

Alistair Thorogood

ENG4111/2 Research Project i

Abstract
The Society of Automotive Engineers (SAE) have been running a student-based racing

competition the Formula SAE (FSAE) since 1981, there are currently over 600 competing

teams from universities all over the world. The competition has evolved, with the automotive

industry, to include an electric vehicle class since 2013 and an autonomous vehicle class

since 2017.

This thesis project is intended to serve as an initial entry into Autonomous FSAE

development for the UniSQ team. To achieve this, three project aims were developed and

successfully achieved.

Project Aim 1: Set up and Test Simulation Environment

A range of existing Formula Student simulators were evaluated and the Formula Student

Driverless Simulator was found to be most suitable for this project. The Simulator was

installed, tested, and utilised for the development of basic self-driving.

Project Aim 2: Demonstrate Basic Self-Driving

Basic self-driving was demonstrated utilising C++ and python with the ROS2 robotics

framework. ROS2 nodes were created for traffic cone perception, steering angle

determination, throttle position, and vehicle control. A final lap time of 82.21 seconds was

achieved, a significant improvement from the initial lap time of 160.37 seconds

Project Aim 3: Establish UniSQ FSAE Autonomous Development Platform

A git repository containing the ROS2 workspace was utilised as the development platform.

This contained all nodes for basic self-driving, improved perception and visualisation tools

used throughout the development.

Above the aims of this project, an effective and robust LiDAR based perception algorithm

was developed based off the Velodyne VLP-16 LiDAR. Using the VLP-16 LiDAR allowed

for easier integration into a real-world vehicle. Within the simulator the perception range was

improved from 7m to greater than 20m. The improved simulation perception allows for future

simulated autonomous development in; motion estimation and mapping, and vehicle control.

Alistair Thorogood

ENG4111/2 Research Project ii

Disclaimer

Faculty of Health, Engineering & Sciences

ENG4111 & ENG4112 Research Project
Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

and Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the

Council of the University of Southern Queensland, its Faculty of Health, Engineering and

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitles “Research Project” is to contribute to the

overall education within the student’s chosen degree program. This document, the associated

hardware, software, drawings, and any other material set out in the associated appendices

should not be used for any other purpose: if they are so used, it is entirely at the risk of the

user.

Alistair Thorogood

ENG4111/2 Research Project iv

Acknowledgments
I would like to express my gratitude to my supervisors, Dr. Craig Lobsey & Dr Tobias Low,

for their guidance, support, and encouragement throughout my thesis research project. Their

expert advice and feedback have been instrumental in shaping the direction of my work and

helping me achieve more than I initially thought possible.

I would also like to acknowledge the previous Formula SAE and Formula Student teams who

generously shared parts of their research and autonomous control designs. In particular, I am

grateful to the AMZ racing team, Monash Motorsport team, and Czech Technical University

for their contributions to my work.

I would also like to acknowledge everyone who has contributed to the Formula Student

Driverless Simulator as this project would not have been possible if it were not for their

continued dedication.

Most of all, I would like to thank my beautiful wife, Emily, for her support and understanding

during this demanding period. Her love and encouragement have kept me motivated and

focused, even during the most challenging of late nights. She has taken on the responsibility

of caring for our newborn Kai while I spent countless hours programming and writing my

thesis report. I could not have completed this work without her.

Alistair Thorogood

ENG4111/2 Research Project v

Table of Contents

Abstract ... i

Disclaimer .. ii

Candidates Certification... iii

Acknowledgments... iv

List of Figures .. vii

List of Tables ... viii

List of Equations ... ix

List of Appendices .. ix

Abbreviations ... x

1 Introduction ... 12

1.1 Formula SAE / FSAE / Formula Student .. 12

1.2 FSAE Autonomous Competition Rules .. 13

1.3 Autonomous Control Software.. 13

1.4 Project Aim & Objectives ... 14

2 Literature Review ... 16

2.1 SAE Competition .. 16

2.2 Successful Formula SAE / Formula Student teams .. 18

2.3 Simulation ... 18

2.4 Perception .. 22

2.5 Motion Estimation and Mapping... 25

2.6 Control ... 28

2.7 Software Frameworks ... 31

3 Project Design ... 36

3.1 Safety, Ethics and Environment .. 36

3.2 Project Risk ... 36

3.3 Resources .. 37

Alistair Thorogood

ENG4111/2 Research Project vi

3.4 Timeline .. 37

3.5 Project Tasks ... 38

3.6 Assumptions and Limitations .. 39

4 Autonomous Software Development .. 40

4.1 Simulator Setup ... 40

4.2 Complete a Basic Lap of Simulation Track .. 44

4.3 Perception (LiDAR) .. 49

4.4 System Synthesis ... 63

5 Contributions – Git Repository ... 65

6 Conclusion .. 66

6.1 Future Work .. 66

6.2 Links .. 67

7 References ... 68

8 Appendices.. 71

Appendix A1 - Project Specification ... 71

Appendix A2 - Personal and Property RMP ... 73

Appendix A3 - Project Gantt Chart ... 75

Appendix A4 - Running the Simulator – Cheat Sheet ... 76

Alistair Thorogood

ENG4111/2 Research Project vii

List of Figures
FIGURE 1: TRACKDRIVE LAYOUT (FSG 2022A).. 17

FIGURE 2: EUFS_SIM SIMULATOR SCREENSHOT (EDINBURGH-UNIVERSITY N.D.) .. 19

FIGURE 3: FSSIM SIMULATION SCREENSHOT ... 20

FIGURE 4: FORMULA STUDENT DRIVERLESS SIMULATOR SCREENSHOT ... 21

FIGURE 5: VLP-16; 16 CHANNELS WITH 2O RESOLUTION (OKUNSKY & NESTEROVA 2019) .. 23

FIGURE 6: RACE PATH CENTRELINE - DELAUNAY TRIANGULATION (KURUVILLA 2022) .. 26

FIGURE 7: POINT MASS MODEL (EDINBURGH-UNIVERSITY N.D.) .. 27

FIGURE 8: BICYCLE MODEL (KRITAYAKIRANA & GERDES 2012) .. 27

FIGURE 9: PROPORTIONAL STEERING ERROR ANGLE ... 28

FIGURE 10: PURE PURSUIT STEERING CONTROLLER (DING 2020)... 29

FIGURE 11: STANLEY STEERING CONTROLLER .. 30

FIGURE 12: ROS2 COMMUNICATIONS (ROS N.D.). ... 32

FIGURE 13: VERSION CONTROL SURVEY (DONOVAN 2023) .. 33

FIGURE 14: UPGRADED PC COMPONENTS ... 40

FIGURE 15: GPU PARAMETERS .. 42

FIGURE 16: RECORDED GPU TEMPERATURES ... 42

FIGURE 17: SIMULATOR RUNNING .. 43

FIGURE 18: BASIC PATH PLANNING FLOWCHART ... 45

FIGURE 19: DESIRED LOCATION ERRORS .. 45

FIGURE 20: DESIRED LOCATION ERROR RADIUS ... 46

FIGURE 21: SIMULATOR EXAMPLE PERCEPTION ERROR ... 49

FIGURE 22: SIMULATOR LIDAR OPTIONS (FORMULA-STUDENT-DRIVERLESS-COMMUNITY N.D.).. 50

FIGURE 23: IMPROVED PERCEPTION LIDAR SETTINGS .. 52

FIGURE 24: PERCEPTION FLOWCHART - MAIN CODE .. 52

FIGURE 25: PERCEPTION FLOWCHART - FILTER INVALID POINTS .. 53

FIGURE 26: PERCEPTION FLOWCHART - FIND GROUND PLANE ... 55

FIGURE 27: CUMULATIVE ERROR SCATTER PLOT .. 56

FIGURE 28: PERCEPTION FLOWCHART - FILTER GROUND & AIR POINTS ... 57

FIGURE 29: PERCEPTION FLOWCHART - CLUSTER & FILTER .. 58

FIGURE 30: PERCEPTION ALGORITHM RUN TIME TESTS .. 59

FIGURE 31: LIDAR POINTS RESULTS ... 59

FIGURE 32: VISUALISATION OF GROUND PLANE REMOVAL .. 60

FIGURE 33: IMPROVED PERCEPTION ALGORITHM SCREENSHOT .. 60

FIGURE 34: IMPROVED PERCEPTION ALGORITHM SCREENSHOT .. 61

Alistair Thorogood

ENG4111/2 Research Project viii

List of Tables
TABLE 1: FORMULA STUDENT MAXIMUM AVAILABLE POINTS (FSG 2023) .. 13

TABLE 2: TRAFFIC CONE SPECIFICATIONS (SAE 2022B) .. 17

TABLE 3: VLP-16 HORIZONTAL RESOLUTION (VELODYNE 2019) .. 23

TABLE 4: PROJECT RISK - CUSTOMISED RISK MATRIX .. 36

TABLE 5: PROJECT RISK ANALYSIS ... 37

TABLE 6: PROPOSED PC UPGRADES .. 37

TABLE 7: BREAKDOWN OF PROJECT PHASES ... 38

TABLE 8: SIMULATOR EXAMPLE LAP TIMES ... 47

TABLE 9: BASIC LAP ALGORITHM LAP TIMES, MAX SPEED = 4 M/S .. 47

TABLE 10: BASIC LAP ALGORITHM LAP TIMES, MAX SPEED = 6.5 M/S ... 47

TABLE 11: DISTANCE TRAVELLED (M) AT DIFFERENT LIDAR FREQUENCY AND VEHICLE SPEEDS ... 50

TABLE 12: VLP-16 LIDAR RESOLUTION AND POINTS ... 51

TABLE 13: VISUALISATION OF HORIZONTAL RESOLUTION AT MIN AND MAX FREQUENCY SETTINGS ... 51

TABLE 14: IMPROVED PERCEPTION ALGORITHM LAP TIMES, MAX SPEED = 6.5 M/S .. 61

TABLE 15: IMPROVED PERCEPTION ALGORITHM LAP TIMES, MAX SPEED = 9 M/S ... 61

TABLE 16: ROS2 WORKSPACE SUMMARY ... 63

TABLE 17: ROS2 LAUNCH FILE SUMMARY ... 64

Alistair Thorogood

ENG4111/2 Research Project ix

List of Equations
EQUATION 1: PROPORTIONAL STEERING CONTROL EQUATIONS .. 28

EQUATION 2: PURE PURSUIT STEERING CONTROLLER EQUATION .. 29

EQUATION 3: STANLEY STEERING CONTROLLER ... 30

EQUATION 5: CALCULATING TWO VECTORS FOR GROUND PLANE DETECTION ... 53

EQUATION 6: NORMAL VECTOR CALCULATION FOR GROUND PLANE DETECTION ... 53

EQUATION 7: PARAMETER A, B & C FOR GROUND PLANE DETECTION ... 54

EQUATION 8: PARAMETER D FOR GROUND PLANE DETECTION ... 54

EQUATION 9: CALCULATING DISTANCE TO PLANE FOR GROUND PLANE DETECTION .. 54

List of Appendices
Appendix A1 - Project Specification
Appendix A2 - Personal and Property RMP
Appendix A3 - Project Gantt Chart
Appendix A4 - Running the Simulator – Cheat Sheet

Alistair Thorogood

ENG4111/2 Research Project x

Abbreviations
AV – Autonomous Vehicle

CPU – Central Processing Unit

EKF – Extended Kalman Filter

FSAE – Formula Society of Automotive Engineers

FSG – Formula Student Germany

FOV – Field of View

GSS – Ground Speed Sensor

GPS – Global Positioning System

GPU – Graphical Processing Unit

LHS – Left Hand Side

LiDAR – Light Detection and Ranging

PC – Personal Computer

RAM – Random Access Memory

RHS – Right Hand Side

RMP – Risk Management Plan

ROS – Robot Operating System

SAE – Society of Automotive Engineers

SLAM – Simultaneous Localisation and Mapping

USQ/UniSQ – University of Southern Queensland

Alistair Thorogood

ENG4111/2 Research Project Page 12 of 76

1 Introduction
Racing has long served as a testing ground for new vehicle technologies. Competitions such

as Formula 1, Indy, World Rally Championship, and many more have been pioneering

vehicle innovation. Examples of this innovation include disc brakes, the turbocharger and

more recently hybrid vehicle technology (Betz et al. 2022).

In parallel, recent advancements in computing, artificial intelligence, and robotics have led to

remarkable progress in the field of autonomous driving. As a result of this several

autonomous racing competitions are emerging to develop and test cutting edge autonomous

driving technologies. These competitions include Indy Autonomous Challenge, Roborace and

more. Autonomous racing student competitions such as Formula SAE and Formula Student

provide the foundation for which this thesis project is based.

1.1 Formula SAE / FSAE / Formula Student

The Society of Automotive Engineers (SAE) have been running a student-based racing

competition the Formula SAE (FSAE) since 1981, there are currently over 600 competing

teams from universities all over the world. The European competition is named ‘Formula

Student’ for the remainder of the report Formula SAE, FSAE and Formula Student may be

used interchangeably. The primary purpose of the competition is for the development of

university students in fields such as engineering and project management.

Over the years the competition has developed, with the automotive industry, to include an

electric vehicle class since 2013 and a driverless vehicle class since 2017. for the remainder

of this report the words driverless and autonomous will be used interchangeably in relation to

vehicle control.

The autonomous competition is relatively new. Despite being held in Europe from 2017, the

first autonomous vehicle to meet all requirements and complete a lap of the track was the

Monash University team in 2022 (Monash-Motorsport 2022). There have been several teams

from Europe that have met all requirements to compete and completed the required events, in

general these are teams with much higher budget and student participation than the current

UniSQ team. In total there are 123 teams registered for autonomous competition, five of

which are Australian teams (FSG n.d.). Being a student competition, some of these teams are

willing to share their research and design after the competition year. Most of the literature

review and guidance for this design will be a result of this shared information.

Alistair Thorogood

ENG4111/2 Research Project Page 13 of 76

1.2 FSAE Autonomous Competition Rules

Due to infancy of the FSAE autonomous competition it is currently run as a non-scored

demonstration event including Trackdrive, Emergency Braking System Test, Inspection and

Manual driving (SAE 2022b). The more matured European Formula Student competition

provides a likely framework for future autonomous competition scoring with the maximum

available points from the 2023 competition outlined in Table 1 below.

Table 1: Formula Student Maximum Available Points (FSG 2023)

Static Events:
Engineering Design 150 Points
Dynamic Events:
Skidpad 75 Points
Acceleration 75 Points
Autocross 100 Points
Trackdrive 200 Points

Overall: 600 Points

For the purpose of this project only the more advanced autocross and trackdrive events have

been considered. Both these events utilise the same track, which is further outlined in section

2.1. The autocross event consists of two single-lap runs and the use of any prior track data is

forbidden. The Trackdrive event consists of a single 10-lap race. There is no stipulation on

prior track data for the trackdrive event however, D2.4 states no map data is provided by the

officials (SAE 2022b).

1.3 Autonomous Control Software

Autonomous control software can be categorised into three key sections, each requiring

significant effort and expertise to develop a competitive autonomous control system.

Completing a competitive autonomous control software will require multiple bachelor thesis

or similar research efforts dedicated to each section. The three sections are as follows:

1. Perception: Utilising machine/computer vision techniques to provide meaningful data

from the vehicle’s environment. In FSAE environment this will primarily be focused

on identifying the traffic cones that outline the track.

2. Motion Estimation and Mapping: Localisation of the vehicle, mapping the track, and

determining optimised racing path. These processes are essential for the vehicle to

understand its position relative to the track and plan its trajectory accordingly.

3. Control: Controlling the steering, acceleration, and braking parameters to direct the

vehicle along the desired path.

Alistair Thorogood

ENG4111/2 Research Project Page 14 of 76

1.4 Project Aim & Objectives

The UniSQ team are in the process of developing a driven vehicle and have not yet made any

progress into the autonomous competition. This thesis project is intended to serve as an initial

entry into Autonomous FSAE development for the UniSQ team. Three project aims have

been developed to meet this intention.

Project Aim 1: Set up and Test Simulation Environment

The cost and resource requirements of developing a real-world autonomous vehicle are

currently a major hurdle to autonomous software development for the UniSQ team. A

simulation environment offers a solution that is both cost-effective and safer compared to

real-world testing. A simulation environment will potentially justify and pave the way to

development of a real-world vehicle.

This project will aim to satisfy the aim ‘Set up and Test Simulation Environment’ by

completing the following objectives:

1. Research available simulation software and determine if existing simulators exist.

2. Determine preferred simulator from existing/new solutions.

3. Develop/Install and trial simulation environment.

Project Aim 2: Demonstrate Basic Self-Driving

Once a simulation environment is validated the next logical step in an autonomous software

development is to demonstrate basic self-driving behaviours. This will require a basic

implementation of the three sections of autonomous control software being perception,

motion estimation and mapping, and vehicle control.

This project will aim to satisfy the aim ‘Demonstrate Basic Self-Driving’ by completing the

following objectives within a simulation environment:

1. Research, develop and test a basic perception algorithm.

2. Research, develop and test a basic Motion Estimation and Mapping algorithm.

3. Research, develop and test a basic vehicle control algorithm.

Project Aim 3: Establish UniSQ FSAE Autonomous Development Platform

Once a simulation environment and basic self-driving are validated there will be significant

work remaining to develop a competitive autonomous racing software. For the benefit of the

UniSQ race team it will be important to hand over the design and results of this project in a

way that will allow future students to easily access, understand and utilise.

Alistair Thorogood

ENG4111/2 Research Project Page 15 of 76

This project will aim to satisfy the aim ‘Establish UniSQ FSAE Autonomous Development

Platform’ by completing the following objectives:

1. Establish a version control and collaborative repository.

2. Compile all completed objectives, algorithms, and relevant documentation into a
handover package.

Alistair Thorogood

ENG4111/2 Research Project Page 16 of 76

2 Literature Review

2.1 SAE Competition

There are four sources for competition rules and design standards. Each of these refer to and

relate to each other. The latest available documents have been used, at the time of starting this

project this is a mix of 2022 and 2023 resources:

1. Formula SAE Rules 2023 (SAE 2022a).

2. Autonomous vehicle addendum (SAE 2022b).

3. Formula Student Rules 2023 (FSG 2023).

4. Formula Student Germany (FSG) Handbook 2023 (FSG 2022a).

The addendum states that the main dynamic autonomous competition will be the trackdrive

event. Requirements of the trackdrive event are outlined in the EFS rules. A summary of the

most applicable trackdrive requirements is shown below:

 D8.1 The trackdrive layout is a closed loop circuit built to the following guidelines:

o Straights: No longer than 80m

o Constant Turns: up to 50m diameter

o Hairpin Turns: Minimum of 9m outside diameter (of the turn)

o Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc.

o The minimum track width is 3m

 D8.1.2 The length of one lap is approximately 200m to 500 m.

 D8.2.6 After ten laps the vehicle must come to a full stop within 30m behind the

finish line on the track and enter the finish-state described in T14.10.

 D8.2.7 There will be no last lap signal i.e. the vehicle should count laps itself.

 D9.1.7 a 2s penalty will apply for each traffic cone knocked down or out.

 D9.1.7 a 10s penalty will apply for each time the vehicle is off course. This occurs

when all four wheels of the vehicle are outside the track boundary.

An understanding of Traffic cone purpose and dimensions are required to develop a

functioning perception algorithm. Table 2 from appendix PDA-3 of the autonomous

addendum outlines traffic cone specifications an important note is the removal of the stripes

from the EFS competition. Figure 1 from the FSG Competition Handbook outlines the

trackdrive layout.

Alistair Thorogood

ENG4111/2 Research Project Page 18 of 76

2.2 Successful Formula SAE / Formula Student teams

The aim of this project is to enhance the autonomous vehicle capabilities of the UniSQ FSAE

team by leveraging the knowledge and experiences of successful teams. Out of the 122

registered teams in the autonomous competition, only a small percentage have successfully

met the design requirements and completed a track drive event. For instance, in the 2022

Formula Student event, only five out of the nineteen registered teams scored points (FSG

2022b). To accomplish this aim, this project will primarily draw upon the design approaches

of successful teams that follow an open-source model, openly sharing their research, design,

and findings. The three teams predominantly referenced include:

 AMZ Motorsports – Lucerne University of Applied Sciences and Arts and ETH

Zurich.

 Monash Motorsports – Monash University

 EFORCE FEE Prague Formula – Czech Technical University in Prague

2.3 Simulation

The UniSQ FSAE team does not currently possess a functioning vehicle, as such a simulator

is required for all software development during this project. The use of a simulator has the

potential to accelerate the development of an autonomous vehicle by removing initial cost

barriers of vehicle development and providing a safe environment for vehicle testing.

Several universities have already developed functional lap time simulators, driver simulators

and autonomous vehicle simulators to assist with their own vehicle development.

Lap time simulators such as the ones developed by The University of Glasgow (Broatch

2019) and Queen’s University of Belfast (Doyle et al. 2019), utilise simplified vehicle and

track models such as:

 Steady state simulators where the simulation is divided into discrete segments; either

a corner, accelerating straight of de-accelerating straight,

 Quasi-static simulators which are similar to steady state except each corner is broken

up into smaller corners of varying radius.

 Transient simulators where the vehicle is modelled as an integrated dynamic system.

This allows suspension, inertia, and damping effects to be taken into consideration.

Lap time simulators are still relevant to FSAE development, particularly for optimising path

planning and parameter optimisation. However, a more complex simulator with sensor inputs

and other features is required for full autonomous development.

Alistair Thorogood

ENG4111/2 Research Project Page 19 of 76

Driver simulators such as the one built by Monash University (Behrendt 2017) may be able to

be converted to an autonomous vehicle platform. However, purpose built autonomous vehicle

simulators should be considered first.

There are currently at least three open-source autonomous vehicle simulators available for

FSAE development:

 eufs_sim developed by Edinburgh University (Edinburgh-University n.d.)

 FSSim developed by AMZ racing team (AMZ-Driverless n.d.)

 Formula Student Driverless Simulator developed as a collaboration between Formula

Student Team Delft, MIT Driverless and FSEast as a substitute for the Formula

Student competition during the Covid-19 restrictions in 2020 (Formula-Student-

Driverless-Community n.d.)

2.3.1 eufs_sim

eufs_sim is built using the Gazebo open-source 3D robotics simulator. The simulator allows

for customisable vehicle models, weather conditions and a random track generator.

The simulator does not utilise a standard Gazebo physics model and instead utilises a custom

point mass or dynamic bicycle model depending on user choice. The simulator

documentation states the dynamic bicycle model is better in almost every way and should be

used except for special use cases where a simple model is preferred. The dynamic bicycle

model is claimed as very accurate near the limits of dynamics but does not consider pitch and

roll dynamics. The dynamic bicycle model is further explained in section 262.5.3.

The simulator is actively being maintained and may be a suitable simulation software for the

project. Figure 2 Shows a screenshot of eufs_sim simulation.

Figure 2: eufs_sim Simulator Screenshot (Edinburgh-University n.d.)

Alistair Thorogood

ENG4111/2 Research Project Page 20 of 76

2.3.2 FSSim

FSSim is also built using the Gazebo open-source 3D robotics simulator. FSSIM also uses a

dynamic bicycle model instead of a Gazebo physics engine plugin. The bicycle model is

incorporated into the simulator using Euler forward discretisation method to overwrite the

current pose.

AMZ’s FSSim has not been updated since 2019 however, a repository fork by the ARUS

Formula student team appears to be updated in 2023 to allowing use with Ubuntu 20.04 and

ROS Noetic. Not having an active community maintaining the simulator may present

difficulties with integration into this project. Figure 3 shows a screenshot of the FSSim

simulation.

Figure 3: FSSim Simulation Screenshot

2.3.3 Formula Student Driverless Simulator

The Formula Student Driverless Simulator is built upon the Unreal Engine 4 development

tool and makes use of the Microsoft AirSim plugin. The Unreal Engine is utilised for all

physics, lighting, and world-building. The Microsoft AirSim plugin is used to connect Unreal

Engine with ROS and the operator.

This simulator utilises an Unreal Engine vehicle physics model ‘PhysXVehicles’ developed

by NVIDIA. This is a far more complex physics model than the bicycle model used by the

other simulators. The physics model is beyond the scope of this project however can be

researched through NVIDIA’s PhysX documentation (Nvidia n.d.).

The Unreal Engine development tool allows the FSEA Simulator to provide a realistic testing

environment specifically designed for autonomous formula student vehicles. The rules of the

Formula Student are incorporated into the simulator with realistic start and stop signals

available.

Alistair Thorogood

ENG4111/2 Research Project Page 21 of 76

To assist with setup and familiarisation, the FSEA Simulator has its own dedicated GitHub

page with detailed documentation (Formula-Student-Driverless-Community n.d.).

The Simulator is currently maintained by an active community and may be a suitable

simulation tool for this project with a more realistic physics engine and graphic environment

than the other simulator options. Figure 4 shows a screenshot of the Formula Student

Driverless Simulator.

Figure 4: Formula Student Driverless Simulator Screenshot

Alistair Thorogood

ENG4111/2 Research Project Page 22 of 76

2.4 Perception

Perception is the first step in developing autonomous control software for an autonomous

vehicle. In the context of an autonomous vehicle, perception is the use of various sensors to

perceive the surrounding environment. For this project the only required perception is the

location of the traffic cones outlining the race track, this may evolve as the competition

evolves to include obstacles or other vehicles.

For reliable perception, inputs from multiple sensors are used to verify each other. The

successful AMZ, Monash Motorsport and EForce teams all utilise a combination of LiDAR

sensors and camera sensors for traffic cone detection.

Other perception sensor options such as ultrasonic and RADAR are available, however, these

sensor options are not utilised by successful formula student teams and are not available

within the simulators. As a result, they are excluded from this project.

2.4.1 LiDAR

Light detection and radar (LiDAR) work on the principle of measuring the time of flight of a

laser pulse. The LiDAR sensor emits pulsed light waves into the surrounding environment,

these pulses bounce of objects and return to the sensor. The distance to an object can be

determined by the time the pulse takes to return to the sensor. (Velodyne n.d.) The intensity

of the returning light wave can also be used to analyse the surface properties of an object.

Advantages of LiDAR in autonomous racing include accurate mapping, object detection in

varying conditions, and fast data acquisition. However, its disadvantages include high costs,

and susceptibility to environmental conditions such as heavy rain and fog.

The UniSQ FSAE team have a Velodyne VLP-16 LiDAR available to use. This is a reputable

and reliable LiDAR with the capabilities to perform FSAE vehicle traffic cone perception.

Simulator setup and perception algorithm development will be based off the Velodyne VLP-

16 LiDAR user manual (Velodyne 2019).

The VLP-16 is a rotating ‘surround’ LiDAR. These are characters by a number of channels in

the vertical direction for example Velodyne VLP-16 has 16 channels 2o apart, this results in a

2o horizontal resolution as per Figure 5.

Alistair Thorogood

ENG4111/2 Research Project Page 24 of 76

Advantages of cameras are their relatively low costs when compared to other sensing

technology and their versatility in detecting a wide range of objects. A major disadvantage of

camera-based perception is its complexity, the data acquired by cameras is up to 70 times

greater than that acquired by LiDAR and GPS (Ovenden 2019). Additionally, the

computational methods required to extract information from the data requires complex

machine learning algorithms with large datasets required for accurate training.

Due to the complexity, computational requirements, and requirement of real-world testing

camera vision; it will be excluded from this project and likely require a future thesis project

of its own.

Alistair Thorogood

ENG4111/2 Research Project Page 25 of 76

2.5 Motion Estimation and Mapping

Motion estimation and mapping encompasses vehicle localisation, mapping and path

planning: Vehicle localisation and mapping is a complex task and is often referred to as a

chicken-or-egg problem as vehicle localisation requires a map and mapping requires vehicle

localisation. This problem is often referred to as Simultaneous Localisation and Mapping

(SLAM) (Large 2020). SLAM is further reviewed in 2.5.1.

Path planning is the process of determining a desired vehicle trajectory. This can be broken

down into determining the racing path and the velocity profile of the race path. Determining a

race path is further reviewed in 2.5.2 and the velocity profile is further reviewed in 2.5.3.

2.5.1 Simultaneous Localisation and Mapping

Simultaneous Localisation and Mapping (SLAM) is the process of a robot, in this case a

vehicle, building a map of an unknown environment while keeping track of its position.

SLAM is not an exact process, instead it is a best estimation of localisation and mapping with

the accuracy dependant on the quality of information from various sensors.

Inputs for the localisation of the vehicle will be both relative and absolute. Relative sensors

being relative to the vehicle including input from wheel speed sensors, inertial measurement

units (IMU), and ground speed sensors. Absolute sensors have a reference to the external

environment including inputs from cameras, LiDAR and GPS.

There are numerous methods of SLAM implementation a review of Formula Student SLAM

algorithms highlights three popular SLAM methods; extended Kalman filter (EKF) SLAM,

fastSLAM and GraphSLAM.

The Monash Motorsport team initially implemented an EKF SLAM method using only

LiDAR input prior to integration of GPS, IMU and stereoscopic cameras (Ovenden 2019).

The initial SLAM implementation and the integration of additional sensors were separate

thesis projects. Future work for the Monash Motorsport team includes implementation of a

fastSLAM method utilising their EKF method.

The AMZ motorsport team state using fastSLAM 2.0, which is a revised Extend Kalman

particle filter method (Kabzan et al. 2020).

A master’s thesis by Nick Le Large summarises the trade-offs between the more accurate

computational intensive GraphSLAM compared with the less accurate less computational

intensive EKF SLAM (Large 2020).

Alistair Thorogood

ENG4111/2 Research Project Page 26 of 76

2.5.2 Racing Path

The simplest race path for a FSAE vehicle is a centreline of the race track. The AMZ racing

team and Monash Motorsport teams both mention the use of Delauney Triangulation to

determine the centreline of the track. MathWorks® provide an example of using Delauney

Triangulation to determine the centreline of a Formula Student track (Kuruvilla 2022), this

example is visualised in Figure 6. Other methods of determining the centreline are available

such as the traverse line method utilised by the Monash Motorsport team prior to Delauney

Triangulation (Slomoi 2018). The traverse line method was found to be computationally

intensive and more error prone than Delauney Triangulation.

Figure 6: Race Path Centreline - Delaunay Triangulation (Kuruvilla 2022)

More advanced methods of optimised race paths are available. Publicly available repositories

allow optimisation of race paths on a range of criteria including shortest path, minimum

curvature, and minimum time (TUMFTM 2021). Given the narrow FSAE trackdrive track,

the tolerances associated with SLAM and the penalties associated with impacting a traffic

cone; there is little to gain from an optimised racing path. A centreline will provide sufficient

autonomous development for the UniSQ team until a more advanced method is required.

2.5.3 Velocity Profile

A velocity profile provides a target velocity and acceleration for each point along the race

track. Developing a velocity profile requires the development of a lap time simulation, lap

time simulators are briefly discussed in section 2.3. To create a lap time simulation a dynamic

model of the vehicle is required.

There are many options for vehicle dynamic models. Simple point mass models, two wheeled

bicycle models, and more advanced four wheeled models or complete vehicle models that

consider pitch, roll etc. such as the PhysXVehicles model referenced in section 2.3.3.

Alistair Thorogood

ENG4111/2 Research Project Page 27 of 76

The simplest vehicle model is the 2D point mass model as shown in Figure 7. This assumes

the vehicle is a single point with all its mass concentrated at that point. The only vehicle

parameters required are the mass of the vehicle and the forces associated with accelerating,

braking, tyre friction and air friction to represent a relatively accurate lap time simulation.

Figure 7: Point Mass Model (Edinburgh-University n.d.)

A more advanced model is the two wheeled dynamic bicycle model as shown in Figure 8.

This model considers vehicle properties such as dimensions, steering characteristics, yaw

inertia and separates front and rear tyre frictional coefficients.

Figure 8: Bicycle Model (Kritayakirana & Gerdes 2012)

Both the AMZ racing team and Monash Motorsport team utilise the bicycle model rather than

more advanced four wheel or complete vehicle models (Slomoi 2018; Kabzan et al. 2020). A

point mass or bicycle model will allow sufficient autonomous development for the UniSQ

team until a more advanced method is required.

Alistair Thorogood

ENG4111/2 Research Project Page 28 of 76

2.6 Control

For this project, control of the FSEA autonomous vehicle is limited to the steering, braking

and throttle position within the simulation.

The brake position and throttle position within the simulators are a value from [0:1] and will

be dependent on the current vehicle velocity, desired velocity of the velocity profile, and the

desired acceleration of the velocity profile.

The steering angle within the simulators is a value from [-1:1] with -1 being full steer left and

+1 being full steer right. There are several options for autonomous steering control. The

simplest of steering control is a bang-bang style controller, this controller simply turns

set_steering_angle left if the race path is to the left of the vehicle or set_steering_angle right

if the race path is to the right of the vehicle. This is a very simple yet erratic and ineffective

method of race vehicle steering control.

A rudimentary yet slightly more effective method of steering is a proportional controller. In

proportional steering control an error angle is calculated between the vehicle and a desired

location on the race path, a set distance in front of the vehicle. Figure 9 shows the error angle

θ, where the red dot is the desired location with reference to the vehicle coordinate frame.

Figure 9: Proportional Steering Error Angle

The steering angle δ is then calculated by multiplying error angle θ by a gain constant Kp as

per Equation 1. This method may prove useful in development stages, however, will not

result in a competitive autonomous vehicle.

Equation 1: Proportional Steering Control Equations

𝜃 = atan (
𝑥ௗ௘௦௜௥௘ௗ

𝑦ௗ௘௦௜௥௘ௗ
)

δ = 𝐾௣ ∗ 𝜃

Alistair Thorogood

ENG4111/2 Research Project Page 29 of 76

A more effective proportional steering controller is known as a Pure Pursuit steering

controller (Ding 2020). Pure Pursuit considers the arc required to move to the desired

location and utilises a bicycle model to determine steering angle δ. The arc is visualised in

Figure 10.

Figure 10: Pure Pursuit Steering Controller (Ding 2020)

With incorporation of the bicycle model, the steering angle δ of the Pure Pursuit controller is

calculated as per Equation 2 where α is the angle between the vehicles heading and the

desired location, L is the length between the axles and ld is the distance to the desired

location.

Equation 2: Pure Pursuit Steering Controller Equation

𝛿 = arctan ቆ
2𝐿𝑠𝑖𝑛(𝛼)

𝑙ௗ
ቇ

Tuning of the pure pursuit controller is required by adjusting the look ahead distance.

MathWorks® has a Pure Pursuit library available, however implementation appears simple.

An improvement on the pure pursuit controller is the Stanley controller (Ding 2020). The

Stanley controller requires a race path with a known trajectory heading. And hence requires

an established race path to function. Opposed to the Pure Pursuit method the Stanley method

references the centre of the front axle. The heading error ψ is calculated by determining the

angle between the trajectory heading (at closest point) and vehicle heading. A cross-track

error e is the distance from the reference point to the closest point on the track. The heading

error and cross-track error are visualised in Figure 11.

Alistair Thorogood

ENG4111/2 Research Project Page 30 of 76

Figure 11: Stanley Steering Controller

A cross-track error gain Ke is applied and a minimum and maximum steering angle δmin and

δmax is considered. Equation 3 shows the final equation for the Stanley controller.

Equation 3: Stanley Steering Controller

𝛿 = 𝜓 + arctan ቀ𝐾௘

𝑒

𝑣
ቁ , 𝛿 ∈ [𝛿௠௜௡: 𝛿௠௔௫]

More advanced steering control methods exists such as predictive Stanley control, model

predictive control, and machine learning methods however a Pure Pursuit or Stanley

controller will allow sufficient autonomous development for the UniSQ team until a more

advanced method is required.

Alistair Thorogood

ENG4111/2 Research Project Page 31 of 76

2.7 Software Frameworks

Knowledge of a range of programming languages and software platforms was required as a

part of this project. It is not practical to give a detailed literature review for each, instead a

high-level overview has been provided. A familiarisation period was built in to the project

schedule to ensure competency with all the required programming languages and software

platforms.

2.7.1 Robotics Frameworks

Robotics frameworks provide a set of software libraries such as communication protocols,

sensor drivers, control algorithms and more. They have been developed to simplify the

development and maintenance of robotic systems.

There are a range of robotics frameworks available such as NVIDIA Isaac, Orocos (Open

Robot Control Software) and YARP (Yet Another Robotics Platform) and more. However,

Robot Operating System (ROS) is the current industry standard, being the most used and

most supported with the largest active community. ROS is required for startup and safety

protocols within the formula student competition and is the obvious choice of robotics

frameworks for this project.

ROS is an open-source robotics middleware suite developed for robot communication and

control. There are many different ROS distributions (versions) available, for this project

ROS2 Humble will be used as it is the latest non-development distribution and is compatible

with Ubuntu 22.04. There is a dedicated ROS2 documentation and tutorial that will be used

for familiarisation (ROS n.d.).

Although ROS2’s functionality includes debugging, monitoring, visualisation and more the

main functionality used in the development of an autonomous vehicle will be ROS2

communications. To understand ROS2 communications an understanding of; workspaces,

packages, nodes, topics, messages, and services is required.

The root workspace for ROS2 projects is defined as a ‘workspace’ a single workspace will be

created for this thesis project. Within the workspace are ‘packages,’ each package is an

individual unit of software allowing the overall code to be developed modularly with

structured organisation. Each package should have a defined purpose for example perception,

mapping, path planning and control will all be separate packages.

Alistair Thorogood

ENG4111/2 Research Project Page 32 of 76

Within a package can be a single or multiple ‘nodes’ each node is designed to be a processing

algorithm designed for a specific task. A publish/subscribe model is utilised for

communication channels known as ‘topics.’ A node can subscribe to a topic and receive

‘messages,’ alternatively a node can publish to a topic and send messages. As an example, a

single node can be developed to read the LiDAR sensor and publish a LiDAR point cloud

message. A separate node will read the LiDAR message, perform computations, and publish

known traffic cone locations.

Nodes can subscribe to any open ros2 topic allowing communications between different

packages and even different workspaces. As per Figure 12 many nodes can subscribe/publish

to the same topic/s allowing one-to-many, many-to-one, and many-to-many communications.

Each message is required to have a defined data structure to match the topic to which it is

being published. It is also important to note that. For further information refer the referenced

ROS2 documentation (ROS n.d.).

Figure 12: ROS2 Communications (ROS n.d.).

2.7.2 Visualisation Tools

Various visualisation tools will be utilised to assist with algorithm creation, testing and

optimisation. These tools offer valuable capabilities for visualising data, analysing

performance, and gain insight into system behaviour.

One widely adopted visualisation tool is MATLAB, a programming language developed and

owned by MathWorks. MATLAB provides a suite of functions and libraries that facilitate

algorithm development and analysis. Additionally, MATLAB benefits from standardized

documentation and tutorials, contributing to its widespread adoption in the academic and

industrial domains (MathWorks n.d.).

Alistair Thorogood

ENG4111/2 Research Project Page 33 of 76

Another popular visualisation tool is Matplotlib, a plotting tool in the python language.

Matplotlib is widely used for data visualisation in software development projects and is a

viable open-source alternative to MATLAB. The Matplotlib community offer and maintain a

range of tutorials and resources to help users learn and utilise the libraries effectively

(matplotlib n.d.).

Another visualisation tool likely to be used within this research project is ROS visualisation

package RViz. RViz is ROS graphical interface and is an open-source 3D visualisation

environment. RViz is supported by ROS community, there is a range of tutorials and

documentation available on the ROS website (ROS n.d.). It is important to note that RViz is

not currently fully compatible with ROS2, and this may result in issues or crashes.

These visualisation tools are the most common for robotic/autonomous development and will

be utilised throughout the project to assist with algorithm creation, testing and optimisation.

2.7.3 Git / Software Storage / Version Control

Effective software storage and version control are crucial for any software development

project. For this project it will be a critical step in meeting Project Aim 3: Establish UniSQ

FSAE Autonomous Development Platform. A software storage platform should allow for

software back-up to prevent loss of work if there is an issue with the local system. A version

control system should allow collaboration between multiple team members, ability to view

and revert to previous versions and more. There are various version control systems including

SVN and Mercurial however Git is by far the most widely used. Figure 13 shows a survey

completed by software developers, showing more than 90% of developers are using Git for

software storage and version control. As a result of this Git was the chosen software storage

and version control system for this project.

Figure 13: Version Control Survey (Donovan 2023)

Alistair Thorogood

ENG4111/2 Research Project Page 34 of 76

Git is an open-source distributed version control system that allows multiple developers to

work on the same codebase at the same time. Git provides a record of all changes made to the

codebase, allowing for easy tracking and identification of bugs and issues. Additionally, Git

allows for collaboration and easy integration of code changes from multiple developers. To

store the Git repository, the USQ Student Gitea instance (Gitea n.d.) was used.

Familiarisation with Git and Gitea will be essential for version control and future

collaboration.

2.7.4 Operating Systems

An operating system is the software program that allows users to interact with computing

hardware. The key functions of an operating system are hardware management, process

management, memory management, file system management, device management and user

interface. An operating system is required for any computing device, however, for the

purpose of this research project only personal computer (PC) operating systems are relevant.

There are many different operating systems available for PC’s including windows, Linux,

macOS etc. The simulator and ROS2 require a Linux based operating system. Linux

operating systems come in a range of different distributions however Ubuntu is the only

distribution supported by the simulator and was used for this project. The report writing, and

Gantt chart software used require a windows operating system.

It is possible to have both windows and ubuntu operating on the same PC, this is known as

dual-booting (Hoffman 2014). Dual-booting requires partitioning the PC hard drive into two

separate partitions. This allows one part of the hard drive to be devoted to windows and

another part of the hard drive to be devoted to Linux.

2.7.5 Programming Languages

The selection of programming languages in any software development project plays a crucial

role in achieving the desired outcomes. For autonomous vehicle development, various

programming languages are utilised to address different aspects of the project.

In order to work with the visualisation tools, a solid understanding of both MATLAB and

Python languages is required. These languages offer powerful capabilities for visualising data

and analysing performance, making them valuable tools for this project.

Alistair Thorogood

ENG4111/2 Research Project Page 35 of 76

For robotics frameworks, a combination of C++ and Python is commonly used. C++ is

preferred for performance-critical tasks, while Python allows for rapid prototyping and

algorithm development. These languages ensure compatibility with existing frameworks and

benefit from extensive resources and community support.

Knowledge of shell scripting is essential for utilising the Linux terminal.

The simulator supports python integration and ROS2 communications. Proficiency in python

and creating ROS2 packages with both python and C++ will be required for this project.

Where possible C++ will be selected as the primary language to maintain standardisation and

ensure optimal performance across USQ FSEA projects. While lacking standardised

documentation, online tutorials and guides are available for learning and development

(cplusplus n.d.) (W3Schools n.d.).

Alistair Thorogood

ENG4111/2 Research Project Page 39 of 76

3.6 Assumptions and Limitations

All work completed within this project was done with the intention of being able to utilise the

software on a real-world FSAE vehicle. It is important to note some of the limitations of the

simulator and the assumptions used which may present challenges during real-world

integration.

Computing performance is a possible limitation of the simulator development. All computing

was done on the authors PC which may outperform or underperform available computational

hardware on the vehicle. Testing will be required on the vehicle hardware prior to integration.

Performance optimisation including methods such as parallel processing may be required to

ensure hardware is compatible with autonomous software.

Sensor noise and imperfect sensor readings is another important consideration. The simulator

generates a noise for GPS, GSS and IMU sensors however this may not represent real-world

sensor noise. Imperfect real-world sensor readings such as variations in ground height due to

grass or other imperfections may impact autonomous software functionality. Testing and

parameter adjusting will be required to overcome this.

Finally, the simulator vehicles dynamic model may not accurately represent the dynamics of

the UniSQ race teams’ vehicle. Testing and comparison between the simulator dynamics and

the real-world vehicle dynamics will be required during integration.

Alistair Thorogood

ENG4111/2 Research Project Page 40 of 76

4 Autonomous Software Development
The detailed methodology, results and discussion will be organised under the heading of

"Autonomous Software Development". Each major step of the software development process

has been divided into separate subheadings. This structure allows for a clear presentation of

the methodology used, the obtained results, and the discussion of any necessary adjustments

or customisations made to meet the project requirements.

4.1 Simulator Setup

4.1.1 Design & Methodology - PC Upgrades

The first phase of the simulator setup was to upgrade the PC to meet the required

specifications of the simulator as per Table 6. The GPU, RAM and memory are modular

components designed to be easily replaced. The power source was unplugged and each of the

components was replaced.

The upgraded components were found to sufficiently run the simulator however, the GPU

appeared to overheat after approximately 2 minutes of simulator run time. The PC case was

removed and an external 12v fan used for external cooling. Figure 14 Shows the upgraded PC

components.

Figure 14: Upgraded PC Components

Alistair Thorogood

ENG4111/2 Research Project Page 41 of 76

4.1.2 Design & Methodology - Operating System (Linux Installation)

A Linux operating system was required to be installed on the PC to run ROS2 and the

simulator. It was decided to install the latest fully supported version of Linux Ubuntu 22.04.

Initially the PC’s original hard drive was partitioned and Linux was installed alongside

windows as a dual boot.

The installation process provided in the Ubuntu installation documentation was followed step

by step to complete the installation (Ubuntu n.d.).

After several crashes of Linux requiring reboot and a redownload of the simulator it was

decided to purchase an additional hard drive and install Linux as the primary operating

system on the PC. This required an adjustment to the resources required in Table 6 and the

replacement of the modular hard drive.

After installing Ubuntu 22.04 as the primary operating system the PC functioned as expected

and no further re-formats were required. It is expected this is a symptom of the PC being used

and a dual boot may still be a preferred option for future projects on a different PC.

4.1.3 Design & Methodology - Running the Simulator

Initially the version of the simulator (V2.1.0) was not compatible with Ubuntu 22.04. This

was a result of a remote procedure call server mismatch, and was fixed with the V2.2.0

update completed by the Formula Student Simulator community (Formula-Student-

Driverless-Community 2022).

There are several required applications and extensions for the simulator to run on a new

Ubuntu 22.04 install. A short cheat sheet has been developed for future FSAE students to

reference. Refer Appendix A4 - Running the Simulator – Cheat Sheet for details on running

the simulator.

4.1.4 Design & Methodology – Software Storage & Version Control

At the start of the project a Git repository was created for the ros2 workspace. This will

provide backup in the event of local PC issues and allow for future work and collaboration.

At the time of writing access to USQGit is not available and the project has been backed up

on the authors GitHub account.

Section 5 summarises the git repository at completion of the project. The link for the git

repository is available in section 6.2.

Alistair Thorogood

ENG4111/2 Research Project Page 43 of 76

4.1.6 Conclusion

The result of the simulator set up was eventually successful, with the simulator running on

the upgraded PC. Figure 17 shows a screenshot of the simulator running successfully.

Figure 17: Simulator Running

Upgrading the PC and successfully running the preferred simulator satisfied Project Aim 1:

Set up and Test Simulation Environment, by meeting the three objectives:

1. Research available simulation software and determine if existing simulators exist.

2. Determine preferred simulator from existing/new solutions.

3. Develop/Install and trial simulation environment.

Creation of Git repository also partly satisfied Project Aim 3: Establish UniSQ FSAE

Autonomous Development Platform, by meeting objective 1. Establish a version control and

collaborative repository. Development of Appendix A4 - Running the Simulator – Cheat

Sheet is also a contribution to objective 2. Compile all completed objectives, algorithms, and

relevant documentation into a handover package.

Alistair Thorogood

ENG4111/2 Research Project Page 44 of 76

4.2 Complete a Basic Lap of Simulation Track

To be able to design and implement effective autonomous vehicle algorithms the car first

must be able to drive a lap of the track. This can either be done manually with keyboard

controls or a basic autonomous control algorithm can be developed. It was decided a basic

control algorithm will be better suited for repetitive testing and to provide a benchmark lap

time for all further design stages. The simulator repository is provided with Python examples

that will complete a lap of the track.

4.2.1 Current State Analysis - Provided python example (simulator repository)

The provided example used a rudimentary bang-bang control. Simply if there are more traffic

cones on the left of the vehicle turn 30% left and if there are more traffic cones on the right of

the vehicle turn 30% right. The example attempted to maintain a constant vehicle speed,

simply applying the throttle if below this speed. In the python example a constant speed of

4 m/s was maintained.

As it was decided to use C++ and ROS2 for all software design tasks the first task was to

replicate the supplied python examples in C++. While this effectively completed a lap of the

track it was slow and erratic method of control that would provide challenges for further

autonomous development.

To improve performance of the benchmark lap while maintaining basic operation it was

decided to implement a basic path planning algorithm and proportion steering control. The

vehicle speed control remained as per the python example.

4.2.2 Design & Methodology – Basic Path Planning

A typical path planning algorithm would output a series of x & y coordinates detailing the

entire race path. From this race path a desired location for the vehicle can be extracted, this

would either be a point closest to the vehicle or a set distance in front of the vehicle.

Development of a race path is only possible with vehicle localisation and track mapping

which had not yet been completed. To overcome this a simplified path planning algorithm

was developed with a desired location calculated by averaging the closest four traffic cones.

The flowchart in Figure 18 outlines the path planning process and the orange dots in Figure

19 visualise the desired location. Noting this simplification does not allow for throttle and

braking control development as a race path with velocity profile would.

Alistair Thorogood

ENG4111/2 Research Project Page 45 of 76

Figure 18: Basic Path Planning Flowchart

Two common errors were found with this path planning method, at times there are less than

four visible traffic cones and the traffic cones not evenly being perceived on the LHS and

RHS of the track. Figure 19 show the desired location working correctly (left) and the errors

where the cones are not evenly placed on LHS and RHS (centre and right).

Figure 19: Desired Location Errors

To overcome this simple error checking was implemented. If less than four traffic cones were

detected the desired location was not updated. The principle that the desired location should

be in the middle of the track and hence not within a certain proximity of a traffic cone was

utilised to remove remaining errors. Figure 20 shows the error radius around the traffic cones

with the desired location in the correct position (left) and where the cones are not evenly

placed on LHS and RHS (centre and right). If the desired location was within one metre of a

traffic cone it was not updated.

Alistair Thorogood

ENG4111/2 Research Project Page 46 of 76

Figure 20: Desired Location Error Radius

4.2.3 Design & Methodology – Basic Proportional Steering

With a desired location available a proportion steering control was implemented based off the

angle between the vehicle and the desired location as per section 2.6.. Simply the steering

output was proportional to the angle to the desired location with a gain value of Kp. Kp was

roughly tuned by trial and error to Kp = 1.5.

It would have been possible to further optimise this parameter or introduce methods such as

variability with vehicle speed, however, an improved steering algorithm such as Pure Pursuit

or Stanley controller are expected as future work once a race path is available.

The vehicle speed control remained the same as the supplied python example, with a

maximum constant speed maintained. The maximum speed was optimised by trial and error

as per the results.

4.2.4 Results & Discussion

The most important result of this section is qualitative question, was basic self-driving

demonstrated? A completion of multiple laps of the race track has demonstrated basic self-

driving and this section was a success.

To further analyse the results the lap time was used as a quantifiable criterion, considering

traffic cone (2 second) and off course (10 second) penalties as per the formula student rules

(FSG 2023). This was a secondary criterion for further analysis and hence, significant time

was not spent optimising steering and throttle gain or other parameters. More advanced

algorithms will make these parameters and the associated algorithms redundant in relation to

overall autonomous development.

Alistair Thorogood

ENG4111/2 Research Project Page 48 of 76

4.2.5 Conclusion

The Development of the basic lap algorithm was a success and will allow further

development of the autonomous vehicle control. The benchmark lap time was improved from

160.37 s from the provided example to 113.17 s.

Upgrading the PC and successfully running the preferred simulator satisfied Project Aim 2:

Demonstrate Basic Self-Driving, by meeting the three objectives:

1. Research, develop and test a basic perception algorithm.

2. Research, develop and test a basic Motion Estimation and Mapping algorithm.

3. Research, develop and test a basic vehicle control algorithm.

There are two Ros2 packages created for this section of the design:

1. autonomous_example – the C++/Ros2 replication of the provided example.

The autonomous_example can be run without a perceived traffic cone graph with the

autonomous_example.launch.py launch file or with a perceived traffic cone graph

with the graph_autonomous_example.launch.py launch file.

2. basic_lap – this includes the improved path planning algorithm and the proportional

steering control.

the basic_lap can be run without a perceived traffic cone graph with the

basic_lap.launch.py launch file or with a perceived traffic cone graph with the

graph_basic_lap.launch.py launch file.

Alistair Thorogood

ENG4111/2 Research Project Page 49 of 76

4.3 Perception (LiDAR)

4.3.1 Current State Analysis – Perception Algorithm

The perception algorithm supplied with the simulator repository is a very basic LiDAR based

algorithm. The LiDAR is required to be programmed with a single laser with a vertical field

of view of 0o, 500 points per scan, 10 rotations per second and 7m range. This does not

represent a real-world LiDAR and has inherent problems with improved algorithm

development.

The 7m range of the supplied perception algorithm is not suitable to autonomous race

vehicles operating at speed. Formula student vehicles are capable of speeds up to 30m/s this

would result in a perception forecast of only 0.23s. The biggest problem with the supplied

perception algorithm is the single laser with a 0o field of view. During cornering the

centrifugal force results in a body roll, this results in the laser picking up sections of the

ground on the down angle side of the vehicle. The basic algorithm then groups the ground

points and assumes them as traffic cones. Figure 21 shows a screenshot of this error, as the

vehicle rolls towards the outside of the corner the ground is picked up as a row of traffic

cones.

Figure 21: Simulator Example Perception Error

Due to this it was required to improve the perception algorithm before developing mapping

and path planning. The focus of the perception improvements was to align the simulation to

the available UniSQ FSAE teams VLP-16.

The datasheet for the VLP-16 was referenced and the simulator LiDAR properties were

modified to match. VLP-16 set up and properties are further detailed in section 4.3.2.

Alistair Thorogood

ENG4111/2 Research Project Page 52 of 76

Considering the perception update rate and horizontal resolution a LiDAR frequency of 10
Hz was chosen. The final settings for the simulator LiDAR are as per Figure 23.

Figure 23: Improved Perception LiDAR settings

4.3.3 Design & Methodology – Perception Algorithm

With the simulator LiDAR replicating the VLP-16, a more advanced LiDAR perception

algorithm was required. A bachelor thesis by Daniel Storc at the Czech Technical University

in Prague ‘Detection of Traffic Cones from Lidar Point Clouds’, was utilised as a guide for

the development of the perception algorithm (Storc 2022).

First a main code structure was developed with four sub functions as per the flowchart in

Figure 24.

Figure 24: Perception Flowchart - Main Code

Alistair Thorogood

ENG4111/2 Research Project Page 53 of 76

Perception Function 1: Filter Invalid Points

The primary purpose of Perception Function 1 is to remove all the invalid LiDAR points, that

is points that did not reflect off an object within the detection range and hence return a zero

value. As per the flowchart in Figure 25 a for loop is set up for each of the points within the

point cloud, the x, y & z coordinates are extracted from the point cloud, and if the x, y & z

values do not equal zero the points are added to the points array.

Figure 25: Perception Flowchart - Filter Invalid Points

Perception Function 2: Ground Plane Equations

A ground plane, in the form of Ax + By + Cz + D = 0, can be fit to three points P1 = [x1, y1,

z1], P2 = [x2, y2, z2], P3 = [x3, y3, z3] by first calculating two vectors (u, v) as per Equation

4.

Equation 4: Calculating Two Vectors for Ground Plane Detection

𝑢 = [𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1]

𝑣 = [𝑥3 − 𝑥1, 𝑦3 − 𝑦1, 𝑧3 − 𝑧1]

The cross product of these two vectors then provides a vector (n) normal to the plane as per

Equation 5.

Equation 5: Normal Vector Calculation for Ground Plane Detection

𝑛(𝑥) = 𝑢(𝑦) ∗ 𝑣(𝑧) − 𝑢(𝑧) ∗ 𝑣(𝑦)

𝑛(𝑦) = 𝑢(𝑧) ∗ 𝑣(𝑥) − 𝑢(𝑥) ∗ 𝑣(𝑧)

𝑛(𝑧) = 𝑢(𝑥) ∗ 𝑣(𝑦) − 𝑢(𝑦) ∗ 𝑣(𝑥)

Alistair Thorogood

ENG4111/2 Research Project Page 54 of 76

Parameters A, B & C of the ground plane can then be calculated by normalising the normal

vector. The normal vector is the normalised by dividing the vector by its magnitude as per

Equation 6.

Equation 6: Parameter A, B & C for Ground Plane Detection

𝑚𝑎𝑔 = ඥ𝑛(𝑥)ଶ + 𝑛(𝑦)ଶ + 𝑛(𝑧)ଶ

𝐴 =
𝑛(𝑥)

𝑚𝑎𝑔
; 𝐵 =

𝑛(𝑦)

𝑚𝑎𝑔
; 𝐶 =

𝑛(𝑧)

𝑚𝑎𝑔

Parameter D of the ground plane can then be calculated as the distance from the plane to the

origin (D) as per Equation 7.

Equation 7: Parameter D for Ground Plane Detection

𝐷 = −(𝐴 ∗ 𝑥1 + 𝐵 ∗ 𝑦1 + 𝐶 ∗ 𝑧1)

Perception Function 2: Find Ground Plane

The primary purpose of Perception Function 2 is to fit a ground plane to the valid points

returned from Perception Function 1. This is the most complex and computationally intensive

section of the perception algorithm. The intent of the ground plane function is to detect a

ground plane by sampling points of the ground plane, not by fitting a plane to all of the valid

points. As a result of this typical methods of fitting ground planes such as the method of least

squares are not appropriate. Instead a random sample consensus algorithm was used, which is

a method to estimate a model using data that contains outliers (Storc 2022).

It is safe to presume most of the valid points are on the ground plane and a small portion of

points will be traffic cones, walls, and other objects. The ground plane function first takes a

random sample of 300 points from the valid points. From this sample a random sample of

three points is taken and a ground plane is calculated using the equations in Perception

Function 2: Ground Plane Equations above.

Typical random sampling consensus algorithms use the number of data points that are inliers

as criteria for model suitability. A slight variation has been implemented with the sum of

errors between the remaining 297 points and the ground plane being used as the criteria. The

error between the ground plane and the remaining points is calculated using

Equation 8: Calculating Distance to Plane for Ground Plane Detection

𝑒௖௨௠ = ෍
𝐴 ∗ 𝑥(𝑖) + 𝐵 ∗ 𝑦(𝑖) + 𝐶 ∗ 𝑧(𝑖) + 𝐷

√𝐴ଶ + 𝐵ଶ + 𝐶ଶ

௜

଴

Alistair Thorogood

ENG4111/2 Research Project Page 55 of 76

If the cumulative error (ecum) is less than a determined error limit the ground plane is

confirmed. If ecum is greater than elim the three plane points are re-sampled. This is repeated up

to an iteration limit, if the iteration limit is reached without ecum < elim the iteration with the

smallest cumulative error is used.

Figure 26 below shows a flow chart of Perception Function 2: Find Ground Plane.

Figure 26: Perception Flowchart - Find Ground Plane

Perception Function 2: Determination of error limit elim

A critical parameter of the perception algorithm is the error limit elim. As per above elim is

used to confirm the ground plane compared to the cumulative error ecum.

ecum will vary depending on the number of traffic cones in perception and the height of the

perceived cones. It was assumed there would be a step change in ecum if the sampled point

was not on the ground plane, as all 300 sample points will be a considerable distance away

from the plane. This step change would be the ideal value to set elim.

Alistair Thorogood

ENG4111/2 Research Project Page 56 of 76

The algorithm was run over 3000 times while the vehicle moved around the track, and the

error was recorded. The graph in Figure 27 shows the expected step change at a cumulative

error of approximately 4m, where the remaining outliers are assumed to be incorrect sample

points. Due to this an elim = 5m was determined for simulation, however this will likely need

to be re-visited for integration into a real-world vehicle due to variables such as uneven

ground surface not present on the simulator.

Figure 27: Cumulative Error Scatter Plot

Results in section 4.3.4 found on average a 98.2% chance a selected point is a ground point.

It can then be calculated the probability of one of the three plane points landing on a traffic

cone is 5.3%. In this test 5.5% of points are above ecum of 5 which further verifies elim = 5m.

Perception Function 3: Filter Ground Points and Air Points

The primary purpose of Perception Function 3 is to remove points that are close enough to

the ground plane to be considered ground points (>Lower Limit) and too far away from the

ground to be a traffic cone (>Upper Limit). Given the largest traffic cone has a height of

450mm an Upper Limit of 0.5m was implemented. A Lower Limit of 0.02m was found

suitable for the simulator, however this may need to be adjust with a real-world vehicle.

As per the flowchart in Figure 28 the Filter Ground and Air Points function simply iterated

through each point, measured the distance to the ground plane using Equation 8 from

Perception Function 2.

Alistair Thorogood

ENG4111/2 Research Project Page 57 of 76

Figure 28: Perception Flowchart - Filter Ground & Air Points

Perception Function 4: Cluster and Filter Points

The primary purpose of Perception Function 4 is to cluster the remaining valid points, filter

the clusters based on its characteristics and publish cone location based on average cluster

locations.

To cluster the point the distance between each point was calculated and if within

cluster_threshold the points were clustered. The Dimension of the largest traffic cone were

utilised to determine a cluster_threshold of 0.45 m.

The clusters were then filtered on two criteria; if two clusters are too close to be a traffic cone

and if a single cluster is too large to be a traffic cone. If two clusters were found to be within

0.5m of each other they were determined too close to be traffic cones and were not added to

the final Cones message. Similarly, if a single clustered varied in dimension by more than

0.5m it was determined to be too large to be a traffic cone and not added to the final cones

message.

For the remaining traffic cones each point within the cluster was averaged to provide an

traffic cone location. It is important to note that the LiDAR only perceives one side of the

traffic cone and as such there will be a tolerance of up to 0.2m depending on which side of

the cone is viewed. Figure 29 shows a flowchart of Perception Function 4 Cluster and Filter.

Alistair Thorogood

ENG4111/2 Research Project Page 58 of 76

Figure 29: Perception Flowchart - Cluster & Filter

Alistair Thorogood

ENG4111/2 Research Project Page 59 of 76

4.3.4 Perception Results & Discussion – Development

A LiDAR frequency of 10 Hz was chosen in section 4.3.2, it would be expected that the

perception algorithm needs to run at a significantly less time than 100 ms for success.

The perception algorithm was run over 2000 times while the vehicle drove around the track,

and the duration was timed. The box and whisker plots in Figure 30 show that the perception

algorithm run for between 1 ms and 14 ms with few outliers. No further optimisation needs to

be completed on the perception algorithm at this stage.

Figure 30: Perception Algorithm Run Time Tests

Testing was completed on the number of LiDAR points at each step of the algorithm. On

average it was found of the 14400 LiDAR points 50% (7200) were found to be valid, 0.9%

(135) were remaining after ground plane removal, and an average of 14 traffic cones were

perceived. The box and whisker plots in Figure 31 show the results of this testing.

Figure 31: LiDAR Points Results

Alistair Thorogood

ENG4111/2 Research Project Page 60 of 76

A point_graph python ROS2 node was created to visualise the point cloud data and ground

plane removal. Figure 32 Shows the 3D representation of the LiDAR points before and after

ground plane removal.

Figure 32: Visualisation of Ground Plane Removal

4.3.5 Perception Results & Discussion – Performance

The range of the Perception has increased from 7m to greater then 20m, the accuracy has

improved dramatically with no noticed false positives. Figure 33 and Figure 34 show the

function of the updated perception algorithm.

Figure 33: Improved Perception Algorithm Screenshot

Alistair Thorogood

ENG4111/2 Research Project Page 62 of 76

4.3.6 Conclusion

With Project Aim 2: Demonstrate Basic Self-Driving already satisfied, the development of an

effective and robust perception algorithm went above the aims of this project. This will

accelerate the development of the UniSQ teams’ autonomous software.

Aligning the perception algorithm with the VLP-16 LiDAR available to the UniSQ team will

hopefully improve integration of the autonomous software into the real-world vehicle.

The LiDAR based perception exceeded expectations within a simulated environment,

allowing development of further autonomous driving processes. Testing will need to be

completed on a real-world vehicle to determine the requirement of future perception

improvements. These improvements could include the tuning of filtering parameters such as

cluster size and distances discussed in section Perception Function 4: and the ground plane

elim discussed in Perception Function 2:. The integration of camera perception is also future

work to improve the perception algorithm.

The benchmark lap time was improved from 113.17 s from the basic_lap to 82.31 s.

There was one Ros2 package created for this section of the design:

1. perception – improved LiDAR perception.

The ‘perception’ package can be run without a perceived traffic cone graph with the

perception.launch.py launch file or with a perceived traffic cone graph with the

graph_perception.launch.py launch file.

Alistair Thorogood

ENG4111/2 Research Project Page 65 of 76

5 Contributions – Git Repository
All contributions to the UniSQ race team created within this project have been updated in the

git repository that was created as part of the simulator setup in section 4.1.4. Throughout the

autonomous software development, the git repository has been maintained and updated with a

README file summarising the repository as per below.

The link for the git repository is available in section 6.2.

autonomous_formula_student

Created by Alistair Thorogood 2023 for the requirements of ENG4111 & ENG4112 Research
Project. This Repo is a ros2 workspace designed to work with the formula student driverless
simulator.
This repo currently contains four packages, 9 nodes and 6 launch files for autonomous
vehicle control:

 autonomous_example (a c++/ros2 copy of the python example provided with the
simulator)

o autonomous_example.launch.py
o graph_autonomous_example.launch.py
o car_controller.cpp
o cone_id.cpp
o steering_angle.cpp
o throttle_pos.cpp

 basic_lap (an improved version of autonomous_example with path planning &
proportional steering)

o basic_lap.launch.py
o graph_basic_lap.launch.py
o steering_angle.cpp

 graphing (a package for graphing traffic cone locations)
o cone_graph.py
o map_graph.py
o point_graph.py

 perception (improved LiDAR perception)
o perception.launch.py
o graph_perception.launch.py
o cone_id.cpp

python_race_path was utilised for mapping the race track outside of ROS and may be
utilised for future path planning development. It is not a part of the ROS workspace

Alistair Thorogood

ENG4111/2 Research Project Page 66 of 76

6 Conclusion
This project set out to achieve three project aims; Set up and Test Simulation Environment,

Demonstrate Basic Self-Driving, and Establish UniSQ FSAE Autonomous Development

Platform. Each of these aims were completed satisfactorily and additionally a robust LiDAR

perception algorithm was developed.

After evaluation of a range of existing Formula Student simulators the Formula Student

Driverless simulator was chosen, installed, trialled, and utilised for the development of basic

self-driving. This was determined as an appropriate simulator for autonomous development.

A cheat sheet was developed to assist future students with installation and operation of the

simulator.

Basic self-driving was demonstrated utilising the efficient C++ programming language and

ROS2 robotics framework. Several ROS2 nodes were created to perceive traffic cones,

determine steering angle, determine throttle position, and control the vehicle. The initial lap

time of the basic self-driving software was 160.37s this was improved to 82.31s throughout

the development.

A UniSQ FSAE Autonomous Development Platform was created in the form of a git

repository. The git repository contains the ROS2 workspace with all nodes for basic self-

driving, improved perception and visualisation tools used throughout the development. A

ReadME file was developed to assist students with utilisation of the repository for further

autonomous development.

Above the aims of this project, an effective and robust LiDAR based perception algorithm

was developed based off the Velodyne VLP-16 LiDAR currently available to the UniSQ

team. This allowed for integration into a real-world vehicle and improved the simulated

perception range from 7m to greater than 20m allowing for future autonomous development

in motion estimation and mapping.

6.1 Future Work

Substantial work remains to complete a competitive autonomous software within a simulation

environment. The scope of developing a real-world autonomous vehicle is too large to detail

in this conclusion, it will require a multi-disciplinary team of student engineers to complete.

Alistair Thorogood

ENG4111/2 Research Project Page 67 of 76

To complete a competitive autonomous software motion estimation and mapping will need to

be developed. This will involve but is not limited to; implementation of SLAM,

determination of a race path and determination of a velocity profile for the race path.

Advanced vehicle control will also be required to be developed. Control methods such as

Pure Pursuit, Stanley Controller and Model Predictive Control will need to be implemented

once motion estimation and mapping has been developed.

6.2 Links

Code Repository: https://github.com/ThoroMech/autonomous_formula_student.git

Final Lap Video: https://youtu.be/JEwTjVRfeeU

Alistair Thorogood

ENG4111/2 Research Project Page 68 of 76

7 References
AMZ-Driverless n.d., FSSIM - Formula Student Simulator, github, https://github.com/AMZ-
Driverless/fssim>.

Behrendt, T 2017, 'Implementation of a Driving Simulator wihin a Formula Student Team',
Monash University, Monash Motorsport.

Betz, J, Zheng, H, Liniger, A, Rosolia, U, Karle, P, Behl, M, Krovi, V & Mangharam, R
2022, 'Autonomous vehicles on the edge: A survey on autonomous vehicle racing', IEEE
Open Journal of Intelligent Transportation Systems, vol. 3, pp. 458-88.

Broatch, K 2019, 'LAP TIME SIMULATION OF A FORMULA STUDENT RACING
CAR'.

cplusplus n.d., C Plus Plus Tutorials, viewed 08 October 2022, <https://cplusplus.com/doc/>.

Ding, Y 2020, 'Three Methods of Vehicle Lateral Control: Pure Pursuit, Stanley and MPC'.

Donovan, R 2023, Beyond Git: The other version control systems developers use, Stack
Overflow, viewed 22 July 2023, <https://stackoverflow.blog/2023/01/09/beyond-git-the-
other-version-control-systems-developers-
use/#:~:text=This%20year%2C%20we%20asked%20what,(Apache%20Subversion)%20and
%20Mercurial.>.

Doyle, DA, Cunningham, G, White, G & Early, J 2019, Lap time simulation tool for the
development of an electric formula student car, 0148-7191, SAE Technical Paper.

Edinburgh-University n.d., eufs_sim - ROS/Gazebo simulation packages for driverless FSAE
vehicles, GitLab, viewed 09 August 2023, <https://gitlab.com/eufs/eufs sim>.

Formula-Student-Driverless-Community 2022, Required Process [fsds/ros_bridge-2] has
died! #353, viewed 24 May 2023, <https://github.com/FS-Driverless/Formula-Student-
Driverless-Simulator/issues/353>.

Formula-Student-Driverless-Community n.d., Formula Student Driverless Simulator,
https://fs-driverless.github.io/Formula-Student-Driverless-Simulator/v2.1.0/>.

FSG 2022a, FSG Competition Handbook 2023, Formula Student Germany.

FSG 2022b, Results FSG 2022, Formula Student Germany, viewed 24 September 2022,
<https://www.formulastudent.de/fsg/results/2022/>.

FSG 2023, Formula Student Rules 2023, Formula Student Germany.

FSG n.d., Formula Student Germany International Design Competition, viewed 01 May
2023, <https://www.formulastudent.de/teams/fsd/>.

Gitea n.d., USQ Student Git, https://139.86.55.220/>.

Hoffman, C 2014, Dual Booting Explained: How You Can Have Multiple Operating Systems
on Your Computer, How To Geek, viewed 22 July 2023,

Alistair Thorogood

ENG4111/2 Research Project Page 69 of 76

<https://www.howtogeek.com/187789/dual-booting-explained-how-you-can-have-multiple-
operating-systems-on-your-computer/>.

Kabzan, J, Valls, MI, Reijgwart, VJ, Hendrikx, HF, Ehmke, C, Prajapat, M, Bühler, A,
Gosala, N, Gupta, M & Sivanesan, R 2020, 'Amz driverless: The full autonomous racing
system', Journal of Field Robotics, vol. 37, no. 7, pp. 1267-94.

Kritayakirana, K & Gerdes, JC 2012, 'Autonomous vehicle control at the limits of handling',
International Journal of Vehicle Autonomous Systems, vol. 10, no. 4, pp. 271-96.

Kuruvilla, T 2022, 'Path Planning for Formula Student Driverless Cars Using Delaunay
Triangulation', Student Lounge.

Large, NL 2020, 'A comparison of different approaches to solve the SLAM problem on a
Formula Student Driverless race car', Karlsruhe Institute of Technology.

MathWorks n.d., MATLAB Help Center, viewed 08 October 2022,
<https://au.mathworks.com/help/matlab/getting-started-with-matlab.html>.

matplotlib n.d., Matplotlib: Visualization with Python, viewed 24 May 2023,
<https://matplotlib.org/>.

Monash-Motorsport 2022, Monash Motorsport defends its title at FSAE-A 2022, viewed 01
May 2023, <https://www.monash.edu/engineering/about/news/articles/2022/monash-
motorsport-defends-its-title-at-fsae-a-2022>.

Nvidia n.d., NVIDIA PhysX SDK 3.4.0 Documentation - User Guide,
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.
html>.

Okunsky, M & Nesterova, N 2019, 'Velodyne LIDAR method for sensor data decoding', IOP
Conference Series: Materials Science and Engineering, IOP Publishing, p. 012018.

Ovenden, S 2019, 'Perception Integration for an Autonomous Vehicle', Monash University,
Monash Motorsport.

ROS n.d., ROS Getting Started, viewed 08 October 2022, <https://www.ros.org/blog/getting-
started/>.

SAE 2022a, Formula SAE Rules 2023, SAE Australasia.

SAE 2022b, FSAE-A Autonomous Vehicle Addendum, SAE Australasia.

Slomoi, A 2018, 'Path Planning and Control in an Autonomous Formula Student Vehicle',
Monash University, Monash Motorsport.

Storc, D 2022, 'Detection of Traffic Cones from

Lidar Point Clouds', Bachelor Thesis thesis, Czech Technical University in Prague.

TUMFTM, AHLHFC 2021, global_racetrajectory_optimization, GitHub.

Alistair Thorogood

ENG4111/2 Research Project Page 70 of 76

Ubuntu n.d., Install Ubuntu desktop, viewed 24 May 2023,
<https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview>.

Velodyne 2019, VLP-16 User Manual, Velodyne LiDAR.

Velodyne n.d., What is lidar?, Velodyne Lidar, viewed 02 May 2023,
<https://velodynelidar.com/what-is-lidar/>.

W3Schools n.d., viewed 08 October 2022, <https://www.w3schools.com/cpp/>.

Alistair Thorogood

ENG4111/2 Research Project Page 71 of 76

8 Appendices

Appendix A1 - Project Specification

For: Bachelor of Engineering (Honours)

Title: FSAE Autonomous Control – Motion Estimation and Mapping

Major: Mechatronics

Supervisors: Craig Lobsey

Enrolment: ENG4111 – EXT S1, 2021

 ENG4112 – EXT S2, 2021

Project Aim: Develop an autonomous mapping and path planning algorithm for the

University of Southern Queensland’s formula SAE (Society of Automotive

Engineers) team, utilising a simulation environment.

Programme: Version 1, February 2023

1. Preparation:
a. Literature Review
b. Upgrade PC to meet simulator requirements
c. Create Linux Partition on PC
d. Download Simulation Software

2. Familiarisation
a. Familiarisation with Simulation Software
b. Familiarisation with ROS
c. Familiarisation with C++
d. Familiarisation with GitHub

3. Develop / Source Code to perform Basic Functions
a. Convert autonomous python examples to C++ with ROS

4. Develop Mapping and Path Planning
a. Develop discovery lap mapping algorithm and code
b. Develop path optimisation algorithm and code
c. Develop localisation algorithm and code

5. Combine and Optimise
a. Develop an overall code combining phase 4 & 5
b. Test and optimise combined code

6. Develop Software Platform
a. Create USQ Race Team USQ Student Git account
b. Set up USQ Student Git Account

7. Present and Handover
a. Prepare work for handover to USQ FSAE team
b. Present work to USQ FSAE team
c. Final Handover to USQ FSAE Team

Alistair Thorogood

ENG4111/2 Research Project Page 74 of 76

Upgrade of PC Components:

Incorrect installation/setup resulting

in damage to PC (personal property)

Control: PC components are

modular and designed for required

component replacement.

Control: Follow installation instructions and

documentation and seek support if needed

or uncertain.

 01/06/2023

Thesis project, software

development and report writing

Extended periods of time sitting

Extend periods of time looking at

screen

Control: Ergonomic office chair

currently in use.

Control: Follow good ergonomic practice

and work area setup for study use.
 01/09/2023

Utilisation of simulation in practice

This is not happening in this project,

as no car is available.

Control: Further risk assessment

will be required before utilisation of

the autonomous control software in a

real-world environment. At this stage

there are too many unknowns to

develop reasonable controls. For

this project this risk is non-existent.

No Control:

Alistair Thorogood

ENG4111/2 Research Project Page 75 of 76

Appendix A3 - Project Gantt Chart

Alistair Thorogood

ENG4111/2 Research Project Page 76 of 76

Appendix A4 - Running the Simulator – Cheat Sheet

1. Install required applications and extensions:
 Install terminator (optional)

o sudo apt-get install terminator
o Assists by being able to run multiple Linux terminals

 Install git
o sudo apt-get install git

 Install ROS2 humble
o Follow ROS2 humble documentation for install

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html
 Install visual studio (optional)

o sudo snap install code –classic
o Assists in being able to write ROS2 nodes and other code.
o Open visual studio code using: code .
o Search for and install ROS2 extension for visual studio code.

2. Install Required Extensions
 sudo apt-get install ros-humble-turtle-tf2-py ros-humble-tf2-tools ros-humble-tf-

 transformations
 sudo apt install python3-pip
 sudo apt install python3-colcon-common-extensions

3. Add source lines to .bashrc
 source /opt/ros/humble/setup.bash
 source /usr/share/colcon_argcomplete/hook/colcon-argcomplete.bash

4. Clone simulator repository to home
 cd && git clone https://github.com/FS-Driverless/Formula-Student-Driverless-

Simulator.git --recurse-submodules
5. Setup AirSim

 ~/Formula-Student-Driverless-Simulator/AirSim/setup.sh
 ~/Formula-Student-Driverless-Simulator/AirSim/build.sh

6. Download the simulator binary
 Download ZIP (fsds-v2.2.0-linux.zip) from https://github.com/FS-Driverless/Formula-

Student-Driverless-Simulator/releases
 Extrace the ZIP to downloads folder

7. Build ROS2 environment:
 cd ~/Formula-Student-Driverless-Simulator/ros2 && colcon build
 Add source to bashrc

o source ~/Formula-Student-Driverless-Simulator/ros2/install/setup.bash
8. Run simulator

 ~/Downloads/fsds-v2.2.0-linux/FSDS.sh
 F11 to remove full screen if required

9. Launch ROS2
 cd ~/Formula-Student-Driverless-Simulator/ros2
 ros2 launch fsds_ros2_bridge fsds_ros2_bridge.launch.py

10. Launch Autonomous Software

