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Abstract 
The Society of Automotive Engineers (SAE) have been running a student-based racing 

competition the Formula SAE (FSAE) since 1981, there are currently over 600 competing 

teams from universities all over the world. The competition has evolved, with the automotive 

industry, to include an electric vehicle class since 2013 and an autonomous vehicle class 

since 2017. 

This thesis project is intended to serve as an initial entry into Autonomous FSAE 

development for the UniSQ team. To achieve this, three project aims were developed and 

successfully achieved.  

Project Aim 1: Set up and Test Simulation Environment 

A range of existing Formula Student simulators were evaluated and the Formula Student 

Driverless Simulator was found to be most suitable for this project. The Simulator was 

installed, tested, and utilised for the development of basic self-driving.  

Project Aim 2: Demonstrate Basic Self-Driving 

Basic self-driving was demonstrated utilising C++ and python with the ROS2 robotics 

framework. ROS2 nodes were created for traffic cone perception, steering angle 

determination, throttle position, and vehicle control. A final lap time of 82.21 seconds was 

achieved, a significant improvement from the initial lap time of 160.37 seconds 

Project Aim 3: Establish UniSQ FSAE Autonomous Development Platform 

A git repository containing the ROS2 workspace was utilised as the development platform. 

This contained all nodes for basic self-driving, improved perception and visualisation tools 

used throughout the development.  

Above the aims of this project, an effective and robust LiDAR based perception algorithm 

was developed based off the Velodyne VLP-16 LiDAR. Using the VLP-16 LiDAR allowed 

for easier integration into a real-world vehicle. Within the simulator the perception range was 

improved from 7m to greater than 20m. The improved simulation perception allows for future 

simulated autonomous development in; motion estimation and mapping, and vehicle control.  
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Persons using all or any part of this material do so at their own risk, and not at the risk of the 
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This dissertation reports an educational exercise and has no purpose or validity beyond this 

exercise. The sole purpose of the course pair entitles “Research Project” is to contribute to the 

overall education within the student’s chosen degree program. This document, the associated 
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1 Introduction 
Racing has long served as a testing ground for new vehicle technologies. Competitions such 

as Formula 1, Indy, World Rally Championship, and many more have been pioneering 

vehicle innovation. Examples of this innovation include disc brakes, the turbocharger and 

more recently hybrid vehicle technology (Betz et al. 2022).  

In parallel, recent advancements in computing, artificial intelligence, and robotics have led to 

remarkable progress in the field of autonomous driving. As a result of this several 

autonomous racing competitions are emerging to develop and test cutting edge autonomous 

driving technologies. These competitions include Indy Autonomous Challenge, Roborace and 

more. Autonomous racing student competitions such as Formula SAE and Formula Student 

provide the foundation for which this thesis project is based. 

1.1 Formula SAE / FSAE / Formula Student 

The Society of Automotive Engineers (SAE) have been running a student-based racing 

competition the Formula SAE (FSAE) since 1981, there are currently over 600 competing 

teams from universities all over the world. The European competition is named ‘Formula 

Student’ for the remainder of the report Formula SAE, FSAE and Formula Student may be 

used interchangeably. The primary purpose of the competition is for the development of 

university students in fields such as engineering and project management. 

Over the years the competition has developed, with the automotive industry, to include an 

electric vehicle class since 2013 and a driverless vehicle class since 2017. for the remainder 

of this report the words driverless and autonomous will be used interchangeably in relation to 

vehicle control.  

The autonomous competition is relatively new. Despite being held in Europe from 2017, the 

first autonomous vehicle to meet all requirements and complete a lap of the track was the 

Monash University team in 2022 (Monash-Motorsport 2022). There have been several teams 

from Europe that have met all requirements to compete and completed the required events, in 

general these are teams with much higher budget and student participation than the current 

UniSQ team. In total there are 123 teams registered for autonomous competition, five of 

which are Australian teams (FSG n.d.). Being a student competition, some of these teams are 

willing to share their research and design after the competition year. Most of the literature 

review and guidance for this design will be a result of this shared information. 
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1.2 FSAE Autonomous Competition Rules 

Due to infancy of the FSAE autonomous competition it is currently run as a non-scored 

demonstration event including Trackdrive, Emergency Braking System Test, Inspection and 

Manual driving (SAE 2022b). The more matured European Formula Student competition 

provides a likely framework for future autonomous competition scoring with the maximum 

available points from the 2023 competition outlined in Table 1 below. 

Table 1: Formula Student Maximum Available Points (FSG 2023) 

Static Events: 
Engineering Design 150 Points 
Dynamic Events: 
Skidpad 75 Points 
Acceleration 75 Points 
Autocross 100 Points 
Trackdrive 200 Points 

Overall: 600 Points 

For the purpose of this project only the more advanced autocross and trackdrive events have 

been considered. Both these events utilise the same track, which is further outlined in section 

2.1. The autocross event consists of two single-lap runs and the use of any prior track data is 

forbidden. The Trackdrive event consists of a single 10-lap race. There is no stipulation on 

prior track data for the trackdrive event however, D2.4 states no map data is provided by the 

officials (SAE 2022b).  

1.3 Autonomous Control Software 

Autonomous control software can be categorised into three key sections, each requiring 

significant effort and expertise to develop a competitive autonomous control system. 

Completing a competitive autonomous control software will require multiple bachelor thesis 

or similar research efforts dedicated to each section. The three sections are as follows: 

1. Perception: Utilising machine/computer vision techniques to provide meaningful data 

from the vehicle’s environment. In FSAE environment this will primarily be focused 

on identifying the traffic cones that outline the track.  

2. Motion Estimation and Mapping: Localisation of the vehicle, mapping the track, and 

determining optimised racing path. These processes are essential for the vehicle to 

understand its position relative to the track and plan its trajectory accordingly. 

3. Control: Controlling the steering, acceleration, and braking parameters to direct the 

vehicle along the desired path. 
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1.4 Project Aim & Objectives 

The UniSQ team are in the process of developing a driven vehicle and have not yet made any 

progress into the autonomous competition. This thesis project is intended to serve as an initial 

entry into Autonomous FSAE development for the UniSQ team. Three project aims have 

been developed to meet this intention. 

Project Aim 1: Set up and Test Simulation Environment 

The cost and resource requirements of developing a real-world autonomous vehicle are 

currently a major hurdle to autonomous software development for the UniSQ team. A 

simulation environment offers a solution that is both cost-effective and safer compared to 

real-world testing. A simulation environment will potentially justify and pave the way to 

development of a real-world vehicle. 

This project will aim to satisfy the aim ‘Set up and Test Simulation Environment’ by 

completing the following objectives: 

1. Research available simulation software and determine if existing simulators exist. 

2. Determine preferred simulator from existing/new solutions. 

3. Develop/Install and trial simulation environment. 

Project Aim 2: Demonstrate Basic Self-Driving 

Once a simulation environment is validated the next logical step in an autonomous software 

development is to demonstrate basic self-driving behaviours. This will require a basic 

implementation of the three sections of autonomous control software being perception, 

motion estimation and mapping, and vehicle control. 

This project will aim to satisfy the aim ‘Demonstrate Basic Self-Driving’ by completing the 

following objectives within a simulation environment: 

1. Research, develop and test a basic perception algorithm.  

2. Research, develop and test a basic Motion Estimation and Mapping algorithm. 

3. Research, develop and test a basic vehicle control algorithm. 

Project Aim 3: Establish UniSQ FSAE Autonomous Development Platform 

Once a simulation environment and basic self-driving are validated there will be significant 

work remaining to develop a competitive autonomous racing software. For the benefit of the 

UniSQ race team it will be important to hand over the design and results of this project in a 

way that will allow future students to easily access, understand and utilise. 
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This project will aim to satisfy the aim ‘Establish UniSQ FSAE Autonomous Development 

Platform’ by completing the following objectives: 

1. Establish a version control and collaborative repository. 

2. Compile all completed objectives, algorithms, and relevant documentation into a 
handover package.  
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2 Literature Review 

2.1 SAE Competition 

There are four sources for competition rules and design standards. Each of these refer to and 

relate to each other. The latest available documents have been used, at the time of starting this 

project this is a mix of 2022 and 2023 resources: 

1. Formula SAE Rules 2023 (SAE 2022a). 

2. Autonomous vehicle addendum (SAE 2022b). 

3. Formula Student Rules 2023 (FSG 2023). 

4. Formula Student Germany (FSG) Handbook 2023 (FSG 2022a). 

The addendum states that the main dynamic autonomous competition will be the trackdrive 

event. Requirements of the trackdrive event are outlined in the EFS rules. A summary of the 

most applicable trackdrive requirements is shown below: 

 D8.1 The trackdrive layout is a closed loop circuit built to the following guidelines: 

o Straights: No longer than 80m 

o Constant Turns: up to 50m diameter 

o Hairpin Turns: Minimum of 9m outside diameter (of the turn) 

o Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc. 

o The minimum track width is 3m 

 D8.1.2 The length of one lap is approximately 200m to 500 m. 

 D8.2.6 After ten laps the vehicle must come to a full stop within 30m behind the 

finish line on the track and enter the finish-state described in T14.10. 

 D8.2.7 There will be no last lap signal i.e. the vehicle should count laps itself. 

 D9.1.7 a 2s penalty will apply for each traffic cone knocked down or out. 

 D9.1.7 a 10s penalty will apply for each time the vehicle is off course. This occurs 

when all four wheels of the vehicle are outside the track boundary. 

An understanding of Traffic cone purpose and dimensions are required to develop a 

functioning perception algorithm. Table 2 from appendix PDA-3 of the autonomous 

addendum outlines traffic cone specifications an important note is the removal of the stripes 

from the EFS competition. Figure 1 from the FSG Competition Handbook outlines the 

trackdrive layout. 
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2.2 Successful Formula SAE / Formula Student teams 

The aim of this project is to enhance the autonomous vehicle capabilities of the UniSQ FSAE 

team by leveraging the knowledge and experiences of successful teams. Out of the 122 

registered teams in the autonomous competition, only a small percentage have successfully 

met the design requirements and completed a track drive event. For instance, in the 2022 

Formula Student event, only five out of the nineteen registered teams scored points (FSG 

2022b). To accomplish this aim, this project will primarily draw upon the design approaches 

of successful teams that follow an open-source model, openly sharing their research, design, 

and findings. The three teams predominantly referenced include: 

 AMZ Motorsports – Lucerne University of Applied Sciences and Arts and ETH 

Zurich. 

 Monash Motorsports – Monash University  

 EFORCE FEE Prague Formula – Czech Technical University in Prague  

2.3 Simulation 

The UniSQ FSAE team does not currently possess a functioning vehicle, as such a simulator 

is required for all software development during this project. The use of a simulator has the 

potential to accelerate the development of an autonomous vehicle by removing initial cost 

barriers of vehicle development and providing a safe environment for vehicle testing. 

Several universities have already developed functional lap time simulators, driver simulators 

and autonomous vehicle simulators to assist with their own vehicle development. 

Lap time simulators such as the ones developed by The University of Glasgow (Broatch 

2019) and Queen’s University of Belfast (Doyle et al. 2019), utilise simplified vehicle and 

track models such as: 

 Steady state simulators where the simulation is divided into discrete segments; either 

a corner, accelerating straight of de-accelerating straight,  

 Quasi-static simulators which are similar to steady state except each corner is broken 

up into smaller corners of varying radius. 

 Transient simulators where the vehicle is modelled as an integrated dynamic system. 

This allows suspension, inertia, and damping effects to be taken into consideration. 

Lap time simulators are still relevant to FSAE development, particularly for optimising path 

planning and parameter optimisation. However, a more complex simulator with sensor inputs 

and other features is required for full autonomous development. 
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Driver simulators such as the one built by Monash University (Behrendt 2017) may be able to 

be converted to an autonomous vehicle platform. However, purpose built autonomous vehicle 

simulators should be considered first. 

There are currently at least three open-source autonomous vehicle simulators available for 

FSAE development: 

 eufs_sim developed by Edinburgh University (Edinburgh-University n.d.) 

 FSSim developed by AMZ racing team (AMZ-Driverless n.d.) 

 Formula Student Driverless Simulator developed as a collaboration between Formula 

Student Team Delft,  MIT Driverless and FSEast as a substitute for the Formula 

Student competition during the Covid-19 restrictions in 2020 (Formula-Student-

Driverless-Community n.d.) 

2.3.1 eufs_sim 

eufs_sim is built using the Gazebo open-source 3D robotics simulator. The simulator allows 

for customisable vehicle models, weather conditions and a random track generator.  

The simulator does not utilise a standard Gazebo physics model and instead utilises a custom 

point mass or dynamic bicycle model depending on user choice. The simulator 

documentation states the dynamic bicycle model is better in almost every way and should be 

used except for special use cases where a simple model is preferred. The dynamic bicycle 

model is claimed as very accurate near the limits of dynamics but does not consider pitch and 

roll dynamics. The dynamic bicycle model is further explained in section 262.5.3. 

The simulator is actively being maintained and may be a suitable simulation software for the 

project. Figure 2 Shows a screenshot of eufs_sim simulation. 

 
Figure 2: eufs_sim Simulator Screenshot (Edinburgh-University n.d.) 
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2.3.2 FSSim 

FSSim is also built using the Gazebo open-source 3D robotics simulator. FSSIM also uses a 

dynamic bicycle model instead of a Gazebo physics engine plugin. The bicycle model is 

incorporated into the simulator using Euler forward discretisation method to overwrite the 

current pose. 

AMZ’s FSSim has not been updated since 2019 however, a repository fork by the ARUS 

Formula student team appears to be updated in 2023 to allowing use with Ubuntu 20.04 and 

ROS Noetic. Not having an active community maintaining the simulator may present 

difficulties with integration into this project. Figure 3 shows a screenshot of the FSSim 

simulation. 

 
Figure 3: FSSim Simulation Screenshot 

2.3.3 Formula Student Driverless Simulator 

The Formula Student Driverless Simulator is built upon the Unreal Engine 4 development 

tool and makes use of the Microsoft AirSim plugin. The Unreal Engine is utilised for all 

physics, lighting, and world-building. The Microsoft AirSim plugin is used to connect Unreal 

Engine with ROS and the operator. 

This simulator utilises an Unreal Engine vehicle physics model ‘PhysXVehicles’ developed 

by NVIDIA. This is a far more complex physics model than the bicycle model used by the 

other simulators. The physics model is beyond the scope of this project however can be 

researched through NVIDIA’s PhysX documentation (Nvidia n.d.). 

The Unreal Engine development tool allows the FSEA Simulator to provide a realistic testing 

environment specifically designed for autonomous formula student vehicles. The rules of the 

Formula Student are incorporated into the simulator with realistic start and stop signals 

available.  
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To assist with setup and familiarisation, the FSEA Simulator has its own dedicated GitHub 

page with detailed documentation (Formula-Student-Driverless-Community n.d.).  

The Simulator is currently maintained by an active community and may be a suitable 

simulation tool for this project with a more realistic physics engine and graphic environment 

than the other simulator options. Figure 4 shows a screenshot of the Formula Student 

Driverless Simulator. 

 
Figure 4: Formula Student Driverless Simulator Screenshot 
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2.4 Perception 

Perception is the first step in developing autonomous control software for an autonomous 

vehicle. In the context of an autonomous vehicle, perception is the use of various sensors to 

perceive the surrounding environment. For this project the only required perception is the 

location of the traffic cones outlining the race track, this may evolve as the competition 

evolves to include obstacles or other vehicles. 

For reliable perception, inputs from multiple sensors are used to verify each other. The 

successful AMZ, Monash Motorsport and EForce teams all utilise a combination of LiDAR 

sensors and camera sensors for traffic cone detection.  

Other perception sensor options such as ultrasonic and RADAR are available, however, these 

sensor options are not utilised by successful formula student teams and are not available 

within the simulators. As a result, they are excluded from this project.  

2.4.1 LiDAR 

Light detection and radar (LiDAR) work on the principle of measuring the time of flight of a 

laser pulse. The LiDAR sensor emits pulsed light waves into the surrounding environment, 

these pulses bounce of objects and return to the sensor. The distance to an object can be 

determined by the time the pulse takes to return to the sensor. (Velodyne n.d.) The intensity 

of the returning light wave can also be used to analyse the surface properties of an object.  

Advantages of LiDAR in autonomous racing include accurate mapping, object detection in 

varying conditions, and fast data acquisition. However, its disadvantages include high costs, 

and susceptibility to environmental conditions such as heavy rain and fog. 

The UniSQ FSAE team have a Velodyne VLP-16 LiDAR available to use. This is a reputable 

and reliable LiDAR with the capabilities to perform FSAE vehicle traffic cone perception. 

Simulator setup and perception algorithm development will be based off the Velodyne VLP-

16 LiDAR user manual (Velodyne 2019). 

The VLP-16 is a rotating ‘surround’ LiDAR. These are characters by a number of channels in 

the vertical direction for example Velodyne VLP-16 has 16 channels 2o apart, this results in a 

2o horizontal resolution as per Figure 5.  
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Advantages of cameras are their relatively low costs when compared to other sensing 

technology and their versatility in detecting a wide range of objects. A major disadvantage of 

camera-based perception is its complexity, the data acquired by cameras is up to 70 times 

greater than that acquired by LiDAR and GPS (Ovenden 2019). Additionally, the 

computational methods required to extract information from the data requires complex 

machine learning algorithms with large datasets required for accurate training. 

Due to the complexity, computational requirements, and requirement of real-world testing 

camera vision; it will be excluded from this project and likely require a future thesis project 

of its own. 
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2.5 Motion Estimation and Mapping 

Motion estimation and mapping encompasses vehicle localisation, mapping and path 

planning: Vehicle localisation and mapping is a complex task and is often referred to as a 

chicken-or-egg problem as vehicle localisation requires a map and mapping requires vehicle 

localisation. This problem is often referred to as Simultaneous Localisation and Mapping 

(SLAM) (Large 2020). SLAM is further reviewed in 2.5.1.  

Path planning is the process of determining a desired vehicle trajectory. This can be broken 

down into determining the racing path and the velocity profile of the race path. Determining a 

race path is further reviewed in 2.5.2 and the velocity profile is further reviewed in 2.5.3. 

2.5.1 Simultaneous Localisation and Mapping 

Simultaneous Localisation and Mapping (SLAM) is the process of a robot, in this case a 

vehicle, building a map of an unknown environment while keeping track of its position. 

SLAM is not an exact process, instead it is a best estimation of localisation and mapping with 

the accuracy dependant on the quality of information from various sensors. 

Inputs for the localisation of the vehicle will be both relative and absolute. Relative sensors 

being relative to the vehicle including input from wheel speed sensors, inertial measurement 

units (IMU), and ground speed sensors. Absolute sensors have a reference to the external 

environment including inputs from cameras, LiDAR and GPS. 

There are numerous methods of SLAM implementation a review of Formula Student SLAM 

algorithms highlights three popular SLAM methods; extended Kalman filter (EKF) SLAM, 

fastSLAM and GraphSLAM.  

The Monash Motorsport team initially implemented an EKF SLAM method using only 

LiDAR input prior to integration of GPS, IMU and stereoscopic cameras (Ovenden 2019). 

The initial SLAM implementation and the integration of additional sensors were separate 

thesis projects. Future work for the Monash Motorsport team includes implementation of a 

fastSLAM method utilising their EKF method. 

The AMZ motorsport team state using fastSLAM 2.0, which is a revised Extend Kalman 

particle filter method (Kabzan et al. 2020).  

A master’s thesis by Nick Le Large summarises the trade-offs between the more accurate 

computational intensive GraphSLAM compared with the less accurate less computational 

intensive EKF SLAM (Large 2020). 
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2.5.2 Racing Path 

The simplest race path for a FSAE vehicle is a centreline of the race track. The AMZ racing 

team and Monash Motorsport teams both mention the use of Delauney Triangulation to 

determine the centreline of the track. MathWorks® provide an example of using Delauney 

Triangulation to determine the centreline of a Formula Student track (Kuruvilla 2022), this 

example is visualised in Figure 6. Other methods of determining the centreline are available 

such as the traverse line method utilised by the Monash Motorsport team prior to Delauney 

Triangulation (Slomoi 2018). The traverse line method was found to be computationally 

intensive and more error prone than Delauney Triangulation. 

 
Figure 6: Race Path Centreline - Delaunay Triangulation (Kuruvilla 2022) 

More advanced methods of optimised race paths are available. Publicly available repositories 

allow optimisation of race paths on a range of criteria including shortest path, minimum 

curvature, and minimum time (TUMFTM 2021). Given the narrow FSAE trackdrive track, 

the tolerances associated with SLAM and the penalties associated with impacting a traffic 

cone; there is little to gain from an optimised racing path. A centreline will provide sufficient 

autonomous development for the UniSQ team until a more advanced method is required. 

2.5.3 Velocity Profile 

A velocity profile provides a target velocity and acceleration for each point along the race 

track. Developing a velocity profile requires the development of a lap time simulation, lap 

time simulators are briefly discussed in section 2.3. To create a lap time simulation a dynamic 

model of the vehicle is required. 

There are many options for vehicle dynamic models. Simple point mass models, two wheeled 

bicycle models, and more advanced four wheeled models or complete vehicle models that 

consider pitch, roll etc. such as the PhysXVehicles model referenced in section 2.3.3. 
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The simplest vehicle model is the 2D point mass model as shown in Figure 7. This assumes 

the vehicle is a single point with all its mass concentrated at that point. The only vehicle 

parameters required are the mass of the vehicle and the forces associated with accelerating, 

braking, tyre friction and air friction to represent a relatively accurate lap time simulation. 

 
Figure 7: Point Mass Model (Edinburgh-University n.d.) 

A more advanced model is the two wheeled dynamic bicycle model as shown in Figure 8. 

This model considers vehicle properties such as dimensions, steering characteristics, yaw 

inertia and separates front and rear tyre frictional coefficients. 

 
Figure 8: Bicycle Model (Kritayakirana & Gerdes 2012) 

Both the AMZ racing team and Monash Motorsport team utilise the bicycle model rather than 

more advanced four wheel or complete vehicle models (Slomoi 2018; Kabzan et al. 2020). A 

point mass or bicycle model will allow sufficient autonomous development for the UniSQ 

team until a more advanced method is required.  
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2.6 Control 

For this project, control of the FSEA autonomous vehicle is limited to the steering, braking 

and throttle position within the simulation.  

The brake position and throttle position within the simulators are a value from [0:1] and will 

be dependent on the current vehicle velocity, desired velocity of the velocity profile, and the 

desired acceleration of the velocity profile. 

The steering angle within the simulators is a value from [-1:1] with -1 being full steer left and 

+1 being full steer right. There are several options for autonomous steering control. The 

simplest of steering control is a bang-bang style controller, this controller simply turns 

set_steering_angle left if the race path is to the left of the vehicle or set_steering_angle right 

if the race path is to the right of the vehicle. This is a very simple yet erratic and ineffective 

method of race vehicle steering control. 

A rudimentary yet slightly more effective method of steering is a proportional controller. In 

proportional steering control an error angle is calculated between the vehicle and a desired 

location on the race path, a set distance in front of the vehicle. Figure 9 shows the error angle 

θ, where the red dot is the desired location with reference to the vehicle coordinate frame. 

 
Figure 9: Proportional Steering Error Angle 

The steering angle δ is then calculated by multiplying error angle θ by a gain constant Kp as 

per Equation 1. This method may prove useful in development stages, however, will not 

result in a competitive autonomous vehicle. 

Equation 1: Proportional Steering Control Equations 

𝜃 = atan (
𝑥ௗ௘௦௜௥௘ௗ

𝑦ௗ௘௦௜௥௘ௗ
) 

δ = 𝐾௣ ∗ 𝜃 
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A more effective proportional steering controller is known as a Pure Pursuit steering 

controller (Ding 2020). Pure Pursuit considers the arc required to move to the desired 

location and utilises a bicycle model to determine steering angle δ. The arc is visualised in 

Figure 10. 

 
Figure 10: Pure Pursuit Steering Controller (Ding 2020) 

With incorporation of the bicycle model, the steering angle δ of the Pure Pursuit controller is 

calculated as per Equation 2 where α is the angle between the vehicles heading and the 

desired location, L is the length between the axles and ld is the distance to the desired 

location. 

Equation 2: Pure Pursuit Steering Controller Equation 

𝛿 = arctan ቆ
2𝐿𝑠𝑖𝑛(𝛼)

𝑙ௗ
ቇ 

Tuning of the pure pursuit controller is required by adjusting the look ahead distance. 

MathWorks® has a Pure Pursuit library available, however implementation appears simple. 

An improvement on the pure pursuit controller is the Stanley controller (Ding 2020). The 

Stanley controller requires a race path with a known trajectory heading. And hence requires 

an established race path to function. Opposed to the Pure Pursuit method the Stanley method 

references the centre of the front axle. The heading error ψ is calculated by determining the 

angle between the trajectory heading (at closest point) and vehicle heading. A cross-track 

error e is the distance from the reference point to the closest point on the track. The heading 

error and cross-track error are visualised in Figure 11. 
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Figure 11: Stanley Steering Controller 

A cross-track error gain Ke is applied and a minimum and maximum steering angle δmin and 

δmax is considered. Equation 3 shows the final equation for the Stanley controller. 

Equation 3: Stanley Steering Controller 

𝛿 =  𝜓 + arctan ቀ𝐾௘

𝑒

𝑣
ቁ , 𝛿 ∈ [𝛿௠௜௡: 𝛿௠௔௫] 

More advanced steering control methods exists such as predictive Stanley control, model 

predictive control, and machine learning methods however a Pure Pursuit or Stanley 

controller will allow sufficient autonomous development for the UniSQ team until a more 

advanced method is required. 

 

  



Alistair Thorogood   

ENG4111/2 Research Project  Page 31 of 76 

2.7 Software Frameworks 

Knowledge of a range of programming languages and software platforms was required as a 

part of this project. It is not practical to give a detailed literature review for each, instead a 

high-level overview has been provided. A familiarisation period was built in to the project 

schedule to ensure competency with all the required programming languages and software 

platforms. 

2.7.1 Robotics Frameworks 

Robotics frameworks provide a set of software libraries such as communication protocols, 

sensor drivers, control algorithms and more. They have been developed to simplify the 

development and maintenance of robotic systems. 

There are a range of robotics frameworks available such as NVIDIA Isaac, Orocos (Open 

Robot Control Software) and YARP (Yet Another Robotics Platform) and more. However, 

Robot Operating System (ROS) is the current industry standard, being the most used and 

most supported with the largest active community. ROS is required for startup and safety 

protocols within the formula student competition and is the obvious choice of robotics 

frameworks for this project.  

ROS is an open-source robotics middleware suite developed for robot communication and 

control. There are many different ROS distributions (versions) available, for this project 

ROS2 Humble will be used as it is the latest non-development distribution and is compatible 

with Ubuntu 22.04. There is a dedicated ROS2 documentation and tutorial that will be used 

for familiarisation (ROS n.d.).  

Although ROS2’s functionality includes debugging, monitoring, visualisation and more the 

main functionality used in the development of an autonomous vehicle will be ROS2 

communications. To understand ROS2 communications an understanding of; workspaces, 

packages, nodes, topics, messages, and services is required. 

The root workspace for ROS2 projects is defined as a ‘workspace’ a single workspace will be 

created for this thesis project. Within the workspace are ‘packages,’ each package is an 

individual unit of software allowing the overall code to be developed modularly with 

structured organisation. Each package should have a defined purpose for example perception, 

mapping, path planning and control will all be separate packages. 
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Within a package can be a single or multiple ‘nodes’ each node is designed to be a processing 

algorithm designed for a specific task. A publish/subscribe model is utilised for 

communication channels known as ‘topics.’ A node can subscribe to a topic and receive 

‘messages,’ alternatively a node can publish to a topic and send messages. As an example, a 

single node can be developed to read the LiDAR sensor and publish a LiDAR point cloud 

message. A separate node will read the LiDAR message, perform computations, and publish 

known traffic cone locations. 

Nodes can subscribe to any open ros2 topic allowing communications between different 

packages and even different workspaces. As per Figure 12 many nodes can subscribe/publish 

to the same topic/s allowing one-to-many, many-to-one, and many-to-many communications. 

Each message is required to have a defined data structure to match the topic to which it is 

being published. It is also important to note that. For further information refer the referenced 

ROS2 documentation (ROS n.d.). 

 
Figure 12: ROS2 Communications (ROS n.d.). 

2.7.2 Visualisation Tools 

Various visualisation tools will be utilised to assist with algorithm creation, testing and 

optimisation. These tools offer valuable capabilities for visualising data, analysing 

performance, and gain insight into system behaviour.  

One widely adopted visualisation tool is MATLAB, a programming language developed and 

owned by MathWorks. MATLAB provides a suite of functions and libraries that facilitate 

algorithm development and analysis. Additionally, MATLAB benefits from standardized 

documentation and tutorials, contributing to its widespread adoption in the academic and 

industrial domains (MathWorks n.d.). 
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Another popular visualisation tool is Matplotlib, a plotting tool in the python language. 

Matplotlib is widely used for data visualisation in software development projects and is a 

viable open-source alternative to MATLAB. The Matplotlib community offer and maintain a 

range of tutorials and resources to help users learn and utilise the libraries effectively 

(matplotlib n.d.).  

Another visualisation tool likely to be used within this research project is ROS visualisation 

package RViz. RViz is ROS graphical interface and is an open-source 3D visualisation 

environment. RViz is supported by ROS community, there is a range of tutorials and 

documentation available on the ROS website (ROS n.d.). It is important to note that RViz is 

not currently fully compatible with ROS2, and this may result in issues or crashes. 

These visualisation tools are the most common for robotic/autonomous development and will 

be utilised throughout the project to assist with algorithm creation, testing and optimisation. 

2.7.3 Git / Software Storage / Version Control 

Effective software storage and version control are crucial for any software development 

project. For this project it will be a critical step in meeting Project Aim 3: Establish UniSQ 

FSAE Autonomous Development Platform. A software storage platform should allow for 

software back-up to prevent loss of work if there is an issue with the local system. A version 

control system should allow collaboration between multiple team members, ability to view 

and revert to previous versions and more. There are various version control systems including 

SVN and Mercurial however Git is by far the most widely used. Figure 13 shows a survey 

completed by software developers, showing more than 90% of developers are using Git for 

software storage and version control. As a result of this Git was the chosen software storage 

and version control system for this project. 

 
Figure 13: Version Control Survey (Donovan 2023) 
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Git is an open-source distributed version control system that allows multiple developers to 

work on the same codebase at the same time. Git provides a record of all changes made to the 

codebase, allowing for easy tracking and identification of bugs and issues. Additionally, Git 

allows for collaboration and easy integration of code changes from multiple developers. To 

store the Git repository, the USQ Student Gitea instance (Gitea n.d.) was used. 

Familiarisation with Git and Gitea will be essential for version control and future 

collaboration. 

2.7.4 Operating Systems 

An operating system is the software program that allows users to interact with computing 

hardware. The key functions of an operating system are hardware management, process 

management, memory management, file system management, device management and user 

interface. An operating system is required for any computing device, however, for the 

purpose of this research project only personal computer (PC) operating systems are relevant. 

There are many different operating systems available for PC’s including windows, Linux, 

macOS etc. The simulator and ROS2 require a Linux based operating system. Linux 

operating systems come in a range of different distributions however Ubuntu is the only 

distribution supported by the simulator and was used for this project. The report writing, and 

Gantt chart software used require a windows operating system. 

It is possible to have both windows and ubuntu operating on the same PC, this is known as 

dual-booting (Hoffman 2014). Dual-booting requires partitioning the PC hard drive into two 

separate partitions. This allows one part of the hard drive to be devoted to windows and 

another part of the hard drive to be devoted to Linux. 

2.7.5 Programming Languages 

The selection of programming languages in any software development project plays a crucial 

role in achieving the desired outcomes. For autonomous vehicle development, various 

programming languages are utilised to address different aspects of the project. 

In order to work with the visualisation tools, a solid understanding of both MATLAB and 

Python languages is required. These languages offer powerful capabilities for visualising data 

and analysing performance, making them valuable tools for this project. 
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For robotics frameworks, a combination of C++ and Python is commonly used. C++ is 

preferred for performance-critical tasks, while Python allows for rapid prototyping and 

algorithm development. These languages ensure compatibility with existing frameworks and 

benefit from extensive resources and community support. 

Knowledge of shell scripting is essential for utilising the Linux terminal. 

The simulator supports python integration and ROS2 communications. Proficiency in python 

and creating ROS2 packages with both python and C++ will be required for this project. 

Where possible C++ will be selected as the primary language to maintain standardisation and 

ensure optimal performance across USQ FSEA projects. While lacking standardised 

documentation, online tutorials and guides are available for learning and development 

(cplusplus n.d.) (W3Schools n.d.).  
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3.6 Assumptions and Limitations 

All work completed within this project was done with the intention of being able to utilise the 

software on a real-world FSAE vehicle. It is important to note some of the limitations of the 

simulator and the assumptions used which may present challenges during real-world 

integration. 

Computing performance is a possible limitation of the simulator development. All computing 

was done on the authors PC which may outperform or underperform available computational 

hardware on the vehicle. Testing will be required on the vehicle hardware prior to integration. 

Performance optimisation including methods such as parallel processing may be required to 

ensure hardware is compatible with autonomous software. 

Sensor noise and imperfect sensor readings is another important consideration. The simulator 

generates a noise for GPS, GSS and IMU sensors however this may not represent real-world 

sensor noise. Imperfect real-world sensor readings such as variations in ground height due to 

grass or other imperfections may impact autonomous software functionality. Testing and 

parameter adjusting will be required to overcome this. 

Finally, the simulator vehicles dynamic model may not accurately represent the dynamics of 

the UniSQ race teams’ vehicle. Testing and comparison between the simulator dynamics and 

the real-world vehicle dynamics will be required during integration.  
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4 Autonomous Software Development 
The detailed methodology, results and discussion will be organised under the heading of 

"Autonomous Software Development". Each major step of the software development process 

has been divided into separate subheadings. This structure allows for a clear presentation of 

the methodology used, the obtained results, and the discussion of any necessary adjustments 

or customisations made to meet the project requirements. 

4.1 Simulator Setup 

4.1.1 Design & Methodology - PC Upgrades 

The first phase of the simulator setup was to upgrade the PC to meet the required 

specifications of the simulator as per Table 6. The GPU, RAM and memory are modular 

components designed to be easily replaced. The power source was unplugged and each of the 

components was replaced.  

The upgraded components were found to sufficiently run the simulator however, the GPU 

appeared to overheat after approximately 2 minutes of simulator run time. The PC case was 

removed and an external 12v fan used for external cooling. Figure 14 Shows the upgraded PC 

components. 

 
Figure 14: Upgraded PC Components 
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4.1.2 Design & Methodology - Operating System (Linux Installation) 

A Linux operating system was required to be installed on the PC to run ROS2 and the 

simulator. It was decided to install the latest fully supported version of Linux Ubuntu 22.04. 

Initially the PC’s original hard drive was partitioned and Linux was installed alongside 

windows as a dual boot.  

The installation process provided in the Ubuntu installation documentation was followed step 

by step to complete the installation (Ubuntu n.d.). 

After several crashes of Linux requiring reboot and a redownload of the simulator it was 

decided to purchase an additional hard drive and install Linux as the primary operating 

system on the PC. This required an adjustment to the resources required in Table 6 and the 

replacement of the modular hard drive.  

After installing Ubuntu 22.04 as the primary operating system the PC functioned as expected 

and no further re-formats were required. It is expected this is a symptom of the PC being used 

and a dual boot may still be a preferred option for future projects on a different PC. 

4.1.3 Design & Methodology - Running the Simulator 

Initially the version of the simulator (V2.1.0) was not compatible with Ubuntu 22.04. This 

was a result of a remote procedure call server mismatch, and was fixed with the V2.2.0 

update completed by the Formula Student Simulator community (Formula-Student-

Driverless-Community 2022).  

There are several required applications and extensions for the simulator to run on a new 

Ubuntu 22.04 install. A short cheat sheet has been developed for future FSAE students to 

reference. Refer Appendix A4 - Running the Simulator – Cheat Sheet for details on running 

the simulator. 

4.1.4 Design & Methodology – Software Storage & Version Control 

At the start of the project a Git repository was created for the ros2 workspace. This will 

provide backup in the event of local PC issues and allow for future work and collaboration. 

At the time of writing access to USQGit is not available and the project has been backed up 

on the authors GitHub account.  

Section 5 summarises the git repository at completion of the project. The link for the git 

repository is available in section 6.2. 
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4.1.6 Conclusion 

The result of the simulator set up was eventually successful, with the simulator running on 

the upgraded PC. Figure 17 shows a screenshot of the simulator running successfully.  

 
Figure 17: Simulator Running 

Upgrading the PC and successfully running the preferred simulator satisfied Project Aim 1: 

Set up and Test Simulation Environment, by meeting the three objectives: 

1. Research available simulation software and determine if existing simulators exist. 

2. Determine preferred simulator from existing/new solutions. 

3. Develop/Install and trial simulation environment. 

Creation of Git repository also partly satisfied Project Aim 3: Establish UniSQ FSAE 

Autonomous Development Platform, by meeting objective 1. Establish a version control and 

collaborative repository. Development of Appendix A4 - Running the Simulator – Cheat 

Sheet is also a contribution to objective 2. Compile all completed objectives, algorithms, and 

relevant documentation into a handover package. 
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4.2 Complete a Basic Lap of Simulation Track 

To be able to design and implement effective autonomous vehicle algorithms the car first 

must be able to drive a lap of the track. This can either be done manually with keyboard 

controls or a basic autonomous control algorithm can be developed. It was decided a basic 

control algorithm will be better suited for repetitive testing and to provide a benchmark lap 

time for all further design stages. The simulator repository is provided with Python examples 

that will complete a lap of the track. 

4.2.1 Current State Analysis - Provided python example (simulator repository) 

The provided example used a rudimentary bang-bang control. Simply if there are more traffic 

cones on the left of the vehicle turn 30% left and if there are more traffic cones on the right of 

the vehicle turn 30% right. The example attempted to maintain a constant vehicle speed, 

simply applying the throttle if below this speed. In the python example a constant speed of  

4 m/s was maintained. 

As it was decided to use C++ and ROS2 for all software design tasks the first task was to 

replicate the supplied python examples in C++. While this effectively completed a lap of the 

track it was slow and erratic method of control that would provide challenges for further 

autonomous development.  

To improve performance of the benchmark lap while maintaining basic operation it was 

decided to implement a basic path planning algorithm and proportion steering control. The 

vehicle speed control remained as per the python example. 

4.2.2 Design & Methodology – Basic Path Planning 

A typical path planning algorithm would output a series of x & y coordinates detailing the 

entire race path. From this race path a desired location for the vehicle can be extracted, this 

would either be a point closest to the vehicle or a set distance in front of the vehicle.  

Development of a race path is only possible with vehicle localisation and track mapping 

which had not yet been completed. To overcome this a simplified path planning algorithm 

was developed with a desired location calculated by averaging the closest four traffic cones. 

The flowchart in Figure 18 outlines the path planning process and the orange dots in Figure 

19 visualise the desired location. Noting this simplification does not allow for throttle and 

braking control development as a race path with velocity profile would. 
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Figure 18: Basic Path Planning Flowchart 

Two common errors were found with this path planning method, at times there are less than 

four visible traffic cones and the traffic cones not evenly being perceived on the LHS and 

RHS of the track. Figure 19 show the desired location working correctly (left) and the errors 

where the cones are not evenly placed on LHS and RHS (centre and right). 

 
Figure 19: Desired Location Errors 

To overcome this simple error checking was implemented. If less than four traffic cones were 

detected the desired location was not updated. The principle that the desired location should 

be in the middle of the track and hence not within a certain proximity of a traffic cone was 

utilised to remove remaining errors. Figure 20 shows the error radius around the traffic cones 

with the desired location in the correct position (left) and where the cones are not evenly 

placed on LHS and RHS (centre and right). If the desired location was within one metre of a 

traffic cone it was not updated. 
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Figure 20: Desired Location Error Radius 

4.2.3 Design & Methodology – Basic Proportional Steering 

With a desired location available a proportion steering control was implemented based off the 

angle between the vehicle and the desired location as per section 2.6.. Simply the steering 

output was proportional to the angle to the desired location with a gain value of Kp. Kp was 

roughly tuned by trial and error to Kp = 1.5.  

It would have been possible to further optimise this parameter or introduce methods such as 

variability with vehicle speed, however, an improved steering algorithm such as Pure Pursuit 

or Stanley controller are expected as future work once a race path is available. 

The vehicle speed control remained the same as the supplied python example, with a 

maximum constant speed maintained. The maximum speed was optimised by trial and error 

as per the results. 

4.2.4 Results & Discussion 

The most important result of this section is qualitative question, was basic self-driving 

demonstrated? A completion of multiple laps of the race track has demonstrated basic self-

driving and this section was a success. 

To further analyse the results the lap time was used as a quantifiable criterion, considering 

traffic cone (2 second) and off course (10 second) penalties as per the formula student rules 

(FSG 2023). This was a secondary criterion for further analysis and hence, significant time 

was not spent optimising steering and throttle gain or other parameters. More advanced 

algorithms will make these parameters and the associated algorithms redundant in relation to 

overall autonomous development. 
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4.2.5 Conclusion 

The Development of the basic lap algorithm was a success and will allow further 

development of the autonomous vehicle control. The benchmark lap time was improved from 

160.37 s from the provided example to 113.17 s. 

Upgrading the PC and successfully running the preferred simulator satisfied Project Aim 2: 

Demonstrate Basic Self-Driving, by meeting the three objectives: 

1. Research, develop and test a basic perception algorithm.  

2. Research, develop and test a basic Motion Estimation and Mapping algorithm. 

3. Research, develop and test a basic vehicle control algorithm. 

There are two Ros2 packages created for this section of the design: 

1. autonomous_example – the C++/Ros2 replication of the provided example. 

The autonomous_example can be run without a perceived traffic cone graph with the 

autonomous_example.launch.py launch file or with a perceived traffic cone graph 

with the graph_autonomous_example.launch.py launch file. 

2. basic_lap – this includes the improved path planning algorithm and the proportional 

steering control. 

the basic_lap can be run without a perceived traffic cone graph with the 

basic_lap.launch.py launch file or with a perceived traffic cone graph with the 

graph_basic_lap.launch.py launch file. 
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4.3 Perception (LiDAR) 

4.3.1 Current State Analysis – Perception Algorithm 

The perception algorithm supplied with the simulator repository is a very basic LiDAR based 

algorithm. The LiDAR is required to be programmed with a single laser with a vertical field 

of view of 0o, 500 points per scan, 10 rotations per second and 7m range. This does not 

represent a real-world LiDAR and has inherent problems with improved algorithm 

development. 

The 7m range of the supplied perception algorithm is not suitable to autonomous race 

vehicles operating at speed. Formula student vehicles are capable of speeds up to 30m/s this 

would result in a perception forecast of only 0.23s. The biggest problem with the supplied 

perception algorithm is the single laser with a 0o field of view. During cornering the 

centrifugal force results in a body roll, this results in the laser picking up sections of the 

ground on the down angle side of the vehicle. The basic algorithm then groups the ground 

points and assumes them as traffic cones. Figure 21 shows a screenshot of this error, as the 

vehicle rolls towards the outside of the corner the ground is picked up as a row of traffic 

cones. 

 
Figure 21: Simulator Example Perception Error 

Due to this it was required to improve the perception algorithm before developing mapping 

and path planning. The focus of the perception improvements was to align the simulation to 

the available UniSQ FSAE teams VLP-16.  

The datasheet for the VLP-16 was referenced and the simulator LiDAR properties were 

modified to match. VLP-16 set up and properties are further detailed in section 4.3.2. 
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Considering the perception update rate and horizontal resolution a LiDAR frequency of 10 
Hz was chosen. The final settings for the simulator LiDAR are as per Figure 23. 

 
Figure 23: Improved Perception LiDAR settings 

4.3.3 Design & Methodology – Perception Algorithm 

With the simulator LiDAR replicating the VLP-16, a more advanced LiDAR perception 

algorithm was required. A bachelor thesis by Daniel Storc at the Czech Technical University 

in Prague ‘Detection of Traffic Cones from Lidar Point Clouds’, was utilised as a guide for 

the development of the perception algorithm (Storc 2022).  

First a main code structure was developed with four sub functions as per the flowchart in 

Figure 24. 

 

Figure 24: Perception Flowchart - Main Code 
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Perception Function 1: Filter Invalid Points 

The primary purpose of Perception Function 1 is to remove all the invalid LiDAR points, that 

is points that did not reflect off an object within the detection range and hence return a zero 

value. As per the flowchart in Figure 25 a for loop is set up for each of the points within the 

point cloud, the x, y & z coordinates are extracted from the point cloud, and if the x, y & z 

values do not equal zero the points are added to the points array. 

 
Figure 25: Perception Flowchart - Filter Invalid Points 

Perception Function 2: Ground Plane Equations 

A ground plane, in the form of Ax + By + Cz + D = 0, can be fit to three points P1 = [x1, y1, 

z1], P2 = [x2, y2, z2], P3 = [x3, y3, z3] by first calculating two vectors (u, v) as per Equation 

4. 

Equation 4: Calculating Two Vectors for Ground Plane Detection 

𝑢 = [𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1] 

𝑣 = [𝑥3 − 𝑥1, 𝑦3 − 𝑦1, 𝑧3 − 𝑧1] 

The cross product of these two vectors then provides a vector (n) normal to the plane as per 

Equation 5.  

Equation 5: Normal Vector Calculation for Ground Plane Detection 

𝑛(𝑥) = 𝑢(𝑦) ∗ 𝑣(𝑧) − 𝑢(𝑧) ∗ 𝑣(𝑦) 

𝑛(𝑦) =  𝑢(𝑧) ∗ 𝑣(𝑥) − 𝑢(𝑥) ∗ 𝑣(𝑧) 

𝑛(𝑧) = 𝑢(𝑥) ∗ 𝑣(𝑦) − 𝑢(𝑦) ∗ 𝑣(𝑥)  
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Parameters A, B & C of the ground plane can then be calculated by normalising the normal 

vector. The normal vector is the normalised by dividing the vector by its magnitude as per 

Equation 6. 

Equation 6: Parameter A, B & C for Ground Plane Detection 

𝑚𝑎𝑔 =  ඥ𝑛(𝑥)ଶ + 𝑛(𝑦)ଶ + 𝑛(𝑧)ଶ 

𝐴 =
𝑛(𝑥)

𝑚𝑎𝑔
;   𝐵 =

𝑛(𝑦)

𝑚𝑎𝑔
;   𝐶 =

𝑛(𝑧)

𝑚𝑎𝑔
 

Parameter D of the ground plane can then be calculated as the distance from the plane to the 

origin (D) as per Equation 7. 

Equation 7: Parameter D for Ground Plane Detection 

𝐷 = −(𝐴 ∗ 𝑥1 + 𝐵 ∗ 𝑦1 + 𝐶 ∗ 𝑧1) 

Perception Function 2: Find Ground Plane 

The primary purpose of Perception Function 2 is to fit a ground plane to the valid points 

returned from Perception Function 1. This is the most complex and computationally intensive 

section of the perception algorithm. The intent of the ground plane function is to detect a 

ground plane by sampling points of the ground plane, not by fitting a plane to all of the valid 

points. As a result of this typical methods of fitting ground planes such as the method of least 

squares are not appropriate. Instead a random sample consensus algorithm was used, which is 

a method to estimate a model using data that contains outliers (Storc 2022). 

It is safe to presume most of the valid points are on the ground plane and a small portion of 

points will be traffic cones, walls, and other objects. The ground plane function first takes a 

random sample of 300 points from the valid points. From this sample a random sample of 

three points is taken and a ground plane is calculated using the equations in Perception 

Function 2: Ground Plane Equations above. 

Typical random sampling consensus algorithms use the number of data points that are inliers 

as criteria for model suitability. A slight variation has been implemented with the sum of 

errors between the remaining 297 points and the ground plane being used as the criteria. The 

error between the ground plane and the remaining points is calculated using  

Equation 8: Calculating Distance to Plane for Ground Plane Detection 

𝑒௖௨௠ = ෍
𝐴 ∗ 𝑥(𝑖) + 𝐵 ∗ 𝑦(𝑖) + 𝐶 ∗ 𝑧(𝑖) + 𝐷

√𝐴ଶ + 𝐵ଶ + 𝐶ଶ

௜

଴
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If the cumulative error (ecum) is less than a determined error limit the ground plane is 

confirmed. If ecum is greater than elim the three plane points are re-sampled. This is repeated up 

to an iteration limit, if the iteration limit is reached without ecum < elim the iteration with the 

smallest cumulative error is used. 

Figure 26 below shows a flow chart of Perception Function 2: Find Ground Plane. 

  
Figure 26: Perception Flowchart - Find Ground Plane 

Perception Function 2: Determination of error limit elim 

A critical parameter of the perception algorithm is the error limit elim. As per above elim is 

used to confirm the ground plane compared to the cumulative error ecum.  

ecum will vary depending on the number of traffic cones in perception and the height of the 

perceived cones. It was assumed there would be a step change in ecum if the sampled point 

was not on the ground plane, as all 300 sample points will be a considerable distance away 

from the plane. This step change would be the ideal value to set elim. 
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The algorithm was run over 3000 times while the vehicle moved around the track, and the 

error was recorded. The graph in Figure 27 shows the expected step change at a cumulative 

error of approximately 4m, where the remaining outliers are assumed to be incorrect sample 

points. Due to this an elim = 5m was determined for simulation, however this will likely need 

to be re-visited for integration into a real-world vehicle due to variables such as uneven 

ground surface not present on the simulator. 

 
Figure 27: Cumulative Error Scatter Plot 

Results in section 4.3.4 found on average a 98.2% chance a selected point is a ground point. 

It can then be calculated the probability of one of the three plane points landing on a traffic 

cone is 5.3%. In this test 5.5% of points are above ecum of 5 which further verifies elim = 5m. 

Perception Function 3: Filter Ground Points and Air Points 

The primary purpose of Perception Function 3 is to remove points that are close enough to 

the ground plane to be considered ground points (>Lower Limit) and too far away from the 

ground to be a traffic cone (>Upper Limit). Given the largest traffic cone has a height of 

450mm an Upper Limit of 0.5m was implemented. A Lower Limit of 0.02m was found 

suitable for the simulator, however this may need to be adjust with a real-world vehicle.  

As per the flowchart in Figure 28 the Filter Ground and Air Points function simply iterated 

through each point, measured the distance to the ground plane using Equation 8 from 

Perception Function 2.   
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Figure 28: Perception Flowchart - Filter Ground & Air Points 

Perception Function 4: Cluster and Filter Points 

The primary purpose of Perception Function 4 is to cluster the remaining valid points, filter 

the clusters based on its characteristics and publish cone location based on average cluster 

locations.  

To cluster the point the distance between each point was calculated and if within 

cluster_threshold the points were clustered. The Dimension of the largest traffic cone were 

utilised to determine a cluster_threshold of 0.45 m.  

The clusters were then filtered on two criteria; if two clusters are too close to be a traffic cone 

and if a single cluster is too large to be a traffic cone. If two clusters were found to be within 

0.5m of each other they were determined too close to be traffic cones and were not added to 

the final Cones message. Similarly, if a single clustered varied in dimension by more than 

0.5m it was determined to be too large to be a traffic cone and not added to the final cones 

message. 

For the remaining traffic cones each point within the cluster was averaged to provide an 

traffic cone location. It is important to note that the LiDAR only perceives one side of the 

traffic cone and as such there will be a tolerance of up to 0.2m depending on which side of 

the cone is viewed. Figure 29 shows a flowchart of Perception Function 4 Cluster and Filter. 
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Figure 29: Perception Flowchart - Cluster & Filter 
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4.3.4 Perception Results & Discussion – Development 

A LiDAR frequency of 10 Hz was chosen in section 4.3.2, it would be expected that the 

perception algorithm needs to run at a significantly less time than 100 ms for success. 

The perception algorithm was run over 2000 times while the vehicle drove around the track, 

and the duration was timed. The box and whisker plots in Figure 30 show that the perception 

algorithm run for between 1 ms and 14 ms with few outliers. No further optimisation needs to 

be completed on the perception algorithm at this stage. 

 
Figure 30: Perception Algorithm Run Time Tests 

Testing was completed on the number of LiDAR points at each step of the algorithm. On 

average it was found of the 14400 LiDAR points 50% (7200) were found to be valid, 0.9% 

(135) were remaining after ground plane removal, and an average of 14 traffic cones were 

perceived. The box and whisker plots in Figure 31 show the results of this testing. 

 
Figure 31: LiDAR Points Results 
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A point_graph python ROS2 node was created to visualise the point cloud data and ground 

plane removal. Figure 32 Shows the 3D representation of the LiDAR points before and after 

ground plane removal. 

 
Figure 32: Visualisation of Ground Plane Removal 

4.3.5 Perception Results & Discussion – Performance 

The range of the Perception has increased from 7m to greater then 20m, the accuracy has 

improved dramatically with no noticed false positives. Figure 33 and Figure 34 show the 

function of the updated perception algorithm. 

 
Figure 33: Improved Perception Algorithm Screenshot 
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4.3.6 Conclusion 

With Project Aim 2: Demonstrate Basic Self-Driving already satisfied, the development of an 

effective and robust perception algorithm went above the aims of this project. This will 

accelerate the development of the UniSQ teams’ autonomous software. 

Aligning the perception algorithm with the VLP-16 LiDAR available to the UniSQ team will 

hopefully improve integration of the autonomous software into the real-world vehicle.  

The LiDAR based perception exceeded expectations within a simulated environment, 

allowing development of further autonomous driving processes. Testing will need to be 

completed on a real-world vehicle to determine the requirement of future perception 

improvements. These improvements could include the tuning of filtering parameters such as 

cluster size and distances discussed in section Perception Function 4: and the ground plane 

elim discussed in Perception Function 2:. The integration of camera perception is also future 

work to improve the perception algorithm. 

The benchmark lap time was improved from 113.17 s from the basic_lap to 82.31 s.  

There was one Ros2 package created for this section of the design: 

1. perception – improved LiDAR perception. 

The ‘perception’ package can be run without a perceived traffic cone graph with the 

perception.launch.py launch file or with a perceived traffic cone graph with the 

graph_perception.launch.py launch file.  
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5 Contributions – Git Repository 
All contributions to the UniSQ race team created within this project have been updated in the 

git repository that was created as part of the simulator setup in section 4.1.4. Throughout the 

autonomous software development, the git repository has been maintained and updated with a 

README file summarising the repository as per below. 

The link for the git repository is available in section 6.2. 

autonomous_formula_student 

Created by Alistair Thorogood 2023 for the requirements of ENG4111 & ENG4112 Research 
Project. This Repo is a ros2 workspace designed to work with the formula student driverless 
simulator. 
This repo currently contains four packages, 9 nodes and 6 launch files for autonomous 
vehicle control: 

 autonomous_example (a c++/ros2 copy of the python example provided with the 
simulator) 

o autonomous_example.launch.py 
o graph_autonomous_example.launch.py 
o car_controller.cpp 
o cone_id.cpp 
o steering_angle.cpp 
o throttle_pos.cpp 

 basic_lap (an improved version of autonomous_example with path planning & 
proportional steering) 

o basic_lap.launch.py 
o graph_basic_lap.launch.py 
o steering_angle.cpp 

 graphing (a package for graphing traffic cone locations) 
o cone_graph.py 
o map_graph.py 
o point_graph.py 

 perception (improved LiDAR perception) 
o perception.launch.py 
o graph_perception.launch.py 
o cone_id.cpp 

python_race_path was utilised for mapping the race track outside of ROS and may be 
utilised for future path planning development. It is not a part of the ROS workspace 
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6 Conclusion 
This project set out to achieve three project aims; Set up and Test Simulation Environment, 

Demonstrate Basic Self-Driving, and Establish UniSQ FSAE Autonomous Development 

Platform. Each of these aims were completed satisfactorily and additionally a robust LiDAR 

perception algorithm was developed. 

After evaluation of a range of existing Formula Student simulators the Formula Student 

Driverless simulator was chosen, installed, trialled, and utilised for the development of basic 

self-driving. This was determined as an appropriate simulator for autonomous development. 

A cheat sheet was developed to assist future students with installation and operation of the 

simulator. 

Basic self-driving was demonstrated utilising the efficient C++ programming language and 

ROS2 robotics framework. Several ROS2 nodes were created to perceive traffic cones, 

determine steering angle, determine throttle position, and control the vehicle. The initial lap 

time of the basic self-driving software was 160.37s this was improved to 82.31s throughout 

the development. 

A UniSQ FSAE Autonomous Development Platform was created in the form of a git 

repository. The git repository contains the ROS2 workspace with all nodes for basic self-

driving, improved perception and visualisation tools used throughout the development. A 

ReadME file was developed to assist students with utilisation of the repository for further 

autonomous development. 

Above the aims of this project, an effective and robust LiDAR based perception algorithm 

was developed based off the Velodyne VLP-16 LiDAR currently available to the UniSQ 

team. This allowed for integration into a real-world vehicle and improved the simulated 

perception range from 7m to greater than 20m allowing for future autonomous development 

in motion estimation and mapping.  

6.1 Future Work 

Substantial work remains to complete a competitive autonomous software within a simulation 

environment. The scope of developing a real-world autonomous vehicle is too large to detail 

in this conclusion, it will require a multi-disciplinary team of student engineers to complete. 
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To complete a competitive autonomous software motion estimation and mapping will need to 

be developed. This will involve but is not limited to; implementation of SLAM, 

determination of a race path and determination of a velocity profile for the race path. 

Advanced vehicle control will also be required to be developed. Control methods such as 

Pure Pursuit, Stanley Controller and Model Predictive Control will need to be implemented 

once motion estimation and mapping has been developed. 

6.2 Links 

Code Repository: https://github.com/ThoroMech/autonomous_formula_student.git 

Final Lap Video: https://youtu.be/JEwTjVRfeeU  
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8 Appendices 

Appendix A1 -  Project Specification 

For:   Bachelor of Engineering (Honours) 

Title:  FSAE Autonomous Control – Motion Estimation and Mapping 

Major:   Mechatronics 

Supervisors: Craig Lobsey 

Enrolment: ENG4111 – EXT S1, 2021 

  ENG4112 – EXT S2, 2021 

Project Aim: Develop an autonomous mapping and path planning algorithm for the 

University of Southern Queensland’s formula SAE (Society of Automotive 

Engineers) team, utilising a simulation environment. 

Programme: Version 1, February 2023  

1. Preparation: 
a. Literature Review 
b. Upgrade PC to meet simulator requirements 
c. Create Linux Partition on PC 
d. Download Simulation Software 

2. Familiarisation 
a. Familiarisation with Simulation Software 
b. Familiarisation with ROS 
c. Familiarisation with C++ 
d. Familiarisation with GitHub 

3. Develop / Source Code to perform Basic Functions 
a. Convert autonomous python examples to C++ with ROS 

4. Develop Mapping and Path Planning 
a. Develop discovery lap mapping algorithm and code 
b. Develop path optimisation algorithm and code 
c. Develop localisation algorithm and code 

5. Combine and Optimise 
a. Develop an overall code combining phase 4 & 5 
b. Test and optimise combined code 

6. Develop Software Platform 
a. Create USQ Race Team USQ Student Git account 
b. Set up USQ Student Git Account 

7. Present and Handover 
a. Prepare work for handover to USQ FSAE team 
b. Present work to USQ FSAE team 
c. Final Handover to USQ FSAE Team 
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Upgrade of PC Components: 

Incorrect installation/setup resulting 

in damage to PC (personal property) 

Control: PC components are 

modular and designed for required 

component replacement. 

 

Control: Follow installation instructions and 

documentation and seek support if needed 

or uncertain. 

 01/06/2023 

 

Thesis project, software 

development and report writing 

Extended periods of time sitting 

Extend periods of time looking at 

screen 

Control: Ergonomic office chair 

currently in use. 

 

Control: Follow good ergonomic practice 

and work area setup for study use.  
 01/09/2023 

 

Utilisation of simulation in practice 

This is not happening in this project, 

as no car is available. 

Control: Further risk assessment 

will be required before utilisation of 

the autonomous control software in a 

real-world environment. At this stage 

there are too many unknowns to 

develop reasonable controls.  For 

this project this risk is non-existent. 

 

No Control:    
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Appendix A3 -  Project Gantt Chart 
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Appendix A4 -  Running the Simulator – Cheat Sheet 

1. Install required applications and extensions: 
 Install terminator (optional) 

o sudo apt-get install terminator 
o Assists by being able to run multiple Linux terminals 

 Install git 
o sudo apt-get install git 

 Install ROS2 humble 
o Follow ROS2 humble documentation for install 

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html  
 Install visual studio (optional) 

o sudo snap install code –classic 
o Assists in being able to write ROS2 nodes and other code. 
o Open visual studio code using: code . 
o Search for and install ROS2 extension for visual studio code. 

2. Install Required Extensions  
 sudo apt-get install ros-humble-turtle-tf2-py ros-humble-tf2-tools ros-humble-tf-

 transformations 
 sudo apt install python3-pip 
 sudo apt install python3-colcon-common-extensions 

3. Add source lines to .bashrc 
 source /opt/ros/humble/setup.bash 
 source /usr/share/colcon_argcomplete/hook/colcon-argcomplete.bash 

4. Clone simulator repository to home 
 cd && git clone https://github.com/FS-Driverless/Formula-Student-Driverless-

Simulator.git --recurse-submodules 
5. Setup AirSim 

 ~/Formula-Student-Driverless-Simulator/AirSim/setup.sh 
 ~/Formula-Student-Driverless-Simulator/AirSim/build.sh 

6. Download the simulator binary 
 Download ZIP (fsds-v2.2.0-linux.zip) from https://github.com/FS-Driverless/Formula-

Student-Driverless-Simulator/releases 
 Extrace the ZIP to downloads folder 

7. Build ROS2 environment: 
 cd ~/Formula-Student-Driverless-Simulator/ros2 && colcon build 
 Add source to bashrc 

o source ~/Formula-Student-Driverless-Simulator/ros2/install/setup.bash 
8. Run simulator 

 ~/Downloads/fsds-v2.2.0-linux/FSDS.sh 
 F11 to remove full screen if required 

9. Launch ROS2  
 cd ~/Formula-Student-Driverless-Simulator/ros2  
 ros2 launch fsds_ros2_bridge fsds_ros2_bridge.launch.py 

10. Launch Autonomous Software 




