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Abstract 
 
Deep learning utilises neural network layers to systematically process similarities and differences 

between images to establish a reliable set of features used to assist in localising and classifying objects 

within an image.  This is done through an object detection model and the output is an application of a 

class label to the object within the image. Object detection models could automate, and therefore greatly 

expedite, the inspection of concrete structures which are currently periodically visually inspected by 

trained inspectors to determine asset condition and maintenance and requirements.  This manual process 

is considered ‘Gold Standard’; however it is time-consuming, expensive, and triggers field hazards. To 

date, many research studies have demonstrated successful use of second-generation artificial 

intelligence (AI) technology to identify defects in concrete structures, attempting to replicate the 

inspector. More recently, advances in AI systems have led to the development of third-generation 

neuromorphic computing technology and its use for object detection has the potential to increase 

detection speed and efficiency, use less power, enhance security, and allow for data to be analysed 

locally without requiring large cloud-based data stores. The overarching aim of this project was to 

demonstrate that neuromorphic computing technology is a suitable novel technology to detect common 

defects on concrete bridge and culvert structures using object detection. Specifically, the project aimed 

to develop, train and implement a neuromorphic computer vision model to identify common bridge 

defects and determine the system accuracy, effectiveness and usability. The model was also directly 

compared with a traditional object detection model. 

Photographic images (n = 844) of concrete structures were manually collected through field inspections 

and dissected into 17395 512 x 512 pixel images.  These were manually classified to obtain 1326 images 

of various structure defects.  Of these, 200 high quality crack and spall images were utilised to develop 

YOLOv5 and AKIDA object detection models using Edge Impulse studio with three hundred (300) 

training cycles.  The model configuration was set using a bounding box labelling method.  For all 

models, 64% of images were allocated to training, 16% for validation, and 20% for model testing. Crack 

only models were developed using 100, 150, 170, 200, 350, 300 and 350 images and a spall and crack 

model using 100 spall and 100 crack images was also developed. The learning rate varied between 0.01 

and 0.001 for AKIDA to optimise testing results while the learning rate of 0.01 for the YOLO5 model 

could not be modified through the online portal. Confidence thresholds of 30%, 50% and 70%t were 

set to analyse the accuracy of these models using the test dataset. Finally, the performance of both 

models was visually assessed in real-time environment replicating a field setting. 

Both models produced poor results overall for the combined crack and spall image dataset, with less 

than 30% accuracy using the lowest confidence threshold.  Further, they produced 0% accuracy for 

spalls using all three (3) confidence thresholds specified.  However, both models were able to 

successfully detect concrete cracks in the images. The AKIDA model produced the highest precision 
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(94.1%) of all models on the validation data, using 150 images, while YOLO only achieved 69%.  The 

highest precision able to be obtained with the YOLOv5 model was 75% using 350 crack images.  For 

accuracy, the AKIDA model achieved 81.7% accuracy with 300 images using the 30% confidence 

threshold and 68% accuracy under the 70% threshold.  The highest accuracy achieved by YOLOv5 was 

25% using 200 images. Conversely, the YOLO model performed better in the visual inspection test, 

with more accurate crack detection in 10 out of 14 instances through this subject assessment process. 

The study highlighted that image quality can negatively affect results and model development. In 

particular, neither model was able to successfully detect spalls, as these are a more complex defect, 

making them more difficult for the models to detect. However, both models were able to detect cracks, 

with the AKIDA model demonstrating that third-generation models were comparable to second-

generation technologies for the identification of cracks in this setting. Further investigation could 

incorporate additional defects into the object detection model, to simulate a comprehensive structure 

inspection. The study suggests neuromorphic computing is a new promising technology to identify 

common defects in concrete structures. 
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Chapter 1:  Introduction 
 

1.1 Background 
 
Australia’s arterial road and bridge maintenance expenditure for 2019-20 was estimated to be $2.8 

billion.  Expenditure for Queensland alone was estimated at $725 million (Bureau of Infrastructure 

Transport and Regional Economics (BITRE) 2021).  As part of this maintenance program bridges and 

culverts located on Queensland state-controlled roads are inspected periodically in accordance with the 

Department of Transport and Main Roads (TMR) Structures Inspection Manual.  Inspection data are 

utilised by TMR to determine asset condition and assist in planning for future asset maintenance and 

rehabilitation (State of Queensland (Department of Transport and Main Roads) 2016a).   

Traditional methods for inspection entail the use of trained inspectors to carefully examine structures 

at arm’s length; photographing, measuring, and documenting defects and asset condition (Mirzazade et 

al. 2023).  Inspectors must also consider the need for traffic control, management of traffic disruptions, 

safety within the road corridor, and methods for inspecting hard-to-access locations (i.e., at height, 

confined space, or below water) (Flah, Suleiman & Nehdi 2020; Mirzazade et al. 2023).  These factors 

make visual inspection techniques time-consuming and costly for asset holders. 

In recent years, there has been a substantial increase in the use of artificial intelligence (AI) technologies 

in the field of structural engineering (Hadi & Rigoberto 2018; Flah, Suleiman & Nehdi 2020; Huu-Tai 

2022).  With developing technologies, there is potential for AI, and in particular the AI technique of 

deep learning, to compliment traditional structure inspection techniques, and to aid in rapid decision 

making at a reduced cost (Hadi & Rigoberto 2018; Flah, Suleiman & Nehdi 2020).  Combined with the 

use of Remote Piloted Aircraft (RPA), there is potential to fully automate the inspection process and 

eliminate the need for the existing ‘Gold Standard’ manual inspection method (Guido et al. 2019; Flah, 

Suleiman & Nehdi 2020). 

“AI leverages computers and machines to mimic the problem-solving and decision-making capabilities 

of the human mind” according to the pioneers of advanced computing; International Business Machines 

Corporation (IBM Cloud Education 2020a).  The key parameter that makes the current AI technologies 

particularly applicable to engineering applications is that they are underpinned by machine learning 

(Jordan & Mitchell 2015; Huu-Tai 2022).  Machine learning is a sub-discipline of AI where computer 

systems are exposed to extensive labelled datasets that allow them to identify successful patterns, with 

each iteration progressively refined until endpoint decision making is accurate and repeatable, without 

the need for explicit programming (Jordan & Mitchell 2015; Huu-Tai 2022).   
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Several statistical methods can be used by machine learning, including linear or logistic regression, 

neural networks and decision trees (Alqahtani & Whyte 2013; Jordan & Mitchell 2015).  Most often 

machine learning makes use of artificial neural networks that essentially mimic the biological 

processing function of the brain, by using a set of algorithms (Alqahtani & Whyte 2013; Hadi & 

Rigoberto 2018; IBM Cloud Education 2020a).  A network consists of input data, weights that affect 

the strength of the signals sent and received, a bias, and an output.  An algebraic formula is used to 

determine whether the output is greater than a specified threshold. If the threshold is met or exceeded 

then the node forming that part of the network is activated, and the data are then passed to the next layer 

(IBM Cloud Education 2020a).  The more network layers, the deeper the network.  Once all network 

hidden layers are determined, they are passed to a final layer to calculate the final network layer output 

and form a decision (IBM Cloud Education 2020b).  Currently, the precision and accuracy of these AI-

generated outcomes is variable, depending on the size and complexity of the training dataset, and the 

difficulty of the task. An area of rapid growth is the use of deep learning for the automated detection of 

objects in images, and this was the specific focus of this research project. 

 
1.2 Application of Research 
 
As a result of this project, it is expected that the hypothesis will be proven and the project will 

demonstrate similar accuracies and precision between a neuromorphic object detection model and a 2nd 

generation counterpart. Given the ability for neuromorphic models to be run using less power and less 

latency, the neuromorphic alternative is predicted to be better suited to implementation with remote 

piloted aircraft (RPA’s) with future potential to fully automate the inspection process.  Automating the 

inspection process could lead to faster data acquisition and processing, enabling more timely decision 

making for asset inspectors and owners.  Added benefits of automated inspection include improved 

safety by reducing human interactions with traffic, fewer disruptions to the traffic network, and the 

ability via the use of RPA’s to access hard to reach locations. 

 
1.3 Aims and objectives 
 
The principal aim of this project was to demonstrate that neuromorphic computing technology is a 

suitable novel technology to detect common defects on concrete bridge and culvert structures using 

object detection. 

The specific objectives were to: 

 Review current concrete bridge and culvert defect inspection practices 

 Review neuromorphic computing technology use for object detection 

 Establish a methodology to incorporate neuromorphic computing through deep learning to 

identify concrete bridge and culvert defects 
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 Inspect and photograph common bridge and culvert defects for use in the object detection 

system development 

 Develop and train a neuromorphic computer vision model to identify common bridge and 

culvert defects 

 Implement the object detection model through a field trial  

 Analyse the field trial results to determine the system accuracy, effectiveness and usability 

 Consider improvements to increase the system accuracy, effectiveness, and usability 

 Compare the neuromorphic model with a traditional object detection model 

 
1.4  Scope 
 
This project will deliver a customised object detection model to detect two or more common concrete 

bridge and culvert defect types using neuromorphic computing technology.  The project will also 

evaluate the model against a comparable object detection model trained using the same image dataset.  

The scope of the project is intentionally narrow, to ensure the accuracy and precision of the selected 

technology. This approach will increase the likelihood that the outcomes can be further developed and 

adapted to a more diverse range of defects affecting concrete structures. 
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Chapter 2: Literature review 
 

2.1 Common defects of concrete structures 
 
Concrete, along with steel, is one the of the most common construction materials used worldwide 

mainly due to its impressive ability to resist compression (Zhang et al. 2018; Yin et al. 2021).  In the 

transport engineering sector, concrete is the key material used in the construction of many structures, 

such as bridges and culverts. However, concrete is also prone to structural defects that can occur due to 

aging and/or damage (Roper, Kirkby & Baweja 1986; Zhang et al. 2018).  This project focuses on 

common defects of concrete structures, such as cracks and spalls.  Defects in concrete structures 

manifest from a variety of stressors placed on the structure, such as temperature extremes, natural 

disasters, high impact collisions and excessive loading, and are likely to increase in frequency with the 

age of the structure (Roper, Kirkby & Baweja 1986; Yin et al. 2021).  Common deterioration 

mechanisms are outlined in the TMR Structures Inspection Manual Part 2 (State of Queensland 

(Department of Transport and Main Roads) 2016b).  These mechanisms can affect most parts of the 

concrete structure and can include a) Corrosion of the reinforcement material; b) Alkali-Aggregate 

Reaction (AAR); c) Cracking; d) Spalling; e) Delamination; f) Surface Defects; g) Scaling; h) 

Disintegration; and i) Fire damage (State of Queensland (Department of Transport and Main Roads) 

2016b).  Other common defects identified during the authors field inspections include graffiti from an 

aesthetics perspective and damage or deterioration to the pavement wearing surface.  Photographs 

showing some defect images photographed in the field are provided in Figure 1 below.   

 

 
Figure 1:  Various defect types identified during field inspections 
Images courtesy of: A. Bourke 
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 Asbestos containing material (ACM) identification 

 ACM verification 

 Underwater access 

 Fracture critical/low redundancy (relevant to steel bridges only) 

 Sub-standard load rating 

 Complex/unique structures 

 Known/suspected deficiencies 

 Confined space inspection 

Source: (State of Queensland (Department of Transport and Main Roads) 2016c) 

 
Procedures to carry out TMR structure inspections are contained within Part 3 of the Manual (State of 

Queensland (Department of Transport and Main Roads) 2016c).  The appendices of this manual contain 

an inspection report template that is used by inspectors completing their visual inspections in addition 

to the Structure Standard Component Identification Schedule which ensures uniformity of reporting.  

Adherence to these procedures is essential to minimise variability of reporting amongst inspectors, 

which, as with any manual technique, is subject to bias.   

There are numerous factors that can influence the quality of visual inspection. Stallard et al (2018) in 

their study of visual error for metal casting inspections state that the error factors included training, type 

of judgement used, percentage of defects, environmental conditions, and the inspector’s ability 

(Stallard, Cameron & Frank 2018).  Using their probabilistic model, they found error rates of up to 40% 

for false alarms, and 35% for missing the defect. This reasonably high potential for inter-inspector 

variability and bias undermines the accuracy and precision of visual inspection techniques. 

2.2.2 Manual inspections 
 
Manual inspection techniques include methods to assess the severity of a defect that is detected during 

a visual inspection, and thus most commonly occurs in conjunction with, or soon after, a visual 

inspection. Traditional methodologies are quantitative and involve measuring and documenting of the 

severity and progression of defects. The necessity for a manual inspection would typically be 

determined during a visual inspection, and the size of a defect is a key parameter used to determine the 

frequency of subsequent assessments and/or the need for remediation. Accurate documentation of the 

extent of the defect enables progressive condition assessment of a structure, so that interventions to 

remediate the defect can be planned for and occur in a timely way. These physical assessments still 

require trained inspectors to record the data and remain a key component of structural health monitoring 

programs for infrastructure. Methods range from simple, such a physical measurement of the length and 

width of a defect, to more advanced techniques, such as computer vision methods that automatically 

capture and record defects (see section 2.2.4). 
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The key benefit to a manual inspection is the ability to grade a defect, so that an ongoing assessment of 

deterioration is less subjective. The grading scales used are usually simple, such as a numerical scale of 

1 - 4, and are mandated by the responsible authority (Christian et al. 2015). Measurements, such as the 

length of a crack, enable the defect to be graded, and cumulative scores result in an overall grade being 

assigned, such as good, fair, poor or severe (Christian et al. 2015). The progression of the condition of 

a structure can then be monitored with respect to the speed and degree of deterioration. While manual 

inspection reduces the degree of bias compared to visual inspection, more advanced quantitative 

techniques, such a non-destructive technologies and mathematical modelling, are being used with 

greater frequency (Flah, Suleiman & Nehdi 2020). 

2.2.3 Non-destructive technologies 
 
To extend on manual measurement methods for the assessment of civil structures, many non-destructive 

methods have been developed. These methods enable assessments to go beyond simply assessing the 

surface of the structure and include thermography, ultrasound, tomography, radiography, 

electromagnetic and electrochemical methods (Balayssac & Garnier 2017). The techniques can be 

applied individually, but are more often used in combination, and the choice of test depends on the 

substrate material and type and extent of the defect (Balayssac & Garnier 2017). As an example, 

ultrasound is a technique that has been used to assess the condition of solid concrete structures, as the 

sound waves that pass through the dense material can give an indication of the resistance i.e., strength, 

of the internal environment of the solid structure (Hu et al. 2021). The parallels to human medicine are 

obvious, with similar methods used to examine the health of the less accessible internal parts of the 

human body. 

The output data obtained from non-destructive testing can be collated into combined datasets and 

mathematical models and complex algorithms can be used to determine the significance of the data (Hu 

et al. 2021). Increasingly, AI methodologies, such as neural networks, are being employed to analyse 

data derived from non-destructive techniques (Schabowicz 2019; Hu et al. 2021). One major advantage 

of using non-destructive methods is that it enables repeat testing, so outputs can be used to assess 

structures over time and cumulative datasets can be analysed with powerful statistical models 

(Schabowicz 2019).  A disadvantage of non-destructive testing methods is that they are heavily 

influenced by weather, e.g., heat and moisture, so conditions for testing must be comparable, which 

affects the planning and execution of testing. Non-destructive technologies can also be expensive as 

they rely on specialty equipment, and require highly trained personnel, reducing their feasibility for 

some operators (Schabowicz 2019). Further, the need for extensive data processing can increase the 

time taken to reach decisions about the health of the structure. Semi-destructive, such as core sampling, 

and destructive techniques are also used for the assessment of concrete structures but are beyond the 

scope of the current study. 
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2.2.4 Computer vision methods 
 
Visual structure inspections produce large banks of digital images in order to record the number, type 

and extent of concrete defects (Ren et al. 2022). A need for improved methods for processing and 

cataloguing these images has resulted in increasing use of computer vision technologies for civil 

infrastructure inspections (Christian et al. 2015; Ren et al. 2022). In recent years, use of computer vision 

methodologies has enabled automation of the process where images can be processed without the need 

for human input. The ultimate goal of applying computer vision methods to a civil structure inspection 

process is to enable 1) the detection of an object, e.g., a concrete crack, in an image and 2) the analysis 

of the nature of the object. The images can be acquired during visual inspections, or could be captured 

remotely, e.g., by a remote piloted aircraft. The degree of image processing varies, with low level 

processing aimed at ensuring the image quality is sufficient for subsequent analysis and intermediate-

to-high level processing focused on identifying and extracting features of interest to enable analysis 

(Christian et al. 2015; Ren et al. 2022). Computer vision methods can be feature-, model- or pattern-

based (i.e., non-neural approaches), or rely on a 3D reconstruction of the defect (neural approaches) 

(Christian et al. 2015). With respect to the identification and assessment of concrete cracks, many of 

these methods have been investigated in studies aiming to assess their applicability to automated crack 

detection in large concretes structures, such as bridges (Zakaria, Karaaslan & Catbas 2022; Zhang, 

Karim & Qin 2022). 

Feature-based methods, such as the Haar-wavelets technique, use edge detection algorithms to identify 

cracks (Hoang, Quoc-Lam & Van-Duc 2018; Olisa et al. 2018). By comparison, model-based methods 

focus on segmentation, where the image is separated into defect and non-defect areas, while pattern-

based methods rely on object detection and principal components analysis (Kim et al. 2022). These 

methods can be used alone or in combination, and many systems have been developed and investigated 

for crack detection and assessment, with varying levels of success (Olisa et al. 2018; Zakaria, Karaaslan 

& Catbas 2022; Zhang, Karim & Qin 2022). All of these methods are subject to error, based on the 

quality of the image taken, the suitability of the image collection used for training the model and the 

power of the machine learning model (Christian et al. 2015; Ren et al. 2022). Variations in image quality 

i.e., clarity, camera angle, distance from the object, exposure, contrast and saturation will all 

significantly impact the output data (Ren et al. 2022). Further, capturing images in exactly the same 

way each time a structure is re-assessed is nearly impossible. As such, it is important that the methods 

used for image analysis are able to correct for variations in image quality and acquisition (Ren et al. 

2022). This is potentially best achieved if the image analysis method can be ‘taught’ to account for these 

parameters, which is achieved by training the model with large quantities of images (Kumar et al. 2021; 

Kim et al. 2022; Zhang, Karim & Qin 2022). Machine learning methods using neural networks are 3D 

reconstruction-based methods that can achieve this ‘intelligent’ image processing (Dung & Le Duc 

2018; Kumar et al. 2021) and are the computer vision technology used in this project. Obviously, it is 
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also crucial that images can be accurately traced back to their location, and the most common approach 

for achieving this is the use of satellite navigation and the global positioning system (Miles 2023), 

which enables placement of exact coordinates on each image. This is an area of active research with 

substantial refinement still required to ensure accurate, repeatable and precise outcomes. 

 
2.3 Artificial intelligence and civil infrastructure 
 
This study focuses on identifying defects in concrete structures using AI deep learning and object 

detection.  In particular, this study will determine if third-generation AI is as effective as its second-

generation counterpart in identifying concrete structure defects. However, prior to reviewing and 

synthesizing the complex methodologies required, a review of the development and history of AI, with 

respect to civil infrastructure inspection, is provided.  

 
2.3.1 The generational development of artificial intelligence 
 
It is well known that computers are replacing their human counterparts for many and varied tasks.  The 

AI technologies arise from a sophisticated fusion of neuroscience and computer science. As such, 

opportunities for the application of AI are considerable in civil engineering, where complex problems 

often require a combination of human initiative and mathematical modelling (Hooda et al. 2021). There 

have been numerous attempts to utilise AI technology to identify defects in concrete structures.   

The original generation of AI technologies did not have the advantage of utilising a statistical approach, 

relying on a deep, but static, underpinning knowledge. The systems needed to rely on these large 

databases in order to solve problems, and as such were more structured and did not enable a flexible 

approach to novel problems. This minimised the breadth of potential problems that the first-generation 

systems were able to solve. Problems that were appropriate for this early form of AI were optimizations 

of billing and supply and demand systems, and the approach was used to reduce overheads and predict 

financial positions going forward. In this situation they were still an intelligent system but lacked the 

ability to take an abstract view of repeated problems. 

The second-generation of AI systems is still the most heavily utilised and has improved on the first-

generation technology by introducing statistical learning to broaden the scope of problems that can be 

solved, and starting to increase the ability to solve novel applications without reliance on expert input 

(Bilgil & Altun 2008). Most readers would be familiar with second-generation technologies as they 

underscore machine learning, and power well-known applications such as Siri and Alexa. The 

introduction of statistical approaches to intelligent systems has revolutionised the scope of their use, 

which stretches from health to music to education (Miguel et al. 2022). They are even used to stretch 

players of games of strategy, such as Chess. There is still room for improvement though, given that a 
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computer recently broke the finger of a 7-year-old boy that it incorrectly deduced to be cheating 

(Angelova & McCluskey 2022). 

Many research studies have demonstrated and investigated the successful use of second-generation AI 

technology for computer vision tasks, such as concrete defect detection as outlined above (Dung & Le 

Duc 2018; Kumar et al. 2021). They make use of large, cloud-based data centres, but do have a 

requirement for huge power consumption and their speed is limited by the power and capability of the 

processing system being used. Use of second-generation technology is still a growing area of 

engineering science, and perhaps remains the focus for most research despite the recent progression to 

third-generation AI technology. 

Building on the success of second-generation technologies requires the implementation of complex 

thinking, and the ability of the system to not only solve a task, but to do so in a novel way that has 

incorporated a critical assessment of the approach to the problem. The final step is then to translate the 

approach used to the human operator, so that they can understand the approach taken and the rationale 

for its use. Accordingly, third-generation systems are still largely developmental and experimental in 

nature, although their development has made huge leaps in recent years, with many more examples of 

their successful use (Hooda et al. 2021). One such example, as outlined in the introduction is the use of 

neuromorphic computing by companies such as Intel, BrainChip and Nvidia. These companies seek to 

use third-generation AI technology to mimic the human brain to solve complex, but everyday problems, 

including disease detection and speech recognition and incorporate these skills into larger multi-faceted 

approaches to layered problems that require a sequential, cognitive approach to solve successfully. One 

application relevant to this project is object detection and classification (Christian et al. 2015). This 

application has been well researched for second-generation approaches, and while research persists the 

ability to include a cognitive element to solving the problem of large-scale object detection has 

instigated research into possible uses of third-generation AI techniques in this area of engineering 

science (Hoang, Quoc-Lam & Van-Duc 2018; Kim et al. 2022). 

A final key advantage of the third-generation of AI is its suitability for edge based technologies, 

otherwise known as edge computing. Essentially, the data can be analysed locally, without the need to 

access a large, centralised data processing unit, enabling better reactivity to data outputs e.g., smart 

watches. This greatly increases speed and efficiency when it comes to neuromorphic computing 

applications. Gartner states that in 2018 approximately 90% of all enterprise-generated data was 

managed in centralized data centres or the cloud (Gartner 2018).  By 2025 it is anticipated that edge 

base technologies will manage up to 75% of the enterprise data (Yin et al. 2021).   There is still a place 

for second-generation large cloud datacentres, using powerful and power intensive computers to run AI 

models.  BrainChip state that the generational technologies will continue to work together, forming 

distributed optimised models fit for purpose (Brainchip 2022a). 
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2.3.2 Neuromorphic computing 
 
More recent development of AI technologies has extended machine learning via neural networks with 

the use of larger, unlabelled datasets, in a sub-discipline called deep learning (IBM Cloud Education 

2020c).  The critical factor that differentiates deep learning is its capacity to use unstructured data, e.g., 

images. Using at least three neural network layers the data are systematically processed until a reliable 

set of features are determined that enable the data to be categorised (such as recognising the similarities 

and differences between images), bypassing the need for human input (Hooda et al. 2021). Intel state 

that current second-generation AI technologies deal with perception and sensing but can also use deep 

learning networks for image data recognition (Intel 2023).  However, more current terminology refers 

to deep learning technologies as neuromorphic computing, or third-generation AI which goes beyond 

the simple network patterns that constitute second-generation AI and attempts to replicate the human 

brain on a deeper level, to deal with uncertainty, ambiguity, and contradiction (Hooda et al. 2021).   As 

the field evolves, these advances will assist in overcoming the current shortfalls with AI and deep 

learning that essentially lack a critical assessment of the task (Intel 2023). 

Neuromorphic computers are defined as non-von Neumann computers which operate like the human 

brain in structure and function.  Processing and memory are controlled by neurons and synapses, with 

programs governed by the neural network structure; whereas Von Neumann computers consist of 

separate processing and memory units, with programs executed by a series of instructions.  

Neuromorphic computers use the magnitude, shape and time of occurrence of spiking neurons to encode 

data, whereas von Neumann computers encode numerical values in binary form (Schuman et al. 2022).  

The Neuromorphic Computing Market was estimated to be worth $34.23 billion in 2022, increasing to 

$225 billion by 2027, with an annual growth rate of 45.8% (Markets and Markets 2021).  It is suggested 

that image recognition will be responsible for the largest portion of the market during this time period, 

mainly due to the increase in use of RPA’s, video monitoring and computer vision (Markets and Markets 

2021).  One of the leading neuromorphic market participants, BrainChip Holdings Ltd. (US), highlight 

that a key benefit of neuromorphic computing over second-generation AI is the potential for incremental 

learning that relies on fewer datasets to reach a decision, with reduced time to make that decision 

(Brainchip 2022a). Additional benefits include improved efficiency (up to a 1000-fold reduction on 

power consumption) and security (Brainchip 2022a).  The leading neuromorphic market participants 

are said to be Intel Corp. (US), IBM Corporation (US), BrainChip Holdings Ltd. (US), Qualcomm (US) 

and HP Enterprise (US). Clearly these advances have the potential to revolutionise the process of 

identifying defects in civil structures, by using neuromorphic computing to quickly and accurately 

detect defects in a series of images from a structure using object detection. 
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2.3.3 Object detection 
 
The typical deep learning (neural network based) object detection process referred to above involves 

image localisation followed by image classification.  Image localisation is the process whereby machine 

learning is utilised to establish where objects are located in an image.  Generally, objects are defined by 

a set of bounding box coordinates, or single coordinate and bounding dimensions (Syed Sahil Abbas et 

al. 2022).  Image classification is the next stage in the progress, whereby machine learning determines 

what type of object is within the bounding box area. The output following image classification is the 

application of a class label to the image (Xiongwei, Doyen & Steven 2020). The combination of these 

two processes comprises object detection, where the object in question is located and classified by an 

algorithm, with typical output shown in the figure below. 

 
Figure 2: Object detection output - localisation and classification 
Screenshot courtesy of: A. Bourke, content of image sourced from model developed at: (Edge Impulse - Optimize AI for the 
edge  2023) 
 
 
The key advantage of current object detection models is that they do not require specialised camera 

equipment and can process images captured on any digital camera. This has helped to make the 

technologies more accessible for users without access to large scale computing power, a significant 

disadvantage of early object detection methods. However, the main disadvantage of deep-learning based 

object detection remains the extensive datasets required to train the models.  Several open access 

datasets have been published, such as Open Images provided by Google®. However, these large, well-

developed datasets are not focussed on object detection with respect to civil structures so most 

engineering researchers have developed their own image training datasets, specifically focussed on their 

requirements of their studies. 
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There are several neural approaches available for object detection, most of which are based on deep 

convolutional neural networks. The earlier, two-step models such as the region convolutional neural 

network (RCNN), were the pioneering models that provided major advances in the field of object 

detection, but have largely been superseded by the one-step models that rely on aspect ratios, including 

You Only Look Once (YOLO) and Retina-Net (Syed Sahil Abbas et al. 2022). These one-step 

techniques increase the speed and efficiency of object recognition for real-world applications because 

they do not process that data in two separate steps, but do carry the risk of reduced accuracy (Huang et 

al. 2017).  However, due to the numerous improvements made to both (including Faster-RCNN and 

YOLOv3) both technologies still hold a place in varied applications (Yang et al. 2021). 

Another recent development is the use of the Faster Objects More Objects (FOMO) based algorithm for 

object detection.  This algorithm differs from traditional architecture in its final network layer by 

producing a heatmap of object locations based on a probability map for each region of the image and a 

loss function preserving locality (Dickson 2022).  Output results are the object classification and 

centroid, as opposed to classification and bounding boxes.  It is estimated that a FOMO neural network 

operating on a Raspberry Pi 4 can detect objects up to 30 times faster than MobileNet SSD (Dickson 

2022). 

Regardless, accuracy remains an important limitation for all object detection methods, given that an 

‘object’, such as a concrete crack, can take many different forms, angles, and dimensions. 

2.3.4 Deep learning models used in this project 
 
2.3.4.1 YOLOv5 
 
The second-generation deep learning model to be used in this project is YOLOv5, a development from 

YOLO (Redmon 2016) which had traded accuracy (to some extent) for superior speed of object 

detection and therefore suitability to real-time detection scenarios, such as the field-based applications 

investigated in this project (Xiongwei, Doyen & Steven 2020).  YOLOv5 has been selected because it 

(and its’ predecessors) has been widely tested for many applications and has been used successfully for 

the identification and localisation of defects in civil infrastructure previously (Kumar et al. 2021; 

Xiaoning et al. 2021; Chen, L. et al. 2023). This model will take the role of the positive control object 

detection technology, that the selected neuromorphic computing model, AKIDA (Brainchip 2023b), 

will be compared against. 

As a result of its superior speed and accuracy compared with other models, YOLO, a single stage 

detector, is used commonly in engineering applications. For example, in a recent study YOLOv3 was 

reported to have better than 95% accuracy and precision for the detection of erosion in a concrete 

structure (Xiaoning et al. 2021).  In addition, YOLO has been compared with non-destructive testing 
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methods, in this case projected laser, with favourable outcomes with respect to the speed and efficient 

of detection of concrete cracks (Song Ee, Seung-Hyun & Haemin 2020). 

The YOLO model divides an image into cells in a grid pattern and uses regression methods to pinpoint 

the centre of the object. The key difference with this deep learning model is that it detects the object at 

the level of pixels, rather than relying on the bounding box co-ordinates (Xiongwei, Doyen & Steven 

2020). Limitations relating to the ability to detect multiple objects co-located within a cell are the key 

issue for users of YOLO, although these issues have been addressed in updated versions of the program 

(Syed Sahil Abbas et al. 2022). Typically, because images of defects in civil structures, such as concrete 

cracks, are often the only object of interest in the image, YOLO can perform well with structure defect 

datasets based on cracks and spalls.  

Several iterations of the program have been released since the original version, each with improvements 

over its predecessor with the latest versions including edge detection technology (the identification of 

the boundaries, or edges, between objects in an image). These later versions (up to YOLOv3) include 

significantly optimised additional features, such as batch normalisation and the use of anchor boxes 

(which enhances recall), aimed at improving the capacity of YOLO to decipher more complex or 

crowded images (Syed Sahil Abbas et al. 2022). However, the detection of small objects in particular 

remains a significant challenge (Yang et al. 2021).  The refinement of YOLO continues with each 

iteration faster and more accurate than previous version (currently up to YOLOv8), which continues to 

see YOLO a strong competitor in the deep learning model space. 

The YOLOv5 model for this project is developed through the Edge Impulse online machine learning 

development portal, using specifically the YOLOv5 nano community architecture.  The model 

architecture is pretrained on the COCO dataset (GitHub Inc. 2023) and developed through Ultralytics 

research (Jocher 2020). 

2.3.4.2 AKIDA 
 
AKIDA (Brainchip 2023a) is a digital neuromorphic processor made by BrainChip® that is hardware-

based. This neural network model enhances the speed and efficiency of information processing by using 

an on-chip system that leverages spiking neural networks (SNN). The advanced design technology of 

AKIDA addresses two of the key drawbacks common to most of the systems used in engineering 

applications to date: the slow speed of processing, and storing, data and the large amounts of power 

required to drive processing. There are several other chip-based neuromorphic programs that could be 

used for engineering applications, such as TrueNorth (IBM), DYNAP and Loihi (Intel), and the 

competitive nature of this research field is driving innovation and rapid advancement. There were two 

main drivers for selecting AKIDA for use in the current project: it is commercially available and was 

developed in Australia (Brainchip 2023a). 
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Early applications of the AKIDA technology were in the sensory data fields where it was used to process 

(and predict) vision, olfactory and auditory outcomes (Vanarse et al. 2022).  The use of AKIDA in the 

field of civil infrastructure is in the very early stages, and the focus is on visual applications, aiming to 

use AKIDA for problems suited to computer vision solutions. One recent report stated that the accuracy 

of the AKIDA system was 82% when it was asked to perform a classification test using the author’s 

dataset, which differs considerably from the 97% accuracy reported by BrainChip (Park & Kim 2021; 

Brainchip 2023a).  Such differences likely derive from the quality of the datasets used to train the 

system. The true value of these systems though is their capacity to learn continually and improve 

accuracy over time (Brainchip 2023a). 

The SNN approach mimics the way that neurons in the brain fire, where each neuron communicates 

with the next using an electrical charge generated by the flow of charged ions, called an action potential. 

Actions potentials move along nerves asynchronously, and only fire when a threshold is reached 

indicating that information needs to be processed (Marieb & Hoehn 2019).  In the AKIDA model the 

“neurons” are arranged in a parallel design and mimic this impulse based process using a voltage change 

that exceeds a threshold charge to trigger data spikes of processing. This design greatly reduces the 

power required to perform the processing, and this is the key improvement that models using SNNs 

bring (Ivanov et al. 2022).  However, given that the average processing exercise costs the human brain 

only 10-20 watts of power, and most of the brain is quiescent at any given time, neuromorphic 

computing still has room for improvement (Kováč 2010). Further, a key limitation with the use of 

AKIDA, and all systems that rely on SNN, is that it can be significantly derailed by any interruption 

during the spikes of communication, which reduces accuracy (Ivanov et al. 2022). 

By being chip-based (edge AI) AKIDA aims to overcome the limitation of high processing power 

requirements of software-based neural systems. When the processing and memory elements of a system 

are physically separated, the interchange of data between the ‘off-site’ memory and the processor is the 

rate-limiting factor for the system. Having two separate systems (or locations) required to drive the 

computing process also increases the power requirement (Horowitz 2014).  By using a local learning 

system, AKIDA can engage continuous learning directly on the chip which increases speed and reduces 

power costs. The on-chip learning not only speeds up processing but enables more agility and 

responsiveness and can also enhance security, as there is no requirement for data to be stored in the 

cloud (Ivanov et al. 2022). 

Neuromorphic systems are heavily reliant on algorithms and are affected by the fact that the periphery 

of the output models will always be more variable; therefore, predictions based on outlying data will be 

less accurate than if the input data sits in the core of the mathematical model. At present the training of 

any SNN-based model is complicated by the spike-based nature of neuron firing (Siddique, Vai & Pun 

2023). How do you train the neuron when to fire? Development of SNN specific algorithms for training 
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of chip-based models is an area of rapid development and is crucial to improving the accuracy of these 

systems (Siddique, Vai & Pun 2023).  Customised training algorithms will also help to address the issue 

of ‘noisy’ datasets which is an important area of refinement needed for more repeatable object detection 

in images. 

The AKIDA model for this project is also developed through Edge Impulse (Edge Impulse - Optimize 

AI for the edge  2023), using an AKIDA FOMO architecture.  The model architecture was limited by 

the available models through Edge Impulse that could be deployed to an AKIDA system on chip PCIe 

card which can be deployed to a Raspberry Pi development kit.  The model is pretrained using an 

AkidaNet transfer learning block suitable for processing 320 x 320 pixel colour images (Taylor 2023). 

 
2.4 Implementation of AI technologies 
 
Obviously, AI technologies can already be readily used by structure inspectors during the course of, or 

immediately after, a routine inspection. This might involve obtaining images for analysis using a 

handheld digital camera, or a camera supported with a mount, clamps or tripod (which aid in keeping 

the camera completely stable). The use of camera mounts is also beneficial for replicating specific 

angles for repeated images of a defect over time, although exact replication of parameters is virtual 

impossible for manual methods as discussed above. To improve efficiency, and access more difficult to 

reach locations, such as tunnels and bridge pylons, the use of automated camera operators has also been 

proposed (Peng et al. 2020; Saeed 2021) 

 
2.4.1 Unmanned Aerial Vehicles (UAV) 
 
Unmanned aerial vehicles (UAVs), otherwise known as drones, are being increasingly used in research 

applications across many and varied fields including ecology, agriculture and defence, as well as 

engineering (Peng et al. 2020; Abdelmalek et al. 2022; Sophie, Marcus & Nathan 2022).  Use of a UAV 

substantially enhances the ease of access for engineering applications, where large structures can be 

inspected more thoroughly and quickly than they can by a visual inspection (Szu-Pyng, Yung-Chen & 

Feng-Liang 2023).  This approach has the advantages of reducing costs associated with inspections and 

improving the safety for inspectors. Most civil engineering research applications for UAVs in the 

current literature encompass defect detection and assessment, asset monitoring (including emergency 

assessment) and system mapping (Peng et al. 2020; Szu-Pyng, Yung-Chen & Feng-Liang 2023). In 

particular, due to the speed and accuracy of deep learning models, such as YOLO, for object detection 

this technology is well-suited to being deployed in conjunction with a UAV (Chen, C. et al. 2023; Szu-

Pyng, Yung-Chen & Feng-Liang 2023).  Kao et. al demonstrated that version 4 of YOLO was able to 

detect concrete cracks in a bridge structure as small as 0.22 mm wide with 92% accuracy when deployed 

using a UAV, indicating the feasibility of this approach (Szu-Pyng, Yung-Chen & Feng-Liang 2023).  
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However, there are disadvantages to drone technologies including short operating windows and their 

inability to perform well in inclement weather (Sophie, Marcus & Nathan 2022).  

At this stage the fusion of UAV and deep learning technologies requires substantial preparation and 

feasibility assessment. Although increasingly reported, the quality of outputs is currently inconsistent 

and there are several critical steps involved in accurately assessing civil infrastructure. A case study 

about automatic damage detection on the Pahtajokk Bridge, a simple bridge structure, used a four (4) 

step framework to carry out the defect detection process using AI technologies and a UAV (Mirzazade 

et al. 2021).  This case study provides a nice explanation of the integrated workflow required to apply 

both UAV and AI technologies during a civil inspection. Their framework consisted of: 

 Data acquisition with an efficient flight path (for remote piloted aircraft image acquisition) 

 Computer vision, training, testing and validation of neural networks 

 Point cloud generation (to generate location information) 

 Damage quantification. 

The authors also used three (3) autonomous image recognition methods on the Pahtajokk Bridge, being: 

 Masking of background in images to reduce image complexity 

 Detecting potential damaged areas (images were classified as containing damage or not) 

 Segmentation of potentially detected damage down to the pixel level using two models. 

This case study provided an extensive report on the process required to deploy AI technologies using a 

UAV on a very simple structure and highlighted the areas where the technologies struggled to perform. 

Their conclusion was that there is potential for automatic detection of defects using AI and UAVs, but 

that careful preparation and model training is essential for success (Mirzazade et al. 2021). 

Going forward there will increasing utilisation of UAVs and AI technologies, and the combination of 

technologies seems boundless. Although YOLO seems to be the current front runner, other models have 

been tested. Saeed (Saeed 2021) developed a model to identify cracks in concrete structures using 

Convolutional Neural Networks and a UAV.  The model was trained, validated and transferred to a 

Raspberry Pi 4 incorporated on an UAV.  The model presented a high level of accuracy both in training 

and when validated, again demonstrating that AI technologies and processes are currently available to 

identify a common concrete structure defect. Although the use of UAVs will likely be principally 

directed at obtaining images, there are other potential applications such as the incorporation of other 

testing technologies that are also reliant on algorithms.  As an example, a feasibility assessment of 

bridge crack width identification on the Xiangjiang River bridge achieved greater than 90% width 

recognition using unmanned aerial vehicle (UAV), a SLR camera and laser rangefinder. This was 
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combined with neural networks and support vector machine to initially locate and then extract the cracks 

(Peng et al. 2020). 

 
2.4.2 Ground based inspection units 
 
One major limitation of UAVs is their limited flight time, and the restrictions around their potential 

flight paths. To circumvent these restriction other approaches to the automated acquisition of images 

has been investigated. Huang et al (2018) conducted a study into the identification of tunnel surface 

cracking and leakage defects using AI and a custom-built moving tunnel inspection unit named MTI-

200a.  This novel example of using a ground-based unit to acquire images demonstrates that there are 

multiple possible approaches to automated image acquisition that also focus on enhanced safety and 

difficult to access locations. This unit was also used in combination with a fully convolutional network 

(FCN) for image recognition (Hong-wei, Qing-tong & Dong-ming 2018) 

 
2.4.3  Mobile Backpack /Lidar method 
 
Jun Kang et. al. (2020) presented another novel approach to identifying concrete surface defects 

utilising a mobile data collection system mounted to a backpack in an indoor environment.  The study 

aimed to leverage imagery and LIDAR sensors, deep learning algorithms, and Building Information 

Modelling (BIM) to build a framework for automated defect inspection.  The study was organised into 

five (5) stages: data collection, defect detection, scene reconstruction, defect assessment, and data 

integration (Jun Kang et al. 2020).  The CNN called ResNet-50 was used for the classification of 

concrete defects, with the deep learning model previously built and trained by the authors. Training of 

the model was extensive with 18500 patches of 256 x 256 pixel images utilised, with a ratio of 4:4:4 

for classes of no defect, cracking, and spalling.  The model was created using Tensorflow and 

implemented on a Nvidia 2070 processor.  Training of the model took 75 hours, which indicates that 

regardless of the techniques used to obtain the images, substantial effort is still required for image 

processing for all approaches at this stage.   

 
2.5 Object detection model key terminology and parameters 
 
2.5.1 Transfer learning 
 
Transfer learning in object detection enables developers to utilise an existing trained model as a 

foundation for training a new model, enhancing performance through the transfer of knowledge. 

Farahani and team state that it is particularly useful where there is a shortage of annotated data, and that 

it is suitable for use on data from different domains and distributions (Farahani et al. 2020). This project 

used transfer learning through the Edge Impulse portal, where the YOLOv5 model benefitted from the 

Microsoft COCO dataset, and the AKIDA model used the AKIDANet learning block. 
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2.5.2 Learning rate 
 
Smith (2015) suggests that the learning rate for a deep learning model is the most important hyper-

parameter influencing the outcome.  The learning rate and loss function are used to update the model 

weights through stochastic gradient descent to minimise the model error.  Too large or too small a 

learning rate can make the model diverge or converge slowly, indicating that the researcher must 

experiment to develop an optimal rate for their model (Smith 2015)   

2.5.3 Epochs (training cycles) 
 
An Epoch is a complete pass through the training dataset using the machine learning algorithm.  The 

pass sees weights and biases adjusted in an effort to minimise the algorithm error or loss (Afaq & Rao 

2020).  An Epoch is a hyper-parameter established before training and is very important to the success 

of a model.  Too few Epochs can result in the model underfitting the data, whereby it fails to learn the 

data in sufficient detail.  Too many Epochs and the model can learn the training data too well, inclusive 

of the unwanted noise, resulting in poor performance in the real world (Afaq & Rao 2020).   

 
2.5.4 Data capture 
 
Capturing sufficient images for model training and testing is integral to developing an accurate 

prediction model.  In developing their region based deep learning model for detecting multiple damage 

types, Cha et al. collected 297 images of defects with resolutions of 6000 x 4000 pixels, using a DSLR 

camera (Cha et al. 2018).  The availability of adequate real-world defects to supply sufficient images 

for model development was a major factor in deciding the type of common defect classes used in this 

project. 

 
2.5.5 Data labelling 
 

Object detection models learn based on the information that they are provided.  For this study, data 

images were labelled and provided to the model for training.  Labelling consisted of drawing a bounding 

box around an object within the image and assigning the object a class (in this case crack or spall).  This 

was done through the Edge Impulse portal, however there are many other methods available to label 

images.  Pokhrel states that bounding boxes are typically defined by coordinates and/or width and height 

(Pokhrel 2020).  A class is defined for each object type for detection. 

 
2.5.6 Image augmentation 
 
Image augmentation refers to the process of making more images out of existing images through varying 

techniques.  For object detection it can be utilised to increase the number of images for training and 

validation.  In the development of their crack object detection model, Cha et al. carried out horizontal 
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flipping to increase the quantity of their images (Cha et al. 2018).  Image augmentation is considered 

beyond the scope of this project but could be considered for future research. 

2.5.7 Feature generation 
 
Feature generation in object detection is the process whereby object similarities are gathered from the 

training data for utilisation in the model development.  Features can vary and may include edge profiles 

and key point features in images.  This study using the Edge Impulse portal used automatic feature 

generation (Tyagi 2019). 

2.5.8 Training, validation and testing data 
 
For image uploading, sufficient images will be required of each defect to enable model development.  

For their automatic tunnel lining multi defect detection system using YOLO4, Zhou et al. split the 

available images into three(3) categories; training, validation and testing, using the ratio of 6:2:2 (Zhou, 

Zhang & Gong 2022).   In this study we propose a similar ratio of 56:16:20 for training, validation and 

testing respectively. 

Training data are the images that are used to train the model. Validation data are used to determine the 

model performance during training based on the hyper-parameters set and only has an indirect affect.  

Shah states that testing data are images used to test the model performance post development and 

provide an unbiased evaluation (Shah 2017) . 

 
2.5.9 Model performance 
 
There are a number of ways object detection model performance can be measured.  Common to most 

performance metrics are the terms: 

True positive (TP):  An object is successfully identified 

True negative (TN): There is no object and no object is identified 

False positive (FP): There is no object, yet an object is identified 

False negative (FN): An object is present but not identified 

 
Performance measures for object detection can include Accuracy, Precision, Recall and the F1 Score.  

Calculations for these measures are detailed below: 

Accuracy = (Total TP + Total TN) / (Total TP + Total FP + Total FP + Total FN) 

Precision = Total TP / (Total TP + Total FP) 

Recall = Total TP / (Total TP + Total FN) 

F1 score = (Precision x Recall) / ((Precision + Recall)/2)   (Evidently AI 2023) 
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For object detection, Edge Impulse utilise a confidence score threshold when determining the accuracy 

of predicted bounding boxes with respect to their intersection over union with the true bounding box 

for the object.  Wenkel et al. suggest that most models set low thresholds which can result in a large 

number of false positives (Wenkel et al. 2021).  Their study attempted to optimise model performance 

in relation to the confidence score.  For this study, confidence thresholds of 30%, 50% and 70% were 

utilised across all models to determine and compare accuracy against the test images using both AKIDA 

and YOLOv5. 

 
2.6 Potential limitations 
 
There has been a lot of work carried out using various AI technologies to identify individual defects on 

concrete structures with high accuracy.  The majority of image datasets used in AI training contain 

images with distinct defects and minimal background confusion.  In practice, a trained inspector is 

presented with significant amounts of visual information when inspecting a structure.  Trees, pavement, 

concrete, grass, gravel, bolts, guardrail, water, clouds, sunlight, and shade, to name a few visual 

obstacles.  The inspector must absorb all this information, examine the structure, establish if any defects 

are present, their type, and highlight their extents.  This is a skill honed by humans from birth. However, 

image background confusion or noise can hamper the accuracy and precision of AI model results.  This 

is currently the main potential limitation yet to be resolved to provide an autonomous one stop defect 

detection system suitable for real world implementation.  Figure 7 below shows just how complex a 

simple field image can be, showing cracking, a small not so obvious spall, vegetation, discolouration, 

light and shade. 

 

 
Figure 3: Spall and crack image with background noise 
Image courtesy of: A. Bourke 
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The second greatest limitation to the use of deep learning models for engineering applications is the 

substantial size of image datasets currently required to train the models. Multiple studies have 

demonstrated that small training datasets will result in poorer accuracy and potentially incorrect defect 

classification (Jun Kang et al. 2020; Szu-Pyng, Yung-Chen & Feng-Liang 2023). The amalgamation, 

labelling and sorting of these datasets prior to model training requires substantial time and expertise, 

time that could arguably have been used more productively in simply visually inspecting the structure. 

Other limitations to the use of AI technologies for civil infrastructure inspections, such as cost and 

computer processing power, are also important, and have been outlined in detail above.  

 
2.7 Knowledge gap 
 
It is unknown whether third-generation neuromorphic models can achieve the same level of accuracy 

and precision as the current second-generation models which use high powered and performing 

computers for the assessment of concrete bridge and culvert defects.  This project plans to address this 

knowledge gap by directly comparing how well a third-generation neuromorphic model, AKIDA, 

performs in the detection of concrete cracks from a series of images compared with a well-investigated 

second-generation model, YOLO. Both models will be trained using the same image dataset, and all 

other parameters will be kept constant. 

A second knowledge gap identified during this scoping review was whether third-generation systems 

can extend on the capabilities of the second-generation systems by more accurately identifying and 

classifying a wider range of concrete structure defects, such as spalls, graffiti and pavement cracking. 

This project will partially address this secondary question, by investigating the capability of AKIDA to 

detect spalls (as well as cracks) in images and compare the outcomes to data produced by YOLO using 

the same dataset.  
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Chapter 3: Methodology 
 

3.1 Model selection 
 
AKIDA and YOLO5 based object detection models were selected for comparison of their abilities to 

detect concrete bridge and culvert defects.  AKIDA was to represent the neuromorphic technology, 

where-as YOLO5 was used as its’ 2nd generation counterpart.  Fortunately, BrainChip, the founder of 

AKIDA, have recently partnered with Edge Impulse in their platform to assist users in developing and 

deploying machine learning capabilities for sensor, audio and computer vision requirements (BrainChip 

2022b).  The Edge Impulse online platform allows users to develop computer vision models using both 

AKIDA and YOLO5 technology. 

 
3.2 Object detection classes (defects) used for the models 
 
The types of concrete structure defects are discussed earlier in this paper.  From the authors experience 

in the inspection field, it was noted that concrete cracking and spalling were some of the commonly 

detected defects.  To enable sufficient samples to be located and photographed for model development, 

it was decided to use cracking and spalling as the two (2) image classes for detection by the AKIDA 

and YOLO models. 

 
3.3 Field Sampling 
 
For use in model development and testing, images of the object classes were sourced from the field 

using an iPhone 14 camera. Over 30 concrete bridge and culvert structures were inspected by the author.  

It was determined that at least one hundred (100) images of each defect would be needed to develop the 

models, aligning with similar investigations such as that by Cha et al discussed earlier (Cha et al. 2018).  

Figure 4 below shows the variety of locations that bridge and culvert defect images were collected from, 

with the yellow points representing structure locations inclusive of New York, Philadelphia, the 

Brisbane Valley Rail Trail, Kalbar (QLD), Grafton (NSW), and Stanthorpe (NSW). 
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Figure 4: Location of images collected – Australia and USA 
Map base layer sourced from Google Earth (https://www.google.com.au/earth/) 

 
3.3.1 Image capture 
 
To ensure consistency during the acquisition process and to replicate the potential close range of a drone 

collecting the data, the following image acquisition specifications were applied: 
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Resolution =   4032 x 3024 pixel (landscape or portrait) 

Camera angle = Various 

Lighting =   Daytime, various 

Camera offset =  Approximately 1500 mm from the defect 

Background type =  Unedited – real world photographs and noise 

Location settings =  On 

Figure 5 below is an example bridge location where photographic images were collected.  The yellow 

points represent individual photographs, with the location of IMG_3777.JPG highlighted.  In total, 844 

photographs were taken. 

 

 
Figure 5: Bridge showing image collection locations 
Map base layer sourced from Google Earth (https://www.google.com.au/earth/) 

 
3.3.2 Image cropping 
 
To provide a larger sample defect dataset, the 4032 x 3024 pixel images were split into tiled 512 x 512 

pixel sub-images.  A similar approach was taken by Cha et al (Cha et al. 2018) who used 500 x 375 

pixel sub-images.  This also reduced the size of the images and made them more suitable for training.  

A python script was developed to undertake the cropping task (refer to Appendix E for all python 

scripts).  The script sourced original image properties on height and width to determine the number of 

sub images that could be created from each.  The main images were then sliced into their sub-images 

and the sub images saved using unique file names corresponding to their sub identifier. 
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If a defect type was observed on a sub tile in the parent image, the Excel spreadsheet was updated under 

the respective row for that sub tile to capture the defect type.  Figure 7 provides an example whereby a 

Good grade Crack was observed on tile 164.  The row containing sub-tile 164 data (row 165) was 

updated under the ‘Defect_type’ column to ‘Crack’, and the ‘Defect_Quality’ column was updated to 

‘Good’.   

 

  
Figure 7:  Extract from image Excel datafile 
Screenshot courtesy of: A. Bourke 

 
All sub tile data shown in Figure 7 represent Good grade cracks. Classifying the sub-images was a very 

tedious process but was beneficial in understanding the number of defect types present for each category 

and which tile they were on.  Only having to view the parent images and allowing for multiple sub-tile 

viewing expediated the process somewhat.  The final Excel spreadsheet contained excellent image 

traceability information.  Figure 8 shows sub-image 164 which represented the good quality crack 

image shown on row 165 of the Excel spreadsheet. 

 

 

Figure 8:  Cropped image #164 showing ‘Good’ grade Crack 
Image courtesy of: A. Bourke 
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Once the image Excel database was updated, a python script was developed to save tiles (sub images) 

containing defects to a directory specific to their category.  The spreadsheet defect category and quality 

were utilised to sort and save the images in their respective directories shown in Figure 9 below. 

 

 
Figure 9:  Example directories containing defect tile images 
Screenshot courtesy of: A. Bourke 

 
3.3.4 Developing the object detection models – YOLO and AKIDA 
 
3.3.4.1 Model development software 
 
Both the AKIDA and YOLO5 models were developed using the online Edge AI model development 

portal called ‘Edge Impulse.  Edge Impulse state that their platform allows the user to ‘Build optimized 

machine learning applications that can run efficiently on any edge device’. Below is an extract showing 

the Edge Impulse dashboard: 
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Figure 10:  Edge Impulse model development portal 

Source:  (Edge Impulse - Optimize AI for the edge  2023) 

 
3.3.4.2 Model input and optimisation 
 
The initial model configuration was set for image object detection using a bounding box labelling 

method.  Note as discussed earlier, the AKIDA model development using FOMO only output the 

bounding box centroids.  

Images input into the model were initially selected and imported from the ‘Crack_Good’ and 

‘Spall_Good’ datasets.  One hundred (100) images from each dataset were utilised.  Spall images were 

a limiting factor when keeping an even distribution of defects in the model, due to only 109 available 

spall images. 

Models were also developed using crack only images, which allowed an extension of the model analysis 

through to 350 images.  The Edge Impulse portal allowed for images to be enabled and disabled, so that 

different quantities of the images could be tested on the models. 

All defects within the images required labelling.  Images were labelled with a single bounding box as 

shown in Figure 11 below.  During initial model exploration, it was observed that better results were 

being achieved when the labelling method was modified to include multiple bounding boxes for each 
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crack and spall within an image as demonstrated in Figure 12.  This approach was utilised throughout 

the study. 

 

 
Figure 11: Initial labelling technique, select entire object 
Screenshot courtesy of: A. Bourke, content of image sourced from model developed at: (Edge Impulse - Optimize AI for the 
edge  2023) 

 

 
Figure 12: Optimised labelling technique, split object into small objects 
Screenshot courtesy of: A. Bourke, content of image sourced from model developed at: (Edge Impulse - Optimize AI for the 
edge  2023) 

 
For all models, 64% of images were allocated to training, 16% for validation, and 20% for model testing.  

The Edge Impulse developed image processing block was utilised to normalise the image data, 

 

The custom object detection learning blocks developed by Edge Impulse and BrainChip were utilised 

for the YOLO5 and AKIDA models respectively.  YOLOv5 community (Ultralytics 2023) and AKIDA 

FOMO (BrainChip 2023c) object detection models provided by Edge Impulse were subsequently used 

for the main training process.  Both models are suitable for small datasets.  Image features were 

generated by the Edge Impulse portal using signal processing. 
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Crack only models were developed for YOLOv5 and AKIDA using 100, 150, 170, 200, 350, 300 and 

350 images containing cracks.  A spall and crack model using 100 spall and 100 crack images was 

developed for analysis using YOLOv5 and AKIDA also. 

In processing the models, three hundred (300) training cycles (Epochs) were used, with a varying 

learning rate between 0.01 and 0.001 for AKIDA to optimise testing results.  The learning rate of 0.01 

for the YOLO5 model could not be modified through the online portal. 

To examine the effect of learning rate on a static number of images in the AKIDA model, learning rates 

of 0.001, 0.002, 0.003, 0.004, 0.005 and 0.01 were used in the configuration, to test the performance of 

an AKIDA model using 350 crack only images. 

 
3.4 Data analysis 
 
Both models were tested under the varying configurations.  Where available through the online portal, 

the output accuracy, precision, and F1 scores were recorded for analysis using results from both the 

validation and testing data.   

Precision using the validation data was examined for the YOLOv5 and AKIDA models on the crack 

only image models using a learning rate of 0.01.  Confidence thresholds of 30%, 50% and 70%t were 

set to analyse the accuracy of these models using the test dataset.  F1 scores were noted for all AKIDA 

models using the validation data; this performance metric was not available as output using the 

YOLOv5 model. 

YOLOv5 and AKIDA models using a learning rate of 0.01 with 100 crack and 100 spall images were 

analysed against their accuracy using the confidence thresholds of 30%, 50% and 70% on the test data 

also. 

 
3.5 Visual Analysis 
 
To visualise and compare the models against one another, fourteen (14) images of cracks from the 

‘Crack_Poor’ (crack images of poorer quality) were assembled into a power point presentation on 

separate slides for model testing.  An animated slide show was developed showing the crack images 

each for two (2) seconds on the computer monitor.   Using the mobile phone screen recording function 

and the Edge Impulse mobile phone model deployment, both models were tested and recorded live 

showing their ability to detect defects on the slide show images.  The video MP4 files for each model 

were combined into a single video showing output for the same slides for each model side by side. 
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3.6 Data management 
 
All image files and python scripts were stored in one drive and can be made available through a USQ 

approved data repository.  Python scripts for image cropping which were developed by the author are 

also included in Appendix E. 
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Figure 13:  YOLOv5 v's AKIDA - Crack and Spall Models – trained to detect cracks and spalls.   
The accuracy (%) of the AKIDA model (blue line) was higher than the YOLOv5 model (purple line) at all confidence 
prediction thresholds.  The learning rate for the models was set at 0.01 
 

 
4.3 Crack only prediction results –YOLOv5 v’s AKIDA 
 
For the development of the AKIDA models, the Edge Impulse online portal generated performance 

results for model accuracy, precision and F1 score using the validation data, along with accuracy for 

the three (3) confidence thresholds using the test data.  For the YOLO model, only precision score was 

available on the validation data, with accuracy using the three (3) confidence thresholds on the test data 

available similar to AKIDA.  Precision was the only common performance metric available for 

comparison using the validation data.  Accuracy was used to compare the model results using the test 

data. 

4.3.1 YOLOv5 v’s AKIDA crack only precision results on validation data 
 
The AKIDA model developed using 150 of the crack images produced the highest precision of all 

models on the validation data, with precision of 94.1%.  The highest precision obtained by the YOLOv5 

model was 75% using 350 crack images.  Using the 150 images with YOLOv5 produced 69% precision.  

Table 3 below shows all model configuration combinations and their respective precision scores.  F1 

scores for the AKIDA model are also shown.  Precision scores are further summarised in Figure 14. 
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Table 3: AKIDA v's YOLO 5 crack only - F1, precision and accuracy performance 

 

 
 

 
Figure 14:  Two object detection models YOLOv5 v's AKIDA precision scores detecting cracks. 
Performance was measured against the validation data.  The precision (%) of the AKIDA Model (blue bars) was higher than 
the YOLOv5 model (red bars) for all image dataset sizes.  The learning rate for the model was set at 0.01. 
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4.3.2 YOLOv5 v’s AKIDA accuracy results on the test data 
 
Table 3 above details the accuracy of the models using the 30%, 50% and 70& confidence thresholds 

on the test data.  Again, the AKIDA model appeared have a higher accuracy under the similar model 

configurations.  The highest accuracy achieved was 81.67% using the AKIDA model with 300 images 

using the 30% confidence threshold.  Accuracy was slightly lower at 68%accuracy under the 70% 

threshold.  The highest accuracy achieved by YOLOv5 was 25% using 200 images.  A comparison of 

accuracy results is shown in Figure 15 below. 

 
Figure 15:  Two object detection models YOLOv5 v's AKIDA accuracy scores detecting cracks. 
Accuracy was measured against the test data.  The accuracy (%) of the AKIDA model (panel A) was higher than the YOLOv5 
model (panel B) at all thresholds.  The learning rate for the models was set at 0.01. 
 

 
4.3.3 Learning rate effect on AKIDA model results 
 
To enable analysis of the effect of learning rate on the model, six (6) 350 crack image only AKIDA 

models were developed using learning rates of 0.001, 0.002, 0.003, 0.004, 0.005 and 0.01.  F1 

performance on the validation data was highest for learning rate 0.01.  Precision on the validation data 

was highest for learning rate 0.002.  Accuracy results on the test images using the 30%, 50% and 70% 

confidence intervals were also recorded.  Accuracy was highest at 80%, with a learning rate of 0.004 

yielding the highest accuracy at 80% under the 30% confidence threshold.  Under the 70% threshold, 

accuracy was highest using learning rate 0.002.  Figure 16 below summarises the effect of learning rate 

on the AKIDA model with all other parameters static. 
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Figure 16:  The effect of learning rate on an AKIDA object detection model.   
350 images were used to train and test the model.  Learning rates (indicated by symbols) were varied between 0.01 and 0.001. 
 
 
4.3.4 Optimal AKIDA model 
 
Whilst developing the AKIDA models for comparison against YOLOv5 using the crack only images 

with the static learning rate of 0.01, AKIDA was also tested for each increment of images using other 

learning rates to develop an optimal model.  Optimisation of the AKIDA model for each image 

increment level is summarised in Table 4 below.  Across confidence thresholds, the AKIDA 350 image 

model yielded the best average accuracy result of 77.1% on the test data using a learning rate of 0.002.  

On the validation data, this model produced a F1 result of 90.4% with 93% accuracy.  Other models 

achieved similar performances as shown 

. 
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Table 4: AKIDA crack only model performance optimisation 

 

 
 
4.4 Visual analysis – model deployment 
 

Live testing of the AKIDA and YOLOv5 models was conducted on the PowerPoint slideshow 

containing the fourteen (14) images of cracks taken from the ‘Crack_Poor’ dataset.  An example of the 

model output is shown in Figure 17 below.  The author as a competent structures inspector examined 

the output from the models and assigned a winning model for each image prediction based pm accuracy.  

One (1) point was given to the winning model for each image, with points tallied to determine the best 

performing model overall.  Results from the visual assessment are detailed in Table 5 below. 

 
Table 5: Visual assessment - AKIDA v's YOLOv5, video analysis score for each image and total 

 

 

Number of 
model 
images

L-Rate Model 
Accuracy on 
Validation

F1 on 
Validation

Model testing output 
accuracy 30% 

threshhold

Model testing 
output accuracy 
50% threshhold

Model testing output 
accuracy 70% 

threshhold

Average 
accuracy 

across 
thresholds

100 0.01 90.8% 84.6% 75.0% 75.0% 60.0% 70.0%
100 0.03 84.5% 80.8% 60.0% 45.0% 40.0% 48.3%
100 0.05 87.0% 83.5% 65.0% 65.0% 55.0% 61.7%
100 0.09 82.0% 66.0% 63.2% 57.9% 31.6% 50.9%
100 0.1 85.0% 0.8% 68.4% 63.2% 47.4% 59.7%
100 0.12 73.0% 72.0% 57.9% 52.6% 15.8% 42.1%
150 0.01 94.1% 92.9% 66.7% 60.0% 60.0% 62.2%
150 0.03 93.6% 90.8% 63.3% 63.3% 60.0% 62.2%
150 0.05 92.4% 91.5% 66.7% 63.3% 60.0% 63.3%
170 0.01 92.0% 87.0% 58.8% 55.9% 50.0% 54.9%
170 0.03 91.0% 87.0% 73.5% 67.7% 50.0% 63.7%
170 0.05 87.0% 86.3% 75.5% 64.7% 50.0% 63.4%
170 0.1 86.0% 97.0% 50.0% 47.1% 23.5% 40.2%
200 0.008 83.0% 82.7% 67.5% 62.5% 47.5% 59.2%
200 0.01 79.1% 82.1% 77.5% 77.5% 62.5% 72.5%
200 0.03 83.0% 79.2% 70.0% 65.0% 55.0% 63.3%
250 0.002 90.3% 88.5% 66.0% 58.0% 50.0% 58.0%
250 0.005 92.6% 90.1% 72.0% 68.0% 60.0% 66.7%
250 0.008 88.5% 88.6% 70.0% 58.0% 52.0% 60.0%
250 0.01 87.6% 90.3% 74.0% 60.0% 48.0% 60.7%
300 0.001 90.0% 90.7% 80.0% 80.0% 70.0% 76.7%
300 0.002 92.6% 92.3% 76.7% 80.0% 71.7% 76.1%
300 0.005 95.4% 94.5% 76.0% 66.0% 73.3% 71.8%
300 0.01 93.1% 92.1% 81.7% 78.3% 68.3% 76.1%
350 0.001 71.7% 79.9% 68.6% 58.6% 45.7% 57.6%
350 0.002 91.1% 88.7% 77.1% 77.1% 74.3% 76.2%
350 0.002 93.0% 90.4% 82.9% 80.0% 68.6% 77.1%
350 0.003 84.8% 88.4% 72.9% 68.6% 54.3% 65.2%
350 0.004 87.1% 89.8% 80.0% 71.4% 61.4% 71.0%
350 0.005 90.5% 90.3% 74.3% 68.7% 64.3% 69.1%
350 0.01 88.1% 91.4% 74.3% 67.1% 50.0% 63.8%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 TOTAL
AKIDA 0 0 0 0 1 0 0 0 0 0 1 1 1 0 4
YOLOv5 1 1 1 1 1 1 1 1 1 1 0 1 1 1 13

Model
Image
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Figure 17: Video comparison of YOLO5 and AKIDA using 350 crack images for each model.  
Screenshots courtesy of: A. Bourke, content sourced from models developed at: (Edge Impulse - Optimize AI for the edge  
2023) 
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Confidence threshold levels for both models were adjusted to 25% for YOLO5 and 65% for AKIDA as 

these sensitivity levels appeared to be optimal when viewing the results.  Lowering the confidence 

threshold for the AKIDA model below 65% yielded many false positives, whereas setting the YOLO5 

confidence threshold above 25 % yielded very few true positives.  It should be noted that given the 

AKIDA model was developed using the FOMO architecture, only the bounding box centroid was 

returned, whereas the YOLOv5 model shows the complete bounding box. 
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Chapter 5: Discussion 
 

The study aim was to demonstrate that neuromorphic computing technology is a suitable novel 

technology to detect common defects on concrete bridge and culvert structures using object detection.  

Results comparing the AKIDA model to YOLOv5 are encouraging, but by no standard conclusive or 

robust enough to state categorically that AKIDA outperforms its counterpart.  This is likely due to the 

lack of common model performance statistics across architectures using the Edge Impulse platform.  

There are sufficient grounds, however, to suggest that further investigation into the performance and 

benefits of neuromorphic computing for object detection would be worthwhile.  The other potential 

benefits of neuromorphic computing not central to the considerations of this study, such as low power 

consumption, potential for incremental learning, improved efficiency and better security (Brainchip 

2022a), also support the need for further investigation of third-generation technologies for use in civil 

infrastructure inspection.   

Given time constraints, the acquisition of a suitable array of defect images was a limitation in 

developing the object detection models in the current study.  Stated previously, 844 images were 

collected from the field, with over 30 concrete bridge and culvert structures inspected.  From the 

collected images, 17365 sub images were assembled, with these resulting in only 107 good quality spall 

images and 369 good quality images of cracks.  To achieve a balance of class types, the model was 

limited to a dataset containing 100 images of each defect, which is markedly less than used in many 

other studies (Sabottke & Spieler 2020; Nabizadeh & Parghi 2023). The use of transfer learning assisted 

in catering for this small dataset, enabling the use of predefined weights and biases to initiate the 

learning process.  On the crack only image model, AKIDA achieved 91.4% F1 on the validation data 

using 350 crack images.  However, visual analysis in a real-time setting that used images from outside 

the model learning environment suggested performance was moderately lower.  Nabizadeh and Parghi 

utilised 1600 images of cracks in their study using YOLOv5 and achieved an F1 score of 87% 

(Nabizadeh & Parghi 2023).  Given the difference in image dataset size between their study and the 

current one the similarity in F1 scores indicates that a model deployed to an AKIDA device (i.e. 

neuromorphic computing) has the potential to perform as well as its counterpart. 

Increasing the number of crack images used in the crack only models did not appear to affect the AKIDA 

model F1 score.  Using 100, 150 and 350 images resulted in F1 scores on the validation data of 84.6%, 

93% and 91.4% respectively for crack recognition.  This contrasts with the outcome for spall recognition 

(more discussion below).  Despite the AKIDA model with 200 crack images producing an F1 score of 

82.1%, when 100 of each crack and spall images were used for a combined model (i.e., 200 in total) it 

failed to predict one correct spall image.  In the opinion of a trained inspector (A. Bourke) and as 

evidenced from viewing crack and spall defects in the photographs taken, spall defects could be 
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considered much more complex than cracks.  Whilst it is important that applied models are capable of 

identifying the full range of potential defects on a structure, it is evident that considerably more work 

is required to facilitate this for defects that appear more variable in form. 

The non detection of spall images was concerning given the success in detecting the crack class during 

the initial exploration and pre-study optimisation.  The limited number of spall images available to train 

the models is also believed to be a major factor in the poor spall detection as mentioned above.  Other 

studies have shown much better results using convolution neural networks and deep learning for spall 

detection.  For their study on concrete bug-hole (small spalls) detection, Yao and team (2019) used 

3200 training images and 800 validation images to develop their model, producing 96.43% accuracy on 

an 800 test image dataset (Yao et al. 2019).  This equates to over 40 times the number of images used 

for model development when compared to this similar study.  Further, Hoang and team (2020) achieved 

similar results using a combination of image processing and machine learning techniques to predict 

localised spalls on concrete.  For their study, 600 images were utilised, which resulted in a classification 

accuracy of 85.32% and F1 score of 82% (Hoang 2020).  It is evident from these studies that as the 

number of spall defect images used for model training increases, so does model accuracy and F1.  

Clearly, the 100 spall images utilised in this study was insufficient.  

However, it is unlikely that model success is simply related to the sheer number of training images. 

Sample images used in Hoang and teams model are shown in their paper, with images containing spalls 

appearing to have relatively simple and similar backgrounds (Hoang 2020).  For the current study, some 

defect images contained a significant amount of background noise and light variation simulating the 

real field environment (evidenced by Figure 17). Thus, given the variation in results between Hoang et 

al. and this study, it is suggested that image complexity could also affect the model performance.  

Secondly, performance could also be related to image resolution.  Sabottke and Spieler examined model 

performance using varying image resolutions when detecting lesions on chest radiograph images.  Their 

findings suggested that performance was better for 320 x 320 pixel models verses 64 x 64 pixel models 

(Sabottke & Spieler 2020).  As the models in this study utilised images of 512 x 512 pixels, it is feasible 

that image resolution had no negative impact on the study. However, a direct comparison of a range of 

pixel densities would be required before this statement could be made definitively. 

Labelling of images for model development was carried out by breaking down defects into smaller 

zones within the image (see Figure 12).  This resulted in five (5) to six (6) times the number of labels 

compared to the initial labelling technique trialled during the model exploration process (see Figure 

11). Bounding boxes (or centroids) subsequently covered a smaller portion of the defect.  One advantage 

of this was that the bounding boxes, when joined, better defined the defect orientation, showing changes 

in direction of the crack.  Direction changes are obvious from the output examples provided in Figure 

17.  This study finding could be particularly useful for the construction and maintenance industry who 
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undertake crack mapping during surveillance works.  Several studies have attempted to map cracks in 

concrete as this information is extremely valuable when monitoring crack movement over time 

(Mostafa, Ahmed & Atef 2013; Jin et al. 2014). The study by Mostafa and team demonstrated that a 

laser scanning technique can be used for crack mapping, although its performance needed optimisation 

(Mostafa, Ahmed & Atef 2013). By comparison, Jin and team used digital image correlation to detect 

cracks in masonry walls which can open and close, but also found this methodology needs refinement 

(Jin et al. 2014).  Thus, further studies into the use of reduced size bounding box as an alternative 

approach to the assessment of crack dynamics is recommended. 

Initially, models were established to detect cracks and spalls in concrete structures to replicate a real 

world inspection and condition assessment.  Ultimately, a key objective for this would be to detect all 

defect types, similar to those detailed in part 2 of the TMR Structure Inspection Manual (State of 

Queensland (Department of Transport and Main Roads) 2016b) and mentioned earlier.  From the results 

obtained, it did not appear viable using YOLOv5 or AKIDA to continue with the assessment of 

combined crack and spall object detection models given the poor response to the limited number of 

spall images available for training.  Using the lower confidence threshold on the training data did yield 

accuracy of up to 30%, however this was generally attributed to the overriding effect of the more 

successful detection of the crack class.  Given the challenges with detecting spalls under the model 

parameters used, and considering the discussion above concerning image complexity, it does not seem 

likely that either of the models used would have been effective at identifying other complex defects, 

such as graffiti. Thus, substantial model refinement is required before real-world deployment is 

possible. 

Due to the above concerns with image and defect complexity the study then focused on the development 

of crack only models. This produced more encouraging results for both YOLOv5 and AKIDA.  On the 

validation data (16% of the total images), typically AKIDA produced a higher precision score than 

YOLOv5.  Using the 150 crack image dataset, AKIDA performed to 94.1% precision, whereas 

YOLOv5 produced 69%. Precision is a measure of how repeatable an outcome is, indicating that the 

outcomes of the AKIDA model for the validation dataset were reliable, while the performance of the 

YOLOv5 model was only moderately reliable. It should be noted that precision scores were not derived 

for the test image dataset. This was due to limitations in the performance data metrics in the Edge 

Impulse portal for these models.   

After training, the models were assessed against the test image dataset (20% of the total images) for 

accuracy, which is a measure of how correct the models were when detecting cracks.  Accuracy was 

particularly low for the test data, yielding only 67% for AKIDA and 13% for YOLOv5 using the 30% 

confidence threshold.  Higher thresholds resulted in even lower accuracy scores. Increasing the number 

of crack only images in the AKIDA model did not appear to increase accuracy on the test image dataset.  
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The 300 crack image models produced accuracies of 82% for AKIDA and 23% for YOLOv5 under the 

30% confidence threshold condition, indicating that the AKIDA model was more accurate than the 

YOLOv5 model.  Indeed, for all models developed, accuracy ranged from 67% to 82% for AKIDA and 

13% to 25% for YOLOv5. Thus, using the confidence score thresholds of 30%, 50% and 70% on the 

test dataset to compare the models, FOMO deployed to AKIDA clearly outperformed YOLOv5 on 

accuracy (refer to Figure 15). Wenkel and team (2021) state that rarely does a paper detail the confidence 

score used in  model evaluation, tending to only state the accuracy results, and that confidence 

thresholds between 5% and 25% are common (Wenkel et al. 2021).  Higher thresholds result in fewer 

false positive predictions.  Lower thresholds may result in not enough true positives.  Establishing an 

appropriate confidence threshold for a model should be subject to the criticality of predictions and the 

risk and consequences of getting it wrong.  For crack and spall detection in the civil engineering field 

for structure inspections, more false positives is probably better than no positives at all.  This differs 

from other disciplines in the science and engineering fields where false positive diagnoses, e.g. of a 

chronic disease requiring long term medication, can have potentially catastrophic consequences (White 

& Algeri 2023).  In civil infrastructure incorrect positive predictions can always be filtered out, however 

this is a time consuming resource intensive process that ultimately researchers are trying to eliminate 

in the first instance through object detection.  

Examining accuracy performance from the AKIDA model using crack only images (refer to Table 4) 

across the validation and testing data shows that better accuracy results were obtained on the validation 

data as opposed to the testing data.  Images for validation and testing were random but consistent across 

the models, although new images were introduced each time the number of images in the model was 

increased.  Choosing the best images for inclusion in a model can be a difficult task.  In this study, the 

number of images available to develop the models were limited from the start due to availability.  

Performance of a model based on a small testing dataset can be influenced considerably even with just 

one incorrect prediction.  Mani and team (2019) suggest a method for proper evaluation of what images 

should be incorporated into model testing through examining coverage.  Their study, which examined 

a number of vision detection models, demonstrated that whilst accuracy performance for their models 

may have been lower than expected of traditional models, the final output appeared a lot more robust 

(Mani et al. 2019). This could also be the case in the current study, where despite poor to average 

accuracy scores, both models performed well for real-time use. 

When examining the model hyper-parameter ‘learning rate’ and its effect on model performance, 

numerous AKIDA object detection models were developed by varying the learning rate between 0.001 

and 0.1, whist maintaining a constant image dataset and number of cycles.  Testing of model accuracy 

using the confidence thresholds was conducted and the results showed a constant drop in accuracy the 

higher the confidence band entered, which was to be expected (refer to Figure 16).  Results for the 
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varying learning rates appeared to be quite similar and insufficient models were developed to enable a 

statistical evaluation to determine if one model configuration was better than others.  However, 0.002 

did appear to be the optimal rate with all other hyper-parameters constant, as the accuracy curve was 

less steep and close to maximum when compared to the others.  It is well known that learning rate can 

affect model performance, as it is a key component of the training algorithm (Yang & Shami 2020).  

For the purposes of this study, optimisation of the learning rate for the small image dataset appeared 

sufficient given the other model constraints.  For the development and implementation of a model for 

the real world, it is recommended that learning rate optimisation be considered in more detail (Yang & 

Shami 2020).  Some studies have taken learning rate optimisation further, proposing the use of a varying 

value based on a dynamic adjustment strategy which has produced good outcomes (Smith 2015). 

In this study, whilst YOLOv5 was outperformed by AKIDA in all performance measures, it appeared 

through a subjective visual assessment to be more accurate and consistent in detecting concrete cracks 

when deployed in real time.  The reason for this inconsistency is unknown, however there are a number 

of potential reasons.  Firstly, the models were trained using a small image dataset.  As discussed earlier, 

YOLOv5 has been shown to perform well using a large dataset. Nabizadeh and Parghi utilised 16 times 

the number of crack images in their model, compared to the current study, to achieve reasonable results 

(Nabizadeh & Parghi 2023).  For this study, in the model development configuration settings, Edge 

Impulse suggest that both AKIDA FOMO and YOLOv5 Community learning blocks are designed to 

work quite well on small image datasets (Edge Impulse - Optimize AI for the edge  2023), yet no optimal 

range or minima is specified.  As such, the YOLOv5 model may require additional development images 

to achieve better results than the present study.  This is reflected by the outcome that YOLOv5 accuracy 

increased when more images were used in the model (refer to Figure 15 B).   Secondly, the AKIDA 

FOMO model returned the object centroid as opposed to YOLOv5 which showed the full bounding 

box.  FOMO is designed to only return the centroid, and as such, visual assessment was not ‘like for 

like’ across the different models.  Preferably, output should have been the same (i.e., bounding box 

only).   Thirdly, the study only touched on other model hyper-parameters (e.g. learning rate), settings 

and methods.  Variation of any, or all, of these parameters could potentially affect model performance. 

One important driver of the current study was the ability to develop a model that could be deployed for 

structure inspection using an UAV. Remote assessment of hard-to-access structures is the ultimate 

application for the deployment of a neuromorphic based model (Cha et al. 2018; Peng et al. 2020).  

While in this study the results suggest that there is plenty of work required before this application can 

be considered, the successful deployment of the AKIDA model to a mobile phone highlights that this 

technology could easily be adapted for drone use in the future. This finding further supports the rationale 

to continue this work going forward.  
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Finally, it is important to reflect on what went well and what could have been better optimised for this 

study.  The key positive is that the study demonstrated that there is potential for neuromorphic 

computing to be used in civil engineering for concrete structure assessments.  Thus, the study has 

achieved its aim.  Further, the study has provided a carefully catalogued dataset of images that are 

traceable and could be used to strengthen future datasets if placed in an open access data repository.   

Yet the study had its limitations; evidence was quite disconnected, performance metrics did not always 

align (e.g. no accuracy score for YOLOv5 of validation data), deployment was through a virtual 

environment (as opposed to on an AKIDA1000 PCIe board or Jetson Nana device), and model 

customisations available through the Edge Impulse portal were not fully explored or taken advantage 

of.  These factors all represent future improvements that could be made, given adequate time and 

resources. Thus, further studies comparing neuromorphic computing to traditional models should 

address the above limitations and consider including an assessment of other known benefits of 

neuromorphic computers, such as speed and energy efficiency.   
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Chapter 6: Conclusion 
 
This study has demonstrated that there is potential for the use of neuromorphic computing in the Civil 

Engineering field for defect detection in concrete structures.  Throughout the study, the AKIDA based 

model constantly showed performance metrics as good or better than its YOLOv5 counterpart.  It is 

appropriate to highlight that all results for this study were achieved using the model parameters stated.  

Variations to learning rate, the number of training cycles, the number of images, and how images are 

labelled will all affect model performance.  As such, the author does not suggest that results achieved 

are optimal to detect defects in concrete structures using a YOLOv5 or AKIDA platform.  Furthermore, 

the functions and customisation options available through the Edge Impulse portal extend well beyond 

those used in models developed for this study.  Researchers and users are encouraged to conduct their 

own exploration, configuring and testing for the development of an object detection model that best 

caters for their requirements. 

 



Allan Bourke  Student number:   

48 | P a g e  

References 
 
Abdelmalek, B, Hafed, Z, Ahmed, K & Amine Mohammed, T 2022, 'A survey on deep learning-
based identification of plant and crop diseases from UAV-based aerial images', Cluster Computing, 
vol. 26, pp. 1297 - 317. 

Afaq, S & Rao, S 2020, 'Significance Of Epochs On Training A Neural Network', International 
Journal of Scientific & Technology Research, vol. 9, pp. 485-8. 

Alqahtani, A & Whyte, A 2013, 'Artificial Neural Networks incorporating cost significant Items 
towards enhancing estimation for (life-cycle) costing of construction projects', Australasian Journal 
of Construction Economics and Building, vol. 13, pp. 51-64. 

Angelova, A & McCluskey, M 2022, Chess-playing robot breaks boy’s finger at Moscow tournament, 
CNN, viewed 20/05/2023, <https://edition.cnn.com/2022/07/25/europe/chess-robot-russia-boy-finger-
intl-scli/index.html>. 

Balayssac, J & Garnier, V 2017, Non-destructive Testing and Evaluation of Civil Engineering 
Structures. 

Bilgil, A & Altun, H 2008, 'Investigation of flow resistance in smooth open channels using artificial 
neural networks', Flow Measurement and Instrumentation, vol. 19, no. 6, pp. 404-8. 

Brainchip 2022a, Edge AI: The Cloud-Free Future is Now, BrainChip Inc., CA, USA, viewed 23 May 
2022, <https://brainchip.com/wp-content/uploads/2022/05/BrainChip-w-GSA-Edge-AI-The-Cloud-
Free-Future-is-Now.pdf>. 

BrainChip 2022b, BrainChip and Edge Impulse Partner to Accelerate AI/ML Deployments, viewed 01 
September 2023, <https://brainchip.com/brainchip-and-edge-impulse-partner-to-accelerate-ai-ml-
deployments/>. 

Brainchip 2023a, Brainchip - Akida AKD1000, Brainchip, viewed 20/05/2023, 
<https://brainchip.com/akida-neural-processor-soc/>. 

Brainchip 2023b, Akida - The global industry-standard for Edge AI, viewed 20/05/2023, 
<https://brainchip.com/products/>. 

BrainChip 2023c, AkidaNet training, viewed 16 August 2023, 
<https://doc.brainchipinc.com/user_guide/akida_models.html#akidanet-training>. 

Bureau of Infrastructure Transport and Regional Economics (BITRE) 2021, Yearbook 2021: 
Australian Infrastructure and Transport Statistics, Statistical Report, Department of Infrastructure 
Transport Regional Development and Communications, BITRE, Canberra, ACT, 
https://www.bitre.gov.au/sites/default/files/documents/Bitre-yearbook-2021.pdf>. 

Cha, Y-J, Choi, W, Suh, G, Mahmoudkhani, S & Büyüköztürk, O 2018, 'Autonomous Structural 
Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types', 
Computer-Aided Civil and Infrastructure Engineering, vol. 33, no. 9, pp. 731-47. 

Chen, C, Zheng, Z, Xu, T, Guo, S, Feng, S, Yao, W & Lan, Y 2023, 'YOLO-Based UAV Technology: 
A Review of the Research and Its Applications', Drones, vol. 7, p. 190. 



Allan Bourke  Student number:   

49 | P a g e  

Chen, L, Haoxin, Y, Xiang, Q, Shidong, Z, Peiyuang, Z, Chengwei, L, Haoyang, T, Xiu, L, Xiaohao, 
W & Xinghui, L 2023, 'A domain adaptation YOLOv5 model for industrial defect inspection', 
Measurement, vol. 213, p. 112725. 

Christian, K, Kristina, G, Varun, K, Burcu, A & Paul, F 2015, 'A review on computer vision based 
defect detection and condition assessment of concrete and asphalt civil infrastructure', Advanced 
Engineering Informatics, vol. 29, no. 2, pp. 196-210. 

Dickson, B 2022, FOMO is a TinyML neural network for real-time object detection, viewed 25 
September 2023, <https://bdtechtalks.com/2022/04/18/fomo-tinyml-object-detection/>. 

Dung, C & Le Duc, A 2018, 'Autonomous concrete crack detection using deep fully convolutional 
neural network', Automation in Construction, vol. 99, pp. 52-8. 

Edge Impulse - Optimize AI for the edge,  2023, Edge Impulse, viewed 01/04/2023, 
<https://www.edgeimpulse.com/>. 

Evidently AI 2023, A Complete Guide to Classification Metrics in Machine Learning, viewed 11 
October 2023, <https://www.evidentlyai.com/classification-metrics>. 

Farahani, A, Pourshojae, B, Rasheed, KM & Arabnia, HR 2020, 'A Concise Review of Transfer 
Learning', 2020 International Conference on Computational Science and Computational Intelligence 
(CSCI), pp. 344-51. 

Flah, M, Suleiman, AR & Nehdi, ML 2020, 'Classification and quantification of cracks in concrete 
structures using deep learning image-based techniques', Cement & Concrete Composites, vol. 114, p. 
103781. 

Gartner 2018, https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-
infrastructure-and-operations-leaders, Gartner, Stamford, CT 06902 USA, viewed 23 May 2022, 
<https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-
operations-leaders>. 

GitHub Inc. 2023, edgeimpulse/yolov5-training, viewed 25 September 2023, 
<https://github.com/edgeimpulse/yolov5-training>. 

Guido, M, Norman, H, Jens, K, Jakob, T, Paul, D, Marcel, H & Volker, R 2019, 'Framework for 
automated UAS-based structural condition assessment of bridges', Automation in Construction, vol. 
97, pp. 77-95. 

Hadi, S & Rigoberto, B 2018, 'Emerging artificial intelligence methods in structural engineering', 
Engineering Structures, vol. 171, pp. 170-89. 

Hoang, N-D 2020, 'Image Processing-Based Spall Object Detection Using Gabor Filter, Texture 
Analysis, and Adaptive Moment Estimation (Adam) Optimized Logistic Regression Models', 
Advances in Civil Engineering, vol. 2020, p. 8829715. 

Hoang, N-D, Quoc-Lam, N & Van-Duc, T 2018, 'Automatic recognition of asphalt pavement cracks 
using metaheuristic optimized edge detection algorithms and convolution neural network', Automation 
in Construction, vol. 94, pp. 203-13. 



Allan Bourke  Student number:   

50 | P a g e  

Hong-wei, H, Qing-tong, L & Dong-ming, Z 2018, 'Deep learning based image recognition for crack 
and leakage defects of metro shield tunnel', Tunnelling and Underground Space Technology, vol. 77, 
pp. 166-76. 

Hooda, Y, Kuhar, P, Sharma, K & Verma, N 2021, 'Emerging Applications of Artificial Intelligence 
in Structural Engineering and Construction Industry', Journal of Physics: Conference Series, vol. 
1950, p. 012062. 

Horowitz, M 2014, '1.1 Computing's energy problem (and what we can do about it)', Digest of 
Technical Papers - IEEE International Solid-State Circuits Conference: Proceedings of the Digest of 
Technical Papers - IEEE International Solid-State Circuits Conference pp. 10-4.  

Hu, T, Zhao, J, Zheng, R, Wang, P, Li, X & Zhang, Q 2021, 'Ultrasonic based concrete defects 
identification via wavelet packet transform and GA-BP neural network', PeerJ Computer Science, vol. 
7, p. e635. 

Huang, J, Rathod, V, Sun, C, Zhu, M, Korattikara, A, Fathi, A, Fischer, I, Wojna, Z, Song, Y, 
Guadarrama, S & Murphy, K 2017, 'Speed/Accuracy Trade-Offs for Modern Convolutional Object 
Detectors', Proceedings of the pp. 3296-7.  

Huu-Tai, T 2022, 'Machine learning for structural engineering: A state-of-the-art review', Structures, 
vol. 38, pp. 448-91. 

IBM Cloud Education 2020a, What is Artificial Intelligence, IBM, viewed 13 October 2021, 
<https://www.ibm.com/cloud/learn/what-is-artificial-intelligence>. 

IBM Cloud Education 2020b, AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: 
What’s the Difference?, IBM, viewed 13 October 2021, <https://www.ibm.com/cloud/learn/deep-
learning>. 

IBM Cloud Education 2020c, Deep Learning, IBM, viewed 13 October 2021, 
<https://www.ibm.com/cloud/learn/deep-learning>. 

Intel 2023, Neuromorphic Computing - What Is Neuromorphic Computing, Intel Corporation, viewed 
20 May 2022, <https://www.intel.com.au/content/www/au/en/research/neuromorphic-
computing.html>. 

Ivanov, D, Chezhegov, A, Kiselev, M, Grunin, A & Larionov, D 2022, 'Neuromorphic artificial 
intelligence systems', Frontiers in Neuroscience, vol. 16, p. 959626. 

Jin, H, Sciammarella, C, Yoshida, S & Lamberti, L 2014, 'Full-Field Displacement Measurement and 
Crack Mapping on Masonry Walls Using Digital Image Correlation', Advancement of Optical 
Methods in Experimental Mechanics, Volume 3: Proceedings of the Advancement of Optical Methods 
in Experimental Mechanics, Volume 3, H Jin, et al. (eds.), Springer International Publishing, pp. 187--
96.  

Jocher, G 2020, YOLOv5, viewed 25 September 2023, <https://github.com/ultralytics/yolov5>. 

Jordan, MI & Mitchell, TM 2015, 'Machine learning: Trends, perspectives, and prospects', Science, 
vol. 349, no. 6245, pp. 255-60. 



Allan Bourke  Student number:   

51 | P a g e  

Jun Kang, C, Zhaoyu, S, Jimmy, W, Zhaofeng, L, Pin Siang, T, Kuan-fu, L, Xin, M & Yu-Hsing, W 
2020, 'Artificial intelligence-empowered pipeline for image-based inspection of concrete structures', 
Automation in Construction, vol. 120, p. 103372. 

Kim, B, Choi, S-W, Lee, d-e & Serfa Juan, R 2022, 'An Automated Image-Based Multivariant 
Concrete Defect Recognition Using a Convolutional Neural Network with an Integrated Pooling 
Module', Sensors (Basel, Switzerland), vol. 22. 

Kováč, L 2010, 'The 20 W sleep-walkers', EMBO reports, vol. 11, p. 2. 

Kumar, P, Supraja, B, Swamy s, N & Kota, S 2021, 'Real-Time Concrete Damage Detection Using 
Deep Learning for High Rise Structures', IEEE Access, vol. PP, pp. 1-. 

Mani, S, Sankaran, A, Tamilselvam, SG & Sethi, A 2019, 'Coverage Testing of Deep Learning 
Models using Dataset Characterization', ArXiv, vol. abs/1911.07309. 

Marieb, EN & Hoehn, K 2019, Human anatomy and Physiology, 11th edn, Pearson Education, San 
Francisco. 

Markets and Markets 2021, 'Global Neuromorphic Computing Market 2022', Neuromorphic 
Computing Market, https://www.marketsandmarkets.com/PressReleases/neuromorphic-chip.asp >. 

Miguel, C, Javier, C-M, Francisco, C & Maria, JE 2022, 'A systematic review of artificial 
intelligence-based music generation: Scope, applications, and future trends', Expert Systems with 
Applications, vol. 209, p. 118190. 

Miles, C 2023, Federal Aviation Adminstriation - Satellite Navigation - Global Positioning System 
(GPS), viewed 09 May 2023, 
<https://www.faa.gov/about/office org/headquarters offices/ato/service units/techops/navservices/gn
ss/gps>. 

Mirzazade, A, Popescu, C, Blanksvärd, T & Täljsten, B 2021, 'Workflow for Off-Site Bridge 
Inspection Using Automatic Damage Detection-Case Study of the Pahtajokk Bridge', Remote Sensing, 
vol. 13, no. 14, p. 2665. 

Mirzazade, A, Popescu, C, Gonzalez-Libreros, J, Blanksvärd, T, Täljsten, B & Sas, G 2023, 'Semi-
autonomous inspection for concrete structures using digital models and a hybrid approach based on 
deep learning and photogrammetry', Journal of Civil Structural Health Monitoring. 

Mostafa, R, Ahmed, E & Atef, F 2013, 'Automatic concrete cracks detection and mapping of 
terrestrial laser scan data', NRIAG Journal of Astronomy and Geophysics, vol. 2, no. 2, pp. 250-5. 

Nabizadeh, E & Parghi, A 2023, 'Vision-based concrete crack detection using deep learning-based 
models', Asian Journal of Civil Engineering, vol. 24, no. 7, pp. 2389-403. 

Olisa, S, Iloanusi, O, Chijindu, V & Ahaneku, M 2018, 'Edge Detection In Images Using Haar 
Wavelets, Sobel, Gabor And Laplacian Filters', International Journal of Scientific & Technology 
Research, vol. 7. 

Park, K & Kim, B 2021, 'Dynamic neuromorphic architecture selection scheme for intelligent Internet 
of Things services', Concurrency and Computation: Practice and Experience, vol. n/a, no. n/a, p. 
e6357. 



Allan Bourke  Student number:   

52 | P a g e  

Peng, X, Zhong, X, Zhao, C, Chen, YF & Zhang, T 2020, 'The Feasibility Assessment Study of 
Bridge Crack Width Recognition in Images Based on Special Inspection UAV', Advances in Civil 
Engineering, vol. 2020, no. 8811649. 

Pokhrel, S 2020, Image Data Labelling and Annotation — Everything you need to know, viewed 12 
October 2023, <https://towardsdatascience.com/image-data-labelling-and-annotation-everything-you-
need-to-know-86ede6c684b1>. 

Redmon, J 2016, YOLO: Real-Time Object Detection, viewed 20/05/2023, 
<https://pjreddie.com/darknet/yolo/>. 

Ren, Z, Fang, F, Yan, N & Wu, Y 2022, 'State of the Art in Defect Detection Based on Machine 
Vision', International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 
9, pp. 661–91. 

Roper, H, Kirkby, G & Baweja, D 1986, 'Long-Term Durability of Blended Cement Concretes in 
Structures.', Publication SP - American Concrete Institute, vol. 1, pp. 463-82. 

Sabottke, CF & Spieler, BM 2020, 'The Effect of Image Resolution on Deep Learning in 
Radiography', Radiology: Artificial Intelligence, vol. 2, no. 1, p. e190015. 

Saeed, MS 2021, 'Unmanned Aerial Vehicle for Automatic Detection of Concrete Crack using Deep 
Learning', 2021 2nd International Conference on Robotics, Electrical and Signal Processing 
Techniques (ICREST),  pp. 624-8. 

Schabowicz, K 2019, 'Non-Destructive Testing of Materials in Civil Engineering', Materials, vol. 12, 
p. 3237. 

Schuman, CD, Kulkarni, SR, Parsa, M, Mitchell, JP, Date, P & Kay, B 2022, 'Opportunities for 
neuromorphic computing algorithms and applications', Nature Computational Science, vol. 2, no. 1, 
pp. 10-9. 

Shah, T 2017, About Train, Validation and Test Sets in Machine Learning, Towards Data Science, 
viewed 11 October 2023, <https://towardsdatascience.com/train-validation-and-test-sets-
72cb40cba9e7>. 

Siddique, A, Vai, M & Pun, S 2023, 'A low cost neuromorphic learning engine based on a high 
performance supervised SNN learning algorithm', Scientific Reports, vol. 13. 

Smith, LN 2015, 'Cyclical Learning Rates for Training Neural Networks', 2017 IEEE Winter 
Conference on Applications of Computer Vision (WACV), pp. 464-72. 

Song Ee, P, Seung-Hyun, E & Haemin, J 2020, 'Concrete crack detection and quantification using 
deep learning and structured light', Construction and Building Materials, vol. 252, p. 119096. 

Sophie, W, Marcus, S & Nathan, JW 2022, 'Barriers to Using UAVs in Conservation and 
Environmental Management: A Systematic Review', Environmental Management, vol. 71, pp. 1052-
64. 

Stallard, MM, Cameron, AM & Frank, EP 2018, 'A probabilistic model to estimate visual inspection 
error for metalcastings given different training and judgment types, environmental and human factors, 
and percent of defects', Journal of Manufacturing Systems, vol. 48, pp. 97-106. 



Allan Bourke  Student number:   

53 | P a g e  

State of Queensland (Department of Transport and Main Roads) 2016a, Structures Inspection Manual 
Part 1:  Structures Inspection Policy, Department of Transport and Main Roads, 
https://www.tmr.qld.gov.au/-/media/busind/techstdpubs/Bridges-marine-and-other-
structures/Structures-Inspection-Manual/SIM-Part-1.pdf?la=en>. 

State of Queensland (Department of Transport and Main Roads) 2016b, Structures Inspection Manual 
Part 2:  Deterioration Mechanisms, Department of Transport and Main Roads, 
https://www.tmr.qld.gov.au/-/media/busind/techstdpubs/Bridges-marine-and-other-
structures/Structures-Inspection-Manual/SIM-Part-2.pdf?la=en>. 

State of Queensland (Department of Transport and Main Roads) 2016c, Structures Inspection Manual 
Part 3:  Procedures, Department of Transport and Main Roads, https://www.tmr.qld.gov.au/-
/media/busind/techstdpubs/Bridges-marine-and-other-structures/Structures-Inspection-Manual/SIM-
Part3.pdf?la=en>. 

Syed Sahil Abbas, Z, Mohammad Samar, A, Asra, A, Nadia, K, Mamoona, A & Brian, L 2022, 'A 
survey of modern deep learning based object detection models', Digital Signal Processing, vol. 126, 
p. 103514. 

Szu-Pyng, K, Yung-Chen, C & Feng-Liang, W 2023, 'Combining the YOLOv4 Deep Learning Model 
with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges', 
Sensors (Basel, Switzerland), vol. 23. 

Taylor, A 2023, Benchmarking Akida with Edge Impulse: A Validation of Model Performance on 
BrainChip's Akida Platform, viewed 25 September 2023, <https://edgeimpulse.com/blog/brainchip-
akida-and-edge-impulse>. 

Tyagi, D 2019, Introduction To Feature Detection And Matching, viewed 11 October 2023, 
<https://medium.com/data-breach/introduction-to-feature-detection-and-matching-65e27179885d>. 

Ultralytics 2023, Ultralytics - Welcome to the Ultralytics Community, viewed 16 August 2023, 
<https://community.ultralytics.com/>. 

Vanarse, A, Osseiran, A, Rassau, A & Made, Pvd 2022, 'Application of Neuromorphic Olfactory 
Approach for High-Accuracy Classification of Malts', Sensors (Basel, Switzerland), vol. 22. 

Wenkel, S, Alhazmi, K, Liiv, T, Alrshoud, S & Simon, M 2021, 'Confidence Score: The Forgotten 
Dimension of Object Detection Performance Evaluation', Sensors, vol. 21, no. 13, p. 4350. 

White, T & Algeri, S 2023, 'Estimating the lifetime risk of a false positive screening test result', PLOS 
ONE, vol. 18, no. 2, p. e0281153. 

Xiaoning, C, Qicai, W, Jinpeng, D, Rongling, Z & Sheng, L 2021, 'Intelligent recognition of erosion 
damage to concrete based on improved YOLO-v3', Materials Letters, vol. 302, p. 130363. 

Xiongwei, W, Doyen, S & Steven, CHH 2020, 'Recent advances in deep learning for object detection', 
Neurocomputing, vol. 396, pp. 39-64. 

Yang, L & Shami, A 2020, 'On hyperparameter optimization of machine learning algorithms: Theory 
and practice', Neurocomputing, vol. 415, pp. 295-316. 

Yang, L, Peng, S, Nickolas, W & Yi, S 2021, 'A survey and performance evaluation of deep learning 
methods for small object detection', Expert Systems with Applications, vol. 172, p. 114602. 



Allan Bourke  Student number:   

54 | P a g e  

Yao, G, Wei, F, Yang, Y & Sun, Y 2019, 'Deep-Learning-Based Bughole Detection for Concrete 
Surface Image', Advances in Civil Engineering, vol. 2019, pp. 1-12. 

Yin, W, Xiangzhen, K, Qin, F, Li, C & Junyu, F 2021, 'Modelling damage mechanisms of concrete 
under high confinement pressure', International Journal of Impact Engineering, vol. 150, p. 103815. 

Zakaria, M, Karaaslan, E & Catbas, N 2022, 'Advanced bridge visual inspection using real-time 
machine learning in edge devices', Advances in Bridge Engineering, vol. 3, p. 27. 

Zhang, C, Karim, M & Qin, R 2022, 'A Multitask Deep Learning Model for Parsing Bridge Elements 
and Segmenting Defect in Bridge Inspection Images'. 

Zhang, P, Han, S, Ng, S & Wang, X-H 2018, 'Fiber-Reinforced Concrete with Application in Civil 
Engineering', Advances in Civil Engineering, vol. 2018, pp. 1-4. 

Zhou, Z, Zhang, J & Gong, C 2022, 'Automatic detection method of tunnel lining multi-defects via an 
enhanced You Only Look Once network', Computer-Aided Civil and Infrastructure Engineering, vol. 
37, no. 6, pp. 762-80. 

 



Allan Bourke  Student number:   

55 | P a g e  

Appendix A - Project Specification 
 

ENG4111/4112 Research Project 
 

Project Specification 
 

For:    Allan Bourke 
 
Title: A review and analysis of neuromorphic computing technology to detect 

concrete structures defects using object detection 

 
Major:   Civil Engineering 
 
Supervisors:  Drs. Andy Nguyen and Jason Brown 
 
Enrolment: ENG4111 - EXT S1, 2023 

   ENG4112 – EXT S2, 2023 
 
Project Aim: To demonstrate that neuromorphic computing technology is a suitable novel 

technology to detect common defects on concrete bridge and culvert structures 

using object detection 

 
Programme:  Version 1, 11 March 2023 
 

1. Review current concrete bridge and culvert defect inspection practices 

2. Review neuromorphic computing technology use for object detection 

3. Establish a methodology to incorporate neuromorphic computing through deep learning to 

identify concrete bridge and culvert defects 

4. Inspect and photograph common bridge and culvert defects for use in the object detection 

system development 

5. Develop and train a neuromorphic computer vision model to identify common bridge and 

culvert defects from video footage in real time 

6. Implement the object detection model through a field trial on a device containing edge AI 

technology such as the BrainChip AKIDA Neural Processor or utilising a NVIDIA Jetson Nano  

7. Analyse the field trial results to determine the system accuracy, effectiveness and usability 

8. Consider alternatives to increase the system accuracy, effectiveness, and usability 

 
If time and resources permit 

9. Implement recommended modifications  

10. Conduct a further field trial and compare the results with the previous trial 

11. Consider using a drone to capture the field footage
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 Appendix C – Field Inspection Risk Assessment 
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Appendix E – Python Scripts 
 

#Main image processing script 

from __future__ import print_function 
from GPSPhoto import gpsphoto 
import exifread 
import piexif 
import cv2 
import os 
import numpy 
import xlsxwriter 
from openpyxl import load_workbook 
 
# first establish the directories we will use 
Datadir = "images/" # where our main images will be located 
Exceldir = "excel processed/" # where our excel data file is 
Main_image_processed = "image processed/" # where our main images with labels and 
grid lines are stored 
Sub_image_processed = "sub_processed/" # where our tiled sub images are stored 
 
# now load all of our main image names into an array called image files 
image_files= os.listdir(Datadir) 
 
# now determine how many image files we have 
number_of_main_images = len(image_files) 
print("Number of main images = " + str(number_of_main_images)) # print number of 
image files 
 
# Lets set some criteria about what size sub images we wont to break our image up to 
# We will specify that our sub images are 512 x 512 pixels, BUT CAN BE RESIZED LATER 
IF REQUIRED 
sub_image_height = 512 
sub_image_width = 512 
sub_image_border_size = 4 # 4 pixel border to be drawn around each sub image 
color = (255, 0, 0) # color for the border around each sub image and for labels 
thickness = sub_image_border_size # for drawing border around sub image 
font = cv2.FONT_HERSHEY_SIMPLEX #font for sub image labels 
fontScale = 1 # scale of labelling font 
text_thickness = 2 # thickness of labelling text 
number_of_sub_images = 0 # used to determine number of subimages in each main image 
sub_image_count = 0 # set the number of sub images to zero prior to processing 
main_image_count = 0 # set the number of main images to zero prior to processing 
 
# Storage of our data details will be in an excel file 
workbook_name = (Exceldir + 'sub image data.xlsx') 
workbook = xlsxwriter.Workbook(workbook_name) 
worksheet = workbook.add_worksheet() 
# Setup workbook headings 
worksheet_headings = ["Image number", "Image name","Latitude", "Longitude", 
"Sub number", "Sub name", "Sub width", "Sub height", "Y-Axis Coord", "X-Axis 
Coord", "Defect_type", "Defect_Quality"] 
 
# Writing to top row 
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worksheet.write_row(0, 0, worksheet_headings) 
 
 
 
# now we will process each main image 
for x in range(number_of_main_images): #for each image 
    # first lets learn a bit about the main image 
    image = cv2.imread(Datadir + image_files[x]) # Image is a Numpy Array 
    image_name = image_files[x] 
    image_height = image.shape[0] 
    image_width = image.shape[1] 
    image_channel = image.shape[2] 
    # Get the GPS data from image file 
    data = gpsphoto.getGPSData(Datadir + image_files[x])  # Get image GPS data also 
    # Determine other key details about image 
    number_sub_images_wide = (image_width-
sub_image_border_size)/(sub_image_width+sub_image_border_size) 
    number_sub_images_wide = numpy.floor(number_sub_images_wide) 
    number_sub_images_high = (image_height-
sub_image_border_size)/(sub_image_height+sub_image_border_size) 
    number_sub_images_high = numpy.floor(number_sub_images_high) 
    total_sub_images = number_sub_images_high * number_sub_images_wide # number of 
sub images in this image 
    main_image_count = main_image_count+1 
    # Print out all key details from our main image 
    # print("Sub image number: ", number of sub images) 
    # print("Image name: ", image name) 
    # print("Image height: ", image height) 
    # print("Image width: ", image_width) 
    # print("Image channels: ", image channel) 
    # print("Latitude: ", data['Latitude']) 
    # print("Longitude: ", data['Longitude']) 
    # print("Sub images across: ", number sub images wide) 
    # print("sub images high: ", number sub images high) 
    # print("Total sub images: ", total sub images) 
 
 
    # Now draw the grid lines on our main image to create the sub images 
    # Lets start with all of the vertical lines 
    vertical_grid_line = 1 # first grid line will be number 1 
    while vertical_grid_line <= (number_sub_images_wide+1): #extra grid line for first 
column 
        print(vertical_grid_line) 
        # Draw vertical grid line 
        start = (2 + 4 * (vertical_grid_line-1)+(sub_image_width * (vertical_grid_line-1)), 0) 
        end = (2 + 4 * (vertical_grid_line-1)+(sub_image_width * (vertical_grid_line-1)), 
image_height) 
        cv2.line(image, start, end, color, thickness) 
 
        vertical_grid_line += 1 # move on to next vertical grid line 
 
    # Lets move on to the horizontal grid lines 
    horizontal_grid_line = 1  # first grid line will be number 1 
    while horizontal_grid_line <= (number_sub_images_high + 1):  # extra grid line for first 
row 
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        print(horizontal_grid_line) 
        # Draw horizontal grid line 
        start = (0, (2 + 4 * (horizontal_grid_line-1)+sub_image_height * (horizontal_grid_line - 
1))) 
        end = (image_width, (2 + 4 * (horizontal_grid_line-1)+sub_image_height * 
(horizontal_grid_line - 1))) 
        cv2.line(image, start, end, color, thickness) 
 
        horizontal_grid_line += 1  # move on to next horizontal grid line 
 
    # Now lets go through our main image, extract the sub-images, save them to sub processed 
folder 
    # Label all the sub images in our main image 
    # Copy our main image processed folder 
    # Write all the details to our excel file as we go along 
 
    # Column at a time for our image, inserting row at a time for our sub image in the excel file 
 
    grid_row = 1  # starting point for first sub image 
    while grid_row <= (number_sub_images_wide): 
        grid_column = 1  # starting point for first sub image 
        while grid_column <= (number_sub_images_high): 
            sub_image_count = sub_image_count+1 # we are processing a sub image 
            w_coordinate = (grid_column*sub_image_width)-
sub_image_width+(sub_image_border_size*grid_column) 
            h_coordinate = (grid_row*sub_image_height)-
sub_image_height+(sub_image_border_size*grid_row) 
            # print(w coordinate) 
            # print(h_coordinate) 
 
            # Now copy (crop) our sub image 
            cropped_image = image[w_coordinate:w_coordinate+sub_image_height, 
h coordinate:h coordinate+sub image width] 
 
            # Now store our sub image details in excel 
            cv2.imwrite(Sub_image_processed+str(sub_image_count)+'.jpg', cropped_image) 
 
            # Now label our main image with the sub image number 
            # text 
            sub_image_label = str(sub_image_count) 
            # org 
            org = (h_coordinate+50, w_coordinate+50) #location of text label for each sub image 
            # Using cv2.putText() 
            image = cv2.putText(image, sub_image_label, org, font, fontScale, color, 
text_thickness, cv2.LINE_AA, False) 
 
            # Now write our details to excel 
            # New data to write: 
            new_sub_image = [main_image_count, image_name, data['Latitude'], 
data['Longitude'], sub_image_count, sub_image_label+".jpg", sub_image_height, 
sub_image_width, w_coordinate, h_coordinate, "Nil", "Nil"] 
 
            # Writing to row 
            worksheet.write_row(sub_image_count, 0, new_sub_image) 
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            grid_column += 1 
        grid_row +=1 
 
    # Now show our main image with all of the grid lines 
    # cv2.imshow("My Image", image) 
 
    # Now save our processed image with labels and grid lines 
 
    cv2.imwrite(Main_image_processed + str(main_image_count)+'.jpg', image) 
 
    # cv2.waitKey(0) 
 
workbook.close() 
 

 
# Sub image sorting script 
import pandas as pd 
import cv2 
 
Datadir = "sub processed/" # where our main images will be located 
Defectdir = "sub_sorted/" # directory where we will save images containing defects in 
relevant sub directory 
Excelfile = "excel_processed/sub_image_data.xlsx" # where our excel data file is 
 
image_excel_file = pd.read_excel(Excelfile) 
excel_rows =len(image_excel_file) # number of rows in excel file 
print(excel_rows) 
print(image_excel_file['Sub name'].iloc[excel_rows-1]) 
row_counter = 0 # counter to process each row and sort images 
while row_counter < excel_rows: 
    # go through each row, if defect, then save to relevant defect directory 
    row_defect_value = image_excel_file['Defect type'].iloc[row_counter] 
    if row_defect_value != "Nil": # we have a positive defect so save to relevant director 
        defect_file_name = image_excel_file['Sub name'].iloc[row_counter] # name of defect 
sub image 
        row defect quality = image excel file['Defect Quality'].iloc[row counter] # used to 
establish subdirectory name 
        save_directory_and_image = 
Defectdir+row_defect_value+" "+row_defect_quality+"/"+row_defect_value+" "+defect_f
ile_name # this is where we will save our sub image 
        image_to_sort = cv2.imread(Datadir+defect_file_name)  # Image is a Numpy Array - this 
is our image to relocate/sort 
        cv2.imwrite(save_directory_and_image, image_to_sort) # save sorted image to correct 
directory 
    row_counter = row_counter+1 
 
 




