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Abstract 

Globally, there are an estimated 236,000 drownings per year (World Health Organisation, 

2014), and in Australia, drowning deaths form a grim tally over the summer months despite 

the introduction of robust legislation and education campaigns. Swimming pools are the most 

common location for drowning accidents (AIHW, 2023) and as such, any tools that may be 

able to reduce these occurrences could have substantial impact. 

There have been significant advances in the fields of machine vision and learning in the past 

decade resulting in the development of new algorithms and hardware which can be applied to 

novel applications. Of particular interest is the ‘You Only Look Once’ (YOLO) algorithm 

which offers real time detection speeds with impressive accuracy. With a solution looking for 

a problem to solve, this project aimed to develop a real time drowning detection system using 

machine learning and vision. In particular, the system was designed to be used in a residential 

pool setting with little technical knowledge required for installation and setup. 

A dataset was acquired and supplemented with additional images. Several versions of the 

Yolo algorithm were examined and trained using the custom dataset. Image augmentation and 

hyperparameter tuning were among some of the methods used to improve the model’s 

accuracy prior to it being deployed on an Oak-D Lite, an edge-AI camera where neural 

inference is done onboard rather than on a separate device. Finally, the system was deployed 

and tested in real time as well as monitored remotely through a mobile device. The testing 

demonstrated that real time drowning detection was feasible using YoloV8 and the Oak-D 

Lite. 

Future works include improving and increasing the size of the dataset used for training as 

well as experimenting with various iterations of the Yolo algorithms deployed on the Oak-D 

Lite, in particular smaller versions to compare their accuracy with YoloV8-m used in the final 

system. In addition, further investigation of hyperparameter tuning and image augmentation 

could be beneficial as well as development of a mobile interface with the ability to notify 

users of a drowning event by means of a notification or via smart devices such as watches.  
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Glossary 

 

CNN = Convolutional Neural Network 

CPU = Computer Processing Unit 

GPU = Graphical Processing Unit 

IDR = Instinctive Drowning Response 

mAP = Mean Average Precision 

YOLO = You Only Look Once 

R-CNN = Regional Convolutional Neural Network 

RNN = Recurrent Neural Network 

YOLO = You Only Look Once 



1. Introduction 

1.1 Background 

Globally, there are an estimated 236,000 drownings per year (World Health Organisation, 

2014) and in Australia swimming pools were the leading location of drowning deaths for 

children between the ages of 0-4 between 2002 and 2018 (Royal Lifesaving Australia, 2018). 

For each drowning death in Australia, there are an additional three people hospitalised with 

drowning related injuries costing the Australian economy $1.24 billion annually (Peden et al, 

2021). In Australia, drowning deaths are generally trending downwards with the introduction 

of robust legislation such as pool fences and signage, though experts agree that a multifaceted 

approach to reducing drowning deaths is required. In half of the drowning deaths of children 

in private residential swimming pools, there was adult supervision, however, lapses in this 

supervision contributed to the deaths (Peden et al, 2019). 

One study examining the drowning deaths of 447 children under the ages of 4, 53.5% of the 

deaths occurred in swimming pools with 86.6% of these being private residential swimming 

pools (Peden et al, 2019). In over half of the cases, there were more than two supervisors 

present thus demonstrating that quality supervision is key to preventing drowning deaths. 

Leading causes of distractions when supervising were household duties (indoors and 

outdoors), talking and socialising. When there were two or more supervisors present, 

miscommunication occurred resulting in the lapse (Peden et al, 2019).  

1.2 Computer and Machine Vision 

Computer vision and machine vision are phrases which are frequently used interchangeably, 

though machine vision is the practical application of computer vision principles. Computer 

vision is the processing of an image using a variety of methods to extract information, 

whereas machine vision generally requires additional hardware and software to respond to the 

information gathered, such as the movement of a robotic arm in automated manufacturing 

(Labudzki et al, 2014). As shown in Figure 1, a machine vision system contains several sub 

systems; optical acquisition hardware (such as a camera), where scene constraints such as 

lighting and positioning must be considered, a pre-processing stage, segmentation of the 

image, feature extraction, classification/interpretation and finally actuation (Labudzki et al, 

2014).  
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Figure 1: A block diagram of a machine vision system (Labudzki et al, 2014) 

Machine vision systems are an established technology with wide ranging applications. 

Examples include barcode scanners and defect detection systems used in manufacturing. A 

commonality with classic machine vision systems is the controlled conditions they operate in. 

Barcodes by design are standardised, high contrast and easily interpreted. Defect detection 

systems in manufacturing plant can be installed with optimum lighting and positioning. Until 

recently, machine vision systems struggled with random variation and uncontrollable 

variables, however developments within the field of machine learning with Convolutional 

Neural Networks (CNN) means these systems are now able to automatically learn from data 

to develop rules for complex machine vision (Smith et al, 2021). 

1.3 Machine Learning and Algorithms 

The enigmatic qualities of machine learning have drawn the field into sharp focus over the 

past several years. Attention grabbing headlines covering the defeat of Go master Lee Sedol 

by AlphaGo and his ultimate retirement claimed, ‘machines cannot be defeated’ (The 

Guardian, 2019). However, rather than attempting to ‘defeat’ machines, it is important to 

recognise the opportunities machine learning presents.  

Algorithms are a set of instructions for achieving a task. Often, algorithms are associated with 

computers, however, they have existed for millennia, with the first algorithms dating back to 

the ancient Babylonians (Louridas, 2020). Computers are simply an effective way of 

implementing and quickly executing an algorithm using a programming language.  
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Machine learning harnesses the vast amounts of data now available to automatically create 

algorithms for a given task (Alpaydin, 2021). Recommendation engines in common 

applications such as Netflix and Spotify learn from user’s preferences to make suggestions. 

Machine learning and vision have been combined in medical and agricultural fields to great 

effect to improve patient outcomes and productivity (Smith et al, 2021). Several novel 

machine learning algorithms for vision and object detection have been proposed. 

Convolutional Neural Networks (CNN) and the You Only Look Once (YOLO) are two 

algorithms which are commonly used in vision applications due to their speed and accuracy. 

1.3.1 Object Detection 

Object detection algorithms are the cornerstone of a number of real-world applications such 

as autonomous driving and facial recognition. However, the significant progress in object 

detection in the last 15 years should be acknowledged. In the early 2010’s, computers 

struggled to differentiate between a cat and a dog. Traditional object detection methods were 

bespoke systems often focusing on the use of filters, de-noising and edge finding for 

identification and classification of objects (Lakshmana et al, 2021).  

With advancements in deep learning models and detection, the speed and accuracy of object 

detection has increased significantly, though even then require expensive GPUs to run. As 

figure 2 shows, from 2014 onwards and beyond the ‘traditional’ object detection methods, 

there were two distinct splits: one stage and two stage detectors. One stage detectors localise 

a region of interest and detection in the same step. Two stage detectors first run a ‘Region 

Proposal Network’ to find areas of interest, these are processed and enhanced before the 

second stage classifies these objects. Generally, two stage detectors have high precision 

though in comparison to single stage detectors are slow and computationally intensive. Single 

stage detectors can be deployed in real-time applications though experience reduced 

performance when detecting dense and small objects (Zou et al, 2023). Two detectors are of 

particular interest in this research; CNNs and YOLO. 



4 

 

 

Figure 2: A timeline of object detection algorithm development (Zou et al, 2023) 

1.3.2 Convolutional Neural Networks 

Convolutional Neural Networks are a two-stage detector where numerous layers are used for 

object classification and localisation. The key layers are the convolution layer and pooling 

layer which produce feature maps, the fully connected layer which is a high-level reasoning 

layer for linear classification and a SoftMax layer which assigns objects into their various 

classes (Malhotra et al, 2020). Algorithmic improvements are made by performing several 

iterations to produce more accurate results. 

The convolution layer uses several filters to enhance various features within the image. This 

is often used in conjunction with a rectified linear unit (ReLU), sometimes referred to as 

activation, which maps negative values to zero while maintaining positive values. Only the 

activated values progress to the next layer. The pooling layer simplifies the output by 

reducing the number of parameters that need to be learned (Mathworks, 2023). These are 

repeated over many layers to detect different features. Once the features have been learned, 

the network progresses to the classification layer, of which the Softmax function is a part of. 

This layer outputs a vector of n-dimensions (where n denotes the number of classes which 

can be predicted) and estimates the probabilities of each image class being present. 

 



5 

 

 

Figure 3: The various layers of a Convolutional Neural Network (Mathworks, 2023) 

There are several variations to the standard CNN. These are Regional CNN (R-CNN) which 

localizes 2000 regions of interest within an image before applying the CNN layers, Fast R-

CNN in which the image is processed to create a convolutional feature map before regions of 

proposal are identified. Finally, Faster R-CNN discards the selective search algorithm and 

instead allows the CNN to learn the region proposals. Faster R-CNN is significantly faster 

than both previous methods and as such can be used for real time object detection (Gandhi, 

2018). 

1.3.3 You Only Look Once 

You Only Look Once (YOLO) is an algorithm which approaches object detection as a 

regression problem, assessing the image from the pixels to bounding box coordinates and 

class probabilities (Redmon et al, 2016). As a result, and unlike CNNs, complex pipelines are 

not required which significantly increases speed to the point where it can be used as a real 

time object detection system. 

YOLO is based on the Darknet architecture and divides the image into a number of S by S 

cells and a single neural network is applied to the image. If the central point of an object is in 

a particular cell, it is responsible for detection of that object. This initial network layer 

extracts features from the object whilst the fully connected layers predict output probabilities 

and coordinates. A vector is produced for each bounding box with five predictions: x, y, w, h 

and confidence. The (x,y) coordinates denote the centre of the box in relation to the bounds of 

the particular grid cell. The width and height (w,h) are the dimensions of the bounding box 

relative to the entire image and the confidence score is the intersection over union (IOU) of 

an object.  
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Figure 4: Image processing and object detection using the YOLO algorithm (Redmon et al, 2016) 

There have been several iterations and improvements made to the YOLO algorithm since its 

initial release in 2016. YOLOv2 (or YOLO9000) offered greater accuracy and speeds and 

YOLOv3 replaced computationally intensive Softmax functions with independent logistics 

classifiers (Shah et al, 2022). Joseph Redmon, often credited with the creation of the YOLO 

algorithm, stopped working on it beyond version 3. However, YOLOv4 was developed 

offering improved performance and has been widely used in research. YOLO versions 5 to 8 

have been developed though more research is needed to analyse their effectiveness (Shah et 

al, 2022). 

1.3.4 Metrics in Object Detection Algorithms 

There are several key metrics which are used to measure the effectiveness of object detection 

algorithms and in turn to compare them. The most fundamental of these is the following: 

i) True Positive (TP) – The correct detection of a bounding box 

ii) False Positive (FP) – The incorrect detection of a non-existent object or the 

misplaced detection of an existing object. 

iii) False Negative (FN) – A bounding box that failed to be detected around an object. 

The correctness of a prediction is measured using Intersection Over Union (IOU). This is the 

overlap between a predicted bounding box and the ground truth bounding box, that is, the 
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bounding box which was manually placed around the object in the validation dataset. 

Mathematically, IOU can be defined as follows: 

𝐼𝑂𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

If the IOU is greater than a defined threshold value, the detection is deemed to be positive. 

Precision and recall are also commonly used metrics. Precision is the ability of the detector to 

identify relevant objects correctly, equivalent to the percentage of correct true predictions. 

Recall is the model’s ability to correctly identify all ground-truth bounding boxes. 

Mathematically precision and recall can be defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝐴𝑙𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝐴𝑙𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ𝑠
 

A Precision-Recall curve can be plotted using these values. If the number of false positives is 

low, the model’s precision will be high. However, there is the potential for many positives to 

have not been detected thus the number of false negatives will increase meaning lower recall. 

The same may apply to a greater number of true positives, in this case recall will increase 

though more false positives may be detected lowering the recall. A well performing model 

will ideally have high precision and high recall, thus the area under the precision-recall curve 

will be greater. Conversely, low precision and low recall results in a smaller area. This 

relationship is defined as the Average Precision and is only applicable to each individual class 

of object. Mathematically, it can be defined as follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴𝑃) =  ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0

 

To measure the Average Precisions across all classes in an object detection algorithm, another 

metric is introduced. The mean average precision (mAP) is the mean of the average precision 

for all classes, often this is used to gauge the accuracy of the entire algorithm. 

Mathematically this is defined as follows: 

𝑚𝐴𝑃 =  
1

𝑘
∑ 𝐴𝑃𝑖

𝑘

𝑖

 

𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 
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It should be noted that there are several variants of these metrics being utilised and it is 

important to understand the different definitions used in context. These are as follows: 

i) AP – the Average Precision is measured using various IOU thresholds. Generally, 

this range is between 50-95% which increments by 5%. This is defined as 

AP@50:5:95. Alternatively single values may be used which are commonly 50% 

and 75% which report as AP50 and AP75. 

ii) AP Across Scales – Average Precision for differently sized objects classed as 

small (32 x 32 pixels), medium (up to 96 x 96 pixels) and large (greater than 96 x 

96 pixels). 

iii) Average Recall (AR) – maximum recall values over a fixed number of detections 

per image averaged over IOU and class. 

iv) AR Across Scales – AR determined over different sized objects as defined in AP 

Across Scales. Often referred to as AR-S (small), AR-M (medium) and AR-L 

(large). 

(Padilla et al, 2020) 

1.4 Project Justification 

There are clear opportunities to research and prototype a drowning detection system using 

machine vision and learning given the recent advancements in the field. In addition, there are 

no market ready solutions for residential pool settings using only surface cameras. The 

commercial solutions currently available are bespoke designs with specific install 

requirements for different pools. The release of AI-enabled cameras such as the Oak-D Lite 

present additional opportunities to investigate the deployment of real time object detection 

algorithms for use in drowning detection. 

1.5 Project Aims 

The aims of this project are as follows: 

1) Research object detection algorithms which may be used in a real time drowning 

detection system. 

2) Gather a dataset with which to train the selected algorithms. Select an algorithm to be 

deployed based on appropriate parameters. 

3) Deploy the algorithm on hardware which is then able to make detections using only 

surface cameras in a residential pool setting. 

4) Create an interface which can alert other users to a potential drowning event. 
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1.6 Research Questions 

There are several questions which this research project shall aim to answer: 

1) What is the most effective algorithm which can be used in a real time drowning 

detection system? 

2) What size dataset is needed to train the selected algorithm and gain accurate results? 

3) Where can a dataset for a drowning detection system be sourced? 

4) What method and hardware should be used to train the algorithm? 

5) What is the most appropriate hardware to implement the algorithm on to build a real 

time drowning detection system? 

6) How can the effectiveness of the drowning detection system be measured? Both 

quantitatively and qualitatively. 
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2. Literature Review 

2.1 Drowning Prevention Techniques 

Many novel approaches have been proposed for drowning prevention techniques. Technology 

for drowning prevention largely fall into two categories: image-based processing and 

methods employing sensors and embedded systems (Shehata et al, 2021). The reviewed 

literature indicates that image-based processing is an effective method for drowning 

detection. Embedded systems and wearable sensors are also a low-cost and reasonably 

effective solution with monitoring of motion, heart rate, blood oxygen level and depth being 

possible (Jalalifar et al. 2022). However, a key disadvantage of a sensor-based system is that 

it still relies on the swimmer wearing the device with discomfort being a key disadvantage 

noted, particularly among children (Alshbatat et al, 2021). 

2.1.1 Sensor Solutions 

Several novel sensor-based solutions have been proposed for drowning detection systems. 

One system utilised a device which detected 3-axis acceleration and pressure underwater and 

was tested being worn on various positions on the body including the head, chest, waist, 

wrists, and ankles (Konishi et al, 2022). The design was based upon the Instinctive Drowning 

Response (IDR) behaviour generally exhibited by persons drowning as shown in figure 5. 

Such behaviour includes the mouth being at water level, facing the shore or exit of a body of 

water, the head being titled back, the body being vertical and a ladder climbing motion (Great 

Lakes Surf Rescue Project, 2013). The prototype produced results whereby when IDR 

behaviours were demonstrated by the various lifesavers wearing the devices, similar pressure 

waveforms were seen. However, further research was needed to distinguish between similar 

actions such as IDR, standing and non-drowning behaviours. 

 

Figure 5: Instinctive Drowning Response behaviours (Great Lakes Surf Rescue Project, 2013) 
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Jalalifar et al proposed a multi-sensor device to detect swimmers in distress. Their design 

included the ability to measure four parameters which included heart rate, blood oxygen 

saturation, acceleration, and water depth. Should any of the measured values cross a pre-

defined threshold for a certain period, an output indicating a potentially drowning swimmer is 

displayed, in addition a message can be sent via Wi-Fi to a phone or laptop to notify 

lifesavers (Jalalifar et al, 2022). The device was designed to be worn on the wrist, and with 

the addition of a battery pack and case was noticeably bulky. However, the initial test 

provided some promising results, the system performed well and was able to provide accurate 

data even in harsh conditions. The limitations of the system included the bulkiness of the 

device as well as communication limitations as a mesh network was needed.  

Finally, a system named the Falling and Drowning Detection (FaDD) framework was 

developed. This used smartphone technology and embedded sensors including an 

accelerometer, gyroscope, magnetometer, and GPS in conjunction with machine learning 

models (Alqahtani et al, 2022). Firstly, the framework determines if a person is falling and 

then predicts a drowning situation. The data was then processed by three different machine 

learning models to assist in event identification. They found that the gyroscope did not 

provide useful data due to the reduction in gravity underwater and so this was removed. The 

magnetometer and accelerometer were used to determine a fall and then further analysis 

determined whether it was a drowning event. The authors found that there were differences in 

the data acquired from the accelerometer and magnetometer in each situation. For drowning, 

the signals were subtle whereas in a fall only, a significant spike was seen in readings. They 

found that the system had a 98% accuracy rate in event identification. However, a noted 

limitation was poor cellular and Wi-Fi signal propagation underwater. In addition, this system 

would be limited to certain situations such as an accidental fall into a body of water as 

opposed to the user being in the water and then starting to drown. 

2.1.2 Machine Vision Solutions 

Accurate identification of drowning utilising machine vision poses several challenges. One 

issue is the occurrence of high levels of noise when identifying foregrounds and behaviour 

recognition due to the random nature of movement on the surface of a body of water (Eng et 

al, 2008). Methods have been proposed for modelling dynamic aquatic backgrounds, 

recognising behaviours associated with drowning and addressing moderate levels of 

crowding within swimming pools in a paper by Eng et al in 2008. Of key interest with this 

proposed system is the utilisation of only surface cameras and thus offers the potential for 
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earlier detection of drowning events given that underwater cameras are more likely to detect 

drowning at a later stage, once the swimmer has sunk to the bottom (Eng et al, 2008). Since 

then, several advances have been made with the use of image processing and machine 

learning algorithms for drowning detection.  

 

Figure 6: Segmented silhouettes of various swimming and drowning behaviours for use in the behavioural recognition 

system (Eng et al, 2008). 

A system examined by Salehi et al utilised existing security cameras surrounding a swimming 

pool for drowning detection utilising HSV (Hue, Saturation, Value) colour spaces to track 

individuals and detect any potential drowning events. Water ripples proved to be challenging 

to the image recognition software but the HSV colour space contour detection proved to be a 

robust method for drowning detection with an average drowning detection delay of 1.53 

seconds and minimal false alarms sent by the algorithm (Salehi et al, 2014). The performance 

of the system was impressive given that no machine learning algorithms had been used, 

though with advancements in this field since 2014, there are clear opportunities to improve 

on these results. 

One novel system proposed utilised a customised YOLO algorithm to detect drowning in 

three stages, each defined by a particular behaviour associated with drowning such as a 

climbing ladder motion or the head being underwater (Handalage et al, 2021). The system 

also only utilises surface cameras with the aim of recognising struggling motions before 
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drowning occurs. Individuals are identified using object detection through the YOLO 

algorithm and then a CNN human detection algorithm determines if they are exhibiting 

drowning behaviour. Skeletal sketching using OpenPose is used to recognise a person’s pose, 

the CNN is then used to identify hazardous or non-hazardous behaviour to identify possible 

drowning events. Using test images, the algorithm achieved a total accuracy of 85.6% when 

identifying drowning events (Handalage et al, 2021). The model was trained in a Google 

Colab notebook with a dataset of approximately 5000 images with weight files generated 

every 100 iterations. The model was then implemented on a NVIDIA Jetson Nano board to 

run multiple neural models. The authors acknowledged that the system could be improved 

through better hardware to assist with speed and accuracy as well as the addition of multiple 

cameras. 

Lei et al developed a drowning behaviour detection system utilising the YoloV4 algorithm 

and eight underwater cameras. The authors adapted YoloV4 to a custom model to improve the 

accuracy of target detection. The system was based in PyTorch (used in YoloV5) and Darknet 

(YoloV3) frameworks in Windows 10. Two classes were given (drowning or swimming) and 

it was trained for 10,000 iterations. They experimented with different versions of Yolo from 3 

to 5. They found YoloV4 and V5 performed similarly but V3 struggles due to reflections on 

the water surface and some swimmers being mistaken for drownings. For instance, the Mean 

Average Precision (mAP) of YoloV3 was 84.37% and 92.41% and 90.32% for V4 and V5 

respectively (Lei et al, 2022). They found that all algorithms struggled with higher density 

pools, which aligns with Yolo’s known shortcomings in detecting dense, small objects with 

their customised YoloV4 algorithm performing best with different pool angles. They 

concluded that an accurate real time drowning system was possible using underwater cameras 

and a customised YoloV4 framework. 

Another system focused on inadequate supervision instead of drowning behaviours. This 

solution collected a dataset of 38,000 images of distracted parents or caregivers around a 

swimming pool and then implemented three different CNNs for classification and detection. 

The dataset was split 8:2 for training and testing (30,000 images for training and 8000 for 

testing) with seven detectable classes chosen, such as ‘in the water and distracted’ and ‘out of 

the water distracted’. They then went on to develop an alert system in the form of voice alert, 

pager, or a wearable device. The three CNNs selected were VGG-19, ResNet-50 and 

Inception-v3 with an accuracy of 94%, 98% and 90% respectively (Cepeda-Pacheco and 

Domingo, 2022). Given the notification network was implemented using 5G, the authors did 
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acknowledge that privacy and security could be an issue with potential eavesdropping on the 

network and access to underage images by malicious parties. They emphasised the need for 

robust security measures for this system to be an accepted method for child drowning 

prevention. 

A holistic rescue system using machine vision and an intelligent lifebuoy was proposed by 

Yang et al. They collected a dataset of approximately 3000 images which was split in a ratio 

of 8:1:1 for training, verification, and testing. The authors made some assumptions given that 

the lifebuoy was operating in open water and not swimming pools. For example, detection of 

any human features was considered a drowning situation as people shouldn’t be present in 

these open bodies of water. Since it was not necessary to detect drowning behaviours, the 

model focused on detection of upper body parts such as the head, arms, and hands. YoloV4 

was chosen due to its real time detection abilities. The model was trained on a NVIDIA GPU 

with a learning rate of 0.00261 and 40,000 iterations. They found the system performed well 

under testing but found some key limitations, notably that the YoloV4 model was too large to 

be deployed on the low-cost embedded system on the lifebuoy, thus compression and 

acceleration of the model was to be followed up in further works (Yang et al, 2021). 

A low cost and effective solution using limited computational hardware was proposed by 

Pavithra et al using a Pi camera, Raspberry Pi 3 and a buzzer for alerting. The system used a 

timer approach as opposed to identifying drowning behaviours, thus if a person stopped being 

detected for a certain period, the buzzer would alarm. A R-CNN algorithm was used for 

detection and trained on a large dataset, though the authors do not specify the particulars of 

this dataset. They concluded that the system was 99% accurate for detecting missing persons 

in the water (Pavithra et al, 2021). However, the system had some limitations, including 

potential false detections, and the timer approach may not always detect drowning events that 

occur for an extended period before submersion. Additionally, the system's reliance on 

missing persons detection implies that drowning events will be detected in later stages, such 

as when the victim is already unconscious, potentially resulting in adverse outcomes. 

2.2 Commercial Drowning Detection Systems 

There are several commercial camera-based drowning detection systems available. One such 

system is the Angel Eye which utilises cameras above and below the water to detect all the 

swimmers in a pool. A three-dimensional model is created, and a drowning detection 

algorithm activates an alarm based on anomalous events (Angel Eye, 2022). In addition, 
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alerts are sent to smart watches or phones worn by lifeguards to notify of a potential event. 

Currently, the Angel Eye is available for commercial swimming pools and each system is 

uniquely configured for each application requiring a design study and professional 

installation (Angel Eye, 2022).  

  

Figure 7a and b:  Angel Eye user interface and notification device (Angel Eye, 2023). 

Another similar solution available is the Poseidon drowning prevention system. Like the 

Angel Eye, it utilises cameras above and below the water to identify swimmers in distress 

which then alerts lifeguards. The company states that ‘unique and precise’ software code is 

used to differentiate between a person drowning and simply being still (Poseidon, 2022). Also 

like the Angel Eye, each system is custom built for the swimming pool it is installed in. A 

clear disadvantage of both solutions is that they are bespoke systems suited for commercial 

swimming pools in addition to requiring cameras above and below the water to accurately 

identify swimmers in distress.  

Wave drowning detection systems offer a commercial and home-based drowning detection 

system utilising wearable sensors which link to a local hub and then to a mobile phone 

application (Wave drowning Detection Systems, 2022). One key advantage of this system is 

that is easy to configure and can be used in a variety of settings including swimming pools 

and lakes. However, as previously noted it requires the effective use of wearables which can 

often be problematic among children due to discomfort. Thus, there is currently no market 

ready solution utilising one camera above the water line in a swimming pool to detect 

potential drowning events, particularly in non-commercial settings. 
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2.3 Drowning Detection Using Machine Vision 

Numerous prospects exist for drowning detection systems through the utilisation of machine 

vision, and the progress in object detection algorithms further enhances these possibilities. 

This section shall assess machine vision solutions including the hardware and algorithms 

used in their implementation. 

2.3.1 Hardware 

Many of the drowning detection systems reviewed utilised computers such as the Raspberry 

Pi for deployment in field. Pavithra et al used a Pi Camera and Raspberry Pi for their 

drowning detection system which was able to detect and track swimmers in a pool. Alshbatat 

et al also made use of a Raspberry Pi and Pixy cam in their system which communicated with 

an Elekstar controller for deployment of a rescue system. It should be noted that their 

drowning detection system was simplified to identify swimmers based on people wearing 

yellow vests. Thus, detection of a yellow object is assumed to be a swimmer. In addition, the 

system was concept tested in a laboratory only and not in a swimming pool. Nonetheless, the 

results from lab experiments were promising and proved the concept. 

In addition to hardware required for deployment of drowning detection systems, further 

hardware is often required to train the algorithms. Graphical Processing Units (GPUs) are 

now widely used in machine learning applications due to their improved performance over 

Computer Processing Units (CPUs). In one experiment conducted using machine learning for 

webpage classification, GPUs were found to complete test cases 4 to 5 times faster than 

CPUs (Buber and Diri, 2018). In addition, it was found that running time was shortened as 

the number of cores was increased in the GPUs. 

Handalage et al ustilised Google Colab and the freely available virtual GPUs to create and 

train their models, saving weight files every 100 iterations. Once the model was trained, it 

was implemented on a NVIDIA Jetson Nano board running a Quad-core ARM CortexA57 

processor. The Jetson nano was also equipped with a 128 Core GPU making it suited to 

machine learning applications and running neural models in parallel (Handalage et al, 2021). 

Other researchers followed a similar methodology, Yang et al trained a custom YoloV4 model 

on a NVIDIA GeForce GTX1080 GPU (Yang et al, 2021) and Niu et al also used a NVIDIA 

GeForce RTX 2080Ti GPU (Niu et al, 2022). 
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2.3.2 Algorithms 

Both Yolo and CNN algorithms have been used in drowning detection systems and both offer 

promising results. There are advantages and disadvantages to each type of algorithm and this 

section shall review their use in drowning detection systems. 

Five types of CNN algorithms were assessed for their effectiveness in a drowning detection 

system by Shatnawi et al in 2023. They selected SqueezeNet, GoogleNet, AlexNet, 

ShuffleNet and ResNet 50 for testing on their dataset. Their dataset was limited to 200 

images taken from Google and two classes were to be detected: drowning and swimming. To 

avoid overfitting, they utilised data augmentation techniques to increase the quantity of 

imagery in their dataset. Rotation and scaling were found to be effective methods. Their 

experiments were implemented in MATLAB and six metrics were used to evaluate the 

various models. These were accuracy, recall, precision, specificity, F1 and the Mathew 

Correlation Coefficient (MCC). It is notable that no metric for measuring the speed of 

detection was used. They concluded that ResNet 50 performed the best with accuracy and 

training time (Shatnawi et al, 2023). 

Another approach used pose estimation algorithms. Firstly, OpenPose was used to label joints 

on images of swimmers. VGG-19, a CNN used in OpenPose was replaced with Thin-

MobileNet to reduce the size of the network model and calculation times (31 seconds to 14). 

A shallow Recurrent Neural Network (RNN) was then used to recognize drowning actions 

(Jian and Wang, 2021). The authors found that the model had an accuracy of 89.4% though 

there was the potential for detections to be missed due to bubbles generated by the swimmer. 

Again, no reference was made to detection times in the final testing of the model.  

Speed and accuracy are critical measures in a real time drowning detection system. 

Consequently, it is important to compare these metrics in various algorithms. R-CNN and 

Fast R-CNN are known for their accuracy and ability to detect small objects, a feat that Yolo 

algorithms often struggle with. However, the former are less suited to real time applications 

due to the speed of detection, an area where Yolo excels (Malhotra and Garg, 2020). Joseph 

Redmon, the initial creator of Yolo, acknowledges the lagging accuracy of Yolo when 

compared to CNNs like RetinaNet (an AP of 33.0 compared to RetinaNet’s 40.8). However, 

he points out that RetinaNet takes 3.8 times longer to process an image (Redmon and 

Farhadi, 2018). Since his final version of Yolo (YoloV3) there have been significant 

improvements in the subsequent iterations of the Yolo models. As table 1 below 
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demonstrates, CNN models generally perform better than Yolo models with regards to mAP 

metrics, however, cannot match Yolo in speed.  

Method FPS mAP@0.5 mAP@0.5,0.95 

Fast RCNN 0.03 35.9 19.7 

Faster RCNN 5 42.7 21.9 

Mask RCNN - 62.3 39.8 

YoloV2 40 44.0 21.6 

YoloV3 45 51.5 28.2 

YoloV4 31 64.9 43.0 

YoloV5 140 68.9 50.7 

Table 1: A performance comparison of object detection models (Kaur and Singh, 2022) 

It is not to say that CNN object detection models do not have their place, for instance they are 

well suited to medical imaging detections where real time speeds are not necessary (Kaur and 

Singh, 2022). However, where real time speeds are required, Yolo models are the most 

suitable choice (Malhotra and Garg, 2020). 

Niu et at adapted a YoloV4 framework to a custom model. YoloV4 was the algorithm of 

choice as it is a single stage target detection algorithm with excellent speed and accuracy. 

They replaced the ReLu functions with a Meta-CON activation function in conjunction with a 

CBAM module. They then tested this model on a constructed swimming video dataset. They 

found their model performed marginally better than the YoloV4 alone with a mAP of 86.92%, 

which was an increase of 1.82% on the original method (Niu et al, 2022). The dataset 

contained a total of 12588 images (both above and underwater) which had been taken from 

footage and labelled using LabelImg. Training and testing were performed at a ratio of 9:1 

with both CPUs and GPUs being used. The dataset contained people swimming as well as life 

savers simulating drowning behaviours. 

Yang et al also selected YoloV4 as their algorithm of choice and customised it to suit their 

needs. They introduced a new output scale from the low-level feature map layer to improve 

the detection of small objects. They also improved the non-maximum suppression of YoloV4, 

which reduced the number of bounding boxes resulting in more accurate positioning 

information for their intelligent lifebuoy (Yang et al, 2021). 

YoloV5 was used to create a drowning detection system using surface and underwater 

cameras. It was found to be the most suited algorithm for their needs as real time detection 

was a requirement (Vestinov et al, 2023). The authors considered several other versions of 
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Yolo, including YoloV7, YoloR and YoloX but after their initial experiments, found YoloV5 

was the best for their purposes. Again, dataset acquisition was a challenge due to the nature of 

drowning events, but they utilised augmentation techniques to increase the size of the dataset. 

After the model was trained, the team tested the system by simulating drownings and found 

that their model successfully detected all events. They did note some limitations because of 

their dataset. For example, an underwater vacuum cleaner was consistently identified as a 

person and false positives occurred in night frames (Vestinov et al, 2023).  

As previously mentioned, Handalage et al used YoloV3 for identifying swimmers and then a 

CNN determined if they were exhibiting drowning behaviour using OpenPose. Their system 

had an accuracy of 85.6% however they did not refer to any detection times (Handalage et al, 

2021). Lei et al also utilised a customised YoloV4 and underwater cameras for identification 

of drowning behaviours having experimented with various versions of Yolo (from 3 to 5). 

Their results found that YoloV4 performed best and was capable of being used in a real time 

drowning detection system (Lei et al, 2021). Another previously mentioned solution by Yang 

et al also ustilised YoloV4 for detection of swimmers in distress, again it performed well 

though was limited in deployment by its size (Yang et al, 2021). Thus, it is clear from the 

reviewed literature that Yolo is capable of being used in a real time drowning detection 

system. In addition, little research has been conducted beyond YoloV5 in these systems and 

as such, opportunities exist to investigate this further. 

 

Figure 8:  Drowning stages detected by the Yolo algorithm used by Handalage et al (Handalage et al, 2021). 

2.3.3 Datasets 

In object detection, there are several open-source datasets which have been used as a 

benchmark for training algorithms. Until 2017, the de facto standard was the Pascal VOC 

dataset. This contained 20 object classes through 17,125 images. However, since 2017, the 

benchmark has become the Microsoft COCO (Common Objects in Context) dataset (Miller et 

al, 2022). The COCO dataset contains 80 object categories with the 2017 dataset being split 
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into three different categories. These are train, which contains 118,000 images, validation 

which contains 5,000 images and test which contains 20,000 images. The benefit of the 

COCO dataset is that it provides standardised metrics including mean Average Precision 

(mAP) which can be used to compare various object detection models (Jocher and Waxmann, 

2023), a leaderboard on the dataset website compares the performance of a variety of models.  

A limitation of many of the systems proposed was the availability of a dataset on which to 

train a detection algorithm. By nature, drowning events are unpredictable and uncommon, 

and so there was a reliance on mimicking drowning behaviours to train models. In addition, 

reasonably large datasets are required for meaningful results, often in the order of 10,000 to 

40,000 images as indicated by the reviewed literature. Thus, acquisition or creation of an 

appropriate dataset will be a key challenge of this research. 

Generation of a dataset for drowning behaviours was proposed by Hasan et al using both 

surface and underwater cameras. This dataset was tested using algorithms to detect the early 

stages of drowning rather than looking for a drowned person with the underwater camera. 

Drowning recognition is achieved using Deep Neural Networks (DNNs) which have been 

pretrained on a large image set, which formed part of their dataset. These were then adapted 

for water behaviour recognition for the purpose of identifying behaviours associated with 

drowning. Two methods were then used to train deep learning models for drowning detection: 

scene recognition and pose estimation methods with pose estimation found to be the most 

effective for drowning detection (Hasan et al, 2021). Finally, a test dataset was used to assess 

the effectiveness of the models used and their dataset for training them.  

 

Figures 9a and b: Drowning and Swimming detections using ResNet50 (Hasan et al, 2021). 
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Given the sporadic nature of drowning events and the challenges in acquiring such a dataset 

highlighted in this review, a gap exists in the development of a suitable dataset for drowning 

behaviours. There is an opportunity to investigate the size needed to effectively train a 

machine vision model for drowning detection. 

2.4 Machine Vision Developments 

Many machine vision systems have been implemented using standard cameras and rely on 

peripheral CPUs or processors to for object detection. However, there have been 

developments in affordable computer vision hardware. For instance, Luxonis have released 

an OAK-D (OpenCV AI Kits- Depth) which is a three-camera device with stereo depth and a 

high-resolution colour camera. In addition, the device contains Neural Network inferencing 

and computer vision capabilities (Luxonis, 2023). This allows much of the resource intensive 

neural network processing to be done on camera rather than on a peripheral device, such as a 

Raspberry Pi potentially offering better real-time response with neural network models. 

The OAK-D was a crowdfunded camera released in 2021 and has since been the centre of an 

annual competition hosted by OpenCV and Microsoft attracting 1400 submissions a year 

(Bliss, 2021) with users demonstrating implementation of the Oak-D in their projects.  

 

Figure 10:  The Oak-D Lite edge AI camera. In the centre is the colour camera with two stereo cameras either side (Luxonis, 

2023). 

One novel use of the Oak-D camera was in a non-invasive real-time monitoring system in 

neonatal intensive care units in Spain named the Neocam. The system proposed used an Oak-

D due to its on-board processing and ability to perform several video analysis tasks of clinical 

interest in real-time speeds (Ruize-Zafra et al, 2023). They used several algorithms for 

various tasks, for body and face detection two CNNs (ResNet) were used, for facial 

expression classification MobileNetV2 was implemented and for pose estimation BlazePose 

body was selected. The use of these networks allowed for monitoring of infant breathing rate 
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(due to the mono-cameras of the OAK-D), motor activity monitoring and emotional status. 

Their system had positive results, with the algorithms for face and pose detection functioning 

correctly 90% of the time (Ruize-Zafra et al, 2023). A survey conducted amongst clinical 

staff found that they considered the system to be safe and that they would like more time to 

work with it. In addition, the breathing rate detected by the camera with within 6% of 

measurements obtained by probes. Some of the system’s flaws were that it struggled with 

infants covered or partially covered by blankets or sub-optimal lighting levels. In addition, 

key concerns from staff were related to privacy and image control. In all, the Neocam 

demonstrated the impressive capabilities of the Oak-D in a practical setting. 

Another system implementing the Oak-D was a computer vision-based assistance system for 

the visually impaired. The OAK-D allowed the system to avoid using expensive and power 

intensive GPUs normally needed for deep learning algorithms. As such, it was capable of 

being worn inconspicuously by the intended user and was non-intrusive. The system was able 

to detect people, cars, traffic lights, yellow pavements that aid the blind, traffic signs, 

pedestrian crossings, and speed limits. In addition, the semantic image segmentation models 

were able to detect roads, curbs, and road markings (Mahendran et al, 2021). SSD-MobileNet 

was used for object detection and a hybrid lightweight semantic segmentation model was 

used for area detection. Five open-source datasets were used for training including the 

Google Open Image dataset, in addition the authors collected and labelled several thousand 

custom images from walking around their local area at various times of the day (Mahendran 

et al, 2021).  

The hardware included the OAK-D connected to a small host computing unit such as a 

Raspberry Pi which was able to be placed in a backpack and the camera was embedded in an 

appropriately designed vest. The authors noted that the semantic image segmentation models 

were not able to be effectively run in parallel with the other models selected and as such were 

only run at the user’s request. A proposed solution was to obtain more OAK-D cameras so it 

would be possible to run segmentation models in parallel, however at the time of publication 

the OAK-D was still a Kickstarter project and supply was limited (Mahendran et al, 2021). 

However, the system addressed common challenges experienced by the visually impaired on 

a daily basis and was also a non-obtrusive design. In addition, the authors were confident that 

the computing device could be eliminated and replaced with a mobile device or edge device 

such as a Nvidia Jetson. 
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At the time of writing, there was no literature indicating that a drowning detection system has 

been proposed or designed utilising devices such as the OAK-D Lite. As such, there is an 

opportunity to investigate this. 

2.5 Knowledge Gaps 

Having conducted the literature review, several knowledge gaps were identified which shall 

form the foundation of this research project. They are listed below: 

1) There are no solutions which utilise only surface cameras in a non-commercial setting 

such as a residential pool. 

2) Yolo algorithms have proven to be effective in drowning detection systems, however 

little research has been conducted beyond YoloV5. As a result, there is an opportunity 

to investigate newly released algorithms beyond YoloV5 in a drowning detection 

system. 

3) Drowning datasets have proven to be a major challenge identified in all the systems 

studied. A knowledge gap exists in the acquisition and development of a suitable 

dataset to effectively train an object detection model. 

4) Affordable cameras with embedded AI processing capabilities are now available. The 

literature review indicated that cameras such as the Oak-D have not been utilised in 

drowning detection systems. As such, an opportunity exists to explore this knowledge 

gap. 
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3 Methodology 

Several knowledge gaps have been identified in the literature review. Experiments shall be 

developed and conducted to address these. To reiterate, the gaps are as follows: 

1) Surface Cameras: There are no solutions which utilise only surface cameras in a 

residential pool and existing market ready solutions are bespoke designs for 

commercial swimming pools. Development of a simple surface camera for use in a 

residential pool may ultimately reduce drowning events. 

2) Yolo Algorithm Developments: Yolo algorithms have proven to be effective in 

drowning detection systems, however little research has been conducted beyond 

YoloV5. As a result, there is an opportunity to investigate newly released algorithms 

beyond YoloV5 in a drowning detection system. Of particular interest is YoloV7 and 

YoloV8 which are adaptations of YoloV4 and V5 respectively. 

3) Dataset Acquisition and Development: Drowning datasets have proven to be a major 

challenge identified in all the systems studied. A knowledge gap exists in the 

acquisition and development of a suitable dataset to effectively train an object 

detection model. High quality, diverse and often large datasets are needed to 

effectively train machine vision algorithms. The acquisition and development of such 

a dataset shall be investigated in this project. 

4) Cameras with Embedded AI functionality: Affordable cameras with embedded AI 

processing capabilities are now available. The literature review indicated that cameras 

such as the Oak-D have not been utilised in drowning detection systems. As such, an 

opportunity exists to explore this knowledge gap. Of particular interest is the Oak-D 

Lite which is a lightweight version of the Oak-D at a lower cost. 

To reduce the scope of this project, an Oak-D Lite camera has been selected as the surface 

camera for use. This shall assist in addressing the first and last knowledge gaps as well as the 

fifth research question ‘What is the most appropriate hardware to implement the algorithm on 

to build a real time drowning detection system?’. This project shall focus on the acquisition 

and development of a suitable dataset as well as an appropriate Yolo algorithm for the 

drowning detection system. 
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3.1 Research Methodology 

This section shall develop a methodology and specific experiments which aim to close the 

knowledge gaps identified and answer the project research aims. 

3.2 Task Analysis 

The research task can be broken down into several distinct stages. 

3.2.1 Dataset Acquisition and Preparation 

The first stage of the project is to acquire and prepare a dataset. It may also be necessary to 

create my own dataset if a suitable one cannot be sourced. The dataset will also need to be 

appropriately labelled for the algorithm which will be trained. The literature indicates that 

LabelImg is a free and open-source program which can be used for this purpose. 

3.2.2 Metrics 

It is necessary to define metrics and parameters which shall be used to measure the 

effectiveness of the chosen models to address the sixth research question ‘How can the 

effectiveness of the system be measured?’. Key Metrics which shall be used are as follows: 

i) Mean Average Precision (mAP) - This metric shall be used to quantitatively 

compare the different models and their capabilities. This will also assist in 

selecting the best performing weight file once a model has been trained. 

ii) Speed of Detection – This shall be measured in milliseconds. It is important to 

know the time it takes for models to run their detections as this will be a critical 

component of a real time drowning detection system. 

iii) Average Precision (AP) – this metric is used to compare precision and recall in 

single classes. It will be important for understanding model’s performance in 

detail. 

iv) True Positive (TP) – The correct detection of a bounding box which will assist in 

gaining an in depth understanding of a model’s performance. 

v) False Positive (FP) – The incorrect detection of a non-existent object or the 

misplaced detection of an existing object, again this will assist with understanding 

a model’s performance and the quality of the dataset. 

vi) False Negative (FN) – A bounding box that failed to be detected around an object, 

as per the previous two metrics. 
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3.2.3 Algorithm Selection 

The second stage of the research and first experiment is to select an appropriate Yolo 

algorithm. It is important that the algorithm is accurate whilst being deployable on the Oak-D 

Lite and Raspberry Pi. Key features needed are: 

1) Precision – the algorithm needs to be accurate and capable of meaningful detections. 

2) Speed – the algorithm shall be able to make detections in real time. 

3) Size – the algorithm shall be deployable on the Oak-D Lite and the Raspberry Pi. 

It may be appropriate to select two or three algorithms and then compare their relative 

performances against the above specifications. 

3.2.4 Build, Train, and Deploy Model 

Once the algorithms have been selected, they shall be built in Google Colab and trained on 

the acquired dataset using the virtual machines and GPU available through Colab. The 

models shall use appropriate measures such as mAP and speed to select the most suitable. If 

necessary, improvements will be made to the final model to increase mAP and speed 

capabilities. 

Once the final model has been selected, it will then be deployed onto the Oak-D Lite and 

Raspberry Pi and tested in real time. This testing will be qualitative in nature to determine its 

accuracy and effectiveness in real time. 
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3.3 Experimental Design 

Model testing and development will involve several experiments. The design of these is as 

follows. 

3.3.1 Experiment 1 – Qualitative Testing of Yolo Models 

The first experiment will involve deploying pretrained Yolo Models. The baseline model shall 

be YoloV3 as this is the final version developed by Joseph Redmon, the initial creator of 

Yolo. Versions 7 and 8 shall also be tested. These models will be trained on the COCO dataset 

and two images will be used for comparison of the model’s effectiveness. These images will 

contain objects which are included in the COCO dataset (person, snowboard, skis, backpack, 

skateboard). The main aims of this experiment are: 

1) To gain an understanding of how these models are built and deployed in Google 

Colab. 

2) To qualitatively compare the abilities of each model and to gain an understanding of 

their object detection capabilities and assist in the selection of models for further 

testing. 

Hypothesis 

The expected outcome of this experiment is that larger and newer Yolo versions will have 

greater detection capabilities. It is expected that YoloV3 will perform poorly in comparison to 

later versions. 

This experiment shall also assist in answering research question 4, ‘What method and 

hardware should be used to train the algorithm?’. This experiment shall confirm whether 

Google Colab is the appropriate platform for training. 

3.3.2 Experiment 2 – Quantitative Testing of Yolo Models on a Custom Dataset 

Two models shall be selected for this experiment; YoloV7 and YoloV8. YoloV7 shall be 

selected as it was developed by the team behind YoloV4 and thus is likely to succeed any 

versions of it. In addition, the release of YoloV7 included a peer reviewed academic paper. 

YoloV8 shall also be tested, it was developed by Ultralytics who created YoloV5, there was 

some criticism around the release of YoloV5 as it did not have a peer reviewed paper 

accompanying it. However, the literature review indicates that it has been widely 

implemented with good results. Both YoloV7 and V8 are new models having been released in 

July 2022 and January 2023 respectively. Thus, they offer an exciting opportunity to 
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investigate their capabilities. The figure below compares the various later versions of Yolo for 

speed and mAP50-95. 

 

Figure 11:  A comparison of speed and mAP of Yolo versions 5 to 8 (Ultralytics, 2023). 

Additionally, both YoloV7 and V8 are compatible with the RCV2 architecture of the Oak-D 

Lite and can therefore be deployed in field. 

Mean Average Precision (mAP) and speed shall be the metrics measured during this 

experiment. The aims of this experiment are as follows: 

1) To compare three models trained on the custom drowning dataset and their 

capabilities. 

2) To select the best model for deployment on the Oak-D Lite. mAP and speed shall be 

the key metrics. 

3) To achieve mAP scores similar to or better than those achieved in the COCO dataset 

baseline testing. 

4) To observe the effectiveness of the custom dataset when used to train a Yolo model. 

Hypothesis 

It is predicted that the YoloV7 and V8 models shall perform well. Literature indicates that 

YoloV8 slightly outperforms V7 and so the same is expected in this experiment. 

This experiment shall answer the first research question, ‘What is the most effective 

algorithm that can be used in a real time drowning detection system?’. 
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3.3.3 Experiment 3 – Improving the Yolo Model 

Having selected the most appropriate Yolo model, this experiment will be focused on 

improving mAP scores and speed. This may be through improvement of the dataset or other 

techniques such as fine-tuning model parameters and training for more iterations/epochs. The 

aim of this experiment is as follows: 

1) To improve the performance of the Yolo model. This will be observed through 

changes in the mAP and speed. 

Hypothesis 

It is predicted that the methods implemented in this experiment will result in some 

improvement in the performance of this model. 

3.3.4 Experiment 4 – Model Deployment on the Oak-D and Raspberry Pi 

Having selected and improved the algorithm of choice. The next step is to deploy the model 

on the Oak-D and Raspberry Pi. Once deployed, the model shall be tested in real-time at a 

swimming pool to confirm it is able to make accurate detections. The aim of this experiment 

is as follows: 

1) To deploy the chosen algorithm on the Oak-D Lite and Raspberry Pi and make real 

time detections. 

Hypothesis 

It is predicted that the system can make accurate detections in real time as the algorithm 

will have been selected with the end deployment in mind.  

3.3.5 Experiment 5 – Real time detection and alert of drowning events 

Once the model has been deployed effectively on the Oak-D Lite and Raspberry Pi, it will be 

necessary to make real time detections and alert of any potential drowning events. It is 

envisaged that the alert system will be in the basic form of a web browser or mobile interface. 

The aim of this experiment is as follows: 

1) To prove that the algorithms and hardware is capable of real time drowning detections 

and alerts. 
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Hypothesis 

It is predicted that the system will be capable of making real time detections and that 

development of a basic alert system is possible. Ultimately creation of an application for use 

on smart devices would be desirable, however this is beyond the scope of this project. A 

simple alert system shall be sufficient to address the research aims and knowledge gaps. 

3.4 Resource Analysis 

Several resources are required for successful completion of this project. Budgetary 

constraints have not been a key restriction of this project though efforts have been made to 

minimise costs where possible. The following resources have been selected. 

3.4.1 Hardware 

Oak-D Lite: The Oak-D Lite has been selected as the camera to be used in this research 

project. The Oak-D has produced promising results in systems reviewed in the literature. In 

addition, these cameras have not yet been used in a drowning detection system. The Oak-D 

Lite was specifically selected due to its lower price with the specifications being appropriate 

for this project. The Oak-D Lite is built upon the Robotics Vision Core 2 (RVC2) which can 

run several AI models, including custom models (Luxonis, 2023). The performance of the 

following Yolo models on the RCV2 are tabulated below: 

 Model Name Size FPS Latency (ms) 

YoloV6n R2 416x416 65.5 29.3 

YoloV6n R2 640x640 29.3 66.4 

YoloV6t R2 416x416 35.8 54.1 

YoloV6t R2 640x640 14.2 133.6 

YoloV6m R2 416x416 8.6 190.2 

YoloV7t 416x416 46.7 37.6 

YoloV7t 640x640 17.8 97 

YoloV8n 416x416 31.3 56.9 

YoloV8n 640x640 14.3 123.6 

YoloV8s 416x416 15.2 111.9 

YoloV8m 416x416 6 273.8 

Table 2 Yolo models and their performance on the Oak-D Lite (Luxonis, 2023) 

Raspberry Pi 4: A Raspberry Pi 4 has been selected as the central computing unit for the 

drowning detection system. Raspberry Pi units have been used extensively in machine vision 

projects and are compatible with the Oak-D Lite. In addition, it is supported by a large 

amount of documentation and is simple to use. A Raspberry Pi 4 with 8GB of RAM was 

purchased as this should offer enough computing power for the purposes of this project. 
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Microsoft Surface Laptop: A Microsoft Surface laptop with 8GB of RAM and Windows 10 

installed shall be used as the PC for development of this research project. Given that the 

training will be carried out on GPUs in virtual machines in Google Colab this laptop shall 

suffice for the requirements of this project. 

3.4.2 Software 

LabelImg: LabelImg is an open source and freely available program used for labelling 

datasets in PASCAL and YOLO formats. As such it shall be used in this project for labelling 

images forming the dataset. 

Google Colab: Google Colab shall be used for training and development of algorithms. It has 

been chosen due to its compatibility with Google Drive as well as well as offering free access 

to GPUs which are required for training algorithms. Additional GPU access can be purchased 

if required. In addition, reviewed literature indicated it has been used effectively in past 

machine vision project with good results. 

Google Drive: Google Drive shall be used alongside Google Collab for development of 

machine vision models as it offers a convenient platform to upload datasets. It offers 15GB of 

storage for free and the option of upgrading to more storage if needed for a negligible price. 

Visual Studio Code: Visual Studio Code shall be used for creating and editing python files 

associated with algorithm development. It has been selected due to its ease of use and being 

freely available. 

Windows Suite: The windows suite of programs including Word, Excel and Visio shall be 

used extensively through this project for collation and recording of results and for word 

processing and image creation. 

Free Video to JPG Converter: Again, this software is freely available to download. This will 

be used to split the dataset videos into JPG files in preparation for labelling. 

3.4.3 Dataset 

Access to a drowning detection dataset was freely provided by the team at the Rochester 

Institute of Technology in Dubai used in their paper entitled ‘A Water Behaviour Dataset for 

an Image-Based Drowning Solution’ which addresses the third research question; ‘Where can 

a dataset be sourced?’. 
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3.4.4 Test Location 

Access to a pool for testing is required. Access to such a pool is freely available at the unit 

complex I am a resident of, restricted access to this location is not envisaged and as such does 

not pose a risk to the completion of this project. 

3.4.5 Project Cost 

The project costs have been tabulated below: 

Item Cost Comments 

Raspberry Pi 4 8GB starter kit  $             289.00  Included accessories such as a power supply and USB leads 

Oak D-Lite Camera  $             287.00  Includes USB A to C cable for camera 

Laptop  $                     -    Currently own an appropriate laptop 

LabelImg  $                     -    Free to download and use 

Google Collab  $                     -    Free to access and use 

Google Drive $                      -    Free to access and use 

Visual Studio Code  $                     -    Free to access and use 

Windows Suite  $                     -    Free to access and use 

Free Video to JPG Converter  $                     -    Free to access and use 

Dataset  $                     -    Freely provided by Rochester Institute of Technology 

Test Location  $                     -    Access is freely available 

Total Estimated Cost  $             586.00    

Table 3: Project Costs 

A total project cost of $586 is largely consumed by the Raspberry Pi 4 and Oak-D Lite 

camera. The cost is not prohibitive and is able to be self-funded for the purposes of this 

research. 

3.5 Project Consequential Effects 

The consequential effects of this project encompassing sustainability, ethics and risks have 

shall be discussed and assessed in this section. A cornerstone used for guiding the impacts of 

this projects is the Engineers Australia Code of Ethics. The guideline highlights four key 

areas, which are as follows: 

1) Demonstrate integrity. 

2) Practice competently. 

3) Exercise leadership. 

4) Promote sustainability. 

(Engineers Australia, 2023) 
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3.5.1 Sustainability 

This project shall promote sustainability in as far as it is applicable. This includes any effects 

of the project which have the potential to adversely impact the health, safety, and well-being 

of the community (Engineers Australia, 2023). Though this project shall be largely limited to 

demonstrating proof of concept of a real time drowning detection system, should the project 

be successful in its research aims, it offers an additional tool for lifesavers and in pool 

supervision. Ultimately, such a system is designed to be used in conjunction with existing 

controls, but it would offer a promising and potentially affordable opportunity to further 

reduce the risks and impact of drowning events. 

3.5.2 Ethics  

There are several ethical considerations surrounding this project. Two key considerations are 

privacy (including images used in the dataset) and use of the drowning detection system 

which directly tie in with two principles from the Engineers Australia Code of Ethics; 

demonstrating integrity and practicing competently. 

The dataset provided by Rochester Institute of Technology release agreement contained the 

following conditions which shall be adhered to: 

1) The dataset will not be further distributed, published, copied, or further disseminated 

in anyway or form whatsoever, whether for profit or not. This includes further 

distributing, copying or disseminating to a facility or organization unit in the 

requesting university, organization, or company. 

2) The videos will only appear in technical reports, technical papers, and technical 

documents reporting on water behaviour research. There will be no more than 8 

images used at a time in a publication. 

3) All documents and papers that report on research that uses the Water Behaviour 

dataset will acknowledge the use of the Water Behaviour dataset. Use of the Water 

Behaviour dataset will be acknowledged as follows: "Portions of the research in this 

paper use the Water Behaviour dataset collected under the Electrical Engineering 

department at Rochester Institute of Technology Dubai" and citation to: 

S. Hasan, J. Joy, F. Ahsan, H. Khambaty, M. Agarwal and J. Mounsef "A Water 

Behavior Dataset for an Image-Based Drowning Solution," In 2021 IEEE Green 

Energy and Smart Systems Conference (IGESSC), pp. 1-5, 2021. 

A copy of the release agreement has been included in Appendix C. 
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In addition, the supplementary images used in the dataset, which do not form part of the set 

provided by the Rochester Institute of Technology, shall only be used for the purposes of this 

research project. Explicit permission was sought from the volunteers prior to their use, and it 

was ensured the volunteers understood the scope and use of these images. The images shall 

not be further distributed without their permission. 

It was also decided that the scope of the drowning detection system shall be limited to adults 

only, and as such images of only adults have been used in the dataset. 

Finally, this drowning detection system is a research project and as such shall not be used in 

place of appropriate supervision in swimming pools. It shall not be distributed or shared 

beyond what is required to for fulfilment of this research project. 

3.6 Risk Assessment 

A risk assessment was conducted to identify any hazards and implement controls for these 

risks.  

3.6.1 Risks Identified 

Several risks were identified including poor housekeeping resulting in trip and other hazards, 

adverse weather, and the use of electrical/electronic equipment around swimming pools. 

Controls were developed and implemented, which have been documented in the risk 

assessment in Appendix B. In addition, two other critical risks were identified, which are as 

follows: 

1) Working around swimming pools – Working around swimming pools exposes 

personnel to wet and slippery surfaces and the potential for drowning. Only 

competent swimmers are to be used for data collection and there shall be at least one 

spotter in place whilst persons are in the swimming pools. In addition, the pool shall 

have standard pool fencing and signage as per Queensland legislation. 

2) Use of Project as a Drowning Detection System – There is the potential for persons to 

misunderstand the intention of the drowning detection system as a research project 

and prototype and thus to mistakenly use it in place of appropriate supervision around 

swimming pools. The project is not to be distributed for public use and it shall be 

emphasised that this work is to develop a prototype and proof of concept rather than a 

market-ready drowning detection system.  
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4. Development and Experimental Setup 

This section shall address the development and setup of experiments, including data set 

acquisition and equipment. 

4.1 Dataset Acquisition and Preparation 

4.1.1 Dataset Acquisition 

As the reviewed literature indicated, a significant challenge of this project would be acquiring 

a dataset which can be used to train an object detection algorithm. Contact was made with 

several authors of papers reviewed however only one team was able to provide their dataset. 

The authors of the paper titled ‘A Water Behaviour Dataset for an Image-Based Drowning 

Solution’ from the Rochester Institute of Technology in Dubai graciously provided the dataset 

they developed for this research.  

Access was provided to videos filmed using overhead and underwater cameras. For this 

project, only the overhead camera footage was to be utilised. There were two main folders 

entitled ‘test’ and ‘train’ and within these were four folders denoting the four actions filmed 

which were ‘swim’, ‘drown’, ‘idle’ and ‘misc’. The directory was structured as follows: 

 

Figure 12: The folder directory structure of the provided dataset with the number of videos 

The dataset was inspected and observed to be filmed in different swimming pools at various 

times of the day. Several people were filmed, and the surface dataset consisted of 47 videos. 

The persons participating in filming were all males in their early 20s of middle eastern 

ethnicity (Hasan et al, 2022). A noted limitation of this dataset is the homogeneity of the 

subjects being filmed. As such, additional footage was added to the dataset to include female 

subjects of Caucasian ethnicity filmed in Mackay, Queensland. 

A further 20 videos were created with females as the subject. Filming was done using a 

GoPro Hero 7 Black from various angles around the test pool. Two female subjects were used 

performing the three actions noted in the previous dataset (drowning, swimming, idle). 16 

videos were to be used for the training/validation set and 4 were selected for the testing set. 
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4.1.2 Dataset Preparation 

For simplicity, the two video datasets shall be denoted as the ‘Dubai Dataset’ (from Rochester 

Institute of Technology) and the additional dataset as the ‘Mackay Dataset’. Processing of the 

datasets followed the same methodology. 

The first step was to extract images from the video files. ‘Free Video to JPG Converter’ 

software was used to do this. One frame was extracted every 10-50 frames. This was 

determined to be adequate for acquiring a suitable number of images whilst maintaining 

diversity. For example, extracting every frame would have resulted in a significant number of 

similar images. The extraction rate varied due to there being an imbalance in the amount of 

video for each class. For instance, there was more footage provided for ‘swimming’ classes 

and to keep the dataset balanced, frames were extracted less frequently. This process was 

repeated for each video. The breakdown of images from each is tabulated below: 

Train Test 

Dataset Class Images Dataset Class Images 

Mackay 

Swim 868 

Mackay 

Swim 162 

Idle 477 Idle 40 

Drown 246 Drown 117 

Dubai 

Swim 955 

Dubai 

Swim 96 

Idle 966 Idle 114 

Drown 1012 Drown 70 

 Total 4524  Total 599 

Table 4: A breakdown of the image dataset 

A total dataset size of approximately 5100 images was chosen to strike a balance between 

practicality and accuracy. During the labelling process, it was possible to label between 300-

400 images an hour depending on the number of labels needed in the image. Thus, 5100 

images equates to between 13 and 17 hours of labelling time. Though a larger dataset is 

desirable, the limits of this research project dictate that any larger than 5100 images become 

impractical given time constraints. 

The next step in the preparation process was labelling of the dataset using LabelImg. Once 

the three classes had been created in the program, it was a simple process of drawing 

bounding boxes around the objects and selecting the correct label in YOLO format. LabelImg 

automatically saved the text file associated with the image. 
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Figure 13: Drawing a bounding box on a training image using LabelImg. 

Some key principles were followed in the labelling process as outlined by Nelson (2020): 

1) Label all objects of interest – Thus all persons appearing in images should be labelled with 

the appropriate class. This avoids the introduction of false negatives within the model. 

2) Label the entire object – In particular, this relates to objects which may be obscured by 

other objects in the image. It is recommended that the entire object of interest is included in 

the bounding box, including the blocked section. In addition, bounding boxes can overlap 

should two objects of interest be in close proximity. 

3) Create Tight Bounding Boxes – it is critical that the entire image is encompassed within the 

bounding box, however it is also important that excess, irrelevant pixels are not included. 

Upon completion of the labelling process, each image containing an object had a text file 

associated with it. Some images had several objects whilst the occasional one had no objects 

present. Figure 7 shows a label text file, the first value (an integer) represents the class, in this 

case ‘idle’. The following two numbers are the x and y values of the centre of the bounding 

box. The final two values are the width and the height of the bounding box. If there were two 

objects in an image, there would be a line for each in the file. 

 

Figure 14:  A text file associated with a labelled image. 
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Earlier versions of Yolo, including V3, require a class file which aligns the first integer of the 

text file with its class. Later versions of Yolo also require a similar declaration of classes, but 

this is generally captured in a configuration file and not a separate class file. LabelImg 

automatically generates the class file, as shown below.  

 

Figure 15: The class declaration file where drowning is 0, idle is 1 and swimming is 2. 

 

4.2 Experiment 1 – Qualitative Testing of Yolo Models 

In this experiment, qualitative testing of various Yolo models was carried out. The aims of the 

experiment were: 

1) To gain an understanding of how these models are built and deployed in Google 

Colab. 

2) To qualitatively compare the abilities of each model and to gain an understanding of 

their object detection capabilities and assist in the selection of models for further 

testing. 

Google Colab notebooks exist in the model’s respective Github repository. The models have 

been trained on the COCO dataset which can detect 80 object categories. Two images were 

selected for comparison purposes, their selection was based on them containing several object 

categories that are part of the COCO dataset on which the models are pretrained on. For 

reference, the two images have been named ‘Kicking Horse’ and ‘Skateboards’. 
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Figures 16a and b: The two images for qualitative testing, left ‘Kicking Horse’ and right ‘Skateboards’. 

As shown, the first image contains several objects capable of being detected including 

‘person’, ‘snowboard’, ‘backpack’ and ‘skis’. The second image has the ‘person’ and 

‘skateboard’ objects. 

4.3 Experiment 2 – Quantitative Testing of Yolo Models on a Custom Dataset 

Though the initial dataset was split into two test/train groups, an additional subgroup was 

created from the test data. Images were randomly selected and used as the validation dataset. 

These images are used in the model training to validate the model’s development. Though 

there is no fixed standard for the ratio split of the dataset, Young et al used a 

train/validate/test split of 8:1:1. Nui et al used a train/test split of 9:1. Thus, a 

train/validate/test split of approximately 8:1:1 was used in these experiments. The final image 

tally is tabulated below. 

Dataset Number of Images 

Train 4003 

Validate 521 

Test 599 

Table 5: The number of images in each dataset for training and testing. 

Though the particulars of deploying each model were slightly different as the versions varied, 

the general structure of the Google Colab notebook for training a custom model was the 

same. The following diagram shows the process undertaken. 
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Figure 17: The process for training a custom Yolo model using Google Colab. 

4.3.1 YoloV7 

Each model required custom data and configuration files. The data file stores the directory 

addresses of the various image datasets for train, validate and test as shown in the following 

figure. This file is stored in the model’s data folder. 
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Figure 18: A custom data file for YoloV7. 

In addition to the data file, changes needed to be made to the configuration file. In this case, it 

was changing the number classes from the default value to 3, to reflect training on the custom 

dataset. No hyperparameters were adjusted from the default in this experiment however some 

additional parameters were set before starting training. These were the default values taken 

from the Github repository and were as follows: 

Parameter Value 

Batch Size 16 

Image Size 640x640 

Epochs 24 

Table 6:  Additional training parameters for the customYoloV7 model. 

4.3.2 YoloV8 

YoloV8 setup was similar to V7. A file declaring the directory addresses for the image sets 

was created and placed in the data folder. This is shown in the following figure. 

 

Figure 19: The custom data file for YoloV8. 
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Unlike YoloV7, it was not necessary to declare the number of classes in a configuration file. 

Several additional parameters were declared prior to starting training. Again, these were the 

recommended parameters taken from the Ultralytics Github repository and are tabulated 

below. 

Parameter Value 

Batch Size 16 

Image Size 640x640 

Epochs 24 

Table 7: Additional training parameters for the custom YoloV8 model. 

4.4 Experiment 3 – Improving the Yolo Model 

YoloV8 was selected as the model to be used in the drowning detection system based on its 

accuracy and training speeds. Attempts will be made to improve the model’s accuracy using 

several techniques. 

4.4.1 Inclusion of background images 

Inclusion of background images may assist in reducing false positives, with approximately 0-

10% of the dataset containing background images (Ultralytics, 2023). In the case of the 

drowning detection dataset, these images would be empty swimming pools. These images 

were taken from a google images search and manually checked to confirm they contained no 

people as unlabelled objects could potentially impact the model’s accuracy. 221 images were 

acquired with 177 for the training dataset, 22 for the validate set and 22 for the test set which 

equated to approximately 4% of each set containing background images. 

4.4.2 Increasing the Model Size 

Initial testing was conducted using YoloV8-s to effectively compare it to YoloV7-tiny. 

However, the Oak-D Lite can run YoloV8-m which offers the potential for further accuracy.  

4.4.3 Image Augmentation and Parameter Tuning 

Image augmentation is an effective method for increasing the training dataset through 

techniques such as image rotations, transformations, blurring and other methods. In YoloV8, 

these parameters can be set as part of the hyperparameter file and will be investigated. 

In addition, several parameters can be adjusted which may improve the model’s performance. 

This includes the batch size and learning rate. Increasing the batch size can lead to faster 

convergence should processor memory allow. The default batch size is 16. Two additional 

sizes shall be tested; 32 and 64. 
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The learning rate dictates how many weights are updated throughout training in response to 

the model error. Two parameters determine this, lr0 and lrf. These are multiplied together to 

give a final learning rate which by default is 0.0001. A high learning rate can lead to 

overshooting the best weights whilst a low learning rate can lead to slow convergence.  

YoloV8 has several image augmentation options. Evidentially, given the number of variables 

which can be passed for augmentation, many experiments could be carried out to find the 

optimum combination. However, to remain within the scope of this thesis, several 

translational parameters have been selected for experimentation, as guided by Vestinov et al 

in their 2023 paper. They adjusted HSV values, random resizing of images, random cropping, 

horizontal flipping, Gaussian blur, and grayscale. In these experiments, HSV values were not 

changed in addition to perspective, copy-paste and image mix-up due to the nature of the 

dataset. For example, mixing up an image of drowning and swimming could cause more 

confusion to the model given their potential similarities and HSV values are set by default. 

The following values were selected for experimentation as they offer enough variety for 

meaningful experimentation whilst remaining within experimental scope. 

Parameter Description Default  Experiment 1 Experiment 2 

hsv h image HSV-Hue augmentation (fraction) 0.015 0.015 0.015 

hsv_s image HSV-Saturation augmentation (fraction) 0.7 0.7 0.7 

hsv_v image HSV-Value augmentation (fraction) 0.4 0.4 0.4 

degrees image rotation (+/- deg) 0 180 90 

translate image translation (+/- fraction) 0.1 0.8 0.4 

scale image scale (+/- gain) 0.5 0.8 0.4 

shear image shear (+/- deg) 0 180 90 

perspective image perspective (+/- fraction) 0 0 0 

flipud image flip up-down (probability) 0 0.8 0.4 

fliplr image flip left-right (probability) 0.5 0.8 0.4 

mosaic image mosaic (probability) 1 1 1 

mixup image mixup (probability) 0 0 0 

copy_paste segment copy-paste (probability) 0 0 0 
Table 8: The image augmentation parameters to be used during for the model training. 

4.4.5 Increasing Training Epochs 

Initially, the models were only trained for 24 epochs to gain an understanding of their 

capabilities within a reasonable time frame. However, as indicated in the literature, training is 

generally carried out for several hundred epochs. As such, this will be applied to further 

develop the model and the model shall be trained for 300 epochs. 
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4.5 Experiment 4 – Deployment on the Oak-D Lite and Raspberry Pi 

This experiment shall focus on deploying the final model on the Oak-D Lite and Raspberry Pi 

and demonstrate proof of concept for an operational system. 

4.5.1 Creating a .blob file 

Once model training has been completed, a directory of weight files is created. Depending on 

how the model has been configured, these may be every 100 epochs. All Yolo models 

automatically select the ‘best’ file based on training parameters as well as the final weight 

file. The best file, as determined during training shall be deployed on the Oak-D Lite. 

Luxonis have created a tool for conversion of the weight files (.pt file) to a .blob and JSON 

(JavaScript Open Notation) for deployment of Yolo models to Oak devices. This tool was 

used, and the files downloaded. 

4.5.2 Deploying the Model 

A python script was then developed for deploying the model including the JSON and .blob 

files. This script was based on an experiment developed by Depth AI and Luxonis and was 

available on their Github repository (Luxonis, 2023), the final version is available in 

Appendix D. The basic program layout is demonstrated in the following pseudo code: 

 

Figure 20: The pseudo code for deploying the Yolo model in Experiment 4. 
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The model was then deployed using the Raspberry Pi and Oak D-Lite camera in field. The 

experimental setup is shown in the following figure: 

 

Figure 21: The equipment set up for Experiment 4 - deploying the Yolo model. 

A frame rate of 5fps was used with an initial confidence interval of 0.5. 

4.6 Experiment 5 – Real Time Detection and Alert 

This final experiment is to deploy the real time drowning detection system and create and 

appropriate alert upon the detection of a drowning event. 

4.6.1 Drowning Detection Interface 

Improvements shall be made to the initial code used in experiment 4. Firstly, text will be used 

to alert the system user of a drowning event. This shall be simply displayed in green, if no 

drowning is detected and if drowning is detected it shall change to red and display ‘Drowning 

Detected!’. This text will hold for at least two seconds before resetting, i.e., a non-drowning 

behaviour must be detected for at least two seconds before it will reset. Any drowning 

bounding boxes shall be red, and idle and swimming bounding boxes shall be green. 
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Figure 22: Pseudocode for experiment 5. 

4.6.2 Remote Drowning Detection 

A simple Virtual Network Computing (VNC) application was used for creating remote 

viewing of the drowning detection system. The program used was Real VNC as it was 

compatible with the Raspberry Pi 4, the apple iPhone as well as the windows PC. Two 

programs had to be downloaded; the VNC server and viewer on the Raspberry Pi and the 

VNC viewer on the devices used for remote viewing. The apple iPhone was used as a Wi-Fi 

hotspot to enable the cloud VNC connection.  

4.6.3 Experimental Set Up 

In a similar fashion to experiment 4, the Oak-D Lite was mounted on an adjustable camera 

mount. The Raspberry Pi was powered by a power bank and connected to the Oak-D. Care 

was taken to ensure the hardware did not get wet during testing. The setup was moved around 

the pool to test various angles as well as being tested at various times of the day (midday in 

full sunlight and late afternoon with less sunlight). 
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Figures 23a and b: The experimental setup with the Oak-D Lite, Raspberry Pi and power bank. 

Learnings were taken from experiment 4 to further inform this experiment. The confidence 

interval was dropped to 0.3 from 0.5 to see if this improved the drowning detection instances. 

In addition, initial testing was done at lower resolution, this was increased to the maximum 

(13 megapixels) that the Oak-D Lite RGB camera is capable of. Again, this was done to see if 

there were noticeable improvements in detections.  
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5. Results and Analysis 

This section shall present observations and results as well as offer analysis. 

5.1 Dataset 

Observation 

Once the dataset was created, analysis was carried out to further understand the class 

representation. Given that there can be several objects in one image, an imbalance in class 

occurrence was expected. This is shown in the following figure. 

 

Figure 24: A histogram showing the occurrences of the three classes in the training dataset. 

As the histogram shows, idle is significantly over-represented and instances of swimming and 

drowning occur more than recorded in the initial image split. In total, there are 6045 object 

occurrences across the three classes. 

Analysis 

It is not unusual for machine vision datasets to have an imbalance, and there are methods for 

addressing imbalance through dataset augmentation techniques. Intuitively, it makes sense 

that ‘idle’ is over-represented. During the labelling process, many ‘swimming’ actions 

initially start in the ‘idle’ state, for example, a person holding the side of the pool. In addition, 

in images with several objects present, ‘idle’ actions were common. The figure below shows 

two classes being labelled in a ‘swimming’ training image. 
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Figure 25: The occurrence of two classes in a training image (swimming and idle). 

Understanding the class distribution through the initial training dataset is critical to improving 

the object detection algorithm and understanding any bias the model may have. As such, there 

is the opportunity to use data augmentation techniques on the training dataset to improve the 

final Yolo version. 

5.2 Experiment 1 – Qualitative Testing of Yolo Models 

The two test images were used to compare the different versions of Yolo models. As 

mentioned, YoloV3 acted as a baseline with different versions of YoloV7 and YoloV8 being 

used. The YoloV7 and V8 models selected were all able to be deployed on the Oak-D Lite as 

per the product specifications. 

5.2.1 YoloV3 

 

Figures 26a and b: YoloV3 detections run on the test images trained on the COCO dataset. 
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Observation 

YoloV3 produced good results when run on the two test images. The model was able to make 

reasonable predictions detecting all the objects present with good confidence. The only 

notable error was the detection of skis instead of a snowboard. 

Analysis 

YoloV3 produced encouraging results, particularly with the detection of smaller objects such 

as the person in the background of the skateboard image. The erroneous detection of a 

snowboard instead of skis was the only fault and perhaps a difficult detection to make given it 

is being carried on a backpack. Though it did successfully detect the backpack, the bounding 

box encompasses the snowboard as well. It should be noted that accurate detections were 

expected, given this is a larger sized Yolo model. It is too big to be deployed on the Oak-D 

Lite and the detections are slower when compared to the smaller versions. 

5.2.2 YoloV7-tiny 

 

Figures 27a and b: YoloV7-tiny detections run on the test images trained on the COCO dataset. 

Observation 

The YoloV7-tiny model detected most of the objects in the test images. It was unable to 

detect the backpack as YoloV3 was. Like YoloV3, it mistakenly detected skis instead of a 

snowboard in the ‘Kicking Horse’ image. It also did not detect the backpack as YoloV3 had. 

Analysis 

Given this is the smallest sized YoloV7 model available, the detections were not dissimilar 

from the detections made by YoloV3. Though it failed to detect the backpack, all other 
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objects were detected correctly with the exception of the snowboard. In addition, it was still 

able to detect smaller objects such as the people in the background of the ‘skateboard’ image. 

Given this is the smallest YoloV7 model it was expected to be the least accurate. However, its 

performance is still impressive when compared to YoloV3 with the additional benefit of being 

deployable on the Oak-D Lite and having real time detection capabilities. 

5.2.3 YoloV8 

  

Figures 28a and b: YoloV8-m detections run on the test images trained on the COCO dataset. 

Observation 

Three versions of YoloV8 were tested; nano, tiny and medium, all of which can be deployed 

on the Oak-D Lite. The detections made by the models were similar, with a notable difference 

being an incremental increase in the bounding box confidence as the model size increased. 

Again, all key objects were detected except for the backpack and snowboard (except for 

YoloV8-n). YoloV8-n was able to detect the snowboard, albeit with a low confidence score 

(0.26) in addition to the detection of skis in the same area. 

Analysis 

The three YoloV8 versions were able to detect all key objects with increased confidence as 

the model size increased. Notably, YoloV8-n was able to detect the snowboard with low 

confidence, but the larger models did not. This was anomalous as the expectation would be 

for the larger models to have more accurate detections. In addition, the detection speeds 

remained similar across the three models, with YoloV8-n offering slightly superior speeds 

(18ms less in one detection compared to YoloV8-m) though not significantly better. The 

speeds of the three versions all offered real time detection capability. 
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Further experiments need to be conducted to determine the best model for the drowning 

detection system as these experiments indicate that YoloV7 and V8 perform similarly. 

5.3 Experiment 2 - Quantitative Testing of Yolo Models on a Custom Dataset 

This experiment focuses on training the two Yolo models on a custom dataset to determine 

the best model for the drowning detection system. YoloV7 and V8 were the models chosen as 

they can be deployed on the Oak-D Lite and demonstrated promising results in the previous 

experiment. 

5.3.1 YoloV7-tiny 

YoloV7-tiny was trained for 24 epochs (starting at epoch 0) on the train/validate image 

dataset. As the following figures demonstrate, during training the losses gradually decrease 

whilst mAP, precision and recall all increase indicating the model is successfully learning. In 

addition, no overfitting is observed during the training. 

 

Figure 30: YoloV7-tiny losses during training over 24 epochs. 
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Figure 31: Precision, recall and mAP during training of YoloV7-tiny over 24 epochs. 

Throughout the training, weight files were saved every epoch, YoloV7 automatically 

determines the best weight file based off several metrics including precision, recall and mAP. 

This file was then used to test the model on the test images. The results are tabulated below. 

Best Weights 

Images Images Precision Recall mAP 0.5 mAP 0.5:.95 

All 599 0.63 0.495 0.549 0.32 

Drowning 599 0.738 0.394 0.239 0.294 

Idle 599 0.645 0.613 0.667 0.465 

Swimming 599 0.505 0.479 0.443 0.203 
Table 9: The test results using the custom YoloV7-tiny best weights. 

In addition, detections were carried out on three test images. Each image shows a particular 

class of either idle, swimming or drowning. 

 

Figure 32: Correct detection of swimming with confidence of 0.60. 
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Figure 33: Detection of swimming and drowning in the drowning state. 

 

Figure 34: Incorrect detection of swimming in the idle state. 

Observation 

Training was conducted at a rate of approximately 2 seconds per iteration, and as such, 

training for 24 epochs was time consuming. The training metrics indicate that the model’s 

learning rate progressed well and reasonable metrics for mAP, precision and recall were 

achieved using the best weight files. 

The detections run on the test images were inaccurate, with only the correct detection of the 

swimming state. The model detected both swimming and drowning in the drowning state and 

failed to detect the idle action, instead mistaking it for swimming. 
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Analysis 

Given the model was only trained for 24 epochs, the initial results are promising. The 

literature review indicated that models were trained for hundreds of epochs (generally in the 

range of 300), thus there is significant room to improve. The training data also suggests that 

the model would further benefit from more training time as there is no indication of over 

fitting and a loss rate of around 0.01 is desirable. 

In addition, detections run on the test images are also encouraging. The model was able to 

detect the drowning state and despite also detecting swimming, the model did not miss a 

potential drowning event. The mAP scores show that the model struggles to accurately detect 

drowning (mAP 0.5 of 0.239) and swimming (mAP 0.5 of 0.443). Intuitively, this is logical 

given the classes can appear similar depending on the image. Increases in these metrics 

would see overall improvement in the model. 

5.3.2 YoloV8-s  

YoloV8-s was trained for 24 epochs (starting at epoch 0) on the train/validate image dataset. 

Like YoloV7, the losses gradually decrease indicating improvement in the model’s learning. 

Of interest is the fact that precision, recall and mAP start significantly higher than observed 

in YoloV7-tiny. Again, these improve over the epochs indicating the model is successfully 

learning. 

 

Figure 35: YoloV8-s losses during training over 24 epochs. 
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Figure 36: Precision, recall and mAP during training of YoloV8-s over 24 epochs. 

Like the YoloV7-tiny training, weight files were saved every epoch and the best weight file 

selected (this was the final weight file). Again, this is the weight file that was used to test the 

model. 

Best and Last Weights 

Class Images Precision Recall mAP50 mAP .50:.95 

All 599 0.579 0.595 0.598 0.425 

Drowning 599 0.685 0.456 0.535 0.343 

Idle 599 0.534 0.739 0.761 0.634 

Swimming 599 0.518 0.589 0.498 0.299 
Table 10: The test results using the custom YoloV8-s best weights. 

Again, detections were done on the same test images used in the YoloV7-tiny testing. 

 

Figure 37: Incorrect detection of idle in the swimming state. 
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Figure 38: Incorrect Detection of swimming in the drowning state. 

 

Figure 39: Incorrect detection of swimming in the idle state. 

Observations 

The first significant observation was the training time of the model. The model was able to 

train around 4 to 5 iterations a second, a significant improvement in training time when 

compared to YoloV7-tiny (2 seconds per iteration). There was also improvement in the key 

metrics when tested on the test images, notably the drowning and swimming classes. The 

training losses also start at a far higher value than observed in YoloV7-tiny as well as 

precision, recall and mAP. 

When detections were run on the same test images, the model proved to be inaccurate and 

failed to make any correct detections. The confidence scores for the two swimming actions 

were high. 
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Analysis 

Despite the improvements in metrics, the model still struggled to accurately make detections 

on the test images. However, the model’s capabilities are encouraging given the losses being 

measured. As figure 35 shows, the losses start significantly higher than observed in YoloV7-

tiny and there was a considerable difference in losses after 24 epochs. This suggests, that with 

more training, the losses could be lowered further which would see improvement in the 

model’s performance. Given the speed of training, further training of this model is feasible 

and practical. Interestingly, in figure 37, there are two occurrences of bounding boxes in this 

image. Noticeably, the larger bounding box has encompassed water reflections which was 

previously highlighted in systems examined in the literature review. 

 

These experiments assist in answering the second research question, ‘What size dataset is 

needed to train the selected algorithm and gain accurate results?’. Though literature indicated 

a larger dataset was desirable (over 10,000 images), practicality dictated that this was not 

feasible. However, meaningful results have been achieved with a dataset of approximately 

5000 images. 
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Figures 41a and b: The confusion matrices for the YoloV8-s models. On the left the model trained with no background 

images and on the right the model trained with background images. 
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Observation 

As figure 40 shows, there is improvement in three of the metrics apart from recall in which 

there is a slight reduction. There is significant improvement in precision and subtle 

improvement across the two mAP scores. The confusion matrices do not show significant 

changes in the model, though the matrix for the model trained with background images does 

show a general reduction in false positives, with a slight reduction in true positives for 

swimming. 

Analysis 

Precision is the number of true positives divided the sum of true and false positives which 

describes the number of correct positive identifications. Recall is the number of true positives 

divided by the sum of true positives and false negatives describing the model’s ability to 

correctly identify a class. Given that the model trained on no background images has slightly 

higher recall, this is perhaps the reason for the confusion matrices not demonstrating a 

significant change in the model’s detection. However, the matrices do demonstrate a subtle 

reduction in false positives with the inclusion of background images which was to be 

expected. Overall, the model’s performance has improved with the inclusion of even a small 

number of background images. 
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Figure 49: The confusion matrix for the final model. 

 

Figures 50a and b: The precision-recall curve and F1 confidence curve for the final model. 

Observation 

With reference to figure 48, in general there has been improvement across most metrics with 

the increase in training epochs except for recall, which decreases with the final model. The 

mAP scores are slightly lower for the 300 epoch model when compared to the previous, 

improved version which was trained for 24 epochs. 

The confusion matrix also shows promising results, though there is a high occurrence of the 

model detecting swimming in a drowning state (0.43) in addition to detecting swimming in 
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background images (0.63). The matrix shows that the model is good at predicting the idle 

state (0.76). 

Finally, the precision-recall curve shows excellent results in the idle state, with lower values 

for precision and recall for drowning and swimming. This is also reflected in the F1 curve, 

where the model again excels with detecting the idle class but struggles more with swimming 

and drowning. 

Analysis 

The most significant improvement after training the model for 300 epochs can be seen in the 

precision score, though recall gradually decreases. This means that the model is making fewer 

predictions (due to low recall) but more predictions are correct (high precision). One potential 

solution would be to lower the required confidence score for a detection. Alternatively, the 

final interface could compensate for this with a timer; if a potential drowning is detected, it 

shall be assumed to be a drowning unless not detected for a certain period. Examination of 

the confusion matrix, precision-recall curve and F1 confidence curve shows that the model 

can accurately detect idle though struggles with drowning and swimming. Intuitively, this 

makes sense, the images of drowning and swimming can appear similar when not in context, 

as the following images show. In addition, the analysis of the dataset showed that the idle 

state was overrepresented when compared to drowning and swimming thus giving the model 

some bias. 

  

Figures 51a and b: Images from the test dataset, on the left the drowning class and on the right swimming, which when taken 

out of context could prove difficult for even a human to classify. 
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Though additional improvements to the model shall not be made beyond this experiment, the 

results indicate that increasing the size and diversity of the dataset could improve the model’s 

performance. Increasing the instances of drowning and swimming in the training data could 

see significant improvement in these metrics. 

5.5 Experiment 4 – Deployment on the Oak-D Lite 

The final model was deployed on the Oak-D Lite and Raspberry Pi and tested in field. This 

experiment set out to confirm that successful deployment was possible and further direct the 

changes needed for the final deployment in experiment 5. 

  

Figures 52a and b: Correct detections in the drowning and swimming states. 

  

Figures 53a and b: Correct detection of the idle state and an incorrect detection of swimming in the drowning state. 
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Observation 

The frame rate for the video feed was between 4-5 fps. As the images above show, the 

resolution was quite low. In general, the model was able to detect swimming, idle and 

drowning however was prone to confusing swimming and drowning. It also generally 

detected the idle state as swimming. It was also able to make detections from various areas of 

the pool under varying lighting conditions. The confidence interval was set to 0.5. 

Analysis 

The previous experiments demonstrated that the model had problems differentiating between 

drowning and swimming, and as such it is not surprising this is also the case in real time. 

There are several adjustments which can be made to the final version of the detection system 

such as better indication of the drowning state, and this indication holding for several seconds 

before it is cleared of being in the drowning state. In addition, it may be worthwhile lowering 

the confidence interval of the detection system and increasing the resolution to see if this 

assists with detections. 

5.6 Experiment 5 – Real Time Detection and Alert 

This experiment set out to demonstrate a real time detection system alerting of a drowning 

event. In addition, proof of concept was to be demonstrated for a remote interface which 

could also be used for monitoring drowning events. Testing was initially done at a lower 

resolution (1080p as per experiment 4) then increased to 13MP which is the Oak-D Lite’s 

maximum resolution. 

  

Figures 54a and b: Detection of the drowning state and the alert holding despite the loss of the drowning bounding box at 

1080p resolution. 
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Figures 55a and b: Correct detection of idle and swimming at 1080p resolution. 

 

  

Figures 56a and b: Correct detection of drowning at a higher resolution and the alarm test holding despite the loss of the 

bounding box. 
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Figures 57a and b: Correct detections of the swimming state at higher resolution. 
 

  

Figures 58a and b: An incorrect detection of swimming in the drowning state and a missed detection of drowning at higher 

resolution. 
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Figure 59: Successful detection and remote monitoring using the VNC from the Raspberry Pi to iPhone. 

Observation 

In a similar fashion to experiment 4, the system was still prone to confusing the drowning and 

swimming states and occasionally missed drowning events. However, it still made correct 

detection as figures 54 to 57 demonstrate. It was tested under varying lighting conditions and 

from differing perspectives around the pool and was still able to make good detections. As the 

resolution increased, the frame rate noticeably dropped. At 1080p, the frame rate was 

consistently between 4-5 fps. When increased to the maximum resolution of 13MP, the frame 

rate remained around 3 fps. Detections did not seem to improve noticeably as the resolution 

was increased. 

The drowning detection alert banner functioned as intended, alarming if drowning was 

detected, and holding for the fixed amount of time (2 seconds but easily adjusted in the 

python script). The VNC method of remote monitoring via the VNC server functioned well 

so that the interface could be viewed from a variety of devices including an iPhone and 

windows laptop. 

Analysis 

Given the same weight files were used in experiment 5 from experiment 4, detection 

performance was similar. The system often struggled with drowning and swimming. 

Increasing the resolution didn’t seem to impact the quality of detections, though the frames 

started to lag noticeably as the frame rate decreased to 3 fps. Referring to the Luxonis 

documentation on the Oak-D Lite, the maximum fps available for the Yolov8-m is 6 fps, thus 

a frame rate of 5 fps is at the higher end of what the Oak-D Lite is capable of. In future, it 
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would be worthwhile experimenting with smaller versions of the Yolo algorithm which can 

be operated at a higher frame rate to see if the quality of detections improves. For example, 

YoloV6n R2 at 416x416 is capable of a frame rate of 65.5fps (Luxonis, 2023), in addition 

YoloV7-t at 416x416 is capable of 46.7 fps (Luxonis, 2023) which is significantly higher than 

the 6 fps of YoloV8-m. 

The alert banner worked well and assisted in compensating for detections. It was designed to 

prioritise any drowning detection and alert the user of a potential drowning event, which is 

one of the ultimate aims of this system. In addition, dropping the confidence interval from 0.5 

to 0.3 helped in increasing drowning detections. It is also encouraging that the positioning of 

the camera didn’t significantly impact the consistency of detections offering flexibility in 

where such a system could be installed.  
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6. Discussion, Conclusion and Further Work 

This section shall summarise the results and extract a final analysis from all the pooled results 

through all experiments. Opinions shall be drawn on how much of the knowledge gap and 

research aims were addressed and solved.  

6.1 Discussion 

Experiments 1 and 2 demonstrated the capabilities of several Yolo models including YoloV3, 

V7 and V8. The results achieved in the first experiment were impressive with the detections 

in the initial test images being very promising. This formed a benchmark for what the Yolo 

algorithm is capable of. However, it should be remembered that the Yolo models used in 

experiment 1 have been trained on the COCO dataset which consists of 118,000 train images, 

5000 validation and 20,000 test. The custom dataset used was far more modest in size 

consisting of 4003 train, 521 validate and 599 test and as such, the results in experiments 3 

through to 5 had to be evaluated in this context. The final mAP50 of the model deployed was 

64% with a mAP50-95 of 43.9%, in context, the Ultralytics YoloV8-m release trained on the 

benchmark COCO val2017 dataset achieved a mAP50-95 of 50.2% (Ultralytics, 2023). Thus, 

achieving such metrics on a small dataset is very encouraging. 

The changes made to the final Yolo version including adding background images to the 

dataset, increasing the model size, image augmentation, parameter tuning and increasing the 

training epochs improved the model’s performance across all metrics. Evidentially there is 

room for further improvement, notably increasing the dataset size, additional experimentation 

with augmentation and parameter tuning and further extending the training time, however this 

falls outside the scope of this project due to time restraints. In addition, there will continue to 

be difficulties in sourcing a dataset for this system due to the sporadic nature of drowning 

events. However, further diversifying the dataset through various people, locations and 

conditions would add to its quality and ultimately the capabilities of the trained model. 

Focusing on increasing the number of drowning and swimming training images would also 

see improvements in the model, the idle state was over-represented in the dataset and was 

consistently detected at a more accurate rate as a result. 

An additional method for dataset improvement may be by acquiring training images using the 

Oak-D Lite as well as devices such as the GoPro. This would ensure consistency between 

image framing, resolution, and quality. It was notable that the HSV and contrast qualities 

observed in the images acquired from the Oak-D Lite were dissimilar to that of the GoPro 



77 

 

and the Dubai dataset. Eng et al (2008) noted that their system missed some detections due to 

low contrast between swimmers and backgrounds. As such, this system could be experiencing 

similar issues.  

Real time deployment and testing saw the model continue to occasionally struggle with 

differentiating between drowning and swimming though lowering the confidence interval 

from 0.5 to 0.3 helped to improve drowning detections. Both Eng et al (2008) and Lei et al 

(2021) experienced similar issues with their systems. Eng et al (2008) found water 

disturbances lead to greater false positives and Lei et al (2021) found their Yolo algorithm 

mistook part of the drowning behaviour for swimming as it detected water surface reflection 

as swimming resulting in higher false positives. The random nature of water movement and 

reflection is a significant challenge in drowning detection systems. A method of 

compensating may be by the use of pose-estimation algorithms in conjunction with Yolo. 

Hasan et al (2022) found that when comparing scene classification and pose estimation 

algorithms, pose estimation were impacted less by scene factors such as lighting and water 

movement. Interestingly, YoloV8 does have pose estimation capabilities, thus there would be 

an opportunity to leverage this for improved model performance in future work. 

It was also notable that there was intermittent changing of states from drowning to 

swimming, and vice versa during drowning actions. The interface aimed to compensate for 

this by triggering a timer so that a non-drowning event had to be detected for a minimum of 

two seconds before it would change state. However, the use of temporal and recurrent 

algorithms may assist in adding context to the system. For example, if the previous frames 

were a drowning event and the algorithm determines that the current frame is a swimming 

class with low confidence, it is therefore likely to be drowning. Recurrent Neural Networks 

(RNN) are known for their ‘memory’ where the current output considers previous inputs and 

outputs, thus putting the current frame into context. A Recurrent Yolo model was proposed in 

2019, where the model’s capabilities extended to Long Short-Term Memory (LSTM). This 

resulted in the model having excellent object tracking ability, even when the target (a 

pedestrian) was obscured from view (Yun and Kim, 2019). The ability for the drowning 

detection model to track swimmers with obstructions such as water movement and splashing 

could result in improved performance as it was notable that there were occasional missed 

detections. YoloV8 also includes object tracking abilities, in addition to pose estimation. 

Utilising these additional features in conjunction with the standard Yolo object detection 

model could see significant improvement in model performance. 
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The frame rate was problematic and there was some lag in the system. This was due to the 

size of the model used, YoloV8-m has a maximum frame rate of 6 fps and as such, there 

would be value in experimenting with smaller models of Yolo which are able to have higher 

frame rates at increased resolution. In addition, increasing the frame rate may assist in 

detection accuracy, more frames result in more images to run detections on and so perhaps a 

smaller model would prove to be more accurate in real time as a result. Increasing the 

resolution of images would also be beneficial so the model is better able to identify features. 

The alert interface though modest, was effective and demonstrated remote monitoring of the 

drowning detection system. There is significant room for such an interface to improve, with 

simple modifications compensating for drowning detection adding value to the system. 

Developing the system to include notifications to smart devices such as watches and phones 

would be beneficial. The ultimate goal of this system was to improve supervision around 

swimming pools and to act as an additional aid, and as such even this prototype tested was 

capable of alerting of potential drowning events. 

6.2 Conclusion 

The aim of this project was to develop a real time drowning detection system using a surface 

mounted camera in a residential pool setting, which has been achieved and demonstrated. In 

addition, the project aims outlined in section 1.5 were also addressed. Firstly, several 

algorithms used in real time drowning detection systems were researched, with Yolo 

algorithms consistently appearing as the most appropriate. Secondly, an appropriate dataset 

was acquired and developed, with experiments conducted to assist in the selection and 

development of an appropriate algorithm, in this case YoloV8m. Finally, the algorithm was 

deployed on appropriate hardware and tested in a residential setting, as demonstrated in 

experiments 4 and 5. Additionally, a simple interface was developed to inform users of a 

potential drowning event. 

Four knowledge gaps relating to the research aims were also identified. Firstly, there were no 

systems available in a non-commercial setting utilising only surface mounted cameras. This 

research has proven that such a system is feasible with an Oak-D Lite, Raspberry Pi and Yolo 

algorithm. Secondly, algorithms beyond YoloV5 had little peer-reviewed research conducted 

on them, particularly in instances of drowning detection systems. This project has again 

demonstrated that YoloV7 and V8 are appropriate for drowning detection. Furthermore, there 

is scope for further experimentation to determine their suitability for deployment. For 
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example, assessing the performance of YoloV8-n or YoloV7-t in real time when deployed on 

the Oak-D Lite. Leveraging the pose estimation and object tracking abilities of YoloV8 offer 

an exciting opportunity to further improve detections. 

A significant challenge of this research was acquiring an appropriate dataset upon which to 

train the algorithms. The third knowledge gap acknowledged this, and this was addressed 

two-fold. Firstly, the initial dataset acquired from the Rochester Institute of Technology 

provided a sizable and quality dataset upon which the model could be trained. However, the 

homogenous nature of the subjects in the dataset dictated that further diversification was 

needed, hence the additional ‘Mackay’ dataset. As mentioned, further expansion and variation 

of the dataset would be advantageous to algorithm training, and given the limitations of the 

dataset used, the final results achieved exceeded expectations. 

The final knowledge gap addressed the use of the Oak-D Lite in a drowning detection system. 

Again, experiments 4 and 5 demonstrated that the hardware is well suited to such a task, with 

a significant limitation being the size of the algorithm deployed. As mentioned, 

experimenting with smaller versions of Yolo with higher frame rate capabilities would be 

valuable for further assessing the Oak-D Lite’s performance. In addition, given the natural 

development of technology with time, it is expected that further iterations of the Oak-D Lite 

shall only be more capable and thus more suited to a real time drowning detection system. 

6.3 Further Work 

As mentioned, there are several areas where further work could be conducted. These are as 

follows: 

1) Dataset Improvement – Increasing the size of the dataset used to train the algorithm would 

only improve its performance. Particular focus on the acquisition of drowning and swimming 

imagery would be advantageous. In addition, varying the people, location and conditions 

would also improve the model’s performance. Inclusion of more background images would 

also be beneficial, 4% of the dataset was background imagery though literature indicated that 

this could be as high as 10% if needed. Acquiring imagery using the Oak-D Lite could also be 

beneficial to ensure training is completed using imagery with similar qualities. 

2) Parameter tuning and Image Augmentation – Further experimentation with training 

parameter tuning and image augmentation offers near limitless opportunity. The research 

conducted demonstrated that experimentation in this area added value, though the scope of 

this project limited the ability of finding the optimal values. 
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3) Real Time Deployment of Different Models – Driven by improvements in metrics saw the 

deployment of YoloV8-m, though the low frame rate was a limiting factor for resolution and 

detections. Experimenting with smaller versions of Yolo, and even older versions, would 

offer valuable insight into the optimal model for real time deployment on the Oak-D Lite. 

4) Algorithm Development – Two key features have been identified for areas of development 

with the YoloV8 algorithm; pose estimation and object tracking. Previous literature indicates 

that pose estimation provided good results in drowning detection systems. Built in object 

tracking algorithms in YoloV8 may assist in providing the model with temporal information 

and assist in reducing confusion between swimming and drowning behaviours. It is clear that 

there is significant opportunity to further develop and experiment with the full abilities of 

YoloV8 in a drowning detection system. 

5) Developing the Detection Interface – The final interface demonstrating the drowning 

detection system was simple and as such, there is the opportunity to further develop this. A 

simple alert banner helped to compensate for intermittent loss of detections. There is scope to 

develop this into a more user friendly interface, perhaps including a mobile application with a 

notification system. 
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Appendix A 

ENG4111/4112 Research Project 

Project Specification 

For:  Fern Proctor 

Title:  Real Time Drowning Detection System Using Machine Vision 

Major:   Electrical and Electronic Engineering 

Supervisors: Dr. Tobias Low 

Enrollment: ENG4111 – EXT S1, 2023 

  ENG4112 – EXT S2, 2023 

 

Project Aim: To develop a real time drowning detection system using a surface mounted 

camera in a residential pool setting. 

 

Programme: Version 1, 20th February 2023 

1) Conduct background research drowning detection systems and their 

implementation. This would include systems which are commercially 

available.  

2) Review systems and algorithms which utilise machine learning and vision for 

detecting people and behavior patterns.  

3) Research and secure an appropriate dataset for use in the model for drowning 

detection. If an existing set cannot be found, research drowning behaviors and 

create a dataset based on simulated images/videos. 

4) Investigate and select appropriate hardware which can be used to implement a 

drowning detection system. 

5) Investigate and select and appropriate user interface for alerting personnel of a 

drowning event. 
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6) Select a suitable software development environment in which an appropriate 

algorithm can be implemented. 

7) Develop a prototype of the system using the selected hardware. 

8) Develop a machine vision/learning algorithm for drowning detection. 

9) Deploy the prototype and algorithm in a suitable environment. Record and 

collect the data for analysis. 

10) Analyse and evaluate the data. Assess the effectiveness of the prototype.  
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ENG4111/4112 Research Project 

Project Resources 

For:  Fern Proctor 

Title:  Real Time Drowning Detection System Using Machine Vision 

Major:   Electrical and Electronic Engineering 

Supervisors: Dr. Tobias Low 

Enrollment: ENG4111 – EXT S1, 2023 

  ENG4112 – EXT S2, 2023 

This document outlines the project resources that are likely to be required for successful 

completion. 

Version 1, 20th February 2023  

  Item Estimated Cost Comments 

Raspberry Pi 4 8GB $123 Currently out of stock at many retailers 

Oak D-Lite Camera $277 In stock – Core Electronics 

Open CV $0 Free to download for Windows/Linux 

Python 3 $0 Free to download for Windows/Linux 

Laptop $0 Currently own an appropriate laptop 

Test Image Set $-- Need to source or generate own set 

Test location (pool) $0 Pool available for use 

Wifi Antenna $10 Must use Raspberry Pi Compute Module 4 kit 

Enclosure $40 To be confirmed – select appropriate enclosure 

Raspberry Pi Power Supply $16.45 Available Core Electronics (official Power 

Supply) 

Misc Hardware $-- To be confirmed 

Total Estimated Cost $466.45  
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Hazards:  1) Electrical cabling used 

for powering devices 2) Faulted 

devices causing short circuit 3) 

Electrical equipment being used 

around swimming pools. 

Control: Equipment in use to be to 

Australian Standards Inspect 

equipment prior to use Equipment 

not to be used within the footprint 

(inside fence) of swimming area if it 

is supplied by 230VAC. Adequate 

protection - earth leakage and circuit 

breakers. 

 

   

 

Hazards: 1) Sun exposure 2) Heat 

stress due to adverse weather 

conditions 3) Other hazards related 

to adverse weather conditions - rain, 

lightening 

Control: Sunscreen to be used, 

adequate clothing for sun protection 

where possible. 

Control: Task rotation, rest breaks 

as required. Work not to be 

conducted in adverse weather 

(lightening, storms). 

 

   

 

Hazards:  Persons in swimming pool 

for data collection and testing 

purposes. Wet and slippery surfaces 

around swimming pool 

Control: Competent swimmers only 

to be used in data collection and 

testing. Spotters in place to monitor 

swimmers. 
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Control: Signage and barricades in 

place around swimming pool as per 

Queensland standards. 

Control: No running around pool 

area. Eyes on path and awareness 

when accessing swimming pools. 

 

Hazard: Loss of project work due to 

equipment failure 
Control: Back up project using 

Google Drive. Both personal and 

university account. Minimum of 

weekly back ups to be done. 

 

   

 

Risk of project being used as a 

drowning detection system as 

substitution for adequate supervision 

around swimming pools. 

Control: Project information and 

hardware not to be distributed 

publicly for use. Emphasis on project 

being a prototype and not to be used 

in place of appropriate supervision in 

swimming pool settings. 
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Appendix D – Google Colab Notebooks and Python Script 

This appendix contains the configuration files and Google Colab notebooks used to train the 

custom models as well as the final python script used in deployment of the Oak-D Lite. 

YoloV7-tiny Custom 

Data File 

# directories for train, validate and test images 

train: ./data/train 

val: ./data/validate   

test: ./data/test 

# number of classes 

nc: 3 

# class names 

names: [ 'drowning','idle','swimming' ] 

 

Configuration File 

# parameters 

nc: 3  # number of classes 

depth_multiple: 1.0  # model depth multiple 

width_multiple: 1.0  # layer channel multiple 

 

# anchors 

anchors: 

  - [10,13, 16,30, 33,23]  # P3/8 

  - [30,61, 62,45, 59,119]  # P4/16 

  - [116,90, 156,198, 373,326]  # P5/32 

 

# yolov7-tiny backbone 

backbone: 

  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True 

  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2   

   

   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4     

    

   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7 

    

   [-1, 1, MP, []],  # 8-P3/8 

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14 
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   [-1, 1, MP, []],  # 15-P4/16 

   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21 

    

   [-1, 1, MP, []],  # 22-P5/32 

   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28 

  ] 

 

# yolov7-tiny head 

head: 

  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, SP, [5]], 

   [-2, 1, SP, [9]], 

   [-3, 1, SP, [13]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -7], 1, Concat, [1]], 

   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37 

   

   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, nn.Upsample, [None, 2, 'nearest']], 

   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone 

P4 

   [[-1, -2], 1, Concat, [1]], 

    

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47 

   

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, nn.Upsample, [None, 2, 'nearest']], 

   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone 

P3 

   [[-1, -2], 1, Concat, [1]], 

    

   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57 

    

   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, 47], 1, Concat, [1]], 

    

   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 
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   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65 

    

   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, 37], 1, Concat, [1]], 

    

   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [[-1, -2, -3, -4], 1, Concat, [1]], 

   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73 

       

   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

   [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]], 

 

   [[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5) 

   

Google Colab Notebook 

#mount drive 

from google.colab import drive 

drive.mount('/content/gdrive') 

 

# %cd /content/gdrive/MyDrive 

import os 

if not os.path.isdir("Yolov7"): 

  os.makedirs("Yolov7") 

 

#move to newly created YoloV7 directory 

 

# %cd Yolov7 

 

#clone repo yolov7 

!git clone https://github.com/WongKinYiu/yolov7.git 

# %cd /content/gdrive/MyDrive/Yolov7/yolov7 

"""At this point, drop the image and label files into the data folder on 

google drive""" 

 

# download Yolov7-Tiny Weights 

#!wget 

https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt this 

is the standard yolo7 version 

 

# Below is the Tiny Version of YoloV7 

!wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-

tiny.pt 

 

!pip install PyYAML==5.4.1 

 

#Train the YoloV7-tiny model 

!python train.py --device 0 --batch-size 16 --data data/custom_data.yaml --

img 640 640 --cfg cfg/training/yolov7tinycustom.yaml --weights '' --name 

yolov7tinycustomweights --hyp data/hyp.scratch.tiny.yaml --epochs 24 

 

# %cd /content/gdrive/MyDrive/Yolov7/yolov7 

#In the event of an error, use this command to resume training from the 

last epoch. 
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!python train.py –resume 

 

#Once training has finished, change to test mode 

!python test.py --data data/custom_data.yaml --img 640   --weights 

runs/train/yolov7tinycustomweights/weights/last.pt --task 'test' 

 

# Run evaluation on an image 

!python detect.py --weights 

runs/train/yolov7tinycustomweights/weights/last.pt --conf 0.1 --source 

/content/gdrive/MyDrive/images/test_idle_000012.jpg 

 

#Run a detection on a video 

!python detect.py --weights 

runs/train/yolov7tinycustomweights/weights/last.pt --conf 0.25 --img-size 

640 --source /content/gdrive/MyDrive/images/te_o_swim_5.mp4 

#Run a detection on a different video 

!python detect.py --weights 

runs/train/yolov7tinycustomweights/weights/last.pt --conf 0.25 --img-size 

640 --source /content/gdrive/MyDrive/images/te_o_drown_5.mp4 

YoloV8-s Custom 

Data File 

#Custom Dataset 

path: /content/gdrive/MyDrive/Yolov7/yolov7/data  # dataset root dir 

train: ./train  # train images  

val: ./test  # val images  

test: ./test #test images 

 

# Classes 

names: 

  0: drowning 

  1: idle 

  2: swimming 

 

Google Colab Notebook 

Fern YoloV8 

#mount drive 

from google.colab import drive 

drive.mount('/content/gdrive') 

# %cd /content/gdrive/MyDrive 

import os 

if not os.path.isdir("yolov8"): 

  os.makedirs("yolov8") 

#move to newly created YoloV8 directory 

# %cd yolov8 

!git clone https://github.com/ultralytics/ultralytics.git 

!pip install ultralytics 

import ultralytics 
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ultralytics.checks() 

from ultralytics import YOLO 

!pwd 

 

# Load a model 

model = YOLO("yolov8m.pt")     # load a pretrained model (recommended for 

training) 

# %cd 

!yolo task=detect mode=predict model=yolov8m.pt conf=0.25 source = 

/content/gdrive/MyDrive/images/skateboards.jpg save=True 

!pwd 

# Train YOLOv8n on Custom Dataset for 24 epochs (6000 Iterations) 

#!yolo train model=yolov8s.pt data=yolov8custom.yaml epochs=24 imgsz=640 

# Alternative model trial 

#!yolo train data=yolov8custom.yaml model=yolov8s.yaml 

pretrained=yolov8s.pt epochs=24 imgsz=640 

#Another alternative trial 

!yolo train data=yolov8custom.yaml model=yolov8m.pt pretrained=yolov8m.pt 

epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf =0.001 degrees = 90 translate 

= 0.4 scale = 0.4 shear =0.4 flipud = 0.4 fliplr = 0.4 patience =0 

!yolo mode=train resume 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/last.pt 

data=yolov8custom.yaml  epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf 

=0.001 degrees = 90 translate = 0.4 scale = 0.4 shear =0.4 flipud = 0.4 

fliplr = 0.4 patience =0 

!yolo mode=val 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

data=yolov8custom.yaml epochs=24 imgsz=416 

!yolo detect mode=val 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

data=yolov8custom.yaml 

!yolo detect mode=val 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

data=yolov8custom.yaml 

!yolo task=detect mode=predict 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

conf=0.25 source = 

/content/gdrive/MyDrive/images/test_swimming_2_000041.jpg 

!yolo task=detect mode=predict 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

conf=0.25 source = /content/gdrive/MyDrive/images/te_o_swim_5.mp4 
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YoloV8-m Custom – Final Model 

Datafile 

 #Custom Dataset 
path: /content/gdrive/MyDrive/Yolov7/yolov7/data  # dataset root dir 

train: ./train  # train images  

val: ./test  # val images  

test: ./test #test images 

 

# Classes 

names: 

  0: drowning 

  1: idle 

  2: swimming 

 

Google Colab Notebook 

 """Fern YoloV8 

#mount drive 

from google.colab import drive 

drive.mount('/content/gdrive') 

# %cd /content/gdrive/MyDrive 

import os 

if not os.path.isdir("yolov8"): 

  os.makedirs("yolov8") 

#move to newly created YoloV8 directory 

# %cd yolov8 

!git clone https://github.com/ultralytics/ultralytics.git 

!pip install ultralytics 

import ultralytics 

ultralytics.checks() 

from ultralytics import YOLO 

!pwd 

# Load a model 

model = YOLO("yolov8m.pt")     # load a pretrained model (recommended for 

training) 

# %cd 

!yolo task=detect mode=predict model=yolov8m.pt conf=0.25 source = 

/content/gdrive/MyDrive/images/skateboards.jpg save=True 

!pwd 

# Train YOLOv8n on Custom Dataset for 300 epochs 

!yolo train data=yolov8custom.yaml model=yolov8m.pt pretrained=yolov8m.pt 

epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf =0.001 degrees = 90 translate 

= 0.4 scale = 0.4 shear =0.4 flipud = 0.4 fliplr = 0.4 patience =0 
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!yolo mode=train resume 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/last.pt 

data=yolov8custom.yaml  epochs=300 imgsz=416 batch =32 lr0 =0.001 lrf 

=0.001 degrees = 90 translate = 0.4 scale = 0.4 shear =0.4 flipud = 0.4 

fliplr = 0.4 patience =0 

!yolo mode=val 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

data=yolov8custom.yaml epochs=24 imgsz=416 

!yolo detect mode=val 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

data=yolov8custom.yaml 

!yolo detect mode=val 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

data=yolov8custom.yaml 

!yolo task=detect mode=predict 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

conf=0.25 source = 

/content/gdrive/MyDrive/images/test_swimming_2_000040.jpg 

!yolo task=detect mode=predict 

model=/content/gdrive/MyDrive/yolov8/runs/detect/train15/weights/best.pt 

conf=0.25 source = /content/gdrive/MyDrive/images/te_o_swim_5.mp4 

 

Python Script 

The following is the Python script which was deployed on the Raspberry Pi for the user 

interface. 

# Experiment 5 - Interface and Alert System for Drowning Detection System 

# This code has been adapted from https://github.com/luxonis/depthai-

experiments/tree/master/gen2-yolo/device-decoding 

 

# Import libraries 

from pathlib import Path 

import sys 

import cv2 

import depthai as dai 

import numpy as np 

import time 

import argparse 

import json 

import blobconverter 
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#Define FPS 

fps = 5 

 

# parse arguments 

parser = argparse.ArgumentParser() 

parser.add_argument("-m", "--model", help="Provide model name or model path 

for inference", 

                    default='model/yolov8-300e-

best_openvino_2022.1_6shave.blob', type=str) 

parser.add_argument("-c", "--config", help="Provide config path for 

inference", 

                    default='json/yolov8-300e-best.json', type=str) 

args = parser.parse_args() 

 

# Get config 

configPath = Path(args.config) 

if not configPath.exists(): 

    raise ValueError("Path {} does not exist!".format(configPath)) 

 

# Load JSON file for metadata  

with configPath.open() as f: 

    config = json.load(f) 

nnConfig = config.get("nn_config", {}) 

 

# Get input shape 

if "input_size" in nnConfig: 

    W, H = tuple(map(int, nnConfig.get("input_size").split('x'))) 

 

# extract metadata from JSON file 

metadata = nnConfig.get("NN_specific_metadata", {}) 

classes = metadata.get("classes", {}) 

coordinates = metadata.get("coordinates", {}) 

anchors = metadata.get("anchors", {}) 

anchorMasks = metadata.get("anchor_masks", {}) 

iouThreshold = metadata.get("iou_threshold", {}) 

confidenceThreshold = metadata.get("confidence_threshold", {}) 

 

print(metadata) 

 

# Get labels 

nnMappings = config.get("mappings", {}) 
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labels = nnMappings.get("labels", {}) 

 

# get model path from .blob file 

nnPath = args.model 

if not Path(nnPath).exists(): 

    print("No blob found at {}. Looking into DepthAI model 

zoo.".format(nnPath)) 

    nnPath = str(blobconverter.from_zoo(args.model, shaves = 6, zoo_type = 

"depthai", use_cache=True)) 

# sync outputs 

syncNN = True 

 

# Create pipeline to Oak-D Lite 

pipeline = dai.Pipeline() 

 

# Define sources and outputs 

camRgb = pipeline.create(dai.node.ColorCamera) 

detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork) 

xoutRgb = pipeline.create(dai.node.XLinkOut) 

nnOut = pipeline.create(dai.node.XLinkOut) 

 

xoutRgb.setStreamName("rgb") 

nnOut.setStreamName("nn") 

 

# Properties 

camRgb.setPreviewSize(W, H) 

 

# Use this to change the camera resolution 

camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_13_MP) 

 

camRgb.setInterleaved(False) 

camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR) 

camRgb.setFps(fps) 

 

# Network specific settings 

detectionNetwork.setConfidenceThreshold(confidenceThreshold) 

detectionNetwork.setNumClasses(classes) 

detectionNetwork.setCoordinateSize(coordinates) 

detectionNetwork.setAnchors(anchors) 

detectionNetwork.setAnchorMasks(anchorMasks) 

detectionNetwork.setIouThreshold(iouThreshold) 
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detectionNetwork.setBlobPath(nnPath) 

detectionNetwork.setNumInferenceThreads(2) 

detectionNetwork.input.setBlocking(False) 

 

# Linking 

camRgb.preview.link(detectionNetwork.input) 

detectionNetwork.passthrough.link(xoutRgb.input) 

detectionNetwork.out.link(nnOut.input) 

 

# Connect to Oak-D Lite and start pipeline 

with dai.Device(pipeline) as device: 

 

    # Output queues will be used to get the rgb frames and nn data from the 

outputs defined above 

    qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False) 

    qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False) 

 

    frame = None 

    detections = [] 

    startTime = time.monotonic() 

    counter = 0 

    color2 = (0, 0, 255) 

 

    # nn data, being the bounding box locations, are in <0..1> range - they 

need to be normalized with frame width/height 

    def frameNorm(frame, bbox): 

        normVals = np.full(len(bbox), frame.shape[0]) 

        normVals[::2] = frame.shape[1] 

        return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int) 

 

    def displayFrame(name, frame, detections): 

        class_colors = { 

        'Drowning': (0, 0, 255),    # Red for Drowning 

        'Idle': (0, 255, 0),        # Green for Idle 

        'Swimming': (0, 255, 0)     # Blue for Swimming 

    } 

        for detection in detections: 

            bbox = frameNorm(frame, (detection.xmin, detection.ymin, 

detection.xmax, detection.ymax)) 

             

            #Get the class label 
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            class_label = labels[detection.label] 

             

            #Colour of label 

            color=class_colors.get(class_label, (0,0,255)) 

             

            #Draw the bounding boxes 

            cv2.putText(frame, class_label, (bbox[0] + 10, bbox[1] + 20), 

cv2.FONT_HERSHEY_SIMPLEX, 0.5, color) 

            cv2.putText(frame, f"{int(detection.confidence * 100)}%", 

(bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color) 

            cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), 

color, 2) 

        # Show the frame 

        cv2.imshow(name, frame) 

         

     

     

    # Initialize recording variables 

    recording = False 

    out = None 

 

    # Initialize drowning detection timer variables 

    drowning_timer = 0 

    drowning_threshold = 2 

    drowning_detected = False 

    last_detection_time = time.monotonic()  # Initialize 

last_detection_time 

    drowning_display_timer = 0 

    drowning_reset_time = 2 # Get rid of drowning alert after 5 seconds 

     

    # Create a named window with the fullscreen flag 

    cv2.namedWindow("Drowning Detection System", cv2.WINDOW_NORMAL) 

    cv2.setWindowProperty("Drowning Detection System", 

cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) 

     

    while True: 

        inRgb = qRgb.get() 

        inDet = qDet.get() 

 

        if inRgb is not None: 

            frame = inRgb.getCvFrame() 
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            cv2.putText(frame, "NN fps: {:.2f}".format(counter / 

(time.monotonic() - startTime)), 

                    (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.4, 

color2) 

 

        if inDet is not None: 

            detections = inDet.detections 

            counter += 1 

 

            # Check if 'Drowning' is detected in the current frame 

            drowning_detected = False  # Reset drowning detection flag 

            for detection in detections: 

                if labels[detection.label] == 'Drowning': 

                    drowning_detected = True 

                    break 

 

            if drowning_detected: 

                drowning_timer += 1 / fps  # Increase timer based on FPS 

                last_detection_time = time.monotonic() 

            else: 

                drowning_timer = 0  # Reset timer 

 

            # Check if the timer threshold is met and reset the timer 

            if time.monotonic() - last_detection_time >= 

drowning_reset_time and drowning_timer >= drowning_threshold: 

                drowning_timer = 0 

                 

            # Update the separate timer for displaying "Drowning Detected!" 

text 

            if drowning_detected: 

                drowning_display_timer = time.monotonic() 

 

        # Code to hold drowning detection alert even after loss of bounding 

box 

        if frame is not None: 

            if drowning_detected and drowning_timer >= drowning_threshold: 

                cv2.putText(frame, "Drowning Detected!", (10, 60), 

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) 

            elif time.monotonic() - last_detection_time <= 

drowning_reset_time: 
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                cv2.putText(frame, "Drowning Detected!", (10, 60), 

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) 

            else: 

                cv2.putText(frame, "No Drowning Detected", (10,60), 

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) 

            displayFrame("Drowning Detection System", frame, detections) 

 

        # Recording 

        if recording: 

            if out is None: 

                fourcc= cv2.VideoWriter_fourcc(*"H264") 

                out = cv2.VideoWriter('output.mp4', fourcc, fps, 

(frame.shape[1], frame.shape[0])) 

            out.write(frame) 

 

    # Some hot key commands for control 

        key = cv2.waitKey(1) 

        if key == ord('q'): 

            break 

        elif key == ord('r'): 

            if not recording: 

                recording = True 

                out = None 

                print("Recording started.") 

        elif key == ord('s'): 

            if recording: 

                if out is not None: 

                    out.release() 

                    print("Recording stopped and saved as 'output.mp4'.") 

                recording = False 

 




