’s enclosure or on a self and never on the ground.   

 

Figure 33. The mouse positioned for testing (left) and close up of the mouse used during testing 

 

The Pi 4 and the TP-Link router were placed on plastic boxes 350mm above the ground and 2.5m apart creating 

a 2.5m long LOS signal path. A third plastic box also 350mm in height (shown in the left of Figure 33.) was 

placed in the centre of the 2.5m signal path to house the mouse within the signal path. Figure 34. was taken in 

the room where testing was conducted and shows the TP-Link router on the left, the box used to elevate the 

mouse in the centre and the Pi 4 on the right.   
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Figure 34. Singal path used for testing  

 

 

 

Figure 35. Close up of the TP-Link router and Pi 4 in the test network 

 

During testing the Pi 3B+ could be kept in the same room approximately 1.3m form the Pi 4. A LOS signal path 

2.5m long can be considered suitable for sensing testing as there should no significant attenuation caused by 

distance and the length of signal path is reasonably consistent with that used in most other documented sensing 

testing based on a survey conducted CSI based sensing research, shown in Table 11.  
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3.4.1 Testing Procedure  

Two types of tests were undertaken, vermin detection tests where the mouse is within the signal path while CSI 

measurements are extracted and logged and control tests. Control tests were conducted when the mouse was 

removed from the signal path but with all the same objects, including the mouse’s husbandry items in the signal 

path and were always undertaken in the same room. Control tests were also always undertaken on the same day 

immediately after vermin detection tests to ensure weather conditions and sources of interference were similar. 

The room contained a ceiling fan and there was a WiFi network operating within the house where testing was 

conducted. To avoid interference during testing the fan and all WiFi devices in the house were switched off and 

no persons were present within the room during testing. The Pi 3B+ was interfaced with via an Ethernet patch 

lead connected to the computer hosting the remote terminal line and the Pi 4 was controlled via a keyboard. 

Tests were observed and the equipment was operated from a position several meters behind (opposite direction 

to the Pi 4) the TP-Link router outside the bedroom doorway.  

 

An 80MHz channel width was used for all testing as it is the widest bandwidth compatible with the Pi’s. A 

wider bandwidth produces more CSI data, and a greater spectrum increases the chance of a subcarrier within the 

spectrum interacting with an object in the signal path in a significant way, as Tan, Zhang & Yang (2018) 

demonstrated when attempting to sense fruit ripeness. The choice of channel was largely based on avoiding 

interference as opposed to sensing efficacy. The tests were conducted in the inner suburbs of Townville, and it is 

highly likely that numerous other WiFi networks were operating nearby in adjacent dwellings. The Pi 4 can scan 

for other WiFi networks using the iwlist wlan0 scan command. The output of this command details the signal 

strength and channel of any networks that are within range of the Pi 4 and so any channels present could be 

avoided to prevent interference. As a default, a high value channel, 149+, was used as these channels seemed to 

be utilised less often. Possibly because there are greater restrictions around their use or because WiFi devices 

search for an available channel in ascending order (ACMA 2021a, 2021b). By using a channel not identified by 

the Pi 4 scanning utility, the chance reduces significantly of interference being caused by a nearby WiFi network 

as it can be determined that no WiFi networks are operating on that channel within range of the Pi 4 at the time 

of the scan.  

 

To generate traffic and create transmissions between the Pi 4 and the router the Pi 4 pings the router at 10ms 

intervals. A common problem encountered with CSI sensing is irregular data-distribution (Zhang et al. 2022). 

This mostly arises from being unable to determine the exact Tx and Rx partners of a CSI sample and the 

intervals between CSI samples being irregular as WiFi communication is not synchronized. This is somewhat 

overcome in the test network by filtering CSI samples so that only QoS packets are captured and 10ms was 

selected as experimenting revealed that ping times less than 10ms started to become far more irregular when the 

network was being used for normal communications.  

 

For example, as an experiment, 2000, 10ms pings were generated between the Pi 4 and the TP-Link router while 

the Pi 4 was also constantly refreshing a web page. This caused an average time of 10.03ms between pings. The 
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The Hampel identifier is used to identify outliers. To determine the Hampel identifier, the median value of the 

window, denoted 𝑚𝑘, is determined. 

mk = median (𝐖k
K) = median {xk−K, … , xk, … xk+K} 

(Pearson et al. 2016) 

The median value is then scaled by a factor of the median absolute deviation (MAD) often denoted by κ, which 

for normally distributed data is: 

κ =  
1

√2 erf−1 1
2

 ≅ 1.4826 

Where erf is the error function.  

 

The Hampel identifier tSk can then be determined.  

tSk = t ∙ κ ∙ mk 

(Davies & Gather 1993) 

Where t is factor of the MAD and a filter tuning parameter, κ is MAD (≈1.4826) and mk is the median value 

of the window.  

 

If the distance between the input sample to the Hampel filter and the median of the window (mk) is greater than 

the Hampel identifier (tSk), the input sample is identified as an outlier, and it is replaced by median of the 

window (mk).  

The filter response can be given by: 

yk = {
xk   |xk − mk|  ≤ tSk,

mk   |xk − mk| > tSk.
 

(Davies & Gather 1993; Pearson et al. 2016) 

Where yk is the output, xk is the input, mk is the median value of the window and tSk is the Hampel identifier.   

 

The scaler t, used to determine the Hampel identifier was set to 3, which aligns with the empirical rule of 

statistics in that 99.7% of a normally distributed population will reside within three standard deviations of the 

median value (Kaye & Freedman 2011).  

 

By setting the scaler t, to 3, the only variable tuning parameter to the Hampel filter then becomes window size. 

Window size is defined by number of samples on each side of the sample subject to the filter. In both Schäfer et 

al.’s (2021) and Wang, Yang & Mao’s (2020) pre-processing, window lengths of 3 – 5 samples were used. Li et 

al. (2021) used a significantly longer window of 11 samples and was also anticipating much finer features in the 

CSI data collected as the aim was to detect fire with extremely close transceivers. While vermin are likely to 

induce finer changes in the CSI data as opposed to humans, which were the target of Schäfer et al.’s (2021) and 

Wang, Yang & Mao’s (2020) testing, his project uses longer intervals between frames in the CSI data collected. 
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These longer intervals are a key feature of the sensing system that is implemented in this project but also likely 

increase the chance of variance between samples when compared to Schäfer et al.’s (2021) and Wang, Yang & 

Mao’s (2020) testing. If something is moving in the signal path a longer time between samples will correlate to a 

larger physical change and it is also reasonable to assume that fluctuations caused by hardware and firmware 

will be more pronounced over time as well. Since the variance amongst samples is expected to be a higher, a 

courser filter with a shorter window length should be less likely to remove samples that may by significant to 

sensing but a length of at least 3 should be utilised as proved effective in Schäfer et al.’s (2021) and Wang, 

Yang & Mao’s (2020) pre-processing.  

 

4.1.2 Implicit Removal of Unwanted CSI Captures 

When raw CSI data captured in testing was visualised in plots, two other phenomena were noticed that also 

create data unwanted for sensing. Some CSI captures contained data that was captured from a 20MHz 

transmission as opposed to the exclusively 80MHz transmissions intentionally generated for sensing. Others 

appeared to contain measurements not triggered by a transmission with most samples having zero magnitude 

and some with minor values just above the noise floor. 

 

The source of the 20MHz captures is almost certainly another device not part of the test network attempting to 

start a communication session with the Pi 4. The captures containing no significant magnitude are most likely 

not transmissions sent on the test channel. It is suspected they are QoS frames transmitted by the Pi 4 to another 

WiFi network on a channel nearby to the test channel. This frame is misinterpreted by the Pi 3B+ and as there is 

some cross talk and induced noise on the test channel some non-zero subcarriers are captured and logged. 

 

Figure 36. CSI data from test 37  

 

Figure 36. plots the CSI captures from a test that contained four captures from 20MHz transmissions and three 

captures with no significant magnitude. The implementation of the Hampel filter is designed to remove outliers 

occurring in individual subcarrier measurements but, in these cases the entire capture should be discarded as it 
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will not contain any data useful for sensing. The most robust method trialled in this project to identify and 

remove these captures is to exclude all captures that contain over 50 subcarrier measurements (approximately 

one fifth of all subcarriers) with magnitude less than 3% of the mean of all measurements throughout the 

capture.  

 

4.1.3 Pre-processing Methodology and MATLAB Code  

The pre-processing methodology utilised in the project can be described by six steps:  

1. Ingest Raw CSI from “.pcap” file. 

2. Remove null and pilot subcarriers. 

3. Remove any captures not containing measurements from 80MHz transmissions.  

4. Separate CSI data into components; magnitude, amplitude, and phase. 

5. Remove other outliers – apply Hampel filter to successive samples of each subcarrier.  

6. Output CSI data as matrices of components; rows-captures, columns-subcarriers  

 

The MATLAB code is used to implement these steps is listed below: 

%-------------------------------------------------------------------------- 
%                            Ingesting CSI  
%-------------------------------------------------------------------------- 
%Ingests CSI data from tools developed by Gringoli et al. 2019 
%Requires functions from Gringoli et al. 2019 MATLAB CSI Reader: 
%   readpcap.m – called by “readCSI” 
%Avialbe at: https://github.com/seemoo-lab/nexmon_csi  
%Only suitable for use with CSI captured from Broadcom 43455c0 WiFi NIC 
%-------------------------------------------------------------------------- 
%Packet Capture File read Parameters 
File = 'mouse15.pcap'; %file name of captured CSI data 
BW = 80; %either 20MHz, 40MHz or 80MHz bandwidth   
Max_UDP = 1000; %maximum number of UDP packets to read from capture file 
 
%Ingest CSI from .pcap decoder  
csi_raw = readCSI(File, BW, Max_UDP); 
%csi_raw is matrix of CSI samples from captured packets, columns contain  
%CSI data from each packet, rows contain CSI samples for each subcarrier 
 
%Arrange CSI in subcarrier order with centre frequency = subcarrier  
% index 0, as per 802.11ac 
csi_raw = fftshift(csi_raw,2); 
%%  
%-------------------------------------------------------------------------- 
%                   Pre-Processing CSI Data for Analysis 
%-------------------------------------------------------------------------- 
csi = csi_raw; %move to new array for processing 
%-------------------------------------------------------------------------- 
%Remove null and pilot subcarriers  
%For 80 MHz bandwidth, null outside of -122 - 2 and 2 to 122  
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%pilot subcarriers at +-(11, 39, 75, 103)  
 
%Create list of Null and Pilot subcarriers  
%List subcarriers to remove: 
sub_remove=[1:6, 26, 54, 90, 118, 127:131, 140, 168, 204, 232, 252:256]; 
csi(:, sub_remove) = []; %delete subcarrier columns from raw CSI data 
%-------------------------------------------------------------------------- 
%Remove any outlier captures, captures not containing significant power to  
%be considered valid 80MHz bandwidth captures should have all subcarriers 
%removed, captures removed should be either 20MHz or 40MHz channel width 
%or captures containing only noise  
 
%Calculate 3% of mean power for all CSI data - 3% can be used as tuning 
parameter 
out_vu = mean(reshape(abs(csi.').^2,1,[])) * 0.03; 
cap_remove = []; %list captures to be removed  
 
 
    for index = 1:length(csi) %scan all CSI captures 
        %number of subcarriers with power below 3% of mean  
        outliers = sum(abs(csi(index, :)).^2<out_vu);  
        if outliers >= 50 %remove when 50 or more subcarriers 
            cap_remove = [cap_remove index]; %list captures to be removed  
        end 
    end 
 
csi(cap_remove , :) = []; %delete capture rows from CSI data 
%-------------------------------------------------------------------------- 
%Filter CSI from outliers using the Hampel filter 
%separate CSI data into separate vectors of magnitude, amplitude and phase  
%filter is applied separately  
%Filter is applied to successive samples of each subcarrier – column wise  
%for CSI data matrix  
 
%tunning parameters 
w_l = 4; %window length 
t = 3 %scalar of standard deviation used for the Hampel identifier  
 
csi_mag = hampel(abs(csi), w_l, t); %processed magnitude CSI data 
csi_amp = hampel(real(csi), w_l, t); %processed amplitude CSI data 
csi_phase = hampel(imag(csi), w_l, t); %processed phase data  
%% 
%-------------------------------------------------------------------------- 

 

Visualising the raw versus pre-processed CSI data is an effective way to verify the pre-processing method. 

Figure 37. plots all CSI magnitudes in data collected during the 37th test conducted during the project. The data 

collected in the 37th test had a higher than average rate of outliers. Of the 264,000 CSI measurements logged 

39,006 were either removed or modified by the Hampel filter during pre-processing. The magnitudes of the 

processed CSI data are plotted in Figure 38.  
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Figure 37. CSI data from test 37, all raw data before pre-processing  

 

 

Figure 38. CSI data from test 37, processed data 
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4.2 Utilising CSI Data for Sensing   

Once CSI data has been pre-processed it can be investigated for features that are dependent on the environment 

within the signal path. The phase and amplitude of the CSI data are impacted by slightly different characteristics 

within the signal path. The amplitude of CSI quantifies the attention of the signal path for the relevant 

subcarrier. Any material within the signal path will attenuate the signal to some extent but of particular 

significance to vermin sensing is moisture, as the bodies of mammals contain significant amounts of water. 

Water absorbs microwaves considerably more effectively than most other materials. Multipath fading will also 

cause changes in the amplitude of CSI and the occurrence of multipathing is influenced by movement within the 

single path (Liu, Wang & Deng 2021).  

 

The phase of CSI measurements are a representation of the phase response of each sampled subcarrier. The 

phase response of each subcarrier is more likely to contain information about the signal path than amplitude data 

(Liu, Wang & Deng 2021). Comparatively minor changes in the signal path that cause reflection and refraction 

will cause changes to the phase response. However as shown in Figure 27. the phase between subcarriers also 

changes periodically and this periodic change is not synchronised between the transceivers that generate each 

CSI capture causing a pseudo random shift between captured frames. Experiments have shown that the phase of 

CSI data is more sensitive to changes in the signal path than amplitude (Zeng et al. 2014). However, phase data 

is also impacted so much by variations caused by the hardware and firmware via carrier frequency offset, phase-

locked-loop initialisation, unsynchronized frequency oscillators between transceivers etc. it is considered 

unsuitable for sensing when collected from commodity WiFi devices as it is not practical to separate this 

distortion from changes caused by the signal path (He et al. 2020).  

 

The amplitude (real) component of CSI data will also exhibit the periodic phase shifts created by the WiFi 

hardware. But, by utilising the magnitude of CSI measurements, periodic phase shifts are normalised so that 

variations in magnitude are reflective of the gain of the signal path of each subcarrier and there is no need to 

account for the phase shift between captured frames. For this reason, a recent feasibility analysis of fall 

detection systems based on CSI extracted from commercial WiFi devices identified magnitude as the most 

effective input to sensing algorithms (Guo et al. 2023). Figure 39. examines the 500th frame captured from test 

37.  
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this project extract CSI in Cartesian form, CSI amplitude and magnitude reference Cartesian form nomenclature. 

It is important to note though that what is referred to as CSI magnitude in this project may be referred to as CSI 

amplitude in another sensing research.  

 

4.3 Features Created in CSI from Vermin in Signal Path 

For a mouse to be detected reliably by a sensing system, it must cause changes significant enough in the 

magnitude measurements that they are detectable in comparison to the constant fluctuations caused by all 

sources of noise. Then, if detectable the effect the mouse has on the magnitude measurements must create a 

unique signature that can be recognised against the signature created by other stimuli in the signal path. This 

signature can be termed a CSI fingerprint (Liu, Wang & Deng 2021). To determine if vermin would be a 

feasible sensing target for a WiFi sensing system the initial testing needs to establish that a mouse can be 

detected when the presence of a mouse is the only change to the signal path. If the mouse can be detected with 

high confidence and the changes in the CSI data are significant when the mouse is present, there is the potential 

that creating vermin sensing system is feasible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Comparison of CSI data, left control test, right test with mouse  

 

The two tests that yielded the data plotted in Figure 40. were conducted on the same day within several minutes. 

The plots show CSI magnitudes after pre-processing. The left plot is a control test, and the right had the mouse 

in the signal path. There is a significantly higher variance in the magnitude of the captured CSI samples when 

the mouse is in the signal path. This difference can be visualised more conspicuously by examining the 

fluctuation in the power in each captured frame. A scalar quantity that is indicative of the power in each frame 

can be calculated by: 
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Ppf = ∑|CSIi|
2

𝐼

𝑖=1

 

Where Ppf is a scalar quantity representative of the power in each captured CSI frame, 𝑖 is the subcarrier index 

and  |CSIi| is the magnitude of each CSI sample.  

 

 

 

Figure 41. Power per frame comparison of Tests 37 and 38 

 

The impact the mouse has on the CSI data when in the signal path is very apparent when comparing the power 

per frame to a blank control test. In the data captured with the mouse in test 37, between frames 200 and 300 

there is a notable stabilising of the power per frame. Since both tests were conducted with a 10ms ping interval 

time, this period is approximately 1 second. Since fading is highly dependent on movement, this likely 

represents a period where the mouse kept still (Liu, Wang & Deng 2021). It is difficult to closely observe the 

mouse during testing as being close to the signal path would cause interference. Five tests were conducted with 

the mouse in the signal path and a smartphone camera in a fixed position filming the mouse. In all filmed tests 

the mouse was never completely still (always sniffing, twitching, or preening to some extent) but at times did 

briefly stay in the same location in it’s enclosure.  
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4.3.1 Observations of the Mouse in Filmed Testing   

In Test 73 the mouse was filmed within the signal path and the CSI data captured is visualised in Figure 42. 

During periods when the mouse was moving less, there is a noticeable reduction in the distribution of power in 

the captured CSI data. The CSI capture was 10 seconds in duration with 10ms interval pings, triggering 

measurements. The duration of the test is approximated in the x-axis of Figure 42. When the capture begins the 

mouse emerges slowly from the tube it houses in, then walks quickly to one corner of the enclosure which takes 

approximately 3 seconds. Then the mouse pauses for about 0.5 second before moving to it’s food bowl. At its 

food bowl it pauses again briefly about 7.5 seconds into the test, then begins looking around while making small 

stuttering movements.  

 

 

Figure 42. Results from filmed test 73, Power vs Approximate Test Duration 

 

4.3.2 Variance in Power Distribution    

In all tests conducted with the mouse in the signal path there was a similar amount variance in the distribution of 

power within the spectrum. Variance appears to fluctuate based on how much the mouse moved around during 

the test but was always significantly and conspicuously higher than the variance in the distribution of power 

during a blank control test. On the 14th of August 2023, a testing session was conducted that yielded 20 CSI 

captures suitable for analysis. 10 containing the mouse in the signal path and 10 blank control tests with a 

similar signal path but without the mouse present. Figure 43. plots the variance between the power in captured 

frames (after pre-processing) in each test. The variance is normalised between 0 and 1 to aid visualisation.  
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Figure 43. Variance of power per frame throughout 20 Tests  

 

Some blank control tests that had only static objects in the signal path still show a significant increase in 

variance in comparison to other blank tests. This was always caused by the same phenomena and creates 

features in the CSI data distinct from those caused by the mouse. Unlike when the mouse is moving within the 

signal path, the CSI magnitudes always exhibit tight grouping. However, in some tests there were discrete 

groups of magnitudes centred around different values. The left side of Figure 44. plots the processed CSI data 

from test 16 (one of the tests yielding data for the plot in Figure 43.), and the right side plots the most extreme 

example of this phenomenon captured in all testing throughout the project.  
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analysing individual subcarrier measurements across different frames avoids the significance of changes being 

amplified by the subcarriers position.  

 

Figure 45. examines and compares data from two tests. One test conducted with the mouse in the signal path, 

with the CSI data labelled: “mouse39” and one blank control test with the CSI data labelled: “blank41”. Nine 

subcarriers spread evenly across the subcarrier index are analysed. In the right-side plots of Figure 45., the 

magnitude of each subcarrier over 100 measurements is plotted with the x-axis representing the CSI capture 

packet index and the y-axis subcarrier magnitude. The vertical lines in the two left side plots of Figure 45. show 

the location of the subcarriers analysed in the right-side plots.  

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45. Subcarrier analysis, Mouse vs Blank Control 
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Not all subcarrier measurements increase and decrease consistently between captured packets, demonstrating 

that the spectra used within the channel is not uniformly affected by the signal path. It also notable that 

subcarriers closer together exhibit more similarities. For example, subcarrier 20 and 45 from “mouse39” in 

Figure 45. contain mainly similar features but subcarriers 20 and 220 show no obvious similarity. This 

highlights how varied regions of the RF spectrum will interact with the signal path differently and is why CSI 

measured from a wider channel can potentially discern more information about the signal path as Tan, Zhang & 

Yang (2018) proposed when attempting to create 600MHz sweep in the sensing system they designed. By 

examining variations in measurements between individual subcarriers there is more potential to identify any 

unique features that would be created by vermin.  

 

 

4.4 Constructing a Sensing System  

The testing undertaken demonstrates that a mouse does have a significant influence on CSI extracted from 

commodity WiFi devices. Figure 43. suggests the mouse could be reliably detected in the CSI data collected in 

this project by simply identifying an increase in CSI magnitude. One of the challenges when attempting to create 

a useful system that will identify vermin in a wider range of scenarios and not generate false positives is that any 

movement, especially from materials that interact strongly with microwaves will cause changes to the gain 

response of the signal path. The tests undertaken in the project involved close antenna placement with the mouse 

directly in the LOS signal path. When vermin are at the extremities of the range of the WiFi network or not in 

the LOS signal path, the effect on the CSI measurements will almost certainly be less significant. Gathering CSI 

data from testing with varied antenna placement and other moving stimuli in the signal path are beyond the 

scope of this project. However, using the data gathered a method is proposed that could form the basis of a 

sensing system that could be trained to identify vermin in a wider range of scenarios.  

 

The first stage requires dividing the CSI data into segments representative of a time window to enable block by 

block analysis of the CSI data. Then, features extracted from each induvial block will be used as the input to a 

machine learning algorithm. The statistical features used by Zhang et al. (2020) (see Table 1.) will be used as 

well as certain features from the WiFi-Based Intrusion Detection System proposed by Tain et al. (2018).   

 

4.4.1 Block by Block Analysis and Feature Extraction  

Analysing the CSI data in discrete blocks enables the sensing system to classify the events occurring in the 

signal path within a time window. A block size of 50 CSI measurements, representing a 0.5 second time window 

given the 10ms ping time used in testing, will be utilised. The coefficient of variation defined by Tian et al. 

(2018) was shown to be an effective metric to classify movement within the signal path and can be adapted to 

suit the CSI data collected during the testing in this project. It is calculated by first finding the auto covariance 

matrix 𝐂, of the CSI block:  
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𝐂 =  [cov(|𝐇∆T|, |𝐇∆T|)]m×m 

Where 𝐇∆T is the CSI matrix captured in the time window and m is number of subcarriers. 

Then to find the coefficient of variation ω, the square root of the maximum eigen value of the covariance matrix 

is divided by the mean of CSI magnitudes |𝐇∆T|:  

ω∆T =
√max (eigen(𝐂)

mean(|𝐇∆T|)
 

(Tian et al. 2018) 

The coefficient of variation can be utilised as a feature of the CSI block for input to machine learning processes, 

but Tian et al. (2018) also demonstrated that the ratio of coefficients of variation between two adjacent CSI 

blocks is effective way of determining if the amount of movement within the signal path changed significantly 

between blocks.  

R = 
ω∆T

ω∆T−1
 

(Tian et al. 2018) 

4.4.2 MATLAB code for block by block Processing and Feature Extraction 

%-------------------------------------------------------------------------- 
%                          CSI Feature Extraction 
%-------------------------------------------------------------------------- 
%Input pre-processed CSI data for feature extraction. Extracts features  
%from blocks of CSI data intended for input to sensing system.   
%-------------------------------------------------------------------------- 
%Load Processed CSI data, magnitudes only 
load("blank45_csi.mat"); 
csi = csi_mag;  
%File Name for Extracted Features  
feat_name = "blank45_feat.mat";  
%-------------------------------------------------------------------------- 
%Block Processing of CSI Data 
block_len= 50; % number of packets per block 
no_blocks = floor(length(csi)/block_len); %number of blocks to process 
block_index = 1; %initialise block index 
 
%Select Subcarriers for Analysis 
sub_ana = [20 40 60 80 100 120 140 160 180 220]; %subcarriers for analysis 
 
feat = []; %array to store features extracted from CSI  
 
for block_no = 1:no_blocks %process CSI data block by block  
    feat_block = []; %array to store features extracted from the block 
     
    %extract block from CSI data  
    block = csi(block_index:block_index + block_len-1, :); 
 
    C = cov(block); %calculate autocovariance matrix  
    eig_max = max(eig(C)); %find the maximum eigenvalue 
 
    uA_block = mean(block, 'all'); %mean of all CSI measurements   
    wT(block_no) = sqrt(eig_max)/uA_block; %coefficient of variation  
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    feat_block = [feat_block wT(block_no)]; %store features 
 
    %add additional block feature calculations here 
 
    %Analyse Subcarriers   
    for sub_i = 1:length(sub_ana) %iterate for the number of subcarriers 
        %extract subcarrier measurements 
        sub_block = block(:,sub_ana(sub_i)); 
 
        %Feature Extarction 
        u_sub = mean(sub_block); %mean 
        feat_block = [feat_block u_sub];%store features 
 
        med_sub = median(sub_block); %median  
        feat_block = [feat_block med_sub]; %store features 
         
        std_sub = std(sub_block); %standard deviation  
        feat_block = [feat_block std_sub]; %store features 
 
        skew_sub = skewness(sub_block); %skewness 
        feat_block = [feat_block skew_sub]; %store features 
 
        kurt_sub = kurtosis(sub_block); %kurtosis 
        feat_block = [feat_block kurt_sub]; %store features  
 
        %add additional subcarrier feature calculations here  
 
    end 
    %store all features extracted from the block,  
    % rows-blocks, columns-features, 1st column-coefficient of variation  
    feat(block_no ,:) = feat_block;  
 
    block_index= block_index + block_len; %move index to next block 
end 
%--------------------------------------------------------------------------- 
save(feat_name, "feat") 
%--------------------------------------------------------------------------- 
  

4.4.3 Sensing via Machine Learning   

The earliest well documented instance of utilising machine learning algorithms for CSI sensing was in 2014 

when Han et al. (2014) proposed a human activity classification system based on a one-class Support Vector 

Machine (SVM) (Han et al. 2014). More recently Neural Networks have been proposed as the most effective 

machine learning technique for CSI sensing system (Damodaran et al. 2020; Zhang et al. 2020; Schäfer et al. 

2021). Neural Networks are a machine learning process that is loosely based on a biological brain and are 

generally considered to be optimal for pattern recognition problems but have many different types of 

architectures that are suitable for a variety of applications. The Long Term-Short Term Recurrent Neural 

Network (LTSM-RNN) architecture is commonly used in CSI sensing research (Damodaran et al. 2020; Zhang 

et al. 2020; Schäfer et al. 2021). LTSM-RNN is considered the best architecture for handling time series data 

where temporal ordering is significant (Ma 2019). As a proof of concept, a Neural Network optimised for 
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pattern recognition will be used as a machine learning algorithm to classify blocks of CSI data collected in this 

project as either “blank” or “mouse”. Features extracted after block by block processing are used to train the 

Neural Network. After training the features from CSI data can inputted to the Neural Network and the network 

will output predicted classification in the form of weighted probabilities for each class.    

 

4.4.2 The MALAB code to Implement Neural Network 

%-------------------------------------------------------------------------- 
%                    Neural Network CSI Sensing System 
%-------------------------------------------------------------------------- 
%Ingests features extracted from CSI data, trains Neural Network to  
%classify signal path. Proof of concept implementation specifies two  
% classes - Mouse and Blank. 
% 
%Input data is matrix, with format: 
% Row 1: integer class identifier e.g. 1 = Mouse, 2 = Blank  
% Rows 2-end: Variables - features of CSI data   
% Columns: Observations - blocks of CSI data  
%-------------------------------------------------------------------------- 
%                         Training Data Preparation  
%-------------------------------------------------------------------------- 
%Load Features Extracted from CSI data 
csi_data = load("csi features.csv"); 
 
%Extract Class Identifier  
class = csi_data(1, :); %class identifiers 
csi_data(1, :) = []; %remove class identifier  
 
[no_blocks, no_feat] = size(csi_data); %dimensions of CSI data 
 
%Number of Classes - Additional classes must have labels added   
no_class = max(class); %number of classes  
class_labels = [ "Mouse","Blank"]; %class labels  
 
%Create Matrix of Target Classes 
% Rows: Classes 
% Columns: 1=belonging to class, else 0 
sp_class = zeros(no_class, no_blocks); 
 
%Assign Classes to Target Matrix   
for index = 1:no_class 
    sp_class(index, (class==index)) = 1; 
end 
%-------------------------------------------------------------------------- 
%                               Neural Network 
%-------------------------------------------------------------------------- 
%Initialise Neural Network 
%10 hidden nodes, training method: Variable Learning Rate Gradient Descent,  
%Cross Entropy performance evaluation  
net = patternnet(10,'traingdx','crossentropy') 
 
%Portion Input data for Training, Validation and Testing  
net.divideParam.trainRatio = 70/100 % 70% Training  
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Figure 47. Analysis of misidentified CSI data from mouse 

 

All blocks misidentified as containing the mouse when the CSI data was extracted from a blank control signal 

path exhibit split grouping of magnitudes. The right side plot of Figure 48. shows the magnitudes from a 

correctly identified block and the left side of Figure 48. is a block misidentified as containing the mouse by the 

Neural Network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Correctly identified blank control CSI block (right) and misidentified block (left) 

The implementation of the Neural Network is intended to demonstrate how a sensing system can be 

implemented using machine learning and was not heavily refined and optimised. Refining should always aim to 

remove unwanted captures and remove or rationalise outliers and anomalies prior to inputting data to a Neural 

Network or other machine learning algorithm. For example, assuming split grouping of magnitudes is caused by 

antenna hopping on the TP-Link router, a more feature rich CSI extraction system than the one used in this 
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project could identify which pair of antennas generated the CSI measurement. This information could then be 

used to categorise the different signal paths between different pairs of antennae generating CSI measurements 

and analyse them as individual streams. 

 

4.5 Components of the WiFi Sensing System  

Refining the Neural Network or utilising other machine learning techniques that may yield higher classification 

accuracy is only one aspect that contributes to improving the efficacy of the entire sensing system. The 

implementation of the Neural Network as a classification algorithm forms the final component of the sensing 

system developed in this project. The complete sensing system implemented in this project can be 

conceptualised as four main elements as shown in Figure 49. The input to the system is the data from an 

operating WiFi network and the output is whether vermin are detected.  

 

 

Figure 49. Components of sensing system 

 

While all elements of the system are interdependent, they are individual subsystems with separate inputs and 

outputs. Improvements, refinements, and changes can be made to individual elements without redesigning the 

entire system. With reference to Figure 49. a high-level overview of how each element of the sensing system 

was implemented in this project is listed: 

• Measurement and Collection: A WiFi network operates between a TP-Link router and Raspberry Pi 4. 

A Raspberry Pi 3 extracts CSI measurements from the Pi 4 and outputs the CSI data in .pcap files.  

 

• Pre-Processing: CSI data in .pcap files is parsed to MATLAB where pre-processing occurs. Unwanted 

subcarriers and captures are implicitly removed then Hampel filtering removes outliers. 

 

• Feature Extraction: Processed CSI data is portioned into temporal blocks and statistical features from 

each block are calculated. 

 

• Classification: A trained Neural Network classifies the features and outputs the probability of the 

mouse being within the signal path. 
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5. Conclusion  

The concept of embedding a sensing utility function in a WiFi network to detect vermin is feasible. The mouse 

created conspicuous features in the CSI data and significantly increased the distribution of power throughout the 

spectrum of the WiFi channel. After pre-processing and extracting features from temporal blocks of CSI data a 

Neural Network was able to reliably identify when the mouse was within the signal path. The design, 

configuration and validation of the equipment used for testing is thoroughly documented within this dissertation 

and provides context to the CSI data collected and ensures that the assembly of the test network is repeatable.  

 

This was the first project proposing vermin as a potential target of a passive WiFi sensing system and the first 

project that collected CSI data from testing with mouse in the signal path of a WiFi network. It was 

demonstrated that by extracting CSI data from typical commodity WiFi devices, it is possible to identify when a 

mouse is present within the signal path. The network used for testing was also capable of performing sensing 

functions and normal communication functions in parallel, suggesting that it may be feasible to embed a utility 

vermin sensing function into a household WiFi network. The ping interval used to create a sensing pulse from 

which CSI measurements were taken was comparable to the rate at which WiFi APs generate beacon frames and 

the devices which generated the transmissions used for CSI data capture were not modified in a way that would 

prevent their normal use.  

 

5.1 Reflection and Achievement of Objectives  

The objectives of the project are listed below for reference and are also found in Section 1 and in the initial 

project specification accepted by the University of Southern Queensland in Appendix A. A reflection of the 

achievements of the project is listed below each of the original objectivities.  

 

5.1.1 Project Objectives  

1. Survey, review and analyse previous WiFi sensing research and experimentation. Conduct initial 

background research into using radio frequency signals, specifically microwaves for sensing and the 

operational aspects of WiFi networks which will affect sensing.  

 

The literature review documented in Section 2 was used to identify the existing gaps in WiFi sensing 

research. Surveying previously implemented CSI extraction systems used for testing and 

experimentation was essential to determining the testing methodology used in this project. 

 

2. Procure and configure WiFi hardware that will facilitate the extraction of CSI  

and parse the CSI data into a suitable software application e.g. MATLAB 

that can perform statistical analysis and implement detection algorithms. 

 



92 

The choice of hardware was justified, and the test network used to extract CSI measurements for this 

project was implemented successfully and the data captured was ingested into MATLAB.  

 

3. Design a test apparatus that simulates a WiFi network, where stimuli can be placed in the signal path  

including vermin (mice) to capturing and log CSI. 

 

Objectives 2 and 3 were the most challenging and consumed a significant portion of the time resources 

available to the project. There were significant lead times to procuring Raspberry Pi’s due to global 

shortages and high demand. Designing, constructing, and validating the test apparatus used for CSI 

extraction was challenging. The difficulty in accessing CSI data without support from manufacturers 

and vendors of WiFi equipment is a significant obstacle to undertaking testing and experimentation to 

develop WiFi sensing systems. The configuration and validation processes detailed in Section 3 of this 

dissertation will contribute to making CSI data more accessible. 

 

4. Gather data from testing that can be used to examine the feasibility of using WiFi 

sensing as a vermin detection system. 

 

The ethical obligations required of testing with live animals were met. The mouse used in testing was 

not interfered with and remained within it’s usual habitat. The data gathered from testing was sufficient 

to determine that a mouse can be detected using CSI extracted from typical commodity WiFi devices. 

 

5. Determine if it is possible to detect vermin via CSI what limitations and constraints may impede the 

development of a system intended to be used as an additional utility function in a typical WiFi 

communication network. 

 

The key challenges and constraints to using CSI data and commodity WiFi devices for sensing that were 

exposed during the project are detailed and further work is suggested in the next section of this 

dissertation to determine to what extent they can be overcome. The project was completed successfully, 

and all objectives were met. The continuation of research into passive WiFi sensing could eventually 

enable the deployment of sensing utility functions into WiFi networks and this project demonstrates that 

detecting vermin with WiFi is feasible. 

 

5.2 Further Work  

The testing methodology in this project can be expanded to include a wider range of scenarios. This could 

include test scenarios with varied antenna placement and signal path arrangement as well as with other stimuli in 

the signal path, for example, a human and mouse simultaneously. Distinguishing the mouse from other stimuli 
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reliably will almost certainly require further feature extraction and more complex classification techniques. 

Aside from the continuation of testing, further work is needed to enhance the capability of the sensing system.  

 

Lin et al. (2020) demonstrated that interference height estimation could be used to classify if a pet or human is 

within the signal path with the aim of improving WiFi sensing based intrusion detection systems. Being able to 

determine the height of stimuli within the signal path would be a powerful feature to a sensing system aimed at 

detecting vermin. The geometry used for interference height estimation assumes that the transceivers are at the 

same height (see Figure 9.), which may not be the case in a typical WiFi network where a vermin sensing 

system would be deployed (Lin et al. 2020). But it may be possible to adapt Lin et al.’s (2020) method to 

estimate interference height when a user inputs the antennae height of static WiFi devices. This would allow 

interference height estimation with dissimilar transceiver height providing the WiFi devices position is static but 

needs to be investigated.  

 

Classifying very fine movements accurately will need to be a key feature of a useful vermin sensing system. 

This is extremely difficult given the inherent distortion in CSI data collected from commodity WiFi devices. 

Xie, Li & Li (2015) investigated using power delay profiling to identify when multipathing is occurring and 

presented the “Splicer” software tool that can derive high resolution power delay profiles from CSI 

measurements. Splicer was tested with CSI data gathered from 20MHz and 40MHz channels from IEEE 

802.11n devices and while functional it was noted that for detecting very fine movement 200MHz of bandwidth 

was required (Xie, Li & Li 2015). Splicer and the techniques used be Xie, Li & Li (2015) could be applied to the 

CSI data from this project which was captured from 80MHz channels. Also other IEEE802.11ac devices 

compatible with the CSI extraction tools used in this project are capable of measuring CSI from 160MHz 

channels (Gringoli et al. 2019). Utilising Xie, Li & Li’s (2015) Splicer with wide bandwidth CSI measurements 

could provide a method for detecting and classifying very fine movements.  

 

The limitations of a CSI sensing system are unlikely be defined by the strength of the interactions between target 

stimuli within the signal path and the RF signals used in WiFi or the capability of machine learning. Isolating 

and removing the distortion in CSI data caused by the behaviour of WiFi hardware and firmware will present the 

greatest challenge. Inputting phase measurements from CSI data will enhance the efficacy of a sensing system 

but the challenge of effectively removing or attenuating distortion created by noise and ambiguities is 

significant. In a survey of WiFi based sensing, recognition and detection systems, He et al. (2020) propose and 

review some methods of calibrating and processing phase data to identify and remove distortion. One method is 

to connect the transmitter and receiver via coaxial cabling to obtain a reference signal for comparison to phase 

data obtained when the same transmitter and receiver communicate wirelessly (He et al. 2020). The CSI 

extraction tools, and equipment used in this project could be used to undertake a comparison of phase 

measurements captured from wirelessly transmitted packets against phase data captured from packets 

transported via coaxial cabling. The comparison would aim to determine which features of phase data are 
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independent of the wireless signal path and propose methods to remove them using the techniques discussed by 

He et al. (2020) as a starting point.  
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Appendix A Project Specification  

ENG4111/4112 Research Project 

Project Specification  

For:  Ben Balanzategui  

Title: WiFi Based Passive Vermin Sensing, Proof of Concept and Feasibility Analysis 

Major:   Electrical and Electronic  

Supervisors: TBA Expected: John Leis  

Enrollment: ENG4111 – EXT S1, 2023 

  ENG4112 – EXT S2, 2023 

Project Aim: Investigate novel and potentially useful applications of WiFi sensing that could 

deployed as an additional utility function in a typical WiFi communication network. 

Significant research and testing have demonstrated the sensing capability of WiFi 

networks via the analysis of Channel State Information. The project will investigate the 

concept of using passive WiFi sensing to detect vermin.  

Programme: Version 1, 15th March 2023  

1. Conduct initial background research into using radio frequency signals specifically microwave 

signals for sensing and how wave propagation is affected by stimuli in the signal path.  

2. Review and analyze previous WiFi sensing research and experimentation.  

3. Procure and configure WiFi hardware that will facilitate the extraction of Channel State 

Information (CSI) and parse the CSI data into a suitable software application that can perform 

statistical analysis and implement detection algorithms.  

4. Design a test apparatus consisting of WiFi access points, a signal path where stimuli including 

vermin (rats) are introduced and a device capturing and logging CSI.  

5. Gather data from testing that can be used to examine the feasibility of using WiFi sensing as a 

vermin detection system.  

6. Determine if it is possible to detect vermin and distinguish vermin from other stimuli and 

determine what limitations and constraints may impede the development of a system intended 

to be used as an additional utility function in a typical WiFi communication network.  

If time and resource permit: 

7. Investigate if fire detection is a feasible application – also a similar alternative if animal testing 

is unable to occur during the project. 

8. Investigate using the Beamforming Matrix as the input to detection algorithms as opposed to 

using CSI values as CSI is not readily presented in WiFi hardware.  
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trafficable areas   Prevent 
unexcepted access to test area with 
barriers or spotter  Non slip footwear 

 

Live Pet Rat will be used a stimuli for 
testing   

Control: Rats to remain within usual 
enclosure at all times   Wifi Access 
points are positioned to place Rat 
within signal path, Rats must never 
be repositioned for the purpose of 
testing and are to remain within their 
usual habitats at all times   No 
handling of Rat permitted, Rat must 
remain within enclosure   If rat 
requires husbandry activities to be 
undertaken by owner or usual 
caregivers only 

 

   
 

Exposure to Microwave Frequency 
signals generated by the WiFi 
network used in the test apparatus  

Control: All equipment is compliant 
with IEEE 802.11 and intended for 
regular use in residential and 
commercial settings.  The Australian 
Communications and Media 
Authority has deemed such devices 
harmless to humans and pets via the 
relevant parts of the 
Radiocommunications Act 1992.  As 
a precaution only, WiFi equipment 
will be deenergized when not 
required to avoid unnecessary 
exposure   
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Appendix C Ethics Approval   

Ethics ETH2023-0118 (AEC): Mr Ben Balanzategui (Student)  

(Negligible Risk/Exempt) 

Academic/Researcher Mr Ben Balanzategui (Student) 

Prof John Leis 

Project WiFi Based Passive Vermin Sensing, Proof of Concept and Feasibility  

Analysis 

Division Academic Division 

Faculty/Department Deputy Vice Chancellor (Academic Affairs) 

 

Ethics application 

Overview 

Application initiated by: Mr Ben Balanzategui 

(Student) 

Ethical Considerations 

Are you working with animals or humans? 

Animals 

Do you have a current approval from another Ethics Committee to conduct this project? No 

Project title 

WiFi Based Passive Vermin Sensing, Proof of Concept and Feasibility Analysis 

Project summary 

Investigate novel and potentially useful applications of WiFi sensing that could deployed as an additional utility function in a 

typical WiFi communication network. Significant research and testing have demonstrated the sensing capability of WiFi 

networks via the analysis of Channel State Information. The project will investigate the concept of using passive WiFi 

sensing to detect vermin and assess the potential feasibility of using a typical WiFi communications network to alert to the 

presence of vermin in a dwelling.  

Host department 

School of Engineering 

Project duration 

1 year 

Is your research being conducted within Australia? 

Yes 

Select all that apply: Queensland 

Does this project relate to, and/or extend on a previously approved project. 

No 
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Conflict of interest 

Does the Principal Investigator have an actual, perceived, or potential personal or financial Conflict of Interest (CoI) 

in relation to the project? 

No 

Do any of the Co-Investigators or External Investigators have an actual, perceived, or potential personal or financial 

Conflict of Interest (CoI) in relation to the project? 

No 

Outline the Conflict of Interest (CoI) and advise on how it will be managed. 

Qualifications and Experience 

Principal Investigator - qualifications and experience 

Principal Investigator 

Prof John Leis 

Qualifications relevant to project 

Have taught telecommunications and related courses at tertiary level. Understand radio frequency engineering. 

Experience relevant to project 

Have supervised a similar project in 2022. 

Co-Investigator - qualifications and experience 

 

Co-Investigator 

Mr Ben Balanzategui (Student) 

Qualifications relevant to project UGRAD Engineering Student  

Experience relevant to project 

UGRAD Engineering Student  

 

Operational Items 

Does this project include: not applicable 

The following options were available for selection:  

• Genetically Modified Organism (GMO) 

• biological material (non-GMO), e.g. work with 

toxins, mutagens, teratogens, carcinogens 

etc. 

• biological material native to Australia that was 

(or will be) collected in Queensland for 

commercial purposes 

• radioactive substances and/or ionising 

radiation? (e.g. DXA, X-ray) 

Does this project include: not applicable 
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The following options were available for selection: 

• the export, supply, publishing, or brokering of 

controlled goods, software, or technology 

• an arrangement with a foreign government or 

foreign university that does not have 

institutional autonomy not applicable 

• not applicable 

If you have not previously submitted an Research Data Management Plan (RDMP) please provide details around 1. 

Storage, 2. Access, 3. ownership and 4. sharing research data. 

1.personal desktop computer of student studying ONL 

2.personal OneDrive account password protected and sent to Principal Investigator 

3.Usual process for student honours projects, Data will be retained for a minimum of 7 years. After the minimum 7 year 

period, data may be stored indefinitely or securely deleted, if it is no longer of use, dissertation may published to UniSQ 

ePrints  

Additional Information 

Do you have a UniSQ Risk Management Plan relating to the activities being undertaken in this project? Yes 

 

RMP Reference number 

2122 

UniSQ RMP Project Title 

WiFi Sensor Testing WiFi Based Passive Vermin Sensing, Proof of Concept and Feasibility Analysis Low Not Assessed 

Status of approval 

Current 

Date of Approval 

13 Mar 2023 

Upload a copy of the RMP 

 

Ethical considerations - Animal 

In what way does your project incorporate animals? 

no interference with animals no abnormal disruption of 

habitat 

Outline of project 

Using plain language provide a description of what will be undertaken 

There is no intervention with the rat required, the test apparatus need only be placed close to the rat  

(in its usual housing) to confirm it can detect the rat. The test methodology requires no interference, (handling, moving, 

interrupting normal routine etc.) of the pet rat.  

Testing will be conducted to determine if a WiFi network can be used to detect the presence of vermin and distinguish 

between vermin and other stimuli i.e. static and moving objects. The test apparatus will include WiFi access points 
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connected to software that will collect and log performance data from the WiFi network, mainly Channel State Information. 

Pet rats owned by a supporter of the student undertaking the project will be used as stimuli in the test apparatus. The 

antennas of the WiFi access points will be placed so that a rat is within the signal path while the WiFi network is operating 

and performance statistics are being logged. 

The radio equipment in WiFi hardware used in the test apparatus will not be modified and all equipment used is commercially 

available and intended for continuous use in typical domestic WiFi communication networks and will comply with the relevant 

parts of the Radiocommunications Act 1992 and adhere to IEEE 802.11. Such devices are deemed harmless to humans and 

pets.  

The testing only requires data be captured that describes the propagation of the radio signals used by the WiFi network. It 

does not involve modifying the transmission power or any other parameters that would impact the electromagnetic 

combability of the WiFi network used in the test apparatus. The pet rats reside inside a dwelling that operates a WiFi network 

so the testing should not be considered to be introducing any source of harmless electromagnetic noise that is not already 

present in their normal habitat.  

The project only aims to prove the concept of a WiFi based vermin detection system is potentially feasible. Testing will be 

limited in scope and only require the presence of a rat within the signal path of the WiFi antennas. No testing will involve 

interfering with the rat or removing it from its usual housing. 

 

Attached files 

RiskExport.docx 
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Appendix D Gannt Chart  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Finalise and Submit Draft

Present Findings

Address Feedback

Semester 2 - ENG4112/ENG4902

TASK

Week 1 Starts 20/02/2023

Phase 4 Analyse the Feasibility 

Comment on The Feasbility  of System Based on Testing

Analyse Feasibility of Deploying

Phase 5 Prepare Dissertation 

Finalise Detection Method

Ingest Test Data to Models and Refine 

Detail Model

Equipment Preparation 

Testing Preparation 

Phase 3 Detection Method Design 

Animal Testing Approval Organise Rat as Test Vermin 

Phase 2 Initial Development 

Conduct Testing and Save CSI data

Ingest Test Data to Models and Refine 

Project Approval Prepare Detailed Specification 

Detection Modelling Preparation and Investigation 

Detection Modelling Trialling on Ingested CSI

Semester 1 - ENG4111 Break

WiFi Sensor Testing WiFi Based 

Passive Vermin Sensing, Proof of 

Concept and Feasibility Analysis

Phase 1  Address High Risk Tasks 

CSI Hardware Procurement and Testing
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Appendix E MATLAB Function Ingesting CSI  

function [csi_buff] = readCSI(File, BW, Max_UDP) 
HOFFSET = 16;           % header offset 
NFFT = BW*3.2;          % fft size 
p = readpcap(); 
p.open(File); 
n = min(length(p.all()),Max_UDP); 
p.from_start(); 
csi_buff = complex(zeros(n,NFFT),0); 
k = 1; 
while (k <= n) 
    f = p.next(); 
    if isempty(f) 
        disp('no more frames'); 
        break; 
    end 
    if f.header.orig_len-(HOFFSET-1)*4 ~= NFFT*4 
        disp('skipped frame with incorrect size'); 
        continue; 
    end 
    payload = f.payload; 
    H = payload(HOFFSET:HOFFSET+NFFT-1); 
    Hout = typecast(H, 'int16'); 
    Hout = reshape(Hout,2,[]).'; 
    cmplx = double(Hout(1:NFFT,1))+1j*double(Hout(1:NFFT,2)); 
    csi_buff(k,:) = cmplx.'; 
    k = k + 1; 
end 
 
end 

(Gringoli et al. 2019) 




