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Abstract

Vermin are a significant pest in Australia and throughout the world. When vermin ingress into a dwelling they
are usually only detected after infestation has occurred. It is hypothesised that by analysing channel state
information extracted from a WiFi network, it will be possible to detect and identify vermin when they are
within the signal path of a typical WiFi network. A sensing utility function could be embedded into a WiFi
system that detects vermin and alerts to their presence. This project determines if this concept is feasible by

collecting channel state information from a WiFi system constructed using only commodity components.

Current standards defining the protocols that WiFi devices use require the determination of channel state
information. Channel state information provides a rich representation of the propagation of individual
components of the signal used in a WiFi system. Significant changes are observed when a physical object
obstructs the signal path between transceivers. These changes can be analysed and categorised to identify the
event occurring in the signal path, enabling passive sensing. Previous studies have investigated a variety of
potential applications of WiFi sensing with an emphasis on health and wellbeing applications. The concept of
using WiFi sensing to detect vermin is novel and has not previously been investigated.

To determine if WiFi based passive vermin sensing is feasible a WiFi network consisting of a single pair of
transceivers was used to generate channel state information when a mouse is within the signal path. The
collected channel state information was then analysed in comparison to channel state information collected from
a control signal path, containing the same static objects but without a mouse present. The mouse caused
conspicuous fluctuations in the magnitude measurements of the channel state information data and was able to
be reliably identified by a Neural Network. The WiFi network utilised for testing was not modified in a way that
inhibited normal communication functions. The findings of this project demonstrate that it is feasible to embed a

sensing utility function into a typical WiFi network and vermin can be detected by a WiFi sensing system.
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Abbreviations, Nomenclature and Acronyms

ACMA - Australian Communications and Media Authority

AP — Access Point, wireless networking devices that sets up and connects a wireless network to other networks

CSI — Channel State Information
EMI — Electromagnetic Interference
E-waste — Electronic Waste

IEEE — the Institute of Electrical and Electronics Engineers

IP — Internet Protocol — where relevant version 4 is the sole version referred to within this dissertation

KVM - Keyboard, Video, Mouse

LOS - Line of Sight

MAC — Media Access Control

MAD — median absolute deviation
MIMO — Multiple-Input Multiple-Output
NIC — Network Interface Controller
OFDM - Orthogonal Frequency-Division Multiplexing
Pi — Raspberry Pi miniature computer
PoE — Power over Ethernet

RF — Radio Frequency

Rx — Receive

RSSI — Receive Signal Strength Indicator
SDR - Software Defined Radio

TX — Transmit

UDP — User Datagram Protocol

VHT — Very High Throughput

WiFi — wireless fidelity, devices used for wireless networking
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1. Introduction

This project aims to determine if it is feasible to create a system that could detect vermin using only inputs that
would be generated by a functioning WiFi network that complies with the modern suite of Institute of Electrical
and Electronics Engineers (IEEE) 802.11 standards. It is hypothesized that in a typical domestic dwelling with a
WiFi network, the channel state information (CSI) generated by the WiFi network would contain the required
data to detect vermin. If this concept is correct, it may possible that tracking algorithms could be refined and
optimised until they are suitably robust, generic and reliable to create a software alert system that could be
deployed in conjunction with a WiFi network to monitor the dwelling for vermin and alert when any vermin are
detected so that the occupants can act prior to infestation. Such a system would be readily accessible as WiFi
usage in homes is already ubiquitous and it would create an additional useful utility to existing WiFi devices that

would help protect homes and property against vermin.

Testing conducted as part of the project aims to demonstrate that vermin sensing, and detection is possible. Also,
a review of detection techniques employed in similar studies will be used to identify and analyse the key issues
that would need to be overcome to create a system that is capable enough to be useful.

Electronic devices such as smartphones are becoming increasingly essential to everyday life and after decades of
advances in computer sciences, integrated circuit manufacture and other related fields, an electronic device is
available for almost every conceivable application, from delivering pizzas to complex keyhole surgery. The
world is also becoming more digitally interconnected than ever. In 2021 91% of Australian adults had a home

internet connection and this proportion is growing in Australia and the world each year (ACMA 2021a).

1.1 Increasing the Functionality of Modern Electronics

While this technological and information revolution has led to significant improvements to quality of life and a
varied range of improved outcomes, there are also challenges. In 2018 the total generation of E-waste
throughout the world was approximately 49.8 million metric tons, and the generation of E-waste is growing at
three times the rate of other streams of waste (Islam, Dias & Huda 2020). One of the ways innovators are
working to abate the generation of E-waste is to increase the functionality of devices maximising their potential
use and reducing the need for discrete singular purpose devices. Smartphones are perhaps the best example of
this as they now contain cameras, GPS mapping, calculators, along with a wide range of other app and platform-

based functions, and new functions and applications are being considered and investigated continuously.

The adoption of the current Institute of Electrical and Electronics Engineers (IEEE) suite of standards
IEEE802.11, that describes the protocols utilised by wireless networking equipment, has unintentionally
provided an opportunity to expand the functionality of typical WiFi devices beyond networking applications and
into sensing applications. Prior to IEEE802.11n wireless networking devices, only determined received signal
13



strength indication (RSSI). RSSI will reveal characteristics of the signal propagation between transceivers but is
a course metric in terms of sensing capability and is only based on the power in the baseband signal.
IEEE802.11n (and all newer iterations of the standard) compliant WiFi devices determine and utilise CSI, which
is a granular representation of the power and phase of each subcarrier component in the signal (IEEE 2013). By
using similar principles to the way radar technology has been used in aviation for decades, it is possible to use
radio frequency (RF) signals to discern quite a lot of information about the surrounding environment (Zhou et al.
2015). Passive sensing systems based on the measurement of received RF signals within the frequency spectrum
used by WiFi have been developed that show potential to detect the presence of humans, count, localise and

track people and recognise gestures and activities (E. Cianca 2017).

1.2 Idea Development

The project concept of using CSI from wireless networks for detection and monitoring was proposed by
Professor John Leis. A significant focus of the previous studies examining potential sensing applications of CSI
from WiFi networks relate to health and wellbeing. A recent project conducted by Wang, R. et al. (2022)
demonstrated that respiration rate could be measured somewhat reliably by using information captured form a
WiFi network. Damodaran et al. (2020) and Wang, C. et al. (2022) were able to create somewhat effective fall

detection systems that could potentially assist carers in monitoring the elderly or vulnerable.

Due to the important nature of healthcare, devices used for medical applications are often designed using a best
practice approach. While perhaps useful in supplementing the existing tools available for such health and
wellbeing applications, CSI from WiFi networks is not designed for or optimised for sensing activities (Zhang
et al. 2022). A key barrier impeding the development of WiFi sensing systems is the reluctance of wireless chip
vendors and manufactures to expose CSI and make available control of the features of WiFi devices that would
enable sensing (Schafer et al. 2021). If applications of WiFi sensing that provide useful utility value without any
serious consequence in the case of error are proven feasible it may motivate vendors and manufacturers to assist

in the development of WiFi sensing due to marketability.

1.3 Why Pests and Vermin?

Rats are often not seen in dwellings unless they are present in large numbers (Vermin-Managing Rats in Your
Home 2019). A close friend recently suffered from an unexpected and severe vermin infestation. His
Townsville, North Queensland, home was infested with Black Rats. If this friend had realised there were vermin
in his home before sighting a Rat, the damage caused, and cost of eradication could have been significantly
reduced. Vermin can procreate extremely quickly. Mice in particular are prolific breeders and can give birth to a
litter of up to 10 young every 20 days (CSIRO 2021). Australia is also one of only 2 countries that experience
mice plagues, so management technologies are of particular interest to Australians (CSIRO 2021). When

residing in a dwelling vermin can cause harm in many ways including carry disease such as leptospirosis and
14



typhus, gnawing electrical cables and structures and carry harmful parasites (SAHealth 2022). Sydney is
currently experiencing an alarming increase in the rat population, with estimates the population was between
500 million and 1 billion in 2021(Sydney Struggles to Get Rat Problem Under Control 2021) . A system that
could be deployed into preexisting WiFi networks alerting to the ingress of vermin would allow for eradication
and control measures to be implemented at an earlier stage. significantly reducing the impact of vermin and

providing valuable data to help monitor the vermin population in WiFi dense areas.

e
— —
——

e e
e e s I g

Figure 1. The Black Rat, Rattus Rattus
(AustralianMuseum 2022)

1.4 Project Aims

1. Survey, review and analyse previous WiFi sensing research and experimentation. Conduct initial
background research into using radio frequency signals, specifically microwaves for sensing and the

operational aspects of WiFi networks which will affect sensing.
2. Procure and configure WiFi hardware that will facilitate the extraction of CSI
and parse the CSI data into a suitable software application e.g. MATLAB

that can perform statistical analysis and implement detection algorithms.

3. Design a test apparatus that simulates a WiF1i network, where stimuli can be placed in the signal path

including vermin (mice) to capturing and log CSI.

4. Gather data from testing that can be used to examine the feasibility of using WiFi

sensing as a vermin detection system.

15



5. Determine if it is possible to detect vermin via CSI what limitations and constraints may impede the
development of a system intended to be used as an additional utility function in a typical WiFi

communication network.

2. Literature Review
2.1 Background to Wireless Communications Technologies

Two of the most important technologies that have enabled modern wireless communication networks to
facilitate high data rates are Orthogonal Frequency-Division Multiplexing (OFDM) and Multiple-Input

Multiple-Output (MIMO) (Ma 2019). The suite of IEEE standards that are used to define modern WiFi

equipment, typically 802.11 a/b/g/n/ac, require the implementation of OFDM-MIMO technology.

2.1.1 Orthogonal Frequency-Division Multiplexing and Multiple-Input Multiple-Output
OFDM is a modulation technique that encodes data streams in multiple channels across multiple frequencies,
enabling high bandwidth transmissions (Leis 2018). Each channel encodes a bit stream mixed with a unique

carrier frequency. The final transmitted signal is a summation of each channel, so contains many different

frequency components (Leis 2018). Figure 2. depicts three channel frequency division multiplexing. An OFDM

scheme is similar, but each channel would contain an additional orthogonal frequency component also i.e. a sine

and cosine component.

Figure 2. Block diagram of frequency division multiplexing

(Leis 2018)

MIMO utilises multiple transmit and receive antennas in the same communication session. Using multiple
antennas allows for a higher number of individual channels to be used, increasing the data rate (Ma 2019).

Reliability can also be increased by MIMO as each signal path between a single transmit-receive antenna pair

will be unique. Some paths will be impacted less by signal fading caused by obstructions within the signal path

that create reflections, refractions, scattering or other affects that attenuate RF signals, increasing the chance of

16



one path transferring the data successfully (Paul & Ogunfunmi 2008). MIMO systems are also capable of
overcoming and in fact leveraging off of multipathing, a phenomenon where reflections, refractions and
scattering caused by objects within the signal path cause the transmitted signal to arrive at the receiver multiple
times independently.

S
Antenna 1 \h:i" Antenna 1
I,
»
Antenna 2 Antenna 2
X oo + + | RX
e hane L
A
—tjy——
Antenna Nt Channel Antenna Nr

Figure 3. MIMO communication channel
(Abbas 2016)
Using multiple antennas in an RF transmission will not necessarily provide any benefit. MIMO becomes
beneficial when signal processing techniques are used in each device to take advantage of multipathing and

channel capacity (Jansons & Dorins 2012).

2.2 Channel State Information

An OFDM-MIMO system will transmit multiple frequencies using multiple signal paths. Channel State
Information (CSI) describes how each frequency component of the transmission will propagate via each signal
path. It provides a very granular assessment of the transmission as each CSI component describes an individual
carrier frequencies attenuation and response as it traverses a specific signal path between a transmit and receive

antenna pair.

The received signal in an MIMO system can be described by:
Y(f,t) = H(f,t) - X(f,t) + N

Where Y(f, t) and X(f, t) are the received and transmitted signals respectively in the frequency domain, with

carrier frequency f, measured at time t (Viswanathan 2014). The convolution of the transmitted signal with the

CSI, H(f, t), including the addition of some noise N, results in the received signal.

17



Figure 4. Channel description of MIMO system
(Viswanathan 2014)
In Figure 4. the H matrix in the Channel depiction is the CSI matrix. When an MIMO system also utilises
OFDM each transmission within the common channel will be comprised of several induvial signals modulated

using a carrier frequency then mixed into common signal to be transmitted across the channel.

In a WiFi system, CSI will describe how an individual subcarrier propagates through a signal path between the
antennas of two adapters (Wang et al. 2021). CSl is a set of values that will correspond to an ODFM subcarrier:
CSI; = |CSI;|el (2SI

(Wang et al. 2021)
Where CSI; is the CSI of the ith OFDM subcarrier.
|CSI;| represents the gain, h.CSI; represents the phase.
The signal received by an OFDM-MIMO system can be described in terms of the subcarrier index:

yi = Hixj + 1y
(He et al. 2020)

Where i is the subcarrier index of the OFDM scheme, x; € RNT andy; € RNR are the transmitted and received
signal respectively. Nt and Ny are the number of transmit and receive antennas respectively and n; is a vector

representing the noise (He et al. 2020). H; represents the CSI matrix for the ith OFDM subcarrier.
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(He et al. 2020)

2.2.1 Channel State Information for Sensing

The capability of using high frequency radio systems (UHF, SHF and EHF) for sensing and localisation
applications has been utilised for decades and is well understood. RSSI is determined almost universally in
wireless communications systems and has been used as the input to sensing systems successfully. However,
RSSI is much courser metric than CSI. RSSI’s utility value for sensing is reduced dramatically in complex
situations (such as indoors with multiple objects in the signal path) due to multipath fading and temporal
dynamics (Yang, Zhou & Liu 2013). RSSI would not be a suitable input for a system capable of detecting
vermin reliably indoors and would likely be unsuitable for most other potential utility sensing functions of a
WiFi network.

The intent of determining CSI is to allow the WiFi devices to optimise communication by avoiding signal
fading. When a physical object impacts the signal path there will be distinct changes in the CSI values (Wang et
al. 2021). By recognising the pattern in which these changes occur when the signal path is impacted allows the

event causing the change to be categorised and recognised, enabling passive sensing.

Each antenna-to-antenna signal path within an MIMO-OFDM WiFi system will traverse the objects within the
signal path in different ways and differing areas of the frequency spectrum are not uniformly impacted by the
size and composition of physical objects. This makes it possible to discern information about the physical
environment by analysing the signal (He et al. 2020).

2.3 Survey and Analysis of WiFi Sensing Research

WiFi devices that determine and utilise CSI have now been commonplace for over a decade and with WiFi
networking becoming increasingly ubiquitous, the potential of using CSI (and WiFi systems in general) to create
passive sensing systems has attracted the attention of researchers. Earlier projects focused on detection of
humans and some basic characterising of actives such as being stationary or moving (Xiao et al. 2012; Wu et al.
2015; Zhou et al. 2015; Palipana, Agrawal & Pesch 2016). Once the sensing potential was proven to be feasible,
WiFi based intruder detection systems were noted as a potential application and investigated by (Gong et al.
2015; Tian et al. 2018; Lin et al. 2020) . A more recent focus has been the potential of using WiFi sensing in
healthcare applications in part driven by the emphasis the COVID19 pandemic placed on the importance of
improving healthcare technology (Ge et al. 2022). Two of the most common aims are to accurately sense vital
signs (He et al. 2020; Wang, Yang & Mao 2020; Kanda et al. 2022), and create fall detection systems (Wang,
Yang & Mao 2017; Damodaran et al. 2020).
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The targets and aims of WiFi sensing testing and experimentation are broad. Some novel studies examined
whether fruit ripeness can be measured (Tan, Zhang & Yang 2018) and more recently if fire can be reliably
detected using commodity WiFi devices (Li et al. 2021).

In Tan, Zhang & Yang’s (2018) work, it was assumed that the relative permittivity of fruit would change as the
fruit ripens due to physiological changes. The change in relative permittivity €, would then cause a change in the
attenuation factor a, which would be detectable by analysis of CSI due to changes in refraction.
Complex relative permittivity:

e = ¢ —je"

Attention factor:

_27r1, 1+(e> 1
a_lo 28

Where A, is the wavelength of the WiFi signal, « is the attenuation factor and &, is the relative permittivity.

(Tan, Zhang & Yang 2018)
Due to multipathing, it proved difficult to isolate the signal within the WiFi system that travelled directly
through the fruit being tested for ripeness but by examining the power delay over a wide range of subcarriers it
was able to be isolated and the system developed was able to detect the ripeness of kiwi fruit and avocados with
90% accuracy (Tan, Zhang & Yang 2018).

Path, g ) fil — Refraction
[ | — =» Reflection

Figure 5. The challenge of isolating the signal refracted through a fruit
(Tan, Zhang & Yang 2018)
2.3.1 Challenges Derived from Using WiFi
The problem which Tan, Zhang & Yang (2018) encountered was exacerbated by two factors that would not be
present in a purpose-built RF sensing system, for example an aircraft radar system. An MIMO-OFDM WiFi

system creates very complex and less predictable multipathing that is not optimal for interpreting and thus using
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a simple sensing algorithm due to the number of antennas and frequencies used. Tan, Zhang & Yang (2018) also
intended to use signals spread across 600MHz of bandwidth to interpret which signal passed through the fruit
with sufficient accuracy. The radio hardware used in a modern WiFi device is capable of performing this sweep,
however local regulations and the WiFi devices configuration may prohibit using 600MHz of contiguous
bandwidth to transmit signals with uniform spacing as was required.

2.3.2 How the Wireless Spectrum is Managed and Potential Impacts on Sensing

Within Australia the Australian Communications and Media Authority (ACMA) determines which spectrum
areas are available for different services and purposes (ACMA 2022). The ACMA also govern the use of each
spectrum area by imposing rules such as the maximum transmission power at certain frequencies and whether a
license must be held to use certain spectrum areas. This includes which frequencies are available for use in local
area wireless broadband communication services including WiFi. Other regions throughout the world have
similar governing bodies and while the spectrum areas used for WiFi in other regions are similar due to
commonality in the IEEE802.11 standards, there are differences and the complete spectrum utilised by the

standard may not be accessible and what is accessible may not by contiguous.

The spectrum utilised is portioned and assigned channels. IEEE8021.11ac, often referred to as 5GHz WiFi 5,
channels are referenced by the centre frequency and are 5MHz wide (IEEE Standrads Association 2013).
Standard bandwidths of 20MHz, 40MHz, 80MHz and 160MHz are used and are referenced by the centre
channel i.e. channel 36 at 20MHz bandwidth will use 5170MHz — 5190MHz.
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Figure 6. Possible channel usage in IEEE802.11ac from 5170MHz to 5835MHz
(IEEE Standrads Association 2013)

In Australia channel 32, centre frequency 5160MHz to channel 48 centre frequency 5240MHz can be used
indoors with up to 200mW of transmit power without restrictions (ACMA 2021b). Many other areas of the
spectrum are available for use in WiFi, but this highlights the difficulty of performing a bandwidth sweep in
order to collect CSI for sensing. Within channels data is encoded via OFDM on subcarriers with a default
spacing of 312.5kHz (IEEE Standrads Association 2013). There are also special purpose subcarriers that do not
transmit data. These null and pilot subcarriers are designed to make decoding data less complex as well as for
error and integrity checking (Gast 2013). These subcarriers, in particular the null subcarriers, which are only

used as a DC offset will create outliers in the CSI samples that need to be handled or disregarded in analysis.
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Figure 7. depicts the subcarrier arrangement for IEEE802.11ac with pilot subcarriers denoted by a zero

horizontal axis value.
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Figure 7. Subcarrier arrangement for 802.11ac (and similar 802.11 variants)
(Gast 2013)

2.3.3 Detection Modelling and Analysis

The choice of modelling techniques in experimental sensing applications varies considerably. Simple models
comparing the variance of CSI amplitudes captured in a static environment with those captured when motion is
occurring in the signal path have been shown to reliably detect the presence of humans (Tian et al. 2018).
Palipana et. Al (2016) used a nonlinear model utilising kernel principal component analysis that yielded high
accuracy in detecting humans and was tested successfully in gesture recognition experiments also. Kanda et al.
(2022) used a similar method to analyse the magnitude of specific frequency components that are impacted by
the chest fluctuations occurring during breathing. Testing demonstrated that respiratory rate could be estimated

with an error rate of only 3.5 breaths per minute (Kanda et al. 2022).
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Table 1. Common statsical features of CSI used in detection models (Zhang et al. 2020)

Features Formula and Description

1 L
Standard Deviation o=7 Z (CSI; — p)?
i=1
1 L
Mean p=- CSJ;
L £aizg
Max Maximum Value of CSI;
Min Minimum Value of CS[;
Median The “middle” value
Range range = CSIax — CSlnin
Interquartile Range IQR= Q3 — Q4
L (H —w?
Skewness =1 L
Skewness = ——————
o
L (Hi—w*
Kurtosis K . s — L
urtosis = ——
(17
L
Normalised Entropy Entropy = — pilogz p;
i=1

(Zhang et al. 2020)

Schéfer et al. (2021) constructed multiple CSI extraction systems using different hardware which inputted CSI
data into two machine learning algorithms, SVM and LTSM. The objective was to classify human activities
such as lying, sitting, walking, falling etc. within the signal path. All the conducted experiments produced
classification systems with high accuracy. One of the key challenges faced was pre-processing CSI data before
inputting into learning algorithms to remove anomalies. The sources of these anomalies were assigned to either,
null or pilot subcarriers and, noise and ambiguities caused by hardware and firmware including automatic gain

control, adaptive loading and carrier frequency offset nonlinearity (Schéfer et al. 2021).

Schifer et al. (2021) used three algorithms to pre-process CSI. The first simply removed CSI from any null or
pilot subcarriers as well as any CSI samples that remained unchanged. The second removed CSI samples with
significant magnitude outliers using a Hampel filter and the third smoothed noise using a discrete wavelet

transform (Schafer et al. 2021).
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Algorithm 2 OUTLIER REMOVAL

Input: CSl.q + local median of current window (Wje, = 3) of CSlyag (i)
Output: Outliers removed as CSlj,y,

: Compare the current sample (i) with ng x o;

1

2. if CSlmag(i) — CSlyeq(i) > 1y % o then
% CSlmag (i) = CSlyeq(i)

4: end if

o

: CSIpam + CSLN:IR[”

Figure 8. The outlier removal algorithm used by Schafer et al. (2021)
(Schéfer et al. 2021)

A variety of statistical analysis methods and machine learning techniques seem to be suitable for sensing with
CSl as the input and all techniques tested by Schéfer et al.’s (2021) provide capable of detecting the target
stimuli with reasonable accuracy (Schéfer et al. 2021). It is highly likely that the analysis technigue or sensing
algorithm used can be somewhat abstracted from the other parts of a CSI sensing system. Therefore, a CSI
sensing system could leverage of any number of the myriad of generalised automated machine learning and data
analysis tools available. However, effective pre-processing requires a deeper and specific understating of the
nature of CSI and the operation of WiFi equipment and signal processing in general and thus is a more

important focus area when developing a sensing system.

2.4 Significance of Previous of Work to a Vermin Detection System

It is reasonably clear that even a very minor physical change to the signal path of a WiFi system can be detected
via CSI analysis, validating the potential that vermin can be detected. Although the capability to distinguish
between a static signal path and a signal path containing vermin may not ever yield a useful system. The
detection would need to be specific enough that vermin could be identified in a non-static environment and most
common stimuli like human presence and movement would not trigger a false alarm. One possible solution is to
estimate the height of the obstruction of the signal path. Lin et al. (2020) explored this technique in order to
prevent false alarms caused by pets in a WiFI based intruder detection system. Estimating height with only a
single pair of WiFi devices is difficult but by examining the geometry of the signal fading with a known

transmitter and receiver height a technique was developed with reasonable accuracy.
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Figure 9. Diagram of signal fading between WiFi devices used for height estimation
(Lin et al. 2020)
Another potential method to distinguish between vermin and humans is to estimate respiratory rate. There is a
significant difference between the typical respiratory rate of humans and vermin. A typical respiratory rate for
rats is 85 breaths per minute (Ades 2018). The model Kanda et al. (2022) used for human respiration could be
able to estimate vermin’s respiration rate and earlier work by Wang et al. (2017) and Wang et al. (2020) could

provide alternate models that could also be potentially adapted to sense vermin’s vital signs.

This project only attempts to determine if passive WiFi sensing can determine when a mouse is in the LOS
signal path within a static indoor environment with static antenna placement for the purpose of determining if
the concept of passive WiFi vermin sensing is feasible. This is not sufficient to determine if a system could be
constructed that could detect vermin in a more useful and generalised sensing system that could be deployed
with a typical WiFi network in a realistic scenario. Integrating different sensing models and developing the
algorithms to facilitate automated model training as well as addressing challenges like dynamic antenna

placement and obstructions outside of the LOS signal path will be beyond the scope of this project.

2.5 Limitations of using CSI for Sensing

While a degree of sensing potential of WiFi systems is proven, all previous works encountered several practical
challenges that either limit the capability of the sensing system or must be overcome to make the system
function. Some of the key limitations are summarised by Zhang et al. (2022): accessibility, sampling frequency,

unsynchronized transceivers, distortion and non-distributed data collection.
Issues with accessibility of CSI data arise because WiFi devices are not designed to make CSI available
externally (Zhang et al. 2022). CSl is only handled in low level functions of the device where software and

firmware applications are proprietary.

Issues with distortion, sampling and non-distributed data collection can be somewhat overcome in testing by

controlling the WiFi network in a manner suitable for sensing. However, these issues are significant challenges

25



if the eventual goal is to design a system that is abstracted from specific hardware and can operate in parallel

with normal communication functions.

2.6 Constructing a Sensing System with WiFi

Regardless of the exact purpose, the general framework and components of most WiFi sensing systems are
similar. A system can be deconstructed into three main elements, data collection, signal pre-processing and

modelling that then infers the sensing results (Wang et al. 2021).

CSI Data Collection I CSI Data Preprocessing

5 S . CSI Phase Calibration
- | S | ]
~ I “" L |
u
~ I S ¥
> -7 User CSI Data Denoising
Wall PC ) \ . )
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Caleulating CSI Features Calculating Parameters
Training & Building Classifier Putting Parameters into Model

I—) Deducing Human Activity ‘—]

Figure 10. Model of a typical human activity WiFi sensing system

(Wang et al. 2021)
One of the most critical and difficult aspects of the project was constructing a WiFi network capable of
determining and logging CSI samples. To be assured that CSI from any readily available, modern, commodity
WiFi device can be accessed and logged the software and firmware vendors would need to offer information and
assistance. Seeking assistance from vendors and manufacturers is not practical for the project, and in any case
willingness to help researches extract CSI parameters is extremely unlikely, as much of the required information
may be considered sensitive and generally the systems that would need to be modified are proprietary (Kanda et
al. 2022; Yadav et al. 2022).

Open-source tools that extract the CSI parameters from legacy WiFi chipsets are available. The tool documented
by Halperin et al. (2011) is the oldest known and has been widely used in research projects. It is implemented
via a Linux operating system and can only be used to extract CSI measurements from an Intel WiFi Link 5300

wireless network interface card (NIC).
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Figure 11. Intel WiFi Link 5300 Wireless Network Interface Card
(Halperin et al. 2011)

Obtaining and installing an Intel 5300 NIC the NIC on a suitable computer that can then be used for testing is
within the resources available to the project but could prove challenging. Both the hardware and the operating
system needed to implement the tool are legacy, and thus they are becoming more difficult to source and may
not interact expectedly with modern equipment. While investigating hardware to procure for the project it was
noted that a more modern miniaturisation of the Intel 5300 was all that was readily available for purchase. It
could not be verified whether the miniaturised version is compatible with Halperin et al.’s (2011) tools. The
seller’s notes on several online retailers also stated that the NIC “would not work™ with IBM, Lenovo, ThinkPad
and Hewlett Packard laptops. Although unverified and non-specific these notes likely indicate challenges in

using the NIC with a modern computer.
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Figure 12. Intel WiFi Link 5300 Ultimate N Wireless Card Half Mini Pcie 802.11n
Source: <https://www.amazon.con/Intel-Wifi-Ultimate-Wireless-802-11n/dp/BOOBORRIJ8>

2.6.1 Survey of WiFi Sensing Research Hardware Utilisation

Many of the published works detailing CSI sensing, testing and experimentation do not provide a detailed
specification of all hardware and software used to extract CSI. Since time and funding were significant
restrictions to the project, it was not practical to procure enough hardware as well as dedicate time to
investigating different options using hardware and trials. A single choice had to be made as to which hardware
could be used to design a system capable of logging CSI for sensing. To aide in the selection of hardware, a

survey of 20 projects that undertook CSI sensing was conducted. The abbreviated findings are shown in Table 2.

Table 2. Hardware survey of WiFi sensing research

Title Author CSI Extraction System Hardware
FIMD: Fine-grained Device- (Xiao et al. 2012) Intel WiFi Link 5300 Wireless Network
free Motion Detection Interface Card — and generic 802.11m AP
From RSSI to CSI: Indoor (Yang, Zhou & Liu 2013) Intel WiFi Link 5300 Wireless Network
Localization via Channel Interface Card
Response
WiFi-Based Real-Time (Gong et al. 2015) Intel WiFi Link 5300 Wireless Network
Calibration-Free Passive Interface Card - Halperin et al. (2011) tools
Human Motion Detection
Non-Invasive Detection of (Wu et al. 2015) Intel WiFi Link 5300 Wireless Network
Moving and Stationary Interface Card - Halperin et al. (2011) tools
Human With WiFi
Channel State Information (Palipana, Agrawal & Intel WiFi Link 5300 Wireless Network
Based Human Presence Pesch 2016) Interface Card - Halperin et al. (2011) tools
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Detection using Non-linear
Techniques
WiFi-Based Adaptive Indoor

Passive Intrusion Detection

Complex Motion Detection
Based on Channel State
Information and LSTM-RNN
Device free human activity
and fall recognition using
WiFi channel state
information (CSI)

Revisiting Indoor Intrusion
Detection With WiFi Signals:
Do Not Panic Over a Pet!
Recognition, and Detection
With Commodity MIMO
OFDM WiFi

WiFi-based Human Activity
Recognition using Raspberry
Pi

On CSI-Based Vital Sign
Monitoring Using Commodity
WiFi

Passive WiFi Radar for
Human Sensing Using a
Stand-Alone AP

Eliminating the Barriers:
Demystifying Wi-Fi Baseband
Design and Introducing the
PicoScenes Wi-Fi Sensing
Platform

Fire Detection Using
Commodity WiFi Devices

(Tian et al. 2018)

(Zhang et al. 2020)

(Damodaran et al. 2020)

(Lin et al. 2020)

(He et al. 2020)

(Forbes, Massie & Craw

2020)

(Wang, Yang & Mao 2020)

(Li et al. 2020)

(Jiang et al. 2021)

(Liet al. 2021)

Intel WiFi Link 5300 Wireless Network
Interface Card - Halperin et al. (2011) tools —
implemented with ProBox23 MS-B083 mini
PCs

Intel WiFi Link 5300 Wireless Network
Interface Card - Halperin et al. (2011) tools

Intel WiFi Link 5300 Wireless Network
Interface Card - Halperin et al. (2011) tools —
two Lenovo laptops, Ubuntu version 14.04

Intel WiFi Link 5300 Wireless Network
Interface Card - Halperin et al. (2011) tools

Intel WiFi Link 5300 Wireless Network
Interface Card - Halperin et al. (2011) tools

Raspberry Pi 4, Nexmon Firmware Gringoli
et al. (2019) tools

Intel WiFi Link 5300 Wireless Network
Interface Card - Halperin et al. (2011) tools

Intel WiFi Link 5300 Wireless Network
Interface Card

Qualcomm Atheros AR9300 and Intel
WiFi Link 5300 — PicoScenes software —
significant low level control of WiFi is
utilised, turning adapters it adapters into
SDR’s

Raspberry Pi 4 - Nexmon Firmware

Gringoli et al. (2019) tools
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Human Activity Recognition | (Schéfer et al. 2021) Raspberry Pi 3B+ and 4, Asus RT-AC86U.
Using CSI Information with - Nexmon Firmware Gringoli et al. (2019)
Nexmon tools and 802.11ac AP

Vehicle In-Cabin Contactless | (Ibrahim & Brown 2021) Raspberry Pi 4, Nexmon Firmware Gringoli

WiFi Human Sensing et al. (2019) tools — PoE used to power and
control Pi’s

A Subcarrier Selection (Wang, R. et al. 2022) PicoScenes CSI-toolbox — hardware not

Method for Wi-Fi-based specified

Respiration Monitoring using
IEEE 802.11ac/ax Protocols

Indoor Human Fall Detection = (Wang, C. et al. 2022) Intel WiFi Link 5300 Wireless Network
Algorithm Based on Wireless Interface Card - Halperin et al. (2011) tools
Sensing

Respiratory Rate Estimation | (Kanda et al. 2022) WXR-5700AX7S AP and Intel AX200 —no
Based on WiFi Frame modified firmware used; sensing model input
Capture was the beamforming matrix

Prior to 2020, the Intel WiFi Link 5300 and the tools detailed by Halperin et al. (2011) appear to be the only
open-source tool that were available to researchers. More recently other options have emerged that are more
suitable for the project. Mainly the Nexmon CSI tools detailed by Gringoli et al. (2019) and the use of the

beamforming matrix by Kanda et al. (2022), both of which were considered for use in this project.

2.6.2 The Beamforming Matrix for Sensing

An alternate approach to WiFi sensing that removes the requirement to access CSI is to use the beamforming
matrix as the input to the sensing system. The beamforming matrix is transmitted between WiFi devices
unencrypted so can be captured and extracted by motoring the traffic in the WiFi network. Kanda et al. (2022)
built a successful sensing system that estimates respiratory rate (in humans) using only the beamforming matrix
as an input. A few drawbacks are noted though. Significant effort would still be required to create a tool that
would extract and parse the beamforming matrix as no premade tools were accessible to the project. However,
the required information would be available in the IEEE802.11ac standard where beamforming was first
introduced to WiFi (Gast 2013).

It is also very unlikely the beamforming matrix would be as effective as CSI as an input to sensing algorithms.
The beamforming matrix is an indirect measure of the environment within the signal path as opposed to CSI
which effectively is measuring directly (Kanda et al. 2022). The beamforming matrix is designed to steer the
power of a WiFi transmission in the most optimal direction (Gast 2013). Though physically static, the antenna

array in MIMO WiFi devices can direct transmissions by controlling the current delivered to each antenna
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within the array to create an effect analogous to physically moving a directional antenna such as a Yagi. CSI is
used to determine the beamforming matrix, for example, if CSI reveals a significant amplitude decay in the
transmission in one direction but not another, the beamforming matrix can be constructed to direct more energy
into the more effective signal path (Gast 2013). In Figure 13. Q denotes the beamforming matrix. Future work
could involve implementing a sensing model using the beamforming matrix and not requiring the use of

modified firmware for WiFi devices, but this project will focus on CSL

a) Without amz&(mmg ))) /
\

Power in all directions is similar:
Q* H = similar value

(b) With beamforming /N?—prefened direction: Q * H="small"
((( ))) Preferred by Q o
= Preferred direction: Q * H ="large”

~~

Non-preferred direction: Q * H = “small”

Figure 13. Example of the effect of the beamforming (steering) matrix

(Gast 2013)
2.6.3 The Nexmon CSI Extraction Tools
Four of the more recent projects surveyed utilised a more modern CSI extraction system. In 2019 Gringoli et al.
(2019) released a suite of open-source tools that can extract CSI measurements from modern Cypress,
Broadcom WiFi NICs. The tools were created utilizing earlier work from Schulz, Wegemer and Hollick (2016)
who created a platform that can be used to create C-based firmware modifications to a wide range of common
WiFi chipsets. Gringoli et al. (2019) tool’s provide access to CSI via several common devices including Nexus

smartphones, Raspberry Pi miniature computers and Asus routers.

Table 3. Devices compatible with the Nexmon CSI extraction tools

WiFi Chip Firmware Version Used in
bcm4339 6 37 34 43 Nexus 5
‘ bcm43455¢0 | 7 45 189 Raspberry Pi B3+/B4 ‘
bcm4358 7 112 300 14 sta ' Nexus 6P

‘ becm4366¢0 | 10 10 122 20 Asus RT-AC86U ‘
(Schulz, Wegemer & Hollick 2016; Gringoli et al. 2019)
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CSl is extracted Cartesian form:

CSI + CSIiY  CSIY? +CSliy? -+ CSIFN + CSIig
Hp = CcsIt + CSlizl  CSIZ? + CSliZ? csizN + csIizN
CSIN' + csIiyt  CSIN? + cSTily? - CSINN + cSIifN

Where si is the index of the subcarrier, H is the CSI matrix, P is the captured packet number and N is the

number of antennas.

The tools also enable CSI to be extracted from VHT 80MHz IEEE802.11ac bandwidth channels and provide
greater resolution (10-14 bit as opposed to 8 bit) than the tools created by Halperin et al. (2011) designed for use
in the Intel 5300 NIC (Halperin et al. 2011; Gringoli et al. 2019). As demonstrated by Tan, Zhang & Yang
(2018) wider channel bandwidth can be an extremely important element to sensing systems and the increased
resolution of the Nexmon tools in comparison to the earlier tools will also provide better granularity of changes
in the signal path. The WiFi NICs Gringoli et al.’s (2019) Nexmon tools oeprate with are also modern and utlise
the WiFi the IEEE802.11ac that is typical of many currently in use commidity WiFi devies as oppsoed to
IEEE802.11n which is now a legacy standard.

Importantly procuring and operating Raspberry Pi miniature computers was within the scope of time and
funding available to the project. Raspberry Pi models 3B+ and 4B provide a complete hardware platform with
the Broadcom becm43455¢0 WiFi NIC as a standard inclusion. The standard hardware platform makes
implementing an operating system compatible with the Nexmon firmware that can extract CSI straightforward
forward, as all available standard operating systems and Linux kernel versions can be downloaded as disc

images from Raspberry Pi’s website.

One potential limitation of using a Raspberry Pi and Broadcom bcm43455¢0 as the input to a CSI based sensing
system is that the WiFi chip only contains a single antenna and only a single spatial stream is handled at a time
(Gringoli et al. 2019). It is assumed that this will limit the sensing capability in comparison to a device with
multiple antennas. The extracted CSI will be in the form of vector as the dimensions of H , reduce proportional
to the number of antennas. The WiFi components of the Raspberry Pi 3B+ and 4 including the resonant cavity

antenna are located within a metallised can stamped with the Raspberry Pi insignia as shown in Figure 14.
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Figure 14. Schematic of Broadcom BCM43455 (Left) and Raspberry Pi 3B+ with WiFi
components circled (Right)
(Preliminary Data Sheet BCM43455 2016; Raspberry Pi Documentation 2023)

3. Methodology

3.1 Planning

The most meaningful way to test and develop a sensing system was to test with live vermin. Testing with mice
was the most practical as a supporter of the project owns domesticated pet mice which can be used as stimuli.
The use of animal testing in research is permissible but must be undertaken in accordance with the Australian
Code for the Care and use of Animals for Scientific Purposes 8th Edition 2013 to ensure any use of animals is
ethical, humane and the animals are treated responsibly. Adherence to the University of Southern Queensland’s
Animal Wellbeing and Ethics Policy is also a requirement and ensures obligations under Australian code are

met.

3.1.1 Animal Testing and Ethics
The University of Southern Queensland’s Animal Wellbeing and Ethics Policy requires researchers to seek
approval prior to any project that involves animals (UniSQ 2022). There are two mechanisms to seek approval,
completion of the Animal Ethics Research Application Form and seeking a formal exemption from the Animal
Ethics committee. A formal exemption was requested as the project could be completed in accordance with two
key criteria:

e no interference with animals

e no abnormal disruption of habitat

(UniSQ 2022)

Testing required a mouse was located in the signal path between a pair of transceivers in the WiFi network
which CSI was being extracted from. The WiFi devices are small and portable so were positioned as required
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while the mouse remained within it’s usual habitat. Since the mouse is a pet, it is considered to be within it’s
habitat provided it is not placed in unfamiliar enclosure or moved to a different location for the purpose of
testing. As the mouse is kept indoors in a typical (for North Queensland, Australia) domestic dwelling and is
accustomed to being in close proximity to people and everyday household objects such as WiFi devices this was
achievable without inferring with the mouse and without causing abnormal disruption of it’s habitat. On this
basis, application ETH2023-0118 was submitted to the University of Southern Queensland Animal Ethics
Committee in March 2023 and was approved based on negligible or risk exempt status. A copy of the

application and approval are included in Appendix C.

3.1.2 Consequences

The project is intended to assess the feasibility of, as well as provide some groundwork to the development of a
system that can provide an additional utility function to a typical WiFi network. It is hoped that the results will
determine if vermin can be detected by CSI and that the concept of detecting vermin passively in a system
utilising WiFi equipment is potentially feasible. By detailing the configuration and arrangement of testing
equipment, the testing process and collecting CSI data, it is expected that the project will provide insight for
other researchers to continue WiFi sensing testing and inspire further idea generation for the targets of WiFi

sensing systems.

The benefits of additional utility functions being deployed into WiFi networks include improved quality of life
via convenience and a potential reduction in E-waste and the manufacture of single purpose devices. It is also
possible that the specific sensing function being examined in this project may help contribute to the control

measures already used against vermin (further detail of these consequences can be found in Section 1).

3.1.3 Risk Management
Most of the works that contributed to the project required programming and word processing undertaken on a
desktop computer. While this is an extremely low risk activity the considerable amount of time spent on these
activities did justify the employment of control measures such as:

e Monitors located at arm’s length and eye level.

e Keyboard and mouse on flat surface at least 10cm from the edge of the desk.

o Wireless mouse and keyboard that can be repositioned for best possible ergonomics based the monitor

in use.
e Adjustable ergonomic chair with footrest adjusted so that hips and knees are level.
e Timer to remind of posture change every 30 minutes as well as breaks.
(WorkSafe 2020)

Configuring and operating the WiFi equipment during CSI capture was the highest risk activity undertaken

during the project. Tasks requiring manual handling and working with electrical equipment were undertaken
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which required control measures be implemented to mitigate risk. Control measures included substituting low
voltage electrical equipment where possible and inspecting electrical equipment before use when substitution

was not possible and wearing non-slip footwear as well as housekeeping around the test area to prevent slips,

trips and falls. Risk Management Plan — 2122, was submitted to University of Southern Queensland in March
2023 and will be employed during the CSI capture phase of the project. It Is located in Appendix B.

3.1.4 Project Resources

The key components needed to complete the project are the equipment required to capture and log CSI during
testing and software tools capable of performing the CSI processing required as well as testing and
implementing the detection method. MATLAB is a powerful generic tool that was used for analysis. MATLAB
was already known to the student working on the project, is ubiquitous and has been employed in similar

projects successfully including the work by Zhang et al. (2020) and Wang R. et al. (2022).

Based on the survey of hardware utilisation in CSI sensing research (see Table 2.) and in particular the issues
noted with utilising an Intel 5300 WiFi NIC, Raspberry Pi miniature computers were used to extract CSI using
the firmware and tools created by Gringoli et al. (2019). A detailed list of all equipment and software used in the

project is included in Table 3. below.

Table 3. Project resource requirements

Resource Source Purpose Comments and Images
Contains Cypress Broadcom BCM43455c0 WiFi NIC and is compatible

with the CSI extraction tools.

Purchased with case to prevent damage when being positioned to set up

signal path for testing.

Raspberry Pi 3 Purchased online

model 3B+ —second hand

CSI Extraction
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Contains Cypress Broadcom BCM43455c0 WiFi NIC and is compatible
with the CSI extraction tools.

Variant BO7TC2BK1X — 4GB RAM, WiFi

Purchased with case to prevent damage when being positioned to set up

Raspberry Pi 4 ' . signal path for testing.
Purchased online | CSI Extraction
model B
Feature rich legacy model which allows high degree of control and
configuration via in-built webserver, same WiFi generation (802.11ac) as
Raspberry Pi’s. TPLink model chosen specifically as only vendor tested
that allowed for control of frequency hopping.
Generic
IEEE802.11ac )
. Create special
WiFi Access WiE:
se WiFi
Point - TP-Link = Purchased P
) network for CSI
AC750 Wireless )
extraction
Router Dual
Band
) Hard drive for Raspberry Pi and ScanDisk Ultra type — Scan Disk Ultra recommended
Micro SD Cards
Pi’s — Imaged as cost effective micro SD cards suitable for use in Pi’s (Fromaget 2020).
and USB A Purchased ) ]
with operating
Adapters
system
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Sundry items needed to interface with and position CSI extraction
equipment as well as transfer CSI data from Pi to computer running
MATLAB, Including: USB thumb drive, mini HDMI adapter, desk and

stands, ethernet patch leads, power supplies mouse, keyboard, monitor

etc.
Sundry Interfacing with
Hardware Items ) equipment and
) Miscellaneous i
for Operating transferring CSI
Test Equipment data
Version 2022b build 9.13.0.2193358, licence 40904778, Neural Network
Toolbox used in sensing system, all native functions used for handling
CSI are built-in and require no additional licencing
o CSI analysis and A Download URL:
University of ) o L . , N
testing and https://au.mathworks.com/products/matlab/student
MATLAB Southern ] )
implementation
Software Queensland ) — -
' OfSCnSlllg ate 5(3.13.0.2193358)
License )
algorithms
) ) ) Version 1.18.4
BelnaEtcher License Free Flashing micro
Software Version SD cards with

Download URL:
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Raspberry Pi
Operating
System Images

CSI Extraction

Tools

WireShark
Software

Available
License Free
from Raspberry
Pi

Open Source

Tools

Free License

Raspberry Pi

operating system

Operating
system for

Raspberry Pi

Special Purpose
Firmware to
Extract CSI Data

Examine Raw
CSI Samples and

Troubleshoot

https://etcher.balena.io/

balenaktcher - x

& balenakicher

& Flash from URL

8 Clone drive

For use with CSI Extraction Tools: raspios_lite_armhf-2022-01-28

Linux Kernel Version: 5.10.92-v7+

For use as Tx WiFi device: raspios_armhf-2023-05-03

Linux Kernel Version: 6.1.21-v8+

Download URL:

https://www.raspberrypi.com/software/operating-systems

CSI tools developed by Gringoli et al. (2019) using firmware patching
tools created by Schulz, Wegemer and Hollick (2016).

The precompiled installation version for Linux kernel version: 5.10.92-
v7+ is used, along with the script to ingest CSI data into MATLAB, the
original published article as well as the support guides and

troubleshooting forums are referred to.

Download URL:
https://github.com/nexmonster/nexmon csi/tree/master

Version: 4.0.4 (v4.0.4-0-gea14d468d9ca).

Network Analyser tool that can interpret .pcap files (the format CSI is
captured in).

Raw packets captured from the CSI extraction can be examined using

WireShark to verify or troubleshoot parsing to MATLAB.
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Download URL.:

https://www.wireshark.org/download.html

M test1234pcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AE:2® RE QRe=2=F 3 5 Qe

No. Time Source Destination Protocol

3.004086 .10.10. .255.255.

3.005825 l1e.1e.10. .255.255.
4.005860 .10.10. .255.255.
5.010953 .10.10. .255.255.
5.011690 .10.10. .255.255.
6.012245 .10.10. .255.255.
6.012523

.255.255.
ff ff ff ff ff ff 4e 45 58 4d 4f 4e 08 00 45 00 NE XMON- -E
94 2e 20 01 00 00 @1 11 al ab @a Qa @a @a ff ff
2020 ff ff 15 7c 15 7c 84 1a ©0 00 IEEEEEESEE:T:EEa
CCELINO1 6a cc bc e@ 02 @0 00 2a el 65 00 27 38 @0 ©
R Nh0 el 80 80 80 00 @@ 00 63 03 8b fd c@ 02 e7 f(

Remove the need to have a monitor mouse and keyboard connected to

the PI during testing.

D |

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Windows Standard Remote control Try the new cross-platform PowerShell https://aka.ms/pscoreé
PowerShell Application on of the CSI PS C:\Users\Ben>
Software Windows extraction Pi Name

PSVersion 5.1.19041.2673
PSEdition Desktop
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
BuildVersion 10.0.19041.2673
CLRVersion .0.30319.42000
WSManStackVersion .0
PSRemotingProtocolVersion i3
SerializationVersion .1.0.1

3.2 Design of WiFi Network to Capture CSI

To complete testing and generate CSI data for analysis a WiFi network had to be constructed that can capture
and log CSI data, be isolated from other WiFi networks and unwanted sources of EMI and controlled to allow
the capture of CSI with known parameters. The optimisation of the design was limited by the time, resources
and skillset of the undergraduate student researcher working on the project, so some aspects of the design were

only optimised and implemented as far as was reasonably practicable within the scope of the project.
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Figure 15. Testing equipment arrangement

The design and arrangement of the testing equipment drew on elements of the tests documented by Forbes,
Massie & Craw (2020), Ibrahim & Brown (2021), Li et al. (2021) and Schafer et al. (2021). A standalone WiFi
network is created by configuring the router to act as an AP but not connect to any other networks. The
Raspberry Pi 4 then joins this network hosted by the AP and traffic is generated between the Pi and the router.
While tools exist that can enable frame injection with a high degree of control and that can turn the WiFi NIC in
the Pi into a primitive from of SDR, such tools are complex to implement and not realistic simulations of
network traffic that would be present in typical WiFi network. Simply pinging the router proved sufficient in
order to generate traffic for proof-of-concept testing. If the system was ever to operate in parallel with normal
communication functions, traffic generated solely for sensing needs to be sparse enough to not overwhelm

communications traffic.

The Raspberry Pi 3B+ operates the Nexmon CSI extraction tools created by Schulz, Wegemer & Hollick (2016)
and Gringoli et al. (2019). The WiFi NIC is placed into monitor mode by the tools, so will capture all traffic
accessible and determine the CSI of each packet based on the method implemented by Gringoli et al. (2019).
Figure 16. depicts a high-level flowchart of the WiFi NIC firmware with the modifications made to extract CSI
shown in bold typeface. The tools also contain filtering functions to ensure that only desired traffic from the Pi 4
has the CSI logged for analysis. While it would be possible to extract CSI from the router as well, there is some
ambiguity in relation to how CSI is resolved when the number of antennas, cores and spatial streams are not
aligned between the transmit devices and the CSI extraction device (Link et al. 2019). By extracting CSI from
another Pi with identical WiFi hardware any ambiguity caused by transceiver mismatch is avoided with the

exception that it is not possible to determine which antenna on the router the Pi 4’s antenna is paired with. The
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filtered CSI can then be captured and stored to USB drive to be transferred to the computer where the analysis

u:>||| CsI part

Ulinto rx header

will be undertaken.

802.11 frame

T

C5I chain#

New frame 1, New frame 1) New frame
from air from D11 from device
Y Y .
Frame correct New CSI part Clean out
match CSI filter from D11 To upper layers
\ 7 L —
E W
< Copy CSI part Build UDP
P " 5
into rx header datagram Ee
Y
Raise mx11q Push to host
. : |
Linux/Main Host |

1 | |
| DI1MACCore FullMAC Core I

Figure 16. Flow chart of WiFi NIC firmware for CSI extraction
(Gringoli et al. 2019)

3.2.1 Setting up Raspberry Pi for CSI Extraction

The lite version of the Raspberry Pi operating system version was selected for use with the modified firmware
patches to extract CSI as the minimal operating system is less likely to perform automated functions without
deliberate user input which may interfere with the CSI extraction. There are also far fewer instances of
installation and usage issues reported as opposed to when using the full Raspberry Pi operating system (Link et
al. 2019).

An installation bundle with precompiled binaries can be used to make installation of the firmware more
straightforward. The installation bundle used in the project requires Linux kernel version 5.10.92 which is the
kernel version of the January 2022 release of the Raspberry Pi lite operating system. The disk image of the
operating system is downloaded from the Raspberry Pi website (refer Table 3.) and flashed to a 16GB micro-SD
card using BelnaEtcher. It is not recommended to use Raspberry Pi’s official flashing tool as it doesn’t allow

selection of specific legacy operating systems.

Once the SD-card is inserted in the Pi it can be powered on and then must be connected to the internet. Since
there is no graphical user interface there is little value in connecting a monitor to the Pi during CSI extraction,
but a monitor is required for initial set up. Using the raspi-config command in the root group (root group via:
sudo su) the software configuration tool can be accessed and used to set the time zone and local area network

region as well as the configuration needed to establish a connection to the internet i.e. SSID and password. To
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control the Pi from a remote computer and remove the need for a monitor, mouse and keyboard to be connected

during testing it is also necessary to enable secure shell in the interface options.

Figure 16. The Raspberry Pi configuration tool

Once the secure shell interface is enabled, the Pi can be interfaced with via a remote windows computer using
PowerShell. An Ethernet connection and valid network settings must be established between the windows
computer and the Pi. If the username and IP settings are left as default in the Pi, a Linux terminal can be
accessed in the Pi via ssh pi@169.254.217.1 in PowerShell. The address of the Pi can be confirmed via
hostname -1 before attempting to connect via PowerShell if required. A wireless LAN connection cannot be used
as the network connection for the remote terminal as the CSI extraction tools will disable normal wireless LAN

operation in the Pi and attempting to connect to WiFi network will interfere with the CSI extraction tools.

To store and transfer the CSI data captured to another computer and parse into MATLAB a USB thumb drive
must also be mounted to the Pi. The lite operating system will not do this automatically once a drive is inserted.
A directory must be created to mount the drive using the mkdir /mnt/ command. Then, once the drives partition
ID is known it can be configured to mount automatically by parsing the drives details as arguments to the sudo
nano /etc/fstab command. After the drive is mounted automatically, it is important to note that the USB drive
must be inserted every time the Pi is booted. The computer used for analysis is utilising a windows operating
system so the USB drive must be formatted using a file system common to both Windows and Linux. NFTS was

used in the project.

Figure 17. shows a connection via PowerShell to the Pi being established and some basic checks. The df -h
command is run to verify the USB is mounted. The 8GB ScanDisk USB is mounted at “/dev/sdal” and labelled
“usbhdd”. The USB directory is then opened and all files are listed using the Is -a command showing four .pcap
files “outputl”, “output”, “test1234” and “test2504” which contain CSI captures performed during testing and

design of the CSI extraction system used in the project.
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EX pi@raspberrypi: ~

Windows Powershell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Users\Ben> ssh pi1@169.254.217.1
pi@169.254.217.1's password: )
Linux raspberrypi 5.10.92-v74+ #1514 SMP Mon Jan 17 17:36:39 aMT 2022 armv/1

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in fusr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Apr 12 20:55:49 2023 from 169.254.18.120

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set a new password.

= sudo su
ypi:/home/pi# df -h

Filesystem Size Used Avail
/dev/root 156 1.6G 13G
devtmpfs 333m 0 333m

462M 0 462m ;

185M 684K 184m ; r

p 5.0 4.0k 5.0M ¥ ~un/lock

/dev/mmcbTkOpl 253M 49 204M % /boot
J/dev/sdal Fi 24M  7.5G : mnt,/usbhdd
tmpfs 93m 0 93m 5 ~un/user/1000
root@raspberrypi:/home/pi# cd /mnt/usbhdd

root@raspberrypi: /mnt/usbhdd# 1s -a
5 S outputl.pcap output.pcap 'System Volume Information' testl234.pcap test2504. pcap
root@raspberrypi: /mnt/usbhdd#

Figure 17. Accessing the Pi and checking USB drive mounting

It is important to complete all set-up tasks, in particular the tasks requiring connection to the internet before
attempting to install the CSI extraction tools. Connecting to the internet is not possible once the tools are
running and it is important to never update any of the Pi operating system components, even if prompted, as the
CSl tools are version sensitive. To installs the tools enter the root environment via sudo su and input:

curl -fsSL https://raw.githubusercontent.com/nexmonster/nexmon_csi_bin/main/install.sh | sudo bash

into the terminal.

The tools take several minutes to install, and it is important to observe the terminal for any error messages
during installation. Once installed avoid making any changes to the Pi’s wireless LAN interface to ensure the

tools remain operational.

3.2.2 Operating the Extraction Tools

The CSI tools are operated via the Pi 3B+’s remote command line. The Pi can be positioned as required for
testing and is reasonably robust and portable while within a case but requires connections to the power supply
(right Figure 18.), the USB HD (top left Figure 18.) used to transfer CSI data and the Ethernet connection (top
right Figure 18.) to the computer hosting the remote command line. The position of the Pi 3B+ does not impact
the signal path being analysed in a CSI capture as it is extracting the CSI from the Pi 4. To execute a CSI
extraction the Pi 3B+’s WiFi NIC needs to intercept the packets from the Pi 4 reliably, so must be in proximity.

Within 4 or 5 meters is recommended, to ensure a reliable WiFi signal.
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Figure 18. Raspberry Pi 3B+ with required connections for CSI capture

To capture and log CSI from a specific device the channel and bandwidth of the WiFi network must be known
and the MAC address of the device from which CSI is going to be captured form. The WiFi NIC’s MAC
address of the Raspberry Pi 4 is: E4:5F:01:6A:CC:BC. The MAC address can be displayed by using the output
of the ifconig command and locating the details of the WiFi NIC in the output. The channel and bandwidth of
the network can be set via the AP. In the project WiFi channel parameters are configured via the TP-Link

webserver, accessed by connecting to the routers IPv4 address via a web browser.

Using the Raspberry Pi 3B+ terminal the command to configure and run CSI extraction can then be inputted.
The mcp (makecsiparams) command configures the extraction. The arguments passed to mcp define the
parameters of the CSI extraction. A list of arguments is included in Table 4. Not all possible arguments must be

passed to mcp as any not included will revert to default values.
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Table 4. Arguments for the mcp Command

Argument Function Description

-h help print this message - list of arguments

-e on/off | enable/disable CSI collection (0 = disable, default is 1)

-C chanspec | Channel specification <channel>/<bandwidth>

-C coremask | bitmask with cores where to activate capture (e.g., 0x5 = 0b0101 set core 0 and
2)

-N nssmask = bitmask with spatial streams to capture (e.g., 0x7 =0b0111 capture first 3 ss)

-m addr filter on this source mac address (up to four, comma separated)

-b byte filter frames starting with byte

-d delay | really needed for 3x4, 4x3 and 4x4 configurations, without it is enforced
automatically

T generate raw output (no base64)

The output of the mcp command will be a base64 encoded parameter string formatted which can be parsed to the
CSI extractor (Gringoli et al. 2019). The nexutil (Nexmon utility) command then initialises the extractor. The
parameter string outputted by mcp is parsed to nexutil as a custom argument. Values of other arguments to
nexutil remained static throughout the project and are intended for use with other firmware patches implemented
using Schulz, Wegemer & Hollick’s (2016) tools. A full list of all arguments and options is shown in Figure 19.
The CSI samples can then be logged using the fepdump command as they will be collected in the form of UDP
packets originating from IP address 10.10.10.10 destined for 255.255.255.255 on port 5500 (Gringoli et al.
2019).
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Figure 19. Help view of the Nexmon utility

3.2.3 CSI Capture Operating Instructions and Example

A capture of 1000 CSI samples from the Raspberry Pi 4 on WiFi Channel 157 — 5785MHz, with 20MHz
bandwidth was undertaken to test the CSI extraction system and detail the operation. The TP-Link router is
configured so that it will only operate a single 5GHz network in the IEEE 802.11ac mode via the TP-Link
webserver. The routers IP Address was set to 192.168.1.1. The selection of IP Address is not significant to the
RF parameters of the CSI extraction but is used to access the TP-Link webserver and to generate traffic between
the router and the Pi 4. Since the router facilitates dual-band operation, the 2.4GHz IEEE 802.11b/g/n functions
are disabled to ensure there can be no unintentional connection and minimise sources of interference. This is

configured by: Wireless 2.4GHz > Wireless > select Disable Option — as shown in Figure 20.
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ACT50 Wireless Dual Band Router

10 tp-link Model No. Archer C20

Status

Quick Setup

Wireless Settings(2.4GHz)

Operation Mode

Wireless:  (C) Enable (@ Disable
Wireless Network Name: | TP-Link_5E0B | (atso called SSID)

- Basic Settings
-WPS

- Wireless Security
- Wireless MAC Filtering

Mode: | {1bgn mixed v

Channel Widith:

- Wireless Advanced Enable SSID Broadcast

- Wireless Statistics

Wireless 5GHz

Guest Network &J

Figure 20. TP-Link webserver — disabling the 2.4GHz IEEE 802.11b/g/n network

The 5GHz 802.11 a/n/ac networking functions are then enabled and set to operate via a fixed channel 157 and
channel width 20MHz via: Wireless 5GHz > Wireless > select Enable Option, Channel 157 and Channel Width
20Mhz — as shown in Figure 21.

The network is named “CSI Test” for easy identification when connecting to the Pi 4. Since the Pi 4’s Broadcom
WiFi NIC is complaint with IEEE 802.11ac the TP-Link router and the Pi 4 will utilise IEEE 802.11ac during
their communication session (Ward 2012; Preliminary Data Sheet BCM43455 2016).

AC750 Wireless Dual Band Router

10 tp-link Model No. Archer C20

Status
Quick Setup
Operation Mode
Network

Dual Band Selection

Wireless Settings(5GHz)

Wireless 5GHz: @ Enable () Disable

Wireless 2 4GHz Wireless Network Name: | Sl Test | (Also called SSID)
- Basic Settings Mode: | 11a/n/ac mixed v

_WPS Channel: 157 ~

- Wireless Security Channel Width: 20MHz W

- Wireless MAC Filtering Enable SSID Broadcast

- Wireless Advanced

- Wireless Statistics B

Guest Network &J

Figure 21. TP-Link webserver, the 5GHz IEEE 802.11ac settings for test extraction

The Raspberry Pi 4 needs to be connected to the WiFi network hosted by the TP-Link router and then generate
wireless traffic so that the Pi 3B+ can record and log the CSI. Using the Pi operating system, the Pi 4 can be
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connected to the WiFi network by selecting the “CSI Test” network in the WiFi control palette in the right-hand
corner of Pi 4 desktop. Traffic is then generated using the ping command to create a communication session
between the Pi 4 and the router. The size and transmission frequency of packets can be controlled using the
arguments of the ping command. For sensing applications, a high frequency of transmissions will provide more
data enabling a higher chance of effective detection. It important to note that only the root user in the Pi 4 can

initiate flood pings and pings set to intervals less than 200ms.

Table 5. Arguments for the ping Command (incomplete list relevant commands only)

Argument Function Description

-f flood ping = for every ECHO REQUEST sent a period "." is printed, while for ever
ECHO REPLY received a backspace is printed. This provides a rapid display of
how many packets are being dropped. If interval is not given, it sets interval to
zero and outputs packets as fast as they come back or one hundred times per
second, whichever is more. Only the super-user may use this option with zero
interval.

i interval | wait interval seconds between sending each packet. The default is to wait for one
second between each packet normally, or not to wait in flood mode. Only super-
user may set interval to values less 0.2 seconds.

= packetsize = specifies the number of data bytes to be sent. The default is 56, which translates
into 64 ICMP data bytes when combined with the 8 bytes of ICMP header data.

(Anderson 2006)

pi@raspberrypi: ~

File Edit Tabs Help

pi@raspberrypi

Figure 22. Pinging the TP-Link router via the Raspberry 4 with 10ms ping interval

Once the Pi 4 and router are configured to create the wireless network that will generate the CSI, the Pi 3B+
must be configured to extract and log the CSI. The inputs to the terminal of the Raspberry Pi 3B+ are detailed
below:
1. Input:
pi@raspberrypi:~ $ sudo su
Comments:
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Enter the root environment.

2. Input:
root@raspberrypi:/home/pi# mcp -C 1 -N 1 -c¢ 157/20 -m E4:5F:01:6A:CC:BC -b0x88
Comments:
Configure CSI extraction to extract from a single core and spatial stream (all that is possible with a Pi) on
channel 157 with 20MHz bandwidth. Filtering for MAC address E4:5F:01:6A:CC:BC, the address of the Pi 4

for frames starting with 0x88. Frames starting with 0x88 are QoS frames including traffic generated by pings.

This creates a method of filtering frames that are specifically generated for testing from other unwanted traffic.

Output:
ndABEQGIAQDkXwFgzLWAAAAAAAAAAAAAAAAAAAAAAAAAAA==

3. Input:

root@raspberrypi:/home/pi# ifconfig wlan0 up
Comments:

Turn on the WiFi NIC.

4. Input:
root@raspberrypi:/home/pi# nexutil -lwlan0 -s500 -b -134 -
vndABEQGIAQDKXwWFqzLWAAAAAAAAAAAAAAAAAAAAAAAAAAA==
Comments:
Configure the extractor to extract from the WiFi NIC (wlan0) by passing the parameter string generated. The

other arguments are custom values which remain static regardless of configuration.

5. Input

root@raspberrypi:/home/pi# iw dev wlan0 interface add monO type monitor
Comments:

Enable monitor mode on the WiFi NIC.

6. Input:
root@raspberrypi:/home/pi# ip link set mon0 up
Comments:

Turn on monitor mode.

7. Input:
root@raspberrypi:/home/pi# tcpdump -i wlan0 dst port 5500 -vv -w prtest.pcap -¢ 1000

Comments:
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Capture packets from the WiFi NIC for destination port 5500. Save to file “prtest”. Stop logging at 1000
samples. The contents of prtest.pcap will be 1000 CSI samples.

| sudo su
root@raspberrypi:/home/pi# mcp -C 1 -N 1 -c 157/20 -m E4:5F:01:6A:CC:BC -b0x88
ndABEQGIAQDK XwF qzL wAAAAAAAAAAAAAAAAAAAAAAAAAAA==
root :/home/pi# ifconfig wlan0 up
:/home/pii nexutil -Iwlan0 -s500 -b -134 -vndABEQGIAQDkXwFozLWwAAAAAAAAAAAAAAAAAAAAAAAAAAA==
i:/home/pi# iw dev wlanD -interface add mon0 type monitor
i:/home/pi# ip link set mon0 up

rasp
root@raspberrypi: /home/pi# tcpdump -i wlan0 dst port 5500 -vv -w prtest.pcap -c 1000
tcpdump: Tistening on w'anD, Tink-type EN1OMB (Ethernet), snapshot length 262144 bytes
1000 packets captured
1038 packets received by filter
0 packets dropped by kernel
root@raspberrypi:/home/pi#

Figure 23. Remote Terminal of Pi 3B+ During CSI Capture
During the test traffic was generated by the Pi 4 by pinging the TPLink router using the standard packet length
of 32 bytes at a frequency of 10ms via the command ping -i 0.01 192.168.1.. The captured packets were copied
to the USB HD formatted as a packet capture .pcap file. The format of the payload of the .pcap file is provided

in the user guides for the Nexmon CSI tools and is detailed in Table 6.

Table 6. Format of CSI Samples

Bytes Type Name Description

2 uintl6 | Magic Bytes 0x1111

1 uint8 RSSI RSSI in Two's Complement form

2 uint8 FrameControl Byte that shows the WiFi Frame Type
Byte

6 uint8[6] | Source Mac Source Mac ID of the WiFi Frame

2 uintl6 = Sequence Sequence number of the WiFi Frame
Number

2 uintl6 | Core and Spatial | Lowest 3 bytes indicate the Core, and the next three bits indicate the
Stream Spatial Stream number.

2 uintl6 | Chanspec Chanspec used during extraction. See nexutil -k.

2 uintl6 | Chip Version Chip Version
variable intl6[] = CSI Data Each CSI sample is 4 bytes with interleaved Int16 Real and Int16
Imaginary. There are bandwidth * 3.2 OFDM subcarriers per
channel, and a CSI sample for every subcarrier is present.

(Reddy 2022)

The .pcap files can be opened by software applications designed for network management and analysis such as
Wireshark. Examining the raw contents of the file is useful to ensure the capture functioned correctly and the
data is not corrupted. Figure 24. shows the test capture data opened in Wireshark (version 4.04). The first 16 of
1000 packets are shown. All UDP packets have source address 10.10.10.10 and destination address

255.255.255.255 - circled top of Figure 24. and all payloads contain the 2 magic bytes 0x111 at the 11™ and 12®
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bytes of row 0020 — circled bottom of Figure 24. 2 bytes forward of 0x111, is the MAC address of the Pi 4,
“0x5f:01:6a:cc:be”. These features align with Gringoli et al.‘s (2019) description of the output of the extraction
tools confirming capture is CSI data.
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Figure 24. Wireshark captured of CSI Data

3.2.4 Parsing CSI Data for Analysis

The CSI data must be parsed into MATLAB so that analysis can be undertaken, and detection techniques can be
tested. Utilising the function created by Gringoli et al. (2019) to read .pcap files the CSI samples captured in
UDP packets can be ingested into MATLAB as numeric values. Gringoli et al. (2019) created several
MATLAB functions that are designed for use with the CSI extraction tools. All are generic and can be used with
hardware other than the Broadcom bcm43455c0. Each different WiFi hardware option the CSI extraction tools
are compatible with will format the raw CSI data differently, so the parsing process differs also. The functions
also only enable basic plotting of each captured packet’s phase and amplitude. As the project requires a
significant volume of data be ingested, visualised and manipulated in more complex ways, only Gringoli et al.’s
(2019) functions to read .pcap files was utilised in the project. The functions were also modified to decode only
UDP packets from the bcm43455¢0 without requirement for any arguments to be parsed. A full code listing of

the modified versions of Gringoli et al.’s (2019) functions is located in Appendix E.
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Once ingested into MATLAB the raw CSI data is in the form of a matrix of complex numbers. The real part of
each complex number represents the amplitude, and the imaginary part will represent the phase of the CSI
sample. Rows contain a CSI measurement from each captured packet and columns contain the measurement of
each subcarrier within the packet. The number of subcarriers in each sample is dependent on the bandwidth of

the capture.

Table 7. Number of subcarriers for each Channel Width in IEEE 802.11ac

Bandwidth (MHz) Number of Subcarriers

20 64

40 128
80 256
160 512

(Ward 2012)

To test and verify the operation of the CSI tools and extraction system the UDP packets which were captured
following the process detailed in the previous section were ingested into MATLAB. The code used to ingest the
CSI data is listed below: (using the default colour scheme and formatting for MATLAB code, see MATLAB

documentation for more details: https://au.mathworks.com/help/matlab/matlab prog/edit-and-format-

code.html).

3.2.5 Matlab Code, Ingetsing CSI:

A
% Ingesting CSI
e =
%Ingests CSI data from tools developed by Gringoli et al. 2019

%Requires functions from Gringoli et al. 2019 MATLAB CSI Reader:

%  readpcap.m

%Avialbe at: https://github.com/seemoo-lab/nexmon_csi

%0nly suitable for use with CSI captured from Broadcom 43455c@ WiFi NIC

%»Packet Capture File read Parameters

File = '20MHzTest.pcap'; %file name of captured CSI data

BW = 20; %either 20MHz, 40MHz or 80MHz bandwidth

Max_UDP = 1000; %maximum number of UDP packets to read from capture file

%Ingest CSI from .pcap decoder

csi_raw = readCSI(File, BW, Max_UDP);

%Ccsi_raw is matrix of CSI samples from captured packets, columns contain
%CSI data from each packet, rows contain CSI samples for each subcarrier

%Arrange CSI in subcarrier order with centre frequency = subcarrier
% index @, as per 802.1lac
csi_raw = fftshift(csi_raw,2);
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Verifying the operation of the tools is important to ensuring data collected in testing is valid. The first
verification step is to ensure the output variable csi_raw is a matrix containing 1000 rows, one for each captured

UDP packet and 64 columns, one for each subcarrier of a 20MHz bandwidth capture, with each entry being a

complex number.

| oiraw x| Name Value
[ 1000x64 complex double H Bw 20
1 2 3 4 5 6 7 8 9 10 1 12 13 14  sstraw s
[ File '20MHzTest.pcap’

1 [3.0710e-03.]4.0950-03 .. 4095003 .. -6.1440e+0... -44200e+0... -2.8500e+0... -1.0000e+0... 2670002 ... 42300+02 ... A7100+02 ... 43600e+02 ... 3.3600e+02 .. 1.6900e+02 .. 20000e+00 A | I i op e
2 3.0710e+03..4.0050e+03 ... 40050603 ... -6.1440e+0... -2.7700e+0... -4.6100e+0... -47200e+0... -3.5800e+0... -1.9600e+0... -2.8000e+0... 1.2500e+02 ... 2.3700e+02 .., 3.4300e+02 ... 4.2200e+02
3 3.0710e+03 ... 4.0950e+03 ... 40950e+03 ... -6.1440e+0... 4.5200e+02 ... 4.1100e+02 ... 2.2800e+02 ... 6.0000+00 ... -1.8400e+0... -3.2300e+0... -4.2700e+0... -4.8000e+0... -5.0300e+0... -4.8600e-0
4 |3.0710e+03 ... 4.0050e+03 ... 4.0050e+03 ... -6.1440e+D...1.7200e+02 ... 3.8800e+02 ... 4.8000e+02 ... 4.1600e+02 .. 2.5400e+02 ... 7.4000e+01 ... -1.0100e+D... -2.5200e+0... -3.9600e+0... -4.7000e+0
5 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... 3.1000e+01 ... -2.7200e+0.. -4.5600e+0... -4.9700e+0... -4.2700e+0... -3.0100e+0.. -1.5300e+0... -8.0000e+0... 1.2600e+02 ... 2.4700e+02
6 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... 2.3500e+02 ... 3.8600e+02 ... 4.1300e+02 ... 3.1100e+02 ... 1.2500e+02 ... -6.0000e+0... -2.0600e+0... -3.4200e+0... -4.4600e+0... -4.8800e+0
7 3.0710e+ 4,0950e+03 ... 4.0950e+03 ... -6.1440e+0... -4.2000e+0... 2.3500e+02 ... 4.0000e+02 ... 4.6100e+02 ... 4.1800e+02 ... 3.2200e+02 ... 2.0500e+02 ... 9.9000e+01 ... -1.1000e+0... -1.2400e+0
8 |3.0710e+03 ... 4.0050e+03 ... 40950603 ... -6.1440e+0... -3.3200e+0... -44200e+0... -4.1300e+0... -27200e+0.. -1. 4000e+01 ... 1.8800e+02 ... 2.8200e+02 ... 3.6300e+02 ... 4.2800e+02
9 |3.0710e+03 ... 4.0050e+03 ... 4.0950e+03 ... -6.1440e+0... 2.8500e+02 ... 3.2000e+01 ... -2.4400e+0... -4.1700e+0.., -4, .| -4.3300+0... -3.3600e+0... -1.9700e+0... -5.1000e-0... 8.0000e+01
10 |3.0710e+03 ... 4.0050¢+03 ... 4.0950e+03 ... -6.1440e+0... 3.6600e+02 ... 4.1900e+02 ... 3.2000e+02 ... 1.2800e+02 ... -0.7000e+0... -2.7500e+0... -3.8700e+D... -4.5600e+0... -4.7600e+0... -45100e+0
11 |3.0710e+03 ... 4.0050e+03 ... 40050603 ... -6.1440e+0... -3.4900e+0... -4.5600e+0... -4.0100e+0... -2.4900e+0... -7.5000e+0... 8.4000e+01 ... 2.1700e+02 ... 3.1500e+02 .., 3.8500e+02 ... 4.4000e+ 02
12 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... 2.6000e+01 ... -2.4500e+0.. -4.3100e+0... -4.6800e+0... -3.8800e+0... -2.5900e+0... -1.0300e+0... 5.2000e+01 ... 2.0400e+02 ... 3.1600e+02
13 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... 1.5000e+01 ... -2.6800e+0... -4.3300e+0... -4.3100e+0... -3.0300e+0... -1.2000e+0... 5.8000e+01 ... 2.1400e+02 ... 3.4900e+02 ... 4.4600e+02
14 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... 1.4900e+02 ... 3.6800e+02 ... 4.3400e+02 ... 3.5000e+02 ... 1.7200e+02 ... -2.2000e+0... -1.8900e+0... -3.2500e+0... -4.2600e+0... -4.7700e+0
15 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... -2.8800e+0... -4.3800e+0.. -4.2300e+0... -2.9000e+0... -1.1500e+0... 5.3000e+01 ... 2.0200e+02 ... 3.1000e+02 ... 3.9800e+02 ... 4.4700e+02
16 |3.0710e+03 ... 4.0050e+03 ... 40950603 ... -6.1440e+0...2.4000e+01 ... 3.0000e+02 ... 4.6200e+02 ... 4.T700e+02 ... 4.0200e+02 ... 2.7900e+02 ... 1.4200e+02 ... 2.3000e+01 ... -1.0400e+0... -2.2000e+0
17 |3.0710e+03 ... 4.0050¢+03 ... 4.0950e+03 ... -6.1440e+0... -2.9800e+0... -4.1000e+0... 2.5500e+02 ... 43800e+02 .. 4.8300e+ 02 ... 4.4300e+02 ... 3.3500e+02 ... 1.8200e+02 ... 2.4000e+01 ... -1.1500e+0
18 |3.0710e+03 ... 4.0050e+03 ... 40050603 ... -6.1440e+0...7.1000e+01 ... -2.0200e+0... -4.2100e+0... -4.8700e+0..] -4.1900e+0... -2.9000e+0... -1.2900e+0... 49000e+01 .| 2.1200e+02 ... 3.2000e+02
19 |3.0710e+03 ... 4.0050e+03 ... 4.0950e+03 ... -6.1440e+0... -2.3000e+0... 5.2000e+01 ... 2.9600e+02 ... 43700e+02 ... 4.7700e+02 ... 4.4100e+02 ... 3.6200e+02 ... 2.6200e+02 ... 1.6200e+02 ... 3.8000e+01
20 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... -2.9900e+0... -4.3000e+0... -4.0600e+0... -2.4600e+0... -2.9000e+0... 1.7900e+02 ... 3.2700e+02 ... 4.1900e+02 ... 4.9600e+02 ... 5.0000e+02
21 3.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... 2.8100e+02 ... 4.4500e+02 ... 4.5300e+02 ... 3.2600e+02 ... 1.4300e+02 ... -3.6000e+0... -1.9800e+0... -3.3600e+0... -4.3700e+0... -4.8500e+0
77 13.0710e+03 ... 4.0950e+03 ... 4.0950e+03 ... -6.1440e+0... -3.3400e+0... -4.3600e+0... -3.8700e+0... -2.3700e+0... -5.9000e+0.. 1.0900e+02 ... 2.5200e+02 ... 3.6000e+02 ... 4.3500e+02 ... 4.6400e+02 ¥

< >

Figure 25. Test capture CSI data ingested, csi_raw Variable

The raw CSI data can then be visualised. The objective of visualising the raw data is simply to ensure that it
contains the features that would be expected of a CSI data. The MATLAB code below was used to plot the CSI
data from a single captured packet for inspection, the resulting plot is shown in Figure 26.

3.2.6 Matlab Code, Plotting Raw CSI:

Plotting Raw CSI

%Plots Raw CSI Data for inspection, magnitudes of all captured frames and
%magnitude and phase of any selected frame

%#Create subcarrier index

subc_index = -(size(csi_raw,2)/2):1:(size(csi_raw,2)/2-1);

%Plot Raw CSI Magnitudes:

figure (10)

plot(subc_index , abs(csi_raw.'))

grid on

xlim([subc_index(1) subc_index(length(subc_index))])
xlabel('Subcarrier")

ylabel('Magnitude")

title('Raw Channel State Information')

%Plot Raw CSI - Single Frame Magnitude and Phase:
pack_no = 54; %select packet for plotting
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figure (11)

subplot(2,1,1);

plot(subc_index , abs(csi_raw(pack_no, :)).")

grid on

xlim([subc_index(1) subc_index(length(subc_index))])

xlabel('Subcarrier")

ylabel('Magnitude")

title('Raw CSI From File: ' + convertCharsToStrings(File) + .
", Frame no.: '+ pack_no)

subplot(2,1,2);

plot(subc_index , rad2deg(angle(csi_raw(pack_no, :))."))

grid on

x1im([subc_index(1) subc_index(length(subc_index))])

ylim([-180 180])

xlabel('Subcarrier")

ylabel('Phase °")
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Figure 26. Plot of CSI data from test capture: Phase and Amplitude vs Subcarrier Index

The subcarriers in the x-axis are indexed as they are described in IEEE 802.11ac, for explanation refer to the
plot in Figure 7. from Gast (2013). The phase changes in Figure 26. are uniform increments of approximately
15° per subcarrier. This can reasonably be considered expected behaviour of a CSl as there is uniform rotation
between subcarriers (Ward 2012).
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The amplitude in Figure 26. shows a sinusoidal pattern with significant outliers in the lowest, highest, and centre
ordered subcarriers. These are also expected behaviour as they are the locations of the null subcarriers which
contain a DC offset (Ward 2012). Table 8. lists the subcarriers used for data transmission in IEEE 802.11ac.
Subcarriers outside of this range contain a DC offset and thus always contain outliers in amplitude and also will

not contain any useful information about the properties of the signal path or the transmission (Ward 2012).

Table 8. List of data carrying subcarriers IEEE 802.11ac

Bandwidth No. of Subcarriers Data Tx. Subcarriers

20 64 -28to-1:1to28
40 128 -58to-2:21to0 58
80 256 -122t0-2:2t0 122

-250 to -130 : -126 to -6

160 512
6to 126 : 130 to 250

(Ward 2012)

A similar plot to Figure 26. can be produced but with the null subcarriers removed to visualise the CSI

behaviour without outliers.

%104 Raw CSI From File: 20MHzTest.pcap, Frame no.: 54
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Figure 27. Plot of CSI data from test capture, null subcarriers removed
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To keep the x-axis continuous, the subcarrier index is no longer similar to what is defined in IEEE 802.11ac and
now represents the data subcarriers in order of frequency — lowest to highest in numerical order. While the CSI
data appears to be extracted successfully, the validity of any testing undertaken in the project is highly
dependent on the correct operation of the CSI tools. Ideally CSI measurements would have been taken from
another source and compared to the CSI data extracted by the tools used in this project. This could be achieved
via the use of instrumentation, such as a spectrum analyser taking measurements from the WiFi hardware or via
assistance from a party with access to the development tools used to design and construct the WiFi hardware.
While either of these methods would be complex and are outside the scope of the project, it is important to

ensure that as much verification as possible is undertaken to ensure that the tools are functioning as intended.

While less robust, another method of verification is to compare the CSI data extracted in the test against CSI
data extracted form a different toolset used by other researchers. Figure 28. plots CSI data extracted from the
Atheros CSI Tool created by Xie, Li & Li (2015). Like the test extraction performed in this project, Xie, Li & Li
(2015) note that the channel was stable during the extraction. While the Atheros CSI Tool is slightly older than
Gringoli et al.’s (2019) tool, and operates with 802.11n as opposed to 80.211ac it should be similar.
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Figure 28. Test capture of four CSI samples from the Atheros CSI Tool
(Xie, Li & Li 2015)
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Xie, Li & Li (2015) don’t detail exactly how subcarriers are arranged in the x-axis or what was used as a
reference for the conversion to decibels in the y-axis but it is clear that the CSI samples amplitudes follow a

substantially similar pattern to the test capture undertaken in this project.

3.3 Verifying the Test Equipment

A challenge when using open-source tools and firmware created by researchers is that they are often developed
with limited oversight, testing and compliance requirements in comparison to commercial products. Also, in the
case of the tools used in this project without the direct assistance and verification of the manufacturers of the
WiFi equipment they interact with (Gringoli et al. 2019). Prior to collecting any CSI data intended to assess the
feasibility of detecting vermin the test network was verified as far as was practical using the equipment available

to the project.

3.3.1 Filtering Functions

Without correct operation of the filtering functions the CSI samples logged could be from devices other than the
Pi 4 and from packets that aren’t the intentionally generated sensing pulse pings. To verify the operation of the
filtering functions the Pi 4 was connected to a busy WiFi network being used within a household to provide

internet connection to various devices. The testing produce used is detailed in Table 9.

Table 9. Testing the CSI filtering functions

Procedure Results Comments Purpose

Check router settings or use iwlist wlan0

scan on the Pi4.

The channel used is not significant for the
1. Identify the Channel being

utilised by the WiFi
network.

test but must be known to configure the

Channel 36 CSI extraction. Configure Test.

The channel width is also not significant
as packets will still be captured even if the
extraction width doesn’t match the
captured packet.

Do not enter an address (-m) or byte Confirm CSI

2. Extract CSI with no CSI measurements

filter(-b) argument to: -mep , command extraction works with

filtering. captured rapidly ) )
when configuring the CSI extraction. default parameters.
Configure CSI extraction using MAC Confirm CSI
Captures packets at a address filtering: -mE4:5F:01:6A:CC:BC | measurements are
Extract CSI with filtering of . L
slower rate than previous = Ensure the Pi 4 will generate traffic on the | captured when
the Pi 4’s MAC address. . . .
step WiFi network, web browse or ping the filtering for packets
router. from the Pi 4 only.
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No other device should have the same Confirm filter does

4. Turn the Pi 4 off and repeat MAC address as the Pi 4. not log measurements
No captured packets o
capture in Step 3. when the Pi 4 is not
If packets are captured indicates error. on network.

Any device on the network can be pinged,
it is not recommended to ping a device
Packets Captured outside of the local network to ensure
5. Turn on Pi 4 and ping approximately once a consistent trip time.
Confirm CSI

another WiFi device on the | second. .
extraction occurs at

network at the default Configure CSI extraction using frame
. . expected packet rate
interval, Extract CSI using | Occasional bursts of 4 filtering: -b0x88. and MAC address )
o ) when frame filtering
MAC and address QoS packets captured in quick | filtering: -mE4:5F:01:64:CC:BC .
is used.
frame filtering succession were Default ping interval is 1 second.
observed.
Ping will continue indefinitely if initiated
from Pi 4’s terminal.
Only specific traffic should contain the
6. Stop pinging from Pi 4 and . . Confirm CSI
Packets only captured in | frame heading for QoS. ) )
generate WiFi traffic via ) extraction with QoS
irregular bursts of 4 . .
other method e.g., web ) frame filtering will
usually 15 — 30 seconds Short bursts of 4 packets are likely
browsing. Continue CSI not measure CSI from
apart. responses to beacon frames or other
extraction from Step 5. other frames.
network management traffic.
Confirm CSI
7. Turn off Pi 4 and initiate . .
extraction with QoS
pinging between two other .
o frame filtering and
devices on the WiFi Filtering should only log measurements .
No captured packets. ) MAC address filtering
network e.g. between router from QoS frames from the Pi 4. .
will not measure QoS
and PC. Continue CSI .
frames from devices
extraction from Step 5. .
other than the Pi 4.

Testing confirmed there was no unexpected behaviour of the filtering functions except for occasional CSI
measurements were when no ping was initiated and QoS frame filtering was being utilised. These measurements
are almost certainly caused by beacon frames or other network management traffic. Beacon frames are
transmitted to announce the presence of a WiFi device and contain information to allow devices to begin
communication sessions, such as modulation type and compatible standards (Ge et al. 2022). They are
transmitted frequently from APs, typically every 100ms but devices connected to the AP do not respond to every
beacon. The exact frequency of a device connected to an AP transmitting QoS frames is hard to predict and

depends on events occurring within the communication session (Ge et al. 2022).

No method of filtering out these unsolicited QoS frames could be implemented however the impact they have on
testing is deemed minimal. In the case where QoS frames are transmitted between the Pi 4 and the TP-Link
router in response to beacon frames, they should still contain information about the signal path under test but

will not be generated at a known interval. Given they are generated extremely infrequently (15-30 seconds based

58



on testing) compared to the frequency of traffic required for sensing (=10ms) this won’t adversely impact
testing. If the frames are transmitted between the Pi 4 and another device not part of the test network, they may
not appear in the capture at all as they will not necessarily be on the same channel the CSI extraction is
occurring on. However, if they are transmitted over the same channel, they will be captured and will be an
outlier to the other CSI measurements as they will not be generated from the same transceivers or signal path. In
the next section of this dissertation the pre-processing methodology of the CSI data collected during testing is

detailed which aims to remove such CSI captures prior to sensing analysis.

3.3.2 Controlling Bandwidth and Channel

The channel and bandwidth of the test network (and WiFi networks in general) are controlled by the router or
AP. Prior to the selection of the Archer C20 TP-Link router other models were trialled. Initially, a Netgear
Nighthawk AC1900 was intended to be used as it was the most feature rich and powerful router available to the
project. However, unlike the TP-Link router, the Netgear router could not be configured to operate with a fixed
channel width. Both the TP-Link and Netgear routers could be set to automatically find an optimal channel (the
recommended setting) or be configured to remain on a fixed channel. But the configuration options available for
channel width differed. The Netgear router provides three configuration options to set maximum speed that
correspond to 20MHz(289Mbps), 40MHz(600Mbps) and 80MHz(1300Mbps) channel width see Figure 29. The

TP-Link router allowed a specific channel width to be selected and set see Figure 21.

x .
NETGEAR genie 4
Nighthawk R7000
ADVANCED Home
Setup Wizard
b — [ Aoo > xcance
¥ Setup Region Selection
Region: [ Australia v
Internet Setup
Wireless Setup Wireless Network (2.4GHz bigin)

WAN Setup
LAN Setup
Q08 Setup
Guest Network

» USB Functions
» Security
» Administration

» Advanced Setup

Enable SSID Broadcast
Name (SSID):

Channel:

Mode

NETGEAR19
13~
Up to 54 Mbps v

Security Options

® None

Owep

O WPA2-PSK [AES]

O wra-PSK [TKIP] = WPA2-PSK [AES]
(O WPAMPA2 Enterprise

Wireless Network (5GHz a/n/ac)
Enable SSID Broadcast
Name (SSID)

Channel:

Mode:

Up to 1300 Mbps v

NETGEAR19-5G
40 ~

Securify Options
® None
O WPA2-PSK [AES]

Figure 29. Neatgear configuration webserver

Up to 289 Mbps
Up to 600 Mbps

Up to 1300 Mbps

The Pi 4 can scan all networks (via: iwlist wlan0 scan) and display the parameters of each network in range,

including the channel. Scanning formed an important part of testing to ensure the channel used was vacant and
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to ensure that the Pi 4 was connected correctly to the TP-Link router and with strong signal strength. The output
of a WLAN scan performed on the Pi 4 is shown in Figure 30. It is notable that the standard IEEE 802.11i listed
in the scan in Figure 30. refers to an access standard and not a wireless networking standard such as IEEE
802.11ac.

Figure 30. Scan of WiFi network in range of the Pi 4

Determining channel width is more difficult than determining channel number. The most robust method is to use
CSl to verify the channel width throughout a capture. To do this the CSI extraction must be configured to
measure 80MHz CSI samples (the highest width available). The channel bandwidth can then be identified using
the value of the CSI measurements. Throughout the data subcarriers the magnitude of the CSI will fluctuate but
should maintain a reasonably consistent value, well above zero and the noise floor. If CSl is captured from a
transmission within the same channel region but with lower bandwidth, the magnitude of each subcarrier will be
insignificant until a subcarrier is sampled that aligns with data a carrying subcarrier. For example, referring to
Figure 31. if channel 155 is an 80MHz channel with 256 subcarriers and channel 157 is a 20MHz channel using
64 subcarriers, then subcarriers 0-64 (of -128 — 128) of channel 155 will align with the 20MHz channel 157.
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Figure 31. Overlapping WiFi channels of varying width
(IEEE Standrads Association 2013)

It is straightforward to determine the channel bandwidth when inspecting a plot of the subcarrier index vs CSI
magnitude. With the CSI capture configured to sweep 80MHz, six packets were captured, 3 from a 20MHz
channel width and 3 from an 80MHz channel width. Figure 32. is the resulting plot identifying the channel
width.
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Figure 32. Plot to identify channel width

61



Utilising CSI plotting to determine channel width, a testing procedure was developed to verify the behaviour of

the TP-Link and Netgear routers to determine the most suitable to use for testing.

Table 10. Router testing and verification procedure

Procedure

1. Configure the router under
test to host a network on a
fixed Channel with 80MHz
bandwidth. Scan networks
on the Pi 4 to verify which
channel the network is

operating on.

2. Configure another router to
host a network on the same
channel as the router under
test. Generate traffic to this
router and the router under
test simultaneously. Scan
networks on the Pi 4 to
verify which channel the
router under test is

operating on.

3. Switch off the additional
router from Step 2 leaving
only the router under test
hosting a network. Connect
the Pi 4 to the network.
Configure a CSI extraction
targeting the Pi 4 on the
channel used with 80MHz
bandwidth. Generate a
varying rate of traffic
between the Pi 4 and the
router over 10 seconds
(maximum). Plot
magnitude vs subcarriers of

the captured CSI.

Results

Netgear Router — WiFi
network is on configured
channel - 157.

TP-Link Router — WiFi
network is on configured
channel — 157.

Netgear Router — WiFi
network remained on

configured channel.

TP-Link Router — WiFi
network remained on

configured channel.

Netgear Router —
varying channel width
throughout CSI capture.

TP-Link Router —
channel width remained
fixed at SOMHz.

Comments

Routers are configured via webservers.

Only the 5GHz band was used in this
project but both routers have dual band
capability and can also host a 2.4GHz

Purpose

Verify the webserver
configuration tools

and manual channel

region network. selection are
functioning.

To scan on Pi 4: iwlist wlan0 scan

The Pi 4 can only join one network at a
time so at least one other WiFi enabled
(IEEE 802.11ac) device is needed. Confirm router will
not move channel

Flood pings are a simple way to generate even when there is

significant traffic. interference from
another network.

To flood ping: ping -f <IP Address/DNS

name>

Alternating between flood pinging and

default (1s) pinging of the router from the

Pi 4 will generate a varying rate of traffic.

Web browsing or any networking task that

requires a varied data rate will also be

suitable. eg. web browsing, then video

—— Confirm channel

It is important to vary the traffic quickly to width remains fixed at
varying data rates.

avoid having an enormous number of CSI
samples that will be difficult to plot
coherently. The CSI capture can be paused
while the usage of the network is changed
and then restarted.

Testing revealed that the Netgear router adjusted the channel width automatically based on the rate of traffic. An

inconsistent channel width is undesirable for sensing so only the TP-Link router was used during testing.
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3.4 Testing Arrangement and Configuration of Test Network

Ensuring that ethical standards are adhered to limits the location of testing to the animal’s normal habitat, in this
case that is the room the mouse used in testing is normally kept. The room is approximately 3m by 4m with
2.5m high ceilings. The room is a bedroom used mainly for keeping animals within a 5-bedroom brick veneer
house, located in Townville, North Queensland. A rectangular area approximate 3m by 1.7m was free of
obstacles and available to set up the test signal path. The mouse’s usual enclosure is a steel cage which would be
undesirable to introduce to the signal path during testing as it may impact the CSI measurements. The owner
explained that the mouse is often taken out of its enclosure for cleaning and socialising and kept on a 300mm by
300mm mostly plastic tray with some husbandry items shown in Figure 33. (left). Usually, the tray is placed on

top of the mouse’s enclosure or on a self and never on the ground.

> DOMETIC

Figure 33. The mouse positioned for testing (left) and close up of the mouse used during testing

The Pi 4 and the TP-Link router were placed on plastic boxes 350mm above the ground and 2.5m apart creating
a 2.5m long LOS signal path. A third plastic box also 350mm in height (shown in the left of Figure 33.) was
placed in the centre of the 2.5m signal path to house the mouse within the signal path. Figure 34. was taken in
the room where testing was conducted and shows the TP-Link router on the left, the box used to elevate the

mouse in the centre and the Pi 4 on the right.
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Figure 34. Singal path used for testing

Figure 35. Close up of the TP-Link router and Pi 4 in the test network

During testing the Pi 3B+ could be kept in the same room approximately 1.3m form the Pi 4. A LOS signal path
2.5m long can be considered suitable for sensing testing as there should no significant attenuation caused by
distance and the length of signal path is reasonably consistent with that used in most other documented sensing

testing based on a survey conducted CSI based sensing research, shown in Table 11.
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Table 11. Survey of signal path length used in CSI sensing research

Title Author
WiFi-Based Real-Time (Gong et al. 2015)

Calibration-Free Passive
Human Motion Detection

Non-Invasive Detection of | (Wu et al. 2015)

Moving and Stationary

Human With WiFi

Channel State (Palipana, Agrawal &
Information Based Pesch 2016)

Human Presence

Detection using Non-

linear Techniques

Complex Motion (Zhang et al. 2020)
Detection Based on

Channel State

Information and LSTM-

RNN

Device free human (Damodaran et al. 2020)
activity and fall

recognition using WiFi

channel state information

(CSI)

Revisiting Indoor (Lin et al. 2020)
Intrusion Detection With

WiFi Signals: Do Not

Panic Over a Pet!

WiFi-based Human (Forbes, Massie & Craw
Activity Recognition 2020)

using Raspberry Pi

Fire Detection Using (Lietal. 2021)
Commodity WiFi Devices

Human Activity (Schéfer et al. 2021)
Recognition Using CSI

Information with Nexmon

Distance Between WiFi Devices

5 meters

2 — 6 meters

5 meters

3 meters

Non-fixed locations in 4m by 4m room

Distance not stated but performed in a

typical domestic room

Distance not stated but performed in a
typical domestic room — “same height
above the ground”

90cm

Diagonally opposite in 3.5m by 4.5m room
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3.4.1 Testing Procedure

Two types of tests were undertaken, vermin detection tests where the mouse is within the signal path while CSI
measurements are extracted and logged and control tests. Control tests were conducted when the mouse was
removed from the signal path but with all the same objects, including the mouse’s husbandry items in the signal
path and were always undertaken in the same room. Control tests were also always undertaken on the same day
immediately after vermin detection tests to ensure weather conditions and sources of interference were similar.
The room contained a ceiling fan and there was a WiFi network operating within the house where testing was
conducted. To avoid interference during testing the fan and all WiFi devices in the house were switched off and
no persons were present within the room during testing. The Pi 3B+ was interfaced with via an Ethernet patch
lead connected to the computer hosting the remote terminal line and the Pi 4 was controlled via a keyboard.
Tests were observed and the equipment was operated from a position several meters behind (opposite direction

to the Pi 4) the TP-Link router outside the bedroom doorway.

An 80MHz channel width was used for all testing as it is the widest bandwidth compatible with the Pi’s. A
wider bandwidth produces more CSI data, and a greater spectrum increases the chance of a subcarrier within the
spectrum interacting with an object in the signal path in a significant way, as Tan, Zhang & Yang (2018)
demonstrated when attempting to sense fruit ripeness. The choice of channel was largely based on avoiding
interference as opposed to sensing efficacy. The tests were conducted in the inner suburbs of Townville, and it is
highly likely that numerous other WiFi networks were operating nearby in adjacent dwellings. The Pi 4 can scan
for other WiFi networks using the iwlist wlan0 scan command. The output of this command details the signal
strength and channel of any networks that are within range of the Pi 4 and so any channels present could be
avoided to prevent interference. As a default, a high value channel, 149+, was used as these channels seemed to
be utilised less often. Possibly because there are greater restrictions around their use or because WiFi devices
search for an available channel in ascending order (ACMA 20214, 2021b). By using a channel not identified by
the Pi 4 scanning utility, the chance reduces significantly of interference being caused by a nearby WiFi network
as it can be determined that no WiFi networks are operating on that channel within range of the Pi 4 at the time

of the scan.

To generate traffic and create transmissions between the Pi 4 and the router the Pi 4 pings the router at 10ms
intervals. A common problem encountered with CSI sensing is irregular data-distribution (Zhang et al. 2022).
This mostly arises from being unable to determine the exact Tx and Rx partners of a CSI sample and the
intervals between CSI samples being irregular as WiFi communication is not synchronized. This is somewhat
overcome in the test network by filtering CSI samples so that only QoS packets are captured and 10ms was
selected as experimenting revealed that ping times less than 10ms started to become far more irregular when the

network was being used for normal communications.

For example, as an experiment, 2000, 10ms pings were generated between the Pi 4 and the TP-Link router while
the Pi 4 was also constantly refreshing a web page. This caused an average time of 10.03ms between pings. The
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same test was undertaken with 2000, 2ms, pings and the average time was 2.3ms. Notably the response time for
each test was similar so it can be inferred that the Pi 4 is the device unable to maintain 2ms ping which is
expected as it’s WiFi hardware only has a single core and can only generate a single spatial stream were as the
TP-Link router (which was used to host internet access) has 3 antennas, 4 cores and can generate 8 spatial

streams.

10ms is considered as a potentially reasonable value that could be used to generate a “sensing pulse” in a WiFi
system that is functioning as both a communication network and a sensing system without consequentially
compromising communications but while still producing enough CSI data to enable sensing. It is important to
note that the 10ms ping will still not generate a completely uniformly disturbed sensing pulse, nor will the
filtering functions only log CSI samples from ping packets as other traffic is also categorised as QoS.

Conducting testing was the highest risk from a safety and wellbeing perspective phase of the project and
involved technical tasks such as configuring the test network as well as housekeeping and data management
aspects. Testing also involved the added complications of an animal and the requirement to turn off the WiFi
network to a family household. To ensure testing was repeatable and conducted efficiently a procedure and

checklist were developed which is detailed in Table 12.

Table 12. Testing Procedure

Procedure Check List Comments

1. Arrange and initialise test
equipment:
Pi 4, TP-Link router and stand
for stimuli, 350mm above ground
level.

Each device takes up to 90 seconds to

[] Equipment layout verified and boot.
cabling secure

Pi 4 and TP-Link router

arranged to be 2.5m apart from

[C] Pi 4 connects to “CSI Test”

front edge of devices. TP-Link
network

Pi 3 wireless networking will be off by

router to be oriented with default — if testing signal strength prior to

antennas behind single path. [ Pi 3 is in range of Pi 4

[] Terminal to Pi 3 active
Pi 3 positioned close to signal

path but outside LOS.

[IJKVMtoPi4

Energise equipment and verify
connectivity:

Pi 4 connects to Test CSI network
hosted by TP-Link router.

Pi 3 is within WiFi range of Pi 4
at least > -60dBm

CSI test use: ifconfig wlan0 up to

activate.

Refer risk assessment 2122.
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Isolate sources of potential
interference: ceiling fans, persons
moving within 6m of signal path,
nearby microwaves, Bluetooth

devices and WiFi devices

Scan for nearby WiFi networks
via the Pi 4.

Configure parameters of “CSI

Test” network on TPLink router.

Select a Channel that is far as
possible from any known
channels detected in the scan in

Step 3.

80Mhz Bandwidth, IEEE
802.11ac.

Configure CSI extraction.

Input commands on Pi 4 to ping
TPLink router but do not press

enter.

Configure CSI extraction on Pi 3
and input the fcpdump command
with required arguments but do

not press enter.

Prepare signal path for testing
ensure any stimuli are in position
in centre (1.25m) of LOS between
Pi 4 and TP-Link router.

If animal is within signal path
refer Risk Assessment 2122 and
Ethics Approval ETH2023-0118.

[] All sources of interference isolated
as far as reasonably practical

[] Scan for nearby WiFi networks

Record Signal Strength and Channel
of nearby networks:

[] TPLink, “CSI Test” network
configured

[C] Pi 4 still connected to “CSI Test”
network if reconfigured

Channel used for testing:

[[] CSI extraction can be started by
executing next commands on P13 & 4

Ping Frequency:

[] Valid Test completed; or
[[] Test Invalid

Any significant observations:

Sources of interference will still likely be
present but selecting a vacant channel
reduces the chance of significantly

affecting sensing.

As well as WiFi networks document other
sources of interference when known, as
well as temperature and humidity to
provide further background information
on CSI data captured.

Scanning for WiFi networks will only

detect access points and not clients.

See Figure 21. for TP-Link configuration

via webserver.

Adjusting WiFi network parameters
should not disconnect Pi 4 from network,
but verification of connection if changing

channel is advised.

Time of capture is ping frequency 10ms
(-i0.01) x No. of capture frames usually
1000 (-¢1000)

Refer “Setting up Raspberry Pi for CSI
Extraction” section for instructions on

CSI extraction setup.

It is critical to ensure that once signal
path stimuli are in place, particularly
when the mouse is in the signal path, CSI
extraction can begin quickly. Complete
all preparation tasks for CSI extraction in

this step.

Invalid tests should be completed where
possible. Validity refers to assessing
whether the CSI data collected is suitable
for sensing analysis. Invalid CSI data
may still be useful for other analysis.
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Move as far away from LOS
signal path as possible while still

able to access Pi 3 & 4 terminals.

Execute Pi 4 pinging router and

Pi 3 CSI extractions.

Observe signal path and ensure:

*  no sources of
interference arise
during test e.g. object
falls into signal path

e  mouse stays within
300mm-by-300mm zone
(if applicable)

e Extraction completes
within +-3s of estimated

time in previous Step.

Test is not valid if any of the
observation conditions above are

not met.

Test Complete once tcpdump

completes on Pi 3.

Rebooting Pi 3 ensures correct operation
of CSI extraction.
6. Copy CSI data from Pi 3 to USB

storage drive and reboot Pi 3. If completing a significant number of
[[] CSI data backed up to USB ) ) )
tests, consider deleting captures from Pi 3

storage drive )
Return to Step 4 if completing memory and from USB storage drive

additional CSI extractions. once backed up to prevent consuming all
available disk space. A single 80MHz
captured frame requires 1000 bytes of

storage space.

4. Results and Analysis

Over 200 captures of CSI data were undertaken during the project. The majority of CSI data captured in the
project was from channel 157 via sessions of 1000 packets triggered by a 10ms interval ping. It was noted that
tests involving captures beyond 10s in length where significantly more likely to encounter either technical issues
or when testing with the mouse in the signal path, the mouse would leave the 300mm by 300mm zone in the
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LOS signal path of the Pi 4 and TP-Link router. Only data captured from tests that met the conditions in Step 5.
in Table 12. were used to attempt sensing. The CSI data from each test was saved in the outputted .pcap file and
named using a numeric identifier and a one or two word description containing either “mouse” or “blank™.
Noting that “blank™ refers to control tests used for sensing analysis that contained no mouse in the signal path

and is not meant to imply the signal path was void of all objects.

4.1 Removing Outliers and Unwanted Subcarriers

Before undertaking an analysis of CSI data with the intent of sensing, it is important to remove anomalies and
outliers form the CSI data. Null and pilot subcarriers and ambiguities caused by hardware and firmware are
known to cause anomalies and outliers that are not reflective of the environment within the signal path (Schafer
et al. 2021). Any anomalies and outliers caused by these effects are insignificant to sensing but will likely create
features that could be miscategorised as the environment in the signal path changing. It is important they are

isolated and removed wherever possible from the CSI data before attempting sensing analysis.

In the case of null and pilot subcarriers they can be implicitly removed since their locations are determined by
the networking standard IEEE802.11ac. Subcarriers outside of the data subcarriers in Table 13. and the listed
pilot subcarriers in the left most column of Table 13. can be removed from each CSI capture prior to any

analysis aimed at sensing.

Table 13. Null and pilot subcarriers for channel bandwidths available on Pi 4

Bandwidth No. of Subcarriers Data Tx. Subcarriers Pilot Subcarriers

20 64 -28to-1:1to28 == 7,2 2]
40 128 -58to-2:2to0 58 +=11,+£25,+53
80 256 -122t0-2:2t0 122 | £11,+39,+75,+103

4.1.1 Hampel Filtering for General Outlier Removal
In the other case of ambiguities caused by hardware and firmware, identification and removal are less
straightforward. Schéfer et al. (2021), Li et al. (2021) and Wang, Yang & Mao (2020) utilised the Hampel
filtering function to remove outliers during CSI data pre-processing prior to inputting to sensing algorithms, see
Figure 8. for Schifer et al.’s (2021) implementation (Wang, Yang & Mao 2020; Li et al. 2021; Schifer et al.
2021). The Hampel filter examines incremental segments of the input data termed “windows” (Pearson et al.
2016).

Wi = {Xkk» s Xios o Xkt K}

(Pearson et al. 2016)

Where W, is the data window, x is the input data samples and K is the window length, a positive integer

identifying the number of samples each side of the centre of the window (Tukey 1974; Pearson et al. 2016).
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The Hampel identifier is used to identify outliers. To determine the Hampel identifier, the median value of the
window, denoted my,, is determined.
my = median (W{) = median {Xx_g, ..., Xk - X+ K}
(Pearson et al. 2016)
The median value is then scaled by a factor of the median absolute deviation (MAD) often denoted by k, which
for normally distributed data is:

1
K= —— = 1.4826
V2 erf-1

DNO| =

Where erf is the error function.

The Hampel identifier tSy can then be determined.
tSk =t K- my
(Davies & Gather 1993)
Where t is factor of the MAD and a filter tuning parameter, k is MAD (=1.4826) and my is the median value

of the window.

If the distance between the input sample to the Hampel filter and the median of the window (my) is greater than
the Hampel identifier (tSy), the input sample is identified as an outlier, and it is replaced by median of the
window (my).

The filter response can be given by:

_ {Xk |x)c —my| < tSy,
Yie = my  |xx — my| > tSy.

(Davies & Gather 1993; Pearson et al. 2016)

Where yy is the output, xy is the input, my is the median value of the window and tSy is the Hampel identifier.

The scaler t, used to determine the Hampel identifier was set to 3, which aligns with the empirical rule of
statistics in that 99.7% of a normally distributed population will reside within three standard deviations of the

median value (Kaye & Freedman 2011).

By setting the scaler t, to 3, the only variable tuning parameter to the Hampel filter then becomes window size.
Window size is defined by number of samples on each side of the sample subject to the filter. In both Schéfer et
al.’s (2021) and Wang, Yang & Mao’s (2020) pre-processing, window lengths of 3 — 5 samples were used. Li et
al. (2021) used a significantly longer window of 11 samples and was also anticipating much finer features in the
CSl data collected as the aim was to detect fire with extremely close transceivers. While vermin are likely to
induce finer changes in the CSI data as opposed to humans, which were the target of Schéfer et al.’s (2021) and

Wang, Yang & Mao’s (2020) testing, his project uses longer intervals between frames in the CSI data collected.
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These longer intervals are a key feature of the sensing system that is implemented in this project but also likely
increase the chance of variance between samples when compared to Schéfer et al.’s (2021) and Wang, Yang &
Mao’s (2020) testing. If something is moving in the signal path a longer time between samples will correlate to a
larger physical change and it is also reasonable to assume that fluctuations caused by hardware and firmware
will be more pronounced over time as well. Since the variance amongst samples is expected to be a higher, a
courser filter with a shorter window length should be less likely to remove samples that may by significant to
sensing but a length of at least 3 should be utilised as proved effective in Schéfer et al.’s (2021) and Wang,
Yang & Mao’s (2020) pre-processing.

4.1.2 Implicit Removal of Unwanted CSI Captures

When raw CSI data captured in testing was visualised in plots, two other phenomena were noticed that also
create data unwanted for sensing. Some CSI captures contained data that was captured from a 20MHz
transmission as opposed to the exclusively 80MHz transmissions intentionally generated for sensing. Others
appeared to contain measurements not triggered by a transmission with most samples having zero magnitude

and some with minor values just above the noise floor.

The source of the 20MHz captures is almost certainly another device not part of the test network attempting to
start a communication session with the Pi 4. The captures containing no significant magnitude are most likely
not transmissions sent on the test channel. It is suspected they are QoS frames transmitted by the Pi 4 to another
WiFi network on a channel nearby to the test channel. This frame is misinterpreted by the Pi 3B+ and as there is

some cross talk and induced noise on the test channel some non-zero subcarriers are captured and logged.
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Figure 36. CSI data from test 37

Figure 36. plots the CSI captures from a test that contained four captures from 20MHz transmissions and three

captures with no significant magnitude. The implementation of the Hampel filter is designed to remove outliers

occurring in individual subcarrier measurements but, in these cases the entire capture should be discarded as it
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will not contain any data useful for sensing. The most robust method trialled in this project to identify and
remove these captures is to exclude all captures that contain over 50 subcarrier measurements (approximately
one fifth of all subcarriers) with magnitude less than 3% of the mean of all measurements throughout the
capture.

4.1.3 Pre-processing Methodology and MATLAB Code
The pre-processing methodology utilised in the project can be described by six steps:
1. Ingest Raw CSI from “.pcap” file.
Remove null and pilot subcarriers.
Remove any captures not containing measurements from 80MHz transmissions.
Separate CSI data into components; magnitude, amplitude, and phase.
Remove other outliers — apply Hampel filter to successive samples of each subcarrier.

o g~ w D

Output CSI data as matrices of components; rows-captures, columns-subcarriers

The MATLAB code is used to implement these steps is listed below:

%Ingests CSI data from tools developed by Gringoli et al. 2019
%Requires functions from Gringoli et al. 2019 MATLAB CSI Reader:

%  readpcap.m - called by “readCSI”

%Avialbe at: https://github.com/seemoo-lab/nexmon_csi

%0nly suitable for use with CSI captured from Broadcom 43455c@ WiFi NIC

%Packet Capture File read Parameters

File = 'mousel5.pcap'; %file name of captured CSI data

BW = 89; %either 20MHz, 40MHz or 80MHz bandwidth

Max_UDP = 1000; %maximum number of UDP packets to read from capture file

%Ingest CSI from .pcap decoder

csi _raw = readCSI(File, BW, Max_UDP);

%Ccsi raw is matrix of CSI samples from captured packets, columns contain
%CSI data from each packet, rows contain CSI samples for each subcarrier

%Arrange CSI in subcarrier order with centre frequency = subcarrier
% index @, as per 802.1lac

csi_raw = fftshift(csi_raw,2);

%%

%Remove null and pilot subcarriers
%For 80 MHz bandwidth, null outside of -122 - 2 and 2 to 122
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%pilot subcarriers at +-(11, 39, 75, 103)

%Create list of Null and Pilot subcarriers

%List subcarriers to remove:

sub_remove=[1:6, 26, 54, 90, 118, 127:131, 140, 168, 204, 232, 252:256];
csi(:, sub_remove) = []; %delete subcarrier columns from raw CSI data

%Remove any outlier captures, captures not containing significant power to
%be considered valid 80MHz bandwidth captures should have all subcarriers
%removed, captures removed should be either 20MHz or 40MHz channel width
%or captures containing only noise

%Calculate 3% of mean power for all CSI data - 3% can be used as tuning
parameter

out_vu = mean(reshape(abs(csi."').”2,1,[])) * 0.03;

cap_remove = []; %list captures to be removed

for index = 1l:length(csi) %scan all CSI captures
%number of subcarriers with power below 3% of mean
outliers = sum(abs(csi(index, :)).”2<out_vu);
if outliers >= 50 %remove when 50 or more subcarriers
cap_remove = [cap_remove index]; %list captures to be removed
end
end

csi(cap_remove , :) = []; %delete capture rows from CSI data

%Filter CSI from outliers using the Hampel filter

%separate CSI data into separate vectors of magnitude, amplitude and phase
%filter is applied separately

%Filter is applied to successive samples of each subcarrier - column wise
%for CSI data matrix

%tunning parameters
w_1 = 4; %window length
t = 3 %scalar of standard deviation used for the Hampel identifier

csi_mag = hampel(abs(csi), w_1, t); %processed magnitude CSI data
csi_amp = hampel(real(csi), w_1, t); %processed amplitude CSI data
csi_phase = hampel(imag(csi), w_1, t); %processed phase data

Visualising the raw versus pre-processed CSI data is an effective way to verify the pre-processing method.
Figure 37. plots all CSI magnitudes in data collected during the 37" test conducted during the project. The data
collected in the 37'" test had a higher than average rate of outliers. Of the 264,000 CSI measurements logged
39,006 were either removed or modified by the Hampel filter during pre-processing. The magnitudes of the
processed CSI data are plotted in Figure 38.
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4.2 Utilising CSI Data for Sensing

Once CSI data has been pre-processed it can be investigated for features that are dependent on the environment
within the signal path. The phase and amplitude of the CSI data are impacted by slightly different characteristics
within the signal path. The amplitude of CSI quantifies the attention of the signal path for the relevant
subcarrier. Any material within the signal path will attenuate the signal to some extent but of particular
significance to vermin sensing is moisture, as the bodies of mammals contain significant amounts of water.
Water absorbs microwaves considerably more effectively than most other materials. Multipath fading will also
cause changes in the amplitude of CSI and the occurrence of multipathing is influenced by movement within the
single path (Liu, Wang & Deng 2021).

The phase of CSI measurements are a representation of the phase response of each sampled subcarrier. The
phase response of each subcarrier is more likely to contain information about the signal path than amplitude data
(Liu, Wang & Deng 2021). Comparatively minor changes in the signal path that cause reflection and refraction
will cause changes to the phase response. However as shown in Figure 27. the phase between subcarriers also
changes periodically and this periodic change is not synchronised between the transceivers that generate each
CSI capture causing a pseudo random shift between captured frames. Experiments have shown that the phase of
CSl data is more sensitive to changes in the signal path than amplitude (Zeng et al. 2014). However, phase data
is also impacted so much by variations caused by the hardware and firmware via carrier frequency offset, phase-
locked-loop initialisation, unsynchronized frequency oscillators between transceivers etc. it is considered
unsuitable for sensing when collected from commodity WiFi devices as it is not practical to separate this

distortion from changes caused by the signal path (He et al. 2020).

The amplitude (real) component of CSI data will also exhibit the periodic phase shifts created by the WiFi
hardware. But, by utilising the magnitude of CSI measurements, periodic phase shifts are normalised so that
variations in magnitude are reflective of the gain of the signal path of each subcarrier and there is no need to
account for the phase shift between captured frames. For this reason, a recent feasibility analysis of fall
detection systems based on CSI extracted from commercial WiFi devices identified magnitude as the most
effective input to sensing algorithms (Guo et al. 2023). Figure 39. examines the 500th frame captured from test
37.
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Figure 39. CSI frame components and Fourier analysis of amplitude and magnitude for frame
500 from test 37

Each CSI parameter is plotted against the processed subcarrier index (null and pilot removed). The phase shift is
mostly uniform throughout the subcarrier index with two distinct phase changes around subcarriers 55 and 115
and some minor fluctuations. The periodic phase change creates a sinusoid in the amplitude measurements. Fast
Fourier Transform analysis of the amplitude reveals a significant Fourier component after 16 subcarriers.
However, there is no periodic waveform across subcarriers in the magnitude measurements. This enables
comparison of magnitudes between CSI frames without need to reference the phase difference between frames.
CSI magnitude should thus be considered the most effective input for sensing when it is not possible to isolate

phase changes caused by the signal path from phase changes caused by hardware and firmware.

There is a noted inconsistency in terminology between amplitude and magnitude of CSI data in the published
literature, for example what is referred to as CSI magnitude in this project, is referred to as “amplitude” by
Wang, Yang & Mao (2020), Zhang et al. (2020) and Ibrahim & Brown (2021). However, Schéfer et al. (2021),
Ma (2019) and Guo et al. (2023) use similar terminology to this project and refer to “magnitude”. This

inconsistency is likely exacerbated by varying extraction formats from different tools. Since the tools used in
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this project extract CSI in Cartesian form, CSI amplitude and magnitude reference Cartesian form nomenclature.
It is important to note though that what is referred to as CSI magnitude in this project may be referred to as CSI

amplitude in another sensing research.

4.3 Features Created in CSI from Vermin in Signal Path

For a mouse to be detected reliably by a sensing system, it must cause changes significant enough in the
magnitude measurements that they are detectable in comparison to the constant fluctuations caused by all
sources of noise. Then, if detectable the effect the mouse has on the magnitude measurements must create a
unique signature that can be recognised against the signature created by other stimuli in the signal path. This
signature can be termed a CSI fingerprint (Liu, Wang & Deng 2021). To determine if vermin would be a
feasible sensing target for a WiFi sensing system the initial testing needs to establish that a mouse can be
detected when the presence of a mouse is the only change to the signal path. If the mouse can be detected with
high confidence and the changes in the CSI data are significant when the mouse is present, there is the potential

that creating vermin sensing system is feasible.

File: blank38; Processed CSI Data File: mouse37; Processed CSI Data
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Figure 40. Comparison of CSI data, left control test, right test with mouse

The two tests that yielded the data plotted in Figure 40. were conducted on the same day within several minutes.
The plots show CSI magnitudes after pre-processing. The left plot is a control test, and the right had the mouse
in the signal path. There is a significantly higher variance in the magnitude of the captured CSI samples when
the mouse is in the signal path. This difference can be visualised more conspicuously by examining the
fluctuation in the power in each captured frame. A scalar quantity that is indicative of the power in each frame

can be calculated by:
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1
Por = Z|c51i|2
i=1

Where P is a scalar quantity representative of the power in each captured CSI frame, i is the subcarrier index

and |CSI;] is the magnitude of each CSI sample.
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Figure 41. Power per frame comparison of Tests 37 and 38

The impact the mouse has on the CSI data when in the signal path is very apparent when comparing the power
per frame to a blank control test. In the data captured with the mouse in test 37, between frames 200 and 300
there is a notable stabilising of the power per frame. Since both tests were conducted with a 10ms ping interval
time, this period is approximately 1 second. Since fading is highly dependent on movement, this likely
represents a period where the mouse kept still (Liu, Wang & Deng 2021). It is difficult to closely observe the
mouse during testing as being close to the signal path would cause interference. Five tests were conducted with
the mouse in the signal path and a smartphone camera in a fixed position filming the mouse. In all filmed tests
the mouse was never completely still (always sniffing, twitching, or preening to some extent) but at times did

briefly stay in the same location in it’s enclosure.
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4.3.1 Observations of the Mouse in Filmed Testing

In Test 73 the mouse was filmed within the signal path and the CSI data captured is visualised in Figure 42.
During periods when the mouse was moving less, there is a noticeable reduction in the distribution of power in
the captured CSI data. The CSI capture was 10 seconds in duration with 10ms interval pings, triggering
measurements. The duration of the test is approximated in the x-axis of Figure 42. When the capture begins the
mouse emerges slowly from the tube it houses in, then walks quickly to one corner of the enclosure which takes
approximately 3 seconds. Then the mouse pauses for about 0.5 second before moving to it’s food bowl. At its
food bowl it pauses again briefly about 7.5 seconds into the test, then begins looking around while making small

stuttering movements.

16 2 108 Test 73, Power per Frame Analysis

—_
a
T
1

—_
N
T
1

— —

[N} w

E———a
1 1

—_
-
T
|

—_
T
|

Power Scalar per Frame

=
©
T
|

o
o
T
|

1 | 1 | 1 1

0.7 : :
0 1 2 3 4 5 6 7 8

Test Duration (s)

©

10

Figure 42. Results from filmed test 73, Power vs Approximate Test Duration

4.3.2 Variance in Power Distribution

In all tests conducted with the mouse in the signal path there was a similar amount variance in the distribution of
power within the spectrum. Variance appears to fluctuate based on how much the mouse moved around during
the test but was always significantly and conspicuously higher than the variance in the distribution of power
during a blank control test. On the 14" of August 2023, a testing session was conducted that yielded 20 CSI
captures suitable for analysis. 10 containing the mouse in the signal path and 10 blank control tests with a
similar signal path but without the mouse present. Figure 43. plots the variance between the power in captured

frames (after pre-processing) in each test. The variance is normalised between 0 and 1 to aid visualisation.
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Figure 43. Variance of power per frame throughout 20 Tests

Some blank control tests that had only static objects in the signal path still show a significant increase in
variance in comparison to other blank tests. This was always caused by the same phenomena and creates
features in the CSI data distinct from those caused by the mouse. Unlike when the mouse is moving within the
signal path, the CSI magnitudes always exhibit tight grouping. However, in some tests there were discrete
groups of magnitudes centred around different values. The left side of Figure 44. plots the processed CSI data
from test 16 (one of the tests yielding data for the plot in Figure 43.), and the right side plots the most extreme

example of this phenomenon captured in all testing throughout the project.
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Figure 44. Blank test data containing split magnitude grouping

Split grouping of magnitudes only occurred in around 5% of blank tests and no correlation between the
occurrence of split grouping and any variables in the test could be identified. Split grouping can be attributed to
two potential causes, either beamforming, which can change the direction of propagation and gain through the
signal path to improve the communication session or as the TP-Link router has multiple antennas it may be that
the communication session is hopping between antennas on the TP-link router to load share (Gast 2013). It is an
example of how features of WiFi networking designed to optimise performance can impact sensing. Split
grouping was not identified in any tests where the mouse was in the signal path. However, it is possible that the
fluctuations seen are in part a result of beamforming or antenna hopping as opposed to being fluctuations caused

directly by the mouse itself via interactions with the RF signal.

4.3.3 Changes between Subcarrier Measurements

Examining the power distribution across entire frames is an effective way to visualise large volumes of CSI data
and demonstrate that the mouse has a significant impact on the CSI data. More subtle features can be found by
examining the measurements of individual subcarriers across clusters of successive frames. The amount
different materials will affect the gain response of the signal path varies across the spectra (Tan, Zhang & Yang
2018). By isolating subcarriers, the effect the signal path has on a discrete frequency component is examined as
opposed to examining the entire channel. It also normalises the fluctuation across subcarriers. All frames in each
capture show a repetitive shape across the subcarrier index that appears to be independent of the signal path. In
all captures the magnitude tends to rise around the middle subcarriers sometimes with minor peaks towards the
lowest and highest subcarriers. Figure 44. demonstrates two typical shapes. This pattern is assumed to be
determined by features of the hardware and firmware mostly likely caused by filtering of the channel as less

attenuation is seen in the centre of the channel. Regardless of the exact cause of the shaping of CSI frames,
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analysing individual subcarrier measurements across different frames avoids the significance of changes being

amplified by the subcarriers position.

Figure 45. examines and compares data from two tests. One test conducted with the mouse in the signal path,
with the CSI data labelled: “mouse39” and one blank control test with the CSI data labelled: “blank41”. Nine

subcarriers spread evenly across the subcarrier index are analysed. In the right-side plots of Figure 45., the

magnitude of each subcarrier over 100 measurements is plotted with the x-axis representing the CSI capture

packet index and the y-axis subcarrier magnitude. The vertical lines in the two left side plots of Figure 45. show

the location of the subcarriers analysed in the right-side plots.
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Figure 45. Subcarrier analysis, Mouse vs Blank Control
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Not all subcarrier measurements increase and decrease consistently between captured packets, demonstrating
that the spectra used within the channel is not uniformly affected by the signal path. It also notable that
subcarriers closer together exhibit more similarities. For example, subcarrier 20 and 45 from “mouse39” in
Figure 45. contain mainly similar features but subcarriers 20 and 220 show no obvious similarity. This
highlights how varied regions of the RF spectrum will interact with the signal path differently and is why CSI
measured from a wider channel can potentially discern more information about the signal path as Tan, Zhang &
Yang (2018) proposed when attempting to create 600MHz sweep in the sensing system they designed. By
examining variations in measurements between individual subcarriers there is more potential to identify any

unique features that would be created by vermin.

4.4 Constructing a Sensing System

The testing undertaken demonstrates that a mouse does have a significant influence on CSI extracted from
commodity WiFi devices. Figure 43. suggests the mouse could be reliably detected in the CSI data collected in
this project by simply identifying an increase in CSI magnitude. One of the challenges when attempting to create
a useful system that will identify vermin in a wider range of scenarios and not generate false positives is that any
movement, especially from materials that interact strongly with microwaves will cause changes to the gain
response of the signal path. The tests undertaken in the project involved close antenna placement with the mouse
directly in the LOS signal path. When vermin are at the extremities of the range of the WiFi network or not in
the LOS signal path, the effect on the CSI measurements will almost certainly be less significant. Gathering CSI
data from testing with varied antenna placement and other moving stimuli in the signal path are beyond the
scope of this project. However, using the data gathered a method is proposed that could form the basis of a

sensing system that could be trained to identify vermin in a wider range of scenarios.

The first stage requires dividing the CSI data into segments representative of a time window to enable block by
block analysis of the CSI data. Then, features extracted from each induvial block will be used as the input to a
machine learning algorithm. The statistical features used by Zhang et al. (2020) (see Table 1.) will be used as

well as certain features from the WiFi-Based Intrusion Detection System proposed by Tain et al. (2018).

4.4.1 Block by Block Analysis and Feature Extraction

Analysing the CSI data in discrete blocks enables the sensing system to classify the events occurring in the
signal path within a time window. A block size of 50 CSI measurements, representing a 0.5 second time window
given the 10ms ping time used in testing, will be utilised. The coefficient of variation defined by Tian et al.
(2018) was shown to be an effective metric to classify movement within the signal path and can be adapted to
suit the CSI data collected during the testing in this project. It is calculated by first finding the auto covariance
matrix C, of the CSI block:
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C = [cov(|Hatl|, [HaTD]mxm
Where H,t is the CSI matrix captured in the time window and m is number of subcarriers.

Then to find the coefficient of variation w, the square root of the maximum eigen value of the covariance matrix
is divided by the mean of CSI magnitudes |H|:

4/ max (eigen(C)

mean(|Hyr|)

wAT =

(Tian et al. 2018)
The coefficient of variation can be utilised as a feature of the CSI block for input to machine learning processes,
but Tian et al. (2018) also demonstrated that the ratio of coefficients of variation between two adjacent CSI
blocks is effective way of determining if the amount of movement within the signal path changed significantly
between blocks.

WAT

R =
WAT-1

(Tian et al. 2018)
4.4.2 MATLAB code for block by block Processing and Feature Extraction

%Input pre-processed CSI data for feature extraction. Extracts features
%from blocks of CSI data intended for input to sensing system.

%Load Processed CSI data, magnitudes only
load("blank45 csi.mat");

csi = csi_mag;

%File Name for Extracted Features
feat_name = "blank45 feat.mat";

%Block Processing of CSI Data

block_len= 50; % number of packets per block

no_blocks = floor(length(csi)/block len); %number of blocks to process
block_index = 1; %initialise block index

%Select Subcarriers for Analysis
sub_ana = [20 40 60 80 100 120 140 160 180 220]; %subcarriers for analysis

feat = []; %array to store features extracted from CSI

for block_no = 1:no_blocks %process CSI data block by block
feat_block = []; %array to store features extracted from the block

%extract block from CSI data
block = csi(block index:block index + block len-1, :);

C = cov(block); %calculate autocovariance matrix
eig max = max(eig(C)); %find the maximum eigenvalue

uA_block = mean(block, 'all'); %mean of all CSI measurements
wT(block no) = sqrt(eig max)/uA_block; %coefficient of variation
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feat_block = [feat_block wT(block no)]; %store features
%add additional block feature calculations here

%Analyse Subcarriers

for sub_i = 1:length(sub_ana) %iterate for the number of subcarriers
%extract subcarrier measurements
sub_block = block(:,sub_ana(sub_1i));

%Feature Extarction
u_sub = mean(sub_block); %mean
feat_block = [feat_block u_sub];%store features

med_sub = median(sub_block); %median
feat _block = [feat block med _sub]; %store features

std_sub = std(sub_block); %standard deviation
feat _block = [feat block std sub]; %store features

skew_sub = skewness(sub_block); %skewness
feat _block = [feat block skew sub]; %store features

kurt_sub

= kurtosis(sub_block); %kurtosis
feat block =

[feat _block kurt sub]; %store features
%add additional subcarrier feature calculations here

end

%store all features extracted from the block,

% rows-blocks, columns-features, 1st column-coefficient of variation
feat(block no ,:) = feat block;

block_index= block_index + block_len; %move index to next block

4 -
save(feat_name, "feat")

4.4.3 Sensing via Machine Learning
The earliest well documented instance of utilising machine learning algorithms for CSI sensing was in 2014
when Han et al. (2014) proposed a human activity classification system based on a one-class Support Vector
Machine (SVM) (Han et al. 2014). More recently Neural Networks have been proposed as the most effective
machine learning technique for CSI sensing system (Damodaran et al. 2020; Zhang et al. 2020; Schéfer et al.
2021). Neural Networks are a machine learning process that is loosely based on a biological brain and are
generally considered to be optimal for pattern recognition problems but have many different types of
architectures that are suitable for a variety of applications. The Long Term-Short Term Recurrent Neural
Network (LTSM-RNN) architecture is commonly used in CSI sensing research (Damodaran et al. 2020; Zhang
et al. 2020; Schafer et al. 2021). LTSM-RNN is considered the best architecture for handling time series data
where temporal ordering is significant (Ma 2019). As a proof of concept, a Neural Network optimised for

86



pattern recognition will be used as a machine learning algorithm to classify blocks of CSI data collected in this
project as either “blank” or “mouse”. Features extracted after block by block processing are used to train the
Neural Network. After training the features from CSI data can inputted to the Neural Network and the network
will output predicted classification in the form of weighted probabilities for each class.

4.4.2 The MALAB code to Implement Neural Network

%Ingests features extracted from CSI data, trains Neural Network to
%classify signal path. Proof of concept implementation specifies two
% classes - Mouse and Blank.

%

%Input data is matrix, with format:

% Row 1: integer class identifier e.g. 1 = Mouse, 2 = Blank

% Rows 2-end: Variables - features of CSI data

% Columns: Observations - blocks of CSI data

0,

O e e e e e e e e e e e e e e e e e e e e e e e e
% Training Data Preparation

%Load Features Extracted from CSI data
csi_data = load("csi features.csv");

%Extract Class Identifier
class = csi_data(l, :); %class identifiers
csi data(l, :) = []; %remove class identifier

[no_blocks, no_feat] = size(csi_data); %dimensions of CSI data

%Number of Classes - Additional classes must have labels added
no_class = max(class); %number of classes
class _labels = [ "Mouse","Blank"]; %class labels

%Create Matrix of Target Classes

% Rows: Classes

% Columns: 1=belonging to class, else @
sp_class = zeros(no_class, no_blocks);

%Assign Classes to Target Matrix
for index = 1l:no_class
sp_class(index, (class==index)) = 1;

%Initialise Neural Network

%10 hidden nodes, training method: Variable Learning Rate Gradient Descent,
%Cross Entropy performance evaluation

net = patternnet(10, 'traingdx', 'crossentropy’)

%Portion Input data for Training, Validation and Testing
net.divideParam.trainRatio = 70/100 % 70% Training
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net.divideParam.valRatio = 15/100 % 15% Validation
net.divideParam.testRatio = 15/100 % 15% Testing

%Use the Softmax Transfer Function
net.layers(Gringoli et al.).transferFcn = 'softmax’;

%Train Network
net = train(net, csi_data, sp_class)

%Predications can be made using the Neural Network to perform sensing
%classification by calling the "net" function and parsing CSI features in
%same format as the training data.

The Neural Network was trained with features extracted from CSI data captured from 30 tests analysed in
blocks 50 frames long, with features extracted from 10 subcarriers disturbed evenly across the subcarrier index.
This translates to information discerned from approximately 7 million captured CSI frames. To reduce the
chance of biasing the network the ratio of mouse to blank test data used to train the network was 50:50. To
examine the performance of the network data from mouse and blank control tests not used for training were
inputted to the network after pre-processing and feature extraction. The resulting predictions are plotted in the

confusion matrix in Figure 46.

File:Mouse54 and Blank56, Accuracy: 92.3077

Mouse

True Class

Blank

Mouse Blank
Predicted Class

Figure 46. Confusion matrix from Neural Network test

The Neural Network was able to correctly predict the contents of the signal path with high accuracy. A block of
CSI data misidentified as being blank when the mouse was in the signal path was captured between frames 400
and 450 of test 54. Figure 47. plots the power per frame of the section of CSI data around frames 400 to 450.
The is a clear reduction in the distribution of power between frames 400 and 450 which most likely represents a

time when the mouse was not moving around within the signal path.
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Figure 47. Analysis of misidentified CSI data from mouse

All blocks misidentified as containing the mouse when the CSI data was extracted from a blank control signal
path exhibit split grouping of magnitudes. The right side plot of Figure 48. shows the magnitudes from a
correctly identified block and the left side of Figure 48. is a block misidentified as containing the mouse by the
Neural Network.
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Figure 48. Correctly identified blank control CSI block (right) and misidentified block (left)
The implementation of the Neural Network is intended to demonstrate how a sensing system can be
implemented using machine learning and was not heavily refined and optimised. Refining should always aim to
remove unwanted captures and remove or rationalise outliers and anomalies prior to inputting data to a Neural
Network or other machine learning algorithm. For example, assuming split grouping of magnitudes is caused by
antenna hopping on the TP-Link router, a more feature rich CSI extraction system than the one used in this
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project could identify which pair of antennas generated the CSI measurement. This information could then be
used to categorise the different signal paths between different pairs of antennae generating CSI measurements

and analyse them as individual streams.

4.5 Components of the WiFi Sensing System

Refining the Neural Network or utilising other machine learning techniques that may yield higher classification
accuracy is only one aspect that contributes to improving the efficacy of the entire sensing system. The
implementation of the Neural Network as a classification algorithm forms the final component of the sensing
system developed in this project. The complete sensing system implemented in this project can be
conceptualised as four main elements as shown in Figure 49. The input to the system is the data from an

operating WiFi network and the output is whether vermin are detected.

Figure 49. Components of sensing system

While all elements of the system are interdependent, they are individual subsystems with separate inputs and
outputs. Improvements, refinements, and changes can be made to individual elements without redesigning the
entire system. With reference to Figure 49. a high-level overview of how each element of the sensing system
was implemented in this project is listed:

e Measurement and Collection: A WiFi network operates between a TP-Link router and Raspberry Pi 4.

A Raspberry Pi 3 extracts CSI measurements from the Pi 4 and outputs the CSI data in .pcap files.

e Pre-Processing: CSI data in .pcap files is parsed to MATLAB where pre-processing occurs. Unwanted

subcarriers and captures are implicitly removed then Hampel filtering removes outliers.

e Feature Extraction: Processed CSI data is portioned into temporal blocks and statistical features from

each block are calculated.

o Classification: A trained Neural Network classifies the features and outputs the probability of the
mouse being within the signal path.
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5. Conclusion

The concept of embedding a sensing utility function in a WiFi network to detect vermin is feasible. The mouse
created conspicuous features in the CSI data and significantly increased the distribution of power throughout the
spectrum of the WiFi channel. After pre-processing and extracting features from temporal blocks of CSl data a
Neural Network was able to reliably identify when the mouse was within the signal path. The design,
configuration and validation of the equipment used for testing is thoroughly documented within this dissertation

and provides context to the CSI data collected and ensures that the assembly of the test network is repeatable.

This was the first project proposing vermin as a potential target of a passive WiFi sensing system and the first
project that collected CSI data from testing with mouse in the signal path of a WiFi network. It was
demonstrated that by extracting CSI data from typical commodity WiFi devices, it is possible to identify when a
mouse is present within the signal path. The network used for testing was also capable of performing sensing
functions and normal communication functions in parallel, suggesting that it may be feasible to embed a utility
vermin sensing function into a household WiFi network. The ping interval used to create a sensing pulse from
which CSI measurements were taken was comparable to the rate at which WiFi APs generate beacon frames and
the devices which generated the transmissions used for CSI data capture were not modified in a way that would

prevent their normal use.

5.1 Reflection and Achievement of Objectives

The objectives of the project are listed below for reference and are also found in Section 1 and in the initial
project specification accepted by the University of Southern Queensland in Appendix A. A reflection of the

achievements of the project is listed below each of the original objectivities.

5.1.1 Project Objectives
1. Survey, review and analyse previous WiFi sensing research and experimentation. Conduct initial
background research into using radio frequency signals, specifically microwaves for sensing and the

operational aspects of WiFi networks which will affect sensing.

The literature review documented in Section 2 was used to identify the existing gaps in WiFi sensing
research. Surveying previously implemented CSI extraction systems used for testing and

experimentation was essential to determining the testing methodology used in this project.

2. Procure and configure WiFi hardware that will facilitate the extraction of CSI
and parse the CSI data into a suitable software application e.g. MATLAB

that can perform statistical analysis and implement detection algorithms.
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The choice of hardware was justified, and the test network used to extract CSI measurements for this

project was implemented successfully and the data captured was ingested into MATLAB.

3. Design a test apparatus that simulates a WiFi network, where stimuli can be placed in the signal path
including vermin (mice) to capturing and log CSI.

Obijectives 2 and 3 were the most challenging and consumed a significant portion of the time resources
available to the project. There were significant lead times to procuring Raspberry Pi’s due to global
shortages and high demand. Designing, constructing, and validating the test apparatus used for CSI
extraction was challenging. The difficulty in accessing CSI data without support from manufacturers
and vendors of WiFi equipment is a significant obstacle to undertaking testing and experimentation to
develop WiFi sensing systems. The configuration and validation processes detailed in Section 3 of this

dissertation will contribute to making CSI data more accessible.

4. Gather data from testing that can be used to examine the feasibility of using WiFi

sensing as a vermin detection system.

The ethical obligations required of testing with live animals were met. The mouse used in testing was
not interfered with and remained within it’s usual habitat. The data gathered from testing was sufficient

to determine that a mouse can be detected using CSI extracted from typical commodity WiFi devices.

5. Determine if it is possible to detect vermin via CSI what limitations and constraints may impede the
development of a system intended to be used as an additional utility function in a typical WiFi

communication network.

The key challenges and constraints to using CSI data and commodity WiFi devices for sensing that were
exposed during the project are detailed and further work is suggested in the next section of this
dissertation to determine to what extent they can be overcome. The project was completed successfully,
and all objectives were met. The continuation of research into passive WiFi sensing could eventually
enable the deployment of sensing utility functions into WiFi networks and this project demonstrates that

detecting vermin with WiFi is feasible.

5.2 Further Work

The testing methodology in this project can be expanded to include a wider range of scenarios. This could
include test scenarios with varied antenna placement and signal path arrangement as well as with other stimuli in

the signal path, for example, a human and mouse simultaneously. Distinguishing the mouse from other stimuli
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reliably will almost certainly require further feature extraction and more complex classification techniques.

Aside from the continuation of testing, further work is needed to enhance the capability of the sensing system.

Lin et al. (2020) demonstrated that interference height estimation could be used to classify if a pet or human is
within the signal path with the aim of improving WiFi sensing based intrusion detection systems. Being able to
determine the height of stimuli within the signal path would be a powerful feature to a sensing system aimed at
detecting vermin. The geometry used for interference height estimation assumes that the transceivers are at the
same height (see Figure 9.), which may not be the case in a typical WiFi network where a vermin sensing
system would be deployed (Lin et al. 2020). But it may be possible to adapt Lin et al.’s (2020) method to
estimate interference height when a user inputs the antennae height of static WiFi devices. This would allow
interference height estimation with dissimilar transceiver height providing the WiFi devices position is static but

needs to be investigated.

Classifying very fine movements accurately will need to be a key feature of a useful vermin sensing system.
This is extremely difficult given the inherent distortion in CSI data collected from commodity WiFi devices.
Xie, Li & Li (2015) investigated using power delay profiling to identify when multipathing is occurring and
presented the “Splicer” software tool that can derive high resolution power delay profiles from CSI
measurements. Splicer was tested with CSI data gathered from 20MHz and 40MHz channels from IEEE
802.11n devices and while functional it was noted that for detecting very fine movement 200MHz of bandwidth
was required (Xie, Li & Li 2015). Splicer and the techniques used be Xie, Li & Li (2015) could be applied to the
CSI data from this project which was captured from 80MHz channels. Also other IEEE802.11ac devices
compatible with the CSI extraction tools used in this project are capable of measuring CSI from 160MHz
channels (Gringoli et al. 2019). Utilising Xie, Li & Li’s (2015) Splicer with wide bandwidth CSI measurements

could provide a method for detecting and classifying very fine movements.

The limitations of a CSI sensing system are unlikely be defined by the strength of the interactions between target
stimuli within the signal path and the RF signals used in WiFi or the capability of machine learning. Isolating
and removing the distortion in CSI data caused by the behaviour of WiFi hardware and firmware will present the
greatest challenge. Inputting phase measurements from CSI data will enhance the efficacy of a sensing system
but the challenge of effectively removing or attenuating distortion created by noise and ambiguities is
significant. In a survey of WiFi based sensing, recognition and detection systems, He et al. (2020) propose and
review some methods of calibrating and processing phase data to identify and remove distortion. One method is
to connect the transmitter and receiver via coaxial cabling to obtain a reference signal for comparison to phase
data obtained when the same transmitter and receiver communicate wirelessly (He et al. 2020). The CSI
extraction tools, and equipment used in this project could be used to undertake a comparison of phase
measurements captured from wirelessly transmitted packets against phase data captured from packets

transported via coaxial cabling. The comparison would aim to determine which features of phase data are
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independent of the wireless signal path and propose methods to remove them using the techniques discussed by

He et al. (2020) as a starting point.
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and performance statistics are being logged.
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Appendix D Gannt Chart

WiFi Sensor Testing WiFi Based
Passive Vermin Sensing, Proof of
Concept and Feasibility Analysis

Week 1 Starts 20/02/2023
TASK

Semester 1 - ENG4111 Semester 2 - ENG4112/ENG4902

Phase 1 Address High Risk Tasks

CSI Hardware Procurement and Testing

Animal Testing Approval Organise Rat as Test Vermin
Phase 2 Initial Development

Project Approval Prepare Detailed Specification
Detection Modelling Preparation and Investigation
Detection Modelling Trialling on Ingested CSI
Equipment Preparation

Testing Preparation

Phase 3 Detection Method Design

Conduct Testing and Save CSI data

Ingest Test Data to Models and Refine

Finalise Detection Method

Ingest Test Data to Models and Refine

Detail Model

Phase 4 Analyse the Feasibility

Comment on The Feasbility of System Based on Testing

Analyse Feasibility of Deploying
Phase 5 Prepare Dissertation

Finalise and Submit Draft

Present Findings .
Address Feedback ......
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Appendix E MATLAB Function Ingesting CSI

function [csi_buff] = readCSI(File, BW, Max_UDP)
HOFFSET = 16; % header offset

NFFT = BW*3.2; % fft size

p = readpcap();

p.open(File);

n = min(length(p.all()),Max_UDP);
p.from_start();

csi_buff = complex(zeros(n,NFFT),0);

k = 1;
while (k <= n)
f = p.next();

if isempty(f)
disp('no more frames');
break;

end

if f.header.orig_len-(HOFFSET-1)*4 ~= NFFT*4
disp('skipped frame with incorrect size');
continue;

end

payload = f.payload;

H = payload(HOFFSET:HOFFSET+NFFT-1);

Hout = typecast(H, 'intl6');

Hout = reshape(Hout,2,[]).";

cmplx = double(Hout(1:NFFT,1))+1j*double(Hout(1

csi_buff(k,:) = cmplx.';
k =k + 1;
end

end

:NFFT,2));

(Gringoli et al. 2019)
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