
University of Southern Queensland

Faculty of Health, Engineering and Sciences

APPARATUS FOR MEASURING MICROPLASTIC
AEROSOLS IN THE ATMOSPHERE

 Dissertation submitted by

 Mr James Beecham

In fulfilment of the requirements of

Course ENG4111/ENG4112 – Research Project

towards the degree of

Bachelor of Engineering (Honours) (Mechatronic Engineering)

October 2023

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 2

ABSTRACT

Microplastics are a topic of increasing concern, with research finding these tiny plastic particles
everywhere from Antarctic ice to human blood. Recently microplastics have been observed in the
upper atmosphere, plausibly the transport mechanism which carries them to remote regions.
Research in the area is new, so a standard apparatus has yet to be developed. The lack of
standardisation makes it difficult to compare the results of various studies to model the transport
mechanism (Beaurepaire et al. 2021).

This project aims to design, implement and test an apparatus which can be carried by a weather
balloon to draw known quantities of air through a filter to collect samples of particulate matter.

As the field is new, it is not yet clear what additional data may be required. Therefore the control
system’s operation must be easily modified by researchers and extra sensors easily added. Of
utmost importance is the ability to be operated by researchers with no presumed knowledge of
electronics or computer coding, and the minimum possible computer skills requirement. For easy
replication, the apparatus must use common and affordable components and avoid bespoke parts.

A binderless glass fibre filter is used, as it contains no plastic and can be heated to remove any
existing microplastic contamination (Song et al. 2021). To draw air through it, a cooling fan for
computer servers is used in conjunction with an automotive mass airflow (MAF) sensor for
feedback. By combining the MAF sensor with pressure and temperature sensors, the volumetric
flow rate of air through the filter is calculated. By controlling the fan accordingly, the control
system can then draw a known quantity of air through the filter.

To make the apparatus adaptable and accessible, the control system is based around a Raspberry Pi
Pico running the CircuitPython programming language. Python is already widely used for data
processing in research environments. The control system is programmed by dragging the code file
onto it like a USB flash drive, with no software required. Retrieving the comma separated variables
(CSV) format data logs is done in the same way.

Mounting parts were 3D printed and laser cut, and a simple circuit board with basic components
was made to facilitate hardware interfaces and power requirements. The apparatus was assembled
and tested in free air and in a vacuum chamber to assess its operation in a partial vacuum which
simulates some of the conditions of that atmosphere at high altitude.

The apparatus met its goals for automatic operation, weight, cost, ease of construction and use, and
sample collection performance in both free air and a vacuum chamber, showing promise for
deployment in further research.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 3

University of Southern Queensland
Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

LIMITATIONS OF USE

The Council of the University of Southern Queensland, its Faculty of Health, Engineering &
Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility
for the truth, accuracy or completeness of material contained within or associated with this
dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences or
the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the
overall education within the student’s chosen degree program. This document, the associated
hardware, software, drawings, and other material set out in the associated appendices should not be
used for any other purpose: if they are so used, it is entirely at the risk of the user.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 5

ACKNOWLEDGEMENTS

This research was conducted under the supervision of Dr Craig Lobsey & Dr Tobias Low. I’d like to
thank Craig for the idea behind this project and both of them for providing guidance throughout.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 6

TABLE OF CONTENTS

Contents Page

ABSTRACT 2

LIMITATIONS OF USE 3

CERTIFICATION OF DISSERTATION 4

ACKNOWLEDGEMENTS 5

LIST OF FIGURES 8

NOMENCLATURE AND ABBREVIATIONS 9

CHAPTER 1 INTRODUCTION 10
1.1 Outline 10
1.2 Introduction 10
1.3 The Problem 10
1.4 Aim 10
1.5 Conclusions 11

CHAPTER 2 PROJECT PLANNING 12
2.1 Aims 12
2.2 Objectives 12
2.3 Timeline 13

2.3.1 Risk Assessment 13
2.3.2 Environmental Sustainability 13
2.3.3 Project Disposal 14

CHAPTER 3 LITERATURE REVIEW 15
3.1 Introduction 15
3.2 Microplastic Aerosols 15
3.3 Apparatus Design and Testing Procedures 15

3.3.1 Particulate Sample Collection Configuration 15
3.3.2 Control System 16
3.3.3 Microplastic-Specific Procedures 16

3.4 Summary 16

CHAPTER 4 METHODOLOGY 17
4.1 Design requirements 17

4.1.1 General requirements 17
4.1.2 Sample collection filter 17
4.1.3 Physical design 17
4.1.4 Electronic hardware 18

Fan 18
Airflow sensor 18
Pressure sensor 18
Battery 18
Microcontroller 18

4.1.5 Software control system 18
4.2 Design Implementation 19

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 7

4.2.1 Sample collection filter 19
4.2.2 Electronic hardware 19

Fan 19
Airflow sensor 20
Pressure sensor 21
Batteries 22

4.2.3 Physical design 24
4.2.4 Control system 28

Microcontroller 28
Programming language 28
Software code structure 29
Hardware interfaces 29
Altitude calculation 30
Volumetric flow rate calculation 31
Data logging 32
Circuit board 33

4.3 Testing and Results 35

CHAPTER 5 CONCLUSIONS 36
5.1 Conclusions 36
5.2 Challenges 37
5.3 Further Research 37

APPENDICES 39
 Appendix A – Risk assessment 39
 Appendix B – Control system software code 40
 Appendix C – Control system software boot code 51
 Appendix D – Ground test data 52
 Appendix E – Vacuum chamber test data 54
 Appendix F – Calibration output 58

REFERENCES 59

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 8

LIST OF FIGURES

Figure 1: A Gantt chart showing the project timeline. 13

Figure 2: The Silverstone FHS 80X fan. 19

Figure 3: The Siemens VDO 5WK9605 MAF sensor. 20

Figure 4: The circuit diagram for a simple MAF sensor. 21

Figure 5: A standard 18650 lithium battery and a simple single cell charger. 23

Figure 6: The fan to MAF sensor adaptor and mount (CAD model). 24

Figure 7: The filter grille component (CAD model). 25

Figure 8: The electronics enclosure component (CAD model). 25

Figure 9: The battery holder mounting plate (CAD model). 25

Figure 10: The FDM 3D printer used to produce physical parts of the apparatus. 26

Figure 11: Microplastic fibres attached to an FDM 3D printed part. 26

Figure 12: The assembled apparatus with all 3D printed parts. 27

Figure 13: A chart comparing the piecewise formula with the actual relationship of P and H. 31

Figure 14: The piecewise formula used in the control system software. 31

Figure 15: The formula relating density ρ (), pressure P (Pa) and temperature T (K). 31

Figure 16: The derivation of the formula used to convert MAF, P and T to VAF. 32

Figure 17: The sampled volume is determined using rectangular integration. 32

Figure 18: The circuit diagram of the control system. 34

Figure 19: The completed circuit board of the control system. 35

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 9

NOMENCLATURE AND ABBREVIATIONS

Abbreviation Technical term Description

3D printer
Three dimensional
printer

A computer-controlled machine which uses one of several
methods to fabricate a part by adding material.

- Aerosol A mixture of small particles in suspension with a gas.

- Arduino
A microcontroller development platform. Term describes the
hardware device, the programming environment and the
associated programming language.

CNC
Computer
numerical control

A computer-calculated cutting path is applied to a machine
tool by the control of motors which actuate the axes of the
machine.

CSV
Comma separated
variables

A computer file format which allows the simple storage of
data separated by commas. This can be input to a
spreadsheet software which automatically interprets the
commas and line endings to place the values into cells.

FDM
Fused deposition
modelling

A type of 3D printing technology. A filament of material
(usually plastic) is melted and extruded onto the part being
fabricated, where it solidifies.

HAB
High altitude
balloon

Sometimes called a “weather balloon”. A large balloon made
of rubber designed to reach high altitude. Filled with helium
or hydrogen. Usually unmanned.

IC Integrated circuit
A miniaturised electronic circuit contained within a casing
and designed to be included into other higher level circuits.

MAF sensor
Mass airflow
sensor

A sensor which uses an electrically heated wire grid. The
sensor is cooled relative to the mass of air flowing through
it, resulting in a measurable change in current draw.

- Microlitter
Small pieces of human-made litter, but not limited by
material. Can include microplastics, natural fibres, sawdust,
soot etc.

- Microplastic

Small pieces of plastic ranging up to five millimetres in
length. Created either intentionally, as a byproduct of
manufacturing processes or through wear or degradation to
plastic materials during their service life or after disposal.

PHT sensor
Pressure, humidity
and temperature
sensor

A combined sensor which measures pressure, humidity and
temperature of the surrounding air.

PWM
Pulse width
modulation

A method of controlling electrical devices where variable
length pulses of electrical current are supplied. This allows
the speed of motors to be controlled.

SLA Stereolithography

A type of 3D printing technology. A liquid resin is exposed
to ultraviolet light in a specific pattern created by an LCD
screen for each layer. The resin hardens where exposed to
the light, allowing complex 3D geometry to be fabricated.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 10

CHAPTER 1
INTRODUCTION

1.1 Outline
This dissertation presents the design process for an apparatus which may be used in further research
into the occurrence and distribution of airborne microplastics in the atmosphere, as well as the
development of models to understand the atmospheric transport mechanism of microplastics. The
design constraints involved are also discussed, and the apparatus developed for prior research
efforts in this field are analysed.

1.2 Introduction
Microplastics are pieces of plastic less than 5mm in size. While sometimes manufactured at this
size, they are also often generated from the breakdown of larger plastic objects in the environment,
from wear of plastic products in use or as waste from manufacturing processes. Due to their small
size, they are easily able to be carried through natural processes across vast distances. First
identified in oceans in the 1970’s, they have now been discovered in various locations which one
would expect to be pristine or sterile, such as remote polar regions (Kelly et al. 2020) and even the
human bloodstream (Leslie et al. 2022).

1.3 The Problem
In 2015 the transport of microplastics through the air was first identified (Dris et al. 2016). The
literature in this space is quickly evolving, but a lack of standardisation in methodology and
apparatus is proving to be a challenge in establishing a consensus on the extent of the problem
(Rosso et al. 2023). Every study requires the researcher(s) to design their own apparatus and
consequently the results are not easily comparable. For example one study may include
microplastics down to 1 micron while another may find a lower rate of occurrence because it only
considers microplastics larger than 10 microns.

1.4 Aim
This dissertation presents the design process for an apparatus which could be used in ongoing
research of microplastics in the atmosphere. As well as the operation of the apparatus in collecting
atmospheric samples, the design will consider the contamination-free requirements of the
preparation of the apparatus and the requirements of the sample processing required to obtain useful
results.

 INTRODUCTION

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 11

1.5 Conclusions
The apparatus was designed, constructed and tested both at ground level atmospheric pressure and
in a vacuum chamber to provide the reduced pressure seen during a high altitude balloon flight. The
apparatus hardware and software performed as expected, automatically triggering the sampling
routine, collecting a sample and logging data accordingly. The design shows considerable promise
for use in atmospheric microplastics research, although more testing is recommended.

The physical design of the apparatus allowed easy fabrication and assembly using only a basic 3D
printer and screwdrivers. The circuit board required some specialised skills due to the prototype
nature of the project, but could easily be simplified if more examples were required for atmospheric
microplastics research. The electronic components were easy and quick to source online for a total
cost of $139.79 including shipping. The cost and sourcing of parts would not inhibit the deployment
of this design. The completed apparatus weighed 628g, light enough to easily fly on a high altitude
balloon and accommodate modifications or additional payloads.

 INTRODUCTION

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 12

CHAPTER 2
PROJECT PLANNING

2.1 Aims
This project aims to design, implement and test an apparatus which can draw a measured volume of
air through a filter to capture a sample of microplastic fibres and particles for research. The
apparatus must be carried by an unmanned high altitude balloon to collect a sample at a specific
altitude. To encourage repeated studies in the current replication crisis (Wilson 2022), the apparatus
must be easy to implement by researchers from many backgrounds in any global region.

2.2 Objectives
In order to be suitable for its intended use, the apparatus must have a filter capable of collecting a
sample of microplastics without contaminating the sample with microplastics originating from the
apparatus itself. To this end, no plastic parts should be placed upstream of the filter and the filter
must be entirely free from plastic. It is also imperative that the apparatus be light enough to be
carried by a high altitude balloon.

The apparatus must employ a suitably powerful fan to draw air through the filter, with a digital
control system using feedback from an airflow sensor to control the total volume of air sampled. A

It must also be designed to be affordably constructed. Therefore it should use affordable materials
and components and be produced and assembled using affordable tools. To make the apparatus easy
to implement, parts should be easy to source and all steps of constructing and setting up the
apparatus should be as easy as possible.

To test the operation of the apparatus, it will be run in free air to collect a sample. Another test will
be run with the apparatus within a vacuum chamber to test the automatic triggering and sampling
performance with reduced pressure as seen in the upper atmosphere.

 PROJECT PLANNING

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 13

2.3 Timeline
The project was planned to follow the timeline set out in the Gantt chart in Figure 1.

2.3.1 Risk Assessment
A risk assessment was conducted to determine the risks associated with this research work. This is
attached as Appendix A

2.3.2 Environmental Sustainability
By the nature of this apparatus design, it is expected that the environmental impact of the device
itself will be insignificant. Plastics must be avoided where possible in the design and the apparatus
must be recovered to assess the results, so it is unlikely that any litter or microlitter will be
generated.

For a high altitude balloon launch there is necessarily some environmental impact, as a substantial
volume of lifting gas must be released and the large balloon made of latex rubber ruptures before
the descent. There are two options for lifting gas. Helium is non-flammable and doesn’t contribute
to global warming, but is also a non-renewable fossil resource of which the earth has a very limited
supply. Hydrogen is highly flammable and has a low global warming potential of 5.8 (MIT 2006),
but is renewable when combusted. Being lighter than helium, hydrogen gas allows a smaller balloon
to provide the same buoyancy. This in turn allows a launch to be conducted with a lower input of
latex, a natural polymer produced from tree sap which is farmed in vulnerable rainforest
environments. For these reasons, hydrogen would be the preferable lifting gas if safety requirements
regarding its high flammability would allow. To further improve the sustainability of hydrogen as a
lifting gas, an ignition source could be provided prior to the balloon rupture to combust the gas into
water vapour, as unburnt hydrogen has a low global warming potential and can escape the
atmosphere into space as helium does.

 PROJECT PLANNING

Figure 1: A Gantt chart showing the project timeline. Pale green shows allowable overruns and
pre-planning tasks.

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Supervisor email
Assessment item
Phase 1
MP aerosols
Particulate sensors
Control procedures
Phase 2
Ordering parts
Draw through filter
Pump
Filter indexing
Control system
Casing
Phase 3
Fabricate
Assemble
Wiring
Coding
Phase 4
Reflector build
Vacuum testing
Ozone testing
Phase 5
Coordination
Payload planning
Flight
Phase 6

Literature review

Develop design

Construct

Test and tweak

Balloon flight

Documentation, presentation etc

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 14

2.3.3 Project Disposal
After the research project was completed, the prototype was disassembled to avoid any
consequential effects of its misuse. Notes have been embedded in all code and CAD models to
ensure that the imperfect state of the project is clear to anyone who may attempt to use components
of it.

 PROJECT PLANNING

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 15

CHAPTER 3
LITERATURE REVIEW

3.1 Introduction
This literature review examines the literature on airborne microplastics, with a focus on apparatus
design for the collection of atmospheric samples. Particular attention is paid to the sensors and
control systems used in such apparatus. To understand the context of the apparatus design, the
literature on processing of microplastic samples is also reviewed.

3.2 Microplastic Aerosols
The morphology of microplastics varies widely, but they can be divided into two main categories,
particles and fibres (Conkle, Baez Del Valle & Turner 2018). Particles can take on a myriad of
shapes. While fibres can contain any number or type of bends, the cross section of synthetic fibres
tends to be uniform along their length. Sizes range from 5mm down to undetectably small as further
breakdown takes place in the environment. Nanoplastics are microplastics in the sub-micron range
(Gigault et al. 2018). Research into nanoplastics is extremely limited due to the difficulty of
processing these samples. This is discussed further in section 3.3.3. The concentration of airbourne
microplastics in the atmosphere is roughly in the range of one to more than 1000 parts per cubic
metre (O’Brien et al. 2023).

3.3 Apparatus Design and Testing Procedures

3.3.1 Particulate Sample Collection Configuration
Details of apparatus designs specifically suited to the collection of particulate samples for the study
of airborne microplastics are lacking in the literature. Habeck, Flaten & Candler (2020) described
the design of an apparatus for measuring the concentrations of particulate in flight, where no sample
is collected, for their study relating to the aerodynamics of hypersonic aircraft. Lateran et al. (2016)
used a small vacuum pump to draw air through an Andersen cascade sampler to collect a particulate
sample on several adhesive surfaces. The Andersen cascade sampler separates particles by size
during sample collection by varying the airflow velocity in each chamber. No feedback system was
used to determine the airflow. Bryan et al. (2014) used an off the shelf pollen sampling system in
their high altitude balloon microbial study. Fonseca et al. (2003) used an industrial MAF sensor for
feedback in an analog control system circuit to provide a consistent mass flow rate.

 LITERATURE REVIEW

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 16

3.3.2 Control System
Previous control systems for atmospheric particulate sampling apparatus designs by Lateran et al.
(2016) and Bryan et al. (2014) have used the Arduino Mega 2560. This is a development platform
based on an 8 bit Atmel ATmega microcontroller. This popular but dated platform was the norm at
the time, but the recent literature indicates that better options are now available. Habeck, Flaten &
Candler (2020) used a Raspberry Pi in their study of atmospheric aerosol droplets. Anderson et al.
(2023) developed a balloon based system for monitoring wildfires using a Raspberry Pi Pico W for
the control system, citing its “accessibility, inexpensive cost and adaptability”.

Single use lithium AA batteries (Bryan et al. 2014), lithium ion batteries (Habeck, Flaten & Candler
2020) and have been successfully used in similar high altitude apparatus designs in the past. Lateran
et al. (2016) used lithium polymer batteries but housed them inside a foam descent glider which was
sealed to provide insulation.

3.3.3 Microplastic-Specific Procedures
Binderless glass fibre filters are usually used. These filters are made from glass fibres which are
joined together by melting so that no binding agent is required. This construction means they
contain no plastic and allows them to be heated to just below their glass transition temperature to
burn away any microplastics or residue which may be present before samples are collected (Song et
al. 2021).

Samples are manually processed to determine the results. This process is very laborious, as samples
must be examined under a microscope to find all particles and fibres (Beaurepaire et al. 2021). Each
piece of microlitter must then be examined and tested in various ways to determine if it is synthetic
or natural in origin. One such test involves holding a heated needle adjacent to a fibre, as synthetic
fibres will curl toward the heat source and natural fibres will not (Beckingham et al. 2023).

3.4 Summary
A knowledge gap has been identified in the application of a control system for an atmospheric
sampling apparatus with a low barrier to entry. Previous apparatus designs have used the Arduino
platform, which requires code to be written in the C++ programming language and flashed to the
controller using specialised software. Control systems based on a Raspberry Pi have been used,
which is a complete computer requiring considerable setup and more susceptible to unpredictable
performance than a microcontroller. Analog control systems have also been used, which require
specific design for the exact use case and cannot be easily modified.

While MAF sensors have been used for atmospheric sampling apparatus, a knowledge gap has been
identified in the use of a MAF sensor in a digital control system for metering of known air
quantities. Another gap exists in the use of an automotive MAF sensor, which is considerably more
affordable and accessible than industrial instruments.

The most notable knowledge gap is a detailed description of a particulate sampling apparatus suited
for the study of atmospheric microplastics.

 LITERATURE REVIEW

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 17

CHAPTER 4
METHODOLOGY

4.1 Design requirements

4.1.1 General requirements
Some design requirements were determined in order to ensure the apparatus would be capable of
collecting useful samples, and be as accessible and replicable as possible for researchers from any
region and background. These requirements are organised by the aspect of the design they relate to.

All components should be affordable and readily available, and wherever possible conform to a
standard which is widely used by multiple manufacturers. This provides the ability to source
equivalent components from many avenues and provides redundancy if one manufacturer were to
stop producing a particular component.

To reduce the impact of limitations in available skilled trades, any custom designed components
should be able to be produced with standard digital fabrication techniques such as 3D printing, CNC
laser cutting and CNC machining.

The apparatus should be as light as possible to limit the required lifting gas in the balloon and
maximise the altitude reached. Some jurisdictions also place weight limits on balloon launches, so
adherence to international standards is important for the wide applicability of the apparatus. In the
USA this is 6lbs (2.7kg) for a single payload (StratoStar 2022).

4.1.2 Sample collection filter
The sample collection filter should be capable of capturing solid particles and fibres down to a
reasonable size. As the processing of these samples involves manual sorting of microlitter piece-by-
piece to differentiate microplastics from other microlitter, it is impractical to attempt to process any
components of a sample below around 2 microns in size. Therefore a filter should be used which
can capture particles down to below 2 microns. Attention should be paid to the rated flow rate and
corresponding pressure drop of the filter to ensure that the air movement device is rated for both a
flow rate and static pressure to suit.

4.1.3 Physical design
To ensure that no microplastics generated by the apparatus itself find their way onto the sample
collection filter, no plastic-containing materials should be used upstream of it. Any plastic parts
produced for the apparatus should use a distinctive colour which allows them to be easily identified
if they happen to contaminate the results.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 18

4.1.4 Electronic hardware

Fan
A fan or other air movement device must be specified to draw air through the sample collection
filter. The selected air movement device must provide a sufficient flow rate to collect a statistically
significant number of microplastic fibres/particles over a reasonably short range of altitude. As the
average ascent rate of a high altitude balloon is often around 300m/min and the expected occurrence
of microplastic fibres/particles is in the order of <1 to 1000 parts per cubic metre (O’Brien et al.
2023), a flow rate of 0.3 cubic metres per minute will allow a sample of roughly <1 to 1000
fibres/particles to be collected over an altitude range of 1,000m.

Airflow sensor
The volume of air which is drawn through the filter by the fan must be controlled, requiring an
airflow sensor to provide feedback. This must work at a range of air pressures down to near-
vacuum.

Pressure sensor
A pressure sensor will be required to act as an altimeter to track the altitude of the apparatus during
its flight. This can also be used to keep track of the ascent rate of the balloon and return to a low
power state after landing to keep the device transmitting its beacon as long as possible to assist in
researchers recovering the apparatus.

Battery
The apparatus will need to be powered by a battery. This battery must be capable of withstanding
the low temperatures and pressures at high altitude, and powering the apparatus for at least three
hours with several minutes of continuous fan operation during sampling. A simple and affordable
charging method is necessary as well.

Microcontroller
A microcontroller is required to read the sensors, record values and trigger the sample collection at
the appropriate altitude. Keeping this as simple and accessible as possible is important, as
researchers should be able to easily change the sampling parameters or reprogram the control
system to add extra sensors with the lowest possible barrier to entry.

4.1.5 Software control system
There are several requirements which must be met by the control software design. It must use the
pressure sensor data to determine its altitude. It must be capable of using the MAF sensor signal to
determine the volumetric flow rate of air through the filter and therefore determine the total volume
collected during a sampling operation. It must also record data to complement the samples and to
verify that the samples were collected correctly.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 19

4.2 Design Implementation

4.2.1 Sample collection filter
Best practice in this field of research is to use a binderless glass filter which can be both washed and
heated in a kiln to vaporise any present microplastics before a sample is collected (Song et al.
2021).

Unfortunately the rated flow rate and corresponding pressure drop of the filter could only be found
for water (Finetech Research and Innovation 2023), so while the pressure drop observed will be
lower with the lower viscosity of air, no exact figures are available. This makes closely matching an
air movement device difficult, and instead some assumptions must be made and the fan is likely to
be more powerful than required, resulting in a weight penalty.

4.2.2 Electronic hardware

Fan
It was determined that the most reliable way to source a low-cost device for drawing air through the
filter would be to utilise a computer cooling fan. These components are available at a very low price
point, are energy efficient and include advertised ratings for air flow rate and static pressure which
will assist in specifying a fan to match the characteristics of the sample collection filter.

The selected fan is the Silverstone FHS 80X (Figure 2), a powerful fan designed for computer
servers with a rated airflow of 83.66 cubic feet (2.369 cubic metres) per minute and rated static
pressure of 50.77mmH2O (SilverStone 2023). While no empirical data is available on the
relationship between flow rate and pressure, these figures suggest the fan’s performance is
approximately correct for this application.

The fan accepts a speed control signal which is a simple 5V pulse width modulation (PWM)
control. As the fan is intended for continual cooling use in a computer server, the PWM control is
ignored by the fan’s internal control circuit when a PWM signal below 20% is received, resulting in
a minimum speed still being provided as long as the fan is powered. As such, circuit elements to
switch the 12V power to the fan was also included on the circuit board.

Figure 2: The Silverstone FHS 80X fan.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 20

Airflow sensor
The most basic type of airflow sensor is an anemometer, which uses a small turbine which turns due
to the flow of air over its blades. These sensors are not designed to work at reduced air pressure and
would likely be inaccurate if employed for this apparatus.

When selecting a solid state airflow sensor to provide feedback to the control system, cost is a
major concern. Industrial-grade flow sensors are available, but at prices (RS Group 2023a) which
could discourage the replication which is necessary for atmospheric microplastics research to yield
definitive far reaching conclusions. The decision was made to use a cheap and widely available
MAF sensor instead. While in the automotive industry these are commonly called mass airflow
sensors, the same operating principle is used in industrial control components where they are
usually referred to as thermal dispersion flow switches (RS Group 2023b). A Siemens VDO
5WK9605 MAF sensor (Figure 3) was chosen, as it is available as a replacement part for a wide
range of BMW and Hyundai two to three litre engines which have been sold around the world. This
makes it an easy part to source from countless suppliers in any region long term. While the sensor
has a 3 pin plug connection, the cable connector for this could not be readily sourced on the
required timeframe of this project, so the device was opened and a standard pin header connector
was added. The cover for the electronics was fixed back into place using thermoplastic welding.

Figure 3: The Siemens VDO 5WK9605 MAF
sensor.

This type of MAF sensor uses a resistive heating element and thermistor in a balanced circuit which
inherently controls for air temperature. A circuit diagram of this layout is shown in Figure 4.
Therefore the only factor which influences the output of the circuit is the mass airflow past the
heating element. As the apparatus control system requires feedback for the volumetric airflow, this
can be calculated using the mass airflow and the air pressure signal provided by the pressure,
humidity and temperature (PHT) sensor.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 21

Figure 4: The circuit diagram for a simple MAF
sensor.

The selected MAF sensor is powered by 12V and provides an internally-amplified 0-5V analog
output. This can be read using the internal analog-to-digital converter (ADC) in the Raspberry Pi
Pico W. The Raspberry Pi Pico W runs at a 3.3V logic level, meaning that it should not receive a
signal of 5V. In testing it was found that the 0-5V analog signal actually never exceeds 3.3V even
with directed streams of cold gas, so no level shifting circuit is required. Due to the heating element
in this sensor, circuit elements were included on the circuit board to allow the sensor to be turned
off when not in use.

Pressure sensor
The apparatus control system needs to be able to measure its altitude as well as the surrounding air
pressure. Altimeters generally function by measuring the air pressure, which decreases
exponentially as the altitude increases. While small changes in air pressure can result from weather,
these changes only translate to a minimal shift in the indicated altitude of a few hundred metres at
most. As the various attributes of air are commonly used in conjunction with each other, digital
sensors designed to collect this information are often offered as a combined pressure, humidity and
temperature (PHT) sensor. The added data points of temperature and humidity may also be helpful
to researchers and add very little overhead to collect. Individual pressure sensors and digital
altimeters are also available.

While a very wide range of pressure sensors, PHT sensors and digital altimeters are on the market,
only a select few are capable of being used for this apparatus due to the need for operation at very
high altitude (and hence very low pressures). When calculating based on the minimum rated
pressure, most available sensors were found to have a maximum usable altitude of 60,000ft
(18.3km), but this design must measure to near the maximum altitude of a high altitude balloon,
roughly 100,000ft or 30km. The sensor chosen was a TE Connectivity MS8607 PHT sensor, which
provides pressure readings down to 10mbar, extending the usable altitude to just above 100,000ft
(30.48km) (TE Connectivity 2023). The MS8607 communicates over an I2C bus, which is
standardised, making replacement of this component with a different model due to sourcing
difficulties relatively straightforward. While this is only an 8 pin integrated circuit (IC), it is a small
surface mount package, so a commonly available MS8607 breakout board from Adafruit (Adafruit
2023a) was used to reduce assembly complexity by providing standard 0.1” spaced pins. This

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 22

sensor uses very low power so it can be powered from a digital output pin of the Raspberry Pi Pico
W directly, allowing it to be turned on or off in software if required and removing the need for the
battery system to consider this sensor’s voltage requirements.

Batteries
While batteries are available in various chemistry designs, lithium batteries are the highest
performing in most categories. Lithium batteries offer the best energy density, meaning longer
battery life for a given weight. They also offer the best power density, meaning the most powerful
equipment can be powered for a given weight. Lithium batteries also work in the lowest
temperatures, although still not as low as those observed at high altitude. While often grouped into a
single category, there are various chemistry designs based upon lithium. Lithium ion is the most
common, while lithium polymer offers higher energy density and power density at the expense of
thermal stability and long term endurance. Lithium iron phosphate batteries are the most stable and
have the longest life cycle, but with a weight penalty. Lithium titanate batteries are often overlooked
and rarely used due to their reduced energy density, but they offer very high power density and
extremely fast charge times. They also offer a feature for which there is limited demand, stability in
very low operating temperatures (Gree Altairnano New Energy 2023). Lithium titante batteries are
very well suited for high altitude use, but their unique chemistry and lack of popularity introduce
some issues. Unlike lithium ion and lithium polymer batteries which operate in the range of 3.0V-
4.2V per cell, lithium titanate batteries operate at within a voltage range of 1.8V-2.85V (Cadex
2023). Many battery chargers, battery management systems and battery charging ICs are
specifically designed for the voltage limits of lithium ion cells. This makes sourcing equipment
compatible with lithium titanate cells difficult, even at the component level. The cells themselves
could also prove difficult to source in remote locations or regions with difficult customs
requirements. The decision was made to use lithium ion batteries for their ease of sourcing and wide
compatibility. The substitution of lithium titanate batteries could be proven necessary by further low
temperature testing, but lithium ion batteries have been used successfully (Habeck, Flaten &
Candler 2020).

Lithium battery cells are available in two main packaging types. Pouch cells have the thin film-like
material which makes up the cell folded into layers within a foil pouch. Cylindrical cells are rolled
into a cylinder within a metal casing similar to a common AA cell. The foil pouch for which the
former is named provides effectively zero structural support to the cell, making it prone to damage.
An internal short circuit can result from crushing or puncturing of the cell often leading to thermal
runaway, a condition in which the battery will create a toxic, self-sustaining fire which destroys the
battery and can easily damage surrounding equipment. In the case of an unmanned balloon flight,
this would also create a risk of wild fires. While these risks still exist with cylindrical cells, their
metal casing provides considerable added ruggedness. Another consideration is that all lithium
batteries produce some gas while charging or in use. Pouch cells accommodate this gas internally,
eventually inflating toward the end of the cell’s life, while cylindrical cells have a one-way vent to
allow the gas to escape. It is anticipated that under the partial vacuum of high altitude flight, the
batteries will exhibit some additional off-gassing. In the case of the pouch cell, this gas could inflate
the pouch to the point that the cell within delaminates. The cylindrical cell’s metal casing on the
other hand contains the cell material and any gas generated is incapable of separating the layers.
Cylindrical cells are also available in standardised sizes. The most common of these is the 18650
(Figure 5), a cell 18mm in diameter and 65mm in length. These cells were widely used within

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 23

laptop batteries of years past and are still the dominant form factor for cordless power tool and
vacuum batteries, USB power banks and electric vehicle batteries. In recent years, the use of 18650
cells in their standalone form has been gaining traction, particularly for flashlights and electronic
cigarettes. Chargers designed for one or more individual cells are now widely available. Multiple
cell holders are available from most electronics suppliers, providing a convenient method for
interfacing them with the apparatus. These cells and their associated accessories are also very
competitively priced. It was decided to use cylindrical 18650 cells for the apparatus due to the
various advantages discussed above.

Figure 5: A standard 18650 lithium battery and a simple single cell charger.

A single cell lithium battery provides between 1.8V and 4.35V, depending on the specific chemistry
and the state of charge. The fan and MAF sensor both require 12V power while the microcontroller
requires 1.8-5.5V. Any type of single cell lithium battery could directly power the microcontroller,
with a boost converter used to produce the 12v power required by the fan and MAF sensor.
Alternatively, multiple cells could be connected in series to provide 12V to the fan and MAF sensor
and a linear voltage regulator or buck converter could be used to drop this to 5V. Separate batteries
for these different devices within the apparatus could be used, but it was determined that this should
be avoided, as it may falsely give the appearance that the apparatus is functioning, causing it to be
launched without having the capability to power the fan when it eventually reaches the sampling
altitude. As the microcontroller draws little current while the fan draws considerably more, it was
decided that it would be more efficient to convert from a 12V battery down to 5V for the
microcontroller. The conversion from a higher voltage to a lower one can also be done with solid
state components, while increasing the voltage commonly require electrolytic capacitors, which are
unlikely to give reliable performance at very low temperatures and pressures.

Although lithium titanate cells get close, no commonly available battery is capable of operating
reliably at such extreme low temperatures as observed at high altitude. Therefore it was determined
that the best solution would be an insulated battery enclosure as used by Lateran et al. (2016). The
most appropriate material to achieve this cheaply would be mineral insulation wool, as it offers
good thermal insulation performance and is available around the world at a reasonable price. If
further testing shows this to be inadequate, a suitable dust-free aerogel product is available (Aerogel
Technologies 2023), providing aerospace-level performance although at a relatively high price.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 24

4.2.3 Physical design
As 3D printers are widely available to researchers and have low barriers to entry in both cost and
skill requirement, it was decided that 3D printing should be used where practicable. As 3D printing
requires the use of plastic and can create microplastics, it was decided that laser cut wood should
instead be used in any location upstream of the sample collection filter. The apparatus should also
be oriented to draw air in the downward direction so that any microplastics shed by the downstream
components of the apparatus are less likely to be swept toward the sample collection filter as the
apparatus rises through the air.

The general layout of the fan and MAF sensor were noted and measurements of key features were
taken using vernier calipers. Various parts were then designed in 3D CAD using Autodesk Fusion
360. This software was chosen as at the time of writing it is provided free to students and hobbyists,
and has a fairly affordable institutional licensing structure. It is noted that designing the part in
OpenSCAD would allow an entirely free and open source software to be used, and for key
dimensions of parts to be simply modified by changing parametric variables. OpenSCAD does
however have a steep learning curve which may in fact reduce accessibility of the design.

A part to mate the fan and MAF sensor and smoothly duct air between them was designed, shown
below in Figure 6. Fillets were included where appropriate to maximise the strength of of this part.

Figure 6: The fan to MAF sensor adaptor and mount (CAD model).

A grille to support the sample collection filter was designed for the other side of the fan (Figure 7).
An enclosure for the electronic control system circuit board was also modelled (Figure 8). A
mounting plate to fix the battery holder to the fan and MAF sensor assembly was also designed
(Figure 9). A step in the base of the electronics enclosure and battery holder mount was included to
allow it to mate with adhesive against the flat face of the fan and clear the wider round section of
the fan to MAF sensor adaptor. While these parts could have been designed to mount with screws to
the flanges of the fan, this would require threaded rods and nuts to be acquired in addition to the
screws included with the fan. Retaining a large flat section at the lowest point of the electronics
enclosure also allows it a large area to adhere to the 3D printer’s bed. Challenges with print
adhesion are common and considering this in 3D printed part design is considered best practice,
especially when accessibility and replicability are priorities.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 25

Figure 7: The filter grille component (CAD
model).

Figure 8: The electronics enclosure component
(CAD model).

Figure 9: The battery holder mounting plate
(CAD model).

These parts were then all produced using a simple fused deposition modelling (FDM) 3D printer,
shown in Figure 10. This is a particularly low cost example which can be considered a worst case
for research environments. This type of 3D printer is the most affordable and widespread, using
cheap plastic filament which is extruded through a heated nozzle to build up parts layer-by-layer by
tracing a path with a thin stream of melted plastic. Because the stream is thin and must start and
stop, thin fibres of plastic hanging from the finished part are a common occurrence (Figure 11), and
have the potential to contaminate samples. Orange filament was chosen for its high visibility when

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 26

searching for the landed apparatus in the natural environment after a flight. Orange is also helpful as
its distinctive colour will allow researchers to infer the origin of any microplastic contamination
generated by the apparatus itself. Phosphorescent filaments are also available and may provide even
better distinction from atmospheric microplastics. If issues with contamination are detected, this
part can also be produced using a 3D printer of the stereolithography (SLA) type. This technology
instead forms parts by selectively solidifying a light-reactive resin into a single layer at a time.
Because the part is formed as a monolithic piece of solidified resin, it is much less likely to become
a source of microplastic contamination.

Figure 10: The FDM 3D printer used to
produce physical parts of the apparatus.

Figure 11: Microplastic fibres attached to an
FDM 3D printed part. M3 screw for scale.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 27

The apparatus was then assembled by connecting the electronic components to the 3D printed parts.
The fan included self-tapping screws which pass through the 3D printed parts and thread into its
plastic mounting flanges. The MAF sensor slips inside the adaptor mount and is secured with cable
ties through the two mounting flanges. The battery holder mounting plate and electronics enclosure
are mounted with adhesive to the flat faces of the fan.

Figure 12: The assembled apparatus with all 3D printed parts.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 28

4.2.4 Control system

Microcontroller
The control system for the apparatus was designed around a Raspberry Pi Pico W microcontroller
board. This device has also been used by Anderson et al. (2023) on a balloon sensor system. This
device uses a modern 32 bit ARM CPU architecture with two cores running at 133MHz and two
megabytes of onboard flash storage (Raspberry Pi Foundation 2023). Various data buses and an
internal ADC are available for interfacing with sensors. The Raspberry Pi Pico is available in a
regular or “W” variant, with the W including WiFi and Bluetooth Low Energy. While neither of
these communications standards have a range useful for communicating with the apparatus in flight,
a WiFi signal could potentially be used as a short range beacon to help locate the apparatus upon
landing. The Raspberry Pi Pico microcontroller range have support for compiled C/C++ code or the
interpreted MicroPython or CircuitPython languages.

The Raspberry Pi Foundation has committed to continue producing the Pico range until 2034
(Raspberry Pi Foundation 2023), which makes this microcontroller a sensible choice to give the
apparatus long-term serviceability and replicability.

Programming language
It was decided to program the control system using the CircuitPython interpreted programming
language, which is provided as open source under the MIT License (CircuitPython 2023) by
Adafruit Industries. This has several distinct advantages over the other offerings.

CircuitPython is based upon the Python programming language. Python is used widely in data
science and research applications, and is quickly overtaking alternatives. Python has many
advantages which make it easy to use, such as allowing the implicit declaration of variables.
CircuitPython adds to this the ability to ignore data types in most circumstances. The result is a
programming language which lends itself to use by those without a background in computer science
or software engineering.

The CircuitPython interpreter program consists of compiled code which runs on the microcontroller
and executes CircuitPython code by interpreting it in real time. The interpreter also provides USB
communications to a file system on the microcontroller’s internal two megabyte flash storage. This
allows the control system software to be accessed for editing in the same way as a text file on a
regular USB flash drive. The control system software can then also write data log files to this file
system to be accessed in the same manner.

Adafruit Industries, a manufacturer and distributor of hobby electronics, makes available a very
large selection of open source hardware libraries under the MIT License. These libraries make
interfacing with hardware devices, often sensors and actuators, much simpler and faster to
implement. These libraries are available in C/C++ and their own CircuitPython, but not
MicroPython. While a library can be translated to run in MicroPython, using CircuitPython for the
control system opens the possibility of easily integrating a new library into the code to change the
pressure sensor for a different model or to add additional sensors to suit researchers’ needs.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 29

These features allow for extreme accessibility for the use and modification of the apparatus by
researchers with all levels of computer literacy. The ability to edit the control system code without
any specific computer software is very convenient in institutional environments where not all users
have the ability to install software on the computer system, and not all computers on the system will
have a specific software installed.

Software code structure
The general layout of the control system software is that of a state machine. A state variable is used
to store the current mode of operation, or state. One state is applied to each phase of the sample
collection flight: pre-launch, ascent, sampling, descent and recovery. Data is logged during all states
except for the recovery state, and energy efficiency is the main priority in all states except for the
sampling state. The loop speed of the state machine is controlled independently by the current state.
This allows fast looping for accurate measurements in the sampling state and increased efficiency
with slower looping for the other states.

While delay statements in code are generally to be avoided, in the case of the CircuitPython
language, they are a convenient method to put the microcontroller into a low power sleep state. This
battery saving technique is preferable in most of the states of this apparatus' functionality, as it waits
for the launch to take place, ascends, descends or attempts to stay powered while waiting for
researchers to recover it from its landing site. Only when sampling does the loop speed need to be
increased and the loop time measured accurately. To save further power, the MAF sensor is turned
off when not in use, as it includes a heating element as part of its design. When a sample is to be
collected, a short delay is provided to allow the sensor to heat up and stabilise before the fan is
turned on.

Functions are used for obtaining sensor readings and to send control outputs. This allows the main
program to be concise and easy to interpret by others. This modular approach also makes it easier to
change hardware while retaining the layout of the software code.

Hardware interfaces
The output of the MAF sensor is an analog signal in the range of 0-5V being linearly related to the
mass airflow. This 0-5V analog signal is common for automotive sensors. This signal is read using
the internal ADC in the Raspberry Pi Pico W. While the ADC is only rated for 0-3.3V, early testing
of the MAF sensor showed that its actual output range ever exceeded 3.3V, so no level shifting
circuit has been included on the circuit board.

The fan accepts a PWM speed control signal, but to completely stop the fan its power must be cut.
These two actions are performed by different pins, so a function has been written to ensure that a
zero speed command is always accompanied by cutting the power and a non-zero speed command
is always accompanied by restoring power. All control of the fan is then done through this function.

The PHT sensor communicates with the Raspberry Pi Pico W through an I2C bus. The
communication protocol is somewhat complex, but Adafruit provides a library (Adafruit 2023b)
under the MIT License which can be used to simplify the communications. This also allows a
replacement sensor to be used if the MS8607 is taken out of production in future, by switching out
the library for one compatible with the alternate sensor.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 30

Altitude calculation
To use the pressure sensor to find altitude, a mathematical formula needed to be found which
reflects the relationship between altitude and air pressure. This formula can be found quite easily
from various sources including The National Weather Service (National Weather Service 2023), but
this relationship begins to diverge from available data (Table 1) at high altitudes within the
stratosphere. This is likely because the formula is only intended to be applied at regular manned
flight altitudes within the troposphere. To accurately represent the relationship at high altitudes, a
formula was derived from the data in Table 1 (The Engineering ToolBox 2003) by entering the
values into a spreadsheet, applying a trend line and accessing the formula for the trend line.

Table 1: U.S. Standard Atmosphere vs. Altitude (The Engineering ToolBox 2003)

Altitude (m) Temperature (° C) Absolute Pressure
(mbar)

Density (kg /m3) Dynamic
Viscosity
(10−5N s /m2)

-1000 21.50 1139 1.347 1.821

0 15.00 1013 1.225 1.789

1000 8.50 898.8 1.112 1.758

2000 2.00 795.0 1.007 1.726

3000 -4.49 701.2 0.9093 1.694

4000 -10.98 616.6 0.8194 1.661

5000 -17.47 540.5 0.7364 1.628

6000 -23.96 472.2 0.6601 1.595

7000 -30.45 411.1 0.5900 1.561

8000 -36.94 356.5 0.5258 1.527

9000 -43.42 308.0 0.4671 1.493

10000 -49.90 265.0 0.4135 1.458

15000 -56.50 121.1 0.1948 1.422

20000 -56.50 55.29 0.08891 1.422

25000 -51.60 25.49 0.04008 1.448

30000 -46.64 11.97 0.01841 1.475

40000 -22.80 2.87 0.003996 1.601

50000 -2.50 0.7978 0.001027 1.704

60000 -26.13 0.2196 0.0003097 1.584

70000 -53.57 0.052 0.00008283 1.438

80000 -74.51 0.011 0.00001846 1.321

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 31

It was observed that no standard trend line would fit the relationship closely enough, so a piecewise
formula (Figure 14) was instead used, combining the low altitude formula from The National
Weather Sevice and the formula derived from the table which is accurate for high altitudes. The
outputs of these two sub-functions are plotted in Figure 13.

Figure 13: A chart of the actual relationship between pressure and altitude compared with the two
sub-functions of the piecewise formula.

The piecewise formula should cross over at the point where the two formulas intersect, so as to not
have a sudden change in calculated altitude. This point was found using the spreadsheet. The
complete piecewise formula for calculating altitude from air pressure is shown in Figure 14.

Figure 14: The piecewise formula used in the control system
software to determne altitude from air pressure.

Volumetric flow rate calculation
The MAF sensor provides an output linearly corresponding to the mass flow rate of air through the
sensor. As the apparatus must sample known volumes of air, the volumetric flow rate of air must be
found using the air density. While the density of air at a given pressure and temperature can easily
be calculated using the formula in Figure 15, this formula relies on a gas constant, R, relating to the
mix of gases in air. While the mix of gases is different at high altitude, this has a negligible effect on
the value of R. This was confirmed by calculating R from the density, pressure and temperature
values in Table 1.

Figure 15: The formula relating density ρ (kg /m3),
pressure P (Pa) and temperature T (K) for a specific mix

of gases with constant R.

 METHODOLOGY

h = { 44307.69(1−(P
1013.25))

0.190284

P>189.94

−6417.004605∗ln(P) + 45755.99158 P≤189.94

ρ = P
(RT)

= m
V

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 32

As a mass flow rate is a ratio of mass to time, a volumetric flow rate is a ratio of volume to time and
density is a ratio of mass to volume, a relationship exists between the three variables. By
substituting the formula for density, a relationship between mass airflow (dm /dt), volumetric

airflow (dv /dt), pressure and temperature is derived (Figure 16).

Figure 16: The derivation of the formula used to convert mass airflow, pressure
and temperature to volumetric airflow.

When collecting a sample, the total collected volume must be determined using the flow rate. A
numerical integration of the flow rate is performed using a rectangular approximation (Figure 17).
An internal timer of the microcontroller is used to determine the loop time Δ t . The MAF sensor is
read and the volumetric airflow (dV /dt) is calculated every loop. Storing a list of values to sum

after the sampling would quickly exceed the Raspberry Pi Pico W’s 256kB of RAM at high
sampling rates. Instead a running sum is kept during the sampling period so that only a single value
must be stored. When the desired sample volume has been collected, the fan is turned off.

Figure 17: The sampled volume is determined
using rectangular integration.

To minimise Δ t , the loop must be run as fast as possible. During development it was found that
logging to the CSV file during the loop severely impacts loop speed, due to the speed of the
microcontroller’s internal flash memory. To improve loop speed, an option was included to disable
data logging during sampling.

Data logging
The two megabytes of internal flash storage holds the compiled CircuitPython interpreter program
and also a file system where the control system software and experimental data logs are stored. This
file system can be accessed by the interpreter and by the computer it is connected to. Catastrophic
data corruption will occur if both the interpreter and computer attempt to write to the file system at
the same time. Consequently, only one of these can have the file system mounted with write
permissions while the other must be mounted as read-only. In order for the control system software
to log data, the file system must be mounted with write permissions by the interpreter, making the
file system read-only for the computer. This means however that the computer will not be able to
edit the control system software. The solution to this was for a program to be written which runs as
the microcontroller boots. This program checks the value of a pin on the microcontroller and either
takes write permissions if the signal is low, or leaves them for the computer to take if the signal is
high. A circuit was included on the circuit board to automatically disable data logging and give
write permissions to the computer if a USB cable is connected. A jumper to override this behaviour
is also included.

 METHODOLOGY

m
t
∗V
m

=V
t

⇒ m
t
∗ρ−1=V

t
⇒ dm

dt
∗(PRT)

−1

=dV
dt

⇒ (dmdt)∗(RTP)=dVdt

∫ dV
dt
dt = V sampled = lim

Δ t→0(∑
t sample start

t sample end

(dVdt ∗Δ t))

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 33

Data is logged in the CSV file format. This is the same as a text file, but with particular placement
of commas and line ending characters to make the data easily import into a spreadsheet later.
CircuitPython allows a text file to be opened and written to in various modes. By opening in the
append mode, data is written after existing data. Therefore previous experimental data will not be
overwritten but instead added to, and the data is written as measurements are taken, so a power
failure of the apparatus will not result in data loss.

As the airborne transport mechanism of microplastics is not yet understood, it is not clearly defined
what additional data may be useful to collect. Therefore it was determined that it would be
beneficial to collect all data which is readily available and may conceivably be used to continue
research in this field. By observing correlation between variables, researchers can infer likely chains
of causation for further study. For example, by recording the air temperature, humidity and balloon's
ascent rate, researchers may discover a higher prevalence of microplastics in warm moist ocean
thermals than the rest of the atmosphere.

Circuit board
The circuit diagram of the control system is provided in Figure 18.

As mentioned in section 4.2.2, the output of the MAF sensor is a common 0-5V analog automotive
sensor signal. No level shifting circuit has been included on the circuit board however as testing the
output of this sensor showed that its actual output range is 0-3.3V. The inclusion of a level shifting
circuit would only reduce the effective resolution of the sensor.

To switch the power to the MAF sensor and fan, a ULN2003 Darlington transistor array is used.
The ULN2003 offers seven NPN Darlington transistor pairs in a single IC with a common ground
and internal biasing. This provides a convenient way to switch higher currents from the
microcontroller without greatly increasing the part count or number of solder joints to be made.
Multiple channels of the transistor array can be connected in parallel to add together their current
capacity for higher current devices like the fan.

While not a design requirement, a very bright red LED array designed to be powered directly by 5V
was included. This was connected to two spare channels of the ULN2003 so that it can be switched
by the control software. This LED array is used as a flashing aircraft clearance light during flight to
provide an additional level of safety. During the recovery stage, the LED gives a short double flash
every three seconds to aid researches in finding the apparatus while conserving battery power.

A 7805 linear voltage regulator IC is used to supply 5V power to the microcontroller. While not the
most efficient way to generate 5V, the 7805 reduces the part count of the design and increases its
reliability. While a buck converter circuit using a charge pump would be more efficient, these
circuits often require the use of an electrolytic capacitor, a component which would not reliably
operate at very low temperatures and partial vacuum. The current draw of the microcontroller is
also not very high, so the 7805’s efficiency is not a particularly great concern. The Raspberry Pi
Pico W has a separate power input which is isolated from the USB power source by diodes. This
allows the board to be powered by either source without one source feeding into the other. The 7805
regulator powers the board via this separated input, allowing the batteries to be installed while the
USB cable is connected, which is useful when testing the MAF sensor and fan.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 34

The software code run at boot time uses the Raspberry Pi Pico W’s pin GP2 to determine whether
the interpreter or a computer will have write permissions for the file system on the internal flash
storage. A voltage divider takes the 5V supply from the USB port and outputs a 3.3V signal to the
pin when the USB port is powered. A jumper is included to override this. While the voltage divider
is not strictly necessary, as the pins of the Raspberry Pi Pico W are 5V tolerant, one resistor would
be required anyway to prevent the jumper shorting the USB port to ground.

Figure 18: The circuit diagram of the control system.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 35

The full circuit as shown in Figure 18 was constructed on a prototyping circuit board which mimics
the layout of a standard breadboard used in electronics prototyping (Sparkfun 2023). The completed
board is shown in Figure 19. This allows the circuit to be adaptable and easily understood by others.

Figure 19: The completed circuit board of the control system.

4.3 Testing and Results
The apparatus was tested at ground level atmospheric pressure by inflating a bag to directly
measure the air volume. This was quite close to the volume calculated by the digital control system,
however a calibrated flow bench would be required to calibrate the apparatus more accurately. The
automotive MAF sensor and the algorithm for conversion to volumetric flow provided reliable
feedback to the control system. The fan was successfully turned off by the control system when the
calculated volume reached the target volume as per the design, providing a metered sample of air.
During this test, a “TestData.csv” file was created on the apparatus USB storage file system, which
has been provided as Appendix D.

The apparatus was then tested in a vacuum chamber which had the air pressure reduced to 68.4hPa,
equivalent to 18,654m in altitude. Higher equivalent altitude tests were planned but the vacuum
pump available was unable to reduce the pressure further. During the test a sample of 1,000.3L was
collected between 10,402m and 10,943m of equivalent altitude after being automatically triggered
to begin at 10,000m of equivalent altitude. The 402m overshoot from the target altitude is due to the
speed of the vacuum pump which far exceeds the flight speed of the balloon in its rate of pressure
change. No faults with the apparatus were detected and it performed as expected in every regard.
The automotive MAF sensor performed reliably in the low pressure environment and the fan pushed
air through it as expected. During this test, a “TestData.csv” file was created on the apparatus USB
storage file system, which has been provided as Appendix E.

 METHODOLOGY

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 36

CHAPTER 5
CONCLUSIONS

5.1 Conclusions
The apparatus was tested both at ground level atmospheric pressure and in a vacuum chamber to
provide the reduced pressure seen during a high altitude balloon flight, as detailed in section 4.3.
During these tests, the apparatus hardware and software performed as expected, automatically
triggering the sampling routine, collecting a sample and logging data accordingly. The design shows
considerable promise for use in atmospheric microplastics research, although more thorough testing
would be prudent prior to deployment in order to ensure the accuracy of results and reliability of the
system.

The physical design of the apparatus performed as expected, with parts being easy to 3D print with
a low-end consumer grade 3D printer and finally assemble with only a few screwdrivers. The circuit
board required some specialised skills to produce such as soldering and electronic circuit design,
but could be reduced to entry-level with the production of a kit including a custom made circuit
board which can be easily and cheaply sourced from a plethora of fabrication services. A fully
populated circuit board could also be ordered to completely remove the need to perform electronics
assembly. This could potentially be achieved without increasing costs, as individual ICs such as the
MS8607 pressure and temperature sensor and Raspberry Pi RP2040 microcontroller (the main
component of the Pi Pico W) could be sourced at a lower price than the ones used which come on
carrier breakout boards with marked up pricing. Installing the code and using the completed control
system was as extremely simple and would not present difficulties to anyone with basic computer
skills. Further development and testing of the circuit board design to make it more reliable and
easier to construct would be advisable before proceeding with producing examples for atmospheric
microplastics research.

All electronic components used were purchased from consumer websites with global shipping
options for a total cost for all major components of $139.79 inclusive of shipping. Minor
components used to craft the prototype circuit board were not included in this tally as they were
sourced from a spare parts bin and are generally very cheap and easily acquired. All parts arrived
within two weeks of being ordered. As discussed in section 4.2.2, a female connector to suit the 3
pin male connector on the MAF sensor could not be sourced quickly enough for the project timeline
and a workaround involving specialised skills was required. This should not be an issue in future as
global supply chain issues are remedied following the COVID-19 pandemic. The achieved price
point and ease of sourcing parts should not be an impediment for the vast majority of researchers
around the world.

The completed apparatus weighed 628g with batteries. While no regulatory requirements for
balloon launches in Australia are available and approval is instead given on a discretionary basis,
compliance with international requirements is necessary for wide accessibility of the apparatus
design. In the USA this limit is 6lbs (2.7kg) for a single payload, leaving more than 2kg of overhead
for the addition of a camera to monitor the apparatus’ operation, a GPS tracking system, parachute,
and the implementation of extra sensors and features.

 CONCLUSIONS

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 37

5.2 Challenges
It was originally planned to launch the apparatus as an additional payload on a proposed high
altitude balloon launch. The launch has been delayed until after the end of this project, so the only
testing possible was inside a vacuum chamber to simulate the low air pressure at high altitude. The
main factor of the high altitude environment that cannot be readily recreated in vacuum chamber
testing is the extremely low temperature.

The stated temperature range of the ICs used is -40°C to +85°C, which is not quite adequate to
endure the extremely cold temperatures of altitudes above roughly 8km (26,000ft) (Table 1).
Further testing could prove that some chips malfunction at these temperatures, however it is
expected that some self-heating will occur due to power consumption, especially with the reduced
cooling provided by very low density air. This temperature range could also prove to be inaccurate
and the chips could function correctly over a far greater range than stated, as this is a standard
industrial IC temperature range. This standard range would be applied to any chip other than those
intended for military use and would also be applied to any chip incapable of operating above 85°C
regardless of its low temperature endurance.

As explained in section 4.2.4, Python is an interpreted programming language. The speed of the
CircuitPython interpreter on the Raspberry Pi Pico W was found to be insufficient to achieve a short
enough loop time to apply an effective filtering algorithm to the MAF sensor signal. As a result this
signal has some noise. This noise may be due to the buffeting effect of the fan blades being in close
proximity to the sensor, or may be inherent to the sensor. This noise may decrease the accuracy of
the sensor, although the averaging effect of the running sum created from its output may abate this
to some degree. As this signal is analog, an analog filter could be applied by including a capacitor
between the MAF signal pin and ground. The Raspberry Pi Pico W also includes programmable IO
modules which act similarly to a basic co-processor, allowing timing-intensive tasks to be offloaded
from the main CPU and run much faster in assembly language. It may be possible to implement
sensor filtering on these modules while retaining the ease of use of the CircuitPython language for
the main program.

5.3 Further Research
Collecting samples of microplastics is only one part of the problem. Processing these samples is
laborious and therefore costly, as samples must be manually sorted through and each piece of
microlitter examined and tested individually. Some automated method to handle and test the sample
to differentiate plastics from other materials at this scale is a research topic ripe for expansion.
Nanoplastics (plastic microlitter in the sub-micron range) are a neglected field of study at this time,
as nanoplastics are too small to manually process samples whatsoever. This problem might be
addressed with the development of a microelectromechanical device to move samples into a
microscope’s view and computer vision and artificial intelligence to determine the outcome of
automated tests.

 CONCLUSIONS

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 38

The cold endurance of electronic components in the design has not been able to be tested. If
problems with low temperature performance arise, an insulated enclosure and switchable high
wattage resistor could be included to provide a self-heating function to the control system
components.

By adding a GPS unit, researchers could also collect data on the direction of wind in which the
sample is collected, perhaps providing insight into the origin of microplastics and the wind currents
that carry them. As mentioned in section 5.1, high altitude balloons in Australia are regulated on a
discretionary basis, however a GPS tracking system is a common inclusion for safety and readily
locating the landed payload. In the USA this is a legal requirement. If a GPS is already included in
another payload, this data would simply need to be made accessible to the apparatus control system.
This could be readily achieved using Bluetooth’s serial port profile, which is a feature of the
Raspberry Pi Pico W microcontroller board used in this project (BlueKitchen 2023).

To accurately test the fan’s operation at high altitude in the laboratory environment, the vacuum
chamber needs to be chilled as well as evacuated. One way to achieve this would be to bring the
chamber as close to absolute vacuum as possible and then add a calculated mixture of liquid
nitrogen and room temperature air to bring the pressure back up to the intended simulated altitude
and the corresponding temperature. As vacuum chambers are pressure vessels which need
considerable strength for safe operation, the chamber must be made from a material which can
safely be operated at these low temperatures. The glass would also be exposed to temperatures
around 25°C on the outside and as low as -56.5°C on the inside. This 81.5K temperature differential
through the material would subject the vacuum chamber to considerable thermal loading. It is
anticipated that the glass vacuum chamber used in this testing would be unsafe to operate with this
temperature differential, and if cooling the chamber by adding liquid nitrogen, the susceptibility of
glass to thermal shock may also be a cause for concern.

A printed circuit board design could be produced, allowing researchers to simply order the board
from one of many online made-to-order fabrication stores. This would mean that no soldering or
placement of components would be required and the assembly could be entirely “plug and play”.

As computer fans are nearly exclusively dark in colour, and the apparatus must operate in high
ultraviolet exposure of roughly 135% of that at sea level with limited conductive cooling provided
by the low density atmosphere, it may be observed that shading the fan is insufficient to provide
reasonably reliable operation. The fan should also operate for limited periods separated by periods
of rest to allow for passive cooling.

As mentioned in section 5.2, flight testing of the apparatus has been delayed and is planned to
continue as further research.

 CONCLUSIONS

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 39

APPENDICES

Appendix A – Risk assessment

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 40

Appendix B – Control system software code

The following is the contents of code.py, the CircuitPython software code which runs as on the
Raspberry Pi Pico W as the main program of the control system.

''' Atmospheric Microplastics Measurement Apparatus Controller
By James Beecham for dissertation project (ENG4111 & ENG4112)
University of Southern Queensland, 2023
This code is produced as part of an educational exercise only and
should not be used for any other purpose.
No warranty or guarantees apply.
'''
#--------------------------Test Settings--------------------------
#What altitude (in metres) do you want to collect the sample at?
#(For ground testing at atmospheric pressure, enter negative alt.)
SampleALT = 10000
#What volume (in litres) of air should be sampled?
SampleVOL = 1000

#MAF sensor calibration. What reading does the sensor give at what
#flow rate, temperature and air pressure during calibration test?
CalibrationTest = False #True: calibration testing mode
MAFcalVal = 36023 #MAF sensor value
MAFcalos = 16471 #MAF sensor offset value
MAFcalT = 28.04 #calibration temp degrees celcius
MAFcaldvdt = 2369 #flow rate dv/dt in m^3 per min
MAFcalP = 1015.14 #calibration pressure in mbar/hpa

#Fast sampling increases sampling rate (and therefore accuracy) by
#only writing to the CSV file after sampling. Disabling this
#assists in debugging but slows the loop time due to the speed of
#the internal flash memory.
FastSampling = True

#-----------------------------Imports-----------------------------
#basic libraries
import time
import supervisor
import board
import digitalio
import pwmio
import busio
import math
from analogio import AnalogIn
if CalibrationTest == True:
 import gc

#PHT sensor library
from adafruit_ms8607 import MS8607

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 41

#-----------------------Set pin assignments-----------------------
PHTpwrPin = board.GP19 #turns on the PHT sensor board
I2CsclPin = board.GP17 #I2C bus SCL pin
I2CsdaPin = board.GP16 #I2C bus SDA pin

MAFpwrPin = board.GP11 #heats the MAF sensor when on
MAFanalogPin = board.A0 #analog reading from MAF sensor

FANpwrPin = board.GP12 #12V switched power for fan
FANpwmPin = board.GP14 #PWM speed control for fan
#FANsensePin = board.GP15 #connected but not used

BeaconLEDPin = board.GP13 #5v switched beacon LED

#---------------------------Board LED-----------------------------
BoardLED = digitalio.DigitalInOut(board.LED) #set pin number
BoardLED.direction = digitalio.Direction.OUTPUT#set pin to output
BoardLED.value = True #turn on board LED

#---------------------------Beacon LED----------------------------
BeaconLED = digitalio.DigitalInOut(BeaconLEDPin)#set pin number
BeaconLED.direction = digitalio.Direction.OUTPUT#set pin to output
BeaconLED.value = False #turn off beacon LED

#------------------------PHT Sensor Setup-------------------------
PHTpwr = digitalio.DigitalInOut(PHTpwrPin) #set pin number
PHTpwr.direction = digitalio.Direction.OUTPUT #set pin to output
PHTpwr.value = True #turn on PHT sensor
time.sleep(1) #wait for PHT boot
i2c = busio.I2C(I2CsclPin, I2CsdaPin) #set up i2c bus
PHTsignal = MS8607(i2c) #setup MS8607 lib

def PRES(): #pressure function
 global PHTsignal #import global var
 return (PHTsignal.pressure) #return

def HUM(): #pressure function
 global PHTsignal #import global var
 return (PHTsignal.relative_humidity) #return

def TEMP(): #temp. function
 global PHTsignal #import global var
 return (PHTsignal.temperature) #return

def ALT(): #piecewise alt func
 if PRES() > 189.94: #TNWS formula for <40,000ft
 altitude = 44307.69*(1-(PRES()/1013.25)**0.190284)
 else: #Derived trend form
 altitude = ((-6417.004605*math.log(PRES())) + 45755.99158)
 #debugging overrides. Un-comment below line for groundnd tests
 #altitude = int(input("\nenter altitude for debugging: "))
 return (altitude) #conv pres. to alt.

MaxALT = 0 #Init MaxALT
LaunchALT = 0 #Init LaunchALT

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 42

#------------------------MAF Sensor Setup-------------------------
MAFpwr = digitalio.DigitalInOut(MAFpwrPin) #set pin number
MAFpwr.direction = digitalio.Direction.OUTPUT #set pin to output
MAFpwr.value = False #turn off MAF
MAFsignal = AnalogIn(MAFanalogPin) #set analog pin

#Interpret calibration data. Real dmdt = dvdt * P/RT.
MAFcaldvdt = MAFcaldvdt/60/1000 #L/min to m^3/s
MAFcalP = MAFcalP*100 #change to Pascals
MAFcalT += 273.15 #change to Kelvin
MAFcaldmdt = MAFcaldvdt*MAFcalP/(287.058*MAFcalT)#find dmdt (kg/s)
#MAFcal is a ratio of dmdt in kg/s to MAF sensor reading
MAFcal = MAFcaldmdt / (MAFcalVal-MAFcalos)

def MAF(): #MAF read function
 global MAFsignal #import global var
 global MAFpwr #import global var
 global MAFcal #import global var
 output = MAFsignal.value - MAFcalos #remove offset
 output = abs(output) #ban negatives
 output = MAFcal * output #scale to kg/s
 if MAFpwr.value == False: #floating voltage
 output = 0
 return(output) #return result

def VAF(): #volumetric airflow
 global MAFcal #import global var
 #dmdt*(RT/P)=dvdt, *1000: m^3->L, +273.15:C->K, *100:mbar->Pa
 output=1000*MAF()*287.058*(TEMP()+273.15)/(100*PRES())
 return(output) #return result

CurrentVOL = 0 #init CurrentVOL

#----------------------------Fan Setup----------------------------
#set FANpwr pin assignment, off to start
FANpwr = digitalio.DigitalInOut(FANpwrPin) #set pin number
FANpwr.direction = digitalio.Direction.OUTPUT #set pin to output
FANpwr.value = False #turn off fan

#set pin assignment, frequency (25kHz), minimum speed to start
FANspeed = pwmio.PWMOut(FANpwmPin, frequency=25000, duty_cycle=0)

def FAN(state): #FAN function
 global FANpwr #import global var
 if state == True: #to turn on fan
 FANpwr.value = True
 FANspeed.duty_cycle = 2**16-1
 elif state == False: #to turn off fan
 FANspeed.duty_cycle = 0
 FANpwr.value = False
 elif state < 1: #to set fan speed %
 FANpwr.value = True
 FANspeed.duty_cycle = state * 65535 / 100

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 43

#-------------------------Logger Setup----------------------------
'''Checks whether writing to a data logging file will cause an
error. This WILL happen if you have USB connected and don't have a
bypass jumper from pin 3 to pin 4/GP2. See boot.py for details'''

RWswitch = digitalio.DigitalInOut(board.GP2)
RWswitch.direction = digitalio.Direction.INPUT

if RWswitch.value == True: #if code has no RW
 outputCSV = False #disable CSV output
 print("\nDATA LOGGER DISABLED.")
 print("SEE BOOT.PY FOR DETAILS.\n")
 time.sleep(3) #wait to read msg
else:
 outputCSV = True #enable CSV output
 print("\nDATA LOGGER ENABLED.")
 print("SEE BOOT.PY FOR DETAILS.\n")
 time.sleep(1) #wait to read msg

#-----------------------Calibration Test--------------------------
#Calibration mode. Reads the MAF sensor for 10 seconds in still
#air, then runs the fan and reads the MAF sensor with max airflow.
#Averages sensor values, saves to CSV and shows them in REPL.
if CalibrationTest == True:
 #Test with the fan off to get average MAF offset reading.
 #Wrapped in function so that variables are culled after each.
 def CalibNoFan():
 global MAFcalos #import global var
 global MAFcalP #import global var
 global MAFcalT #import global var
 print("\n10 second still air test starts in 3 seconds.\n")
 MAFpwr.value = True #turn MAF on
 time.sleep(3) #wait for heat up
 MAFvals = [MAFsignal.value] #array 1st val
 PRESvals = [PRES()] #array 1st val
 TEMPvals = [TEMP()] #array 1st val
 CalibStartTime = supervisor.ticks_ms() #record start time
 while True: #10 sec still air
 time.sleep(0.05) #0.05sec loop time
 MAFvals.append(MAFsignal.value) #append MAF value
 PRESvals.append(PRES()) #append PRES value
 TEMPvals.append(TEMP()) #append TEMP value
 if (supervisor.ticks_ms() - CalibStartTime) > 10000:
 break
 MAFcalos=sum(MAFvals)/len(MAFvals) #calc average MAF
 MAFcalP=sum(PRESvals)/len(PRESvals) #calc average PRES
 MAFcalT=sum(TEMPvals)/len(TEMPvals) #calc average TEMP

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 44

 #Test with the fan on to get average MAF reading
 def CalibFan():
 global MAFcalVal #import global var
 print("\n10 second FAN ON test starts in 3 seconds.\n")
 print("\n!!! FINGERS CLEAR !!!.\n")
 time.sleep(3) #wait for safety
 FAN(True) #turn FAN on full
 time.sleep(3) #wait for spin up
 MAFvals = [MAFsignal.value] #array 1st val
 CalibStartTime = supervisor.ticks_ms() #record start time
 while True: #10 sec with fan
 time.sleep(0.05) #0.05sec loop time
 MAFvals.append(MAFsignal.value) #append MAF value
 if(supervisor.ticks_ms() - CalibStartTime) > 10000:
 break
 FAN(False) #turn FAN off
 MAFpwr.value = False #turn MAF off
 MAFcalVal=sum(MAFvals)/len(MAFvals) #calc average MAF

 CalibNoFan() #calibrate offset
 gc.collect() #clean up RAM
 CalibFan() #calibrate MAF
 gc.collect() #clean up RAM

 #Display data in REPL CLI for convenience if user has REPL on.
 print("MAF calibration offset = MAFcalos = %f" % MAFcalos)
 print("MAF value = MAFcalVal = %f" % MAFcalVal)
 print("Pressure (hPa/mbar) = MAFcalP = %f" % MAFcalP)
 print("Temperature (C) = MAFcalT = %f" % MAFcalT)
 print("Vol flow rate (L/min) = MAFcaldvdt: From flow bench.")
 print("\nCalibration complete.\n")

 #Write data to CSV file for no REPL or no PC on flow bench).
 if outputCSV == True: #write CSV headers
 with open("/Calibration.txt", "w") as TXT: #w=overwrite
 TXT.write('MAF calibration offset = MAFcalos = ')
 TXT.write('{0:f},'.format(MAFcalos))
 TXT.write('\n')
 TXT.write('MAF value = MAFcalVal = ')
 TXT.write('{0:f},'.format(MAFcalVal))
 TXT.write('\n')
 TXT.write('Pressure (hPa/mbar) = MAFcalP = ')
 TXT.write('{0:f},'.format(MAFcalP))
 TXT.write('\n')
 TXT.write('Temperature (C) = MAFcalT = ')
 TXT.write('{0:f},'.format(MAFcalT))
 TXT.write('\n')
 TXT.write('Vol flow rate (L/min) = MAFcaldvdt = ')
 TXT.write('Flow bench data')
 TXT.write('\n')
 TXT.write('No flow bench? Fan rated flow is kinda ok')
 TXT.flush

 time.sleep(65535) #sleep "forever"

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 45

#---------------------------Main Loop-----------------------------
#The main loop is a state machine. Loop speed is defined by state.
#Note that CircuitPython lacks switch/case, as based on Python 3.8
#CPU timer overflow is >6 days; no need to handle.
state = 1 #init state var
stateswitch = True #init as true
1: Pre-Launch Routine
2: Ascent Routine
3: Sample Routine
4: Descent Routine
5: Recovery Routine
state=0|state>5: allow state to be entered in REPL for testing

#Check if CSV output works & add separator from any old test data
if outputCSV == True:
 try: #test for errors
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\n\nNEW TEST DATA FOLLOWS\n\n\n')
 CSV.flush
 print("\nTest write successful.\n")
 except OSError as Error: #if errors thrown
 outputCSV = False
 print("\nERROR WRITING TO CSV.")
 print("Erorr code: %i" % Error.args[0])#print error code
 print("DATA LOGGER DISABLED.\n")

while True:
 if state == 1:
 #====================Pre-Launch Routine===================
 #This is state for pre-launnch checks
 #Don't flash LED (which would blind the launch crew).

 #First loop in this state:
 if stateswitch == True: #first loop only
 stateswitch = False #only run this once
 LaunchALT = ALT() #record launch alt
 PLaunchsttime = supervisor.ticks_ms() #record start t
 print("Launching from %.2f M altitude" % LaunchALT)
 if outputCSV == True: #log beginning of pre-launch
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\nPre-Launch Stage:\n')
 CSV.write('Launching from altitude (m):,')
 CSV.write('{0:f},'.format(LaunchALT))
 CSV.write('@CPU time (ms):,')
 CSV.write('{0:f},'.format(PLaunchsttime))
 CSV.write('To collect a sample of (L):,')
 CSV.write('{0:f},'.format(SampleVOL))
 CSV.write('At altitude (m):,')
 CSV.write('{0:f}\n'.format(SampleALT))
 #Column headers for repeated data logging
 CSV.write('CPU uptime (ms),')
 CSV.write('Altitude (m),')
 CSV.write('Pressure (hPa),')
 CSV.write('Temperature (C),')
 CSV.write('Humidity (%),')
 CSV.write('MAF sensor (kg/s),')
 CSV.write('VAF (L/s),')
 CSV.write('Sampled volume (L)\n')
 CSV.flush

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 46

 #LED handling:
 BeaconLED.value = False #don't use LED

 #Slow loop time to save power and avoid excessive logging
 time.sleep(3) #wait 10sec

 #Escape conditions:
 if ALT() >= (LaunchALT + 10): #if ascending
 state = 2 #switch to ascent
 stateswitch = True #for 1 time code
 if SampleALT <= LaunchALT: #allow gnd testing
 state = 2 #switch to ascent
 stateswitch = True #for 1 time code

 elif state == 2:
 #======================Ascent Routine=====================
 #This is state for ascent by balloon
 #Flash beacon LED at 0.5Hz for aircraft clearance

 #First loop in this state:
 if stateswitch == True: #first loop only
 stateswitch = False #only run this once
 print("\nAscending now!")
 Ascentsttime = supervisor.ticks_ms() #record start t
 if outputCSV == True: #log beginning of ascent
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\nAscent Stage:\n')
 CSV.write('Ascending @CPU time (ms):,')
 CSV.write('{0:f}\n'.format(Ascentsttime))
 #Column headers for repeated data logging
 CSV.write('CPU uptime (ms),')
 CSV.write('Altitude (m),')
 CSV.write('Pressure (hPa),')
 CSV.write('Temperature (C),')
 CSV.write('Humidity (%),')
 CSV.write('MAF sensor (kg/s),')
 CSV.write('VAF (L/s),')
 CSV.write('Sampled volume (L)\n')
 CSV.flush

 #LED handling:
 BeaconLED.value = not BeaconLED.value #toggle LED
 time.sleep(1) #1sec loop time

 #Escape conditions:
 if ALT() >= SampleALT: #at sample altitude
 if CurrentVOL < SampleVOL: #if sample not done
 state = 3 #switch to sample
 stateswitch = True #for 1 time code
 if ALT() < MaxALT - 1000: #if fallen > 1km
 state = 4 #switch to descent
 stateswitch = True #for 1 time code
 if (ALT() < (LaunchALT + 120)) & (CurrentVOL > 0):
 state = 5 #switch to recovery
 stateswitch = True #for 1 time code
 Descentsttime = supervisor.ticks_ms()

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 47

 elif state == 3:
 #======================Sample Routine=====================
 #This is state for during in flight sample collection
 #Use the FAN to draw a sample through the filter.
 #Use the MAF to keep track of the sample size.
 #Flash beacon LED at 0.5Hz for aircraft clearance
 #Maximum loop time for accuracy, accurately measured.

 #First loop in this state:
 if stateswitch == True: #first loop only
 stateswitch = False #only run this once
 looptime = 0.0 #dt var
 toggletime = 0 #LED loop timer var
 lasttime = supervisor.ticks_ms() #last time var
 print("\nSampling now!")
 Samplesttime = supervisor.ticks_ms() #rec start t
 SamplestALT = ALT() #rec start altitude
 RestoreopCSV = outputCSV #to restore if FS
 if FastSampling == True: #for fast sampling
 if outputCSV == True: #log beginning of sampling
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\nSampling Stage:\n')
 CSV.write('Start sampling @ time (ms):,')
 CSV.write('{0:f}\n'.format(Samplesttime))
 CSV.write('Fast sampling on = no logs.\n')
 outputCSV = False #disable logging
 if outputCSV == True: #log beginning of sampling
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\nSampling Stage:\n')
 CSV.write('Start sampling @ time (ms):,')
 CSV.write('{0:f}\n'.format(Samplesttime))
 #Column headers for repeated data logging
 CSV.write('CPU uptime (ms),')
 CSV.write('Altitude (m),')
 CSV.write('Pressure (hPa),')
 CSV.write('Temperature (C),')
 CSV.write('Humidity (%),')
 CSV.write('MAF sensor (kg/s),')
 CSV.write('VAF (L/s),')
 CSV.write('Sampled volume (L)\n')
 CSV.flush
 MAFpwr.value = True #turn MAF on
 time.sleep(3) #wait for heat up
 FAN(True) #turn FAN on full

 #LED handling:
 #If 1s since LED toggle, toggle and start timing again
 if (supervisor.ticks_ms() - toggletime) >= 1000:
 BeaconLED.value = not BeaconLED.value #toggle LED
 toggletime = supervisor.ticks_ms() #update toggletime
 #also write to the data log every 1s:

 looptime = supervisor.ticks_ms() - lasttime #find looptime
 lasttime = supervisor.ticks_ms() #store last time

 #Running sum to integrate flow rate WRT loop time
 #This gives the total volume which has flowed
 CurrentVOL = CurrentVOL + (VAF() * (looptime / 1000))

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 48

 #Escape conditions:
 if CurrentVOL >= SampleVOL: #after sampling
 Sampletime = (supervisor.ticks_ms()-Samplesttime)/1000
 FAN(False) #turn FAN off
 MAFpwr.value = False #turn MAF off
 state = 2 #switch to ascent
 stateswitch = True #for 1 time code
 SamplefnALT = ALT() #rec finish alt
 DescentDuringSampling = False #no error logged
 outputCSV = RestoreopCSV #restore logging
 if ALT() < MaxALT - 1000: #if fallen > 1km
 Sampletime = (supervisor.ticks_ms()-Samplesttime)/1000
 state = 4 #switch to descent
 stateswitch = True #for 1 time code
 FAN(False) #turn FAN off
 MAFpwr.value = False #turn MAF off
 SamplefnALT = ALT() #rec finish alt
 outputCSV = RestoreopCSV #restore logging
 #Throw an error in the data log as the balloon has
 #popped during sampling and the test is spoiled
 DescentDuringSampling = True #error logged
 if outputCSV == True:
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\nERROR!\n')
 CSV.write('Descended during sampling.\n')
 CSV.write('Results likely unreliable.\n')

 elif state == 4:
 #======================Descent Routine====================
 #This is state for descent by parachute
 #Log altitude and descent rate for parachute testing
 #Flash beacon LED at 0.5Hz for aircraft clearance

 #First loop in this state:
 if stateswitch == True: #first loop only
 stateswitch = False #only run this once
 print("\nDescending now!")
 Descentsttime = supervisor.ticks_ms() #record start t
 if outputCSV == True: #log beginning of descent
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\nSampling Stage:\n')
 CSV.write('Started descent @CPU time (ms):,')
 CSV.write('{0:f}\n'.format(Descentsttime))
 #Column headers for repeated data logging
 CSV.write('CPU uptime (ms),')
 CSV.write('Altitude (m),')
 CSV.write('Pressure (hPa),')
 CSV.write('Temperature (C),')
 CSV.write('Humidity (%),')
 CSV.write('MAF sensor (kg/s),')
 CSV.write('VAF (L/s),')
 CSV.write('Sampled volume (L)\n')
 CSV.flush
 #LED handling:
 BeaconLED.value = not BeaconLED.value #toggle LED
 time.sleep(1) #1sec loop time

 #Escape conditions:
 if ALT() < (LaunchALT + 120): #under 120m/400ft
 state = 5 #switch to recovery
 stateswitch = True #for 1 time code

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 49

 elif state == 5:
 #=====================Recovery Routine====================
 #This is the final state to help researchers finding it
 #Short infrequent LED beacon flashes to save power
 #This may look messy, but the sleep function saves battery

 #First loop in this state:
 if stateswitch == True: #first loop only
 stateswitch = False #only run this once
 print("\nRecovery time!")
 #log beginning of recovery stage with total time
 #log stage times and summary of flight

 #calculate stage times
 PLaunchtime = (Ascentsttime-PLaunchsttime)/1000
 Ascenttime = (Descentsttime-Ascentsttime)/1000
 Descenttime=(supervisor.ticks_ms()-Descentsttime)/1000
 Recoverysttime = supervisor.ticks_ms()
 Totaltime = (supervisor.ticks_ms()-Ascentsttime)/1000
 if outputCSV == True: #log beginning of descent
 with open("/TestData.csv", "a") as CSV:
 CSV.write('\n\nRecovery Stage:\n')
 CSV.write('Started recovery @CPU time (ms):,')
 CSV.write('{0:f}\n'.format(Recoverysttime))
 #log stage times
 CSV.write('Pre-Launch took (s):,')
 CSV.write('{0:f}\n'.format(PLaunchtime))
 CSV.write('Ascent took (s):,')
 CSV.write('{0:f}\n'.format(Ascenttime))
 CSV.write('Descent took (s):,')
 CSV.write('{0:f}\n'.format(Descenttime))
 CSV.write('Stayed airbourne for (s):,')
 CSV.write('{0:f}\n'.format(Totaltime))
 #log peak altitude
 CSV.write('Peaked at altitude(m):,')
 CSV.write('{0:f}\n'.format(MaxALT))
 #Log sampling results
 CSV.write('Collected sample of (L):,')
 CSV.write('{0:f}\n'.format(CurrentVOL))
 CSV.write('Altitude window (m):,')
 CSV.write('{0:f},'.format(SamplestALT))
 CSV.write('to (m):,')
 CSV.write('{0:f}\n'.format(SamplefnALT))
 CSV.write('Sampling took (s):,')
 CSV.write('{0:f}\n'.format(Sampletime))
 if DescentDuringSampling == True:
 CSV.write('\n\nERROR!\n')
 CSV.write('Descended during sampling.\n')
 CSV.write('Results likely unreliable.\n')
 CSV.flush
 outputCSV = False #stop data logging
 #LED handling:
 BeaconLED.value = not BeaconLED.value #toggle LED value
 if BeaconLED.value == False: #wait 3s while off
 time.sleep(3)
 else: #double flash
 time.sleep(0.05) #50ms on
 BeaconLED.value = False
 time.sleep(0.05) #50ms off
 BeaconLED.value = True
 #<WiFi SSID broadcast to help finding not yet implemented>

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 50

 else:
 #======================Invalid State======================
 #For state machine debugging.
 #Pause the program and wait for input of a state variable.
 state = int(input("\nEnter a valid state variable."))

 #=======================Runs in all states====================
 if ALT() > MaxALT: #update max alt
 MaxALT = ALT()

 #Data logging:
 if outputCSV == True:
 with open("/TestData.csv", "a") as CSV:
 CSV.write('{0:f},'.format(supervisor.ticks_ms()))
 CSV.write('{0:f},'.format(ALT()))
 CSV.write('{0:f},'.format(PRES()))
 CSV.write('{0:f},'.format(TEMP()))
 CSV.write('{0:f},'.format(HUM()))
 CSV.write('{0:f},'.format(MAF()))
 CSV.write('{0:f},'.format(VAF()))
 CSV.write('{0:f},'.format(CurrentVOL))
 CSV.write('\n')
 CSV.flush
#END OF PROGRAM

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 51

Appendix C – Control system software boot code

The following is the contents of boot.py, the CircuitPython software code which runs as the
Raspberry Pi Pico W is booting up. The purpose of this code is to enable the hardware pin GP2 to
select whether the file system on the internal flash storage will be mounted as read-only or with
write permissions for either the connected computer or the CircuitPython interpreter itself.

'''
This code runs at boot to choose how the storage is mounted.

Either the code.py file OR the computer can have read-write
permissions, but not both. The other will be read-only. Data
logging into CSV files requires read-write access for code.py
Updating code by dragging and dropping code.py requires read-write
access for the computer.

A jumper from pin 3 (GND) allows code.py read-write access always,
to allow REPL to be used without blocking data logging.

With <USB> AND <no jumper> (pin 4 is pulled high):
-A computer can edit/update the program through file dropping.
-code.py CANNOT write test data CSV files to the storage drive.

With <no USB> OR <USB + jumper> (pin 4 is pulled low):
-A computer CANNOT edit/update the program through file dropping.
-code.py can write test data CSV files to the storage drive.
'''

import board
import digitalio
import storage

RWswitch = digitalio.DigitalInOut(board.GP2)
RWswitch.direction = digitalio.Direction.INPUT

Mount root as RW if GP2 is pulled low or as read only if high.
In this case, we mean mounting for code.py not for USB.
storage.remount("/", RWswitch.value)

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 52

Appendix D – Ground test data

The following is the contents of TestData.csv, which was produced by the control system software
when the sampling altitude was set to -100m and the apparatus was on the test bench at 100m
elevation. On the next page, the same data is shown after importing the CSV file into a spreadsheet.

NEW TEST DATA FOLLOWS

Pre-Launch Stage:
Launching from altitude (m):,-16.289337,@CPU time (ms):,2962755.000000,To collect a
sample of (L):,1000.000000,At altitude (m):,-100.000000
CPU uptime (ms),Altitude (m),Pressure (hPa),Temperature (C),Humidity (%),MAF sensor
(kg/s),VAF (L/s),Sampled volume (L)
2966143.000000,-17.852776,1015.409912,26.389999,36.331696,0.000000,0.000000,0.000000,

Ascent Stage:
Ascending @CPU time (ms):,2966521.000000
CPU uptime (ms),Altitude (m),Pressure (hPa),Temperature (C),Humidity (%),MAF sensor
(kg/s),VAF (L/s),Sampled volume (L)
2967958.000000,-18.782394,1015.459961,26.540001,36.400360,0.000000,0.000000,0.000000,

Sampling Stage:
Start sampling @ time (ms):,2968339.000000
Fast sampling on = no logs.
2998785.000000,-
19.859894,1015.520020,26.949997,35.782379,0.000000,0.000000,1005.723633,

Ascent Stage:
Ascending @CPU time (ms):,2999165.000000
CPU uptime (ms),Altitude (m),Pressure (hPa),Temperature (C),Humidity (%),MAF sensor
(kg/s),VAF (L/s),Sampled volume (L)
3000603.000000,-
19.268326,1015.510010,26.709999,35.751862,0.000000,0.000000,1005.723633,

Recovery Stage:
Started recovery @CPU time (ms):,3000978.000000
Pre-Launch took (s):,36.409988
Ascent took (s):,1.354000
Descent took (s):,0.459000
Stayed airbourne for (s):,1.813000
Peaked at altitude(m):,0.000000
Collected sample of (L):,1005.723633
Altitude window (m):,-17.620377,to (m):,-19.120430
Sampling took (s):,30.199997

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 53

The following is the contents of the same TestData.csv after importing the CSV file into a
spreadsheet.

NEW TEST DATA FOLLOWS

Pre-Launch Stage:
Launching from altitude (m): -16.289337 @CPU time (ms): 2962755 To collect a sample of (L): 1000 At altitude (m): -100
CPU uptime (ms) Altitude (m) Pressure (hPa) Temperature (C) Humidity (%) MAF sensor (kg/s) VAF (L/s) Sampled volume (L)

2966143 -17.852776 1015.409912 26.389999 36.331696 0 0 0

Ascent Stage:
Ascending @CPU time (ms): 2966521
CPU uptime (ms) Altitude (m) Pressure (hPa) Temperature (C) Humidity (%) MAF sensor (kg/s) VAF (L/s) Sampled volume (L)

2967958 -18.782394 1015.459961 26.540001 36.40036 0 0 0

Sampling Stage:
Start sampling @ time (ms): 2968339
Fast sampling on = no logs.

2998785 -19.859894 1015.52002 26.949997 35.782379 0 0 1005.723633

Ascent Stage:
Ascending @CPU time (ms): 2999165
CPU uptime (ms) Altitude (m) Pressure (hPa) Temperature (C) Humidity (%) MAF sensor (kg/s) VAF (L/s) Sampled volume (L)

3000603 -19.268326 1015.51001 26.709999 35.751862 0 0 1005.723633

Recovery Stage:
Started recovery @CPU time (ms): 3000978
Pre-Launch took (s): 36.409988
Ascent took (s): 1.354
Descent took (s): 0.459
Stayed airbourne for (s): 1.813
Peaked at altitude(m): 0
Collected sample of (L): 1005.723633
Altitude window (m): -17.620377 to (m): -19.12043
Sampling took (s): 30.199997

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 54

Appendix E – Vacuum chamber test data

The following is the contents of TestData.csv, which was produced by the control system software
when the sampling altitude was set to 10,000m and the apparatus was inside a vacuum chamber
which continuously decreased pressure to a minimum of 68.4hPa. The following is the contents of
TestData.csv after importing the CSV file into a spreadsheet.

NEW TEST DATA FOLLOWS

Pre-Launch Stage:
Launching from altitude (m): 78.266998 @CPU time (ms): 536811264 To collect a sample of (L): 1000 At altitude (m): 10000
CPU uptime (ms) Altitude (m) Pressure (hPa) Temperature (C) Humidity (%) MAF sensor (kg/s) VAF (L/s) Sampled volume (L)

536814624 76.925415 1004 29.75 49.965424 0 0 0
536818272 76.671875 1004.049805 29.769997 49.751801 0 0 0
536821888 76.925415 1004.01001 29.659996 49.416107 0 0 0
536825632 77.506409 1003.949951 29.719994 49.767059 0 0 0
536829280 77.759949 1004 29.699997 50.346893 0 0 0
536832896 78.266998 1003.949951 29.729996 49.644989 0 0 0
536836544 78.266998 1003.959961 29.739998 48.607391 0 0 0
536840160 77.675446 1004.039795 29.709999 48.149628 0 0 0
536843776 77.252869 1004.01001 29.599998 49.63736 0 0 0
536847456 77.590912 1003.969971 29.579994 49.210114 0 0 0
536851040 66.699677 1005.379883 29.529999 49.721283 0 0 0
536854592 66.53064 1005.289795 29.540001 49.118561 0 0 0
536858208 412.832275 963.809814 29.619995 48.256439 0 0 0

Ascent Stage:
Ascending @CPU time (ms): 536858624
CPU uptime (ms) Altitude (m) Pressure (hPa) Temperature (C) Humidity (%) MAF sensor (kg/s) VAF (L/s) Sampled volume (L)

536860256 754.676025 925.069824 29.699997 47.073883 0 0 0
536862048 1041.630371 893.449951 29.699997 46.005768 0 0 0
536863840 1305.978516 865.209961 29.649994 44.907135 0 0 0
536865664 1555.61084 839.219971 29.629997 43.915314 0 0 0
536867456 1798.187012 814.47998 29.57 43.030304 0 0 0
536869344 2048.231445 789.619873 29.57 42.046112 0 0 0

251 2282.102539 766.889893 29.529999 41.054291 0 0 0
2044 2509.043945 745.359863 29.509995 40.17691 0 0 0
3839 2731.421875 724.849854 29.5 39.345306 0 0 0
5636 2951.286133 704.899902 29.439995 38.597626 0 0 0
7432 3165.962891 685.899902 29.399994 37.987274 0 0 0
9230 3376.541992 667.629883 29.360001 37.430328 0 0 0

11098 3592.887695 649.389893 29.329994 36.789459 0 0 0
12895 3796.694336 632.369873 29.279999 35.820526 0 0 0
14702 4000.607422 615.909912 29.309998 35.049957 0 0 0
16498 4198.572266 600.169922 29.269997 34.073395 0 0 0
18297 4392.089844 585.099854 29.239998 33.493561 0 0 0
20092 4585.576172 570.25 29.129997 32.74588 0 0 0
22006 4781.259766 555.719971 29.18 31.914276 0 0 0
23805 4967.625 542.079834 29.159996 31.204742 0 0 0
25602 5152.195313 528.849854 29.110001 30.586761 0 0 0
27404 5333.058594 516.119873 29.129997 30.220551 0 0 0
29199 5511.576172 503.809937 29.119995 29.46524 0 0 0
30997 5689.322266 491.469971 28.979996 28.793854 0 0 0
32914 5878.234375 479.269897 29.099998 28.33609 0 0 0
34712 6052.978516 467.919922 29.07 27.763885 0 0 0
36507 6225.951172 456.899902 29.049995 27.092499 0 0 0
38302 6395.066406 446.329956 29.049995 26.672882 0 0 0
40100 6563.833984 435.969971 29.029999 26.169342 0 0 0
41909 6732.515625 425.939941 28.899994 25.772614 0 0 0
43818 6907.90625 415.589966 29.019997 25.116486 0 0 0
45615 7071.507813 406.119995 29.019997 24.834198 0 0 0
47407 7232.720703 396.959961 29 24.269623 0 0 0
49200 7392.804688 388.029907 29.009995 23.956818 0 0 0
50999 7549.824219 379.429932 29.009995 23.407501 0 0 0
52794 7707.679688 370.929932 28.899994 23.140472 0 0 0
54695 7872.884766 362.219971 29.009995 22.713226 0 0 0
56498 8024.191406 354.369995 29 22.263092 0 0 0
58294 8176.255859 346.75 28.989998 21.774811 0 0 0
60088 8324.625 339.219971 28.979996 21.240753 0 0 0
61883 8470.921875 332.029907 28.969994 21.019501 0 0 0
63676 8615.011719 325.059937 28.969994 20.500702 0 0 0
65589 8769.050781 317.859985 28.939995 19.997162 0 0 0
67383 8911.484375 311.119995 28.959999 19.737762 0 0 0
69172 9051.769531 304.789917 28.939995 19.279999 0 0 0
70975 9191.792969 298.47998 28.939995 19.104523 0 0 0

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 55

72775 9326.945313 292.380005 28.949997 18.829865 0 0 0
74573 9461.8125 286.5 28.939995 18.425507 0 0 0
76484 9604.351563 280.5 28.93 17.822784 0 0 0
78280 9736.261719 274.939941 28.919998 17.281097 0 0 0
80075 9867.675781 269.599976 28.899994 16.937775 0 0 0
81870 9995.570313 264.269897 28.919998 17.029327 0 0 0
83665 10122.76953 259.159912 28.93 16.87674 0 0 0

Sampling Stage:
Start sampling @ time (ms): 84058
Fast sampling on = no logs.

95823 10943.12891 228.089966 29.119995 15.121979 0 0 1000.286133

Ascent Stage:
Ascending @CPU time (ms): 96203
CPU uptime (ms) Altitude (m) Pressure (hPa) Temperature (C) Humidity (%) MAF sensor (kg/s) VAF (L/s) Sampled volume (L)

97725 11066.51563 223.690002 29.019997 14.908356 0 0 1000.286133
99514 11181.25781 219.769958 29.009995 14.664215 0 0 1000.286133

101308 11295.39063 215.709961 28.93 14.343781 0 0 1000.286133
103215 11409.75391 211.809998 28.979996 13.908905 0 0 1000.286133
105005 11519.82813 208.209961 28.969994 13.504547 0 0 1000.286133
106803 11625.12891 204.619995 28.979996 13.153595 0 0 1000.286133
108599 11731.57813 201.130005 28.979996 13.031525 0 0 1000.286133
110392 11836.40234 197.869995 28.979996 12.787384 0 0 1000.286133
112293 11942.69531 194.380005 28.959999 12.344879 0 0 1000.286133
114083 12046.94922 191.219971 28.969994 12.138885 0 0 1000.286133
115869 12148.26563 188.169983 28.969994 12.047333 0 0 1000.286133
117659 12248.98438 185.119995 28.969994 11.871857 0 0 1000.286133
119456 12352 182.289978 28.949997 11.604828 0 0 1000.286133
121249 12452.40625 179.459961 28.969994 11.459869 0 0 1000.286133
123157 12558.42188 176.519958 28.969994 11.353058 0 0 1000.286133
124948 12654 173.799988 28.979996 11.253876 0 0 1000.286133
126745 12751.04688 171.179993 28.979996 11.116547 0 0 1000.286133
128542 12845.78125 168.679993 28.979996 10.902924 0 0 1000.286133
130332 12941.53125 166.169983 28.979996 10.582489 0 0 1000.286133
132125 13034.82031 163.759949 28.869995 10.300201 0 0 1000.286133
134042 13133.46875 161.380005 28.959999 10.017914 0 0 1000.286133
135832 13225.17969 159.089966 28.969994 9.789032 0 0 1000.286133
137622 13318.22656 156.809998 28.969994 9.68985 0 0 1000.286133
139412 13407.64844 154.630005 28.979996 9.613556 0 0 1000.286133
141204 13494.13281 152.559998 28.979996 9.544891 0 0 1000.286133
142995 13582.64844 150.369995 28.909996 9.476227 0 0 1000.286133
144900 13675.4375 148.309998 28.979996 9.399933 0 0 1000.286133
146695 13755.98438 146.349976 28.979996 9.30838 0 0 1000.286133
148493 13842.44531 144.5 28.979996 9.201569 0 0 1000.286133
150284 13920.17188 142.649963 28.989998 9.094757 0 0 1000.286133
152079 14003.88281 140.909973 28.989998 8.942169 0 0 1000.286133
153980 14088.6875 139.059998 28.989998 8.789581 0 0 1000.286133
155780 14169.48438 137.320007 29 8.644623 0 0 1000.286133
157574 14246.57813 135.579956 29 8.431 0 0 1000.286133
159371 14324.14063 133.940002 29 8.217377 0 0 1000.286133
161172 14403.13281 132.309998 29 8.064789 0 0 1000.286133
162983 14477.22656 130.779968 28.989998 7.92746 0 0 1000.286133
164880 14557.64063 129.259949 28.989998 7.782501 0 0 1000.286133
166679 14628.52344 127.72998 29 7.67569 0 0 1000.286133
168483 14705.27344 126.319977 29 7.584137 0 0 1000.286133
170282 14777.82031 124.899994 29 7.477325 0 0 1000.286133
172083 14845.47656 123.599976 29 7.339996 0 0 1000.286133
173882 14913.33594 122.289978 29 7.187408 0 0 1000.286133
175795 14988.28906 120.869995 28.979996 7.019562 0 0 1000.286133
177602 15058.21094 119.569977 29 6.889862 0 0 1000.286133
179403 15122.39844 118.369995 29 6.775421 0 0 1000.286133
181200 15187.78906 117.169983 29 6.683868 0 0 1000.286133
183001 15247.76563 115.970001 29 6.592316 0 0 1000.286133
184799 15314.44531 114.879974 28.879997 6.485504 0 0 1000.286133
186722 15381.82813 113.690002 29 6.40921 0 0 1000.286133
188520 15443.64844 112.599976 29.009995 6.348175 0 0 1000.286133
190327 15506.07813 111.509979 28.989998 6.302399 0 0 1000.286133
192131 15562.14844 110.419983 29.009995 6.271881 0 0 1000.286133
193930 15619.29688 109.440002 29.019997 6.241364 0 0 1000.286133
195730 15676.95313 108.449982 28.919998 6.195587 0 0 1000.286133
197646 15741.71094 107.47998 29.019997 6.126923 0 0 1000.286133
199444 15800.48438 106.5 29.019997 6.050629 0 0 1000.286133
201247 15853.13281 105.629974 29.019997 5.966705 0 0 1000.286133
203051 15906.20313 104.649994 29.019997 5.882782 0 0 1000.286133
204863 15960.32031 103.889984 29.019997 5.798859 0 0 1000.286133
206659 16014.29688 102.910004 29.019997 5.707306 0 0 1000.286133
208537 16068.72656 102.139984 29.019997 5.623383 0 0 1000.286133
210337 16123.60938 101.269989 29.019997 5.562347 0 0 1000.286133
212131 16171.95313 100.509979 29.029999 5.508942 0 0 1000.286133
213932 16220.65625 99.75 29.029999 5.447906 0 0 1000.286133
215737 16270.38281 98.98999 29.029999 5.386871 0 0 1000.286133
217656 16319.84375 98.220001 29.019997 5.333466 0 0 1000.286133
219472 16369.69531 97.459991 29.029999 5.27243 0 0 1000.286133
221276 16419.92969 96.699982 29.040001 5.203766 0 0 1000.286133
223078 16463.875 96.039978 29.040001 5.15036 0 0 1000.286133
224878 16507.46094 95.389984 29.029999 5.089325 0 0 1000.286133

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 56

226677 16551.32813 94.73999 29.040001 5.02829 0 0 1000.286133
228597 16603.70313 93.97998 29.040001 4.974884 0 0 1000.286133
230398 16640.67969 93.429993 29.040001 4.921478 0 0 1000.286133
232195 16685.48438 92.779999 29.040001 4.875702 0 0 1000.286133
234004 16723.64063 92.119995 29.040001 4.837555 0 0 1000.286133
235802 16769.02344 91.579987 29.049995 4.799408 0 0 1000.286133
237602 16807.67188 91.039978 29.049995 4.761261 0 0 1000.286133
239505 16845.85156 90.379974 29.049995 4.715485 0 0 1000.286133
241302 16884.26563 89.839996 29.059998 4.684967 0 0 1000.286133
243101 16931.52344 89.289978 29.059998 4.639191 0 0 1000.286133
244898 16962.5 88.75 29.059998 4.601044 0 0 1000.286133
246696 17002.34375 88.309998 29.059998 4.570526 0 0 1000.286133
248500 17033.66406 87.769989 29.059998 4.540009 0 0 1000.286133
250418 17073.94531 87.329987 29.059998 4.501862 0 0 1000.286133
252216 17113.75781 86.789978 29.059998 4.463715 0 0 1000.286133
254010 17146.36719 86.349976 29.059998 4.448456 0 0 1000.286133
255810 17186.61719 85.809998 29.059998 4.417938 0 0 1000.286133
257610 17219.60156 85.369995 29.059998 4.379791 0 0 1000.286133
259412 17252.01563 84.940002 28.959999 4.349274 0 0 1000.286133
261323 17285.34375 84.5 29.040001 4.326385 0 0 1000.286133
263129 17318.84375 84.059998 29.07 4.295868 0 0 1000.286133
264926 17351.75781 83.629974 29.07 4.27298 0 0 1000.286133
266727 17385.59375 83.190002 29.07 4.250092 0 0 1000.286133
268528 17410.32813 82.759979 29.07 4.219574 0 0 1000.286133
270328 17444.49219 82.319977 28.979996 4.196686 0 0 1000.286133
272240 17478.83594 82 29.07 4.173798 0 0 1000.286133
274036 17503.9375 81.669983 29.079994 4.150909 0 0 1000.286133
275844 17538.60156 81.22998 29.07 4.135651 0 0 1000.286133
277640 17563.92188 80.910004 29.079994 4.112762 0 0 1000.286133
279438 17590.15625 80.470001 29.079994 4.097504 0 0 1000.286133
281231 17625.29688 80.139984 29.019997 4.074615 0 0 1000.286133
283138 17650.96875 79.819977 29.079994 4.059357 0 0 1000.286133
284937 17677.54688 79.48999 29.079994 4.036469 0 0 1000.286133
286735 17704.23438 79.160004 29.089996 4.028839 0 0 1000.286133
288531 17730.23438 78.949982 29.089996 4.01358 0 0 1000.286133
290336 17748.16406 78.509979 29.089996 3.998322 0 0 1000.286133
292130 17784.1875 78.179993 29.019997 3.983063 0 0 1000.286133
294033 17801.44531 77.970001 29.099998 3.960175 0 0 1000.286133
295829 17828.66406 77.639984 29.099998 3.952545 0 0 1000.286133
297628 17855.99219 77.309998 29.099998 3.944916 0 0 1000.286133
299425 17874.28125 77.089996 29.099998 3.929657 0 0 1000.286133
301219 17900.97656 76.769989 29.099998 3.914398 0 0 1000.286133
303129 17928.60938 76.549988 29.099998 3.899139 0 0 1000.286133
304934 17947.10938 76.220001 29.099998 3.89151 0 0 1000.286133
306732 17965.66406 75.899994 29.099998 3.883881 0 0 1000.286133
308522 17992.73438 75.789978 29.099998 3.868622 0 0 1000.286133
310317 18011.41406 75.459991 29.099998 3.853363 0 0 1000.286133
312113 18039.53906 75.129974 29.099998 3.853363 0 0 1000.286133
314025 18057.50781 74.919983 29.099998 3.838104 0 0 1000.286133
315824 18085.82813 74.589996 29.110001 3.822845 0 0 1000.286133
317622 18104.78906 74.369995 29.110001 3.815216 0 0 1000.286133
319425 18123.79688 74.149994 29.119995 3.799957 0 0 1000.286133
321225 18141.99219 73.829987 29.110001 3.792328 0 0 1000.286133
323021 18170.69531 73.609985 29.119995 3.792328 0 0 1000.286133
324932 18189.91406 73.389984 29.119995 3.777069 0 0 1000.286133
326730 18209.17969 73.169983 29.119995 3.76944 0 0 1000.286133
328525 18228.49219 72.949982 29.119995 3.76181 0 0 1000.286133
330316 18247 72.73999 29.119995 3.76181 0 0 1000.286133
332112 18266.42969 72.519989 29.099998 3.754181 0 0 1000.286133
333918 18285.92969 72.299988 29.129997 3.746552 0 0 1000.286133
335836 18305.49219 71.970001 29.119995 3.738922 0 0 1000.286133
337632 18324.20313 71.869995 29.129997 3.746552 0 0 1000.286133
339432 18343.88281 71.759979 29.129997 3.731293 0 0 1000.286133
341229 18353.73438 71.539978 29.139999 3.731293 0 0 1000.286133
343025 18373.50781 71.319977 29.139999 3.723663 0 0 1000.286133
344819 18393.33594 71.099976 29.139999 3.723663 0 0 1000.286133
346744 18413.21875 70.889984 29.119995 3.716034 0 0 1000.286133
348542 18432.25 70.669983 29.139999 3.716034 0 0 1000.286133
350340 18442.25 70.559998 29.139999 3.708405 0 0 1000.286133
352138 18462.28906 70.339996 29.139999 3.708405 0 0 1000.286133
353937 18482.38281 70.119995 29.149994 3.708405 0 0 1000.286133
355736 18492.46875 70.009979 29.029999 3.708405 0 0 1000.286133
357658 18511.73438 69.799988 29.139999 3.700775 0 0 1000.286133
359459 18532.00781 69.579987 29.149994 3.700775 0 0 1000.286133
361265 18552.32031 69.359985 29.149994 3.693146 0 0 1000.286133
363066 18572.71094 69.25 29.149994 3.685516 0 0 1000.286133
364872 18582.92188 69.029999 29.149994 3.685516 0 0 1000.286133
366671 18602.47656 68.819977 29.049995 3.685516 0 0 1000.286133
368590 18612.73438 68.709991 29.149994 3.677887 0 0 1000.286133
370389 18633.32031 68.48999 29.149994 3.677887 0 0 1000.286133
372192 18653.96875 68.379974 29.149994 3.670258 0 0 1000.286133
373912 18502.55469 70.009979 29.110001 3.540558 0 0 1000.286133
375642 18161.10938 73.829987 29.089996 3.471893 0 0 1000.286133
377360 17739.19531 78.72998 29.059998 3.63974 0 0 1000.286133
379197 17775.16406 78.289978 29.119995 3.990692 0 0 1000.286133
380917 17775.16406 78.289978 29.129997 4.227203 0 0 1000.286133
382634 17418.85938 82.759979 29.119995 4.27298 0 0 1000.286133

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 57

Descent Stage:
Started descent @CPU time (ms): 383023
CPU uptime (ms) Altitude (m) Pressure (hPa) Temperature (C) Humidity (%) MAF sensor (kg/s) VAF (L/s) Sampled volume (L)

384422 15587.74219 111.619995 29.07 5.02066 0 0 1000.286133
385978 13073.3125 164.440002 29.57 7.210297 0 0 1000.286133
387533 11305.00391 217.029968 30 9.865326 0 0 1000.286133
389086 9895.191406 269.909912 30.369995 12.619537 0 0 1000.286133
390643 8696.214844 322.849976 30.689995 15.266937 0 0 1000.286133
392200 7647.275391 375.719971 30.969994 17.815155 0 0 1000.286133
393889 6650.677734 432.51001 31.269997 20.40152 0 0 1000.286133
395449 5839.433594 483.5 31.489998 22.690338 0 0 1000.286133
397006 5115.517578 533.139893 31.739998 24.742645 0 0 1000.286133
398564 4467.251953 580.899902 31.93 26.649994 0 0 1000.286133
400119 3885.556641 626.689941 32.080002 28.412384 0 0 1000.286133
401680 3365.34375 670.169922 32.209991 30.067963 0 0 1000.286133
403357 3022.506836 700.030029 32.309998 31.509918 0 0 1000.286133
404916 2570.334961 741.219971 32.339996 33.012909 0 0 1000.286133
406474 2175.239258 778.679932 32.449997 34.332794 0 0 1000.286133
408034 1824.723145 813.299805 32.539993 35.622162 0 0 1000.286133
409592 1520.211914 844.26001 32.610001 36.758942 0 0 1000.286133
411151 1252.821289 872.219971 32.580002 37.834686 0 0 1000.286133
412839 1002.491699 899.079834 32.699997 38.864655 0 0 1000.286133
414398 809.333008 920.22998 32.73999 39.67337 0 0 1000.286133
415954 648.161621 938.159912 32.759995 40.398163 0 0 1000.286133
417506 514.899414 953.209961 32.75 41.100067 0 0 1000.286133
419063 406.082031 965.719971 32.75 41.748566 0 0 1000.286133
420618 318.191406 976.069824 32.669998 42.274994 0 0 1000.286133
422298 245.259155 984.339844 32.729996 42.694611 0 0 1000.286133
423855 195.112915 990.219971 32.709991 43.053192 0 0 1000.286133
425405 158.12915 994.599854 32.689987 43.381256 0 0 1000.286133

Recovery Stage:
Started recovery @CPU time (ms): 425797
Pre-Launch took (s): -536715
Ascent took (s): 286.819946
Descent took (s): 42.773987
Stayed airbourne for (s): 329.593994
Peaked at altitude(m): 18643.64063
Collected sample of (L): 1000.286133
Altitude window (m): 10151.92578 to (m): 10923.683594
Sampling took (s): 11.438999

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 58

Appendix F – Calibration output

The following is the contents of Calibration.txt, which was produced by the control system software
when set to calibration mode.

MAF calibration offset = MAFcalos = 16470.781250,
MAF value = MAFcalVal = 36022.625000,
Pressure (hPa/mbar) = MAFcalP = 1015.137695,
Temperature (C) = MAFcalT = 28.042061,
Vol flow rate (L/min) = MAFcaldvdt = Flow bench data
No flow bench? Fan rated flow is kinda ok

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 59

REFERENCES

Adafruit 2023a, Adafruit MS8607 Pressure Humidity Temperature PHT Sensor, New York, New
York, USA, viewed 4 July 2023, <https://www.adafruit.com/product/4716>.

Adafruit 2023b, Adafruit_CircuitPython_MS8607, Adafruit, New York, New York, USA, viewed 5
July 2023, <https://github.com/adafruit/Adafruit_CircuitPython_MS8607>.

Aerogel Technologies 2023, Thermal Wrap 6mm Blanket, Aerogel Technologies, Boston,
Massachusetts, USA, viewed 4 July 2023, <http://www.buyaerogel.com/product/thermal-wrap/>.

Anderson, K, Brander, C, Carrasco, E, Courville, R, de la Guardia, A, Fensler, J, Giron, L, Oberlies,
J, Pankiewicz, W & Wachter, G, 2023, “Compact Lightweight Aerial Sensor System (CLASSy)”,
contractor or grantee report, NASA, USA, viewed 6 October 2023
<https://ntrs.nasa.gov/citations/20230011971>.

Beaurepaire, M, Rachid, D, Gasperi, J & Tassin, B, “Microplastics in the atmospheric compartment:
a comprehensive review on methods, results on their occurrence and determining factors”,
Atmospheric Pollution Research, volume 13, issue 10, Oct 2022, 101550, viewed 28 September
2023 <https://doi.org/10.1016/j.cofs.2021.04.010>.

Beckingham, B, Apintiloaiei, A, Moore, C & Brandes, J, “Hot or not: systematic review and
laboratory evaluation of the hot needle test for microplastic identification”, Microplastics and
Nanoplastics, volume 3, April 2023, Article number 8, viewed 2 October 2023
<https://doi.org/10.1186/s43591-023-00056-4>.

BlueKitchen 2023, btstack, BlueKitchen, Zurich, Switzerland, viewed 15 August 2023,
<https://github.com/bluekitchen/btstack#supported-protocols-and-profiles>.

Bryan, NC, Stewart, M, Granger, D, Guzik, TG & Christner, BC, “A method for sampling microbial
aerosols using high altitude balloons”, Journal of Microbiological Methods, volume 107, December
2014, Pages 161-168, viewed 6 October 2023 <https://doi.org/10.1016/j.mimet.2014.10.007>.

Cadex 2023, Types of Lithium-ion, Cadex, Vancouver, British Colombia, Canada, viewed 5 July
2023, <https://batteryuniversity.com/article/bu-205-types-of-lithium-ion>.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 60

CircuitPython 2023, MicroPython & CircuitPython License, CircuitPython, viewed 14 August 2023,
<https://docs.circuitpython.org/en/latest/docs/LICENSE.html>.

Conkle, JL, Baez Del Valle, CD & Turner, JW, “Are We Underestimating Microplastic
Contamination in Aquatic Environments?”, Environmental Management, volume 61, January 2018,
viewed 2 October 2023 <https://doi.org/10.1007/s00267-017-0947-8>.

Derwent, R, Simmonds, P, O’Doherty, S, Manning, A, Collins, W & Stevenson, D, “Global
environmental impacts of the hydrogen economy”, International Journal of Nuclear Hydrogen
Production and Applications, volume 1, issue 1, May 2006, Pages 55-67, viewed 29 September
2023 <https://doi.org/10.1504/IJNHPA.2006.0 09869 >.

Dris, R, Gasperi, J, Saad, M, Mirande, C & Tassin, B, “Synthetic fibers in atmospheric fallout: A
source of microplastics in the environment?”, Marine Pollution Bulletin, volume 104, issues 1–2,
15 March 2016, Pages 290-293, viewed 28 September 2023
<https://doi.org/10.1016/j.marpolbul.2016.01.006>.

The Engineering ToolBox 2003, U.S. Standard Atmosphere vs. Altitude, The Engineering ToolBox,
viewed 4 July 2023, <https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html>.

Finetech Research and Innovation 2023, Glass fiber filter – MGA, Finetech Research and
Innovation, New Taipei City, Taiwan, viewed 4 July 2023, <https://en.finetech-filter.com/product-
detail-1781196.html>.

Fonseca, J, Carreiro, F, Silva, V, Evtiouguina, M, Marques, M 2003, “μVOC – A lightweight
environmental data and air samples acquisition system to install in captive balloons”, IEEE
International Symposium on Industrial Electronics, 9-11 June 2003, Rio de Janeiro, Brazil, viewed
6 October 2023 <https://doi.org/10.1109/ISIE.2003.1267316>.

Gigault, J, Ter Halle, A, Baudrimont, M, Pascal, P, Gauffre, F, Phi, TL, El Hadri, H, Grassl, B &
Reynaud, S, “Current opinion: What is a nanoplastic?”, Environmental Pollution, volume 235, April
2018, Pages 1030-1034, viewed 3 October 2023 <https://doi.org/10.1016/j.envpol.2018.01.024>.

Gree Altairnano New Energy 2023, Yinlong LTO Batteries, Gree Altairnano New Energy,
Singapore, viewed 5 July 2023, <https://www.yinlong.energy/yinlong-battery>.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 61

Habeck, JB, Flaten, JA & Candler, GV 2020, “High-altitude balloon measurements of atmospheric
particulates”, AIAA Scitech 2020 Forum, 6-10 January 2020, Orlando, Florida, USA, viewed 6
October 2023 <https://doi.org/10.2514/6.2020-1794>.

Kelly, A, Lannuzel, D, Rodemann, T, Meiners, KM & Auman, HJ, “Microplastic contamination in
east Antarctic sea ice”, Marine Pollution Bulletin, volume 154, May 2020, viewed 2 October 2023
<https://doi.org/10.1016/j.marpolbul.2020.111130>.

Lateran, S, Sedan, MF, Harithuddin, ASM & Azrad, S 2016, “Development of unmanned aerial
vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling”,
AEROTECH VI – Innovation in Aerospace Engineering and Technology, 8-9 November 2016,
Kuala Lumpur, Malaysia, viewed 6 October 2023
<https://doi.org/10.1088/1757-899X/152/1/012018>.

Leslie, HA, Van Velzen, MJM, Brandsma, SH, Vethaak, AD, Garcia-Vallejo, JJ & Lamoree, MH,
“Discovery and quantification of plastic particle pollution in human blood”, Environment
International, volume 163, May 2022, 107199, viewed 29 September 2023
<https://doi.org/10.1016/j.envint.2022.107199>.

Ma, S, Jiang, M, Tao, P, Song, C, Wu, J, Wang, J, Deng, T & Shang, W, “Temperature effect and
thermal impact in lithium-ion batteries: A review”, Progress in Natural Science: Materials
International, volume 28, issue 6, December 2018, Pages 653-666, viewed 2 October 2023
<https://doi.org/10.1016/j.pnsc.2018.11.002>.

National Weather Service 2023, Pressure Altitude, viewed 1 July 2023,
<https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf>.

O’Brien, S, Rauert, C, Ribeiro, F, Okoffo, ED, Burrows, SD, O’Brien, JW, Wang, X, Wright, SL &
Thomas, KV, “There's something in the air: A review of sources, prevalence and behaviour of
microplastics in the atmosphere”, Science of The Total Environment, volume 874, 20 May 2023,
162193, viewed 28 September 2023 <https://doi.org/10.1016/j.scitotenv.2023.162193>.

Postma, JV, “An inexpensive atmospheric microplastic collector for use in remote areas”,
Atmospheric Pollution Research, volume 13, issue 10, Oct 2022, 101550, viewed 28 September
2023 <https://doi.org/10.1016/j.apr.2022.101550>.

Raspberry Pi Foundation 2023, Raspberry Pi Pico, Raspberry Pi Foundation, Cambridge, England,
UK, viewed 1 July 2023, <https://www.raspberrypi.com/products/raspberry-pi-pico/>.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 62

Renesas 2023, Temperature Ranges, Renesas, Tokyo, Japan, viewed 4 July 2023,
<https://www.renesas.com/us/en/support/technical-resources/temperature-ranges>.

Rosso, B, Corami, F, Barbante, C & Gambaro, A, “Quantification and identification of airborne
small microplastics (<100 μm) and other microlitter components in atmospheric aerosol via a novel
elutriation and oleo-extraction method”, Environmental Pollution, volume 318, 1 Feb 2023,
120889, viewed 28 September 2023 <https://doi.org/10.1016/j.envpol.2022.120889>.

RS Group 2023a, SMC PFMB7 Series Digital Flow Switch Flow Switch for Dry Air, RS Group,
London, England, UK, viewed 2 July 2023,
<https://au.rs-online.com/web/p/flow-sensors/2704310>.

RS Group 2023b, Everything You Need To Know About Flow Switches, RS Group, London,
England, UK, viewed 8 July 2023, <https://au.rs-online.com/web/generalDisplay.html?id=ideas-
and-advice/flow-switches-guide>.

SilverStone 2023, FHS 80X, SilverStone, New Taipei City, Taiwan, viewed 1 July 2023,
<https://www.silverstonetek.com/en/product/info/fans/FHS_80X/>.

Song, Z, Liu, K, Wang, X, Wei, N, Zong, C, Li, C, Jiang, C, He, Y, & Li, D, “To what extent are we
really free from airborne microplastics?”, Science of The Total Environment, volume 754, 1
February 2021, 142118, viewed 2 October 2023 <https://doi.org/10.1016/j.scitotenv.2020.142118>.

Sparkfun 2023, SparkFun Solder-able Breadboard, Sparkfun, Niwot, Colorado, USA, viewed 14
August 2023, <https://www.sparkfun.com/products/12070>.

StratoStar 2022, How Much Weight Can a High Altitude Weather Balloon Carry?, StratoStar,
Noblesville, Indiana, USA, viewed 6 July 2023, <https://stratostar.com/how-much-weight-can-a-
high-altitude-weather-balloon-carry/>.

TE Connectivity 2023, MS8607-02BA01 PHT Combination Sensor, viewed 1 July 2023,
<https://www.te.com/commerce/DocumentDelivery/DDEController?
Action=showdoc&DocId=Data+Sheet%7FMS8607-02BA01%7FB3%7Fpdf%7FEnglish
%7FENG_DS_MS8607-02BA01_B3.pdf>.

APPARATUS FOR MEASURING MICROPLASTIC AEROSOLS IN THE ATMOSPHERE 63

Wilson, C 2022, “The replication crisis has spread through science – can it be fixed?”, NewScientist,
viewed 30 August 2023, <https://www.newscientist.com/article/mg25433810-400-the-replication-
crisis-has-spread-through-science-can-it-be-fixed/>.

