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Abstract 

Tunnel structures are a major part of our transport infrastructure. These tunnels have a significant 

financial impact with approximately $9.5 billion spent on their construction and $105 million 

spent on maintenance in the 2021-2022 financial year(Moore 2019; Transurban 2022). Part of 

the maintenance processes is the annual inspection of the tunnel structure(Louis 2018). Currently 

this is done by an experienced engineer who physically examines the tunnel. Recent research has 

shown that artificial intelligence (AI) technologies can be used to assist with the detection of 

defects in structures. This paper aims to compare the effect of lighting and resolution quality on 

the training of a machine learning model for tunnel condition assessment applications.  

 

The project found that there are a number of complicated and interacting variables to navigate in 

a tunnel environment. It showed that a higher resolution and lighting quality was beneficial in the 

annotation of images for training of a defect detection model. However, further data would need 

ot be collected and annotated, ensuring that all classes and quality types have the same number 

of instances so that the only variable between models is the quality of the image. Whilst this 

project has not directly contributed to the ultimate industry goal for an integrated infield drone 

controller and live in-field inspection device, it has helped to gain an understanding of the effects 

of the challenging variables that are encountered in a tunnel environment. 
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Chapter 1. Introduction 

Tunnel structures are a major part of our transport infrastructure. They allow us to better service 

the population whilst maintain the habitable land. In Brisbane, the Clem7, Airport Link and 

Legacy way tunnels span over 18km and provide direct routes through the city for motorists 

which saves them time(Linkt 2023). These tunnels have a significant financial impact with 

approximately $9.5 billion spent on their construction and $105 million spent on maintenance in 

the 2021-2022 financial year(Moore 2019; Transurban 2022). Part of the maintenance processes 

is the annual inspection of the tunnel structure(Louis 2018). Currently this is done by an 

experienced engineer who physically examines the tunnel structure for any areas of 

concern(Louis 2018). This is a time-consuming process which causes disruption to motorists as 

the tunnel or part thereof must be closed to allow for this inspection.  

 

Recent research has shown that artificial intelligence (AI) technologies can be used to assist with 

the detection of defects in structures. In general, this is less time and resource consuming and 

more precise(Altabey & Noori 2022). There has been extensive research into defect detection 

and classification on structures such as buildings, bridges and road pavements, however research 

for tunnel structures has stopped short at defect detection(Yu et al. 2007; Menendez et al. 2018; 

Flah et al. 2020; Guo et al. 2020). This paper aims to compare the effect of lighting and 

resolution quality on the training of a machine learning model for tunnel condition assessment 

applications. 
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Chapter 2. Literature Review 

2.1. Tunnel construction and deterioration 

There are many ways that a tunnel can be constructed including cut and cover, bored, clay 

kicking, shaft, pipe jacking and box jacking methods(Anupoju 2023). Most modern road tunnels 

are constructed using the bored tunnel method and a tunnel boring machine (TBM)(Northeast 

Maglev 2023). A TBM is a large cylindrical boring machine which not only cuts through and 

disposes of the material where the tunnel will be but also install precast concrete rings in the 

precise location to line the tunnel as it progresses(CrossRiver Rail 2023). 

 

Despite their unique construction, they are still subject to similar structural defects as other 

structures. The main difference between a bridge structure and a tunnel structure is where the 

loading on the structure comes from; for a bridge it is imposed loads by through the use of the 

bridge whilst tunnel structures are subjected to constant loads from the surrounding earth. Over 

time, this loading can cause many structural defects of varying severity. The most concerning 

being horizontal, diagonal and vertical cracks caused by a shearing or compressive failure of the 

tunnel lining(Centre d'Études des Tunnels 2015). These defects cause localized weakening of the 

tunnel structure and should be monitored closing and repaired if they exceed a pre-defined 

width(Centre d'Études des Tunnels 2015). Shrinkage cracks pose a less significant threat to the 

structural integrity of the tunnel lining depending on the extent and depth of the cracking(Centre 

d'Études des Tunnels 2015). These cracks should be monitored and repairs undertaken if they are 

deeper than surface level; being more than 1-2mm deep(Centre d'Études des Tunnels 2015). 

Some visual defects, however, have no impact on the structural integrity. For example dense 

crazing, bleeding and blistering do not pose significant risks to the structure but may be 

displeasing to look at(Centre d'Études des Tunnels 2015).  

2.1. Devices and techniques used for condition assessments of tunnels 

Some early techniques for condition assessments in tunnels included ground penetrating radar 

(GPR) and vehicle-mounted detection systems using a range of sensors including high-resolution 

cameras, LiDAR scanners, infrared lighting and ultrasonic sensors. Ground penetrating radar is a 

non-destructive assessment tool that uses electromagnetic radiation microwaves to penetrating 

through a structure(Qin et al. 2016). The device detects the reflected microwaves which can then 

be used to determine the integrity of the subsurface structure(Qin et al. 2016). Ground 

penetrating radar was used for assessment of tunnels structures as early as 2014 (Alsharqawi et 

al. 2022). GPR has been used most often in research applications for the detection of voids 

behind concrete and in grout lines (Alsharqawi et al. 2022). It has also been used to detect 

delamination, cracks, leakage and clay lumps in both simulations and in field tunnel condition 

assessment applications (Alsharqawi et al. 2022). Alsharqawi et al. found only two papers, both 

published in 2016, which used GPR to detect cracks in tunnel structures; Yu et al. and Qin et al. 

(Qin et al. 2016; Yu et al. 2016; Alsharqawi et al. 2022). Both of these papers looked at simulated 

defect detection as opposed to in field testing, using either waveform inversion or image 

processing techniques (Alsharqawi et al. 2022). Ground penetrating radar requires physical 

testing of the structure which poses some challenges with transport tunnels as the roadway would 

need to be closed for a significant amount of time to allow for sufficient coverage in the testing. 
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2.2. Architecture of machine learning programs 

As artificial intelligence (AI) continues to develop, its applications for structural condition 

monitoring have increased. The most popular method of machine learning with researchers for 

object detection is a deep convolutional neural network (DCNN or DNN) as it requires a fewer 

number of artificial neurons than previous convolutional networks (run.ai 2023). In a DNN, 

images are input and used to train the classifier to detect objects of interest (run.ai 2023) . 

Objects are identified using a mathematical operation know as a convolution(run.ai 2023). Most 

DNN’s consist of 4 different layers being a convolution, pooling, activation and fully connected. 

 

 
Figure 1. DNN Network Architecture - Source:(run.ai 2023) 

In the convolutional layer, a set of weights is applied to an image(run.ai 2023). A filter is then 

passed over the image multiple times from top right to bottom left, horizontally and multiplies 

the weight of the filter by the number already associated with the pixel or image area(run.ai 

2023).The value of these weights is then summed for each position of the filter before reaching 

the activation and pooling layers (run.ai 2023). The activation layer replaces all negative values 

with a zero and the pooling layer reduces the image size by keeping only the pixel group with the 

highest or average values, depending on the setup of the program(run.ai 2023). The program is 

finished with a fully connected layer which receives a vector input of the image pixels which 

were put through the first three layers and allows the program to determine the probability that 

the image belongs to a certain group(run.ai 2023). There is often multiple convolution and 

pooling layers in a single DNN(run.ai 2023). This project will aim to utilize a Fast R-CNN which 

is a type of DNN that is capable of identifying areas of interest in a faster manner than an R-

CNN alone areas of interest in a faster manner than an R-CNN alone(run.ai 2023). 

 

To train a DNN, you must first have image or video data that has been labelled with areas of 

interest that you want the network to identify(Maayan 2022). There are a number of types of 

image labelling. The first is image classification where the network will learn to classify an 

entire image into a specific group(Maayan 2022). These classifications can be binary, multiclass 

or multi-label depending on the required outcome(Maayan 2022). Another type of image 

labelling is image segmentation where objects are separated from the background image using a 
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pixel map and binary notation to identify areas of interest(Maayan 2022). Object detection is 

another type of image labelling where a bounding box is placed around the object of 

interest(Maayan 2022).  

2.3. Previous research for condition assessment of tunnels 

An early paper on crack detection in tunnels is that by Yu et al. where cracks were identified by 

light reflectance values(Yu et al. 2007). They then used the Sobel and Laplacian algorithms to 

measure the crack length and determine its direction(Yu et al. 2007). The detected cracks were 

then grouped by their pattern of connection(Yu et al. 2007). Despite being an interesting 

approach, this method did have an error rate of 75-85% but the measurement error of the 

recognized crack was less than 10% which is a promising result(Yu et al. 2007). The robot used 

in this paper was able to reach an accuracy of 0.3mm per pixel at a speed of 5km/h(Yu et al. 

2007). The accuracy and efficiency of this research could have been assisted by the use of an 

artificial intelligence neural network. 

 

Structural health monitoring using neural networks is not a new topic. Prasanna et al. developed 

in 2016 one of the example of a neural network capable of identifying surface cracks(Prasanna et 

al. 2016). Recent works have shown the ability for an AI network to detect defects in a variety of 

structures. Guo et al. proposed and tested a deep-width network which was capable of isolating 

defects and further classifying the type of defect on bridges, buildings and road pavements(Guo 

et al. 2020). This paper also used the process of batch training to reduce the necessary computing 

power(Guo et al. 2020). The network architecture consisted of multiple layers or convolutions 

beginning with an initial binary classification layer which divided the segmented images into two 

classes depending on the number of nodes and layers; various wide feature nodes and deep nodes 

with fixed single layer or fixed wide feature nodes and different layers of deep nodes(Guo et al. 

2020). This was followed by a multi-label convolution which further divided the structural image 

segments into one of three categories: non-crack, single-module crack (simple) or multi-module 

crack (complicated)(Guo et al. 2020). This is a great example of crack identification and 

classification but the program was not trained specifically for use in tunnels which have slightly 

different concerns compared to bridges, building and road pavements. 

 

Another noteworthy paper is that by Flah et al. who designed a deep-learning program that used 

both binary and multi-label classifiers to identify cracks in concrete structures(Flah et al. 2020). 

This paper also utilised image segmentation to remove noise, connect cracked regions and 

calculate the width of the identified cracks(Flah et al. 2020). The determined crack widths were 

then used to predict the failure mode of the structure and advise the severity of the damage(Flah 

et al. 2020). This program was trained for application on bridges and buildings only as the 

severity of the damage is dependent on the building type and exposure to the elements(Flah et al. 

2020).  This paper conducted a field test on a square type pedestrian tunnel(Flah et al. 2020).  

Although this paper is a perfect example of the type of program we are aiming to develop, it is 

not directly applicable to larger tunnel structures which leaves a space for further works to be 

conducted. 

 

In 2016, Protopapadakis et al. created a network that was able to detect cracks in 

tunnels(Protopapadakis et al. 2016). The cracks were quantified with the use of a laser scanner 
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and placed on a 3D point cloud for easy location by engineers(Protopapadakis et al. 2016). 

Menendez et al. built on this in 2018 by not only applying the network by Protopapadakis et al. 

for crack, spalling and efflorescence detection but further constructed an autonomous robot to 

conduct the assessment(Menendez et al. 2018). The robot was fitted with a camera and an 

ultrasonic sensor on the end of a boom lift(Menendez et al. 2018). The program was able to 

detect a crack defect in real-time and then move the ultrasonic sensor over the crack to determine 

the depth and width of the crack(Menendez et al. 2018). The robot was able to store information 

on board until it return to the laboratory and the data was downloaded (Menendez et al. 2018). 

This paper showed great progress towards a fully automated structural health monitoring system 

however, as it was confined to a large, fixed machine, the part of the roadway still had to be 

closed to allow for the slow-moving robot to conduct its assessment. An improvement would be 

using a unmanned aerial vehicle (UAV) such as a drone to capture the images and send the 

image data to an off-site or mobile laboratory where the processing equipment would give real-

time information on the structure’s condition. 

 

Ren et al. developed a deep fully convolutional network named CrackSegNet and introduced a 

pixel-wise crack segmentation method(Ren et al. 2020). Ren et al. was able to use a small data 

set of 409 images by cropping the images and using other data augmentation techniques such as 

rotation, translation, scaling and sheering to train the network(Ren et al. 2020).The paper also 

utilised four diluted convolutional layers: a diluted convolutional layer utilises defined gaps or 

holes to increase the image resolution(Ren et al. 2020). This can be used to remove the pooling 

layer which results in better feature extraction while maintaining the original resolution of the 

image(Ren et al. 2020). This method showed an increase of 50% and 8% from the conventional 

method by Li et al. and U-net method by Liu et al., respectively(Ren et al. 2020). The 

improvements to previous methods using a pixel-wise segmentation are significant and will be 

implemented in this project. 
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Chapter 3. Methodology 

3.1. Test tunnel 

Data was sampled from the Ernest Junction Railway Tunnel in Molendinar, Queensland(Arts 

Queensland 2020). This tunnel was built between 1885-1889(Arts Queensland 2020). It formed 

part of the Brisbane – South Coast rail line until it was closed in 1964(Arts Queensland 2020). 

The tunnel is curved and runs for 114m long at approximately 21m under the crest of the 

hill(Arts Queensland 2020). 

 

 

3.2. Data collection methods and equipment 

Two sets of data were collected from the Ernest Junction Railway Tunnel. The first was done 

with a Mavic 2 Pro drone with a Milwaukee 12V LED torch (Milwaukee 2021; DJI 2023a). The 

Mavic 2 Pro has 20 million effective pixels and an ISO maximum of 6400(DJI 2023a). The 

Milwaukee 12V LED torch has a 6.8 lux rating at 30m(Milwaukee 2021). The torch was held at 

ground level by the operator kept approximately centered under the drone as it progressed 

through the tunnel.  The drone was manually operated and maintained a relatively consist of 

height and distance from the wall. Photos of this drone and torch are included in Appendix A. 

The second set was collected using the Mavic 2 Enterprise Advanced with the M2EA Spotlight 

attached(DJI 2023b). The Enterprise camera has 48 million effective pixels and the attached 

Figure 2. Ernest Junction Railway Tunnel Entrance 
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spotlight has an 11 lux rating at 30m. A photo of this setup is included in Appendix AFigure 8. 

Mavic 2 Enterprise Advanced with spotlight attached at tunnel site Figure 8. The Mavic 2 

Enterprise was manually controlled with the assistance of the onboard guidance system to 

prevent collisions. The height and distance from the wall were relatively consistent given the 

manual operation. 

3.3. Data labelling and augmentation 

The video files were uploaded to Roboflow and images were extracted at a rate of 1 frame per 

second for both datasets. The project type was object detection to allow annotation and exporting 

of the images in the required file type for the model training. Roboflow allows you to change the 

brightness and contrast of an image and enlarge an image as required to place a square or 

polygon bounding box. Polygon bounding boxes were used in this project due to the complex 

nature of concrete cracks and to ensure that each bounding box was placed as close to the defect 

as possible. Each bounding box is then added to a class. The classes used were concrete crack, 

surface defect and construction joint. Concrete crack defects included a range of different cracks 

including horizontal, diagonal and spalling. These cracks were not separated in this study due to 

the difficulty in maintaining context of the direction of the crack, especially on the roof of the 

tunnel. Spalling was included with singular cracks due to the limited number of instances in the 

obtained images. A surface defect included areas or delamination, honeycombing or pitting in the 

concrete surface. Whilst a construction joint is not a defect, this class was necessary as there 

were many joints in the surface from the time of construction which could be confused with a 

concrete crack. Hence this class was included to prevent false prediction of a crack where an 

intended joint was located. This class will still be referred to as a defect in this report due to ease 

of reporting. There were two other classes that were added to some images but not included in 

the analysis due to irrelevance to the project aims and small number of instances; “insufficient” 

for areas of an image that were over or under exposed and “external” for areas outside of the 

tunnel. Examples of the image annotation and Roboflow program can be found in Appendix B. 

 

The program also allows the user to apply tags to images. Each image was tagged with a 

resolution and lighting quality of either low, medium, or high. Although this is a subjective 

criterion, there was only one annotator so any bias would remain reasonably consistent. Lighting 

quality was judged based on the percentage of the image that was not visible due to over or under 

exposure as well as the amount of manipulation required for brightness and contrast. For 

example, an image with more than 75% not visible or requiring the maximum brightness would 

be classed as having low lighting quality whereas an image which requires little to no change in 

the brightness and contrast settings and over 90% of the image is visible would be classed as 

having high lighting quality. Resolution quality was based on the clearness of defects in the 

entire image and when the image was enlarged. A low-resolution image was one which was 

blurry prior to enlarging. Medium resolution was classed as an image which was visible prior to 

enlargement but became blurry and difficult to read when enlarging. A high-resolution image was 

one that was still reasonably clear when enlarged. It is important to note that the amount of 

enlargement also affects how blurry the pixels of an image may become. As with the tagging of 

image quality, the enlargement was not entirely consistent, however every effort was made to 

enlarge to similar dimensions when looking for smaller defects. Examples of the image tagging 

can be found in Appendix B. 
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Once all of the images were labelled, the final dataset could be generated. Firstly, the labelled 

images were split into the training, validation and testing sets at a ratio of 70:20:10. A number of 

pre-processing steps were then completed including “auto-orientate”, “isolate objects”, “resize” 

and “auto-adjust contrast”. “Isolate objects” was chosen to allow for a larger dataset for training 

than there would be if an entire annotated image was used. This also allows the model to become 

familiar with looking for patterns in the defects rather than patterns in the image as a whole. 

“Resize” was chosen to ensure consistent image sizes and “auto-adjust contrast” was used to 

optimize the lighting, especially in those images with low lighting quality. The images were then 

augmented to increase the number of examples and help the model to look for different 

variations of the same defect. The augmentations steps included “90o rotate”, “blur” and “noise”. 

“90o rotate" rotated the images by 90o in clockwise and anti-clockwise directions and was chosen 

to ensure the model could identify different orientations of each defect type. “Blur” created a 

Gaussian blur of up to 2.5pixel to increase the model’s ability to detect defects in lower quality 

resolutions. “Noise” introduces a combination of black and white pixels at a 5% ratio to the 

entire image to also aid in the detection of defects in lower quality resolutions. Once the pre-

processing and augmentation was complete, the images could be exported in a YOLOv5 Pytorch 

format. The zip file for the images was then added to a Google Drive so it could be accessed by 

the training program. Examples of the program can be seen in Appendix B. 

3.4. Model training 

This project utilized the YOLOv5 training model in Google Colabs to train the detection model. 

This training model has previously been implemented in work done by Long Nguyen(Nguyen 

2023). This implementation formed the basis of the program for this project, allowing the data 

set to be uploaded and the model trained. The training input for YOLOv5 required data and 

weights. The data came from the dataset zip file which was imported and the weights used were 

the generic ‘YOLOv5.pt’. The epochs were specified as 2, batch number as 1 and the image size 

as 768pixels. These settings were used as they had previously been optimized by Long 

Nguyen(Nguyen 2023). Once trained the model uses the validation images to determine the 

precision and accuracy of the model training by comparing the predicted class with the actual 

class. The program then plots the results and provides some example outputs from the validation 

set. These outputs can be found in Appendix C. It is important to note that the Mavic Pro classes 

were incorrectly labelled and this was not able to be corrected so the model outputs for this 

model have the “concrete crack” listed as “concrete crack”, “surface defect” as “cavity in 

concrete” and “construction joint” as “concrete construction separation”. 
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Chapter 4. Results and Discussion 

4.1. Model output 

The Model outputs for both the Mavic Pro and Mavic Enterprise can be found in Appendix C. 

The model outputs a number of graphs including precision-confidence, recall-confidence, F-1-

confidence and precision-recall curve, confusion matrix, results graph and label frequency graph. 

To understand the graphs, we must first understand the possible outcomes; true positive, true 

negative, false positive and false negative. A positive outcome is one where the model identifies 

a defect where as a negative is when there is no defect identified('True Positive'  2010). The true 

and false refer to whether the models prediction is correct; for example, an outcome of true 

positive is a correct identification of a defect where a false positive is an incorrect prediction of a 

defect('True Positive'  2010). The precision of a model is the number of true positives divided by 

the sum of the true positives and the number of false positives(Ting 2010a). The recall value is 

the number of true positives divided by the sum of the true positives and false negatives (Ting 

2010a). An easier way to think of this is the precision is the number of predicted defects which 

are accurate, and the recall is the number of actual defects that are predicted. The precision-

confidence and recall-confidence curves are shown in Figure 19, Figure 21, Figure 29 and Figure 

31 of 25Appendix C.  

 

The model also produces the precision-recall curve which shows the relationship between the 

precision and recall values. As stated above, the precision gives the number of accurate 

predictions and the recall gives the number of actual defects that are predicted. This gives a good 

understanding of the overall accuracy of the model as we are comparing the number of 

accurately predicted defects. It can be seen in Figure 3 and Error! Reference source not found. 

that the Mavic Enterprise model had a higher precision and recall value for all classes. Although 

the overall precision-recall value for the Mavic Pro model may have been reduced slightly by the 

inclusion of the “insufficient” class, it can be seen that the individual accuracy of each class is 

still higher in the Mavic Enterprise model. Another output is the confusion matrix, which shows 

the performance of the model in tabular form of the assigned class verse the actual class(Ting 

2010b). The confusion matrix for both models can be found in Figure 22 and Figure 33. 

 

The final output from the model is the results graph. This shows a number of smaller graphs in a 

single image. The first three columns show the box loss, object loss and class loss for the training 

in the top row and the validation in bottom row. The 4th and fifth column on the top row show the 

metrics/precision and the metrics/recall respectively. The bottom row of the same columns shows 

the metrics/mAP for the 50% and 50-95% confidence intervals respectively. These plots can be 

seen in Figure 23Figure 34 in Appendix C. The label frequency graph is also shown in Appendix 

C and shows the frequency distribution of each class. Aside from the statistical outputs, the 

model also outputs examples of the validation. Two examples have been included for each model 

in Figure 24Figure 27 and Figure 35Figure 38 of Appendix C. 
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Figure 4. Mavic Enterprise Precision-Recall Curve 

4.2. Data distribution 

Further analysis of the model results was conducted using excel to compare and graph the 

distribution of the classes of both models as well as the image lighting and resolution quality. As 

noted in Section 3.3, the annotated images were split into a training, validation and testing set. 

The difference in number of training images for the Mavic Pro and Mavic Enterprise datasets 

was only 24 images as shown in Figure 5. Image Quantity Comparison. In the validation set, the 

difference between the models is more significant, however the majority of the training has 

already been conducted and as such this disparity is not a concern for the accuracy of the model. 

Figure 3. Mavic Pro Precision-Recall Curve 
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More information on the distribution between the training and validation sets can be found in 

Table 1 in Appendix D. 

 
Figure 5. Image Quantity Comparison 

 The overall percentage of the lighting and resolution distribution was also graphed to highlight 

potential issues in accuracy of annotation and detection. As seen in Figure 6 below, the low and 

medium lighting for both models were reasonably similar. A slight decline in high lighting 

quality was seen in the Mavic Enterprise data set with respect to the Mavic pro dataset. This is 

most likely due to the number of images which were over exposed due to the brighter light and 

higher concentration of light in the frame. In terms of resolution, the Mavic Enterprise has a 

higher number of high-resolution images, which is to be expected with higher camera quality. 

However, it can be seen that for the medium and low-resolution images, the Mavic Pro dataset 

had a slightly higher number of images. Again, this is not unexpected as the difference is 

somewhat accounted for in the higher resolution images of the Mavic Enterprise dataset. Overall, 

it can be seen that resolution was largely improved in the Mavic Enterprise dataset in comparison 

with the Mavic Pro set. It can also be seen that the lighting did not necessarily affect the 

resolution quality of the images. Further information on the image quality distribution can be 

found in Table 2Table 3 andTable 4 in Appendix D. 
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Figure 6. Distribution of Image Quality 

4.3. Results analysis 

The final analysis was conducted to show the number of images in each class compared to the 

precision, recall and mean average precision(mAP) values for different confidence intervals as 

shown in Figure 7. Across all classes, the Mavic Pro model showed better precision, however the 

Mavic Enterprise performed better in precision and mAP. The Mavic Enterprise dataset also had 

a larger number of validation images than the Mavic Pro dataset. From this we can infer that 

whilst the Mavic Pro model had a higher precision over all cases, the ability to detect defects and 

the confidence in these detected defects was higher in the Mavic Enterprise model. 

 

The surface defect class was the class with the lowest instances in both models. It can be seen 

that the Mavic Pro dataset had slightly more images than the Mavic Enterprise dataset and this is 

reflected in the precision, recall and mAP statistics. Due to the small number of instances, this 

class is not taken into consideration for the overall performance analysis. 

Figure 7. Model Results 
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In the concrete crack class, the Mavic Enterprise again had a higher number of images than the 

Mavic Pro dataset. Similar to the overall values, the precision was lower than the Mavic Pro 

model but the recall and mAP at 50% confidence were higher. The mAP for confidence 50-95% 

was lower for the Mavic Enterprise model than the Mavic Pro model meaning that despite the 

larger number of images, the Mavic Enterprise model was not as accurate as the Mavic Pro 

model for the concrete crack class. Although, the recall being higher for the Mavic Enterprise 

model means that this model is more likely to detect defects. 

 

The final class was the construction joint. As mentioned earlier, this is not so much a defect as 

teaching the models that crack like images with a certain degree of linearity may not be a 

concrete defect. The Mavic Enterprise model again had a larger number of images for this class 

and performed better in the precision and both mAP confidence intervals. Interestingly, it didn’t 

perform as well in the recall which is different to most other classes in this analysis. It is unclear 

why this occurred as it is expected that a larger number of training examples would lead to a 

better ability to detect the defect. One explanation may be a confusion between the construction 

joint and concrete crack classes. This can be seen in the confusion matrix as both models had a 

large percentage of images confused for concrete cracks. This may be due to the significant 

difference in training images between the concrete cracks and other classes making the concrete 

class overfitted for the models in comparison to the other classes.  

 

 

 

3.3  
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Chapter 5. Conclusions 

This project has shown that whilst the effects of lighting and resolution can be accounted for in 

the training of a model, they can have an impact on the annotators ability to identify defects prior 

to a model being trained. To correct this, the consistency of lighting and resolution should be 

controlled by taking the manual operation of the UAV out of the equation and ensuring that the 

lighting source covers the entire frame of the video and is not concentrated in on location. 

Having more consistency in the UAV operation would also allow for values such as defect 

dimension and crack widths to be calculated as they can be scaled when the distance from the 

wall and the frame size is known.  

 

To better assess the effects of resolution and lighting on the quality of training, more data needs 

to be collected and annotated to ensure that all classes have the same number of instances and the 

distribution of quality in each class is also consistent. This would require approximately nine 

models to be run, using the low, medium and high-quality labels, to ensure that the only variable 

between each model is the quality of the lighting or resolution. 

 

Whilst this project has not directly contributed to the ultimate industry goal for an integrated 

infield drone controller and live in-field inspection device, it has helped to gain an understanding 

of the effects of the challenging variables that are encountered in a tunnel environment.  
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Appendices 

Appendix A Equipment Photos 

 
Figure 8. Mavic 2 Enterprise Advanced with spotlight attached at tunnel site 

 
Figure 9. Milwaukee 12V LED torch image from(Milwaukee 2021) 
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Figure 10. Mavic 2 Pro Drone image from(DJI 2023a) 
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Appendix B  Annotation and Model Training Software 

 
Figure 11. Example of low resolution, low lighting image 

 
Figure 12. Example of low resolution, low lighting image with -20% contrast and +40% brightness 
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Figure 13. Example of medium resolution, high lighting image 

 
Figure 14. Example of low resolution, medium lighting image 
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Figure 15. Example of annotated image in Roboflow 
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Figure 16. Google Colabs program for modelling training using Mavic Enterprise images. 
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Figure 17. Google Colabs image of program for modelling training using Mavic Pro images. 
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Appendix C Model Validation Outputs 

 
Figure 18. Mavic Pro Model Validation Output: Label Frequency

 

Figure 19. Mavic Pro Model Validation Output: Precision-Confidence Curve 
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Figure 20. Mavic Pro Model Validation Output: F1-Confidence Curve

 

Figure 21. Mavic Pro Model Validation Output: Recall-Confidence Curve 
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Figure 22. Mavic Pro Validation Output: Confusion Matrix 

 

Figure 23. Mavic Pro Model Validation Output: Results Graph 
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Figure 24. Mavic Pro Model Validation Output: 

Labeled Image Example 1 

 

Figure 25. Mavic Pro Model Validation Output: 

Predicted Labels Example 1 

 

Figure 26. Mavic Pro Model Validation Output: 

Labeled Image Example 2 

 

Figure 27. Mavic Pro Model Validation Output: 

Predicted Labels Example 2 
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Figure 28. Mavic Enterprise Validation Output: Label Frequency 

 
Figure 29. Mavic Enterprise Validation Output: Precision-Confidence Curve 
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Figure 30. Mavic Enterprise Validation Output: F1-Confidence Curve 

 
Figure 31. Mavic Enterprise Validation Output: Recall-Confidence Curve 
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Figure 32. Mavic Enterprise Validation Output: Precision-Recall Curve 

 

 
Figure 33. Mavic Enterprise Validation Output: Confusion Matrix 
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Figure 34. Mavic Enterprise Validation Output: Results Graph 
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Figure 35. Mavic Enterprise Model Validation 

Output: Labeled Image Example 1 

 

Figure 36. Mavic Enterprise Model Validation 

Output: Predicted Labels Example 1 

 

Figure 37. Mavic Enterprise Model Validation 

Output: Labeled Image Example 2 

 

Figure 38. Mavic Enterprise Model Validation 

Output: Predicted Labels Example 2 
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Appendix D Dataset Distribution and Analysis 

Table 1. Distribution of Training and Validation Sets 

Image 
Quantities 

Mavic 2 
Pro 

Mavic 2 
Enterprise 

Training 2454 2478 

% Training 84 80 

Validation 290 422 

% Validation 10 4 

 
Table 2. Image Quality Comparison - Quantity 

Mavic 2 Pro 
Resolution   

Mavic 2 Enterprise 
Resolution  

Low Medium High SUM  Low Medium High SUM 

Lighting 

Low 8 16 0 24  

Lighting 

Low 2 7 5 14 

Medium 4 24 3 31  Medium 5 9 4 18 

High 2 6 13 21  High 0 5 4 9 
 SUM 14 46 16 76   SUM 7 21 13 41 

 
Table 3. Image Quality Comparison - Percentage 

Mavic 2 Pro 
Resolution   

Mavic 2 Pro 
Resolution  

Low Medium High SUM  Low Medium High SUM 

Lighting 

Low 11% 21% 0% 32%  

Lighting 

Low 5% 17% 12% 34% 

Medium 5% 32% 4% 41%  Medium 12% 22% 10% 44% 

High 3% 8% 17% 28%  High 0% 12% 10% 22% 
 SUM 18% 61% 21% 100%   SUM 17% 51% 32% 100% 

 
Table 4. Overall Resolution and Lighting Percentage Comparison 

Lighting Mavic Pro Mavic Enterprise  Resolution Mavic Pro Mavic Enterprise 

Low 32% 34%  Low 18% 17% 

Medium 41% 44%  Medium 61% 51% 

High 28% 22%  High 21% 32% 
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Table 5. Model Results 

  Mavic 2 Pro Mavic Enterprise 

Class Images Instances P R mAP50 mAP50-95 Images Instances P R mAP50 mAP50-95 

All 290 290 40% 51% 27% 7% 422 422 19% 58% 39% 9% 

Surface Defect 290 52 28% 19% 25% 4% 422 30 9% 3% 9% 2% 

Concrete Crack 290 163 19% 98% 55% 17% 422 256 16% 99% 60% 16% 

Construction Joint 290 71 15% 87% 27% 7% 422 136 33% 71% 46% 10% 
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Appendix E   Project Specification 
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Figure 40. Project Specification Page 2 

 
Figure 41. Project Specification Page 3 
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Figure 42. Project Specification Page 4 
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Figure 43. Project Specification Page 5
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Appendix F  Resources 

The following resources will be required to complete the research and dissertation: 

• For video data capturing: 

o Mavic 2 Pro 

o Milwaukee 12V LED torch 

o Mavic 2 Enterprise Advanced 

o SD card 

• For video data labelling: 

o Computer 

o Roboflow 

o Internet connection 

• For program writing, testing and final results 

o Computer 

o Google Colabs; $150 for premium access for the period of the project 

o Examples written previously by Mr Long Nguyen (Nguyen 2023) 

o Discussions with and assistance from Mr Long Nguyen and Dr Andy Nguyen for 

understanding the previous examples and learning how to implement the required 

alterations for this application 

o Labelled video data for training, validation and testing 

o Possible requirement for video or image data from other sources for severity 

classification training 

• For final results analysis and discussion 

o Computer 

o Microsoft Word for report writing 

o Microsoft Excel for data analysis 

o Endnote for referencing 

F.1 Timeline 

The project is currently running behind the previous schedule as background research has 

taken longer than expected. Now that the topic has been clearly defined and researched and 

the ideas written up in the literature review above, the development of the program can 

begin and should progress smoothly to complete before the final deadline in ENG4112. The 

project would benefit from more regular check-ins with the supervisor to ensure that 

deadlines are met and that the project progresses appropriately. 

 

Figure 44-Figure 46 show the current milestone dates and progress. 
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Figure 46. Project Timeline Part C 
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Appendix G Risk Assessment 

As the majority of this project revolves around creating and testing a computer program, there is 

very little risk involved in the project itself. The main risks are to do with incorrect fitting of the 

data and insufficient data. The methodology we have adopted has allowed us to accommodate 

these risks. Other risks may occur when the program is put into use including the user not 

understanding the limitations of the program or incorrect detection of defects. To negate user 

error, we will install a disclaimer in the program which will advise the structure and defect types 

that the program has been trained for. The use of the training, validation and test sets will ensure 

that the program is sufficiently accurate. However, we will also advise users to do a manual scan 

through the data for any obvious major defects that the program has missed. 

 

Figure 47 below shows the full risk management plan. 

 

 

 

 

 

 
Figure 47. Risk Management Plan 

 




