
University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

 

 

 

The Effects of Three Phase Asymmetry on 

Transmission Line Travelling Waves 

 

A dissertation submitted by 

Rory Taylor 

 

in fulfillment of the requirements of 

ENG4111 and 4112 Research Project 

towards the degree of 

Bachelor of Engineering (Honours) (Electrical) 

Submitted October, 2023  



1 

 

ABSTRACT 

 

The effect of transmission line asymmetry on travelling wave propagation velocity was investigated, 

for the potential to improve fault location accuracy. It was an analytical and simulation-based 

investigation using the SimPowerSystem application in the Simulink/MATLAB software. Three-phase 

asymmetric and symmetric models were constructed from derived 3x3 inductance and capacitance 

matrices, with each phase represented as a standard ideal two-wire circuit. A modified Clarke matrix 

transformation was used to decouple the asymmetric system for modal velocity calculations.  

The models produced a slight overestimation error, with the ideal symmetric velocity being 1.1% above 

the ideal upper limit of light speed. Any differences observed in aerial mode propagation velocities 

between the symmetric and asymmetric models were within this inherent model error. The difference 

in ground mode velocity was outside the error margin, however, it was found to be caused by the much 

larger earth-return distance in the asymmetric model, which is not a factor of symmetry. It was therefore 

concluded that asymmetry has no effect on travelling wave propagation velocity. 

The model error was investigated, which increased massively when conductor separation distances were 

reduced to near conductor radius distances (i.e., close to touching). The radius distance appeared to be 

a focal point of error, which led to suspected problematic assumptions of the model derivations. 

Specifically, the inductance and capacitance equations don’t actually use the same conductor radius, 

because the inductance equations account for internal fields, but the capacitance ones don’t. Also, the 

internal inductance equation doesn’t account for frequency, therefore neglecting both skin effect and 

proximity effect. It is suggested these issues be addressed to improve the model for use in further 

investigations. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

Travelling waves are used to locate transmission line faults. Improving our understanding of 

transmission line 3-phase asymmetry effects on travelling waves may improve fault location accuracy. 

This in turn leads to less down time of faulted sections of electricity supply. This represents a reduction 

of inconvenient ‘blackout’ time for consumers and a reduction of costs. It also provides more reliability 

for correctly identifying the faulted component, which otherwise would lead to repeating faults on the 

same line, further damaging hardware due to stresses created by fault currents (ENTSO-E 2021). 

Another benefit of improving speed and/or accuracy of fault detection is to eventually enable the ability 

to de-energise a broken line section before the live cable even hits the ground. This represents a 

profound safety enhancement in power distribution. For example, when a car crashes into a pole or a 

clamp breaks in an urban area, live cables can drop to the ground, risking direct contact with people. 

Equipment manufacturers have been working towards this rapid fault detection and de-energisation 

ability for decades, with some technology in trial phase (O'Brien et al. 2016; O'brien & Udren 2018), 

and the present study may contribute. 

Travelling wave-based fault location is the modern standard. Traditional impedance-based methods for 

fault location involved an error somewhere between 1 – 2 % (Krzysztof, Kowalik & 

Rasolomampionona 2011; Das et al. 2014; Guzmán et al. 2018) for two-ended detection systems. For 

example, on a 100 km line, a repair crew would be given an approximate location range of up to 1 - 2 

km along which to search for the fault. Considering this may be at night, in bad weather or difficult 

terrain, this could take considerable time. Single-ended detection systems are much worse, typically 

±5% (Krzysztof, Kowalik & Rasolomampionona 2011). The use of travelling waves for locating faults 

presents a much more accurate method. This technology has been developing over the last couple of 

decades with the advancement of both sampling rates and time synchronisation of detectors (IEEE 

2014). 

It works as follows - a fault results in a sudden transient condition which sends voltage & current 

travelling waves out from its location, which propagate along the transmission line at almost the speed 

of light. Locating the origin of these waves involves equipment that measures the time difference 

between detection on either side (or between incident and reflected waves on the one side). Considering 
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that a wave travels nearly 300 km in a millisecond, the detection precision required for an accurate 

prediction of origin is only relatively recently achievable. Sampling rates and time synchronisation is 

now capable of sub-microsecond precision (IEEE 2014; Guzmán et al. 2018). For example, a sampling 

interval of 1 μs equates to a fault location range within 300 m. Now, fault location accuracy is no longer 

mostly inhibited by the inherent error presented by the detection instruments, but errors in line length 

and accuracy of propagation speed along the transmission lines. Therefore, the propagation velocity of 

the wave is a critical parameter in calculating fault location (Krzysztof, Kowalik & Rasolomampionona 

2011), and generally calculated as follows: 

𝑣𝑝 = 
𝜔

𝛽
       ( 1 ) 

The above propagation velocity (vp) is proportional to frequency (ω) and dictated by inductance and 

capacitance only (β). Therefore, this equation only applies to lossless (no resistance value) and balanced 

systems (Mamiş & Nacaroğlu 2002). Losses are disregarded because travelling waves are generally 

high frequency, where the frequency-dependent inductive reactance (XL = ωL) and admittance (Y = 

ωC) are so much greater than resistance (R) and conductance (G) (Stevenson Jr & Grainger 1994). 

 

1.2 The Problem 

The asymmetric placement of conductors in three-phase transmission lines represents a different system 

inductance and capacitance than the ideal symmetric one to which Equation 1 applies. 

First, consider an ideal 3-phase transmission line and how it works: There are 3 conductors (wires) 

running between towers. Assuming a balanced load, each of them conducts equal alternating current, 

120° out of phase with each other. The sum of the instantaneous currents anywhere along the combined 

waveform is zero. This represents perfect balance, which would exist in a physically symmetric 

arrangements as per Figure 1 below: 

 

Figure 1. Physically symmetric arrangement of 3-phase transmission line, where the distance (D) is equal between all three 

phases. Source: https://www.electricaldeck.com/2021/07/inductance-of-transmission-line.html 
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The flow of current through each line results in flux fields around them. These fields from each phase 

affect each other’s flow of current (mutual capacitance and inductance). In the symmetric arrangement, 

this is balanced, so the net current of the 3-phases remains zero. 

This symmetry also largely negates the effect of the earth flux linkage, because in a balanced system 

the flux largely cancels out in a similar fashion as the sum of instantaneous currents (but not completely 

because the conductors have physical separation and do not occupy the same space). The resulting 

efficiency is what makes 3-phase the most common way electrical grids transfer power. However, a 

typical overhead power line has its conductors in a straight line across: 

 

Figure 2. Typical 11 kV transmission line pole (left), showing asymmetric placing of conductors (right – image source: 

https://www.electrical4u.com/inductance-in-power-transmission-line/). 

 

As displayed in Figure 2 above, the phase ‘b’ conductor is exposed to a very different flux field 

distribution than the phase ‘a’ and ‘c’ conductors. This imbalance reduces flux cancellation. Therefore, 

more flux exists resulting in more impedance. Therefore, the currents themselves are unbalanced, 

forcing a net current flow which involves an earth-return path. That’s why there is often line 

transposition, where the phases are swapped around at each tower to achieve an overall average that 

balances their impedances: 
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Figure 3. An example of line transposition at a pole. The three line phases are each represented by a different colour. Source: 

https://commons.wikimedia.org/wiki/File:6.6kV_Power_Line_(Ibaraki,Japan)_02-2.jpg 

 

Many lines are not transposed, and those that are may only approach ideal theoretical balance. Accurate 

modelling requires accounting for the influence of the imperfect earth-return path (Kaloudas, 

Papadopoulos & Papagiannis 2008). The extra inductance and mutual inductance with the earth caused 

by asymmetry is a critical factor in determining the speed of travelling waves. 

Power distribution utilities make a direct measurement of the propagation velocity of a given line, with 

which to calibrate the fault locator (Schweitzer et al. 2014). They use a ‘line energisation test’, in which 

usually a circuit breaker is closed at the fault locator at the line origin, and the resultant travelling wave 

and returned reflection is timed over the known line length. However, there are accuracy issues. For 

example, the travelling wave velocity fluctuates with external factors such as temperature, dirt, ice 

(Krzysztof, Kowalik & Rasolomampionona 2011) and humidity (Zhou et al. 2021). Therefore, the 

development of analytical approaches, such as the present study, are justified. 
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1.3 Aims and Objectives 

The aim of this study was to investigate the effects of 3-phase asymmetrical transmission line 

arrangement on travelling wave propagation velocity. This was achieved through the following 

objectives: 

1. Research travelling wave and transmission line mathematical theory. 

2. Derive mathematical models of travelling waves that incorporates asymmetry-related 

transmission line effects. 

3. Incorporate asymmetry into Simscape transmission line models. 

4. Compare and discuss implications of model outcomes for protection systems based on 

travelling waves. 

 

1.4 Thesis Structure 

Chapter 2 is the review of the literature primarily for analytical studies, as well as the relevant 

numerical studies. 

Chapter 3 is the methodology. Firstly, the mathematics of travelling waves were explored, then the 

asymmetric and symmetric 3-phase models were derived. The simulation testing proceeded stepwise in 

complexity, beginning with classical single-phase transmission lines as a proof of concept. Once the 

model was behaving on the simulator as mathematically expected, then the testing of the derived 3-

phase models could proceed. 

Chapter 4 is the results and discussion, which is presented as a two-fold exploration – simulation and 

analytical, which are generally correlated at each step of investigation. Any evidence that emerged of 

different travelling wave propagation speeds between models was explored further in relation to 

measurement and inherent model error, as well as comparability between models. 

Chapter 5 is the conclusion, in which any evidence of effects of asymmetry on propagation velocity 

was ultimately weighed against inherent model error and model comparability. 
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CHAPTER 2  

LITERATURE REVIEW 

 

Analytical studies of the effects of asymmetry on travelling waves are relatively scarce in the literature. 

Transient analysis tends to be done by numerical approach, with commercial simulation tools that can 

handle large and complex power networks (Bellan & Superti-Furga 2018). 

 

2.1 Analytical Studies 

An example for a balanced 3-phase line is reported (de Magalhães Júnior & Lopes 2021), using the 

Clarke transformation to develop mathematical expressions as functions of line and fault parameters. 

They also noted that other transformation matrices, such as the Karrenbauer and Wedepohl would also 

have been appropriate. Importantly, they included losses in their simulated lines (Bergeron and JMarti 

lossy line models). Comparing their mathematical results with the simulations, they found their 

formulas reliable for aerial travelling waves, but less so for ground mode, concluding that different 

tower geometries and ground characteristics have different effects on travelling waves. 

The following literature reports improved modelling accuracy of asymmetric 3-phase systems by 

modifications of traditional transformation matrices, focussing mainly on Clarke matrix modifications. 

An example of an analytical approach (Bellan 2019, 2020) uses a modified Clarke transformation to 

derive more appropriate circuit models for transients in asymmetric 3-phase systems. These equivalent 

circuits model single- or double-line switching (asymmetric transients occurring when not all three 

phases are involved in switching events). Firstly, the switching section is ‘removed’, leaving a balanced 

3-phase system. Then the Clarke transformation is applied and the three Thevenin equivalents (open 

circuit voltage and equivalent impedance) in the mode domain can be derived. Secondly, the line-

switching voltage and current constraints are transformed, and the resulting modal constraints are 

implemented in the modal Thevenin equivalents. 

 

2.2 Numerical Studies 

The literature for numerical studies of transmission line travelling waves is extensive. The following 

review is narrowed to studies involving asymmetry and modified modal transformation techniques. 
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Authors (Pang et al. 2019) investigated travelling waves on a typical 3-phase asymmetric 110 kV 

transmission line. They calculated the line parameters then derived a decoupling algorithm based on a 

modified Karenbauer transformation, in which the decoupled coupling components accounted for only 

2 %, which was better than their Clarke matrix transform. They also found that the travelling waves 

attenuate with distance, in manner that’s proportional to their frequencies, and travelling waves usually 

occur at high frequencies in the kHz to MHz range (de Magalhães Júnior & Lopes 2021). Another study 

utilised the Karrenbauer transform (Liang et al. 2017) to decouple and analyse ground-mode travelling 

wave characteristics to investigate the relationship between ground-mode propagation velocity of 

travelling waves and fault distance. This was used to propose a grounding fault-location method. 

Another fault location method involved untransposed lines decoupled using an eigenvalue 

decomposition technique (Lu et al. 2020; Lu et al. 2021). This is followed with the Bergeron method, 

in which the distributed line inductances and capacitances, and the lumped line resistances, are factored 

to solve the voltage distribution of the line. 

Another approach, the ‘zeroth-order’ modal solution, has been a common approximation method (Faria 

& Mendez 1997). This is where the average of the main diagonal is taken, and the average of the off-

diagonals are taken. An approximation matrix is reconstructed using these averages, which will be a 

balanced matrix (since all off-diagonals are now equal). Now, transforming this yields a diagonal 

eigenvalue matrix, used to obtain fairly accurate results at least for non-transposed bilateral lines (Faria 

& Mendez 1997). This zeroth-order method will also be employed in the present study. 

This method has been built upon with the addition of a perturbation theory approach to obtain a first-

order approximation (Faria & Briceno 1997; Faria & Mendez 1997; Faria 2000). It is a numerical 

iterative approach, with the quasi-modes represented as the above approximations plus a perturbation. 

It forms the basis of several studies  (Prado et al. 2010; Da Costa et al. 2011; Prado et al. 2011; Prado 

et al. 2012), where the off-diagonal elements are represented as relative values. A corrector matrix 

works to continuously ‘tune’ the modified Clarke transformation matrix with correction terms 

(perturbations) to reduce the relative error between quasi-mode and exact values. 

 

2.3 Summary 

Analytical studies of asymmetry-related transmission line effects are a minority in the literature 

compared to the plethora of numerical studies. Those analytical studies reviewed are supported by 

detailed background theory to support their model constructions. Several transformation matrix 

methods (Clarke, Wedepohl etc) are employed and necessarily altered to apply to otherwise problematic 

asymmetric lines. 
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Such models would then be simulated, for example, with Matlab’s Simulink or Alternative Transients 

Program (ATP). After verification through comparison with known theory or real-world data, they 

would be used to investigate various hypotheses. The outcomes of which are usually discussed in the 

context of their potential benefits to fault location technology. For example, some have application for 

improving location accuracy, or others for improving real-world reliability of correct peak detection, 

because currently significant detection problems are caused by lots of reflections from lots of poles and 

branches. The present study uses some theory from the review, such as the zeroth order Clarke matrix 

modification, to investigate the effects of asymmetry on travelling wave propagation velocity. The 

implications of which are targeted at improving fault location device accuracy. 
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CHAPTER 3  

METHODOLOGY 

 

This project was an analytical and simulation-based investigation. The goal was to establish if 

asymmetry affects the travelling waves propagation velocity. Firstly, the mathematics of travelling 

waves and transmission lines needed to be explored in order to create a model for simulation. The 

simulation testing needed to begin simple and correlate with classical theory to confirm it was being 

operated correctly. Then the testing of the derived models could proceed. 

The SimPowerSystem, an application in the Simulink/MATLAB software, was the simulation tool 

used. It uses the Bergeron method mentioned in the literature review for the transmission line model. 

 

3.1 Mathematical Background of Travelling Waves 

Travelling waves are both time- and space-dependent, and are mathematically defined by the partial 

differential equations (known as the Telegrapher’s Equations): 

𝜕2𝑉(𝑥, 𝑠)

𝜕𝑥2
= 𝑍 ∙ 𝑌 ∙ 𝑉(𝑥, 𝑠) 

 
𝜕2𝐼(𝑥, 𝑠)

𝜕𝑥2
= 𝑍 ∙ 𝑌 ∙ 𝐼(𝑥, 𝑠) 

 

The above voltage and current transmission line equations are derived from a distributed parameter 

transmission line equivalent circuit, where ‘Z’ and ‘Y’ represent series impedance and shunt admittance 

per unit length respectively, and ‘x’ represents the longitudinal coordinate. 

To solve the travelling wave equations for a given 3-phase line, tools such as the Clarke transformation 

have been used extensively. It is a modal transformation matrix, where all electrical parameters and line 

representative matrices are obtained in mode domain (Prado et al. 2011). Modal signals are basically 

distortion-free constant frequency signals (Hedman 1965). This domain simplifies things, because the 

representative impedance matrices of the line are diagonalised and the frequency influence can be 

analysed independently for every mode. This means that they can be modelled as 3 single-phase lines, 

because the transformation removes the mutual terms of the impedance and admittance matrices 

(Carvalho et al. 2016). 
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The travelling waves propagate from a fault location in both directions, and their velocity depends on 

the mode (‘α’, ‘β’ or ‘0’). The modal decoupling technique using the Clarke matrix for standard 

symmetric systems is as follows: The line has a per-unit length series impedance matrix (Z) and per-

unit length shunt admittance matrix (Y). For instance, the impedances represented in Z are composed 

of frequency-dependent resistances and inductances of the general form Zij = Rij + jωLij, and represented 

in matrix form (The admittance (Y) matrix is represented in the same way, with Yij = Gij + jωCij): 

 

Z= [
𝑍11 𝑍12 𝑍13

𝑍21 𝑍22 𝑍23

𝑍31 𝑍32 𝑍33

]  Y= [
𝑌11 𝑌12 𝑌13

𝑌21 𝑌22 𝑌23

𝑌31 𝑌32 𝑌33

] 

 

Looking at the subscripts of the elements, the main diagonal impedances are independent, consisting of 

parameters of the three single phases on their own (self-impedances). The off-diagonal elements consist 

of mutual impedances between phases. Also recall that the system is symmetric, so all the main diagonal 

elements are equal, and all the mutual couplings (off-diagonal elements) are equal. Therefore, this 

balanced system would be of the form: 

[ZY]bal = [
ℎ 𝑚 𝑚
𝑚 ℎ 𝑚
𝑚 𝑚 ℎ

]      ( 2 ) 

 

To decouple this system, the mutual impedances are removed via the Clarke transformation matrix 

shown below: 

TCL= √
2

3

[
 
 
 
 1 −

1

2
−

1

2

0
√3

2
−

√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 

 

 

Note that this is an orthogonal matrix, so T-inverse (T-1) = T-transpose (TT). 
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Applying the transform yields the decoupled system eigenvalues: 

 

T∙Z∙Y∙T-1  = [

𝜆𝛼 0 0
0 𝜆𝛽 0

0 0 𝜆0

]  where λ is an eigenvalue and α, β and 0 are the modes. 

 

For a balanced system, λα = λβ = (h – m) and λ0 = (h + 2m). The modes ‘α’ and ‘β’ are also referred to 

as the arial modes, and ‘0’ is the ground mode. Each mode has a different propagation velocity and 

impedance, with the ground mode being the slowest and most variable (Ancell & Pahalawaththa 1994). 

However, it is problematic applying the Clarke transformation to asymmetric 3-phase systems (Da 

Costa et al. 2011; Prado et al. 2011; Bellan 2020; Lu et al. 2021). Only lossless balanced systems can 

be accurately solved analytically (Faria & Briceno 1997; Mamiş & Nacaroğlu 2002). When eigenvector 

matrices are transformed, the resultant matrix is not diagonal, meaning the above zero values outside of 

the main diagonal turn out to be non-zero values, and this is referred to as a ‘quasi-mode’ matrix. These 

elements are not negligible when compared with the eigenvalues and represent problematic couplings 

between these modes. Therefore, researchers tackling the asymmetry problem generally do so by 

modifying the Clarke transformation. 

 

3.2 Modified Clarke Transformation 

In contrast to [ZY]bal (2), for an unbalanced system, but assuming the asymmetric conductor 

arrangement has at least bilateral symmetry (see Figure 2, where a line of symmetry bisects vertically 

through conductor b), the matrix would be of the form: 

 

Z and Y = [
𝑎 𝑐 𝑑
𝑐 𝑏 𝑐
𝑑 𝑐 𝑎

]  [ZY] = [

𝑥 𝑦 𝑧
𝑤 𝑢 𝑤
𝑧 𝑦 𝑥

] (Faria & Mendez 1997) 

 

To obtain the [ZY]bal, a common averaging technique is used, introduced in the literature review (Faria 

& Mendez 1997). The main diagonal elements are replaced by their average (ℎ =  
𝑥+𝑢+𝑥

3
 ), and the off-

diagonal elements are replaced by their average (𝑚 = 
𝑤+𝑦+𝑧

3
 ), which therefore converts the matrix 
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back to the balanced form shown in (2). This is known as a zeroth-order approximation matrix. This 

mathematical averaging process is possibly akin to physical line transposition. 

 

3.3 Initial Single Phase Simulator Test Circuit 

The testing began with a preliminary single-phase DC investigation of travelling wave velocity in a 

classical two-wire circuit. Figure 4 displays the Simulink construct, where a switch sends a step input 

of magnitude 100 A along a transmission line. Each distributed parameters line section (upper blank 

rectangles in series) is 200 km long, with the entire line (800 km) being terminated by a very high 

resistance (~open circuit). Whilst voltage scopes were placed between each line section, only the one 

at the start of the line (V5) was reported on, being the likely location of a detection device. 

A second switch connected at the middle of the line functions as a fault. This was included once the 

initial testing of the DC wave propagation was completed, with the source also then being changed to 

AC. 

 

Figure 4. Single-phase transmission line with fault model. The L and C values previous were entered into the distributed 

parameters line sections (200 km long each). 

 

3.4 3-Phase Simulator Circuit: 

The main parameters involved in constructing the models are the inductance (L) and capacitance (C) 

matrices. The 3-phase model is built from a 3x3 matrix of each, with each phase represented as a 

standard two-wire circuit. These parameters depend on the geometric placement of the conductors. The 

default tower geometry was taken from the Simulink ‘Line Parameter Calculator’ application for an 
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example 25 kV three-phase line. The conductors were 10.37 m high (not including line sag between 

poles) and the outer conductors being 1.24 m out on each side. 

The 3-phase circuit (Figure 5) was of similar structure as the single phase. An alpha-beta-zero transform 

block (Clarke transformation) was also included on the scope. Incident and reflected wave time intervals 

were measured ‘manually’ by lining up the measuring cursors on the scope with the first discernable 

peaks of each wave group. Both voltage and current scopes were included in the model, but only the 

voltage signal was reported on due to its much more definable peaks. The 3-phase fault block in the 

center of the lines was customizable to allow different types of faults (Figure 6), for example line-to-

line, or line-to-ground. 

 

Figure 5. Simscape model layout. The L and C matrices derived in the methodology section were entered into the distributed 

parameters 3-phase line sections. Both voltage and current traces were observed, with the former only being used for 

measurements due to peak clarity. The αβ0 transformation blocks were also a tool to improve clarity for measurements. 

 

 

Figure 6. Three-phase fault block. It is implemented as a 3-phase circuit breaker with the phases able to be individually 

closed/open. The ground connection can also be opened for non-ground faults. 
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3.5 Inductance Matrix of the Transmission Line 

To create a simulation model, it was necessary to construct the 3x3 inductance matrix. The three 

elements of the main diagonal represent the self-inductances of each phase. The remaining six off-

diagonal components represent the mutual inductances between phases. 

There are different ways of constructing the balanced symmetric model, but the asymmetric conductor 

arrangement is unbalanced (Ia + Ib + Ic ≠ 0). Therefore, the three-phase system was treated as three 

separate two-wire circuits – each phase conductor with its earth-return (designated conductor ‘p’). It is 

important to note here that the earth-return path was modelled as a second identical conductor, for 

simplicity purposes. A real earth-return path obviously has different and non-homogenous material 

properties (Chalangar et al. 2019). 

The self-inductances were calculated directly with standard equations for a two-wire circuit: 

Flux density standard equation for a single conductor: 

𝐵 = 
𝜇0𝐼

2𝜋𝑥
        ( 3 ) 

where  x = distance from conductor (*Note: designated ‘z’, not ‘x’, in Figure 7); and 

𝜇0 = permeability of free space (= 4π x 10-7) 

 

Integrating this to find flux linkage standard equation: 

Ψ𝑒𝑥𝑡  =
𝜇0𝐼

2𝜋
∫

1

𝑥
 𝑑𝑥

𝐷

𝑟
 (external flux linkage of single conductor) 

Ψ𝑖𝑛𝑡  =
𝜇0𝐼

2𝜋
∫

𝑥3

𝑟4  𝑑𝑥
𝑟

0
 (internal flux linkage of single conductor) 

Ψ =
𝜇0𝐼

𝜋
∙ ln (

𝐷

𝑟′) (Total flux linkage of both conductors in circuit)  ( 4 ) 

where D = distance between conductors; and 

r’ = conductor equivalent radius = 0.7788r 

 

This leads to the self-inductance standard equation: 

𝐿𝑠𝑒𝑙𝑓 =  4𝑥10−7 (ln (
𝐷

𝑟′
))     ( 5 ) 
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To calculate the mutual inductance elements, the total flux density of one circuit where it crosses the 

other circuit was required. In other words, to integrate the flux density of one circuit along the line 

integral represented by the other circuit. 

Breaking this problem down, superposition was used to sum the flux densities of each conductor of one 

circuit where they ‘cross’ the other circuit. The flux densities are vectors - they have both magnitude 

and direction, so the following needed consideration: 

- Their magnitude is a function of distance from their source conductor – equation (3). 

- The superposition of the two flux lines from conductors ‘a’ and ‘p’ across circuit b-p is a 

function of their intersecting angle. 

 

3.5.1 Asymmetric Arrangement 

Although there are 6 elements, they are represented by only 3 different arrangements: 

1. Flux linkage from the current in circuit a-p with circuit b-p (Figure 7). This will lead to 

both Lab and Lcb since they are geometrically identical arrangements. 

2. Flux linkage from the current in circuit b-p with circuit a-p (Figure 8). Geometrically 

identical to both Lba and Lbc. 

3. Flux linkage from the current in circuit a-p with circuit c-p (Figure 10). Geometrically 

identical to both Lac and Lca. 
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3.5.1.1 Flux linkage from the current in circuit a-p with circuit b-p. 

Circuit a-p consists of the current flowing in conductor ‘a’ and its earth-return equivalent ‘p’. 

 

Figure 7. Geometry of the tower conductor arrangement, showing the three phases at the top, and an earth-return (‘p’) at the 

bottom. The circular lines represent flux direction from conductor ‘a’ (blue) and ‘p’ (green). The angle at which they cross 

the normal (‘Bn’) to circuit b-p is designated ‘γ’. 

 

The summation of the flux densities from the two conductors ‘a’ and ‘p’ is at maximum when they are 

parallel (0° intersection). However, they are never parallel along line b-p. From inspection of Figure 7, 

their intersecting angle gradually decreases from perpendicular at the ‘b’ end, to almost parallel at the 

‘p’ end. We need to define this intersection angle as a function of distance along line b-p. 

The position of conductor ‘p’ simplifies things because it is a common point of both circuits. Therefore, 

the angle of ‘p’ conductor flux density is a constant 90° to the circuit b-p, representing the normal (Bn) 

to line b-p, and the reference direction. Hence, the angle of ‘a’ conductor flux intersecting ‘p’ conductor 

flux along circuit b-p is the same as the intersecting angle of ‘a’ conductor flux with ‘Bn’. 
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The standard equations apply directly to conductor ‘p’ (since its flux density is always normal to the 

line integral b-p and is the constant reference 0° for conductor ‘a’ flux intersection). 

The standard equation (4) includes both wires, so it must include a factor of ½ to apply to conductor ‘p’ 

alone. It also uses the equivalent radius (r’) to simplify internal plus external inductances, but it was 

converted back to standard radius (r) because it made the Ψ𝑝𝑏 equation more compatible with the Ψ𝑎𝑏 

equation (evident later), which is external flux linkage only: 

r’ = 0.7788r =  𝑟 ∙ 𝑒−
1

4 

Ψ𝑝𝑏  =
𝜇0𝐼𝑎
2𝜋

∙ ln (
𝐷

𝑟 ∙ 𝑒−
1
4 
) 

Ψ𝑝𝑏  =
𝜇0𝐼𝑎
2𝜋

∙ ln(
𝐷 ∙ 𝑒

1
4

𝑟 
) 

Ψ𝑝𝑏  =
𝜇0𝐼𝑎
2𝜋

∙ (ln 𝑒
1
4 + ln (

𝐷

𝑟 
)) 

Ψ𝑝𝑏  =
𝜇0𝐼𝑎
2𝜋

∙ (
1

4
+ ln (

𝐷

𝑟 
)) 

Therefore, that the external only flux linkage of the above is: 

Ψ𝑝𝑏_𝑒𝑥𝑡  =
𝜇0𝐼𝑎

2𝜋
∙ (ln (

𝐷

𝑟 
))    ( 6 ) 

 

So far, there’s the standard equations for flux density (3) and flux linkage from the ‘p’ conductor with 

circuit b-p (6). Next, to derive the flux density from conductor ‘a’ across line b-p, these equations need 

to be modified using Figure 7 and trigonometry. 

Firstly, the derivation the magnitude of the flux density from conductor ‘a’ as a function of distance 

along line b-p: 

Starting with the standard equation (3) applied to Figure 7: 

𝐵 = 
𝜇0𝐼𝑎

2𝜋𝑧
       ( 7 ) 

where z = distance from conductor ‘a’. 
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However, since integration was along line b-p and not line a-p, the variable ‘z’ was needed to be defined 

as a function of line integral variable ‘y’: 

𝑧2 = 𝑥2 + 𝑦2 

𝑧 =  √𝑥2 + 𝑦2      ( 8 ) 

 

In this case, ‘x’ is a constant, the distance between conductors ‘a’ and ‘b’. Substituting (8) back into the 

original equation (7): 

𝐵 = 
𝜇0𝐼𝑎

2𝜋√𝑥2 + 𝑦2
 

 

This is the magnitude. The angle must also be incorporated, which is the component of B that is normal 

to the line b-p: 

𝐵𝑛 = 
𝜇0𝐼𝑎∙𝑐𝑜𝑠(𝛾)

2𝜋√𝑥2+ 𝑦2
     ( 9 ) 

 

As discussed previously, the angle ‘γ’ is also a variable and a function of ‘y’, so needed to be defined 

as such: 

𝑐𝑜𝑠(𝛾) =
𝑦

𝑧
      ( 10 ) 

 

 

Substituting (8) into (10): 

𝑐𝑜𝑠(𝛾) =
𝑦

√𝑥2+ 𝑦2
     ( 11 ) 

 

Substituting (11) back into (9): 

𝐵𝑛 = 
𝜇0𝐼𝑎 ∙ 𝑦

2𝜋√𝑥2 + 𝑦2√𝑥2 + 𝑦2
 

𝐵𝑛 = 
𝜇0𝐼𝑎 ∙ 𝑦

2𝜋(𝑥2 + 𝑦2)
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Integrating this along line b-p to find flux linkage: 

Ψ𝑎𝑏  =
𝜇0𝐼𝑎
2𝜋

∫
𝑦

(𝑥2 + 𝑦2)
 𝑑𝑦

𝐷

𝑟

 

 

Using the standard integral: 

 

Ψ𝑎𝑏  =
𝜇0𝐼𝑎
4𝜋

[𝑙𝑛(𝑥2 + 𝐷2)  −  𝑙𝑛(𝑥2 + 𝑟2)] 

Ψ𝑎𝑏  =
𝜇0𝐼𝑎

4𝜋
∙ ln (

𝑥2+ 𝐷2

𝑥2+ 𝑟2)      ( 12 ) 

 

Note that the constants ‘x’ and ‘D’ represent specific distances as described below equations (4) and 

(8). These generic notations were kept for simplicity throughout the following workings. However, 

these notations are also used for the workings through the other arrangements where they represent 

different specific distances. Therefore, the generic notations ‘x’ and ‘D’ were only replaced with their 

specific distance notations in the final inductance equations. 

So far, the equations for flux linkages from conductors ‘p’ (6) and ‘a’ (12) with circuit b-p are obtained.  

These were used to find the mutual inductance from circuit a-p to circuit b-p, representing the 

inductance matrix element Lab. Using superposition, this element was constructed from the internal and 

external inductances for conductors ‘a’ and ‘p’: 

 

𝐿𝑎𝑏 = 𝐿𝑖𝑛𝑡 (𝑎) + 𝐿𝑖𝑛𝑡 (𝑝) + (
Ψ𝑎𝑏+   Ψ𝑝𝑏_𝑒𝑥𝑡

𝐼𝑎
)     ( 13 ) 

where 𝐿𝑖𝑛𝑡 (𝑎) = 𝐿𝑖𝑛𝑡 (𝑝) = 0.5 x 10-7 H/m  (constant) 

 

Substituting in (6) and (12) to (13): 

𝐿𝑎𝑏 =  0.5𝑥10−7 +  0.5𝑥10−7 + 
𝜇0

4𝜋
∙ ln (

𝑥2 + 𝐷2

𝑥2 + 𝑟2) + 
𝜇0

2𝜋
∙ (ln (

𝐷

𝑟 
)) 

where 
𝜇0

4𝜋
= 1𝑥10−7 
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𝐿𝑎𝑏 =  1𝑥10−7 +  1𝑥10−7ln (
𝑥2 + 𝐷2

𝑥2 + 𝑟2 ) +  2𝑥10−7 (ln (
𝐷

𝑟 
)) 

𝐿𝑎𝑏 =  1𝑥10−7 +  1𝑥10−7ln (
𝑥2 + 𝐷2

𝑥2 + 𝑟2) +  2𝑥10−7ln (
𝐷

𝑟 
) 

𝐿𝑎𝑏 =  1𝑥10−7 +  1𝑥10−7 (ln(
𝑥2 + 𝐷2

𝑥2 + 𝑟2) +  2 ln (
𝐷

𝑟
)) 

𝐿𝑎𝑏 =  1𝑥10−7 (1 +  ln (
𝑥2 + 𝐷2

𝑥2 + 𝑟2) + ln (
𝐷

𝑟
)
2

) 

𝐿𝑎𝑏 =  1𝑥10−7 (1 +  ln (
𝐷2(𝑥2 + 𝐷2)

𝑟2(𝑥2 + 𝑟2)
)) 

 

This is the equation for the mutual inductance element Lab and its mirror image Lcb of the 3x3 inductance 

matrix. As mentioned previously, the generic notations ‘x’ and ‘D’ must now be replaced with their 

specific distance notations because they are distinct for each section/arrangement. For the current 

arrangement: 

x = distance between conductors ‘a’ and ‘b’ = ‘Dab’ 

D = distance between conductors ‘b’ and ‘p’ (line integral distance) = ‘Dbp’ 

 

𝐿𝑎𝑏 =  1𝑥10−7 (1 +  ln (
𝐷𝑏𝑝

2(𝐷𝑎𝑏
2
+ 𝐷𝑏𝑝

2)

𝑟2(𝐷𝑎𝑏
2
+ 𝑟2)

))     ( 14 ) 
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3.5.1.2 Flux linkage from the current in circuit b-p with circuit a-p 

Circuit b-p consists of the current flowing in conductor ‘b’ and its earth-return equivalent ‘p’. We now 

need to integrate the sum of conductor ‘b’ and ‘p’ flux densities along line a-p. The equations will be 

derived using Figure 8. 

 

Figure 8. Geometry of the tower conductor arrangement, showing the three phases at the top, and an earth-return (‘p’) at the 

bottom. The circular lines represent flux direction from conductor ‘b’ (blue) and ‘p’ (green). The angle at which they cross 

the normal (‘Bn’) to circuit a-p is designated ‘γ’. 

 

The same principle applies as before, in that ‘p’ is a common point to both circuits, a constant 90° to 

the line integral a-p, and is subject to the standard equations (3) and (4). Therefore, the flux density 

from conductor ‘b’ relative to the normal of the line integral a-p is required: 

𝐵𝑛 = 
𝜇0𝐼𝑏∙𝑐𝑜𝑠(𝛾)

2𝜋𝑧
     ( 15 ) 
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Once again, variables ‘z’ and cos(γ) must be defined as functions of the line integral variable ‘s’. This 

time however, the trigonometry is a bit different. 

Unlike the right triangle (a-b-p) in Figure 7, there exists an obtuse triangle this time. ‘The Cosine Rule’ 

(16) can be applied: 

 

Figure 9. Obtuse triangle for application of the Cosine Rule. 

Where 𝑐 =  √𝑎2 + 𝑏2 − 2𝑎𝑏 ∙ 𝑐𝑜𝑠(𝜃)   ( 16 ) 

 

Applying this rule directly to Figure 8, ‘z’ can be defined as a function of ‘s’: 

𝑧 =  √𝑠2 + 𝑥2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽)    ( 17 ) 

where ‘x’ and cos(β) are constants. 

 

Similarly, it is used to define cos(γ) as a function of ‘s’: 

𝑥 =  √𝑠2 + 𝑧2 − 2𝑧𝑠 ∙ 𝑐𝑜𝑠(𝛾) 

𝑥2 = 𝑠2 + 𝑧2 − 2𝑧𝑠 ∙ 𝑐𝑜𝑠(𝛾) 

2𝑧𝑠 ∙ 𝑐𝑜𝑠(𝛾) =  𝑠2 + 𝑧2 − 𝑥2 

cos(𝛾) =  
𝑠2+𝑧2−𝑥2

2𝑧𝑠
    ( 18 ) 

 

Substituting (17) into (18): 

cos(𝛾) =  
𝑠2 + (√𝑠2 + 𝑥2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽))2 − 𝑥2

2𝑠(√𝑠2 + 𝑥2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽))
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cos(𝛾) =  
𝑠2 + (𝑠2 + 𝑥2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽)) − 𝑥2

2𝑠(√𝑠2 + 𝑥2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽))
 

cos(𝛾) =  
2𝑠2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽)

2𝑠(√𝑠2 + 𝑥2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽))
 

cos(𝛾) =  
𝑠−𝑥∙𝑐𝑜𝑠(𝛽)

√𝑠2−2𝑥𝑠∙𝑐𝑜𝑠(𝛽)+𝑥2
    ( 19 ) 

 

Substituting both (19) and (17) back into (15): 

𝐵𝑛 =  
𝜇0𝐼𝑏 ∙ (𝑠 − 𝑥 ∙ 𝑐𝑜𝑠(𝛽))

2𝜋√𝑠2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2√𝑠2 − 2𝑥𝑠 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2
 

𝐵𝑛 = 
𝜇0𝐼𝑏∙(𝑠−𝑥∙𝑐𝑜𝑠(𝛽))

2𝜋(𝑠2−2𝑥𝑠∙𝑐𝑜𝑠(𝛽)+𝑥2)
    ( 20 ) 

 

Now this can be integrated to find the flux linkage along line integral a-p. Since ‘x’ and cos(β) are 

constants, ‘cos(β)’ will be denoted as ‘a’ for clarity, so (20) condenses to: 

𝐵𝑛 = 
𝜇0𝐼𝑏∙(𝑠−𝑥𝑎)

2𝜋(𝑠2−2𝑥𝑎𝑠+𝑥2)
     ( 21 ) 

 

To find flux linkage, the integration of (21) will be: 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏

2𝜋
∫

(𝑠−𝑥𝑎)

(𝑠2−2𝑥𝑎𝑠+𝑥2)
 𝑑𝑠

𝐷

𝑟
    ( 22 ) 

where D = distance a-p; and 

r = conductor radius 

 

This can be integrated by ‘u’-substitution: 

Let ‘u’ = integrand denominator: 𝑢 = 𝑠2 − 2𝑥𝑎𝑠 + 𝑥2    ( 23 ) 

𝑑𝑢

𝑑𝑠
= 2𝑠 − 2𝑥𝑎 

𝑑𝑢 = (2𝑠 − 2𝑥𝑎)𝑑𝑠 

1

2
𝑑𝑢 = (𝑠 − 𝑥𝑎)𝑑𝑠    ( 24 ) 
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Substituting (23) and (24) back into (22): 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏
2𝜋

∫
(
1
2𝑑𝑢)

𝑢
 

𝐷

𝑟

 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏
4𝜋

∫
𝑑𝑢

𝑢
 

𝐷

𝑟

 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏
4𝜋

∫
1

𝑢
 𝑑𝑢 

𝐷

𝑟

 

 

Using the standard integral: 

 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏

4𝜋
[ln (𝑢)]

𝐷
𝑟

     ( 25 ) 

 

Substituting back (23) into (25): 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏
4𝜋

[ln (𝑠2 − 2𝑥𝑎𝑠 + 𝑥2)]
𝐷
𝑟

 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏
4𝜋

[ln(𝐷2 − 2𝑥𝑎𝐷 + 𝑥2) − 𝑙𝑛(𝑟2 − 2𝑥𝑎𝑟 + 𝑥2)] 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏
4𝜋

∙ ln (
𝐷2 − 2𝑥𝑎𝐷 + 𝑥2

𝑟2 − 2𝑥𝑎𝑟 + 𝑥2 ) 

 

Substituting back ‘a’ for cos(β): 

Ψ𝑏𝑎  =
𝜇0𝐼𝑏
4𝜋

∙ ln (
𝐷2 − 2𝑥𝐷 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2

𝑟2 − 2𝑥𝑟 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2 ) 

 

Next, the mutual inductance from circuit b-p to circuit a-p is required, representing the inductance 

matrix element Lba. Similar to (13), this includes the internal and external inductances of conductors ‘b’ 

and ‘p’: 
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𝐿𝑏𝑎 = 𝐿𝑖𝑛𝑡 (𝑏) + 𝐿𝑖𝑛𝑡 (𝑝) + (
𝛹𝑏𝑎 +   𝛹𝑝𝑎_𝑒𝑥𝑡

𝐼𝑏
) 

where 𝐿𝑖𝑛𝑡 (𝑏) = 𝐿𝑖𝑛𝑡 (𝑝) = 0.5 x 10-7 

 

𝐿𝑏𝑎 =  0.5𝑥10−7 +  0.5𝑥10−7 + 
𝜇0

4𝜋
∙ ln (

𝐷2 − 2𝑥𝐷 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2

𝑟2 − 2𝑥𝑟 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2 ) + 
𝜇0

2𝜋
∙ (ln (

𝐷

𝑟 
)) 

𝐿𝑏𝑎 =  1𝑥10−7 +  1𝑥10−7ln (
𝐷2 − 2𝑥𝐷 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2

𝑟2 − 2𝑥𝑟 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2 ) +  2𝑥10−7 (ln (
𝐷

𝑟 
)) 

𝐿𝑏𝑎 =  1𝑥10−7 +  1𝑥10−7ln (
𝐷2 − 2𝑥𝐷 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2

𝑟2 − 2𝑥𝑟 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2 ) +  2𝑥10−7ln (
𝐷

𝑟 
) 

𝐿𝑏𝑎 =  1𝑥10−7 +  1𝑥10−7 (ln(
𝐷2 − 2𝑥𝐷 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2

𝑟2 − 2𝑥𝑟 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2 ) +  2 ln (
𝐷

𝑟
)) 

𝐿𝑏𝑎 =  1𝑥10−7 (1 +  ln (
𝐷2 − 2𝑥𝐷 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2

𝑟2 − 2𝑥𝑟 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2 ) + ln (
𝐷

𝑟
)
2

) 

𝐿𝑏𝑎 =  1𝑥10−7 (1 +  ln (
𝐷2(𝐷2−2𝑥𝐷∙𝑐𝑜𝑠(𝛽)+𝑥2)

𝑟2(𝑟2−2𝑥𝑟∙𝑐𝑜𝑠(𝛽)+𝑥2)
))  ( 26 ) 

 

This is the equation for the mutual inductance element Lba and its mirror image Lbc. 

Replacing the generic notations ‘x’ and ‘D’ with their specific distance: 

x = distance between conductors ‘a’ and ‘b’ = ‘Dab’ 

D = distance between conductors ‘a’ and ‘p’ (line integral distance) = ‘Dap’ 

 

𝐿𝑏𝑎 =  1𝑥10−7 (1 +  ln (
𝐷𝑎𝑝

2(𝐷𝑎𝑝
2−2𝐷𝑎𝑏𝐷𝑎𝑝∙𝑐𝑜𝑠(𝛽)+𝐷𝑎𝑏

2)

𝑟2(𝑟2−2𝐷𝑎𝑏𝑟∙𝑐𝑜𝑠(𝛽)+𝐷𝑎𝑏
2)

))   ( 27 ) 
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3.5.1.3 Flux linkage from the current in circuit a-p with circuit c-p 

The next requirement is to integrate conductor ‘a’ and ‘p’ flux densities along line c-p, represented in 

Figure 10. 

 

Figure 10. Geometry of the tower conductor arrangement, showing the three phases at the top, and an earth-return (‘p’) at 

the bottom. The circular lines represent flux direction from conductor ‘a’ (blue) and ‘p’ (green). The angle at which they cross 

the normal (‘Bn’) to circuit c-p is designated ‘γ’. 

 

It is evident that the same trigonometric process can be applied as for Figure 8. This leads to the exact 

same equation structure as Lba (26) for Lac (and Lca): 

𝐿𝑎𝑐 =  1𝑥10−7 (1 +  ln (
𝐷2(𝐷2−2𝑥𝐷∙𝑐𝑜𝑠(𝛽)+𝑥2)

𝑟2(𝑟2−2𝑥𝑟∙𝑐𝑜𝑠(𝛽)+𝑥2)
))    ( 28 ) 

However, again the generic notations ‘x’ and ‘D’ represent different distances in (28) than in (26): 

x = distance between conductors ‘a’ and ‘c’ = ‘Dac’ 

D = distance between conductors ‘c’ and ‘p’ (line integral distance) = ‘Dcp’ 
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𝐿𝑐𝑎 =  1𝑥10−7 (1 +  ln (
𝐷𝑐𝑝

2(𝐷𝑐𝑝
2−2𝐷𝑎𝑐𝐷𝑐𝑝∙𝑐𝑜𝑠(𝛽)+𝐷𝑎𝑐

2)

𝑟2(𝑟2−2𝐷𝑎𝑐𝑟∙𝑐𝑜𝑠(𝛽)+𝐷𝑎𝑐
2)

))   ( 29 ) 

 

3.5.2 Symmetric Arrangement 

The self-inductance equation for the symmetric system is the same one presented in the asymmetric 

system (5): 

𝐿𝑠𝑒𝑙𝑓 =  4𝑥10−7 (ln (
𝐷

𝑟′
)) 

where r’ = equivalent radius = 0.7788r 

(to simplify internal plus external inductance components) 

 

To find the mutual flux linkages, consider the following derivation example to find the flux linkage 

from the current in circuit a-p with circuit b-p: 

 

Figure 11. Geometry of the tower conductor arrangement, showing the three phases around the outside, and a central earth-

return (‘p’). The circular lines represent flux direction from conductor ‘a’ (blue) and ‘p’ (green). The angle at which they 

cross the normal (‘Bn’) to circuit b-p is designated ‘γ’. 
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Circuit a-p consists of the current flowing in conductor ‘a’ and its earth-return equivalent ‘p’. The flux 

density of conductor ‘a’ relative to the normal of the line integral b-p is needed. Starting with the 

standard equation (7): 

𝐵 = 
𝜇0𝐼𝑎
2𝜋𝑧

 

where z = distance from conductor ‘a’. 

 

Taking the angle into account, Bn is required (not B), which is the component of Ia that is normal to b-

p: 

𝐵𝑛 = 
𝜇0𝐼𝑎 ∙ 𝑐𝑜𝑠(𝛾)

2𝜋𝑧
 

 

Repeating the exact same derivation represented from equations (15) through to (26), except replacing 

variable labels ‘Ib’ for ‘Ia’ and ‘s’ for ‘y’, it ends up with the same equation as (26): 

 

𝐿𝑚𝑢𝑡𝑢𝑎𝑙 =  1𝑥10−7 (1 +  ln (
𝐷2(𝐷2 − 2𝑥𝐷 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2)

𝑟2(𝑟2 − 2𝑥𝑟 ∙ 𝑐𝑜𝑠(𝛽) + 𝑥2)
)) 

 

However, again, the distances that ‘D and ‘x’ represent are different than previous. In the symmetric 

system, subscripts aren’t needed to denote specific distances because all phase distances to each other 

and to their earth-returns are equal, so keeping the generic notations: 

x = distance between phase conductors; and 

D = distance between phase and earth-return conductors. 

This mutual inductance equation of the ideal symmetric system represents all mutual inductance 

elements. 

Next, the distances ‘D’ and ‘x’ were defined for the symmetric system. To make it as similar as possible 

to the asymmetric system, the geometric mean distances from the asymmetric system were used: 

Asymmetric GMD = √(𝐷𝑎𝑏𝐷𝑎𝑐𝐷𝑏𝑐)
3
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This GMD was used as distance ‘x’ between symmetric system phase conductors. Using simple 

trigonometry, the distance ‘D’ between any phase conductor and the central earth-return conductor is: 

𝐷 = 
𝑥

2⁄

cos (30°)
 

 

3.6 Capacitance Matrix of the Transmission Line 

The 3x3 capacitance matrix was required next. Just like the inductance matrix, the main diagonal and 

off-diagonal elements represent the self and mutual capacitances, respectively. 

The self-capacitances can be calculated directly with standard equations for a two-wire circuit: 

The potential difference (voltage) is the work (W) done on a charge (q) to move it in an electric field 

from one point of potential to a different point of potential. It is dependent on the electric field intensity 

(E), which is the force (N) per unit charge (Coulomb). 

The potential difference (voltage) between two points is defined as the work done (W) on a charge (q) 

of 1 Coulomb to move it from one point to the other. 

It is dependent on the electric field intensity:  E = 
𝑞

2𝜋𝑥𝜀
 V/m 

To find the voltage between the two points, E must be integrated along the line between the two points: 

𝑉12 = ∫ 𝐸
𝐷2

𝐷1
 𝑑𝑥 where D = radial distance between point and conductor centre. 

𝑉12 = ∫
𝑞

2𝜋𝑥𝜀

𝐷2

𝐷1

 𝑑𝑥 

𝑉12 =
𝑞

2𝜋𝜀
∫

1

𝑥

𝐷2

𝐷1

 𝑑𝑥 

𝑉12 = 
𝑞

2𝜋𝜀
[ln (

𝐷2

𝐷1
)] 

Applying the above to a two-wire circuit and using superposition to add the two components: 

(i) Pushing the charge on conductor 1 (q1) from conductor 1 to conductor 2: 

Potential difference due to charge on conductor 1 only = 
𝑞1

2𝜋𝜀
[ln (

𝐷

𝑟1
)] 

(ii) Pushing the charge on conductor 2 (q2) also from conductor 1 to conductor 2: 
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Potential difference due to charge on conductor 2 (q2) only = 
𝑞2

2𝜋𝜀
[ln (

𝑟2

𝐷
)] 

where  D = distance between conductors; and 

r = radius of conductor 

ε = permittivity of free space = 8.854 x 10-12 F/m 

 

Superposition of the above two potential difference components gives the voltage with respect to ground 

of the 2-wire system: 

𝑉12 = 
𝑞1

2𝜋𝜀
ln (

𝐷

𝑟1
) + 

𝑞2

2𝜋𝜀
ln (

𝑟2
𝐷

) 

𝑉12 = 
1

2𝜋𝜀
[𝑞1 ln (

𝐷

𝑟1
) + 𝑞2 ln (

𝑟2
𝐷

)] 

 

Since the 2-wire earth-return model has (i) identical phase and earth-return conductors, and the current 

around the loop is constant (ii), then: 

(i) r1 = r2 = ‘r’ 

(ii) q2 = -q1 

 

Applying (i) and (ii) above, the standard voltage per unit length equation becomes: 

𝑉12 = 
1

2𝜋𝜀
[𝑞1 ln (

𝐷

𝑟
) − 𝑞1 ln (

𝑟

𝐷
)] 

𝑉12 = 
1

2𝜋𝜀
[𝑞1 ln (

𝐷

𝑟
) + 𝑞1 ln (

𝐷

𝑟
)] 

𝑉12 = 
1

2𝜋𝜀
∙ 2 [𝑞1 ln (

𝐷

𝑟
)] 

𝑉12 = 
𝑞1

𝜋𝜀
[ln (

𝐷

𝑟
)]    ( 30 ) 

 

Capacitance per unit length: 

𝐶12 = 
𝑞1

𝑉12
 =  

𝜋𝜀

ln(
𝐷

𝑟
)
    ( 31 ) 
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For the mutual capacitance elements, the first step was to calculate the voltage on one circuit caused by 

charges on another circuit. Next was to convert voltage matrices to capacitance matrices. 

The simple relationship C =  
𝑞

𝑉
  needs to be applied with care when dealing with matrices, because 

division can’t be applied directly. 

Starting with q = CV: 

[

𝐶𝑎𝑝 𝐶𝑎𝑏 𝐶𝑎𝑐

𝐶𝑏𝑎 𝐶𝑏𝑝 𝐶𝑏𝑐

𝐶𝑐𝑎 𝐶𝑐𝑏 𝐶𝑐𝑝

] ∙ [

𝑉𝑎𝑝

𝑉𝑏𝑝

𝑉𝑐𝑝

] =  [

𝑞𝑎

𝑞𝑏

𝑞𝑐

] 

 

The divide operator can’t be applied to rearrange matrices, so an inverse matrix is used to rearrange the 

equation. In other words, instead of having V =  
𝑞

𝐶
 , it must be V = Pq, where P = C-1: 

 

[

𝑃𝑎𝑝 𝑃𝑎𝑏 𝑃𝑎𝑐

𝑃𝑏𝑎 𝑃𝑏𝑝 𝑃𝑏𝑐

𝑃𝑐𝑎 𝑃𝑐𝑏 𝑃𝑐𝑝

] ∙ [

𝑞𝑎

𝑞𝑏

𝑞𝑐

] = [

𝑉𝑎𝑝

𝑉𝑏𝑝

𝑉𝑐𝑝

] 

 

To find Pap above, make qa = 1 Coulomb while the other charges are zero. This gives the equation:

      𝑃𝑎𝑝𝑞𝑎 = 𝑉𝑎𝑝 

Substituting in the value for qa:  𝑃𝑎𝑝 = 𝑉𝑎𝑝 

To find Pab, make qb = 1 C and the other charges zero, yielding the equation:  𝑃𝑎𝑏 = 𝑉𝑏𝑝 etc. 

To finally convert the P matrix to the C matrix, it is simply inverted. Note that this is not the same as 

inverting the elements individually. 
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3.6.1 Asymmetric Arrangement 

3.6.1.1 Potential difference on circuit b-p caused by charges from circuit a-p. 

To evaluate the potential difference across circuit b-p caused by charges on circuit a-p only, the charge 

on the phase ‘a’ conductor was made equal to 1 Coulomb, while all other phases have zero charge: 

 

Figure 12. Geometry of the tower conductor arrangement, showing the three phases at the top, and an earth-return (‘p’) at 

the bottom. The curved lines represent equipotentials in the electric fields created by charges on conductor ‘a’ (blue) and ‘p’ 

(green). The resulting potential differences across circuit b-p (red line) are derived. 

 

Integrating the electric field differences along line b-p: 

𝑉𝑏𝑎 = 
𝑞𝑎

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝐷𝑎𝑏
) + 

𝑞𝑝

2𝜋𝜀
ln (

𝑟

𝐷𝑏𝑝
) 

Substitute in charge values (Figure 12): 

𝑉𝑏𝑎 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝐷𝑎𝑏
) + 

−1

2𝜋𝜀
ln (

𝑟

𝐷𝑏𝑝
) 

𝑉𝑏𝑎 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝐷𝑎𝑏
) + 

1

2𝜋𝜀
ln (

𝐷𝑏𝑝

𝑟
) 

𝑉𝑏𝑎 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝𝐷𝑏𝑝

𝐷𝑎𝑏𝑟
)     ( 32 ) 
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3.6.1.2 Potential difference on circuit a-p caused by charges from circuit b-p. 

The previous arrangement was flipped, making the charge on the phase ‘b’ conductor equal to 1 

Coulomb while all other phases have zero charge: 

 

Figure 13. Geometry of the tower conductor arrangement, showing the three phases at the top, and an earth-return (‘p’) at 

the bottom. The curved lines represent equipotentials in the electric fields created by charges on conductor ‘b’ (blue) and ‘p’ 

(green). The resulting potential differences across circuit a-p (red line) are derived. 

Integrating the electric field differences along line a-p: 

𝑉𝑎𝑏 = 
𝑞𝑏

2𝜋𝜀
ln (

𝐷𝑏𝑝

𝐷𝑎𝑏
) + 

𝑞𝑝

2𝜋𝜀
ln (

𝑟

𝐷𝑎𝑝
) 

Substitute in charge values (Figure 13): 

𝑉𝑎𝑏 = 
1

2𝜋𝜀
ln (

𝐷𝑏𝑝

𝐷𝑎𝑏
) + 

−1

2𝜋𝜀
ln (

𝑟

𝐷𝑎𝑝
) 

𝑉𝑎𝑏 = 
1

2𝜋𝜀
ln (

𝐷𝑏𝑝

𝐷𝑎𝑏
) + 

1

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝑟
) 

𝑉𝑎𝑏 = 
1

2𝜋𝜀
ln (

𝐷𝑏𝑝𝐷𝑎𝑝

𝐷𝑎𝑏𝑟
)     ( 33 ) 

 

Note that Vab (33) and Vba (32) are identical. Due to the symmetric geometry of phases ‘a’ and ‘c’ about 

phase ‘b’, the above equation also applies for Vcb and Vbc. 
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3.6.1.3 Potential difference on circuit a-p caused by charges from circuit c-p. 

Finally, making the charge on the phase ‘c’ conductor equal to 1 Coulomb while all other phases have 

zero charge: 

 

Figure 14. Geometry of the tower conductor arrangement, showing the three phases at the top, and an earth-return (‘p’) at 

the bottom. The curved lines represent equipotentials in the electric fields created by charges on conductor ‘c’ (blue) and ‘p’ 

(green). The resulting potential differences across circuit a-p (red line) are derived. 

 

Integrating the electric field differences along line a-p: 

𝑉𝑎𝑐 = 
𝑞𝑐

2𝜋𝜀
ln (

𝐷𝑐𝑝

𝐷𝑎𝑐
) + 

𝑞𝑝

2𝜋𝜀
ln (

𝑟

𝐷𝑎𝑝
) 

Substitute in charge values (Figure 13): 

𝑉𝑎𝑐 = 
1

2𝜋𝜀
ln (

𝐷𝑐𝑝

𝐷𝑎𝑐
) + 

−1

2𝜋𝜀
ln (

𝑟

𝐷𝑎𝑝
) 

𝑉𝑎𝑐 = 
1

2𝜋𝜀
ln (

𝐷𝑐𝑝

𝐷𝑎𝑐
) + 

1

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝑟
) 

𝑉𝑎𝑐 = 
1

2𝜋𝜀
ln (

𝐷𝑐𝑝𝐷𝑎𝑝

𝐷𝑎𝑐𝑟
) 

Note that Dcp = Dap, so: 
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𝑉𝑎𝑐 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝
2

𝐷𝑎𝑐𝑟
)     ( 34 ) 

 

3.6.2 Symmetric Arrangement 

In the balanced symmetric arrangement, all mutual capacitances will be equal. It doesn’t matter which 

mutual inductance is derived, and the following was randomly chosen. 

3.6.2.1 Potential difference on circuit b-p caused by charges from circuit a-p. 

Making the charge on the phase ‘a’ conductor equal to 1 Coulomb while all other phases have zero 

charge: 

 

Figure 15. Geometry of the tower conductor arrangement, showing the three phases around the outside, and a central earth-

return (‘p’). The curved lines represent equipotentials in the electric fields created by charges on conductor ‘a’ (blue) and ‘p’ 

(green). The resulting potential differences across circuit b-p (red line) are derived. 

 

Integrating the electric field differences along line b-p: 

𝑉𝑏𝑎 = 
𝑞𝑎

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝐷𝑎𝑏
) + 

𝑞𝑝

2𝜋𝜀
ln (

𝑟

𝐷𝑏𝑝
) 

Substitute in charge values (Figure 15): 

𝑉𝑏𝑎 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝐷𝑎𝑏
) + 

−1

2𝜋𝜀
ln (

𝑟

𝐷𝑏𝑝
) 
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𝑉𝑏𝑎 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝

𝐷𝑎𝑏
) + 

1

2𝜋𝜀
ln (

𝐷𝑏𝑝

𝑟
) 

𝑉𝑏𝑎 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝𝐷𝑏𝑝

𝐷𝑎𝑏𝑟
) 

Note that Dap = Dbp, so: 

𝑉𝑏𝑎 = 
1

2𝜋𝜀
ln (

𝐷𝑎𝑝
2

𝐷𝑎𝑏𝑟
)     ( 35 ) 
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CHAPTER 4  

RESULTS AND DISCUSSION 

Both analytical and simulation explorations were to be conducted side by side to correlate and verify 

each other. Firstly, the ‘proof of concept’ verifications of simple simulation circuits with classical theory 

needed establishing. Then the derived models could be simulated to explore the effects of asymmetry 

on travelling wave velocity. 

Any evidence that emerged of different travelling wave propagation speeds between models needed 

careful analysis in relation to measurement and inherent model error, as well as comparability between 

models that are fundamentally different in ways outside of symmetry. 

 

4.1 Initial Single Phase Test Circuit 

The following was the initial single-phase testing of the simulation with basic mathematical correlation 

checks. This was DC for ease of initial testing clarity, and didn’t yet include a fault in the centre of the 

line. It was just sending a pulse down the line and back to observe propagation. 

Figure 16 (over page) represents the voltage of the line measured over time. Using V4 as an example 

(top trace, representing the measurement taken one section down from the line start seen on Figure 4, 

page 20), it can be seen that the initial step of 100 V hit the sensor at time = 1.03x10-3 seconds 

(highlighted measurement #1 on right). It doubled at time = 7.196x10-3 seconds (measurement #2), due 

to the reflection coming back from the end of the entire line and adding to the incident step. The 

reflection was equal in magnitude because the open circuit termination represents a reflection 

coefficient of 1. 
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Figure 16. Initial testing of the Simulink model shown in Figure 4, with voltage measurements over time taken at different 

sections of the line (V1-V4). 

 

Checking the time measurements above with the theoretical propagation velocity (vp): 

vp =
1

√𝐿𝐶
  where  L = inductance per unit length (H/m); and 

C = capacitance per unit length (F/m) 

*NOTE: this is for high frequency approximation. It comes from assumed lossless propagation constant 

applicable at high frequencies (de Magalhães Júnior & Lopes 2021): 

γ = α + jβ = √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

where α = attenuation coefficient, associated with R and G, lossless/disregarded at high 

frequencies, simplifying the equation to: 

γ = β = √(𝜔𝐿)(𝜔𝐶) 

γ = β = 𝜔√𝐿𝐶 

and  vp = 
𝜔

β
  (1) 

therefore,  vp =
1

√𝐿𝐶
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The values for inductance (L) and capacitance (C) per unit length (km) were left as default (below): 

 

Figure 17. The block input fields for the distributed parameter line sections. Values left as default for initial testing. Note the 

L and C parameters are per km. 

 

Therefore: 

vp =
1

√2.137𝑥10−3−3 𝑥 12.37𝑥10−9
 

vp = 194 497 km/s 

 

Time taken (t)  =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

v𝑝
 

The distance that the signal must travel from the sending end to reach the sensor was 200 km, so the 

time taken: 

t =
200

194497
 

t = 0.00103 s → matches measurement #1 (Figure 16) 

 

The distance that the reflected signal must travel up and back again from the sending end to reach the 

sensor is 1400 km, so the time taken: 

T =
1400

194497
 

T = 0.00720 s → matches measurement #2 (Figure 16) 
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This initial test correlated the simulation results with theory. Next was to calculate and apply appropriate 

L and C values and resultant propagation velocity. 

 

4.2 Classical Single Phase 

Starting simple, the propagation velocity in a single-phase system was investigated using classical 

equations. The ‘speed of light’ (c) is the upper limit of propagation velocity:  

c = 2.998 x 108 m/s. 

Propagation velocity standard equation: 

𝑣𝑝 =
1

√𝐿𝐶
 m/s 

The propagation velocity is therefore inversely proportional to the product of inductance and 

capacitance. 

Inductance standard equation for 2-wire line (5): 

𝐿 =  4𝑥10−7 (ln (
𝐷

𝑟′
))  H/m 

Where r’ = conductor equivalent radius = 0.7788r 

Capacitance standard equation for 2-wire line (31): 

C =  
𝜋𝜀

ln(
𝐷

𝑟
)
  F/m 

 

4.2.1 Choice of value for conductor distance D 

To make the single-phase testing as similar as the asymmetric 3-phase model following later, the 

conductor distance D was chosen as the average earth-return conductor distance D of the latter model, 

which is based on the 25 kV tower geometry example in the Simulink in-built ‘Line Parameter 

Calculator’ application. 

D = 10.4189 m, which gives: 

L = 2.880 x 10-06 H/m 

C = 4.003 x 10-12  F/m 

vp = 2.945 x 108  m/s. 
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A similar velocity result was obtained on the simulator (Figure 18 below) with the above L and C 

parameters: 

*Note, testing changed to AC in lieu of the 3-phase model to follow. The concept remains the same, 

with the voltage steps occurring on top of the native 50 Hz signal. 

 

Figure 18. Simulated single-phase transmission line with fault, over a zoomed-in section of the 50 Hz sine wave. The L and C 

values previous were entered into the distributed parameters line sections. The trace measurement lines (vertical full and 

dashed) show travelling wave peaks for conductor distance D used in the asymmetric system. The time interval between peaks 

(∆T displayed on right) averaged 2.715 ms, which equates to 2.947 x 108 m/s. 

 

The propagation velocity with respect to light speed in the above single-phase example is 0.98c. This 

seemed reasonable, so testing progressed to the 3-phase model. 

 

4.3 Three-Phase System 

The 3x3 inductance and capacitance matrices were constructed using the derived formulas from the 

Methodology section (equations 5, 14, 26, 27, 29, 31, 32, 33, 34, 35). These were entered into the input 

fields of the distributed parameter line section blocks of the 3-phase Simulink model (Figure 5, page 

21). 

 

4.3.1 Initial 3-Phase Results 

The following is a simulator comparison of travelling wave propagation velocity in the derived 

symmetric and asymmetric models. Table 1 represents travelling wave peak intervals (which are 

inversely proportional to velocity) for different fault types tested on both symmetric and asymmetric 

models. These initial results suggested that the symmetric system had a faster propagation velocity than 

the asymmetric (shorter peak intervals), on average by 1.1%. A single percentage is a small proportion, 

but it must be kept in context with the near light speeds and resulting distances involved. For example, 

the 1.1% difference in velocities results in a fault-locating difference of nearly 9 km. 
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Table 1. Average phase peak intervals for the first four groups of waves, measured for different fault types on both symmetric 

and asymmetric models. The latter is not the zeroth-order (averaged) model introduced in Section 3.2. 

 Fault type 
Interval between peaks (ms) 

 Symmetric Asymmetric 

Ground Faults 

L-G 2.639 2.669 

L-L-G 2.649 2.675 

L-L-L-G 2.637 2.667 

Non-Ground 
Faults 

L-L 2.649 2.678 

L-L-L 2.636 2.667 

Single Open 2.639 2.668 

Double Open 2.638 2.668 

Triple Open 2.638 2.668 

 

There was some variation within each model (except for the open circuit faults) that may have initially 

suggested different propagation velocities per fault type, however, there was peak ambiguity involved. 

For example, first consider the measurement of well-defined peaks that emerged for the open circuit 

faults: 

Symmetric:

 

Figure 19. Travelling waveforms for the single-phase open circuit fault on the symmetric model. Time interval between first 

and second wave groups (∆T) displayed on right (2.643 ms). 

Asymmetric: 

 

Figure 20. Travelling waveforms for the single-phase open circuit fault on the asymmetric model. Time interval between waves 

(∆T) displayed on right (2.673 ms). 

 

The distinct peaks gave measurement confidence. In contrast, the following shows some typical peak 

ambiguity issues that were common in non-open circuit fault peak measurements, and cast doubt on the 

initial variation displayed in Table 1: 
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Figure 21. Travelling waveforms for the L-G fault on the asymmetric model highlighting the peak ambiguity problem (red 

arrows). The symmetric model displayed very similar. The first arrow shows a relatively very minor peak just before the main. 

The second arrow shows rounded non-distinct first peak compared to the second. The 3rd and 4th arrows show again very 

minor initial peaks compared to the second. 

 

Therefore, there was still confidence that the symmetric system produced a faster travelling wave than 

the asymmetric, especially due to the open fault peak clarity, however there was no confidence in the 

initial suggestion of a different travelling wave velocity for different fault types. 

In an attempt to address the peak ambiguity problem and investigate if any variation was more than just 

measurement error, the lines were made lossless and the Clarke transformation was applied (this is the 

αβ0 function block in Figure 5, page 21). 

 

4.3.2 Lossless Lines 

The following is a typical example of attempting to address the previously ambiguous peaks. Again 

comparing the symmetric and asymmetric, but now also including the Clarke transformation. 

 

Figure 22. Travelling waveforms for the L-G fault on the asymmetric lossless model. The top trace is the 3 phases a, b and c, 

and the bottom trace is the 3 modes α, β and 0. Compared to the previous Figure 21, the lossless lines didn’t improve the 

phase trace peak issues. The modes on the bottom also retained those issues, except for the first peak. 
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Comparing the lossless and transformed version above (Figure 22) to the previous Figure 21, the 

lossless lines didn’t improve the phase (top trace) peak issues. The modes (bottom trace) also retained 

those issues, except for the first peak. These issues remained in both asymmetric and symmetric models. 

The Clarke transformation trace didn’t help. Therefore, the peak ambiguity problem persisted, and any 

of the initial variation between fault type velocities displayed in Table 1 remains likely measurement 

error. 

Next was the analytical approach. This employed the ‘zeroth order’ averaging method described on 

page 19 to decouple asymmetric system. 

 

4.4 Analytical Investigation 

This was still an attempt to verify simulation results and address the ambiguous peak measurement issue 

from the simulations. This again used the 3x3 L and C matrices constructed from the derived 3-phase 

models. The process below is described in the Methodology section on pages 18 and 19. 

 

4.4.1 Asymmetric System 

Starting with the derived L and C matrices: 

 

[L] = [

𝐿𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐

]    [C] = [

𝐶𝑎 𝐶𝑎𝑏 𝐶𝑎𝑐

𝐶𝑏𝑎 𝐶𝑏 𝐶𝑏𝑐

𝐶𝑐𝑎 𝐶𝑐𝑏 𝐶𝑐

] 

 

Using the derived formulas (Methodology section) to fill in the above elements: 

 

L = [
0.2880 0.1916 0.1779
0.1916 0.2878 0.1916
0.1779 0.1916 0.2880

] x10-5 H/m C = [
0.7717 −0.3489 −0.2381

−0.3489 0.8567 −0.3489
−0.2381 −0.3489 0.7717

] x 10-11 F/m 

 

The impedance and admittance matrices were obtained as follows: 

[Z] = jωL   [Y] = jωC 

 



53 

 

[Z] = [
0.0000 +  0.9049𝑖 0.0000 +  0.6019𝑖 0.0000 +  0.5588𝑖
0.0000 +  0.6019𝑖 0.0000 +  0.9040𝑖 0.0000 +  0.6019𝑖
0.0000 +  0.5588𝑖 0.0000 +  0.6019𝑖 0.0000 +  0.9049𝑖

] x10-3 Ohms/m 

 

[Y] =  [
0.0000 +  0.2424𝑖 0.0000 −  0.1096𝑖 0.0000 −  0.0748𝑖
0.0000 −  0.1096𝑖 0.0000 +  0.2691𝑖 0.0000 −  0.1096𝑖
0.0000 −  0.0748𝑖 0.0000 −  0.1096𝑖 0.0000 +  0.2424𝑖

] x10-8 Mhos/m 

 

[Z][Y] = [
−0.1116 −0.0016 −0.0018
−0.0018 −0.1114 −0.0018
−0.0018 −0.0016 −0.1116

] x10-11   of the form = [

𝑥 𝑦 𝑧
𝑤 𝑢 𝑤
𝑧 𝑦 𝑥

] 

(Note: the [Z][Y] matrix was a Matlab output, where z and 

w appear equal by rounding only. The more precise 

numbers are -1.8312x10-14 and -1.8336 x10-14, respectively) 

Clarke transform to decouple the system: 

Clarke transformation matrix [T] = √
2

3

[
 
 
 
 1 −

1

2
−

1

2

0
√3

2
−

√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 

 

 

Decoupling Transformation: 

 

[T][Z][Y][T]-1 = [
−0.1098 −0.0000 0.0000
−0.0000 −0.1098 −0.0000
−0.0002 0.0003 −0.1150

] x10-11 

 

The system was still coupled with non-zero off-diagonal elements. Therefore, to properly decouple the 

system, the zeroth-order averaging method was used: 

This method changes the unbalanced form [ZY] = [

𝑥 𝑦 𝑧
𝑤 𝑢 𝑤
𝑧 𝑦 𝑥

] 

to the balanced form [ZY]bal  = [
ℎ 𝑚 𝑚
𝑚 ℎ 𝑚
𝑚 𝑚 ℎ

] 
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Where the main diagonal elements ℎ =  
𝑥+𝑢+𝑥

3
 ; and the off-diagonal elements 𝑚 = 

𝑤+𝑦+𝑧

3
 

Now, 

[ZY]bal = [
−0.1115 −0.0017 −0.0017
−0.0017 −0.1115 −0.0017
−0.0017 −0.0017 −0.1115

] x10-11 

 

Naturally, this represented an accuracy compromise, but is necessary to properly decouple the system 

with the Clarke transform: 

 

[T][ZY]bal[T]-1 = [
−0.1098 0 0

0 −0.1098 0
0 0 −0.1150

] x10-11 

 

Note that all the off-diagonal elements are zero. The matrix is now of the form = [

𝜆𝛼 0 0
0 𝜆𝛽 0

0 0 𝜆0

], 

 

Where the main diagonal represents the squared propagation constants of each mode, i.e.: 

λα = γ𝛼
2  = (α + jβ)2 for mode α, etc. 

It is a lossless line, so  α = 0; and 

γ = jβ = √𝜆 

To find propagation velocity, use Equation 1:    𝑣𝑝 = 
𝜔

𝛽
 

The propagation velocity in the asymmetric 50 Hz system: 

𝑣𝑝_𝛼 = 
2 𝑥 𝜋 𝑥 50

√𝜆
 

𝑣𝑝_𝛼 = 299 806 142 𝑚/𝑠 

𝑣𝑝_𝛼 =  299 806 km/s 
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This was the value yielded by the ‘zeroth order’ averaging method. Here is seen a flaw in the derived 

model – the propagation velocity is fractionally greater than the speed of light (c = 2.9979 x108 m/s). 

This will be discussed later. 

Note that the averaged asymmetrical decoupled system could not be tested on the simulator, because 

the L and C matrices necessary are not extractable from the balanced ZY matrix. 

Comparing the calculated propagation velocity with the time intervals measured previously on the 

simulator: 

Time interval calculation: vp = d/t  where d = 800 km 

t = d/vp 

t = 800 000 / 299 806 142 

t = 2.668 ms 

This matched the initial findings from Table 1 (particularly the open circuit fault which displayed the 

distinct peaks and therefore confident measurement) to at least 3 decimal places. This similarity between 

balanced calculated and non-balanced simulated speed suggested that there was a very low accuracy 

compromise when using the averaging method to allow decoupling of the modes to calculate 

propagation velocity. 

With this verification, the next step was to compare the calculated averaged asymmetric model velocity 

with that of the symmetric model. Therefore, the above process was repeated for the symmetric system 

(below), and results compared. 

 

4.4.2 Symmetric System 

The derived L and C matrices for the symmetric system are: 

 

L = [
0.1899 0.0913 0.0913
0.0913 0.1899 0.0913
0.0913 0.0913 0.1899

] x10-5 H/m C = [
0.8446 −0.2576 −0.2576

−0.2576 0.8446 −0.2576
−0.2576 −0.2576 0.8446

] x 10-11 F/m 

(Note, they are already balanced) 

Impedance and admittance matrices: 

[Z] = jωL   [Y] = jωC 
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[Z] = [
0.0000 +  0.5966𝑖 0.0000 +  0.2869𝑖 0.0000 +  0.2869𝑖
0.0000 +  0.2869𝑖 0.0000 +  0.5966𝑖 0.0000 +  0.2869𝑖
0.0000 +  0.2869𝑖 0.0000 +  0.2869𝑖 0.0000 +  0.5966𝑖

] x10-3 Ohms/m 

 

[Y] =  [
0.0000 +  0.2653𝑖 0.0000 −  0.0809𝑖 0.0000 −  0.0809𝑖
0.0000 −  0.0809𝑖 0.0000 +  0.2653𝑖 0.0000 −  0.0809𝑖
0.0000 −  0.0809𝑖 0.0000 −  0.0809𝑖 0.0000 +  0.2653𝑖

] x10-8 Mhos/m 

 

[Z][Y] = [
−0.1119 −0.0046 −0.0046
−0.0046 −0.1119 −0.0046
−0.0046 −0.0046 −0.1119

] x10-11 

 

Decouple the system with the Clarke transform: 

[T][Z][Y][T]-1 = [
−0.1073 0 0

0 −0.1073 0
0 0 −0.1211

] x10-11  = [

𝜆𝛼 0 0
0 𝜆𝛽 0

0 0 𝜆0

] 

 

Velocity calculation: λα = γ𝛼
2  = (α + jβ)2 

It is a lossless line, so α = 0 and γ = jβ = √𝜆 

𝑣𝑝 =  
𝜔

𝛽
 

The propagation velocity in the symmetric 50 Hz system: 

𝑣𝑝 = 
2 𝑥 𝜋 𝑥 50

√𝜆
 

𝑣𝑝_𝛼 =  303 325 514 𝑚/𝑠 

𝑣𝑝_𝛼 =  303 326 km/s 

 

Again, slightly breaking the speed limit. The simulation velocity is very similar, as expected with the 

same L and C matrices used in both calculation and simulation, since they already create a balanced ZY 

matrix without alteration: 
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Figure 23. Propagation velocity in the simulated symmetric model. 

 

Again, very close result for manual calculation vs simulation (99.995%). Correlation with previously 

seen time intervals:  

    vp = d/t  where d = 800 km 

t = d/vp 

t = 800 000 / 303 325 514 

t = 2.637 ms 

This almost matched the initial open circuit findings from Table 1 (99.96% similar at 3 decimal places). 

Both the manual calculation and simulation results seemed to correlate that the propagation velocity is 

slower by 1.1% in the asymmetric model. However, addressing the speed limit problem, the ideal 

asymmetric model should have an upper limit of c, so the model was overestimating by at least 1.1%. 

The observed velocity difference between models was within the inherent overestimation error. 

Therefore, a real difference was so far rejected. 

 

4.5 Zero Sequence Ground Mode 

Continuing the attempt to make the peak measurement more robust for non-open circuit fault 

simulations, zero sequence current ground mode (mode ‘0’) comparison was used. This is expected to 

be slower than the aerial modes (α & β) calculated above (Chalangar et al. 2019), but if it provided a 

more confident manual peak measurement, then it can further confirm or reject both the initial variation 

amongst fault types displayed in Table 1, and the propagation velocity difference between asymmetric 

vs symmetric model. This method was only applicable to ground faults because ‘zero sequence’ means 

the lines are all at the same voltage at any instant, so there won’t be a line-line fault: 

The following are examples of travelling waves produced by zero sequence current with line-to-ground 

(L-G) faults: 
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Asymmetric: 

 

Figure 24. Travelling waveforms for the zero sequence L-G fault on the asymmetric model. The top trace is the 3 phases a, b 

and c, and the bottom trace is the 3 modes α (yellow), β (blue) and 0 (red), the latter being the focus of interest in this test. 

Green arrow highlights the beginning of ambiguous peaks. 

Symmetric: 

 

Figure 25. Travelling waveforms for the zero sequence L-G fault on the symmetric model. The top trace is the 3 phases a, b 

and c, and the bottom trace is the 3 modes α (yellow), β (blue) and 0 (red), the latter being the focus of interest in this test. 

 

Using the ground mode peaks (bottom red trace) in the symmetric model above, the waveforms did 

seem to have an improved peak clarity compared to the phase peaks (top trace) for at least the first three 

wave groups. The peaks became ambiguous from the fourth group onwards. The following results 

(Table 2 over page) were therefore the average of only the first two intervals, unlike the first three 

intervals represented previously in Table 1. 
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Table 2. Average zero sequence ground mode peak intervals for the first three groups of waves, measured for different fault 

types on both symmetric and asymmetric models. The latter is not the zeroth-order (averaged) model. 

 Fault type 
Interval between peaks (ms) 

 Symmetric Asymmetric 

Ground Faults 

L-G 2.721 2.698 

L-L-G 2.719 2.699 

L-L-L-G 2.804 2.732 

 

The propagation velocity variation was almost equal for L-G compared to L-L-G faults (>99.93% 

similar, with the difference likely within measurement error), however the L-L-G fault was different 

(96.97 - 98.79% similar), and therefore slower. This was not seen initially in Table 1. This warrants 

further investigation, but is outside the scope of this study. 

Another striking difference observed in the zero-sequence ground mode results (Table 2) compared to 

the original phase results (Table 1) is that the asymmetric model presented a faster ground mode 

propagation velocity than the symmetric model (0.85 – 2.6%). Checking back to the manual matrix 

calculations (page 54), this result was also seen there: 

The decoupled modal matrices for the asymmetric and symmetric systems gave λ0 values of 

- 0. 1150 x 10-11 and - 0. 1211 x 10-11 respectively. 

Using the previous: 

𝑣𝑝 = 
𝜔

√𝜆
 

The propagation velocity is inversely proportional to λ, so the asymmetric model again generated the 

larger ground mode propagation velocity by 2.6% (2.9291 x 108 vs 2.8550 x 108 m/s). This difference 

is outside the inherent model overestimation error (1.1%). This was not an artefact of the averaging 

method or zero-sequence injection, since the simulation peak measurements (Table 2) are from the non-

averaged asymmetric matrices and the mathematical calculation was independent of sequence.  

It could yet be concluded that asymmetry caused the different ground mode velocities. The two models 

are not actually directly comparable in this way, because there are other inherent geometric differences 

that are likely to have an effect, outside of symmetry. For example, the conductor distances, especially 

earth-return distance D, are likely factors, and are fundamentally different between the two models. 

This was investigated next. 

 



60 

 

4.6 Effect of Conductor Distance D 

The attempt was made at the beginning to make the phase distances x as comparable as possible, by 

using the geometric mean distance of asymmetric model phases as the phase distance in the symmetric 

model (page 36). However, the earth-return distance D is vastly different. For example, consider the 

geometry of the two models below, with the contrasting conductor distances ‘D’ and ‘x’: 

 

Figure 26. The geometry of the asymmetric (left) vs symmetric models (right), to highlight the fundamentally different phase 

x and earth-return D distances. 

 

A careful comparison is required between the two models to enable further confirmation or rejection of 

the initial results thus far. The earth-return distance D was investigated for its effects on velocity. The 

investigation again began with a simple single-phase system using classical equations. 

 

4.6.1 Classical Single Phase 

Considering the equations introduced previously (page 48), specifically: 

𝑣𝑝 =
1

√𝐿𝐶
 and 𝐿 =  4𝑥10−7 (ln (

𝐷

𝑟′
))  and C =  

𝜋𝜀

ln(
𝐷

𝑟
)
 

The inductance and capacitance per unit of the two-wire system are based on the proportion of 

conductor separation distance to conductor radius, i.e., (
𝐷

𝑟
). As conductors are separated (↑D), 
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inductance increases while capacitance decreases. To explain this in the real world, think of the current 

direction of a conductor, with its earth-return therefore being the opposite direction. Magnetic field 

vectors (from inductance) diminish each other if they are created by two opposing current directions. 

Conversely, electric field gradients (from capacitance) of two opposite charges (+/-) are additive. 

The distance between a single phase and its earth-return was quite different in the symmetric and 

asymmetric models, being very close in the former and relatively far away in the latter (pole height): 

The asymmetric system earth-return distance was discussed in section 4.2.1 (page 48). For the 

symmetric system, D = 0.8984 m and gave: 

L = 1.899 x 10-06 H/m 

C = 6.184 x 10-12  F/m 

vp = 2.918 x 108  m/s 

A similar velocity result was obtained on the simulator (below) with the above L and C parameters:

 

Figure 27. Single-phase travelling wave peaks for conductor distance D used in the symmetric system. The time interval 

between peaks averaged 2.741 ms, which equates to 2.919 x 108 m/s. 

 

As seen previously for the asymmetric system, D = 10.4189 m (the average earth-return distance) and 

gave: 

L = 2.880 x 10-06 H/m 

C = 4.003 x 10-12  F/m 

Notice the increased inductance and decreased capacitance values with this greater earth-return distance 

compared to the previous. One increased while the other decreased, but the velocity had also slightly 

increased by 0.9%: 

vp = 2.945 x 108  m/s. 

This suggested that the further apart the conductors in the two-wire system, the greater the propagation 

speed: 
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Figure 28. Propagation velocity calculated from the classical ideal two-wire single phase system equation. It shows that 

velocity increases with earth-return distance D (approaching maximum limit c). 

 

This means that, with increasing earth-return distance, inductance increases at a greater rate than 

capacitance decreases. The investigation continued with the classical 3-phase system. 

 

4.6.2 Classical 3-Phase 

The balanced 3-phase system assumes equal conductor spacing with no neutral or earth currents: 

𝐿 =  2𝑥10−7 (ln (
𝐷

𝑟′
))  and  C =  

2𝜋𝜀

ln(
𝐷

𝑟
)
 

*Note, these are different from the single-phase equations (page 48) by a factor of ½ and 2 respectively. 

With the distance used in the symmetric system, D = 0.8984 m and gave: 

L = 9.496 x 10-07 H/m 

C = 1.237 x 10-11  F/m 

vp = 2.918 x 108  m/s 

Note that this is a different L & C to the single-phase result (page 61), but the same resultant velocity. 

With the distance used in the asymmetric model this time (D = 10.4189 m), the classical 3-phase 

equations gave: 

L = 1.4398 x 10-06 H/m 
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C = 8.0061 x 10-12  F/m 

vp = 2.945 x 108  m/s. 

Again, different L & C as single-phase but same resultant velocity. 

The classical single and 3-phase results demonstrated that the distance between phase and earth-return 

is a critical value. This highlights the care needed when attempting to compare the propagation 

velocities of symmetric and asymmetric models. 

 

4.6.3 Asymmetric model 

To therefore improve comparability between models, the GMD of the asymmetric system earth-return 

was made to equal the earth-return distance of the symmetric system. This could be akin to adding an 

actual neutral/ground wire close to the phases of the asymmetric system. 

Given D = 0.8984 m for the symmetric, we must make this the GMD of the asymmetric: 

0.8984 =  √𝐷𝑎𝑝𝐷𝑏𝑝𝐷𝑐𝑝
3   where  Dap = Dcp; and 

𝐷𝑏𝑝 = √𝐷𝑎𝑝
2 − 𝐷𝑎𝑏

2  (trigonometric relationship – refer to Figure 7) 

Where Dab = 1.235 m 

0.89843 = 𝐷𝑎𝑝𝐷𝑏𝑝𝐷𝑐𝑝 

0.89843 = 𝐷𝑎𝑝
2 𝐷𝑏𝑝 

0.89843 = 𝐷𝑎𝑝
2 √𝐷𝑎𝑝

2 − 𝐷𝑎𝑏
2  

0.7251 =  𝐷𝑎𝑝
2 √𝐷𝑎𝑝

2 − 1.2352 

 

𝐷𝑎𝑝 = 1.3061  m  =  𝐷𝑐𝑝 

𝐷𝑏𝑝 = 0.4251 𝑚 
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This results in the transformed eigenvalue matrix: 

 

[T][ZY]bal[T]-1 = [
−0.1097 0 0

0 −0.1097 0
0 0 −0.1198

] x10-11 

 

The aerial mode velocity with the new earth-return distance was almost identical to that of the previous 

earth-return distance, but the ground mode velocity was significantly different: 

 

𝑣𝑝_𝛼 =  299 900 756 𝑚/𝑠  (previously 299 806 142, 0.03% different) 

𝑣𝑝_0 =  287 014 936 𝑚/𝑠 (previously 292 911 590, 2.0% different) 

 

This made sense, considering that the aerial modes don’t involve an earth-return (ground), and the 

ground mode speed being proportional to D which is consistent with previous sections 0 and 4.6.2 (these 

are specific modes of propagation here, not the single speed values calculated in the previously 

mentioned sections). 

Therefore, the above results suggested that the earth-return distance had minimal influence on the model 

comparisons for aerial mode velocities. However, since the earth-return distance had an effect on 

ground-mode velocity, the next logical question was: did the different earth-return distance of the 

original geometry (Figure 26) account for the different ground-mode velocities seen previously (Section 

4.5)? 

The original ground-mode difference was 2.6%. Changing the earth-return distance of the asymmetric 

model to match (GMD) that of the symmetric model dropped the asymmetric ground-mode velocity by 

2.0%. The difference between the two models was now 0.5%. Therefore, the non-symmetry-related 

effect of earth-return distance accounted for the different ground-mode velocities found previously. 

The influence of the variable D on propagation velocity was investigated above, so the next logical step 

was to investigate the influence of the other distance variable - phase to phase distance x. Although the 

distance x was already made as similar as possible between the two models, they were not the same, so 

investigating the possible effect on the model comparison was justified. 
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4.7 Effect of Phase-to-Phase Distance x 

Comparing the influence of x between models is again quite difficult. In the previous section, D could 

be manipulated independently (for the asymmetric model only). However, increasing x also causes an 

increase in D. Therefore, for the following comparisons, the GMD of D increased proportionally with 

x, but was kept equal between models (as per the previous section 4.6.3). 

Both aerial and ground mode propagation velocities were investigated over a range of phase conductor 

distances x for both models: 

 

 

Figure 29. The effect of phase-to-phase distance x on propagation velocity in the asymmetric and symmetric models. 

 

The aerial and ground mode velocities change over the given range x (Figure 29 above) in both models. 

The velocities seem to approach a stable value, in which again the aerial mode is subject to the inherent 

overestimation error above c. The change in aerial mode velocity with x, from the original distance to 

the extreme end of the graphs (representing a near stable value), ranges from about 0.6 – 3.9%. 

However, the trend above shows that this variation will drastically increase as the conductors approach 

smaller distances (x) than shown, which reveals another problem with the models. 
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It seemed that the inherent error introduced in section 4.4.2 (page 57) also increased drastically as phase 

distance x approaches the conductor radius distance (r = 0.01 m). It is likely that this radius distance is 

the focal point of the problematic assumptions inherent in the model’s construction, namely: 

- Derivations include conductor internal (x < r) inductance, and therefore an ‘equivalent’ radius 

(r’ seen in equation 5, page 22), but there’s no internal capacitance. 

- The internal inductance derivation doesn’t account for skin effect: it is essentially applicable as 

a direct current formula and representative of alternating current. 

- The internal inductance also doesn’t account for proximity effect which, like skin effect, is 

likely to influence the internal current and flux distribution. 

For further meaningful comparison between models, the inherent assumption issues above need to be 

addressed. The following was a simple check that the radius distance, subject to the problematic 

assumptions listed above, was indeed involved in observed errors. 

 

4.8 Model Error and Conductor Radius 

The conductor radius (r) was originally set to 1 cm. Now the goal was to make it a theoretical ‘filament’ 

conductor, which has essentially no radius, minimising the effects of suspected problematic internal 

inductance calculations. Therefore, internal flux was also discarded from the derivations, since there 

was now physically no internal component. 

The original equations use an equivalent radius to combine both internal and external components. This 

must now be undone. Mathematically, this involves returning to the standard Equation 5: 

𝐿𝑠𝑒𝑙𝑓 =  4𝑥10−7 (ln (
𝐷

𝑟′
)) 

By using the equivalent radius r’ to combine both internal and external components, the above equation 

is actually a simplified form of Equation 6: 

𝐿𝑠𝑒𝑙𝑓 =  4𝑥10−7 (
1

4
 +  ln (

𝐷

𝑟
)) 

where the  
1

4
  component in the brackets represents the internal inductance (it is a constant). 

Therefore, removing the internal inductance component yields: 

𝐿𝑠𝑒𝑙𝑓 =  4𝑥10−7 (ln (
𝐷

𝑟
)) 
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Including a new first point of x = 0.001 m, the trends now showed almost no variation (<0.08%) over 

the range of x, compared to the previous non-filament conductor results (Figure 29). The asymmetric 

model had no variation, and the aerial and ground modes were both equal to c. The symmetric model 

aerial modes were also much closer to each other and to c. The original comparisons, now with the 

filament conductors, are summarised below: 

Table 3. Propagation velocities for aerial and ground modes on asymmetric and symmetric filament conductor models 

(original x values). 

 Propagation Velocity (m/s) 

Geometry vp α vp 0 

Symmetric 3.0039 x 108 2. 9949 x 108 

Asymmetric Original 2.9979 x 108 2.9979 x 108 

Asymmetric Similar D 2.9979 x 108 2.9979 x 108 
 

The aerial mode velocity of the symmetric model was now only 0.2% above c compared to the previous 

1.1%, suggesting that the overestimation error at least was reduced. This also meant that the difference 

in velocity displayed by the two models was also only 0.2%, and the asymmetric velocity was at the 

theoretical maximum. 

The conductor radius distance r was clearly involved in the inherent velocity overestimation, lending 

weight to the suggested probable causes in the derivation assumptions.   
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

The main goal of the present study was to establish the effect of asymmetry on travelling wave 

propagation velocity. Initial findings from simulated peak measurements indeed suggested a difference 

between the symmetric and asymmetric model velocities (1.1%). They also suggested a different 

velocity for different fault types. 

This interesting result created an investigative tangent. The fault type differentiation was investigated 

further with modal peak analysis and analytical investigation. The outcome was that those initial 

variations were an artefact of measurement error. Interestingly however, the zero-sequence ground 

mode injection test (Section 4.5) produced a different velocity for the three-phase-to-ground (L-L-L-G) 

fault than the 1- and 2-phase-to-ground (L-G and L-L-G) faults, which didn’t happen with the normal 

3-phase source. This warrants further investigation. Outside of this special case however, there was no 

evidence in this study to suggest any different propagation velocities between fault types with a standard 

sequence source. 

Returning to the main investigation of symmetry effects on velocity, the analytical investigation 

correlated with the initial simulation measurements, that the symmetric model had a slower aerial mode 

propagation velocity (1.1%). However, this was within the inherent overestimation error of the model, 

wherein the symmetric velocity was 1.1% above the expected ideal value c. 

An interesting result from the modal analysis, both simulation and analytical, was that the ground mode 

velocity was greater in the asymmetric model than the symmetric (by 2.6%), unlike the aerial 

propagation modes. This difference could not be accounted for by the inherent model error. However, 

there are fundamental differences between the two models outside of symmetry, and a direct comparison 

could not yet be made. 

Therefore, the velocity comparability of the two models was investigated. The difference observed, at 

least in ground mode velocities, led to the question: could a difference in velocities between the two 

models be caused by non-symmetry-related parameters such as earth-return distance? The asymmetric 

model originally had a much greater earth-return distance than the symmetric. The classical equations 

demonstrated that this distance was critical, with propagation velocity increasing toward c with 

conductor separation. 



70 

 

This question was addressed by making the geometries as comparable as possible by using equal 

geometric mean conductor distances, and investigating the influence of phase-to-phase and earth-return 

conductor distances on propagation velocity. The results suggested that the earth-return distance had 

almost no influence on aerial mode propagation velocity (0.03% difference between ground level earth 

and symmetric-similar earth distance), but had enough influence on ground mode velocity (2.0%) to 

account for the difference originally observed. Therefore, there was no velocity difference observed 

outside the inherent model error. 

For completeness, the influence of phase-to-phase distance on propagation velocity was investigated 

also. This led to confronting the model error and the problematic assumptions upon which the models 

were derived. These were evident initially by producing aerial mode velocities always slightly above c, 

and finally going far above c when conductor distances were reduced toward conductor radial distances. 

The main suspected problematic assumption was that frequency, and therefore both skin effect and 

proximity effect, were not accounted for. They would likely have an influence, especially at high 

frequencies that are typical of travelling waves (de Magalhães Júnior & Lopes 2021). Therefore, the 

models probably made an overestimation of inductance and an underestimation of capacitance, but not 

by the same rate (remembering the propagation velocity calculation is dependent on the product of the 

two). Hence, a higher than light speed overestimation occurred, increasing with conductor distance. 

To conclude, while the model has some inherent error, the results in the present study show no 

difference in travelling wave propagation velocity between derived symmetrical and asymmetrical 

models. There is no implication based on symmetry for improving current fault location device 

accuracy. 

 

5.2 Final Conclusion 

Asymmetry has no effect on the propagation velocity of travelling waves. 

 

5.3 Recommendations for Further Work 

1. The model has some inherent error. The investigation may be worth continuing with an 

improved model in which the shortcomings of the present derivation assumptions are corrected. 

 

2. It is suspected that transposition may have been incorporated by the mathematical averaging 

method of the present study. It is recommended to also test transposition directly on the 

simulator for verification. 
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3. There were some interesting ground mode results, such as: 

a. the 3-phase-to-ground fault travelling wave velocity was slower than other fault types 

when zero sequence current was injected; and 

b. The ground mode and aerial mode velocities were identical on the asymmetric filament 

model. 

However, the present study models the earth-return as a second identical and ideal conductor, 

and the above findings may be an artefact of this. It is recommended to investigate further with 

an improved model that includes a more realistic earth-return path. The literature reports that 

the ground mode propagation is slower (Chalangar et al. 2019). This is likely due to the different 

material properties of the earth compared to a transmission line, specifically, the permittivity. 

For example, equation 31: 

C =  
𝜋𝜀

ln(
𝐷

𝑟
)
  F/m 

Permittivity is directly proportional to capacitance, and therefore inversely proportional to 

propagation velocity. The present model uses the ideal (vacuum) minimum relative permittivity 

(ε = ε0 = 1). This yields the fastest travelling wave. Cables generally have a permittivity below 

10 (IEC 2014). The earth permittivity is generally much higher and greatly affected by water 

content (Owenier, Hornung & Hinderer 2018), which has a relative permittivity of 80 (Thring 

et al. 2014), resulting in a slower ground mode propagation. Incorporating this into the model 

would enable a much more capable further investigation of the ground mode results in this 

study. 
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