

University of Southern Queensland

Faculty of Health, Engineering and Sciences

Real Time Drowning Detection System Using Machine Vision and

Learning

Dissertation submitted by

Fern Proctor

In fulfilment of the requirements of

Course ENG4111/4112 – Research Project

towards the degree of

Bachelor of Engineering (Electrical and Electronic)

Submitted: October 2023

ii

This page intentionally left blank

iii

Abstract

Globally, there are an estimated 236,000 drownings per year (World Health Organisation,

2014), and in Australia, drowning deaths form a grim tally over the summer months despite

the introduction of robust legislation and education campaigns. Swimming pools are the most

common location for drowning accidents (AIHW, 2023) and as such, any tools that may be

able to reduce these occurrences could have substantial impact.

There have been significant advances in the fields of machine vision and learning in the past

decade resulting in the development of new algorithms and hardware which can be applied to

novel applications. Of particular interest is the ‘You Only Look Once’ (YOLO) algorithm

which offers real time detection speeds with impressive accuracy. With a solution looking for

a problem to solve, this project aimed to develop a real time drowning detection system using

machine learning and vision. In particular, the system was designed to be used in a residential

pool setting with little technical knowledge required for installation and setup.

A dataset was acquired and supplemented with additional images. Several versions of the

Yolo algorithm were examined and trained using the custom dataset. Image augmentation and

hyperparameter tuning were among some of the methods used to improve the model’s

accuracy prior to it being deployed on an Oak-D Lite, an edge-AI camera where neural

inference is done onboard rather than on a separate device. Finally, the system was deployed

and tested in real time as well as monitored remotely through a mobile device. The testing

demonstrated that real time drowning detection was feasible using YoloV8 and the Oak-D

Lite.

Future works include improving and increasing the size of the dataset used for training as

well as experimenting with various iterations of the Yolo algorithms deployed on the Oak-D

Lite, in particular smaller versions to compare their accuracy with YoloV8-m used in the final

system. In addition, further investigation of hyperparameter tuning and image augmentation

could be beneficial as well as development of a mobile interface with the ability to notify

users of a drowning event by means of a notification or via smart devices such as watches.

iv

Limitations of Use

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its school of engineering, and the staff

of the University of Southern Queensland, do not accept any responsibility for the truth,

accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the

Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the

overall education within the student’s chosen degree program. This document, the associated

hardware, software, drawings, and other material set out in the associated appendices should

not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

vi

Acknowledgements

I would like to acknowledge and thank Dr. Tobias Low for his initial proposal of the Real

Time Drowning Detection System as well as his consistent and valuable guidance throughout

this work. I would also like to thank the Rochester Institute of Technology in Dubai for

providing their dataset as well as Katie for offering to jump in and add to mine. Finally, I

would like to thank my family, friends, and colleagues for their support over the last five and

a half years, in particular my mum, dad and Tark for their untiring backing and being my

personal cheer squad.

vii

Table of Contents

1. Introduction 1

1.1 Background 1

1.2 Computer and Machine Vision 1

1.3 Machine Learning and Algorithms 2

1.3.1 Object Detection 3

1.3.2 Convolutional Neural Networks 4

1.3.3 You Only Look Once 5

1.3.4 Metrics in Object Detection Algorithms 6

1.4 Project Justification 8

1.5 Project Aims 8

1.6 Research Questions 9

2. Literature Review 10

2.1 Drowning Prevention Techniques 10

2.1.1 Sensor Solutions 10

2.1.2 Machine Vision Solutions 11

2.2 Commercial Drowning Detection Systems 14

2.3 Drowning Detection Using Machine Vision 16

2.3.1 Hardware 16

2.3.2 Algorithms 17

2.3.3 Datasets 19

2.4 Machine Vision Developments 21

2.5 Knowledge Gaps 23

3 Methodology 24

3.1 Research Methodology 25

3.2 Task Analysis 25

3.2.1 Dataset Acquisition and Preparation 25

viii

3.2.2 Metrics 25

3.2.3 Algorithm Selection 26

3.2.4 Build, Train, and Deploy Model 26

3.3 Experimental Design 27

3.3.1 Experiment 1 – Qualitative Testing of Yolo Models 27

3.3.2 Experiment 2 – Quantitative Testing of Yolo Models on a Custom Dataset 27

3.3.3 Experiment 3 – Improving the Yolo Model 29

3.3.4 Experiment 4 – Model Deployment on the Oak-D and Raspberry Pi 29

3.3.5 Experiment 5 – Real time detection and alert of drowning events 29

3.4 Resource Analysis 30

3.4.1 Hardware 30

3.4.2 Software 31

3.4.3 Dataset 31

3.4.4 Test Location 32

3.4.5 Project Cost 32

3.5 Project Consequential Effects 32

3.5.1 Sustainability 33

3.5.2 Ethics 33

3.6 Risk Assessment 34

3.6.1 Risks Identified 34

4. Development and Experimental Setup 35

4.1 Dataset Acquisition and Preparation 35

4.1.1 Dataset Acquisition 35

4.1.2 Dataset Preparation 36

4.2 Experiment 1 – Qualitative Testing of Yolo Models 38

4.3 Experiment 2 – Quantitative Testing of Yolo Models on a Custom Dataset 39

4.3.1 YoloV7 40

ix

4.3.2 YoloV8 41

4.4 Experiment 3 – Improving the Yolo Model 42

4.4.1 Inclusion of background images 42

4.4.2 Increasing the Model Size 42

4.4.3 Image Augmentation and Parameter Tuning 42

4.4.5 Increasing Training Epochs 43

4.5 Experiment 4 – Deployment on the Oak-D Lite and Raspberry Pi 44

4.5.1 Creating a .blob file 44

4.5.2 Deploying the Model 44

4.6 Experiment 5 – Real Time Detection and Alert 45

4.6.1 Drowning Detection Interface 45

4.6.2 Remote Drowning Detection 46

4.6.3 Experimental Set Up 46

5. Results and Analysis 48

5.1 Dataset 48

5.2 Experiment 1 – Qualitative Testing of Yolo Models 49

5.2.1 YoloV3 49

5.2.2 YoloV7-tiny 50

5.2.3 YoloV8 51

5.2.4 Detection Speeds 52

5.3 Experiment 2 - Quantitative Testing of Yolo Models on a Custom Dataset 53

5.3.1 YoloV7-tiny 53

5.3.2 YoloV8-s 56

5.4 Experiment 3 – Improving the Yolo Model 60

5.4.1 Background Images 60

5.4.2 Increasing the Model Size 63

5.4.3 Image Augmentation and Parameter Tuning 64

x

5.4.4 Training Epochs 67

5.5 Experiment 4 – Deployment on the Oak-D Lite 70

5.6 Experiment 5 – Real Time Detection and Alert 71

6. Discussion, Conclusion and Further Work 76

6.1 Discussion 76

6.2 Conclusion 78

6.3 Further Work 79

References 81

Appendix A 87

Appendix B – Risk Assessment 90

Appendix C – Dataset Release Agreement 93

Appendix D – Google Colab Notebooks and Python Script 94

YoloV7-tiny Custom 94

Data File 94

Configuration File 94

Google Colab Notebook 96

YoloV8-s Custom 97

Data File 97

Google Colab Notebook 97

YoloV8-m Custom – Final Model 99

Datafile 99

Google Colab Notebook 99

Python Script 100

xi

List of Tables

Table 1: A performance comparison of object detection models (Kaur and Singh, 2022) 18

Table 2 Yolo models and their performance on the Oak-D Lite (Luxonis, 2023) 30

Table 3: Project Costs .. 32

Table 4: A breakdown of the image dataset ... 36

Table 5: The number of images in each dataset for training and testing. 39

Table 6: Additional training parameters for the customYoloV7 model. 41

Table 7: Additional training parameters for the custom YoloV8 model. 42

Table 8: The image augmentation parameters to be used during for the model training. 43

Table 9: The test results using the custom YoloV7-tiny best weights. 54

Table 10: The test results using the custom YoloV8-s best weights. 57

Table 11: Key metrics for YoloV8-m trained on the improved dataset over 24 epochs. 63

Table 12: The image augmentation parameters used in the experiments. 66

xii

Table of Figures

Figure 1: A block diagram of a machine vision system (Labudzki et al, 2014) 2

Figure 2: A timeline of object detection algorithm development (Zou et al, 2023) 4

Figure 3: The various layers of a Convolutional Neural Network (Mathworks, 2023) 5

Figure 4: Image processing and object detection using the YOLO algorithm (Redmon et al,

2016) .. 6

Figure 5: Instinctive Drowning Response behaviours (Great Lakes Surf Rescue Project, 2013)

.. 10

Figure 6: Segmented silhouettes of various swimming and drowning behaviours for use in the

behavioural recognition system (Eng et al, 2008). .. 12

Figure 7a and b: Angel Eye user interface and notification device (Angel Eye, 2023). 15

Figure 8: Drowning stages detected by the Yolo algorithm used by Handalage et al

(Handalage et al, 2021). ... 19

Figures 9a and b: Drowning and Swimming detections using ResNet50 (Hasan et al, 2021).20

Figure 10: The Oak-D Lite edge AI camera. In the centre is the colour camera with two

stereo cameras either side (Luxonis, 2023).. 21

Figure 11: A comparison of speed and mAP of Yolo versions 5 to 8 (Ultralytics, 2023). 28

Figure 12: The folder directory structure of the provided dataset with the number of videos 35

Figure 13: Drawing a bounding box on a training image using LabelImg. 37

Figure 14: A text file associated with a labelled image. ... 37

Figure 15: The class declaration file where drowning is 0, idle is 1 and swimming is 2. 38

Figures 16a and b: The two images for qualitative testing, left ‘Kicking Horse’ and right

‘Skateboards’. .. 39

Figure 17: The process for training a custom Yolo model using Google Colab. 40

Figure 18: A custom data file for YoloV7. ... 41

Figure 19: The custom data file for YoloV8. ... 41

Figure 20: The pseudo code for deploying the Yolo model in Experiment 4. 44

Figure 21: The equipment set up for Experiment 4 - deploying the Yolo model. 45

Figure 22: Pseudocode for experiment 5. .. 46

Figures 23a and b: The experimental setup with the Oak-D Lite, Raspberry Pi and power

bank. ... 47

Figure 24: A histogram showing the occurrences of the three classes in the training dataset. 48

Figure 25: The occurrence of two classes in a training image (swimming and idle). 49

xiii

Figures 26a and b: YoloV3 detections run on the test images trained on the COCO dataset. . 49

Figures 27a and b: YoloV7-tiny detections run on the test images trained on the COCO

dataset. ... 50

Figures 28a and b: YoloV8-m detections run on the test images trained on the COCO dataset.

.. 51

Figure 29: A comparison of detection tines of the Yolo models tested. 52

Figure 30: YoloV7-tiny losses during training over 24 epochs. .. 53

Figure 31: Precision, recall and mAP during training of YoloV7-tiny over 24 epochs. 54

Figure 32: Correct detection of swimming with confidence of 0.60. 54

Figure 33: Detection of swimming and drowning in the drowning state. 55

Figure 34: Incorrect detection of swimming in the idle state. ... 55

Figure 35: YoloV8-s losses during training over 24 epochs. ... 56

Figure 36: Precision, recall and mAP during training of YoloV8-s over 24 epochs. 57

Figure 37: Incorrect detection of idle in the swimming state. ... 57

Figure 38: Incorrect Detection of swimming in the drowning state. 58

Figure 39: Incorrect detection of swimming in the idle state. ... 58

Figure 40: A comparison of key metrics between YoloV8-s trained on the original and

improved dataset with background images. ... 60

Figures 41a and b: The confusion matrices for the YoloV8-s models. On the left the model

trained with no background images and on the right the model trained with background

images. ... 61

Figure 42: A comparison of YoloV8-s and YoloV8-m key metrics. .. 63

Figure 43: A comparison of total losses between YoloV8-s and YoloV8-m. 63

Figure 44: A comparison of batch sizes during training of YoloV8-m. 64

Figure 45: Key metrics for the three learning rates tested. .. 65

Figure 46: Total losses for the three learning rates tested. ... 65

Figure 47: Key metrics with various image augmentation methods implemented. 66

Figure 48: A comparison of key metrics across three models, the original YoloV8-m trained

for 24 epochs, the improved 24 epoch version and the final version trained for 300 epochs. . 67

Figure 49: The confusion matrix for the final model. .. 68

Figures 50a and b: The precision-recall curve and F1 confidence curve for the final model. . 68

Figures 51a and b: Images from the test dataset, on the left the drowning class and on the

right swimming, which when taken out of context could prove difficult for even a human to

classify. ... 69

xiv

Figures 52a and b: Correct detections in the drowning and swimming states. 70

Figures 53a and b: Correct detection of the idle state and an incorrect detection of swimming

in the drowning state. ... 70

Figures 54a and b: Detection of the drowning state and the alert holding despite the loss of

the drowning bounding box at 1080p resolution. .. 71

Figures 55a and b: Correct detection of idle and swimming at 1080p resolution. 72

Figures 56a and b: Correct detection of drowning at a higher resolution and the alarm test

holding despite the loss of the bounding box... 72

Figures 57a and b: Correct detections of the swimming state at higher resolution. 73

Figures 58a and b: An incorrect detection of swimming in the drowning state and a missed

detection of drowning at higher resolution. ... 73

Figure 59: Successful detection and remote monitoring using the VNC from the Raspberry Pi

to iPhone. ... 74

xv

Glossary

CNN = Convolutional Neural Network

CPU = Computer Processing Unit

GPU = Graphical Processing Unit

IDR = Instinctive Drowning Response

mAP = Mean Average Precision

YOLO = You Only Look Once

R-CNN = Regional Convolutional Neural Network

RNN = Recurrent Neural Network

YOLO = You Only Look Once

1. Introduction

1.1 Background

Globally, there are an estimated 236,000 drownings per year (World Health Organisation,

2014) and in Australia swimming pools were the leading location of drowning deaths for

children between the ages of 0-4 between 2002 and 2018 (Royal Lifesaving Australia, 2018).

For each drowning death in Australia, there are an additional three people hospitalised with

drowning related injuries costing the Australian economy $1.24 billion annually (Peden et al,

2021). In Australia, drowning deaths are generally trending downwards with the introduction

of robust legislation such as pool fences and signage, though experts agree that a multifaceted

approach to reducing drowning deaths is required. In half of the drowning deaths of children

in private residential swimming pools, there was adult supervision, however, lapses in this

supervision contributed to the deaths (Peden et al, 2019).

One study examining the drowning deaths of 447 children under the ages of 4, 53.5% of the

deaths occurred in swimming pools with 86.6% of these being private residential swimming

pools (Peden et al, 2019). In over half of the cases, there were more than two supervisors

present thus demonstrating that quality supervision is key to preventing drowning deaths.

Leading causes of distractions when supervising were household duties (indoors and

outdoors), talking and socialising. When there were two or more supervisors present,

miscommunication occurred resulting in the lapse (Peden et al, 2019).

1.2 Computer and Machine Vision

Computer vision and machine vision are phrases which are frequently used interchangeably,

though machine vision is the practical application of computer vision principles. Computer

vision is the processing of an image using a variety of methods to extract information,

whereas machine vision generally requires additional hardware and software to respond to the

information gathered, such as the movement of a robotic arm in automated manufacturing

(Labudzki et al, 2014). As shown in Figure 1, a machine vision system contains several sub

systems; optical acquisition hardware (such as a camera), where scene constraints such as

lighting and positioning must be considered, a pre-processing stage, segmentation of the

image, feature extraction, classification/interpretation and finally actuation (Labudzki et al,

2014).

2

Figure 1: A block diagram of a machine vision system (Labudzki et al, 2014)

Machine vision systems are an established technology with wide ranging applications.

Examples include barcode scanners and defect detection systems used in manufacturing. A

commonality with classic machine vision systems is the controlled conditions they operate in.

Barcodes by design are standardised, high contrast and easily interpreted. Defect detection

systems in manufacturing plant can be installed with optimum lighting and positioning. Until

recently, machine vision systems struggled with random variation and uncontrollable

variables, however developments within the field of machine learning with Convolutional

Neural Networks (CNN) means these systems are now able to automatically learn from data

to develop rules for complex machine vision (Smith et al, 2021).

1.3 Machine Learning and Algorithms

The enigmatic qualities of machine learning have drawn the field into sharp focus over the

past several years. Attention grabbing headlines covering the defeat of Go master Lee Sedol

by AlphaGo and his ultimate retirement claimed, ‘machines cannot be defeated’ (The

Guardian, 2019). However, rather than attempting to ‘defeat’ machines, it is important to

recognise the opportunities machine learning presents.

Algorithms are a set of instructions for achieving a task. Often, algorithms are associated with

computers, however, they have existed for millennia, with the first algorithms dating back to

the ancient Babylonians (Louridas, 2020). Computers are simply an effective way of

implementing and quickly executing an algorithm using a programming language.

3

Machine learning harnesses the vast amounts of data now available to automatically create

algorithms for a given task (Alpaydin, 2021). Recommendation engines in common

applications such as Netflix and Spotify learn from user’s preferences to make suggestions.

Machine learning and vision have been combined in medical and agricultural fields to great

effect to improve patient outcomes and productivity (Smith et al, 2021). Several novel

machine learning algorithms for vision and object detection have been proposed.

Convolutional Neural Networks (CNN) and the You Only Look Once (YOLO) are two

algorithms which are commonly used in vision applications due to their speed and accuracy.

1.3.1 Object Detection

Object detection algorithms are the cornerstone of a number of real-world applications such

as autonomous driving and facial recognition. However, the significant progress in object

detection in the last 15 years should be acknowledged. In the early 2010’s, computers

struggled to differentiate between a cat and a dog. Traditional object detection methods were

bespoke systems often focusing on the use of filters, de-noising and edge finding for

identification and classification of objects (Lakshmana et al, 2021).

With advancements in deep learning models and detection, the speed and accuracy of object

detection has increased significantly, though even then require expensive GPUs to run. As

figure 2 shows, from 2014 onwards and beyond the ‘traditional’ object detection methods,

there were two distinct splits: one stage and two stage detectors. One stage detectors localise

a region of interest and detection in the same step. Two stage detectors first run a ‘Region

Proposal Network’ to find areas of interest, these are processed and enhanced before the

second stage classifies these objects. Generally, two stage detectors have high precision

though in comparison to single stage detectors are slow and computationally intensive. Single

stage detectors can be deployed in real-time applications though experience reduced

performance when detecting dense and small objects (Zou et al, 2023). Two detectors are of

particular interest in this research; CNNs and YOLO.

4

Figure 2: A timeline of object detection algorithm development (Zou et al, 2023)

1.3.2 Convolutional Neural Networks

Convolutional Neural Networks are a two-stage detector where numerous layers are used for

object classification and localisation. The key layers are the convolution layer and pooling

layer which produce feature maps, the fully connected layer which is a high-level reasoning

layer for linear classification and a SoftMax layer which assigns objects into their various

classes (Malhotra et al, 2020). Algorithmic improvements are made by performing several

iterations to produce more accurate results.

The convolution layer uses several filters to enhance various features within the image. This

is often used in conjunction with a rectified linear unit (ReLU), sometimes referred to as

activation, which maps negative values to zero while maintaining positive values. Only the

activated values progress to the next layer. The pooling layer simplifies the output by

reducing the number of parameters that need to be learned (Mathworks, 2023). These are

repeated over many layers to detect different features. Once the features have been learned,

the network progresses to the classification layer, of which the Softmax function is a part of.

This layer outputs a vector of n-dimensions (where n denotes the number of classes which

can be predicted) and estimates the probabilities of each image class being present.

5

Figure 3: The various layers of a Convolutional Neural Network (Mathworks, 2023)

There are several variations to the standard CNN. These are Regional CNN (R-CNN) which

localizes 2000 regions of interest within an image before applying the CNN layers, Fast R-

CNN in which the image is processed to create a convolutional feature map before regions of

proposal are identified. Finally, Faster R-CNN discards the selective search algorithm and

instead allows the CNN to learn the region proposals. Faster R-CNN is significantly faster

than both previous methods and as such can be used for real time object detection (Gandhi,

2018).

1.3.3 You Only Look Once

You Only Look Once (YOLO) is an algorithm which approaches object detection as a

regression problem, assessing the image from the pixels to bounding box coordinates and

class probabilities (Redmon et al, 2016). As a result, and unlike CNNs, complex pipelines are

not required which significantly increases speed to the point where it can be used as a real

time object detection system.

YOLO is based on the Darknet architecture and divides the image into a number of S by S

cells and a single neural network is applied to the image. If the central point of an object is in

a particular cell, it is responsible for detection of that object. This initial network layer

extracts features from the object whilst the fully connected layers predict output probabilities

and coordinates. A vector is produced for each bounding box with five predictions: x, y, w, h

and confidence. The (x,y) coordinates denote the centre of the box in relation to the bounds of

the particular grid cell. The width and height (w,h) are the dimensions of the bounding box

relative to the entire image and the confidence score is the intersection over union (IOU) of

an object.

6

Figure 4: Image processing and object detection using the YOLO algorithm (Redmon et al, 2016)

There have been several iterations and improvements made to the YOLO algorithm since its

initial release in 2016. YOLOv2 (or YOLO9000) offered greater accuracy and speeds and

YOLOv3 replaced computationally intensive Softmax functions with independent logistics

classifiers (Shah et al, 2022). Joseph Redmon, often credited with the creation of the YOLO

algorithm, stopped working on it beyond version 3. However, YOLOv4 was developed

offering improved performance and has been widely used in research. YOLO versions 5 to 8

have been developed though more research is needed to analyse their effectiveness (Shah et

al, 2022).

1.3.4 Metrics in Object Detection Algorithms

There are several key metrics which are used to measure the effectiveness of object detection

algorithms and in turn to compare them. The most fundamental of these is the following:

i) True Positive (TP) – The correct detection of a bounding box

ii) False Positive (FP) – The incorrect detection of a non-existent object or the

misplaced detection of an existing object.

iii) False Negative (FN) – A bounding box that failed to be detected around an object.

The correctness of a prediction is measured using Intersection Over Union (IOU). This is the

overlap between a predicted bounding box and the ground truth bounding box, that is, the

7

bounding box which was manually placed around the object in the validation dataset.

Mathematically, IOU can be defined as follows:

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

If the IOU is greater than a defined threshold value, the detection is deemed to be positive.

Precision and recall are also commonly used metrics. Precision is the ability of the detector to

identify relevant objects correctly, equivalent to the percentage of correct true predictions.

Recall is the model’s ability to correctly identify all ground-truth bounding boxes.

Mathematically precision and recall can be defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝐴𝑙𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝐴𝑙𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ𝑠

A Precision-Recall curve can be plotted using these values. If the number of false positives is

low, the model’s precision will be high. However, there is the potential for many positives to

have not been detected thus the number of false negatives will increase meaning lower recall.

The same may apply to a greater number of true positives, in this case recall will increase

though more false positives may be detected lowering the recall. A well performing model

will ideally have high precision and high recall, thus the area under the precision-recall curve

will be greater. Conversely, low precision and low recall results in a smaller area. This

relationship is defined as the Average Precision and is only applicable to each individual class

of object. Mathematically, it can be defined as follows:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴𝑃) = ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0

To measure the Average Precisions across all classes in an object detection algorithm, another

metric is introduced. The mean average precision (mAP) is the mean of the average precision

for all classes, often this is used to gauge the accuracy of the entire algorithm.

Mathematically this is defined as follows:

𝑚𝐴𝑃 =
1

𝑘
∑ 𝐴𝑃𝑖

𝑘

𝑖

𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

8

It should be noted that there are several variants of these metrics being utilised and it is

important to understand the different definitions used in context. These are as follows:

i) AP – the Average Precision is measured using various IOU thresholds. Generally,

this range is between 50-95% which increments by 5%. This is defined as

AP@50:5:95. Alternatively single values may be used which are commonly 50%

and 75% which report as AP50 and AP75.

ii) AP Across Scales – Average Precision for differently sized objects classed as

small (32 x 32 pixels), medium (up to 96 x 96 pixels) and large (greater than 96 x

96 pixels).

iii) Average Recall (AR) – maximum recall values over a fixed number of detections

per image averaged over IOU and class.

iv) AR Across Scales – AR determined over different sized objects as defined in AP

Across Scales. Often referred to as AR-S (small), AR-M (medium) and AR-L

(large).

(Padilla et al, 2020)

1.4 Project Justification

There are clear opportunities to research and prototype a drowning detection system using

machine vision and learning given the recent advancements in the field. In addition, there are

no market ready solutions for residential pool settings using only surface cameras. The

commercial solutions currently available are bespoke designs with specific install

requirements for different pools. The release of AI-enabled cameras such as the Oak-D Lite

present additional opportunities to investigate the deployment of real time object detection

algorithms for use in drowning detection.

1.5 Project Aims

The aims of this project are as follows:

1) Research object detection algorithms which may be used in a real time drowning

detection system.

2) Gather a dataset with which to train the selected algorithms. Select an algorithm to be

deployed based on appropriate parameters.

3) Deploy the algorithm on hardware which is then able to make detections using only

surface cameras in a residential pool setting.

4) Create an interface which can alert other users to a potential drowning event.

9

1.6 Research Questions

There are several questions which this research project shall aim to answer:

1) What is the most effective algorithm which can be used in a real time drowning

detection system?

2) What size dataset is needed to train the selected algorithm and gain accurate results?

3) Where can a dataset for a drowning detection system be sourced?

4) What method and hardware should be used to train the algorithm?

5) What is the most appropriate hardware to implement the algorithm on to build a real

time drowning detection system?

6) How can the effectiveness of the drowning detection system be measured? Both

quantitatively and qualitatively.

10

2. Literature Review

2.1 Drowning Prevention Techniques

Many novel approaches have been proposed for drowning prevention techniques. Technology

for drowning prevention largely fall into two categories: image-based processing and

methods employing sensors and embedded systems (Shehata et al, 2021). The reviewed

literature indicates that image-based processing is an effective method for drowning

detection. Embedded systems and wearable sensors are also a low-cost and reasonably

effective solution with monitoring of motion, heart rate, blood oxygen level and depth being

possible (Jalalifar et al. 2022). However, a key disadvantage of a sensor-based system is that

it still relies on the swimmer wearing the device with discomfort being a key disadvantage

noted, particularly among children (Alshbatat et al, 2021).

2.1.1 Sensor Solutions

Several novel sensor-based solutions have been proposed for drowning detection systems.

One system utilised a device which detected 3-axis acceleration and pressure underwater and

was tested being worn on various positions on the body including the head, chest, waist,

wrists, and ankles (Konishi et al, 2022). The design was based upon the Instinctive Drowning

Response (IDR) behaviour generally exhibited by persons drowning as shown in figure 5.

Such behaviour includes the mouth being at water level, facing the shore or exit of a body of

water, the head being titled back, the body being vertical and a ladder climbing motion (Great

Lakes Surf Rescue Project, 2013). The prototype produced results whereby when IDR

behaviours were demonstrated by the various lifesavers wearing the devices, similar pressure

waveforms were seen. However, further research was needed to distinguish between similar

actions such as IDR, standing and non-drowning behaviours.

Figure 5: Instinctive Drowning Response behaviours (Great Lakes Surf Rescue Project, 2013)

11

Jalalifar et al proposed a multi-sensor device to detect swimmers in distress. Their design

included the ability to measure four parameters which included heart rate, blood oxygen

saturation, acceleration, and water depth. Should any of the measured values cross a pre-

defined threshold for a certain period, an output indicating a potentially drowning swimmer is

displayed, in addition a message can be sent via Wi-Fi to a phone or laptop to notify

lifesavers (Jalalifar et al, 2022). The device was designed to be worn on the wrist, and with

the addition of a battery pack and case was noticeably bulky. However, the initial test

provided some promising results, the system performed well and was able to provide accurate

data even in harsh conditions. The limitations of the system included the bulkiness of the

device as well as communication limitations as a mesh network was needed.

Finally, a system named the Falling and Drowning Detection (FaDD) framework was

developed. This used smartphone technology and embedded sensors including an

accelerometer, gyroscope, magnetometer, and GPS in conjunction with machine learning

models (Alqahtani et al, 2022). Firstly, the framework determines if a person is falling and

then predicts a drowning situation. The data was then processed by three different machine

learning models to assist in event identification. They found that the gyroscope did not

provide useful data due to the reduction in gravity underwater and so this was removed. The

magnetometer and accelerometer were used to determine a fall and then further analysis

determined whether it was a drowning event. The authors found that there were differences in

the data acquired from the accelerometer and magnetometer in each situation. For drowning,

the signals were subtle whereas in a fall only, a significant spike was seen in readings. They

found that the system had a 98% accuracy rate in event identification. However, a noted

limitation was poor cellular and Wi-Fi signal propagation underwater. In addition, this system

would be limited to certain situations such as an accidental fall into a body of water as

opposed to the user being in the water and then starting to drown.

2.1.2 Machine Vision Solutions

Accurate identification of drowning utilising machine vision poses several challenges. One

issue is the occurrence of high levels of noise when identifying foregrounds and behaviour

recognition due to the random nature of movement on the surface of a body of water (Eng et

al, 2008). Methods have been proposed for modelling dynamic aquatic backgrounds,

recognising behaviours associated with drowning and addressing moderate levels of

crowding within swimming pools in a paper by Eng et al in 2008. Of key interest with this

proposed system is the utilisation of only surface cameras and thus offers the potential for

12

earlier detection of drowning events given that underwater cameras are more likely to detect

drowning at a later stage, once the swimmer has sunk to the bottom (Eng et al, 2008). Since

then, several advances have been made with the use of image processing and machine

learning algorithms for drowning detection.

Figure 6: Segmented silhouettes of various swimming and drowning behaviours for use in the behavioural recognition

system (Eng et al, 2008).

A system examined by Salehi et al utilised existing security cameras surrounding a swimming

pool for drowning detection utilising HSV (Hue, Saturation, Value) colour spaces to track

individuals and detect any potential drowning events. Water ripples proved to be challenging

to the image recognition software but the HSV colour space contour detection proved to be a

robust method for drowning detection with an average drowning detection delay of 1.53

seconds and minimal false alarms sent by the algorithm (Salehi et al, 2014). The performance

of the system was impressive given that no machine learning algorithms had been used,

though with advancements in this field since 2014, there are clear opportunities to improve

on these results.

One novel system proposed utilised a customised YOLO algorithm to detect drowning in

three stages, each defined by a particular behaviour associated with drowning such as a

climbing ladder motion or the head being underwater (Handalage et al, 2021). The system

also only utilises surface cameras with the aim of recognising struggling motions before

13

drowning occurs. Individuals are identified using object detection through the YOLO

algorithm and then a CNN human detection algorithm determines if they are exhibiting

drowning behaviour. Skeletal sketching using OpenPose is used to recognise a person’s pose,

the CNN is then used to identify hazardous or non-hazardous behaviour to identify possible

drowning events. Using test images, the algorithm achieved a total accuracy of 85.6% when

identifying drowning events (Handalage et al, 2021). The model was trained in a Google

Colab notebook with a dataset of approximately 5000 images with weight files generated

every 100 iterations. The model was then implemented on a NVIDIA Jetson Nano board to

run multiple neural models. The authors acknowledged that the system could be improved

through better hardware to assist with speed and accuracy as well as the addition of multiple

cameras.

Lei et al developed a drowning behaviour detection system utilising the YoloV4 algorithm

and eight underwater cameras. The authors adapted YoloV4 to a custom model to improve the

accuracy of target detection. The system was based in PyTorch (used in YoloV5) and Darknet

(YoloV3) frameworks in Windows 10. Two classes were given (drowning or swimming) and

it was trained for 10,000 iterations. They experimented with different versions of Yolo from 3

to 5. They found YoloV4 and V5 performed similarly but V3 struggles due to reflections on

the water surface and some swimmers being mistaken for drownings. For instance, the Mean

Average Precision (mAP) of YoloV3 was 84.37% and 92.41% and 90.32% for V4 and V5

respectively (Lei et al, 2022). They found that all algorithms struggled with higher density

pools, which aligns with Yolo’s known shortcomings in detecting dense, small objects with

their customised YoloV4 algorithm performing best with different pool angles. They

concluded that an accurate real time drowning system was possible using underwater cameras

and a customised YoloV4 framework.

Another system focused on inadequate supervision instead of drowning behaviours. This

solution collected a dataset of 38,000 images of distracted parents or caregivers around a

swimming pool and then implemented three different CNNs for classification and detection.

The dataset was split 8:2 for training and testing (30,000 images for training and 8000 for

testing) with seven detectable classes chosen, such as ‘in the water and distracted’ and ‘out of

the water distracted’. They then went on to develop an alert system in the form of voice alert,

pager, or a wearable device. The three CNNs selected were VGG-19, ResNet-50 and

Inception-v3 with an accuracy of 94%, 98% and 90% respectively (Cepeda-Pacheco and

Domingo, 2022). Given the notification network was implemented using 5G, the authors did

14

acknowledge that privacy and security could be an issue with potential eavesdropping on the

network and access to underage images by malicious parties. They emphasised the need for

robust security measures for this system to be an accepted method for child drowning

prevention.

A holistic rescue system using machine vision and an intelligent lifebuoy was proposed by

Yang et al. They collected a dataset of approximately 3000 images which was split in a ratio

of 8:1:1 for training, verification, and testing. The authors made some assumptions given that

the lifebuoy was operating in open water and not swimming pools. For example, detection of

any human features was considered a drowning situation as people shouldn’t be present in

these open bodies of water. Since it was not necessary to detect drowning behaviours, the

model focused on detection of upper body parts such as the head, arms, and hands. YoloV4

was chosen due to its real time detection abilities. The model was trained on a NVIDIA GPU

with a learning rate of 0.00261 and 40,000 iterations. They found the system performed well

under testing but found some key limitations, notably that the YoloV4 model was too large to

be deployed on the low-cost embedded system on the lifebuoy, thus compression and

acceleration of the model was to be followed up in further works (Yang et al, 2021).

A low cost and effective solution using limited computational hardware was proposed by

Pavithra et al using a Pi camera, Raspberry Pi 3 and a buzzer for alerting. The system used a

timer approach as opposed to identifying drowning behaviours, thus if a person stopped being

detected for a certain period, the buzzer would alarm. A R-CNN algorithm was used for

detection and trained on a large dataset, though the authors do not specify the particulars of

this dataset. They concluded that the system was 99% accurate for detecting missing persons

in the water (Pavithra et al, 2021). However, the system had some limitations, including

potential false detections, and the timer approach may not always detect drowning events that

occur for an extended period before submersion. Additionally, the system's reliance on

missing persons detection implies that drowning events will be detected in later stages, such

as when the victim is already unconscious, potentially resulting in adverse outcomes.

2.2 Commercial Drowning Detection Systems

There are several commercial camera-based drowning detection systems available. One such

system is the Angel Eye which utilises cameras above and below the water to detect all the

swimmers in a pool. A three-dimensional model is created, and a drowning detection

algorithm activates an alarm based on anomalous events (Angel Eye, 2022). In addition,

15

alerts are sent to smart watches or phones worn by lifeguards to notify of a potential event.

Currently, the Angel Eye is available for commercial swimming pools and each system is

uniquely configured for each application requiring a design study and professional

installation (Angel Eye, 2022).

Figure 7a and b: Angel Eye user interface and notification device (Angel Eye, 2023).

Another similar solution available is the Poseidon drowning prevention system. Like the

Angel Eye, it utilises cameras above and below the water to identify swimmers in distress

which then alerts lifeguards. The company states that ‘unique and precise’ software code is

used to differentiate between a person drowning and simply being still (Poseidon, 2022). Also

like the Angel Eye, each system is custom built for the swimming pool it is installed in. A

clear disadvantage of both solutions is that they are bespoke systems suited for commercial

swimming pools in addition to requiring cameras above and below the water to accurately

identify swimmers in distress.

Wave drowning detection systems offer a commercial and home-based drowning detection

system utilising wearable sensors which link to a local hub and then to a mobile phone

application (Wave drowning Detection Systems, 2022). One key advantage of this system is

that is easy to configure and can be used in a variety of settings including swimming pools

and lakes. However, as previously noted it requires the effective use of wearables which can

often be problematic among children due to discomfort. Thus, there is currently no market

ready solution utilising one camera above the water line in a swimming pool to detect

potential drowning events, particularly in non-commercial settings.

16

2.3 Drowning Detection Using Machine Vision

Numerous prospects exist for drowning detection systems through the utilisation of machine

vision, and the progress in object detection algorithms further enhances these possibilities.

This section shall assess machine vision solutions including the hardware and algorithms

used in their implementation.

2.3.1 Hardware

Many of the drowning detection systems reviewed utilised computers such as the Raspberry

Pi for deployment in field. Pavithra et al used a Pi Camera and Raspberry Pi for their

drowning detection system which was able to detect and track swimmers in a pool. Alshbatat

et al also made use of a Raspberry Pi and Pixy cam in their system which communicated with

an Elekstar controller for deployment of a rescue system. It should be noted that their

drowning detection system was simplified to identify swimmers based on people wearing

yellow vests. Thus, detection of a yellow object is assumed to be a swimmer. In addition, the

system was concept tested in a laboratory only and not in a swimming pool. Nonetheless, the

results from lab experiments were promising and proved the concept.

In addition to hardware required for deployment of drowning detection systems, further

hardware is often required to train the algorithms. Graphical Processing Units (GPUs) are

now widely used in machine learning applications due to their improved performance over

Computer Processing Units (CPUs). In one experiment conducted using machine learning for

webpage classification, GPUs were found to complete test cases 4 to 5 times faster than

CPUs (Buber and Diri, 2018). In addition, it was found that running time was shortened as

the number of cores was increased in the GPUs.

Handalage et al ustilised Google Colab and the freely available virtual GPUs to create and

train their models, saving weight files every 100 iterations. Once the model was trained, it

was implemented on a NVIDIA Jetson Nano board running a Quad-core ARM CortexA57

processor. The Jetson nano was also equipped with a 128 Core GPU making it suited to

machine learning applications and running neural models in parallel (Handalage et al, 2021).

Other researchers followed a similar methodology, Yang et al trained a custom YoloV4 model

on a NVIDIA GeForce GTX1080 GPU (Yang et al, 2021) and Niu et al also used a NVIDIA

GeForce RTX 2080Ti GPU (Niu et al, 2022).

17

2.3.2 Algorithms

Both Yolo and CNN algorithms have been used in drowning detection systems and both offer

promising results. There are advantages and disadvantages to each type of algorithm and this

section shall review their use in drowning detection systems.

Five types of CNN algorithms were assessed for their effectiveness in a drowning detection

system by Shatnawi et al in 2023. They selected SqueezeNet, GoogleNet, AlexNet,

ShuffleNet and ResNet 50 for testing on their dataset. Their dataset was limited to 200

images taken from Google and two classes were to be detected: drowning and swimming. To

avoid overfitting, they utilised data augmentation techniques to increase the quantity of

imagery in their dataset. Rotation and scaling were found to be effective methods. Their

experiments were implemented in MATLAB and six metrics were used to evaluate the

various models. These were accuracy, recall, precision, specificity, F1 and the Mathew

Correlation Coefficient (MCC). It is notable that no metric for measuring the speed of

detection was used. They concluded that ResNet 50 performed the best with accuracy and

training time (Shatnawi et al, 2023).

Another approach used pose estimation algorithms. Firstly, OpenPose was used to label joints

on images of swimmers. VGG-19, a CNN used in OpenPose was replaced with Thin-

MobileNet to reduce the size of the network model and calculation times (31 seconds to 14).

A shallow Recurrent Neural Network (RNN) was then used to recognize drowning actions

(Jian and Wang, 2021). The authors found that the model had an accuracy of 89.4% though

there was the potential for detections to be missed due to bubbles generated by the swimmer.

Again, no reference was made to detection times in the final testing of the model.

Speed and accuracy are critical measures in a real time drowning detection system.

Consequently, it is important to compare these metrics in various algorithms. R-CNN and

Fast R-CNN are known for their accuracy and ability to detect small objects, a feat that Yolo

algorithms often struggle with. However, the former are less suited to real time applications

due to the speed of detection, an area where Yolo excels (Malhotra and Garg, 2020). Joseph

Redmon, the initial creator of Yolo, acknowledges the lagging accuracy of Yolo when

compared to CNNs like RetinaNet (an AP of 33.0 compared to RetinaNet’s 40.8). However,

he points out that RetinaNet takes 3.8 times longer to process an image (Redmon and

Farhadi, 2018). Since his final version of Yolo (YoloV3) there have been significant

improvements in the subsequent iterations of the Yolo models. As table 1 below

18

demonstrates, CNN models generally perform better than Yolo models with regards to mAP

metrics, however, cannot match Yolo in speed.

Method FPS mAP@0.5 mAP@0.5,0.95

Fast RCNN 0.03 35.9 19.7

Faster RCNN 5 42.7 21.9

Mask RCNN - 62.3 39.8

YoloV2 40 44.0 21.6

YoloV3 45 51.5 28.2

YoloV4 31 64.9 43.0

YoloV5 140 68.9 50.7

Table 1: A performance comparison of object detection models (Kaur and Singh, 2022)

It is not to say that CNN object detection models do not have their place, for instance they are

well suited to medical imaging detections where real time speeds are not necessary (Kaur and

Singh, 2022). However, where real time speeds are required, Yolo models are the most

suitable choice (Malhotra and Garg, 2020).

Niu et at adapted a YoloV4 framework to a custom model. YoloV4 was the algorithm of

choice as it is a single stage target detection algorithm with excellent speed and accuracy.

They replaced the ReLu functions with a Meta-CON activation function in conjunction with a

CBAM module. They then tested this model on a constructed swimming video dataset. They

found their model performed marginally better than the YoloV4 alone with a mAP of 86.92%,

which was an increase of 1.82% on the original method (Niu et al, 2022). The dataset

contained a total of 12588 images (both above and underwater) which had been taken from

footage and labelled using LabelImg. Training and testing were performed at a ratio of 9:1

with both CPUs and GPUs being used. The dataset contained people swimming as well as life

savers simulating drowning behaviours.

Yang et al also selected YoloV4 as their algorithm of choice and customised it to suit their

needs. They introduced a new output scale from the low-level feature map layer to improve

the detection of small objects. They also improved the non-maximum suppression of YoloV4,

which reduced the number of bounding boxes resulting in more accurate positioning

information for their intelligent lifebuoy (Yang et al, 2021).

YoloV5 was used to create a drowning detection system using surface and underwater

cameras. It was found to be the most suited algorithm for their needs as real time detection

was a requirement (Vestinov et al, 2023). The authors considered several other versions of

19

Yolo, including YoloV7, YoloR and YoloX but after their initial experiments, found YoloV5

was the best for their purposes. Again, dataset acquisition was a challenge due to the nature of

drowning events, but they utilised augmentation techniques to increase the size of the dataset.

After the model was trained, the team tested the system by simulating drownings and found

that their model successfully detected all events. They did note some limitations because of

their dataset. For example, an underwater vacuum cleaner was consistently identified as a

person and false positives occurred in night frames (Vestinov et al, 2023).

As previously mentioned, Handalage et al used YoloV3 for identifying swimmers and then a

CNN determined if they were exhibiting drowning behaviour using OpenPose. Their system

had an accuracy of 85.6% however they did not refer to any detection times (Handalage et al,

2021). Lei et al also utilised a customised YoloV4 and underwater cameras for identification

of drowning behaviours having experimented with various versions of Yolo (from 3 to 5).

Their results found that YoloV4 performed best and was capable of being used in a real time

drowning detection system (Lei et al, 2021). Another previously mentioned solution by Yang

et al also ustilised YoloV4 for detection of swimmers in distress, again it performed well

though was limited in deployment by its size (Yang et al, 2021). Thus, it is clear from the

reviewed literature that Yolo is capable of being used in a real time drowning detection

system. In addition, little research has been conducted beyond YoloV5 in these systems and

as such, opportunities exist to investigate this further.

Figure 8: Drowning stages detected by the Yolo algorithm used by Handalage et al (Handalage et al, 2021).

2.3.3 Datasets

In object detection, there are several open-source datasets which have been used as a

benchmark for training algorithms. Until 2017, the de facto standard was the Pascal VOC

dataset. This contained 20 object classes through 17,125 images. However, since 2017, the

benchmark has become the Microsoft COCO (Common Objects in Context) dataset (Miller et

al, 2022). The COCO dataset contains 80 object categories with the 2017 dataset being split

20

into three different categories. These are train, which contains 118,000 images, validation

which contains 5,000 images and test which contains 20,000 images. The benefit of the

COCO dataset is that it provides standardised metrics including mean Average Precision

(mAP) which can be used to compare various object detection models (Jocher and Waxmann,

2023), a leaderboard on the dataset website compares the performance of a variety of models.

A limitation of many of the systems proposed was the availability of a dataset on which to

train a detection algorithm. By nature, drowning events are unpredictable and uncommon,

and so there was a reliance on mimicking drowning behaviours to train models. In addition,

reasonably large datasets are required for meaningful results, often in the order of 10,000 to

40,000 images as indicated by the reviewed literature. Thus, acquisition or creation of an

appropriate dataset will be a key challenge of this research.

Generation of a dataset for drowning behaviours was proposed by Hasan et al using both

surface and underwater cameras. This dataset was tested using algorithms to detect the early

stages of drowning rather than looking for a drowned person with the underwater camera.

Drowning recognition is achieved using Deep Neural Networks (DNNs) which have been

pretrained on a large image set, which formed part of their dataset. These were then adapted

for water behaviour recognition for the purpose of identifying behaviours associated with

drowning. Two methods were then used to train deep learning models for drowning detection:

scene recognition and pose estimation methods with pose estimation found to be the most

effective for drowning detection (Hasan et al, 2021). Finally, a test dataset was used to assess

the effectiveness of the models used and their dataset for training them.

Figures 9a and b: Drowning and Swimming detections using ResNet50 (Hasan et al, 2021).

21

Given the sporadic nature of drowning events and the challenges in acquiring such a dataset

highlighted in this review, a gap exists in the development of a suitable dataset for drowning

behaviours. There is an opportunity to investigate the size needed to effectively train a

machine vision model for drowning detection.

2.4 Machine Vision Developments

Many machine vision systems have been implemented using standard cameras and rely on

peripheral CPUs or processors to for object detection. However, there have been

developments in affordable computer vision hardware. For instance, Luxonis have released

an OAK-D (OpenCV AI Kits- Depth) which is a three-camera device with stereo depth and a

high-resolution colour camera. In addition, the device contains Neural Network inferencing

and computer vision capabilities (Luxonis, 2023). This allows much of the resource intensive

neural network processing to be done on camera rather than on a peripheral device, such as a

Raspberry Pi potentially offering better real-time response with neural network models.

The OAK-D was a crowdfunded camera released in 2021 and has since been the centre of an

annual competition hosted by OpenCV and Microsoft attracting 1400 submissions a year

(Bliss, 2021) with users demonstrating implementation of the Oak-D in their projects.

Figure 10: The Oak-D Lite edge AI camera. In the centre is the colour camera with two stereo cameras either side (Luxonis,

2023).

One novel use of the Oak-D camera was in a non-invasive real-time monitoring system in

neonatal intensive care units in Spain named the Neocam. The system proposed used an Oak-

D due to its on-board processing and ability to perform several video analysis tasks of clinical

interest in real-time speeds (Ruize-Zafra et al, 2023). They used several algorithms for

various tasks, for body and face detection two CNNs (ResNet) were used, for facial

expression classification MobileNetV2 was implemented and for pose estimation BlazePose

body was selected. The use of these networks allowed for monitoring of infant breathing rate

22

(due to the mono-cameras of the OAK-D), motor activity monitoring and emotional status.

Their system had positive results, with the algorithms for face and pose detection functioning

correctly 90% of the time (Ruize-Zafra et al, 2023). A survey conducted amongst clinical

staff found that they considered the system to be safe and that they would like more time to

work with it. In addition, the breathing rate detected by the camera with within 6% of

measurements obtained by probes. Some of the system’s flaws were that it struggled with

infants covered or partially covered by blankets or sub-optimal lighting levels. In addition,

key concerns from staff were related to privacy and image control. In all, the Neocam

demonstrated the impressive capabilities of the Oak-D in a practical setting.

Another system implementing the Oak-D was a computer vision-based assistance system for

the visually impaired. The OAK-D allowed the system to avoid using expensive and power

intensive GPUs normally needed for deep learning algorithms. As such, it was capable of

being worn inconspicuously by the intended user and was non-intrusive. The system was able

to detect people, cars, traffic lights, yellow pavements that aid the blind, traffic signs,

pedestrian crossings, and speed limits. In addition, the semantic image segmentation models

were able to detect roads, curbs, and road markings (Mahendran et al, 2021). SSD-MobileNet

was used for object detection and a hybrid lightweight semantic segmentation model was

used for area detection. Five open-source datasets were used for training including the

Google Open Image dataset, in addition the authors collected and labelled several thousand

custom images from walking around their local area at various times of the day (Mahendran

et al, 2021).

The hardware included the OAK-D connected to a small host computing unit such as a

Raspberry Pi which was able to be placed in a backpack and the camera was embedded in an

appropriately designed vest. The authors noted that the semantic image segmentation models

were not able to be effectively run in parallel with the other models selected and as such were

only run at the user’s request. A proposed solution was to obtain more OAK-D cameras so it

would be possible to run segmentation models in parallel, however at the time of publication

the OAK-D was still a Kickstarter project and supply was limited (Mahendran et al, 2021).

However, the system addressed common challenges experienced by the visually impaired on

a daily basis and was also a non-obtrusive design. In addition, the authors were confident that

the computing device could be eliminated and replaced with a mobile device or edge device

such as a Nvidia Jetson.

23

At the time of writing, there was no literature indicating that a drowning detection system has

been proposed or designed utilising devices such as the OAK-D Lite. As such, there is an

opportunity to investigate this.

2.5 Knowledge Gaps

Having conducted the literature review, several knowledge gaps were identified which shall

form the foundation of this research project. They are listed below:

1) There are no solutions which utilise only surface cameras in a non-commercial setting

such as a residential pool.

2) Yolo algorithms have proven to be effective in drowning detection systems, however

little research has been conducted beyond YoloV5. As a result, there is an opportunity

to investigate newly released algorithms beyond YoloV5 in a drowning detection

system.

3) Drowning datasets have proven to be a major challenge identified in all the systems

studied. A knowledge gap exists in the acquisition and development of a suitable

dataset to effectively train an object detection model.

4) Affordable cameras with embedded AI processing capabilities are now available. The

literature review indicated that cameras such as the Oak-D have not been utilised in

drowning detection systems. As such, an opportunity exists to explore this knowledge

gap.

24

3 Methodology

Several knowledge gaps have been identified in the literature review. Experiments shall be

developed and conducted to address these. To reiterate, the gaps are as follows:

1) Surface Cameras: There are no solutions which utilise only surface cameras in a

residential pool and existing market ready solutions are bespoke designs for

commercial swimming pools. Development of a simple surface camera for use in a

residential pool may ultimately reduce drowning events.

2) Yolo Algorithm Developments: Yolo algorithms have proven to be effective in

drowning detection systems, however little research has been conducted beyond

YoloV5. As a result, there is an opportunity to investigate newly released algorithms

beyond YoloV5 in a drowning detection system. Of particular interest is YoloV7 and

YoloV8 which are adaptations of YoloV4 and V5 respectively.

3) Dataset Acquisition and Development: Drowning datasets have proven to be a major

challenge identified in all the systems studied. A knowledge gap exists in the

acquisition and development of a suitable dataset to effectively train an object

detection model. High quality, diverse and often large datasets are needed to

effectively train machine vision algorithms. The acquisition and development of such

a dataset shall be investigated in this project.

4) Cameras with Embedded AI functionality: Affordable cameras with embedded AI

processing capabilities are now available. The literature review indicated that cameras

such as the Oak-D have not been utilised in drowning detection systems. As such, an

opportunity exists to explore this knowledge gap. Of particular interest is the Oak-D

Lite which is a lightweight version of the Oak-D at a lower cost.

To reduce the scope of this project, an Oak-D Lite camera has been selected as the surface

camera for use. This shall assist in addressing the first and last knowledge gaps as well as the

fifth research question ‘What is the most appropriate hardware to implement the algorithm on

to build a real time drowning detection system?’. This project shall focus on the acquisition

and development of a suitable dataset as well as an appropriate Yolo algorithm for the

drowning detection system.

25

3.1 Research Methodology

This section shall develop a methodology and specific experiments which aim to close the

knowledge gaps identified and answer the project research aims.

3.2 Task Analysis

The research task can be broken down into several distinct stages.

3.2.1 Dataset Acquisition and Preparation

The first stage of the project is to acquire and prepare a dataset. It may also be necessary to

create my own dataset if a suitable one cannot be sourced. The dataset will also need to be

appropriately labelled for the algorithm which will be trained. The literature indicates that

LabelImg is a free and open-source program which can be used for this purpose.

3.2.2 Metrics

It is necessary to define metrics and parameters which shall be used to measure the

effectiveness of the chosen models to address the sixth research question ‘How can the

effectiveness of the system be measured?’. Key Metrics which shall be used are as follows:

i) Mean Average Precision (mAP) - This metric shall be used to quantitatively

compare the different models and their capabilities. This will also assist in

selecting the best performing weight file once a model has been trained.

ii) Speed of Detection – This shall be measured in milliseconds. It is important to

know the time it takes for models to run their detections as this will be a critical

component of a real time drowning detection system.

iii) Average Precision (AP) – this metric is used to compare precision and recall in

single classes. It will be important for understanding model’s performance in

detail.

iv) True Positive (TP) – The correct detection of a bounding box which will assist in

gaining an in depth understanding of a model’s performance.

v) False Positive (FP) – The incorrect detection of a non-existent object or the

misplaced detection of an existing object, again this will assist with understanding

a model’s performance and the quality of the dataset.

vi) False Negative (FN) – A bounding box that failed to be detected around an object,

as per the previous two metrics.

26

3.2.3 Algorithm Selection

The second stage of the research and first experiment is to select an appropriate Yolo

algorithm. It is important that the algorithm is accurate whilst being deployable on the Oak-D

Lite and Raspberry Pi. Key features needed are:

1) Precision – the algorithm needs to be accurate and capable of meaningful detections.

2) Speed – the algorithm shall be able to make detections in real time.

3) Size – the algorithm shall be deployable on the Oak-D Lite and the Raspberry Pi.

It may be appropriate to select two or three algorithms and then compare their relative

performances against the above specifications.

3.2.4 Build, Train, and Deploy Model

Once the algorithms have been selected, they shall be built in Google Colab and trained on

the acquired dataset using the virtual machines and GPU available through Colab. The

models shall use appropriate measures such as mAP and speed to select the most suitable. If

necessary, improvements will be made to the final model to increase mAP and speed

capabilities.

Once the final model has been selected, it will then be deployed onto the Oak-D Lite and

Raspberry Pi and tested in real time. This testing will be qualitative in nature to determine its

accuracy and effectiveness in real time.

27

3.3 Experimental Design

Model testing and development will involve several experiments. The design of these is as

follows.

3.3.1 Experiment 1 – Qualitative Testing of Yolo Models

The first experiment will involve deploying pretrained Yolo Models. The baseline model shall

be YoloV3 as this is the final version developed by Joseph Redmon, the initial creator of

Yolo. Versions 7 and 8 shall also be tested. These models will be trained on the COCO dataset

and two images will be used for comparison of the model’s effectiveness. These images will

contain objects which are included in the COCO dataset (person, snowboard, skis, backpack,

skateboard). The main aims of this experiment are:

1) To gain an understanding of how these models are built and deployed in Google

Colab.

2) To qualitatively compare the abilities of each model and to gain an understanding of

their object detection capabilities and assist in the selection of models for further

testing.

Hypothesis

The expected outcome of this experiment is that larger and newer Yolo versions will have

greater detection capabilities. It is expected that YoloV3 will perform poorly in comparison to

later versions.

This experiment shall also assist in answering research question 4, ‘What method and

hardware should be used to train the algorithm?’. This experiment shall confirm whether

Google Colab is the appropriate platform for training.

3.3.2 Experiment 2 – Quantitative Testing of Yolo Models on a Custom Dataset

Two models shall be selected for this experiment; YoloV7 and YoloV8. YoloV7 shall be

selected as it was developed by the team behind YoloV4 and thus is likely to succeed any

versions of it. In addition, the release of YoloV7 included a peer reviewed academic paper.

YoloV8 shall also be tested, it was developed by Ultralytics who created YoloV5, there was

some criticism around the release of YoloV5 as it did not have a peer reviewed paper

accompanying it. However, the literature review indicates that it has been widely

implemented with good results. Both YoloV7 and V8 are new models having been released in

July 2022 and January 2023 respectively. Thus, they offer an exciting opportunity to

28

investigate their capabilities. The figure below compares the various later versions of Yolo for

speed and mAP50-95.

Figure 11: A comparison of speed and mAP of Yolo versions 5 to 8 (Ultralytics, 2023).

Additionally, both YoloV7 and V8 are compatible with the RCV2 architecture of the Oak-D

Lite and can therefore be deployed in field.

Mean Average Precision (mAP) and speed shall be the metrics measured during this

experiment. The aims of this experiment are as follows:

1) To compare three models trained on the custom drowning dataset and their

capabilities.

2) To select the best model for deployment on the Oak-D Lite. mAP and speed shall be

the key metrics.

3) To achieve mAP scores similar to or better than those achieved in the COCO dataset

baseline testing.

4) To observe the effectiveness of the custom dataset when used to train a Yolo model.

Hypothesis

It is predicted that the YoloV7 and V8 models shall perform well. Literature indicates that

YoloV8 slightly outperforms V7 and so the same is expected in this experiment.

This experiment shall answer the first research question, ‘What is the most effective

algorithm that can be used in a real time drowning detection system?’.

29

3.3.3 Experiment 3 – Improving the Yolo Model

Having selected the most appropriate Yolo model, this experiment will be focused on

improving mAP scores and speed. This may be through improvement of the dataset or other

techniques such as fine-tuning model parameters and training for more iterations/epochs. The

aim of this experiment is as follows:

1) To improve the performance of the Yolo model. This will be observed through

changes in the mAP and speed.

Hypothesis

It is predicted that the methods implemented in this experiment will result in some

improvement in the performance of this model.

3.3.4 Experiment 4 – Model Deployment on the Oak-D and Raspberry Pi

Having selected and improved the algorithm of choice. The next step is to deploy the model

on the Oak-D and Raspberry Pi. Once deployed, the model shall be tested in real-time at a

swimming pool to confirm it is able to make accurate detections. The aim of this experiment

is as follows:

1) To deploy the chosen algorithm on the Oak-D Lite and Raspberry Pi and make real

time detections.

Hypothesis

It is predicted that the system can make accurate detections in real time as the algorithm

will have been selected with the end deployment in mind.

3.3.5 Experiment 5 – Real time detection and alert of drowning events

Once the model has been deployed effectively on the Oak-D Lite and Raspberry Pi, it will be

necessary to make real time detections and alert of any potential drowning events. It is

envisaged that the alert system will be in the basic form of a web browser or mobile interface.

The aim of this experiment is as follows:

1) To prove that the algorithms and hardware is capable of real time drowning detections

and alerts.

30

Hypothesis

It is predicted that the system will be capable of making real time detections and that

development of a basic alert system is possible. Ultimately creation of an application for use

on smart devices would be desirable, however this is beyond the scope of this project. A

simple alert system shall be sufficient to address the research aims and knowledge gaps.

3.4 Resource Analysis

Several resources are required for successful completion of this project. Budgetary

constraints have not been a key restriction of this project though efforts have been made to

minimise costs where possible. The following resources have been selected.

3.4.1 Hardware

Oak-D Lite: The Oak-D Lite has been selected as the camera to be used in this research

project. The Oak-D has produced promising results in systems reviewed in the literature. In

addition, these cameras have not yet been used in a drowning detection system. The Oak-D

Lite was specifically selected due to its lower price with the specifications being appropriate

for this project. The Oak-D Lite is built upon the Robotics Vision Core 2 (RVC2) which can

run several AI models, including custom models (Luxonis, 2023). The performance of the

following Yolo models on the RCV2 are tabulated below:

 Model Name Size FPS Latency (ms)

YoloV6n R2 416x416 65.5 29.3

YoloV6n R2 640x640 29.3 66.4

YoloV6t R2 416x416 35.8 54.1

YoloV6t R2 640x640 14.2 133.6

YoloV6m R2 416x416 8.6 190.2

YoloV7t 416x416 46.7 37.6

YoloV7t 640x640 17.8 97

YoloV8n 416x416 31.3 56.9

YoloV8n 640x640 14.3 123.6

YoloV8s 416x416 15.2 111.9

YoloV8m 416x416 6 273.8

Table 2 Yolo models and their performance on the Oak-D Lite (Luxonis, 2023)

Raspberry Pi 4: A Raspberry Pi 4 has been selected as the central computing unit for the

drowning detection system. Raspberry Pi units have been used extensively in machine vision

projects and are compatible with the Oak-D Lite. In addition, it is supported by a large

amount of documentation and is simple to use. A Raspberry Pi 4 with 8GB of RAM was

purchased as this should offer enough computing power for the purposes of this project.

31

Microsoft Surface Laptop: A Microsoft Surface laptop with 8GB of RAM and Windows 10

installed shall be used as the PC for development of this research project. Given that the

training will be carried out on GPUs in virtual machines in Google Colab this laptop shall

suffice for the requirements of this project.

3.4.2 Software

LabelImg: LabelImg is an open source and freely available program used for labelling

datasets in PASCAL and YOLO formats. As such it shall be used in this project for labelling

images forming the dataset.

Google Colab: Google Colab shall be used for training and development of algorithms. It has

been chosen due to its compatibility with Google Drive as well as well as offering free access

to GPUs which are required for training algorithms. Additional GPU access can be purchased

if required. In addition, reviewed literature indicated it has been used effectively in past

machine vision project with good results.

Google Drive: Google Drive shall be used alongside Google Collab for development of

machine vision models as it offers a convenient platform to upload datasets. It offers 15GB of

storage for free and the option of upgrading to more storage if needed for a negligible price.

Visual Studio Code: Visual Studio Code shall be used for creating and editing python files

associated with algorithm development. It has been selected due to its ease of use and being

freely available.

Windows Suite: The windows suite of programs including Word, Excel and Visio shall be

used extensively through this project for collation and recording of results and for word

processing and image creation.

Free Video to JPG Converter: Again, this software is freely available to download. This will

be used to split the dataset videos into JPG files in preparation for labelling.

3.4.3 Dataset

Access to a drowning detection dataset was freely provided by the team at the Rochester

Institute of Technology in Dubai used in their paper entitled ‘A Water Behaviour Dataset for

an Image-Based Drowning Solution’ which addresses the third research question; ‘Where can

a dataset be sourced?’.

32

3.4.4 Test Location

Access to a pool for testing is required. Access to such a pool is freely available at the unit

complex I am a resident of, restricted access to this location is not envisaged and as such does

not pose a risk to the completion of this project.

3.4.5 Project Cost

The project costs have been tabulated below:

Item Cost Comments

Raspberry Pi 4 8GB starter kit $ 289.00 Included accessories such as a power supply and USB leads

Oak D-Lite Camera $ 287.00 Includes USB A to C cable for camera

Laptop $ - Currently own an appropriate laptop

LabelImg $ - Free to download and use

Google Collab $ - Free to access and use

Google Drive $ - Free to access and use

Visual Studio Code $ - Free to access and use

Windows Suite $ - Free to access and use

Free Video to JPG Converter $ - Free to access and use

Dataset $ - Freely provided by Rochester Institute of Technology

Test Location $ - Access is freely available

Total Estimated Cost $ 586.00

Table 3: Project Costs

A total project cost of $586 is largely consumed by the Raspberry Pi 4 and Oak-D Lite

camera. The cost is not prohibitive and is able to be self-funded for the purposes of this

research.

3.5 Project Consequential Effects

The consequential effects of this project encompassing sustainability, ethics and risks have

shall be discussed and assessed in this section. A cornerstone used for guiding the impacts of

this projects is the Engineers Australia Code of Ethics. The guideline highlights four key

areas, which are as follows:

1) Demonstrate integrity.

2) Practice competently.

3) Exercise leadership.

4) Promote sustainability.

(Engineers Australia, 2023)

33

3.5.1 Sustainability

This project shall promote sustainability in as far as it is applicable. This includes any effects

of the project which have the potential to adversely impact the health, safety, and well-being

of the community (Engineers Australia, 2023). Though this project shall be largely limited to

demonstrating proof of concept of a real time drowning detection system, should the project

be successful in its research aims, it offers an additional tool for lifesavers and in pool

supervision. Ultimately, such a system is designed to be used in conjunction with existing

controls, but it would offer a promising and potentially affordable opportunity to further

reduce the risks and impact of drowning events.

3.5.2 Ethics

There are several ethical considerations surrounding this project. Two key considerations are

privacy (including images used in the dataset) and use of the drowning detection system

which directly tie in with two principles from the Engineers Australia Code of Ethics;

demonstrating integrity and practicing competently.

The dataset provided by Rochester Institute of Technology release agreement contained the

following conditions which shall be adhered to:

1) The dataset will not be further distributed, published, copied, or further disseminated

in anyway or form whatsoever, whether for profit or not. This includes further

distributing, copying or disseminating to a facility or organization unit in the

requesting university, organization, or company.

2) The videos will only appear in technical reports, technical papers, and technical

documents reporting on water behaviour research. There will be no more than 8

images used at a time in a publication.

3) All documents and papers that report on research that uses the Water Behaviour

dataset will acknowledge the use of the Water Behaviour dataset. Use of the Water

Behaviour dataset will be acknowledged as follows: "Portions of the research in this

paper use the Water Behaviour dataset collected under the Electrical Engineering

department at Rochester Institute of Technology Dubai" and citation to:

S. Hasan, J. Joy, F. Ahsan, H. Khambaty, M. Agarwal and J. Mounsef "A Water

Behavior Dataset for an Image-Based Drowning Solution," In 2021 IEEE Green

Energy and Smart Systems Conference (IGESSC), pp. 1-5, 2021.

A copy of the release agreement has been included in Appendix C.

34

In addition, the supplementary images used in the dataset, which do not form part of the set

provided by the Rochester Institute of Technology, shall only be used for the purposes of this

research project. Explicit permission was sought from the volunteers prior to their use, and it

was ensured the volunteers understood the scope and use of these images. The images shall

not be further distributed without their permission.

It was also decided that the scope of the drowning detection system shall be limited to adults

only, and as such images of only adults have been used in the dataset.

Finally, this drowning detection system is a research project and as such shall not be used in

place of appropriate supervision in swimming pools. It shall not be distributed or shared

beyond what is required to for fulfilment of this research project.

3.6 Risk Assessment

A risk assessment was conducted to identify any hazards and implement controls for these

risks.

3.6.1 Risks Identified

Several risks were identified including poor housekeeping resulting in trip and other hazards,

adverse weather, and the use of electrical/electronic equipment around swimming pools.

Controls were developed and implemented, which have been documented in the risk

assessment in Appendix B. In addition, two other critical risks were identified, which are as

follows:

1) Working around swimming pools – Working around swimming pools exposes

personnel to wet and slippery surfaces and the potential for drowning. Only

competent swimmers are to be used for data collection and there shall be at least one

spotter in place whilst persons are in the swimming pools. In addition, the pool shall

have standard pool fencing and signage as per Queensland legislation.

2) Use of Project as a Drowning Detection System – There is the potential for persons to

misunderstand the intention of the drowning detection system as a research project

and prototype and thus to mistakenly use it in place of appropriate supervision around

swimming pools. The project is not to be distributed for public use and it shall be

emphasised that this work is to develop a prototype and proof of concept rather than a

market-ready drowning detection system.

35

4. Development and Experimental Setup

This section shall address the development and setup of experiments, including data set

acquisition and equipment.

4.1 Dataset Acquisition and Preparation

4.1.1 Dataset Acquisition

As the reviewed literature indicated, a significant challenge of this project would be acquiring

a dataset which can be used to train an object detection algorithm. Contact was made with

several authors of papers reviewed however only one team was able to provide their dataset.

The authors of the paper titled ‘A Water Behaviour Dataset for an Image-Based Drowning

Solution’ from the Rochester Institute of Technology in Dubai graciously provided the dataset

they developed for this research.

Access was provided to videos filmed using overhead and underwater cameras. For this

project, only the overhead camera footage was to be utilised. There were two main folders

entitled ‘test’ and ‘train’ and within these were four folders denoting the four actions filmed

which were ‘swim’, ‘drown’, ‘idle’ and ‘misc’. The directory was structured as follows:

Figure 12: The folder directory structure of the provided dataset with the number of videos

The dataset was inspected and observed to be filmed in different swimming pools at various

times of the day. Several people were filmed, and the surface dataset consisted of 47 videos.

The persons participating in filming were all males in their early 20s of middle eastern

ethnicity (Hasan et al, 2022). A noted limitation of this dataset is the homogeneity of the

subjects being filmed. As such, additional footage was added to the dataset to include female

subjects of Caucasian ethnicity filmed in Mackay, Queensland.

A further 20 videos were created with females as the subject. Filming was done using a

GoPro Hero 7 Black from various angles around the test pool. Two female subjects were used

performing the three actions noted in the previous dataset (drowning, swimming, idle). 16

videos were to be used for the training/validation set and 4 were selected for the testing set.

36

4.1.2 Dataset Preparation

For simplicity, the two video datasets shall be denoted as the ‘Dubai Dataset’ (from Rochester

Institute of Technology) and the additional dataset as the ‘Mackay Dataset’. Processing of the

datasets followed the same methodology.

The first step was to extract images from the video files. ‘Free Video to JPG Converter’

software was used to do this. One frame was extracted every 10-50 frames. This was

determined to be adequate for acquiring a suitable number of images whilst maintaining

diversity. For example, extracting every frame would have resulted in a significant number of

similar images. The extraction rate varied due to there being an imbalance in the amount of

video for each class. For instance, there was more footage provided for ‘swimming’ classes

and to keep the dataset balanced, frames were extracted less frequently. This process was

repeated for each video. The breakdown of images from each is tabulated below:

Train Test

Dataset Class Images Dataset Class Images

Mackay

Swim 868

Mackay

Swim 162

Idle 477 Idle 40

Drown 246 Drown 117

Dubai

Swim 955

Dubai

Swim 96

Idle 966 Idle 114

Drown 1012 Drown 70

 Total 4524 Total 599

Table 4: A breakdown of the image dataset

A total dataset size of approximately 5100 images was chosen to strike a balance between

practicality and accuracy. During the labelling process, it was possible to label between 300-

400 images an hour depending on the number of labels needed in the image. Thus, 5100

images equates to between 13 and 17 hours of labelling time. Though a larger dataset is

desirable, the limits of this research project dictate that any larger than 5100 images become

impractical given time constraints.

The next step in the preparation process was labelling of the dataset using LabelImg. Once

the three classes had been created in the program, it was a simple process of drawing

bounding boxes around the objects and selecting the correct label in YOLO format. LabelImg

automatically saved the text file associated with the image.

37

Figure 13: Drawing a bounding box on a training image using LabelImg.

Some key principles were followed in the labelling process as outlined by Nelson (2020):

1) Label all objects of interest – Thus all persons appearing in images should be labelled with

the appropriate class. This avoids the introduction of false negatives within the model.

2) Label the entire object – In particular, this relates to objects which may be obscured by

other objects in the image. It is recommended that the entire object of interest is included in

the bounding box, including the blocked section. In addition, bounding boxes can overlap

should two objects of interest be in close proximity.

3) Create Tight Bounding Boxes – it is critical that the entire image is encompassed within the

bounding box, however it is also important that excess, irrelevant pixels are not included.

Upon completion of the labelling process, each image containing an object had a text file

associated with it. Some images had several objects whilst the occasional one had no objects

present. Figure 7 shows a label text file, the first value (an integer) represents the class, in this

case ‘idle’. The following two numbers are the x and y values of the centre of the bounding

box. The final two values are the width and the height of the bounding box. If there were two

objects in an image, there would be a line for each in the file.

Figure 14: A text file associated with a labelled image.

38

Earlier versions of Yolo, including V3, require a class file which aligns the first integer of the

text file with its class. Later versions of Yolo also require a similar declaration of classes, but

this is generally captured in a configuration file and not a separate class file. LabelImg

automatically generates the class file, as shown below.

Figure 15: The class declaration file where drowning is 0, idle is 1 and swimming is 2.

4.2 Experiment 1 – Qualitative Testing of Yolo Models

In this experiment, qualitative testing of various Yolo models was carried out. The aims of the

experiment were:

1) To gain an understanding of how these models are built and deployed in Google

Colab.

2) To qualitatively compare the abilities of each model and to gain an understanding of

their object detection capabilities and assist in the selection of models for further

testing.

Google Colab notebooks exist in the model’s respective Github repository. The models have

been trained on the COCO dataset which can detect 80 object categories. Two images were

selected for comparison purposes, their selection was based on them containing several object

categories that are part of the COCO dataset on which the models are pretrained on. For

reference, the two images have been named ‘Kicking Horse’ and ‘Skateboards’.

39

Figures 16a and b: The two images for qualitative testing, left ‘Kicking Horse’ and right ‘Skateboards’.

As shown, the first image contains several objects capable of being detected including

‘person’, ‘snowboard’, ‘backpack’ and ‘skis’. The second image has the ‘person’ and

‘skateboard’ objects.

4.3 Experiment 2 – Quantitative Testing of Yolo Models on a Custom Dataset

Though the initial dataset was split into two test/train groups, an additional subgroup was

created from the test data. Images were randomly selected and used as the validation dataset.

These images are used in the model training to validate the model’s development. Though

there is no fixed standard for the ratio split of the dataset, Young et al used a

train/validate/test split of 8:1:1. Nui et al used a train/test split of 9:1. Thus, a

train/validate/test split of approximately 8:1:1 was used in these experiments. The final image

tally is tabulated below.

Dataset Number of Images

Train 4003

Validate 521

Test 599

Table 5: The number of images in each dataset for training and testing.

Though the particulars of deploying each model were slightly different as the versions varied,

the general structure of the Google Colab notebook for training a custom model was the

same. The following diagram shows the process undertaken.

40

Start

Link Google Drive

Clone Yolo

Repository from

Github

Install/build

dependancies

Download

pretrained

weights

Import custom

config, object

& data files

Train model

Custom

weight

file

Test and run

detections

Finish

Training

results

Save

detections

Figure 17: The process for training a custom Yolo model using Google Colab.

4.3.1 YoloV7

Each model required custom data and configuration files. The data file stores the directory

addresses of the various image datasets for train, validate and test as shown in the following

figure. This file is stored in the model’s data folder.

41

Figure 18: A custom data file for YoloV7.

In addition to the data file, changes needed to be made to the configuration file. In this case, it

was changing the number classes from the default value to 3, to reflect training on the custom

dataset. No hyperparameters were adjusted from the default in this experiment however some

additional parameters were set before starting training. These were the default values taken

from the Github repository and were as follows:

Parameter Value

Batch Size 16

Image Size 640x640

Epochs 24

Table 6: Additional training parameters for the customYoloV7 model.

4.3.2 YoloV8

YoloV8 setup was similar to V7. A file declaring the directory addresses for the image sets

was created and placed in the data folder. This is shown in the following figure.

Figure 19: The custom data file for YoloV8.

42

Unlike YoloV7, it was not necessary to declare the number of classes in a configuration file.

Several additional parameters were declared prior to starting training. Again, these were the

recommended parameters taken from the Ultralytics Github repository and are tabulated

below.

Parameter Value

Batch Size 16

Image Size 640x640

Epochs 24

Table 7: Additional training parameters for the custom YoloV8 model.

4.4 Experiment 3 – Improving the Yolo Model

YoloV8 was selected as the model to be used in the drowning detection system based on its

accuracy and training speeds. Attempts will be made to improve the model’s accuracy using

several techniques.

4.4.1 Inclusion of background images

Inclusion of background images may assist in reducing false positives, with approximately 0-

10% of the dataset containing background images (Ultralytics, 2023). In the case of the

drowning detection dataset, these images would be empty swimming pools. These images

were taken from a google images search and manually checked to confirm they contained no

people as unlabelled objects could potentially impact the model’s accuracy. 221 images were

acquired with 177 for the training dataset, 22 for the validate set and 22 for the test set which

equated to approximately 4% of each set containing background images.

4.4.2 Increasing the Model Size

Initial testing was conducted using YoloV8-s to effectively compare it to YoloV7-tiny.

However, the Oak-D Lite can run YoloV8-m which offers the potential for further accuracy.

4.4.3 Image Augmentation and Parameter Tuning

Image augmentation is an effective method for increasing the training dataset through

techniques such as image rotations, transformations, blurring and other methods. In YoloV8,

these parameters can be set as part of the hyperparameter file and will be investigated.

In addition, several parameters can be adjusted which may improve the model’s performance.

This includes the batch size and learning rate. Increasing the batch size can lead to faster

convergence should processor memory allow. The default batch size is 16. Two additional

sizes shall be tested; 32 and 64.

43

The learning rate dictates how many weights are updated throughout training in response to

the model error. Two parameters determine this, lr0 and lrf. These are multiplied together to

give a final learning rate which by default is 0.0001. A high learning rate can lead to

overshooting the best weights whilst a low learning rate can lead to slow convergence.

YoloV8 has several image augmentation options. Evidentially, given the number of variables

which can be passed for augmentation, many experiments could be carried out to find the

optimum combination. However, to remain within the scope of this thesis, several

translational parameters have been selected for experimentation, as guided by Vestinov et al

in their 2023 paper. They adjusted HSV values, random resizing of images, random cropping,

horizontal flipping, Gaussian blur, and grayscale. In these experiments, HSV values were not

changed in addition to perspective, copy-paste and image mix-up due to the nature of the

dataset. For example, mixing up an image of drowning and swimming could cause more

confusion to the model given their potential similarities and HSV values are set by default.

The following values were selected for experimentation as they offer enough variety for

meaningful experimentation whilst remaining within experimental scope.

Parameter Description Default Experiment 1 Experiment 2

hsv h image HSV-Hue augmentation (fraction) 0.015 0.015 0.015

hsv_s image HSV-Saturation augmentation (fraction) 0.7 0.7 0.7

hsv_v image HSV-Value augmentation (fraction) 0.4 0.4 0.4

degrees image rotation (+/- deg) 0 180 90

translate image translation (+/- fraction) 0.1 0.8 0.4

scale image scale (+/- gain) 0.5 0.8 0.4

shear image shear (+/- deg) 0 180 90

perspective image perspective (+/- fraction) 0 0 0

flipud image flip up-down (probability) 0 0.8 0.4

fliplr image flip left-right (probability) 0.5 0.8 0.4

mosaic image mosaic (probability) 1 1 1

mixup image mixup (probability) 0 0 0

copy_paste segment copy-paste (probability) 0 0 0
Table 8: The image augmentation parameters to be used during for the model training.

4.4.5 Increasing Training Epochs

Initially, the models were only trained for 24 epochs to gain an understanding of their

capabilities within a reasonable time frame. However, as indicated in the literature, training is

generally carried out for several hundred epochs. As such, this will be applied to further

develop the model and the model shall be trained for 300 epochs.

44

4.5 Experiment 4 – Deployment on the Oak-D Lite and Raspberry Pi

This experiment shall focus on deploying the final model on the Oak-D Lite and Raspberry Pi

and demonstrate proof of concept for an operational system.

4.5.1 Creating a .blob file

Once model training has been completed, a directory of weight files is created. Depending on

how the model has been configured, these may be every 100 epochs. All Yolo models

automatically select the ‘best’ file based on training parameters as well as the final weight

file. The best file, as determined during training shall be deployed on the Oak-D Lite.

Luxonis have created a tool for conversion of the weight files (.pt file) to a .blob and JSON

(JavaScript Open Notation) for deployment of Yolo models to Oak devices. This tool was

used, and the files downloaded.

4.5.2 Deploying the Model

A python script was then developed for deploying the model including the JSON and .blob

files. This script was based on an experiment developed by Depth AI and Luxonis and was

available on their Github repository (Luxonis, 2023), the final version is available in

Appendix D. The basic program layout is demonstrated in the following pseudo code:

Figure 20: The pseudo code for deploying the Yolo model in Experiment 4.

45

The model was then deployed using the Raspberry Pi and Oak D-Lite camera in field. The

experimental setup is shown in the following figure:

Figure 21: The equipment set up for Experiment 4 - deploying the Yolo model.

A frame rate of 5fps was used with an initial confidence interval of 0.5.

4.6 Experiment 5 – Real Time Detection and Alert

This final experiment is to deploy the real time drowning detection system and create and

appropriate alert upon the detection of a drowning event.

4.6.1 Drowning Detection Interface

Improvements shall be made to the initial code used in experiment 4. Firstly, text will be used

to alert the system user of a drowning event. This shall be simply displayed in green, if no

drowning is detected and if drowning is detected it shall change to red and display ‘Drowning

Detected!’. This text will hold for at least two seconds before resetting, i.e., a non-drowning

behaviour must be detected for at least two seconds before it will reset. Any drowning

bounding boxes shall be red, and idle and swimming bounding boxes shall be green.

46

Figure 22: Pseudocode for experiment 5.

4.6.2 Remote Drowning Detection

A simple Virtual Network Computing (VNC) application was used for creating remote

viewing of the drowning detection system. The program used was Real VNC as it was

compatible with the Raspberry Pi 4, the apple iPhone as well as the windows PC. Two

programs had to be downloaded; the VNC server and viewer on the Raspberry Pi and the

VNC viewer on the devices used for remote viewing. The apple iPhone was used as a Wi-Fi

hotspot to enable the cloud VNC connection.

4.6.3 Experimental Set Up

In a similar fashion to experiment 4, the Oak-D Lite was mounted on an adjustable camera

mount. The Raspberry Pi was powered by a power bank and connected to the Oak-D. Care

was taken to ensure the hardware did not get wet during testing. The setup was moved around

the pool to test various angles as well as being tested at various times of the day (midday in

full sunlight and late afternoon with less sunlight).

47

Figures 23a and b: The experimental setup with the Oak-D Lite, Raspberry Pi and power bank.

Learnings were taken from experiment 4 to further inform this experiment. The confidence

interval was dropped to 0.3 from 0.5 to see if this improved the drowning detection instances.

In addition, initial testing was done at lower resolution, this was increased to the maximum

(13 megapixels) that the Oak-D Lite RGB camera is capable of. Again, this was done to see if

there were noticeable improvements in detections.

48

5. Results and Analysis

This section shall present observations and results as well as offer analysis.

5.1 Dataset

Observation

Once the dataset was created, analysis was carried out to further understand the class

representation. Given that there can be several objects in one image, an imbalance in class

occurrence was expected. This is shown in the following figure.

Figure 24: A histogram showing the occurrences of the three classes in the training dataset.

As the histogram shows, idle is significantly over-represented and instances of swimming and

drowning occur more than recorded in the initial image split. In total, there are 6045 object

occurrences across the three classes.

Analysis

It is not unusual for machine vision datasets to have an imbalance, and there are methods for

addressing imbalance through dataset augmentation techniques. Intuitively, it makes sense

that ‘idle’ is over-represented. During the labelling process, many ‘swimming’ actions

initially start in the ‘idle’ state, for example, a person holding the side of the pool. In addition,

in images with several objects present, ‘idle’ actions were common. The figure below shows

two classes being labelled in a ‘swimming’ training image.

1153

3168

1724

0

500

1000

1500

2000

2500

3000

3500

Drowning Idle Swimming

C
o

u
n
ts

Classes

49

Figure 25: The occurrence of two classes in a training image (swimming and idle).

Understanding the class distribution through the initial training dataset is critical to improving

the object detection algorithm and understanding any bias the model may have. As such, there

is the opportunity to use data augmentation techniques on the training dataset to improve the

final Yolo version.

5.2 Experiment 1 – Qualitative Testing of Yolo Models

The two test images were used to compare the different versions of Yolo models. As

mentioned, YoloV3 acted as a baseline with different versions of YoloV7 and YoloV8 being

used. The YoloV7 and V8 models selected were all able to be deployed on the Oak-D Lite as

per the product specifications.

5.2.1 YoloV3

Figures 26a and b: YoloV3 detections run on the test images trained on the COCO dataset.

50

Observation

YoloV3 produced good results when run on the two test images. The model was able to make

reasonable predictions detecting all the objects present with good confidence. The only

notable error was the detection of skis instead of a snowboard.

Analysis

YoloV3 produced encouraging results, particularly with the detection of smaller objects such

as the person in the background of the skateboard image. The erroneous detection of a

snowboard instead of skis was the only fault and perhaps a difficult detection to make given it

is being carried on a backpack. Though it did successfully detect the backpack, the bounding

box encompasses the snowboard as well. It should be noted that accurate detections were

expected, given this is a larger sized Yolo model. It is too big to be deployed on the Oak-D

Lite and the detections are slower when compared to the smaller versions.

5.2.2 YoloV7-tiny

Figures 27a and b: YoloV7-tiny detections run on the test images trained on the COCO dataset.

Observation

The YoloV7-tiny model detected most of the objects in the test images. It was unable to

detect the backpack as YoloV3 was. Like YoloV3, it mistakenly detected skis instead of a

snowboard in the ‘Kicking Horse’ image. It also did not detect the backpack as YoloV3 had.

Analysis

Given this is the smallest sized YoloV7 model available, the detections were not dissimilar

from the detections made by YoloV3. Though it failed to detect the backpack, all other

51

objects were detected correctly with the exception of the snowboard. In addition, it was still

able to detect smaller objects such as the people in the background of the ‘skateboard’ image.

Given this is the smallest YoloV7 model it was expected to be the least accurate. However, its

performance is still impressive when compared to YoloV3 with the additional benefit of being

deployable on the Oak-D Lite and having real time detection capabilities.

5.2.3 YoloV8

Figures 28a and b: YoloV8-m detections run on the test images trained on the COCO dataset.

Observation

Three versions of YoloV8 were tested; nano, tiny and medium, all of which can be deployed

on the Oak-D Lite. The detections made by the models were similar, with a notable difference

being an incremental increase in the bounding box confidence as the model size increased.

Again, all key objects were detected except for the backpack and snowboard (except for

YoloV8-n). YoloV8-n was able to detect the snowboard, albeit with a low confidence score

(0.26) in addition to the detection of skis in the same area.

Analysis

The three YoloV8 versions were able to detect all key objects with increased confidence as

the model size increased. Notably, YoloV8-n was able to detect the snowboard with low

confidence, but the larger models did not. This was anomalous as the expectation would be

for the larger models to have more accurate detections. In addition, the detection speeds

remained similar across the three models, with YoloV8-n offering slightly superior speeds

(18ms less in one detection compared to YoloV8-m) though not significantly better. The

speeds of the three versions all offered real time detection capability.

53

Further experiments need to be conducted to determine the best model for the drowning

detection system as these experiments indicate that YoloV7 and V8 perform similarly.

5.3 Experiment 2 - Quantitative Testing of Yolo Models on a Custom Dataset

This experiment focuses on training the two Yolo models on a custom dataset to determine

the best model for the drowning detection system. YoloV7 and V8 were the models chosen as

they can be deployed on the Oak-D Lite and demonstrated promising results in the previous

experiment.

5.3.1 YoloV7-tiny

YoloV7-tiny was trained for 24 epochs (starting at epoch 0) on the train/validate image

dataset. As the following figures demonstrate, during training the losses gradually decrease

whilst mAP, precision and recall all increase indicating the model is successfully learning. In

addition, no overfitting is observed during the training.

Figure 30: YoloV7-tiny losses during training over 24 epochs.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20

T
o

ta
l

L
o

ss

Epoch

54

Figure 31: Precision, recall and mAP during training of YoloV7-tiny over 24 epochs.

Throughout the training, weight files were saved every epoch, YoloV7 automatically

determines the best weight file based off several metrics including precision, recall and mAP.

This file was then used to test the model on the test images. The results are tabulated below.

Best Weights

Images Images Precision Recall mAP 0.5 mAP 0.5:.95

All 599 0.63 0.495 0.549 0.32

Drowning 599 0.738 0.394 0.239 0.294

Idle 599 0.645 0.613 0.667 0.465

Swimming 599 0.505 0.479 0.443 0.203
Table 9: The test results using the custom YoloV7-tiny best weights.

In addition, detections were carried out on three test images. Each image shows a particular

class of either idle, swimming or drowning.

Figure 32: Correct detection of swimming with confidence of 0.60.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Epoch

Precision Recall mAP@.5

55

Figure 33: Detection of swimming and drowning in the drowning state.

Figure 34: Incorrect detection of swimming in the idle state.

Observation

Training was conducted at a rate of approximately 2 seconds per iteration, and as such,

training for 24 epochs was time consuming. The training metrics indicate that the model’s

learning rate progressed well and reasonable metrics for mAP, precision and recall were

achieved using the best weight files.

The detections run on the test images were inaccurate, with only the correct detection of the

swimming state. The model detected both swimming and drowning in the drowning state and

failed to detect the idle action, instead mistaking it for swimming.

56

Analysis

Given the model was only trained for 24 epochs, the initial results are promising. The

literature review indicated that models were trained for hundreds of epochs (generally in the

range of 300), thus there is significant room to improve. The training data also suggests that

the model would further benefit from more training time as there is no indication of over

fitting and a loss rate of around 0.01 is desirable.

In addition, detections run on the test images are also encouraging. The model was able to

detect the drowning state and despite also detecting swimming, the model did not miss a

potential drowning event. The mAP scores show that the model struggles to accurately detect

drowning (mAP 0.5 of 0.239) and swimming (mAP 0.5 of 0.443). Intuitively, this is logical

given the classes can appear similar depending on the image. Increases in these metrics

would see overall improvement in the model.

5.3.2 YoloV8-s

YoloV8-s was trained for 24 epochs (starting at epoch 0) on the train/validate image dataset.

Like YoloV7, the losses gradually decrease indicating improvement in the model’s learning.

Of interest is the fact that precision, recall and mAP start significantly higher than observed

in YoloV7-tiny. Again, these improve over the epochs indicating the model is successfully

learning.

Figure 35: YoloV8-s losses during training over 24 epochs.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

T
o

ta
l

L
o

ss

Epoch

57

Figure 36: Precision, recall and mAP during training of YoloV8-s over 24 epochs.

Like the YoloV7-tiny training, weight files were saved every epoch and the best weight file

selected (this was the final weight file). Again, this is the weight file that was used to test the

model.

Best and Last Weights

Class Images Precision Recall mAP50 mAP .50:.95

All 599 0.579 0.595 0.598 0.425

Drowning 599 0.685 0.456 0.535 0.343

Idle 599 0.534 0.739 0.761 0.634

Swimming 599 0.518 0.589 0.498 0.299
Table 10: The test results using the custom YoloV8-s best weights.

Again, detections were done on the same test images used in the YoloV7-tiny testing.

Figure 37: Incorrect detection of idle in the swimming state.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Epoch

Precision Recall mAP

58

Figure 38: Incorrect Detection of swimming in the drowning state.

Figure 39: Incorrect detection of swimming in the idle state.

Observations

The first significant observation was the training time of the model. The model was able to

train around 4 to 5 iterations a second, a significant improvement in training time when

compared to YoloV7-tiny (2 seconds per iteration). There was also improvement in the key

metrics when tested on the test images, notably the drowning and swimming classes. The

training losses also start at a far higher value than observed in YoloV7-tiny as well as

precision, recall and mAP.

When detections were run on the same test images, the model proved to be inaccurate and

failed to make any correct detections. The confidence scores for the two swimming actions

were high.

59

Analysis

Despite the improvements in metrics, the model still struggled to accurately make detections

on the test images. However, the model’s capabilities are encouraging given the losses being

measured. As figure 35 shows, the losses start significantly higher than observed in YoloV7-

tiny and there was a considerable difference in losses after 24 epochs. This suggests, that with

more training, the losses could be lowered further which would see improvement in the

model’s performance. Given the speed of training, further training of this model is feasible

and practical. Interestingly, in figure 37, there are two occurrences of bounding boxes in this

image. Noticeably, the larger bounding box has encompassed water reflections which was

previously highlighted in systems examined in the literature review.

These experiments assist in answering the second research question, ‘What size dataset is

needed to train the selected algorithm and gain accurate results?’. Though literature indicated

a larger dataset was desirable (over 10,000 images), practicality dictated that this was not

feasible. However, meaningful results have been achieved with a dataset of approximately

5000 images.

61

Figures 41a and b: The confusion matrices for the YoloV8-s models. On the left the model trained with no background

images and on the right the model trained with background images.

62

Observation

As figure 40 shows, there is improvement in three of the metrics apart from recall in which

there is a slight reduction. There is significant improvement in precision and subtle

improvement across the two mAP scores. The confusion matrices do not show significant

changes in the model, though the matrix for the model trained with background images does

show a general reduction in false positives, with a slight reduction in true positives for

swimming.

Analysis

Precision is the number of true positives divided the sum of true and false positives which

describes the number of correct positive identifications. Recall is the number of true positives

divided by the sum of true positives and false negatives describing the model’s ability to

correctly identify a class. Given that the model trained on no background images has slightly

higher recall, this is perhaps the reason for the confusion matrices not demonstrating a

significant change in the model’s detection. However, the matrices do demonstrate a subtle

reduction in false positives with the inclusion of background images which was to be

expected. Overall, the model’s performance has improved with the inclusion of even a small

number of background images.

68

Figure 49: The confusion matrix for the final model.

Figures 50a and b: The precision-recall curve and F1 confidence curve for the final model.

Observation

With reference to figure 48, in general there has been improvement across most metrics with

the increase in training epochs except for recall, which decreases with the final model. The

mAP scores are slightly lower for the 300 epoch model when compared to the previous,

improved version which was trained for 24 epochs.

The confusion matrix also shows promising results, though there is a high occurrence of the

model detecting swimming in a drowning state (0.43) in addition to detecting swimming in

69

background images (0.63). The matrix shows that the model is good at predicting the idle

state (0.76).

Finally, the precision-recall curve shows excellent results in the idle state, with lower values

for precision and recall for drowning and swimming. This is also reflected in the F1 curve,

where the model again excels with detecting the idle class but struggles more with swimming

and drowning.

Analysis

The most significant improvement after training the model for 300 epochs can be seen in the

precision score, though recall gradually decreases. This means that the model is making fewer

predictions (due to low recall) but more predictions are correct (high precision). One potential

solution would be to lower the required confidence score for a detection. Alternatively, the

final interface could compensate for this with a timer; if a potential drowning is detected, it

shall be assumed to be a drowning unless not detected for a certain period. Examination of

the confusion matrix, precision-recall curve and F1 confidence curve shows that the model

can accurately detect idle though struggles with drowning and swimming. Intuitively, this

makes sense, the images of drowning and swimming can appear similar when not in context,

as the following images show. In addition, the analysis of the dataset showed that the idle

state was overrepresented when compared to drowning and swimming thus giving the model

some bias.

Figures 51a and b: Images from the test dataset, on the left the drowning class and on the right swimming, which when taken

out of context could prove difficult for even a human to classify.

70

Though additional improvements to the model shall not be made beyond this experiment, the

results indicate that increasing the size and diversity of the dataset could improve the model’s

performance. Increasing the instances of drowning and swimming in the training data could

see significant improvement in these metrics.

5.5 Experiment 4 – Deployment on the Oak-D Lite

The final model was deployed on the Oak-D Lite and Raspberry Pi and tested in field. This

experiment set out to confirm that successful deployment was possible and further direct the

changes needed for the final deployment in experiment 5.

Figures 52a and b: Correct detections in the drowning and swimming states.

Figures 53a and b: Correct detection of the idle state and an incorrect detection of swimming in the drowning state.

71

Observation

The frame rate for the video feed was between 4-5 fps. As the images above show, the

resolution was quite low. In general, the model was able to detect swimming, idle and

drowning however was prone to confusing swimming and drowning. It also generally

detected the idle state as swimming. It was also able to make detections from various areas of

the pool under varying lighting conditions. The confidence interval was set to 0.5.

Analysis

The previous experiments demonstrated that the model had problems differentiating between

drowning and swimming, and as such it is not surprising this is also the case in real time.

There are several adjustments which can be made to the final version of the detection system

such as better indication of the drowning state, and this indication holding for several seconds

before it is cleared of being in the drowning state. In addition, it may be worthwhile lowering

the confidence interval of the detection system and increasing the resolution to see if this

assists with detections.

5.6 Experiment 5 – Real Time Detection and Alert

This experiment set out to demonstrate a real time detection system alerting of a drowning

event. In addition, proof of concept was to be demonstrated for a remote interface which

could also be used for monitoring drowning events. Testing was initially done at a lower

resolution (1080p as per experiment 4) then increased to 13MP which is the Oak-D Lite’s

maximum resolution.

Figures 54a and b: Detection of the drowning state and the alert holding despite the loss of the drowning bounding box at

1080p resolution.

72

Figures 55a and b: Correct detection of idle and swimming at 1080p resolution.

Figures 56a and b: Correct detection of drowning at a higher resolution and the alarm test holding despite the loss of the

bounding box.

73

Figures 57a and b: Correct detections of the swimming state at higher resolution.

Figures 58a and b: An incorrect detection of swimming in the drowning state and a missed detection of drowning at higher

resolution.

74

Figure 59: Successful detection and remote monitoring using the VNC from the Raspberry Pi to iPhone.

Observation

In a similar fashion to experiment 4, the system was still prone to confusing the drowning and

swimming states and occasionally missed drowning events. However, it still made correct

detection as figures 54 to 57 demonstrate. It was tested under varying lighting conditions and

from differing perspectives around the pool and was still able to make good detections. As the

resolution increased, the frame rate noticeably dropped. At 1080p, the frame rate was

consistently between 4-5 fps. When increased to the maximum resolution of 13MP, the frame

rate remained around 3 fps. Detections did not seem to improve noticeably as the resolution

was increased.

The drowning detection alert banner functioned as intended, alarming if drowning was

detected, and holding for the fixed amount of time (2 seconds but easily adjusted in the

python script). The VNC method of remote monitoring via the VNC server functioned well

so that the interface could be viewed from a variety of devices including an iPhone and

windows laptop.

Analysis

Given the same weight files were used in experiment 5 from experiment 4, detection

performance was similar. The system often struggled with drowning and swimming.

Increasing the resolution didn’t seem to impact the quality of detections, though the frames

started to lag noticeably as the frame rate decreased to 3 fps. Referring to the Luxonis

documentation on the Oak-D Lite, the maximum fps available for the Yolov8-m is 6 fps, thus

a frame rate of 5 fps is at the higher end of what the Oak-D Lite is capable of. In future, it

75

would be worthwhile experimenting with smaller versions of the Yolo algorithm which can

be operated at a higher frame rate to see if the quality of detections improves. For example,

YoloV6n R2 at 416x416 is capable of a frame rate of 65.5fps (Luxonis, 2023), in addition

YoloV7-t at 416x416 is capable of 46.7 fps (Luxonis, 2023) which is significantly higher than

the 6 fps of YoloV8-m.

The alert banner worked well and assisted in compensating for detections. It was designed to

prioritise any drowning detection and alert the user of a potential drowning event, which is

one of the ultimate aims of this system. In addition, dropping the confidence interval from 0.5

to 0.3 helped in increasing drowning detections. It is also encouraging that the positioning of

the camera didn’t significantly impact the consistency of detections offering flexibility in

where such a system could be installed.

76

6. Discussion, Conclusion and Further Work

This section shall summarise the results and extract a final analysis from all the pooled results

through all experiments. Opinions shall be drawn on how much of the knowledge gap and

research aims were addressed and solved.

6.1 Discussion

Experiments 1 and 2 demonstrated the capabilities of several Yolo models including YoloV3,

V7 and V8. The results achieved in the first experiment were impressive with the detections

in the initial test images being very promising. This formed a benchmark for what the Yolo

algorithm is capable of. However, it should be remembered that the Yolo models used in

experiment 1 have been trained on the COCO dataset which consists of 118,000 train images,

5000 validation and 20,000 test. The custom dataset used was far more modest in size

consisting of 4003 train, 521 validate and 599 test and as such, the results in experiments 3

through to 5 had to be evaluated in this context. The final mAP50 of the model deployed was

64% with a mAP50-95 of 43.9%, in context, the Ultralytics YoloV8-m release trained on the

benchmark COCO val2017 dataset achieved a mAP50-95 of 50.2% (Ultralytics, 2023). Thus,

achieving such metrics on a small dataset is very encouraging.

The changes made to the final Yolo version including adding background images to the

dataset, increasing the model size, image augmentation, parameter tuning and increasing the

training epochs improved the model’s performance across all metrics. Evidentially there is

room for further improvement, notably increasing the dataset size, additional experimentation

with augmentation and parameter tuning and further extending the training time, however this

falls outside the scope of this project due to time restraints. In addition, there will continue to

be difficulties in sourcing a dataset for this system due to the sporadic nature of drowning

events. However, further diversifying the dataset through various people, locations and

conditions would add to its quality and ultimately the capabilities of the trained model.

Focusing on increasing the number of drowning and swimming training images would also

see improvements in the model, the idle state was over-represented in the dataset and was

consistently detected at a more accurate rate as a result.

An additional method for dataset improvement may be by acquiring training images using the

Oak-D Lite as well as devices such as the GoPro. This would ensure consistency between

image framing, resolution, and quality. It was notable that the HSV and contrast qualities

observed in the images acquired from the Oak-D Lite were dissimilar to that of the GoPro

77

and the Dubai dataset. Eng et al (2008) noted that their system missed some detections due to

low contrast between swimmers and backgrounds. As such, this system could be experiencing

similar issues.

Real time deployment and testing saw the model continue to occasionally struggle with

differentiating between drowning and swimming though lowering the confidence interval

from 0.5 to 0.3 helped to improve drowning detections. Both Eng et al (2008) and Lei et al

(2021) experienced similar issues with their systems. Eng et al (2008) found water

disturbances lead to greater false positives and Lei et al (2021) found their Yolo algorithm

mistook part of the drowning behaviour for swimming as it detected water surface reflection

as swimming resulting in higher false positives. The random nature of water movement and

reflection is a significant challenge in drowning detection systems. A method of

compensating may be by the use of pose-estimation algorithms in conjunction with Yolo.

Hasan et al (2022) found that when comparing scene classification and pose estimation

algorithms, pose estimation were impacted less by scene factors such as lighting and water

movement. Interestingly, YoloV8 does have pose estimation capabilities, thus there would be

an opportunity to leverage this for improved model performance in future work.

It was also notable that there was intermittent changing of states from drowning to

swimming, and vice versa during drowning actions. The interface aimed to compensate for

this by triggering a timer so that a non-drowning event had to be detected for a minimum of

two seconds before it would change state. However, the use of temporal and recurrent

algorithms may assist in adding context to the system. For example, if the previous frames

were a drowning event and the algorithm determines that the current frame is a swimming

class with low confidence, it is therefore likely to be drowning. Recurrent Neural Networks

(RNN) are known for their ‘memory’ where the current output considers previous inputs and

outputs, thus putting the current frame into context. A Recurrent Yolo model was proposed in

2019, where the model’s capabilities extended to Long Short-Term Memory (LSTM). This

resulted in the model having excellent object tracking ability, even when the target (a

pedestrian) was obscured from view (Yun and Kim, 2019). The ability for the drowning

detection model to track swimmers with obstructions such as water movement and splashing

could result in improved performance as it was notable that there were occasional missed

detections. YoloV8 also includes object tracking abilities, in addition to pose estimation.

Utilising these additional features in conjunction with the standard Yolo object detection

model could see significant improvement in model performance.

78

The frame rate was problematic and there was some lag in the system. This was due to the

size of the model used, YoloV8-m has a maximum frame rate of 6 fps and as such, there

would be value in experimenting with smaller models of Yolo which are able to have higher

frame rates at increased resolution. In addition, increasing the frame rate may assist in

detection accuracy, more frames result in more images to run detections on and so perhaps a

smaller model would prove to be more accurate in real time as a result. Increasing the

resolution of images would also be beneficial so the model is better able to identify features.

The alert interface though modest, was effective and demonstrated remote monitoring of the

drowning detection system. There is significant room for such an interface to improve, with

simple modifications compensating for drowning detection adding value to the system.

Developing the system to include notifications to smart devices such as watches and phones

would be beneficial. The ultimate goal of this system was to improve supervision around

swimming pools and to act as an additional aid, and as such even this prototype tested was

capable of alerting of potential drowning events.

6.2 Conclusion

The aim of this project was to develop a real time drowning detection system using a surface

mounted camera in a residential pool setting, which has been achieved and demonstrated. In

addition, the project aims outlined in section 1.5 were also addressed. Firstly, several

algorithms used in real time drowning detection systems were researched, with Yolo

algorithms consistently appearing as the most appropriate. Secondly, an appropriate dataset

was acquired and developed, with experiments conducted to assist in the selection and

development of an appropriate algorithm, in this case YoloV8m. Finally, the algorithm was

deployed on appropriate hardware and tested in a residential setting, as demonstrated in

experiments 4 and 5. Additionally, a simple interface was developed to inform users of a

potential drowning event.

Four knowledge gaps relating to the research aims were also identified. Firstly, there were no

systems available in a non-commercial setting utilising only surface mounted cameras. This

research has proven that such a system is feasible with an Oak-D Lite, Raspberry Pi and Yolo

algorithm. Secondly, algorithms beyond YoloV5 had little peer-reviewed research conducted

on them, particularly in instances of drowning detection systems. This project has again

demonstrated that YoloV7 and V8 are appropriate for drowning detection. Furthermore, there

is scope for further experimentation to determine their suitability for deployment. For

79

example, assessing the performance of YoloV8-n or YoloV7-t in real time when deployed on

the Oak-D Lite. Leveraging the pose estimation and object tracking abilities of YoloV8 offer

an exciting opportunity to further improve detections.

A significant challenge of this research was acquiring an appropriate dataset upon which to

train the algorithms. The third knowledge gap acknowledged this, and this was addressed

two-fold. Firstly, the initial dataset acquired from the Rochester Institute of Technology

provided a sizable and quality dataset upon which the model could be trained. However, the

homogenous nature of the subjects in the dataset dictated that further diversification was

needed, hence the additional ‘Mackay’ dataset. As mentioned, further expansion and variation

of the dataset would be advantageous to algorithm training, and given the limitations of the

dataset used, the final results achieved exceeded expectations.

The final knowledge gap addressed the use of the Oak-D Lite in a drowning detection system.

Again, experiments 4 and 5 demonstrated that the hardware is well suited to such a task, with

a significant limitation being the size of the algorithm deployed. As mentioned,

experimenting with smaller versions of Yolo with higher frame rate capabilities would be

valuable for further assessing the Oak-D Lite’s performance. In addition, given the natural

development of technology with time, it is expected that further iterations of the Oak-D Lite

shall only be more capable and thus more suited to a real time drowning detection system.

6.3 Further Work

As mentioned, there are several areas where further work could be conducted. These are as

follows:

1) Dataset Improvement – Increasing the size of the dataset used to train the algorithm would

only improve its performance. Particular focus on the acquisition of drowning and swimming

imagery would be advantageous. In addition, varying the people, location and conditions

would also improve the model’s performance. Inclusion of more background images would

also be beneficial, 4% of the dataset was background imagery though literature indicated that

this could be as high as 10% if needed. Acquiring imagery using the Oak-D Lite could also be

beneficial to ensure training is completed using imagery with similar qualities.

2) Parameter tuning and Image Augmentation – Further experimentation with training

parameter tuning and image augmentation offers near limitless opportunity. The research

conducted demonstrated that experimentation in this area added value, though the scope of

this project limited the ability of finding the optimal values.

80

3) Real Time Deployment of Different Models – Driven by improvements in metrics saw the

deployment of YoloV8-m, though the low frame rate was a limiting factor for resolution and

detections. Experimenting with smaller versions of Yolo, and even older versions, would

offer valuable insight into the optimal model for real time deployment on the Oak-D Lite.

4) Algorithm Development – Two key features have been identified for areas of development

with the YoloV8 algorithm; pose estimation and object tracking. Previous literature indicates

that pose estimation provided good results in drowning detection systems. Built in object

tracking algorithms in YoloV8 may assist in providing the model with temporal information

and assist in reducing confusion between swimming and drowning behaviours. It is clear that

there is significant opportunity to further develop and experiment with the full abilities of

YoloV8 in a drowning detection system.

5) Developing the Detection Interface – The final interface demonstrating the drowning

detection system was simple and as such, there is the opportunity to further develop this. A

simple alert banner helped to compensate for intermittent loss of detections. There is scope to

develop this into a more user friendly interface, perhaps including a mobile application with a

notification system.

81

References

Alpaydin, E, 2021, Machine Learning, The MIT Press, Cambridge, Massachusetts

Alqahtani, A., Alsubai, S., Sha, M., Peter, V., Almadhor, A. S., & Abbas, S., 2022, Falling and

drowning detection framework using smartphone sensors. Computational Intelligence and

Neuroscience

Alshbatat, A.I.N., Alhameli, S., Almazrouei, S., Alhameli, S. and Almarar, W., 2020,

Automated vision-based surveillance system to detect drowning incidents in swimming

pools. Advances in Science and Engineering Technology International Conferences

(ASET) (pp. 1-5). IEEE, viewed online 20th September 2022

<https://ieeexplore.ieee.org/abstract/document/9118248>

AngelEye, 2022, Installation, AngelEye , viewed online 21st September 2022

<https://www.angeleye.tech/en/en-installation/>

Australian Institute of Health and Welfare, 2023, Injury in Australia: Drowning and

Submersion, Australian Institute of Health and Welfare, viewed online 1st October 2023 <

https://www.aihw.gov.au/reports/injury/drowning-and-submersion>

Bliss, L., 2021, How a Bike Safety Bot Became a Building Block for Computer Engineers,

Bloomberg News, viewed online 10th July 2023

<https://www.bloomberg.com/news/articles/2021-03-11/oak-d-device-paves-the-way-for-

future-spatial-ai>

Buber, E., & Diri, B., 2018, Performance Analysis and CPU vs GPU Comparison for Deep

Learning, In 2018 6th International Conference on Control Engineering & Information

Technology (CEIT), (pp. 1-6). Istanbul, Turkey

Cepeda-Pacheco, J. C., & Domingo, M. C., 2022, Deep learning and 5G and beyond for child

drowning prevention in swimming pools, Sensors, 22(19), 7684. doi: 10.3390/s22197684

Eng, H.L., Toh, K.A., Yau, W.Y. and Wang, J., 2008. DEWS: A live visual surveillance

system for early drowning detection at pool. IEEE transactions on circuits and systems for

video technology, 18(2), pp.196-210, viewed online 18th September 2022 <

https://ieeexplore.ieee.org/abstract/document/4399966>

Engineers Australia, Code of Ethics and Guidelines on Professional Conduct, 2023,

Engineers Australia, Barton ACT, viewed online 6th June 2023

82

<https://www.engineersaustralia.org.au/sites/default/files/2022-08/code-ethics-guidelines-

professional-conduct-2022.pdf>

Gandhi, R, 2018, R-CNN, Fast R-CNN, Faster R-CNN, YOLO – Object Detection

Algorithms; Understanding Object Detection Algorithms, Towards Data Science, viewed

online 29th April 2023 < https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-

object-detection-algorithms-36d53571365e>

Great Lakes Surf Rescue Project, 2013, Signs of Drowning, Great Lakes Surf Rescue Project,

viewed online 13th May 2023, < https://glsrp.org/signs-of-drowning/>

Handalage, U., Nikapotha, N., Subasinghe, C., Prasanga, T., Thilakarthna, T. and

Kasthurirathna, D., 2021, Computer Vision Enabled Drowning Detection System. In 2021 3rd

International Conference on Advancements in Computing (ICAC) (pp. 240-245). IEEE,

viewed online 5th October 2022 < https://ieeexplore.ieee.org/abstract/document/9671126>

Hasan, S., Joy, J., Ahsan, F., Khambaty, H., Agarwal, M. and Mounsef, J., 2021, A Water

Behavior Dataset for an Image-Based Drowning Solution. In 2021 IEEE Green Energy and

Smart Systems Conference (IGESSC) (pp. 1-5). IEEE, viewed online 6th October 2022 <

https://ieeexplore.ieee.org/abstract/document/9618700>

Jalalifar, S., Kashizadeh, A., Mahmood, I., Belford, A., Drake, N., Razmjou, A. and Asadnia,

M., 2022. A smart multi-sensor device to detect distress in swimmers. Sensors, 22(3), p.1059.

viewed online 25th September 2022 < https://www.mdpi.com/1424-8220/22/3/1059>

Jocher G., Waxmann S, 2023, COCO Dataset, Ultralytics, viewed 20th June 2023,

<https://docs.ultralytics.com/datasets/detect/coco/>

Kaur, R., Singh, S., 2023, A comprehensive review of object detection with deep learning,

Digital Signal Processing, viewed online 23rd June 2023

<https://www.sciencedirect.com/science/article/pii/S1051200422004298>

Konishi, N., Ishigaki, Y., Nakada, T., Nemoto, W., Iinuma, S., Hoshino, T. & Ohkawara, K.,

2022, Development and demonstration of a prototype system for the early detection of

drowning. 2022 International Electrical Engineering Congress (iEECON), 9-11 March 2022

2022. 1-2.

Labudzki, R., Legutko, S., & Raos, P., 2014, The essence and applications of machine vision.

Tehnicki Vjesnik, viewed online 19th April 2023 <

83

https://www.researchgate.net/profile/Stanislaw-

Legutko/publication/286283684_The_essence_and_applications_of_machine_vision/links/56

8d5a7908aeaa1481ae4d9b/The-essence-and-applications-of-machine-vision.pdf>

Lakshmana V, Gorner M, Gillard R, 2021, Practical Machine Learning for Computer Vision:

End to End Machine Learning for Images, O’Reilly Media, Sebastopol California.

Lei, F., Zhu, H., Tang, F., & Wang, X., 2022, Drowning behaviour detection in swimming

pool based on deep learning. Signal, Image and Video Processing, 1-8.

Louridas, P, 2020, Algorithms, The MIT Press, Cambridge, Massachusetts

Luxonis, 2023, gen2-yolo, Github, accessed online 10th August 2023

<https://github.com/luxonis/depthai-experiments/tree/master/gen2-yolo>

Luxonis, 2023, Oak-D, Luxonis, viewed online 10th July 2023

<https://shop.luxonis.com/collections/oak-cameras-1/products/oak-d>

Mahendran, J. K., Barry, D. T., Nivedha, A. K., & Bhandarkar, S. M., 2021, Computer

Vision-based Assistance System for the Visually Impaired Using Mobile Edge Artificial

Intelligence. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW) (pp. 2418-2427). Nashville, TN, USA

Malhotra, P. & Garg, E. 2020, Object Detection Techniques: A Comparison, 7th International

Conference on Smart Structures and Systems (ICSSS)

Mathworks, 2023, What is a Convolutional Neural Network? Three things you need to know,

Mathworks, viewed 29th April 2023, < https://au.mathworks.com/discovery/convolutional-

neural-network-matlab.html>

Miller D., Goode G., Bennie C., Moghadam P., Jurdak R., 2022, Why Object Detectors Fail:

Investigating the Influence of the Dataset, Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4823-4830

Nelson, J., 2020, How to Label Images for Computer Vision Models, Roboflow, viewed

online 11th July 2023 < https://blog.roboflow.com/tips-for-how-to-label-images/>

Niu, Q., Wang, Y., Yuan, S., Li, K., & Wang, X., 2022,. An indoor pool drowning risk

detection method based on improved YOLOv4. In 2022 IEEE 5th Advanced Information

84

Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp.

1559-1563). Chongqing, China.

Padilla, R., Netto, S. L., & da Silva, E. A. B., 2020, A Survey on Performance Metrics for

Object-Detection Algorithms. In 2020 International Conference on Systems, Signals and

Image Processing (IWSSIP) (pp. 237-242). Niteroi, Brazil

Pavithra, P., Nandini, S., Nanthana, A., Aslam, N.T., & Praveen, P.K., 2021, Video Based

Drowning Detection System. In 2021 International Conference on Design Innovations for

3Cs Compute Communicate Control (ICDI3C) (pp. 203-206). Bangalore, India.

Peden, A. E., Franklin, R. C. & Clemens, T. 2021. Can child drowning be eradicated? A

compelling case for continued investment in prevention, Acta Paediatrica, viewed online 1st

October 2022 <https://onlinelibrary-

wiley.comom.ezproxy.usq.edu.au/doi/full/10.1111/apa.15618>

Peden, A. E., Scarr, J. P. & Mahony, A. J. 2021. Analysis of fatal unintentional drowning in

Australia 2008–2020: implications for the Australian Water Safety Strategy, Australian and

New Zealand journal of public health, 45, 248-254, viewed online 30th September 2022 <

https://onlinelibrary-wiley-com.ezproxy.usq.edu.au/doi/10.1111/1753-6405.13124>

Peden, A. E. & Franklin, R. C. 2020. Causes of distraction leading to supervision lapses in

cases of fatal drowning of children 0–4 years in Australia: A 15‐year review. Journal of

paediatrics and child health, 56, 450-456, viewed online 30th September 2022 <

https://onlinelibrary-wiley-com.ezproxy.usq.edu.au/doi/full/10.1111/jpc.14668>

Poseidon by Maytronics 2022, Poseidon Drowning Prevention, Maytronics, viewed online

21st September 2022 <https://drowningprevention.com.au/>

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once: Unified,

real-time object detection. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 779-788).

Redmon, J. and Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767.

Royal Life Saving Australia 2018, Trends in Child Drowning Over the Last 25 Years

Research Report, Royal Life Saving Australia, Sydney New South Wales, viewed online 2nd

October 2022 <

85

https://www.royallifesaving.com.au/__data/assets/pdf_file/0005/37526/RLS_ChildDrowning

_25yrReport.pdf>

Ruiz-Zafra, A., Precioso, D., Salvador, B., Lubián-López, S.P., Jiménez, J., Benavente-

Fernández, I., Pigueiras, J., Gómez-Ullate, D., & Gontard, L.C., 2023, NeoCam: An edge-

cloud platform for non-invasive real-time monitoring in neonatal intensive care units. IEEE

Journal of Biomedical and Health Informatics.

Salehi, N., Keyvanara, M. and Monadjemmi, S.A., 2016. An automatic video-based drowning

detection system for swimming pools using active contours. Int. J. Image, Graph. Signal

Process, 8(8), pp.1-8, viewed online 5th October 2022

<https://www.researchgate.net/profile/Nasrin-Salehi-

5/publication/305877670_An_Automatic_Video-

based_Drowning_Detection_System_for_Swimming_Pools_Using_Active_Contours/links/5f

f4092ea6fdccdcb82eac83/An-Automatic-Video-based-Drowning-Detection-System-for-

Swimming-Pools-Using-Active-Contours.pdf>

Shah, R.M., Sainath, B. and Gupta, A., 2022, July. Comparative Performance Study of CNN-

based Algorithms and YOLO. In 2022 IEEE International Conference on Electronics,

Computing and Communication Technologies (pp. 1-6). IEEE.

Shatnawi, M., Albreiki, F., Alkhoori, A., & Alhebshi, M, 2023, Deep Learning and Vision-

Based Early Drowning Detection. Information, 14(1), 52

Shehata, A.M., Mohamed, E.M., Salem, K.L., Mohamed, A.M., Salam, M.A. and Gamil,

M.M., 2021, May. A Survey of Drowning Detection Techniques. In 2021 International

Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) (pp. 286-290). IEEE,

viewed online 19th September 2022 < https://ieeexplore.ieee.org/abstract/document/9447677>

Smith, M. L., Smith, L. N. & Hansen, M. F. 2021. The quiet revolution in machine vision - a

state-of-the-art survey paper, including historical review, perspectives, and future directions.

Computers in Industry, 130, 103472.

The Guardian, 2019, Go game master quits saying machines ‘cannot be defeated’, The

Guardian, 27th November, viewed 29th April 2023,

<https://www.theguardian.com/world/2019/nov/27/go-game-master-quits-saying-machines-

cannot-be-defeated>

86

Ultralytics, 2023, ‘Tips for Best Training Results’, Ultralytics. Viewed online 31st July 2023

<https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/>

Vestnikov, R., Stepanov, D., & Bakhshiev, A., 2023, Development of Neural Network

Algorithms for Early Detection of Drowning in Swimming Pools. Paper presented at the

2023 International Conference on Industrial Engineering, Applications and Manufacturing

(ICIEAM), Sochi, Russian Federation, pp. 820-824

Wang, C.Y., Bochkovskiy, A., & Liao, H.Y.M., 2023, YOLOv7: Trainable bag-of-freebies

sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (pp. 7464-7475).

Wave Drowning Detection Systems 2022, Wave W10, Wave Drowning Detection Systems,

viewed online 20th September 2022 <https://www.wavedds.com/w10>

World Health Organisation 2014, Global Report on Drowning: Preventing a Leading Killer,

World Health Organisation, Geneva, Switzerland, viewed online 5th October 2022 <

https://www.who.int/publications/i/item/global-report-on-drowning-preventing-a-leading-

killer>

Yang, D., Cao, Y., Feng, Y., Lai, X., & Pan, Z., 2021, Drowning detection algorithm for

intelligent lifebuoy. In Proceedings of the 2021 International Conference on Unmanned

Systems (ICUS) (pp. 512-519). doi: 10.1109/ICUS52573.2021.9641291.

Yun, S., & Kim, S., 2019, Recurrent YOLO and LSTM-based IR single pedestrian tracking.

In 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju,

Korea (South) (pp. 94-96).

Zou, Z., Chen, K., Shi, Z., Guo, Y. and Ye, J., 2023. Object detection in 20 years: A survey.

Proceedings of the IEEE.

87

Appendix A

ENG4111/4112 Research Project

Project Specification

For: Fern Proctor

Title: Real Time Drowning Detection System Using Machine Vision

Major: Electrical and Electronic Engineering

Supervisors: Dr. Tobias Low

Enrollment: ENG4111 – EXT S1, 2023

 ENG4112 – EXT S2, 2023

Project Aim: To develop a real time drowning detection system using a surface mounted

camera in a residential pool setting.

Programme: Version 1, 20th February 2023

1) Conduct background research drowning detection systems and their

implementation. This would include systems which are commercially

available.

2) Review systems and algorithms which utilise machine learning and vision for

detecting people and behavior patterns.

3) Research and secure an appropriate dataset for use in the model for drowning

detection. If an existing set cannot be found, research drowning behaviors and

create a dataset based on simulated images/videos.

4) Investigate and select appropriate hardware which can be used to implement a

drowning detection system.

5) Investigate and select and appropriate user interface for alerting personnel of a

drowning event.

88

6) Select a suitable software development environment in which an appropriate

algorithm can be implemented.

7) Develop a prototype of the system using the selected hardware.

8) Develop a machine vision/learning algorithm for drowning detection.

9) Deploy the prototype and algorithm in a suitable environment. Record and

collect the data for analysis.

10) Analyse and evaluate the data. Assess the effectiveness of the prototype.

89

ENG4111/4112 Research Project

Project Resources

For: Fern Proctor

Title: Real Time Drowning Detection System Using Machine Vision

Major: Electrical and Electronic Engineering

Supervisors: Dr. Tobias Low

Enrollment: ENG4111 – EXT S1, 2023

 ENG4112 – EXT S2, 2023

This document outlines the project resources that are likely to be required for successful

completion.

Version 1, 20th February 2023

 Item Estimated Cost Comments

Raspberry Pi 4 8GB $123 Currently out of stock at many retailers

Oak D-Lite Camera $277 In stock – Core Electronics

Open CV $0 Free to download for Windows/Linux

Python 3 $0 Free to download for Windows/Linux

Laptop $0 Currently own an appropriate laptop

Test Image Set $-- Need to source or generate own set

Test location (pool) $0 Pool available for use

Wifi Antenna $10 Must use Raspberry Pi Compute Module 4 kit

Enclosure $40 To be confirmed – select appropriate enclosure

Raspberry Pi Power Supply $16.45 Available Core Electronics (official Power

Supply)

Misc Hardware $-- To be confirmed

Total Estimated Cost $466.45

91

Hazards: 1) Electrical cabling used

for powering devices 2) Faulted

devices causing short circuit 3)

Electrical equipment being used

around swimming pools.

Control: Equipment in use to be to

Australian Standards Inspect

equipment prior to use Equipment

not to be used within the footprint

(inside fence) of swimming area if it

is supplied by 230VAC. Adequate

protection - earth leakage and circuit

breakers.

Hazards: 1) Sun exposure 2) Heat

stress due to adverse weather

conditions 3) Other hazards related

to adverse weather conditions - rain,

lightening

Control: Sunscreen to be used,

adequate clothing for sun protection

where possible.

Control: Task rotation, rest breaks

as required. Work not to be

conducted in adverse weather

(lightening, storms).

Hazards: Persons in swimming pool

for data collection and testing

purposes. Wet and slippery surfaces

around swimming pool

Control: Competent swimmers only

to be used in data collection and

testing. Spotters in place to monitor

swimmers.

92

Control: Signage and barricades in

place around swimming pool as per

Queensland standards.

Control: No running around pool

area. Eyes on path and awareness

when accessing swimming pools.

Hazard: Loss of project work due to

equipment failure
Control: Back up project using

Google Drive. Both personal and

university account. Minimum of

weekly back ups to be done.

Risk of project being used as a

drowning detection system as

substitution for adequate supervision

around swimming pools.

Control: Project information and

hardware not to be distributed

publicly for use. Emphasis on project

being a prototype and not to be used

in place of appropriate supervision in

swimming pool settings.

94

Appendix D – Google Colab Notebooks and Python Script

This appendix contains the configuration files and Google Colab notebooks used to train the

custom models as well as the final python script used in deployment of the Oak-D Lite.

YoloV7-tiny Custom

Data File

directories for train, validate and test images

train: ./data/train

val: ./data/validate

test: ./data/test

number of classes

nc: 3

class names

names: ['drowning','idle','swimming']

Configuration File

parameters

nc: 3 # number of classes

depth_multiple: 1.0 # model depth multiple

width_multiple: 1.0 # layer channel multiple

anchors

anchors:

 - [10,13, 16,30, 33,23] # P3/8

 - [30,61, 62,45, 59,119] # P4/16

 - [116,90, 156,198, 373,326] # P5/32

yolov7-tiny backbone

backbone:

 # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True

 [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2

 [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4

 [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7

 [-1, 1, MP, []], # 8-P3/8

 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14

95

 [-1, 1, MP, []], # 15-P4/16

 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21

 [-1, 1, MP, []], # 22-P5/32

 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28

]

yolov7-tiny head

head:

 [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, SP, [5]],

 [-2, 1, SP, [9]],

 [-3, 1, SP, [13]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -7], 1, Concat, [1]],

 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37

 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, nn.Upsample, [None, 2, 'nearest']],

 [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone

P4

 [[-1, -2], 1, Concat, [1]],

 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47

 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, nn.Upsample, [None, 2, 'nearest']],

 [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone

P3

 [[-1, -2], 1, Concat, [1]],

 [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57

 [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, 47], 1, Concat, [1]],

 [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

96

 [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65

 [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, 37], 1, Concat, [1]],

 [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[-1, -2, -3, -4], 1, Concat, [1]],

 [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73

 [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

 [[74,75,76], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)

Google Colab Notebook

#mount drive

from google.colab import drive

drive.mount('/content/gdrive')

%cd /content/gdrive/MyDrive

import os

if not os.path.isdir("Yolov7"):

 os.makedirs("Yolov7")

#move to newly created YoloV7 directory

%cd Yolov7

#clone repo yolov7

!git clone https://github.com/WongKinYiu/yolov7.git

%cd /content/gdrive/MyDrive/Yolov7/yolov7

"""At this point, drop the image and label files into the data folder on

google drive"""

download Yolov7-Tiny Weights

#!wget

https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt this

is the standard yolo7 version

Below is the Tiny Version of YoloV7

!wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-

tiny.pt

!pip install PyYAML==5.4.1

#Train the YoloV7-tiny model

!python train.py --device 0 --batch-size 16 --data data/custom_data.yaml --

img 640 640 --cfg cfg/training/yolov7tinycustom.yaml --weights '' --name

yolov7tinycustomweights --hyp data/hyp.scratch.tiny.yaml --epochs 24

%cd /content/gdrive/MyDrive/Yolov7/yolov7

#In the event of an error, use this command to resume training from the

last epoch.

97

!python train.py –resume

#Once training has finished, change to test mode

!python test.py --data data/custom_data.yaml --img 640 --weights

runs/train/yolov7tinycustomweights/weights/last.pt --task 'test'

Run evaluation on an image

!python detect.py --weights

runs/train/yolov7tinycustomweights/weights/last.pt --conf 0.1 --source

/content/gdrive/MyDrive/images/test_idle_000012.jpg

#Run a detection on a video

!python detect.py --weights

runs/train/yolov7tinycustomweights/weights/last.pt --conf 0.25 --img-size

640 --source /content/gdrive/MyDrive/images/te_o_swim_5.mp4

#Run a detection on a different video

!python detect.py --weights

runs/train/yolov7tinycustomweights/weights/last.pt --conf 0.25 --img-size

640 --source /content/gdrive/MyDrive/images/te_o_drown_5.mp4

YoloV8-s Custom

Data File

#Custom Dataset

path: /content/gdrive/MyDrive/Yolov7/yolov7/data # dataset root dir

train: ./train # train images

val: ./test # val images

test: ./test #test images

Classes

names:

 0: drowning

 1: idle

 2: swimming

Google Colab Notebook

Fern YoloV8

#mount drive

from google.colab import drive

drive.mount('/content/gdrive')

%cd /content/gdrive/MyDrive

import os

if not os.path.isdir("yolov8"):

 os.makedirs("yolov8")

#move to newly created YoloV8 directory

%cd yolov8

!git clone https://github.com/ultralytics/ultralytics.git

!pip install ultralytics

import ultralytics

98

ultralytics.checks()

from ultralytics import YOLO

!pwd

Load a model

model = YOLO("yolov8m.pt") # load a pretrained model (recommended for

training)

%cd

!yolo task=detect mode=predict model=yolov8m.pt conf=0.25 source =

/content/gdrive/MyDrive/images/skateboards.jpg save=True

!pwd

Train YOLOv8n on Custom Dataset for 24 epochs (6000 Iterations)

#!yolo train model=yolov8s.pt data=yolov8custom.yaml epochs=24 imgsz=640

Alternative model trial

#!yolo train data=yolov8custom.yaml model=yolov8s.yaml

pretrained=yolov8s.pt epochs=24 imgsz=640

#Another alternative trial

!yolo train data=yolov8custom.yaml model=yolov8m.pt pretrained=yolov8m.pt

epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf =0.001 degrees = 90 translate

= 0.4 scale = 0.4 shear =0.4 flipud = 0.4 fliplr = 0.4 patience =0

!yolo mode=train resume

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/last.pt

data=yolov8custom.yaml epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf

=0.001 degrees = 90 translate = 0.4 scale = 0.4 shear =0.4 flipud = 0.4

fliplr = 0.4 patience =0

!yolo mode=val

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

data=yolov8custom.yaml epochs=24 imgsz=416

!yolo detect mode=val

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

data=yolov8custom.yaml

!yolo detect mode=val

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

data=yolov8custom.yaml

!yolo task=detect mode=predict

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

conf=0.25 source =

/content/gdrive/MyDrive/images/test_swimming_2_000041.jpg

!yolo task=detect mode=predict

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

conf=0.25 source = /content/gdrive/MyDrive/images/te_o_swim_5.mp4

99

YoloV8-m Custom – Final Model

Datafile

 #Custom Dataset
path: /content/gdrive/MyDrive/Yolov7/yolov7/data # dataset root dir

train: ./train # train images

val: ./test # val images

test: ./test #test images

Classes

names:

 0: drowning

 1: idle

 2: swimming

Google Colab Notebook

 """Fern YoloV8

#mount drive

from google.colab import drive

drive.mount('/content/gdrive')

%cd /content/gdrive/MyDrive

import os

if not os.path.isdir("yolov8"):

 os.makedirs("yolov8")

#move to newly created YoloV8 directory

%cd yolov8

!git clone https://github.com/ultralytics/ultralytics.git

!pip install ultralytics

import ultralytics

ultralytics.checks()

from ultralytics import YOLO

!pwd

Load a model

model = YOLO("yolov8m.pt") # load a pretrained model (recommended for

training)

%cd

!yolo task=detect mode=predict model=yolov8m.pt conf=0.25 source =

/content/gdrive/MyDrive/images/skateboards.jpg save=True

!pwd

Train YOLOv8n on Custom Dataset for 300 epochs

!yolo train data=yolov8custom.yaml model=yolov8m.pt pretrained=yolov8m.pt

epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf =0.001 degrees = 90 translate

= 0.4 scale = 0.4 shear =0.4 flipud = 0.4 fliplr = 0.4 patience =0

100

!yolo mode=train resume

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/last.pt

data=yolov8custom.yaml epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf

=0.001 degrees = 90 translate = 0.4 scale = 0.4 shear =0.4 flipud = 0.4

fliplr = 0.4 patience =0

!yolo mode=val

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

data=yolov8custom.yaml epochs=24 imgsz=416

!yolo detect mode=val

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

data=yolov8custom.yaml

!yolo detect mode=val

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

data=yolov8custom.yaml

!yolo task=detect mode=predict

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

conf=0.25 source =

/content/gdrive/MyDrive/images/test_swimming_2_000040.jpg

!yolo task=detect mode=predict

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt

conf=0.25 source = /content/gdrive/MyDrive/images/te_o_swim_5.mp4

Python Script

The following is the Python script which was deployed on the Raspberry Pi for the user

interface.

Experiment 5 - Interface and Alert System for Drowning Detection System

This code has been adapted from https://github.com/luxonis/depthai-

experiments/tree/master/gen2-yolo/device-decoding

Import libraries

from pathlib import Path

import sys

import cv2

import depthai as dai

import numpy as np

import time

import argparse

import json

import blobconverter

101

#Define FPS

fps = 5

parse arguments

parser = argparse.ArgumentParser()

parser.add_argument("-m", "--model", help="Provide model name or model path

for inference",

 default='model/yolov8-300e-

best_openvino_2022.1_6shave.blob', type=str)

parser.add_argument("-c", "--config", help="Provide config path for

inference",

 default='json/yolov8-300e-best.json', type=str)

args = parser.parse_args()

Get config

configPath = Path(args.config)

if not configPath.exists():

 raise ValueError("Path {} does not exist!".format(configPath))

Load JSON file for metadata

with configPath.open() as f:

 config = json.load(f)

nnConfig = config.get("nn_config", {})

Get input shape

if "input_size" in nnConfig:

 W, H = tuple(map(int, nnConfig.get("input_size").split('x')))

extract metadata from JSON file

metadata = nnConfig.get("NN_specific_metadata", {})

classes = metadata.get("classes", {})

coordinates = metadata.get("coordinates", {})

anchors = metadata.get("anchors", {})

anchorMasks = metadata.get("anchor_masks", {})

iouThreshold = metadata.get("iou_threshold", {})

confidenceThreshold = metadata.get("confidence_threshold", {})

print(metadata)

Get labels

nnMappings = config.get("mappings", {})

102

labels = nnMappings.get("labels", {})

get model path from .blob file

nnPath = args.model

if not Path(nnPath).exists():

 print("No blob found at {}. Looking into DepthAI model

zoo.".format(nnPath))

 nnPath = str(blobconverter.from_zoo(args.model, shaves = 6, zoo_type =

"depthai", use_cache=True))

sync outputs

syncNN = True

Create pipeline to Oak-D Lite

pipeline = dai.Pipeline()

Define sources and outputs

camRgb = pipeline.create(dai.node.ColorCamera)

detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)

xoutRgb = pipeline.create(dai.node.XLinkOut)

nnOut = pipeline.create(dai.node.XLinkOut)

xoutRgb.setStreamName("rgb")

nnOut.setStreamName("nn")

Properties

camRgb.setPreviewSize(W, H)

Use this to change the camera resolution

camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_13_MP)

camRgb.setInterleaved(False)

camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

camRgb.setFps(fps)

Network specific settings

detectionNetwork.setConfidenceThreshold(confidenceThreshold)

detectionNetwork.setNumClasses(classes)

detectionNetwork.setCoordinateSize(coordinates)

detectionNetwork.setAnchors(anchors)

detectionNetwork.setAnchorMasks(anchorMasks)

detectionNetwork.setIouThreshold(iouThreshold)

103

detectionNetwork.setBlobPath(nnPath)

detectionNetwork.setNumInferenceThreads(2)

detectionNetwork.input.setBlocking(False)

Linking

camRgb.preview.link(detectionNetwork.input)

detectionNetwork.passthrough.link(xoutRgb.input)

detectionNetwork.out.link(nnOut.input)

Connect to Oak-D Lite and start pipeline

with dai.Device(pipeline) as device:

 # Output queues will be used to get the rgb frames and nn data from the

outputs defined above

 qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)

 qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False)

 frame = None

 detections = []

 startTime = time.monotonic()

 counter = 0

 color2 = (0, 0, 255)

 # nn data, being the bounding box locations, are in <0..1> range - they

need to be normalized with frame width/height

 def frameNorm(frame, bbox):

 normVals = np.full(len(bbox), frame.shape[0])

 normVals[::2] = frame.shape[1]

 return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)

 def displayFrame(name, frame, detections):

 class_colors = {

 'Drowning': (0, 0, 255), # Red for Drowning

 'Idle': (0, 255, 0), # Green for Idle

 'Swimming': (0, 255, 0) # Blue for Swimming

 }

 for detection in detections:

 bbox = frameNorm(frame, (detection.xmin, detection.ymin,

detection.xmax, detection.ymax))

 #Get the class label

104

 class_label = labels[detection.label]

 #Colour of label

 color=class_colors.get(class_label, (0,0,255))

 #Draw the bounding boxes

 cv2.putText(frame, class_label, (bbox[0] + 10, bbox[1] + 20),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, color)

 cv2.putText(frame, f"{int(detection.confidence * 100)}%",

(bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color)

 cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]),

color, 2)

 # Show the frame

 cv2.imshow(name, frame)

 # Initialize recording variables

 recording = False

 out = None

 # Initialize drowning detection timer variables

 drowning_timer = 0

 drowning_threshold = 2

 drowning_detected = False

 last_detection_time = time.monotonic() # Initialize

last_detection_time

 drowning_display_timer = 0

 drowning_reset_time = 2 # Get rid of drowning alert after 5 seconds

 # Create a named window with the fullscreen flag

 cv2.namedWindow("Drowning Detection System", cv2.WINDOW_NORMAL)

 cv2.setWindowProperty("Drowning Detection System",

cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

 while True:

 inRgb = qRgb.get()

 inDet = qDet.get()

 if inRgb is not None:

 frame = inRgb.getCvFrame()

105

 cv2.putText(frame, "NN fps: {:.2f}".format(counter /

(time.monotonic() - startTime)),

 (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.4,

color2)

 if inDet is not None:

 detections = inDet.detections

 counter += 1

 # Check if 'Drowning' is detected in the current frame

 drowning_detected = False # Reset drowning detection flag

 for detection in detections:

 if labels[detection.label] == 'Drowning':

 drowning_detected = True

 break

 if drowning_detected:

 drowning_timer += 1 / fps # Increase timer based on FPS

 last_detection_time = time.monotonic()

 else:

 drowning_timer = 0 # Reset timer

 # Check if the timer threshold is met and reset the timer

 if time.monotonic() - last_detection_time >=

drowning_reset_time and drowning_timer >= drowning_threshold:

 drowning_timer = 0

 # Update the separate timer for displaying "Drowning Detected!"

text

 if drowning_detected:

 drowning_display_timer = time.monotonic()

 # Code to hold drowning detection alert even after loss of bounding

box

 if frame is not None:

 if drowning_detected and drowning_timer >= drowning_threshold:

 cv2.putText(frame, "Drowning Detected!", (10, 60),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

 elif time.monotonic() - last_detection_time <=

drowning_reset_time:

106

 cv2.putText(frame, "Drowning Detected!", (10, 60),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

 else:

 cv2.putText(frame, "No Drowning Detected", (10,60),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

 displayFrame("Drowning Detection System", frame, detections)

 # Recording

 if recording:

 if out is None:

 fourcc= cv2.VideoWriter_fourcc(*"H264")

 out = cv2.VideoWriter('output.mp4', fourcc, fps,

(frame.shape[1], frame.shape[0]))

 out.write(frame)

 # Some hot key commands for control

 key = cv2.waitKey(1)

 if key == ord('q'):

 break

 elif key == ord('r'):

 if not recording:

 recording = True

 out = None

 print("Recording started.")

 elif key == ord('s'):

 if recording:

 if out is not None:

 out.release()

 print("Recording stopped and saved as 'output.mp4'.")

 recording = False

