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Abstract 
 

 

Each day there are a great deal of presentations or performances occurring in front of audiences 

all around the world. These events are often recorded by a person aiming a camera or in other 

cases the camera will have an automatic tracking system. Having a dedicated camera person 

will usually achieve excellent tracking performance, however this task is tedious and focus can 

easily be diverted. For this reason camera tracking systems have been developed to automate 

this process. These existing tracking systems can often get distracted with movements in the 

audience or poor lighting conditions. Usually, machine vision is the main mechanism used for 

this camera tracking. However, these methods are computationally expensive and cannot 

operate effectively in all lighting conditions.  

To address these issues, the idea of pairing a mm-wave sensor with a camera tracking system 

was conceived. These sensors are immune from any visual obstructions like low light, smoke 

or glare. Previous research has successfully used a mm-wave sensor to detect, count and 

monitor the positions of people in software (Huang et al. 2021). However the final step in 

pairing this to a physical camera tracking system has never been done. This research gap is 

where the final year project will be focused. The aim is that an automatic camera tracking 

system will be developed which is able to successfully track a speaker, with lower computation 

requirements while performing better in more extreme lighting conditions. This project will 

also attempt to answer the question of whether the idea of pairing a mm-wave sensor with a 

camera tracking system is advantageous when compared to existing methods.  

To determine the answer to this question, a new type of camera tracking system which uses a 

mm-wave sensor will be developed and compared to an existing system. This project requires 

many steps to achieve these goals; these first few steps will be similar to the methods used in 

the research identified. Building on this, more algorithms need to be developed to interface 

with the motors inside the camera gimballing hardware to allow smooth tracking. Once a 



 

system is operational, some degree of software and hardware refinement will be performed to 

improve the design. Finally the developed camera tracking system will be compared head to 

head with another camera tracking system and some key performance characteristics will be 

measured. These results will be interpreted and the findings will be discussed in the 

dissertation. 
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2 Chapter 1 Introduction 

1.1 Background 
 

Automatic camera tracking technology has been around for a number of years, with military 

camera tracking systems being developed as far back as 1976 (Redish 1976). More recently 

these camera tracking techniques have utilised machine vision, but these techniques are not 

without their disadvantages (Jaiswal & Pandey 2021). Even with the huge technological 

advances in recent years, the seeming simple task of tracking a speaker in front of an audience 

still has no perfect solution. This is evident by evaluating the camera tracking solutions which 

are currently available, with all systems having one or more disadvantages. With some systems 

requiring the user to wear a tracking tag, to other systems easily being distracted by small 

disturbances, a more robust solution is needed. These apparent shortcomings can be overcome 

by utilising the relatively new addition to the commercially available sensors which operate 

using mm-wave radar.  

Originally, sensors which utilised mm-wave radar were developed for use in the automotive 

industry for self-driving applications, however the uses for this type of sensor can be much 

broader (Texas Instruments 2020). The technology behind mm-wave sensors has been proven 

to be extremely robust for object detection in all weather conditions (Chen et al. 2022). While 

these sensors can work well in all conditions, its sensitivity is fine enough to detect a human 

heartbeat or breathing from across a room (Gupta et al. 2022). According to Zhao et al. (2019), 

mm-wave radar uses the principle of frequency modulated continuous wave (FMCW) radar, 

which has the ability to measure the range and speed of the target simultaneously. Traditionally 

to achieve this kind of sensing performance the use of Lidar sensors would be essential, 

however this is no longer the case. While Lidar still has many advantages like 360° point 

mapping in very high resolution in nearly all weather conditions, its disadvantages make it 

unusable for a number of applications. With Lidar being relatively expensive, bulky and less 

reliable due to multiple moving parts, mm-wave sensors can be a better option as they do not 

have any of these disadvantages.  

Despite the versatility and usefulness of mm-wave sensors, they have yet to be implemented 

as the main sensing technology in automatic camera tracking systems. With this gap in research 

literature and the need for more robust camera tracking systems, it is proposed that the inclusion 

of a mm-wave sensor in a camera tracking system would improve its performance significantly. 

It is expected that a system of this nature will be able to effectively track a speaker without 



Chapter 1 Introduction 3 

getting distracted by other objects, people or obscurities like smoke or glare. In addition to the 

tracking system being more robust, its cost, size and responsiveness should also be improved.  

The use of a mm-wave sensor in a camera tracking system is a unique approach to improving 

the performance and robustness while remaining relatively inexpensive and compact. During 

the remainder of the year, the plan is to concentrate on developing a system of this nature for 

the final year project. Once the required hardware for this system is acquired, testing and 

development can commence. This dissertation will comprehensively outline all phases of 

progress for this system including research, planning, methodology, development and testing. 
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1.2 Mm-Wave Sensors 
 

With the phrase ‘mm-wave’ being frequently used, it is important to have a decent 

understanding of what this term actually means as well as how this kind of sensor works. The 

mm-wave class of sensors make use electromagnetic waves (radio waves) to interpret the 

spatial environment at hand. The term ‘millimetre’ refers to the wavelengths used for these 

radar signals, this typically ranges between 1 to 10 mm, which corresponds to frequencies 

between 30 GHz to 300 GHz. According to McGrath (2021), this range of frequencies is also 

used in 5G wireless communication technology.  

 

 

Figure 1.1: Mm-Wave On The Electromagnetic Spectrum (Mcgrath 2021)  

 

Millimetre wave sensors operate in a similar principle to how bats use echo location to navigate 

in the dark, the difference being that instead of sound waves, these sensors use radio waves. 

The signals emitted by the sensor are called frequency-modulated continuous waves (FMCW) 

these are also known as ‘chirps’ (Lovescu & Rao 2020). These ‘chirp’ signals are emitted in 

quick succession and interact with the physical environment. When a FMCW encounters a 

solid object, it gets reflected back to a receiving antenna on the sensor. By measuring these 

reflected signals, many spatial aspects about the object can be determined.  

 

 

Figure 1.2: Chirp Signal, With Frequency As A Function Of Time. (Lovescu & Rao 2020) 
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According to Lovescu & Rao (2020) these mm-wave sensing devices are able to provide ‘high-

accuracy object data including range, velocity and angle’. The range of an object is able to be 

determined by measuring the time it takes for the signal to return to the receiving antenna. 

Since the speed of the radio waves is known, the distance of the object is simple calculated by: 

 𝑑 =  
𝜏𝑐

2
 Equation 1 

Where d is the distance of the object, τ is the time delay between the signal transmission and 

receipt and c is the speed of light. 

Interestingly the velocity of the measured object can also be determined by analysing the 

received signals. This is possible due to the Doppler effect, where the radio signals frequencies 

and phase are shifted due to an objects motion. Recall that phase can be described by the time 

difference between two waves peaks. When the object is moving closer or further away from 

the sensor, the frequency in the reflected radio signal is shifted. Similarly, when an object 

moves left or right relative to the sensor, the phase of the radio signal is shifted. By comparing 

the frequency and phase of the transmitted signal to the received signal, the objects velocity on 

a horizontal plane can be determined. 

In order for the mm-wave sensor to determine the angle of a detected object, very advanced 

phase analysis techniques are used. This is achieved through using an array of receiving 

antennas which is also known as a ‘phased array antenna’. By analysing the phase changes and 

timing of received signals across the antenna array, the mm-wave sensor is able to calculate an 

objects angle relative to the centre axis (Lovescu & Rao 2020). An illustration of how this is 

achieved is shown in Figure 1.3 below: 

 

 

Figure 1.3: Angle Detection Using A Phased Array Antenna (Lovescu & Rao 2020) 
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By measuring the time it takes for a signal to travel from transmission to when it is received at 

each individual antenna, the total distance travelled by the radio signal can be determined for 

each receiver. With known dimensions for the transmitter and antennas spacing’s, 

trigonometric calculations can be used to ascertain the objects relative angle.  

 

Figure 1.4: Point Cloud Generated By A Mm-Wave Sensor 

 

 

By using advanced radio transmission and receiving techniques, mm-wave sensors are able to 

reliable and accurately measure the spatial environment. They are able to accurately measure 

the distance, velocity and relative angle of objects, with immunity to visual obfuscation such 

as poor lighting, glare or smoke. While there are many advantages of mm-wave sensors, some 

limitations are still evident. According to Wei et al. (2022, p. 2), mm-wave sensors ‘cannot 
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provide the outline information of an object’, it is ‘difficult to distinguish relatively stationary 

targets’ and they suffer from ‘sparseness of radar features’. Despite these drawbacks, mm-wave 

sensors still possess several desirable attributes which make them a intelligent choice for a 

wide variety of engineering applications.  
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1.3 Robot Operating System (ROS) 
 

In the development of complex systems that use advanced sensors and devices, effective 

intercommunication can become a significant challenge. However, this problem can be 

effectively managed by utilising the capabilities of ROS (Robot Operating System). ROS is 

essentially a framework which facilitates robust and simple communication between devices 

or ‘nodes’. It allows the simple communication of the fundamental building blocks of a robotic 

system like sensors, actuators and computers. Perhaps one of the greatest aspects about ROS 

is that a large number of ROS packages which already exist for these kinds of devices, so it 

removes the need to develop specialised software to interface to devices. This makes 

developing complex systems a much easier experience since it can be built from readily 

available ‘plug and play’ ROS nodes. To understand the operation of how a ROS system works, 

several concepts need to be understood. The most basic ROS systems consists of the following: 

 Nodes: The most basic building block of a ROS system which will perform a specific 

task and usually communicate with other nodes. 

 Topics: Message categories used to distinguish between different messages. 

 Publishers: A node that creates messages under a certain topic. 

 Subscribers: A node that received messages under a certain topic 

 

There are other ROS concepts like services, actions, parameters and packages but these are 

outside the scope of this dissertation. To better understand the basic operation a ROS system, 

a graphical representation of a simple ROS system is shown in Figure 1.4 Below: 

 

Figure 1.5: Simple ROS System Layout 
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Figure 1.4 shows that the publisher node produces a message, which is received by any node 

which is subscribed to this particular message topic. These messages can be published at any 

rate which is dictated by the publisher and the subscribers will receive the messages at the same 

rate automatically. What is not shown in Figure 1.4 is the flexible nature of a ROS system since 

any node can publish and/or subscribe to any number of topics simultaneously and there can 

be any number of nodes. To streamline the process of starting individual nodes within a system, 

ROS also has the capability to create a ‘launch’ file which will simultaneously start multiple 

nodes with a single executable file. This flexibility, modularity and simplicity allows for any 

number of devices to seamlessly communicate with each other, even when the system becomes 

very complex.  
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1.4 Literature Review 
 

1.4.1 Indoor Detection And Tracking Of People Using Mm-Wave Sensor 
 

There are many research papers that are related to this topic, which can aid in the development 

of methodologies for this area of research. One of the most closely related research papers in 

this area is from Huang et al. (2021) where it was proven that mm-wave sensors are an effective 

way of tracking people in an indoor environment. The tracking of individuals was achieved 

purely inside software, and no link to hardware through camera gimbaling was undertaken. 

Their research used the Texas instruments IWR1642 sensor paired with a raspberry pi 4 and 

tested numerous algorithms to count and track people in software. The raw data provided by 

the sensor needed to be interpreted, this was handled by several different algorithms which 

achieved different steps in processing. The majority of their research centred around comparing 

similar algorithms and determining the best performer at a particular task. This methodology 

was repeated numerous times for different tasks that resulted in a series of algorithms which 

produced the greatest results in relation to speed and accuracy. An example of the data 

generated by the mm-wave sensor is shown in Figure 1.1 Below. 

 

 
Figure 1.6: Point Cloud Data From The IWR1642 (Huang et al., 2021) 



Chapter 1 Introduction 11 

 

Before any algorithms were compared, the data was ‘cleaned up’ my removing any static points 

by use of the static clutter removal algorithm. The first comparison of algorithms was for data 

point clustering and it was determined that the DBmeans clustering method was faster and 

more accurate than the DBmedoids method. Next, the evaluation of the tracking algorithm was 

undertaken. Here the Extended Kalman filter (EKF) was pitted against the recursive Kalman 

filter (RKF), which showed that the RKF method was more than 4.5 time faster while actually 

providing more accurate results. Overall this research paper outlined an improved method for 

processing the data which is produced by the IWR1642 sensor, with improved accuracy and 

less than 50ms between frames.  

The algorithms and methodology used in the paper by Huang et al. (2021) will be highly useful 

in the development of the proposed camera tracking system. It is likely that the sensor data will 

need to be filtered in some way to extract valuable information about the tracking targets 

position and speed. The methods of comparing several algorithms and selecting the best 

performer is a useful approach to improving the performance of the overall system, therefore 

the same approach will be implemented in developing the camera tracking system. It is possible 

that the exact methods identified in this paper are directly applicable to the camera tracking 

system which is to be developed. If this is the case, then a major focus will be to integrate this 

technology into the final design of the camera tracking system. 
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1.4.2 mID: Tracking and Identifying People with Millimeter Wave Radar 
 

Another highly relevant study was completed by Zhao et al. (2019) which used a mm-wave 

sensor to track and identify people in software. Their research resulted in a system that could 

identify and track up to 12 people with an accuracy of 89%, they dubbed this system ‘mID’ 

which means mm-wave Identification system. The mID system was able to reach tracking 

accuracies of up to 95% when the group sizes were 6 or less people. An interesting finding of 

this study was that mm-wave sensors can be used for more than simply detecting and tracking 

targets; they are also capable of differentiating between individuals. A comparison between the 

developed mID system and the popular Xbox Kinect (V2) sensor was conducted through a 

number of different tests. These tests demonstrated the superiority of the mID system, with a 

median tracking error of 0.16m, which was more than a 5-fold improvement compared to the 

Kinect V2's error of 0.9m. Furthermore, the tests also showcased the improved effective 

tracking distance of the mID system, which was able to track targets at distances greater than 

5.5m, whereas the Kinect was limited to a maximum range of 4.5m. This research paper has 

certainly demonstrated the benefits associated with using a mm-wave sensor. 

To achieve the outstanding outcomes, the researchers devised a specific combination of 

algorithms to process the data generated by the mm-wave sensor which is depicted below in 

Figure 1.2. Upon receiving the data from the sensor, it is organised into a 3D ‘point cloud’. 

Any points corresponding to stationary objects are removed from the point cloud. The point 

cloud is then analysed using a DBScan algorithm, which merges individual points into clusters, 

focusing on identifying vertically-oriented objects. These clusters are subsequently tracked 

using the Hungarian algorithm and a Kalman filter. Targets are identified by implementing a 

recurrent neural network called a Long Short-Term Memory (LSTM) network. The paper 

further elaborates on the optimisation of sensor parameters such as frequency, bandwidth, chirp 

cycle time, and frequency slope to achieve optimal results.  
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Figure 1.7: Data Processing Steps Used In Mm-Wave Tracking System (Zhao et al., 2019) 

 

While the focus was mainly on the benefits involved with using the mm-wave sensor and the 

mID system, several limitations were also identified and discussed. One such disadvantage was 

the limited number of users the system could track. While the mID system could accurately 

identify and track up to 12 people, increasing this number further became troublesome. 

Secondly, the monitoring range seemed to be another limiting factor. The mID system had a 

range of 5m and had excellent performance, however the mm-wave sensor utilised had 

specified maximum range of 30m, but this would be at the expense of spatial precision and 

increased signal noise. Finally, the researchers identified an issue which occasionally occurred 

when the mm-wave sensor was used in proximity to extremely flat planes such as glass 

windows. These flat surfaces would sometimes cause ‘reflection’ objects to appear when using 

the mm-wave sensor.  

The research undertaken by Zhao et al. (2019) has uncovered some extremely useful 

information and techniques in regards to developing a system that utilises a mm-wave sensor. 

One useful feature that the mID system possesses is the ability to identify and distinguish 

between different people being tracked. This feature would be particularly valuable in the 

upcoming camera tracking system as it would effectively eliminate disruptions. In addition to 

re-enforcing the appeal in utilising a mm-wave sensor, this article also provided useful 

techniques in extracting the data, and processing it in a way in which users can be tracked and 

identified. The author also identified several limitations and drawbacks with using a mm-wave 

sensor and serves as a valuable cautionary guide moving forward. Considering the excellent 

performance achieved by the mID system, the intent is to incorporate many of the useful 

techniques outlined in this research. 
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1.4.3 MmWave Radar and Vision Fusion for Object Detection in Autonomous 

Driving: A Review 
 

The research conducted by Wei et al. (2022) focussed on the current state of sensor fusion 

techniques for object detection in autonomous driving. Most current self-driving methods will 

employ different combinations of cameras, LIDAR, mm-wave radars and ultrasonic radars, 

however this research paper mainly focusses on the first three. Each sensor type has its unique 

advantages and disadvantages, however with sensor fusion techniques the strengths of each 

sensor type can be leveraged to mitigate the specific drawbacks of other sensor types. This 

paper also compared the various algorithms which have been developed for object recognition 

and discussed the key advantages that each technique possesses With these findings, the 

researchers were able to identify current trends in these sensor fusion techniques as well as 

make predictions on future trends. Several key areas for future research were also identified 

which showed potential for great improvements in this field.  

 

Several industry leaders in autonomous driving `such as Tesla, Baidu, NIO, Xpeng, Audi and 

Mercedes Benz have developed their own self-driving solutions which utilise different sensors 

and different data processing strategies (Wei et al. 2022). While a variety of other sensors are 

also used, all manufactures have utilised cameras and mm-wave radar sensors in their systems. 

This suggests this sensor combination produces the greatest combination of cost to 

performance when sensing the surroundings of an autonomous vehicle. LIDAR is another 

popular sensor which is used in autonomous driving, but companies such as Tesla and Xpeng 

have opted not to use this technologies. This may be due to the fact that the complimentary 

nature of mm-wave sensors and cameras can make up for the lack of a LIDAR system. The 

strengths of these three sensor types are shown in Table 1.1 below, here the complimentary 

nature of cameras and mm-wave radar can also be seen.  
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Table 1.1: Comparison Of Mmwave Radar, Lidar, And Camera. (Wei et al. 2022) 

 

* ‘1’–‘6’ denote the levels from ‘extremely low’ to ‘extremely high’. 

This research also identified three key sensor fusion strategies (data level, feature level & 

decision level) which centre around how far into the fusion algorithm the sensor data is 

combined. The data level fusion approach combines the sensor data very early in the fusion 

algorithm, this method is well established and is highly reliable, but it is dependent on the 

number of radar points (Wei et al. 2022). Decision level fusion combines the sensor data near 

the end of the algorithm, typically after objects have already been identified. According to Wei 

et al. (2022), this is the most common strategy for data fusion currently and makes use of all 

the sensing data however combining the data can be challenging due to the potential of 

conflicting information. Between these fusion approaches lies feature level fusion, where some 

level of pre-processing before the data is fused and processed further. These feature level fusion 

techniques are being explored further with current research. This research indicates that feature 

level fusion produces the best results when compared to the other approaches, but is 

significantly more difficult to fuse the data seamlessly. Generally the approach to overcome 

this challenge is to utilise some type of neural network, however this greatly increases the 

computation overhead that these algorithms require to operate in real-time. 

 

Through the research conducted by Wei et al. (2022), several current trends have been 

identified as well as promising avenues for future research on this topic. Traditionally sensor 

fusion techniques will detect and sense objects in 2D, however to more accurately perceive the 

real world, 3D object detection is required. Some of the more recent developments in this space 

have begun to explore 3D object detection, however this required much more processing 

power. This trend to use 3D object detection is complimented by the reducing cost of LIDAR 

technologies which has driven the increase use of LIDAR sensors in autonomous driving. 
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Another recent trend which has begun development is the idea of multimodal information 

fusion. While sensor fusion is focussed on combining sensor data with complimentary types, 

multimodal information fusion will combine sensor data from vastly different sensor types. 

The types of sensor data that can be combined include visual, auditory, spatial, chronological, 

biometric, environmental and more. By combining these vastly different sensor data types with 

neural networks, the situational awareness is dramatically improved. These latest trends in 

sensor fusion methods demand significantly more processing power yet they offer superior 

environmental perception and robustness. 

 

This research paper offered many valuable insights which may be applicable to this 

dissertation. Several key advantages of mm-wave sensors were identified in this article such as 

improved speed detection, good range, cost effectiveness and usability in all weather 

conditions. Interpreting the surrounding environment is a technical challenge which is common 

to both autonomous vehicles and camera tracking systems. In order to improve the accuracy, 

robustness and reliability of object detection and tracking, several sensor fusion techniques 

were analysed. The complimentary nature of combining camera data and mm-wave radar data 

seemed to be commonly employed in the autonomous vehicle industry, making it a potentially 

beneficial addition to this projects design.  
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1.5 Project Specification 
 

1.5.1 Scope 
 

The scope of this dissertation project encompasses the development and testing of software and 

hardware components for an automatic camera tracking system. It involves conducting a 

comprehensive review of relevant research to gather valuable knowledge applicable to the 

system's development. The project will encompass various aspects, including hardware design, 

fabrication, and assembly, interfacing with and testing components, as well as writing control 

code and iteratively improving the system's design. Advanced data analysis techniques such as 

Kalman filters, clustering algorithms, and possibly machine vision or machine learning 

techniques may also be explored. 

Furthermore, the performance of the operational camera tracking system will be evaluated by 

comparing it to another commercially available camera tracking solution using various key 

metrics. This comparative analysis will provide valuable insights into the system's accuracy, 

robustness under different lighting conditions, and its ability to withstand environmental 

factors. 

To ensure comprehensive documentation, all procedures followed throughout the development 

process will be carefully recorded in this dissertation. This documentation will also include 

considerations of ethical and safety concerns, timeline planning, resource requirements, and 

project planning. 
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1.5.2 Objectives 
 

This project has a number of objectives to achieve which can broadly be categorised into main 

objectives, and secondary objectives. The main objectives are to: 

 Develop a camera tracking system which utilises a mm-wave sensor that can steer a 

camera to follow a person. 

 Complete this project within the allocated time including all testing, comparisons and 

documentation required. 

 

Whilst maintaining focus on the two main objectives, several secondary objectives are 

important to ensure the overall success and effectiveness of the camera tracking system. These 

secondary objectives include: 

 The person being tracked remains in the centre of the camera frame at all times. 

 System is highly responsive, with smooth motions. 

 Excellent performance in difficult lighting conditions like smoke, dust, glare or low-

light scenarios. 

 Immunity from external distractions such as others moving in the detection field. 

 Provide method of target selection. 
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1.5.3 Research Questions 
 

The purpose of this project is to investigate the idea of using a mm-wave sensor in a camera 

tracking system. To adequately explore this idea, several questions should be asked. These 

questions identify areas which require investigation in this dissertation: 

 What benefits does the integration of a mm-wave sensor add to a camera tracking 

system? 

 How feasible is the development of a camera tracking system within the allocated 

time and budget constraints? 

 What challenges are involved with integrating a mm-wave sensor into a camera 

tracking system? 

 What steps are involved with creating a tracking system which is highly responsive 

and maintains smooth tracking so a target person remains in the centre of the frame? 

 What affect does modifying the lighting conditions have on the ability of the camera 

tracking system to maintaining its focus on the target? 

 How well does the developed system respond to external distractions like other people 

moving around the tracked target? 

 What methods and algorithms are needed to develop a system where an object can be 

selected for tracking? 
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1.5.4 Methodology 
 

The methodologies utilised throughout this project will be highly dependent on the particular 

task which is being completed. In the early phases of project, the main task is centred around 

developing a suitable idea along with planning appropriate resources and timelines. The initial 

concept for the project was presented to the project supervisor, and through a process of 

refinement and feedback, the final project idea was formulated. This idea was further developed 

during the research phase where several potential approaches and techniques for achieving the 

project objectives were identified. Once the idea had developed enough it became possible to 

formulate projects timelines (Appendix E) and resource requirements (Appendix C).  

Upon commencement of the project there is a notable shift in methodologies employed, 

transitioning from a theoretical focus to a more practical approach. In this phase, the 

methodology will involve testing specific components of the system to gain a better 

understanding of their functionality. This process will also help in identifying techniques that 

are effective and those that are not. The insights acquired through this process will play a 

pivotal role in shaping the methodologies to be employed. It is anticipated that this evolving 

project strategy will be engaged in both the hardware and software development stages. 

Additionally, in this phase it will be necessary to conduct research using various sources such 

as component data sheets, wiring schematics, user guides, forum posts, research papers and 

help documents. These techniques will be used to iteratively improve the system until the 

camera tracking system is operational and has achieved the project objectives. 

At this stage, the focus will shift to testing the developed camera tracking system in order to 

determine it performance characteristics. The methodologies employed during this phase will 

include devising and carrying out specific tests which are designed to acquire different 

attributes of the camera tracking system. Each test will be conducted multiple times to ensure 

accurate and consistent results. Subsequent tests will involve modifying the environmental 

conditions to assess the performance characteristics of each system in different scenarios, 

including low-light conditions and high glare. Additional tests will be conducted to evaluate 

the ability of each system to handle external distractions, assess system responsiveness, and 

evaluate tracking smoothness. These results will be carefully analysed in order to determine 

whether this new method of camera tracking has any particular advantages over traditional 

methods.  
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Upon completion of the testing phase, the full focus will then shift to writing the dissertation, 

which utilises other methodologies. These methods are primarily concerned with word 

processing, which utilises Microsoft word. Generally the strategy is to brainstorm thoughts 

quickly, then organise the ideas into a logical flow. Next, the ideas are transformed into refined 

sentences by enhancing sentence structure and word choice. This is achieved through the use 

of editing tools like spelling and grammar checkers, as well as consulting a thesaurus for 

suitable alternative for certain words. Throughout the writing process, various methods such as 

brainstorming, memory recollection, and research are commonly employed to develop the 

subject matter utilised in the dissertation. 

At each stage of progression, it is crucial to employ appropriate strategies tailored to the 

specific task at hand. These methods may vary significantly from one another, but each plays 

a critical role in achieving the objective of developing an effective camera tracking system. 
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1.5.5 Feasibility 
 

While the advantages of implementing a camera tracking system of this nature are clear, it is 

important to ensure the project remains feasible. This means that all aspects need to be 

completed within the allocated timeframe, while maintaining a low budget. Fortunately, the 

timing and budget are likely to be achievable since the project objectives have been carefully 

considered and are not overly ambitious. However, one particular concern arises in relation to 

the utilisation of machine vision techniques. Ideally, these techniques should be avoided to 

prevent increasing the burden on the processor and potentially fail to meet the project 

objectives related to system responsiveness. Nevertheless, some of these techniques may be 

indispensable for achieving operational functionality of the camera tracking system. 
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2.1 Chapter 2 Overview 
 

This chapter will outline the procedures taken to set up the components required for the camera 

tracking system. The initial setup and testing which was undertaken will be discussed, as well 

as the outcomes and lessons learned during this process. The knowledge gained was then used 

to design, build and assemble the electronic circuits and components that were required for the 

camera tracing system to function. Once the electronic design was constructed it allowed 

further development to occur, which ultimately saw the successful control of the stepper motors 

to occur. 
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2.2 Initial Setup & Testing 
 

Upon receiving the necessary components from UniSQ, the initial setup and testing began. This 

first step included connecting Jetson Nano to a monitor, keyboard, mouse, camera and 

providing it with 5V via USB. Once successfully booted and logged into the Linux 

environment, some initial testing could take place. The first test was to make use of the 

connected camera, this was achieved by following the guide provided by Collins (2021). This 

process included writing a simple python script and executing it within the terminal in Linux; 

which immediately opened a window with the camera feed running. With this milestone 

completed, the next step was to learn how to control the output pins on the Jetson Nano. This 

was achieved by following a tutorial written by Kumar (2020) on how to use the GPIO pins on 

the Jetson Nano. This was tested by creating a simple script which toggled on and off a specific 

pin on the Jetson board. In order to verify this, a ground pin and the output pin were connected 

to a multimeter which showed the voltage changing between 0V and 3.3V periodically, as 

expected. 

During this first phase of testing, numerous valuable lessons were learned that significantly 

influenced the direction taken in the electronic design process. By successfully operating the 

camera and an output pin, a deeper understanding of python and the Jetson Nano hardware was 

achieved. This also proved it was possible to interface directly with external devices such as 

motors, cameras and sensors. These tests also made it very clear that work was needed to allow 

more devices to connect to the Jetson Nano. With intentions to connect the IWR1642 sensor 

and two additional motors, it became evident that a unified power supply was needed to 

accommodate all of these devices. 
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2.3 Electronic Design 
 

To progress further with the project, a suitable way of gimballing the camera would be needed, 

therefore an appropriate choice of motor was necessary. Since the camera gimballing needs 

fine control in angle, and does not need to rotate more than 360°, the two obvious choices 

become: a servo motor or a stepper motor. Having already possessed several stepper motors, 

along with adequate prior experience in controlling them, the decision was straight-forward, 

stepper motors would be used. In order to greatly reduce the complexity in controlling the 

stepper motors, several DRV8825 stepper driver boards were also purchased.  

 

After finalising the hardware selection, the subsequent concern centred around the power 

supply for these devices. Upon inspection of the Jetson Nano and the IWR1642 board, each 

device is powered by 5V DC, via a 2.5mm barrel jack. Next, the datasheet for the DRV8825 

stepper driver was acquired from Texas Instruments (2014), which identified the supply voltage 

to be between 8.2V and 45V. Ideally all of these components would be powered by one device. 

Conveniently, a PC power supply offers the simultaneous provision of 3.3V, 5V, and 12V with 

ample wattage to power these devices. Fortunately a spare PC power supply was already in 

possession. When AC power was supplied to the PC power supply to test the output voltages, 

it became apparent that there was no output voltages being produced. This issue was fixed by 

first dis-connecting AC power then following the advice given by McDaniel (2004), which 

included connecting the green wire (enable) to a black wire (ground). 

 

 

Figure 2.1: Jetson Nano Developer Kit (NVIDIA 2023) 
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With a suitable working power supply, the connection of each device to its required voltage 

still needed to be achieved. As the Jetson Nano and the IWR1642 board are both supplied by 

2.5mm barrel jack, the decision was made to use this type of connection for the DRV8825 

stepper driver boards also. These 2.5 barrel connectors and the PC power supply are shown in 

Figure 2.1 below. The 12V connector has yellow and black wires with red heat shrink, and the 

5V connectors have red and black wires with black heat shrink. 

 

 

 

Figure 2.2: Modified PC Power Supply With 3×2.5mm Barrel Connectors (1×12V, 2×5V) 

 

With the power supply covered, the next task was to build a circuit which would accommodate 

two DRV8825 driver boards. In order to do this, the driver board pinout diagram needs to be 

considered, this is shown in Figure 2.2 below. Last minute Engineers (2018) also provides a 
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description of what each pin is used for, this is summarised in Table 2.1 below. In order to 

control the operation of the DRV8825, only pins 5 to 9 are required to be connected to the 

Jetson Nano. Pins 5 and 6 (RST and SLP) will be connected to a single output pin of the Jetson 

Nano, to effectively enable the DRV8825 with a HIGH signal. The step pin (7) is also 

connected to the Jetson Nano and will be used to control the speed of the motor, this is achieved 

by regulating the frequency of HIGH pulses to this pin. The direction pin (8) is also controlled 

by the Jetson Nano and, as the name suggests, it controls the spin direction of the motor (HIGH 

= clockwise). Finally, pin 9 (GND LOGIC) needs to be connected to a GND pin on the Jetson 

Nano. 

 

Figure 2.3: Drv8825 Pinout Diagram (Last Minute Engineers, 2018) 
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Table 2.1: DRV8825 Pin Names And Description (Last Minute Engineers, 2018) 

Pin 

Number 
Pin Name Description Connection 

1 EN Enable pin (active low) Not used 

2 M0 Step resolution selector pin 1 Jetson Nano 

3 M1 Step resolution selector pin 2 Jetson Nano 

4 M2 Step resolution selector pin 3 Jetson Nano 

5 RST Reset pin (active low) Jetson Nano 

6 SLP Sleep Pin (active low) Jetson Nano 

7 STEP Step Pin, each HIGH pulse will spin the motor one step. Jetson Nano 

8 DIR Direction pin. Jetson Nano 

9 VMOT Supply voltage pin for motor (8.2-45V) Jetson Nano 

10 GND MOT Ground pin for motor Jetson Nano 

11 B2 Stepper output pin 1 (coil B) Stepper 

12 B1 Stepper output pin 2 (coil B) Stepper 

13 A1 Stepper output pin 3 (coil A) Stepper 

14 A2 Stepper output pin 4 (coil A) Stepper 

15 FAULT Fault detection pin Not used 

16 GND LOGIC Ground pin for microcontroller Jetson Nano 

 

In regards to the powering the motors, only pins 11 to 16 are needed. The VMOT pin (16) is 

used to provide adequate power to drive the stepper motor, this will be connected to +12V via 

the power supply. The GND MOT pin (15) is simply the ground pin for the external power 

supply. It is generally good practice to connect a capacitor between the positive and negative 

terminals on a power supply to smooth out any variations that may be present in the supply. 

Finally, pins 11 to 14 (A2, A1, B1 and B2) are connected directly to the stepper motor.  

The DRV8825 is also capable of reducing its step size to allow for more precise motor control. 

The inclusion of this feature is highly valuable for a camera gimbal system, as it enables precise 

adjustments to the camera angle, which are often necessary. In order to make use of this feature, 

the mode pins (M0, M1, M2) will also need to be connected to the Jetson Nano. Since the 

camera gimballing requires two stepper motors (vertical and horizontal control), there will be 
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a significant amount of pin connections to the Jetson Nano to accommodate this. Fortunately, 

the two stepper boards can share an ‘enable’ pin and a ‘ground’ pin. This configuration requires 

the use of 12 pins from the Jetson Nano, with 11 being output pins and 1 being a ground pin. 

To determine which pins are suitable to use for this purpose, the pinout diagram for the Jetson 

Nano is shown below (Alvarez 2022): 

 

 

Figure 2.4: Pinout Diagram For Jetson Nano (Alvarez 2022) 
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Using this schematic and the acquired hardware components, the system could finally be 

assembled, this is shown in Figure 2.5: 

 

 

Figure 2.6: Prototype Of Camera Tracking System Under Development 
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2.4 Motor Control 
 

Following the initial assembly and connection of all the necessary equipment, the software 

which is responsible for controlling the stepper motors can begin development. The first step 

was to write some test code in a python script to verify the hardware connections are correct. 

This test code consisted of assigning pin numbers to suitable variables, setting each pins output 

accordingly and cycling the step pin between HIGH and LOW repetitively. This initial test 

successfully verified that the hardware connections were correct and that the steppers could be 

controlled within software. This code was modified numerous times to test aspects like rotation 

speed (by decreasing the delay between step pulses), spin direction (by changing the direction 

pin). Altering the micro-step resolution was also tested, this was achieved by setting the mode 

pins in accordance with Table 2.3 below (Last Minute Engineers, 2018). These pins allow the 

stepper motor to operate in up to 6 different modes of step resolution. 

 

Table 2.3: Mode Pin Configurations For DRV8825 (Last Minute Engineers, 2018) 

M0 M1 M2 Micro-step 

Resolution 

LOW LOW LOW Full Step 

HIGH LOW LOW 1/2 Step 

LOW HIGH LOW 1/4 Step 

HIGH HIGH LOW 1/8 Step 

LOW LOW HIGH 1/16 Step 

HIGH LOW HIGH 1/32 Step 

LOW HIGH HIGH 1/32 Step 

HIGH HIGH HIGH 1/32 Step 

 

The test code used up until this point were able to verify the capability of the current apparatus 

in numerous ways, however this method of motor control was very limiting, and needed to be 

refined further. One major refinement was to develop a method to run the stepper motors in the 

‘background’ while other tasks (like reading sensors) could be completed simultaneously. This 

was implemented by utilising the ‘time’, and ‘threading’ libraries which provided the capability 

to run a section of code at consistent time intervals. This method also allowed for easy throttling 
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of the stepper motor, however it became apparent that this control code would become very 

messy and unorganised when trying to scale up to two steppers. For this reason, it was decided 

to create a ‘class’ to handle all aspects concerned with controlling a stepper motor. The 

advantage of using a class is that it only needs to be defined once and can be reused multiple 

times, similar to a function but with enhanced capabilities. The class which was created 

performs many actions such as: initialising a stepper motor, sending the pulse signals, storing 

all relevant values for the stepper, and manipulating these values in real time. After a long 

process of testing and improvement, a class called ‘Stepper’ was created which could 

adequately control a stepper motor in the ‘background’. 

This was a major step in the software development, however more functionality needed to be 

added. The disadvantage of the code at this point was that the stepper speed and direction could 

only be set once at the beginning of the class running, a method was needed to update the 

stepper motor in real time. A convenient method was devised which used a pop-up window 

with a sliding bar that corresponds to a steppers rotational direction and speed. This pop-up 

window was achieved by making use of the ‘tkinter’ library in python. Conveniently, the 

functionality of the sliding bar could be added into the already existing ‘Stepper’ class created 

earlier. This also made it easier to use the values generated by the sliding bar inside the class 

in order to manipulate the values responsible for controlling the steppers. 

The final step in developing the code for controlling the stepper motors was to modify the 

‘Stepper’ class so it could accommodate two stepper motors. This included adding another 

attribute for the ‘Stepper’ class to distinguish between two different stepper motors which use 

different pins. In addition to this, the code responsible for the sliding bar needed modification 

to accommodate another slider that controlled the second stepper. The successful 

implementation of simultaneously controlling two stepper motors represented the final 

milestone of code development for this stage. 
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2.5 Angle Sensing 
 

During the development and testing of the stepper motors it became clear that there needed to 

be some kind of feedback so the orientation of the horizontal and vertical joints could be 

determined. Upon initial execution of the code, the system will have no idea of how it is 

currently orientated so it may try to move in ways that are outside its range. While it is common 

for devices like 3D printers to use limit switches to determine their orientation by counting the 

steps from a known home position, this approach could not be effectively utilised for this 

application. While testing and running the stepper motors, it was observed that occasionally 

the stepper motor/s would ‘miss’ or ‘skip’ step/s during operation. Even through thorough 

investigation into the code, the electrical connections and the adjustment of the current control 

on the DRV8825, the root cause of this issue could not be definitively identified. It was for this 

reason it was decided to use an angle sensor. 

 

There were several factors in deciding the type of angle sensor that would be used for this 

project. One common method for determining the orientation of a motor is a hall effect sensor, 

however with no prior experience with these, and the uncertainty with their compatibility with 

stepper motors, this sensor type was ruled out. It would have been preferable to have an angle 

sensor which could be placed directly onto the shaft of the stepper motor to simplify the 

physical design. After searching for suitable angle sensors, the chosen sensor was the 3382 

rotary potentiometer. Although this angle sensor cannot directly be connected to the stepper 

motors shaft, its price, availability and specifications where the deciding factors. According to 

Bourns (2015), the maximum voltage for the 3382 is 16V and the detection resolution is 

essentially infinite, which makes it ideal for this project. Figure 2.6 shows a CAD (Computer 

Aided Design) representation of the surface mount version of the sensor (3382G): 

 

Figure 2.7: CAD Model Of 3382G Rotary Potentiometer (Bourns 2015) 
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As shown in Figure 2.6 above, the 3382G has 3 pin connections and an internal rotary cavity. 

This device is essentially a potentiometer with the internal cavity being able to rotate, which 

changes the resistance value between the centre pin and the outer two. As the internal cavity is 

rotated one direction, the resistance value between pin 1 and 2 will increase, while the 

resistance between pin 2 and 3 will decrease or vice-versa. The way this device is used is to 

connect the positive and ground connections to pin 1 and 3, and the 2nd pin will output a variable 

voltage level depending on how the internal cavity is orientated. 

 

Upon receiving the 3382 angle sensors, the next necessary step was to test the operation of the 

device. It became apparent that the Jetson Nano does not have the capability to receive analogue 

inputs like many other micro controllers. For this reason it was necessary to purchase a suitable 

IC (Integrated Circuit) which can convert from analogue to digital and relay the data to the 

Jetson Nano. This analogue to digital converter (ADC) must: 

 Run on 5V or 3.3V (Jetson Nano power pins) 

 Detect a minimum of two different analogue voltage levels 

 Communicate with the Jetson Nano through compatible protocols 

 Consume very low current (Easily powered by the Jetson Nano) 

 Provide relatively accurate readings 

 Low cost 

 High availability 

 

Upon researching for a suitable IC which met or exceeded each of the above requirements, the 

ADS1115 analogue to digital converter was selected. According to Texas Instruments (2018) 

the ADS1115 has the following specifications: 

 Supply voltage of between 2V to 5.5V 

 Up to four analogue inputs 

 I2C communication interface (compatible with the Jetson Nano) 

 150μA current draw 

 16-bit resolution accuracy (0.0055° per increment) 

 

The ADS1115 integrated circuit is shown in Figure 2.7 below: 
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Figure 2.8: Adc1115 Integrated Circuit Board 

As Figure 2.7 shows, there are 10 pin connections for the ADS1115, which are detailed further 

in Table 2.4 below: 

 

Table 2.4: ADS1115 Pin Names And Description (Texas Instruments 2018) 

Pin 

Number 
Pin Name Description Connection 

1 VDD Power input positive Jetson Nano 3.3V 

2 GND Power input ground  Jetson Nano GND 

3 SCL Serial Clock Line (I2C communication protocol) Jetson Nano Pin 5 

4 SDA Serial Data Line (I2C communication protocol) Jetson Nano Pin 3 

5 ADDR I2C slave address select  Not used 

6 ALRT Conversion ready flag Not used 

7 A0 Analog input Channel 0 3382G 

8 A1 Analog input Channel 1 3382G 

9 A2 Analog input Channel 2 Not used 

10 A3 Analog input Channel 3 Not used 
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2.6 Overall Configuration 
 

With all electrical components of the system finalised, the electrical interconnections can be 

specified. Figure 2.8 below shows a block diagram of how each component is connected in the 

mm-wave camera tracking system: 

 

 

Figure 2.9: Block Diagram Of Mm-Wave Camera Tracking System 

 

Figure 2.8 shows how each component is linked together with arrows indicating the way in 

which the communication or power is flowing. The black arrows represent the data flow, the 

blue arrows represent the mechanical orientation, and the red arrows represent how each device 
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is powered. Further detail on how the electronic components are interconnected is shown in 

the overall schematic shown in Figure 2.9 below: 

 

Figure 2.10: Overall Schematic Of Mm-Wave Camera Tracking System 

 

 

With all components and interconnections specified, the next phase of the project is the design 

and construction of the physical system. 
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2.6 Chapter 2 Summary 
 

Chapter 2 provided a general overview of the procedures involved in the initial phase of 

development for the camera tracking system. It begins with the initial setup and testing of the 

Jetson Nano and learning how to communicate with the camera and operate the on-board IO 

pins. With the knowledge gained, the major electrical components and circuits were then able 

to be assembled. The hardware choices as well as the way in which they connected was 

thoroughly discussed. With the electronics completed, the focus then shifted onto controlling 

the stepper motors within software. Starting from simple test scripts, the complexity and 

functionality of the code was incrementally enhanced until the milestone of successfully 

controlling two stepper motors simultaneously was achieved. It became apparent that the 

system would need some way of sensing its current pose, so the addition of angle sensors was 

incorporated into the design. Having finalised the electronic design and developed simple test 

code successfully, the mm-wave camera tracking system could continue be further developed 

more easily. 
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3.1 Chapter 3 Overview 
 

Chapter 3 explores the process of how the mm-wave camera tracing system was built. This 

phase of development is highly dependent on the design choices which were outlined in 

Chapter 2. Many of these design choices were made in the conceptualisation phase of designing 

the hardware. Once a reasonable concept was conceived, the 3D CAD (Computer Aided 

Design) modelling was started, which helped to further evolve the hardware design. This phase 

of development ensured that all parts would fit together in a suitable orientation without any 

problems. Once the parts and assembly were finalised within a CAD environment, the required 

components could then be manufactured and assembled.  
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3.2 Conceptualisation 
 

With the appropriate electrical components selected and tested, the next step in development 

was to design a suitable method to mount all of these components in such a way which would 

allow the camera to gimbal. After pondering this problem for several days, the idea was 

conceived to mount a platform to a stepper motor which allowed horizontal motion. On this 

pivoting platform, the other stepper would be mounted in such a way that would allow vertical 

steering of the camera and mm-wave sensor. Since the stepper motors are quite heavy for their 

size, it was decided to arrange them along the same axis to prevent any torsional forces to be 

introduced into the system. In order to convert rotational motion along the vertical axis (z-axis 

rotation) to rotational motion along the horizontal axis (x-axis rotation), the idea of using a 

worm gear drive assembly was conceptualised. This arrangement would allow the camera to 

pivot up and down if necessary, while simultaneously allowing horizontal steering.  

 

The Jetson Nano, the stepper driver boards and the PC power supply also needed to be arranged 

in a suitable configuration. These components require several electrical connections between 

them, so careful consideration was needed to decide on a suitable layout of these components. 

In order to minimise the overall footprint of the design, it was decided to mount the circuit 

boards on a base underneath the abovementioned stepper arrangement. This base can then be 

mounted to the PC power supply at the very bottom of the apparatus.  
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3.3 CAD Design 
 

With the arrangement of all components conceptualised, the next step was to decide how this 

assembly may be constructed. 3D printing stood out as the most suitable manufacturing method 

since the design will require several (often complex). These types of parts are incredibly easy 

to produce with 3D printing. However before anything can be manufactured in this way, it must 

first be translated into a CAD assembly. The advantage to this method is that it allows to careful 

inspection of all components to ensure everything will fit together properly before anything is 

actually constructed. For this design, it was decided to model the design with the Onshape CAD 

package, since it is free, it allows simultaneous collaboration and is web-based.  

 

The initial phase in the CAD design process was to re-create the existing components within 

the Onshape environment. This process involved carefully measuring the physical dimensions 

of each object and replicating their appearance and size inside of Onshape. Fortunately some 

components have schematic diagrams available which simplified the measuring process while 

ensuring the dimensions are exact. The final CAD models of the mm-wave sensor, the camera 

module, the stepper motor, the stepper driver circuit board and the Jetson Nano are all shown 

below: 

 

 

Figure 3.1: CAD Model Of Mm-Wave Sensor (IWR1642BOOST) 



Chapter 3 Mechanical Design  45 

 

Figure 3.2: CAD Model Of Camera Module 

 

 

Figure 3.3: CAD Model Of Stepper Motor 

 

 

Figure 3.4: CAD Model Of Stepper Driver Circuit Board (DRV8825 × 2) 
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Figure 3.5: CAD Model Of Jetson Nano 

 

The CAD models illustrated above were subsequently used to design the necessary parts for 

mounting the components in the proper orientation. This process started with modelling a base 

plate with suitably spaced mounting holes for the Jetson Nano and the driver board circuit 

board. Using this base plate CAD model as a starting point, the remaining parts could be 

created. This process often required assembling the already modelled parts within Onshape and 

measuring certain aspects to ensure each part will fit in its place perfectly. This method was 

taken a step further when designing the tilt mechanism for the camera. Special attention needed 

to be taken with the shape of the geared bracket which the mm-wave sensor and the camera are 

mounted to, since it required a specific range of motion, while ensuring there was no 

interference with other components. Another important consideration was to ensure that each 

component is easy to be manufacture by 3D printing. This means that any parts designed should 

keep any overhanging geometry to a minimum wherever possible. The final consideration 

while designing the CAD parts is how the parts will be assembled, this means careful thought 

on the order of assembly the placement of screws and fasteners and cable management. The 

fully assembled CAD design is shown in Figure 3.6 below: 
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Figure 3.6: CAD Assembly Of Mm-Wave Camera Tracking System 

 

Figure 3.6 shows the fully assembled CAD design of the mm-wave camera tracking system. 

The components which required 3D printing are coloured yellow. Notice the angle sensors are 

underneath protective casings. The vertical angle sensor is coupled directly to a specially 

designed shaft so the vertical angle of the camera can be determined. Direct coupling of the 

horizontal angle sensor was not possible due to the stepper motor shafts diameter being too 

large for the angle sensors cavity. To accommodate the horizontal angle sensor, it was coupled 

with a 1:1 gear that is connected to the horizontal pivot mechanism. Now that all components 

have been designed, a list of parts can be created, this is shown in Table 3.1 below: 
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Table 3.1: - Comprehensive List Of Parts To Build Mm-Wave Camera Tracking System 

Part Name Quantity 

Electronics 

AD Converter (ADS1115) 1 

Angle Sensors (3382G) 2 

Camera (Raspberry Pi V2 IMX219) 1 

Jetson Nano 1 

Mm-Wave Sensor (IWR1642BOOST) 1 

PC Power Supply 1 

Stepper Drivers (DRV8825) 2 

Stepper Motors (NEMA 17) 2 

3D Printed 

Antenna Bracket 1 

Axil Cover 1 

Axil 1 

Base 1 

Camera Cover 1 

Gear Cover 1 

Panning Mount 1 

Sensor Bracket 1 

Sensor Cover 1 

Sensor Gear 1 

Side Bracket 1 

Stepper Plate 1 

Tilt Gear 1 

Upper Side Bracket 2 

Upper Stepper Bracket 1 

Worm Gear 1 
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3.4 Manufacture & Assembly 
 

In order to have the modelled parts 3D printed, the files for each part first needed to be 

converted to an .STL files. This was done with the finest detail settings available to ensure the 

parts were created with a high dimensional accuracy. The .STL files were then sent to the 3D 

printing service that UniSQ has available. After collection of these 3D printed parts, they 

needed to be ‘cleaned up’. This meant the removal of any additional support structures that 

were needed for the 3D printing process. This was achieved with the careful use of a sharp 

knife, long-nose pliers and side-cutters. Some components required further processing like 

sanding and drilling to accommodate the correct screw sizes. Finally, to attach all the 

components together it was necessary to purchase several M3 screws at various lengths.  

 

The first step in assembly was to attach the Jetson Nano and the stepper driver circuit board to 

the base plate, then connect them together electrically. Next, the antennas were attached to the 

antenna bracket and this assembly was connected to the base plate. From here, the 1st platform 

plate needed to be assembled before it was attached. To achieve this, an angle sensor had 3 

wires soldered to it, then the wires were fed through the small hole in the top of the 1st platform 

plate. Next, the angle sensor was pushed into place, and the 3D printed gear was inserted into 

the angle sensors cavity. The gear casing was then placed on top and a stepper motor was placed 

underneath, ensuing all holes are aligned, which were then secured together with four screws. 

This assembly was then attached to the base with the addition of a side bracket.  

 

The small stepper platform plate was then attached to the lower stepper motors shaft with a 

screw to clamp it into position. Another sub-assembly was made by attaching the other stepper 

motor to the upper-most platform. From here two identical side brackets were attached to the 

upper-most platform. This sub-assembly was then joined with the main assembly by aligning 

the holes in the side brackets with the holes in the small stepper platform plate and using screws 

to secure it. The worm screw was then attached to the upper stepper motors shaft with two 

small screws. Three more wires were attached to the other angle sensor, then these wires were 

through the holes in the upper-most platform. Then the angle sensor was secured in position 

with a small panel and two screws. 
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The final sub-assembly was made by attaching the sensor plate to the upper geared bracket. 

Now the camera, camera cover and the mm-wave sensor were secured in place on the sensor 

plate. The upper geared bracket assembly was then attached to the upper platform of the main 

assembly with the 3D printed axil and secured in place with another small plate which prevents 

the axil form sliding out.  

 

At this point the decision was made to secure the whole system to the PC power supply to 

integrate everything into one assembly. This was achieved by carefully drilling four holes on 

the corners of the baseplate, while it was placed on top of the PC power supply. This ensured 

all four holes were aligned correctly. With the holes positioned correctly the baseplate was 

secured to the PC power supply with M3 spacer screws and M3 screws. In this configuration, 

there still remained the problem of the PC power supply’s fan being on the underside of the 

whole apparatus, which prevented adequate air-flow for cooling. To resolve this issue, four 

more longer spacer screws were secured to the underside of the PC power supply to elevate the 

assembly slightly. Lastly the remaining wires were connected to the proper locations and neatly 

routed and secured with small zip ties. The assembled mm-wave camera tracking system is 

shown below in Figures 3.7 & 3.8.  

 



Chapter 3 Mechanical Design  51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8: Photograph Of Mm-Wave Tracking System (2) Figure 3.7: Photograph Of Mm-Wave Tracking System (1) 
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3.5 Chapter 3 Summary 
 

This Chapter explored the process which was taken to design and build the mm-wave camera 

tracking system. With the main electrical components finalised in the previous section, the task 

of designing the hardware component became the main focus in this section. The direction this 

design took was highly dependent on the electrical component selection, initial 

conceptualisation and the CAD design process. Many parts which were designed relied heavily 

on the CAD software for specific dimensional and geometric features. Special care was taken 

to ensure all parts were designed in a way which would not only fit together properly, but able 

to be easily assembled and 3D printed. Once the parts were 3D printed, they required some 

minor post processing such as support structure removal, drilling and sanding. Finally these 

parts could be assembled using the existing electrical components, the 3D printed parts and 

several M3 screws. Once the system was fully assembled, the wires and cables could be neatly 

routed and connected with the addition of zip-ties. 
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4.1 Chapter 4 Overview 
 

At this stage the mm-wave camera tracking system has been built, but the software to operate 

everything cohesively needs to be developed. During the system design phase, a python script 

was created which enabled the manual control of two individual stepper motors, through the 

manipulation of two slider bars. To integrate this into the current system, the intention is to 

use the data from the mm-wave sensor to identify an object, and use this objects location as 

the control parameters for the stepper motors. As the camera moves toward the target, the 

objects relative spatial coordinates would converge on the central axis’, or approach zero. 

Therefore the control signals for the motors will also converge to zero as this occurs. While 

this strategy seems plausible, there are still many unknowns and missing pieces to the puzzle 

to be resolved to bring this concept to fruition. 

 

Perhaps the most pressing concern at this stage is to find a way to connect to and utilise the 

mm-wave sensor as this up until this point has been unsuccessful. Once the sensor is 

operating and producing data, the next problem becomes what to do with the data and how 

can this data be interpreted in a meaningful way. Will it be a straightforward task in 

extracting and identifying objects from the many data points produced by the mm-wave 

sensor? If this can be achieved, how will these objects be tracked, and how can one object be 

selected for the camera to follow? These are all difficult questions which currently do not 

have answers, however by the end of this chapter, these questions and concerns will be laid to 

rest. 
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4.2 Implementation Strategy With ROS 
 

With the prior development of a python script which can control the stepper motors with a 

slider bars, the integration of the mm-wave sensor initially seemed to be a trivial task. However 

when the IWR1642BOOST was connected to the Jetson Nano it became apparent that the 

communication with this IC would prove to be a much more difficult task. Rather than 

developing unique code which could interface with the mm-wave sensor, the decision was 

made to utilise an already existing ROS (Robot Operating System) node which could 

communicate with the sensor. The idea here was that the mm-wave sensor data could be relayed 

to the existing motor control script in order to facilitate the control of the stepper motors. With 

this idea, the primary objective was to convert the existing motor control script into a ROS 

node, complete with a mechanism for transmitting test data to this node. Once this task is 

achieved, other components of the system like the camera feed, angle sensor readings and a 

‘master’ or ‘command’ control script could be added later. 

 

To implement this strategy several nodes would need to be created which perform the core 

processes needed to have the system operate as a whole. The required nodes as well as their 

respective functions are described in Table 4.1 below: 

 

Table 4.1: Required ROS Nodes 

Node Description 

Camera Provide camera feed. 

mm-wave Publish mm-wave sensor data. 

Angle Sensors Publish horizontal and vertical sensor data. 

Command Interpret sensor data and coordinate control of steppers. 

Manual Control GUI to manually control stepper motors. 

Horizontal Stepper Manage the control of the horizontal stepper motor. 

Vertical Stepper Manage the control of the vertical stepper motor. 

 

Table 4.1 give a basic description of what nodes will be required for the mm-wave camera 

tracking system to function. These nodes also needs to be able to communicate with each other 
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so all components can operate in a cohesive way. To best illustrate the way this system will 

intercommunicate, a comprehensive system diagram is shown in Figure 4.1 

 

 

Figure 4.1: ROS System Architecture Of Mm-Wave Camera Tracking System 
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4.3 ROS Setup 
 

Before any tasks could be done within a ROS system, first ROS needed to be installed, then a 

ROS environment needed to be set up and finally a ROS package could be created. The mm-

wave node which needs to be integrated into the overall system operates on a particular version 

of ROS called ‘Melodic’ (Zhang 2019). To install this version of ROS on the Jetson Nano, the 

terminal application was first launched and the following command was executed: 

sudo apt install ros-melodic-desktop-full 

Once ROS has been installed, the next step is to provide the system access to the ROS files and 

features. This step must be done with every terminal window which is used for ROS operations: 

source /opt/ros/melodic/setup.bash 

Now a folder needs to be created which holds the files required for a ROS package, this is also 

known as the ‘ROS workspace’. For this project, the workspace folder was located at 

~/Andrew/ros1_mm. The next two commands will create the folders needed for the ROS 

environment, and then change the working directory to this new folder. When the working 

directory is in the root folder for the system, the commands are: 

mkdir –p Andrew/ros1_mm/src 

cd ~/Andrew/ros1_mm/src 

Now the package can be created, for this project the package name was called ‘mynodes’. The 

command to create this package is: 

catkin_create_pkg mynodes std_msgs rospy 

This command essentially creates all the folders and files needed to run a ROS system. The 

two phrases ‘std_msgs’ and ‘rospy’ are libraries which are required for the ROS package to 

run. The ‘std_msgs’ is a library of standard message structure types which are used by ROS 

and the ‘rospy’ includes the required functions and commands needed to write a functioning 

ROS node in python. The ‘mynodes’ package will contain all of the ROS nodes which will be 

developed for the system to operate.  

In order to add a new node to the ‘mynodes’ package, it must first be added to this ‘mynodes’ 

folder, then it must also be linked to the ‘mynodes’ package. To link a new ROS node, some 
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lines of code need to be added to the ‘CMakeLists.txt’ and ‘package.xml’ files which are 

located in the ‘mynodes’ folder alongside any nodes that may exist. To add a node to 

‘CMakeLists.txt’ it must be opened with a text editor and the following code needs to be 

included: 

Catkin_install_python( 

 PROGRAMS 

  new_node.py 

 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} 

) 

If this code structure already exists, simply add the new nodes name between the lines 

‘PROGRAMS’ and ‘DESTINATION’ in the form shown above. Here ‘new_node.py’ is the 

name of the new node which was added to the ‘mynodes’ folder. This is only for illustration 

purposes, this node was not actually created or needed for the operation of this system. After 

linking the new node in the ‘CMakeLists.txt’ file, it also needs to be linked in the ‘package.xml’ 

file. To do this, it needs to be opened in a text editor and the following lines of code need to be 

added: 

<export> 

 <node name=”new_node” pkg=”mynodes” type=new_node.py” /> 

</export> 

Again, if the ‘export’ tags already exist, simply add a new line like the one show above, but 

replacing ‘new_node’ with whatever the name of the newly added node is. This block of code 

must be placed above the </package> tag which is located at the bottom of the ‘package.xml’ 

file. This ‘new_node’ needs to have execution permissions added so it can be run within a ROS 

system, which can be achieved with the following command: 

chmod +x ~/Andrew/ros1_mm/src/mynodes/new_node.py 

Anytime a new node is added or removed, the package needs to be built in order for it to be 

run. To build all packages located in the ROS working environment, the following command 

must be run from the ROS workspace folder (~/Andrew/ros1_mm): 

cd ~/Andrew/ros1_mm 



Chapter 4 Software Development  59 

catkin_make 

After the package has been build, a node can be run with the following command: 

Rosrun mynodes new_node.py 

With the process of installing ROS, creating a package, linking a node, building a package and 

running a node understood, the next step is to create or convert a script to a ROS node; this will 

be covered in Section 4.4.  

Now the ROS package which interfaces with the mm-wave sensor can also be installed in the 

same folder where  the ‘mynodes’ package is located. To navigate to the correct directory where 

this mm-wave package needs to be installed the command is: 

cd ~/Andrew/ros1_mm/src 

The necessary packages needed to operate the mm-wave sensor can be acquired by running the 

following commands: 

git clone https://github.com/radar-lab/ti_mmwave_rospkg.git 

git clone https://github.com/wjwwood/serial.git 

The ‘ti_mmwave_rospkg’ package interfaces with the mm-wave sensor, however this package 

also requires the ‘serial’ package to run. With the appropriate packages now in the workspace 

directory, these packages can be built: 

cd ~/Andrew/ros1_mm 

catkin_make 

With all package in the ‘ros1_mm’ now built, the nodes contained within the packages can now 

be run. There are however a few more commands which need to be run before the mm-wave 

node can be successfully executed. In fact each time a new terminal is opened, these commands 

need to be executed before the mm-wave node can run: 

source devel/setup.bash 

sudo chmod 666 /dev/ttyACM0 

sudo chmod 666 /dev/ttyACM1 
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Now the system is ready to run the mm-wave node, the command to do this is: 

roslaunch ti_wave_rospkg 1642es2_short_range.launch 

Usually, this command will not work properly on the first attempt, but simply run the command 

again and the mm-ros node should run successfully. This will open up a ROS visualizer called 

‘RVIZ’ and the point cloud generated by the mm-wave sensor can be viewed, an example of 

this was shown in Figure 1.4.  

Some commands which need to be run each time a new terminal is opened can be added to the 

~/.bashrc file so every new terminal which is opened automatically has access to all files 

necessary to run ROS and the mm-wave sensor node, however this step is not essential. Another 

option for simplifying the launching of nodes in ROS can be achieved by creating a launch file. 

While this step is also not essential, it greatly increases the speed and ease in which a ROS 

system can be started. 
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4.4 ROS Node Fundamentals 
 

To write a ROS node, several core ROS functions are used in a particular way to facilitate the 

communication between other nodes. Most of these functions are imported from the ‘rospy’, 

‘std_msgs’ or ‘sensor_msgs’ libraries. One exception to this is the inclusion of a line of code 

which occupies the very first line, this is called a ‘shebang’. According to Prakash (2021), a 

shebang ‘is used to specify the interpreter with which the given script will be run by default’. 

The rest of the required components for a ROS node are mainly associated with the ‘rospy’ 

library, the most common functionalities include: 

 import rospy – Makes the functionality for ‘rospy’ accessible to the script. 

 rospy.init_node(‘new_node’) – This creates a node called ‘new_node’. 

 new_publisher = rospy.Publisher(‘new_topic’, message_type, 

queue_size=10) – This will create a publisher called ‘new_publisher’, which can 

publish messages to the ‘new_topic’ topic. The ‘message_type’ is the type or structure of 

the messages being published, and the queue size is simply the amount of messages that 

will be stored in the buffer.  

 new_publisher.publish(new_message) – This will make the publisher called 

‘new_publisher’ send (or publish) the contents of ‘new_message’. 

 rospy.Subscriber(‘new_topic’, message_type, new_function) – This will 

enable a subscription to the ‘new_topic’ topic. Each time a message is received, the 

‘new_function’ will be called. The message that is received will be passed to this 

function as the argument. 

 rospy.loginfo(“Hello World!”) – This will display (and log) “Hello World!” in the 

terminal. 

Other functionality exists with the ‘rospy’ library, but these are not needed for this project. The 

other library which is often used for ROS scripts is the ‘std_msgs’ library. This essentially has 

many standard types of message structure which one may want to use within ROS. It is possible 

to create custom message types, but the nodes in this project will stick with the standard 

message types. This library can be used in the following ways: 

 from std_msgs.msg import message_type – This will import the message type 

called ‘message_type’ into the ROS script.  
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 new_message = message_type()– This will create a new variable called 

‘new_message’ which will take on the structure of ‘message_type’. 

Note that ‘message_type’ is not an actual message type which are part of the ROS standard 

messages, this was done for illustration purposes. This was also done to show how these 

message types are tied to use of ‘rospy.Publisher’ and ‘rospy.Subscriber’ which were described 

earlier. The main message type which is used in this project is called ‘Float32MultiArray’, this 

kind of message allows for multiple float values to be published in one message.  

The final library which is used for this project is the ‘sensor_msgs’ library. This contains the 

messages structures needed to receive messages from the mm-wave sensor node as well as 

special functions which can be used to process the sensors data. Some example of how this 

library can be used are: 

 from sensor_msgs.msg import PointCloud2 – This will make the ‘PointCloud2’ 

message type available for use in the script. This is the type of message that the mm-

wave sensor node publishes. 

 import sensor_msgs.point_cloud2 as PC2_function – This will import the 

functions which are contained within ‘sensor_msgs.point_cloud2’ and gives these 

functions a new alias name of ‘PC2_function’. These functions are necessary to 

manipulate or create messages of the ‘PointCloud2’ type. 

 PC2_function.read_points(cloud_data, field_names=(“x”, “y”, “z”)) – 

This will read the ‘cloud_data’ point cloud attributes which are found in the 

field_names argument, here they are x, y, and z. This kind of command is usually run 

in a ‘for’ loop so each point in the point cloud can be read.  

Other functions and message types are includes within the ‘sensor_msgs’ library that can be 

used to create point cloud data in the correct structure format which can then be published, 

however, this functionality is not needed for this project. 
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4.5 Modular ROS Node Creation Strategies 
 

The task of converting the previously written python scripts to ROS nodes initially seemed like 

a straightforward and easy process, however this was definitely not the case. Some difficulties 

of this task stem from the unfamiliar coding requirements for a ROS node. But the majority of 

the complexity arose from ensuring the ROS functionality could be run in unison with the 

scripts core functionality. Initial attempts at converting the existing code to a ROS node, was 

only able to run one of these processes at a time, but the simultaneous execution of these section 

of code was required for the system to operate properly. To overcome these problems it became 

clear that this system needed to be built with many more smaller, more basic nodes rather than 

very few more complicated nodes with advanced capabilities. This strategy also aligns more 

closely to the fundamental design philosophy of how ROS systems are intended to be built. In 

order to build a functioning ROS system, a node needs to be created for each of the hardware 

components. To achieve this task, three main strategies were used. 

 

Table 4.2: Development Strategies & Node Origins 

Strategy Description Nodes 

Adoption Utilise code and scripts which have already been 

developed to interface with a particular device. 

 Camera 

 mm-wave sensor 

Break-Down Start with previously written complex script and 

break it down into several simpler nodes. 

 Vertical Stepper 

 Horizontal Stepper 

 Motor control 

publisher 

Build-Up Start with basic functionality and iteratively add 

layers of complexity. 

 Angle sensor 

 Command Node 
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4.5.3 Adoption Strategy 
 

 Camera Code 

The first strategy of integration was used to produce code which could operate the camera and 

the mm-wave sensor. The code which runs the camera was sourced from JetsonHacks (2022) 

which can be viewed at this link. To have this code operate properly, the following 

modifications were made: 

 Shebang added to start of code: #!/usr/bin/env python 

 All instances of flip_method=0 were changed to flip_method=2 

As mentioned previously, the shebang is used so this script can be used by the ROS system. 

Changing the ‘flip_method’ to 2 inverts the camera feed image to ensure it displays correctly 

for this particular system. 

 

 Mm-Wave Sensor Node 

The code which was needed to operate the mm-wave sensor was briefly discussed in section 

4.3, however the full code and more detailed documentation can be found in this link (Zhang 

2019). No modifications were made to this code. 
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4.5.4 Break-Down Strategy 
 

 Manual Motor Control Node 

Using the code which was previously developed to control the stepper motor, three nodes were 

created. One node was created for each stepper motor (vertical and horizontal) and the other 

node was created to send control signals from a Graphical User Interface (GUI) to the stepper 

motors. The first step was to isolate all the code which was used for creating the GUI and 

generating the values which were sent to the motor to control their speed and direction. This 

was achieved by copying the existing code and stripping away all parts which were used to 

control the stepper motors. What remained was a relatively simple script which could generate 

a popup window that contained two sliding bars, which could generate specific values. From 

this script, the ROS functionality was added which allowed these slider bar values to be 

published to a new topic called ‘Slider_values’.  

 

 

Figure 4.2: GUI For Manual Motor Controller 

 

Some minor additions were added to the GUI to make the motor control easier, these are the 

two ‘Stop’ buttons the ‘Reverse’ checkbox and the ‘Disable’ checkbox. The stop buttons are 

used to quickly reset the slider bars to zero, which will instantly stop the corresponding stepper 

motor from spinning. The reverse checkbox is used to invert the control signals which are sent 

to the horizontal stepper motor. The idea behind this is the user may be looking at either the 

camera feed or the apparatus when they are steering the camera, this checkbox allows either 

option. And finally, the disable checkbox, simple disables the stepper motors all together. 

Besides the horizontal and vertical motor commands, one extra parameter is also sent. This 

third parameter is used to determine the source of where the motor control commands are 
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coming from, for this node, the value is 1. However this third value can also be set to -1 which 

will completely disable both stepper motors. When the GUI ‘disable’ checkbox is selected, it 

causes this third value to become -1. If this is sent, the motors will not respond until a value of 

1 is sent; this can only be done by deselecting the ‘disable’ checkbox in the GUI. 

 

 Horizontal and Vertical Stepper Nodes 

A similar procedure was used to produce the stepper control nodes. The same script was used 

as the starting point and all elements related to the GUI were removed. The code was simplified 

even further by converting it from a ‘class’ structure to a series of functions. This required any 

variables which were shared across functions to be declared as ‘global’ variables. Since the 

GUI what contained the slider bars has now been removed, another way to receive motor 

control signals needs to be used. To achieve this, a new ROS subscriber was created which 

listened to the topic ‘Slider_values’. This is where the nodes begin to differ between the vertical 

and horizontal stepper nodes. For each node type, the ‘Slider_value’ that is used to control the 

motor is different. Additionally, the output pins used for the direction, step and mode are also 

different.  

 

Due to each stepper motor being coupled to the mechanism in different ways, the speed at 

which the steppers operate must also be different. The vertical stepper turns a worm gear which 

pivots the camera up and down, which requires several revolutions to change the vertical angle 

in any significant way. This is why the step mode selected for the vertical stepper is the second 

fastest mode (mode 2), which is operating in the half step mode. The horizontal stepper is 

directly linked to the left and right pivot mechanism, so this motor needs to operate in a slower, 

more controlled step mode. For this reason the finest mode is selected (mode 6), which runs at 

1/32 step size. However, it was noticed that this can be inadequate for faster moving targets so 

a mode switching section was added to the horizontal stepper control node. This mechanism in 

the code will automatically select faster or slower modes depending on the magnitude of the 

speed signal sent to this node. This results in the horizontal stepper moving faster when the 

object is further from the centre axis.  
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Another addition was made to these node so it could be determined where the motor signals 

were being sent from. As mentioned previously, a value of 1 corresponds to messages received 

from the manual control node, so these messages take priority. The way this works is with the 

use of another variable called ‘override’. As soon as a value of -1 is received, this override 

value is set to 1, at the same time, the motor speed is set to 0. If a value of 1 is received, then 

the message is from the manual control node and the motors are enabled, so the override value 

is set to the speed value that the motor is commanded, this speed is also sent to the motor. Now 

if motor commands are sent form the ‘Command’ node, they have a value of 0 attached. The 

stepper motor nodes will only send these motor control signals if the override variable is set to 

zero. This means that the manual control node must have its speed set to zero (and the disabled 

unchecked) to allow the ‘Command’ node to take control of a particular stepper. 
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4.5.5 Build-Up Strategy 
 

 Angle Sensing Node 

The built up strategy simply starts from a clean slate, then adds functionality to the script 

iteratively. This was the strategy used to create the ‘Angles’ node and the ‘Command’ node. 

The ‘Angles’ node needs to be able to fetch the angle data from the ADS1115 and publish this 

information so it can be used by the ‘Command’ node. In order to receive the data that the 

ADS1115 generates, this node needs to access the data which is sent through the I2C (Inter-

Integrated Circuit) communication protocol. This is achieved by setting the appropriate 

registers by sending a particular bit sequence to the I2C serial bus. This bit sequence controls 

aspects like: the address for the ADS1115, analogue channel selection, the communication 

mode, data rate, multiplexing options and more. When this bit sequence is sent, the ADS1115 

will convert the analogue signal from the selected channel and send its value to the I2C register. 

This value needs to be converted to decimal, then scaled to correspond to the correct angle 

value. In order to accurately scale the received analogue data, the apparatus was moved to a 

particular angle then the number received from the ADS1115 was recorded. This process was 

done with both angle sensors at a few significant angles like -90°, -45°, 0°, +45° and +90°, and 

with this data, the linear equations were determined mathematically.  

 

One major issue which was encountered while developing this node was the returned analogue 

values would occasionally send a ‘random’ value. Eventually it was determined that these other 

‘random’ values were actually readings from the other three analogue channels. The initial 

approach to attempt to remedy this issue was to use the ‘flag’ bit that the ADS1115 is supposed 

to change after a conversion is made so the program will know when to read the data. However 

after many attempts to use this method, this strategy was unsuccessful. To fix this issue, a very 

specific delay time (between setting the register and reading its result) was determined. This 

allowed the program to read the I2C data at the correct time, before the next value was written 

to the register. In order to determine the proper delay, the program was set up so a variable 

delay was used, which slowly increased as the program run. The delay value as well as the 

analogue value were printed to the console. When the correct value was printed to the console 

without errors, this delay value was selected. Even with a suitable delay value, about 1 in 500 

reading will produce an incorrect reading, however these stray values were filtered out by 
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comparing an incoming value to the previous value and ignoring values which lie outside the 

expected range. The final step to completing the ‘Angles’ node was to add the relevant code 

which publishes this angle data to the ‘Angles’ topic. 

 

 Command Node 

The Command Node is responsible for interpreting the data sent from the mm-wave and angle 

sensor nodes and sending control signals to the stepper control nodes. To begin the 

development of this node, the first step was to create a subscriber which receives the data from 

the mm-wave sensor node. This data is sent through ROS as a ‘PointCloud2’ message type 

under the topic called ‘/ti_mmwave/radar_scan_pcl’. During testing, it was discovered that this 

point cloud data consists of multiple data points which each has four attributes which are 

structured like this: Point_cloud_data = [ [x1, y1, z1, i1], [x2, y2, z2, i2], [x3, y3, z3, i3], …]. The 

x, y, and z are the Euclidean coordinates for the data point, and the ‘i’ is the intensity or strength 

of that data point. It was observed that the ‘z’ coordinate is always zero, so it is evident that no 

vertical tracking will be possible with this sensor.  

 

In order to develop this node, a way to consistently produce a strong radar point was needed. 

According to Wolff (2007) ‘corner reflectors are used to generate a particularly strong radar 

echo’. So in order to achieve constantly strong radar point, a corner reflector was constructed, 

which is shown in Figure 4.2 below. This corner reflector was constructed with 0.8mm thick 

aluminium sheet metal, and held together with hot glue. When the corner reflector was tested, 

it generated a very strong radar data point as expected. With further testing it was determined 

that under normal conditions, most point cloud data points will not exceed an intensity level of 

around 35, however when the corner reflector was introduced, the reflection intensity was 

easily above 35. This observation was used to isolate the most intense point in the point cloud 

data. While this technique is very effective to isolate one particular point, it is not ideal for a 

person to carry around a corner reflector so the camera can follow their movements, therefore 

additional filtering strategies were used.  
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Figure 4.3: Corner Reflector 

 

To achieve this type of tracking, a simple, yet effective strategy was used. When the point cloud 

data points are received, it undergoes multiple filtering strategies. First, any points which have 

a greater intensity than 35 are added to the ‘filterered_points’ array. The next part relies on the 

existence of a previously extracted point, which the camera tries to follow, this is called 

‘followed_point’. If this point contains no data, then the filtering algorithm will only keep data 

points which are between 15cm to 100cm away from the sensor and within 50cm to the left or 

right of the centre axis. If ‘followed_point’ does contain data, then the filtering algorithm will 

only keep data points that are within 20cm closer or further away and within 30cm to the left 

or right of where the ‘followed_point’ was detected. This effectively ignores all other data 

points (except the corner reflector) and tries to find the same object from the last program cycle. 

Once all of these points have been collected into the ‘filterered_points’ array, the most intense 

point from this is selected to be the target.  

 

The greatest advantage to using this technique is the ability to use the corner reflector to get 

the system to lock on to a target, then even when the reflector is hidden, the system follows the 

person quite reliably. This is essentially a method for an object to be selected for tracking. 

Other more complex object tracking algorithms were explored, but due to the numerous 
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complexities and time constrains this simpler, yet still effective solution was developed. The 

following section discusses some of the techniques which were explored as well as the source 

of the added complexity. 

 

Once the data point is selected, its ‘x’ coordinate relates to how far from the sensor the object 

is, and the ‘y’ value corresponds to how far to the left or right the object is from the central 

axis. This ‘y’ value is of particular interest to the way this systems control mechanism works. 

The magnitude and sign of the ‘y’ value is proportional to the desired rotational speed and 

direction that the horizontal stepper motor needs to operate successfully to track the object. 

 

 

Figure 4.4: Importance Of Object ‘Y’ Coordinate For Motor Control 

 

The motion caused by the horizontal stepper motor will bring the centre axis closer to the 

detected object, which in turn will reduce the magnitude of the ‘y’ value. When the object is 

aligned with the centre axis, the ‘y’ value will be zero, which will stop the stepper motor from 

spinning. It is rather obvious that the sign of ‘y’ will correspond to the spin direction of the 

stepper motor.  

 

While it is possible to simply use the ‘y’ value directly for the horizontal motors direction and 

speed, a few issue would arise from this, hence the use of a few signal processing techniques. 

To increase the tracking speed, the ‘y’ value was multiplied by 20. The next concern was the 

stepper moving too fast so it was limited to a maximum of 5, this was handled with a simple 

‘if’ statement. Another problem which was encountered caused another object to become the 

most intense data point, which would cause the motor to violently turn toward the new object. 

To handle this problem, the speed from the previous program cycle was used, and if large 



72 Chapter 4 Software Development 

difference in speed was detected, then only a small change was made to the speed in the 

direction of the speed change. This acted as a way to slow down the acceleration of the stepper 

speed.  

 

The last issue was the camera moving too far to the left or right, causing the wires to become 

too tight. For this reason the sensed angle for the horizontal mechanism was used to limit the 

speed. To acquire the angle values, a ROS subscriber was used to receive the angle data which 

is sent through the ‘Angles’ topic. If the angle of the horizontal stepper exceeded 60° and the 

speed is set in the direction which would increase the angle, the speed was set to zero. This 

way if the targeted object moves outside the mechanisms range of motion, the camera will 

remain as far to the side as possible. Usually this would occur if another object became the 

focus and the camera would move to one side. For this reason, the ‘followed_point’ is also 

cleared if the camera moves outside the ±60° range, this would cause the algorithm to look for 

either the corner reflector or the most intense point right near the front of the sensor. When the 

detected object is within ±60° from the central axis, the camera will again move toward the 

target. The final step in this node is to publish the calculated speed value, along with the 

identifier of 0 on the message topic ‘Slider_values’ so the motor control nodes can receive this 

data. 

 

Figure 4.5: Mm-Wave Camera Tracing System Horizontal Range Of Motion 
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4.6 Alternate Development Strategies 
 

During the process of creating this project many issues were encountered which significantly 

slowed the progress of developing this project. Besides the problems with software integration, 

interfacing with the mm-wave sensor and angle sensing discrepancies, other issues were 

present which could not be overcome within the time remaining for the project. Many more 

features were intended to be added to the ‘Command’ node which would increase the overall 

functionality of the mm-wave tracking system. The system in its current form will still track a 

human object a well, but the method of object selection is not the most elegant solution. Also, 

the tracked point will occasionally get lost. The most likely reason for this is that the most 

intense radar point is followed, and often another object will generate a more intense radar 

reflection than the specified threshold, hence distracting the system. To address this issue, an 

alternate solution was explored and while some of these features were tested successfully, the 

complete set of features needed for this other approach to work properly could not be 

implemented effectively without much more development time.  

 

The alternate strategy was to cluster several stronger points together to isolate a handful of 

objects. While this part was easily achievable, this method opens up quite a number of other 

challenges which proved to increase the difficulty substantially. The first obvious challenge 

was creating a mechanism to selecting a particular object to track. This requires some kind of 

user interface which could display a list of isolated clusters which some mechanism of selecting 

a particular point. Attempts were made to use tkinker with a series of checkboxes which 

corresponded to each point. While this was achieved with limited success, another more 

important issue became more evident.  

 

These clustered points needed a way to be tracked and identified. In each cycle of the command 

nodes program, these point clusters could be calculated, but then a method of linking the 

currently detected objects to the previously detected objects needed to be devised. The most 

obvious solution was to compare the locations of each point in the current cycle with the points 

detected in the previous cycle. If the location of a point was close to a previously detected 

point, then it was assumed to be the same point. While an algorithm of this type was a 
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challenge, some success was achieved here. This also required a way of storing a list of detected 

objects along with an identifying number so the points can be tracked. 

The final issue which ultimately thwarted this approach was the objects disappearing and 

reappearing in scan cycles. When this happens, duplicate entries were made in the stored points 

array, and the identifying numbers would become messed up. Again, some success was 

achieved with this, but in a separate more simplified python script, but this could not be 

effectively incorporated into the main ‘Command’ node script. Since this method required so 

many other complex processes and the ever-increasing complexity made the script more and 

more unmanageable, the decision was made to simplify the solution significantly. Using the 

basic strategy of following the most intense radar point, other effective tracking methods were 

identified and ultimately implemented into the final camera tracking system. 
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4.7 Chapter 4 Summary 
 

Chapter 4 focussed on the development and integration of the software needed to control the 

camera tracking system. From the beginning of this section, a major focus was determining a 

successful method for interfacing with the IWR1642BOOST sensor. It was discovered that 

software which can achieve this task has already been developed, but it uses the ROS protocol 

for intercommunication. This revelation caused a shift in focus with the software integration 

strategy to convert all existing code to ROS nodes, and add other ROS nodes if required. During 

this process, it was necessary to understand the way a ROS system works as well as how to set 

up and use them. With this understanding, several methods of node creation with used to create 

a functioning ROS system; these were the Adoption, Break-down and Build-up strategies. The 

creation process for each node was also discussed. Once most nodes were functional, the focus 

shifted to the development of the ‘Command’ node, which is responsible for the overall control 

on the system. Numerous significant challenges became evident during the development of the 

‘Command’ node, which adjusted the object tracking strategy to a simpler, yet very effective 

solution. The technique that the Command node used to facilitate the camera following a target 

object were explained. Finally, the alternate tracking strategy which faced problems was 

explained, and the sources of the added complications were identified.  
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5.1 Chapter 5 Overview 
 

Now that the system is operating successfully, all that is left to do is to test outs its capabilities. 

This section discusses the processes used to test certain attributes of the system like its tracking 

performance as well as its resistance to disturbances. These tests will finally answer the 

question to how well the mm-wave sensor can cope with poor lighting and external distractions. 

The test results will then be analysed and discussed so potential areas of improvement can be 

identified as well as where the system excels. Finally, several conclusions are drawn from 

evaluating the project from a holistic perspective.  
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5.2 System Testing 
 

In order to ascertain the effectiveness of this system, several attributes relating to how the 

system operates need to be tested. The original plan was to compare the performance of this 

system to an existing camera tracking system, however this could not be achieved due to the 

budget for the project being exceeded in other areas. For this reason, the testing strategy has 

been modified to focus on collecting system specifications and performance characteristics. 

These camera tracking characteristics can be divided into two broad categories: Tracking 

performance and resistance to disturbances. The main attributes which can be tested are 

shown in Table 5.1: 

 

Table 5.1: Camera Tracking Attributes For Testing 

Tracking Performance Explanation 

Maximum tracking scope 
How far to the left or right can the object be tracked? 

How much vertical motion can be accounted for in the system? 

Maximum tracking range How far from the sensor is an object able to be reliably tracked? 

Maximum tracking speed How fast can an object move before tracking is lost? 

Maximum angular velocity How fast does the camera tilt in the horizontal and vertical axis? 

Tracking smoothness How smooth are the motions of the camera? 

Resistance to disturbances 
 

Lighting conditions 
Does poor lighting conditions affect the performance of the 

tracking? 

Fast movements Will the camera lose track of an object if it moves too quickly? 

Distractions 
How well does the camera stay focussed on one particular 

target when other targets are moving nearby? 
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5.3 Tracking Performance 
 

To gain an understanding of the tracking performance of the system, 5 key areas have been 

identified for investigation: scope, range, speed, angular velocity, and smoothness. While some 

attributes are easily measured, others are more subjective, like smoothness. 

 

Maximum Tracking Scope 

The maximum tracking scope is solely related to how far the camera can look in any direction. 

For the horizontal range of motion, this has been limited in software to ±60°, since the wires 

and cables become too tightly bound around the pivot point. Even with this software limit in 

place, the system has been observed moving as far as 70°, when the tracked object moves 

quickly out of range. The vertical range of motion is ±45°, which was intentionally limited by 

the hardware design. This was done for the lower vertical angles to prevent the system 

interfering with itself, and the upper range was set to +45° because higher ranges of motion are 

not expected to be needed for a camera tracking system of this type. 

Horizontal Scope: 120° 

Vertical Scope: 90° 

 

Maximum Tracking Range 

Before the maximum range test is undertaken, it must be noted that the mm-wave sensor node 

has a short range mode and a long range mode, however the long range mode has errors when 

attempted to be executed. Therefore for all tests (including this maximum range test) the short 

range mode was used. In order to determine how far away a target can be tracked by the mm-

wave camera tracking system, the apparatus was set up outdoors. The apparatus was set up on 

a small table near a large clearing of land. One end of a 30m tape measure was placed in line 

with the mm-wave sensor but under the table; this was secured in place with a stone block. The 

other end of the tape measure was extended out to the back fence, which was about 20m away. 

The set-up of this apparatus is shown in Figure 5.1 below: 
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taken to be the maximum possible tracking speed. The results for all three runs of the speed  

test is shown in Table 5.2 Below: 

 

Table 5.2: Maximum Tracking Speed Test Results 

 Speed Test (14m) 

Unit seconds m/sec 

1st Test 2.74 5.11 

2nd Test 2.85 4.91 

3rd Test 2.52 5.56 

 

Maximum Tracking Speed: 5.56 m/s 

 

Maximum Angular Velocity 

To test the Maximum angular velocity, nine tests will be conducted, which will be three tests 

done three times each. The first test will determine the maximum angular velocity for the 

vertical motion of the camera, and the other two tests will examine the horizontal motion. The 

difference between the horizontal motion tests are one test will be using the manual control 

window, and the other test will track an object from left to right, as quickly as possible. The 

vertical motion test is the most straight forward, the camera will be aimed as far down as 

possible (-45°), then a stopwatch will be started and simultaneously the vertical speed will be 

set to maximum. Once the camera reaches the maximum vertical angle (+45°), the stop watch 

will be stopped. This will be done three times to attain an average value. The horizontal angular 

speed test will be similar, except the angle will have to be monitored in the console, since the 

manual control mode does not have any angular limitations. Finally the last horizontal test will 

use the corner reflector so tracking performs at its best. The reflector will be moved to the left 

of the camera, so it goes out of range, then the corner reflector will be moved quickly to the 

other side, but slow enough to ensure tracking is still happening. The stopwatch will be started 

when the camera begins to move and stopped when the motion has ceased. The results for each 

of these tests is shown in Table 5.3 below: 
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Table 5.3: Maximum Angular Velocity Test Results: 

 
Vertical 

(Manual) 

Horizontal 

(Manual) 

Horizontal 

(Automatic) 

Range 90° 120° 120° 

Unit seconds deg/sec seconds deg/sec seconds deg/sec 

1st Test 19.34 4.65 2.66 45.11 6.67 17.99 

2nd Test 18.58 4.84 2.18 55.05 6.4 18.75 

3rd Test 20.15 4.47 2.81 42.7 6.6 18.18 

Average 19.35 4.65 2.55 47.06 6.56 18.3 

 

The results from Table 5.3 show that the angular velocity of the vertical motion is by far the 

slowest at 4.65 deg/s. This result is expected since the coupling mechanism used is a worm 

gear which dramatically reduces the spin ratio and speed. The fastest speed by far is the 

Horizontal tracking in manual mode at 47.06 deg/s, this is because the speeds that can be 

generated by the motor controller GUI are limited to a maximum speed of 10. Conversely, the 

automatic horizontal tracking is limited to a speed of 5, to allow for smoother tracking, and 

avoid losing the object being tracked.  

Maximum Angular Velocity Vertical (Manual): 4.65 deg/s 

Maximum Angular Velocity Horizontal (Manual): 47.06 deg/s 

Maximum Angular Velocity Horizontal (Automatic): 18.3 deg/s 

 

Tracking Smoothness 

While this parameter is highly subjective, it is possible to make some observations to describe 

how well the camera moves. When the manual control is used to move the camera up and 

down, the motion is noticeably jagged. This may be caused by a number of different factors 

such as the small amount of play in the meshing of the worm gear and the geared bracket. As 

the motor spins, in may be causing the geared bracket to move in small increments instead of 

smoother motions. Another factor may be due to the vertical stepper running at a faster speed 

in which a larger step size is used. It is also suspected that as the stepper motor speed increases, 

for steps are missed, which is causing the jagged motions. The vertical motion smoothness can 

be described as noticeably jagged. 
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When considering the motion of the horizontal motion, several other observations are made. If 

the tracking speed is very slow, the motions are very smooth. However when faster motions 

are observed, the motion becomes more jagged. This issue is most likely due to the change in 

step sizes needed for the faster speeds. While this jagged motion is noticeable when evaluating 

the motion smoothness, it is not as obvious as in the vertical motions. It has also been observed 

that when an object is being automatically tracked, there seems to be some minor lag between 

an objects movement and the cameras motion. This is less pronounced when the radar reflector 

is used, but this become more pronounced that faster the object moves around. While the lag 

in the camera tracker is evident, it is still quite responsive and by no means would make this 

system unusable. To summarise the smoothness of the horizontal motions, it can be described 

as reasonably smooth, with a slight lag. 

Vertical Smoothness: Noticeably Jagged 

Horizontal Smoothness: Reasonably Smooth, With Slight Lag 
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5.4 Resistance To Disturbances 
 

One of the most touted attributes of mm-wave sensors is their ability to operate under very poor 

lighting conditions, since it does not rely on visual methods. One particular pitfall of some 

visual based camera tracking system is that they can be easily distracted by other objects 

moving in the field of view. Due to the techniques used in tracking with the mm-wave sensor, 

this issue should be improved. However while this system is expected to have improved 

resistance to disturbances in some areas, the expected performance for tracking fast moving 

objects is not expected to offer any significant improvement. 

 

Lighting Conditions 

To test the resilience of the system to poor lighting conditions, the system was tested under 

three different conditions. These conditions are normal good lighting, very low lighting, and 

extreme high lighting (glare). The system was first tested under normal lighting conditions, 

with and without the corner reflector, and the tracking characteristics were identified. It was 

noted that fast motions may cause the tracking to become lost, but this can easily be regained 

by showing the corner reflector so the system can ‘lock on’ to the person once again. When the 

corner reflector is used, the tracking is very consistent and quite responsive.  

When all lights are switched off at night (including the computer monitors), the room is almost 

completely dark. The only sources of light are the small LED’s on the Jetson Nano and the 

IWR1642BOOST. These LED’s on the mm-wave sensor were useful for determining how well 

the system was able to track the target. When the system is tested under these conditions, there 

seemed to be no difference in the tracking performance. Even though this result was expected, 

it is still very interesting to see that it is still able to track objects under such poor lighting 

conditions.  

The final test to determine the systems resistance to difficult lighting conditions was the high 

glare test. In order to introduce strong glare, a 12000lm flashlight was directed straight at the 

sensor while it was in operation. When this was done, the camera feed on the screen showed a 

completely white screen what at close range, and a strong bright circle with a black background 

when at an increased distance. With the camera showing this, it is assumed that a standard 

camera tracking system would be completely useless under these lighting conditions. Despite 
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what the camera was showing, the system was still able to track the target objects with exactly 

the same performance as the normal lighting conditions.  

Normal Lighting Condition: Adequate tracking without reflector, Great tracking with reflector. 

Darkness Condition: No change to performance characteristics. 

High Glare Condition: No change to performance characteristics. 

 

Fast Movements 

With the mm-wave sensor showing improved performance under poor lighting conditions, one 

area where no significant improvement is expected is with tracking fast moving objects. To 

test the systems capability with tracking fast objects, two modes of testing were undertaken. 

Both tests will have the system attempt to track a person moving quickly from one side of the 

room to the other side, however one test the target will have the corner reflector, and the other 

test is un-aided. When the test was performed without the corner reflector, the system could 

not keep up, and subsequently lost it ‘lock’ with the object, the object could be found once 

again by using the corner reflector. When the test was performed while holding the corner 

reflector, the system did seem to move more quickly to track the object, however it could not 

keep up with the object, and the target left the camera frame. However despite this, the camera 

did catch up with the target and the ‘lock’ was not lost.  

These observations in the tracking performance can be attributed to a number of key factors. 

The most significant factor is likely the way the command node handles the sensor data. Several 

trade-offs were made with selecting parameters such as motor speed, search area, intensity 

thresholds etc. The problem is that while these parameters are designed to achieve certain 

performance benefits, they can also introduce other undesirable effects. One such example was 

the decision to make the search area smaller, so other targets were not selected. This has the 

undesirable effect of reducing the maximum speed at which the tracked object can move at. 

However, even with a command node that is written perfectly, the limiting factor becomes the 

refresh rate of the mm-wave sensor, which is 30Hz. Modern cameras can easily exceed this 

refresh rate by a significantly large margin, which means that advanced cameras are capable of 

tracking objects that are moving at much faster speeds, the limiting factor here becomes the 

processing power requirements.  
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Fast Target Without Corner Reflector: Tracking lost 

Fast Target With Corner Reflector: System couldn’t keep up, but tracking was retained 

 

Distractions 

One significant problem with any camera tracking system is their susceptibility to being 

distracted by other people or objects in the field of view. This generally stems from the methods 

used to control the tracking of the target. Cameras can only detect objects in two dimensions, 

so depth information cannot be used to track objects. However to counteract this, facial 

recognition can be used so only one person is followed, but not all camera tracking systems 

use this feature. There are circumstances where it is desirable for the camera to have the ability 

to track any person, but this introduces the problem of the system being easily distracted and 

cameras are not well suited to counteract this. With the mm-wave sensor, the objects which are 

detected not only horizontal special information, but depth is also captured. This means that 

objects which lie at varying distances from the sensor can be accurately detected and measured. 

By taking advantage of this property of mm-wave sensors, improved distraction resistance can 

be achieved.  

To determine the distraction resistance of this system, a simple test will be performed. Once 

the camera tracking system has locked on to a target person, other people are introduced into 

the room and walk in front of and behind the person who is being tracked. When the system 

was started, it detected and tracked the target person. This target person moved backward to 

about 3m distance from the sensor. This person stood still and two others walking into the room 

and began moving around randomly. The camera tracking system did not lose its focus on the 

target person. Even when the other two people tried to become the tracked target, this was 

almost impossible for them to achieve. These tests were undertake without the use of the corner 

reflector. 

While the system performs extremely well with resisting distractions from other people, it does 

not accomplish this level of tracking proficiency with all kinds of objects. During testing of 

this system, it has been frequently observed that the system will become distracted by other 

metallic objects in the room. These other metallic objects are creating strong radar reflections, 

and the suspicion is that occasionally one of these objects returns a radar reflection stronger 

than the intensity threshold of 35. This would cause the system to mistake the other object as 
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the corner reflector, and hence will set this object to become the new target to be tracked. While 

it would be possible to improve this issue with alternate filtering strategies, these methods were 

not pursued due to time limitations. Despite this fixable issue, it is clear that the mm-wave 

sensors bring a clear advantage to distraction resistance in a camera tracking systems. 

Distractions from other people: Excellent performance. 

Distractions from high radar reflectiveness: Adequate performance, improvements possible. 
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5.5 Conclusions 
 

5.5.1 Test Conclusions 
 

During the process of testing the system, several other conclusions were reached. In the first 

test of determining the maximum scope of motion of the system, it was concluded that the 

system has a horizontal range of motion of 120°, and the vertical range of motion is 90°. 

While this range of motion is regarded to be adequate for this system, this could be further 

improved if the mounting brackets and cable management were redesigned. 

Outdoor testing determined that maximum stable range for tracking a person is at about 8m 

from the sensor. For indoor tracking of people, this range would generally be adequate, 

however increased distances would be a welcome improvement in the system. As mentioned 

earlier, the mm-wave sensor node does have a long range mode, but this was not able to be run. 

Perhaps, the developer of this node could be contacted to troubleshoot this issue to have this 

system operate at further distances. According to Texas Instruments (2020), the mm-wave 

sensor has a maximum operating range of up to 30m, which would be more than adequate for 

most person tracking applications. It was also determined that the maximum tracking speed of 

the system is above 5.56 m/s, which is easily fast enough to track a person under normal 

circumstances.  

This test was completed at close to the maximum range, so the angular rotational velocity of 

the camera was not the limiting factor in this test, however at closer ranges this is likely to 

become a problem.  This is because the maximum angular velocity of automatic tracking in the 

horizontal plane is 18.3 deg/s, which may struggle to keep up to close, fast moving objects. 

This performance could be improved by changing the maximum speed of the horizontal 

stepper, but this would decrease the smoothness of the tracking. It was also determined that the 

maximum vertical angular velocity is 4.65 deg/s, which is very slow. Since the camera tracking 

system cannot tracking vertical motion, this is not a major factor. Besides being convenient in 

setting the correct camera height, this vertical motion does not serve much other purpose in 

this system. However if vertical tracking was required (another sensor would be needed), a 

worm gear and stepper motor would not be recommended, since it results in very Jagged, slow 

movements. The horizontal motion had only slightly jagged movements which further adds to 

the reason why servo motors would have been a more suitable choice in this system. Some 
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minor lag was also noticed in the camera tracking, which could be improved my adjusting some 

to the tracking parameters in the ‘Command’ node. 

Perhaps the most significant finding of this project was the tracking resilience attained by using 

a mm-wave sensor. Even with the imperfect algorithms used, the tracking resilience was 

excellent for two of the three tests conducted. The test which had the poorest result was the fast 

moving object tracking, which caused the system to lose its lock on the target. This is because 

the target was relatively close to the sensor, and the angular velocity of the system could not 

keep up. Another minor issue was other high radar reflective object would sometimes take the 

focus of the camera tracking system. However with further work and modifications to the 

algorithms, these issues could be eliminated. Where the mm-wave sensor made the greatest 

improvement, was the resistance to poor lighting conditions. The tracking performance was 

not impacted in any way when it operated in complete darkness or with extreme glare. While 

these conditions would not produce usable video images form a standard camera, this type of 

system would still be useful for steering other devices such as infrared cameras, lasers, weapons 

or fire hoses etc.  

The final conclusion which the testing uncovered is the mm-wave sensors depth perception 

feature dramatically improved the resistance to the system being distracted from other people. 

The tests conducted determined that it was extremely difficult for another person to steal the 

focus of the tracking system, once a lock was achieve on a particular human target. This kind 

of distraction resistance is ideal for situations where the camera focus needs to remain on one 

person, such as a speaker in front of an audience, which is the main purpose of this system. 

While there are still some minor issues with tracking, further development could iron out these 

problems. Even with the system in its current form, it can be used effectively as a camera 

tracking system under most circumstances. If the system gets distracted from a another strong 

radar reflection, the corner reflector can be used to re-focus the system when needed. 
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5.5.2 General Conclusions 
 

During the development and testing of the system, several conclusions can be drawn. When 

considering the project from start to finish, the reality of how certain aspects progress is much 

different to the initial expectations. This is evident by the amount of difficulties encountered 

and project re-directs that occurred. Perhaps the main conclusion from all this is that projects 

do not always play out the way they are expected, and changes in methodologies are 

sometimes necessary for the project to be completed successfully. Problems and setbacks are 

usually seen as negative experiences, however these can also be the greatest learning 

experiences, and this is definitely true for this project.  

Several setbacks which occurred during this project was related to some of the hardware 

choices which were made early in the project. While it was convenient selecting steppers and 

the Jetson Nano as these components were already in possession, these components caused 

much of the setbacks later in the project. For example, the stepper motors required additional 

driver boards to operate, and the software to operate the stepper motors did not exist on the 

Jetson Nano. This resulted in a massive increasing in development time in writing control 

code for the stepper motors. In addition to this, it was discovered that the Jetson Nano does 

not have the capability to receive analogue inputs natively, which required the purchase of 

another IC, adding even more development time to the project. For developing a system of 

this type, it would have been a much smoother process if servo motors were used, since their 

control is much simpler and their accuracy is still sufficient. The other conclusion is that 

using a more popular micro-controller such as the raspberry pi would have also made the 

development of this project much simpler. This is because the raspberry pi has many software 

libraries already developed (like stepper controllers and I2C communication) which could 

have been adopted into the system. 

Other difficulties arose from selecting the particular mm-wave sensor, the IWR1642BOOST. 

When attempting to connect this device, it became clear that communicating with this device 

was not a trivial process. For this reason an already existing ROS node was selected to 

interface with the sensor. This requires nearly all of the coding which already was written to 

be re-worked to be usable in a ROS system adding much more work to the project. These 

kinds of experiences illustrate why is it so important to undertake some investigative research 

into potential component choices before they are committed to. Even though implementing 

this project as a ROS system was not the original plan and required much more work, it can 
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be concluded that ROS is a very useful and versatile framework for complex systems. This 

system also gains some added advantages by using the ROS framework such as reusable code 

blocks, easy system expansion and easy control over networks. 

Overall, it was found that this system does have some minor issues, but further development 

could easily address most of these concerns. It was also found that the idea of pairing a mm-

wave sensor with a camera tracking system does have merit, since it has inherent sensing 

properties which make it very resistance to disturbances.  
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5.7 Chapter 5 Summary 
 

Chapter 5 focussed on testing the camera tracking system, discussing the results and drawing 

conclusions. Tracking performance and the resistance to disturbances were the two main 

categories of system attributes which were of interest for testing. These tests yielded 

quantifiable results such as maximum tracking: scope, speed, distance and angular velocity. 

Other tests resulted in more observational findings such as tracking stability and resistance to: 

poor lighting, fast movements and distractions. With the results, several strengths and 

weaknesses were identified, which opened discussions for system usefulness and 

improvement strategies. A final reflection of the entire project was also considered and 

several learned lessons were identified. The main conclusion was that the idea of pairing a 

mm-wave sensor with a camera tracking system does indeed bring some useful advantages 

that can be used to improve tracking resilience.  
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There will be some level of risk associated with the development of this project during the 

different phases. While proceeding with this project, many factors will cause some level of 

risk. The negative consequences of this risk could be: loss or damage to property, personal 

injury, illness or death. It is necessary to take steps to mitigate this risk and for this reason a 

Risk Management Plan (RMP) was completed: 
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Table D1: Risk Management Plan (Background Information)  
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Table D2: Risk Tolerance Matrix 
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Table D3: Risk Management Plan (Steps 1-5) 
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While undertaking the tasks involved in project development, it is essential to acknowledge 

and address the ethical and environmental considerations that may arise. One ethical 

consideration that may arise is the unintentional filming of individuals without their 

permission, which not only has the potential to cause distress but also exposes the project to 

potential legal consequences.  

In relation to environmental considerations for the project, the impacts will be very minimal. 

Some electricity will be used to operate the equipment, which may lead to minor release of 

CO2 gases. Additionally, all electronics used will be properly recycled at the end of their 

lifecycles. There may be some production of waste materials during the 3D printing and 

prototyping phase of development. 

While there may be some minor ethical and environmental considerations, they are not 

expected to significantly impact the overall progress of the project. 
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There are a number of different resources which will be required for this project to be 

completed successfully. These resources, as well as their expected associated costs are 

described in Table D.1 below: 

 

Table C.1: Resource Requirements & Acquisition Details 

Resource Quantity Supplier Cost 

MM-wave sensor (IWR1642) 

development kit 
1 UniSQ N/A 

Jetson Nano 1 UniSQ N/A 

Jetson OS (Linux) 1 UniSQ N/A 

HD Camera 1 UniSQ N/A 

Camera tracking system 1 Purchase $99.00 

Gimbaling hardware 1 3D Printed N/A 

Stepper Motor 2 Student N/A 

Stepper driver boards 2 Purchase $7.18 

USB Cable 2 Student N/A 

HDMI Cable 1 Student N/A 

Power supply 1 Student N/A 

Soldering Equipment 1 Student N/A 

Power connecter (Male) 3 Purchase $7.65 

Power connector (Female) 1 Purchase $2.45 

Perf Board 1 Student N/A 

220 μF Capacitor 1 Student N/A 

Jumper pins (Female) 2 Purchase $2.90 

Jumper pins (Male) 2 Purchase $5.90 

Jumper cables 1 Purchase $6.95 

Microsoft word 1 Student N/A 

Desk 1 Student N/A 

Office Chair 1 Student N/A 

Monitor 3 Student N/A 

Keyboard 2 Student N/A 

Mouse 2 Student N/A 

Modem 1 Student N/A 

TOTAL $132.03 
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D.1 Gathering 
 

The gathering phase of the project is primarily related to sourcing all of the materials that will 

be needed for the project. While several items are already in possession, many other 

components may be found online or at Jaycar electronics. Some components will be sourced 

from USQ like the IWR1642 development kit, camera, microcontroller and 3D printing 

services. Some components may require visiting multiple locations, while others can 

conveniently be delivered to the home address.  

Some items needed for the development of the camera tracking system are specific software 

platforms. It is likely that CAD software, Linux, Python, Microsoft word and Windows 10 will 

also be needed. Some of these software packages require a licence, most of which are accessible 

through student licenses held by the University. It is possible that certain important items could 

be overlooked initially or that replacement hardware may be needed during advanced project 

phases. As a result, the gathering phase may continue periodically throughout all project stages. 

For this reason, the final aspect of the gathering phase, which involves applying for financial 

reimbursement, will be intentionally delayed. 
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D.2 Setup 
 

The setup phase involves organising and preparing the gathered resources for testing and 

development. This includes tasks like software installation, hardware assembly, and 

component connectivity. The main focus of this phase is to ensure the functionality and proper 

interfacing of all essential components, including the Jetson Nano, camera, motors, and power 

supply. It is important to verify camera is operational, and its data stream is able to be captured 

and potentially relayed to other devices. Another important aspect is the successful control of 

the motors in order to effectively steer the camera. It is also important to enable connectivity 

of the mm-wave sensor, in order to receive the stream of data it will generate. Both of these 

aspects this will require iterative testing and development of control code. Lastly, the setup 

phase entails the design and fabrication of a suitable camera gimballing system consisting of 

brackets and mounts. It is important to organise all components effectively, including deciding 

whether the mm-wave sensor should be mounted stationary or move along with the camera.  

Minor complications are anticipated during the setup phase, such as communication issues 

between components and initial configuration problems. These challenges will be addressed 

by employing strategies like internet searches for common solutions, trial and error 

troubleshooting, and reaching out to the manufacturer for assistance if needed. In the unlikely 

event that the issue persists, the project supervisor will be consulted for further guidance. 
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D.3 Development 
 

The development phase will mainly be concerned with using the IWR1642 sensor and 

attempting to interpret its data stream. This data stream will be collected and processed by the 

Jetson Nano through the use of several algorithms and procedures which were identified in the 

literature review. However, it is crucial to test and verify the methods employed in previous 

research before applying them to this project. 

A significant task in this phase will involve determining how to utilise the interpreted sensor 

data to intelligently steer the camera to track a person. It is expected that the sensor data 

interpretation, object tracking through software, and operation of camera motors will have been 

achieved at this stage. However, the crucial missing link lies in establishing a seamless 

connection between the software tracking and the motor commands. Sending simple ‘static’ 

commands to the camera will likely lead to jagged motions. To overcome this, a PID control 

system will need to be developed. A PID control system will allow the camera to move 

smoothly, quickly and efficiently to a target location; but these systems need to be tuned to 

achieve optimum performance. 
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D.4 Testing 

 

Testing will commence once the system is adequately operational which is undertaken to 

ensure that the camera tracking system meets all of the project objectives. This will involve 

conducting performance comparisons between the developed system and another 

commercially available system. The intended areas of improvement for the camera tracking 

system include enhancing its performance in challenging lighting conditions and increasing its 

immunity to external distractions. As a result, several tests will be conducted under different 

lighting conditions in order to compare performance of both camera tracking systems. One test 

will be conducted under good lighting conditions, the next test will be performed at night with 

the lights off, the next test will involve using a smoke machine to obscure the camera's view, 

and another test will examine the camera's response to a bright light shining directly toward it. 

The final test will introduce other people into the field of view to assess the system's resistance 

to distractions. The results of these tests will be tabulated and further discussed in the final 

dissertation. 
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D.5 Documentation 

 

Ideally this phase will be completed in parallel to all other phases, in order to more easily write 

the final thesis paper at the end of development. However, there is a possibility that it may not 

receive equal attention due to the main focus being on other phases of the project. To mitigate 

this, maintaining consistent records throughout all phases is vital, this will reduce the reliance 

on memory when writing the final dissertation. This consistent documentation may be in the 

form of physically written notes or electronic records. Regardless of the recording method, the 

final writing of the thesis will be done using word processing software, which involves tasks 

such as typing, editing, formatting, and performing spelling and grammar checks. The thesis 

mainly consists of describing in detail the procedures which were used to develop the camera 

tracking system. It also includes an introduction and justification of the idea, linking other 

relevant research, justification of design choices and discussing the key outcomes of the whole 

process. Once all aspects of the dissertation have been written, it will be proof-read to further 

improve its quality before final submission. 
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With the project phases being clearly defined, the expected timeline can be estimated. While it 

is possible to give a rough indication on what aspects will be achieved at certain times, some 

factors could dramatically change the timeline. Certain factors such as unforeseen development 

problems, unexpected family emergencies, supply issues and greater than expected workloads. 

To achieve all aspects of the project there has been eight months allocated for all stages of 

development. This time period is undoubtedly adequate to complete all aspects of the specified 

progression phases. Assuming there are none of these setbacks, the project timeline should look 

something like Figure E.1 below: 
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Figure E.1: Gantt Chart Of Timeline For Final Year Project 
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#!/usr/bin/env python 

# Creator: Andrew Jawney 

# Date: 12/5/2023 

# This code controls two stepper motors rotation speeds and direction simultaneously. 

# When Run, a popup window will appear with two sliders, which are used to control each 

# stepper motor. Every time a slider bar is moved, the stepper will change its speed or  

# direction accordingly, and the terminal will display the new speed or direction value  

# of the corresponding stepper motor. This code has been designed to run the stepper  

# motors in the background, while other tasks can be completed simultaneously. 

# The intention is to build upon this code to connect a mm-wave sensor and use its 

# data to control the stepper motors in real time to steer a camera toward a person.  

 

# Import Libraries 

import Jetson.GPIO as GPIO 

import time 

import threading 

import tkinter 

 

# Define the GPIO pins for the stepper motor drivers 

ENABLE_PIN = 7 

MODE1_0 = 11 

MODE1_1 = 13 

MODE1_2 = 15 

MODE2_0 = 29 

MODE2_1 = 31 

MODE2_2 = 33 

STEP_PIN_1 = 19 

DIR_PIN_1 = 21 

STEP_PIN_2 = 35 

DIR_PIN_2 = 37 

 

# Set up the GPIO channel 

GPIO.setmode(GPIO.BOARD)  

GPIO.setup(ENABLE_PIN, GPIO.OUT, initial=GPIO.HIGH) 

GPIO.setup(MODE1_0, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(MODE1_1, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(MODE1_2, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(MODE2_0, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(MODE2_1, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(MODE2_2, GPIO.OUT, initial=GPIO.LOW) 
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GPIO.setup(STEP_PIN_1, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(DIR_PIN_1, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(STEP_PIN_2, GPIO.OUT, initial=GPIO.LOW) 

GPIO.setup(DIR_PIN_2, GPIO.OUT, initial=GPIO.LOW) 

 

 

# Create class to control stepper motor/s: 

class Stepper(): 

 

# Initialise variables: 

 def __init__(self, Controller, Motor, Mode): 

  self.Controller = Controller 

  self.SliderValue = 0 

  self.Motor = Motor 

  self.next_time = time.time() 

  self.i=0 

  self.done=False 

  self.toggle = False 

  self.increment = 0.002 

  self.mode = Mode 

  self.Direction = 0 

  if self.Motor == 1: 

   self.M0 = MODE1_0 

   self.M1 = MODE1_1 

   self.M2 = MODE1_2 

   self.STEP = STEP_PIN_1 

   self.DIR = DIR_PIN_1 

 

  if self.Motor == 2: 

   self.M0 = MODE2_0 

   self.M1 = MODE2_1 

   self.M2 = MODE2_2 

   self.STEP = STEP_PIN_2 

   self.DIR = DIR_PIN_2 

 

 # Create Slider Controller: 

  self.SliderBar = tkinter.Scale(self.Controller, from_=-10, to=10, resolution=0.01,  

  orient="horizontal", length=250, label=("Stepper",self.Motor, "Direction & Speed:"),  

  command=self.UpdateSlider) 

  self.SliderBar.pack() 
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  print("| Stepper:", self.Motor, " | Mode:",self.mode, " |") 

  GPIO.output(ENABLE_PIN, GPIO.HIGH) 

  self._run() 

 

 

# This part runs every time slider is moved: 

 def UpdateSlider(self, value): 

 

 # Set Direction for stepper 

  self.SliderValue = (float(value)) 

  if self.SliderValue > 0: 

   GPIO.output(self.DIR, GPIO.HIGH) 

   self.toggle = True 

  if self.SliderValue < 0: 

   GPIO.output(self.DIR, GPIO.LOW) 

   self.toggle = True 

  if self.SliderValue == 0: 

   GPIO.output(self.DIR, GPIO.HIGH) 

   self.toggle = False 

   GPIO.output(ENABLE_PIN, GPIO.LOW) 

   self.increment = 0.0002 

  else: 

   GPIO.output(ENABLE_PIN, GPIO.HIGH) 

   self.increment = 0.02/(abs(self.SliderValue)) 

 

 # Set Boundaries for stepper speeds 

  if self.increment < 0.002: 

   self.increment = 0.002 

  if self.increment > 0.02: 

   self.increment = 0.02 

 

 # Set Step size for stepper speeds 

  if self.mode == 1: # Full Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.LOW) 

 

  if self.mode == 2: # 1/2 Step Mode 

   GPIO.output(self.M0, GPIO.HIGH) 
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   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.LOW) 

 

  if self.mode == 3: # 1/4 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.LOW) 

 

  if self.mode == 4: # 1/8 Step Mode 

   GPIO.output(self.M0, GPIO.HIGH) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.LOW) 

 

  if self.mode == 5: # 1/16 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.HIGH) 

 

  if self.mode == 6: # 1/32 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.HIGH) 

 

 # Print Motor status: 

  print("Motor:", self.Motor, "Increment:", self.increment, " SliderValue:",   

  self.SliderValue) 

 

 

# This Part sends the step signals for the steppers: 

 def _run(self): 

  if self.i % 2 == 0: 

   self.next_time += self.increment 

   GPIO.output(self.STEP, GPIO.LOW) 

  else: 

   self.next_time += 0.00002 

   if self.toggle == True: 

    GPIO.output(self.STEP, GPIO.HIGH) 

 

  self.i += 1 

  if not self.done: 
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   threading.Timer( self.next_time - time.time(), self._run).start() 

 

 

# This part will stop the steppers 

 def stop(self): 

  self.done=True 

  GPIO.output(ENABLE_PIN, GPIO.LOW) 

  print("Stepper OFF") 

 

# End of 'Stepper' Class 

#-----------------------------------------------------------------------------------------------------  

 

 

# Start of main program loop: 

Controller = tkinter.Tk() 

Controller.title("Motor Controller") 

Stepper_1 = Stepper(Controller,1,1) # (Controller, Motor, Mode) 

Stepper_2 = Stepper(Controller,2,1) # (Controller, Motor, Mode) 

Controller.mainloop() 

Stepper_1.stop() 

Stepper_2.stop() 

GPIO.cleanup() 
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#!/usr/bin/env python 

 

# Creator: Andrew Jawney 

# This code recieves data from the mm-wave sensor node and the angle sensor node. 

# With the recieved point cloud data, the most intense point is isolated. 

# If the radar reflector is not detected, the points which are near its last know whereabouts are isolated. 

# The most intense point from these isolated points is selected. 

# Using this points 'y' value, and the angle of the horizontal stepper,the speed signal is generated. 

# The speed signals are published for the stepper control nodes 

 

# Import Libraries 

import rospy 

from sensor_msgs.msg import PointCloud2  

import sensor_msgs.point_cloud2 as PC2_functions 

from std_msgs.msg import Float32MultiArray 

 

 

class Command: 

 def __init__(self):  # Initialise the variables needed for this node 

  self.motor_msg = Float32MultiArray()  # Create message structure for motor commands 

  self.angles = [0,0]  # Variable for storing Vertical and Horizontal angles 

  self.speed = 0  # Current motor speed for Horizontal stepper 

  self.old_speed = 0  # Previous motor speed for Horizontal Stepper 

  self.follow_point = [0, 0, 0]  # Point selected to follow 

  self.detect_range = [0.15, 1.0, 0.5]  # when no point is selected search in this area [x_min, x_max, 

y_max] 

  self.search_area = [0.2, 0.3] # distance from last detected point to search [x, y] 

   

 

 def filter_intensity(self, data): 

  self.filtered_points = [] # clear array of flitered points 

   

  # Scan through pointcloud data: 

  for point in PC2_functions.read_points(data,  

   field_names=("x", "y", "z", "intensity"),  

   skip_nans=True): 

 

   # When the radar reflecter is detected, add to filtered points 

   if point[3] > 33: 

    self.filtered_points.append(point) 
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   # When followed point has been lost, look in this area for intense data points 

   if self.follow_point == [0, 0, 0]: 

    # This is set to between 15cm to 1m away from sensor and within 50cm to the left or right: 

    if ( (abs(point[0]) > self.detect_range[0]) and  

     (abs(point[0]) < self.detect_range[1]) and 

     (abs(point[1]) < self.detect_range[2])):  

     self.filtered_points.append(point) 

   else: 

    # If a point has been followed, look for this point again within this search range 

    # This is set to 20cm closer or further, and 30cm to the left or right: 

    if ((abs( abs(point[0]) - abs(self.follow_point[0]) ) < self.search_area[0] ) and  

     (abs( abs(point[1]) - abs(self.follow_point[1]) ) < self.search_area[1] )): 

     self.filtered_points.append(point) 

 

  # If points are found that meet the above conditions, select the most intense point: 

  if len(self.filtered_points) >= 1: 

   self.follow_point = max(self.filtered_points, key=lambda point: point[3]) 

 

  self.set_speed() # Determine speed for horizontal stepper 

  self.display() # Display current state 

 

 

 # This part determines an acceptable spin speed and direction for the horizontal stepper 

 def set_speed(self): 

  self.speed = float(20*(self.follow_point[1])) # set speed to tracked point (y coord) 

 

  # Prevent large changes in speed (this happens if detected point jumps suddenly to another location) 

  if (abs(abs(self.speed) - abs(self.old_speed)) > 0.5): 

   if self.speed > self.old_speed: 

    self.speed = self.old_speed + 0.2 

   if self.speed < self.old_speed: 

    self.speed = self.old_speed - 0.2 

 

  # This part slows down (or stops) the speed the closer the camera is centered on target 

  if ((abs(self.follow_point[1])) < 0.04): 

   self.speed = 0 

  elif ((abs(self.follow_point[1])) < 0.08): 

   self.speed = self.speed*0.0625 

  elif ((abs(self.follow_point[1])) < 0.15): 
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   self.speed = self.speed*0.125 

   

  # If the object is tracked out of range, then stop the motor spinning, and the followed point is reset. 

  if (self.angles[1] > 60) and (self.speed >= 0): 

   self.speed = 0 

   self.follow_point == [0, 0, 0] 

  if (self.angles[1] < -60) and (self.speed <= 0): 

   self.speed = 0 

   self.follow_point == [0, 0, 0] 

 

  # Limit the maximum speed to 5 or below 

  if abs(self.speed) > 5: 

   self.speed = 5*(self.speed/abs(self.speed)) 

 

  self.motor_msg.data = [0, self.speed, 0]  # Assemble message ready for publishing 

  self.old_speed = self.speed  # Save the current speed for next program cycle. 

  Pan_camera.publish(self.motor_msg)  # Send speed command to horizontal motor 

 

    

 # Display tracking infomation to console (Debugging purposes) 

 def display(self): 

  print("Point: [{:.2f}, {:.2f}] | Speed: {:.1f} | Vert Angle: {:.1f} | Hor Angle: {:.1f} 

".format(self.follow_point[0], self.follow_point[1], self.speed, self.angles[0], self.angles[1])) 

 

 

 # Fetch Angle data: 

 def Get_Angles(self, Angle_msg): 

  self.angles = Angle_msg.data 

  

 

 # Set up ROS subscribers for Angle data and mm-wave data 

 def listener(self): 

  rospy.init_node('intensity_filter', anonymous=True) 

  rospy.Subscriber('Angles', Float32MultiArray, Commander.Get_Angles) 

  rospy.Subscriber('/ti_mmwave/radar_scan_pcl', PointCloud2, Commander.filter_intensity) 

  rospy.spin() 

 

 

# Main program loop: 

if __name__ == '__main__': 



Appendix G Command Node Script 125 

 try: 

  # Setup ROS publisher for sending motor commands: 

  Pan_camera = rospy.Publisher('Slider_values', Float32MultiArray, queue_size=10) 

  Commander = Command()  # Create an instance of 'Command' class 

  Commander.listener()  # Call the ROS listener function 

 except rospy.ROSInterruptException: 

  pass 
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#!/usr/bin/env python 

 

# Creator: Andrew Jawney 

# This code recieves the information from the angle sensors and publishes this information. 

# The angle values are read as analogue values by the ADS1115, which sends this information via the I2C 

protocol. 

# This node directs the ADS1115 which channel to read and specifies other configuration settings for this IC. 

# Once the ADS1115 recieves this message, it converts the applicable analogue value to digital and writes it to 

the I2C bus. 

# This script waits for a very speciifc time before reading this result. 

# Once this data has been read, it is converted to decimal and then scaled appropriatly to convert this to the 

proper angle. 

# This process is done for both the horizontal and vertical angle sensors.  

# The previous angle value is retained so any stray values recieved can be ignored. 

# The horizontal and vertical angle values are then published to the topic called 'Angles' in a simple array. 

 

# Import Libraries 

import time 

import rospy 

import smbus 

from std_msgs.msg import Float32MultiArray 

 

 

class Angle_Publisher: 

 

 def __init__(self): 

  rospy.init_node('Calc_Angles')  # Initialise ROS node 

  self.Ang_publisher = rospy.Publisher('Angles', Float32MultiArray, queue_size=10)  # Set up ROS 

publisher to send Angle data 

  self.I2C_BUS = 1  # Define the I2C bus number 

  self.i2c = smbus.SMBus(self.I2C_BUS)  # Create I2C bus object 

  self.Ang_msg = Float32MultiArray()  # Create message structure for Angle data 

   

  # Configuration values for the ADS1115: 

  self.ADS_ADDRESS = 0x48  # ADS1115 I2C address 

  self.ADS_CONFIG_REG = 0x01  # Set up configuration register for ADS1115 

  self.ADS_SINGLE_SHOT = 0x8000 # Set ADS1115 to read and send one value at a time 

  self.ADS_AIN0 = 0x4000  # Channel address for Vertical angle 

  self.ADS_AIN1 = 0x5000  # Channel address for Horizontal angle 

  self.Angles = [0, 0]  # Store angle data 
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  self.Prev = [0, 0]  # Store previous angle data 

  self.delay = 0.11891  # Delay between sending I2C message and reading result 

   

  self.fetch_throw_angle()  # Read angle data ad publish it 

 

 

 #  Read, filter and publish angle data: 

 def fetch_throw_angle(self): 

  while not rospy.is_shutdown(): 

 

   self.Angles[0] = self.read_adc(0)  # Read Vertical Angle 

   self.Angles[1] = self.read_adc(1)  # Read Horizontal Angle 

 

   # Remove stray values: 

   while (self.Angles[0] < -50) or (self.Angles[0] > 50): 

    time.sleep(0.2)  # Introduce delay to re-synce timing for reading values 

    self.Angles[0] = self.Prev[0]  # Set to previous valid value 

    

   while (self.Angles[1]  < -86) or (self.Angles[1]  > 100): 

    time.sleep(0.2)  # Introduce delay to re-synce timing for reading values 

    self.Angles[1] = self.Prev[1] # Set to previous valid value 

 

   self.Prev = [ self.Angles[0], self.Angles[1] ]  # Save angle data 

   self.Ang_msg.data = self.Angles  # Place angle data into message structure 

   self.Ang_publisher.publish(self.Ang_msg)  # Publish angle data  

    

   # Display and log Angle values to console: 

   rospy.loginfo(" ANGLES | Vertical: {:.3f} Deg | Horizontal: {:.3f} Deg ".format(self.Angles[0], 

self.Angles[1])) 

 

 

 # Read data from the ADS1115 

 def read_adc(self, adc_channel): 

   

  # Assemble configuration message to send to ADS1115 

  config = self.ADS_SINGLE_SHOT | self.ADS_CONFIG_REG 

  if adc_channel == 0: 

   config |= self.ADS_AIN0 

  else: 

   config |= self.ADS_AIN1 
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  # Send config message to I2C port: 

  self.i2c.write_i2c_block_data(self.ADS_ADDRESS, self.ADS_CONFIG_REG, [(config >> 8) & 0xFF, 

config & 0xFF]) 

  time.sleep(self.delay)  # Allow time for conversion 

  data = self.i2c.read_i2c_block_data(self.ADS_ADDRESS, 0x00, 2)  # Read data from I2C port  

  value = (data[0] << 8) | data[1]  # Convert byte sequence to decimal value 

 

  # Scale values accordingly: 

  if adc_channel == 0: 

   value = ((-15 * value) / 803) + 73.505 

  if adc_channel == 1: 

   value = ((-27 * value) / 1205) + 308.353 

  return value 

 

 

# Main program loop 

if __name__ == '__main__': 

 Calc_Angles = Angle_Publisher()  # Create and initialise and run an Instance of Angle_Publisher class 
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#!/usr/bin/env python 

 

# Creator: Andrew Jawney 

 

# This code creates a popup window with two slider bars which are used to manually control the motion of the 

gimballing system. 

# The window has two reset buttons, which set the corresponding motor speed to zero. 

# There is also a reverse checkbox which inverts the signals generated for the horizontal stepper motor. 

# This feature is useful for different viewing perspecive when operating. 

# The last feature is a disable checkbox, and when selected, will both steppers, and prevent any further control 

of the motors, until it is deselected. 

 

# Import Libraries: 

import rospy 

from std_msgs.msg import Float32MultiArray 

import Tkinter as tk 

import signal 

 

 

class SliderPublisherNode: 

 def __init__(self): 

  rospy.init_node('slider_publisher_node')  # Initialise ROS node 

  self.publisher = rospy.Publisher('Slider_values', Float32MultiArray, queue_size=10)  # Set up ROS 

publisher to send slider bar values 

  self.msg = Float32MultiArray()  # Create message structure for motor commands 

  self.Vertical_Value = 0.0  # Initialise Vertical slider value 

  self.Horizontal_Value = 0.0  # Initialise Horizontal slider value 

  self.Toggle_H = 1.0  # Create value to allow reversing of horizontal value 

  self.Enable = 1  # Create value to enable or disable stepper motors 

   

  self.create_slider_window()  # Call window creation routine 

  self.popup.mainloop()  # Start tkinters main program loop 

   

 

 # Function which creates the user interface: 

 def create_slider_window(self): 

  self.popup = tk.Tk()  # Create tkinter object 

  self.popup.title("Motor Controller (ROS PUBLISHER)")  # Create title for popup window 

  self.popup.geometry("400x200+10+260")  # Specify size and location of tkinter window 
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  # Create frames for vertical and horizontal stepper controls: 

  vertical_frame = tk.Frame(self.popup)  # Create frame for vertical stepper controls 

  vertical_frame.pack()  # Implement vertical frame 

  horizontal_frame = tk.Frame(self.popup)  # Create frame for horizontal stepper controls 

  horizontal_frame.pack()  # Implement horizontal frame 

 

  # Create labels for each frame: 

  Vertical_Label = tk.Label(vertical_frame, text="Vertical Stepper Direction & Speed:") 

  Vertical_Label.pack()  # Implement vertical frame label 

  Horizontal_Label = tk.Label(horizontal_frame, text="Horizontal Stepper Direction & Speed:") 

  Horizontal_Label.pack()  # Implement horizontal frame label 

 

  # Add Vertical Slider: 

  self.Vertical_Slider = tk.Scale( 

   vertical_frame, 

   from_=-10, 

   to=10, 

   resolution=0.001, 

   orient="horizontal", 

   length=400, 

   command=lambda x: self.Fetch_and_Publish() 

  ) 

  self.Vertical_Slider.pack()  # Implement Vertical Slider 

 

  # Add Vertical stop button: 

  Vertical_Stop_Button = tk.Button( 

   vertical_frame, 

   text="Stop", 

   command=lambda: self.Vertical_Slider.set(0) 

  ) 

  Vertical_Stop_Button.pack()  # Implement Vertical stop button 

 

  # Add Horizontal Slider: 

  self.Horizontal_Slider = tk.Scale( 

   horizontal_frame, 

   from_=-10, 

   to=10, 

   resolution=0.001, 

   orient="horizontal", 

   length=400, 
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   command=lambda x: self.Fetch_and_Publish() 

  ) 

  self.Horizontal_Slider.pack()  # Implement Horizontal Slider 

 

  # Add Horizontal stop button: 

  Horizontal_Stop_Button = tk.Button( 

   horizontal_frame, 

   text="Stop", 

   command=lambda: self.Horizontal_Slider.set(0) 

  ) 

  Horizontal_Stop_Button.pack(side=tk.BOTTOM)  # Implement Horizontal stop button 

 

  # Add a toggle checkbox to control horizontal direction 

  Reverse_Label = tk.Label(horizontal_frame) 

  Reverse_Label.pack(side=tk.RIGHT) 

  Reverse_Checkbox = tk.Checkbutton( 

   horizontal_frame, 

   text="Reverse", 

   command=self.toggle_horizontal 

  ) 

  Reverse_Checkbox.pack(side=tk.LEFT)  # Implement reverse checkbox 

 

  # Add a toggle checkbox to disable all motors 

  Disable_Label = tk.Label(horizontal_frame) 

  Disable_Label.pack(side=tk.RIGHT) 

  Disable_Checkbox = tk.Checkbutton( 

   horizontal_frame, 

   text="Disable", 

   command=self.toggle_disable 

  ) 

  Disable_Checkbox.pack(side=tk.RIGHT)  # Implement disable checkbox 

 

  self.popup.protocol("WM_DELETE_WINDOW", self.stop)  # Set up a call back function to handle 

window closing 

 

  

 # Function which fetches slider values and publishes this data to the motors 

 def Fetch_and_Publish(self, *args): 

  self.Vertical_Value = self.Vertical_Slider.get()  # Get vertical slider value 
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  self.Horizontal_Value = self.Horizontal_Slider.get() * self.Toggle_H  # Get horizontal slider value and 

invert (if applied) 

  # Assemble motor control signal message: 

  self.msg.data = [self.Vertical_Value, self.Horizontal_Value, self.Enable] 

  self.publisher.publish(self.msg)  # Publish motor signals 

   

  # Display and log current motor control signals to console: 

  rospy.loginfo("SLIDERS | Vertical: {:.3f} | Horizontal: {:.3f}".format(self.Vertical_Value, 

self.Horizontal_Value)) 

 

 

 # Toggle the horizontal slider value multiplier between 1 and -1: 

 def toggle_horizontal(self): 

  self.Toggle_H = -self.Toggle_H 

  self.Fetch_and_Publish() 

 

 

 # Toggle the Enable value between 1 and -1: 

 def toggle_disable(self): 

  self.Enable = -self.Enable 

  self.Fetch_and_Publish() 

 

 

 # Function to handle clean shutdown of node: 

 def stop(self): 

  rospy.signal_shutdown("Slider Publisher Node: Window Closed") 

  self.popup.destroy() 

 

 

# Main Program loop: 

if __name__ == '__main__': 

 Slider_Window = SliderPublisherNode()  # Create instance of SliderPublisherNode 

 rospy.spin(Slider_Window)  # Run ROS and tkinter window 

 Slider_Window.stop()  # Stop node 
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#!/usr/bin/env python 

 

# This code controls the horizontal stepper motor. The commands are recieved from the 'Slider_values' topic and 

interpreted. 

# Depending on where the message came from, different behaviours are achieved. 

# A value is sent along with the motor signals which indicate the proiority of the message sent. 

# If this value is -1 then the motor is stopped and no further commands will have an affect on the motor speed. 

# The motor can only be enable by a value of 1 being recieved in its place.  

# Control signals with a 1 attached take priority over signals with a 0 attached 

# This horizontal stepper node has finer control of mode selection depending on specified speed. 

 

# Import Libraries 

import Jetson.GPIO as GPIO 

import time 

import threading 

import cv2 

import sys 

import rospy 

from std_msgs.msg import Float32MultiArray 

 

 

class Stepper: 

 def __init__(self): 

  rospy.init_node('stepper_node', anonymous=True)  # Initialise the ROS node 

  rospy.Subscriber(‘Slider_values’, Float32MultiArray, self.Priority_Decoder)  # Subscribe to 

Slider_values topic 

 

  # Define the GPIO pins for the stepper motor drivers 

  self.ENABLE = 7 

  self.M0 = 29 

  self.M1 = 31 

  self.M2 = 33 

  self.STEP = 35 

  self.DIR = 37 

   

  self.Speed = 0  # Target speed for motor 

  self.i = 0  # Step counter 

  self.done = False  # Flag to indicate if motor control is done 

  self.toggle = False  # Toggle to enable or disable motor stepping 

  self.increment = 0  # Initial increment for motor steps 
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  self.override = 0  # Create value so manual control always takes preference 

  self.next_time = time.time()  # Next time for motor step 

 

  # Set up the GPIO channel and initilise GPIO pins: 

  GPIO.setmode(GPIO.BOARD) 

  GPIO.setup(self.ENABLE, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.M0, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.M1, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.M2, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.STEP, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.DIR, GPIO.OUT, initial=GPIO.LOW) 

   

  self.set_mode(6)  # Set initial motor mode to 1/32 step mode 

  self.UpdateSpeed(0)  # Ensure initial motor speed is set to 0 

  motor_thread = threading.Thread(target=self.run)  # Create a thread to run the motor control loop 

  motor_thread.start()  # Start motor control thread 

 

 

 # This function selects the step mode for the motor: 

 def set_mode(self, mode): 

  # Set mode pins: 

  if mode == 1:  # Full Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 2:  # 1/2 Step Mode 

   GPIO.output(self.M0, GPIO.HIGH) 

   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 3:  # 1/4 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 4:  # 1/8 Step Mode 

   GPIO.output(self.M0, GPIO.HIGH) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 5:  # 1/16 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.LOW) 
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   GPIO.output(self.M2, GPIO.HIGH) 

  if mode == 6:  # 1/32 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.HIGH) 

 

 

 # Update the motor control parameters based on the Speed value 

 def UpdateSpeed(self, value): 

  self.Speed = float(value) 

   

  # Change step mode for different speed values received: 

  if abs(self.Speed) > 7: 

   self.set_mode(4) 

  elif abs(self.Speed) > 3: 

   self.set_mode(5)  

  else: 

   self.set_mode(6) 

  

  # No spin (stopped) 

  if self.Speed == 0: 

   self.toggle = False 

   self.increment = 0 

  else:  # Is spinning 

   self.toggle = True 

   self.increment = (-0.00495*(abs(self.Speed))) + 0.02495 

    

   # Set direction pin: 

   if self.Speed > 0:  # Look Left 

    GPIO.output(self.DIR, GPIO.LOW) 

   if self.Speed < 0:  # Look Right   

    GPIO.output(self.DIR, GPIO.HIGH) 

    

  # Set upper and lower limits for time increment 

  if self.increment != 0: 

   if self.increment < 0.0002: 

    self.increment = 0.0002 

   if self.increment > 0.02: 

    self.increment = 0.02 
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  # Display current motor speed and time increment for stepper: 

  if self.Speed != 0: 

   print("| Increment: {:.3f} | Speed: {:.3f} |".format(self.increment, self.Speed)) 

 

 

 # This function handles the priority of the messages received 

 def Priority_Decoder(self, msg): 

  if len(msg.data) > 0:  # if a valid message is received 

   if msg.data[2] != 0: 

    if msg.data[2] == -1:  # Disable motor if -1 is received 

     self.override = -1 

     GPIO.output(self.ENABLE, GPIO.LOW) 

     self.UpdateSpeed(0) 

    if msg.data[2] == 1:  # Enable and set motor speed 

     self.override = msg.data[1]  # If the motor speed has been set to 0, the lower priority can 

control motor 

     GPIO.output(self.ENABLE, GPIO.HIGH) 

     self.UpdateSpeed(msg.data[1]) 

   elif self.override == 0:  # This message will only work if override has been cleared 

    GPIO.output(self.ENABLE, GPIO.HIGH) 

    self.UpdateSpeed(msg.data[1]) 

  

  

 # Run the motor control loop 

 def run(self): 

  if self.i % 2 == 0:  # This occurs every second cycle 

   self.next_time += self.increment 

   GPIO.output(self.STEP, GPIO.HIGH)  # Send high signal to step pin 

  else: # This occurs every other cycle 

   self.next_time += 0.00002 # set next time to complete square-wave pulse to stepper 

   if self.toggle == True:  # If stepper speed is not zero, this part will run 

    GPIO.output(self.STEP, GPIO.LOW)  # Send low signal to step pin 

   else: 

    self.i = 0  # Reset step counter if motor is not spinning 

  self.i += 1  # Increment step counter 

   

  # Run motor timing thread: 

  if not self.done: 

   threading.Timer(self.next_time - time.time(), self.run).start() 
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 # Stop the motor and cleanup GPIO pins 

 def stop(self): 

  self.done = True 

  GPIO.output(self.ENABLE, GPIO.LOW) 

  GPIO.cleanup() 

  

 

# Check if this script is being run as the main program 

if __name__ == '__main__': 

 Horizontal_Stepper = Stepper()  # Create an instance of Stepper class 

 rospy.spin()  # Run ROS processes 

 Horizontal_Stepper.stop()  # Stop stepper gracefully 
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#!/usr/bin/env python 

 

# This code controls the vertical stepper motor. The commands are received from the 'Slider_values' topic and 

interpreted. 

# Depending on where the message came from, different behaviours are achieved. 

# A value is sent along with the motor signals which indicate the priority of the message sent. 

# If this value is -1 then the motor is stopped and no further commands will have an affect on the motor speed. 

# The motor can only be enable by a value of 1 being received in its place.  

# Control signals with a 1 attached take priority over signals with a 0 attached 

 

# Import Libraries 

import Jetson.GPIO as GPIO 

import time 

import threading 

import cv2 

import sys 

import rospy 

from std_msgs.msg import Float32MultiArray 

 

 

class Stepper: 

 def __init__(self): 

  rospy.init_node('stepper_node', anonymous=True)  # Initialise the ROS node 

  rospy.Subscriber(‘Slider_values’, Float32MultiArray, self.Priority_Decoder)  # Subscribe to 

Slider_values topic 

 

  # Define the GPIO pins for the stepper motor drivers 

  self.ENABLE = 7 

  self.M0 = 11 

  self.M1 = 13 

  self.M2 = 15 

  self.STEP = 19 

  self.DIR = 21 

   

  self.Speed = 0  # Target speed for motor 

  self.i = 0  # Step counter 

  self.done = False  # Flag to indicate if motor control is done 

  self.toggle = False  # Toggle to enable or disable motor stepping 

  self.increment = 0  # Initial increment for motor steps 

  self.override = 0  # Create value so manual control always takes preference 
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  self.next_time = time.time()  # Next time for motor step 

 

  # Set up the GPIO channel and initialise GPIO pins: 

  GPIO.setmode(GPIO.BOARD) 

  GPIO.setup(self.ENABLE, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.M0, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.M1, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.M2, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.STEP, GPIO.OUT, initial=GPIO.LOW) 

  GPIO.setup(self.DIR, GPIO.OUT, initial=GPIO.LOW) 

   

  self.set_mode(2)  # Set initial motor mode to 1/32 step mode 

  self.UpdateSpeed(0)  # Ensure initial motor speed is set to 0 

  motor_thread = threading.Thread(target=self.run)  # Create a thread to run the motor control loop 

  motor_thread.start()  # Start motor control thread 

 

 

 # This function selects the step mode for the motor: 

 def set_mode(self, mode): 

  # Set mode pins: 

  if mode == 1:  # Full Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 2:  # 1/2 Step Mode 

   GPIO.output(self.M0, GPIO.HIGH) 

   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 3:  # 1/4 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 4:  # 1/8 Step Mode 

   GPIO.output(self.M0, GPIO.HIGH) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.LOW) 

  if mode == 5:  # 1/16 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.LOW) 

   GPIO.output(self.M2, GPIO.HIGH) 
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  if mode == 6:  # 1/32 Step Mode 

   GPIO.output(self.M0, GPIO.LOW) 

   GPIO.output(self.M1, GPIO.HIGH) 

   GPIO.output(self.M2, GPIO.HIGH) 

 

 

 # Update the motor control parameters based on the Speed value 

 def UpdateSpeed(self, value): 

  self.Speed = float(value) 

 

  # No spin (stopped) 

  if self.Speed == 0: 

   self.toggle = False 

   self.increment = 0 

  else:  # Is spinning 

   self.toggle = True 

   self.increment = (-0.00495*(abs(self.Speed))) + 0.02495 

    

   # Set direction pin: 

   if self.Speed > 0:  # Look Left 

    GPIO.output(self.DIR, GPIO.LOW) 

   if self.Speed < 0:  # Look Right   

    GPIO.output(self.DIR, GPIO.HIGH) 

    

  # Set upper and lower limits for time increment 

  if self.increment != 0: 

   if self.increment < 0.0002: 

    self.increment = 0.0002 

   if self.increment > 0.02: 

    self.increment = 0.02 

  

  # Display current motor speed and time increment for stepper: 

  if self.Speed != 0: 

   print("| Increment: {:.3f} | Speed: {:.3f} |".format(self.increment, self.Speed)) 

 

 

 # This function handles the priority of the messages received 

 def Priority_Decoder(self, msg): 

  if len(msg.data) > 0:  # if a valid message is received 

   if msg.data[2] != 0: 
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    if msg.data[2] == -1:  # Disable motor if -1 is received 

     self.override = -1 

     GPIO.output(self.ENABLE, GPIO.LOW) 

     self.UpdateSpeed(0) 

    if msg.data[2] == 1:  # Enable and set motor speed 

     self.override = msg.data[0]  # If the motor speed has been set to 0, the lower priority can 

control motor 

     GPIO.output(self.ENABLE, GPIO.HIGH) 

     self.UpdateSpeed(msg.data[0]) 

   elif self.override == 0:  # This message will only work if override has been cleared 

    GPIO.output(self.ENABLE, GPIO.HIGH) 

    self.UpdateSpeed(msg.data[0]) 

  

  

 # Run the motor control loop 

 def run(self): 

  if self.i % 2 == 0:  # This occurs every second cycle 

   self.next_time += self.increment 

   GPIO.output(self.STEP, GPIO.HIGH)  # Send high signal to step pin 

  else: # This occurs every other cycle 

   self.next_time += 0.00002 # set next time to complete square-wave pulse to stepper 

   if self.toggle == True:  # If stepper speed is not zero, this part will run 

    GPIO.output(self.STEP, GPIO.LOW)  # Send low signal to step pin 

   else: 

    self.i = 0  # Reset step counter if motor is not spinning 

  self.i += 1  # Increment step counter 

   

  # Run motor timing thread: 

  if not self.done: 

   threading.Timer(self.next_time - time.time(), self.run).start() 

 

 

 # Stop the motor and clean up GPIO pins 

 def stop(self): 

  self.done = True 

  GPIO.output(self.ENABLE, GPIO.LOW) 

  GPIO.cleanup() 

  

 

# Check if this script is being run as the main program 



146 Appendix K Vertical Stepper Node Script 

if __name__ == '__main__': 

 Vertical_Stepper = Stepper()  # Create an instance of Stepper class 

 rospy.spin()  # Run ROS processes 

 Vertical_Stepper.stop()  # Stop stepper gracefully 

 




