
University of Southern Queensland

Faculty of Health, Engineering & Sciences

A Deep Learning Solution for the Detection of Health and

Productivity Metrics in Sandalwood Forest Plantations

Using Drone Imaging

A dissertation submitted by

I. Humber

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Honours) (Computer Systems)

Submitted: October, 2023

Abstract

The production of Sandalwood Oil is a highly lucrative industry, and one in which

Australia is currently the global leader. The processes currently applied to monitor tree

health and predict the volume of marketable product at harvest are costly in both time

and resources. Deep learning has shown promise for the automatic monitoring of health

and volume in silviculture plantations using overhead imagery. However, this has never

been done on the individual tree level for the 5 class health score or bole height and

diameter at breast height applied by the industry. Nor has it been attempted within

Sandalwood plantations. Thus, a two stage, deep learning based system was proposed,

informed by the findings of relevant literature. The goal of the system was the of full

automation of both general health monitoring and marketable volume prediction on the

individual tree level, thus adding value to the imagery already recorded by the industry

as part of yearly inventory.

The resulting system was able to detect trees within the plantations at an accuracy

comparable to leading algorithms. Moreover, the system was able to classify the health

scores used in industry-standard volume estimation calculations with an Average Precision

of 0.97 and sample-weighted F1 score of 0.92, exceeding the performance of other tree

health classifiers proposed in the literature.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

I. Humber

Acknowledgments

I would like to thank my supervisor, Dr. Tobias Low, for his insightful feedback and input

during the formulation of this dissertation and his generous allocation of his valuable

time. Moreover, I would like to express my abundant gratitude towards Dr. Precila

Gonzales, a distinguished member of the Quintis research team, who went above and

beyond expectations to ensure the quality of the dataset used in this study and to assist

and advise me on research and forestry practices. Finally, I would like to thank my wife

and family for their unwavering support and patience during the completion of this study.

I. Humber

Contents

Abstract i

Thesis Certification v

Acknowledgments vii

List of Figures xv

List of Tables xvii

Chapter 1 Introduction and Background 1

1.1 Sandalwood Plantations . 2

1.2 Tree Health Monitoring in Forest Plantations 2

1.3 Inventory in Forest Plantations . 3

1.4 Machine Learning . 4

1.4.1 Deep Learning . 4

1.4.2 Convolutional Neural Networks (CNN) 6

1.4.3 Image Classification . 7

1.4.4 Object Detection . 7

1.4.5 Image Instance Segmentation . 8

1.4.6 Image Annotation . 8

1.4.7 Image Regression . 9

1.4.8 Hyperparameters . 9

1.4.9 Model Training . 10

1.4.10 Transfer Learning . 11

1.4.11 Over-fitting . 12

1.4.12 Under-fitting . 14

1.4.13 Model Evaluation . 14

1.5 Research Questions . 18

Chapter 2 Literature Review 19

2.1 Sandalwood Tree Volume Prediction Techniques 19

2.2 Innovative General Techniques For Tree Health and Volume Assessment,

Detection and Prediction . 20

2.2.1 Health Monitoring . 20

2.2.2 Yield Prediction . 21

2.3 Leading Machine Learning Techniques For Image Analysis 21

2.3.1 Instance Segmentation . 21

2.3.2 Image Classification . 22

2.3.3 Image Regression . 22

2.4 Machine Learning For Individual Tree Health and Volume Prediction . . . 22

2.4.1 Feature Extraction and Shallow Learning 23

2.4.2 Deep Learning . 24

2.4.3 Common Design Amongst Health/Volume Prediction Models . . . 25

2.5 Related Techniques in Agriculture . 25

2.6 Application of These Techniques in Sandalwood Plantations 26

Chapter 3 Research Methodology 27

3.1 Design Objectives . 28

3.2 System Architecture . 28

3.3 Data Collection . 29

3.4 Data Preprocessing . 30

3.5 Data Labelling . 32

3.6 Summary of Final Datasets . 32

3.7 Training . 33

3.7.1 Environment . 33

3.7.2 Stage 1: Automatic Individual Tree Detection and Segmentation . 33

3.7.3 Stage 2: Automatic Tree Health and Parameter Prediction 34

3.8 Model Evaluation . 36

Chapter 4 System Design 37

4.1 Pilot Studies . 37

4.1.1 Matterport Mask RCNN Individual Tree Detection Model 37

4.2 Final System Overview . 38

4.2.1 Stage 1: Individual Tree Detection and Segmentation Model 38

4.2.2 Stage 2: Tree Parameter Prediction Model 40

Chapter 5 Results 43

5.1 Stage 1: Individual Tree Detection and Segmentation Model 43

5.2 Stage 2: Individual Tree Parameter Prediction 47

5.2.1 Tree Health Classifier Model . 47

5.2.2 Regressor Models . 50

5.3 Sources of Error . 51

Chapter 6 Discussion 55

6.1 Analysis of Results . 55

6.1.1 Stage 1: Individual Tree Species Detector 55

6.1.2 Stage 2a: Tree Health Classifier . 56

6.1.3 Stage 2b: Tree Parameter Regressors 58

6.2 Limitations of the Methods . 59

6.3 Limitations of the Study . 59

6.4 Significance of the Study . 60

6.5 Further Work . 60

Chapter 7 Conclusion 63

References 65

Appendix A Project Specification 71

Appendix B Risk Assessment 75

Appendix C Ethical Clearance 77

Appendix D Data 79

D.1 Introduction to this Appendix . 80

D.2 Raw Data . 80

D.3 Drone Imaging . 85

D.3.1 Kingston Rest 1 Block 47 . 85

D.3.2 Kingston Rest 1 Block 47 - Digital Surface Model 86

D.3.3 Kingston Rest 3 Block 1 . 87

D.3.4 Kingston Rest 3 Block 1 - Digital Surface Model 88

Appendix E Source Code 89

E.1 Tree Detection Module . 90

E.2 Health Classifier Model . 93

E.3 Tree Parameter Regressor Model . 98

List of Figures

1.1 Top Left: Sigmoid Function. Top Right: ReLU Function. Bottom: Leaky

ReLU . 5

1.2 The Convolution Operation (Source: Bechberger 2020) 6

1.3 Accuracy (Left) and Loss (Right) Curves of an Overfitting Network (Source:

Rahaman et al. 2020) . 12

2.1 Relationship Between Tree Girth and Heartwood Volume in Sandalwood

(Source: Brand et al. 2012) . 19

3.1 Final Proposed System . 28

3.2 Flowchart of the Stage 1 Data Preprocessing Workflow 30

3.3 Orthomosaic of Kingston Rest Plantation 1, Block 47 30

3.4 Orthomosaic of Kingston Rest Plantation 1, Block 47 31

3.5 Orthomosaic of Kingston Rest Plantation 1, Block 47 31

3.6 Examples of Training Data Augmentations 33

3.7 Stage 1 Training Workflow . 34

3.8 Stage 2 Training Workflow . 35

4.1 Epoch Validation Loss Curves of Model Training Attempts 38

4.2 Flowchart of the Stage 1 Model Workflow 39

4.3 Flowchart of the Stage 2 Workflow . 40

5.1 Evaluation Precision Recall Curves for Stage 1. 45

5.2 Confusion Matrix for The Final Model on Test Dataset 46

5.3 Examples of Stage 1 Detections . 47

5.4 Confusion Matrices . 49

5.5 Precision/Recall Curves . 49

5.6 Receiver Operating Characteristic Curves 50

5.7 Regressor Predictions . 51

List of Tables

2.1 Windrim et al. Summary of Best Results 23

3.1 Breakdown of Final Datasets . 32

3.2 Metrics Used For Model Evaluation . 36

5.1 Bounding Box and Segmentation Test Results 43

5.2 Results for test, validation and training datasets 48

5.3 Results for test, validation and training datasets 50

Chapter 1

Introduction and Background

The Global Sandalwood Market Sales Revenue in 2022 was $820.29 Million USD and is

predicted to reach $1.14 Billion USD in 2027 (Mali 2023). In 2021, Australia occupied

approximately 69% of the global market share for sandalwood products (Global And

United States Sandalwood Market Insights, Forecast To 2027 2021).

Quintis, the world’s largest producer of sandalwood and the industry contact for this

study, takes inventory of all their plantations (totalling more than 11,200 hectares) every

year, measuring tree girth, bole height and health status (a score ranging from 1, denoting

a dead tree, to 5, a tree of near perfect general health) and imaging every plot using

multi-rotor, rotary-wing drones. The measurements are taken manually by contractors

in random samples within each plot, costing the company substantial time and resources.

Furthermore, visual health assessment is highly prone to human error, particularly when

multiple assessors are involved, as found by Redfern & Boswell (2004).

After reviewing 99 research papers on the topic of the use of UAV imaging to monitor

forest health, Ecke et al. (2022) concluded that UAVs are a cost-efficient and robust tool

for forest health and volume monitoring and the technology is rapidly advancing. Given

that complete UAV imaging is already undertaken yearly by Quintis, there lies a clear

opportunity to reduce the time and resources exhausted by the inventory process, without

requiring the acquisition of any new hardware or manpower, by leveraging the imagery

to enable the automatic detection of the measured parameters.

There is no current research into such a system, though there are studies which have

2 Introduction and Background

a degree of applicability to its development. These studies point towards the potential

for deep learning to be a well suited candidate for the backbone of the aforementioned

system. Furthermore, sandalwood, being semi-parasitic, poses its own unique challenges.

1.1 Sandalwood Plantations

Sandalwood plantations must be non-homogeneous due to the hemiparasitic nature of

Sandalwood trees. While Sandalwood trees perform photosynthesis, they also extract

water, nitrogen, and other nutrients from the roots of nearby trees. As a result, in

commercial Sandalwood plantations trees of one or more other species must be evenly

distributed throughout the plantation at a ratio of at least 1:1 (host to Sandalwood), with

3:1 being ideal for new plantations (FPC: Sandalwood Establishment Guide 2020, Anon

& Chittapur 2021). The plantations used in this study have approximately a 1:1 ratio,

although this ratio varies due to tree mortality over time. The plantations are harvested

after a minimum of 15 years (though value continues to increase after this point).

1.2 Tree Health Monitoring in Forest Plantations

Constant health monitoring is a key strategy for maintaining productive and healthy

forest plantations. It provides critical feedback on the performance of the strategies being

implemented by the plantation management personnel. For example, such data allows for

the early detection of disease, parasites and any external or environmental threats to the

plantation as well as informing on the efficacy of the irrigation strategy being employed.

While there are currently no health detection/monitoring techniques specifically designed

for Sandalwood plantations, these plantations typically use traditional health monitoring

techniques generally employed by the greater field of forestry and silviculture. For the

coarse monitoring of general tree health, particularly for the early detection of diseases,

manual aerial sketch mapping (also known as aerial surveying) has historically been

the primary method (Muchoney & Haack 1994). However, with the commercialisation

of affordable satellite imagery and, more recently, drone imagery, digital images have

largely replaced this approach (Dash et al. 2017). Forest plantations also commonly

employ drive and/or walk-through surveying to detect general health and disease from

1.3 Inventory in Forest Plantations 3

the ground, and then more targeted manual measurement should a health anomaly be

detected (Smith et al. 2008). The detection and classification of the general health and

disease for individual trees in all these methods is done visually, with the application of

professional knowledge and training (Lawson et al. 2008).

Since their introduction in the early 1970s, Vegetation Indexes (VIs) have also been used as

a tool to visualise the general health and/or productivity of vegetated regions. These VIs

generally use mathematical transformations of optical reflectances of various bandwidths

to produce a visual representation of certain health indicators (Zeng et al. 2022). The

normalised difference vegetation index (NDVI) and the normalised difference water index

(NDWI) are popular examples of these VIs and are both used by the management

personnel of the sites in this study.

1.3 Inventory in Forest Plantations

Forest plantations, generally spanning thousands of hectares and containing millions of

trees, often require inventory assessment to estimate the total volume of marketable wood

across the entire plantation. This assessment is typically conducted using statistical

sampling, remote sensing (e.g., overhead imagery), or a combination of both (Köhl 2004,

Krug & dos Santos 2004). These methods usually provide an approximate estimation

of the actual total marketable product. Current tree health is often taken also into

consideration during inventory assessment to aid in the approximation of the total amount

of marketable product to be expected at harvest. However, the equations used for

estimation are prone to inaccuracies stemming from their reliance on manually measured,

random samples.

The company managing the plantations used in this study takes drone imaging of all the

plantations as a visual reference and uses a set of equations to estimate the total amount

of recoverable heartwood (where the Sandalwood Oil is then harvested from) using the

diameter of the tree, the height of the first fork in the main stem (called the bole height)

and the health status of the trees at 15 years of age. This data is collected using statistical

sampling across the plantation, directly measuring random samples of the population to

infer the parameters of the entire plantation.

4 Introduction and Background

1.4 Machine Learning

The field of machine learning (ML) originated with a paper by McCulloch & Pitts (1943)

titled “A logical calculus of the ideas immanent in nervous activity”, the first paper to

propose a mathematical model of the interaction of neurons. This paper, closely followed

by the work of D.O. Hebb “The Organization of Behavior: A Neuropsychological Theory”

(Hebb 1949) arguing the direct connection between neural structure and behaviour,

stimulated an explosion of research into the digital replication of neural learning and

cognition. Notable research that came shortly after Hebb’s claims include the birth of

the Multi-Layer Perceptron (Ivakhnenko 1967) and the Nearest Neighbour classification

algorithm (Cover & Hart 1967), culminating in the first Convolutional Neural Network

(Fukushima 1980). Other important developments in the following years include “The

Strength of Weak Learnability” by Schapire (1990), first proposing the power of voting

algorithms and “Random Decision Forests” by Ho (1995), which proposes the now well

known algorithm, after which the paper was titled.

Machine Learning has since continued to grow at an exponential rate and the field is

drawing substantial attention at the time of writing with the dramatic entry of one of

machine learning’s most advanced and powerful offspring, GTP-4, and other competing

large language models. The result of this growth is the proliferation of a myriad of

Machine Learning algorithms of varying complexity, each best-suited to its own specific

suite of tasks.

1.4.1 Deep Learning

The term “Deep Learning” refers to the use of Artificial Neural Networks (ANNs) with

many hidden layers to learn a task by repetition, much like the human brain. They do

this through the combination of layers of digital neurons — the technology’s fundamental

unit of computation — that simulate some functions of biological neurons.

Each neuron can have multiple inputs, each with its own weight factor. Values enter the

neuron through these inputs, being multiplied by the weight factors which are unique for

each input. A bias factor is applied to the values before they are then added together,

and the total is fed through the neuron’s activation function. The activation function

can be any function, though its purpose is to output a value that is some function of the

1.4 Machine Learning 5

input, while also introducing some nonlinearity to the system. Thus, the sigmoid function

(an ”S” shaped function with its centre at 0.5 and either end a limit at 0 and 1) is the

traditional choice, however, modern models tend to use functions like the rectified linear

activation function (ReLU) or some variation of it (such as Leaky ReLU), due to its faster

compute speed and optimisation while achieving the same purpose. Examples of these

functions can be seen below in Figure 1.1.

−4 −2 0 2 4

0.2

0.4

0.6

0.8

x

1
1
+
e
−

x

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

x

M
ax

(0
,x

)

−15 −10 −5 0 5 10 15

0

5

10

15

x

M
ax

(a
x
,x

)

Figure 1.1: Top Left: Sigmoid Function. Top Right: ReLU Function. Bottom: Leaky ReLU

The result of the combination of interconnected layers of these neurons is a system that,

with each layer, extracts more and more complex features from the input data and then,

focusing on the most useful features, learns to make conclusions based on the input. These

conclusions can be anything from the detection of the breed of dog in a given image to a

detailed and well-informed response to a given text prompt that rivals the average human

in proficiency.

Notable examples of cutting-edge deep learning projects include:

• GPT-4 — An advanced Generative Pretrained Transformer capable of matching or

exceeding average human performance in many tasks such as the Bar Exam, poetry,

writing code, language translation, data analysis and more.

• Midjourney — An image generation tool that combines a large language model and

diffusion to generate artistic or photorealistic images from a text prompt.

• Tesla Full Self-Drive — A fully automated self-driving car system, using only input

from RGB cameras, on its way to being capable of a reliability far in excess of the

6 Introduction and Background

average human.

1.4.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a form of ANN that utilise the discrete

convolution operation to automatically extract and combine features from image data.

The discrete convolution operation applied in the convolution layers of CNNs results in

a matrix (known as a “Feature Map”) containing the sums of the element-wise product

between an N×N kernel (normally 3×3) and an equally sized sub-matrix from the input

as the kernel slides across the entire input matrix — as seen below in Figure 1.2. The

edges of the input matrix are padded with zeros to edge clipping.

Figure 1.2: The Convolution Operation (Source: Bechberger 2020)

A CNN model learns different kernels, thus enabling it to learn multiple features. These

convolution layers are followed by a ReLU activation layer and then, depending on the

model architecture, either followed by another convolution and ReLU pair or by a pooling

layer.

Pooling layers apply a similar operation as the convolution, however instead of a sliding

pairwise product and sum, they simply take the maximum value (in the case of the max

pooling) or the average value (in the case of the average pooling) within the kernel, which

is normally a 2 × 2 window. The result is a down-scaled version of the feature maps

1.4 Machine Learning 7

extracted by the preceding convolution layers.

Finally, the outputs of the last convolutional layers in the network are flattened and

passed through one or more fully connected layers to produce the final output.

1.4.3 Image Classification

Image classification in machine learning involves the automatic classification of images,

each into a class from within a set of predefined classes. An image is presented to the

network and the network outputs a prediction of which class it determines is most likely

to describe the main subject of the image. This is usually in the form of a probability

distribution over the classes, the highest probability being the most likely class.

For a network with more than two output classes, the classification is made using a softmax

classification layer. The softmax function is defined as following:

softmax(x) =
exj∑n
i=1 e

xi
, j = 1: n (1.1)

Where n is the number of classes (or number of elements in the vector x). The result is a

vector of values, normalised such that the sum of all values is 1. Therefore, the resultant

vector can be interpreted as the probabilities of each class given the input image. It

should be noted that image classification assumes that there is only one class per image.

Training data for image classification models consists of a set of images, each with a single

label.

1.4.4 Object Detection

Object detection is an extension of image classification that adds object localisation to

the problem. One common general workflow for these object detection models, based

on the RCNN architecture (Girshick et al. 2013), is as follows. Firstly, an algorithm,

upon receiving the input image, proposes many regions within the image likely to contain

an object (any object at this stage). Then, the regions are passed to an image classification

model. The regions with the highest classification confidence are considered valid predictions

8 Introduction and Background

and the bounds of the proposed regions become the bounding boxes used to delineate

detected objects. The training data for these models are images annotated with bounding

boxes and class names describing the object within each individual box.

1.4.5 Image Instance Segmentation

Instance segmentation is a further development onto object detection, wherein (in general)

the regions proposed by the aforementioned RoI (Region of Interest) network, are additionally

passed to a CNN network specialised in segmenting which pixels belong to the object in

question as opposed to those belonging to the background or other objects. The product

is in image superimposed by masks for every object within the images, labelled by class.

Training data for these models involve images annotated with masks for each training

object within the image, labelled by class.

1.4.6 Image Annotation

Image annotation is the process of assigning labels to images (or to objects within the

images) and thus creating a dataset with which an image classification, detection or

segmentation model can be trained. In the context of this study, the creation of an

instance segmentation dataset was required for the training of stage one. This involved

the masking of each individual tree within the images and labelling them by species.

Computer Vision Annotation Tool

There are numerous tools and methods to assist in image annotation, both proprietary

and freely available to the public. The tool selected for this study was Computer Vision

Annotation Tool (CVAT), a free, open-source annotation tool with advanced customisation

features. CVAT was primarily selected for its ability to integrate machine learning models

to assist in or automate the labelling process.

1.4 Machine Learning 9

Segment Anything Model

In the annotation of the dataset for this study, Meta’s Segment Anything Model (SAM)

(Kirillov et al. 2023) was utilised to greatly reduce time spent labelling and produce a

high quality, instance segmentation dataset quickly from scratch. SAM is a promptable,

zero-shot, generalised object segmentation model, capable of segmenting objects it has

never seen thanks to it’s ‘understanding’ of what objects are. The model was implanted

into CVAT such that trees could be segmented using prompts generated by a mouse click.

In many cases, a tree could be accurately segmented using a single click.

1.4.7 Image Regression

Image regression only differs from image classification in that the final layer consists of

neurons — one for every output – with linear activation functions rather than softmax.

The linear activation function (y = x) essentially acts as a sum of the outputs from the

previous layer (after weights and biases have been applied). The result is a continuous

number that represents the desired, learned metric based on the input image. In this case,

training data consists of an image and a corresponding continuous number representing

the metric being learned. The model then minimises the error between its output and

these numbers until a sufficient accuracy is achieved.

1.4.8 Hyperparameters

The term ‘hyperparameter’ denotes any parameter set before the training of a deep

learning model begins that effects the learning and behaviour of a model, such as the

learning stability or the degree to which the model generalises. Some of the more detailed

effects of these hyperparameters will be discussed in the following sections. The following

hyperparameters where adjusted in the models in this study:

1. Learning Rate

2. Batch Size

3. L2 Regularisation Weight Decay

10 Introduction and Background

4. Training Steps / Epochs

5. Steps per Epoch

6. Optimiser Function

7. Dropout Rate

8. Model Layers

9. Fully Connected Layer Units

10. Augmentations

1.4.9 Model Training

The goal of training any machine learning algorithm is to minimise the cost function. The

exact cost function being applied varies depending on the design and application space of

a model, however, the purpose of all such functions is this: to summarise to error between

a model’s predictions and the actual values in a given dataset.

Once the error between a model’s predictions and the actual values is known, optimisation

of this function can begin. It can be assumed that once the cost function has been

minimised such that no further reduction in error is possible, the model is fully trained

and has learnt all it is capable of learning with its current architecture and dataset.

The problem faced by machine learning, particularly deep learning, is the processing

power required by this optimisation process. Traditionally, optimisation involves using

partial derivatives to find the gradient of the function being optimised (in this case, the

cost function) with regard to the variables involved. Then these variables are recursively

adjusted based on the gradient until the gradient is zero and a minimum has been reached

(ideally a global minimum, though this is not always the case). However, in deep learning

there is generally tens of millions of neurons, each with their own tunable weight and

bias, even in a “small” model; GTP-4 has 170 trillion tunable parameters.

Optimising a system of this size using traditional gradient descent in clearly not viable,

thus, deep learning models employ specialised optimiser functions designed for the task.

1.4 Machine Learning 11

Stochastic Gradient Descent is one such optimiser function which performs gradient

descent on parameters selected randomly with each iteration and is the foundation of

most modern optimiser functions. The Adam optimiser (Kingma & Ba 2017) applies a

computationally efficient adaptive learning rate to reach a cost minimum faster and more

effectively than many other functions and is one of the most popular modern optimiser

functions. It was these two optimiser functions that were tested in this study, because,

despite Adam’s popularity, SGD has sometimes been found to find lower cost minimums

than other optimiser, albeit after a comparatively longer training time.

Another important concept to note is that a second, smaller dataset, called the validation

dataset, is used to validate the models training progress every so many training steps to

monitor the models fit to the data and cease training if it begins to overfit. This concept

is explained further in an upcoming section.

1.4.10 Transfer Learning

When training a deep learning model from scratch, the weights and biases of the model

are initialised with random values and then, throughout the training process, are adjusted

to progressively more useful values to eventually extract valuable features from the input

data. To give a model a head start in identifying and extracting useful features, particularly

when the dataset is relatively small, it can be initialised with weights from the same model

being trained on another, larger dataset, assuming the architecture for both models is

identical. Then, the last few layers, referred to as the classification head, can be exchanged

for layers suited to the new model. The model then is trained further on the new dataset

to become specialised in the new task. This second stage of training is normally referred

to as “Fine-Tuning”.

Depending on the application and the similarity between the original and new datasets, a

varying number of layers or sections of the model can be frozen so that their weights and

biases remain unchanged during the fine-tuning process. This ensures the model focuses

its learning on reclassifying the already high-quality features learned in previous training.

Two pretrained models were used in this study. The first was trained on the Large

Vocabulary Instance Segmentation (LVIS) dataset (Gupta et al. 2019); the second on the

ImageNet dataset (Russakovsky et al. 2015). Since the classes these pretrained models

12 Introduction and Background

were trained for (mostly common objects, people and animals) greatly differed from those

required for this study, it was determined (after justifying experimentation) that no layers

would be frozen in the fine-tuning of the models.

1.4.11 Over-fitting

The term “Over-fitting”, in the context of deep learning, refers to the phenomena where

the model in question becomes so fitted to the training data that it no longer represents

the ‘real world’, but instead it has simply memorised the noise patterns of the training

data set.

Over Fitting can be easily detected by observing the loss curves of a given model. If the

validation loss begins decreasing with the training loss and then reaches a point where,

while the training loss continues to decrease, the validation loss begins to increase, the

model has begun overfitting. An example of a loss curve from an overfitting model can

be seen below in Figure 1.3.

Figure 1.3: Accuracy (Left) and Loss (Right) Curves of an Overfitting Network (Source:

Rahaman et al. 2020)

Conversely, a model with a good fit will have a loss curve where both the validation and

training losses continue to decrease together until steady state is reached, and no more

leaning can occur with the given training data.

1.4 Machine Learning 13

Mitigation

The process of mitigating over-fitting such that a model will perform as well on unseen

data as it does on the training data is termed generalisation. The first generalisation

technique to be considered in any deep learning model is ensuring the architecture topology

matches the complexity of the problem. If a model has far too many layers or classification

layer neurons than what is required to extract the important features and make accurate

predictions, the model will use the excess units to memorise each solution and overfit the

training data.

After the model architecture is appropriate for the task, training-time, active techniques

can be applied. The first among these isWeight Decay Regularisation (a.k.a. L Regularisation).

Overfitting often results in large weights for certain features; this is what memorisation

looks like on the neuron level. Weight decay regularisation involves an additional term

being added to the cost function which is — in the case of L2 regularisation which was

used in this study — the sum of the squares of the weights, multiplied by a settable factor

referred to as the “regularisation factor” or the “weight decay”. This term penalises large

weights, encouraging the network to make its decisions based on a larger number of

features, rather than a select few and results in a more stable, more generalised model.

The second generalisation method implemented in this study is Dropout. The addition of

dropout layers encourage a network to diversify its decision-making further by randomly

deactivating a specified portion of the previous layer’s units each training step. This can

be implemented after every dense layer, after larger sections of the network or in the

classification layers.

The third generalisation technique used in this study is Data Augmentation. To further

assist a network in preparing for data outside the training set, the input images can be

randomly augmented beforehand or with each training cycle, thus simulating a much

larger training dataset and preventing the network from overfitting to particular framing,

size or orientation of the objects being classified. For example if a model has only been

trained on images of an object in its usual orientation, it likely will not recognise the same

object if presented upside-down. The augmentations applied to the input images in this

study were as follows:

1. Vertical and Horizontal Flip

14 Introduction and Background

2. Rotation

3. Scale

4. Gaussian Blur

5. Multiply

6. Sheer

7. Linear Contrast

8. Scale

9. Additive Gaussian Noise

1.4.12 Under-fitting

In some cases, a model is not sufficiently complex to learn to identify the features required

for a certain task. In this case, it is said that the model is under-fitting. Under-fitting can

also be caused by low quality data, data with too much noise or simply by attempting a

task in which there are no identifiable patterns or too many exceptions. This is identifiable

when the validation loss of a model reaches a steady state that is well above that of the

training loss.

In cases where the model is not complex enough to detect the required patterns, simply

increasing the number of layers and/or the number of units in each layer will grant the

model the ability to fit the dataset. Otherwise, the quality of the dataset may need to be

assessed, or the task deemed unviable for machine learning given the current features or

data.

1.4.13 Model Evaluation

After training is completed, a model can then be evaluated to assess its accuracy and

investigate the performance of the model in different facets of the presented task. This

enables one to make inferences about the model’s expected performance on real world

1.4 Machine Learning 15

data. This must be done using a new dataset, separate from the training and validation

sets, to ensure the data used for evaluation has never been seen by the model before. The

new dataset is referred to as the test set.

The test set, which is ideally large enough to ensure reasonably complete representation of

the spectrum of possible inputs the model may face, is then used to calculate the metrics

being used to evaluate the model. The metrics used vary between tasks in an attempt to

accurately summarise the model’s actual expected ability to perform on real-world data

for its given task. The metrics used in this study are as follows:

1. Precision

2. Average Precision

3. Mean Average Precision

4. Recall

5. Precision Recall Curve

6. Receiver Operating Characteristic Curve

7. Area Under Curve

8. Accuracy

9. F1 Score

10. Sample-weighted F1 Score

11. R2

Precision

Precision =
TP

TP + FP
(1.2)

Precision, given in Equation 1.2 above, is a measure of the proportion of correct positive

classifications made by a model.

16 Introduction and Background

Recall

Recall =
TP

TP + FN
(1.3)

Recall, given in Equation 1.3 above, is a measure of the proportion of actual positive

instances a model correctly classified.

Precision Recall Curve

The Precision Recall (PR) curve is a plot of Precision as a function of Recall across a

range of classification thresholds (the levels at which a class’s prediction confidence output

is considered a positive prediction).

Average Precision

The Average Precision (AP) metric is the average value of Precision across the full range

of corresponding Recall values (as plotted in a Precision Recall curve) or, more simply,

the integral of the PR curve. While the AP should, therefore, always be equivalent to

the Area Under the PR curve (AUPRC metric), sometimes they differ slightly because

of differences in the way they are computed in a discrete context. The Mean Average

Precision (mAP) refers to the mean of the APs of each class in a multi-class classifier.

However, the COCO object detection challenge standard defines AP as the average of the

AP values of ten Intersection over Union — or IoU — (the proportion of overlap between

a models predicted boundary box or segmentation and that of ground truth) thresholds

between 0.5 and 0.95 (0.5:0.05:0.95). Thus, in this study, when referring to the AP values

of an object detection model, “AP 50” is used to refer to the AP values calculated at IoU

0.5 and “AP” when referring to the COCO AP.

Receiver Operating Characteristic Curve

The Receiver Operating Characteristic (ROC) curve is a plot of True Positive Rate as a

function of False Positive Rate across a range of classification thresholds.

1.4 Machine Learning 17

Area Under Curve

The Area Under Curve (AUC) is commonly used for both the Precision Recall (PR) curve

and the Receiver Operating Characteristic curve as a way to summarise the curves in a

single figure. The AUC is simply the integral of a given curve.

Accuracy

The accuracy metric is simply the proportion of matching values between a model’s output

and ground truth.

F1 Score and sample-weighted F1 Score

F1 Score =
TP

TP + 1
2(FP + FN)

=
2× Precision×Recall

Precicion+Recall
(1.4)

The F1 score is the harmonic average of the precision and recall scores. It will increase

as precision and recall do, but will penalise a difference between the two.

The sample-weighted F1 Score is appropriate where there is class imbalance within the

dataset and is simply the weighted average of the F1 scores for each class of a multi-class

model. The weights are based on the relative representation of each class within the

dataset, as defined in Equation 1.5 below.

Sample-weighted F1 Score =
N∑
i=1

wi × F1 Scorei (1.5)

where

wi =
No. of samples in class i

Total No. of samples
(1.6)

R2 - The Coefficient of Determination

In the context of this study, the R2 or “coefficient of determination” is the same as the

metric of the same name commonly used in statistics. The only exception being that, due

18 Introduction and Background

to the way it’s calculated by the TensorFlow package, a negative result is possible. Such

a result simply means the fit is arbitrarily worse than random.

1.5 Research Questions

The questions posed in the development of this study are as follows:

1. How could modern machine learning technologies aid the Australian forestry industry?

2. How could the existing yearly imaging be utilised to provide more value?

3. Could the yearly inventory process be digitally automated, removing the need for

manual measurement?

Chapter 2

Literature Review

2.1 Sandalwood Tree Volume Prediction Techniques

Figure 2.1: Relationship Between Tree Girth and Heartwood Volume in Sandalwood (Source:

Brand et al. 2012)

Sandalwood heartwood volume has a strong, positive exponential relationship with tree

girth (Das 2021), as seen in Figure 2.1 above. This is the foundation of all existing

sandalwood oil yield prediction techniques found in the literature.

Quintis, the company with which this study was completed, applies this fact to estimate

tree yield. They also operate under the assumption that economically viable wood

generally only extends to bole height, given the cost of processing. Thus, they use an

equation that includes bole height (the height of the first fork), the diameter of the main

20 Literature Review

stem and health status (a 1-5 rating of a tree’s overall health) to estimate the volume of

heartwood, and therefore, essential oil within a tree. It is worth noting that the health

rating is only used such that a rating of one (a dead tree) results in no oil and a rating

of two reduces the effectual diameter by a set factor. All other health ratings, however,

have no effect on the estimation, in that they do not reduce the effectual diameter.

2.2 Innovative General Techniques For Tree Health and

Volume Assessment, Detection and Prediction

2.2.1 Health Monitoring

Visual assessment of tree health is susceptible to bias, human error and inconsistency, and

although attempts have been made to mitigate these errors (Redfern & Boswell 2004),

this method will always be hindered by its decentralisation.

LiDAR and SAR (Synthetic Aperture Radar) have both been applied for health assessment

via biomass measurement (Tanase et al. 2014). LiDAR shows promising accuracy and high

resolution, though bring with it a high operational cost. SAR, however, still achieved an

r value of 0.5 (compared to LiDAR’s 0.9) correlating with biomass and has a much lower

cost and high availability due to the technology’s ability to “see through” cloud-cover, as

opposed to traditional satellite imagery. SAR is not, however, capable of individual tree

level resolution and its usage is limited to the general monitoring of larger areas.

Vegetation indexes — most prominently the Normalised Difference Vegetation Index

(NDVI) — calculated from satellite imagery have also been used for monitoring water

stress, biomass and other health related anomalies (Wang et al. 2010). While achieving

reasonable accuracy (R2 0.765 for water stress and > 0.5 for biomass), again, satellite

imagery is still not capable of individual tree resolution and, additionally, this form of

imaging is susceptible to occlusion by cloud-cover, which can further reduce its already

limited temporal resolution.

Finally, UAV imagery has been used, particularly more recently, to monitor and detect

health related anomalies in forests and forest plantations. After reviewing 99 papers,

written between 2012 and 2021, on the use of UAVs from various forms of health monitoring,

2.3 Leading Machine Learning Techniques For Image Analysis 21

Ecke et al. (2022) concluded that UAVs are a cost-efficient and robust tool for this

application and the technology is rapidly advancing, further increasing its applicability.

2.2.2 Yield Prediction

A study by Pertille et al. (2023) produced a regression model capable of predicting the

yield of a pine forest plantation in Rio Negro, Paraná, Brazil with an adjusted R2 of

0.51. The linear model used selected vegetation indices calculated from satellite imagery

as inputs, and they were able to find no significant differences between the performance

of their model and the current, statistics-based inventory methods. This study alludes

to the potential for aerial imagery to be used to create yield prediction techniques that

surpass traditional inventory methods.

Popescu et al. (2003) proposed a method using LiDAR measured crown diameter in

combination with a linear regression model to predict tree volume of assorted species in

a forest in southeast America, achieving an R2 of 0.83. While impressive, the application

of LiDAR was deemed outside the scope of this study as one of the reasons drone imaging

was selected as a data source is its low cost and high availability. Furthermore, it would

mean adding tasks to the inventory process, rather than reducing the workload.

2.3 Leading Machine Learning Techniques For Image Analysis

2.3.1 Instance Segmentation

For the purpose of instance segmentation, Mask RCNN (He et al. 2018) was consistently

found to be the leader in terms of accuracy and popularity amongst the literature.

The only other architecture that stands as a competitor for Mask RCNN in terms of

accuracy is the image segmentation model, originally developed for the analysis of medical

imaging, called “U-Net” (Ronneberger et al. 2015). However, the U-Net architecture only

outputs binary masks, thus can only be used for semantic segmentation (segmentation

without delineating between individual instances, only class). Moreover, several studies

(Widyaningrum et al. 2022, Durkee et al. 2021) have compared the performance of the two

architectures for semantic segmentation performance and the Mask RCNN had superior

22 Literature Review

performance. The only exception was that in a few, specific use-cases where “attention”

to very fine detail is vital, it was found that U-Net could perform marginally better due

to the skip connections that transfer low-level features from the architecture’s encoder to

the decoder.

2.3.2 Image Classification

Convolutional Neural Networks (CNNs) are the most used form of deep learning for image

classification in all fields by a significant margin (Aslam & N 2019, Li 2022). Regarding

specific CNN architectures, there are a myriad of options presented in the literature.

Ignoring architectures that are not publicly available or are highly task specific, variations

of ResNet (Bello et al. 2021), DenseNet (which is an extension of the concepts underlying

ResNet) (Huang et al. 2018) and InceptionV3 (Szegedy et al. 2015) appear to be the

generally top performing architectures across the literature and in image classification

competitions such as ILSRVC (Russakovsky et al. 2015).

2.3.3 Image Regression

The body of literature around image regression is far smaller compared to that of image

classification. However, two studies, applying CNN-based image regression to calorie

content prediction from food images proved the concept to be achievable (Myers et al.

2015, Ege & Yanai 2018). Moreover, the Ege & Yanai (2018) model achieved an R2

score of 0.817. The studies suggest that an existing CNN classification architecture can

be utilised for this task, simply replacing the classification layers for a regression output

layer.

2.4 Machine Learning For Individual Tree Health and Volume

Prediction

The emergence of machine learning techniques facilitated the automatic detection of

complicated relationships within data, enabling accurate predictions of parameters and

classifications that may surpass human capabilities. Therefore, machine learning holds

2.4 Machine Learning For Individual Tree Health and Volume Prediction 23

promise in addressing the challenge of more accurately estimating the total marketable

product and tree health within entire plantations.

After reviewing the existing body of papers addressing similar issues, using machine

learning and overhead imagery for tree health and/or volume related predictions, two

primary approaches emerged. The first approach seen amongst the papers was the

extraction of features from the images, followed by a shallow machine learning model

that uses the features as input rather than the images. The second approach was to

use deep learning models—usually a form of Convolutional Neural Network (CNN)—to

analyse the images of the trees to make predictions.

2.4.1 Feature Extraction and Shallow Learning

While shallow learning was certainly the less prevalent of the two main approaches, it

is important to mention because, like with any machine learning problem, if the same

outcome can be achieved using shallow learning, then shallow learning is a better solution

as it generally requires far less resources and computational power, both in training and

in post-training application.

Windrim et al. (2020) tested four shallow learning models—the most accurate being a

Support Vector Machine (SVM)—for their affinity at detecting trees, classifying healthy

& unhealthy trees and classifying healthy trees & those attacked by the Sirex woodwasp

in a Pine plantation. This study notably achieved 100% accuracy in classifying healthy

and unhealthy trees using only RGB image data. They also found that for both tree

detection and Sirex attack detection, the addition of Near Infra-Red (NIR) image data

significantly increased accuracy and the addition of pointcloud and Digital Terrain Model

(DTM) data slightly increased accuracy further. A summary of the best results in this

study are seen below in Table 2.1.

Application
Error

Features Used
Commission Omission

Tree Detection 2.5% 3% RGB, NIR, pointcloud

Health Classification 0% 0% RGB

Sirex Attack Classification 24.1% 10.9% RGB, NIR

Table 2.1: Windrim et al. Summary of Best Results

24 Literature Review

Guerra-Hernández et al. (2021) proposed a method for the classification of trees in

to 4 crown defoliation based health categories in the Bertiandos Forest of North-West

Portugal. The method involved the manual delineation of individual trees, followed

by their classification based on vegetation indexes and a DSM (Digital Surface Map)

textural feature using logistic regression. They achieved a classification accuracy of

75%. Abdollahnejad & Panagiotidis (2020) applied a Support Vector Machine to similar

features to classify dead, healthy and infected coniferous trees in Kostelec, Czech Republic,

achieving an overall accuracy of 85%. While manual tree delineation would be less than

ideal, these studies suggest vegetation indexes and DSMs could be valuable features for

classification.

2.4.2 Deep Learning

Sani-Mohammed et al. (2022) proposed an instance segmentation model for the detection

and segmentation of dead trees in the Bavarian Forest National Park, Germany. The

dataset contained images consisting of NIR, red and green bands, collected by a manned

aircraft from an altitude of 2918 meters. Their pretrained Mask RCNN based model,

pretrained on the Microsoft COCO dataset (Lin et al. 2015), achieved an AP 50 of 0.85, a

COCO AP of 0.54 and an F 1 score of 0.87 for the binary classification and segmentation

of dead trees. A similar model could provide value to Quintis, however, they are more

concerned about the 5 value Health Score rather than simply an indication whether a tree

is alive or dead.

Yarak et al. (2021) proposed a similar model, though using RGB images taken at 100

meters altitude for the purpose of detecting healthy and unhealthy oil palm trees, as

well as for detecting and counting the trees. Their Faster RCNN based model, using

a ResNet50 backbone, was able to detect oil palms and then healthy and unhealthy

individuals to a high accuracy, with F1 scores of 0.95, 0.92 and 0.87 respectively. However,

in a secondary test the model only achieved and F1 score of 0.57 for unhealthy trees. The

tree counting feature of this method would certainly add value to the imagery already

taken by Quintis. Moreover, the study suggests that a comparable accuracy is possible

using only RGB images rather than the hyper-spectral bands applied in the previously

mentioned study.

2.5 Related Techniques in Agriculture 25

S, andric et al. (2022) proposed an individual tree health detection model that applied a

Mask RCNN segmentation model to detect the individual trees, then calculated to average

values of two RGB derived vegetation indexes over the canopy of the individual trees and

classified their health based on where they sit in the distribution of all the trees in the

image. While this method would provide value to Quintis for the purpose of continual

health monitoring, the health classifications would not align with the Health Status used

in their inventory calculations.

Very little research has been done into the automatic volume or biomass prediction of

individual trees. The majority of the related studies found in the literature present models

for coarse, region-based predictions of volume/biomass, rather than fine predictions on a

per-tree basis (Tanase et al. 2014, Pertille et al. 2023). However, a study by Iizuka et al.

(2022) shows a close relationship between orthomosaic derived crown size estimations

and diameter at breast height (DBH), achieving an adjusted R2 value of 0.83 using a

Support Vector Regressor. This study suggests a relationship between tree crown and

DBH, thereby implying that it may be possible to predict the DBH from the orthomosaic

in Sandalwood also.

2.4.3 Common Design Amongst Health/Volume Prediction Models

When reflecting on the most successful studies encountered in the review of the literature

on the topic of individual tree health and volume prediction, some patterns emerged.

Firstly, the individual detection or delineation of individual trees had to be achieved. Of

the techniques applied amount the studies, Mask RCNN was certainly the most prevalent

and successful. After tree delineation, the predictions or classifications of individual trees

are then performed using a model trained on either RGB images, vegetation indexes,

structural features or some combination of all of these. It is from this observation that

the methodology and design proposed by this study was founded on.

2.5 Related Techniques in Agriculture

Ramos-Giraldo et al. (2020) proposed a method using DenseNet to predict a 1-5 index of

water-stress present in unprocessed images of soybean plants for the purpose of preventing

yield loss. Using a dataset of 3000 annotated images, the system achieved 88% accuracy,

26 Literature Review

the confusion matrix showing only small levels of confusion between adjacent classes,

stemming from borderline cases. An et al. (2019) conducted a similar study on images of

Maize, comparing greyscale and RGB images as well as ResNet50 and ResNet152 both

with pretrained and untrained initial weights. They also tested Gradient Boosted Decision

Trees (a shallow learning model) for comparison. They found pretrained ResNet50 with

RGB images to be the most successful model, achieving an accuracy of 96%.

While not directly applicable, these studies provided useful insight into the behaviour of

various machine learning models in related tasks.

2.6 Application of These Techniques in Sandalwood Plantations

After a comprehensive survey of the literature body, no health, volume or even tree

detection related studies could be found on natural sandalwood forests or man-made forest

plantations. Moreover, the direct applicability of many of the aforementioned studies is

limited due to the non-homogeneous format of sandalwood plantations as a result of the

species’ hemiparasitic nature. Thus furthering the need for more research into the area.

Chapter 3

Research Methodology

In discussing the needs and opportunities of the Quintis research department and a

potential topic of this study with Dr. Precila Gonzales and other Quintis staff, it became

clear that both yearly, full inventory, as well as the monitoring of the trees’ individual

health over time were costly and time-consuming yet vitally important to the functioning

and profitability of the company. After reviewing the literature body, it was evident that,

while evidence is present that it can be done, no research had been completed into the

application of machine learning to automating the detection of individual tree health,

bole height and DBH. Nor exists any research into the application of anything remotely

similar to sandalwood plantations specifically. Thus, the opportunity to develop a system

that could save Quintis a substantial amount of both time and money, by utilising their

existing imagery to automate the inventory and health monitoring processes emerged.

28 Research Methodology

3.1 Design Objectives

In accordance to this opportunity, the available resources and the findings in the review

of the greater literature body, the following design objectives were identified:

1. Use modern machine learning technology to increase the utility of existing imagery

2. Enable the automation of the inventory process using only drone imagery

3. Enable the automatic monitoring of individual tree health across entire plantations

using only drone imagery

3.2 System Architecture

Below, in Figure 3.1, is the proposed architecture of the final system, in accordance with

the design objectives.

Figure 3.1: Final Proposed System

3.3 Data Collection 29

For the purpose of this study, and in conformity with its time restraints, only the design

and training of the Stage 1 & 2 models were covered in order to investigate the viability

of such a system.

3.3 Data Collection

The images used for training the models were collected as part of Quintis’ normal, yearly

inventory. The images were taken using a DJI Mavic 3 Multi-spectral, from an altitude

of approximately 225 meters, in a snaking pattern across the plantations, with 65% front

and side overlap and a 0◦ (nadir) gimbal angle. The Drone simultaneously captures

RGB images, several Infra-Red bands and records highly accurate (±0.1 meters) GPS

information for each image.

The tree parameters were recorded using tree diameter tape and an 8-meter telescopic

measuring pole, and the individual tree health was assessed by qualified foresters or

trained contractors. Field notes and GPS coordinates were also recorded to assist in

locating the rows and trees recorded within the orthomosaics. The data was collated into

a CSV file.

The recorded data was then manually linked to the corresponding tree and those trees

were segmented in CVAT. A Python script was used to extract both a masked image and

a square crop of each individual tree and save them under a directory corresponding to

their health status. Furthermore, the script also saved the individual tree images in a

separate directory with their bole height and DBH encoded into their filename.

30 Research Methodology

3.4 Data Preprocessing

Figure 3.2: Flowchart of the Stage 1 Data Preprocessing Workflow

The workflow of the data preprocessing is depicted in Figure 3.2. Firstly, the raw images

are converted into a single, geo-referenced orthomosaic for each plantation block, as seen

in Figure 3.3, using the open source image processing software “Open Drone Map” .

Figure 3.3: Orthomosaic of Kingston Rest Plantation 1, Block 47

The Open Drone Map tool was also used to calculate a DSM (Digital Surface Map) for

3.4 Data Preprocessing 31

each plot using SfM (Structure from Motion) algorithms, as seen in Figure 3.4. The

resulting file could then be used to visualise and retrieve the height of individual trees.

However, due to the height of the drone during imaging, and therefore, the lower resolution

in pixels per meter, the algorithm often omits smaller trees entirely and miss-identifies

ground regions, rendering the DSM an unreliable source of absolute height information.

Figure 3.4: Orthomosaic of Kingston Rest Plantation 1, Block 47

The error caused by the misidentified ground regions was corrected by subtracting the

entire image by the value of a true ground region, as seen in Figure 3.5 below.

Figure 3.5: Orthomosaic of Kingston Rest Plantation 1, Block 47

32 Research Methodology

3.5 Data Labelling

Due to the size and, thus, the memory requirements of these orthomosaics, the orthomosaics

were split into tiles of 1000x1000 pixels to allow them to be passed to the Segment

Anything Model to accelerate the labelling process within CVAT (Computer Vision Annotation

Tool). Each tree was individually labelled by species, and unrecognisable regions or

unidentifiable trees were ignored. The aforementioned unrecognisable regions are normally

artefacts caused by the orthocorrection and stitching process, which are worsened by the

altitude (approximately 225 meters) used by the inventory team for the drone imagery.

The labelled tiles were then exported, creating a class mask and an instance mask for

each tile.

3.6 Summary of Final Datasets

Below, in Table 3.1, is a breakdown of each of the datasets used in this study.

Stage 1: Tree

Detection Dataset

Sandalwood Senna Dalbergia Total

2,063 478 750

3,291

Stage 2: Health

Classifier Dataset

H1 H2 H3 H4 H5 Total

95 44 75 92 164

470

Stage 2: Parameter

Regressor Dataset

Bole Height (m) DBH (cm)

Min Mean Max Min Mean Max Total

1.3 1.79 3.73 7.8 10.25 21.6

277

Table 3.1: Breakdown of Final Datasets

3.7 Training 33

3.7 Training

3.7.1 Environment

Training was completed on an NVIDIA 3080, with 10 GB of GRAM and 8704 CUDA

cores and run within the official Docker images of PyTorch (Stage 1) and TensorFlow

(Stage 2) with WSL2 (Windows Subsystem for Linux 2) for compatibility with the latest

releases of the packages and CUDA (Compute Unified Device Architecture).

3.7.2 Stage 1: Automatic Individual Tree Detection and Segmentation

(a) Original Images, Class Masks and Instance Masks

(b) Augmented Images, Class Masks and Instance Masks

Figure 3.6: Examples of Training Data Augmentations

After the aforementioned image preprocessing, the images were sliced into 512x512 images

and split into training, validation and test datasets (70/15/15 split). Random augmentations,

such as those in Figure 3.6 above, were performed on the training data and the system

was trained to maximise validation performance. Hyperparameters were tuned to further

maximise model performance. The training workflow can be seen below in Figure 3.7.

34 Research Methodology

Figure 3.7: Stage 1 Training Workflow

3.7.3 Stage 2: Automatic Tree Health and Parameter Prediction

An individual model was built for each parameter (Health, bole height and DBH) and the

corresponding data for each model was loaded and split into training, validation and test

subsets (80/10/10 split). The model was trained, applying simple data augmentations

on-the-fly until validation performance was maximised. Hyperparameters were tuned

to further maximise model performance. The training workflow can be seen below in

Figure 3.8.

3.7 Training 35

Figure 3.8: Stage 2 Training Workflow

For the tree health classifier model, Categorical Cross Entropy Loss was used as the

training loss and validation performance was monitored such that F1 score was maximised.

For both the bole height and DBH regressors Mean Squared Error (MSE) was used as the

loss function and the validation performance monitored such that Root Mean Squared

Error was minimised.

36 Research Methodology

3.8 Model Evaluation

After training, the models were assessed based on relevant metrics to determine their

viability for use on real-world data. These metrics are as seen in Table 3.2 below.

Stage 1: Tree Detection Model Stage 2: Tree Parameter Preditcion

Tree Health Classifier Bole Height and DBH Regressors

Overall Average Precision Accuracy Mean Squared Error

Per-class Average Precisions Precision Accuracy

Area Under Overall Precision Recall Curves Recall Root Mean Squared Error

Area Under Per-class Precision Recall Curves Area Under Precision Recall Curve Mean Absolute Error

Overall F1 Score (macro) R2

Per-class F1 Scores

Table 3.2: Metrics Used For Model Evaluation

Chapter 4

System Design

4.1 Pilot Studies

Before the final system architecture was established, several preliminary pilot studies were

conducted, investigating the viability of existing technologies for use as the foundation of

the components required by this study. The most prominent and developed of which are

included in this section.

4.1.1 Matterport Mask RCNN Individual Tree Detection Model

Mask RCNN (He et al. 2018) is an object detection model, based on Faster R-CNN,

extended for object segmentation. The model was first proposed in 2017 and outperformed

all existing segmentation models at the time, including the COCO 2016 challenge winners.

The most widespread and adopted implementations of this model is Abdulla (2017)’s

open source implementation (referred to as “Matterport”), using the Python TensorFlow

package, which is the version used for this pilot study.

A pretrained Mask RCNN model, consisting of a region proposal network followed by a

ResNet50 backbone, was edited by way of removing the classification head containing the

original classes of the MS COCO dataset and replacing them with a new classification head

for the classes of this study’s dataset. Additionally, dropout layers and L2 regularisation

was added to the model.

38 System Design

Early stopping, learning rate reduction and dropout were added to the existing model

to enhance its performance and stability. From here, training began, and the model’s

hyperparameters, including the newly added dropout rate and L2 regularisation loss,

were adjusted with each iteration to improve the model’s classification and mask accuracy.

As seen below in Figure 4.1, many iterations of changes to the data preprocessing and

the model hyperparameters were implemented, resulting in a gradual convergence to a

reasonably fitted model, granted the size and limitations of the dataset.

Figure 4.1: Epoch Validation Loss Curves of Model Training Attempts

The prediction results, while reasonably accurate, were deemed unsatisfactory, and furthermore,

the outdated code was highly inefficient and took a long time to train. Thus, a more

current and efficient model was sought.

4.2 Final System Overview

The overall system architecture was divided into two specialised stages, each applying

their own unique deep learning architecture. The output of stage one becomes the image

component of the second stages input.

4.2.1 Stage 1: Individual Tree Detection and Segmentation Model

Detectron2 is a modern object detection model, written using the Python PyTorch package

and providing the option of the still popular Mask RCNN backbone as well as several

other model architectures (Wu et al. 2019). The model applied more modern and efficient

algorithms and provided better accuracy after training, substantially better training times

and more options for model architectures and pretrained weights, thus, it was selected as

the foundation for the final individual tree detection model. After some preliminary

4.2 Final System Overview 39

testing, the Mask RCNN 101 backbone, pretrained on the LVIS (Large Vocabulary

Instance Segmentation) v0.5 dataset (Gupta et al. 2019) was found to produce the best

results, which was to be expected because the dataset has the most classes (1000) out of

those available for Detectron2 and, therefore, networks trained on it will learn a larger

and more diverse range of features.

Figure 4.2: Flowchart of the Stage 1 Model Workflow

The workflow for the training of the model can be seen in Figure 4.2 above. The data

was further prepared before reaching its final state for training in the following ways. To

speed up training and maximise training data, the 1000x1000 tiles (both original images

and their corresponding masks) were sliced into 512x512 pixel images. These images were

padded, when needed, to fit the required size. After slicing, the images were then randomly

divided into training, validation and test subsets, with a 70/15/15 split. The training

subset was then augmented such that for each image, seven additional augmented versions

were added, resulting in 648 training images containing 16538 instances in total, including

10413 Sandalwood instances. This helped prevent early over-fitting and improved the final

accuracy of the model. Examples of the augmentations can be seen below in Figure 3.6.

The datasets were then converted to the COCO 1.0 format for storage efficiency and

40 System Design

compatibility with the model used for detection.

The model was then trained on the data, plotting the validation results every hundredth

training steps. The model was trained until it began to overfit (i.e. validation metrics

began to deteriorate) and hyperparameters were tweaked to maximise performance.

4.2.2 Stage 2: Tree Parameter Prediction Model

Figure 4.3: Flowchart of the Stage 2 Workflow

In a final, end-to-end implementation, the masked generated by the Sandalwood class

segmentation results from Stage 1 would be fed into Stage 2 as inputs, however, to prove

the concept and ensure quality training, the input data for this stage was manually curated

for the purpose of the study. Due to the very small datasets, the training, validation and

test datasets for the Stage 2 models were divided at an 80/10/10 split.

The second stage consisted of 3 parts: the tree health classifier model and 2 regressor

models for bole height and DBH individually. The 2 regressors could be combined into

one model with 2 outputs, however, during early testing, the 2 output model had greatly

diminished performance compared to the individual regressors.

4.2 Final System Overview 41

Tree Health Classifier

The classifier was written in Python using the TensorFlow package. The architecture uses

a ResNetRS101 backbone, which is an improved version of ResNet101 proposed in 2021

by Bello et al. (2021). The backbone is loaded with pretrained weights from training on

the ImageNet dataset (Russakovsky et al. 2015). The classification head of the backbone

was then removed and replaced with a pooling layer, followed by a fully connected layer,

then a dropout layer and finally a softmax classification layer with outputs matching the

number of classes. Additionally, a simple input augmentation layer was added before

the backbone to enable on-the-fly random flip and rotation augmentation to help prevent

early overfitting, given the small dataset size. The training loss function was weighted

such that each class contributed a proportion that coincides with the class’s representation

in the dataset. Thus, classes with fewer samples effected the loss more than those with

more. This helped ensure the model “paid attention” to classes with a smaller number of

samples during training as the dataset is heavily unbalanced.

Multiple values were selected for each hyperparameter, attempting to cover a suitable

range of potentially viable values for each and then a loop to test every combination

of these hyperparameter values was executed, the results and training curves of each

combination being logged to TensorBoard (a visualisation tool for model training logs).

Thousands of tests were run, including around 1,440 different combinations and new

hyperparameters were added as the performance trends were assessed throughout the

process. Using TensorBoard, the results were assessed and the best performing configuration

was selected.

Bole Height and Diameter at Breast Height Regressors

The architecture for both regressor models was almost identical to the classifier, except

the pooling layer was flattened and, instead of a softmax classification layer at the output,

a linear activation layer with a single output was used. Additionally, the loss weighting

did not apply in this case, as there are no classes. The hyperparameters had to be tweaked

manually because, due to the acquisition of the full dataset later than planned and then to

some errors in the data set not found until very late in the project timeline, there was not

enough time for the full hyperparameter evaluation process like that which was applied to

42 System Design

the classifier model. However, many of the findings from the classification model’s testing

were found to be transferable.

Chapter 5

Results

5.1 Stage 1: Individual Tree Detection and Segmentation

Model

The final Overall Average Precision — also reffered to as Mean Average Precision (mAP)

— and per class Average Precision (AP) values are listed in Table 5.1 below. Normally in

machine learning circles, AP would be the Area Under Curve of the Precision Recall (PR)

curve at Intersection Over Union (IoU) = 0.5. However, for relevance and comparison, the

Stage 1 model was evaluated using the Microsoft COCO (Common Object in Context)

Challenge standards. This means the following AP values listed for this model refer to

the average of APs over 10 IoU thresholds between 0.5 and 0.95. Additionally, the Overall

AP at IoU 0.5 is included under AP 50 for further comparison. For reference, the current

leader on the MS COCO challenge leaderboard, listing innovative models trained on the

MS COCO dataset, has an AP of 0.531 and AP 50 of 0.768.

Overall AP Overall AP 50 AP: Sandalwood AP: Senna AP: Dalbergia

Bounding Box 0.424 0.712 0.419 0.461 0.392

Segmentation 0.448 0.720 0.436 0.504 0.402

Table 5.1: Bounding Box and Segmentation Test Results

The overall and per-class Precision Recall (PR) curves for various scenarios can be seen

below in Figure 5.1, along with the corresponding Area Under PR Curves (AUPRCs)

44 Results

in the legends, as per the MS COCO challenge standard. For reference, a completely

random classifier would plot a horizontal line at the precision proportional to the number

of positive examples within the dataset (0.5 for a class-balanced dataset) with an AUPRC

of 0.5. The greater AUPRC, the better the model. The scenarios plotted in each PR curve

as are follows. The first curve, coinciding with the first black line from the origin and the

bottom legend entry named “C75”, is the PR curve at IoU 0.75. The next curve, “C50”,

is the PR curve at IoU 0.5. Following (on the far side of the blue section, named “Loc”)

is the PR curve with localisation errors removed, or in simple terms, at IoU 0.1; all other

curves are also calculated at IoU 0.1. “Sim”, the next on the legend, is not relevant to this

study, and removes detections where the subclass is wrong but the superclass is correct

(the COCO data set has superclasses grouping similar classes together). The next curve,

called “Oth”, is the PR curve after all class confusions are removed, in other words, if a

detection is the wrong class but is still a valid object, it is no longer considered an error.

The “BG” curve is the PR curve after all error associated with false positive detections

on the background are also removed. Finally, “FN” is a trivial curve after all errors are

removed which is simply a constant 1 on both axes.

46 Results

Figure 5.2: Confusion Matrix for The Final Model on Test Dataset

5.2 Stage 2: Individual Tree Parameter Prediction 47

Below, in Figure 5.3, are three comparisons between the ground truth and the model’s

detections on some images from the test dataset.

(a) Ground Truth Annotations

(b) Model Detections

Figure 5.3: Examples of Stage 1 Detections

5.2 Stage 2: Individual Tree Parameter Prediction

5.2.1 Tree Health Classifier Model

Given that the heartwood estimation formula applied by Quintis is only impacted by

classes 1 and 2 (classes 3-5, conversely, only having no negative effect on the output), the

health classifier model was tested on both the full 5 class version and a condensed version

where classes 3-5 are combined.

The final results of both models can be seen below in Table 5.2. The precision and recall

values were calculated at a confidence threshold of 0.5. The AUPRC is calculated on

the overall curve, considering all classes. The accuracy metric is a simple proportion

48 Results

of correct predictions (true positives and true negatives). It should be noted that in

the case of an unbalanced dataset, accuracy is typically considered a misleading metric

for assessing a model’s performance alone due to the effect said unbalances have on the

result. For example, if 90% of the data belongs to one class, a classifier that always

predicts that class, no matter the input, will have an accuracy of 90%. The Precision,

Recall and F1 score give a more complete picture of a classifier’s performance. The

precision metric measures the proportion of correct positive predictions; a high precision

means the classifier is less likely to make false positive predictions, thus can be at risk

of missing actual positive borderline cases. The recall metric is the proportion of actual

positive class samples correctly identified by the model. Models with high recall can be

at risk of incorrectly including borderline samples resembling positive, when they would,

in actuality, be correctly classified as a negative. The F1 score represents the harmonic

mean of precision and recall. A perfect classifier would have a value of 1.0 for all of these

metrics. The overall F1 score listed is the “sample-weighted F1”, or the weighted average

of the class-wise F1 scores.

Categorical

Crossentropy Loss
Accuracy Precision Recall

AUC Precision

Recall Curve

F1 Score

Overall (weighted)

Per Class

F1 Scores

5 Class Model

Test 0.25 0.50 0.65 0.27 0.56 0.54 0.86/0.22/0.31/0.57/0.53

Validation 1.21 0.41 0.52 0.24 0.49 0.40 0.86/0.44/0.31/0.29/0.73

Training 1.61./0.96 0.61 0.77 0.37 0.70 0.60 0.88/0.48/0.38/0.29/0.72

3 Class Model

Test 0.25 0.90 0.91 0.88 0.97 0.92 1/0.44/0.93

Validation 0.29 0.89 0.91 0.87 0.96 0.89 0.86/0.55/0.93

Training 0.99/0.29 0.88 0.88 0.87 0.96 0.89 0.93/0.53/0.93

Table 5.2: Results for test, validation and training datasets

The confusion matrices (CMs) for both classifiers can be seen below in Figure 5.4. Notice

the absence of the “null” class seen in the Stage 1 detector’s CM as background detections

do not apply to image classification.

50 Results

completely random classifier would have a straight ROC curve, from coordinates (0,0) to

(1,1) and, therefore, a AUROC of 0.5.

(a) 5 Class Classifier (b) 3 Class Classifier

Figure 5.6: Receiver Operating Characteristic Curves

5.2.2 Regressor Models

The final results for the bole height (BH) and diameter at breast height (DBH) regressor

models can be seen in Table 5.3 below. It may be noted that the R2 values are negative.

While this is not usually possible in statistical regression (where only values between 0

and 1 can occur), because of the way the metric is computed in this context, it can be

less than zero, simply meaning the fit is arbitrarily worse than random.

Mean Squared

Error Loss

Root Mean

Squared Error

Mean Absolute

Error
R2

Bole Height

Test 1.37 1.17 0.97 -1.81

Validation 0.71 0.84 0.69 -1.21

Training 1.16 1.08 0.87 -3.32

Diameter at

Breast Height

Test 13.47 3.67 2.99 -0.34

Validation 19.09 4.37 3.36 -1.46

Training 13.50 3.67 2.75 -0.46

Table 5.3: Results for test, validation and training datasets

Below, in Figure 5.7, are the prediction results of both of the regressors on each of the

5.3 Sources of Error 51

three datasets. For reference, a perfect regressor would plot in a straight line from the

bottom left of the plot to the top right, each prediction value matching the corresponding

ground truth value.

(a) Bole Height Regressor

(b) Diameter at Breast Height Regressor

Figure 5.7: Regressor Predictions

5.3 Sources of Error

It should be noted that, while measures were taken to ensure a high degree of randomisation

in the division of the training, validation and test datasets, as well as to ensure maximum

model generalisation, there will always be the possibility of misrepresentation between

the datasets. For example, if the validation and test datasets are sufficiently similar in

terms of the features the model has learnt, the evaluation results from the test dataset

would be higher than usual and would not accurately represent the model’s performance

on real-world data. This is particularly more likely when the dataset is relatively small,

as is the case for the Stage 2 models.

Additionally, it is important to note that all images used in this study come from 2

plots in the same plantation in near Kunnunurra, Western Australia of plots that use

the same host tree configuration and are approximately the same age. Furthermore, the

images were taken with the same drone, on the same day, in the same season. While

52 Results

Stage 1 model should not be sensitive to lighting, image quality or minor changes in

camera parameters (ISO, exposure, etc.) thanks to the extensive use of augmentation,

augmentation was not used as much in the Stage 2 models. All models may not perform

as well on images from other plantations (where, for example, the canopy is much denser

due to a kinder climate) or other seasons, as the trees and their canopies will appear

differently. For example, in spring or times of higher rainfall, dead or dying trees (health

status 1 or 2) can have a sudden growth of new, bright green leaves that will die off again

when the season passes. Furthermore, the Senna host trees were flowering at the time

the images were taken, making them easily identifiable by their bright yellow flowers. To

mitigate these errors, the training datasets would have to be bolstered with images from

a broad range of configurations, plantation ages, climates, seasons and locations.

After examining of the segmentation results from Stage 1, it became clear that there were

errors present in the ground truth labelling. In these cases, even though the model has

correctly identified a tree, if the tree is missing or incorrectly segmented in the “ground

truth” data, the detection will count as an error and negatively impact the evaluation

metrics. Furthermore, artefacts of the orthocorrection and stitching process are present

across the images, worsened by the high imaging altitude and resultant, lowered definition

of the individual trees. These artefacts made the identification of individual trees difficult

(and, in some cases, impossible), and, therefore, will have had an effect on the training

and evaluation of the models.

The tree health assessments, while mostly completed by Dr. Precila Gonzales, were

sometimes done by contractors given brief training by Dr. Gonzales. In cases where

both Dr. Gonzales and the contractors had recorded their own health status assessments

for a row, there were some discrepancies between the two versions. In these cases, Dr.

Gonzales’ assessments were used for the final value, however, there are some rows where

the assessments were only completed by the contractors. These rows were rigorously

validated against the imagery to ensure there were no obvious mistakes, however, there

is likely some inconsistency in these rows compared to those assessed by Dr. Gonzales,

likely resulting in error.

Finally, for the training data of the Stage 2 models, trees that had been measured had to be

manually identified in the orthomosaic and linked with their corresponding data. Initially,

GPS coordinates were planned to be used to cross-reference the images with the data,

however, the GPS module available on site was not sufficiently accurate (± 3 meters).

5.3 Sources of Error 53

Therefore, the trees where identified using field notes taken by Dr Precila Gonzales and the

measurements themselves. While the identifications were rigorous checked for consistency

with the data, it is possible that some misidentifications or incorrect delineations between

adjacent trees exist in the data.

Chapter 6

Discussion

6.1 Analysis of Results

6.1.1 Stage 1: Individual Tree Species Detector

The Stage 1 detector displayed exceptional performance for the given task. Achieving

a bounding box mAP of 0.424 and an mAP 50 of 0.712, the model had comparable

performance to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017

winners (Russakovsky et al. 2015), who achieved an mAP 50 of 0.731 (though, of course,

on a different dataset with different classes). Moreover, Stage 1’s bounding box mAP and

mAP 50 are also comparable to the current leading model in the ongoing, open COCO

detection challenge (Lin et al. 2015), which achieved an mAP of 0.588 and an mAP 50 of

0.766 (on the COCO dataset). Furthermore, the segmentation mAP andmAP 50 achieved

by Stage 1 (0.448 and 0.720) are also highly comparable to the COCO leaders at time of

writing, which are 0.531 and 0.768 respectively.

It may be noted that the AP results were significantly higher for the Senna class. This is

most likely due to the distinctive yellow flowers decorating the Senna trees in the imagery

used for the study. Were the dataset to be extended to include example of the trees across

the seasons, it would be expected that the APs for each class would become more similar.

The large locality error for Sandalwood and Dalbergia, visualised by the blue portion of

the PR curves in Figure 5.1, is likely caused by labelling errors as, for those two species, it

56 Discussion

is quite difficult to delineate between individual trees consistently. With careful auditing

of the data’s annotations this error should be reducible to something closer to the Senna

class’s, which is has much more accurate tree delineations in the current data annotations.

The confusion matrix in Figure 5.2 suggests that most of the error occurred due to false

detections on the background. However, given the aforementioned annotation errors in

the dataset, particularly where trees are missed, it is possible, perhaps even likely, that

were these omissions to be corrected, the model may be performing better that it would

appear in its current state. Moreover, if it were to be re-trained on the corrected dataset,

a further performance increase may be observed.

Overall, the Stage 1 model performed well and is already at a stage where it would

be highly useful with regard to the design objectives. Moreover, with some further

error-correction and additions to the dataset, the model utility would be further increased.

6.1.2 Stage 2a: Tree Health Classifier

5 Class Version

When reviewing the 5 class version of the health classifier model’s evaluation results, the

first item to note is its success in classifying trees of health score 1 (H1) with an F1 score

of 0.86 and perfect ROC and PR curves. This is not surprising, as most of the trees of

that class are distinctive in color and texture, being entirely dead. The remaining error

in this class is most likely due to the epicormic branches that the trees tend to grow when

dying as a final effort for survival. Though having some living, green leaves, foresters will

still classify a tree as dead (H1) if the main stem has expired. Because these epicormic

branches make the dead trees appear more similarly to those of a higher health status, the

model would require more data to learn the differentiation more reliably. However, these

results are comparable to those achieved for dead tree classification by the aforementioned

Sani-Mohammed et al. (2022) and Yarak et al. (2021) studies.

The fact that the H2 class has the lowest F1 score is not at all surprising, considering

it is the most under-represented class, with only 44 instances in the entire dataset. The

classification accuracy for this class would likely benefit from more instances to train

on. Moreover, much like the case in H1, trees in this class also tend to grow epicormic

6.1 Analysis of Results 57

branches as they are in the process of dying, further increasing the need for more data to

represent this class.

The remaining three classes have relatively low F1 scores (though not as low as H2).

Trees in these classes tend to appear very similar to their adjacent classes, which is the

suspected reason for the lower scores. This theory is supported by the confusion matrix

where it is observed that 3 trees from H5 where classified under H4 and 5 trees belonging

to H4 were classified under either H5 or H3.

When reflecting on these results, it is also important to note that, due to health status

being a qualitative classification, there are often border cases where even an experienced

forester is uncertain whether a tree would be more appropriate for one health status

or another. In these cases, either class could be considered correct. Therefore, it is

possible that if the classification threshold were to be lowered some, and 2 class suggestions

(granted are over the threshold) be allowed from the model, that the outputs may be

useful. In this scenario, trees where the health status if obvious would still be given a

single class and border cases would be given the 2 most likely options. Though further

investigation would be required to validate this claim, the ROC curve may attest to

its plausibility. The sharp incline of the problematic classes would suggest that if the

classification threshold were to be reduced such that the false positive rate were around

0.4, the true positive rates for H2 would be 1.0, around 0.9 for H3 and H4 and around

0.7 for H5.

3 Class Version

It is immediately clear that the 3 class version was is highly successful. With an AUPRC

(which approximates to the AP) of 0.97 and F1 score of 0.79, the model has performed

especially well considering the small, unbalanced and challenging dataset. The fact that

the classification performance on both H1 and H2 has increased compared to the 5 class

model, even though the architecture and training, validation and testing datasets are

identical, is an unexpected finding. The only conceivable explanation is that, in combining

the latter 3 classes such that most of the class confusion was removed, the optimisation

algorithm was able to better minimise the loss function and form more class separation

by optimising important features without overfitting. The confusion matrix also attests

to the anomaly. Where in the 5 class version 2 H1 trees were misclassified as H2 and

58 Discussion

12 H3 and H5 trees misclassified as H2, in the 3 class version, those exact same trees

were correctly classified at a much higher rate, with no misclassifications in the H1

class and only 5 trees from H3-H5 misclassified is H2. Moreover, the H1 classification

results from this version significantly exceed the dead tree classification accuracy of the

Sani-Mohammed et al. (2022) and Yarak et al. (2021) studies.

The F1 score and PR curve for the H2 class suggest there is still some way to go before the

model could be considered highly accurate for this class, however, this is not surprising

due to the combination of the difficulty of the class and its gross underrepresentation.

The ROC curve would seem to suggest that if the classification threshold were to be

slightly reduced, such that false positives occur at a rate of around 10%, then the true

positive rate would become 100%. This could mean the aforementioned 2 class suggestion

arrangement for fringe cases could further extend the utility of this model as it stands.

6.1.3 Stage 2b: Tree Parameter Regressors

The evaluation results from both of the tree parameter regressors (for bole height and

DBH) were regrettably inconclusive. While the models were able to reduce the error

function somewhat, early in the training process, the R2 values and the plotted predictions

in Figure 5.7 do not show evidence of a fit. If anything, the models appear to have general

range their respective tree parameters tend to reside within, and, particularly in the case

of the DBH regressor, have begun to make predictions around the average value within

the dataset.

While the results would indicate the model was unable to learn any relationship between

the masked tree images and the bole height and DBH values, it is important to consider

the size of the dataset. With only 277 data points in total (even fewer than the health

classifier model) and considering the challenging nature of the task, it should not come

as a surprise the models were not able to learn to predict with any suitable degree of

accuracy. It is still possible that this method could still achieve a usable accuracy with

the addition of more data.

6.2 Limitations of the Methods 59

6.2 Limitations of the Methods

The first and most notable limitation of the methodology applied in this study is the

size of the datasets, particularly for the Stage 2 models. The small datasets make it

difficult to be indisputably certain of the system’s performance on real-world data. To

mitigate this uncertainty somewhat (though not completely, as a larger dataset would

be preferable), K-Fold cross validation could have been applied to the final models to

average their test performance across the entire dataset. This would remove the error

associated with any unintentional biases that may be present within the test subsets after

the randomised subdivision of the dataset. However, due to the time constraints of the

project, the K-Fold cross validation could not be implemented in time.

Secondly, very little augmentation was performed on the training data for the Stage 2

models. If more augmentation had been used there may have been an increase in model

performance and certainly would have been an increase in generalisation. Regrettably,

debugging for the Stage 2 models, particularly the regressors, continued until quite late

in the project timeline. This was mostly due to some unit errors in the bole height data.

As a result, the models weren’t as polished as originally planned.

Finally, the Detectron2 framework that was applied for the Stage 1 model did not allow

for as much customisation as the TensorFlow models or the original Mask RCNN Stage

1 model mentioned in the Pilot Studies section. Namely, regularisation weight decay

could not be adjusted and dropout could not be applied at all. While the model clearly

performed well without these features, the addition dropout in particular would increase

the model’s generalisation and robustness.

6.3 Limitations of the Study

The main limitation of this study, aside from those stemming from the methodology, is

the narrow dataset. The fact that all data points came from 2 plantations and were

recorded at around the same time of year means the results can’t describe with certainty

how the models would perform on data from other seasons or plantations. Moreover, the

datasets for the Stage 2 regressor models were extremely small, making it difficult to draw

meaningful conclusions from their evaluation results.

60 Discussion

6.4 Significance of the Study

The performance of the tree detection model and the health classier are both at a stage

where they would provide value to Quintis by tracking the counts of trees of the three

species in the dataset and tracking the health of the sandalwood trees to an acceptable

level of accuracy in plantations similar to those in the dataset. At the very least, the

models could be applied in their current state to the rest of the Kingston Rest plantations.

The results are sufficient to conclude that, with the addition of more data representing

trees from other locations, seasons and planting configurations, the tree detection model

and the health classification model would be capable of even higher accuracy across the

entirety of Quintis’s Sandalwood plantations. Furthermore, it is conceivable that the

architectures would be useful in plantations of other species as well and would only need

a solid dataset from such plantations to achieve comparable performance.

Additionally, the datasets collected in this study are possibly the first of their kind and

will be able to be used in further research in the area. They are already being used by

Dr. Precila Gonzales for her own research. The segmentation dataset in particular is a

suitable size for detection models to train on and could be added to other datasets as part

of a larger project.

6.5 Further Work

The most obvious task to further the concept proposed in this study would be to expand

the dataset. With more data, the existing models could be re-trained and will certainly

achieve higher accuracy.

Furthermore, as alluded to by the literature, the NDVI (or other vegetation indexes)

and DCM (Digital Canopy Map) could be added to the input data as additional bands to

further increase the performance of the models, particularly the Stage 2 models. This was

originally planned as part of the study, however, had to be excluded due to time restraints.

The drones used for the imagery are also capable of recording several hyperspectral bands

which could also increase performance. NIR in particular has been found to be useful in

vegetation health assessment and is used in some vegetation indexes. These extra features

6.5 Further Work 61

can be calculated directly from the existing imagery and would require no additional

measurements or data. The addition of augmented data to the training set would also

further increase the performance of the model but had to be omitted due to lack of time.

It would also be worth researching the impact of loading the tree parameter regressor

model with the weights from the tree health classifier before training. It is conceivable

that the regressor could make use of the sandalwood (with tree health) specific features

learned by the classifier to predict the bole height and DBH accurately.

Finally, in 2021 a new and unique form of CNN architecture was proposed, called the

Vision Transformer, or ViT (Dosovitskiy et al. 2021). While there are hardly any papers

testing this architecture in any applications yet, the architecture grants CNNs a new

ability: attention to global image context. Based on the highly successful architecture

behind GTP, the architecture has shown improved performance over other CNN architectures.

At time of writing the tools and pretrained weights for the application of such an architecture

were limited, however, it would likely be worth investigating their application in this

system as future work.

Chapter 7

Conclusion

The preceding chapters 1 through 6 describe the development and evaluation process of

a deep learning based method for the automatic detection of trees within Sandalwood

plantations, classification of Sandalwood trees into 5 health status classes and prediction

of the bole height and DBH of the same trees. After a survey of the literature, an

architecture was proposed, informed by the findings of previous research. A novel dataset

was collected, collated and annotated for the purpose of the study. The architecture was

then implemented and critically evaluated on a previously unseen test dataset. The results

prove the system to be effective for the detection and classification of trees within the

plantation, as well as for the classification of Sandalwood tree by their health status. With

the addition of more representative data, the system would be suitable for application

to any sandalwood plantation. Regrettably, the results from the bole height and DBH

regressor components were inconclusive due to the small dataset. Aside from the addition

of more data, recommendations to add vegetation index and DCM bands to the input

images, as well as to load the regressors with the pretrained weights from the health

classifier and add augmentation to the Stage 2 models were made as further work to

increase the accuracy and utility of the system without violating the design objectives.

Overall, the proposed system addressed all research questions and, with exception to

the further work required on the regressor models, met all design objectives by greatly

increasing the utility of Quintis’ existing drone imagery and showcasing the use of deep

learning for automated tree counting and health monitoring, contributing to the full

automation of the inventory process.

References

Abdollahnejad, A. & Panagiotidis, D. (2020), ‘Tree Species Classification and Health

Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral

Imaging’, Remote Sensing 12(22), 3722.

Abdulla, W. (2017), ‘Mask R-CNN for object detection and instance segmentation on

Keras and TensorFlow’.

An, J., Li, W., Li, M., Cui, S. & Yue, H. (2019), ‘Identification and Classification of Maize

Drought Stress Using Deep Convolutional Neural Network’, Symmetry 11(2), 256.

Anon, D. & Chittapur, B. M. (2021), ‘Sandalwood Plantations – Points to Ponder’,

Current Science 120(7), 1184.

Aslam, Y. & N, S. (2019), A Review of Deep Learning Approaches for Image Analysis,

in ‘2019 International Conference on Smart Systems and Inventive Technology

(ICSSIT)’, pp. 709–714.

Bechberger, L. (2020), ‘What are “Convolutional Neural Networks”? – Lucas Bechberger’s

Website’, https://lucas-bechberger.de/2020/11/12/what-are-convolutional-neural-networks/.

Bello, I., Fedus, W., Du, X., Cubuk, E. D., Srinivas, A., Lin, T.-Y., Shlens, J. & Zoph,

B. (2021), ‘Revisiting ResNets: Improved Training and Scaling Strategies’.

Brand, J., Norris, L. & Dumbrell, I. (2012), ‘Estimated heartwood weights and oil

concentrations within 16-year-old Indian sandalwood (Santalum album) trees

planted near Kununurra, Western Australia’, Australian Forestry 75, 225–232.

Cover, T. & Hart, P. (1967), ‘Nearest neighbor pattern classification’, IEEE Transactions

on Information Theory 13(1), 21–27.

66 REFERENCES

Das, S. C. (2021), Silviculture, Growth and Yield of Sandalwood, in T. Pullaiah, S. C.

Das, V. A. Bapat, M. K. Swamy, V. D. Reddy & K. S. R. Murthy, eds, ‘Sandalwood:

Silviculture, Conservation and Applications’, Springer, Singapore, pp. 111–138.

Dash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M. & Dungey, H. S. (2017), ‘Assessing

very high resolution UAV imagery for monitoring forest health during a simulated

disease outbreak’, ISPRS Journal of Photogrammetry and Remote Sensing 131, 1–14.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. & Houlsby, N.

(2021), ‘An Image is Worth 16x16 Words: Transformers for Image Recognition at

Scale’.

Durkee, M. S., Abraham, R., Ai, J., Fuhrman, J. D., Clark, M. R. & Giger, M. L.

(2021), Comparing Mask R-CNN and U-Net architectures for robust automatic

segmentation of immune cells in immunofluorescence images of Lupus Nephritis

biopsies, in ‘Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues

XIX’, Vol. 11647, SPIE, pp. 109–115.

Ecke, S., Dempewolf, J., Frey, J., Schwaller, A., Endres, E., Klemmt, H.-J., Tiede, D.

& Seifert, T. (2022), ‘UAV-Based Forest Health Monitoring: A Systematic Review’,

Remote Sensing 14(13), 3205.

Ege, T. & Yanai, K. (2018), ‘Image-Based Food Calorie Estimation Using

Recipe Information’, IEICE Transactions on Information and Systems

E101.D(5), 1333–1341.

FPC: Sandalwood Establishment Guide (2020), https://www.wa.gov.au/government/

publications/fpc-sandalwood-establishment-guide.

Fukushima, K. (1980), ‘Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position’, Biological

Cybernetics 36(4), 193–202.

Girshick, R., Donahue, J., Darrell, T. & Malik, J. (2013), ‘Rich feature

hierarchies for accurate object detection and semantic segmentation’,

https://arxiv.org/abs/1311.2524v5.

Global And United States Sandalwood Market Insights, Forecast To 2027 (2021), Global

Market Report QYR-18683557, Industry Research.

REFERENCES 67

Guerra-Hernández, J., Dı́az-Varela, R. A., Ávarez-González, J. G. & Rodŕıguez-González,

P. M. (2021), ‘Assessing a novel modelling approach with high resolution UAV

imagery for monitoring health status in priority riparian forests’, Forest Ecosystems

8, 61.

Gupta, A., Dollár, P. & Girshick, R. (2019), ‘LVIS: A Dataset for Large Vocabulary

Instance Segmentation’.

He, K., Gkioxari, G., Dollár, P. & Girshick, R. (2018), ‘Mask R-CNN’.

Hebb, D. O. (1949), The Organization of Behavior; a Neuropsychological Theory, The

Organization of Behavior; a Neuropsychological Theory, Wiley, Oxford, England.

Ho, T. K. (1995), Random decision forests, in ‘Proceedings of 3rd International Conference

on Document Analysis and Recognition’, Vol. 1, pp. 278–282 vol.1.

Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. (2018), ‘Densely Connected

Convolutional Networks’.

Iizuka, K., Kosugi, Y., Noguchi, S. & Iwagami, S. (2022), ‘Toward a comprehensive model

for estimating diameter at breast height of Japanese cypress (Chamaecyparis obtusa)

using crown size derived from unmanned aerial systems’, Computers and Electronics

in Agriculture 192, 106579.

Ivakhnenko, A. G. (1967), Cybernetics and Forecasting Techniques, American Elsevier

Pub. Co., New York.

Kingma, D. P. & Ba, J. (2017), ‘Adam: A Method for Stochastic Optimization’.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,

Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P. & Girshick, R. (2023), ‘Segment

Anything’.

Köhl, M. (2004), ‘INVENTORY — Forest Inventory and Monitoring’, Encyclopedia of

Forest Sciences pp. 403–409.

Krug, T. & dos Santos, J. (2004), ‘RESOURCE ASSESSMENT — Forest Change’,

Encyclopedia of Forest Sciences pp. 989–997.

Lawson, S. A., McDonald, J. M. & Pegg, G. S. (2008), ‘Forest health surveillance

methodology in hardwood plantations in Queensland, Australia’, Australian Forestry

71(3), 177–181.

68 REFERENCES

Li, Y. (2022), Research and Application of Deep Learning in Image Recognition, in

‘2022 IEEE 2nd International Conference on Power, Electronics and Computer

Applications (ICPECA)’, pp. 994–999.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,

Ramanan, D., Zitnick, C. L. & Dollár, P. (2015), ‘Microsoft COCO: Common Objects

in Context’.

Mali, S. (2023), Sandalwood Market Report 2023 (Global Edition), Global Market Report

CMR487184, Cognitive Market Research.

McCulloch, W. S. & Pitts, W. (1943), ‘A logical calculus of the ideas immanent in nervous

activity’, The bulletin of mathematical biophysics 5(4), 115–133.

Muchoney, D. & Haack, B. N. (1994), ‘Change Detection for Monitoring Forest

Defoliation’, Photogrammetric Engineering & Remote Sensin 60(10), 1243–1251.

Myers, A., Johnston, N., Rathod, V., Korattikara, A., Gorban, A., Silberman, N.,

Guadarrama, S., Papandreou, G., Huang, J. & Murphy, K. (2015), Im2Calories:

Towards an Automated Mobile Vision Food Diary, in ‘2015 IEEE International

Conference on Computer Vision (ICCV)’, IEEE, Santiago, Chile, pp. 1233–1241.

OpenDroneMap Authors (2023), ‘ODM - A command line toolkit to generate maps, point

clouds, 3D models and DEMs from drone, balloon or kite images.’.

Pertille, C., Nicoletti, M. & Jr, M. (2023), ‘Estimating the commercial volume of a Pinus

taeda L. plantation using active and passive sensors’, CERNE 29.

Popescu, S. C., Wynne, R. H. & Nelson, R. F. (2003), ‘Measuring individual tree crown

diameter with lidar and assessing its influence on estimating forest volume and

biomass’, Canadian Journal of Remote Sensing 29(5), 564–577.

Rahaman, M., Li, C., Yao, Y., Kulwa, F., Rahman, M., Wang, Q., Qi, S., Kong, F.,

Zhu, X. & Zhao, X. (2020), ‘Identification of COVID-19 samples from chest X-Ray

images using deep learning: A comparison of transfer learning approaches’, Journal

of X-ray science and technology 28.

Ramos-Giraldo, P., Reberg-Horton, C., Locke, A. M., Mirsky, S. & Lobaton, E. (2020),

‘Drought Stress Detection Using Low-Cost Computer Vision Systems and Machine

Learning Techniques’, IT Professional 22(3), 27–29.

REFERENCES 69

Redfern, D. B. & Boswell, R. C. (2004), ‘Assessment of crown condition in forest trees:

Comparison of methods, sources of variation and observer bias’, Forest Ecology and

Management 188(1), 149–160.

Ronneberger, O., Fischer, P. & Brox, T. (2015), ‘U-Net: Convolutional Networks for

Biomedical Image Segmentation’.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., Berg, A. C. & Fei-Fei, L. (2015), ‘ImageNet large

scale visual recognition challenge’, International Journal of Computer Vision (IJCV)

115(3), 211–252.

Sani-Mohammed, A., Yao, W. & Heurich, M. (2022), ‘Instance segmentation of standing

dead trees in dense forest from aerial imagery using deep learning’, ISPRS Open

Journal of Photogrammetry and Remote Sensing 6, 100024.

Schapire, R. E. (1990), ‘The strength of weak learnability’, Machine Learning

5(2), 197–227.

Smith, D., Smith, I., Collett, N. & Elms, S. (2008), ‘Forest health surveillance in Victoria’,

Australian Forestry 71(3), 188–195.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2015), ‘Rethinking the

Inception Architecture for Computer Vision’.

Tanase, M. A., Panciera, R., Lowell, K., Aponte, C., Hacker, J. M. & Walker, J. P.

(2014), ‘Forest Biomass Estimation at High Spatial Resolution: Radar Versus Lidar

Sensors’, IEEE Geoscience and Remote Sensing Letters 11(3), 711–715.

Wang, J., Sammis, T. W., Gutschick, V. P., Gebremichael, M., Dennis, S. O.

& Harrison, R. E. (2010), ‘Review of Satellite Remote Sensing Use in

Forest Health Studies˜!2010-01-27˜!2010-04-05˜!2010-06-29˜!’, The Open Geography

Journal 3(1), 28–42.

Widyaningrum, R., Candradewi, I., Aji, N. R. A. S. & Aulianisa, R. (2022), ‘Comparison

of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to

detect periodontitis’, Imaging Science in Dentistry 52(4), 383–391.

Windrim, L., Carnegie, A. J., Webster, M. & Bryson, M. (2020), ‘Tree detection and

health monitoring in multispectral aerial imagery and photogrammetric pointclouds

using machine learning’, IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing 13, 2554–2572.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y. & Girshick, R. (2019), ‘Detectron2’.

Yarak, K., Witayangkurn, A., Kritiyutanont, K., Arunplod, C. & Shibasaki, R. (2021),

‘Oil palm tree detection and health classification on high-resolution imagery using

deep learning’, Agriculture (Switzerland) 11(2), 1–17.

Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J., Frankenberg,

C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R. & Chen, M. (2022), ‘Optical

vegetation indices for monitoring terrestrial ecosystems globally’, Nature Reviews

Earth & Environment 3(7), 477–493.

S, andric, I., Irimia, R., Petropoulos, G. P., Anand, A., Srivastava, P. K., Ples,oianu, A.,

Faraslis, I., Stateras, D. & Kalivas, D. (2022), ‘Tree’s detection & health’s assessment

from ultra-high resolution UAV imagery and deep learning’, Geocarto International

37(25), 10459–10479.

Appendix A

Project Specification

ENG4111/ENG4112 Research Project
Project Specification

For: Isaac Humber

Title: A Deep Learning Solution for the Detection of Health and Productivity
Metrics in Sandalwood Forest Plantations Using Drone Imaging

Major: Computer Engineering

Supervisor: Dr. Tobias Low

Enrolment: ENG4111 - EXT S1, 2023
ENG4112 - EXT S2, 2023

Project Aim: To develop a machine learning model for detecting general health, bole
height and DBH in Sandalwood trees using drone multi-spectral imaging.

Programme: Version 2, 21th September 2023

1. Research existing methods for similar use-cases and determine promising
machine learning models to test.

2. Collect and annotate aerial images of trees in the forest plantations, labelled
with each tree health, bole height and DBH (as determined by Quintis staff
using appropriate instruments) and location.

3. Review tree detection methods and develop code to detect trees within images
and link each tree to data.

4. Develop and train machine learning models in Python using extracted
features.

5. Review suitable model accuracy metrics and model comparison techniques
and implement them in code.

If time and resources permit:

6. Refine the most promising model using advanced techniques found or inspired
by those within the literature body

7. Develop code to create a visual representation of individual tree health over a
large geographical area.

Project Resources

Table 1: Anticipated Resource Requirements

Item Source Cost Comment
Personal Computer with
Python installed Student nil

Labelled dataset Quintis nil 1,000 or more data points
Machine learning and image
processing Python packages

Web or package
manager download nil

Visual Studio Code https://code.visualstudio.com/ nil For LaTeX and
Python Development

Personal Computer with
LaTeX installed Student nil

Appendix B

Risk Assessment

Risk Assessment

Figure 1: Risk Assessment Matrix

Table 2: Risk Assessment Matrix

Hazard Minimisation Risk Level Before Risk Level After

Posture-related injuries from computer use Take hourly breaks and use
an ergonomic workstation. 5D 2D

Eye strain from computer use Work in a well-lit area with
monitors in an ergonomic layout 5D 2D

Dataset not available when needed

Request Quintis to send
portions of the dataset as
they are recorded to enable
earlier design using smaller
subsets of the data

3C 2C

Unhealthy stress levels
Stay strictly on or ahead of schedule.
Communicate progress and issues
with supervisor.

4C 2C

Loss of data
Backup all data on cloud service
(OneDrive). Use correct storage
media protocol.

2A 1A

Appendix C

Ethical Clearance

78 Ethical Clearance

There are no Ethical Clearances applicable to this project.

Appendix D

Data

80 Data

D.1 Introduction to this Appendix

The raw data as collected from various plantations and locations across Quintis’ Western

Australia plantations. Data collection and drone imaging is still ongoing.

D.2 Raw Data

Field Tree Number Row HEALTH STATUS DBH BOLE HEIGHT TRIAL
1 65 5 11.4 2.335 KR1 MULCH R1
2 65 2 10.5 1.510 KR1 MULCH R1
3 65 3 12.3 1.415 KR1 MULCH R1
4 65 1 0.0 0.0 KR1 MULCH R1
5 65 1 0.0 0.0 KR1 MULCH R1
6 65 3 9.2 1.400 KR1 MULCH R1
7 65 5 19.3 1.41 KR1 MULCH R1
8 65 5 15.5 1.39 KR1 MULCH R1
9 65 1 0.0 0.0 KR1 MULCH R1
10 65 5 17.6 1.400 KR1 MULCH R1
11 65 5 15.8 1.30 KR1 MULCH R1
12 65 3 11.6 1.35 KR1 MULCH R1
1 69 3 11.0 1.66 KR1 MULCH R1
2 69 5 12.3 1.28 KR1 MULCH R1
3 69 4 11.6 1.36 KR1 MULCH R1
4 69 2 9.5 1.28 KR1 MULCH R1
5 69 4 19.2 1.47 KR1 MULCH R1
6 69 3 11.1 1.875 KR1 MULCH R1
7 69 5 16.6 2.385 KR1 MULCH R1
8 69 3 10.2 1.420 KR1 MULCH R1
9 69 4 11.0 1.520 KR1 MULCH R1
10 69 5 19.6 1.530 KR1 MULCH R1
2 73 3 10.7 1.80 KR1 MULCH R1
3 73 3 12.9 1.410 KR1 MULCH R1
4 73 4 12.3 2.255 KR1 MULCH R1
5 73 3 10.0 1.975 KR1 MULCH R1
6 73 3 14.4 2.070 KR1 MULCH R1
7 73 3 7.7 1.380 KR1 MULCH R1
9 73 4 17.8 1.560 KR1 MULCH R1
10 73 4 11.9 2.97 KR1 MULCH R1
11 73 5 10.5 2.135 KR1 MULCH R1
12 73 5 16.7 2.065 KR1 MULCH R1
1 129 4 8.8 2.97 KR1 MULCH R2
2 129 5 13.4 2.25 KR1 MULCH R2
3 129 5 9.8 2.325 KR1 MULCH R2
4 129 5 14.0 1.775 KR1 MULCH R2
5 129 5 10.7 1.600 KR1 MULCH R2
6 129 5 21.6 1.250 KR1 MULCH R2
7 129 1 0.0 0.0 KR1 MULCH R2
8 129 3 9.3 1.780 KR1 MULCH R2
9 129 5 8.3 1.68 KR1 MULCH R2
10 129 5 13.3 1.535 KR1 MULCH R2
11 129 1 0.0 0.0 KR1 MULCH R2
1 133 2 14.4 0.850 KR1 MULCH R2
2 133 3 17.1 1.070 KR1 MULCH R2
3 133 2 10.5 1.510 KR1 MULCH R2
4 133 3 7.8 1.735 KR1 MULCH R2
5 133 2 11.5 2.130 KR1 MULCH R2
6 133 5 12.4 2.995 KR1 MULCH R2
8 133 5 13.4 2.030 KR1 MULCH R2
9 133 5 12.6 2.010 KR1 MULCH R2
10 133 2 7.6 1.350 KR1 MULCH R2
11 133 4 11.0 0.970 KR1 MULCH R2
12 133 5 18.5 1.57 KR1 MULCH R2
1 137 3 8.9 0.85 KR1 MULCH R2
2 137 5 10.3 2.58 KR1 MULCH R2
3 137 4 9.0 1.3 KR1 MULCH R2
4 137 5 9.1 2.1 KR1 MULCH R2
5 137 5 12.5 1.9 KR1 MULCH R2
6 137 1 7.0 KR1 MULCH R2
7 137 5 13.8 3.3 KR1 MULCH R2
9 137 4 9.3 1.65 KR1 MULCH R2
11 137 5 8.5 1.3 KR1 MULCH R2
12 137 5 11.3 2.14 KR1 MULCH R2
4 188 2 0.5 KR1 MULCH R3
5 188 5 9.1 1.58 KR1 MULCH R3
6 188 4 14.0 1.93 KR1 MULCH R3
7 188 3 8.8 1.51 KR1 MULCH R3
8 188 1 KR1 MULCH R3
9 188 2 12.7 1.78 KR1 MULCH R3
10 188 2 5.0 0.8 KR1 MULCH R3
11 188 5 13.4 2.56 KR1 MULCH R3
12 188 1 5.0 KR1 MULCH R3
13 188 1 7.0 KR1 MULCH R3
14 188 4 10.5 1.77 KR1 MULCH R3
15 188 1 4.5 KR1 MULCH R3
16 188 5 11.0 1.3 KR1 MULCH R3
17 188 5 11.0 2.23 KR1 MULCH R3
1 192 5 15.1 2.38 KR1 MULCH R3
2 192 5 9.8 1.82 KR1 MULCH R3
3 192 5 10.7 2.48 KR1 MULCH R3
4 192 5 12.1 2.18 KR1 MULCH R3
5 192 4 9.8 2.5 KR1 MULCH R3
6 192 1 6.1 KR1 MULCH R3
7 192 2 8.2 1.42 KR1 MULCH R3
8 192 5 12.7 2.72 KR1 MULCH R3
9 192 5 7.2 1.0 KR1 MULCH R3
10 192 4 11.4 2.56 KR1 MULCH R3
11 192 5 14.0 2.6 KR1 MULCH R3
12 192 1 KR1 MULCH R3
1 196 5 8.2 1.89 KR1 MULCH R3
2 196 2 12.5 1.6 KR1 MULCH R3
3 196 4 11.5 1.52 KR1 MULCH R3

D.2 Raw Data 81

4 196 4 13.0 2.03 KR1 MULCH R3
5 196 4 9.2 2.35 KR1 MULCH R3
6 196 3 8.0 1.51 KR1 MULCH R3
7 196 4 17.0 3.07 KR1 MULCH R3
8 196 4 9.2 2.33 KR1 MULCH R3
9 196 4 8.1 1.47 KR1 MULCH R3
10 196 4 9.8 1.6 KR1 MULCH R3
1 10 2 5.0 0.8 KR1 BIOCHAR R1
2 10 1 7.7 1.1 KR1 BIOCHAR R1
3 10 5 8.0 1.64 KR1 BIOCHAR R1
4 10 4 11.5 2.26 KR1 BIOCHAR R1
5 10 4 1.0 2.35 KR1 BIOCHAR R1
6 10 3 9.5 1.81 KR1 BIOCHAR R1
7 10 4 11.7 2.21 KR1 BIOCHAR R1
8 10 1 8.0 1.68 KR1 BIOCHAR R1
9 10 2 2.3 KR1 BIOCHAR R1
10 10 4 8.4 1.7 KR1 BIOCHAR R1
11 10 2 3.1 KR1 BIOCHAR R1
12 10 5 16.5 3.48 KR1 BIOCHAR R1
13 10 4 8.8 2.4 KR1 BIOCHAR R1
14 10 5 11.6 2.39 KR1 BIOCHAR R1
1 14 5 12.8 2.28 KR1 BIOCHAR R1
2 14 5 14.1 3.1 KR1 BIOCHAR R1
3 14 5 10.0 2.19 KR1 BIOCHAR R1
6 14 1 3.5 0.4 KR1 BIOCHAR R1
7 14 5 12.1 3.16 KR1 BIOCHAR R1
8 14 5 6.5 1.88 KR1 BIOCHAR R1
9 14 5 11.7 2.41 KR1 BIOCHAR R1
11 14 2 11.9 1.8 KR1 BIOCHAR R1
12 14 2 8.3 2.28 KR1 BIOCHAR R1
13 14 1 7.0 0.9 KR1 BIOCHAR R1
14 14 5 11.8 2.45 KR1 BIOCHAR R1
1 18 2 6.8 1.0 KR1 BIOCHAR R1
2 18 2 11.0 1.68 KR1 BIOCHAR R1
3 18 2 11.7 2.66 KR1 BIOCHAR R1
4 18 1 KR1 BIOCHAR R1
5 18 1 11 1.0 KR1 BIOCHAR R1
6 18 5 10.4 1.5 KR1 BIOCHAR R1
7 18 5 9.3 1.69 KR1 BIOCHAR R1
8 18 2 2.2 1.0 KR1 BIOCHAR R1
9 18 3 5.2 0.8 KR1 BIOCHAR R1
10 18 5 8.1 1.85 KR1 BIOCHAR R1
11 18 2 7.8 1.3 KR1 BIOCHAR R1
12 18 4 7.1 1.1 KR1 BIOCHAR R1
1 22 5 11.9 2.15 KR1 BIOCHAR R1
3 22 5 8.0 1.47 KR1 BIOCHAR R1
4 22 5 8.8 1.88 KR1 BIOCHAR R1
5 22 5 8.1 1.76 KR1 BIOCHAR R1
6 22 1 4.5 0.9 KR1 BIOCHAR R1
7 22 5 8.5 1.75 KR1 BIOCHAR R1
8 22 5 8.8 1.84 KR1 BIOCHAR R1
9 22 5 13.0 2.38 KR1 BIOCHAR R1
10 22 1 8.0 1.0 KR1 BIOCHAR R1
11 22 5 10.2 1.83 KR1 BIOCHAR R1
12 22 1 9.6 1.42 KR1 BIOCHAR R1
1 26 4 8.4 1.85 KR1 BIOCHAR R1
2 26 2 8.8 1.71 KR1 BIOCHAR R1
3 26 2 9.4 1.75 KR1 BIOCHAR R1
4 26 1 KR1 BIOCHAR R1
5 26 1 6.4 1.1 KR1 BIOCHAR R1
6 26 5 17.0 2.66 KR1 BIOCHAR R1
7 26 5 10.4 1.97 KR1 BIOCHAR R1
8 26 1 2.0 KR1 BIOCHAR R1
9 26 5 14.0 2.23 KR1 BIOCHAR R1
10 26 5 8.7 1.93 KR1 BIOCHAR R1
11 26 5 8.8 1.53 KR1 BIOCHAR R1
12 26 2 7.2 1.2 KR1 BIOCHAR R1
13 26 5 13.0 2.47 KR1 BIOCHAR R1
1 30 5 9.6 1.69 KR1 BIOCHAR R1
2 30 5 17.5 3.26 KR1 BIOCHAR R1
3 30 4 6.4 0.8 KR1 BIOCHAR R1
5 30 5 12.0 1.54 KR1 BIOCHAR R1
6 30 5 9.5 1.93 KR1 BIOCHAR R1
7 30 3 8.8 1.42 KR1 BIOCHAR R1
8 30 1 4.4 1.2 KR1 BIOCHAR R1
9 30 5 12.8 2.24 KR1 BIOCHAR R1
10 30 5 7.9 1.73 KR1 BIOCHAR R1
11 30 5 8.4 1.81 KR1 BIOCHAR R1
1 34 5 11.0 1.3 KR1 BIOCHAR R1
2 34 5 14.8 2.75 KR1 BIOCHAR R1
3 34 5 14.5 2.35 KR1 BIOCHAR R1
4 34 5 9.9 1.86 KR1 BIOCHAR R1
6 34 1 12.6 1.7 KR1 BIOCHAR R1
7 34 3 13.0 2.0 KR1 BIOCHAR R1
8 34 1 10.8 1.62 KR1 BIOCHAR R1
9 34 1 7.3 1.64 KR1 BIOCHAR R1
10 34 5 8.8 1.78 KR1 BIOCHAR R1
11 34 2 9.8 1.35 KR1 BIOCHAR R1
1 69 5 12.9 2.46 KR1 BIOCHAR R2
2 69 4 10.6 2.49 KR1 BIOCHAR R2
3 69 4 13.5 2.36 KR1 BIOCHAR R2
5 69 5 12.7 1.8 KR1 BIOCHAR R2
6 69 1 2.4 KR1 BIOCHAR R2
7 69 4 10.5 1.96 KR1 BIOCHAR R2
8 69 2 9.8 1.43 KR1 BIOCHAR R2
9 69 1 10.3 1.8 KR1 BIOCHAR R2
10 69 4 10 1.59 KR1 BIOCHAR R2
11 69 4 9.0 1.72 KR1 BIOCHAR R2
14 69 4 12.8 1.76 KR1 BIOCHAR R2
2 73 5 8.5 1.7 KR1 BIOCHAR R2
3 73 5 9.5 2.2 KR1 BIOCHAR R2
4 73 5 9.7 2.28 KR1 BIOCHAR R2
5 73 3 8.2 1.57 KR1 BIOCHAR R2
6 73 1 4.9 KR1 BIOCHAR R2
7 73 5 14.7 2.19 KR1 BIOCHAR R2
8 73 1 KR1 BIOCHAR R2
9 73 1 9.8 KR1 BIOCHAR R2
10 73 1 13.6 KR1 BIOCHAR R2
11 73 1 4.5 KR1 BIOCHAR R2
12 73 2 16.5 2.25 KR1 BIOCHAR R2
13 73 1 3.0 KR1 BIOCHAR R2
14 73 3 14.3 1.45 KR1 BIOCHAR R2
15 73 2 5.6 0.6 KR1 BIOCHAR R2
16 73 4 10.8 1.58 KR1 BIOCHAR R2
2 81 3 8.4 1.35 KR1 BIOCHAR R2
3 81 4 8.5 1.52 KR1 BIOCHAR R2
4 81 4 6.8 1.0 KR1 BIOCHAR R2
5 81 5 9.5 1.9 KR1 BIOCHAR R2
6 81 5 14.0 2.3 KR1 BIOCHAR R2

82 Data

7 81 2 6.5 1.1 KR1 BIOCHAR R2
8 81 5 10.7 1.88 KR1 BIOCHAR R2
9 81 4 13.3 2.33 KR1 BIOCHAR R2
10 81 2 8.0 1.3 KR1 BIOCHAR R2
1 85 5 12.8 1.94 KR1 BIOCHAR R2
2 85 5 9.8 2.04 KR1 BIOCHAR R2
3 85 1 5.8 1.0 KR1 BIOCHAR R2
4 85 5 11.5 2.23 KR1 BIOCHAR R2
5 85 3 5.6 1.0 KR1 BIOCHAR R2
6 85 5 7.3 1.42 KR1 BIOCHAR R2
7 85 4 9.1 1.53 KR1 BIOCHAR R2
8 85 5 11.2 1.92 KR1 BIOCHAR R2
10 85 5 9.2 1.92 KR1 BIOCHAR R2
11 85 5 12.1 1.81 KR1 BIOCHAR R2
13 85 1 4.7 KR1 BIOCHAR R2
14 85 2 8.0 1.3 KR1 BIOCHAR R2
1 89 4 16.9 1.82 KR1 BIOCHAR R2
2 89 5 6.5 1.1 KR1 BIOCHAR R2
3 89 3 9.0 1.77 KR1 BIOCHAR R2
4 89 4 11.2 2.12 KR1 BIOCHAR R2
5 89 5 11.0 2.27 KR1 BIOCHAR R2
6 89 5 14.0 2.42 KR1 BIOCHAR R2
7 89 5 12.7 1.43 KR1 BIOCHAR R2
8 89 5 12.5 2.0 KR1 BIOCHAR R2
10 89 5 14.0 2.57 KR1 BIOCHAR R2
1 93 1 10.0 1.6 KR1 BIOCHAR R2
3 93 5 14.5 3.09 KR1 BIOCHAR R2
4 93 4 8.4 1.67 KR1 BIOCHAR R2
5 93 5 16.3 2.91 KR1 BIOCHAR R2
6 93 5 14.9 3.73 KR1 BIOCHAR R2
7 93 4 9.5 1.72 KR1 BIOCHAR R2
8 93 4 10.7 1.61 KR1 BIOCHAR R2
9 93 3 7.2 1.1 KR1 BIOCHAR R2
10 93 3 11.0 1.4 KR1 BIOCHAR R2
11 93 5 12.3 2.39 KR1 BIOCHAR R2
1 77 5 14.9 1.93 KR1 BIOCHAR R2
2 77 4 9.5 2.3 KR1 BIOCHAR R2
3 77 5 9.1 1.42 KR1 BIOCHAR R2
4 77 5 15.8 2.45 KR1 BIOCHAR R2
5 77 4 5.7 1.0 KR1 BIOCHAR R2
6 77 4 8.7 1.82 KR1 BIOCHAR R2
7 77 3 8.8 1.62 KR1 BIOCHAR R2
8 77 3 7.8 1.64 KR1 BIOCHAR R2
9 77 5 8.1 1.7 KR1 BIOCHAR R2
10 77 3 10.1 1.85 KR1 BIOCHAR R2
1 133 3 9.0 1.42 KR1 BIOCHAR R3
3 133 5 13.4 2.39 KR1 BIOCHAR R3
4 133 4 9.0 1.42 KR1 BIOCHAR R3
5 133 4 10.8 2.37 KR1 BIOCHAR R3
6 133 4 10.2 1.8 KR1 BIOCHAR R3
7 133 3 10.2 1.63 KR1 BIOCHAR R3
8 133 5 8.9 1.62 KR1 BIOCHAR R3
9 133 4 11.5 1.98 KR1 BIOCHAR R3
10 133 3 7.6 1.2 KR1 BIOCHAR R3
1 137 5 11.4 1.99 KR1 BIOCHAR R3
4 137 5 12.0 2.17 KR1 BIOCHAR R3
5 137 1 7.0 KR1 BIOCHAR R3
6 137 3 11.7 1.55 KR1 BIOCHAR R3
7 137 1 9.3 KR1 BIOCHAR R3
8 137 3 8.1 2.0 KR1 BIOCHAR R3
9 137 5 12.0 2.1 KR1 BIOCHAR R3
10 137 2 8.5 1.86 KR1 BIOCHAR R3
11 137 2 10.6 2.24 KR1 BIOCHAR R3
12 137 3 6.8 1.1 KR1 BIOCHAR R3
13 137 1 7.2 0.8 KR1 BIOCHAR R3
1 141 5 7.5 1.2 KR1 BIOCHAR R3
2 141 4 9.1 1.81 KR1 BIOCHAR R3
3 141 1 9.5 1.46 KR1 BIOCHAR R3
4 141 4 10.0 1.83 KR1 BIOCHAR R3
5 141 3 7.4 1.2 KR1 BIOCHAR R3
6 141 1 5.9 1.05 KR1 BIOCHAR R3
7 141 5 13.5 2.06 KR1 BIOCHAR R3
8 141 5 12.5 2.06 KR1 BIOCHAR R3
9 141 5 13.3 2.14 KR1 BIOCHAR R3
11 141 5 13.2 2.27 KR1 BIOCHAR R3
2 145 2 8.5 1.3 KR1 BIOCHAR R3
3 145 5 13.5 1.88 KR1 BIOCHAR R3
4 145 5 13.9 2.13 KR1 BIOCHAR R3
5 145 5 14.1 2.14 KR1 BIOCHAR R3
6 145 3 9.9 1.8 KR1 BIOCHAR R3
7 145 5 8.8 1.55 KR1 BIOCHAR R3
8 145 5 12.8 2.8 KR1 BIOCHAR R3
9 145 3 9.2 2.13 KR1 BIOCHAR R3
10 145 5 13.0 3.11 KR1 BIOCHAR R3
1 149 5 14.4 2.22 KR1 BIOCHAR R3
2 149 2 3.8 0.7 KR1 BIOCHAR R3
3 149 3 8.9 2.03 KR1 BIOCHAR R3
4 149 2 9.9 1.92 KR1 BIOCHAR R3
5 149 5 15.5 2.47 KR1 BIOCHAR R3
6 149 5 14.1 2.38 KR1 BIOCHAR R3
7 149 4 11.1 2.15 KR1 BIOCHAR R3
8 149 5 13.1 2.3 KR1 BIOCHAR R3
9 149 1 8.8 1.47 KR1 BIOCHAR R3
10 149 1 4.9 0.4 KR1 BIOCHAR R3
1 153 4 14.3 2.29 KR1 BIOCHAR R3
2 153 3 11.2 1.97 KR1 BIOCHAR R3
3 153 3 11.1 1.82 KR1 BIOCHAR R3
4 153 4 13.0 1.77 KR1 BIOCHAR R3
5 153 4 11.0 1.72 KR1 BIOCHAR R3
6 153 4 5.0 KR1 BIOCHAR R3
7 153 5 11.7 2.02 KR1 BIOCHAR R3
8 153 5 10.0 2.12 KR1 BIOCHAR R3
9 153 5 11.9 2.75 KR1 BIOCHAR R3
10 153 5 12.5 2.71 KR1 BIOCHAR R3
1 157 5 12.3 1.7 KR1 BIOCHAR R3
2 157 4 11.2 1.42 KR1 BIOCHAR R3
3 157 1 4.9 KR1 BIOCHAR R3
4 157 1 9.8 0.8 KR1 BIOCHAR R3
5 157 3 14.6 2.37 KR1 BIOCHAR R3
6 157 5 13.0 1.81 KR1 BIOCHAR R3
7 157 4 14.6 3.02 KR1 BIOCHAR R3
8 157 1 7.3 KR1 BIOCHAR R3
9 157 4 14.9 2.97 KR1 BIOCHAR R3
10 157 1 8.5 1.4 KR1 BIOCHAR R3
11 157 1 1.2 KR1 BIOCHAR R3
12 157 5 4.7 0.4 KR1 BIOCHAR R3
14 157 5 8.9 1.55 KR1 BIOCHAR R3
15 157 2 9.0 1.72 KR1 BIOCHAR R3
1 39 4 KR3 BIOCHAR R1

D.2 Raw Data 83

2 39 5 KR3 BIOCHAR R1
3 39 4 KR3 BIOCHAR R1
4 39 5 KR3 BIOCHAR R1
5 39 1 KR3 BIOCHAR R1
6 39 5 KR3 BIOCHAR R1
7 39 5 KR3 BIOCHAR R1
8 39 4 KR3 BIOCHAR R1
9 39 5 KR3 BIOCHAR R1
10 39 4 KR3 BIOCHAR R1
1 43 3 KR3 BIOCHAR R1
2 43 3 KR3 BIOCHAR R1
3 43 3 KR3 BIOCHAR R1
4 43 4 KR3 BIOCHAR R1
5 43 3 KR3 BIOCHAR R1
6 43 4 KR3 BIOCHAR R1
8 43 5 KR3 BIOCHAR R1
9 43 5 KR3 BIOCHAR R1
11 43 1 KR3 BIOCHAR R1
12 43 5 KR3 BIOCHAR R1
1 47 1 KR3 BIOCHAR R1
2 47 4 KR3 BIOCHAR R1
3 47 5 KR3 BIOCHAR R1
4 47 5 KR3 BIOCHAR R1
5 47 3 KR3 BIOCHAR R1
6 47 1 KR3 BIOCHAR R1
7 47 4 KR3 BIOCHAR R1
8 47 4 KR3 BIOCHAR R1
9 47 4 KR3 BIOCHAR R1
10 47 1 KR3 BIOCHAR R1
11 47 3 KR3 BIOCHAR R1
1 51 1 KR3 BIOCHAR R1
2 51 3 KR3 BIOCHAR R1
3 51 1 KR3 BIOCHAR R1
4 51 4 KR3 BIOCHAR R1
5 51 4 KR3 BIOCHAR R1
6 51 1 KR3 BIOCHAR R1
7 51 4 KR3 BIOCHAR R1
8 51 4 KR3 BIOCHAR R1
9 51 3 KR3 BIOCHAR R1
10 51 5 KR3 BIOCHAR R1
11 51 5 KR3 BIOCHAR R1
12 51 2 KR3 BIOCHAR R1
13 51 3 KR3 BIOCHAR R1
1 55 1 KR3 BIOCHAR R1
2 55 4 KR3 BIOCHAR R1
3 55 3 KR3 BIOCHAR R1
4 55 3 KR3 BIOCHAR R1
5 55 4 KR3 BIOCHAR R1
6 55 1 KR3 BIOCHAR R1
7 55 1 KR3 BIOCHAR R1
8 55 1 KR3 BIOCHAR R1
9 55 5 KR3 BIOCHAR R1
10 55 3 KR3 BIOCHAR R1
11 55 2 KR3 BIOCHAR R1
12 55 4 KR3 BIOCHAR R1
1 59 3 KR3 BIOCHAR R1
2 59 3 KR3 BIOCHAR R1
3 59 5 KR3 BIOCHAR R1
4 59 3 KR3 BIOCHAR R1
5 59 3 KR3 BIOCHAR R1
6 59 5 KR3 BIOCHAR R1
7 59 3 KR3 BIOCHAR R1
8 59 3 KR3 BIOCHAR R1
9 59 4 KR3 BIOCHAR R1
11 59 5 KR3 BIOCHAR R1
1 63 5 KR3 BIOCHAR R1
2 63 3 KR3 BIOCHAR R1
3 63 1 KR3 BIOCHAR R1
4 63 4 KR3 BIOCHAR R1
5 63 1 KR3 BIOCHAR R1
6 63 5 KR3 BIOCHAR R1
7 63 4 KR3 BIOCHAR R1
8 63 1 KR3 BIOCHAR R1
9 63 1 KR3 BIOCHAR R1
10 63 3 KR3 BIOCHAR R1
1 62 3 KR3 MULCH R1
2 62 1 KR3 MULCH R1
3 62 1 KR3 MULCH R1
4 62 1 KR3 MULCH R1
5 62 2 KR3 MULCH R1
6 62 2 KR3 MULCH R1
7 62 3 KR3 MULCH R1
8 62 1 KR3 MULCH R1
9 62 1 KR3 MULCH R1
10 62 1 KR3 MULCH R1
11 62 3 KR3 MULCH R1
13 62 5 KR3 MULCH R1
1 66 3 KR3 MULCH R1
2 66 2 KR3 MULCH R1
3 66 1 KR3 MULCH R1
4 66 1 KR3 MULCH R1
5 66 1 KR3 MULCH R1
6 66 3 KR3 MULCH R1
7 66 3 KR3 MULCH R1
8 66 1 KR3 MULCH R1
9 66 4 KR3 MULCH R1
10 66 1 KR3 MULCH R1
11 66 1 KR3 MULCH R1
12 66 1 KR3 MULCH R1
13 66 3 KR3 MULCH R1
1 235 2 KR3 MULCH R3
2 235 3 KR3 MULCH R3
3 235 1 KR3 MULCH R3
4 235 3 KR3 MULCH R3
5 235 4 KR3 MULCH R3
6 235 1 KR3 MULCH R3
7 235 1 KR3 MULCH R3
8 235 1 KR3 MULCH R3
9 235 1 KR3 MULCH R3
10 235 1 KR3 MULCH R3
11 235 1 KR3 MULCH R3
12 235 1 KR3 MULCH R3
13 235 1 KR3 MULCH R3
14 235 4 KR3 MULCH R3
15 235 4 KR3 MULCH R3
16 235 5 KR3 MULCH R3
17 235 1 KR3 MULCH R3
18 235 3 KR3 MULCH R3
1 239 4 KR3 MULCH R3

84 Data

2 239 4 KR3 MULCH R3
5 239 5 KR3 MULCH R3
6 239 5 KR3 MULCH R3
7 239 5 KR3 MULCH R3
8 239 2 KR3 MULCH R3
9 239 5 KR3 MULCH R3
10 239 1 KR3 MULCH R3
11 239 1 KR3 MULCH R3
12 239 3 KR3 MULCH R3
13 239 1 KR3 MULCH R3
14 239 4 KR3 MULCH R3
1 243 1 KR3 MULCH R3
2 243 5 KR3 MULCH R3
3 243 5 KR3 MULCH R3
4 243 5 KR3 MULCH R3
6 243 1 KR3 MULCH R3
9 243 5 KR3 MULCH R3
10 243 4 KR3 MULCH R3
11 243 4 KR3 MULCH R3
12 243 4 KR3 MULCH R3

D
.3

D
ro

n
e
Im

a
g
in
g

8
5

D.3 Drone Imaging

D.3.1 Kingston Rest 1 Block 47

8
6

D
a
ta

D.3.2 Kingston Rest 1 Block 47 - Digital Surface Model

D
.3

D
ro

n
e
Im

a
g
in
g

8
7

D.3.3 Kingston Rest 3 Block 1

8
8

D
a
ta

D.3.4 Kingston Rest 3 Block 1 - Digital Surface Model

Appendix E

Source Code

90 Source Code

E.1 Tree Detection Module

1 # from networkx import omega
2 from zipp import Path
3 from detect ron2 . data . da ta s e t s import r e g i s t e r c o c o i n s t a n c e s
4 import random
5 import cv2
6 from detect ron2 import model zoo
7 from detect ron2 . c on f i g import g e t c f g
8 from detect ron2 . u t i l s . v i s u a l i z e r import V i s u a l i z e r
9 from detect ron2 . data import MetadataCatalog , DatasetCatalog

10 from detect ron2 . engine import Defau l tTra iner
11 from detect ron2 . engine import De fau l tPred i c to r
12 from detect ron2 . u t i l s . v i s u a l i z e r import ColorMode
13 from detect ron2 . eva luat i on import COCOEvaluator , i n f e r en c e on da ta s e t , SemSegEvaluator , DatasetEvaluators
14 from detect ron2 . data import b u i l d d e t e c t i o n t e s t l o a d e r , DatasetMapper
15 from detect ron2 . engine . hooks import HookBase
16 from detect ron2 . eva luat i on import i n f e r e n c e c on t e x t
17 from detect ron2 . u t i l s . l o gg e r import l o g ev e ry n s e cond s
18 import detect ron2 . u t i l s . comm as comm
19 import os
20 import datet ime
21 from pycocotoo l s . cocoeva l import COCOeval
22 import torch
23 import time
24 import numpy as np
25 import l ogg ing
26
27
28 r e g i s t e r c o c o i n s t a n c e s (” d a t a s e t t r a i n ” , {} ,
29 ”TreeDetectionData /Training / annotat ions / i n s t a n c e s d e f a u l t . j son ” ,
30 ”TreeDetectionData /Training / images ”)
31 r e g i s t e r c o c o i n s t a n c e s (” da t a s e t va l ” , {} ,
32 ”TreeDetectionData /Va l idat ion / annotat ions / i n s t a n c e s d e f a u l t . j son ” ,
33 ”TreeDetectionData /Va l idat ion / images ”)
34 r e g i s t e r c o c o i n s t a n c e s (” d a t a s e t t e s t ” , {} ,
35 ”TreeDetectionData /Test / annotat ions / i n s t a n c e s d e f a u l t . j son ” ,
36 ”TreeDetectionData /Test / images ”)
37
38 # metadata = MetadataCata log . g e t (” d a t a s e t v a l ”)
39 # d a t a s e t d i c t s = Da ta s e tCa ta l o g . g e t (” d a t a s e t v a l ”)
40 # i = 0
41 # fo r d in random . sample (d a t a s e t d i c t s , 3) :
42 # img = cv2 . imread (d [” f i l e n ame ”])
43 # v i s u a l i z e r = V i s u a l i z e r (img [: , : , : : −1] , metadata=metadata , s c a l e =0.5)
44 # out = v i s u a l i z e r . d r aw d a t a s e t d i c t (d)
45 # cv2 . imwr i t e (’ image ’ + s t r (i) + ’ . png ’ , out . g e t image () [: , : , : : −1])
46 # i+=1
47
48
49 IM SIZE = 512
50
51 now = datetime . datet ime . now() . s t r f t ime (”%Y−%b−%d−%H%M−%S”)
52 l o g d i r = os . path . j o i n (’ . /TDM Logs/ ’ , ”TDM−{}” . format (now))
53 # l o g d i r = ’TDM Logs/TDM−2023−Oct−08−0707−34/’
54
55 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−TRAIN−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56
57 c f g = g e t c f g ()
58 c f g . me r g e f r om f i l e (model zoo . g e t c o n f i g f i l e (”LVISv0.5− InstanceSegmentat ion /mask rcnn R 101 FPN 1x . yaml”))
59 c f g . INPUT.MIN SIZE TRAIN = (IM SIZE ,)
60 c f g . INPUT.MAX SIZE TRAIN = IM SIZE
61 # Si z e o f t h e sma l l e s t s i d e o f t h e image dur ing t e s t i n g . Se t to z e ro to d i s a b l e r e s i z e in t e s t i n g .
62 c f g . INPUT.MIN SIZE TEST = IM SIZE
63 # Maximum s i z e o f t h e s i d e o f t h e image dur ing t e s t i n g
64 c f g . INPUT.MAX SIZE TEST = IM SIZE
65 c f g .MODEL.RPN.SMOOTH L1 BETA = 1.5
66 # c f g .MODEL.RPN.LOSS WEIGHT = 1.0
67 c f g . INPUT.RANDOM FLIP = ” ho r i z on t a l ”
68 c f g .DATASETS.TRAIN = (” da t a s e t t r a i n ” ,)
69 c f g .DATASETS.TEST = (” da t a s e t va l ” ,)
70 c f g .TEST.EVAL PERIOD = 100
71 c f g .DATALOADER.NUMWORKERS = 4
72 c f g .MODEL.WEIGHTS = model zoo . g e t ch e ckpo i n t u r l (”LVISv0.5− InstanceSegmentat ion /mask rcnn R 101 FPN 1x . yaml”) # Let
73 c f g .SOLVER. IMS PER BATCH = 4 # This i s t h e r e a l ” ba t ch s i z e ” commonly known to deep l e a r n i n g p eop l e
74 c f g .SOLVER.BASE LR = 0.00025 # p i c k a good LR
75 c f g .SOLVER.MAX ITER = 2#300 # 300 i t e r a t i o n s seems good enough f o r t h i s t oy d a t a s e t ; you w i l l need to t r a i n l on g e
76 c f g .SOLVER.STEPS = [] # do not decay l e a r n i n g r a t e
77 c f g .MODEL.ROI HEADS.BATCH SIZE PER IMAGE = 128 # The ”RoIHead ba t ch s i z e ” . 128 i s f a s t e r , and good enough f o r t h i s
78 c f g .MODEL.ROI HEADS.NUM CLASSES = 3 # on ly has one c l a s s (b a l l o n) . (s ee h t t p s : // d e t e c t r on2 . r e ad t h edo c s . i o / t u t o r i a l s /
79 # NOTE: t h i s c o n f i g means t h e number o f c l a s s e s , bu t a few popu la r u n o f f i c i a l t u t o r i a l s i n c o r r e c t u se s num c la s s e s+1
80 c f g .OUTPUT DIR = l o g d i r
81
82 c l a s s LossEvalHook (HookBase) :
83 def i n i t (s e l f , eva l pe r i od , model , da ta l oade r) :
84 s e l f . model = model
85 s e l f . p e r i od = eva l p e r i od
86 s e l f . d a t a l o ade r = data l oade r
87
88 def d o l o s s e v a l (s e l f) :
89 # Copying i n f e r e n c e o n d a t a s e t from e v a l u a t o r . py
90 t o t a l = len (s e l f . d a t a l o ade r)
91 num warmup = min (5 , t o t a l − 1)
92
93 s t a r t t ime = time . p e r f c oun t e r ()
94 tota l compute t ime = 0
95 l o s s e s = []
96 f o r idx , inputs in enumerate (s e l f . d a t a l o ade r) :
97 i f idx == num warmup :

E.1 Tree Detection Module 91

98 s t a r t t ime = time . p e r f c oun t e r ()
99 tota l compute t ime = 0

100 s tar t compute t ime = time . p e r f c oun t e r ()
101 i f torch . cuda . i s a v a i l a b l e () :
102 torch . cuda . synchron ize ()
103 tota l compute t ime += time . p e r f c oun t e r () − s tar t compute t ime
104 i t e r s a f t e r s t a r t = idx + 1 − num warmup ∗ i n t (idx >= num warmup)
105 seconds per img = tota l compute t ime / i t e r s a f t e r s t a r t
106 i f idx >= num warmup ∗ 2 or seconds per img > 5 :
107 t o t a l s e c ond s pe r img = (time . p e r f c oun t e r () − s t a r t t ime) / i t e r s a f t e r s t a r t
108 eta = datetime . t imede l ta (seconds=in t (t o t a l s e c ond s pe r img ∗ (t o t a l − idx − 1)))
109 l o g ev e ry n s e cond s (
110 l ogg ing . INFO,
111 ”Loss on Va l idat ion done {}/{} . { : . 4 f } s / img . ETA={}” . format (
112 idx + 1 , to ta l , seconds per img , s t r (eta)
113) ,
114 n=5,
115)
116 l o s s ba t ch = s e l f . g e t l o s s (inputs)
117 l o s s e s . append (l o s s ba t ch)
118 mean loss = np .mean(l o s s e s)
119 s e l f . t r a i n e r . s t o rage . pu t s c a l a r (’ v a l i d a t i o n l o s s ’ , mean loss)
120 comm. synchron ize ()
121
122 re turn l o s s e s
123
124 def g e t l o s s (s e l f , data) :
125 # How l o s s i s c a l c u l a t e d on t r a i n l o o p
126 met r i c s d i c t = s e l f . model (data)
127 met r i c s d i c t = {
128 k : v . detach () . cpu () . item () i f i s i n s t a n c e (v , torch . Tensor) e l s e f l o a t (v)
129 f o r k , v in me t r i c s d i c t . i tems ()
130 }
131 t o t a l l o s s e s r e d u c e d = sum(l o s s f o r l o s s in me t r i c s d i c t . va lues ())
132 re turn t o t a l l o s s e s r e d u c e d
133
134
135 def a f t e r s t e p (s e l f) :
136 n e x t i t e r = s e l f . t r a i n e r . i t e r + 1
137 i s f i n a l = n e x t i t e r == s e l f . t r a i n e r . max iter
138 i f i s f i n a l or (s e l f . p e r i od > 0 and n e x t i t e r % s e l f . p e r i od == 0) :
139 s e l f . d o l o s s e v a l ()
140 s e l f . t r a i n e r . s t o rage . pu t s c a l a r s (t imete s t =12)
141
142 c l a s s MyTrainer (De fau l tTra iner) :
143 @classmethod
144 def bu i l d eva l ua t o r (c l s , c fg , dataset name , ou tpu t f o l d e r=None) :
145 i f ou tpu t f o l d e r i s None :
146 ou tpu t f o l d e r = os . path . j o i n (c f g .OUTPUT DIR, ” i n f e r e n c e ”)
147 re turn COCOEvaluator (dataset name , cfg , True , ou tpu t f o l d e r)
148
149 def bu i ld hooks (s e l f) :
150 hooks = super () . bu i ld hooks ()
151 hooks . i n s e r t (−1 ,LossEvalHook (
152 c f g .TEST.EVAL PERIOD,
153 s e l f . model ,
154 bu i l d d e t e c t i o n t e s t l o a d e r (
155 s e l f . c fg ,
156 s e l f . c f g .DATASETS.TEST[0] ,
157 DatasetMapper (s e l f . c fg , True)
158)
159))
160 re turn hooks
161
162 # −−
163 os . makedirs (c f g .OUTPUT DIR, e x i s t o k=True)
164 t r a i n e r = MyTrainer (c f g)
165 t r a i n e r . r e sume or load (resume=False)
166 t r a i n e r . t r a i n ()
167 # −−
168
169
170
171 # In f e r en c e shou l d use t h e c o n f i g w i th parameters t h a t are used in t r a i n i n g
172 # c f g now a l r e ad y con t a i n s e v e r y t h i n g we ’ ve s e t p r e v i o u s l y . We changed i t a l i t t l e b i t f o r i n f e r e n c e :
173 c f g .MODEL.WEIGHTS = os . path . j o i n (c f g .OUTPUT DIR, ”mode l f i n a l . pth”) # path to t h e model we j u s t t r a i n e d
174 c f g .MODEL.ROI HEADS.SCORE THRESH TEST = 0.55 # s e t a custom t e s t i n g t h r e s h o l d
175 p r ed i c t o r = De fau l tPred i c to r (c f g)
176
177 metadata = MetadataCatalog . get (” d a t a s e t t e s t ”)
178 da t a s e t d i c t s = DatasetCatalog . get (” d a t a s e t t e s t ”)
179 i = 0
180 f o r d in random . sample (da t a s e t d i c t s , 10) :
181 im = cv2 . imread (d [” f i l e name ”])
182 outputs = pr ed i c t o r (im) # format i s documented a t h t t p s : // d e t e c t r on2 . r e ad t h edoc s . i o / t u t o r i a l s /models . html#model−
183 v = V i s u a l i z e r (im [: , : , : : −1] ,
184 metadata=metadata ,
185 s c a l e =1,
186 instance mode=ColorMode .IMAGE # remove the c o l o r s o f unsegmented p i x e l s . This op t i on i s on l y a v
187)
188 out = v . d r aw in s t an c e p r ed i c t i on s (outputs [” i n s t anc e s ”] . to (”cpu”))
189 cv2 . imwrite (l o g d i r + ’ /pred ’ + s t r (i) + ’ . png ’ , out . get image () [: , : , : : −1])
190
191 v i s u a l i z e r = V i s u a l i z e r (im [: , : , : : −1] , metadata=metadata , s c a l e =1)
192 out = v i s u a l i z e r . d raw data s e t d i c t (d)
193 cv2 . imwrite (l o g d i r + ’ /groundTruth ’ + s t r (i) + ’ . png ’ , out . get image () [: , : , : : −1])
194
195 i+=1
196
197 e v a l d i r = l o g d i r + ’ /COCO Eval/ ’

92 Source Code

198 os . makedirs (e va l d i r , e x i s t o k=True)
199
200 cocoEval = COCOEvaluator (” d a t a s e t t e s t ” , output d i r=eva l d i r , t a sks=(”segm” , ”bbox”))
201 eva lua to r s = DatasetEvaluators ([cocoEval])
202 va l l o ad e r = bu i l d d e t e c t i o n t e s t l o a d e r (cfg , ” d a t a s e t t e s t ”)
203 r e s u l t s = i n f e r e n c e on da t a s e t (p r ed i c t o r . model , va l l o ade r , eva lua to r s)
204 pr in t (r e s u l t s)
205
206 # pr cu r v e = Pre c i s i onReca l lCu r v e (t a s k=”mu l t i c l a s s ” , num c la s s e s =5)
207 # pre c i s i on , r e c a l l , t h r e s h o l d s = p r cu r v e (pred , t a r g e t)

Listing E.1: Final Tree Detection Model.

E.2 Health Classifier Model 93

E.2 Health Classifier Model

1 from torchmet r i c s . c l a s s i f i c a t i o n import Mul t i c l a s sPrec i s i onReca l lCurve , MulticlassROC
2 import pandas as pd
3 from tensorboard . p lug in s . hparams import api as hp
4 import i t e r t o o l s
5 from matp lo t l ib import pyplot as p l t
6 import i o
7 import cv2
8 import t en so r f l ow as t f
9 from tenso r f l ow import keras

10 import datet ime
11 import os
12 import numpy as np
13 import sk l ea rn
14 import torch
15 os . environ [’TF CPP MIN LOG LEVEL ’] = ’ 2 ’
16
17 # −−−
18 # GLOBAL CONSTANTS
19 # −−−
20
21 # MODEL CONFIG PARAMETERS
22 LEARNING RATE = hp .HParam(’ l e a r n i n g r a t e ’ , hp . D i s c r e t e ([0 . 0 0 5]))
23 NUM UNITS = hp .HParam(’ num units ’ , hp . D i s c r e t e ([1 5 3 6]))
24 OPTIMIZER = hp .HParam(’ opt imize r ’ , hp . D i s c r e t e ([’adam ’]))
25 DROPOUTRATE = hp .HParam(’ dropout ’ , hp . D i s c r e t e ([0 . 6]))
26 L2 PENALTY = hp .HParam(’ l 2 p ena l t y ’ , hp . D i s c r e t e ([0 . 0 5]))
27 WEIGHTS = hp .HParam(’ weights ’ , hp . D i s c r e t e ([’ imagenet ’]))
28 IMAGE TYPE = hp .HParam(’ image type ’ , hp . D i s c r e t e ([’masked ’]))
29 MODEL LAYERS = hp .HParam(’ mode l l aye r s ’ , hp . D i s c r e t e ([’ 50 ’]))
30 METRIC ACCURACY = ’ t op 2 ca t a c c ’
31 METRIC ACCURACY2 = ’ t op 1 ca t a c c ’
32 METRIC F1 = ’ f 1 s c o r e ’
33
34 IM SIZE = 300
35 INPUT SHAPE = (300 , 300 , 3)
36 OUTPUTNUM = 5
37 BATCH SIZE = 4
38 EPOCHS = 100
39 VAL SPLIT = 0.2
40 CLASSES = 5
41
42
43 da ta d i r = ’ . / images / Stage 2 /Masks/Health5Class / ’
44 t e s t d i r = ’ . / images / Stage 2 /Masks/HealthTest / ’
45 da t a d i r c r op s = ’ . / images / Stage 2 /JPEGImages/Health / ’
46 now = datetime . datet ime . now() . s t r f t ime (”%Y−%b−%d−%H%M−%S”)
47 l o g d i r = os . path . j o i n (’ . /THC Logs/ ’ , ”THC−{}” . format (now))
48 data cnt = sum ([l en (f i l e s) f o r r , d , f i l e s in os . walk (da ta d i r)])
49
50 with t f . summary . c r e a t e f i l e w r i t e r (’ l o g s /hparam tuning ’) . a s d e f a u l t () :
51 hp . hparams conf ig (
52 hparams=[NUM UNITS, DROPOUTRATE, OPTIMIZER, LEARNING RATE, L2 PENALTY,
53 MODEL LAYERS, WEIGHTS, IMAGE TYPE] ,
54 metr i c s =[hp . Metric (METRIC ACCURACY, display name=’ Top2CatagoricalAccuracy ’) ,
55 hp . Metric (METRIC ACCURACY2,
56 display name=’ Top1CatagoricalAccuracy ’) ,
57 hp . Metric (METRIC F1, display name=’ F1Score ’)] ,
58)
59
60 checkpo int path = os . path . j o i n (l o g d i r , ” T r e eHea l t hC l a s s i f i e r Be s t . h5”)
61
62
63 # −−−
64 # FUNCTIONS
65 # −−−
66
67 def g e t f i l e s (d i r) :
68 re turn [f f o r f in os . l i s t d i r (d i r) i f os . path . i s f i l e (os . path . j o i n (dir , f))]
69
70
71 def t r a i n t e s t mode l (l o g d i r , hparams) :
72
73 data augmentation = t f . keras . Sequent i a l ([
74 keras . l a y e r s . RandomFlip (” h o r i z o n t a l a nd v e r t i c a l ”) ,
75 keras . l a y e r s . RandomRotation (1 , f i l l mod e=” constant ” , f i l l v a l u e =0) ,
76])
77
78 i f hparams [WEIGHTS] == ’None ’ :
79 wts = None
80 e l s e :
81 wts = hparams [WEIGHTS]
82
83 i f hparams [MODEL LAYERS] == ’ 50 ’ :
84 r e sn e t t ype = t f . keras . a pp l i c a t i o n s . i n c ep t i on v3 . InceptionV3
85 e l i f hparams [MODEL LAYERS] == ’ 101 ’ :
86 r e sn e t t ype = keras . a pp l i c a t i o n s . r e s n e t r s . ResNetRS101
87
88 r e sn e t ba s e = re sne t type (
89 i n c l ude top=False ,
90 weights=wts ,
91 input shape=INPUT SHAPE,
92 i npu t t en so r=None ,
93 poo l ing=None ,
94 c l a s s i f i e r a c t i v a t i o n=’ softmax ’ ,
95 # in c l u d e p r e p r o c e s s i n g=True
96)
97

94 Source Code

98 model = keras . models . Sequent i a l ()
99 model . add (data augmentation)

100 model . add (r e sn e t ba s e)
101 model . add (keras . l a y e r s . GlobalAveragePooling2D ())
102 model . add (keras . l a y e r s . Dense (hparams [NUM UNITS] , a c t i v a t i on=’ r e l u ’))
103 model . add (keras . l a y e r s . Dropout (hparams [DROPOUTRATE]))
104 model . add (keras . l a y e r s . Dense (CLASSES, a c t i v a t i on=’ softmax ’))
105 model . t r a i n ab l e = True
106
107 # adding r e g u l a r i z a t i o n
108 r e g u l a r i z e r = t f . keras . r e g u l a r i z e r s . l 2 (hparams [L2 PENALTY])
109
110 f o r l ay e r in model . l a y e r s [1] . l a y e r s :
111 f o r a t t r in [’ k e r n e l r e g u l a r i z e r ’] :
112 i f ha sa t t r (layer , a t t r) :
113 s e t a t t r (layer , attr , r e g u l a r i z e r)
114
115 i f OPTIMIZER == ’adam ’ :
116 opt imize r = t f . keras . op t im i z e r s .Adam(
117 l e a r n i n g r a t e=hparams [LEARNING RATE])
118 e l s e :
119 opt imize r = t f . keras . op t im i z e r s .SGD(
120 l e a r n i n g r a t e=hparams [LEARNING RATE])
121
122 model . compile (
123 opt imize r=opt imizer ,
124 l o s s=’ Categor i ca lCros sent ropy ’ ,
125 metr i c s =[
126 t f . keras . metr i c s . Categor ica lAccuracy (name=’ accuracy ’) ,
127 t f . keras . metr i c s . P r e c i s i on (name=’ p r e c i s i o n ’) ,
128 t f . keras . metr i c s . Reca l l (name=’ r e c a l l ’) ,
129 t f . keras . metr i c s .AUC(curve=’PR ’ , name=’AUC PR ’) ,
130 t f . keras . metr i c s . F1Score (name=’ f 1 s c o r e ’ , average=’macro ’)] ,
131 run eage r l y=None ,
132 s t e p s p e r e x e cu t i on=None ,
133 j i t c omp i l e=None ,
134 p s s eva l ua t i on sha rd s =0,
135)
136
137 c a l l b a ck s = [
138 keras . c a l l b a ck s . TensorBoard (l o g d i r=l o g d i r ,
139 h i s tog ram f r eq =10, wr i t e graph=False ,
140 wr i te images=False) ,
141 keras . c a l l b a ck s . ModelCheckpoint (l o g d i r + ”/ Tr e eHea l t hC l a s s i f i e r Be s t . h5” ,
142 verbose=1, s ave we i gh t s on ly=True ,
143 s av e be s t on l y=True , monitor=’ f 1 s c o r e ’ ,
144 mode=’max ’) ,
145 keras . c a l l b a ck s . ReduceLROnPlateau (monitor=’ v a l l o s s ’ ,
146 f a c t o r =0.2 ,
147 pat i ence=2,
148 verbose=1,
149 mode=’ auto ’ ,
150 min de l ta =0.0001 ,
151 cooldown=0,
152 min l r =0.0000001 ,) ,
153 keras . c a l l b a ck s . EarlyStopping (monitor=’ v a l l o s s ’ ,
154 min de l ta =0.00001 ,
155 pat i ence=5,
156 verbose=1,
157 mode=’ auto ’ ,
158 ba s e l i n e=None ,
159) ,
160 keras . c a l l b a ck s . TerminateOnNaN () ,
161 # t f . k e ra s . c a l l b a c k s . TensorBoard (l o g d i r) , # l o g me t r i c s
162 hp . KerasCal lback (l o g d i r , hparams) , # l o g hparams
163]
164
165 h i s t o r y = model . f i t (norm tra in ds ,
166 va l i d a t i on da t a=norm val ds ,
167 epochs=EPOCHS,
168 verbose=1,
169 c a l l b a ck s=ca l lbacks ,
170 s h u f f l e=True ,
171 i n i t i a l e p o c h =0,
172 c l a s s we i gh t ={0: 1 . 7 , 1 : 3 . 7 ,
173 2 : 2 . 18 , 3 : 1 . 78 , 4 : 1 . 0} ,
174 v a l i d a t i o n f r e q =1,
175 max queue s ize=10,
176 workers=1,
177 us e mu l t i p r o c e s s i ng=False)
178 model . l oad we ight s (l o g d i r + ”/ Tr e eHea l t hC l a s s i f i e r Be s t . h5”)
179 , accuracy , ∗ , f 1 = model . eva luate (norm val ds)
180
181 pr in t (’ Best t e s t F1 s c o r e s : {} ’ . format (f1))
182
183 re turn h i s to ry , accuracy , model
184
185
186 def norma l i s e ds (ds) :
187 no rma l i z a t i on l ay e r = t f . keras . l a y e r s . Resca l ing (1 . /255)
188 re turn ds .map(lambda x , y : (no rma l i z a t i on l ay e r (x) , y))
189
190
191 def p l o t c on fu s i on mat r i x (cm, c las s names) :
192 ”””
193 Returns a ma t p l o t l i b f i g u r e c on t a i n i n g t h e p l o t t e d con fu s i on matr ix .
194
195 Args :
196 cm (array , shape = [n , n]) : a con fu s i on matr ix o f i n t e g e r c l a s s e s
197 c l a s s names (array , shape = [n]) : S t r i n g names o f t h e i n t e g e r c l a s s e s

E.2 Health Classifier Model 95

198 ”””
199 f i g u r e = p l t . f i g u r e (f i g s i z e =(9 , 9))
200 ax = p l t . gca ()
201 ax . t i ck params (ax i s=”x” , top=True , l ab e l t op=True ,
202 bottom=False , labe lbottom=False)
203 p l t . imshow(cm, i n t e r p o l a t i o n=’ nea re s t ’ , cmap=p l t . cm. Blues)
204 t i ck marks = np . arange (l en (c las s names))
205 p l t . x t i c k s (t ick marks , c lass names , r o t a t i on =45)
206 p l t . y t i c k s (t ick marks , c la s s names)
207 p l t . rcParams . update ({ ’ f ont . s i z e ’ : 20})
208 p l t . rc (’ axes ’ , t i t l e s i z e =18) # f o n t s i z e o f t h e axes t i t l e
209 p l t . rc (’ axes ’ , l a b e l s i z e =18) # f o n t s i z e o f t h e x and y l a b e l s
210 p l t . rc (’ x t i ck ’ , l a b e l s i z e =18) # f o n t s i z e o f t h e t i c k l a b e l s
211 p l t . rc (’ y t i ck ’ , l a b e l s i z e =18)
212 l a b e l s = cm
213
214 # Use wh i t e t e x t i f s qua r e s are dark ; o t h e rw i s e b l a c k .
215 th r e sho ld = np .max(cm) / 2 .
216 f o r i , j in i t e r t o o l s . product (range (cm. shape [0]) , range (cm. shape [1])) :
217 c o l o r = ”white ” i f cm [i , j] > th r e sho ld e l s e ” black ”
218 p l t . t ext (j , i , l a b e l s [i , j] , ho r i zonta la l i gnment=” cente r ” , c o l o r=co l o r)
219
220 p l t . y l ab e l (’Ground Truth ’)
221 p l t . x l ab e l (’ Pred icted ’)
222 re turn f i g u r e
223
224
225 def p l o t to image (f i g u r e) :
226 ””” Conver t s t h e m a t p l o t l i b p l o t s p e c i f i e d by ’ f i g u r e ’ t o a PNG image and
227 r e t u rn s i t . The s u p p l i e d f i g u r e i s c l o s e d and i n a c c e s s i b l e a f t e r t h i s c a l l . ”””
228 # Save th e p l o t t o a PNG in memory .
229 buf = io . BytesIO ()
230 p l t . s a v e f i g (buf , format=’ png ’)
231 p l t . c l o s e (f i g u r e)
232 buf . seek (0)
233 # Convert PNG b u f f e r to TF image
234 image = t f . image . decode png (buf . ge tva lue () , channe ls=4)
235 # Add the ba t ch dimension
236 image = t f . expand dims (image , 0)
237 re turn image
238
239
240 def l o g con fu s i on mat r i x (epoch , logs , t e s t l a b e l s , t e s t p r e d s) :
241 cm = t f . math . con fus i on matr ix (t e s t l a b e l s , t e s t p r e d s)
242 pd conf mat = pd . DataFrame (cm, columns=[’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’] , index=[
243 ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’])
244 pr in t (pd conf mat)
245 cm = np . array (cm)
246 # Log the con fu s i on matr ix as an image summary .
247 f i g u r e = p l o t c on fu s i on mat r i x (cm, c las s names=[’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’])
248 cm image = p lo t to image (f i g u r e)
249
250 # Log the con fu s i on matr ix as an image summary .
251 with f i l e w r i t e r cm . a s d e f a u l t () :
252 t f . summary . image (” epoch con fus ion matr ix ” , cm image , s tep=4)
253
254
255 # Def ine t h e per−epoch c a l l b a c k .
256 cm cal lback = keras . c a l l b a ck s . LambdaCallback (on epoch end=log con fu s i on mat r i x)
257 f i l e w r i t e r cm = t f . summary . c r e a t e f i l e w r i t e r (l o g d i r + ’ /cm ’)
258
259
260 def p l o t r o c (name , l ab e l s , p r ed i c t i on s , ∗∗kwargs) :
261 fp , tp , = sk l ea rn . metr i c s . r o c curve (l abe l s , p r e d i c t i o n s)
262
263 p l t . p l o t (100∗ fp , 100∗ tp , l a b e l=name , l i new idth=2, ∗∗kwargs)
264 p l t . x l ab e l (’ Fa l se p o s i t i v e s [%] ’)
265 p l t . y l ab e l (’ True p o s i t i v e s [%] ’)
266 p l t . xlim ([−0.5 , 2 0])
267 p l t . ylim ([8 0 , 1 0 0 . 5])
268 p l t . g r id (True)
269 ax = p l t . gca ()
270 ax . s e t a s p e c t (’ equal ’)
271
272
273 def p l o t p r c (name , l abe l s , p r ed i c t i on s , ∗∗kwargs) :
274 pr e c i s i on , r e c a l l , = sk l ea rn . metr i c s . p r e c i s i o n r e c a l l c u r v e (
275 l ab e l s , p r e d i c t i o n s)
276
277 p l t . p l o t (p r e c i s i on , r e c a l l , l a b e l=name , l i new idth=2, ∗∗kwargs)
278 p l t . x l ab e l (’ P r e c i s i on ’)
279 p l t . y l ab e l (’ Reca l l ’)
280 p l t . g r id (True)
281 ax = p l t . gca ()
282 ax . s e t a s p e c t (’ equal ’)
283
284 # −−−
285 # MAIN CODE
286 # −−−
287
288
289 sess ion num = 0
290
291
292 def run (run di r , hparams) :
293 with t f . summary . c r e a t e f i l e w r i t e r (run d i r) . a s d e f a u l t () :
294 hp . hparams (hparams) # record t h e v a l u e s used in t h i s t r i a l
295 , accuracy , model = t r a i n t e s t mode l (run di r , hparams)
296 t f . summary . s c a l a r (METRIC ACCURACY, accuracy , s tep=EPOCHS)
297 re turn model

96 Source Code

298
299
300 f o r imtype in IMAGE TYPE. domain . va lues :
301
302 i f imtype == ’masked ’ :
303 da ta d i r = da ta d i r
304 e l s e :
305 da ta d i r = da t a d i r c r op s
306
307 t r a i n d s = t f . keras . u t i l s . image da ta s e t f r om d i r e c t o ry (
308 data d i r ,
309 labe l mode=’ c a t e g o r i c a l ’ ,
310 v a l i d a t i o n s p l i t=VAL SPLIT ,
311 subset=” t r a i n i n g ” ,
312 seed=77,
313 s h u f f l e=True ,
314 image s i z e=(IM SIZE , IM SIZE) ,
315 ba t ch s i z e=BATCH SIZE)
316
317 va l d s = t f . keras . u t i l s . image da ta s e t f r om d i r e c t o ry (
318 data d i r ,
319 labe l mode=’ c a t e g o r i c a l ’ ,
320 v a l i d a t i o n s p l i t=VAL SPLIT ,
321 subset=” va l i d a t i on ” ,
322 seed=77,
323 s h u f f l e=True ,
324 image s i z e=(IM SIZE , IM SIZE) ,
325 ba t ch s i z e=BATCH SIZE)
326
327 va l ba t che s = t f . data . exper imenta l . c a r d i n a l i t y (va l d s)
328 t e s t d s = va l d s . take ((va l ba t che s) // 2)
329 va l d s = va l d s . sk ip ((va l ba t che s) // 2)
330
331 AUTOTUNE = t f . data .AUTOTUNE
332
333 norm tra in ds = t r a i n d s . cache () . p r e f e t ch (b u f f e r s i z e=AUTOTUNE)
334 norm val ds = va l d s . cache () . p r e f e t ch (b u f f e r s i z e=AUTOTUNE)
335 norm tes t ds = t e s t d s . cache () . p r e f e t ch (b u f f e r s i z e=AUTOTUNE)
336
337 f o r l a y e r s in MODEL LAYERS. domain . va lues :
338 f o r weights in WEIGHTS. domain . va lues :
339 f o r l 2 in L2 PENALTY. domain . va lues :
340 f o r l r in LEARNING RATE. domain . va lues :
341 f o r num units in NUM UNITS. domain . va lues :
342 f o r dropout rate in DROPOUTRATE. domain . va lues :
343 f o r optim in OPTIMIZER. domain . va lues :
344 hparams = {
345 NUM UNITS: num units ,
346 DROPOUTRATE: dropout rate ,
347 OPTIMIZER: optim ,
348 LEARNING RATE: l r ,
349 L2 PENALTY: l2 ,
350 WEIGHTS: weights ,
351 IMAGE TYPE: imtype ,
352 MODEL LAYERS: l a y e r s
353 }
354
355 run name = ”run−%d” % sess ion num
356 pr in t (’−−− Sta r t i ng t r i a l : %s ’ % run name)
357 pr in t ({h . name : hparams [h] f o r h in hparams})
358 ∗ , model = t r a i n t e s t mode l (
359 l o g d i r + ’ /hparam tuning/ ’ + run name , hparams)
360
361 pr in t (’−−− Fina l Training Resu l t s −−− ’)
362 l o s s , accuracy , ∗ \
363 , f 1 = model . eva luate (
364 norm tra in ds , verbose=2)
365
366 pr in t (’−−− Fina l Test Evaluat ion Resu l t s −−− ’)
367 l o s s , accuracy , ∗ \
368 , f 1 = model . eva luate (
369 norm test ds , verbose=2)
370
371 t e s t p r e d s = model . p r ed i c t (
372 norm test ds , b a t ch s i z e=BATCH SIZE)
373 t r a i n p r ed s = model . p r ed i c t (
374 norm tra in ds , b a t ch s i z e=BATCH SIZE)
375 va l p r ed s = model . p r ed i c t (
376 norm val ds , b a t ch s i z e=BATCH SIZE)
377
378 cnt = 0
379 preds = []
380 t e s t l a b e l s = []
381 o n e h o t t e s t l a b e l s = []
382
383 f o r pred , [img , l a b e l] in z ip (t e s t p r ed s , norm tes t ds . unbatch ()) :
384 pred = np . argmax (pred)
385 o n e h o t t e s t l a b e l s . append (l a b e l)
386 l a b e l = np . argmax (l a b e l)
387 preds . append (pred)
388 t e s t l a b e l s . append (l a b e l)
389 cv2 . imwrite (l o g d i r + ’ / t e s tp r ed ’ + s t r (cnt)
390 + ’ pred ’ +
391 s t r (pred+1) + ’ a c tua l ’
392 + s t r (l a b e l +1) + ’ . png ’ , np . array (img))
393
394 cnt += 1
395
396 cnt = 0
397 o n e h o t t r a i n l a b e l s = []

E.2 Health Classifier Model 97

398
399 f o r [, l a b e l] in norm tra in ds . unbatch () :
400 o n e h o t t r a i n l a b e l s . append (l a b e l)
401 cnt += 1
402
403 cnt = 0
404 on e h o t v a l l a b e l s = []
405
406 f o r [, l a b e l] in norm val ds . unbatch () :
407 on e h o t v a l l a b e l s . append (l a b e l)
408 cnt += 1
409
410 metr ic = t f . keras . metr i c s . F1Score ()
411 metr ic . update s ta t e (
412 on e h o t t e s t l a b e l s , t e s t p r e d s)
413 r e s u l t = metr ic . r e s u l t ()
414 pr in t (’ t e s t f 1 s ’ , r e s u l t . numpy())
415
416 metr ic = t f . keras . metr i c s . F1Score ()
417 metr ic . update s ta t e (
418 on e h o t t r a i n l a b e l s , t r a i n p r ed s)
419 r e s u l t = metr ic . r e s u l t ()
420 pr in t (’ t r a i n f 1 s ’ , r e s u l t . numpy())
421
422 metr ic = t f . keras . metr i c s . F1Score ()
423 metr ic . update s ta t e (
424 on e ho t v a l l a b e l s , va l p r ed s)
425 r e s u l t = metr ic . r e s u l t ()
426 pr in t (’ va l f 1 s ’ , r e s u l t . numpy())
427
428 t e s t p r e d s t o r c h = torch . from numpy (
429 np . array (t e s t p r e d s))
430 t e s t l a b e l s t o r c h = torch . from numpy (
431 np . array (t e s t l a b e l s))
432
433 metr ic = Mul t i c l a s sPre c i s i onReca l lCurve (
434 num classes=CLASSES)
435 metr ic . update (t e s t p r ed s t o r ch ,
436 t e s t l a b e l s t o r c h)
437 f i g , ax = metr ic . p l o t (s co r e=True)
438 p l t . x l ab e l (’ Reca l l ’)
439 p l t . y l ab e l (’ P r e c i s i on ’)
440 p l t . t i t l e (’ Mu l t i c l a s s P r e c i s i on Reca l l Curve ’)
441 p l t . s a v e f i g (l o g d i r + ’ /prc . png ’)
442
443 prc image = p lo t to image (f i g)
444 with f i l e w r i t e r cm . a s d e f a u l t () :
445 t f . summary . image (”prc ” , prc image , s tep=3)
446
447 metr ic = MulticlassROC (num classes=CLASSES)
448 metr ic . update (t e s t p r ed s t o r ch ,
449 t e s t l a b e l s t o r c h)
450 f i g , ax = metr ic . p l o t (s co r e=True)
451 p l t . x l ab e l (’ Fa l se Po s i t i v e Rate ’)
452 p l t . y l ab e l (’ True Po s i t i v e Rate ’)
453 p l t . t i t l e (
454 ’ Mu l t i c l a s s Rec iever Operating Cha r a c t e r i s t i c ’)
455 p l t . s a v e f i g (l o g d i r + ’ / roc . png ’)
456
457 roc image = p lo t to image (f i g)
458 with f i l e w r i t e r cm . a s d e f a u l t () :
459 t f . summary . image (” roc ” , roc image , s tep=3)
460
461 l o g con fu s i on mat r i x (
462 epoch=session num , l o g s=None ,
463 t e s t l a b e l s=t e s t l a b e l s ,
464 t e s t p r e d s=np . argmax (t e s t p r ed s , ax i s=1))
465 sess ion num += 1

Listing E.2: Final Health Classifier Model.

98 Source Code

E.3 Tree Parameter Regressor Model

1 import cv2
2 import numpy as np
3 import t en so r f l ow as t f
4 from tenso r f l ow import keras
5 import datet ime
6 import random
7 import pandas as pd
8 import os
9 os . environ [’TF CPP MIN LOG LEVEL ’] = ’ 2 ’

10 from matp lo t l ib import pyplot as p l t
11 import s c ipy . s t a t s
12
13
14 # −−−
15 # GLOBAL CONSTANTS
16 # −−−
17
18 L2 PENALTY = 0.35
19 IM SIZE = 320
20 INPUT SHAPE = (IM SIZE , IM SIZE , 3)
21 # OUTPUT NUM = 5
22 BATCH SIZE = 4
23 # TRIAL ROWS = {”MULCH R1” : [6 5 , 6 9 , 7 3] ,}
24
25 da ta d i r = ’ . / images / Stage 2 /Masks/RegressorData / ’
26 t r a i n d i r = ’ . / images / Stage 2 /Masks/RegressorData /Train/ ’
27 v a l d i r = ’ . / images / Stage 2 /Masks/RegressorData /Val/ ’
28 now = datetime . datet ime . now() . s t r f t ime (”%Y−%b−%d−%H%M−%S”)
29 l o g d i r = os . path . j o i n (’ . / TPR Logs/ ’ , ”TPR−{}” . format (now))
30 # l o g d i r = ’ . / TPR Logs/TPR−2023−Oct−14−0918−26/’
31
32 # ch e c k p o i n t p a t h = os . path . j o i n (l o g d i r , ” TreeParameterRegressor ∗epoch ∗ . h5 ”)
33 # ch e c k p o i n t p a t h = ch e c k p o i n t p a t h . r e p l a c e (”∗ epoch ∗” , ”{ epoch :04 d}”)
34
35 checkpo int path = os . path . j o i n (l o g d i r , ’ checkpo in t be s t . h5 ’)
36
37 # −−−
38 # FUNCTIONS
39 # −−−
40
41 def g e t f i l e s (d i r) :
42 re turn [f f o r f in os . l i s t d i r (d i r) i f os . path . i s f i l e (os . path . j o i n (dir , f))]
43
44 def c r e a t e r e g r e s s o r mode l (input shape , outputs , top=’ f l a t t e n ’) :
45 i f top not in (’ f l a t t e n ’ , ’ avg ’ , ’max ’) :
46 r a i s e ValueError (’ unexpected top l ay e r type : %s ’ % top)
47
48 data augmentation = t f . keras . Sequent i a l ([
49 keras . l a y e r s . RandomFlip (” h o r i z o n t a l a nd v e r t i c a l ”) ,
50 keras . l a y e r s . RandomRotation (1 , f i l l mod e=” constant ” , f i l l v a l u e =0) ,
51 # kera s . l a y e r s . RandomBrightness (0 . 2) ,
52
53])
54
55 # connec t s base model w i th new ”head ”
56 Bott leneckLayer = {
57 ’ f l a t t e n ’ : keras . l a y e r s . F lat ten () ,
58 ’ avg ’ : keras . l a y e r s . GlobalAveragePooling2D () ,
59 ’max ’ : keras . l a y e r s . GlobalMaxPooling2D ()
60 } [top]
61
62 base = keras . a pp l i c a t i o n s . r e s n e t r s . ResNetRS101 (
63 i n c l ude top=False ,
64 weights=’ imagenet ’ ,
65 # we i g h t s=None ,
66 input shape=input shape ,
67 i npu t t en so r=None ,
68 poo l ing=None ,
69 # c l a s s i f i e r a c t i v a t i o n =’ so f tmax ’ ,
70 i n c l ud e p r ep r o c e s s i n g=True
71)
72
73 # x = Bo t t l en e c kLaye r (base . ou tpu t)
74
75 # x = kera s . l a y e r s . Dense (1056 , a c t i v a t i o n = ’ r e l u ’) (x)
76 # x = kera s . l a y e r s . Dropout (0 . 6) (x)
77
78 # x = kera s . l a y e r s . Dense (ou tpu t s , a c t i v a t i o n =’ l i n e a r ’) (x)
79 # model = ke ra s . Model (i n pu t s=base . inpu t s , o u t pu t s=x)
80 # model . t r a i n a b l e = True
81
82 model = keras . models . Sequent i a l ()
83 model . add (data augmentation)
84 model . add (base)
85 model . add (Bott leneckLayer)
86 model . add (keras . l a y e r s . Dense (256 , a c t i v a t i on = ’ r e l u ’))
87 model . add (keras . l a y e r s . Dropout (0 . 6))
88 model . add (keras . l a y e r s . Dense (outputs , a c t i v a t i on=’ l i n e a r ’))
89 model . t r a i n ab l e = True
90
91 # adding r e g u l a r i z a t i o n
92 r e g u l a r i z e r = t f . keras . r e g u l a r i z e r s . l 2 (L2 PENALTY)
93
94 f o r l ay e r in model . l a y e r s [0] . l a y e r s :
95 f o r a t t r in [’ k e r n e l r e g u l a r i z e r ’] :
96 i f ha sa t t r (layer , a t t r) :

E.3 Tree Parameter Regressor Model 99

97 s e t a t t r (layer , attr , r e g u l a r i z e r)
98 re turn model
99

100 def norma l i s e ds (ds) :
101 no rma l i z a t i on l ay e r = t f . keras . l a y e r s . Resca l ing (1 . /255)
102 re turn ds .map(lambda x , y : (no rma l i z a t i on l ay e r (x) , y))
103
104 # de f g e t d a t a (d i r , t r a i n s p l i t =0.8) :
105 # f i l e s = g e t f i l e s (d i r)
106
107 # t o t a l s i z e = (l en (f i l e s))
108 # train num = i n t (np . round ((l en (f i l e s) ∗ t r a i n s p l i t)))
109
110 # t r a i n s e t = random . sample (range (t o t a l s i z e) , t ra in num)
111
112 # t r a i n x = np . empty ((l e n (t r a i n s e t) , IM SIZE , IM SIZE , 3))
113 # t r a i n y = np . empty ((l e n (t r a i n s e t) , 2))
114
115 # v a l x = np . empty (((l e n (f i l e s) − l e n (t r a i n s e t)) , IM SIZE , IM SIZE , 3))
116 # va l y = np . empty (((l e n (f i l e s) − l e n (t r a i n s e t)) , 2))
117
118
119 # i = 0
120 # t r a i n i = 0
121 # v a l i = 0
122 # fo r f i l e in f i l e s :
123 # f i l e p a t h = os . path . j o i n (d i r , f i l e)
124 # img = cv2 . imread (f i l e p a t h)
125
126 # f i l e = os . pa th . s p l i t e x t (f i l e) [0]
127 # pa r t s = f i l e . s p l i t (’ ’)
128
129 # i f i in t r a i n s e t :
130 # t r a i n x [t r a i n i , : , : , :] = img
131 # t r a i n y [t r a i n i , 0] = np . f l o a t 3 2 (p a r t s [−2])
132 # t r a i n y [t r a i n i , 1] = np . f l o a t 3 2 (p a r t s [−1])
133 # t r a i n i += 1
134 # e l s e :
135 # v a l x [v a l i , : , : , :] = img
136 # va l y [v a l i , 0] = np . f l o a t 3 2 (p a r t s [−2])
137 # va l y [v a l i , 1] = np . f l o a t 3 2 (p a r t s [−1])
138 # v a l i += 1
139
140 # i += 1
141
142 # re tu rn t r a i n x , t r a i n y , v a l x , v a l y
143
144 def ge t data (dir , outputs=’ both ’ , t r a i n s p l i t =0.8) :
145 f i l e s = g e t f i l e s (d i r)
146
147 t o t a l s i z e = (l en (f i l e s))
148 train num = in t (np . round ((l en (f i l e s) ∗ t r a i n s p l i t)))
149
150 t r a i n s e t = random . sample (range (t o t a l s i z e) , train num)
151
152 t r a i n x = np . empty ((l en (t r a i n s e t) , IM SIZE , IM SIZE , 3))
153
154 va l x = np . empty (((l en (f i l e s) − l en (t r a i n s e t)) , IM SIZE , IM SIZE , 3))
155
156 i f outputs == ’ both ’ :
157 t r a i n y = np . empty ((l en (t r a i n s e t) , 2))
158 va l y = np . empty (((l en (f i l e s) − l en (t r a i n s e t)) , 2))
159 e l s e :
160 t r a i n y = np . empty (l en (t r a i n s e t))
161 va l y = np . empty (l en (f i l e s) − l en (t r a i n s e t))
162
163 i = 0
164 t r a i n i = 0
165 v a l i = 0
166 f o r f i l e in f i l e s :
167 f i l e p a t h = os . path . j o i n (dir , f i l e)
168 img = cv2 . imread (f i l e p a t h)
169
170 f i l e = os . path . s p l i t e x t (f i l e) [0]
171 part s = f i l e . s p l i t (’ ’)
172
173 i f i in t r a i n s e t :
174 t r a i n x [t r a i n i , : , : , :] = img
175
176 i f outputs == ’ both ’ :
177 t r a i n y [t r a i n i , 0] = np . f l o a t 3 2 (par t s [−2])
178 t r a i n y [t r a i n i , 1] = np . f l o a t 3 2 (par t s [−1])
179 e l i f outputs == ’dbh ’ :
180 t r a i n y [t r a i n i] = np . f l o a t 3 2 (par t s [−2])
181 e l i f outputs == ’bh ’ :
182 t r a i n y [t r a i n i] = np . f l o a t 3 2 (par t s [−1])
183
184 t r a i n i += 1
185 e l s e :
186 va l x [v a l i , : , : , :] = img
187
188 i f outputs == ’ both ’ :
189 va l y [v a l i , 0] = np . f l o a t 3 2 (par t s [−2])
190 va l y [v a l i , 1] = np . f l o a t 3 2 (par t s [−1])
191 e l i f outputs == ’dbh ’ :
192 va l y [v a l i] = np . f l o a t 3 2 (par t s [−2])
193 e l i f outputs == ’bh ’ :
194 va l y [v a l i] = np . f l o a t 3 2 (par t s [−1])
195
196 v a l i += 1

100 Source Code

197
198 i += 1
199
200 norm tra in ds = t f . data . Dataset . f r om t e n s o r s l i c e s ((t ra in x , t r a i n y)) . batch (BATCH SIZE)
201 norm val ds = t f . data . Dataset . f r om t e n s o r s l i c e s ((val x , va l y)) . batch (BATCH SIZE)
202
203 # norm t ra in d s = no rma l i s e d s (t r a i n d s)
204 # norm va l d s = no rma l i s e d s (v a l d s)
205
206
207
208 # AUTOTUNE = t f . da ta .AUTOTUNE
209 # norm t ra in d s = norm t ra in d s . cache () . p r e f e t c h (b u f f e r s i z e=AUTOTUNE)
210 # norm va l d s = norm va l d s . cache () . p r e f e t c h (b u f f e r s i z e=AUTOTUNE)
211
212 re turn norm tra in ds , norm val ds
213
214 # −−−
215 # MAIN CODE
216 # −−−
217
218
219 #−−−−−−−−−−−−−−−−−−−−−−−−LOAD DATASET−−−−−−−−−−−−−−−−−−−−−−−−
220
221 # # Reads an image from a f i l e , decodes i t i n t o a dense tensor , and r e s i z e s i t
222 # # to a f i x e d shape .
223 # # de f par se image (f i l e name) :
224 # de f par se image (f i l e name) :
225 # pa r t s = t f . s t r i n g s . s p l i t (f i l ename , ’ . png ’) [0]
226 # pa r t s = t f . s t r i n g s . s p l i t (par t s , ’ ’)
227
228 # l a b e l = pa r t s [−2:]
229 # l a b e l = t f . s t r i n g s . to number (l a b e l)
230
231 # image = t f . i o . r e a d f i l e (f i l e name)
232 # image = t f . i o . decode png (image)
233 # # image = t f . image . c on v e r t imag e d t y p e (image , t f . f l o a t 3 2)
234 # # image = t f . c o n v e r t t o t e n s o r (image , d t ype=t f . f l o a t 3 2)
235 # re tu rn (image , l a b e l)
236
237 # t r a i n d s = l i s t t r a i n d s .map(par se image)
238 # v a l d s = l i s t v a l d s .map(par se image)
239
240
241 # t r a i n x , t r a i n y , v a l x , v a l y = g e t d a t a (d a t a d i r , 0 . 8)
242 norm tra in ds , norm val ds = get data (data d i r , outputs=’bh ’ , t r a i n s p l i t =0.8)
243
244 va l ba t che s = t f . data . exper imenta l . c a r d i n a l i t y (norm val ds)
245 t e s t d s = norm val ds . take ((va l ba t che s) // 2)
246 norm val ds = norm val ds . sk ip ((va l ba t che s) // 2)
247
248
249 # t r a i n d s = t f . da ta . Datase t . f r om t e n s o r s l i c e s ((t r a i n x , t r a i n y)) . ba t ch (BATCH SIZE)
250 # v a l d s = t f . da ta . Datase t . f r om t e n s o r s l i c e s ((v a l x , v a l y)) . ba t ch (BATCH SIZE)
251
252 # norm t ra in d s = no rma l i s e d s (t r a i n d s)
253 # norm va l d s = no rma l i s e d s (v a l d s)
254
255
256
257 # AUTOTUNE = t f . da ta .AUTOTUNE
258 # norm t ra in d s = norm t ra in d s . cache () . p r e f e t c h (b u f f e r s i z e=AUTOTUNE)
259 # norm va l d s = norm va l d s . cache () . p r e f e t c h (b u f f e r s i z e=AUTOTUNE)
260
261 #−−−−−−−−−−−−−−−−−−−−−−−−CREATE MODEL−−−−−−−−−−−−−−−−−−−−−−−−
262
263 # MODEL CONFIG PARAMETERS
264 LEARNING RATE = 0.0000015
265
266 def r squared (y true , y pred) :
267 t s s = t f . reduce sum (t f . square (y t rue − t f . reduce mean (y t rue)))
268 r s s = t f . reduce sum (t f . square (y t rue − y pred))
269 r squared = 1 − (r s s / t s s)
270 re turn r squared
271
272
273 model = c r e a t e r e g r e s s o r mode l (INPUT SHAPE, outputs=1, top=’ f l a t t e n ’)
274
275 model . compile (
276 opt imize r=t f . keras . op t im i ze r s .SGD(l e a r n i n g r a t e=LEARNING RATE) ,
277 # l o s s=t f . k e ra s . l o s s e s . MeanAbsoluteError () ,
278 # l o s s=t f . k e ra s . me t r i c s . RootMeanSquaredError () ,
279 l o s s=t f . keras . l o s s e s . MeanSquaredError () ,
280 metr i c s =[
281 # t f . k e ra s . me t r i c s . R2Score (
282 # c l a s s a g g r e g a t i o n=None ,
283 # num regre s so r s =0,
284 # name=’ r 2 s c o r e ’ ,
285 # dtype=np . f l o a t 3 2
286 #) ,
287 r squared ,
288 t f . keras . metr i c s . RootMeanSquaredError (name=’ rmse ’) ,
289 t f . keras . metr i c s . MeanAbsoluteError (name=’mae ’) ,
290 t f . keras . metr i c s . MeanSquaredError (name=’mse ’) ,
291] ,
292 l o s s w e i g h t s=None ,
293 weighted metr i c s=None ,
294 run eage r l y=None ,
295 s t e p s p e r e x e cu t i on=None ,
296 j i t c omp i l e=None ,

E.3 Tree Parameter Regressor Model 101

297 p s s eva l ua t i on sha rd s =0,
298)
299
300 #−−−−−−−−−−−−−−−−−−−−−−−−TRAIN MODEL−−−−−−−−−−−−−−−−−−−−−−−−
301
302 c a l l b a ck s = [
303 keras . c a l l b a ck s . TensorBoard (l o g d i r=l o g d i r , wr i t e graph=False , wr i t e images=False) ,
304 keras . c a l l b a ck s . ModelCheckpoint (checkpoint path ,
305 verbose=1, s ave we i gh t s on ly=True ,
306 s av e be s t on l y=True , monitor=’ val mse ’ ,
307 mode=’min ’) ,
308 keras . c a l l b a ck s . ReduceLROnPlateau (monitor=’mse ’ ,
309 f a c t o r =0.2 ,
310 pat i ence=5,
311 verbose=1,
312 mode=’ auto ’ ,
313 min de l ta =0.0001 ,
314 cooldown=0,
315 min l r =0.0000001 ,) ,
316 # kera s . c a l l b a c k s . Ear l yS t opp ing (monitor=’mse ’ ,
317 # min de l t a =0.00001 ,
318 # pa t i e n c e =5,
319 # ver bo s e =1,
320 # mode=’ auto ’ ,
321 # ba s e l i n e=None ,
322 # r e s t o r e b e s t w e i g h t s=Fa l s e) ,
323 keras . c a l l b a ck s . TerminateOnNaN () ,
324]
325
326 # model . l o a d w e i g h t s (’ . / THC Logs/THC−2023−Oct−10−0444−34−3 C l a s s T e s t / T r e eH e a l t hC l a s s i f i e r B e s t . h5 ’)
327
328 h i s t o r y = model . f i t (norm tra in ds ,
329 va l i d a t i on da t a=norm val ds ,
330 epochs=60,
331 verbose=’ auto ’ ,
332 c a l l b a ck s=ca l lbacks ,
333 s h u f f l e=True ,
334 i n i t i a l e p o c h =0,
335 # v a l i d a t i o n s p l i t =0.2 ,
336 # s t e p s p e r e p o c h =20 ,
337 # v a l i d a t i o n s t e p s=None ,
338 # v a l i d a t i o n b a t c h s i z e=None ,
339 v a l i d a t i o n f r e q =1,
340 max queue s ize=10,
341 workers=1,
342 us e mu l t i p r o c e s s i ng=False)
343
344 # model . b u i l d (i n pu t s h a p e=(BATCH SIZE , IM SIZE , IM SIZE , 3))
345
346 model . eva luate (t e s t d s , verbose=2)
347
348 y t rue = [] # s t o r e t r u e l a b e l s
349 f o r [, l a b e l] in t e s t d s . unbatch () : # use d a t a s e t . unbatch () w i th r e p ea t
350 # append t r u e l a b e l s
351 y t rue . append ([l a b e l])
352
353 model . eva luate (t e s t d s , verbose=2)
354 preds = model . p r ed i c t (t e s t d s , b a t ch s i z e=BATCH SIZE)
355 metr ic = t f . keras . metr i c s . R2Score ()
356 metr ic . update s ta t e (np . array (y t rue) , np . array (preds))
357 r e s u l t = metr ic . r e s u l t ()
358 pr in t (’ Test R2 Score : ’ , r e s u l t . numpy())
359
360 # pd con f mat = pd . DataFrame ([np . t r an spo s e (np . array (y t r u e)) , np . t r an s po s e (np . array (preds))] , columns =[’ Y true ’ , ’ Y
361 # pr i n t (pd con f mat)
362 # pr i n t (y t r u e)
363 # pr i n t (preds)
364
365 maxval = np .max ([np .max(preds) ,np .max(y t rue)])
366 p l t . s c a t t e r (y true , preds , c =”blue ”)
367 p l t . x l ab e l (”Ground Truth”)
368 p l t . y l ab e l (” Pr ed i c t i on s ”)
369 p l t . t i t l e (”Test Resu l t s ”)
370 # p l t . anno ta t e (” r−squared = { : . 3 f }” . format (r e s u l t . numpy ()) , (0 , 1))
371 ax = p l t . gca ()
372 ax . s e t x l im ([0 , maxval])
373 ax . s e t y l im ([0 , maxval])
374
375 p l t . s a v e f i g (’ s c a t t e s tbh . png ’)
376
377 y t rue = [] # s t o r e t r u e l a b e l s
378 f o r [, l a b e l] in norm val ds . unbatch () : # use d a t a s e t . unbatch () w i th r e p ea t
379 # append t r u e l a b e l s
380 y t rue . append ([l a b e l])
381
382 model . eva luate (norm val ds , verbose=2)
383 preds = model . p r ed i c t (norm val ds , b a t ch s i z e=BATCH SIZE)
384 metr ic = t f . keras . metr i c s . R2Score ()
385 metr ic . update s ta t e (np . array (y t rue) , np . array (preds))
386 r e s u l t = metr ic . r e s u l t ()
387 pr in t (’ Val R2 Score : ’ , r e s u l t . numpy())
388
389 maxval = np .max ([np .max(preds) ,np .max(y t rue)])
390 p l t . s c a t t e r (y true , preds , c =”blue ”)
391 p l t . x l ab e l (”Ground Truth”)
392 p l t . y l ab e l (” Pr ed i c t i on s ”)
393 p l t . t i t l e (” Va l idat ion Resu l t s ”)
394 # p l t . anno ta t e (” r−squared = { : . 3 f }” . format (r e s u l t . numpy ()) , (0 , 1))
395 ax = p l t . gca ()
396 ax . s e t x l im ([0 , maxval])

102 Source Code

397 ax . s e t y l im ([0 , maxval])
398
399 # To show the p l o t
400 p l t . s a v e f i g (’ s catva lbh . png ’)
401
402
403 y t rue = [] # s t o r e t r u e l a b e l s
404 f o r [, l a b e l] in norm tra in ds . unbatch () : # use d a t a s e t . unbatch () w i th r e p ea t
405 # append t r u e l a b e l s
406 y t rue . append ([l a b e l])
407 model . eva luate (norm tra in ds , verbose=2)
408 preds = model . p r ed i c t (norm tra in ds , b a t ch s i z e=BATCH SIZE)
409 metr ic = t f . keras . metr i c s . R2Score ()
410 metr ic . update s ta t e (np . array (y t rue) , np . array (preds))
411 r e s u l t = metr ic . r e s u l t ()
412 pr in t (’ Train R2 Score : ’ , r e s u l t . numpy())
413
414 maxval = np .max ([np .max(preds) ,np .max(y t rue)])
415 p l t . s c a t t e r (y true , preds , c =”blue ”)
416 p l t . x l ab e l (”Ground Truth”)
417 p l t . y l ab e l (” Pr ed i c t i on s ”)
418 p l t . t i t l e (”Training Resu l t s ”)
419 # p l t . anno ta t e (” r−squared = { : . 3 f }” . format (r e s u l t . numpy ()) , (0 , 1))
420 ax = p l t . gca ()
421 ax . s e t x l im ([0 , maxval])
422 ax . s e t y l im ([0 , maxval])
423
424 p l t . s a v e f i g (’ s ca t t r a inbh . png ’)

Listing E.3: Final Tree Parameter Regressor Model.

