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Abstract

Distributed Industrial Control Systems employ networks to connect distant controllers

and allow seamless integrated control and monitoring of processes. Two critical aspects of

these systems are their horizontal functionality, with communications based on real-time

control, and secondly their respective network design to achieve this (Selişteanu, Roman,

Şendrescu, Petre & Popa 2018). The majority of these systems are fully proprietary and

come with high purchase costs, with large-scale systems reaching into the tens of millions

of dollars.

Comparatively, improvements in low-cost, embedded controller performance have seen

these devices gain more widespread use for a range of applications. As these systems im-

prove, low-cost does not have to be synonymous with low-reliability, or low-functionality.

A body of research currently exists in which embedded systems have been used for de-

veloping remote data systems. An area that is understated in such research is in the

application of connected embedded systems to form distributed control and data net-

works.

This dissertation shows that embedded systems, in conjunction with web-based program-

ming languages, can be used to deliver a reliable distributed control network. Such a

network can be developed to offer real-time communication with data storage and visual-

isation capabilities. The developed system demonstrated how simplified and customisable

integration of sensors could be achieved with interfacing, data processing and storage soft-

ware which had the capability to be expanded for large numbers of distributed sensors

across a network.



ii

By developing NodeJS applications in conjunction with a WebSockets Protocol commu-

nication network, a single Server, dual Client architecture was built, capable of fast, cus-

tomised communication and control. The system displayed how specific time thresholds

could be met and monitored, through use of watchdog and time-stamping applications

and also provided data management through a connected server database system. This

project also documented approaches to manage time-dependent operations using web-

based, event-driven, software callback methods.

These outcomes were important to demonstrate the potential for a differing approach

to control system development. They confirmed that by using open-source, web-based

programming languages and runtimes, architectures can be developed which allow real-

time constraints to be managed all while simplifying system integration. In doing so,

such systems could offer a high level of reliability in operation and be looked upon to

potentially replace legacy devices which have been slower to adapt in software terms.
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Chapter 1

Introduction

1.1 Chapter Overview

This chapter provides an introduction to the project, describing the motivation, project

aim and research objectives. It also provides an overview of each chapter, offering a brief

description of each.



2 Introduction

1.2 Motivation

Industrial control is the technology stream tasked for ensuring safe, efficient, and produc-

tive manufacturing and processing operations can take place in the modern world. For

systems which are spatially separated a distributed architecture is the chosen method for

allowing control and communications between assets or sections of plant.

Dependent on the size of the installation, the complexity and cost can vary dramatically,

with higher end systems for large facilities costing into the ten’s of millions of dollars.

Such systems can host a plethora of advanced features and use proprietary technology

which quickly moves out of the range for smaller operational budgets. The focus of

this dissertation was limited to the review of legacy approaches for small to mid-sized

distributed systems.

Over time, small embedded controllers have become more powerful in processing and

interfacing capabilities (Fang & Fu 2011). Such controllers have also become able to

host highly-flexible software run-times which have libraries for development and allow

custom coded programs to be developed for added functionality. Web-Based technologies

in parallel, have allowed high performance, scalable applications to be developed with

real-time communications built-in (Branch & Bradley 2006).

1.3 Project Aim

With consideration to the above factors, the project aim was to assess whether mod-

ern Web-Based software technologies and communication protocols, in conjunction with

lower-cost embedded hardware solutions, could offer competitive solutions and benchmark

performance to their legacy industrial counterparts.

While the complete development of a replacement system was beyond the scope of this

project, selected elements, deemed critical were researched. The project aim was to

determine if solutions reflective of these elements could be developed, which demonstrated

the capabilities of Web-Based embedded solutions to provide industrial-level performance.
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Industrial-level performance relates to the ability to establish and persistently maintain

communications between server and clients at a low millisecond transmission rate. Further

to this, connection monitoring for both loss of connection, and latency issues, was a

requirement to ensure the communication links were persistent and reliable.

Once these reliability and performance metrics were able to be proven, additional function-

ality was developed to showcase the potential further benefits of using such technologies.

This included the ability to create an integrated database allowing streamlined and re-

mote access to data from systems and devices, a Human-Machine Interface display that

could also integrate directly with the server application, and class-based software which

could closely match specific functionality of standard legacy controller logic.

This additional functionality aligns with the below points which were listed as key com-

ponents of legacy distributed control system architectures. They are further explored and

detailed in Section 3.8.

� Individual Control Server Applications

� Communications Network

� Central Server Scheduling and Timekeeping

� Database setup and operation

� Human-Machine-Interface (HMI)

� Class-Based Modules for control and data handling

� Further Sequential Testing
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1.4 Research Objectives

The research objectives which were initially defined within the Project Specification in

Appendix A are listed below:

� Conduct a detailed review of the key components in mid-sized control systems and

detail how the selected software can be utilised to develop both theoretical, and

where possible, practical solutions of each equivalent section.

� Implement and test performance of a WebSockets based communication layer over

multiple nodes to allow distributed data channels and control to be realised.

� Review and assess how an implementation of the NodeJS server runtime can be

structured to meet potential schedule deadlines and deliver reliable core control

system operation.

� Develop sound, re-useable, modular code and class-based systems for any control

system architectures created.
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1.5 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 - Literature Review: Develops the fundamental ideas for the project. Re-

views both legacy and modern technologies, with examples of documented ap-

proaches which rival traditional control and distributed systems.

Chapter 3 - Methodology: Provides a detailed outline of how selected hardware and

software approaches could be used to develop solutions. Further, it lists the perfor-

mance attributes used for assessment during the design stage of this project.

Chapter 4 - Functional Design: Reviews the hardware design and the software devel-

opment cycle including the structure and program flows, dependencies and system

components.

Chapter 5 - Results and Discussion: Reviews the test results delivered during devel-

opment and operation of the distributed control system. Offers final stage results

of the running system.

Chapter 6 - Conclusions and Further Work: Summarises the dissertation, states the

achievement of outcomes and details further work to be undertaken.





Chapter 2

Literature Review

2.1 Chapter Overview

The following section assists to develop the fundamental ideas on which this project was

based. It reviews the existing and potential technologies implemented for industrial con-

trol systems with distributed architectures, and in doing so showcase key characteristics,

benefits, detractors and required performance benchmarks. The section is separated into

three major sub-sections:

1. Modern Technology, Growth and Applicability: Explores modern web-based tech-

nologies, specifically the JavaScript based runtime Node.js and WebSockets com-

munication protocol. Review of operation, key characteristics, overall benefits, and

considerations are covered.

2. Existing State of Technology: Provides a background of legacy approaches and de-

velopments, including technologies and software. Specifically, the IEC61131-3 pro-

gramming language formats, IEC61499, the Distributed Automation Architecture

Standard and Industrial Protocols under IEC61158/IEC61784.

3. Similar Approaches, Implementations and Benchmarks: This sub-section focusses

on previous examples which are similar and relevant to the elements of this project.

Offering insight into methods, outcomes, and learnings. It also provides references

for performance-based targets relating to distributed industrial control systems of

this nature and how and where they were applied for the project.
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2.2 Modern Technology, Growth and Applicability

This project aimed to employ web-based programming software to replicate aspects of

normal control system function, prove that reliable operation can be met and maximise

the ability of such technology to ease access to data and create flexible models in the

process. This was to be achieved using differing techniques to standard controller and PLC

language approaches, as explored above in relation to the possibility of hybrid time and

event driven systems. One of the core languages which has seen high use for event-driven

operation in web-based systems is Node.js (Ancona et al. 2017). This was been selected

as the base runtime system for the application due to some highly relevant operating

traits which are detailed below.

2.2.1 Node.js – An Event-Driven JavaScript Runtime

There are many languages and programming stacks used for web-development with each

offering benefits and specific characteristics for developers to utilise. One specific pro-

gramming runtime which has seen a great deal of growth since its creation by Ryan Dahl

in 2009 is Node.js. Originally designed by Dahl to simply allow the dynamic display of

a progress bar within a larger production grade application, the runtime used callbacks

from the server to the browser to provide the updated completion data for uploaded files

(Shah & Soomro 2017).

Node.js is based on the high-performing Google Chrome V8 JavaScript Engine, this is

built from the ground up using C++ with the resulting runtime using the programming

language JavaScript, introduced in 1995. The Node.js runtime is efficiently designed to

run as an event-based, not thread-based architecture and can run on multiple operating

systems such as Windows, Linux and Mac OS. It can also run within the Google Chrome

Browser, embedded within C++ programs or standalone (Radix 2024).
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Figure 2.1: Node.js Runtime and engine overview. (Nagarajan 2023).

Node.js provides a lightweight structure which can be used to scale for large numbers

of users when implemented correctly, a key reason for its high growth. As of 2023,

Node.js was listed as a framework used by over forty percent of developers worldwide

(Statista 2022) and it has seen use in applications for some highly notable corporate

entities. Node.js has been created as a single-threaded, non-blocking, event-loop runtime.

What this means when implemented correctly, is that the main loop runs continuously

without any single operation causing the loop to hold for extended periods before moving

to the next operation.

Comparative systems could see an equivalent operation cause the program to wait for

data to be returned or a specific algorithm result, a term coined ‘blocking’ in software

design. This condition results in delays which can quickly cause issues for highly scaled

systems with many concurrent users. In Node.js the system is non-blocking, which is

achieved by running a single, main event-loop thread, which is continually responding to

individual event requests and responses, with concurrent connections sometimes into the

millions (Shah & Soomro 2017).

The method which allows the main thread to run so efficiently when scaled and loaded

heavily is the fact that it can separate out tasks and allocate these to worker threads held

within an overall pool. This delivers an adaptable running process which can ensure that

in general no individual action will create a performance issue across the application. The

operation of the overall application depends on various implementation factors, most no-

tably the way in which the event-based model is constructed via the event-loop structure.

This in turn is dependent on the LIBUV multi-platform C library as shown in the above

Figure 2.1, which is responsible for the event loop itself and thread pool functionality

(Patrou et al. 2021).
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The event loop thread is the main runtime thread which initialises the application and

manages the associated requests and responses. The architecture maintains an event

queue and executes an important aspect of Node.js, callbacks, which are the system re-

sponses for completed operations. The I/O network operations are executed with non-

blocking inter-process communication sockets, and actions associated with the file system

and various other process operations are sent to be executed within a separate worker

thread pool.

The worker pool can be used for system calls between JavaScript and the C++ system

operations and although such operations add additional time latency, this structure im-

portantly allows the main thread to continue progression (Patrou et al. 2021). Initially,

there are four threads available which can be expanded up to 1024 as required along with

memory allocation.

A point of note is that Node.js is not suited for high-computational CPU loads which

run a single process, this is not what Node.js has been developed for and results in poor

performance and overall delay in the event-loop (Shah & Soomro 2017). The process

can slow considerably when synchronous activities are required which compound loading

on the system, or many long running functions combine to adversely affect performance.

Examples include AI and machine learning computations and while there are ways to

design the core program to reduce system resource depletion, the developer must under-

stand how the tasks and program operations will be allocated when including such heavy

computational operations within the scope of an application.

Node.js was developed to allow a system to respond to large numbers of smaller, individual

events which are sent to the event-loop and do not individually require large amounts of

overall computation. Examples are requests and user interactions on webpages which can

quickly be resolved allowing a fast, efficient loop to operate and maintain performance.

This philosophy needed to be factored when developing the control system solution to

ensure the methods of implementation did not conflict with the overall system structure.
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Figure 2.2: Overview of control flow for an asynchronous promise function (Kadlecsik 2021).

When requiring sequential operations within a Node.js application there are multiple

methods that can be utilised to ensure the system flow is maintained. As mentioned,

callbacks are an inherent operation within the programming flow, further to this, promises,

which are an improved callback method, can be utilised to create execution dependencies

within the asynchronous operations of the application. Utilisation of such functions within

the application allow for sequential operations and ordered execution, accordingly this is

a critical capability within the otherwise event-driven process flow. Such functions can

be structured within a control system application to ensure if an ordered process flow is

required, it can be correctly executed.

Another positive attribute of the Node.js runtime is that it was developed to allow a unified

programming language to run both server and client-side operations. This is another

major characteristic which resonated with the requirements of this project to minimise

language changes and reduce added complexity to development and data handling.

2.2.2 Node Package Manager (NPM)

One significant positive characteristic of Node.js is the large user base and associated

open-source libraries available for use and inclusion within developed projects. As part

of the large Node.js ecosystem, Node Package Manager is the biggest single language

repository on earth with over 2.1 million packages listed as of September 2022 (Nodejs.org.

2024). The NPM repository allows for rapid development and re-use of existing modules

by developers which is a contributing factor for why Node.js is so popular in the web

landscape.
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The package manager holds a variety of packages which are accessed via the command line,

easily allowing fast building of core functions such as front-end web application frame-

works, mobile applications, routers and various other individually developed packages for

select operations (Npmjs. 2024a). There was a need to call upon various modules as

part of this project to assist in the development of some of the fundamental aspects of

the control architecture. While the overall system was a novel design, the base software

structure and various libraries were utilised to add functionality, these are documented

and referenced where included.

2.2.3 Express JS

Express JS is a middleware software application framework relied upon for streamlining

and simplifying development methods. The framework sits above the existing Node.js

functionality to assist in reducing laboursome coding requirements especially when work-

ing with HTTP and application routing tasks. The software manager uses specific modules

which exist within the overall functional framework to enhance the readability, and flow

of operation of application programming. This is achieved by assisting with parsing of

data (handling functions) and providing a rich set of efficient coded functions for common

tasks within application development (Expressjs. 2024).

2.2.4 Embedded JavaScript Templating (EJS)

EJS is a templating language which provides the ability to generate HTML via normal

JavaScript by using leading and trailing markers within the coded sections. The language

allows fast, cached scripts to be embedded linking functionality across an application

easily and efficiently. It also provides high-level error checking with line-marking and

exceptions further assisting in streamlined development (Eernisse 2020).
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2.2.5 Additional Programming Software and Techniques

Further to the above specified software packages and suites, the project utilised additional

software for various purposes. HyperText Markup Language (HTML) and Cascading

Style Sheets (CSS) which are core web-based languages were employed to assist in visual

display and HMI based functions. A version of databasing suite named MySQL was in-

stalled and used to assist in data storage and management within the terms of the project.

It is one of the most used open-source databases in the world and is highly compatible

with the Raspberry Pi 5 which has been selected for use as the central embedded server

for the project, based on cost, accessibility, and performance.

One added technique which was be investigated as part of the project software solution

was the implementation of a Model-View-Controller (MVC) architecture for the main ap-

plication structure. This is a system of design often employed for web-based applications

and sectionalises the overall functions to ensure a modular system interface which is said

to create a ‘separation of concerns’ (Liu & Wang 2012).

The Model component is where the logic for data access and retrieval from a database

is held. The View component is the separated code which serves the function of user

interaction, allowing communication with the controller to provide the actions called

upon by the user such as keyboard entries and requests. The Controller acts as an

intermediary, tasked with joining the Model and View sections through specific functional

operations. This structure allows for a more defined, component like design which is good

for scalability, reuse, and readability.
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Figure 2.3: Display of the fundamental architecture for an MVC system (Hernandez 2021).

2.2.6 The WebSockets Protocol

The WebSockets Protocol is an application layer protocol which sits on top of the TCP/IP

suite. It has seen usage officially from 2011 onward (Murley et al. 2021) and is used

globally by some high-profile companies to deliver production grade, reliable, commercial

applications. Having been closely developed for Web-Based applications it has many

characteristics which assisted in the development of a fast and robust distributed control

architecture for this project.

In relation to the chosen programming runtime of Node.js and JavaScript, WebSockets

which can also perform non-blocking operations has been shown to be highly compatible

with excellent scalable results when combining the two technologies (Tomasetti 2021). As

the WebSockets Protocol itself is built above TCP/IP it is already tailored for flexibility

in developing individual data streams which can take on various object-based structures

at the application level. When assessed on time latency in operation, one study has shown

that when compared to the 2nd layer raw TCP/IP connection, a WebSocket connection

took 3.7 times longer to establish the connection. While this is a latency cost, it is minimal

considering the protocol sits two layers higher on the OSI-model on the transport layer,

responsible for the message packet structure afforded by the protocol.
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It was also found that there was an approximate sixty percent higher computational

workload for the application processing the data. This increase coupled with the longer

establishment time could be seen as detractors, but given the higher-level structure, the

protocol does not significantly load the connection when considering the lower, raw layer

2 TCP/IP data stream (Skvorc et al. 2014).

The major characteristic of WebSockets which sees it employed for chat and streaming

applications globally is the ability to transport real-time data between communication

nodes by implementing asynchronous and full-duplex communication. Most WebSockets

Protocol suites make use of event-driven callback monitoring and control and have a host

of additional functionality built into the libraries which can be imported such as Socket.io,

a popular choice for web applications.

Figure 2.4: WebSockets against standard polling techniques (Mbed. 2024).

Before WebSockets the main method of communication over HTTP was a long-polling

technique which would see a server hold a request until the return data was ready to

send, creating a number of computational overheads and delays. The long-polling tech-

nique would reduce the number of requests and latency by continually renewing a series of

ongoing requests instead of closing them off however WebSockets improves further by cre-

ating a fully persistent connection. This approach leads to greater efficiency and latency

reduction throughout the connection lifetime (Qveflander 2010).
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To ensure that an industrial communication protocol can provide reliable operation it

must be shown that it can meet speed and error handling targets. One performance-based

study labelled ‘Research of Web Real-Time Communication Based on WebSocket’ (Liu

& Sun 2012), explored connection capabilities of WebSockets showing positive outcomes.

The study used a C library to assess connections with asynchronous transmission against

a standard HTTP connection with results showing a tenfold improvement over traffic and

network delays.

As previously detailed WebSockets uses an event-driven call structure which heavily suits

request-response activities but characteristically does not need the client to be the initiator

of a request. This is where Web-Based applications commonly see a server led messaging

routine interact with users much easier.

Figure 2.5: Detailed plot of a Server / Client message distribution using Websockets (Murley

et al. 2021).

A research paper titled ‘WebSocket Adoption and the Landscape of the Real-Time Web’

(Murley et al. 2021) carried out a review of websites and their activities involving Web-

Socket implementations. It was found that in one case a website successfully sent over

31300 messages originating from the server at a frequency of approximately 1.4 mil-

liseconds showcasing just how fast and efficient the protocol can be over a distributed

communication channel.
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A critical aspect of any protocol is the ability to deliver a secure, uninterrupted channel for

constant data flow. Given that WebSockets is predominantly a Web-Based protocol it has

seen some rigorous security methods employed to keep sensitive user data protected and

reduce the likelihood and ability of common cyber-attack vectors. The WebSockets RFC

6455 details methods to deliver the intended use and structure of a robust implementation

however this is not always achieved for numerous reasons, many relating to developer

experience and decision-making.

As WebSockets is a choice for fast, accessible, and low-overhead communication, the other

critical aspects of securing the protocol can be neglected due to more complex implemen-

tation factors, overall data transfer speed and performance reductions. Research by Jusso

Karlström in the paper ‘The WebSocket Protocol and Security: Best Practices and Worst

Weaknesses’ describes how a certain lack of explicit direction within the RFC 6455 can

lead to failure to secure the protocol on occasions and issues with overall standardisation.

The paper does however continue to note that growing web adoption has led developers to

increase the standard and measures for encryption and other factors relating to security.

The researcher states ‘All things considered, the WebSocket Protocol can be used as a

secure, efficient and low overhead solution for the web applications that need real-time

and two-way communication,’ (Karlström 2016). Some points of note are methods of

handshaking the connection, untrusted certificate detection, header verification and data

frame checks, some relevant elements of industrial data exchange practices.

Harri Kuosmanen carried out a review titled ‘Security Testing of WebSockets’ (Kuosmanen

2016), whereby a thorough examination and assessment of major security vulnerabilities

was developed. While some are more relevant to Web-Based applications the paper dis-

played that there are a multitude of techniques such as cross-site and man-in-the-middle

attacks, authentication failures, input validation failures and injection attacks which can

be harnessed by bad actors upon poorly managed systems.



18 Literature Review

Kuosmanen critically states that ‘Currently the state of security of WebSocket services

is stable, meaning no new types of vulnerabilities have been found lately’ (Kuosmanen

2016), this helps to imply that if measures are taken against the known security elements

a secure protocol can be accomplished. These elements are employed in various scripting

styles dependent on the selected language and library, however by following such literature

efforts, steps can be taken to develop a robust distributed communication network.

2.3 Existing State of Technology

Distributed industrial control systems require a number of combined elements to operate

collectively, allowing safe and reliable function over their life-cycle. Often these systems

are a carefully selected combination of separate devices, each meeting strict quality metrics

to ensure the overall system can operate to the required level. The major component

sections usually consist of:

� Field inputs, such as sensor instruments and discrete devices.

� Controllers, which process the inputs against programmed outcomes, and output

the resulting signals.

� Actuators and field effectors, controlled by the output signals.

They also require a communication topology, often with either industrial ethernet or

fibre, various protocols and potential links to external systems such as corporate layers or

supervisory control and data acquisition (SCADA) systems (Leung 2013). Such overall

process or manufacturing systems need to offer reliable performance in both operating

system and alarm and status monitoring, to ensure if the reliability diminishes an operator

or system supervisor can detect such faults and failures. Legacy approaches have an

assortment of protocols, which can require protocol conversion plus interfacing hardware

and software for end-to-end data transfer and monitoring (Wang, Luo, Jiang, Xu &

Li 2022).
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These systems often employ Human-Machine Interfaces (HMIs) for local control and mon-

itoring which can also require a separate programming and software suite, further comms

links to be established, and data mapping and replication. As expected, the addition of

multiple layers of integrated hardware adds higher complexity and operating requirements

to such systems (Wang et al. 2022), further to this, the software options and selections

for the distributed controller elements are diverse.

Figure 2.6: A simplified Distributed Control System Architecture example (Gillis 2023).

2.3.1 PLC’s and the IEC61131-3 Standard

There currently exists a plethora of hardware and software options to develop control

solutions as part of a Distributed Control Architecture, however for such small to mid-

sized industrial based systems, PLCs are broadly selected for this particular demand. The

original model being a Modicon 084, short for Modular Digital Controller, being released

in 1968 (Peterson 2022).

These systems were developed originally from much lower-level logical and sequential con-

trol, to allow heavily compacted interfacing with otherwise relay-based hardware control

to equipment. Most of the relay hardware in this instance being replaced by electronics

and transistor logic, offering improvements in physical size and reliability among other

benefits.
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PLCs were a critical part of the 3rd industrial revolution but in this regard PLC soft-

ware development was a very specific industry area limited to proprietary and primitive

software development tools (Bonfe’, Fantuzzi & Poretti 2001). While the software has

progressed with industry needs for the most part, Industry 4.0 and the modern world is

demanding greater options and ability to engage with data for business needs.

When utilising these PLC based technologies, the overall structure of the programming

approach is predominantly modelled on the standard IEC61131-3 programming languages.

This standard is based on five programming approaches, three graphical and two text-

based options. Each of these offering certain pros and cons, however the user is always

limited in the ways in which they can both manipulate and utilise the control data. The

five IEC61131-3 languages which have been formalised since 1993 are listed briefly below

(Bonfe’ et al. 2001).

1. Ladder Logic Diagrams (LD, graphical). The most common PLC programming form

with ladder like visual rungs for logical operations using standard combinational

logic and additional assorted features.

2. Function Block Diagrams (FBD, graphical). A highly graphical, representational

form for describing signal and data connections between functions and function

blocks.

3. Sequential Function Chart (SFC, graphical). A state-transition flow diagram which

graphically shows the sequential behaviour of multi-faceted systems. Not considered

a full language due to additional requirements which include other languages for

some sections of actions and transition function.

4. Structured Text (ST, text-based). A high-level language more aligned to standard,

legacy software engineering languages such as PASCAL and BASIC.

5. Instruction List (IL, text-based). A low-level language resembling the assembly type

instruction-based programming method.

While each of these approaches requires differing experience and development methods

from the user, the final program operation in most cases is heavily structured for cer-

tain process models and the ability to create flexible, user-oriented data structures is

prohibited.
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Figure 2.7: Representation of the 5 recognised IEC61131-3 language approaches (Budimir

2018).

The overall structure is formed of variables, function blocks and function calls which

are held within a main program cycle, such that control software is cyclically executed,

developed from computationally implemented continuous or discrete control methods.

Time-driven execution is formed from the execution of control loops, an inherent aspect

of the PLC cyclic scan mode of operation (Pang, Yan & Vyatkin 2015).

2.3.2 Distributed Systems and the IEC61499 Standard

As software and control strategies evolve, steps have already been taken to create more

flexible systems in relation to both PLCs and time-driven systems across distributed

models. The development and use of IEC61499, the Distributed Automation Architecture

Standard has seen a transfer to event-driven and component-based encapsulation methods

to allow more flexible structures and processes within distributed process control systems

(Pang & Vyatkin 2007).

This system allows for a more application-based form, reflective of software engineering

principles. The devices form a device model, and the overall system takes on a system

model which are related through an overall mapping model. The function blocks differ

from IEC61131-3 approaches in that they have an interface and implementation, with

both event and data inputs and outputs.
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Figure 2.8: System Model overview of the IEC61499 Standard (IEC61499 2024).

2.3.3 Developments and Trends

Research and development has been carried out with the goal of integrating the above

listed approaches with some positive results, offering event driven expressiveness coupled

with deterministic, time-driven aspects. Key to this is the merging of two distinct modes

of operation, the reactive and adaptive nature of event-driven logic, combined with the

temporal and synchronous style of time-driven systems (Pang et al. 2015). The combina-

tion of these methods allows for flexible, tailored design and implementation, additionally

it can assist in the ways that data is both managed and utilised overall.

The addition of event-driven logic holds the ability to immediately respond to state

changes, and comparatively, save time and resources in cases where no system change

has occurred. Further to the benefits of such trends, IEC61131-3 has also seen more re-

cent use of Object-Oriented aspects such as encapsulation, inheritance, and polymorphism

to create more robust, re-useable and modular coding practices (Bonfe’ et al. 2001).

Overall, there is a transition occurring whereby modern software philosophies are filtering

across to combine with proven legacy methods, originally more hardware oriented and less

data-centric in implementation. The two combined, offer benefits which can see control

systems perform more efficiently and see essential data become more freely accessible, key

traits for modern distributed systems.
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2.3.4 Protocols used, Data Mapping and Interfacing Requirements.

Industrial control when distributed in nature can call upon many high-performance pro-

tocols to enable reliable, high-speed data-transfer between dispersed controllers and in-

terfaces. It is not uncommon for each network interface to change protocol requiring

expensive protocol convertors and separate hardware to be installed in some instances.

Industrial Ethernet and Fibre Optic are the most common media for the backbone of

distributed topologies. Dependent on the protocol associated, Industrial Ethernet can of-

fer built-in determinism, real-time control with rigid error checking methods while Fibre

Optics can add the benefit of long-distance, high-bandwidth data-transfer.

There are two major standards for Industrial Protocols being IEC61158/IEC61784 –

these standards define protocols and fieldbus which offer real-time distributed control

for industrial systems. Within this framework, Industrial Ethernet encompasses many of

these protocols such as Ethernet/IP, Profinet TCP, Modbus TCP and the less common

but evolving Real-Time conformant EtherCat and SERCOS III (Knapp & Langill 2015).

The elimination of protocol changes is not possible in most cases, with the majority of

such changes occuring at the field interfacing level where PLCs and non-common control

components must convert the bi-directional data streams. Due to this there exists a host

of available protocol convertor units on the market, each requiring detailed knowledge

regarding the process involved to develop data mapping tables and configuration settings

to enable such communication. In addition, several of the above listed protocols are often

employed with PLCs over the older RS232 & RS485 Standards such as Profinet, Profibus

and Modbus, further enlarging the required interface requirements.

Whether a built for purpose microcontroller, industrial PC or PLC is implemented for use,

the communication method must be flexible for future needs offering ease of modification,

interoperability, reliability, and speed. Information Technology (IT) and Operational

Technology (OT) continue to converge, as Industry 4.0 develops unlocking access to edge

devices. This convergence aims to allow streamlined access to new data points, previously

not seen as essential for business needs due to many factors including lack of available

technology and cost barriers (Gundall & Schotten 2021). As can be seen below there is

a growing shift towards Ethernet based communications in light of the above factors.
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Figure 2.9: Distribution of Industrial Protocols and growth showing ethernet weighting (Fluke

2024).

An important aspect of this project was to explore how an Ethernet/IP hardware layer

could be paired with a Websockets protocol layer to allow seamless, real-time capable

communications using web-based JavaScript programming methods. This allowed the

major control sections to adopt a data communication approach which utilised many

of the positive factors discussed above and continued with a project-wide implementa-

tion of consistent web-based programming methods, simplifying the use of data and the

development of key aspects of the software stack.

2.4 Similar Approaches, Implementations and Benchmarks

Automation and the Internet of Things (IoT) has rapidly developed over the last decade,

due to this there exists an extensive resource of research and implementation examples

relating to web-based systems, Node.js control approaches, WebSocket communication

examples and other highly relevant references. Systems are increasingly providing and

consuming more data, giving clearer insight into production cycles and the operation and

management of infrastructure, equipment, and smaller sensory devices.

In a study by M. A. Sehr, et al, a review of the emerging Industry 4.0 requirements for

industrial controllers was given. Key factors were addressed such as how safety, relia-

bility, security, and efficiency can be achieved using modern programming techniques in
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conjunction with legacy-based systems (Sehr et al. 2021). As already mentioned, PLCs

offer comparatively simple software logic with rugged and robust hardware, being an

established factory automation system.

Further within the paper, the authors detail that PLCs lack the flexibility to adapt to

more complex automation requirements where integration with smart sensors, wireless

and internet-based systems, advanced machine learning and data centric applications may

be required. They further mention that the aim is ‘not just to increase flexibility and

generality of programming possibilities, but also enforce constraints ensuring predictable,

analysable, and reliable behaviour’ (Sehr et al. 2021).

For decentralised control the researchers explore time-stamping event-based logic to assist

in deterministic behaviour. They also list catch and handle alarm management techniques

for handling exceptions in the running program. It is noted that as the complexity of

the system increases, a more disciplined use of memory is crucial to ensure deterministic

execution, allowing testability and defining a single specific response for a given set of

input conditions (Sehr et al. 2021).

One area which was focused on in this project was developing equivalent flexible structures

and abstractions for normally restrictive PLC based functions. An example of similar

efforts can be seen in a paper where the researchers attempt to build an abstraction layer

for PLC programming using the Object-Oriented features available within IEC61131-3

(Racchetti et al. 2015). In this paper the authors investigated differing approaches to

development firstly including a Model-Driven Approach (MDE). This is less favoured due

to ease of use but reduced flexibility to personalise designs. Secondly, a Component-Driven

Software Engineering (CDSE) approach was explored. This second method emphasised

the ‘separation of concerns’, with the aim of creating independent components which can

be reused to encapsulate data or functions in a program.

The authors explained the difficulties in design, development and maintenance of such

components. They also noted the complex nature of the process required to provide

functionality and flexibility, coupled with the importance of well thought out design and

organisation of the system. Within their review of available strategies, they found that a

design pattern for encompassing a range of select field elements with abstracted control

had promising characteristics.
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Figure 2.10: Abstraction layer overview common to software engineering (Racchetti et al.

2015).

The term ‘generalised device’ (Racchetti et al. 2015) is used to describe the object-

oriented software component which the researchers developed to encompass a range of

simpler discrete devices. However, the software object is limited in scope as they stated,

‘it can not model devices with more complex feedback’ (Racchetti et al. 2015), referring

to motion control in this case.

Two of the key goals in software engineering are modularity and re-useability, these are

usually achieved through layers of abstraction and careful definition of classes, objects,

and functions to provide the intended operation. In this case the authors provided an

Object-Oriented Architectural Design Pattern designed to be a re-useable solution which

could hide the implementation details of certain functionality. This project aimed to

abide by these principles when establishing system functionality to ensure efficient design

and operation was maintained.

Another paper which reviewed key aspects relevant to this project was “A network of Au-

tomatic Control Web-Based Laboratories,” (Vargas et al. 2011) in which the researchers

developed a web connected system for a remote student learning lab. In conjunction with

the design element, the team also investigated existing remote systems which included a

real-time control loop tied to a central server which asynchronously communicated with a

client interface. The researchers explored how to achieve this using Transmission Control

Protocol / User Datagram Protocol (TCP/UDP), which exchanged data and commands

with a design pattern termed as a “command-based architecture” (Vargas et al. 2011).
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Figure 2.11: Command-based architecture (Vargas et al. 2011).

One sample architecture operated with a remote client sender thread which connected over

a TCP/IP asynchronous communication link to the central server running a command

parser thread. This software parsing routine was responsible for syntactic interpretation

of the incoming requests and execution of the related actions. Inversely, within the server

was a sender thread which is tasked with transmitting measurement data extracted from

the control loop algorithm, back to the client when directed by a command.

The overall style of this system was that of a client-server model, this had noted limitations

when relating to closed-loop control which the authors define. They explained that this

model required two separate information loops, a real-time control loop running on the

server side and the information & communication loop running asynchronously over the

network (Vargas et al. 2011).

When dealing with control system algorithms it is essential to ensure that any time-based

systems are correctly managed and separated from the independent, asynchronous com-

munications and operations. This can be achieved by careful segregation and development

of modular sections of the overall application. This was another major consideration for

this project during implementation.

In terms of separation and abstraction, a research paper by Muhammad Umer et al.,

looked at a novel approach for creating interconnected, smart power tools for the company

Scania. The aim being to create a standardised method of data collection for such systems,

allowing enhanced flexibility and accessibility of data via web services (Umer et al.

2018). The authors proposed a system which decoupled existing components and created

a Service-Oriented Architecture (SOA).
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This consisted of small application components which were ‘wrapped’, a concept of isolat-

ing and hiding the internal functionality of a component, by only exposing the necessary

software interface. This approach allowed an interoperable, modular framework for de-

veloping solutions with re-useable software (Umer et al. 2018).

This form of architecture permitted the components to interact with each other via data

over a network while becoming independent entities within the overall application scheme.

Such service-oriented architectures have two distinct component sections, the interface,

and the functional implementation.

The component interface allows interaction with other entities by only exposing the func-

tionality of the service used, creating a standardised method which becomes modular

and much simpler to manage as the complex internal functions are not exposed (Umer

et al. 2018). This allows a scalable, structured system with simplified interactions between

intended modular sections.

The authors further enhanced the given system by utilising event-driven architecture

(EDA) methods explaining the potential benefits of such a system. It was shown that

such a system could generate an event such as an automated message to an operator

when a piece of tooling required changing. The use of EDA allows intelligent decisions

by utilising event information, compounding this, it was shown that such decisions can

be made not only by personnel but by the systems themselves when developed correctly

(Umer et al. 2018).

Figure 2.12: Event-Driven Architecture example with standard central broker (Shabani 2018).
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A simplified explanation of an event-driven process was also provided within the paper

explaining the loose coupling methodology (Umer et al. 2018):

”Only the creator of an event knows that the event has occurred, . . . on the other hand the

subscriber to the event only knows about the event and not any details about the creator

of the event or the location of the event, unless the event itself contains the information

about the creator and origin”

As highlighted, Industry 4.0 requires the unlocking of previously inaccessible data stores

and integration with software and enterprise solutions to ensure companies create a com-

petitive edge and efficient business model. Bellini et al. (2022) investigated these points by

implementing a hybrid Distributed Control System (DCS) / SCADA system, which com-

bined an Internet-of-Things (IoT) system with an event-driven distributed data scheme.

The hierarchical structure they presented in theory addresses the below elements:

(i) Able to collect data from several sources at different rates.

(ii) Historise high-level data and decisions taken.

(iii) Monitoring the system and generating higher level alarms and actions.

(iv) Graphically representing the higher-level status of the system.

(v) Allowing the connection of production and maintenance activities.

(Bellini et al. 2022).

Figure 2.13: Overview of an integration of Industry 4.0 systems (Bellini et al. 2022).
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To implement their solution, they called upon pre-built solutions in the Snap4City IoT

package and Node-RED software integration system. Snap4City is an IoT development

environment and framework useful for implementing supervisory and control aspects of

combined production chains. It is open-source and able to provide dashboards of visualised

data, microservices and connect sources using protocols including WebSockets, noted for

its secure connection capability.

Node-RED is used predominantly as a graphical-based design and integration software for

rapid small-scale IoT connectivity and configuration (Bellini et al. 2022). As the name

suggests it is built upon Node.js and is suitable for rapid prototyping and connecting

different protocols and sources by creating IoT gateways. Due to the graphical nature,

the researchers state that Node-RED may not be very effective in performance terms, due

to extended round-trip time based on the reading, computing, and acting cycles within

the control scheme, coupled with the higher-level implementation of the overall system

(Bellini et al. 2022).

Figure 2.14: Example of a Node-RED workflow into an IoT app (Musings. 2020).

As a system, Node-RED is highly beneficial for IoT use, however it can be somewhat

prohibitive for scaling, with the added difficulty in code-review due to the easy-to-use,

but hard to verify graphical nature when using on larger-scale, complex designs. This

is visible from the above Figure 2.14, whereby many linked interconnections can make

complex designs harder to navigate. However, when used for interfacing, the Node-RED

system is efficient and greatly simplifies some common tasks by providing ready made

modules to the designer.
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The paper demonstrated that with the selected technologies a system could be imple-

mented which addresses many key criteria including exploiting big data storage, powerful

dashboard creation and executing data analytics to combine with business intelligence.

These are quite specific functional criteria, whereby some of the non-functional require-

ments were also relevant to this project, being:

(i) Robustness (Fault-tolerance and availability).

(ii) Scalability (Small to large system requirements).

(iii) Security (Authentication, secure connections etc).

(iv) Privacy (Compliance, data privacy) .

(v) Openness (Providing possibility of additional modules and functionality).

(Bellini et al. 2022).

An important step in developing industrial technology is defining the benchmarks and key

attributes of future system frameworks. Such a framework was developed and explored

in the paper “Assessment of Industrial Internet Platform Application in Manufacturing

Enterprises” (Li et al. 2021) where the authors listed the major and sub-level indicators

for such applications.

Figure 2.15: Developed framework for assessing an Industrial Internet Platform (Li et al.

2021).
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These indicators above reflected many of the major goals and considerations for future

systems such as: refined control strategies, accessible and highly utilised data to drive

efficiency, optimisation and customisation. While this list is not exhaustive it mirrors

the general trends for industrial / enterprise fusion in the modern environment. Many of

these themes are reoccurring in business, production and manufacturing environments,

this is why they need to be factored into the design of software solutions which aim to

merge data sources and intelligent systems.

2.5 Chapter Summary

The concepts that have been examined above have been continually assessed within the

scope of this project to ensure that where possible, the software design and implementation

satisfied such elements. Regarding the above strategies and results, this project aimed

where possible, to incorporate the below points.

(i) Object-Oriented design

(ii) Combined Event-Driven and Temporal Control philosophies

(iii) Error-Checking methods

(iv) Real-Time capable communication networks

(v) Accessible data sources

The aim was to determine if a flexible software application could be implemented as

a framework for a Distributed Industrial Control System to encompass many of these

Industry 4.0 relevant concepts.



Chapter 3

Methodology

3.1 Chapter Overview

This chapter defines the overall methodology for developing and assessing the implemen-

tation of key aspects of a Distributed, Industrial Control System using Web-Based tech-

nologies. The chapter addresses the higher-level themes explored in the previous chapter

and provides a detailed outline of how selected hardware and software approaches were

used to develop solutions. Further, it lists the performance attributes measured during

the design and implementation stage of this project.
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3.2 Introduction

Distributed Industrial Control Systems involve the merging of robust hardware in com-

bination with carefully constructed software programs and systems, ensuring continuous,

reliable operation. This project did not aim to replicate expensive, well-tested, industry-

standard hardware, available off the shelf for use. Instead, it aimed to provide a reli-

able system, capable of implementing software processes and communication which could

demonstrate novel and refined approaches, delivering an easy to model and modify, Dis-

tributed Control System approach.

To achieve this chosen approach, a selection of embedded hardware was utilised in con-

junction with some general network equipment allowing a base topology to build above.

Further to this, interfacing hardware was utilised where possible on the embedded systems

to allow connection, control, and sensing of field sensors and actuators, predominantly

to explore potential options. The major focus of this project was to develop software

solutions to satisfy common legacy and modern control system requirements. There-

fore addressing event-driven and temporal-sequential operations, communication proto-

col implementations and other functional aspects of the control system such as database

operations and visual applications.

As with any major research project it was important to address and correctly identify all

risks associated within the scope of works. The inclusion of a detailed Risk Management

Plan was therefore provided to control the hazardous aspects of this undertaking. A

project timeline was also included which highlights the major deadlines and sections to

ensure the project met required timelines for completion.

3.3 Project Documentation

It was anticipated that the initial implementation of the base topology alone would con-

tain challenges including compatibility issues, configuration nuances and requirements to

constantly refine the approach. Further to this, sourcing of suitable equipment for use

and developing electronic solutions could be required for interfacing systems of different

supplies and varying power and sensing requirements.
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It was essential given the probability for setup issues that a clearly documented approach

was used for all system development, both hardware and software. It was also a key criteria

for producing a high-quality research project and meeting the capability of demonstrating

the targeted outcomes. Documentation for the given solutions comprised of diagrams,

photographs, flow charts, tabulated results and software records including version control

where necessary. This process was important to ensure that any efforts to follow the setup

and development could be easily followed and replicated by others.

3.4 Risk Management

The Risk Assessment completed for this project can be reviewed as Appendix B at the

end of this document.

3.5 Project Breakdown and Timeline

This project was broken into a number of stages and sections to research and develop

solutions within the defined scope. By segregating sections a progressive approach was

maintained which clearly developed the key points and documented the project steps

taken to produce the final results.

Thes major sections include:

� Literature Review - Initial review and research of existing technology and ap-

proaches.

� Methodology - Reviewing Hardware and Software approaches and the intended im-

plementations and solutions for creating the project.

� Design - The main section whereby the project was developed and tested to deter-

mine suitability and capability of Web-Based technologies for distributed control.

� Results - Review and collation of the results from project development and testing.

The following page shows the associated project timeline used to manage deadlines and

project progress over the course of this research undertaking.
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Figure 3.1: Timeline of critical events as part of the research project.
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3.6 Hardware

There were a number of hardware solutions available for selection and use within this

project, however due to the availability, low-cost and flexibility of the Raspberry Pi brand

of embedded boards, these were ultimately selected for use within this scope. Further

justification is given for this selection, accompanied with the associated details of the

hardware selections within this overall section.

3.6.1 Distributed Control System Architecture

To develop a model distributed architecture a three board system was been chosen as

it allowed multiple communication channels to investigate various protocol and control

strategies.

Figure 3.2: Overview of the Distributed Control System Architecture / Topology .
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To allow this system to operate, a more capable central server, embedded board was

selected which could perform database operations, act as the Human-Machine Interface

(HMI), and handle more advanced computational functions. The board selected for this

role was the Raspberry Pi 5.

The two other separate embedded boards were the smaller form, reduced capability units,

which are used for basic control, data acquisition and interfacing to field elements. For

these boards the Raspberry Pi Zero W was selected for each.

The three units communicated over an Ethernet layer 2 data link, via an interconnected

network switch. This physical layer allowed the WebSockets protocol to be established

and communicate between the three running systems.

While hardware is a major aspect of Industrial, Distributed Control Systems, this project

intended predominantly to focus on how software elements could be implemented to cre-

ate solutions on top of standard embedded hardware. A challenge of this was to source

embedded solutions which allowed the implementation of a smart, distributed architec-

ture, capable of developing software within the given scope whilst minimising the overall

budget. One major benefit of the Raspberry Pi models was that there existed a range of

different models allowing for flexible solutions which could be integrated together, shown

in the design of this project.

The following sub-sections detail the various hardware selections which were sourced and

utilised for this project. Each sub-section gives appropriate justification, listed with the

inherent features.

3.6.2 Raspberry Pi 5

The Raspberry Pi 5 was a high-performing embedded board, more than capable of pro-

viding the hardware and software performance requirements of this project for the main

central server.

The onboard processor was a Broadcom BCM2712 2.4Ghz quad-core 64-bit Arm Cortex-

A76 CPU (Raspberry-Pi. 2023). It featured 512KB per-core L2 caches and a shared

2MB shared L3 cache.
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Figure 3.3: Raspberry Pi 5 Embedded Board (Raspberry-Pi. 2023) .

There were three other alternate boards investigated for the role of central server. These

were the BeagleBone, Jetson Nano and Arduino Uno. The Arduino was quickly eliminated

as an option due to the reduced capability to handle visual output and independent

operating systems. The Jetson Nano was a more powerful unit with more functionality,

higher processing capability and interfacing options however the cost was prohibitive.

The BeagleBone was the closest competitor and while only slightly more expensive it was

not chosen, as a complete Raspberry Pi solution was decided, due to the availability and

low cost of the accompanying Pi Zero W boards. A list of specifications is provided in

Appendix D.

3.6.3 Raspberry Pi Zero W

The Raspberry Pi Zero W was chosen as the embedded board for the distributed nodes

for a number of reasons. The total cost per unit of $24.50 +postage was far less than

most alternatives. The units had a small form factor, had many libraries available for use

through npm and importantly had Ethernet capability available when used in conjunction

with an adapter to support a WebSockets implementation.
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Figure 3.4: Raspberry Pi Zero W Embedded Board (Core-Electronics. 2024) .

While the units were low-cost and small they still had graphics capabilities and compat-

ibility with required software such as NodeJS. The units could also be run via Secure

Shell (SSH) to allow a secure, remote connection for programming and file transfer using

the popular open-source terminal emulator, Putty. A list of specifications is provided in

Appendix D.

3.6.4 Raspberry Pi ADC Module

Figure 3.5: Raspberry Pi ADC Module (PiHut. 2024) .

The Raspberry Pi ADC was an analog to digital converter board which could be placed on

top of the Pi Zero board, enabling power through the GPIO pins and adding capability for

analog signal processing. The board achieves this by using two on-board MCP3424 Analog

to Digital converter chips. These chips are addressed and work over I2C communication

to provide 8 analogue inputs for use. The addressable range for each board is 8 allowing

up to four boards to be stacked providing 32 inputs per local controller. There is also

a 3.3v to 5v logic converter to allow easy interfacing with the lower voltage Pi supply

(PiHut. 2024).
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The MCP3424 included an integral 2.048V reference voltage with a full scale range of

4.096V. There was also a programmable gain amplifier with ranges of x1 to x8 prior

to the ADC conversion. Using the I2C interface the data rate and resolution could be

adjusted from 3.75 samples per second (SPS) for 17 bit up to 240 SPS for 11 bit resolution.

(PiHut. 2024).

3.6.5 PWM 3.3V/5V Voltage Converter Board

Figure 3.6: PWM 3.3V/5V Voltage Converter Board (Amazon. 2024) .

Another addition to the hardware interfacing to increase the available voltage driven

from the Raspberry Pi Zero was a 3.3V to 5V Pulse Width Modulation (PWM) driven

converter board. This board boosts the 3.3V output from the GPIO pins and the ADC

board to a more flexible 5V supply where required.

3.6.6 Ethernet Unmanaged Switch

To allow connection of the three separate embedded systems over a network, an unman-

aged Ethernet switch was selected offering a simple plug and play physical network to be

enabled. The unit was powered from a separate 24v DC supply and could support up to

5 connections. This allowed implementation of the WebSockets Protocol over the Data

Link Layer.
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Figure 3.7: TP Link 5-Port Ethernet Switch (TP-Link 2024).

3.6.7 24 Volt DC Power Supply Unit

Due to the requirement for a number of working voltages within the project the decision

was made to select and purchase a 24 Volt Direct Current (DC) power supply unit. This

unit had a 3A 72W rating providing sufficient power for all necessary devices within the

project.

Figure 3.8: 24 Volt DC Power Supply (ebay. 2024b) .

3.6.8 Miscellaneous Equipment

There was a number of smaller items required to allow connections to be established and

interfacing and display to be achieved as part of this project. These items are listed within

Sub-Section 4.2.3.
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3.7 Software

3.7.1 Raspian and Ubuntu/Linux OS

There were two separate operating systems (OS) selected for the three separate Pi boards.

The original intention was to utilise the Linux based Ubuntu 20.04.1 LTS distribution for

the Pi Zero W boards. This choice offered some added package management system

software and program options, however it was discovered during some basic initial setup

that the Pi Zero W was not completely supported after initialisation issues and some

further documentation review. As a result the Raspian Bookworm OS was selected and

successfully installed and run on the Pi Zero W embedded systems.

It was still preferred to progress with the Ubuntu install for the Pi 5, therefore Ubuntu

23.10 was used for the Pi 5 operating system. This was successfully loaded on the Pi 5,

offering more advanced package services, an easy to use interface and some more familiar

methods.

Both operating systems importantly offered terminal access for downloads, aiding in rapid

installation, configuration and setup. They could also be used with NodeJS and the

associated libraries. It was ensured that the two versions were also established and proven

stable, to add to the reliability, as the latest versions can in cases still hold performance

bugs and software issues.

3.7.2 NodeJS & NPM

With the availability of terminal installs on both operating systems NodeJS and npm

could both be installed in a reasonably easy process. To install, the user can open a

terminal instance and : “sudo apt-install node”. This sets the user as super user similar

to administrator in windows based environments, allowing root privileges for download

and file system management. The statement also calls the up-to-date software package

from the appropriate location, known as a repository in Linux-based systems, to download

and install. Both nodeJS and npm were used extensively within the project with each

use case documented further within the Functional Design section.
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Figure 3.9: An open terminal instance with request to download nodeJS .

3.7.3 ExpressJS & EJC

ExpressJS and EJS could also be installed ready for use using the terminal directly. These

were used within the nodeJS app, this was achieved by importing into the source code of

the application program once installed using the require directive within the application

dependency section.

Figure 3.10: Example node application source code with dependency listing .
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3.7.4 MySQL

It was intended to explore various database aspects within the project once the lower-level

operations were complete. The aim of this was to demonstrate the ability to easily capture

data from the end device and map into the local database for further internal and external

use. Some of the features to be addressed were database definitions and structures,

timestamping capabilities for historisation and standard transaction operations known as

create, read, update and delete (CRUD).

MySql was the selected program to be used as after initial investigation it was seen to be

highly compatible with Raspberry Pi systems, relatively lightweight in software terms and

was the most popular of Pi users, offering a large amount of associated documentation to

assist in development.

Where this system was implemented, all steps and processes to install and implement

were documented within the project

3.7.5 MS Visual Studio Code

Microsoft Visual Studio Code or VS Code as it is otherwise known was the selected

software Integrated Development Environment (IDE) for project tasks. While Geany and

Thonny were two IDE’s already on the Raspberry Pi Zero W system they were not as

easy to operate and have far fewer features. VS Code was installed on the Pi 5 system

and offered a relatively low system overhead, however, it was not compatible with the Pi

Zero W due to system constraints. In managing this, all coding was completed on the Pi

5 and transferred onto the Zero W units via a shared file system over the Ethernet Local

Area Network (LAN). In limited cases code was updated direct using Geany, for minor

modifications.
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3.7.6 Putty

Putty is an open-source secure shell terminal emulator which can allow remote access to

consoles such as a Raspberry Pi Zero. Due to the addition of two extra monitors for the

project development, Putty was not needed, however it offers connectivity features for

reduced systems like the Pi Zero W which add flexibility to the units. It can be used to

remote access the file system to run programs and make changes, this is known as running

in ‘headless mode’.

3.7.7 Git and GitHub

Git is an open-source version control system software which can be used to manage

development of software projects. GitHub is a cloud-based version control platform which

can allow the same functions.

In this project, GitHub was used to ensure modification and project development were

controlled so that errors and improvements could be documented and managed. With

any software development it is important to ensure rollback and recovery can be achieved

if a system modification results in errors, this program helped mitigate this issue during

the project.
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3.8 Details of Proposed Methods and Testing

There were a number of individual system characteristics which were investigated as part

of the overall distributed control system to determine if suitable performance or specific

operation could be achieved using the assigned Web-Based software systems. The below

Figure 3.11 shows the initial intended, high-level structure of the software to be developed

and tested for the overall distributed control system.

Figure 3.11: The basic intended software topology for the Distributed Control System.
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Each of the major components were to implement software routines and object-oriented

practices to allow a modular, inter-connected system sub-structure. This reflected some

of the core elements of IEC61499, being: Object-Oriented encapsulation of functions and

methods, nesting of objects to develop complex interfaces while keeping data wrapped,

hardware abstraction and flexibility in system design.

The below project sections are also aligned with the timeline overview provided earlier in

the Methodology section.

� Individual Control Server Applications

� Communication Network

� Central Server Scheduling and Timekeeping

� Database setup and operation

� Human-Machine-Interface (HMI)

� Class-Based Modules for control and data handling

� Further Sequential Testing

3.8.1 Individual Control Server Applications

The first step of the project implementation and testing was to setup the three devices

with NodeJS applications. This was to be the base system in which all further control

programming, communication configuration and interfacing was built from. This step re-

quired initial installations, configuration of the required dependencies and any additional

libraries in conjunction with separate program development. This allowed a main appli-

cation to be built which was the interface for all other software sections and sub-systems.

Some rudimentary general purpose input and output (GPIO) functional testing and map-

ping to the IO interfaces was also attempted and developed within this section. This was

initially to indicate the ease at which further interfacing could be achieved to assist with

task scheduling and completion.
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3.8.2 Communication Network

The next step of testing was to establish the communication setup with the Ethernet Data

Link Layer. This initially consisted of physical connection and ping tests to confirm lower

level connectivity. Then each distributed system had a WebSockets Server-Client which

had specific address ID / data handling, event driven messaging and communications

parameters.

Features and measurable characteristics such as Latency, Bandwidth, maximum and min-

imum data rates, failure detection, watchdog cycles and transmit actions such as broad-

cast and individual transfers were all to be evaluated within this section. These elements

were not completed at the same stage of the project, dependent on project requirements.

Further elements were also developed to assist in functionality as required.

3.8.3 Central Server Scheduling and Timekeeping

Once all devices were connected and capable of sending and receiving data the aim was to

develop a time-dependent system framework for the overall Distributed Control System

operation. This was to start with building a schedule and a sequenced, priority based

framework for the system. The exact nature of this scheduling was defined and developed

within the design section requiring the separation of cyclical-based tasks from event-

driven tasks and appropriate hard-time deadlines which tested whether system priorities

and functions can be maintained reliably.

A key role of the central server on the Pi 5 was to create an ordered and structured system

to acquire and process all data from the distributed nodes and within its own interfaces.

While event-driven execution models are said to be deterministic, giving known responses

to set event-triggers, the nature of industrial systems requires that time-based responses

can be proven especially regarding safety systems. Therefore the time-based operation

of aspects of the central server were seen as critical to determining suitability of such a

system in the overall scope of this project.
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By using JavaScript promises within the NodeJS environment the aim was to ensure

system tasks and communications were executed to set time frames. This ensured data

updates were achieved within the tolerances of set watchdog timers and allowed the main

application to check system parameters at set, re-occurring time intervals.

3.8.4 Database Setup and Operation

This section required the implementation of a database on the Pi 5 which was to connect

to the central server to allow persistent data storage and access. It was connected so that

data over the WebSockets protocol was transmitted or received by the database via the

NodeJS application.

Historian capabilities were investigated for recording and time-stamping Input-Output

control data and system parameters. These capabilities would assist an industrial system

with managing error checking, data failures and reliability, and recording of events and

alarms. Again, this was a critical aspect of the project which demonstrated how such a

web-based design could effectively make data both accessible and easily manageable, key

traits of modern Industry 4.0 systems.

3.8.5 Human-Machine-Interface (HMI)

There was a section allocated to develop graphical interfaces as part of the overall Dis-

tributed Control System. Initially this entailed the set up of simple graphics to display

parameters and live data or retrieved data from the database. This was also to be utilised

to explore how simple discrete control strategies could be managed across networks using

the HMI interface to control or monitor elements of the system. However, due to time

restraints this element was not deeply explored with simplified discrete data transfer only

completed.

Time permitting more complex graphical elements were to be attempted however it was

envisaged that the graphics would predominantly be used to assist with simple testing,

interfacing and monitoring functions. The intention was that these functions would pro-

vide the assurance that more complex tasks could be built from the fundamental methods

used for lower-level operations.
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3.8.6 Class-Based Modules for Control and Data Handling

An ongoing task within the scope of the project was to stay aligned with the IEC 61499

principles by building Object-Oriented Structures (OOS) to develop class-based data han-

dling techniques. When referring back to Figure 3.11, many of the high-level components

of each application would require specific, purpose-built class modules for dedicated func-

tionality.

A major benefit of following OOS practices was the ability for component re-use and

nesting of objects to create flexible functions. Such methods also assisted in data wrap-

ping, when executed correctly this allowed only the exposed methods to interact with

data through interfaces. This essentially created a black-box model for data processing,

greatly simplifying the readability and operation of code within the application. These

approaches were followed where possible to build system components which reflected such

benefits.

It was expected that objects and classes were to be defined and used in the below areas

as a minimum:

� Database Interfacing

� Hardware and IO Interfacing

� Watchdog operations

� Communication components

� Alarm management modules
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3.8.7 Hardware Interfacing

Time permitting the use of more advanced analog Input-Output devices and signals was

to be researched and tested. If successfully achieved such functionality would show that

accurate, high-resolution signals could be managed within the control scope.

This is why the Pi ADC units were included as part of the hardware specification. This

task was to combine with the above stated class and object-based practices to create

interfaces, which would simplify how the system could interact and operate with more

advanced sensory and control elements.

3.8.8 Further Sequential Testing

Another potential extension of project research and testing was to be development of

a simple hypothetical batch or phase-control system which would require further hard

sequencing to test the NodeJS system for deterministic operation. This section was de-

pendent on available time resources and the outcomes from initial system sequence testing

from work within the Central Server Scheduling and Timekeeping Section. This was not

completed.

3.9 Records and Data Analysis

The core goals of this project were to research, develop, test, and assess the suitability

of chosen Web-Based software and hardware implementations in relation to the project

theme. To assess and determine performance some metrics were needed relating to the

above reviewed sections. Some testing was to be qualitative in nature, such as whether

certain software methods met the high-level guidelines of IEC 61499 or IEC 61131. Al-

ternatively, some outcomes were to be qualitative, such as the bandwidth, data rates and

latency of signals, relating to the communications of the system.
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Below is a list of highlighted outcomes / metrics which were to be assessed and recorded

during the design stage.

� Recording of defined sequential testing outcomes.

� Latency and bandwidth / loading tests with WebSockets.

� System and NodeJS minimum and maximum execution times.

� Central Processing Unit (CPU) and Random-Access Memory (RAM) usage for each

embedded system.

� Analog signal resolution and sample rates achieved.

� Watchdog time settings achieved.

� Records and capture of database timestamp operations.

� Records of communication errors, up-time and issues.

� Overall methods and programs used for testing and recording.
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3.10 Chapter Summary

This section reviewed the major component sections for both hardware and software which

were to be utilised within the project. It also outlined the intended methods and separate

elements which were to be focused on when carrying out the design and testing phase of

the project.

From these steps, the design phase was able to determine the suitability of certain indi-

vidual elements of the Web-Based design, and also aimed to deliver an overall suitability

of such a combined system, for the intended industrial application.



Chapter 4

Functional Design

4.1 Chapter Overview

This chapter explores the design approach utilised within the project to create the dis-

tributed control system architecture. It initially reviews the hardware design and shows

how the components were connected and tested to get the basic system ready for fur-

ther software development. It then continues to detail the software development cycle

including the structure and program flows, dependencies and system components.
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4.2 Hardware Design and Construction

The hardware for the developed system was built on Raspberry Pi Micro-Controller Units

(MCU’s). The designed system had a Pi Five unit as the central server and two individual

Pi Zero units as separate clients. Further modifications were completed on the Pi Zero

boards to enable analog signals by addition of Pi ADC top-hat boards. There was also

a TP-Link 5-Port Gigabit Switch used for enabling the network in conjunction with a

NetLink Ethernet Media Convertor.

Figure 4.1: Block Diagram of all Power, Communications and accessory connections.
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4.2.1 Raspberry Pi Five - Main Server

The Pi Five was a 4GB model and was provided with 4 x direct connect USB points. A

Pi Five specific 5.1V 5A power supply unit was purchased which was necessary to allow

the unit to run without shutting down. This was discovered initially when an error was

shown in the top right of the monitor display, upon energisation with the loaded operating

system. The required connections to the unit include:

� 1 x Power Supply Unit (USB-C connection)

� 1 x Micro-HDMI (A Micro to Standard HDMI adaptor was used for monitor con-

nection)

� 1 x Wireless mouse USB connector

� 1 x Keyboard USB connection

� 1 x Cat6 RJ45 Ethernet connection

Figure 4.2: Image of the hardware connections to the Pi Five unit.
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4.2.2 Raspberry Pi Zero Units - Distributed Clients

The two Pi Zero units while compact and capable, had a limited number of connections

and no Ethernet RJ45 connection. As the two Zero units were the distributed clients

within the overall system they required input / output (I/O) interfacing. To allow this,

there were some preliminary modifications required to the boards. This included the

addition of the Pi ADC Top-Hat module which added analog I/O capability to the boards

as specified in 3.6.4 of the Methodology section. To achieve this, soldering of the board

was required including; the GPIO header pins, 8-pin terminal block, I2C address pins

and addition of 4 securing circuit board bolts. Once completed the board was ready for

connection and use. The below board connections were initially required:

� 1 x Power Supply Unit (USB-micro connection)

� 1 x Mini-HDMI (This connects to Mini to Standard adaptor for HDMI monitor

connection)

� 1 x Micro-USB (Connected to Micro to USB-A adaptor, then to 5-way USB-A Hub)

Figure 4.3: Image of the hardware connections to one of the Pi Zero units.
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As detailed above, a 5-way USB Hub was connected via the Micro-USB adaptor to expand

allowable USB ports for each Pi- Zero unit. The 5-way USB-A Hub subsequently had the

below items connected:

� 1 x Ethernet RJ45 adaptor to Switch (USB-A to USB-C to USB-Micro in-line

connections)

� 1 x USB Mouse connection

� 1 x USB Keyboard connection

For testing of I/O capability a small breadboard was used to connect LED’s to the GPIO

pins. This allowed visual tests to confirm discrete operations were working for each Pi

Zero. Further connections to the 8-pin connection on the ADC module allowed for analog

inputs to be connected as well. These elements are detailed further within the Results

section of this document.

Figure 4.4: Image of the final system hardware setup.
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4.2.3 Hardware - Material Take-Off (MTO)

A full list of all hardware and equipment used for construction of this project is listed in

the below MTO table.

Description Model Quantity

Raspberry Pi Five 4GB Model B 1

Raspberry Pi Zero W 512MB Wireless 2

ADC Pi Module ADC Pi 2

32GB Micro-SD Card Sandisk 3

Raspberry Pi Five 5A Power Supply Unit Pi Five PSU 1

5VDC USB-A Charger Generic 2

HDMI Monitor (with power adaptor) Generic 3

Keyboard Generic 3

Mouse Generic 3

USB-A 5-way Hub Targius 2

Micro-USB to USB-C Adaptor Generic 2

USB-C to USB-A Adaptor Generic 2

Micro-USB to USB-A Adaptor Generic 2

Ethernet to Micro-USB Adaptor Generic 2

Ethernet to Fibre Media Convertors NetLink (Pair) 1

5-Port Unmanaged Network Switch TP-Link 1

Cat-6 Network cable 3m length 4

Single Mode LC Fibre Pair 3m Length 1

Standard HDMI cable 2m length 3

Micro HDMI to Standard Adaptor Generic 1

Mini HDMI to Standard Adaptor Generic 2

IRF520 Mosfet PWM Module Pack of 5 1

4-Gang Powerboard Generic 2

Table 4.1: Material Take-Off for project equipment
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4.2.4 Test Equipment

A full list of equipment used for testing during this project is listed in the below table.

Description Model Quantity

Digital Multimeter Fluke 289 1

Voltage / Current Calibrator MANN Portacal 1000 1

Oscilloscope PicoScope 2204A 1

Laptop Lenovo 1

Test Leads & Plug Connectors Generic Set 1

Table 4.2: Test equipment used within project
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4.3 Software Design and Development

The software for each of the separate MCU’s was developed as a NodeJS / Express run-

time application which executed on top of the MCU operating system. Each board’s main

application could be invoked simply using a terminal command once, within the parent

directory of the developed solution. Further information relating to the initial installa-

tion of operating systems, NodeJS runtime and application initialisation are provided in

Appendix D.

The following section details software design following these initial installations through

to full development of the final project code. The following subsections include:

� Pi Five Server - Program Architecture

� Pi Zero Clients - Program Architecture

� Network Communications and WebSockets Operations

� Sequential and Time-Based Control within Server / Client Applications

� Database Operations

� Model-View-Controller - HMI display

� System Information and Data Monitoring

4.3.1 Pi Five Server - Program Architecture

The Pi Five server acted as the central point for the overall distributed control system with

the core functionality of establishing communications with clients, monitoring alarms,

performing database operations and providing HMI display data for the user. To achieve

this functionality, a number of bespoke functions were developed as part of the server

application. The software flow of the server.js application follows the below sequence.
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Figure 4.5: Server software sequence flowchart.
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The steps from the above flowchart are further detailed here:

1. Import / Assign npm Dependencies: This step imported and assigned all

required npm library package dependencies into the application. This allowed the

use of express, websockets, path and the body-parser packages.

2. Import / Assign Custom Dependencies: This step imported and assigned

all custom made function dependencies into the application. These included the

date-time, watchdog, serversocket and database functions created for the project.

3. Set ejs as view engine: This assigned EJS as the view engine for serving HTML

webpage content. This allowed improved data and page functionality in the MVC

operation.

4. Import / Assign MVC controllers & routes: This linked the controllers used

for serving webpage content and defined the routes used to render the content. This

is explained further in the HMI Section 4.3.10.

5. Start / Monitor system watchdog: The system watchdog started when the

server is brought online. The watchdog refresh periodically reset the watchdog to

ensure the system did not hang during computation. This is explained further in

Section 4.3.7.

6. Create express app: The app returned in this command was a JavaScript function

which can be passed to the NodeJS HTTP server as a callback. This allowed passing

of the express request function handler which controls web-based HTTP request

routing and rendering HTML responses. It also allowed assignment of middleware

such as EJS (MDN 2024).

7. Create HTTP server on express app: This step generated a HTTP server and

passed the express app function handler to the server for functionality.

8. Start HTTP server and assign port: This step simply created a HTTP server

instance and listens on the assigned PORT 3000.

9. Upgrade HTTP server to WebSocket server: This step upgraded the HTTP

server to a WebSocket server on the same PORT and address.
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10. Run websocket server function: This ran the server side WebSockets function

wsServer() imported from serverSocket.js. This was responsible for managing all

communication between clients including communication watchdogs, device I/O

and system data, and alarm management. It also assisted in routing incoming data

into the database. This is detailed in Section 4.3.5.

11. Run database function: This step initiated the MySQL database using myDB()

within the Pi Five. It ensured the database was online, tables were generated and all

data handling was managed. This also ran a local asynchronous setInterval function

which logged system data such as CPU loading and memory into the database.

These points are detailed more in Section 4.3.9.

Figure 4.6: Overview of the system dependencies for the Server architecture.
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4.3.2 Pi Zero Clients - Program Architecture

The architecture and program flow for the two separate Pi Zero W distributed control sys-

tem clients were designed essentially identical except in two aspects. They were assigned

a separate client number for communication and had different simulated I/O data created

for testing purposes over the WebSockets connection, and into the server database. While

hardware interfacing was tested (Section 5.3.6) the majority of the development for the

client boards used simulated data to create larger data streams, more test points and

assist with alarm activation tests.

Figure 4.7: Client software sequence flowchart.

While the control of field devices for processes using in-built algorithms is a major focus

for individual embedded control systems, the function of these clients programs focused

more specifically on distributed data control and alarm management. This required the

ability to gather all updated device and system data, including device, alarm and system

states, and communicate the data flows to the server and ultimately the database. In

making the system robust, error checking and time-stamping functions were built into

the communications to mimic industrial communication protocol qualities.
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The steps from the above flowchart are further detailed here:

1. Import / Assign npm Dependencies: This step imported and assigned the

required npm library package dependencies into the application. This allowed use

of WebSockets package.

2. Import / Assign Custom Dependencies: This step imported and assigned all

custom made function dependencies into the application. These included the client

1 & 2 I/O data functions and client WebSockets wsClient() function created for the

project.

3. Assign client number : This simply assigned a number variable for passing into

the wsClient() function for each client program. This was used to ensure watchdog

and message functions were specific to each identified client.

4. Create WebSocket connection to server: This defined and created a connection

point for passing into the wsClient() function.

5. Run WebSocket client function: This ran the wsClient() function, passing the

connection, client number and a device I/O function updateIO() for use. The Web-

Socket wsClient() function is detailed in Section 4.3.5.

The client1.js and client2.js programs were simple in top level flow as the function calls

were nested deeper within the wsClient() function. The updateIO() function was assigned

and passed two levels down into the WebSockets function calls, with others also invoked

in a similar style. These are explored in the following section.
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4.3.3 Network Communications and WebSockets Operations

Initially the Socket.io, NodeJS library was selected for use within the project, however

during development it was found that this library was not a true WebSockets implementa-

tion and while it offered certain benefits it also imposed some restrictions. These revolved

around the ability to make low-level custom functions on top of the library definitions

and added latency due to a higher-level implementation. Therefore, with a small impact

on time resource the decision was made to move to the NodeJS ‘ws’, pure WebSockets

library.

The first stage of network setup involved setting and confirmation of the Layer 3 - Network

Layer, via a series of Ping tests on machine terminal sessions. The results of these tests are

detailed in Section 5.2.2. Once these tests were confirmed the WebSockets (WS) software

within each device’s NodeJS application could be developed upon.

Figure 4.8: High-Level WebSockets network diagram

With the NodeJS ‘ws’ package installed, and imported into the npm initialised, base-level

application, a basic structure for the WS could be built. This basic structure was taken

direct from the npm library webpage at ‘www.npmjs.com/package/ws’ (Npmjs. 2024b),

which lists various implementations for the package, including how to create & destroy

an instance, send and receive messages, catch errors and action events.
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Server WebSockets function - wsServer()

The server was the central data exchange for the distributed system and had some specific

routines which ran to serve this purpose. Once the Pi Five’s main NodeJS server.js

application was running, the HTTP server was upgraded to a WebSockets server and

the program called the wsServer() function. At this point the WebSockets server, which

was assigned as a constant, was passed as a parameter to the wsServer() function. This

allowed the WebSockets library to be called within the parent function and was a useful

strategy for adding functionality while encapsulating the function itself.

The major functions are listed below and on the following page as a flow chart.

� Check for connection - Built-in WS function detects if client connected to the spec-

ified Port.

� Executes serverWatchdogInitiate(). This sends msg.type = ’wd’ to the client which

prompts the client to return it’s unique ID and a trigger msg.type = ’wdinit’ to

start the server watchdog.

� Logs that a client has connected (for information and testing only).

� Opens an event.listener for messages. Built-in function which allows messages to be

detected and logic to be developed for individual message and data types.

� If a message is received, this triggers the custom function msg(data) which takes

the message data, confirms the type and assigns an action. These operations are

detailed further below.

� If the WS connection is closed it logs whether the closure was requested or termi-

nated without reason.

� If an error is detected using standard library functions it is simply logged at this

stage.
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Figure 4.9: Pi Five WebSockets Server software sequence flowchart.
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Server message function - msg()

As a message was detected using the standard WebSockets ‘ws’ library, the custom msg()

function was called and used to process incoming data, determine the type and assign

actions. This was the main internal function of wsServer(), responsible for calling further

custom functions to complete actions. The main operations can be seen in Figure 4.14

� Parses incoming data into a JavaScript Object Notation (JSON), a lightweight text-

based format for processing data.

� Checks the message type using msg.type function and runs code specific to each

case.

� For type = ’wdinit’, initiates a new instance of serverCommsWatchdogTimeout().

This starts a timeout with the client ID attached with the ’wdinit’ command to

ensure each client has a unique timer check for communications state.

� For type = ’wdrun’, calls the serverCommsWatchdogRefresh() function which resets

the unique client watchdog timer ensuring the communications is polled, active and

healthy. This is sent at a defined and adjustable period set within the client function.

� For type = ’io’, runs a custom timeStamp() function which assign the current data

and time to a server time parameter. It then takes the received data and formats

into a database ready configuration using another custom function formatDBData().

After this it checks the client ID sent with the data and passes this into another

custom function ioToDB(), which writes the data into the appropriate MySQL

database table. This data is the discrete and analog input / output data from

each client.

� For type = ’alarm’, the data is again formatted using formatDBdata() then writ-

ten into the database alarm table using custom function alarmToDB(). This data

represents alarms generated on either client.

� For type = ’sys’, again, formatDBdata() is run. Following this, the client ID is

checked and custom function sysInfoToDB() is called which writes the specific client

system information into its assigned database table.

� For any unspecified messages the data is simply logged to console for user informa-

tion at this stage.
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Client WebSockets function - wsClient()

Once either Pi Zero W client connected via its WebSockets instance, it called the custom

wsClient() function. Again, this function had a series of further custom internal func-

tions which executed to provide functionality. The wsClient() function was passed three

parameters which were the WebSockets client instance, the client number assigned in the

parent client1/2.js main NodeJS function, and the updateIO() function.

The major functions are listed below and on the following page as a flow chart.

� Runs an Event Listener for an open socket event. If detected it simply logs the

server connection for information.

� Runs an Event Listener for message data. This calls another custom client side

msg() function. This function simply checks for type ‘wd’, and sends back a msg

type ‘wdinit’, with the client ID that is passed as a parameter to wsClient(). If the

message is unspecified with no type, it simply logs to console for information at this

stage.

� If the WS connection is closed it logs whether the closure was requested or termi-

nated without reason.

� If an error is detected using standard library functions it is simply logged at this

stage.

� Next, clientCommsWatchdogSend() is called. This starts a re-occuring, setInterval

operation which calls function clientCommsWatchdogUpdate() at the specified in-

terval time. The basic task of this is to reset the decrementing watchdog setTimeout

operation.

� Next, sendData() is called. This starts a re-occuring, setInterval operation which

calls clientSendData(). This further calls function updateIO() which returns all

current analog and discrete input / output device values and alarm status. Once

returned within clientSendData(), this data is timestamped using timeStamp().

Then the data is converted into a discrete and analog device data map and converted

to JSON format. Alarms are then one-shot verified to avoid flooding at the server

end and the data is sent to the server for processing and database storage.
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� Lastly, sendSystemData() is called. This starts a re-occuring, setInterval operation

which calls sysInfo(). This further calls createsysMap() which pulls local operating

system status information and creates a data map of the data. It then converts to

JSON format and sends to the server.

The following page details the program flow for the developed wsClient() function.
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Figure 4.10: Pi Zero W WebSockets Client software sequence flowchart.
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Communications Watchdog functions and operation

The server and client communications were monitored by a watchdog process which ac-

cepted individual client numbers and performed periodic checks to ensure connectivity

was maintained. This was a core function to ensure reliable network communications

were maintained with the aim of replicating industrial robustness. The custom functions

created for this purpose were held within the watchdog.js file and exported to the nec-

essary WebSockets server and client functions. These are detailed below and numbered

according to the flow diagram on the following page.

1. serverWatchdogInitiate(socket)

This function is invoked upon detection of a connection to a client and simply sends

a socket message of type: ‘wd’ with ID: ‘server’ to the newly connected client.

The WebSockets instance is passed in to allow the send function to be performed

internally.

2. serverCommsWatchdogTimeout(socket, clientID)

This is invoked when message type: ‘wdinit’ is received by the server. It takes the

client ID and assigns it as the commsTimer[ID] for a setTimeout() rundown function

which terminates the socket instance also passed into the function, if not reset by

the below function within the given time period.

3. serverCommsWatchdogRefresh(clientID)

This is invoked when message type: ‘wdrun’ is received by the server. It takes the

clientID which is also within the message frame and uses this to set a clearTime-

out(commsTimer[ID]) operation to reset the decrementing watchdog timer specific

to the client.

4. clientCommsWatchdogSend(WDflag, socket, clientNumber)

This is called by the client at the initial WebSockets connection instance. This starts

a re-occuring setInterval operation which calls function clientCommsWatchdogUp-

date() at the specified interval time. The basic task of this is to send msg type

‘wdrun’ to the server to reset the decrementing watchdog setTimeout operation as

stated in the above definitions. The WDflag ensures it is called after the ‘wdinit’

command has been sent to the server ensuring the watchdog is already initiated.
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Figure 4.11: Communications Network Watchdog software sequence flowchart.
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4.3.4 Sequential and Time-Based Control within Server / Client Appli-

cations

To provide a workable distributed system the combination of sequential and time-dependent

operations was needed. To achieve this a host of asynchronous functions and in-built

JavaScript and NodeJS operations were utilised. These allowed functionality within key

aspects such as watchdog timers, date and time currency, device and system data periodic

aggregation and importantly in the execution of alarm delays within the developed analog

device class aiDevice.

The asynchronous functions used for these cases were:

� setInterval() - This runs a repeating specified callback function at the set time

interval in mS. This is useful for communication polling, periodic device status scans

etc.

� setTimeout() - This specifies a callback function to execute in the future in mS.

This can be used for watchdog timeouts, events and alarm activations.

� Promise() - This is used to ensure sequence of asynchronous actions. The below

‘.this’ callback is the response when the promise has been resolved. This is an

important function for ensuring order of operations and is used within the alarm

activation of aiDevice’s method checkAlarm() method.

� this. (promise callback) - As stated, this callback is the trigger to inform de-

pendent processes that a certain pending operation has been completed, critical for

maintaining system order and function.

(NodeJS. 2024)
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Many of the re-occurring, time-dependent, sequenced operations within the applications

utilised the above asynchronous functions. These were straight forward implementations

for operations such as cyclical polling, watchdog resets and the like, shown in the list

below.

� sysWatchdog()

� sysWatchdogRefresh()

� serverWatchdogInitiate(socket)

� serverCommsWatchdogTimeout()

� serverCommsWatchdogRefresh()

� timeStamp()

� clientCommsWatchdogSend()

� sendData()

� sendSystemData()

Reading device values, discrete and analog state functions

Further more technical implementations of asynchronous operations exist within class

methods of the aiDevice{} class including delayTimer() and setHHAlarmFlag() which

were internal methods of the checkAlarms() method. These sections of program can be

reviewed within the Appendix D Section D.4 and are detailed with the parent function

updateIO()below.

updateIO()

This was the main interfacing and polling function used in the clients to allow cyclical

polling of real and later, simulated devices for testing. The major steps performed by this

function for each client are given below:

� Imports both the digital ioDevice() function and analog aiDevice class for use.

� Creates object instances of digital devices assigning GPIO scanned (or simulated)

values as their input.
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� Creates analog object instances by scanning ADC Pi analog voltage (or simulated)

values on channels, then inputs the value with other parameters into the class con-

structor.

� Builds a combined digital / analog device data map.

� Calls the checkAlarm method on each device (analog only in project scope).

� Any devices with active alarms go into a separate alarm data map for sending to

server/db.

� Interlocks alarm sending with one-shot flag to stop flooding.

� Converts device and alarm data to JSON for WS transmit to server.

Figure 4.12: updateIO() device scan software sequence flowchart.
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aiDevice{}

This class was developed for use with all analog inputs used in conjunction with the

client ADC Pi units. The class was called within the above detailed updateIO() function

to create individual analog objects and assign the in-built methods for use, allowing such

functionality as monitoring the specific device process variable and alarm status.

This class was critical in developing and testing the ability to create timed alarm delay

activation methods. While only a High High test alarm was implemented owing to project

time resource management, the test alarm operated successfully ensuring any subsequent

future developed alarms can operate using the same code framework. It achieved this using

promises and their associated callbacks to set alarm flags high after the predetermined

delay period. This showcased the ability of NodeJS to create and initiate separate thread,

timed execution callbacks within the overall application program loop running. The class

is detailed below:

� Initial class constructor creates the object model with all parameters passed into

the object upon instantiation.

� Getter method currentPV() allows scaledPV to be returned to program when called.

� updateRaw(raw) method allows the scaled PV to be updated on cyclical basis.

� resetAlarm(reset) method allows the alarm flag to be reset after activation.

� delayTimer(t, timeoutID) method creates a promise with an internal timeout re-

sponsible for activating the alarm delay upon expiration.

� setHHAlarmFlag() method encapsulated delayTimer() method and returns TRUE.

� checkAlarms() method uses the above delayTimer() and setHHAlarmFlag() with

further instant alarm and healthy status check code sections to manage device

alarms returning the scaled process variable, alarm flag, alarm data and tag ID.
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Figure 4.13: aiDevice() class software flowchart.
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clientSendData()

This function was developed in conjunction with the other device interface code and was

responsible for handling the updateIO() function which was passed as a parameter. This

function was called within the clientSocket() function and takes the client ID, socket

instance and updateIO() function as parameters. It has an adjustable poll interval which

was used to test the capability of the WebSockets connection with 300-500ms update

rates, documented in the results Section 5.3. The major functional steps for this function

are:

� Called within clientSocket() WebSockets function

� Calls the updateIO() function and assigns the returned IO data to a variable.

� Creates a timestamp and assigns to the IO and alarm data

� Checks for a one-shot, toggled alarm flag which is returned, if TRUE, the function

transmits the logged alarm status. (This resets automatically within the updateIO()

function).

� Allows adjustable time intervals to be set for the polling of client discrete and analog

devices.
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4.3.5 Database Operations

A key aspect of distributed control systems is the ability to store and manage information

from various sources. To enable this functionality within the developed system, a com-

patible database system was setup and integrated with the application. This included the

below steps:

� Download and Install the database software.

� Development of database interface software.

The first step is detailed in Appendix D, Sub-Section D.3.3, with further outcomes in the

Results Sub-Section 5.3.2.

Development of database interface software

To enable database interaction via the application two custom files with multiple func-

tions were created which allowed create, read, update and delete (CRUD) operations

for associated data. The custom database.js file holds the functions myDB(), ioToDB(),

alarmToDB() and sysInfoToDB() which are detailed below. The separate serverFormat-

Data.js holds formatData(), a function capable of reformatting data into a key/value

array pair which can be then be loaded into the relevant database tables for tag and value

entries. Figure 4.18 on the following page displays the high-level database operations

which allow device status, alarm status and system data to be logged in the database.
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Figure 4.14: MySQL Database and NodeJS server application integration flowchart.
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Database functions and operation

The custom functions created for interfacing between the MySQL database and NodeJS

server application are listed below.

1. myDB()

This function was responsible for initially creating the database instance and all

tables. For the purpose of this project the task was manually performed once, with

the sections then commented out. The remaining function simply connected to the

database listed using the necessary password and port: 3306 as shown in Figure

4.19.

Figure 4.15: myDB() function screenshot.

2. iotoDB(connection, tableName, tags, values, servertime, datetime)

This function accepted 6 parameters to enable it to process and write to the database.

The connection was where the MySQL instance was passed into the function. Table-

name specified client 1 or 2, the tags and values were pre-processed by the format-

DBData and were ready to write as received. The servertime was taken prior to

calling the function and datetime was the client side timestamp which allowed for

latency determination.
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The function checked the length of the tags array and performed a ‘for’ loop which

iterated until all data in the WebSockets message was updated into the database

table. The structure and operation for alarmtoDB() and sysInfoToDB() functions

were highly similar to the ioToDB() function which is shown in Figure 4.20 for

reference.

Figure 4.16: ioToDB() function screenshot.

3. alarmToDB(connection, tableName, tags, values, datetime, clientID)

This function mirrored the operations for the above ioToDB() except with differing

parameters and some JSON formatting operations. This function logged the tag,

alarm type as a string, date / time and client in which the alarm originated from.

4. sysInfoToDB(tableName, tags, values, datetime)

This function was also similar to the above two, taking the system data from either

clients or server, time-stamping the data and iterating a loop which transferred all

the data into the appropriately listed database table.

5. ioDataFromDB()

This function was used as an example to prove the capability of the MVC to access

the database and pull the most up-to-date device process variable for use on the

HMI display. The function can easily be modified for future use to pull data from

any device automatically to allow populating of the HMI displayed devices.

6. formatDBData()

This function was held within the devices sub-folder in ‘serverFormatData.js’ and

was responsible for formatting data ready for MySQL operations. It achieved this

by parsing the received data, splitting into key/value pairs then creating to separate

object arrays which were separately returned for use.
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4.3.6 Model-View-Controller - HMI display

The Pi Five embedded board was the central server for the distributed system, therefore

the server.js NodeJS program was responsible for processing the data and rendering the

Human-Machine-Interface web page displays. To allow this, the Model-View-Controller

structure (Hernandez 2021) was adopted, and used to explore how data from the applica-

tion could be rendered within Hyper-Text-Markup (HTML) web pages. In addition, the

EJS middleware package was utilised to assist with data references and creating templates

for efficiency.

The organisation of an MVC approach allowed the application data to be efficiently

moved between sections of the program and onto the HMI display. This process included

a number of sections in which the data was called by functions and passed, until finally

rendered as visual information. The MVC structure was first created in a file system held

in the Visual Studio Code parent folder. This included sub-folders for models, views,

controllers, routes and the public section.

Figure 4.17: VS Code folder and file MVC structure.
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The project’s final MVC structure can be seen in the above Figure 4.21, with the following

sections detailing how the contents of each folder allowed this system to function. While

the project had a single page developed, an important characteristic of the MVC approach

was that it could be easily extended for further pages and functionality in the future.

Future additional sections can be added to reflect the flowchart displayed in the below

Figure 4.22.

Routes

Initially the main ‘server.js’ NodeJS application file is executed which starts the MVC pro-

cess by importing the needed dependencies and setting EJS as the middleware program.

Following this, the application creates the HTTP express app and upgrades to a Web-

Sockets server, however this function is reserved for communications, with the HMI-MVC

process working from the HTTP level.

Once the server is created the express application uses the ‘app.use’ syntax to define

the routes and controllers used within the MVC structure. For pages which are created

for viewing with their associated routes listed, the MVC system will work to render the

information onto the HMI. If an error is encountered, or a page is requested by the user

which is not listed the error controller is called directly from the application bypassing

the routing and serving the ‘404’ standard error handling page.

Figure 4.18: The HMI homepage router responsible for calling the index page and assigned

controller
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The ‘routes/hmi.js’ file matches the page trying to be accessed with its assigned controller,

which, in this case assigns the ‘hmicontroller’ to the base index page marked as ‘/’ with

its ‘.getIndex()’ function.

Controllers

There were two controllers created for the project, with both held within the controllers

folder. These were the HMI homepage controller ‘hmi.js’ and error page controller ‘er-

ror.js’.

The HMI controller uses a JavaScript ‘GET’ request which is a core function that allows

an object to be bound to a request. Using this method, the ‘getIndex(req, res, next)’ func-

tion calls the ‘views/hmi/index.ejs ’ file when the user types the ‘http://localhost:3000/’

address into the browser. It also calls the listed model ‘Device’ which is already imported

within the ‘devices’ constant using the require method previously explained.

Figure 4.19: The HMI homepage controller

The error controller follows a similar process to render the ‘views/hmi/404.ejs’ page when

an erroneous request is made. This is a simple handler, as in reality the user should be

restricted to controlled page requests and was to aid development predominantly.

Figure 4.20: The HMI error page controller
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Models

There was only one model developed for the HMI at this stage which serves the purpose

of providing visualisation of data on the HMI home page. This model is called within

the ‘controllers/hmi.js’, .getIndex() function which takes the object data of the ‘Device’

object allowing it to be used within the ‘index.ejs’ page.

Figure 4.21: The HMI Device Model

Views

There are two display pages developed for the project HMI display, these were the home-

page for testing, and an error / 404 page. To allow these to operate, EJS middleware was

paired up with HTML, CSS and the existing JavaScript coded sections. The structure

for the views section of the MVC system follows a top-down approach whereby the pages

are listed under the ‘views’ folder, followed by the EJS ‘includes’ folder as seen in Figure

4.21. The ‘includes’ folder holds EJS link files which can be directly called in EJS page

files allowing nesting of code sections, simplifying the development and readability of the

code.

Figure 4.22: EJS includes ‘Head’ file
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The ‘public’ folder in Figure 4.21 is linked to the MVC system within the ‘server.js’ file by

importing the path module then using path.join in the below command (Express. 2024):

‘app.use(express.static(path.join( dirname, ’/public’)));’

This links the sub-folder content such as CSS styling files and images for use when called

appropriately in the MVC system. Once the controller has been called it attempts to

serve the request by rendering the listed page. In the homepage case this is the ‘/’ page,

which refers to the ‘http://localhost:3000/ ’ page being the index page. This then pulls

the EJS file and renders it with the CSS stylesheet listed, source images and model data.

Figure 4.23: HMI homepage ‘views/hmi/index.ejs’ file

The key elements of the HMI page are highlighted and listed below.

� ‘Includes’ commands - These allow EJS code sections to be embedded within the

page code.

� ‘Class’ commands - Call style properties within the CSS file which is listed in the

head.ejs file.

� EJS ‘%’ commands. These link external variables such as those listed by the ‘Device’

model.

� Image links. Because the public folder is defined using path.join, contents in the

image folder can be referenced directly and called when the page loads.
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Figure 4.24: HMI Model-View-Controller Software Flowchart.
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4.3.7 System Information and Data Monitoring

Distributed Control Systems require close monitoring of hardware and software resources

to ensure reliability and performance can be maintained. To create a system capable of

operating and enabling such system monitoring the NodeJS library packages ‘OS’ and

‘process’ were installed and software routines were developed.

createSysMap()

This function was a base level function used directly within server.js and also passed

into the sysInfo() function as a parameter which was then subsequently called within

the asynchronous setInterval function sendSystemData(). The createSysMap() function

uses in-built NodeJS features to pull the operating system memory usage data which are

assigned to three variables. These variables are then placed in a system data map and

converted to a JSON format ready for WebSockets transmission, then returned as the

function output.

Figure 4.25: The ‘createSysMap()’ function
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sendSystemData() and sysInfo()

The sysInfo() function was used by the two clients within the sendSystemData() function.

The latter function called the sysInfo() function within a setInterval periodically executed

cycle, allowing system data to be sent to the server.

Figure 4.26: The ‘sysInfo()’ function
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4.4 Chapter Summary

This chapter has reviewed the hardware and software design processes chosen to develop

a working distributed control system from embedded systems and web-based software

systems. The key sections have developed a level of functionality as per the intended

titles, the results of which are in the following section. The system as designed, exists as

a structure capable of further enhancement in many of the selected software areas due to

the use of classes and object-oriented design.





Chapter 5

Results and Discussion

5.1 Chapter Overview

This chapter reviews the test results delivered during development and operation of the

distributed control system. The two major sections offer results from early stage devel-

opment and final stage test results of the running system.
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5.2 Preliminary Test Results

This section details the preliminary results to enable operation as desired with the project

DCS. These are low-level tests which were critical to ensure further system functionality

could be achieved later as the system was developed.

5.2.1 General Purpose Input Output Testing

Much of the system Input / Output testing was completed through simulated data to

ensure a high number of values could be fed into the database and over the WebSockets

protocol. Aside to this, enabling and testing of the input and output signals via the

control system was seen as an important aspect. Once the GPIO configuration was

enabled via the Pi Zero W preferences tab (detailed in Figure D.3 of Appendix D), the

NodeJS applications could be set up.

A popular GPIO package for this is ‘rpio’. This was installed using ‘sudo apt install rpio’

within terminal, then imported within the client application function UpdateIO(). This

allowed scanning of the GPIO status as input or setting as output pins. Performance wise

the GPIO are a high-speed I/O driven by the Raspberry Pi clock capable of switching

above KHz values.

By connecting a simple circuit to the GPIO 7 and Ground pins shown in Figure 5.1 below,

a test LED circuit was used to confirm signals could drive the outputs of the Pi Zero W.
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Figure 5.1: Raspberry Pi Zero W GPIO Header Layout (Pi4J. 2019)

The below circuit and code was used to enable the output, confirming the Pi’s GPIO

capability. Similar input values were read using a switch on pins 7 & 9 proving discrete I/O

control and monitoring to the client units was capable of integrating into the applications.
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Figure 5.2: Pi Zero W GPIO test circuit.

Figure 5.3: NodeJS GPIO test code.
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5.2.2 Ping Testing of Ethernet Connections

To initially prove layer-2/3 communication was possible across the three embedded sys-

tems, testing was required. By using the downloaded net-tools package as listed in

section D.3.1, connections could be proven on the network. The following steps were

completed:

Connect hardware - Connect ethernet Cat6 cables, adaptors and Network Switch.

Assign Static IP Addresses - This step was shown in Figure D.2.

Confirm IP locked - Once set, refresh network and ensure IP is not reassigned by

running the ‘ifconfig’command.

Ping test all connections - Once IP’s were set the ping command was used on all

connections.

The MCU IP addresses were as per Figure 4.8, and were confirmed using the ping com-

mand ‘ping 192.168.0.4’ from the operating system to the target connection. Further to

this, the latency was checked as a reference against future WebSockets connections with

the below average values taken over 3 sets of 5 return results.

Description
Originating

System IP
Description

Destination

System IP
Time (ms)

Client 1 192.168.0.2 Server 192.168.0.4 2

Client 1 192.168.0.2 Client 2 192.168.0.3 4

Client 2 192.168.0.3 Server 192.168.0.4 2

Client 2 192.168.0.3 Client 1 192.168.0.2 4

Server 192.168.0.4 Client 1 192.168.0.2 1.5

Server 192.168.0.4 Client 2 192.168.0.3 1.5

Table 5.1: Ping Connection and Latency results across the network
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5.2.3 Basic WebSockets Connection

After confirmation of the network ping testing, the basic NodeJS / Express application

was initialised on all three MCU’s. Then using the basic WebSockets implementation

referenced in subsection 4.3.3, a WebSockets Server / Client structure was built. Issues

were encountered in configuring the target IP addresses within the server and client

initially, after which a connection was established, allowing a standard message to be sent

and received at server and client ends.

This was completed using the WebSockets ‘send’, ‘connection’ and ‘on message’ functions,

available from the ‘ws’ library. This first-instance testing was completed within the main

server and client application scripts prior to the development of separate script files and

nested function calls. The results to confirm this testing was visual confirmation of string

console output as seen in the reference Figures below.

Figure 5.4: Pi Five WebSockets Server connectivity and message confirmation.
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Figure 5.5: Pi Zero W WebSockets Client connectivity and message confirmation.

5.2.4 Terminal and Console Output Logging

Once the base communication system and application was proven operational, the struc-

ture was formed into a separate folder and file system allowing improved, referenced code

development. As the major system functions were developed a large amount of testing

was carried out with the console log function used to confirm operation and sequence.

Critical aspects of operation centred on ensuring order of operations were maintained and

that sections of code were confirmed functioning. By adding test points within the code

the console log assisted to confirm these requirements. In other cases, custom messages

were added with timestamps to visibly confirm program function. These confirmed results

are used for reference in the following Detailed Test Results section 5.3. Examples are

shown below in which the log displays point testing and custom timestamped messages

within sequenced operations.
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Figure 5.6: Code execution with added test points.

Figure 5.7: Promise testing with custom message confirmations of sequence.
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Figure 5.8: Client 1 watchdog timestamp and custom message confirmations.
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5.3 Detailed Test Results

For a reliable, industrial-style DCS to be achieved, system integrity, combined with oper-

ation and reliability had to be proven during the development of this project. The below

test sections focus on specific system operability, required to reflect such industrial level

functions.

� Time Logging of Data & Execution Timekeeping

� Data Management and Storage

� Communications Reliability

� Human-Machine Interface Development Results

� Sequential and Asynchronous Event Operation

� Analog / Pulse-Width Modulation - Input / Output Testing

The results from each of these areas have been encouraging with system operation proven

and key application and communication functions realised. The communications network

was able to constantly deliver data at highly efficient rates for each session and store

the data into separate database tables for accessing. System data was also able to be

extracted and stored, with further monitoring possible in future which would enhance the

reliability when heavily loaded. Custom modules for analog device scaling, process vari-

able measurement and alarm activation were created. These successfully demonstrated

that sequenced, time-dependent activation of alarms can be reliably configured. These

results are demonstrated below.
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5.3.1 Time Logging of Data & Execution Timekeeping

To confirm the performance of the system execution in the time domain another NodeJS

library called ‘performance hooks’ was utilised. First, it was downloaded using ‘npm i

perf hooks’ into each parent folder on the MCU’s. Then it was imported into the required

script files and wrapped around the functions to monitor execution times.

Figure 5.9: client1.js execution time monitoring.

This approach allowed visual display combined with logging of the major function exe-

cution times to determine the performance change over time and system loading of each

developed function. The highest execution times were associated with the two clients

communication functions, owing to their lower computational power and the overhead for

calling nested functions. These results are given in the following Table 5.2
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MCU

System

Function / Script

Description

Min Exec

Time (ms)

Max Exec

Time (ms)

Average Exec

Time (ms)

Client 1 client1.js 1107.19 1014.8 1046.87

Client 1 wsClient() 17.21 18.51 18.26

Client 1 ioToDB() 0.3 1.55 0.6

Client 1
clientComms

WatchdogUpdate()
5.21 19.18 9.51

Client 2 client2.js 849.35 949.39 893.92

Client 2 wsClient() 14.87 34.77 17.93

Client 2 ioToDB() 0.28 1.04 0.485

Client 2
clientComms

WatchdogUpdate()
6.25 31.96 11.68

Server server.js 1.9 2.69 2.204

Server wsServer() 0.007 0.025 0.010

Server myDB() 7.64 9.94 8.353

Table 5.2: Execution times in milliseconds for NodeJS programs and functions.

This data clearly demonstrated the high execution speeds possible for NodeJS based

functions. The main client programs both had an approximate 1 second execution time,

which is substantially longer than the other functions, however this was not an issue as

these client programs call the cyclical inner functions into action and effectively only run

once. Therefore, they do not have a significant effect on latency or performance once the

two systems are running and communicating.

The main outcome / finding is that all programs once initialised achieve low execution

times adding to system performance and assist with real-time updating of control and

communication algorithms which is a key consideration for the embedded applications.
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5.3.2 Data Management and Storage

The storage and access of data was seen as a key attribute for the project control system.

The major points of focus were on creating segregated tables within the database and

developing functions to allow these tables to be interacted with easily. The process of

sending and receiving data, formatting it and then updating it into the MySQL database

was achieved following a number of issues during. For the purpose of the project a total

of six tables were created which captured client device values, alarms and system status

data. The successful functioning of this database was a positive result within the project

outcomes.

Figure 5.10: MySQL Workbench Visual data representation.

Another valuable outcome was the ability to interact with the database via an external

connection which was achieved with the use of a laptop running MySQL Workbench 8.0

connected via the 5-Port network switch. The installation and use of Workbench 8.0 is

covered in section D.3.
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The ability to connect using this software effectively allows an external computer to access

the data, visually review the tables, and extract the data in CSV format for external use

and review. This allows periodic data to be accumulated for performance, reliability and

monitoring purposes. The creation of custom tables allows highly specific data to be

captured which makes the system adaptable for various system designs.

Figure 5.11: Database table data exported in CSV format.

The HMI is also able to query the database via the MVC framework which allows the real-

time data to be embedded into the HMI display for device values. This was successfully

demonstrated with updated device values from the database being displayed every second

on the screen.

However, whilst this function was achieved it was implemented using a page refresh

method which is not highly efficient. This is an area which could be improved given

more time resources to further streamline and enhance the HMI element of the overall

project.
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5.3.3 Communications Reliability

With timestamped data at source and destination, combined with database recording, the

system was able to provide valuable data to indicate the latency and connection reliability

for the 3 system network. When reviewing the database timestamp data, it is important

to note the distributed systems were not universally time synchronised. With the two

timestamps, the relative offset was able to be monitored for each session duration that the

server / clients were running. This provided insight as to the fluctuation and variability

of the latency over time. Once operating with the 3 applications running, there were no

communication failures encountered allowing extended data collection without issue.

Numerous individual tests were performed with three notable examples chosen to demon-

strate the reliability of the application function and communication network combined.

For the below tests, 20 simulated devices were created within each client, consisting of 16

discrete and 4 analog device objects to represent a realistic IO system assignment. These

had simulated values scanned into the objects, written to the datamaps and sent across

the network. Upon being received by the server they were formatted and written into

the according database tables. Many individual tests of this nature were performed while

the system was developed, once proven the below tightly controlled tests were performed

with highly positive results.

The below three tests were performed, recorded and exported using WorkBench 8.0 with-

out a single error during operation. Each test increased the speed of data transmit and

reduced the watchdog interval allowing faster error detection and improving reliability.

1. 1.5 hour test - 4 second watchdog interval, 6 second watchdog timeout, 500 mil-

lisecond device updates to server (Total 40 devices, more than 420,000 combined

database data entries without error).

2. 21 hour test - 400 millisecond watchdog interval, 500 millisecond watchdog timeout,

2 second device updates (40 devices, more than 1.5 million database data entries

without error)

3. 12 hour test - 400 millisecond watchdog interval, 500 millisecond watchdog timeout,

500 millisecond device updates (40 devices, more than 1.9 million database data

entries without error)
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When reviewing the CSV data exports, the below findings were taken.

� Maximum change in timestamp offset (drift) over any session: 7 milliseconds

� Minimum change in timestamp offset (drift) over any session: 2 milliseconds

� Average offset between systems when online: +/- 4 milliseconds

(This is latency and error combined between system times - due to no synchronisa-

tion)

� Minimum Data poll rate interval Client to Server achieved: 500 milliseconds

� Maximum loaded session duration completed: 21 hours (with 40 simulated devices)

These results, when reviewed against the Ping Testing of Ethernet Connections subsec-

tion 5.2.2 results show that even with a 2-4ms latency on the level-3 layer the WebSockets

protocol can deliver data efficiently. The results also indicate that with the current system

design the applications and communications can reliably maintain fast data exchange for

control applications.

By separating certain elements of the communications and data streams, select behaviour

was developed for each sectioned grouping. While the alarm development within the

analog device module / class successfully created event-driven alarms, for the purpose

of communication, these alarms were cyclically polled via the WebSockets protocol. It

was possible to set these alarms as event-driven within the communication scheme also,

however due to the extremely low latency and ability to poll at a high rate this was not

opted for. If network latency increased, the ability is provided to activate a WebSockets

alarm message prior to a standard polling regime, speeding the alarm response rate.

Another key outcome was realised whereby alarms which only need to be scanned or recog-

nised when activated, could be set as event-driven elements within a defined grouping.

This was proven when the one-shot messaging function to the database was configured,

which ensured alarm-flooding did not occur. Customisable conditions such as these, al-

lowed tailored alarm response and storage into database tables.
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5.3.4 Human-Machine Interface Development Results

The system HMI was able to be successfully rendered using the MVC approach stated

in Sub-Section 4.3.6. While the display was not extensively developed in format and

functional terms, the modular design permitted future development with custom graphics

able to be created and embedded.

Heavily structured formatting of the page was not achieved due to other project demands,

however the creation of individual device models with internal real-time data which was

requested direct from the database was completed. This allowed the data to be ren-

dered onto the display which in future could reflect a more representative, functional and

dynamic set of graphical element.

Figure 5.12: Basic HMI home screen rendered using MVC framework.

Further work could see such a page resemble a working process plant with interactive

elements, high-performance HMI techniques employed and the ability to represent a mul-

titude of control systems. While these are advanced functions, they can be built from the

existing model structure with images, live-values and styling already proven within the

low-level HMI structure delivered.
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5.3.5 Sequential and Asynchronous Event Operation

One of the key themes within the project was the development of software with combined

temporal and event-driven behaviour. The aim of the project was to deeply investigate

ways in which both time-dependent and event-driven operations could be combined and

assist in a functional distributed control architecture.

The analog device class aiDevice{} was developed with multiple internal methods which

are documented in Sub-Section 4.3.4. This class, when invoked as separate object in-

stances within the updateIO() function, successfully demonstrated the ability of NodeJS

to operate in both temporal and event-driven modes.

The updateIO() function was periodically polled via the sendData() function held within

clientSocket(). It used in-built, asynchronous actions common to NodeJS to achieve this.

The system device polling functionality was activated by creating a worker thread external

to the main NodeJS runtime which actioned a callback every instance the thread timer

was elapsed. This process allowed development of sequenced periodic operations such as

watchdog timers, device status and system data polling from client to server.

Figure 5.13: High High delay on analog device using promise callbacks.
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Further to this, the addition of promise-based callbacks extended the capability, with delay

timers nested within the periodically polling function capable of separate event-driven

responses for the alarm setpoints when they were activated. By creating separate system

operations of this nature the event responses could be individually managed external

to the ongoing polling functionality. This was an important result which successfully

demonstrated the flexible nature of the combined approach to software development.

In reference to the numbered points displayed in Figure 5.13, the below test steps detail

the order of synchronous and asynchronous operations.

1. An instance of an analog device is created, this simulated object provides code to

increment the scaled variable each cycle. As the devices are scanned the check-

Alarms() method compares all alarm setpoints to the scaled process variable. In

this case the setpoint for a High High has been exceeded.

2. As the setpoint is activated and has a delay programmed, a promise-based timeout is

executed starting the timer incrementing in an externally operated thread, separate

to the cyclical checkAlarm() execution.

3. This point displays the healthy status as the timer has not elapsed and no callback

has been returned from the worker pool.

4. The High High flag is therefore still set to false.

5. The overall alarm status flag is also still false.

6. After further cycles performing the same checks the asynchronous promise elapses,

triggering the main thread callback which returns ’true’ activating the local variable.

7. During this device scan the variable is now read as ’true’ and the checkAlarms()

method assigns a ’true’ status to the ’High High flag’.

8. A local console display also indicates the Timeout has occured purely for logging.

9. The overall alarm status test point executing post the High High assignment is now

set to ’true’, returned from the checkAlarm() method which is sent with a message

using the alarm WebSockets function and stored in the Database alarm table.

10. The alarm flag status is assigned along with the the current scaled process variable

and the pre-programmed alarm logging status which automatically generates. This

is sent to the database to store as below.
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11. The main alarm flag is now set high within checkAlarms() for the specific device

object. This is returned from the checkAlarm() method which is subsequently sent

within a message using the alarm WebSockets function and stored in the Database

alarm table.

5.3.6 Analog & Pulse-Width Modulation - Input / Output Testing

The distributed control system developed within this project held the ability to be eas-

ily installed and run on other embedded architectures which were capable of running a

NodeJS framework with Ethernet network capabilities. However, as the Raspberry Pi

series was utilised the element of hardware and software interfacing was investigated to

determine the capabilities within the limited project time allocated.

The ADC Pi analog card was successfully interfaced with a high-accuracy voltage calibra-

tion Portacal 1000 unit giving excellent results within a 0.5% error tolerance across it’s

range of 0-5VDC. A 5-step rising / falling test was completed 3 times with no greater error

than 0.5%. The results are given below showing the accurate and repeatable analog to

digital conversion achieved through the ADC Pi interfacing card. Further details relating

to the testing are in Appendix D Sub-Section D.3.4.

Input Voltage Raw Read Scaled Voltage Read Error %

0.0 46 0.0004 <0.5

1.0 25835 0.9963 <0.5

2.0 51635 1.9927 <0.5

3.0 77437 2.9888 <0.5

4.0 103216 3.9846 <0.5

5.0 129020 4.9808 <0.5

4.0 103215 3.9844 <0.5

3.0 77419 2.9885 <0.5

2.0 51618 1.9923 <0.5

1.0 25813 0.9960 <0.5

0.0 17 0.0000 <0.5

Table 5.3: Results of analog scan and scale testing
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The Pulse Width Modulation capability of the Pi Zero W units was partially proven

successful during testing. While the output PWM signal was effective and accurate from

the Pi Zero W pins, the MOSFET output board listed in Sub-Section 3.6.5 required a

higher output signal to accurately operate between the 0-5V range. This was confirmed

after a True-RMS multimeter was used in conjunction with a Picoscope to analyse the

voltage and waveform outputs.

The output measured direct at the Pi Zero W unit worked sufficiently in pulse-width

and timing terms even though the Voltage Module output suffered from both incorrect

MOSFET operation and minor repeatability issues. With further voltage interfacing

a working 0-5VDC analog output could potentially be delivered, however the minimal

project time and resources allocated, expected lead time for alternate hardware or time

for developing improved custom circuitry further solutions for this aspect of the project

were not explored.

The resulting output values are given below.

PWM Output (%) Measured Voltage (DC) Error (ABS %)

0 0.0015 0.03

25 3.5955 46.8

50 4.3985 37.97

75 4.9108 23.22

100 4.9932 0.14

75 4.9287 23.57

50 4.4082 38.16

25 3.6042 47.08

0 0.0012 0.01

Table 5.4: Results of Pi Zero W PWM output testing
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5.4 Chapter Summary

This chapter has documented the various outcomes that have been assessed through

testing of the project distributed control system. It has shown how NodeJS runtime

applications, in combination with embedded systems, can effectively deliver reliable and

efficient communications, functional aspects and visual displays.

These results have been positive helping satisfy the project outcomes and have the po-

tential with further research and development to deliver highly functional and reliable

industrial level performance.



Chapter 6

Conclusions and Further Work

6.1 Chapter Overview

This chapter presents the conclusions that have been met in relation to the research

results obtained, and design work conducted within the project. It reviews what has been

achieved within the project, including delivery of the stated outcomes by satisfying the

objectives specified.
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6.2 Conclusions

From inception, this project aimed to investigate modern, Web-Based Technologies in

order to determine if they could be used to develop effective distributed control system

architectures. To confidently align with this aim, a number of outcomes were expected

which would be used to ensure meaningful results and conclusions could be drawn from

the research and design work undertaken. These outcomes are given below with the

associated comments for each.

Outcome 1: Determine the suitability and benefits of a Full-Stack JavaScript

based control system.

This was a broadly stated outcome to encompass the ability to create useful elements of a

control system utilising a JavaScript-based, NodeJS stack. The following key results were

delivered which confirmed the suitability of such an approach and showcased the benefits

such as highly integrated code and operability.

� The Full-Stack system allowed seamless, single programming language data transfer

between devices and database.

� Both time-dependent and event-driven techniques were successfully developed within

the programs created.

� High-level programming libraries assisted to develop custom solutions.

� The HMI display was able to directly render from the application owing to the

Full-Stack integration of the NodeJS, MVC framework developed.

� The MySQL database was able to operate using JSON formatted data to and from

the server application.

Outcome 2: Report and display the performance-based results for WebSockets

based communication, developed to meet the distributed architecture.

The development of a date and time-stamping function on server and client ends, in par-

allel with database recording of these stamped values was completed. These results suc-

cessfully demonstrated that low millisecond transmission rates were consistently achieved

over the network between applications.
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The recording also allowed logging of any errors or connection closures during specific

periods, of which there were no errors which caused disconnection.

Outcome 3: Clearly document the methods used to create and implement

control system components and where the key benefits are gained in the pro-

cess.

This outcome was delivered by completion of the Methodology Section 3 and the Func-

tional Design Section 4, where the software process flow diagrams and associated descrip-

tions detailed successful system component development.

Outcome 4: Show that low-cost hardware with open-source software can build

up the layers of a performant control system.

Again, this outcome was delivered by completion of the Functional Design section 4, where

the specified hardware and software elements were detailed. These elements combined,

delivered a system capable of high-speed data transfer, control and database management.

Outcome 5: Detail how data can become more accessible and tailored with a

full-stack approach.

The project saw a combination of a database and HMI display both being integrated

directly into the server application. This assisted in showing how flexible and seamless the

selection of a JavaScript-based full-stack solution was. With adaptable functions, specific

network message types, alarm processing and remote access to the database possible, the

developed DCS framework had highly-accessible data streams.

Outcome 6: Provide recommendations on further improvements and future

developments using such technologies.

Given the applications were created with object-oriented construction methods which

encapsulated internal operations, further modification and improvement is made easier.

There are many aspects of an industrial DCS which are still to be developed with the

project system, however, with the development of a working high-speed network, database

interfaces, HMI display and device classes, further advances are much easier to accomplish.

Recommendations on further specific work are given in Section 6.4.
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6.3 Achievement of Research Objectives

To deliver the outcomes listed in the above Section 6.2, the research objectives below were

all satisfied.

� Conduct a detailed review of the key components in mid-sized control systems and

detail how the selected software can be utilised to develop both theoretical, and

where possible, practical solutions of each equivalent section.

� Implement and test performance of a WebSockets based communication layer over

multiple nodes to allow distributed data channels and control to be realised.

� Review and assess how an implementation of the NodeJS server runtime can be

structured to meet potential schedule deadlines and deliver reliable core control

system operation.

� Develop sound, re-useable, modular code and class-based systems for any control

system architectures created.
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6.4 Further Work

The project listed many of the major elements of a distributed control system with the

aim to investigate, replicate functionality and assess. However, there are many further

elements and functions which can extend this work using a similar process.

Options such as further developing interfacing hardware, classes for device management

and highly specific control algorithms have not been completed within this scope. Each of

these alone could take a great deal of time and resource to further enhance and test. The

below list covers a number of future points which could continue this projects progress.

� Continue developing the WebSockets communication functions to include further

message handling and data compression techniques as required.

� Add security implementations including WebSockets authentication and advanced

monitoring features as the overall system is developed.

� Developing further class-based software for device interfacing and program control.

� Advancing the HMI using improved formatting with the live-data streams for pro-

cess variables and optimised page element refresh techniques.

� Implementing class-based control algorithms to check real-time sensitive time-dependent

operations such as PID controllers etc.

� Further testing hardware interfaces to allow control of field devices using the devel-

oped analog and digital classes.
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6.5 Chapter Summary

This chapter has summarised the key research outcomes which have been delivered through

satisfying the initially conceived project objectives. It has also provided a list of potential

further work which can add value to the project aim and future implementation of such

systems.
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Title:  Investigation of Web-Based Technologies in the Development of Full-Stack, Small to                                         

Mid-Sized Distributed Industrial Control Systems 
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Introduction and Background 

The focus of this research project is to perform an in-depth review of existing, modern web-
based software and technology and its direct application in the development of full-stack 
solutions for small to mid-sized distributed control systems (DCS) in the industrial sector.  
 
The intent is to highlight benefits of such full end-to-end implementations including basing 
hardware on embedded microprocessors as opposed to standard industry programmable logic 
controllers (PLC), creating communication networks based on the Websocket protocol with 
the intent to meet real-time constraints and linking data to bespoke web-page based Human-
Machine Interface (HMI) methods.  
 
Combined, these factors could offer heavy cost reductions in design and implementation, 
flexible solutions and better access to captured data. Along with such potential benefits 
however the purpose of this research process will be assessing how such implementations can 
be achieved and what performance-based thresholds must be met to use such systems reliably 
and efficiently. 
 
Distributed Control Systems underpin most manufacturing and process plant operations, 
being the backbone which control the equipment and harness the sensor data to ensure safe, 
reliable and efficient operation across industries worldwide. These systems are made up of 
multiple system components which all must meet design specifications and performance 
guidelines to maintain operations for the companies and entities that utilise them.  
 
As the transition to Industry 4.0 develops, a major shift is occurring in the way that data is 
managed, systems are implemented in line with trends to make data more accessible and 
utilise sensor information with more flexible control implementations. In the last decade or so 
web-based interfaces have become more frequently used for interacting with hardware 
controllers and smart devices. Novel and streamlined solutions have been explored for these 
instances such as in the research paper ‘Web-Based Human-Machine Interfaces of Industrial 
Controllers in Single-Page Applications’ by Shyr-Long Jeng et al whereby the display of key 
data is achieved using web technologies linked to a traditional programmable logic controller 
(PLC).  
 
Further evidence of such work exists in the paper ‘Efficient Web-based Monitoring and 
Control System’, where Ahmed M. Mohamed and Hosny A. Abbas show a methodology of 
implementing web-based technologies for a supervisory control and data acquisition 
(SCADA) scheme again connected to a PLC.  
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While these examples show some benefits over legacy approaches there is limited research or 
evidence available of these technologies extending into the industrial controller realm to 
allow a front to back-end, full-stack infrastructure to be explored. 
 
One area where full-stack, embedded solutions of similar technologies have seen rapid 
growth and experimental development is in the Internet of Things (IOT) and home 
automation space. Work in this area has shown such approaches can yield highly adaptable, 
cost-effective, and reliable systems especially for single sensor systems and the like as 
explored in ‘Smart Home Security Application Enabled by IoT’ by C. Davidson et al.  
 
Edge computing has also seen web-based technologies used which can assist in bridging the 
layer between hardware-based control layers and higher-level communication layers for data 
transfer, this is explained in the article ‘Towards Smart Home Automation Using IoT-Enabled 
Edge-Computing Paradigm’ by Hikmat Yar et al. 
 
Further to these lower-level control solutions, more complex interactive solutions for this 
sector have been developed to increase connectivity using web-based communication systems 
such as those detailed in ‘Study on Integration Technologies of Building Automation Systems 
based on Web Services’ by Jianbo Bai et al, where co-ordinated distributed networks are 
created and linked together. Cumulatively, these papers show that there exists a breadth of 
applicable reference material where web-based solutions are implemented for solutions 
aligning with or closely relating to distributed, industrial based applications. 
 
 

Objectives and Aims 

There are several key objectives when looking to implement a full-stack industrial control 
solution using web-based technologies such as whether they have the performance reliability, 
real-time capability, and deterministic behaviour traits to suit such implementations.  

This research project aims to review core aspects of modern distributed control systems with 
a focus on small to mid-sized systems and carry out research as to whether web-based 
technologies may provide adequate solutions to build the core elements of such systems.  

These elements include control algorithms & modules, interfacing software, database 
structures, front-end displays, comms and middleware layers, monitoring and alarm 
management and other aspects. These further aspects include features such as authentication 
and remote connectivity and other higher-level functionality which may not be actively 
explored within the scope of this project. 

The core software will rely on a mix of JavaScript programming language implemented on 
the runtime NodeJS, MySql databasing, the Websockets Protocol and other features. 
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Specific Objectives: 

 Conduct a detailed review of the key components in mid-sized control systems and 
detail how the selected software can be utilised to develop both theoretical, and where 
possible, practical solutions of each equivalent section. 

 Implement and test performance of a Websocket based communication layer over 
multiple nodes to allow distributed data channels and control to be realised. 

 Review and assess how an implementation of the NodeJS server runtime can be 
structured to meet potential schedule deadlines and deliver reliable core control system 
operation. 

 Develop sound, re-useable modular code and class-based systems for any control 
system architectures created. 

 

Expected Outcomes: 

 Determine the suitability and benefits of a full-stack JavaScript based control system. 
 Report and display the performance-based results for Websocket based communication 

developed to meet the distributed architecture. 
 Clearly document the methods used to create and implement control system 

components and where the key benefits are gained in the process. 
 Show that low-cost hardware with open-source software can build up the layers of a 

performant control system. 
 Detail how data can become more accessible and tailored with a full-stack approach. 
 Provide recommendations on further improvements and future developments using 

such technologies. 

 

Work Plan & Timeline 

See following page for project plan & timeline. 
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Resources Required: 

o Equipment: 
 Raspberry Pi 5/ Pi Zero W / ADC Pi embedded systems. 
 Home tools, connectors, crimpers, comms cables as reqd. 
 Laptop, monitors, general computing equipment. 

o Software: 
 Open-source software: NodeJS/ mySql / JS / Socket.io etc 
 Open-source data testing software. 
 Use MS Excel / JS or other software for data analysis & reporting. 
 EndNote for citations, Ms word for dissertation etc. 

o Access: 
 ScienceDirect, IEEE Explore and other UniSQ associated access for 

research and literature review.  
 Textbooks and similar resources as required for any practical based 

information and processes.   
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Figure B.1: UniSQ Risk Assessment for the project.
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There are no Ethical Clearances applicable to this project.



Appendix D

Supporting Information

D.1 Introduction to this Appendix

This Appendix contains all supporting information associated with the project develop-

ment and includes the following sections:

� Further Technical Information and Specifications

� Installations and Configurations

� Software Code Files
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D.2 Further Technical Information and Specifications

The following Technical Specifications are given for the Raspberry Pi Five and Raspberry

Pi Zero W respectively.

A list of the specifications are given below for the Raspberry Pi Five:

� VideoCore VII GPU, supporting OpenGL ES 3.1, Vulkan 1.2

� Dual 4Kp60 HDMI® display output with HDR support

� 4Kp60 HEVC decoder

� LPDDR4X-4267 SDRAM

� Dual-band 802.11ac Wi-Fi®

� Bluetooth 5.0 Low Energy (BLE)

� microSD card slot, with support for high-speed SDR104 mode

� 2 Ö USB 3.0 ports, supporting simultaneous 5Gbps operation

� 2 Ö USB 2.0 ports

� Gigabit Ethernet, with PoE+ support

� 2 Ö 4-lane MIPI camera/display transceivers

� 5V/5A DC power via USB-C, with Power Delivery support

� Raspberry Pi standard 40-pin header

� Real-time clock (RTC), powered from external battery

(Raspberry-Pi. 2023)
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A list of the specifications are given below for the Raspberry Pi Zero W:

� BCM 2835 SoC (ARM11 at 1GHz)

� 512MB of RAM

� On-board Wi-Fi - 2.4 GHz 802.11 b/g/n (BCM43438)

� On-board Bluetooth 4.1 + HS Low-energy (BLE) (BCM43438)

� Storage: micro-SD

� Display: mini-HDMI

� Power: USB micro-B

� USB: 1 x USB micro-B

� CSI camera connector (requires adaptor cable)

� Unpopulated 40-pin GPIO connector (requires soldering)

� Compatible with existing pHAT/HAT add-ons

� Dimensions: 65mm x 30.5mm x 5mm

� Power Supply Voltage Requirement: 5.1V

(Core-Electronics. 2024)
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D.3 Installations and Configurations

The following subsections detail the steps involved to setup the embedded platform oper-

ating systems and base applications including dependencies. From this point the software

was able to be developed to meet the project objectives as detailed in the Design of the

Project Section 4.

D.3.1 Operating systems, Installations and Runtime

To allow development of each NodeJS application a number of initial installation and

setup steps were required. Each of the three MCU’s needed an operating system to be

downloaded and then flashed as a software image onto their respective Micro-SD card.

These were then installed into the Micro-SD card holder on the Raspberry Pi MCU.

The operating systems chosen for the server and client MCU’s are detailed below:

� Pi Five Server: Ubuntu 23.10, ‘ubuntu-23.10-preinstalled-desktop-arm64+raspi.img’

� Pi Zero Clients: Raspian Bookworm, ‘2023-12-05-raspios-bookworm-armhf.img’

These OS versions were downloaded from ‘www.ubuntu.com/downloads/raspberry-pi’,

and ‘www.raspberrypi.com/software/operating-systems/#raspberry-pi-os-32-bit’, respec-

tively. These programs were loaded using the BalenaEtcher imaging tool, ‘balenaEtcher-

Setup-1.18.11’, which was downloaded from ‘https://etcher.balena.io’.

Once loaded, the MCU’s were powered and basic system configuration steps were taken

to enable functionality. This included the following steps:

1. Perform initial Raspberry Pi and Ubuntu account registration of each unit. To do

this there were prompts built into the system. System prompts required the below

information & settings:

� Setting of keyboard layout to English (US)

� Setup of wireless connectivity to home router to allow remote downloads

� Setting of country to Australia with timezone to Perth
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Figure D.1: Image of the Etcher process to flash the Micro-SD’s with OS image.

� Creating a unique username with password for each of the 3 units

� Update of Software to bring the flashed OS up to currency

2. Creation of wired connection on each unit for Local Area Network Ethernet con-

nections. This required navigation to the Network Connection tab, then opening

the wired connections tab and creating a new IPv4 static address to ensure each

network address would not change after system shutdown.

3. Download of the net-tools package via terminal using: ‘sudo apt install net-tools’.

This allowed use of valuable network diagnostic tools for use within terminal such as

ifconfig, arp -a and netstat -a. These were used to confirm the static IP’s assigned

were working to assist with low-level network setup as detailed in Section 5.2.2.

4. Enabling of the Raspberry Pi lower level configuration settings via the preferences

menu. This was completed to allow use of the GPIO pins as input / outputs and

to allow the I2C communication bus to be used for reading the ADC Pi voltages.
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Figure D.2: IPv4 configuration with ifconfig confirmation of settings.

Figure D.3: Enabling configuration settings via preferences tab.
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Once these steps were completed the associated systems were ready for NodeJS program-

ming to be initialised and developed.

D.3.2 NodeJS Installation and Application Initialisation

Both the server and client units used a similar file architecture for the development of

their respective NodeJS applications. During testing it was found that the Pi Zero W

units do not support the chosen Visual Studio Code software editing suite. Therefore,

the client programs were developed from a laptop session and with use of the Pi Zero W’s

onboard Geany lightweight program text editor. This still allowed efficient development

with core program sections being transferred via USB flash drive to the units.

There were a number of packages necessary to allow development of the NodeJS appli-

cations. These were downloaded from a terminal session on each individual unit and are

detailed below.

� Prior to install of packages a system update is run. ‘sudo apt-get update’.

� Installation of NodeJS package. ‘sudo apt install nodejs’.

� Installation of npm manager. ‘sudo apt install npm’.

� Installation of Visual Studio Code (Pi Five only). ‘sudo apt install code’.

When downloading packages, repeat issues were encountered due to incomplete file trans-

fer. To remedy this, the command ‘sudo dpkg-reconfigure -plow unattended-upgrades’,

was used which clears and completes partial file installations and updates. This is a com-

mon occurrence with terminal updates and the above command is a linux based solution.

Once npm was installed the base application on each device could be initialised. This

was performed by creating a base folder which could be on the desktop, then opening

a terminal session and navigating to within the folder. Once the folder path was set,

entering ‘npm init’ in the terminal created an application. By following the prompts a

base application was created ready for development as shown below.
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Then further dependencies were added as below:

� The Express package was installed. ‘npm install –save express’.

� EJS middleware package was installed (Pi Five only). ‘npm install –save ejs’.

� Websockets package was installed. ‘npm install –save ws’.

� Body-Parser package was installed (Pi Five only). ‘npm install –save body-parser’.

� Node system performance package was installed. ‘npm install perf-hooks’.

� MySQL package was installed (Pi Five only). ‘npm install mysql’.

Figure D.4: Intialisation of NodeJS application using npm package manager command.

With the initialisation step and dependencies added, each device then had a backbone

application structure with all necessary packages available. By using –save, these package

dependencies were loaded into the npm package.json file which enabled the libraries to be

called within the main node application script. Further folders and files could be added

within the parent directory in which the application was created to build the system

architecture for each device.
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The final developed file and folder structure for the Server application is shown below.

This shows how the application was structured within the ‘Server’ folder on the Pi Five

desktop when running within VS Code. This also displays an example of how the EJS

module was downloaded in the lower terminal section and subsequently placed into the

package dependency list in the package-lock.json file.

Figure D.5: Visual Studio Code Server application and file / folder structure.
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D.3.3 MySQL Installation and Database Initialisation

To install MySQL to the Pi Five, the terminal commands listed below, were run in order:

� ‘sudo apt update’

� ‘sudo apt upgrade’

� ‘sudo apt install mysql-server’

Once downloaded, the command ‘sudo mysql secure installation’ allows installation. Once

installed, a unique user account name and password were created for connecting to the

MySQL program. There were issues encountered which required setting of the MySQL

system path, and privilege modifications to allow NodeJS to connect during the develop-

ment. With such issues resolved the user and access configuration could be completed.

To do this the following steps were taken:

1. Connect to mysql via terminal. First navigate to the directory, then type:

‘mysql -u root -p’. This prompted for password entry, once entered, a welcome

message was displayed and the ‘mysql>’ prompt was shown, allowing entry of queries

and commands. This is shown in the below Figure 4.17.

Figure D.6: Terminal login to MySQL program.
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2. At the ‘mysql>’ prompt entered the below entries one by one:

mysql>CREATE USER ‘scott’ aO ‘localhost’ IDENTIFIED BY ‘scottpw’

mysql>GRANT ALL PRIVILEGES ON * . * TO ‘scott’ aO ‘localhost’ WITH

GRANT OPTION

mysql>FLUSH PRIVILEGES

(Sverdlov 2024)

3. Once this was completed the MySQL program was ready to connect via the server

NodeJS application. This was achieved through the interface software developed in

the Functional Design Section.

The database account details were:

� Name: piFiveDB

� Host: localhost

� User: scott

� Password:

� Port: 3306

The tables created for this project were:

� alarmdata - Logged the tag / status / clienttime parameters

� client1iodata - Logged client 1 analog and discrete device tag / value / servertime

/ clienttime parameters.

� client1sysdata - Logged client 1 system data with tag / value / clienttime.

� client2iodata - Logged client 2 analog and discrete device tag / value / servertime

/ clienttime parameters.

� client2sysdata - Logged client 2 system data with tag / value / clienttime.

� serversysdata - Logged server system data with tag / value / servertime.
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MySQL WorkBench 8.0

To allow connection, monitoring, export and review of database data, MySQL Workbench

was installed onto the laptop as part of the project. This was downloaded from: mysql-

workbench-community-8.0.36-winx64 and allowed a visual platform to interact with the

stored Pi Five database.

Once the program was downloaded the database connection was made via a USB to

ethernet connector from Laptop to the 5-Port switch which the Pi Five was also connected

to. The laptop was set to the static IP 192.168.0.5, then the connection was established

as shown below.

Figure D.7: Connection to MySQL database via Workbench 8.0.
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D.3.4 ADC Pi interface card, setup and testing

The ADC Pi board was enabled by importing the ‘AB Electronics ’ library which has

in-built NodeJS support. Then the units library class can be assigned as an object with

the two ADC on-board chips assigned unique I2C hexadecimal addresses listed and the

resolution.

Figure D.8: Code used to test ADC Pi interface with NodeJS

Once the object is created it can be called using the adc.ReadVoltage(x) or adc.readRaw(x)

with ‘x ’ representing the channel from 1 to 8. Then the scanned voltage or raw value

can be assigned to a variable to be used within the program such as client1iodata().
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Figure D.9: Program scaled output whilst scanning input.

Figure D.10: Test equipment with readings during tests
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D.3.5 Pulse Width Modulation Output, setup and testing

The code for the Pulse-Width Modulation output testing was developed from the NodeJS

‘raspi-soft-pwm’ library. This allowed easy to implement PWM operations from the ap-

propriate pins of the Pi Zero W which is referenced in Figure 5.1. A simple iterating loop

was created with a cyclical voltage output to allow measurement over time as shown in

Figure D.11 below.

Figure D.11: PWM signal on Picoscope during output testing.

As explained in the Results Sub-Section 5.3.6, the PWM signal from the MOSFET in-

terface board did not produce an accurate or satisfactory output. As further work was

not progressed the development circuit and code is provided up to this point of testing.

The wiring diagram is shown in Figure D.13 with the programmed code also listed in

Sub-Section D.4.26.
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Figure D.12: Unsatisfactory PWM signal displayed on Picoscope.

Figure D.13: PWM board wiring diagram.
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D.4 Software Code Files

D.4.1 server.js code

//--------------- Main Central Server on Pi Five ---------------// 

 

//--------------- Main npm dependency imports ---------------// 

// Imports express for use within the node application 

const express = require('express'); 

// Imported path library for use with system directories as required 

const path = require('path'); 

// Imports javascript websocket library 

const WebSocket = require('ws'); 

// Body parser for parsing form data between application states 

const bodyParser = require('body-parser'); 

//---------------------------------------------------------// 

 

//--------------- Custom dependency imports ---------------// 

// Import time functions from the date.js module 

const currentTime = require('./date.js'); 

// Import watchdog functions from the watchdog.js module 

const wd = require('./watchdog.js'); 

// Import system Information 

const sysInfo = require('./system.js'); 

// Import format IO write to DB function from serverFormatdata.js module 

const format = require('./devices/serverFormatdata.js'); 

// Import websockets functions from the socket.js module 

const wskt = require('./serverSocket.js'); 

// Import mysql database function from the database.js module 

const db = require('./database.js'); 

//---------------------------------------------------------// 

 

//--------------- Express application created -------------// 

/* Assigns the JavaScript express function which is the request function  

   handler to be passed to the NodeJS HTTP server. */ 

   const app = express(); 

   // Creates a HTTP server instance and uses the express handler within. 

   const server = require('http').createServer(app); 

//---------------------------------------------------------// 

 

//---------------- Main HMI - MVC imports ----------------// 

// The below command tells express that EJS is the Template Engine of choice for Project 

app.set('view engine', 'ejs'); 

// Set route handler constants for routing app / data to HMTL HMI screens 

const hmiroutes = require('./routes/hmi.js'); 

const errorController = require('./controllers/error.js'); 

// Used for allowing url encoding within the app 

app.use(bodyParser.urlencoded({extended: false})); 

// Below is used to direct app to the static public directory for serving images/css etc to page 

requests 

app.use(express.static(path.join(__dirname, '/public'))); 

// Below commands run the route handlers set above  



app.use(hmiroutes); 

app.use(errorController.get404); 

//-------------------------------------------------------// 

 

//------------- Date Time Logging for Server ------------// 

// Globally scoped variable definitions  

// These are used in a setInterval but need to be global so are declared here 

var dateTime; 

let GMT; 

// This runs the timeStamp function imported from date.js to display current time within server.js 

// Takes the current time every 500ms 

setInterval (function() { 

    let dateTimeGMT = currentTime.timeStamp(); 

    dateTime = dateTimeGMT[0].toString(); 

    GMT = dateTimeGMT[1].toString(); 

},100) 

//-------------------------------------------------------// 

 

//------------- System watchdog testing here ------------// 

wd.sysWatchdog(); 

wd.sysWatchdogRefresh(); 

 

//------------------------- HTTP Server -------------------------// 

// The IP can be commented out to allow localhost testing of comms on laptop etc. 

server.listen(3000, '192.168.0.4', () => { 

    console.log("Server up, listening on port: 3000") 

}); 

 

//----- Below section for functions relating to WS operation ----// 

const wss = new WebSocket.Server({ server:server }); 

//const ws = new WebSocket('ws://192.168.0.4:3000'); //******* get rid of this and ws below */ 

const socket = wskt.wsServer(wss); 

 

//------------------ mySQL Database connection ------------------// 

const sqlConn = db.myDB(); 

 

// Logs system info into DB every 10 seconds 

setInterval (function() { 

    let sysData = sysInfo.createsysMap(); 

    let formattedData = format.formatDBdata(sysData); 

    db.sysInfoToDB ('serversysdata', formattedData.keyArray, formattedData.valueArray, dateTime); 

},10000) 

//------------------ End of Server Application ------------------// 
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D.4.2 client1.js code

//************** Client code for Raspberry Pi Zero W unit 1 **************// 

 

//************** Below section for dependencies **************// 

const express = require('express'); 

const app = express(); 

const server = require('http').createServer(app); 

const WebSocket = require('ws'); 

// Performance timing for testing and monitoring code 

const { performance } = require('perf_hooks'); 

// Import time functions from the date.js module 

const currentTime = require('./date.js'); 

// Import time functions from the client1iodata.js module 

const c1data = require('./devices/client1iodata.js'); 

// Import websockets functions from the socket.js module 

const wskt = require('./clientSocket.js'); 

// Import system Information 

const sysInfo = require('./system.js'); 

//**********************************************************************// 

 

// Globally scoped variable definitions  

// These are used in a setInterval but need to be global so are declared here 

var dateTime; 

 

// This runs the timeStamp function imported from date.js to display current time within server.js 

// Takes the current time every 100ms 

setInterval (function() { 

    let dateTimeGMT = currentTime.timeStamp(); 

    dateTime = dateTimeGMT[0].toString(); 

},100) 

 

// Display system Info to the console 

let systemInformation = sysInfo.displaySystemInfo(); 

//console.log('System info output:', systemInformation); 

 

// Log the execution time for Client operations 

const start = performance.now(); 

// Connect to the WS piFive server here 

var clientNumber = '1' 

console.log('Starting WS now'); 

// The below is used for network, commented is for single device testing 

const socket = new WebSocket('ws://192.168.0.4:3000' /* 'ws://localhost:3000' */); 

 

// If Server side is running the below can be executed 

const clientSocket = wskt.wsClient(socket, clientNumber, c1data.updateIO); 

 

const end = performance.now(); 

console.log(`Time taken to execute the websocket function is ${end - start}ms.`); 

 



setInterval(() => { 

    console.log('Client running and time is: ', dateTime); 

}, 5000); 
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D.4.3 client2.js code

//************** Client code for Raspberry Pi Zero W unit 2 **************// 

 

//************** Below section for dependencies **************// 

const express = require('express'); 

const app = express(); 

const server = require('http').createServer(app); 

const WebSocket = require('ws'); 

// Performance timing for testing and monitoring code 

const { performance } = require('perf_hooks'); 

// Import time functions from the date.js module 

const currentTime = require('./date.js'); 

// Import time functions from the client1iodata.js module 

const c2data = require('./devices/client2iodata.js'); 

// Import websockets functions from the socket.js module 

const wskt = require('./clientSocket.js'); 

// Import system Information 

const sysInfo = require('./system.js'); 

//**********************************************************************// 

 

// Globally scoped variable definitions  

// These are used in a setInterval but need to be global so are declared here 

var dateTime; 

 

// This runs the timeStamp function imported from date.js to display current time within server.js 

// Takes the current time every 100ms 

setInterval (function() { 

    let dateTimeGMT = currentTime.timeStamp(); 

    dateTime = dateTimeGMT[0].toString(); 

},100) 

 

// Display system Info to the console 

let systemInformation = sysInfo.displaySystemInfo(); 

 

// Connect to the WS piFive server here 

var clientNumber = '2' 

console.log('Starting WS now'); 

// The below code connects to pi five on network, use commented code if local device testing only 

const socket = new WebSocket( 'ws://192.168.0.4:3000' /* 'ws://localhost:3000' */ ); 

const clientSocket = wskt.wsClient(socket, clientNumber, c2data.updateIO); 

 

setInterval(() => { 

    console.log('Client running and time is: ', dateTime); 

}, 5000); 
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D.4.4 serverSocket.js code

// Function for Server WebSockets connectivity  

 

// Import watchdog functions from the watchdog.js module 

const wd = require('./watchdog.js'); 

// Import io write to DB function from database.js module 

const sqlDB = require('./database.js'); 

// Import format IO write to DB function from serverFormatdata.js module 

const format = require('./devices/serverFormatdata.js'); 

// Import time functions from the date.js module 

const currentTime = require('./date.js'); 

 

var wss; 

var serverTime; 

 

function wsServer(wss) { 

     

    wss.on('connection', function connection(wss) { 

 

        // Below code always executed when new connection established 

        wd.serverWatchdogInitiate(wss);  

        console.info('New Client connected'); 

             

        // Listen for messages 

        wss.addEventListener('message', function (e){msg(e)}) 

 

        function msg(e) { 

            let messageData = JSON.parse(e.data); 

 

            // If msg data type is for Watchdog Intitiate 

            if (messageData.type === 'wdinit') { 

                let clientID = messageData.clientID;  

                //*********** Watchdog Timer runs here ************// 

                wd.serverCommsWatchdogTimeout(wss, clientID); 

            } 

            // If msg data type is for Watchdog Run 

            else if (messageData.type === 'wdrun') {  

                let clientID = messageData.clientID;  

                wd.serverCommsWatchdogRefresh(clientID); 

                 

            } 

            // If msg data type is for Input / Output Logging 

            else if (messageData.type === 'io') {  

                // Log the local server time to allow for latency checks etc 

                let dateTimeGMT = currentTime.timeStamp(); 

                serverTime = JSON.stringify(dateTimeGMT[0]);//.toString(); 

                let formattedData = format.formatDBdata(messageData.data); 

                // Check which client and write to according mySQL table 

                if (messageData.clientID === '1') { 



                    sqlDB.ioToDB('client1iodata', formattedData.keyArray, formattedData.valueArray, 

serverTime, messageData.time); 

                } 

                else if (messageData.clientID === '2') { 

                    sqlDB.ioToDB('client2iodata', formattedData.keyArray, formattedData.valueArray, 

serverTime, messageData.time); 

                } 

            } 

            // If msg data type is for Alarm Management 

            else if (messageData.type === 'alarm') {  

                let formattedData = format.formatDBdata(messageData.data); 

                sqlDB.alarmToDB('alarmdata', formattedData.keyArray, formattedData.valueArray, 

messageData.time, messageData.clientID); 

            } 

            // If msg data type is for System Information Logging 

            else if (messageData.type === 'sys') {  

                let clientID = messageData.clientID;  

                let formattedData = format.formatDBdata(messageData.data); 

 

                if (messageData.clientID === '1') { 

                    console.log(clientID, 'Client system message : ', messageData); 

                    sqlDB.sysInfoToDB ('client1sysdata', formattedData.keyArray, 

formattedData.valueArray, messageData.time); 

                } 

                else if (messageData.clientID === '2') { 

                    console.log(clientID, 'Client system message : ', messageData); 

                    sqlDB.sysInfoToDB ('client2sysdata', formattedData.keyArray, 

formattedData.valueArray, messageData.time); 

                }   

            } 

            // If msg data type is for any other non-specified types 

            else { 

                console.log('Client message : ', messageData); 

            }     

        } 

         

        wss.on('close', function(event) { 

            if (event.wasClean) { 

                console.log(`[close] Connection closed cleanly, code=${event.code} 

reason=${event.reason}`); 

                } else { 

                console.log('[close] Connection died'); 

                } 

            // connection closed, discard old websocket and create a new one in 5s 

           

        }); 

 

        wss.on('error', function(event) { 
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            console.log('error with WS connection') 

            // can add error logs to DB if reqd 

        }); 

    }); 

     

} 

 

module.exports = { 

    wsServer 

}; 
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D.4.5 clientSocket.js code

// Function for websocket connectivity  

 

// Import watchdog functions from the watchdog.js module 

const wd = require('./watchdog.js'); 

// Import time functions from the date.js module 

const currentTime = require('./date.js'); 

// Import sendData function from the clientSendData.js module 

const clientData = require('./devices/clientSendData.js'); 

// Import system information 

const sysInfo = require('./system.js'); 

 

// Globally scoped variable definitions  

var WDflag; 

 

// Below code triggers flag for watchdog after first server initialise command. 

if (WDInit = false) { 

    WDflag = false; 

} 

else if (WDinit = true) { 

    WDflag = true; 

} 

 

// Main WebSocket Server for export to clients to use within individual applications. 

 

    // If Server side is running the below can be executed 

    function wsClient(socket, clientNumber, dataFunction) { 

        try { 

     

            // Connection opened event listener 

            socket.addEventListener('open', function (event) { 

                // Monitor the node app execution time overall and output to console 

                //const start = performance.now(); 

                //const end = performance.now(); 

                //console.log(`Time taken to execute the WebSockets function is ${end - start}ms.`); 

                console.log(clientNumber, 'connected to Pi Five WS Server'); 

                 

                // Interval terminal comms to display system and operating values every 10 seconds 

                const id = setInterval(function () { 

                    socket.send(JSON.stringify(process.memoryUsage()), function () { 

                    }); 

                }, 10000);       

            }); 

         

            // Listen for messages 

            socket.addEventListener('message', function (e){msg(e)}); 

         

            // Function handler for message events within Socket operations 

            function msg(e) { 



                let messageData = JSON.parse(e.data); 

         

                if(messageData.type === 'wd' && messageData.ID === 'server') { 

         

                    // Watchdog Intialisation step - Send back the clientNumber to Server to create 

new watchdog timeout 

                    socket.send(JSON.stringify({type: 'wdinit', clientID: clientNumber})); 

                    console.log('Message sent from: ', messageData.ID) 

                    // Initiate Watchdog flag which sets watchdog within clientCommsWatchdogSend to 

TRUE (DECLARED AT TOP OF PAGE) 

                    WDinit = true; 

                } 

                // Display any other message data apart from watchdog messages 

                else { 

                    console.log('Server message : ', messageData); 

                }     

            }  

             

            // Watchdog periodic reset function, sends reset to Server once intitiated above by Server 

            wd.clientCommsWatchdogSend(WDflag, socket, clientNumber); 

             

            // Client I/O data is sent using this function 

            clientData.sendData(clientNumber, socket, dataFunction); 

         

             

            // System data periodically sent to pi Five DB for data logging 

            sysInfo.sendSystemData(clientNumber, socket,sysInfo.createsysMap); 

 

            // Closed socket event listener 

            socket.addEventListener('close', function(event) { 

                if (event.wasClean) { 

                    console.log(`Connection closed cleanly, code=${event.code} 

reason=${event.reason}`); 

                    }  

                else {               

                    console.log('Connection has died'); 

                    } 

                }); 

 

            // Error event listener 

            socket.addEventListener('error', console.log("Websockets error has occured")); 

            } 

        catch (e) { 

            // Logs the cause of error to user 

            console.log('Pi Five Server Offline, Please start first'); 

        } 

}; 
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module.exports = { 

    wsClient 

} 
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D.4.6 watchdog.js code

//----------- Section used for watchdog function definitions -----------// 

 

// Import time functions from the date.js module 

const currentTime = require('./date.js'); 

 

////////////////// System watchdog set for 1 second timeout ////////////// 

// Global var for functions and exports 

let watchdogTimer; 

let commsTimer = []; 

var clientID; 

 

function sysWatchdog() { 

    watchdogTimer = setTimeout(() => { 

    console.error('System Watchdog timer elapsed, Runtime error'); 

    process.exit(1); 

  }, 1000); 

} 

 

function sysWatchdogRefresh() { 

    setInterval(() => { 

    clearTimeout(watchdogTimer); 

    }, 500); 

} 

 

////////////////////////////// Comms watchdog ///////////////////////////// 

 

/* First message sent to clients upon connection to start watchdog comms 

(passes the socket so it can use send function etc) */ 

function serverWatchdogInitiate(socket) { 

    let startMsg = JSON.stringify({type: 'wd', ID: 'server'}); 

    console.log('Server comms watchdog initiated with new connected client'); 

    socket.send(startMsg); 

} 

 

// If 5000ms elapses without an update then ws.terminate, reoccuring interval timer 

function serverCommsWatchdogTimeout(socket, clientID) {  

    console.log('Client', clientID, 'timeout started'); 

    let clientName = clientID.toString();  

    let ID = Number(clientID); 

    console.log('Client name is:', clientName); 

    commsTimer[ID] = setInterval(() => { 

        console.error(clientName, 'Comms Watchdog Timer Elapsed, Comms Error'); 

        socket.terminate(); 

    }, 500)}; 

 

// Stops the watchdog interval timer and starts again  

function serverCommsWatchdogRefresh(clientID) { 

    let clientName = clientID.toString(); 



    let ID = Number(clientID); 

    let dateTimeGMT = currentTime.timeStamp(); 

    dateTime = dateTimeGMT[0].toString(); 

    // method to check if watchdog reset running in terminal 

    console.log(clientName, 'Comms Watchdog reset at time: ', dateTime);   

    clearInterval(commsTimer[ID]); 

}; 

 

// Sends a char flag 'wdrun' every 4000mS to the server. 

// If not rcvd by server WS msg, comms have issue so allow timeout to close connection 

function clientCommsWatchdogUpdate(WDflag, socket, clientNumber) { 

    if (WDflag == true) { 

        let sendMsg = JSON.stringify({ type: 'wdrun', clientID:clientNumber}); 

        let dateTimeGMT = currentTime.timeStamp(); 

        dateTime = dateTimeGMT[0].toString(); 

        console.log('Client',clientNumber, 'Sending WD reset back to Server at time:', 

dateTime); 

        socket.send(sendMsg); 

    } 

    else { 

        console.log('WD not running'); 

    } 

};  

 

function clientCommsWatchdogSend(WDflag, socket, clientNumber) { setInterval(() => 

clientCommsWatchdogUpdate(WDflag, socket, clientNumber), 500)};    // Polls for new data 

every 500mS and returns to server 

 

module.exports = { 

    watchdogTimer, 

    commsTimer, 

    sysWatchdog, 

    sysWatchdogRefresh,  

    serverWatchdogInitiate, 

    serverCommsWatchdogTimeout, 

    serverCommsWatchdogRefresh, 

    clientCommsWatchdogUpdate, 

    clientCommsWatchdogSend 

  }; 
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D.4.7 system.js code

 

// Import time functions from the date.js module 

const currentTime = require('./date.js'); 

// Import system information monitor 

const os = require('os'); 

// Allocating process module  

const process = require('process'); 

//-----------------------------------------------------------------------------------------

------- 

 

// Can be used to display system info for the running instance on console etc. 

// Runs at startup of each client 

function displaySystemInfo() {   

    let freeMemory = os.freemem() / 1024 / 1024; // 1024/1024 converts to MB 

    console.log("Available free memory:", freeMemory.toFixed(2), "MB"); 

    let cpuCores = os.cpus().length; 

    console.log("The number of CPU cores is:", cpuCores); 

    // Calling process.cpuUsage() method  

    let usage = process.cpuUsage();  

    // Printing returned value  

    console.log('CPU usage is:', usage.user, usage.system); 

} 

//-----------------------------------------------------------------------------------------

-------- 

 

/* Creates system info map for server.js to use directly and also to be 

   passed into below 'sysInfo' client wbesocket send function  */ 

function createsysMap (){ 

    // System values generated below 

    let freeMemory = os.freemem() / 1024 / 1024; // 1024/1024 converts to MB 

    freeMemory = freeMemory.toFixed(2); 

    let usage = process.cpuUsage();  

    let userUsage = usage.user; 

    let sysUsage = usage.system; 

 

    sysInfoDataMap = new Map(); 

    sysInfoDataMap.set('free memory',freeMemory); 

    sysInfoDataMap.set('cpu user usage',userUsage); 

    sysInfoDataMap.set('cpu system usage',sysUsage); 

     

    // Converts the created map to JSON for websocket transmit and DB write 

    const obj = Object.fromEntries(sysInfoDataMap); 

    const mysysInfo = JSON.stringify(obj); 

    return(mysysInfo); 

}; 

 

// Used to send system info to mysql DB for logging 

function sysInfo (clientID, socket, createsysMap){ 



    // Assigns sys info returned by 'createsysMap above to var 

    var sysMap = createsysMap(); 

    console.log('system info is:',sysMap); 

    // Add timestamp data 

    let dateTimeGMT = currentTime.timeStamp(); 

    dateTime = dateTimeGMT[0].toString(); 

    // The data read and returned by the above is then sent using WS to Server 

    if (socket.bufferedAmount == 0) { 

        socket.send(JSON.stringify({type: 'sys', clientID: clientID, time: dateTime, data: 

sysMap}), function () { 

        }); 

    } else { 

        console.log('Websockets buffer full'); 

    } 

}; 

 

// The below generic function calls the above at the set interval (This is exported to 

clientSocket.js) 

function sendSystemData(clientID, socket, createsysMap) { setInterval(() => 

sysInfo(clientID, socket, createsysMap), 10000)}; 

 

module.exports = { 

    displaySystemInfo,  // exported to client1/2.js 

    createsysMap,       // exported to clientSocket.js & server.js  

    sendSystemData      // exported to clientSocket.js 

  }; 
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D.4.8 date.js code

// Date module created for timestamping operations 
 
function timeStamp() { 
 
    let d = new Date();                     // Grabs a new date instance from 
node date module 
    let m = d.getMilliseconds();            // Takes a separate millisecond 
value (not in first call) 
    let milli = m.toString();               // Converts to string 
    let addMilli = (':' + milli +' ')       // Creates a string formatted with 
ms to add to date string 
    let myTime = d.toString();              // Converts to string 
    let splitTime = myTime.split(' (');     // Removes the (AWST) 
    let section1 = splitTime[0].length;     // Adds millisecs and returns 
separate time and GMT offset as below 
    let newDate = splitTime[0].slice(0,(section1-9)) + addMilli + 
splitTime[0].slice((section1-8),section1); 
    let finalDate = newDate.slice(0,(newDate.length-9)); 
    let GMT = newDate.slice((newDate.length-8),newDate.length) 
     
    return [finalDate,GMT]; 
} 
 
module.exports = { 
    timeStamp 
  }; 
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D.4.9 database.js code

// Database logic for export to the main node Pi Five Server 

 

// For DB creation run the code with server.js once to create the DB then null the NOTE #1 

code 

// and activate the NOTE #2 code which points to the created DB and allows operations etc. 

 

// Import dependencies 

// Below modified to allow encrypted authentication compatible with nodeJS 

const mysql = require('mysql2'); 

var connection; 

 

/* Below is created as a function not a class as only a single instance is required between 

   the Pi Five App and DB. If connecting multiple clients to DB then a class with static  

   initialisation block should be used. */ 

function myDB() { 

    connection = mysql.createConnection({ 

        host: 'localhost', 

        port: '3306', 

        user: 'scott', 

        password: 'scottpw', 

        database: 'piFiveDB' // NOTE #2 enable this line after first run and DB/tables 

created // 

    }); 

  

    connection.connect((err) => { 

        if (err) { 

            throw err; 

        } 

        else { 

            console.log('Connected to MySql Server!');  

            /* NOTE #1 // Once initialised the below lines of code is redundant and  

               replaced with // NOTE #2 // code above, commented out  

             

            connection.query('create database piFiveDB',function (err, result) { 

                if(err) { 

                    console.log(err); 

                } 

                else { 

                    console.log('Database created'); 

                } 

            }) 

            */ 

            

            // Once created the below lines of code are redundant 

            var ioTable2 = "CREATE TABLE client1iodata (ID int NOT NULL AUTO_INCREMENT, tag 

VARCHAR(255), value VARCHAR(255), servertime VARCHAR(255),clienttime VARCHAR(255), PRIMARY 

KEY (ID))"; 

            connection.query(ioTable2, function (err, result) { 



                if(err) { 

                    console.log(err); 

                } 

                else { 

                    console.log('Table created') 

                } 

            }) 

            var ioTable3 = "CREATE TABLE client2iodata (ID int NOT NULL AUTO_INCREMENT, tag 

VARCHAR(255), value VARCHAR(255), servertime VARCHAR(255), clienttime VARCHAR(255), PRIMARY 

KEY (ID))"; 

            connection.query(ioTable3, function (err, result) { 

                if(err) { 

                    console.log(err); 

                } 

                else { 

                    console.log('Table created') 

                } 

            }) 

            var sysTable1 = "CREATE TABLE client1sysdata (ID int NOT NULL AUTO_INCREMENT, 

tag VARCHAR(255), value VARCHAR(255), clienttime VARCHAR(255), PRIMARY KEY (ID))"; 

            connection.query(sysTable1, function (err, result) { 

                if(err) { 

                    console.log(err); 

                } 

                else { 

                    console.log('Table created') 

                } 

            }) 

            var sysTable2 = "CREATE TABLE client2sysdata (ID int NOT NULL AUTO_INCREMENT, 

tag VARCHAR(255), value VARCHAR(255), clienttime VARCHAR(255), PRIMARY KEY (ID))"; 

            connection.query(sysTable2, function (err, result) { 

                if(err) { 

                    console.log(err); 

                } 

                else { 

                    console.log('Table created') 

                } 

            }) 

            var sysTable3 = "CREATE TABLE serversysdata (ID int NOT NULL AUTO_INCREMENT, 

tag VARCHAR(255), value VARCHAR(255), clienttime VARCHAR(255), PRIMARY KEY (ID))"; 

            connection.query(sysTable3, function (err, result) { 

                if(err) { 

                    console.log(err); 

                } 

                else { 

                    console.log('Table created') 

                } 

            }) 
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            var alarmTable = "CREATE TABLE alarmdata (ID int NOT NULL AUTO_INCREMENT, tag 

VARCHAR(255), status VARCHAR(255), clienttime VARCHAR(255), clientnumber VARCHAR(255), 

PRIMARY KEY (ID))"; 

            connection.query(alarmTable, function (err, result) { 

                if(err) { 

                    console.log(err); 

                } 

                else { 

                    console.log('Table created') 

                } 

            })           

        }   

    }); 

    return(connection); 

}; 

 

// function for writing IO data from clients into database 

function ioToDB (tableName, tags, values, servertime, datetime) { 

    datetime = JSON.stringify(datetime); 

    for( j=0; j<tags.length; j++) { 

        let db = "INSERT INTO " + tableName + " (tag, value, servertime, clienttime) \ 

        VALUES("+ tags[j] +","+ values[j] +", "+ servertime +","+ datetime +")"; 

        connection.query(db, function(err, result) { 

            if(err) throw err; 

        }) 

    } 

    console.log('Updated client I/O data inserted');   

}; 

 

// Function for reading device value from database to HMI 

var myval; 

function ioDataFromDB () { 

        let db = "select * from client1iodata WHERE tag = 'PIT-210' ORDER BY ID DESC LIMIT 

1"; 

        connection.query(db, function(err, result) { 

            if(err) throw err; 

            myval = result[0].value; 

            console.log('************ Device data pulled from database', myval);  

        }) 

        return(myval); 

}; 

 

// Function for writing alarm data from clients into database 

function alarmToDB (tableName, tags, values, datetime, clientID) { 

    datetime = JSON.stringify(datetime); 

    clientID = JSON.stringify(clientID); 

    for( j=0; j<tags.length; j++) { 
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        let db = "INSERT INTO " + tableName + " (tag, status, clienttime, clientnumber) 

VALUES("+ tags[j] +","+ values[j] +","+ datetime +","+ clientID +")"; 

        connection.query(db, function(err, result) { 

            if(err) throw err; 

        }) 

    } 

    console.log('Updated client alarm data inserted');   

}; 

 

// Function for writing system info data from server and clients in database 

function sysInfoToDB (tableName, tags, values, datetime) { 

    datetime = JSON.stringify(datetime); 

    for( j=0; j<tags.length; j++) { 

        let db = "INSERT INTO " + tableName + " (tag, value, clienttime) VALUES("+ tags[j] 

+","+ values[j] +","+ datetime +")"; 

        connection.query(db, function(err, result) { 

            if(err) throw err; 

        }) 

    } 

    console.log('Updated system data inserted');   

}; 

 

module.exports = { 

    myDB, 

    ioToDB, 

    alarmToDB, 

    sysInfoToDB, 

    ioDataFromDB, 

    myval,  

    connection 

}; 
 

186 Supporting Information



D.4 Software Code Files 187



188 Supporting Information

D.4.10 devices/client1iodata.js code

// Import device function from the clientDigital.js module 

const digitalIO = require('./clientDigital.js'); 

// Import device class and functions from the clientAnalog.js module 

const analogIO = require('./clientAnalog.js'); 

// Initialises any simulated IO values for below function (only for testing) 

const initVar = (function () { 

    count = 0; 

    ioVar1 = 1;     // Used to initiate simulate Discrete values 

    ioVar2 = 0; 

    ioVar3 = 1; 

    ioVar4 = 0; 

    ioVar5 = 0; 

    ioVar6 = 0; 

    ioVar7 = 0; 

    ioVar8 = 0; 

    ioVar9 = 0; 

    ioVar10 = 0; 

    ioVar11 = 0; 

    ioVar12 = 0; 

    ioVar13 = 0; 

    ioVar14 = 0; 

    ioVar15 = 0; 

    ioVar16 = 0; 

    alarmFlag = false;      // Used as one-shot for alarm sending to database - Until 

resetAlarm() method called for aiDevice() 

    transmitFlag = false;   // Used as above to send the ws data only once - passed through 

with the message data 

    ai1Voltage = 1;         // Used to initiate simulate Analog voltage  

    ai2Voltage = 1.2;       // Used to initiate simulate Analog voltage  

    ai3Voltage = 3.5;       // Used to initiate simulate Analog voltage  

    ai4Voltage = 2.6;       // Used to initiate simulate Analog voltage  

    return function() {  

        return count, ioVar1, ioVar2, ioVar3, ioVar4, ioVar5, ioVar6, ioVar7, ioVar8,  

        ioVar9, ioVar10, ioVar11, ioVar12, ioVar13, ioVar14, ioVar15, ioVar16,  

        ai1Voltage, ai2Voltage, ai3Voltage, ai4Voltage } 

})(); 

 

var aiDevice1, aiDevice2, aiDevice3, aiDevice4; 

 

/* Updates IO created in the above function for recording 'simulated' values in Database. 

   When runnning without simulated values on units, the internal ADC Pi and GPIO functions  

   will pull the IO interface data to send with this function used within clientSocket.js 

*/ 

 

/* Below function is for reading analog and discrete IO values and updating IO objects to 

be  

sent to Pi Five Server over Websocket function (exported to clientSocket.js) */ 

function updateIO() {  



 

    //------------------------------ For Simulation & Test Only ---------------------------

----------// 

    /* Below if/else used to toggle values and increment analog signal values for testing 

back to database, 

       to be removed when running real I/O inputs */ 

    if (count == 1) { 

        count = 0; 

        ioVar1 = 1, ioVar2 = 0, ioVar3 = 1, ioVar4 = 1, ioVar5 = 1, ioVar6 = 0, ioVar7 = 1, 

ioVar8 = 1, 

        ioVar9 = 1, ioVar10 = 0, ioVar11 = 1, ioVar12 = 1,ioVar13 = 1, ioVar14 = 0, ioVar15 

= 1, ioVar16 = 1,  

        ai1Voltage = ai1Voltage + 0.00005, ai2Voltage = ai2Voltage + 0.00005, ai3Voltage = 

ai3Voltage + 0.00005, ai4Voltage = ai4Voltage + 0.00005; // Increases voltage for testing 

alarms each scan 

    } 

    else { 

        count = 1; 

        ioVar1 = 0, ioVar2 = 1, ioVar3 = 0, ioVar4 = 0, ioVar5 = 0, ioVar6 = 1, ioVar7 = 0, 

ioVar8 = 0,  

        ioVar9 = 0, ioVar10 = 1, ioVar11 = 0, ioVar12 = 0,ioVar13 = 0, ioVar14 = 1, ioVar15 

= 0, ioVar16 = 0,  

        ai1Voltage = ai1Voltage + 0.00005, ai2Voltage = ai2Voltage + 0.00005, ai3Voltage = 

ai3Voltage + 0.00005, ai4Voltage = ai4Voltage + 0.00005; // Increases voltage for testing 

alarms each scan 

        } 

    //------------------------------ End of Simulation & Test code ------------------------

------------// 

 

    // Creates object instances of the discrete IO devices with their current measured 

values 

    let ioData1 = new digitalIO.ioDevice('XI-1001', ioVar1); 

    let ioData2 = new digitalIO.ioDevice('XI-1002', ioVar2); 

    let ioData3 = new digitalIO.ioDevice('XI-1003', ioVar3); 

    let ioData4 = new digitalIO.ioDevice('XI-1004', ioVar4); 

    let ioData5 = new digitalIO.ioDevice('XI-1005', ioVar5); 

    let ioData6 = new digitalIO.ioDevice('XI-1006', ioVar6); 

    let ioData7 = new digitalIO.ioDevice('XI-1007', ioVar7); 

    let ioData8 = new digitalIO.ioDevice('XI-1008', ioVar8); 

    let ioData9 = new digitalIO.ioDevice('XI-1009', ioVar9); 

    let ioData10 = new digitalIO.ioDevice('XI-1010', ioVar10); 

    let ioData11 = new digitalIO.ioDevice('XI-1011', ioVar11); 

    let ioData12 = new digitalIO.ioDevice('XI-1012', ioVar12); 

    let ioData13 = new digitalIO.ioDevice('XI-1013', ioVar13); 

    let ioData14 = new digitalIO.ioDevice('XI-1014', ioVar14); 

    let ioData15 = new digitalIO.ioDevice('XI-1015', ioVar15); 

    let ioData16 = new digitalIO.ioDevice('XI-1016', ioVar16); 
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    // Creates analog device (object) using class constructor 

    aiDevice1 = new analogIO.aiDevice('PIT-210', ai1Voltage, 0, 2000, 'kpa', 800, 0, 0, 0, 

4000, 0, 0, 0, 5, 0); 

    aiDevice2 = new analogIO.aiDevice('PIT-460', ai2Voltage, 0, 300, 'kpa', 0, 0, 0, 0, 

4000, 0, 0, 0, 5, 0); 

    aiDevice3 = new analogIO.aiDevice('TIT-320', ai3Voltage, 0, 100, 'deg C', 0, 0, 0, 0, 

0, 0, 0, 0, 5, 0); 

    aiDevice4 = new analogIO.aiDevice('FIT-500', ai4Voltage, 0, 150, 'deg C', 0, 0, 0, 0, 

0, 0, 0, 0, 5, 0); 

    // Returns Scaled PV for sending to Database in above scan, scanAnalog not required 

here therefore 

  

    // Create a new Data Map of all discrete and analog I/O TAG and raw values instances 

for database transmit 

    var ioDataMap = new Map(); 

    ioDataMap.set(ioData1.tag, ioData1.raw); 

    ioDataMap.set(ioData2.tag, ioData2.raw); 

    ioDataMap.set(ioData3.tag, ioData3.raw); 

    ioDataMap.set(ioData4.tag, ioData4.raw); 

    ioDataMap.set(ioData5.tag, ioData5.raw); 

    ioDataMap.set(ioData6.tag, ioData6.raw); 

    ioDataMap.set(ioData7.tag, ioData7.raw); 

    ioDataMap.set(ioData8.tag, ioData8.raw); 

    ioDataMap.set(ioData9.tag, ioData9.raw); 

    ioDataMap.set(ioData10.tag, ioData10.raw); 

    ioDataMap.set(ioData11.tag, ioData11.raw); 

    ioDataMap.set(ioData12.tag, ioData12.raw); 

    ioDataMap.set(ioData13.tag, ioData13.raw); 

    ioDataMap.set(ioData14.tag, ioData14.raw); 

    ioDataMap.set(ioData15.tag, ioData15.raw); 

    ioDataMap.set(ioData16.tag, ioData16.raw); 

    ioDataMap.set(aiDevice1.tag, aiDevice1.scaledPV.toFixed(1)); 

    ioDataMap.set(aiDevice2.tag, aiDevice2.scaledPV.toFixed(1)); 

    ioDataMap.set(aiDevice3.tag, aiDevice3.scaledPV.toFixed(1)); 

    ioDataMap.set(aiDevice4.tag, aiDevice4.scaledPV.toFixed(1)); 

 

    // Checking alarm activation of devices - Only 1 Analog Device being tested currently 

    var aiDev1param = aiDevice1.checkAlarms(); 

    // Below console output used for testing and visibility only 

    // console.log('Scaled PV is: ', aiDev1param[0].toFixed(0), ' | Alarm Flag is: ', 

aiDev1param[1], ' | Alarm Status is: ', aiDev1param[2], ' | Device Tag is: ', 

aiDev1param[3]); 

 

    // Create Alarm data if alarmFlag generated in above alarmCheck() method call for each 

device  

    var alarmDataMap = new Map(); 

    if (aiDev1param[1] == 'true' && alarmFlag == false) { 

        alarmDataMap.set(aiDevice1.tag, aiDev1param[2]); 
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        alarmFlag = true; 

        transmitFlag = true; 

    } 

    else if (aiDev1param[1] == 'false' && alarmFlag == true) { 

        /* If aiDevice1.resetAlarm() method is called the aiDev1param[1] is set false and  

           this 'else if' will run resetting the logging function to DB */ 

        alarmFlag = false; 

    } 

    else { 

        // Creates transmit one-shot, logs nothing to Database until the alarm is reset 

        transmitFlag = false; 

    } 

 

    // Converts the created data map of analog and discrete tag/values to JSON for 

websocket transmit 

    const obj1 = Object.fromEntries(ioDataMap); 

    const myioData = JSON.stringify(obj1); 

    // Converts the created data map of alarm tag/values to JSON for websocket transmit 

    const obj2 = Object.fromEntries(alarmDataMap); 

    const myAlarmData = JSON.stringify(obj2); 

    const wsflag = JSON.stringify(transmitFlag); 

 

    return([myioData, myAlarmData, wsflag]); 

}; 

 

module.exports = { 

    updateIO, // used within client/1/2.js 

    aiDevice1 

     

}; 
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D.4.11 devices/client2iodata.js code

// Import device function from the clientDigital.js module 

const digitalIO = require('./clientDigital.js'); 

// Import device class and functions from the clientAnalog.js module 

const analogIO = require('./clientAnalog.js'); 

// Initialises any simulated IO values for below function (only for testing) 

const initVar = (function () { 

    count = 0; 

    ioVar17 = 1;     // Used to initiate simulate Discrete values 

    ioVar18 = 0; 

    ioVar19 = 1; 

    ioVar20 = 0; 

    ioVar21 = 1; 

    ioVar22 = 1; 

    ioVar23 = 0; 

    ioVar24 = 1; 

    ioVar25 = 0; 

    ioVar26 = 0; 

    ioVar27 = 1; 

    ioVar28 = 0; 

    ioVar29 = 1; 

    ioVar30 = 1; 

    ioVar31 = 1; 

    ioVar32 = 0; 

    alarmFlag = false;      // Used as one-shot for alarm sending to database - Until 

resetAlarm() method called for aiDevice() 

    transmitFlag = false;   // Used as above to send the ws data only once - passed through 

with the message data 

    ai5Voltage = 1.6;       // Used to initiate simulate Analog voltage  

    ai6Voltage = 1.02;      // Used to initiate simulate Analog voltage  

    ai7Voltage = 1.01;      // Used to initiate simulate Analog voltage  

    ai8Voltage = 1.07;      // Used to initiate simulate Analog voltage  

    return function() {  

        return count, ioVar17, ioVar18, ioVar19, ioVar20, ioVar21, ioVar22, ioVar23, 

ioVar24,  

        ioVar25, ioVar26, ioVar27, ioVar28, ioVar29, ioVar30, ioVar31, ioVar32,  

        ai5Voltage, ai6Voltage, ai7Voltage, ai8Voltage } 

})(); 

 

var aiDevice5, aiDevice6, aiDevice7, aiDevice8; 

 

// Updates IO created in the above function for recording 'simulated' values in Database. 

/* When runnning properly on units the internals of this function will pull the IO 

interface data 

// to send and function is used within clientSocket.js */ 

 

/* Below function is for reading analog and discrete IO values and updating IO objects to 

be  

sent to Pi Five Server over Websocket function (exported to clientSocket.js) */ 



function updateIO() {  

 

    //----------------------------------- For Test Only -----------------------------------

--// 

    /* Below if/else used top toggle values for testing back to database 

       to be removed when running direct on Pi units */ 

    if (count == 1) { 

        count = 0; 

        ioVar17 = 1, ioVar18 = 0, ioVar19 = 1, ioVar20 = 1, ioVar21 = 1, ioVar22 = 0, 

ioVa23 = 1, ioVar24 = 1, 

        ioVar25 = 1, ioVar26 = 0, ioVar27 = 1, ioVar28 = 1,ioVar29 = 1, ioVar30 = 0, 

ioVar31 = 1, ioVar32 = 1,  

        ai5Voltage = ai5Voltage + 0.000015, ai6Voltage = ai6Voltage + 0.000015, ai7Voltage 

= ai7Voltage + 0.000015, ai8Voltage = ai8Voltage + 0.000015;  

        // Increases voltage for testing alarms each scan 

    } 

    else { 

        count = 1; 

        ioVar17 = 0, ioVar18 = 1, ioVar19 = 0, ioVar20 = 0, ioVar21 = 0, ioVar22 = 1, 

ioVar23 = 0, ioVar24 = 0,  

        ioVar25 = 0, ioVar26 = 1, ioVar27 = 0, ioVar28 = 0,ioVar29 = 0, ioVar30 = 1, 

ioVar31 = 0, ioVar1632 = 0,  

        ai5Voltage = ai5Voltage + 0.000015, ai6Voltage = ai6Voltage + 0.000015, ai7Voltage 

= ai7Voltage + 0.000015, ai8Voltage = ai8Voltage + 0.000015;  

        // Increases voltage for testing alarms each scan 

        } 

    //-------------------------------------------------------------------------------------

--// 

 

    // Creates object instances of the discrete IO devices with their current measured 

values 

    let ioData17 = new digitalIO.ioDevice('XI-1017', ioVar17); 

    let ioData18 = new digitalIO.ioDevice('XI-1018', ioVar18); 

    let ioData19 = new digitalIO.ioDevice('XI-1019', ioVar19); 

    let ioData20 = new digitalIO.ioDevice('XI-1020', ioVar20); 

    let ioData21 = new digitalIO.ioDevice('XI-1021', ioVar21); 

    let ioData22 = new digitalIO.ioDevice('XI-1022', ioVar22); 

    let ioData23 = new digitalIO.ioDevice('XI-1023', ioVar23); 

    let ioData24 = new digitalIO.ioDevice('XI-1024', ioVar24); 

    let ioData25 = new digitalIO.ioDevice('XI-1025', ioVar25); 

    let ioData26 = new digitalIO.ioDevice('XI-1026', ioVar26); 

    let ioData27 = new digitalIO.ioDevice('XI-1027', ioVar27); 

    let ioData28 = new digitalIO.ioDevice('XI-1028', ioVar28); 

    let ioData29 = new digitalIO.ioDevice('XI-1029', ioVar29); 

    let ioData30 = new digitalIO.ioDevice('XI-1030', ioVar30); 

    let ioData31 = new digitalIO.ioDevice('XI-1031', ioVar31); 

    let ioData32 = new digitalIO.ioDevice('XI-1032', ioVar32); 
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    // Creates analog device (object) using class constructor 

    aiDevice5 = new analogIO.aiDevice('PIT-650', ai5Voltage, 0, 6000, 'pa', 5000, 0, 0, 0, 

4000, 0, 0, 0, 5, 0); 

    aiDevice6 = new analogIO.aiDevice('PIT-730', ai6Voltage, 0, 100, 'kpa', 0, 0, 0, 0, 0, 

0, 0, 0, 5, 0); 

    aiDevice7 = new analogIO.aiDevice('TIT-990', ai7Voltage, 0, 200, 'deg C', 0, 0, 0, 0, 

0, 0, 0, 0, 5, 0); 

    aiDevice8 = new analogIO.aiDevice('FIT-828', ai8Voltage, 0, 150, 'deg C', 0, 0, 0, 0, 

0, 0, 0, 0, 5, 0); 

    // Returns Scaled PV for sending to Database in above scan, scanAnalog not required 

here therefore 

  

    // Create a new data map of the discrete and analog IO TAG and Values for database 

    var ioDataMap = new Map(); 

    ioDataMap.set(ioData17.tag, ioData17.raw); 

    ioDataMap.set(ioData18.tag, ioData18.raw); 

    ioDataMap.set(ioData19.tag, ioData19.raw); 

    ioDataMap.set(ioData20.tag, ioData20.raw); 

    ioDataMap.set(ioData21.tag, ioData21.raw); 

    ioDataMap.set(ioData22.tag, ioData22.raw); 

    ioDataMap.set(ioData23.tag, ioData23.raw); 

    ioDataMap.set(ioData24.tag, ioData24.raw); 

    ioDataMap.set(ioData25.tag, ioData25.raw); 

    ioDataMap.set(ioData26.tag, ioData26.raw); 

    ioDataMap.set(ioData27.tag, ioData27.raw); 

    ioDataMap.set(ioData28.tag, ioData28.raw); 

    ioDataMap.set(ioData29.tag, ioData29.raw); 

    ioDataMap.set(ioData30.tag, ioData30.raw); 

    ioDataMap.set(ioData31.tag, ioData31.raw); 

    ioDataMap.set(ioData32.tag, ioData32.raw); 

    ioDataMap.set(aiDevice5.tag, aiDevice5.scaledPV.toFixed(1)); 

    ioDataMap.set(aiDevice6.tag, aiDevice6.scaledPV.toFixed(1)); 

    ioDataMap.set(aiDevice7.tag, aiDevice7.scaledPV.toFixed(1)); 

    ioDataMap.set(aiDevice8.tag, aiDevice8.scaledPV.toFixed(1)); 

    //console.log('ioData values are:', ioDataMap); 

 

    // Section for checking alarm activation of device - Only 1 Analog Device being tested 

here currently 

    var aiDev1param = aiDevice5.checkAlarms(); 

    // Below console output used for testing and visibility only 

    console.log('Scaled PV is: ', aiDev1param[0].toFixed(0), ' | Alarm Flag is: ', 

aiDev1param[1], ' | Alarm Status is: ', aiDev1param[2], ' | Device Tag is: ', 

aiDev1param[3]); 

 

    // Create Alarm data if alarmFlag generated in above alarmCheck() method call for each 

device  

    var alarmDataMap = new Map(); 

    if (aiDev1param[1] == 'true' && alarmFlag == false) { 
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        alarmDataMap.set(aiDevice1.tag, aiDev1param[2]); 

        alarmFlag = true; 

        transmitFlag = true; 

    } 

    else if (aiDev1param[1] == 'false' && alarmFlag == true) { 

        // If aiDevice1.resetAlarm() method is called the aiDev1param[1] is set false and 

this will run resetting the logging to DB 

        alarmFlag = false; 

    } 

    else { 

        // creates transmit one-shot 

        transmitFlag = false; 

        // Logs nothing to Database until the alarm is reset 

    } 

 

    // Converts the created data map of analog and discrete tag/values to JSON for 

websocket transmit 

    const obj1 = Object.fromEntries(ioDataMap); 

    const myioData = JSON.stringify(obj1); 

    // Converts the created data map of alarm tag/values to JSON for websocket transmit 

    const obj2 = Object.fromEntries(alarmDataMap); 

    const myAlarmData = JSON.stringify(obj2); 

    const wsflag = JSON.stringify(transmitFlag); 

 

    return([myioData, myAlarmData, wsflag]); 

}; 

 

module.exports = { 

    updateIO, // used within client/1/2.js 

     

}; 
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D.4.12 devices/clientAnalog.js code

// Client Interface function and class constructors for Analog data IO elements 

 

// Global flags used for promise passing of returned values within sections of overall 

object methods 

var HHflag = 'false'; 

//var Hflag = 'false'; 

//var Lflag = 'false'; 

//var LLflag = 'false'; 

// Main Analog Interface object - allows object assignment via constructor, provides 

internal and external methods for readings, alarms etc 

class aiDevice { 

 

    /* Class Constructor - Used for creating analog input instances 

       Inputs are as stated with High High, High, Low, Low Low parameters and delay (d_HH 

etc) in mS for each. 

       Any alarms paramaters 'HH, H, L, LL' assigned 0 are disabled. */ 

    constructor(tag, raw, eng_lrv, eng_urv, units, HH, H, L, LL, d_HH, d_H, d_L, d_LL, 

maxRaw, minRaw) { 

    this.tag = tag; 

    this.raw = raw; 

    this.eng_lrv = eng_lrv; 

    this.eng_urv = eng_urv; 

    this.units = units; 

    this.HH = HH; 

    this.H = H; 

    this.L = LL; 

    this.LL = LL; 

    this.d_HH = d_HH; 

    this.d_H = d_H; 

    this.d_L = d_L; 

    this.d_LL = d_LL; 

    this.maxRaw = maxRaw;                   // 5 volt input signal maximum 

    this.minRaw = minRaw;                   // 0 volt input signal minimum 

    this.HHtimeoutID = 'HH_Alarm_Timeout'; 

    this.HtimeoutID = 'H_Alarm_Timeout'; 

    this.LtimeoutID = 'L_Alarm_Timeout'; 

    this.LLtimeoutID = 'LL_Alarm_Timeout'; 

    this.alarmFlag = 'false';               // Active if alarm generated 

    this.alarmTimeoutFlag = 'false';        // Ensures alarm timeout only activated once 

    this.scaledPV = (this.eng_urv-this.eng_lrv)*((this.raw-this.minRaw)/this.maxRaw); 

    } 

 

    // Getter - Returns current PV in engineering units 

    get currentPV() { 

        this.scaledPV = (this.eng_urv-this.eng_lrv)*((this.raw-this.minRaw)/this.maxRaw); 

        console.log('Output for ' + this.tag + ' is: ' + this.scaledPV.toFixed(0) + ' ' + 

this.units) 

    } 



 

    // Method - Update raw process variable input and return scaled Process Variable 

    updateRaw(raw) { 

        this.raw = raw; 

        this.scaledPV = (this.eng_urv-this.eng_lrv)*((this.raw-this.minRaw)/this.maxRaw); 

        console.log('raw is: ' + this.raw.toFixed(2) + ' volts DC.', 'Scaled PV is: ' + 

this.scaledPV.toFixed(0) + ' kpa'); 

    } 

 

    // Method - Used to reset alarms on device after activation 

    resetAlarm(reset) { 

        this.alarmFlag = reset; // value = false passed into object to reset flag 

    } 

     

    // ------- Async Operations to check delay timers and return promise when done ------// 

 

    // Inner Method - Used for creating Timeout with Promise for Method checkAlarm()  

    delayTimer(t, timeoutID) { 

        return new Promise(function(resolve) { 

            timeoutID = setTimeout(function() { 

                resolve(); 

            }, t); 

        }); 

    } 

 

    // Inner Method - Encapsulates the promise and allows returns 'true' which is assigned 

in below execution invocation 

    setHHAlarmFlag() { 

        return this.delayTimer(this.d_HH,'HH_Alarm_Timeout').then(function() { 

            return 'true'; 

        }); 

    } 

 

    // Set further H, L, LL alarm flag methods here... 

 

    // -----------------------------------------------------------------------------------

// 

    // Method - checks the current PV against all assigned alarms and delays 

    checkAlarms() { 

        this.alarmData; 

        // ------------------ HH alarm checks ------------------ // 

        if(this.HH != 0) { 

            console.log('Checking HH alarms status, ',' ScaledPV is: ', 

this.scaledPV.toFixed(0),'HH Setpoint is: ', this.HH, 'Alarm Flag is: ', this.alarmFlag); 

            //console.log('ScaledPV is: ', this.scaledPV.toFixed(0),'HH Setpoint is: ', 

this.HH, 'Alarm Flag is: ', this.alarmFlag); 

             

            // ------------------ HH Alarm with Delay checks ------------------ // 
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            if (this.d_HH != 0 && this.scaledPV > this.HH) { 

 

                // One-shot delay timer activation for HH with delay 

                if(this.alarmTimeoutFlag == 'false') { 

                     

                    // Ensures timer only activated once until reset by healthy PV 

                    this.alarmTimeoutFlag = 'true';  

                    console.log('******** HH alarm active with delay, timeout activated 

********'); 

                    // Promise used to ensure timer has expired before writing to 

'this.alarmFlag' 

                    // Execution - This runs the function and gives access to the returned 

inputted data upon promise resolution 

                    this.setHHAlarmFlag(HHflag).then(function(returnedValue) { 

                        console.log('**** Promise value returned is: ', returnedValue); 

                        HHflag = 'true'; 

                    }) 

                    console.log('**** alarmflag value in "if" call: ', this.alarmFlag); 

                } 

                // Runs after one-shot code above has activated the async delay timeout 

                else { 

                    console.log('**** HHflag value is: ', HHflag); 

                    console.log('**** Alarmflag value in "else" call: ', 

this.alarmFlag);                   

                } 

                

                // If Promise flag returns true then set alarmFlag true to activate alarm 

                if (HHflag == 'true') { 

                    this.alarmFlag = 'true'; 

                    this.alarmData = ('High High Alarm @ ' + this.HH + this.units + ' with 

' + this.d_HH + 'mS delay'); 

                    console.log('** TIMEOUT HAS OCCURED - HIGH HIGH ALARM ACTIVATED **') 

                } 

                else { 

                    this.alarmFlag = 'false'; 

                    console.log('Alarm Promise timeout incrementing'); 

                } 

                console.log('Alarm flag post HHflag check value is: ', this.alarmFlag); 

                 

            } 

 

            // ------------------ Instant HH Alarm with No Delay checks ------------------ 

// 

            else if(this.d_HH == 0 && this.scaledPV > this.HH) {  

                console.log('INSTANT HIGH HIGH ALARM'); 

                this.alarmFlag = 'true'; 

                this.alarmData = ('High High Alarm @ ' + this.HH + this.units); 

            } 
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            // ------------------ HH Alarm with Delay Healthy SP checks ------------------ 

// 

            else if(this.d_HH != 0 && this.scaledPV < this.HH) { 

                console.log('HH Alarm clear'); 

                this.alarmData = 'Healthy'; 

                this.alarmTimeoutFlag = 'false';    // Allows the alarm delay timeout to be 

activated again if PV in alarm range again 

                clearTimeout('HH_Alarm_Timeout');   // Clears the active delay timeout as 

PV is healthy again 

            } 

            // ----------------------- HH Alarm Not Enabled checks ----------------------- 

// 

            else { 

                console.log('HH Alarm not enabled'); 

                //this.alarmFlag = 'false'; 

                this.alarmData = 'Disabled'; 

            } 

        } 

        // ****** Add remaining H alarm checks and further L & LL alarms here ****** // 

 

    // End of checkAlarm() Method returns the current scaled PV and alarm status for user 

    return([this.scaledPV, this.alarmFlag, this.alarmData, this.tag]); 

    }; 

 

}; 

 

// Function definition which calls object methods to update input to analog object,  

// returns the scaled PV and assesses and activates alarms  

function scanAnalog(aiDevice) { setInterval(() => { 

    aiDevice.currentPV;                 

    aiDevice.updateRaw(aiDevice.raw); 

    var par = aiDevice.checkAlarms(); 

    console.log('Scaled PV is: ', par[0].toFixed(0), ' | Alarm Flag is: ', par[1], ' | 

Alarm Status is: ', par[2], ' | Device Tag is: ', par[3]); 

    }, 2000) 

}; 

 

// Scans the analog device as per above function at set interval time period below example 

invocation 

//scanAnalog(aiDevice1); 

module.exports = { 

    aiDevice, 

    scanAnalog 

}; 
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D.4.13 devices/clientDigital.js code

// Client Interface function and object constructors for Discrete data IO 
elements 
 
// Simple object definition for generic Discrete IO device 
function ioDevice(tag, raw) { 
    this.tag = tag; 
    this.raw = raw; 
} 
 
function LL_Alarm(tag, raw) { 
    this.tag = tag; 
    this.raw = raw; 
} 
 
module.exports = { 
    ioDevice, 
}; 
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D.4.14 devices/clientSendData.js code

// Functions here are used to take individual client data and send over their websocket 

connection 

 

// Import time functions from the date.js module 

const currentTime = require('../date.js'); 

 

/* The below clientSendData takes the client ID, socket connection and passes a function 

inside  

   which runs. This is where the individual client data READ and UPDATE operations are 

called internally */ 

 

function clientSendData (clientID, socket, sendDataFunction){ 

    // Below is where the individual client updateIO() functions which are passed in are 

called 

    var ioData = sendDataFunction(); 

    let dateTimeGMT = currentTime.timeStamp(); 

    dateTime = dateTimeGMT[0].toString(); 

    // The data read and returned by the above function is then sent using WS to Server 

    if (socket.bufferedAmount == 0) { 

         

        socket.send(JSON.stringify({type: 'io', clientID: clientID, time: dateTime, data: 

ioData[0]}), function () { 

        }); 

        // If one-shot alarm flag is set then transmit the alarm data across WS to the DB 

        if (ioData[2] == 'true') { 

            socket.send(JSON.stringify({type: 'alarm', clientID: clientID, time: dateTime, 

data: ioData[1]}), function () { 

            }); 

        } 

        else { 

            // Do nothing - no transmit of alarms needed to database, already logged  

        } 

    } else { 

        console.log('Websockets buffer full'); 

    } 

}; 

 

// The below generic function calls the above at the set interval (This is exported to 

clientSocket.js) 

function sendData(clientID, socket, sendDataFunction) { setInterval(() => 

clientSendData(clientID, socket, sendDataFunction), 500)}; 

 

module.exports = { 

    sendData 

} 
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D.4.15 devices/serverFormatData.js code

 

// Function for formatting JSON data prior to writing to database 

function formatDBdata (ioData) { 

    //console.log('iodata input as JSON is:',ioData) 

    let parsedIOdata = JSON.parse(ioData) 

    var keyArray = []; 

    var valueArray = []; 

    Object.keys(parsedIOdata).forEach(key => { 

        //console.log('key', key);   

        keyArray.push(JSON.stringify(key));     

    }); 

    Object.values(parsedIOdata).forEach(value => { 

        //console.log('value', value);   

        valueArray.push(JSON.stringify(value));  

    }); 

    //console.log(typeof keyArray,keyArray); 

    //console.log(valueArray); 

    return{keyArray, valueArray}; 

}; 

 

module.exports = { 

    formatDBdata 

} 
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D.4.16 controllers/error.js code

// Below is used to direct to the 404 HTML page if an error is encountered during 

navigation 

 

exports.get404 = (req, res, next) => { 

    res.status(404).render('hmi/404', { 

   pageTitle: 'Page Not Found', 

   path: '/404' 

   }); 

}; 
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D.4.17 controllers/hmi.js code

 

// Below is used to direct to the main HMI landing page for the application 

 

const devices = require('../models/devices'); // imports the class from the models folder 

 

var Device1_PV; 

Device1 = new devices.Device('PIT-210', 'Pressure Transmitter'); 

 

/* Allow time for databse to read first client data then call Process Variable  

   using class method for the model to send to webpage as displayed value */ 

setTimeout(() => { 

    Device1_PV =  Device1.fetchPV; 

  }, 15000); 

 

// Render requested page as directed through router with model included 

exports.getIndex = (req, res, next) => { 

            res.render('hmi/index',{  

                devs: Device1, 

                pageTitle: 'HMI Landing Page', 

                path: '/' 

            });  

    }; 
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D.4.18 models/devices.js code

// The below describes a new model which is then exported and used for database storage  

 

// Import io write to DB function from database.js module 

const { json } = require('body-parser'); 

var sqlDB = require('../database.js'); 

 

/* Class for models used as part of the MVC structure. This has an internal method 

'HMI_Data' which 

   is called within a getter function allowing the Process Variable to be rendered on HTML 

page */ 

class Device { 

    constructor(tag, description) { 

        this.tag = tag; 

        this.description = description; 

        this.PV; 

    } 

 

    // Method - Call database current PV for Device 

    HMI_Data() { 

        this.PV = sqlDB.ioDataFromDB(); 

        //console.log('****** val value is *******', this.PV); 

        //return this.PV; 

    } 

 

    // Getter - Calls above HMI_Data  

    get fetchPV() { setInterval(() => this.HMI_Data(), 1500) 

        return this.PV; 

     } 

} 

 

module.exports = { 

    Device 

}; 
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D.4.19 public/css/main.css code

body { 
    background-color: lightblue; 
  } 
 
  div { 
    background-color: lightblue; 
  } 
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D.4.20 public/images/mockPT.png
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D.4.21 routes/hmi.js code

// Routing page for the main HMI landing / test page 

 

// Import dependencies 

const path = require('path'); 

const express = require('express'); 

 

const hmiController = require('../controllers/hmi.js'); 

const router = express.Router(); 

 

// The below is called during runtime of the main 'app.js' application 

// This initially calls the controller listed below which directs to the index.ejs page  

// localhost:3000 => GET (routes to the EJS file specified and passes any listed variables 

as listed) 

router.get('/', hmiController.getIndex); 

 

module.exports = router; 
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D.4.22 views/hmi/404.ejs code

<%- include('../includes/head.ejs') %> 
 
<body> 
    <h1>This is an error 404 page</h1> 
 
<%- include('../includes/end.ejs') %> 
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D.4.23 views/hmi/index.ejs code

<%- include('../includes/head.ejs') %> 

 

<body class="body"> 

    <main> 

        <h1 class="header_1">Main HMI Test / Landing Page</h1> 

        <div> 

        <article> 

            <header class="header_1"> 

                <h1 class="title"><%= devs.tag %></h1> 

            </header> 

            <div> 

                <img class="image" src="/images/mockPT.png" alt="<%= devs.tag %>"> 

            </div> 

            <div> 

                <h2 class="header_2"><%= devs.PV %></h2> 

                <p class="description"><%= devs.description %></p> 

            </div> 

        </article>             

        </div> 

        </main> 

         

       

 

<%- include('../includes/end.ejs') %> 
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D.4.24 views/includes/head.ejs code

<!DOCTYPE html> 

<html lang="en"> 

<head> 

    <meta charset="UTF-8"> 

    <!-- The below line refreshes the data from model every second 

    this is not optimal method but allows confirmation of operations --> 

    <meta http-equiv="refresh" content="1"> 

     

    <meta name="viewport" content="width=device-width, intial-scale=1.0"> 

    <title><%= pageTitle %></title> 

    <link rel="stylesheet" href="/css/main.css"> 

</head> 
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D.4.25 views/includes/end.ejs code

<script src="/js/main.js"></script> 

 

</body> 

 

</html> 
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D.4.26 pwm.js code (Tested as individual Node executable)

const raspi = require('raspi'); 

const pwm = require('raspi-soft-pwm'); 

const sleep = require('sleep'); 

 

for  (x = 0; x<100; x++) { 

    raspi.init(() => { 

        const output = new pwm.SoftPWM('P1-32',100); 

        output.write(1); //100% duty cycle ~ 5 VDC 

        console.log('PWM outputting 100%'); 

        sleep.sleep(10); 

        output.write(0.75); //75% duty cycle ~ 3.75 VDC 

        console.log('PWM outputting 75%'); 

        sleep.sleep(10); 

        output.write(0.5); //50% duty cycle ~ 2.5 VDC 

        console.log('PWM outputting 50%'); 

        sleep.sleep(10); 

        output.write(0.25); //25% duty cycle ~ 1.25 VDC 

        console.log('PWM outputting 25%'); 

        sleep.sleep(10); 

        output.write(0); //0% duty cycle ~ 0 VDC 

        console.log('PWM outputting 0%'); 

        sleep.sleep(10); 

        output.write(0.25); //25% duty cycle ~ 1.25 VDC 

        console.log('PWM outputting 25%'); 

        sleep.sleep(10); 

        output.write(0.5); //50% duty cycle ~ 2.5 VDC 

        console.log('PWM outputting 50%'); 

        sleep.sleep(10); 

        output.write(0.75); //75% duty cycle ~ 3.75 VDC 

        console.log('PWM outputting 75%'); 

        sleep.sleep(10); 

        output.write(0); //100% duty cycle ~ 5 VDC 

        console.log('PWM outputting 100%'); 

        sleep.sleep(10); 

    }) 

}; 

 

//myTimeout = setTimeout(myPWM, 3000); 
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D.4.27 adcpi.js code (Tested individually and within updateIO() func-

tion)

var adcpi = require('./ABElectronics_NodeJS_Libraries/lib/adcpi/adcpi'); 

 

var adc = new ADCPi(0x68, 0x69, 18); 

 

setInterval (function() { 

     

    let value = adc.readVoltage(1); 

    let raw = adc.readRaw(1); 

 

    console.log(value); 

    console.log(raw); 

},2000); 

 

 




