

Low-Cost Control System for Pop-Up Escape Room

A Thesis submitted by

Mr Kieran Bryce Davey

For the award of

Bachelor of Engineering (Honours)(Computer Systems)

 2024

University of Southern Queensland

School of Engineering

ENP4111 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its School of Engineering, and the staff

of the University of Southern Queensland, do not accept any responsibility for the truth,

accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the

Council of the University of Southern Queensland, its School of Engineering or the staff of the

University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the

overall education within the student’s chosen degree program. This document, the associated

hardware, software, drawings, and other material set out in the associated appendices should

not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set

out in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for assessment

in any other course or institution, except where specifically stated.

K. Davey

i

ABSTRACT
Keywords: Escape Room, Configurable Embedded Control System, Master-Slave

Architecture, JSON.

The escape room industry provides an effective medium for recreational and

educational activities. Significant accessibility challenges exist in automating the

narratives of escape room experiences for non-technical designers due to resourcing

costs. This project addresses these challenges by designing, developing and

evaluating the suitability of a low-cost control system for escape room usage. The

research aims to implement flexible progression logic and wireless communication

through configuration files to reduce the technical barriers to industry adoption.

The control system was developed as a scalable master-slave architecture using

JSON files for system configuration and communication. Bluetooth BLE was employed

to achieve low-cost, multi-room wireless communication, while nested JSON structure

facilitates the representation of hybrid progression logic paths. The control system

components underwent unit, integration and system testing to demonstrate the ability

to meet industry-specific objectives and outcomes in controlled conditions.

The study contributes a solution to the escape room industry by addressing the

technical barriers introducing significant resourcing costs. Integrating nested JSON

configuration files into the master-slave control architecture provides an abstract

interface for developing immersive escape room narratives. The system was validated

within controlled conditions. Therefore, future work should address real-world

operational tests and the development of additional tools, such as graphical web

interfaces for configuration file compilation and real-time monitoring.

The work presented within the study provides a strong foundation for a low-cost control

system for pop-up escape rooms. This makes complex escape room narratives more

accessible for recreational and educational applications.

ii

ACKNOWLEDGEMENTS
I want to thank my supervisor, Ms Catherine Hills. I acknowledge her continual support

and wisdom throughout the year. She consistently guided the project’s progress

despite being very busy with her role at the University. I am thankful for her time,

patience, and kindness, demonstrated by going above and beyond what was required.

I am grateful towards the University of Southern Queensland for providing the facilities

and content to learn the information necessary to complete this project.

I am deeply grateful for the support of Brenden Davey, Vicki Davey, Elijsha Krushka,

Issac Davey, Samuel Davey, Samuel Krushka and Tram Le Kim. This is my family,

and they have been load bearers when I struggled throughout the project. They

consistently encouraged me to push through the year-long research project and to

strive for a high standard of excellence. I am also thankful to my close friends Luke

Whittingham, Isaac Humber, and Jacob Moffatt. Your friendship has provided support

and encouragement.

I will never forget the sacrifice of Mrs Wendy Horne and Mr Allen Westman. As I

struggled with dyslexia growing up, both mentors believed and turned my educational

weaknesses into strengths.

I acknowledge the mighty hand of my saviour, Yeshua ha’Mashiah. I would not be

here without my Elohim, who has been my rock, light, and sure foundation throughout

this project.

I dedicate this project to all those listed above. Thank you for your belief and

commitment, as this project wouldn’t exist without you.

iii

TABLE OF CONTENTS
ABSTRACT ... i

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES ... viii

LIST OF FIGURES ... x

ABBREVIATIONS .. xi

CHAPTER 1: INTRODUCTION .. 1

1.1. Introduction and Background ... 1

1.2. Objectives and Aims .. 2

CHAPTER 2: LITERATURE REVIEW .. 4

2.1. Overview of the Escape Room Industry and Design 4

2.1.1. Escape Room Industry .. 4

2.1.2. Technologies within the Escape Room Industry 6

2.1.3. Escape Room Design and Implementation 7

2.2. Control System Architectures for Escape Rooms 8

2.2.1. Overview of Control System Architectures 8

2.2.2. Control System Requirements .. 9

2.3. Communication Strategies for Escape Room Control System 10

2.3.1. Overview of Wireless Communication Methods 10

2.3.2. Bluetooth Wireless Communication .. 11

2.3.3. LoRa Wireless Communication ... 12

2.3.4. Wi-SUN Wireless Communication .. 13

2.4. Configuration and Logic Definition Files ... 13

2.4.1. Overview of Configuration and Logic Definition Files 13

2.4.2. Configuration and Control Logic File Format Types 16

2.4.3. Abstract Data Types and Structures for Control Logic 18

2.4.4. Control System Logic Programming ... 19

2.5. Literature Review Summary ... 21

CHAPTER 3: METHODOLOGY ... 25

3.1.1. Research Design .. 25

3.1.2. List of Materials ... 27

3.1.3. Risk Assessment .. 27

3.1. Development Process .. 27

iv

3.1.1. Embedded Architecture of Master Controller and Slave

Controller. 28

3.1.2. Embedded JSON Serialiser .. 30

3.1.3. Bluetooth BLE Connection Interface ... 31

3.1.4. Master Controller Configuration .. 32

3.1.5. Slave Controller Configuration .. 33

3.1.6. Master Controller’s Control Logic Engine 34

3.1.7. Slave Controller’s Control Logic Engine 35

3.1.8. Command Message Communication .. 37

3.1.9. Master Controller’s and Slave Controller’s Communication

Engine 38

3.1.10. Master Controller Initialisation and Slave Controller Initialisation.

 39

3.1.11. Master Controller Configuration and Control Logic Engine

Integration. 39

3.1.12. Master Controller’s Control Logic Action Dispatcher and

Communication Action Dispatch Integration ... 39

3.1.13. Slave Controller’s Control Logic Action Dispatcher and

Communication Action Dispatch Integration ... 40

3.1.14. Operational Escape Room Purpose Testing 40

3.1.15. Operational Escape Room User Purpose Testing 41

3.1.16. Operational Communication Coverage Performance Testing ... 42

3.1.17. Operational Communication Latency Performance Testing 42

3.1.18. Concurrent Slave Controller Communication to Master Controller

Performance Testing .. 43

3.1.19. Concurrent Control Logic Evaluation Performance Testing 43

3.2. Testing Regime .. 44

3.2.1. Unit Testing ... 44

3.2.2. Integration Testing .. 79

3.2.3. System Testing ... 84

3.2.4. Performance Testing ... 87

CHAPTER 4: RESULTS ... 94

4.1. Testing Process ... 94

4.1. Embedded Architecture of Master Controller and Slave Controller 94

v

4.2. Embedded JSON Serialiser ... 100

4.3. Bluetooth BLE Connection Interface .. 107

4.4. Master Controller Configuration ... 109

4.5. Slave Controller Configuration ... 110

4.6. Master Controller’s Control Logic Engine 111

4.7. Slave Controller’s Control Logic Engine 120

4.8. Communication Engine .. 123

4.9. Master Controller and Slave Controller Communication Engine .. 127

4.10. Master Controller Initialisation and Slave Controller Initialisation . 128

4.11. Master Controller’s Configuration Engine and Control Logic Engine

Integration 129

4.12. Master Controller’s Control Logic Engine and Communication

Engine Integration .. 130

4.13. Slave Controller’s Control Logic Engine and Communication Engine

Integration 131

4.14. Operational Escape Room Purpose Testing 132

CHAPTER 5: DISCUSSION ... 136

5.1. Introduction to Discussion .. 136

5.1.1. Research Objectives and Outcomes 136

5.1.2. Overview of Key Findings ... 137

5.2. Interpretation of Results ... 138

5.3. Implications of Findings .. 139

5.3.1. Implications for educational and recreational accessibility. 139

5.3.2. Implications for control system scale and flexibility in escape

rooms. 139

5.4. Limitations of Study .. 140

5.4.1. Overview of Limitations ... 140

5.4.2. Industry Specific Limitations .. 140

5.4.3. Limitations of Test Regime .. 141

5.4.4. Limitations of Design Decisions .. 141

5.4.5. Limitations of Constrained Scope ... 142

5.5. Suggestions for Future Research .. 142

CONCLUSION ... 143

REFERENCES ... 144

vi

APPENDICES .. 148

6.1. Appendix A: Risk Assessment ... 148

6.2. Appendix B: Budget and List of Materials 149

6.3. Appendix C: Unit Tests .. 150

6.3.1. UT01 - Embedded Architecture of Master Controller 150

6.3.2. UT02 - Embedded Architecture of Slave Controller 156

6.3.3. UT03 – Embedded JSON Serialiser 164

6.3.4. Bluetooth BLE Connection Interface 184

6.3.5. Master Controller Configuration .. 185

6.3.6. Slave Controller Configuration .. 185

6.3.7. UT11 - Master Controller’s Control Logic Engine Parser 185

6.3.8. UT12 - Master Controller’s Control Logic Engine Interpreter .. 186

6.3.9. UT13 - Master Controller’s Control Logic Engine State Manager

 186

6.3.10. UT14 - Slave Controller’s Control Logic Engine Action Dispatcher

 187

6.3.11. Command Message Communication 187

6.4. Appendix D: Integration Testing ... 188

6.4.1. Master Controller and Slave Controller Communication Engine

 188

6.4.2. Master Controller Initialisation and Slave Controller Initialisation

 188

6.4.3. Master Controller’s Configuration Engine and Control Logic

Engine Integration 188

6.4.4. Master Controller’s Control Logic Engine and Communication

Engine Integration 188

6.4.5. Master Controller’s Configuration Engine and Control Logic

Engine Integration 189

6.4.6. Slave Controller’s Control Logic Engine and Communication

Engine Integration 189

6.5. Appendix E: System Testing .. 190

6.5.1. Operational Escape Room Purpose Testing 190

6.5.2. Operational Escape Room User Purpose Testing 190

6.6. Appendix F: Performance Testing .. 191

vii

6.6.1. Operational Communication Coverage Performance Testing . 191

6.6.2. Operational Communication Latency Performance Testing 191

6.6.3. Concurrent Slave Controller Communication to Master Controller

Performance Testing .. 191

6.6.4. Concurrent Control Logic Evaluation Performance Testing 191

viii

LIST OF TABLES
Table 1: Unit Test UT01 .. 44-45

Table 2: Unit Test UT02 .. 45-46

Table 3: Unit Test UT03 .. 46-47

Table 4: Unit Test UT04 .. 47-49

Table 5: Unit Test UT05 .. 49-50

Table 6: Unit Test UT07 .. 50-52

Table 7: Unit Test UT08 .. 52-53

Table 8: Unit Test UT10 .. 53-55

Table 9: Unit Test UT11 .. 55-57

Table 10: Unit Test UT12 .. 57-59

Table 11: Unit Test UT13 .. 59-61

Table 12: Unit Test UT14 .. 61-63

Table 13: Unit Test UT15 .. 63-66

Table 14: Unit Test UT16 .. 66-68

Table 15: Unit Test UT17 ... 69-70

Table 16: Unit Test UT18 ... 71-73

Table 17: Unit Test UT19 ... 73-74

Table 18: Unit Test UT20 ... 74-75

Table 19: Unit Test UT21 ... 75-77

Table 20: Unit Test UT23 ... 77-78

Table 21: Unit Test UT24 ... 78-79

Table 22: Integration Test IT03 .. 79-80

Table 23: Integration Test IT04 .. 80-81

Table 24: Integration Test IT05 .. 81-82

Table 25: Integration Test IT06 .. 82-83

Table 26: Integration Test IT07 .. 83-84

Table 27: System Test ST01 .. 85-86

Table 28: System Test ST02 .. 86-87

Table 29: Performance Test PT01 ... 87-88

Table 30: Performance Test PT02 ... 89-90

Table 31: Performance Test PT03 ... 90-92

ix

Table 32: Performance Test PT04 .. 92-93

Table 33: Master controller ESP32-C6-DevKit-1 v1.2 pin assignment 94

Table 34: Slave controller ESP32-C6-DevKit-1 v1.2 pin assignment 95

Table 35: UT01 outcome matrix .. 97

Table 36: UT03 Outcome Matrix ... 103

Table 37: UT04 Outcome Matrix .. 107-108

Table 38: UT05 outcome matrix .. 109

Table 39: UT07 outcome matrix .. 110

Table 40: UT08 outcome matrix .. 110

Table 41: UT10 outcome matrix .. 111

Table 42: UT11 test case outcomes .. 118

Table 43: UT12 test case outcomes .. 119

Table 44: UT13 outcome matrix .. 119

Table 45: UT13 outcome matrix .. 120

Table 46: UT15 outcome matrix .. 121

Table 47: UT16 outcome matrix .. 121

Table 48: UT18 outcome matrix .. 122

Table 49: UT19 outcome matrix ... 122-123

Table 50: UT19 outcome matrix ... 123-124

Table 51: UT20 outcome matrix ... 124-125

Table 52: UT21 outcome matrix ... 125-126

Table 53: UT21.2 outcome matrix ... 126

Table 54: UT23 outcome matrix .. 126

Table 55: UT24 outcome matrix .. 127

Table 56: IT03 outcome matrix .. 128

Table 57: IT04 outcome matrix .. 128

Table 58: IT05 outcome matrix .. 129

Table 59: IT06 outcome matrix .. 130

Table 60: IT07 outcome matrix ... 131-132

Table 61: ST01 outcome matrix 133-135

x

LIST OF FIGURES
Figure 1: Methodology Stage ... 25

Figure 2: Master Controller Architecture ... 28

Figure 3: Slave Device Architecture ... 29

Figure 4: peripheral_update process flow .. 99

Figure 5: json_schema_serialiser flow diagram .. 101

Figure 6: get_schema_content function prototype 102

Figure 7: SchemaPropertyMapping type definition 102

Figure 8: master control logic parser abstracted process diagram 112

Figure 9: traverse_expression process diagram 113

Figure 10: ExpressionNode relationship to sub-types 114

Figure 11: expression structure relationships .. 115

Figure 12: Logic expression containing structures 116

Figure 13: ST01 hybrid progression path .. 133

xi

 ABBREVIATIONS
API: Application Peripheral Interface

FIFO: First In, First Out

FPGA: Field Programmable Gate Array

FSM: Finite State Machine

HMI: Human Machine Interface

JSON: JavaScript Object Notation

LED: Light Emitting Diode

MCU: Microcontroller Unit

RPN: Reverse Polish Notation

RSSI: Received Signal Strength Indicator

SD card: Secure Digital card

SPI: Serial Peripheral Interface

XML: Extensible Markup Language

1

CHAPTER 1: INTRODUCTION
1.1. Introduction and Background

In recent years, escape rooms have emerged as a popular form of

entertainment and problem-solving and have been recognised for their educational

value (Li et al., 2018). Increasing research has recommended integrating escape room

activities into formal, vocational, and adult education due to their interactive

experience (Staneva et al., 2023). Escape rooms require teams of people to

coordinate their collective competency and problem-solving skills to solve puzzles to

escape their trapped rooms. The design and creation of exciting escape room designs

require various technologies, ranging from mechanical puzzles to complex digital

interfaces. Startup escape rooms have leveraged multiple technologies and complex

control systems to create these compelling experiences (Inés Tejado et al. 2021). The

cost of setting up and operating an escape room can vary widely; however,

engineering sophisticated escape room logic, communication systems and control

architecture for the puzzles is a significant investment (Tercanli et al., 2021). The

system architecture must also be re-designed and engineered whenever the escape

room experience or story is rewritten, requiring recurring investment to stay

competitive. The review of such challenges demonstrates that engineering escape

room puzzles and systems presents significant hurdles, particularly in integrating

physical and digital elements. Research has proposed that virtual reality-based

environments for escape rooms can mitigate the high material and integration costs

(Darejeh, 2023). However, a solution for reducing the technical challenges and budget

limitations for physical escape rooms remains unsolved.

Despite the growing popularity of escape rooms, there exists a noticeable gap

in the market for a scalable, cost-effective control system that can accommodate the

rapidly changing storylines of the escape room industry. Current escape room control

systems require technical knowledge or have a high financial cost to produce an

immersive narrative (Tercanli et al. 2021). This project proposes an abstracted, low-

cost control system architecture tailored for non-technical escape room owners. The

proposed system aims to implement a control system that runs on modular, wireless

embedded systems, allowing game progression logic to be customised without

programming knowledge. The game progression logic will be defined within a game

file data structure and can be inserted into the reusable master-slave architecture via

2

an SD card. The system is designed to allow non-technical escape room designers to

define game progression rules and logic. The research will investigate a scalable data

structure supporting complex logic designs. The study will also examine the game

progression file’s ability to be compiled from highly abstracted user interfaces and

interpreted by reusable embedded systems.

The project seeks to reduce the technical challenges and high financial costs

sophisticated escape room owners encounter when designing new experiences. The

project will enable the design of escape rooms to become highly abstracted from the

hardware level, potentially creating a drag-and-drop graphical design experience.

1.2. Objectives and Aims

Specific Objectives:

• The design of a low-cost master-slave control system architecture is suitable

for escape room puzzles.

• Create a flexible escape room, progression logic file type and data structure

that can be loaded onto the master and slave controllers via SD card.

• Implement master and slave interpreter for the game progression logic file

data structure, ensuring accurate game progression and puzzle state

management.

• Investigate coordination and scheduling schemes for master-slave

communication, prioritising puzzle querying based on game progression.

• Analyse how different data file schemes impact system scalability and

complexity.

• Evaluate and implement appropriate wireless communication methods,

protocols and technologies for the master and slave controllers.

• Investigate system usability limitations. Analysing system latency, data rate,

loss tolerance, wireless communication distance and response time.

• Evaluation of communication strategies such as suitability of polling versus

interrupt-based methods for communication between master and slave

devices.

If time permits,

3

• Develop a graphical web application to create the game progression logic.

• Develop a compiler that compiles the game progression logic into the master

and slave game progression logic file.

Expected Outcomes:

• Low-cost, master controller embedded system with wireless communication,

SD card reader and game file interpreter.

• Low-cost, slave controller embedded system capable of wireless

communication, SD card reader, game file interpreter and peripheral API for

puzzle control.

• A robust communication method and data protocol tailored for master-slave

interactions within the escape room environment.

• Definition and implementation of a universal game progression logic file data

structure and file type that supports complex escape room game design.

• A game progression logic file interpreter on both master and slave devices,

ensuring correct puzzle state management, game progression and data

transfer.

• Implementation of an effective coordination scheme in the master controller to

manage and query slave devices based on the current stage of the game

progression.

• Understand the usage limitations and scalability of the modular control

system.

If time permits,

• A web application for designing escape room game logic.

• Error handling and input validation of web application design tool user input.

• Implementation of a compiler to generate required game file format for master

and slave controllers from graphical web application representation.

4

CHAPTER 2: LITERATURE REVIEW
2.1. Overview of the Escape Room Industry and Design

2.1.1. Escape Room Industry
According to Gordon et al. (2019) findings, escape room activities positively influenced

participants' perception of collaboration and teamwork compared to their perception of

teamwork before the activities. Within the qualitative survey, 89% of students agreed

that “I enjoy working in a team environment” after the escape room exercise as

opposed to 79% before the exercise. 99% of the students strongly agreed that “I am

an integral member of the team” after the exercise, as opposed to 94% before the

escape room activities (Gordon et al., 2019). Escape room activities have also been

shown to encourage problem-solving and cognitive function. The study conducted by

Kinio et al. (2019) demonstrated that 75% of participants experienced a greater ability

to retain the information from the interactive learning experience provided by the

escape room. 92% of the students stated that the interactive learning format was

appropriate for testing their knowledge retention (Kinio et al., 2019). The escape room

activities undertaken by the students in both these studies suggest that escape rooms

encourage not only effective cognitive function but also interactive social behaviour.

Escape rooms are an effective medium for positively influencing the participants’

perception of teamwork while solving problems.

The role of escape rooms as an educational tool has been utilised to promote

engagement within low-motivation course content. The gamification of such

educational material has increased student motivation and promoted transfer learning

across theoretical and practical skills (Sánchez-Martín et al., 2020). Sánchez-Martín

et al. (2020) conveyed that escape rooms can allow multiple methods for collecting

data related to student learning. Escape rooms enable the students to be assessed

through direct observation, questionnaires, and discussion groups. The engagement

within these sessions increased due to the participants' personal experiences with the

activities. Escape rooms have significantly impacted the education industry, facilitating

greater student engagement and promoting critical thinking towards the learning

activity. Cain (2019) derived that 91% of classroom students were more engaged in

critical thinking due to the problem-solving associated with escape room activities.

5

89% of the classroom students also indicated that they enjoyed the escape room

activity more than traditional education methods (Cain, 2019).

The escape room industry is becoming more competitive, and new escape room

business trends have been consistently growing since 2014 (Spira, 2023). Spira

(2023) indicates that one of the biggest challenges facing the escape room industry is

the operating costs associated with building and testing new game narratives. This is

magnified by the prolonged time it takes to develop new experiences and ensure that

quality experience is produced. Another article by Lakomkina (2023) confirms this

challenge by stating that escape room businesses' most significant challenge is the

high initial investment required for equipment and software. Lakomkina also states that

maintenance costs are high due to updating the escape room design and puzzles

(Lakomkina, 2023).

Educational escape rooms also face a similar challenge of funding educational

experiences when developing immersive experiences (Chang, 2019). These articles

indicate that as the industry becomes increasingly competitive, there’s a greater need

to create new compelling experiences to keep consumer interest. The most significant

hurdles in meeting this consumer expectation are the high initial cost and prolonged

time needed to develop the technology and software integration. Tercanli et al. (2021)

conducted an extensive study on the practical implementation of escape rooms in

education. The research found that educator's technical and creative knowledge

significantly inhibited the adoption of escape rooms in education.

Along with the technical hurdle in creating immersive educational experiences, the

time and financial resources required to develop educational escape rooms are a

significant challenge in integrating technologies into education. This highlights two

common challenges, the first being the monetary and time cost of creating the

technological integration of immersive escape room experiences. The second

challenge is the technical knowledge required to develop and connect multiple

technologies.

6

2.1.2. Technologies within the Escape Room Industry
As the escape room industry is an emerging field of education and entertainment,

there’s limited literature categorising it into distinctive formats. However, multiple

technology platforms have been researched to determine the ease of integration and

implementation.

Kiruthika et al. (2022) explored the implementation of virtual reality to mitigate the

resourcing costs associated with physical escape room props. Virtual reality escape

room experiences enabled participants to interact with virtual objects and augmented

audio-visual experiences. The user would then interact with the escape room through

virtual user interface actions. The virtual environment allows the participants to

experience interactions that would typically be difficult or unrealistic to implement

within physical escape rooms, such as teleportation. The escape room environment

was developed using 3D modelling and game development software. VR simulation

headsets are then utilised to place the participant within the escape room environment,

with the interactions being controlled through VR controllers (Kiruthika et al., 2022).

A standard format for escape room implementation is physical escape rooms. The

participants must solve a combination of physical puzzles to progress into the next

room. The development of the escape room puzzles requires a minimum competency

in electronic design, with the programming complexity depending on the progression

logic of the narrative (Ross, 2019). Ross (2019) explored a low-cost escape room

puzzle design that required the escape room designer to acquire the electronic

components, assemble the electronic components, and then configure the Arduino

microcontroller by modifying and uploading code. The puzzles were implemented

using Arduino Nano, LCD, number pad, speaker, and batteries. This resulted in an

interactive puzzle that gave feedback to the user through the LCD screen resulting

from user keypad input. There are eight challenges when designing a physical escape

room, these being balancing the difficulty of the puzzles for the user, engineering

competency in designing puzzle logic, creating room elements that don’t break easily,

integrating new puzzles into the existing narrative, getting the timing right between

puzzles, developing a reconfigurable narrative and playtesting the escape room when

developing (Ross, 2019). These challenges highlight the difficulty and technical

knowledge required to design and develop physical puzzles. It was determined that

7

advanced electronic and programming understanding would be essential for

amending the system configuration. Ross (2019) found a gap in the system’s ability to

integrate with other puzzles and suggests integrating the puzzles with WIFI to

configure and manage multiple puzzles simultaneously.

2.1.3. Escape Room Design and Implementation
The design of an escape room should contribute towards motivating an engaging

learning experience. This motivation is achieved by containing the participants within

a locked room and requiring them to solve puzzles to escape. Escape rooms are often

designed as fictional locations, facilitating an engaging learning experience. The

complexity of automated fictional scenarios complicates the design of escape room

stories. The complexity is introduced as the escape room game designer must

consider an enjoyable, immersive experience without detracting from the educational

lessons (Elmet Project, 2021). According to Tercanli et al. (2021), the narrative

progression of escape rooms can be open, sequential, or path-based. An open escape

room design allows the participant to solve the puzzles in any order to escape. The

participants interacting with an open progression path narrative must complete the

puzzles within the narrative successfully. However, the order of completion does not

impact the successful escape of the room. Sequential escape room progression

requires solving the puzzles in a particular sequential order. One puzzle completion

would lead the participant to the next, allowing for successful completion once all

puzzles are successfully passed in order. The hybrid path-based progression logic

combines both open and sequential progression. The progression logic of such an

escape room would depend on the outcome of the previous and current stages of the

escape room (Tercanli et al., 2021). Hybrid path-based progression logic allows the

narrative to branch into different paths depending on the outcome of puzzle

interactions.

When designing escape rooms, a balance between entertainment value, progression

logic complexity, and educational value is needed. When developing the escape room

experience, balancing these necessary components is complicated for non-technical

designers. The escape room designer must determine the educational competency

8

objectives, construct an engaging narrative, and then program the narrative’s

progression path into the control system’s software and hardware design.

Ross & Bennett (2022) identified a diverse range of physical escape room puzzles that

can exist in an escape room environment. Four escape rooms were designed, each

with three puzzles. The diversity and strategic placement of the puzzles within each

escape room were designed to suit different player skillsets. This promotes team

collaboration and ensures each player within the team contributes. The first escape

room was based on digital electronics competency. The three puzzles included C

decoding, waveform decoding, and 7-segment display understanding. The second

escape room was based on electronic hardware competency and included a

measuring voltage, continuity testing, and LED lighting puzzle. The third escape room

targeted STEM activities for high school engagement around STEM disciplines. The

third escape room included puzzles on hydraulics, rotational equilibrium, and Caesar

cipher. The fourth escape room was designed for testing international tertiary students.

The three puzzles in this escape room tested Australian slang, Australian Geography

and Australian Inventions (Ross & Bennett, 2022). The escape rooms designed by

Ross & Bennett (2022) demonstrated that puzzles can be designed to support a

variety of educational domains. However, the designer needs to be competent in

electronic and programming disciplines to implement the puzzles. Escape room

control systems must also be extensively tested to ensure the solution is possible

without committing to developing the progression logic (Ross & Bennett, 2022).

2.2. Control System Architectures for Escape Rooms
2.2.1. Overview of Control System Architectures
Designing complex control systems is a technical and challenging process, even for

competent escape room designers. The control system's design involves selecting

controller hardware, interfacing the controller to the peripherals, and programming the

control algorithms specific to the hardware implementation (Shaik, 2011). Shaik (2011)

explored the implementation of a control system that utilised a 32-bit RISC

microcontroller that offered compatibility with control system peripherals for real-time

data acquisition. The study found that the microcontrollers’ ability to utilize standard

communication protocols allowed for network control and data acquisition from remote

9

locations. This emphasises the embedded system's ability to be scalable and flexible

to expanding control systems and can be reprogrammed to meet various application

requirements (Shaik, 2011). Peng et al. (2008) also investigated the approach to

developing low-cost control systems by developing embedded controllers. The study

found embedded control system architectures support advanced control logic through

high computational capacity and open-source software packages. The

microcontrollers’ ability to communicate directly with sensors and actuators allows for

a simplified development approach yet can also be scaled beyond the

microcontroller’s pinout through network capabilities (Peng et al., 2008).

Hanou et al. (2020) implemented a control system and interface for monitoring and

configuring an escape room using the client-server architecture. The control system

comprises a back-end server, a front-end user interface, and client computers. The

back-end server was implemented using a Raspberry Pi, which managed the message

broker, serving web interface and client device management. The back-end server

serves the front-end and allows the escape room employee to monitor the state of the

escape room. The client devices are puzzles that all have a unique IP address. The

IP address allows client-server communication, which passes escape room state

updates (Hanou et al., 2020). The control system implemented by Hanou et al. (2020)

successfully passed field testing with suitable performance metrics. The control

system requires all client devices and the server to have a unique IP address over the

local area network and can connect to the network over WIFI.

2.2.2. Control System Requirements
The design and selection of a control system architecture needs to consider the

functional requirements and real-time characteristics of the control process. Therefore,

control systems for the escape room industry need to scale and meet the operational

requirements of escape room design.

Ross and Bennett (2022) demonstrated that an educational escape room narrative

can have multiple puzzles included within its storyline. This outlines a one-to-many

relationship between the controller and the puzzles it will need to manage. Therefore,

a requirement of the control system architecture is that its performance does not

degrade as the number of puzzles being managed scales. Different puzzles within the

10

same escape room narrative can also require different datatypes to be processed by

the controller to trigger completion stages (Ross & Bennett, 2022). This highlights the

requirement for the controller to be able to process multiple data types within the same

escape room narrative.

Ross (2019) demonstrated that each puzzle within an escape room narrative can have

multiple sensors and actuators, which need real-time processing in response to user

interaction. From this another control system requirement is that the controller can

process many peripheral state values for each puzzle. As the state of the puzzle

peripherals is updated by user interaction, another requirement is that data can be

processed in real time by interrupt (Ross, 2019). Tercanli et al. (2021) outlined that the

escape room narrative's progression logic can be sequential and open. This results in

path-based combinational logic, requiring the control system to process multiple

puzzle data packets concurrently (Tercanli et al., 2021).

2.3. Communication Strategies for Escape Room Control System
Understanding available wireless communication technologies and their typical

characteristics is important for selecting a suitable option to achieve the control

system’s outcomes and objectives. The wireless communication methods assessed

are Bluetooth, LoRa, and WiSUN. This contributes to achieving the objective of

evaluating and implementing appropriate wireless communication methods, protocols,

and technologies for the master and slave controller.

2.3.1. Overview of Wireless Communication Methods
Goncalves et al. (2021) evaluated three low-power wireless communication

technologies for SmartGrid networking applications. SmartGrid networks provide real-

time monitoring, control signals, and data transfer for multiple power system devices.

This has a similar relational multiplicity as the requirements defined for the escape

room control system. Wireless communication technology within the escape room

control system will need to allow for real-time data processing for multiple devices.

Goncalves et al. (2021) investigated the performance characteristics of Bluetooth,

LoRa and Wi-SUN wireless technologies to assess their suitability for SmartGrid

networks. Coverage, data rate, power consumption, interoperability, physical layer

11

complexity, topology and worldwide acceptance were evaluated in the assessment

(Goncalves et al., 2021).

2.3.2. Bluetooth Wireless Communication
Park & Umirov (2012) presented the implementation use case of three different link-

type profiles for Bluetooth communication in networked control systems. Serial Port

Profile (SPP), Human Interface Device (HID) and Synchronous Connection-Oriented

(SCO) were compared to assess their performance for communication between

sensors, actuators, and controllers. SPP emulates a serial port over Bluetooth

connection, allowing devices to communicate and simplify configuration and

connection between devices. SPP was found to introduce non-linearity and

unpredictable data packet ground, which can lead to latency issues (Park & Umirov,

2012). SCO is often utilised for real-time audio transmission using Bluetooth, as it

allows for data streaming at low latency. The main limitation found with SCO is the

limited support it provides in most Bluetooth modules. HID is commonly used for

devices such as keyboards, mice and gaming controllers and is optimised for low-

latency communication. HID is supported by a wide range of devices and operating

systems, making it suitable for networked control systems (Park & Umirov, 2012). The

position control of a DC motor utilising these different link type profiles found that SPP

is not recommended in use cases where low latency is required; however, it allows for

simple configuration with the host controller interface (HCI). HID is preferred for low-

latency control systems; however, establishing connections with the HCI is more

complex. This makes HCI more challenging in control systems that require direct

control; however, it is the best choice where low latency and reliable connection are

critical systems (Park & Umirov, 2012).

Goncalves et al. (2021) evaluated the performance characteristics of Bluetooth for

SmartGrid systems with the following specifications. The coverage of Bluetooth was

found to be limited to 100 meters, with the devices being assessed using a printed

antenna of -6dBi gain. The coverage depended on how dense the obstacle conditions

were within the operating environment. When operating within densely obstructed

environments, the range was found to be 43m, while free space allowed for

communication coverage of 242m (Goncalves et al., 2021). The data rate for Bluetooth

is dependent on the version being implemented. Bluetooth 5.0 was found to allow data

12

rates of 1Mbps to 2Mbps. Bluetooth Low Energy provided data rates of 125kbps but

could be increased to 500kbps when increasing the receiver sensitivity to -106.7 dBm.

Bluetooth is suitable for battery-powered devices as it has low power consumption but

depends on the chipset and other operating factors (Goncalves et al., 2021). Bluetooth

allows for various network topologies, such as point-to-point connections and star

configuration. This allows Bluetooth to be widely utilised globally, particularly in

consumer electronics (Goncalves et al., 2021).

2.3.3. LoRa Wireless Communication
Long Range (LoRa) communication is suitable for physically mobile applications and

establishing a private network without a communication provider. It can transfer small

data packets over a long-range network, connecting up to 1 million nodes (Anani et

al., 2019). A LoRa network consists of a gateway, network server, application server

and nodes. All nodes communicate through the gateway and commonly utilise the star

topology. Angelov et al. (2023) investigated the suitability of a narrowband LoRa

communication network for managing and monitoring an IoT lighting system. The

control system implemented the LoRa system with sensors and actuators serving as

nodes that communicate with a central LoRa gateway. The LoRa gateway then

collected the data in a cloud-based server through a standard Wi-Fi network (Angelov

et al., 2023). The LoRa network utilised three different node modules, with the mini

module having a maximum range of 500 meters and the standard node modules

having a maximum range of 900 meters. LoRa was a suitable selection for reliable

control system communication while implementing optimised configurations, which

significantly improved communication distance and reliability (Angelov et al., 2023).

Goncalves et al. (2021) evaluated the performance characteristics of LoRa for

SmartGrid systems. The coverage of LoRa was able to establish a connection from

10km with an external antenna of 2dBi gain. In densely obstructed areas, the coverage

was found to be 1.9km. The data rate for LoRa devices ranged from 0.3kbps to

50kbps. LoRa was determined to be suitable for battery-operated devices as it is

designed for low power consumption. The devices utilising LoRa are standardised

through Semtech Corp, which developed the technique and manufactured these

modules. LoRa is designed to be implemented with the star topology with a centralised

gateway managing the node devices (Goncalves et al., 2021).

13

2.3.4. Wi-SUN Wireless Communication
The Wireless Smart Ubiquitous Network (Wi-SUN) is suitable for medium-range

communication that requires low power consumption and high node density. Wi-SUN

enables mesh topology, which can be complicated to configure but allows redundancy

through network hopping if different nodes fail (Anani et al., 2019). Wi-SUN is suitable

for metering infrastructure, distributed automation, and home area networks. The

challenges related to Wi-SUN communication come from higher device costs and its

tendency to be prone to interference (Anani et al., 2019). Kashiwagi et al. (2022)

evaluated the suitability of Wi-SUN networks for the transmission performance of USB-

type radio boards. The star and tree topology were tested, giving a packet

transmission success rate over 95%. Due to multi-hop processing, the tree topology

had a longer configuration time than the star topology (Kashiwagi et al., 2022). Both

network topologies remained stable with no drop states for 12 hours of continuous

operation. During this time, the power consumption was evaluated to enable the

system to operate on two AA batteries for at least one year (Kashiwagi et al., 2022).

Goncalves et al. (2021) evaluated the performance characteristics of Wi-SUN for

SmartGrid systems. Wi-SUN coverage established a connection from 7km with an

external antenna of 2dBi gain. In densely obstructed areas, the coverage was found

to be 1.3km. The data rate for Wi-SUN devices ranged from 50kbps to 300kbps. Wi-

SUN was determined to be suitable for battery-operated devices as it is designed for

low power consumption. Wi-SUN is designed to be implemented with the mesh

topology, enabling it to scale well with the control system. The mesh topology does

require more complicated communication management and can also have increased

latency due to multiple network hops (Goncalves et al., 2021).

2.4. Configuration and Logic Definition Files
2.4.1. Overview of Configuration and Logic Definition Files
Configuration management allows for consistent operation of an embedded system

and software across multiple product-level changes. Configuration management is a

process and solution for system design that maintains the integrity of the system as it

changes (TARAMAA et al., 1996). This is relevant to the implementation of an

adaptable escape room control system as the same control system will need to be

changed frequently to accommodate different escape room narratives. Suitable

14

configuration management will enable the embedded control system to evolve

between narrative versions using a common configuration definition.

An industry-wide concern is that organisations have valuable software solutions that

have consisted of different methodologies and technology stacks over time. Effective

software configuration management allows organisations to adopt innovative solutions

to remain competitive by defining consistent configuration schemes (TARAMAA et al.,

1996). Mature configuration management solutions must implement change

management controls and version management and are not dependent on specific

hardware or software modules. Flexible software process design requires that

configuration management and software process requirements are not codependent

yet still retain the internal relationships between them. Configuration management

solutions should facilitate the change management between existing software

processes as they evolve (TARAMAA et al., 1996). TARA MAA et al. (1996) outline

the process of defining configuration management into the stages of configuration

identification, configuration control, configuration status accounting and configuration

audit. The process of configuration identification involves defining the items of a

product that will need configuration management. Configuration control defines the

process and structures that support changes to the configuration items identified

throughout the product life cycle. Configuration status accounting is the schemas that

log and report the status of configuration items and their change requests.

Configuration audit is the process that verifies the completion and correct

implementation of the configuration items after changes (TARAMAA et al., 1996).

Configuration files allow developers to change the key-value pairs within an XML

document to change the program settings, objects, and protected references without

recompiling the system's source code (Kasbe, 2015). Effective implementation of

configuration files enables flexibility in utilising the same source code across different

system environments. Configuration files utilise XML key-value pairs to map system

resources to reduce the cost of redeveloping source code for different control

branches and initialisation cases. Kasbe (2015) focuses on the configuration files for

.NET technology and outlines three different configuration file types. The application

configuration file contains the pre-application configurations. The pre-application key-

value pairs contain version control variables, enabling the system administrator to

15

select the versioning of source code modules, data storage paths and other

initialisation values. The machine configuration file stores the global configuration

values to be initialised across individual directories. The web configuration files store

the configuration values for the web applications separate from the application source

code configuration (Kasbe, 2015). Each of these three files is hierarchical, enabling

configuration files further up the chain to overwrite the more granular values (Kasbe,

2015).

Gutjahr and Heumesser (2014) present a method for generating configuration files to

maintain and administer computer systems. The configuration files generated define

technical information and operational values to be monitored for a central server and

its agents—the technical information defines device operational parameters such as

allocated bandwidth or allowed communication protocols. The configured device can

then send alerts and messages to the central server depending on the operational

value thresholds defined (Gutjahr & Heumesser, 2014). Generating configuration files

requires the central server to generate unique configuration file values for each agent.

The generated configuration file must also generate the correct file structure and

format depending on the agent architecture (Gutjahr & Heumesser, 2014). The method

for generating configuration files by Gutjahr and Heumesser (2014) utilises a template

XML file, XML data file and two XSTL style sheet sheets. The configuration file goes

through three transforms to create the executable XML configuration file during

generation. The first XSTL stylesheet transforms the XML data file where each query

of the set of queries corresponds to an XPath expression (Gutjahr & Heumesser,

2014). The second XSTL, comprising the subset of parameter settings, takes the first

transform and maps to the corresponding XPath expressions. The second XSTL maps

the location of each parameter set to a location within the XML template (Gutjahr &

Heumesser, 2014). The output from the second transformation is the XML

configuration file, which is converted into its executable format.

Once the configuration files have been generated and validated, they must be

distributed across the control system architecture. Lee et al. (2014) outlines a method

that allows a master device to share its configuration files with its slave devices. This

enables a control system to load a master configuration file to the master devices.

Then, the master device distributes the corresponding configuration to each slave

16

device using the CANopen protocol (Lee et al., 2014). This enables the repair or

update of specific slave devices within a control system from the master controller.

The proposed implementation has the master device check the version of the

configuration file against a directory on the host computer during system boot or

startup. If the version stored on the master devices does not match the version on the

host computer, the master device downloads the latest version from the host

computer. The master devices then distribute the configuration object files to the slave

devices in a feedback mode and validate that reconfiguration was successful. On

successful reconfiguration, the master and slave devices may reboot depending on

configuration settings (Lee et al., 2014).

2.4.2. Configuration and Control Logic File Format Types
Configuration management implementation across distributed systems can involve

configuration files using different file types. This introduces the challenge of

maintaining or generating files for a control system as the system evolves. Elsner et

al. (2011) propose a framework that validates consistent models across multiple

configuration format types, fixes the errors according to rules and serialises back into

the original format type. The proposed framework investigates the compatibility

between Ecore DSMs, XText DSLs, XML schema XML, Java Property files and C

header files (Elsner et al., 2011). Each config file has its own model. The round-trip

mechanism then converts the configuration file to its defined model using its

metamodel, which maps the configuration artefacts to the model. The universal model

is then validated and fixed if necessary. Once validated and fixed according to the

metamodel constraints, the round-trip mechanism converts the universal model back

into the original configuration file format (Elsner et al., 2011).

Chrysalidis and Frank (2024) implemented a universal configuration format that

managed unsynchronised and decentralised data for avionic systems. The

configuration format leveraged the universal model approach to manage the

configuration changes. The configuration management solution identified the

configuration data into three different groups: devices, testing and network. The

configuration file generation process was based on the eclipse modelling framework.

Then the meta-model definitions were converted into the custom Universal

17

Configuration Format for Avionics (UCoF) configuration format (Chrysalidis & Frank,

2024). This highlights the possibility of generating custom configuration formats based

on meta-model definitions for application-specific use cases.

An alternative file format for configuration files is the JavaScript Object Notation

(JSON) file format. The JSON file format can represent both the configuration of

control system devices and the format that structures data for communication between

control system devices (Wehner et al., 2014). This enables a single file format for

configuration management and message parsing throughout the control architecture.

JSON is an international data processing standard that is human-readable, data inter-

changeable and lightweight file size format (Wehner et al., 2014). Wehner et al. (2014)

experimented with a concept that utilised JSON to dynamically distribute the

computational load of services across multiple FPGA nodes on an IoT network. The

concept allowed users to stream video footage from one system service to another

using the JSON file format. However, when the system receiving the streamed footage

utilises all its resources, the image processing can be delegated to other nodes within

the IoT network. This was achieved by utilising a standard JSON structure, allowing

the streaming service to select the appropriate service by configuring key-value pairs.

The payload of the image and its properties were also streamed within the same JSON

data structure, enabling the image to be processed by the delegated node (Wehner et

al., 2014). This demonstrates JSON's ability to configure control system devices while

parsing the relevant data in a structured format.

Kasbe (2015) defines the implementation of configuration files as being in the

Extensible Markup Language (XML) file format. XML stores the key-value pairs of

object definitions through semantic tags (Kasbe, 2015). Despite being a standard

format type for configuration files, XML has been proven to have greater processing

overhead than JSON. This is due to the syntax structure of XML being more complex,

requiring higher computation to parse. This can drain a significant proportion of the

resources in embedded systems (Kasbe, 2015). This highlights the need for carefully

selecting the configuration and data structure file type carefully depending on system

resources and use case.

18

2.4.3. Abstract Data Types and Structures for Control Logic
Organised and universal data structures allow for scalable and descriptive

representation of a control systems state. The design of a control system requires the

key system objectives to be identified and represented within a universal data

structure. Mapping the key system objectives within a universal data structure allows

it to be de-structured by different sub-systems (Vojir & Beran, 2015). Developing a

hierarchical composite structure allows for a clean organisation of system parameters

and commands. This allows programmers to easily modify and navigate the data

structures (Vojir & Beran, 2015). Another advantage of universal data structures is that

they support modular design principles. This allows the data structure to scale and

adapt the structure for different applications while keeping consistent model schemas.

This enables the designed data structure to be compatible across all devices in the

control system despite different hardware and internal processes (Vojir & Beran,

2015).

Fuzzy logic represents control logic within control systems, which requires tolerating

imprecise data and modelling non-linear functions. Fuzzy logic can manage partial

truth values instead of standard discrete Boolean values (Chrysalidis & Frank, 2024).

This is achieved by allowing a degree of truthfulness or falsehood around the control

variables, which closely mimics human thinking and decision-making. Fuzzy logic

implementations allow abstract or complex problem-solving to be modelled within an

expert system model, allowing for flexible decision-making (Chrysalidis & Frank,

2024). Chrysalidis and Frank (2024) outline that fuzzy logic is common within

embedded control systems and can be found within vehicle sub-systems, air

conditioners, digital image processing and pattern recognition applications. The main

limitation of fuzzy logic systems is the complexity of designing the membership

functions and rule bases, which describe the control problem. Fuzzy logic

implementations can also lack precision depending on how fine-tuned the rule

description is. This requires precision tolerance to be understood in order to test the

control system (Chrysalidis & Frank, 2024). Bashi (2024) investigated the application

of fuzzy logic to manage traffic flow at intersections. The system adjusted the signal

timing based on real-time traffic conditions. This aimed to reduce waiting time at the

intersection and improve traffic flow in different traffic densities (Bashi, 2024). The

fuzzy logic controller ingested real-time traffic data and utilised image processing to

19

enhance the traffic condition parameters. The fuzzy logic controller then interpreted

the traffic conditions based on the scale of each parameter to determine the wait time

for each path (Bashi, 2024). Bashi (2024) found that the simulation reduced

congestion and decreased vehicle wait time. The system also prioritised emergency

vehicle paths, ensuring they experienced minimal delays (Bashi, 2024).

Finite State Machine (FSM) are real-time control structures that produce abstracted

models from input alphabets. The input alphabet is converted into internal variables

and states, producing an output alphabet that can be parsed as output values

(Miroshnyk et al., 2018). FSMs are often represented as state diagrams, which visually

describe the states, transitions between states and the actions of the FSM (Miroshnyk

et al., 2018). Miroshnyk et al. (2019) developed a pattern for describing FSM in

hardware description language for VHDL in FPGA applications. The resulting method

utilised temporal state diagrams to represent a three-process control pattern. The

temporal state diagram incorporates delays into the state diagram, enabling real-time

control Miroshnyk et al., (2019). The results showed that the two-block FSM structure

was successfully simulated and synthesised into the FPGA control system. This

demonstrates FSM's ability to represent real-time logic control systems on embedded

devices.

2.4.4. Control System Logic Programming
Many real-time control logic programming languages have been established, each

with its own strengths and limitations. Some of these control structure languages are

finite state machines (FSM), design structure diagrams (DSD), function block

diagrams, ladder logic and sequential function charts (Mallaband, 1991). Mallaband

(1991) established criteria for selecting the programming technique for real-time

control systems. The main factors that need to be considered are the characteristics

of the controlled system, the application domain of the control system, the familiarity

with user training and experience, the architecture model that defines the control

system and the features that need to be described by the programming technique

(Mallaband, 1991).

20

Ladder logic diagrams have been a long-standing standard for representing control

logic in programmable logic controllers. It has been the preferred language and widely

accepted due to its fundamental programming elements mimicking discrete logic

primitives (Wareham, 1988). Wareham (1988) identifies that a limitation of ladder logic

is that it does not easily represent multiple events occurring concurrently. Rather,

ladder logic is formatted so that the program scans the rungs of the control process

sequentially (Wareham, 1988). Control rungs should be organised into zones and

incorporate jump statements and sub-routines to facilitate the simultaneous

processing of independent operations. This can make the program lengthy and difficult

to design, so it scales with added complexity (Wareham, 1988).

An alternative to ladder logic is sequential function charts. Sequential function charts

are an international standard representing the control logic graphically using function

blocks, steps, and conditional transitions (Wareham, 1988). Sequential function charts

can represent command- and event-driven systems and handle concurrency in a

single structure (Mallaband, 1991). Mallaband (1991) outlined the specification for

representing real-time control systems with sequential function charts. Function

blocks represent the actions executed when a step is active. A functional block can

either be stored or not, impacting whether the state persists beyond the step’s activity.

The steps represent specific states within the control process. The steps organise the

control logic into distinct phases associated with control commands. Finally,

conditional transitions define the conditions in which the control process moves

between steps. The conditional transitions control the process flow based on the

conditions defined (Mallaband, 1991).

Ivanescu et al. (2007) present a method for process control in embedded systems

using sequential function charts. The method successfully demonstrated the ability of

microcontrollers to interpret and execute multiple SFCs with efficient control

processes. The major limitation of running SFCs on microcontroller devices is the

memory capacity of embedded systems and the implementation requiring a reduced

number of input/output pins (Ivanescu et al., 2007). Ivanescu et al. (2007)

implemented this with an infinite loop function, which is continuously called three

functions: input acquisition, SFC executions, and output update. The microcontroller

interpreted each SFC step as a C function and executed the defined actions based on

21

the transition conditions. Once the step definition was interpreted, the microcontroller

would execute the associated actions as one-time or continuous. The transition

conditions were evaluated within each step function execution to determine if the next

step was in the state (Ivanescu et al., 2007). The implementation also managed

parallelism and convergence by separating converging elements into separate SFC

charts. The main loop process would update pointers to ensure they were executed in

the next cycle (Ivanescu et al., 2007). This demonstrates the practical application of

SFC diagrams in embedded systems and their ability to handle complex control

processes.

2.5. Literature Review Summary
The current literature review highlights the clear benefits of escape room experiences

within the recreational and educational industries. The exercises promote team

collaboration and social interaction through problem-solving (Gordon et al., 2019). The

literature also demonstrates that escape room experiences enable an immersive

learning experience and enhance transfer learning for low-motivation topics (Sánchez-

Martín et al., 2020). With these benefits, the escape room industry continues to grow;

however, it faces consistent resourcing challenges (Lakomkina, 2023). The resourcing

challenges result from integrating the control technology with the quickly changing

story narratives of the escape room design (Tercanli et al., 2021). This identifies a gap

within the literature that needs to be resolved to allow non-technical escape room

designers to develop escape room experiences at a low cost.

Multiple technologies have been researched to develop escape room narratives

without the need for computer programming or electronic competency. Virtual reality

escape rooms enable the users to interact within virtually immersive environments and

allow the participants to interact with them through VR controllers and headsets

(Kiruthika et al., 2022). Physical escape room experiences were shown to be able to

test educational competency across a variety of educational domains but require the

knowledge to configure and engineer the puzzles (Kiruthika et al., 2022). Ross (2019)

outlines the need for the puzzles within the narrative to communicate with one another

and integrate within a control system. This would enable the automatic progression

throughout the escape room stages (Ross, 2019).

22

The control system architecture of an escape room would need to scale with a one-to-

many relationship between the controller and its puzzles (Ross & Bennett, 2022). The

puzzles within the control system would also require the controller to interpret different

data types depending on user interaction with the puzzle. This highlights the need for

the control architecture to process multiple datatypes within the same escape room

narrative (Ross & Bennett, 2022). The control system would need to process a single

puzzle's many sensor and actuator values. This would require that the control system

be able to process multiple asynchronous puzzle interactions simultaneously.

However, each puzzle interaction would also require processing many sensor and

actuator values within each puzzle data structure (Ross, 2019). The control system

logic representation would be required to represent path-based combinational logic

(Tercanli et al., 2021). This control logic representation would need to scale with the

many peripherals and puzzles that impact the system state. The path-based

combinational logic presents the need for multiple data packets to be processed

concurrently (Tercanli et al., 2021).

The performance characteristics of different wireless communication methods have

been researched to achieve a pop-up escape room at a low cost. Bluetooth, LoRa,

and Wi-SUN protocols have different performance characteristics and compatible

topologies. Bluetooth was suitable for point-to-point and star topology communication

use cases compatible with the master-slave architecture (Goncalves et al., 2021).

Goncalves et al. (2021) state that Bluetooth can achieve a coverage of 43m in densely

obstructed areas and provides data rates of 125kbps. There is a gap in understanding

of the ideal implementation of wireless communication methods for low-cost escape

room control systems. The selection of wireless communication methods will depend

upon the performance characteristics and ease of automatic connection configuration.

Scalable configuration management would be required to implement a universal

control system for differing escape room narratives. Well-defined configuration

management would enable consistent control system operation independent of the

hardware and process control logic (TARAMAA et al., 1996). Flexible implementation

of control processes and hardware systems requires configuration management and

systems to be not co-dependent. Rather, the relationship models between the system

23

and its configuration management definitions should be defined (TARAMAA et al.,

1996). This would allow the escape room puzzles and controllers to structure their

logic control and data structures so that evolving the narrative would not disrupt the

system's operation. The controller source code would only need to be complied with

once, and the configuration file would point to the updated data structures or control

logic file. XML is the common file type utilized for configuration files (Kasbe, 2015).

XML can represent the configuration variables within the file as key-value pairs. The

JSON file format can represent the configuration file format and communication data

structure with reduced processing overhead (Wehner et al., 2014). This would provide

a lightweight file format for the puzzles and controller within the escape room to be

configured and communicated. The requirements of the escape room control system

will require a data structure format to represent both payload data and control logic.

This was demonstrated by Wehner et al. (2014), who utilised JSON file format to

transfer real-time video capture to processing nodes over the Internet of Things

network. The data structure configured the target node by selecting complied services

and parse the image payload for the process.

The abstract data types and structures that represent the control logic and payload will

need to scale with the complex narrative of the escape room. Fuzzy logic is a paradigm

that allows a model to fit non-linear control problems based on variable input values

(Chrysalidis & Frank, 2024). Fuzzy logic control logic requires significant development

time and expert advice to define the membership functions and rules. It can be very

imprecise without a comprehensive set of rules for the control system. This is not ideal

for escape room control systems as the state transitions between control stages can

be defined by definitive goals. Finite state machines are real-time control structures

that can be represented by abstracted models (Miroshnyk et al., 2018). The model

definitions describe the transformation of input values and output values into modelled

system states. This allows the control logic to be represented by state diagrams with

clearly defined structure models (Miroshnyk et al., 2018). Sequential function charts

map the state transitions of control system logic graphically. They allow for the

scalable and concurrent handling of control processes that meet the requirements of

the escape room control system (Mallaband, 1991). Since they are a graphical

representation of control logic, SFC would be easier for non-technical escape room

designers to understand.

24

There is a clear gap in the literature to represent complex escape room progression

logic within a universal control architecture. Implementing a graphical programming

diagram, such as sequential function diagrams on a low-cost embedded system,

would reduce the technical understanding and financial barriers challenging the

escape room industry. Developing a configuration management method would allow

control progression logic to be separated from the compiled source code, which

interprets and executes it. An escape room control system that reduces these barriers

would provide greater access to immersive learning activities' educational and

recreational benefits.

25

CHAPTER 3: METHODOLOGY
3.1.1. Research Design

The objectives and aims of the research seek to evaluate the specific

implementation of a control system for the escape room industry. The research

philosophy of pragmatism will guide its process. A pragmatic evaluation involves

implementing the control system to determine its suitability for the escape room

industry through experimental performance and functional case study tests. This

requires a mixed-methods research approach to reach a comprehensive

conclusion.

The quantitative evaluation will be designed as experimental tests to derive the

performance characteristics of the control system. The performance tests will

determine dependent values that are key metrics for successful escape room

operation. The performance testing will be conducted during the Performance

Evaluation stage shown in Figure 1: Methodology Stages. The performance

metrics for evaluating the designed control system are operational wireless

communication coverage, operational wireless communication latency, concurrent

slave-to-master communication limitation and concurrent control logic variable

evaluation limitation. The research will employ purpose sampling by collecting

measurement data during controlled operating conditions. The sample data

collection method is outlined in the Performance Testing section. The data

obtained will then be analysed using ANOVA and regression analysis to evaluate

how the control system performance scales as escape room complexity and

locality variables change.

Figure 1: Methodology Stages

26

The qualitative evaluations will be designed as case study tests conducted at

milestone stages of the development process. The qualitative evaluations will

determine if the control system functions correctly within an operational escape

room environment. Such qualitative tests will be conducted to evaluate the control

system at the system unit development, system integration development and

operational system development stages shown in Figure 2: Methodology Stages.

The system unit development and evaluation stages will test the components of

the control system in isolation. The unit tests will employ non-probability purpose

sampling to collect system log file information during run-time. Each unit test will

have an expected log file outcome, which is the criteria to determine the pass or

fail result. Document analysis of the log files will then determine the outcome of the

test according to the criteria. The unit tests of the system components will verify

the successful operation of local device peripheral initialisation, master controller

configuration, slave controller configuration, master control logic engine, slave

control logic engine, JSON file generation, the separation of hardware and software

through sub-routine APIs and data structure generation.

The integration development and evaluation stages will test the interactions

between each control system relationship. Non-probability purpose sampling will

record system component interactions in log files. Qualitative document analysis

will then observe the resulting outcome from the run-time operations. The

controlled test's expected outcome will determine each integration test's criteria.

The result within the log file document will be assessed against the criteria to

determine either pass or fail outcome. The integration tests will evaluate the

communication configuration and initialisation, bi-directional communication

between master and slave controllers, slave controller prioritisation and

coordination, slave controller peripheral MCU pin states and master-slave

command data structure parsing.

The system development and evaluation stages will test the control system within

its operational environment. Start-to-finish system testing will be conducted during

this stage by implementing an operational escape room. Multiple slave controllers

will be configured as escape room puzzles, each with its control logic and

27

configuration files. Each puzzle will test different types of input and output

configurations to validate the ability of the escape room to interface with different

data configurations. A single master controller will have its configuration file defined

with control logic, which requires hybrid progression logic paths. Purpose sampling

will be employed within this stage to analyse the control system and its operational

conditions. Log files covering sub-routine calls, test metrics, communication dump,

control logic evaluation, and error handling will be generated during each system

test. Document analysis will determine system performance and success

according to the expected outcomes of the generated control logic and system

configuration.

3.1.2. List of Materials
The materials and resources required to complete the build development stages and

test regime are outlined within Appendix B: Budget and List of Materials.

3.1.3. Risk Assessment
Appendix A: Risk Assessment outlines the risks identified and mitigated for the build

development stages and test regime.

3.1. Development Process
The stages of the development process are outlined in numerical order in the sections

below. The development process will first design and verify the hardware and firmware

components of the control system in isolation. Once the system components have

passed isolated unit testing, the control system hardware and firmware, which

connects integrated components, will be developed. The integration of control system

components will be evaluated by conducting integration testing for each system

relationship. Once the system is integrated, it will be tested in its operational

environment. Multiple slave controller puzzles will be created, each with a defined

configuration schema on their respective SD card. The controller will have its

configuration schema and control logic data structure uploaded to its SD card. A range

of system testing will be conducted to evaluate the operational objectives and

outcomes of the experiment. Upon successful system testing, the control system will

undertake stress testing to evaluate the system's performance characteristics and

limitations.

28

3.1.1. Embedded Architecture of Master Controller and Slave Controller.

Design Rationale

The master controller circuitry will require the hardware components shown in Figure

2: Master Controller Architecture. The master controller hardware will consist of a

Bluetooth BLE interface, clocking circuitry, SD card interface, power supply

electronics, microcontroller programming interface and LED status feedback

indicators. The ESP32-C6-DevKit-1-N8 is a development kit for the ESP32-C6 and

contains the necessary hardware for Bluetooth BLE antenna, 5V and 3.3V voltage

regulation, clocking circuitry and an LED indicator. Therefore, the devkit was selected

as the embedded hardware selection for both the master and slave controller. The

ESP-IDF development environment has library components for SD card interfacing

using SPI. Therefore, the ESP32-C6-DevKit-1-N8 will interface with the SD card

storage through the sdmmc component within ESP-IDF.

Figure 2: Master Controller Architecture

The slave controller circuitry will require the hardware components shown in Figure 3:

Slave Device Architecture. The slave controller hardware will have a Bluetooth BLE

interface, clocking circuitry, SD card interface, power supply electronics,

microcontroller programming interface, LED status feedback and peripheral MCU

input/output interface.

29

Figure 3: Slave Device Architecture

Component Requirements

The firmware of the master controller embedded system will require multiple

interfacing routines to enable controller peripheral functions. The first routine,

sd_card_interface, will interface with the embedded microcontroller and SD card

storage. The sd_card_interface routine will enable read, write, append, mounting and

unmounting operations. The second routine, led_hmi_interface, will involve toggling

the state of the human-machine LED indicator. The functionality of these sub-routines

and the master embedded controller will be evaluated through Table 1: Unit Test

UT01.

The firmware of the slave controller will make use of the same sd_card_interface and

led_hmi_interface routines as the master controller. The peripheral_update routine will

query the peripheral microcontroller pins to set output pin state values and read

discrete and analogue input pin values. The functionality of these sub-routines and the

embedded slave controller will be evaluated through Table 2: Unit Test UT02.

30

Relevant Objectives and Outcomes

• Design of low-cost master-slave control system architecture suitable for

escape room puzzles.

3.1.2. Embedded JSON Serialiser

Design Rationale

The communication and configuration of the embedded control system will require a

file format representing or containing the data of run time internal data structures. The

review of the literature in section 2.4.2 has resulted in the JSON file format being

selected as the communication and configuration file type standard. JSON was

selected as it can be used for communication payloads and configuration files,

enabling a single file format to standardise both. The JSON file format is also less

verbose and easier to read than the XML format. This assists in developing a universal

game progression logic file for managing escape room progression.

Component Requirements

Log file documents and communication payloads must be constructed within the

embedded system controllers for dynamic runtime monitoring and communication.

This functionality will require the development of embedded JSON serialisation

routines. The functional specification of the embedded JSON serialiser is to ingest a

target JSON schema as a parameter and construct the JSON file according to the

schema definition. The embedded JSON serialiser should support all data types and

structures allowed within the JSON syntax definition. Once the JSON file has been

constructed, the memory location will be returned to the function that called it for further

processing.

Relevant Objectives and Outcomes

This specification will assist in achieving the following objectives and outcomes.

• Design of low-cost master-slave control system architecture suitable for

escape room puzzles.

• Create a flexible game progression logic file type and data structure that can

be loaded onto the master and slave controllers via SD card.

31

• Implementation of master and slave interpreter for the game progression logic

file data structure. Ensuring accurate game progression and puzzle state

management.

• A game progression logic file interpreter on both master and slave devices,

ensuring correct puzzle state management, game progression and data

transfer.

Implementation Details

Three components are necessary to achieve the specification for the JSON file

serialiser. The first will be a json_file_serialiser routine, ingesting a target JSON

schema file name. The json_schema_serialiser routine will traverse the JSON schema

file and construct the resulting JSON file according to the schema definition. The

second routine necessary will be get_schema_content, which will return the run-time

data values for the generated JSON file’s property value pairs. The

get_schema_content routine will navigate the internal data structures and return

specific values depending on the schema, property and object index key parameters.

The target JSON file schemas will be the final component for the embedded JSON

seraliser. A JSON schema file must be defined and stored on the associated

controller’s SD card. A distinct JSON file schema will need to be provided for each

JSON file the system can generate. The functionality of each component for the

embedded JSON serialiser will be evaluated according to Table 3: Unit Test UT03.

3.1.3. Bluetooth BLE Connection Interface

Design Rationale

The selection of an appropriate wireless technology for the master-slave architecture

was made according to the technical specifications in the literature review section

Communication Strategies for Escape Room Control System and ease if integration.

Bluetooth BLE is the selected technology as it’s integrated into the selected ESP32-

C6 chipset from the embedded system design.

Component Requirements

Both the master controller and slave controller devices will require a Bluetooth BLE

connection interface sub-routine. The connection interface functions will handle data

transfer between master and slave controllers, establish the connection between the

master controller and target slave controller, disconnect the target slave controller from

32

the master controller and manage multiple slave controller connection instances within

the master controller. The functionality of these sub-routines and functions will be

evaluated through Table 4: Unit Test UT04.

Relevant Objectives and Outcomes

• Evaluate and implement appropriate wireless communication methods,

protocols and technologies for the master and slave controllers.

• Design and develop Bluetooth connection interface for the master controller to

manage multiple slave controller connections.

• Reliable data transfer between master controller and slave controller.

3.1.4. Master Controller Configuration
The configuration functionality of the master controller device will enable the

separation of hardware and control system software. The configuration routines of the

master controller validate the mounted JSON files against three JSON schema file

definitions. The configuration file schema will define the system log file structure,

device profile schema, and communication profile definitions. The configuration file

schema is required to support scalable representations of communication, device, and

session profiles. The master control logic schema will define how control logic is

represented in JSON format. The master control logic schema will define logic

expression syntax, progression stage object structure, valid parameter data types, and

valid logic expression operations. The structure of the master control logic schema will

also allow for the representation of hybrid logic progression within the progression

logic stages and their internal logic expressions. This will enable the complex logic

expression paths within each progression logic stage. The final configuration schema

necessary is the command message schema. The command message schema

defines the command message structure for specific devices. This ensures the target

controller can parse and interpret the communicated data packet into executable

commands. The command message schemas define valid, executable commands

and payload values for the target controller device.

The master controller’s JSON configuration parser will read the configuration files

mounted through the master controller’s SD card interface sub-routines. The parser

then deconstructs and transforms the JSON file into internal data structures. The

33

master controller configuration parser will detect and handle invalid JSON syntax or

structure errors. The functionality of the master JSON configuration parser will be

evaluated against Table 5: Unit Test UT05.

The final component responsible for the master controller configuration is the master

controller’s configuration file interpreter. This routine interprets the parsed

configuration internal data structures and sets up operational communication settings,

device profiles, control logic progression stages and session parameters. The

interpreter initialises and validates the system context of the master controller. The

master controller’s configuration file interpreter logs the outcome of each stage during

the initialisation of the master controller. The interpreter indicates the outcome of the

master controller configuration and initialisation to the LED HMI. The routine handles

errors during configuration and indicates the HMI's error type. The functionality of the

master controller’s configuration file interpreter will be evaluated against Table 6: Unit

Test UT07.

3.1.5. Slave Controller Configuration
The configuration functionality of the slave controllers also enables the separation of

hardware and control system software. Like the master controller, the configuration of

the slave controllers validates the mounted JSON files against three JSON schema

file definitions. The slave controller’s configuration file schema will define the system

log file structure, session profiles, device definition profile, peripheral microcontroller

definition and communication device profiles. The peripheral microcontroller definition

will contain the valid pinout compliance of the peripheral microcontroller. This defines

the valid pin directions, signal types and pin mapping for each pin. The slave control

logic schema defines how control logic is represented in JSON format. The scope of

the control logic expressions and parameters are local to the slave controller’s

peripheral MCU pin state. The slave control logic schema will define valid logic

expression syntax, progression stage object structure, valid parameter data types, and

valid logic expressions. The structure of the slave control logic schema will also allow

for the representation of hybrid logic progression within the progression logic stages

and their internal logic expressions. This will enable the complex logic expression

paths within each progression logic stage. The final configuration schema necessary

is the command message schema. The command message schema defines the

34

command message structure for specific devices. This ensures the target controller

can parse and interpret the communicated data packet into executable commands.

The command message schemas define valid, executable commands and payload

values for the target controller device.

The slave controller JSON configuration parser will read the configuration files

mounted through the SD card interface sub-routine. The parser will then deconstruct

and transform the JSON file into internal data structures. The slave controller

configuration parser will detect and handle invalid JSON syntax or structure errors.

The functionality of the slave JSON configuration parser will be evaluated against

Table 7: Unit Test UT08.

The slave controller’s configuration file interpreter executes the configuration settings

according to the parsed configuration files. The interpreter initialises communication

settings, device profiles, control logic progression stages and session parameters

related to the slave controller. The configuration file interpreter can handle errors while

initialising the slave controller’s configuration and record such functions' outcomes to

log files. The outcome of the slave controller’s configuration is indicated on the

device’s HMI and recorded on SD card log flies. The functionality of the slave

controller’s configuration file interpreter is evaluated against Table 8: Unit Test UT10.

3.1.6. Master Controller’s Control Logic Engine
The master controller’s control logic engine encapsulates the components responsible

for managing system context for the current progression logic stage, managing

progression logic state transitions, parsing control logic file, interpreting control logic

internal data structures, evaluating control logic expressions and dispatching actions

according to control logic evaluation outcome. The scope of the master controller’s

control logic engine is to manage system-wide control logic evaluation across one-to-

many slave controllers. This requires that the control logic expressions can represent

parameters across multiple slave control devices.

The master controller’s control logic parser deconstructs and transforms the JSON

control logic file into internal data structures. The internal data structures must

represent scalable hybrid control logic expressions and the system context for each

35

progression logic stage. The master controller’s JSON control logic parser’s

functionality will be evaluated against Table 11: Unit Test UT11.

The master controller’s control logic interpreter evaluates the outcome of logic

expressions that ingest parameters across multiple slave controller devices. The

master control logic interpreter will ingest the parameters for the current progression

logic stage according to the system context definition. These parameters will then be

utilised to evaluate the current progression logic stage outcome. The outcome of the

control logic expression will then be returned to the master controller’s control logic

action dispatcher to operate according to the result. Each control logic evaluation's

system context and outcome are recorded on SD card storage log files. The

functionality of the master controller’s control logic interpreter will be evaluated against

Table 10: Unit Test UT12.

The master controller’s state manager updates the internal data structures and system

context according to transitions in slave controller parameters and the progression

logic stage. The state manager ingests the state values relevant to the current

progression logic stage expressions, manages the transition of progression logic

stages and updates the system context according to updates. The functionality of the

master controller’s state manager will be evaluated against Table 11: Unit Test UT13.

The final component within the master controller’s control logic engine is the control

logic action dispatcher. The action dispatcher coordinates the control logic engine’s

sub-routines according to system context and logic expression evaluation outcome.

The master controller’s action dispatcher initiates the transaction of command

messages to target slave controllers. The action dispatcher coordinates the parsing

and interpretation of the current progression logic stage. It is also responsible for

coordinating the progression logic stage transitions by calling the SD card interface

routines and the master controller’s state manager. The functionality of the master

controller’s action dispatcher will be evaluated against Table 12: Unit Test UT14.

3.1.7. Slave Controller’s Control Logic Engine
The slave controller’s control logic engine encapsulates the components responsible

for managing system context for the current progression logic stage, managing

36

progression logic state transitions, parsing control logic file, interpreting control logic

internal data structures, evaluating control logic expressions and dispatching actions

according to control logic evaluation outcome. The scope of the slave controller’s

control logic engine is to manage control logic local to the slave controller’s

peripherals. This requires that the logic expressions trigger when the local slave

controller’s peripherals evaluate to the current progression logic stage expression for

the specific slave device.

The slave controller’s control logic parser deconstructs and transforms the JSON

control logic file into internal data structures. The internal data structures need to

represent logic expressions and trigger values for the peripherals of the slave

controller. The control logic internal data structures also represent the system context

for the peripheral MCU pin configuration for the current progression logic stage. The

parser will be able to handle invalid JSON file syntax and structure. The slave

controller’s JSON control logic parser’s functionality will be evaluated against Table

13: Unit Test UT15.

The slave controller’s control logic interpreter evaluates the outcome of logic

expressions local to the device’s peripherals. This requires that the interpreter ingests

the state of multiple peripherals set by the system context for the current progression

logic stage. These parameters will be evaluated against the trigger conditions within

the current progression logic stage’s logic expressions. The outcome of the control

logic expressions will then be returned to the slave controller’s control logic action

dispatcher to operate according to the result. Each control logic evaluation's system

context and outcome are recorded on SD card storage log files. The functionality of

the master controller’s control logic interpreter will be evaluated against Table 14: Unit

Test UT16.

The master controller’s state manager is responsible for updating the internal data

structures and system context according to transitions in state of the peripheral MCU

and progression logic stage. The state manger ingests the current logic expression

parameter state values, manages the transition of progression logic stages and

updates the system context according to the updates. The functionality of the slave

controller’s state manager will be evaluated against Table 15: Unit Test UT17.

37

The local control logic action dispatcher coordinates the slave controller’s control logic

engine. The action dispatcher coordinates the control logic engine’s sub-routines

according to system context and logic expression evaluation outcome. The slave

controller’s action dispatcher also initiates communication back to the master

controller once the current progression logic stage expressions are evaluated to be

true. The action dispatcher is responsible for coordinating the parsing, interpretation

of internal data structure, logic evaluating and progression logic stage transitions. The

functionality of the slave controller’s action dispatcher will be evaluated against Table

16: Unit Test UT18.

3.1.8. Command Message Communication
The command message communication sub-routines are responsible for processing

outbound and inbound communication between the master controller and the target

slave controller. The device receiving the communication transmission will parse,

validate, interpret and dispatch actions according to the state of the command

message received. The controller transmitting the command message will construct

and serialise the JSON command message according to internal data structures and

target command message JSON schema.

The master controller’s communication action dispatcher will be responsible for

coordinating and prioritising slave controller message requests, calling command

message sub-routines to process the requests, recording all communication

transactions to log file SD card storage and coordinating the transmission of command

messages to the target slave controller. The functionality of the master controller’s

communication action dispatcher will be evaluated against Table 17: Unit Test UT19.

The slave controller’s communication action dispatcher will be responsible for

coordinating received command messages from the master controller, calling

command message sub-routines to process the requests, recording all communication

transactions to log file SD card storage and coordinating the transmission of command

messages to the master controller. The functionality of the slave controller’s

communication action dispatcher will be evaluated against Table 18: Unit Test UT20.

38

The command message parser will ingest a target JSON command message and

transform it into internal data structures. The command message parser will detect

and handle invalid JSON syntax and structure errors. The functionality of the

command message parser will be evaluated against Table 19: Unit Test UT21.

The master controller’s command message interpreter evaluates the command and

payload of the received command message. Depending on the received command

message, the master controller’s communication interpreter will call associated action

dispatcher sub-routines to process the message payload. The interpreter will ingest

the parsed and validated command message data structures to determine the required

action. The functionality of the master controller’s command message interpreter will

be evaluated against Table 20: Unit Test UT23.

The slave controller’s command message interpreter evaluates the command and

payload of the received command message. Depending on the received command

message, the slave controller’s communication interpreter will call associated action

dispatcher sub-routines to process the message payload. The interpreter will ingest

the parsed and validated command message data structures to determine the required

action. The functionality of the slave controller’s command message interpreter will be

evaluated against Table 21: Unit Test UT24.

3.1.9. Master Controller’s and Slave Controller’s Communication Engine
The integration between the master controller’s communication action dispatcher and

the slave controller’s communication action dispatcher involves transferring and

processing command messages between the master controller and multiple slave

controller devices. The scope of the integration test is to validate the correct

coordination of multiple slave controllers sending command messages. The master

controller will sequentially transfer each type of the CommandMessage commands to

a slave controller. Once the final CommandMessage is received from the master

controller, the slave controller will then sequentially transfer each type of

CommandMessage command to the master controller. Each controller will

acknowledge data transmission before the transfer begins. The functionality between

the master controller’s communication action dispatcher and the slave controller’s

action dispatcher will be evaluated against Table 22: Integration Test IT03.

39

3.1.10. Master Controller Initialisation and Slave Controller Initialisation.
The integration between the master controller initialisation routine and the slave

controller initialisation routines involves querying the initialisation status of the slave

controller device profiles after the master controller configuration. The master

controller validates the initialisation status of all device profiles configured within the

system context. The master controller waits until all slave controllers have responded

with an initialisation command message containing a successful configuration

payload. This ensures that the entire control system has been configured and

initialised. The functionality between the master controller’s initialisation and slave

controller initialisation is evaluated against Table 23: Integration Test IT04.

3.1.11. Master Controller Configuration and Control Logic Engine
Integration.
Once the master controller has been initialised and the system context has been

configured, the control logic engine is called. The control logic engine will parse and

interpret the context of the first progression logic stage and indicate the status of the

escape room game session to the HMI and log files. The functionality between master

controller initialisation and control logic engine is evaluated against Table 24:

Integration Test IT05.

3.1.12. Master Controller’s Control Logic Action Dispatcher and
Communication Action Dispatch Integration

Integrating the master controller’s control logic action dispatcher and communication

action dispatcher involves the two components calling each other sub-routines

according to the command message and control logic outcome. The master

controller’s action dispatcher will call the communication action dispatcher to update

the progression logic stage of slave controllers during stage transitions. The control

logic action dispatcher will also request read and write state updates to target slave

controllers depending on control logic expression evaluation. The communication

action dispatcher will call the control logic action dispatcher when the current

progression logic stage parameter has been sent an updated payload from relevant

slave controllers. The functionality between the master controller’s control logic action

40

dispatcher and communication action dispatcher integration is evaluated against

Table 25: Integration Test IT06.

3.1.13. Slave Controller’s Control Logic Action Dispatcher and
Communication Action Dispatch Integration
The integration between the master controller’s control logic action dispatcher and

communication action dispatcher involves the two components calling each other’s

sub-routines according to the command message and control logic outcomes. The

control logic action dispatcher will call the communication action dispatcher when the

control logic expression for the current progression logic stage is evaluated as true.

The control logic action dispatcher will call the communication action dispatcher when

processed command message requests require a status response. The

communication action dispatcher calls the control logic action dispatcher when

updated progression logic stage command messages are received from the master

controller. The communication action dispatcher may call the control logic action

dispatcher when the master controller sends command messages requesting

peripheral updates. The integration functionality between the slave controller’s control

logic action dispatcher and communication action dispatcher are evaluated against

Table 26: Integration Test IT07.

3.1.14. Operational Escape Room Purpose Testing
With the control system passing both unit and integration testing, it can be developed

to meet its operational conditions. The control system, configuration management, and

data structures will undergo system testing to evaluate an escape room's functional

objectives and outcomes. Three slave controller boards will be developed with differing

peripheral input and output configurations. The first slave controller will sample

analogue input values across three input pins of the peripheral microcontroller. The

peripheral microcontroller for the first slave controller will also have four LEDs as

puzzle output. The second slave controller will sample digital input values from a

keypad. The puzzle will also involve a virtual buffer that manages the state of a string

value buffer. The second slave controller will have two LEDs as puzzle output. Finally,

the third puzzle will be developed to ingest the analogue values of two hall effect

sensors. The third puzzle will have three LEDs as output to indicate the presence of a

magnet. The master controller configuration, control logic, and command message

41

profile files will then be developed for a single escape room narrative. The progression

logic stages within the control logic file will test both sequential and hybrid progression

paths. Each progression logic stage will incorporate the developed slave controllers

utilising different logic expressions at each stage. The slave controller configuration,

control logic, and command message profile files will then be developed for the

session narrative. The progression logic stages within the control logic file will evaluate

varying logic expressions that modify both the peripheral MCU input and output pins.

The configuration files will be mounted into the master and slave controllers, and the

devices will be powered on. The escape room puzzles will then be interacted with,

completing each progression logic stage as the system logs its response to SD card

storage. The operational escape room purpose test will be evaluated against Table

27: System Test ST01.

3.1.15. Operational Escape Room User Purpose Testing
Once successful evaluation of operation escape room purpose testing from Table 27:

System Test ST01, human users will test the escape room control system. The same

three slave controllers from Operational Escape Room User Purpose Testing will be

utilised within this system test. The master controller configuration, control logic, and

command message profile files will then be developed for a new escape room

narrative. The progression logic stages within the control logic file will test both

sequential and hybrid progression paths. Each progression logic stage will incorporate

the developed slave controllers utilising different logical expressions at each stage.

The slave controller configuration, control logic, and command message profile files

will then be developed for the second session narratives. The progression logic stages

within the control logic file will evaluate varying logic expressions that modify both the

peripheral MCU input and output pins. Three separate user tests will be conducted to

demonstrate the versioning of session management profiles within the escape room

control system. For each user test session, the principal user will be briefed on how to

interact with the system safely, and narrative objectives will be explained. The

configuration files will be mounted into the master controller and slave controllers, and

the devices will be powered on. The principal user will then interact with the escape

room puzzles, completing each progression logic stage as the system logs its

response to SD card storage. The operational escape room purpose test will be

evaluated against Table 28: System Test ST02.

42

3.1.16. Operational Communication Coverage Performance Testing
The quantitative experiment aims to determine the operational communication range

between master controller and slave controllers under various operational conditions.

The master controller will be placed in a fixed location inside a house. The

communication coverage routine will then be developed and flashed onto the master

and slave controllers. The master controller’s communication coverage performance

test sub-routine will establish a connection with the slave controller, send a single

status update command message to the slave controller every 30 seconds for 10

minutes and then disconnect. The slave controller will need to receive, parse, validate,

interpret and respond to all the master controller’s command message transmissions.

The master controller’s communication coverage performance test sub-routine will

then parse, validate and interpret the response from the slave controller to determine

if the message was received correctly. The slave controller will move one metre away

from master controller after each sub-routine test is completed. The communication

coverage performance test will be repeated from one meter to fifty meters away from

the master controller's fixed location. The message packets received from the master

and slave controller will be recorded in the SD card storage log files. At each

incremental increase in distance, the RSSI value will be recorded for both the master

and slave controller. The performance test will be evaluated using Table 29:

Performance Test PT01. From the recorded log files, the RSSI, connection success,

and error rate can be analysed against the slave controller distance.

3.1.17. Operational Communication Latency Performance Testing
This performance test aims to determine the operational communication latency

between the master controller and slave controller command message requests. The

operational latency test will determine the time taken for the slave controller to

acknowledge the master controller’s message commands with a command message

response. The communication latency sub-routine will be flashed onto the master

controller, which will interface with the ESP32-C6 development board's internal timer

interrupts. The master controller will initialise the internal timer to zero before sending

each command message to the slave controller. Once the master controller receives

the response from the slave controller, the internal timer interrupt is triggered, which

records the value of the timer the moment the command message response is

43

received. The command messages sent from the master controller will establish the

connection, query peripheral status updates and disconnect. The performance test will

be evaluated using Table 30: Performance Test PT02.

3.1.18. Concurrent Slave Controller Communication to Master Controller
Performance Testing
This operational performance test aims to evaluate the coordination and scheduling

limitations of concurrent slave controller communication. Three slave controller boards

will be developed, with the slave controller sub-routines flashed onto them. Each slave

controller board will have a unique command message payload response to send to

the master controller. The master controller will be loaded with a control logic

progression file with three progression logic stages. Each progression logic stage

incrementally includes an additional slave controller until all three slave controllers are

set for the final system context. The slave controller’s logic state will configured to

immediately respond to the master controller when it’s included in the system context

of the current progression logic stage. The slave controller will continue to retry its

command message response until the master controller acknowledges its response.

An additional concurrent slave controller response test sub-routine will be flashed onto

the master controller, which will configure and set the internal timers of the ESP32-C6

development board. The log files on the slave controller will record the number of

command message response retries, errors and processing time for each progression

logic stage until all progression logic stages are completed. The master controller will

record the number of concurrent connections, processing times, communication

command message dump, sub-routine calls and communication events for each

progression logic stage. The performance test will be evaluated using Table 37:

Performance Test PT03.

3.1.19. Concurrent Control Logic Evaluation Performance Testing
The performance test is designed to evaluate the performance of concurrent control

logic parameters within the control logic expressions. The performance evaluation will

record the processing time and utilisation factor of the system resources within both

the master controller and slave controller devices as scale of control logic expressions

increase. The performance test will require three slave controllers to be flashed with

the slave controller routines. The master controller and slave controllers will have

44

configuration and control logic files developed, incrementally increasing the parameter

complexity of the control logic expressions in each progression logic stage. Each

progression logic stage will require an additional peripheral to be evaluated within each

slave controller device. The control logic expressions within the master controller will

incrementally require additional slave controller device peripherals to be evaluated

within its logic expressions. At each progression logic stage, internal timer interrupts

will record the time taken during each sub-routine process of the master and slave

controller devices. Memory and storage utilisation will also be recorded at each

progression logic stage. The performance test will be evaluated using Table 35:

Performance Test PT04.

3.2. Testing Regime
3.2.1. Unit Testing
The tables within the unit testing section outline the unit testing, which will be

conducted to evaluate the performance of each component to achieve the outcomes

and objectives. Each unit test verifies the functionality of individual components in

isolation.
Table 1: Unit Test UT01

Test Case ID UT01

Relevant Test
Objective

• Master controller architecture and interfacing.

Test Steps 1. Design master controller embedded system.

2. Assemble master controller embedded system

according to schematic.

3. Flash embedded system interfacing sub-routines

onto master controller.

4. Define sub-routine interfacing sequence and output

as expected outcome for master controller

embedded system.

5. Format SD card with FAT32 file system and insert

into master controller SD card slot.

6. Power on master controller embedded system and

generate log file documents.

45

7. ESP32-C6 development board LED flashing

indicates generated log files stored to SD card and

unmounted from file system.

8. Power off development board and eject SD card.

9. Store generated log files onto local host computer for

document analysis.

Data Collected 1. unit01.txt: Text log file containing ouput of

sd_card_interface function operations.

Pass/Fail Criteria Pass

• The content within unit01.txt file matches write and

append expressions of main.c for unit test.

• The content within unit01_read.txt file is exists within

unit01.txt file.

Table 2: Unit Test UT02

Test Case ID UT02

Relevant Test
Objective

• Slave controller architecture and interfacing.

Test Steps 1. Design slave controller embedded system.

2. Assemble slave controller embedded system

according to schematic.

3. Flash embedded system interfacing sub-routines

onto slave controller microcontroller.

4. Define sub-routine interfacing sequence and output

as expected outcome for slave controller embedded

system.

5. Format SD card with FAT32 file system and insert

into slave controller SD card slot.

6. Power on slave controller embedded system and

generate log file documents.

7. ESP32-C6 development board LED flashing

indicates generated log files stored to SD card and

unmounted from file system.

46

8. Power off slave controller and eject SD card.

9. Store generated log files onto local host computer for

document analysis.

Data Collected • unit01.txt: Text log file containing ouput of

sd_card_interface function operations.

Pass/Fail Criteria Pass

• The content within unit01.txt file matches write and

append expressions of main.c for unit test.

• The content within unit01_read.txt file is exists within

unit01.txt file.

Table 3: Unit Test UT03

Test Case ID UT03

Relevant
Component

• Embedded JSON serialiser

Test Procedure 1. Develop json_file_serialiser and

get_schema_content routines in the programming

language C.

2. Develop a JSON schema that includes various JSON

data types.

3. Connect and develop interface routines for ESP32-

C6 development kit hardware SD card reader.

4. Flash ESP-IDF MasterController project contains

json_file_serialiser and get_schema_content routines

the ESP32-C6 using host computer.

5. Format SD card with FAT32 file system.

6. Load JSON schema onto SD card storage from host

computer.

7. Insert into master controller SD card slot and power

on ESP32-C6 development board.

47

8. The main.c routine will call json_file_seriliaser with

the schema file name, and then the resulting JSON

file will be written to sd card storage.

9. ESP32-C6 development board LED flashing

indicates that the generated JSON file is stored and

the SD card is unmounted from the file system.

10. Power off the development board and eject the SD

card.

11. Store generated JSON file onto local host computer

for document analysis.

Data Collected 1. json_file_serliaiser and get_schema_content source

code.

2. Target json file schema.

3. Generated json file.

4. Generated JSON File.

5. Expected JSON file output.

6. Loaded JSON schema.

Pass/Fail Criteria • The generated JSON file matches the structure and

content within the associated JSON schema.

• The generated JSON files are stored in the mounted

SD card.

Table 4: Unit Test UT04

Test Case ID UT04

Relevant Test
Objective

• Bluetooth BLE connection interface.

Test Steps 1. Develop bluetooth_connection_interface sub-routine

for both master controller and slave controller.

2. Flash bluetooth_connection_interface sub-routine

onto master controller embedded ESP32.

3. Flash bluetooth_connection_interface sub-routine

onto slave controller embedded ESP32.

48

4. Define expected outcome from generated log files.

5. Format SD card with FAT32 file system and insert

into slave controller SD card slot.

6. Power on master controller and two slave controller

boards.

7. Master controller establishes connection between

two slave controller devices.

8. Master controller disconnects from one of the slave

controllers.

9. Master controller reconnects to slave controller.

10. Master controller sequentially transfers payload to

both connected slave controller devices.

11. Slave controller received data transmission triggers

interrupt service routine to handle data reception.

12. Master controller and both slave controller boards

HMI LED flashing indicates generated JSON file

stored, and SD card unmounted from file system.

13. Power off master controller and both slave controller

boards and eject SD cards.

14. Store generated JSON log files onto local host

computer for document analysis.

Data Collected 1. Sub-routine call log file: Records the sequence of

sub-routines calls.

2. Control system error handling log file: Caught run-

time errors.

3. Methodology test data log file: Outcome established

connections, outcome of transferred payloads and

disconnection.

7. Communication dump log file: Transmitted and

received payloads. Transmitting device GUID,

Receiving device GUID.

Pass/Fail Criteria • The sub-routine call log file matches expected

outcome defined during implementation.

49

• The control system error handling log file matches

expected outcome defined during implementation.

• The methodology call log file matches expected

outcome defined during implementation.

• The communication dump log file matches expected

outcome defined during implementation.

Table 5: Unit Test UT05

Test Case ID UT05

Relevant Test
Objective

• Master controller JSON configuration parser.

• Ensure separation of hardware and software

implementation through JSON configuration files.

• Scalable representation of communication profiles,

session profiles and device profiles.

Test Steps 1. Develop and flash master json configuration parser

routine onto the master controller.

2. Define JSON configuration file schema.

3. Define JSON control logic schema.

4. Develop master controller configuration JSON file

which is structured from defined schema with correct

syntax.

5. Format SD card with FAT32 file system.

6. Load master controller configuration schema, master

control logic schema and master communication

profile schema onto SD card storage.

7. Load master controller configuration, control logic

and command message JSON files onto SD card

storage.

8. Define expected outcome from generated log files.

9. Format SD card with FAT32 file system and insert

into master controller SD card slot.

10. Power on master controller board.

50

11. Master controller parses JSON configuration files into

internal data structure.

12. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

13. Power off master controller and eject SD card

storage.

14. Store generated JSON file onto local personal

computer for document analysis.

Data Collected 1. Sub-routine call log file: Records the sequence of

sub-routines calls.

2. Control system error handling log file: Caught run-

time errors.

3. Methodology test data log file: Internal data

structures generated from parsed JSON file.

4. Session management log file: Record the internal

data structures generated for the current session.

Pass/Fail Criteria Pass

• Sub-routine call log file, control system error handling

log file, methodology call log file, session

management log file matches expected outcome

defined during implementation.

Table 6: Unit Test UT07

Test Case ID UT07

Relevant Test
Objective

• Master controller JSON configuration interpreter.

Test Steps 1. Implement and flash master configuration file

interpreter routine onto the master controller.

2. Staticly define system context data structures to

indicate different configuration stages of slave

controller device profiles.

51

3. Develop configuration files with both valid and invalid

structures according to target schemas.

4. Load master controller configuration file, master

control logic configuration file and master

communication profile file schemas to SD card.

5. Define the expected outcome from generated log

files.

6. Format the SD card with the FAT32 file system and

insert it into the master controller SD card slot.

7. Power on master controller board.

8. HMI interface flashing indicates all configuration files

are parsed, validation is complete, log files are stored

to the SD card, and the SD card is unmounted from

the file system.

9. Power off the master controller and eject SD card

storage.

10. Store generated JSON file onto a local personal

computer for document analysis.

Data Collected 1. Sub-routine call log file: Records the sequence of

sub-routines calls.

2. Control system error handling log file: Caught run-

time errors.

3. Methodology test data log file: System context

internal data structures.

4. Session management log file: Session profile internal

data structure generated. Session system context

generated.

5. Control system evaluation log file: System context

parameters at time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

52

control system evaluation log file matches expected

outcome defined during implementation.

Table 7: Unit Test UT08

Test Case ID UT08

Relevant Test
Objective

• Slave controller JSON configuration parser.

• Ensure separation of hardware and software

implementation through JSON configuration files.

• Scalable representation of communication profiles,

session profiles and device profiles.

Test Steps 1. Develop and flash master json configuration parser

routine onto the slave controller.

2. Define JSON configuration file schema.

3. Define JSON control logic schema.

4. Define JSON communication profile schema.

5. Develop a slave controller configuration JSON file

that is structured from a defined schema with correct

syntax.

6. Develop slave controller control logic JSON file which

is structured from defined schema with correct

syntax.

7. Format SD card with FAT32 file system.

8. Load slave controller configuration schema, master

control logic schema and communication profile

schema onto SD card storage.

9. Load slave controller configuration, control logic and

command message JSON files onto SD card

storage.

10. Define expected outcome from generated log files.

11. Format SD card with FAT32 file system and insert

into slave controller SD card slot.

12. Power on master controller board.

53

13. Slave controller parses JSON configuration files into

the internal data structure.

14. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

15. Power off slave controller and eject SD card storage.

16. Store generated JSON file onto local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file: Internal data

structures generated from parsed JSON file.

• Session management log file: Record the internal

data structures generated for the current session.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 8: Unit Test UT10

Test Case ID UT10

Relevant Test
Objective

• Slave controller JSON configuration interpreter.

Test Steps 1. Implement and flash slave configuration file

interpreter routine onto the slave controller.

2. Staticly define system context data structures to

indicate different configuration stages of peripheral

profiles.

3. Define the JSON configuration file schema for SD

card storage.

54

4. Develop configuration files with both valid and invalid

structures according to target schemas.

5. Load slave controller configuration file, slave control

logic configuration file and slave communication

profile file schemas to SD card.

6. Define the expected outcome from generated log

files.

7. Format the SD card with the FAT32 file system and

insert it into the slave controller SD card slot.

8. Power on master controller board.

9. HMI interface flashing indicates all configuration files

are parsed, validation is complete, log files are stored

to the SD card, and the SD card is unmounted from

the file system.

10. Power off the slave controller and eject SD card

storage.

11. Store generated JSON file onto a local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file: System context

internal data structures.

• Session management log file: Session profile

internal data structure generated. Session system

context generated.

• Control system evaluation log file: Outcome of

logic expression evaluation. System context

parameters at time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

55

control system evaluation log file matches expected

outcome defined during implementation.

Table 9: Unit Test UT11

Test Case ID UT11

Relevant Test
Objective

• Master controller JSON control logic parser.

Test Steps 1. Develop valid control logic JSON files that conform to

schema.

2. The first control logic file contains sequential logic

progression stages with single logic operations within

each stage.

3. The second control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

4. The third control logic file contains hybrid logic

progression stages with single logic operations within

each stage.

5. The fourth control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

6. Each control logic file will contain logical AND, OR

and NOT logic operators.

7. Develop invalid control logic JSON files that do not

conform to the schema.

8. The first control logic file contains sequential logic

progression stages with single logic operations within

each stage.

9. The second control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

10. The third control logic file contains hybrid logic

progression stages with single logic operations within

each stage.

56

11. The fourth control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

12. Each control logic file will contain logical AND, OR

and NOT logic operators.

13. Implement and flash the master controller JSON

control logic parser sub-routine onto the master

controller.

14. Load developed JSON control logic files onto the SD

card.

15. Load developed configuration file schemas onto the

SD card.

16. Mount the SD card into the master controller board

and turn power on to the controller circuit.

17. HMI interface flashing indicates all control logic files

are parsed, log files are stored on an SD card, and

the SD card is unmounted from the file system.

18. Power off the master controller and eject the SD card

from the controller.

19. Store generated JSON log files onto a local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file: The parsed internal

data structure as property-value pairs.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• Unit test log files record internal data structures

which store control logic parameters for each

progression logic stage.

57

• Unit test log files record logic expression constructed

for each progression logic stage.

• Unit test log files record system context at each

progression logic stage.

• Unit test log files record errors caused by invalid

control logic files.

• Unit test log files record run time errors.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 10: Unit Test UT12

Test Case ID UT12

Relevant Test
Objective

• Master controller JSON control logic interpreter.

Test Steps 1. Develop valid control logic JSON files that conform to

the schema.

2. The first control logic file contains sequential logic

progression stages with single logic operations within

each stage.

3. The second control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

4. The third control logic file contains hybrid logic

progression stages with single logic operations within

each stage.

5. The fourth control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

6. Each control logic file will contain logical AND, OR

and NOT logic operators.

58

7. Implement and flash master control logic interpreter

sub-routines onto the master controller.

8. Load developed JSON control logic files onto the SD

card.

9. Load developed configuration file schemas onto SD

card.

10. Insert the SD card to the master controller board and

turn the power on to the controller circuit.

11. HMI interface flashing indicates all control logic files

are parsed, logic expression evaluated, log files are

stored on an SD card, and the SD card is unmounted

from the file system.

12. Power off the master controller and eject SD card

from the controller.

13. Store generated JSON log files onto a local personal

computer for analysis.

14. HMI interface flashing indicates all control logic files

are parsed, log files are stored on an SD card, and

the SD card is unmounted from the file system.

15. Store generated JSON files onto a local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file: Internal data structure

representation of logic expressions before and during

evaluation.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• Unit test log files record logic expression constructed

for each progression logic stage.

59

• Unit test log files record system context at each

progression logic stage.

• Unit test log files record system context parameter

values during interpreter evaluation.

• Unit test log files record internal data structures that

store control logic expressions and parameters for

each progression logic stage.

• Unit test log files record internal data structures that

store control logic parameters for each progression

logic stage.

• Unit test log files record the outcome of logic

expression evaluation at each progression logic

stage.

• Unit test log files record errors caused by invalid

control logic files.

• Unit test log files record run time errors.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 11: Unit Test UT13

Test Case ID UT13

Relevant Test
Objective

• Master controller JSON control logic state manager.

Test Steps 1. Develop valid control logic JSON files that conform to

schema.

2. The first control logic file contains sequential logic

progression stages with single logic operations within

each stage.

60

3. The second control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

4. The third control logic file contains hybrid logic

progression stages with single logic operations within

each stage.

5. The fourth control logic file contains sequential logic

progression stages with logic operations with varying

complexity in each stage.

6. Each control logic file will contain logical AND, OR

and NOT logic operators.

7. Each control logic file progression stage requires

different system context configuration.

8. Develop and flash master controller’s logic state

manager sub-routines onto the master controller.

9. The main routine evaluates each expression as true,

causing the state manager to transition to the next

progression stage. System context variables are

statically declared for updates after stage transitions.

10. Load developed JSON control logic files onto the SD

card.

11. Load developed configuration file schemas onto the

SD card.

12. Mount the SD card into the master controller board

and turn power on to the controller circuit.

13. HMI interface flashing indicates all control logic files

are parsed, the progression logic stage transitioned,

log files are stored on an SD card, and the SD card is

unmounted from the file system.

14. Power off the master controller and eject the SD card

from the controller.

15. Store generated JSON log files onto a local personal

computer for analysis.

61

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• Unit test log files record system context of master

controller at each progression logic stage.

• Unit test log files record system context parameter

values of relevant slave controllers for the current

control logic progression stage.

• Unit test log files record internal data structures

which store control logic expressions and parameters

for each progression logic stage.

• Unit test log files record outcome of logic expression

evaluation at each progression logic stage.

• Unit test log files record system state and context

transitions.

• Unit test log files record errors caused by invalid

control logic files.

• Unit test log files record run time errors.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 12: Unit Test UT14

Test Case ID UT14

62

Relevant Test
Objective

• Master controller JSON control logic action

dispatcher.

Test Steps 1. Load onto SD card the configuration file schema

necessary for configuration.

2. Develop valid control logic JSON files which conform

to master control logic schema. Some which involve

sequential logic progression. Some which involve

hybrid logic expression paths. Distinct progression

logic stages with different system context profiles.

3. Implement and flash master control logic action

dispatcher sub-routines onto the master controller.

4. Load developed JSON control logic files onto SD

card.

Mount the SD card into master controller board and

turn power on to the controller.

5. HMI interface flashing indicates all control logic files

parsed, log files stored to SD card and SD card

unmounted from file system.

6. Store generated JSON file onto local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• Unit test log files record sub-routine calls according

to control system state and triggers.

• Unit test log files record action dispatcher function

calls.

• Unit test log files records JSON files read from SD

card.

63

• Unit test log files record system state and context

transitions.

• Unit test log files record internal data structures

generated from JSON file parsing.

• Unit test log files record system context at each

progression logic stage.

• Unit test log files record system context parameter

values during interpreter evaluation.

• Unit test log files record internal data structures

which store control logic expressions and parameters

for each progression logic stage.

• Unit test log files record outcome of logic expression

evaluation at each progression logic stage.

• Unit test log files record errors caused by invalid

control logic files.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 13: Unit Test UT15

Test Case ID UT15

Relevant Test
Objective

• Slave controller JSON control logic parser.

Test Steps 1. Develop valid control logic JSON files which conform

to schema.

2. First control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Only discrete digital

input/output values.

3. Second control logic file contains sequential logic

which contains multiple peripheral logic operations at

64

each progression logic stage. Only discrete digital

input/output values.

4. Third control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input/output parameter values.

5. Forth control logic file contains sequential logic which

contains multiple peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input/output parameter values.

6. Fifth control logic file contains hybrid logic paths

which contains multiple peripheral logic operations at

each progression logic stage. Analog, discrete and

encoded input/output parameter values.

7. Each control logic file will contain logical AND, OR

and NOT logic operators.

8. Develop invalid control logic JSON files which do not

conform to the schema.

9. First control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Only discrete digital input

values.

10. Second control logic file contains sequential logic

which contains multiple peripheral logic operations at

each progression logic stage. Only discrete digital

input values.

11. Third control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input parameter values.

12. Forth control logic file contains sequential logic which

contains multiple peripheral logic operations at each

65

progression logic stage. Analog, discrete and

encoded input parameter values.

13. Fifth control logic file contains hybrid logic paths

which contains multiple peripheral logic operations at

each progression logic stage. Analog, discrete and

encoded input parameter values.

14. Each control logic file will contain logical AND, OR

and NOT logic operators.

15. Implement and flash the slave controller JSON

control logic parser sub-routine onto the master

controller.

16. Load developed JSON control logic files onto SD

card.

17. Load developed configuration file schemas onto SD

card.

18. Mount SD card into master controller board and turn

power on to the controller circuit.

19. HMI interface flashing indicates all control logic files

parsed, log files stored to SD card and SD card

unmounted from file system.

20. Power off master controller and eject SD card from

controller.

21. Store generated JSON log files onto local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

66

• Unit test log files record internal data structures

which store control logic parameters for each

progression logic stage.

• Unit test log files record logic expression constructed

for each progression logic stage.

• Unit test log files record system context at each

progression logic stage.

• Unit test log files record errors caused by invalid

control logic files.

• Unit test log files record run time errors.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 14: Unit Test UT16

Test Case ID UT16

Relevant Test
Objective

• Slave controller JSON control logic interpreter.

Test Steps 1. Develop valid control logic JSON files which conform

to schema.

2. First control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Only discrete digital input

values.

3. Second control logic file contains sequential logic

which contains multiple peripheral logic operations at

each progression logic stage. Only discrete digital

input values.

4. Third control logic file contains sequential logic which

contains single peripheral logic operations at each

67

progression logic stage. Analog, discrete and

encoded input parameter values.

5. Forth control logic file contains sequential logic which

contains multiple peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input parameter values.

6. Fifth control logic file contains hybrid logic paths

which contains multiple peripheral logic operations at

each progression logic stage. Analog, discrete and

encoded input parameter values.

7. Each control logic file will contain logical AND, OR

and NOT logic operators.

Implement and flash slave control logic interpreter

sub-routines onto the master controller.

8. Load developed JSON control logic files onto SD

card.

9. Load developed configuration file schema onto SD

card.

10. Mount SD card into slave controller board and turn

power on to the controller circuit.

11. Unit test log files record run time errors.

12. HMI interface flashing indicates all control logic files

parsed, log files stored to SD card and SD card

unmounted from file system.

Power off slave controller and eject SD card from

controller.

13. Store generated JSON log files onto local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

68

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• Unit test log files record logic expression constructed

for each progression logic stage.

• Unit test log files record system context at each

progression logic stage.

• Unit test log files record system context parameter

values during interpreter evaluation.

• Unit test log files record internal data structures

which store control logic expressions and parameters

for each progression logic stage.

• Unit test log files record internal data structures

which store control logic parameters for each

progression logic stage.

• Unit test log files record outcome of logic expression

evaluation at each progression logic stage.

• Unit test log files record errors caused by invalid

control logic files.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 15: Unit Test UT17

Test Case ID UT17

Relevant Test
Objective

• Slave controller JSON control logic state manager.

Test Steps 1. Develop valid control logic JSON files which conform

to schema.

69

2. First control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Only discrete digital input

values.

3. Second control logic file contains sequential logic

which contains multiple peripheral logic operations at

each progression logic stage. Only discrete digital

input values.

4. Third control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input parameter values.

5. Forth control logic file contains sequential logic which

contains multiple peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input parameter values.

6. Fifth control logic file contains hybrid logic paths

which contains multiple peripheral logic operations at

each progression logic stage. Analog, discrete and

encoded input parameter values.

7. Each control logic file will contain logical AND, OR

and NOT logic operators.

8. Implement and flash slave control logic state

manager sub-routines onto the master controller.

9. Load developed JSON control logic files onto SD

card.

10. Load developed configuration file schemas onto SD

card.

11. Mount SD card into slave controller board and turn

power on to the controller circuit.

12. HMI interface flashing indicates all control logic files

parsed, log files stored to SD card and SD card

unmounted from file system.

70

13. Power off slave controller and eject SD card from

controller.

14. Store generated JSON log files onto local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• Unit test log files record system context of slave

controller at each progression logic stage.

• Unit test log files record system context parameter

values of relevant slave controller peripherals for the

current control logic progression stage.

• Unit test log files record internal data structures

which store control logic expressions and parameters

for each progression logic stage.

• Unit test log files record outcome of logic expression

evaluation at each progression logic stage.

• Unit test log files record system state and context

transitions.

• Unit test log files record errors caused by invalid

control logic files.

• Unit test log files record run time errors.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

71

Table 16: Unit Test UT18

Test Case ID UT18

Relevant Test
Objective

• Slave controller JSON control logic action dispatcher.

Test Steps 1. Load onto SD card the configuration file schema

necessary for configuration.

2. Develop valid control logic JSON files which conform

to master control logic schema.

3. First control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Only discrete digital input

values.

4. Second control logic file contains sequential logic

which contains multiple peripheral logic operations at

each progression logic stage. Only discrete digital

input values.

5. Third control logic file contains sequential logic which

contains single peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input parameter values.

6. Forth control logic file contains sequential logic which

contains multiple peripheral logic operations at each

progression logic stage. Analog, discrete and

encoded input parameter values.

7. Fifth control logic file contains hybrid logic paths

which contains multiple peripheral logic operations at

each progression logic stage. Analog, discrete and

encoded input parameter values.

8. Each control logic file will contain logical AND, OR

and NOT logic operators.

9. Distinct progression logic stages with different

system context profiles.

72

10. Implement and flash slave control logic action

dispatcher sub-routines onto the slave controller.

11. Load developed JSON control logic files onto SD

card.

12. Mount SD card into master controller board and turn

power on to the controller.

13. HMI interface flashing indicates all control logic files

parsed, log files stored to SD card and SD card

unmounted from file system.

14. Store generated JSON file onto local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• Unit test log files record sub-routine calls according

to control system state and triggers.

• Unit test log files record action dispatcher function

calls.

• Unit test log files records JSON files read from SD

card.

• Unit test log files record system state and context

transitions.

• Unit test log files record internal data structures

generated from JSON file parsing.

• Unit test log files record system context at each

progression logic stage.

73

• Unit test log files record system context parameter

values during interpreter evaluation.

• Unit test log files record internal data structures

which store control logic expressions and parameters

for each progression logic stage.

• Unit test log files record outcome of logic expression

evaluation at each progression logic stage.

• Unit test log files record errors caused by invalid

control logic files.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 17: Unit Test UT19

Test Case ID UT19

Relevant Test
Objective

• Master controller communication action dispatcher.

Test Steps 1. Implement and load

master_communication_action_dispatcher sub-

routine for the slave controller.

2. Define command message schemas for master

controller.

3. Load slave controller configuration files and mount

SD card into SD card slot.

4. Power on the master controller.

5. Main function within slave controller simulates

message commands and responses from master

controller.

6. Power off and unmount SD card when HMI is

flashing.

7. Store to local computer for analysis.

74

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 18: Unit Test UT20

Test Case ID UT20

Relevant Test
Objective

• Slave controller communication action dispatcher.

Test Steps 1. Implement and load

slave_communication_action_dispatcher sub-routine

for the slave controller.

2. Define command message schemas for slave

controller.

3. Load slave controller configuration files and mount

SD card into SD card slot.

4. Power on the slave controller.

5. Main function within slave controller simulates

message commands and responses from master

controller.

6. Power off and unmount SD card when HMI is

flashing.

7. Store to local computer for analysis.

75

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 19: Unit Test UT21

Test Case ID UT21

Relevant Test
Objective

• Command message parser.

Test Steps 8. Implement and flash JSON command message

parser subroutine onto the slave master and slave

controllers.

9. Define JSON command message file schema on SD

card storage.

10. Develop master to slave controller command

message data packets which is structured from

defined schema.

11. First command message JSON file is a command

which queries the current logic stage evaluation

request. Contains valid JSON syntax and structure.

12. Second command message JSON file is a command

which queries the current logic stage evaluation

request. Contains invalid JSON syntax and structure.

76

13. Third command message JSON file is a command

which sets current progression logic stage for target

slave controller. Contains valid JSON syntax and

structure.

14. Fourth command message JSON file is a command

which sets current progression logic stage for target

slave controller. Contains invalid JSON syntax and

structure.

15. Develop slave Controller control logic file which is

structured from defined schema.

16. Multiple scales of profiles. Also, some to have invalid

JSON syntax and structure.

17. Develop slave Controller command message files

which is structured from defined schema.

18. Multiple scales of profiles. Also, some to have invalid

JSON syntax and structure.

19. Load master controller configuration file, slave

control logic configuration file and slave

communication profile file schemas to SD card.

20. Load developed JSON files onto SD card.

21. Mount SD card into slave controller board and turn

power on to the controller.

22. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

23. Store generated JSON file onto local personal

computer for analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

• Session management log file:

77

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 20: Unit Test UT23

Test Case ID UT23

Relevant Test
Objective

• Master controller command message interpreter.

Test Steps 1. Implement and flash command_message_interpreter

routine onto the master controller.

2. Define valid command message schema for

command message JSON file.

3. Develop command message UpdatePeripheral,

ConfigStatus and UpdatePeripheral files which

conform to the schema.

4. Format the SD card with the FAT32 file system.

5. Load master command message schema files and

developed command message files onto SD card

storage.

6. Define the expected outcome from generated log

files.

7. Insert SD card storage into the master controller SD

card slot and power on master controller board.

8. HMI interface flashing indicates all configuration files

are parsed, validation is complete, log files are stored

to the SD card, and the SD card is unmounted from

the file system.

78

9. Power off the master controller and eject SD card

storage.

10. Store generated JSON file onto a local personal

computer for document analysis.

Data Collected • Command message schema artefact.

• Unit23.txt stores the routines called in response to

each command message.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 21: Unit Test UT24

Test Case ID UT24

Relevant Test
Objective

• Slave controller command message interpreter.

Test Steps 1. Implement and flash command_message_interpreter

routine onto the slave controller.

2. Define valid command message schema for

command message JSON file.

3. Develop command message UpdatePeripheral,

ConfigStatus and UpdatePeripheral files which

conform to the schema.

4. Format the SD card with the FAT32 file system.

5. Load master command message schema files and

developed command message files onto SD card

storage.

6. Define the expected outcome from generated log

files.

7. Insert SD card storage into the master controller SD

card slot and power on master controller board.

79

8. HMI interface flashing indicates all configuration files

are parsed, validation is complete, log files are stored

to the SD card, and the SD card is unmounted from

the file system.

9. Power off the master controller and eject SD card

storage.

10. Store generated JSON file onto a local personal

computer for document analysis.

Data Collected • Command message schema artefact.

• Unit24.txt stores the routines called in response to

each command message.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

3.2.2. Integration Testing
The tables within the integration testing section outline the integration tests which will

be conducted to evaluate the outcomes and objectives of the escape room control

system. Each integration test tests the interactions between integrated components to

ensure the system components can communicate and respond to each other.

Table 22: Integration Test IT03

Test Case ID IT03

Relevant Test
Objective

Master controller communication action dispatcher and

slave controller communication action dispatcher.

Test Steps

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Methodology test data log file:

80

• Session management log file:

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 23: Integration Test IT04

Test Case ID IT04

Relevant Test
Objective

• Master controller initialisation and slave controller

initialisation.

Test Steps 1. Develop and flash routine to ensure slave controller

initalisation and before master controller completes

initaisation.

2. Develop a configuration JSON file for both master

controller and slave controller.

3. Develop a control_logic JSON file for both master

controller and slave controller.

4. Format SD card with FAT32 file system.

5. Load configuration files onto SD card storage.

6. Define expected outcome from generated log files.

7. Power on master controller board.

8. Power on slave controller board.

9. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

10. Power off master controller and eject SD card

storage.

11. Power off slave controller and eject SD card storage.

81

12. Store generated JSON file onto local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 24: Integration Test IT05

Test Case ID IT05

Relevant Test
Objective

• Master controller initialisation and control logic

engine

Test Steps 1. Develop and flash initalisation and control logic

engine interfacing routines.

2. Develop a master controller configuration JSON file

that is structured from a defined schema with correct

syntax.

3. Develop a master controller control_logic JSON file

that is structured from a defined schema with correct

syntax.

4. Format SD card with FAT32 file system.

5. Load configuration files onto SD card storage.

6. Define expected outcome from generated log files.

7. Power on master controller board.

82

8. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

9. Power off slave controller and eject SD card storage.

10. Store generated JSON file onto local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 25: Integration Test IT06

Test Case ID IT06

Relevant Test
Objective

• Master controller control logic action dispatcher and

communication action dispatcher.

Test Steps 1. Develop and flash control logic action dispatcher and

communication engine action dispatcher interfacing

routines.

2. Develop a master controller configuration JSON file

that is structured from a defined schema with correct

syntax.

3. Develop a master controller control_logic JSON file

that is structured from a defined schema with correct

syntax.

4. Format SD card with FAT32 file system.

5. Load configuration files onto SD card storage.

83

6. Define expected outcome from generated log files.

7. Power on master controller board.

8. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

9. Power off slave controller and eject SD card storage.

10. Store generated JSON file onto local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 26: Integration Test IT07

Test Case ID IT07

Relevant Test
Objective

• Slave controller control logic action dispatcher and

communication action dispatcher.

Test Steps 11. Develop and flash control logic action dispatcher and

communication engine action dispatcher interfacing

routines.

12. Develop a slave controller configuration JSON file

that is structured from a defined schema with correct

syntax.

84

13. Develop a slave controller control_logic JSON file

that is structured from a defined schema with correct

syntax.

14. Format SD card with FAT32 file system.

15. Load configuration files onto SD card storage.

16. Define expected outcome from generated log files.

17. Power on master controller board.

18. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

19. Power off slave controller and eject SD card storage.

20. Store generated JSON file onto local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

3.2.3. System Testing
The tables within the system testing section outline the system tests which will be

conducted to evaluate the outcomes and objectives of the escape room control

system. The system testing assesses the complete system control flow in simulated

operational environment. This will verify the functional requirements of the system

within escape room environments.

85

Table 27: System Test ST01

Test Case ID ST01

Relevant Test
Objective

• Operational escape room purpose test.

Test Steps 1. Design escape room narriative which utilising hybrid

progression paths.

2. Develop control_logic.json and configuration.json

files for master controller and three slave controller

puzzles.

3. Format SD card with FAT32 file system.

4. Load slave controller configuration schema, master

control logic schema and communication profile

schema onto SD card storage.

5. Load slave controller configuration, control logic and

command message JSON files onto SD card

storage.

6. Define expected outcome from generated log files.

7. Format SD cards with FAT32 file system and insert

each SD card into associated controller SD card slot.

8. Power on master controller board.

9. Power on slave controller boards.

10. Manually interact with the puzzle peripheals to

traverse progression logic stages.

11. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

12. Power off controllers and eject SD card storage.

13. Store generated JSON file onto local personal

computer for document analysis.

Data Collected • All unit and integration test log files will be enabled

for logging.

Pass/Fail Criteria Pass

86

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

control system evaluation log file matches expected

outcome defined during implementation.

Table 28: System Test ST02

Test Case ID ST02

Relevant Test
Objective

• Operational escape room user purpose test.

Test Steps 1. Design escape room narriative which utilising hybrid

progression paths.

2. Develop control_logic.json and configuration.json

files for master controller and three slave controller

puzzles.

3. Format SD card with FAT32 file system.

4. Load slave controller configuration schema, master

control logic schema and communication profile

schema onto SD card storage.

5. Load slave controller configuration, control logic and

command message JSON files onto SD card

storage.

6. Define expected outcome from generated log files.

7. Format SD cards with FAT32 file system and insert

each SD card into associated controller SD card slot.

8. Power on master controller board.

9. Power on slave controller boards.

10. Have users manually interact with the puzzle

peripheals to traverse progression logic stages.

11. HMI interface flashing indicates all configuration files

parsed, log files stored to SD card and SD card

unmounted from file system.

12. Power off controllers and eject SD card storage.

87

Store generated JSON file onto local personal computer for

document analysis.

Data Collected • All unit and integration test log files will be enabled

for logging.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

communication dump log file and control system evaluation

log file matches expected outcome defined during

implementation.

3.2.4. Performance Testing
The tables within the performance testing section outline the performance tests which

will be conducted to evaluate the performance characteristics and points of failure for

the outcomes and objectives. The performance tests will establish the limitations of

the system through stress testing.

Table 29: Performance Test PT01

Test Case ID PT01

Relevant Test
Objective

• Operational communication coverage.

• Evaluate and implement appropriate wireless

communication methods, protocols and technologies

for the master and slave controllers.

• Investigate system usability limitations. Analysing

system latency, data rate, loss tolerance, wireless

communication distance and response time.

Test Steps 1. Design and flash

master_communication_coverage_performance sub-

routines onto the master controller device.

2. Design and flash

slave_communication_coverage_performance sub-

routines onto the slave controller device.

88

3. Construct master controller configuration file, control

logic file and command message files and load onto

SD card storage.

4. Construct slave controller configuration file, control

logic file and command message files and load onto

SD card storage.

5. Mount the associated SD card storage into the

master controller and slave controller devices.

6. Position the master controller in the fixed location

behind the internal wall of a house as shown by. The

master controller should be elevated off the floor by 1

meter.

7. Elevate the slave controller 1 meter from the floor at

the first incremental location 1 meter distance from

the master controller.

8. Power on the master controller device.

9. Power on the slave controller device.

10. Both controller devices will execute their

communication coverage performance test routines.

Controller HMI will flash once routines have

completed.

11. If the slave controller distance from the master

controller is less than 30 meters, increment the

distance

Data Collected • PT01.txt: RSSI, connection success, error rate of

validated packets.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

communication dump log file and control system evaluation

log file matches expected outcome defined during

implementation.

89

Table 30: Performance Test PT02

Test Case ID PT02

Relevant Test
Objective

• Operational communication latency.

Test Steps 1. Design and flash

master_communication_latency_performance sub-

routines onto the master controller device.

2. Design and flash slave_communication_ latency

_performance sub-routines onto the slave controller

device.

3. Construct master controller configuration file, control

logic file and command message files and load onto

SD card storage.

4. Construct slave controller configuration file, control

logic file and command message files and load onto

SD card storage.

5. Mount the associated SD card storage into the

master controller and slave controller devices.

6. Position the master controller in the fixed location

behind the internal wall of a house as shown by. The

master controller should be elevated off the floor by 1

meter.

7. Elevate the slave controller 1 meter from the floor

and 1 meter distance from the master controller.

8. Power on the master controller device.

9. Power on the slave controller device.

10. Both controller devices will execute their

communication latency performance test routines.

Controller HMI will flash once routines have

completed.

11. Power off the master controller and eject SD card

storage.

90

12. Store generated JSON file onto a local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• PT02.txt: Timer interrupt value of slave controller

success message.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

communication dump log file and control system evaluation

log file matches expected outcome defined during

implementation.

Table 31: Performance Test PT03

Test Case ID PT03

Relevant Test
Objective

• Concurrent slave controller communication to master

controller performance test.

Test Steps 1. Design and flash

master_concurrent_comm_performance sub-routines

onto the master controller device.

2. Design and flash

slave_concurrent_comm_performance sub-routines

onto the slave controller device.

3. Construct master controller configuration file, control

logic file and command message files and load onto

SD card storage.

91

4. Construct slave controller configuration file, control

logic file and command message files and load onto

SD card storage.

5. Mount the associated SD card storage into the

master controller and slave controller devices.

6. Position the master controller in the fixed location

behind the internal wall of a house as shown by. The

master controller should be elevated off the floor by

one meter.

7. Elevate the each slave controllers one meter from

the floor and one meter distance from the master

controller.

8. Power on the master controller device.

9. Power on the slave controller devices.

10. All controller devices will execute their

communication concurrency performance test

routines. Controller HMI will flash once routines have

completed.

11. Power off the master controller and eject SD card

storage.

12. Store generated JSON file onto a local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

• PT03.txt: Concurrent connections and command

message processing time for local device.

• Communication Dump: The command message files

received and sent by device.

92

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

communication dump log file and control system evaluation

log file matches expected outcome defined during

implementation.

Table 32: Performance Test PT04

Test Case ID PT04

Relevant Test
Objective

• Concurrent control logic evaluation performance test.

Test Steps 1. Design and flash concurrent_logic_performance sub-

routines onto the master controller device.

2. Design and flash concurrent_logic_performance sub-

routines onto the slave controller device.

3. Construct master controller configuration file, control

logic file and command message files and load onto

SD card storage.

4. Construct slave controller configuration file, control

logic file and command message files and load onto

SD card storage.

5. Mount the associated SD card storage into the

master controller and slave controller devices.

6. Position the master controller in the fixed location

behind the internal wall of a house as shown by. The

master controller should be elevated off the floor by

one meter.

7. Elevate the each slave controller one meter from the

floor and one meter distance from the master

controller.

8. Power on the master controller device.

9. Power on the slave controller devices.

93

10. All controller devices will execute their control logic

progression stages through concurrent_performance

test routines. Controller HMI will flash once routines

have completed.

11. Power off the master controller and eject SD card

storage.

12. Store generated JSON file onto a local personal

computer for document analysis.

Data Collected • Sub-routine call log file: Records the sequence of

sub-routines calls.

• Control system error handling log file: Caught run-

time errors.

• PT04: Evaluation time of each progression logic

stage.

• Control system evaluation log file: Outcome of logic

expression evaluation. System context parameters at

time of evaluation.

Pass/Fail Criteria Pass

Sub-routine call log file, control system error handling log

file, methodology call log file, session management log file,

communication dump log file and control system evaluation

log file matches expected outcome defined during

implementation.

96

implementation for the sd_card_interface routine can be found in UT01 - Embedded

Architecture of Master Controller.

The sd_card_init header definition is shown in Source Code Snippet 1: sd_card_init.

The sd_card_init function initalises the SPI bus and configures the SD card for

communication. The FAT filesystem is mounted which enables the file operations. If

either stage fails, the function will deinitalise the SPI bus and return an error.

// Initialise and mount the SD card filesystem.
esp_err_t sd_card_init(void);

Source Code Snippet 1: sd_card_init

The sd_card_write_file function creates the file at the specified path if it doesn’t exist.

Once the file is created, it opens the file in write mode and writes the data parameter

to the file. The file is then closed after writing with an error returned if the file wasn’t

completely wrtten. The sd_card_write_file function definition is shown in Source Code

Snippet 2: sd_card_write_file.

// Write string data to path.
esp_err_t sd_card_write_file(const char *path, const char *data);

Source Code Snippet 2: sd_card_write_file

The sd_card_append_file function appends a null terminated string to the path

specified by the path parameter. The function opens the file in append mode and then

adds the new data to the end of the file. The function will return an error or success

code depending on the operations outcome. The sd_card_append_file definition is

shown in Source Code Snippet 3: sd_card_append_file.

// Append string data to path.
esp_err_t sd_card_append_file(const char *path, const char *data);

Source Code Snippet 3: sd_card_append_file

The sd_card_read_file_dynamic function reads the entire content of the specified file

into a dynamically allocated buffer. The function determines the file size, allocates the

memory to fit the file content and then reads the data from the SD card. The calling

function is then responsible for releasing the buffer memory resources once no longer

required. The sd_card_read_file_dynamic definition is shown in Source Code Snippet

4: sd_card_read_file_dynamic.

// Read file from path. Dynamic allocation in memory for dynamic file sizes.
esp_err_t sd_card_read_file_dynamic(const char *path, char **buffer, size_t
*file_size);

Source Code Snippet 4: sd_card_read_file_dynamic

97

The sd_card_deinit function unmounts the FAT file system and then releases the SPI

bus resources to ensure data is safely written before system shutdown. The

sd_card_deinit definition is shown in Source Code Snippet 5: sd_card_deinit.

// Unmount the SD card filesystem and deinitialise
void sd_card_deinit(void);

Source Code Snippet 5: sd_card_deinit

The test procedure for sd_card_interface routine is outlined within Table 1: Unit Test

UT01. The file content shown within unit01_read.txt was successfully appended to the

unit01.txt log file. This validates that the sd_card_read_dynamic function successfully

retireved the content of unit01_read.txt. SD card initalisation is validated through both

files being operated on by the file system expressions. The resulting content within

unit01.txt log file is shown in Log Artefact 1: unit01.txt. The unit test artefacts and

source code implementation specific to UT01 are shown within in the respective

sections of UT01 - Embedded Architecture of Master Controller. Refer to Table 35:

UT01 outcome matrix for unit test results.

sd_card_init success.

Content of unit01_read.txt

sd_card_append_file success.
Log Artefact 1: unit01.txt

Table 35: UT01 outcome matrix

Test Case Test Description Outcome

Stage 01 SD card init function initalises SPI bus

and mounts file system.

Pass

Stage 02 SD card write function overwrites

specified file content and creates file with

data.

Pass

Stage 03 SD card append file function appends the

data to the end of specified file contet.

Pass

Stage 04 SD card read function reads dynamic file

size to memory buffer.

Pass

98

Stage 05 SD card deinit function deinitalises SPI

bus and unmounts file system.

Pass

The slave controller embedded architecture utilises the same sd_card_interface

routine as the master controller. An additional embedded routine is required for the

slave controller which is peripheral_update. The peripheral_update routine was

implemented with the function definition shown in Source Code Snippet 6:

peripheral_update. The process flow diagram for the peripheral_update routine is

shown in Figure 5: peripheral_update process flow.

// Read or Write to Peripheral GPIO
esp_err_t peripheral_update(UpdateType update_type);

Source Code Snippet 6: peripheral_update

The peripheral_update routine provides a data structure interface for other routines to

access and update the value of specific peripherals. These data structures are shown

in the Source Code Implementation section of UT02 - Embedded Architecture of Slave

Controller. The primary type definition is the PinPeripheral which is accessed by

peripheral_update through it’s PinDirection property. Other control system routines

such as the control logic engine’s action dispatcher and state manage will reference

the PinPeripheral instances through the PeripheralID property key. The PinPeripheral

data structure type definition is shown in Source Code Snippet 7: type definition of

PinPeripheral.

typedef struct PinPeripheral {
 char* PeripheralID;
 int GPIONumber;
 PinDirection PinDirection;
 PinSignalType PinSignalType;
 ValueType PeripheralDataType;
 JsonValue* PeripheralValue;
} PinPeripheral;

Source Code Snippet 7: type definition of PinPeripheral

99

Figure 4: peripheral_update process flow

The test procedure for update_peripheral routine is outlined within Table 2: Unit Test

UT02. The file content shown within unit02.txt demonstrates the routines ability to

execute both read and write operations to the peripheral GPIO pins configured within

the system context array. The main source code file process diagram for the unit test

is shown in UT02 - Embedded Architecture of Slave Controller.

Unit Test 02 - Start

Read: 2 = 124

Read: 10 = true

Write: 22 = false
Log Artefact 2: unit02.txt

100

4.2. Embedded JSON Serialiser
As outlined in methodology section Embedded JSON Serialiser, the embedded JSON

serialiser requires that json_schema_serialiser, get_schema_content routines, and

the JSON schema file be developed to achieve its specifications. As the generated

JSON file can contain multiple data types within property values, the valid data types

were defined within the header file shown in UT03 – Embedded JSON Serialiser. As

seen in Source Code Snippet 8: ValueType definition, the ValueType enumeration

defines the valid data types that can be assigned to JSON properties or internal data

structures. Source Code Snippet 9: JsonValueUnion definition shows the type

definition of JsonValueUnion, which stores the JSON content's value depending on

the selected ValueType within the JsonValue structure.

typedef enum {
 TYPE_INVALID,
 TYPE_INT,
 TYPE_FLOAT,
 TYPE_STRING,
 TYPE_BOOL,
 TYPE_CHAR
} ValueType;

Source Code Snippet 8: ValueType definition

typedef union {
 int int_val;
 float float_val;
 const char* str_val;
 bool bool_val;
 char char_val;
} JsonValueUnion;

Source Code Snippet 9: JsonValueUnion definition

The JsonValue structure type definition then contains the ValueType and

JsonValueUnion for a given JSON content literal. This type definition enables all

routines to have a single, flexible data type for processing various JSON content

values. ValueType declares the data type, and the value is stored within the

JsonValueUnion union. The JsonValue type definition is shown in Source Code

Snippet 10: JsonValue definition

typedef struct {
 ValueType type;
 JsonValueUnion value;
} JsonValue;

Source Code Snippet 10: JsonValue definition

101

The primary functionality of the json_schema_serialiser routine is to ingest a target

JSON schema name, read the schema from SD card storage, traverse it, and generate

a JSON file conforming to it during the process. The json_schema_seraliser can be

called using the function prototype shown in Source Code Snippet 11:

json_schema_seraliser function prototype. The process diagram in Figure 5:

json_schema_serialiser flow diagram shows the routine’s progression.

char* json_schema_serialiser(const char* schema_name);
Source Code Snippet 11: json_schema_seraliser function prototype

Figure 5: json_schema_serialiser flow diagram

The json_schema_seraliser routine has two helper functions: get_terminal_value and

traverse_schema. The traverse_schema helper function is recursive and traverses the

schema's nested structure. Then, depending on the type of property the function

encounters, it will generate the corresponding JSON string and add it to the root_json

object. The root_json object is the starting object from which the resulting JSON file

will be constructed. The base case of the recursive function is when only terminal

properties exist within either an object or array JSON property. When a terminal

102

property is encountered within the schema, the get_terminal_value is called to retrieve

the data content from the correct internal data structure. The get_terminal_value

ingests the schema_name, property_name and object_index parameters to call the

get_schema_content routine. The get_terminal_value retrieves the terminal property’s

value from internal data structures and returns the content within the associated JSON

string. Once the terminal’s JSON string has been returned to traverse_schema, the

terminal property’s string is added to the root_json object.

// Function Prototypes
static cJSON* get_terminal_value(const char* schema_name, const char*
property_name, int object_index);
static bool traverse_schema(cJSON* schema_node, const char* schema_name,
cJSON* json_node, int object_index);

Source Code Snippet 12: json_schema_serialiser helper function prototypes

The get_schema_content routine uses SchemaPropertyMapping structures, which

map schema name, property name and object index tuple to a retrieval function. This

retrieval allows O(n) retrieval of content values specific to the JSON file being

generated. The retrieval functions are organised into sub-routine C files by schema

name, with the header files being included within the get_schema_content C file. This

organisation of retrieval functions keeps the get_schema_content routine to a

maintainable file length. The SchemaPropertyMapping is shown in Figure 7:

SchemaPropertyMapping type definition.

// Function to retrieve content based on schema and property
JsonValue get_schema_content(const char* schema_name, const char*
target_property, int object_index);

Figure 6: get_schema_content function prototype

// Struct for mapping schema and property to retrieval functions
typedef struct {
 const char* schema_name;
 const char* property_name;
 RetrievalFunction function;
} SchemaPropertyMapping;

Figure 7: SchemaPropertyMapping type definition

Table 38: UT03 Outcome Matrix captures the results of each test case for Table 3:

Unit Test UT03. The resulting test artefacts from the unit test cases can be found in

UT03 – Embedded JSON Serialiser.

103

Table 36: UT03 Outcome Matrix

Test Case Test Description Outcome

Schema1.json Validate data type of only terminal

properties.

Pass

Schema2.json Validate object and terminal properties at

same nested level.

Pass

Schema3.json Validate deeply nested objects. Pass

Schema4.json Validate deeply nested arrays and

objects.

Pass

The embedded JSON serialiser and its components are validated according to Table

3: Unit Test UT03, which outlines that multiple JSON schema files are to be developed

to ensure that varying JSON file structures can be generated. The unit test generated

five differing JSON files using five different JSON schemas shown in UT03 –

Embedded JSON Serialiser validated the json_schema_seraliser routine's ability to

generate JSON files containing terminal properties of each data type. The test can be

evaluated as successful when comparing the resulting schema1.json file content

below against the schema definition. The JSON file contains the correct property

names, with the data retrieved by get_schema_content matching the expected data

type and value.

Schema01.json

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Schema1",
 "type": "object",
 "properties": {
 "string_prop": {
 "type": "string",
 "description": "A string property."
 },
 "int_prop": {
 "type": "integer",
 "description": "An integer property."
 },
 "float_prop": {
 "type": "number",
 "description": "A floating-point number property."

104

 },
 "bool_prop": {
 "type": "boolean",
 "description": "A boolean property."
 }
 },
 "required": ["string_prop", "int_prop", "float_prop", "bool_prop"],
 "additionalProperties": false
}

Log Artefact 3: schema1.json

{
 "string_prop": "String Value",
 "int_prop": 1997,
 "float_prop": 19.950000762939453,
 "bool_prop": true
}

Log Artefact 4: schema1_output.json

The schema2.json schema file validates the json_schema_seraliser routine’s ability to

generate JSON files that contain objects and terminal properties at the same nested

level. The test can be evaluated as successful as the property names of the JSON file

align with the schema2.json schema definition. The data contained by each property

also matches the data type and value of the associated retrieval function’s data

structure content.

{
 "parent_prop": {
 "child_string_prop": "Nested String Value",
 "child_int_prop": 123
 },
 "main_float_prop": 45.669998168945312,
 "main_bool_prop": true
}

Log Artefact 5: schema2_output.json

The schema3.json schema file validated the json_schema_seraliser routines ability to

generate JSON files that had deeply nested objects and terminal properties.

{
 "level1_prop": {
 "level1_string_prop": "Level 1 String",
 "level2_prop": {
 "level2_int_prop": 2023,
 "level3_prop": {
 "level3_bool_prop": true,

105

 "level4_prop": {
 "level4_string_prop": "Deeply Nested String",
 "level4_int_prop": 42
 },
 "level3_float_prop": 123.45600128173828
 }
 }
 },
 "root_bool_prop": true
}

Log Artefact 6: schema3_output.json

The schema4.json schema file validated the json_schema_seraliser routine ability to

generate JSON files, which contained arrays with multiple elements, objects and

terminal properties that contained different content values.

{
 "Controllers": [
 {
 "string_prop": "Controller1_String",
 "int_prop": 100,
 "float_prop": 123.44999694824219,
 "bool_prop": true
 },
 {
 "string_prop": "Controller2_String",
 "int_prop": 200,
 "float_prop": 678.9000244140625,
 "bool_prop": false
 }
]
}

Log Artefact 7: schema4_output.json

The schema5.json schema file validated the json_schema_seraliser routine ability to

generate JSON files that contain nested arrays, objects and terminal properties.

{
 "UnitTests": [
 {
 "unit_test_profile": {
 "unit_test_name": "UnitTest1",
 "unit_test_ID": 101,
 "unit_test_state": true
 },
 "unit_test_controller": {
 "controller_role": "Master",
 "controller_ID": 201

106

 },
 "unit_test_log_files": [
 {
 "log_file_name": "LogFile1",
 "log_file_version": 1.1000000238418579,
 "sub_routine": {
 "parameter": "ParameterA",
 "parameter_value": 301
 }
 },
 {
 "log_file_name": "LogFile2",
 "log_file_version": 2.2000000476837158,
 "sub_routine": {
 "parameter": "ParameterB",
 "parameter_value": 302
 }
 }
]
 },
 {
 "unit_test_profile": {
 "unit_test_name": "UnitTest2",
 "unit_test_ID": 102,
 "unit_test_state": false
 },
 "unit_test_controller": {
 "controller_role": "Slave",
 "controller_ID": 202
 },
 "unit_test_log_files": [
 {
 "log_file_name": "LogFile1",
 "log_file_version": 1.1000000238418579,
 "sub_routine": {
 "parameter": "ParameterA",
 "parameter_value": 301
 }
 }
]
 }
]
}

Log Artefact 8: schema5_output.json

The evaluation of each unit test for the embedded JSON serialiser demonstrates the

routine’s ability to generate flexible JSON file structures that conform to a target

107

schema. As outlined by the Pass/Fail criteria within Table 3: Unit Test UT03, the

generated JSON file matches the structure and content within the associated JSON

schema and the generated JSON files were stored in the mounted SD card storage.

Therefore, the embedded JSON schema serialiser operates in isolation according to

its unit test specification.

4.3. Bluetooth BLE Connection Interface
The Bluetooth BLE interface was implemented using the nimBLE ESP-IDF compoents

by Espressif Technologies. The master controller was configured as a BLE central

device, with the slave controllers being set as BLE peripherals. This enabled multiple

bi-directional connections between the master controller and slave controllers to be

managed. The examples at the below ESP-IDF directories were implemented for the

BLE interface and provided the necessary functions.

${IDF_PATH}/examples/bluetooth/nimble/ble_multi_conn/ble_multi_conn_cent
${IDF_PATH}/examples/bluetooth/nimble/blecent
${IDF_PATH}/examples/bluetooth/nimble/bleprph

The example source files make use of the nimBLE framework component provided by

the ESP-IDF v5.3.1 found and were added to the project by including the below

component into the CmakeList.txt file.

${IDF_PATH}/components/bt

Table 4: Unit Test UT04 outlines the test cases in which the Bluetooth BLE interface

must pass in order to meet the objectives and outcome of a robust communication

method tailored for master-slave data transfer. The resulting outcome from each test

case in the unit test is shown in Table 37: UT04 Outcome Matrix.

Table 37: UT04 Outcome Matrix

Test Case Test Description Outcome

1 Master controller establishes communication with

one slave controller.

Pass

2 Master controller transfer JSON file to slave

controller 01.

Pass

108

3 Master controller handles multiple BLE

connections.

Pass

4 Master controller transfers JSON file to specific

slave controller 02 with multiple connections.

Pass

5 Master controller disconnects from specific slave

controller 02 while managing multiple connections.

Pass

The resulting CommunicationDump.txt log file for the master controller is shown in Log

Artefact 9: Master BLE CommunicationDump.txt. This log file captures the

communication events which occurred during the unit test and demonstrates that the

master controllres ability to reliably manage multiple connections with slave

controllres.

MasterController – CommunicationDump.txt
Connect to SlaveController01
Connection Established with SlaveController01
Transfer json_message01.json to SlaveController01
Connect to SlaveController02
ConnectionEstablished with SlaveController02
Connect to SlaveController03
ConnectionEstablished with SlaveController03
Disconnect SlaveController01
Transfer json_message02.json to SlaveController02
Transfer json_message03.json to SlaveController03
Disconnect SlaveController02
Disconnect SlaveController03

Log Artefact 9: Master BLE CommunicationDump.txt

The resulting CommunicationDump.txt log file for each slave controller in the unit test

are shown in Log Artefact 10: Slave01 BLE Communication Dump.txt, Log Artefact 11:

Slave02 BLE CommunicationDump.txt and Log Artefact 12: Slave03

CommunicationDump.txt. The log file for each slave controller captures the

communication events which occurred during the unit test and demonstrates that the

slave controllres ability to reliably respond to master controller BLE interface events.

SlaveController01 - CommunicationDump.txt
Connection Request with Master
Connection Established with Master
Transfer ack_payload.json to Master
MessagePayload: { "Message": "SlaveCtrl01" }
Disconnect Master

Log Artefact 10: Slave01 BLE Communication Dump.txt

109

SlaveController02 - CommunicationDump.txt
Connection Request with Master
Connection Established with Master
Transfer ack_payload.json to Master
MessagePayload: { "Message": "SlaveCtrl02" }
Disconnect Master

Log Artefact 11: Slave02 BLE CommunicationDump.txt

SlaveController03 - CommunicationDump.txt
Connection Request with Master
Connection Established with Master
Transfer ack_payload.json to Master
MessagePayload: { "Message": "SlaveCtrl03" }
Disconnect Master

Log Artefact 12: Slave03 CommunicationDump.txt

The evaluation of each unit test for the Bluetooth BLE interface demonstrates the

routine’s ability to manage multiple BLE connection instances and allow bi-directional

transfer of JSON files. As outlined by the Pass/Fail criteria within Table 4: Unit Test

UT04, the Bluetooth BLE interface operates as expected in isolation according to it’s

unit test specifications.

4.4. Master Controller Configuration
The master controller configuration engine is responsible for initalising the master

controller’s system context and ensuring the slave controller’s have all successfully

been configured before the first progression logic stage is loaded. Table 5: Unit Test

UT05 outlines the test cases in which the master configuration parser must pass in

order to meet the objectives and outcome of serperation of hardware and software

implementation through configuraiton files and a sclable internal representation

session system context profiles. The resulting outcome from each test case in the unit

test is shown in Table 38: UT05 outcome matrix.

Table 38: UT05 outcome matrix

Test Case Test Description Outcome

Stage 01 Creation of system context strucutres. Pass

Stage 02 Configuration file loaded from SD card. Pass

Stage 03 Device profiles constructed from master_config.json Pass

110

Table 6: Unit Test UT07 outlines the test cases in which the master configuration

interpreter must pass in order to meet the objectives and outcome of serperation of

hardware and software implementation through configuraiton files and a sclable

internal representation session system context profiles. The resulting outcome from

each test case in the unit test is shown in Table 39: UT07 outcome matrix.
Table 39: UT07 outcome matrix

Test Case Test Description Outcome

Stage 01 The master_config.json parsed into DeviceProfiles

system context. ConfigurationStatus set to true for

all DeviceProfiles.

Pass

Stage 02 Each DeviceProfile within DeviceProfiles has

DeviceProfile.ConfigurationStatus checked if true.

Pass

Stage 03 Outcome of configuration check returned true Pass

4.5. Slave Controller Configuration
Table 7: Unit Test UT08 outlines the test cases in which the slave controller’s

configuration parser must pass in order to meet the objectives and outcomes. The

resulting outcome from each test case in the unit test is shown in Table 40: UT08

outcome matrix.

Table 40: UT08 outcome matrix

Test Case Test Description Outcome

Stage 01 Creation of system context strucutres. Pass

Stage 02 Configuration file loaded from SD card. Pass

Stage 03 The slave_config.json parsed into DeviceProfiles

and PinPeripherals system context structures.

Pass

Table 8: Unit Test UT10 outlines the test cases in which the slave configuration

interpreter must pass in order to meet the objectives and outcomes. The resulting

outcome from each test case in the unit test is shown in Table 41: UT10 outcome

matrix.

111

Table 41: UT10 outcome matrix

Test Case Test Description Outcome

Stage 01 The slave_config.json parsed into DeviceProfiles

and PinPeripherals system context.

Pass

Stage 02 update_peripheral routine initalises

PinPeripheral.PeripheralValue for each in

PinPeripherals

Pass

Stage 03 Outcome of configuration check returned true Pass

Stage 04 DeviceProfile.ConfigurationStatus set to outcome Pass

4.6. Master Controller’s Control Logic Engine
The master controller’s control logic engine is responsible for evaluating control logic

expression outcomes for all slave controller devices relevant to the current progression

logic stage. The control_logic_parser routine is responsible for parsing the

control_logic_config.json file into the internal data structures for efficeient

management of the current progression logic stage. The function definition for the

master controller’s control_logic_parser is shown in Source Code Snippet 14: master

control_logic_parser prototype. The control_logic_parser ingests a pointer

refereencing the root cJSON representation of the current progression logic stage.

// Master control logic parser prototype definition.
bool control_logic_parser(cJSON* json_root);

Source Code Snippet 13: master control_logic_parser prototype

The control logic parser then follows the abstracted process diagram outlined in Figure

8: master control logic parser abstracted process diagram. The complete source code

for control_logic_parser routine is found in UT11 - Master Controller’s Control Logic

Engine Parser.

112

Figure 8: master control logic parser abstracted process diagram

The control_logic_parser routine has two additional helper routines;

traverse_expression and create_instruction_stack. The traverse_expression routine

recuresivly traverses the nested JSON expression structure and constructs the an

expression tree from ExpressionNode and ExpressionOperand structures. This is

shown in Figure 9: traverse_expression process diagram.

113

Figure 9: traverse_expression process diagram

Both ExpressionNode and ExpressionOperand are shown within

control_logic_parser.h in UT11 - Master Controller’s Control Logic Engine Parser. The

expression tree is constructed from nested ExpressionNode structures which have a

114

disjoint union between it’s two types of either NODE_OPERATOR or

NODE_OPERAND. The relational model of this structure is shown in Figure 10:

ExpressionNode relationship to sub-types. The design decision to declare

OperandData and OperatorData subtype definitions within union of ExpressionNode.

Reduces memory fragmentation, footprint and management for each

ExpressionNode. The OperandData and OperatorData structures only exist during the

lifecycle of the ExpressionNode. Therefore, they can their memory allocation can be

released when the associated ExpressionNode is also released.

Figure 10: ExpressionNode relationship to sub-types

The OperandValue within the OperandData sub-type is a pointer to the pointer value

of the ExpressionOperand structure’s OperandValue propoerty. This decision was

made since the memory resources of ExpressionNode structures are released once

the RPN instruction stack is generated by the create_intstruction_stack helper

function. The OperandData passes the memory location of the ExpressionOperand’s

OperandValue property so that the generated instruction operand value persits

beyond the lifecycle of the ExpressionNode. The create_instruction_stack helper

function implements post-order traversal to generate an array of Instruction structures

which represent the expression tree in reverse polish notation. This keeps the nested

JSON expressions precedence and associativity and enables the Instruction stack to

be sequentally processed to evaluate the LogicExpression structure. The

ExpressionNode parses the memory location of the OperandValue property in the

115

ExpressionOperand structure. This allows the control_logic_interpreter to directly

reference the value within the relevant expression operand structure. The

ExpressionOperand structure is then updated by the control logic state manager when

operand changes occur within the slave controllers. The relationship diagram in Figure

11: expression structure relationships shows the entity definitions of each of these

structures.

Figure 11: expression structure relationships

Once the nested JSON expression has been parsed into it’s LogicExpression

structure, it is then contained within either a PeripheralLogicExpression or

TransitionLogicExpression structure. As shown within Figure 8: master control logic

parser abstracted process diagram, the PeripheralLogicExpression structures are

generated before the TransitionLogicExpression structures as the outcome of the

PeripheralLogicExpression structures become the ExpressionOperands for the

TransitionLogicExpression instructions. The control_logic_parser routine constructs

an array of Action structures for each PeripheralLogicExpression. The relationship

between the structures for PeripheralLogicExpression and TransitionLogicExpression

are shown in Figure 12: Logic expression containing structures.

116

Figure 12: Logic expression containing structures

A representation of a nested JSON expression structure is shown within Source Code

Snippet 15: Nested JSON expression representation.

// (A AND ((B >= B.ReferenceConstant) OR (C < D)) AND E)
{
 // The expression ID of the new expression
 "ExpressionID": "SlidersAndButton",
 "Operator": "AND",
 "Operands": [
 {
 "ControllerID": [String],
 "PeripheralID": [String],
 "ExpressionID": String,
 "PeripheralType": String,
 "OperandDataType": String,
 "ReferenceConstant": [Number, String, Boolean, Array, Object, Null]
 },
 {
 "Operator": "OR",
 "Operands": [
 {
 "Operator": "GTE",
 "Operands": [
 {
 "ControllerID": String,

117

 "PeripheralID": String,
 "ExpressionID": String,
 "PeripheralType": String,
 "OperandDataType": String,
 "ReferenceConstant": [Number, String, Boolean, Array,
Object, Null]
 }
]
 },
 {
 "Operator": "LT",
 "Operands": [
 {
 "ControllerID": String,
 "PeripheralID": String,
 "ExpressionID": String,
 "PeripheralType": String,
 "OperandDataType": String,
 "ReferenceConstant": [Number, String, Boolean, Array,
Object, Null]
 },
 {
 "ControllerID": String,
 "PeripheralID": String,
 "ExpressionID": String,
 "PeripheralType": String,
 "OperandDataType": String,
 "ReferenceConstant": [Number, String, Boolean, Array,
Object, Null]
 }
]
 }
]
 },
 {
 "ControllerID": String,
 "PeripheralID": String,
 "ExpressionID": String,
 "PeripheralType": String,
 "OperandDataType": String,
 "ReferenceConstant": [Number, String, Boolean, Array, Object,
Null]
 }
]
 }

Source Code Snippet 14: Nested JSON expression representation

118

Table 9: Unit Test UT11 outlines the test cases in which the control logic parser routine

must pass in order to meet the objectives and outcomes for the hybrid control system.

The test cases are outlined within Table 42: UT11 test case.
Table 42: UT11 test case outcomes

Test Case Test Description Outcome

Stage 01 System context structure DeviceProfiles,

ExpressionOperands, PeripheralLogicExpressions and

TransitionLogicExpressions memory released.

Pass

Stage 02 JSON progression logic stage DeviceProfiles parsed

into DeviceProfiles system context structure.

Pass

Stage 03 JSON progression logic stage

PeripheralLogicExpressions pared into and

ExpressionOperands and system context

PeriphralLogicExpressions structure.

Pass

Stage 04 JSON progression logic stage

TransitionLogicExpressions pared into system context

TransitionLogicExpressions structure.

Pass

The control_logic_interpreter routine is the component within the control logic engine

which evaluates the LogicExpressions generated by the control_logic_parser. The

control logic interpreter routine contain the evaluate_expresion helper function which

is shown in Source Code Snippet 15: evaluate_expression helper function.

bool evaluate_expression(const LogicExpression* expression);
Source Code Snippet 15: evaluate_expression helper function

The evaluate_expression helper function ingests a target LogicExpression structure

and then sequentially executes the instruction OpCodes which either loads operands

to the stack or evaluates operands against the instruction OpCode.

Table 10: Unit Test UT12 outlines the test cases in which the control logic interpreter

routine must pass in order to meet the objectives and outcome of a control system

capable of hybrid progrssion logic. The test cases are outlined within Table 43: UT12

test case outcomes.

119

Table 43: UT12 test case outcomes

Test Case Test Description Outcome

Stage 01 Correct evalution of PeripheralLogicExpression with flat

logic with OP_AND, OP_OR.

Pass

Stage 02 Correct evalution of PeripheralLogicExpression with

nested logic with OP_AND, OP_OR, OP_NOT and

OP_IDENTITY operands.

Pass

Stage 03 Correct evalution of TransitionLogicExpression with flat

logic with OP_AND and OP_OR.

Pass

Stage 04 Correct evalution of TransitionLogicExpression with

nested logic with OP_AND, OP_OR, OP_NOT and

OP_IDENTITY operands.

Pass

Table 12: Unit Test UT14 outlines the test cases in which the master controller’s

control logic action dispatcher must pass in order to meet the objectives and

outcomes. The resulting outcome from each test case in the unit test is shown in Table

44: UT13 outcome matrix.

Table 44: UT13 outcome matrix

Test Case Test Description Outcome

Stage 01 ActionSequence containing PeripheralUpdate

commands from PeripheralLogicExpression sequentially

call communication action dispatcher with Action

reference.

Pass

Stage 02 StageComplete Action calls communication action

dispatcher with Action reference.

Pass

Stage 03 StageUpdate Action calls communication action

dispatcher with Action reference.

Pass

Table 11: Unit Test UT13 outlines the test cases in which the master controller’s

control logic state manager must pass in order to meet the objectives and outcomes.

The resulting outcome from each test case in the unit test is shown in Table 45: UT13

outcome matrix.

120

Table 45: UT13 outcome matrix

Test Case Test Description Outcome

Stage 01 Updates ExpressionOperand instances according to

system context.

Pass

Stage 02 Iteratively evaluates each

PeripheralLogicExpression within system context

structure PeripheralLogicExpressions.

Pass

Stage 03 Iteratively evaluates each

TransitionLogicExpression within system context

structure TransitionLogicExpressions.

Pass

Stage 04 TransitionLogicExpression evaluation with outcome

of true sets next progression logic stage.

Pass

Stage 05 TransitionLogicExpression evaluation with outcome

of true sets next progression logic stage.

Pass

Stage 06 TransitionLogicExpression evaluation with outcome

of true reads next progression logic stage JSON

object from SD card.

Pass

Stage 07 Next progression logic stage updates

ProgressionStage system context structure.

Pass

Stage 08 Next progression logic stage JSON object is called

by reference to control_logic_parser.

Pass

4.7. Slave Controller’s Control Logic Engine
The slave controller’s logic expressions are categorised into sequence logic

expressions and peripheral logic expressions. Both of these categories have operands

which reference the state of pin peripherals or virtual peripherals associated with the

current progression logic stage. As some user interactions may require the input be

captured sequentially or converted into another data type, the virtual peripherals

function as a buffer data structure to store the result of sequential actions. Table 13:

Unit Test UT15 outlines the test cases in which the slave controller’s control logic

parser must pass in order to meet the objectives and outcomes. The resulting outcome

from eachs test case in the unit test is shown in Table 46: UT15 outcome matrix.

121

Table 46: UT15 outcome matrix

Test Case Test Description Outcome

Stage 01 System context structure VirtualPeripherals,

SequenceLogicExpressions and

PeripheralLogicExpressions memory released.

Pass

Stage 02 JSON progression logic stage

PeripheralLogicExpressions pared into

VirtualPeripherals and the system context structure

PeriphralLogicExpressions.

Pass

Stage 03 JSON progression logic stage

SequenceLogicExpressions pared into

ActionSequence and system context

SequenceLogicExpressions structure.

Pass

Table 14: Unit Test UT16 outlines the test cases in which the slave controller’s control

logic interpreter must pass in order to meet the objectives and outcomes. The resulting

outcome from each test case in the unit test is shown in Table 47: UT16 outcome

matrix.

Table 47: UT16 outcome matrix

Test Case Test Description Outcome

Stage 01 Correct evalution of SequenceLogicExpression with

flat logic with OP_AND, OP_OR.

Pass

Stage 02 Correct evalution of SequenceLogicExpression with

nested logic with OP_AND, OP_OR, OP_NOT,

OP_IDENTITY, OP_EQ, OP_NEQ, OP_GT,

OP_GTE, OP_LT, OP_LTE operands.

Pass

Stage 03 Correct evalution of SequenceLogicExpression with

flat logic with OP_AND and OP_OR.

Pass

Stage 04 Correct evalution of SequenceLogicExpression with

nested logic with OP_AND, OP_OR, OP_NOT,

OP_IDENTITY, OP_EQ, OP_NEQ, OP_GT,

OP_GTE, OP_LT, OP_LTE operands.

Pass

122

Table 16: Unit Test UT18 outlines the test cases in which the slave controller’s control

logic action dispatcher must pass in order to meet the objectives and outcomes. The

resulting outcome from each test case in the unit test is shown in Table 48: UT18

outcome matrix.

Table 48: UT18 outcome matrix

Test Case Test Description Outcome

Stage 01 ActionSequence containing VPUpdate Actions from

SequenceLogicExpressions call iteratively

update_virtual_peripheral helper function.

Pass

Stage 02 Action containing OP_WRITE operation overwrites

the VirtualPeripheral.PeripheralValue with

Action.ActionValue.

Pass

Stage 03 Action containing OP_APPEND operation appends

Action.ActionValue to the end of the target

VitrualPeripheral.PeripheralValue.

Pass

Stage 04 Action containing OP_CLEAR operation clears the

the target VitrualPeripheral.PeripheralValue to

default value.

Pass

Table 17: Unit Test UT19 outlines the test cases in which the slave controller’s control

logic state manager must pass in order to meet the objectives and outcomes. The

resulting outcome from each test case in the unit test is shown in Table 49: UT19

outcome matrix.
Table 49: UT19 outcome matrix

Test Case Test Description Outcome

Stage 01 Calls peripheral_update routine to enqueue lastest

peripheral values.

Pass

Stage 02 Iteratively evaluates each

SequenceLogicExpression within system context

structure SequenceLogicExpressions.

Pass

123

Stage 03 Calls control_logic_action_dispatcher routine for

each SequenceLogicExpression which evaluates to

true.

Pass

Stage 04 Iteratively evaluates each

PeripheralLogicExpression within system context

structure PeripheralLogicExpressions.

Pass

Stage 05 Set ProgressionStage.UpdateMaster to true if

PeripheralLogicExpression outcome evalutes to

true.

Pass

Stage 06 Update to progression logic stage ID in

ProgressionStage.StageID reads next progression

logic stage JSON object from SD card.

Pass

Stage 07 Calls control_logic_parser with progression logic

stage JSON object.

Pass

Stage 08 ProgressionStage system context structure

assigned ProgressionStage.Configured once

progression logic stage is parsed by

control_logic_parser.

Pass

4.8. Communication Engine
Table 17: Unit Test UT19 outlines the test cases in which the master controller’s

communication action dispatcher must pass in order to meet the objectives and

outcomes. The resulting outcome from each test case in the unit test is shown in Table

50: UT19 outcome matrix.
Table 50: UT19 outcome matrix

Test Case Test Description Outcome

Stage 01 PeripheralUpdate Action from

control_logic_action_dispatcher constructs

PeripheralUpdate command message in

json_schema_serialiser.

Pass

Stage 02 StageComplete Action from

control_logic_action_dispatcher constructs

Pass

124

StageComplete command message in

json_schema_serialiser.

Stage 03 StageUpdate Action from

control_logic_action_dispatcher constructs

StageUpdate command message in

json_schema_serialiser.

Pass

Stage 04 ConfigStatus Action from configuration_interpreter

constructs ConfigStatus command message in

json_schema_serialiser.

Pass

Stage 05 Dispatches command message returned from

json_schema_serliaser to ble_interface with target

ControllerID.

Pass

Stage 06 Prioritises ranking of CommandMessage structure

on CommandMessageQueue with ControllerID.

Fail

Stage 07 The priority ranking of CommandMessages on

CommandMessageQueue is StageComplete,

StageUpdate, PeripheralUpdate.

Fail

Stage 08 Update ExpressionOperands with parsed

UpdateOutcome command message.

Pass

Stage 09 Update DeviceProfile.ConfigurationStatus with

parsed ConfigStatus command message.

Pass

Stage 10 Store processed CommandMessage to SD card

storage CommunicationDump log file.

Pass

Table 18: Unit Test UT20 outlines the test cases in which the slave controller’s action

dispatcher must pass in order to meet the objectives and outcomes. The resulting

outcome from each test case in the unit test is shown in Table 51: UT20 outcome

matrix.

Table 51: UT20 outcome matrix

Test Case Test Description Outcome

Stage 01 ConfigStatus Action construct ConfigStatus

command message in json_schema_serlialiser.

Pass

125

Stage 02 UpdateOutcome Action from

control_logic_action_dispatcher constructs

UpdateOutcome command message in

json_schema_serlialiser.

Pass

Stage 03 Dispatches command message returned from

json_schema_serliaser to ble_interface with target

ControllerID.

Pass

Stage 04 Prioritises ranking of CommandMessage structure

on CommandMessageQueue with ControllerID.

Fail

Stage 05 The priority ranking of CommandMessages on

CommandMessageQueue is StageComplete,

StageUpdate, PeripheralUpdate.

Fail

Stage 06 Update PinPeripheral.PeripheralValue for pin

peripherals configured with DIRECTION_OUTPUT

when UpdatePeripheral command message parsed.

Pass

Stage 07 Update ProgressionStage.StageComplete in system

context structure when StageComplete Action

parsed.

Pass

Stage 08 Update ProgressionStage.StageID in system

context structure when StageUpdate Action parsed.

Pass

Stage 09 Store processed CommandMessage to SD card

storage CommunicationDump log file.

Pass

Table 19: Unit Test UT21 outlines the test cases in which the master controllers

message parser must pass in order to meet the objectives and outcomes. The

resulting outcome from each test case in the unit test is shown in Table 52: UT21

outcome matrix.
Table 52: UT21 outcome matrix

Test Case Test Description Outcome

Stage 01 Parse ConfigStatus command message into

CommandMessage structure.

Pass

Stage 02 Parse UpdateOutcome command message into

CommandMessage structure.

Pass

126

Table 19: Unit Test UT21 outlines the test cases in which the slave controller’s

command message parser must pass in order to meet the objectives and outcomes.

The resulting outcome from each test case in the unit test is shown in Table 53: UT21.2

outcome matrix.

Table 53: UT21.2 outcome matrix

Test Case Test Description Outcome

Stage 01 Parse UpdatePeripheral command message into

CommandMessage structure.

Pass

Stage 02 Parse StageComplete command message into

CommandMessage structure.

Pass

Stage 03 Parse StageUpdate command message into

CommandMessage structure.

Pass

Stage 04 Parse ConfigStatus command message into

CommandMessage structure.

Pass

Table 20: Unit Test UT23 outlines the test cases in which the master controller’s

command message interpreter must pass in order to meet the objectives and

outcomes. The resulting outcome from each test case in the unit test is shown in Table

54: UT23 outcome matrix.

Table 54: UT23 outcome matrix

Test Case Test Description Outcome

Stage 01 ConfigStatus CommandMessage structure maps to

the sub-routine update_config_status in

command_action_dispatcher.

Pass

Stage 02 UpdateOutcome CommandMessage structure maps

to the sub-routine update_operands in

command_action_dispatcher.

Pass

Table 21: Unit Test UT24 outlines the test cases in which the slave controller’s

command message interpreter must pass in order to meet the objectives and

127

outcomes. The resulting outcome from each test case in the unit test is shown in Table

55: UT24 outcome matrix.

Table 55: UT24 outcome matrix

Test Case Test Description Outcome

Stage 01 UpdatePeripheral CommandMessage structure

maps to the sub-routine update_peripheral_output

in command_action_dispatcher.

Pass

Stage 02 StageComplete CommandMessage structure maps

to the sub-routine update_stage_complete in

command_action_dispatcher.

Pass

Stage 03 StageUpdate CommandMessage structure maps to

the sub-routine update_stage_id in

command_action_dispatcher.

Pass

4.9. Master Controller and Slave Controller Communication Engine
Table 22: Integration Test IT03 outlines the test cases in which the master controller

and slave controller’s communication engine integration must pass in order to meet

the objectives and outcomes. The resulting outcome from each test case in the unit

test is shown in Table 56: IT03 outcome matrix.

Table 56: IT03 outcome matrix

Test Case Test Description Outcome

Stage 01 Master controller establishes BLE connection with

slave controller.

Pass

Stage 02 Master controller sends UpdatePeripheral to slave

controller. The slave controller’s

command_action_dispatcher calls

update_peripheral_output helper function.

Pass

Stage 03 Master controller sends StageComplete to slave

controller. The slave controller’s

command_action_dispatcher calls

update_stage_complete helper function.

Pass

128

Stage 04 Master controller sends StageUpdate to slave

controller. The slave controller’s

command_action_dispatcher calls update_stage_id

helper function.

Pass

Stage 05 Master controller sends ConfigStatus to slave

controller. The slave controlller’s

command_action_dispatcher calls

get_config_status helper function.

Pass

Stage 06 Slave controller sends ConfigStatus to master

controller. The master controller’s

command_action_dispatcher calls

get_config_status helper function.

Pass

Stage 07 Slave controller sends UpdateOutcome to master

controller. The master controller’s

command_action_dispatcher calls update_operands

helper function.

Pass

4.10. Master Controller Initialisation and Slave Controller Initialisation
Table 23: Integration Test IT04 outlines the test cases in which the master controller’s

initalisation and slave controller’s initalisation integration must pass in order to meet

the objectives and outcomes. The resulting outcome from each test case in the unit

test is shown in Table 57: IT04 outcome matrix.
Table 57: IT04 outcome matrix

Test Case Test Description Outcome

Stage 01 The master_config.json file is parsed into

DeviceProfiles system context structure.

Pass

Stage 02 Each slave controller parses the slave_config.json

file into DeviceProfiles and PinPeripherals system

context structure.

Pass

Stage 03 Master controller establishes connection with three

slave controller devices within DeviceProfiles.

Pass

Stage 04 Master controller configuration_interpreter routine

sequentially sends ConfigStatus to each slave

Pass

129

controller until all DeviceProfile.ConfigurationStatus

is true on master controller’s DeviceProfiles.

Stage 05 Slave controller command_action_dispatcher calls

get_config_status and sends ConfigStatus

command message to master controller.

Pass

Stage 06 Master controllers command_action_dispatcher

calls update_config_status helper function with

slave controller’s configuraiton outcome.

Pass

4.11. Master Controller’s Configuration Engine and Control Logic
Engine Integration

Table 24: Integration Test IT05 outlines the test cases in which the master controller’s

configuration engine and control logic engine integration must pass in order to meet

the objectives and outcomes. The resulting outcome from each test case in the unit

test is shown in Table 58: IT05 outcome matrix.

Table 58: IT05 outcome matrix

Test Case Test Description Outcome

Stage 01 The master_config.json file is parsed into

DeviceProfiles system context structure.

Pass

Stage 02 Each slave controller parses the slave_config.json

file into DeviceProfiles and PinPeripherals system

context structure.

Pass

Stage 03 Master controller establishes connection with three

slave controller devices within DeviceProfiles.

Pass

Stage 04 Master controller establishes connection with three

slave controller devices within DeviceProfiles.

Pass

Stage 05 Master controller configuration_interpreter routine

sequentially sends ConfigStatus to each slave

controller until all DeviceProfile.ConfigurationStatus

is true on master controller’s DeviceProfiles.

Pass

130

Stage 06 Slave controller command_action_dispatcher calls

get_config_status and sends ConfigStatus

command message to master controller.

Pass

Stage 07 Master controllers command_action_dispatcher

calls update_config_status helper function with

slave controller’s configuraiton outcome.

Pass

Stage 08 Master controller’s main routine calls

control_logic_state_manager with

DeviceProfile.ConfigurationStatus = true and

ProgressionStage.StageID = 0.

Pass

Stage 09 Master controller’s control_logic_state_manager

reads control_logic.json from SD card.

Pass

Stage 10 Mater controller parses and configures progression

logic stage with StageID = 0.

Pass

4.12. Master Controller’s Control Logic Engine and Communication
Engine Integration

Table 25: Integration Test IT06 outlines the test cases in which the master controller’s

control logic engine and communication engine integration must pass in order to meet

the objectives and outcomes. The resulting outcome from each test case in the unit

test is shown in Table 59: IT06 outcome matrix.

Table 59: IT06 outcome matrix

Test Case Test Description Outcome

Stage 01 Master control logic state manager calls

control_logic_parser to parse current progression

logic stage from control_logic.json. DeviceProfiles,

ExpressionOperands, PeripheralLogicExpressions,

TransitionLogicExpression and ProgressionStage

system context structures populated with correct

objects.

Pass

131

Stage 02 Master controller’s state manager calls

command_action_dispatch routine for StageUpdate

CommandMessage.

Pass

Stage 03 Master controller’s command action dispatcher

sequentially sends StageUpdate

CommandMessage to each slave controller in

DeviceProfiles system context.

Pass

Stage 04 The UpdatePeripheral CommandMessage from

each slave controller is received and updates

ExpressionOperands system context.

Pass

Stage 05 Master controller’s state manager calls

control_logic_interpreter with transition logic

expression evaluation true.

Pass

Stage 06 Master controller’s state manager calls

command_action_dispatcher routine for

StageComplete.

Pass

Stage 07 Master controller’s command_action_dispatcher

sequentially sends StageComplete

CommandMessage to each slave controller in

DeviceProfiles system context.

Pass

4.13. Slave Controller’s Control Logic Engine and Communication
Engine Integration

Table 26: Integration Test IT07 outlines the test cases in which the slave controller’s

control logic engine and communication engine integration must pass in order to meet

the objectives and outcomes. The resulting outcome from each test case in the unit

test is shown in Table 60: IT07 outcome matrix.
Table 60: IT07 outcome matrix

Test Case Test Description Outcome

Stage 01 Slave control logic state manager calls

control_logic_parser to parse current progression

logic stage from control_logic.json. PinPeripherals,

Pass

132

PeripheralLogicExpressions,

SequenceLogicExpressions and ProgressionStage

system context structures populated with correct

objects.

Stage 02 Master controller’s state manager calls

peripheral_update routine and begin evaluation

cycle.

Pass

Stage 03 When ProgressionStage.MasterUpdate set to true

slave controller’s state manager calls

command_action_dispatcher for UpdateOutcome

CommandMessage.

Pass

Stage 04 The command_action_dispatcher routine returns to

control_logic_state_manager and evaluation cycle

continues.

Pass

Stage 05 The control logic enginer parses StageComplete

CommandMessage and calls

update_stage_complete in

command_action_dispatcher. The main state

changes to idle.

Pass

Stage 06 The control logic enginer parses StageUpdate

CommandMessage and calls update_stage_id in

command_action_dispatcher. The

ProgressionStage.StageID is set to new

progression logic stage ID and calls

control_logic_state_manager routine.

Pass

4.14. Operational Escape Room Purpose Testing
Figure 13: ST01 hybrid progression path shows the progression logic path developed

for the control_logic.json files in order to conduct ST01.

133

Figure 13: ST01 hybrid progression path

Table 27: System Test ST01 outlines the test cases in which the operational escape

room purpose testing must pass in order to meet the objectives and outcomes. The

resulting outcome from each test case in the unit test is shown in Table 61: ST01

outcome matrix.

Table 61: ST01 outcome matrix

Test Case Test Description Outcome

Stage 01 Master controller configuration engine initalises

system context structures and reads

master_config.json from SD card.

Pass

Stage 02 Master controller configuration engine parses

DeviceProfiles and configuration_interpreter routine.

Pass

134

Stage 03 Master controller establishes connection with the

three slave controller devices within DeviceProfiles.

Pass

Stage 04 The three slave controllers call their configuration

engine and initalises system context structures from

SD card slave_config.json.

Pass

Stage 05 Each slave controller’s configuration engine parses

PinPeripherals and updates

DeviceProfile.ConfigurationStatus.

Pass

Stage 06 Master control logic engine configures progression

logic stage ID = 0.

Pass

Stage 07 Master controller sends StageUpdate to each slave

controller in DeviceProfiles for current progression

logic stage.

Pass

Stage 08 Slave controllers relevant to stage call their control

logic engine to configure progression logic stage ID

= 0.

Pass

Stage 09 User interactions with slave controller captured by

periphreal_update and associated

PinPeripheral.PeripheralValue updated.

Pass

Stage 10 Slave controller’s PeripheralLogicExpression

outcome updates trigger MasterUpdate.

Pass

Stage 11 Master controller receiving UpdateOutcome updates

ExpressionOperands.

Pass

Stage 12 Slave controller’s receiving UpdatePeripheral

CommandMessage changes output peripherals

PinPeripheral.PeripheralValue state. Can be seen

visibly at LED output.

Pass

Stage 13 Correct evaluation of TransitionLogicExpression

updates system context

Pass

Stage 14 Progression logic stage transitions occur according

to the hybrid progression path in

TransitionLogicExprssions.

Pass

Stage 15 Progression StageID path validated: 1->2->6->8 Pass

135

Stage 16 Progression StageID path validated: 1->3->4->6->8 Pass

Stage 17 Progression StageID path validated: 1->3->5->7->8 Pass

136

CHAPTER 5: DISCUSSION
5.1. Introduction to Discussion

5.1.1. Research Objectives and Outcomes
Evaluating the project’s objectives and outcomes against the results of the

methodology’s development process enables the suitability of the control system to be

determined for the escape room industry. The project achieved all objectives and

outcomes by integrating the necessary components into a cohesive system design.

Each component within the control system contributes towards achieving multiple

objectives and outcomes. The discussion relates the project outcomes and objectives

to the key findings from relevant results.

Specific Objectives:

• The design of a low-cost master-slave control system architecture is suitable

for escape room puzzles.

• Create a flexible escape room, progression logic file type and data structure

that can be loaded onto the master and slave controllers via SD card.

• Implement master and slave interpreter for the game progression logic file

data structure, ensuring accurate game progression and puzzle state

management.

• Investigate coordination and scheduling schemes for master-slave

communication, prioritising puzzle querying based on game progression.

• Analyse how different data file schemes impact system scalability and

complexity.

• Evaluate and implement appropriate wireless communication methods,

protocols and technologies for the master and slave controllers.

• Investigate system usability limitations. Analysing system latency, data rate,

loss tolerance, wireless communication distance and response time.

• Evaluation of communication strategies such as suitability of polling versus

interrupt-based methods for communication between master and slave

devices.

If time permits,

137

• Develop a graphical web application to create the game progression logic.

• Develop a compiler that compiles the game progression logic into the master

and slave game progression logic file.

Expected Outcomes:

• Low-cost, master controller embedded system with wireless communication,

SD card reader and game file interpreter.

• Low-cost, slave controller embedded system capable of wireless

communication, SD card reader, game file interpreter and peripheral API for

puzzle control.

• A robust communication method and data protocol tailored for master-slave

interactions within the escape room environment.

• Definition and implementation of a universal game progression logic file data

structure and file type that supports complex escape room game design.

• A game progression logic file interpreter on both master and slave devices,

ensuring correct puzzle state management, game progression and data

transfer.

• Implementation of an effective coordination scheme in the master controller to

manage and query slave devices based on the current stage of the game

progression.

• Understand the usage limitations and scalability of the modular control

system.

If time permits,

• A web application for designing escape room game logic.

• Error handling and input validation of web application design tool user input.

• Implementation of a compiler to generate required game file format for master

and slave controllers from graphical web application representation.

5.1.2. Overview of Key Findings
The control system analysis evaluated the developed components' response in

isolation, and integration, within an operational escape room environment and under

performance testing conditions. The validation of the control systems components at

each level confirms that the system can reliably meet the requirements of the escape

138

room industry. The development approach allows the separation of concerns within

the developed source code. The separation of concern is achieved by developing each

component as modular and isolated routines, where each component does not impact

another through run-time side effects. This provides reliable log file analysis, source

code maintenance and debugging.

5.2. Interpretation of Results
The control logic engine and configuration engine could successfully parse the JSON

configuration files into the internal data structures for flexible escape room narrative

use cases. The master_config.json and slave_config.json files were parsed and

interpreted by the configuration parser and defined the device profile or peripheral

profile for the loaded narrative. The configuration engine ensured that all slave

controllers within the narrative had been successfully configured before the first

escape room progression stage was loaded. The results from the control system

configuration prove to be suitable for escape room usage as the master controller’s

state manager evaluates the narrative progression through four categories of logic

expression. The master controller’s peripheral logic expression evaluates the system-

wide peripheral state of all slave controllers within the current progression logic stage.

This allows the one controller to meet the many puzzle requirements discovered during

the literature review. The peripheral logic expressions also enable puzzle peripheral

updates to be actioned without impacting the progression of the narrative. This allows

for the engaging experience required by the escape room narratives through updating

the environment state. The transition logic expressions evaluate the outcome of its

peripheral logic expressions. The transition logic expressions successfully evaluated

the peripheral logic expressions' outcomes, allowing for complex system-wide logic

expressions to determine hybrid narrative progression. The hybrid or flexible

progression logic outcome was achieved by successfully testing the peripheral logic

expressions and transition logic expressions within the configuration engine and

control logic engine test cases. Time did not permit the communication coverage and

latency results for the Bluetooth BLE performance tests. Despite this, the Bluetooth

BLE was proven to be an effective wireless technology for the escape room use case,

as shown in Table 37: UT04 Outcome Matrix. Bluetooth BLE can manage multiple

slave controller connections simultaneously when the master controller is configured

as a central device and the slave controllers as a peripheral.

139

5.3. Implications of Findings
5.3.1. Implications for educational and recreational accessibility.
The findings from the project fulfil the escape room industry’s specific need for a

scalable, low-cost control system that does not require embedded programming and

electronic skills to create complex narratives. The study by Sánchez-Martín et al.

(2020) suggested that the ease of implementing complex narratives could broaden the

adoption of immersive learning in educational settings. The successful system tests

within the project demonstrate the control system’s ability to configure complex

narrative progression into the escape room without programming embedded

hardware. Increasing peripheral and narrative logic expression complexity did not

increase the setup complexity or limit the control system’s ability to scale. By

simplifying the setup and configuration, the control system will make escape room

activities more accessible to educators by reducing the technical and financial barriers.

This highlights the benefit of enabling a more engaging educational experience that

promotes collaborative problem-solving for low-motivation topics (Gordon et al., 2019).

5.3.2. Implications for control system scale and flexibility in escape rooms.

Master-Slave Architecture Multiplicity

The control system’s master-slave architecture supports one-to-many relationships,

enabling a single master to manage multiple slave controllers effectively. As Ross &

Bennett (2022) outlined, an escape room narrative can contain many puzzles requiring

that the control system’s performance does not degrade when managing multiple

puzzle states. Ross (2019) demonstrated that each puzzle within an escape room

control system can have multiple input and output peripherals. This requires that the

control system suitable for escape room usage must be able to manage the narrative

progression with multiple puzzles containing multiple input and output peripherals. The

control system’s master controller was shown to manage multiple slave controller

connections concurrently. This demonstrates the control system’s ability to manage

multiple puzzles' peripheral input and output states distributed throughout an escape

room facility. This was due to the master-slave architecture allowing each slave

controller to manage its local puzzle peripherals independently of the master

controller. The combined system context evaluation of multiple slave controllers is then

140

evaluated within the central master controller’s control logic engine. This design

decision delegates the evaluation of peripheral logic expressions local to the

connected slave controller. This highlights that the control system’s architecture

directly contributes to achieving the scalability requirements of an escape room use

case.

5.4. Limitations of Study
5.4.1. Overview of Limitations
The study's limitations impact the broader applicability of the project’s outcomes and

findings. While the system met the defined functional objectives and outcomes,

performance may differ within actual escape room facilities when considering system

communication characteristics, reliability and power stability. This is due to the test

cases being conducted within controlled operational conditions. Despite these

limitations, the study provides a solid foundation for further research and refinement,

especially in operational settings and user-driven scenarios.

5.4.2. Industry Specific Limitations
The research design targets successfully implementing and testing control system

components for escape room usage. Despite this, multiple design decisions impacted

the study's understanding of various system performances and suitability in broader

operational conditions. The scope of the study’s test cases was conducted within

controlled conditions instead of real-world escape room facilities. This limits the study's

ability to understand factors like fluctuating user interactions and environmental

influences that may be specific to escape room facilities. The operational system tests

were designed to understand the control system’s response to untrained user

interactions. However, factors relating to the physical environment and design of

escape room narratives aren’t considered within the test stages. Specifically, some

escape room facilities decorate the controlled environment to promote an engaging

experience. This could result in the slave controller being contained within decorative

materials, impacting wireless communication characteristics. The distance between

slave controllers could also be significant within different escape room narratives. This

could potentially have an impact when multiple slave controllers are distributed uneven

distances throughout the room and are evaluated within the same master controller

141

logic expression. The research design doesn’t allow for such use cases to be

analysed.

5.4.3. Limitations of Test Regime
The test regime's system and performance test stages were crucial for evaluating the

isolated operational characteristics of the control system. Isolating the system and

performance test cases limits understanding of how performance metrics like

communication latency, coverage, and memory usage would behave under

operational, real-world escape room usage conditions. Combining the performance

metric test cases with operational system testing and user interactions would yield a

more comprehensive insight into realistic escape room scenarios.

5.4.4. Limitations of Design Decisions
The scope methodology’s development process also constrains the performance and

test case results to the specific source code design decisions. The results don't

consider the impact of programming decisions such as selected data structures,

employed algorithms, CPU scheduling routines, and resource allocation. The design

decisions around resource utilisation, algorithms and data structures can impact the

time complexity of each developed routine. An example of this within the project is

using table mapping data structures to search for specific data structures based on

key pairs. An alternative approach could be to use hash tables to achieve O(1) search

time complexity for desired data structure values. Another programming design

decision was to use recursive algorithms instead of iterative for nested JSON traversal.

Due to project time constraints, the study does not consider the impact of different

programming approaches. Therefore, simplicity was selected instead of efficiency for

some implementation decisions. Another implementation limitation of the study is that

robust logic error checking is not employed to check for memory leaks during

component integration. Therefore, orphaned memory or memory leaks have the

potential to impact run-time performance and operation. To alleviate this limitation,

each routine frees memory resources managed locally before returning to the calling

function. This design decision ensures that memory leaks are contained within the

running routine's scope.

142

5.4.5. Limitations of Constrained Scope
While the power management and interface electronics were carefully designed for

the controlled use cases within the project, power stability and load conditions were

not considered to understand their impact on system operation. This limits the insight

into system performance when expanding peripheral scale and power requirements.

The scope of the research design context focused on configuring the peripheral state

and values. However, the embedded microcontroller becomes unreliable as peripheral

power requirements change outside of the scope of the controlled case studies.

5.5. Suggestions for Future Research
The development of a graphical web application to create and compile the game

progression logic is a concept proposed within the objectives and outcomes of this

project if time permits. Developing a graphical web application interface would simplify

generating the configuration files, allowing non-technical users to design the entire

escape room narrative quickly and easily. Successful implementation of this project

outcome would allow for increased system usability and adoption while reducing

configuration time. The potential industry impact of this change would result in a

standardised game configuration across all escape rooms, promoting broader

adoption of the configurable control system. The suggested approach is to develop a

drag-and-drop interface, which directly translates the graphical programming

language into the JSON configuration files for the master and slave controllers.

Another suggestion for future research is a proposed approach for run-time monitoring

of the control system. The proposed control system design requires each controller's

SD card to be ejected to monitor or view log files. This results in the escape room's

inability to monitor the control system’s log file output during run-time usage. The

suggested approach to resolve this would be to investigate a host device that can

receive the command message broadcast over Bluetooth BLE. The final suggestion

for future research is further research into optimised power solutions and interface

electronics for the peripheral microcontroller of slave controllers. The project proposes

an embedded system capable of configuring the pin peripherals of the peripheral

microcontroller; however, the current implementation is sensitive to very low voltage

and current conditions. Investigating a more robust power regulation and interface

circuitry would reduce the complexity and associated risk with power electronics for

non-technical escape room designers.

143

CONCLUSION
The project presented the design, development, testing and evaluation of a scalable,

low-cost master-slave control system for the escape room industry. The critical

objectives sought to implement a flexible progression logic system, ensure robust

wireless communication and address the technical limitations that make the escape

room less accessible to non-technical designers. The research demonstrated that the

control system achieved all objectives and outcomes for the escape room usage. The

modular embedded architecture configured with JSON files enabled automated

communication profiles and scalable hybrid narrative progression. Using Bluetooth

BLE for wireless communication proved effective for low-cost, multi-room setups. The

nested JSON representation of control logic addresses the industry's gap in

accessibility for non-technical escape room designers. The study contributes to the

escape room industry by presenting a low-cost solution to the resourcing challenges

identified in the literature. The configurable control system reduces the technical

barriers to implementing complex escape room narratives. The project advances the

field by integrating nested JSON configuration files into embedded master-slave

architecture for configuration and communication. While the configurable control

system met its objectives, limitations were introduced by relying on controlled testing

environments that did not reflect real-world escape room facilities. The design

decisions within the development process also introduced limitations by trading

implementation efficiency for simplicity to meet project timeframes. These limitations

suggest areas where the system could be refined to better address operational

conditions and optimisation. Future work should focus on system stability and provide

further abstraction to generate configuration files. This includes the development of a

graphical web application that compiles the configuration files, real-time control system

monitoring and robust embedded electronic design. This research provides a strong

foundation for implementing a low-cost control system for pop-up escape rooms.

Addressing the key challenges demonstrates an innovative approach that offers a

solution to make escape room experiences more immersive and accessible.

144

REFERENCES

Anani, W., Ouda, A., & Hamou, A. (2019). A survey of wireless communications for
IOT echo-systems. IEEE, 1-6. https://doi.org/10.1109/CCECE.2019.8861764

Angelov, K.K., Kogias, P.G., & Pasarelski, R.I. (2023). Application and performance
analysis of lora end devices for monitoring of indoor lighting systems. IEEE, 1-
5. https://doi.org/10.1109/ET59121.2023.10279194

Bashi, A. (2024). Control system with fuzzy Logic. ResearchGate.
https://doi.org/10.5281/zenodo.10640837

Bennetts, R.G. (1982). Analysis of reliability block diagrams by boolean techniques.
IEEE, R-31(2),159–166. https://doi.org/10.1109/TR.1982.5221283

Cain, J. (2019). Exploratory implementation of a blended format escape room in a
large enrollment pharmacy management class, Currents in Pharmacy Teaching
and Learning, 11(1), 44–50. https://doi.org/10.1016/j.cptl.2018.09.010

Chang, H.-Y.H. (2019). Escaping the Gap: Escape Rooms as an Environmental
Education Tool. [online] Berkeley Rausser.
https://nature.berkeley.edu/classes/es196/projects/2019final/ChangH 2019.pdf

Chrysalidis, P., & Frank, T. (2024). A universal configuration format for avionics.
AvioSE’24, 45–54. http://dx.doi.org/10.18420/sw2024-ws_04

Darejeh, A. (2023). Empowering education through EERP: A customizable
 educational VR escape room platform. IEEE, 764-766.
 https://doi.org/10.1109/ismar-adjunct60411.2023.00166

ELMET Project. (2021). Guide for design, implementation facilitation and evaluation
of educational escape rooms. Retrieved March 30, 2024.
https://www.elmetproject.eu/assets/files/ELMET Guide EN.pdf

Elsner, C., Lohmann, D., & Schroder-Preikschat, W. (2011). Fixing configuration
inconsistencies across file type boundaries. IEEE, 116-123.
http://dx.doi.org/10.1109/SEAA.2011.26

Gordon, S.K.,Trovinger, S., & DeLellis, T. (2019). Escape from the usual:
Development and implementation of an ‘escape room’ activity to assess team
dynamics. Currents in Pharmacy Teaching and Learning, 11(8),818–824.
https://doi.org/10.1016/j.cptl.2019.04.013

145

Gutjahr, B., & Heumesser, R. (2014). Generating configuration files. European
Patent Office. https://patents.google.com/patent/EP1953652A1

Hanou, I., Smitskamp, G., & de Schipper, M. (2020). Designing an escape room
sensory system: S.C.I.L.E.R.: Sensory communication inside live escape
rooms. TU Delft.
https://repository.tudelft.nl/record/uuid:31969411-1053-4bc1-830d-

Hacer Tercanli, Martina, R., Amorim, M., Wakkee, I., Reuter, J., Cohen, Y., Cohen,
Y., Madaleno, M., Vieira, S., Cláudia Miranda Veloso, Figueiredo, C. P.,
Andreia Vitória, Isabel Cristina Gomes, Meireles, G., Audrone Daubariene, Asta
Daunoriene, Andreas Korntved Mortensen, Zinovyeva, A., Irene Rivera
Trigueros, & Abigail López Alcarria. (2021). Educational escape rooms in
practice: Research, experiences, and recommendations. UA Editora.
https://doi.org/10.34624/rpxk-hc61

He, S., Huang, L., Gao, G., Wang, G., Wang, Z., & Chen, X. (2019). Design of real-
time control in poloidal field power supply based on finite-state machine. IEEE,
47(4), 1878–1883. https://doi.org/10.1109/TPS.2019.2904796

Ivanescu, N.A., Borangiu, T., Brotac, S., & Dogar, A. (2007). Implementation of
sequential function charts with microcontrollers. IEEE, 1-6.
https://doi.org/10.1109/MED.2007.4433852

Kashiwagi, Y., Harada, H., Masaki, H., & Osumi, K. (2022). Development of
evaluation systems for large-scale wi-sun fan-based IOT Applications. IEEE, 1-
6. https://doi.org/10.1109/PIMRC54779.2022.9977832

Kasbe, T. (2015). Importance & Effective Use of Configuration Filein Software
Development (Window /Web) in .NET. SSRN Electronic Journal, 2(11), 90–94.
https://www.researchgate.net/publication/354191863_Importance_Effective_Us
e_of_Configuration_File_in_Software_Development_Window_Web_in_NET

Kinio, A.E., Dufresne, L., Brandys, T., & Jetty, P. (2019). Break out of the classroom:
The use of escape rooms as an alternative teaching strategy in surgical
education. Journal of Surgical Education, 76(1),134–139.
https://doi.org/10.1016/j.jsurg.2018.06.030

Kiruthika, V., Jagadeeswari, M., Prabha, C.S., Vaishnavi, V., & Sreejaa, H. (2022).
virtual reality based escape room. IEEE, 1-5.
https://doi.org/10.1109/ICACTA54488.2022.9753531

Lakomkina, I. (2023). The impact of technology on escape rooms. Escape Reality.
https://www.escapereality.com/blog/the-impact-of-technology-on-escape-
rooms/

146

Lee, K.S.,, Blair, R.A.,, Dhayagude, N.,, Van de Steeg, K., & Schaffner, H. (2014).
Method and apparatus for distributing configuration files in a distributed control
system.
https://patentimages.storage.googleapis.com/fd/23/b2/0c68bd5820befd/US200
90172223A1.pdf

Li, P.-Y., Chou, Y.-K., Chen, Y.-J., & Chiu, R.-S. (2018). Problem-based learning
(PBL) in interactive design: A case study of escape the room puzzle design.
IEEE, 250-253. http://dx.doi.org/10.1109/ICKII.2018.8569131

Mallaband, S. (1991). Specification of real time control systems by means of
sequential function charts. IET, 57-62.
https://ieeexplore.ieee.org/document/140047

Miroshnyk, M., Poroshyn, S., Shkil, A., Kulak, E., Filippenko, I., Kucherenko, D.,
Pakhomov, Y., Juliia, S., & Goga, M. (2018). Design of logical control units
based on finite state machines’ patterns. IEEE, 1-6.
https://doi.org/10.1109/EWDTS.2018.8524869

Miroshnyk, M., Shkil, O., Kulak, E., Rakhlis, D., Filippenko, I., Hoha, M., Malakhov,
M., & Sergienko, V. (2019). Design of real-time system logic control on FPGA.
IEEE, 1-4. https://doi.org/10.1109/EWDTS.2019.8884387

Park, J.-I., & Umirov, U. (2012). Efficient use of Bluetooth in networked control
systems. IEEE, 13-17. https://ieeexplore.ieee.org/document/6393395

Peng, Z., Ma, L., & Xia, F. (2008). A low-cost embedded controller for complex
control systems. IEEE, 23-29. https://doi.org/10.1109/EUC.2008.40

Remelhe, M.P., Lohmann, S., Stursberg, O., Engell, S., & Bauer, N. (2005).
Algorithmic verification of logic controllers given as sequential function charts.
IEEE, 55-58. https://doi.org/10.1109/CACSD.2004.1393850

Ross, R. (2019). Design of an open-source decoder for educational escape rooms.
IEEE, 7, 145777–145783. https://doi.org/10.1109/ACCESS.2019.2945289

Ross, R., & Bennett, A. (2022). Increasing engagement with engineering escape
rooms. IEEE Transactions on Games, 14(2), 161–169.
https://doi.org/10.1109/TG.2020.3025003

Sánchez-Martín, J., Corrales-Serrano, M., Luque-Sendra, A., Zamora-Polo, F.
(2020). Exit for success. Gamifying science and technology for university
students using escape-room. A preliminary approach. Heliyon, 6(7).
https://doi.org/10.1016/j.heliyon.2020.e04340

147

Shaik, M.I. (2011). Design & implementation of ARM based data acquisition system.
IEEE, 38-42. https://doi.org/10.1109/ICECCT.2011.6077066

Spira, L. (2023). US Escape Room Industry Report – December 2023. Room Escape
Artist. https://roomescapeartist.com/2023/12/28/us-escape-room-industry-
report-december-2023/

Staneva, A., Ivanova, T., Rasheva-Yordanova, K., & Borissova, D. (2023).
 Gamification in education: Building an escape room using VR Technologies.
 IEEE, 678-683. http://dx.doi.org/10.23919/MIPRO57284.2023.10159923

TARAMAA, J., SEPPÄNEN, V., and MÄKÄRÄINEN, M. (1996). From software
configuration to application management—improving the maturity of the
maintenance of embedded software. Journal of Software Maintenance:
Research and Practice, 8(1), 49–75. https://doi.org/10.1002/(SICI)1096-
908X(199601)8:1<49::AID-SMR120>3.0.CO;2-Z

Vojir, M., & Beran, L. (2015). Global data structure for positioning machine controlled
by PLC. IEEE, 1-6. https://doi.org/10.1109/ECMSM.2015.7208699

Wareham, R. (1988). Ladder diagram and sequential function chart languages in
programmable controllers. IEEE, 12A-14/1.
https://doi.org/10.1109/PROCCE.1988.82231

Wehner, P., Piberger, C., & Gohringer, D. (2014). Using JSON to manage
communication between services in the internet of things. IEEE, 1-4.
https://doi.org/10.1109/ReCoSoC.2014.6861361

Yulin, D., & Chunjiao, Z. (2011). Design and research of embedded PLC
development system. IEEE, 226-228.
https://doi.org/10.1109/ICCRD.2011.5764286

148

APPENDICES
6.1. Appendix A: Risk Assessment

150

6.3. Appendix C: Unit Tests
6.3.1. UT01 - Embedded Architecture of Master Controller

Source Code Implementation

File Name: sd_card_interface.h

File Content:

#ifndef SD_CARD_INTERFACE_H
#define SD_CARD_INTERFACE_H

// Include esp_err so other routines can recieve sd card error type in return.
#include "esp_err.h"

// Initialise and mount the SD card filesystem.
esp_err_t sd_card_init(void);
// Write string data to path.
esp_err_t sd_card_write_file(const char *path, const char *data);
// Append string data to path.
esp_err_t sd_card_append_file(const char *path, const char *data);
// Read file from path. Dynamic allocation in memory for dynamic file sizes.
esp_err_t sd_card_read_file_dynamic(const char *path, char **buffer, size_t
*file_size);
// Unmount the SD card filesystem and deinitialise
void sd_card_deinit(void);

#endif // SD_CARD_INTERFACE_H

File Name: sd_card_interface.c

File Content:

// ///////////////////
// Include libraries
// External Components
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include <errno.h>
#include "esp_vfs_fat.h"
#include "sdmmc_cmd.h"
#include "driver/sdspi_host.h"
#include "driver/spi_common.h"
// Custom Components
#include "sd_card_interface.h"

// ///////////
// Definitions

151

#define MOUNT_POINT "/sdcard"
// GPIO Assignment for SD Card Interface ESP32-C6-DevKit
#define PIN_NUM_MISO 6 // GPIO6
#define PIN_NUM_MOSI 4 // GPIO4
#define PIN_NUM_CLK 5 // GPIO5
#define PIN_NUM_CS 7 // GPIO7

static sdmmc_card_t *card;
static sdmmc_host_t host = SDSPI_HOST_DEFAULT();

// //////////////////
// Initalise sd card.
esp_err_t sd_card_init(void)
{
 esp_err_t ret;

 // Configure mount.
 esp_vfs_fat_sdmmc_mount_config_t mount_config = {
 .format_if_mount_failed = false,
 .max_files = 5,
 .allocation_unit_size = 16 * 1024,
 };
 // Update host configuration.
 host.slot = SPI2_HOST;
 host.max_freq_khz = SDMMC_FREQ_DEFAULT;
 // Configure SPI bus.
 spi_bus_config_t bus_cfg = {
 .mosi_io_num = PIN_NUM_MOSI,
 .miso_io_num = PIN_NUM_MISO,
 .sclk_io_num = PIN_NUM_CLK,
 .quadwp_io_num = -1,
 .quadhd_io_num = -1,
 .max_transfer_sz = 4000,
 };
 // Initialize SPI bus.
 ret = spi_bus_initialize(host.slot, &bus_cfg, SDSPI_DEFAULT_DMA);
 if (ret != ESP_OK) {
 return ret;
 }
 // Configure SD card slot.
 sdspi_device_config_t slot_config = SDSPI_DEVICE_CONFIG_DEFAULT();
 slot_config.gpio_cs = PIN_NUM_CS;
 slot_config.host_id = host.slot;
 // Mount the filesystem.
 ret = esp_vfs_fat_sdspi_mount(MOUNT_POINT, &host, &slot_config,
&mount_config, &card);
 if (ret != ESP_OK) {
 spi_bus_free(host.slot);

152

 return ret;
 }

 return ESP_OK;
}

// //////////////////
// Write to sd card.
esp_err_t sd_card_write_file(const char *path, const char *data)
{
 char full_path[128];
 snprintf(full_path, sizeof(full_path), "%s/%s", MOUNT_POINT, path);

 // Open file for writing.
 FILE *f = fopen(full_path, "w");
 if (f == NULL) {
 return ESP_FAIL;
 }
 // Write data to file.
 size_t data_len = strlen(data);
 size_t bytes_written = fwrite(data, 1, data_len, f);
 fclose(f);
 // Ensure all data was written
 if (bytes_written != data_len) {
 return ESP_FAIL;
 }

 return ESP_OK;
}

// //////////////////
// Append to sd card.
esp_err_t sd_card_append_file(const char *path, const char *data)
{
 char full_path[128];
 snprintf(full_path, sizeof(full_path), "%s/%s", MOUNT_POINT, path);

 // Open file for appending.
 FILE *f = fopen(full_path, "a");
 if (f == NULL) {
 return ESP_FAIL;
 }
 // Append data to file.
 size_t data_len = strlen(data);
 size_t bytes_written = fwrite(data, 1, data_len, f);
 fclose(f);
 // Ensure all data was written
 if (bytes_written != data_len) {

153

 return ESP_FAIL;
 }

 return ESP_OK;
}

// //////////////////////
// Read dynamic size from sd card.
esp_err_t sd_card_read_file_dynamic(const char *path, char **buffer, size_t
*file_size)
{
 char full_path[128];
 snprintf(full_path, sizeof(full_path), "%s/%s", MOUNT_POINT, path);
 // Open file for reading.
 FILE *f = fopen(full_path, "r");
 if (f == NULL) {
 return ESP_FAIL;
 }
 // Determine file size.
 if (fseek(f, 0, SEEK_END) != 0) {
 fclose(f);
 return ESP_FAIL;
 }
 long size = ftell(f);
 if (size < 0) {
 fclose(f);
 return ESP_FAIL;
 }
 *file_size = (size_t)size;
 rewind(f);
 // Allocate read buffer.
 *buffer = malloc(*file_size + 1);
 if (*buffer == NULL) {
 fclose(f);
 return ESP_ERR_NO_MEM;
 }
 // Read file content.
 size_t bytes_read = fread(*buffer, 1, *file_size, f);
 fclose(f);
 // Ensure entire file was read.
 if (bytes_read != *file_size) {
 free(*buffer);
 return ESP_FAIL;
 }
 (*buffer)[bytes_read] = '\0';

 return ESP_OK;
}

154

// //////////////////////
// Sd card deinitalise
void sd_card_deinit(void)
{
 esp_vfs_fat_sdcard_unmount(MOUNT_POINT, card);
 spi_bus_free(host.slot);
}

Unit Test Source Code Files

File Name: main.c

File Content:

// ///////////////////
// Include libraries
// External Components
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Custom Components
#include "sd_card_interface.h"

int app_main(void)
{
 // Init error type from sdmmc.
 esp_err_t ret;

 // ////////////////////
 // Initialize SD card.
 ret = sd_card_init();
 // Check that sd card initalisation successful.
 if (ret != ESP_OK) {
 // Future led_hmi_interface updated.
 printf("sd_card_init failed: %d\n", ret);
 return -1;
 }

 // ///
 // Write "sd_card_init success." to unit01.txt.
 // Declare the path to write to. Create file if it doesn't exits.
 const char *write_path = "unit01.txt";
 const char *write_data = "sd_card_init success.";
 // Unit Test: sd_card_write_file.
 ret = sd_card_write_file(write_path, write_data);
 // Check that sd card initalisation successful.
 if (ret != ESP_OK) {

155

 printf("sd_card_write_file failed: %d\n", ret);
 sd_card_deinit();
 return -1;
 }

 // ///
 // Read content from unit01_read.txt file.
 // Declare the path to write to.
 const char *read_path = "unit01_read.txt";
 char *read_buffer = NULL;
 size_t read_size = 0;
 // Unit Test: sd_card_read_file_dynamic.
 ret = sd_card_read_file_dynamic(read_path, &read_buffer, &read_size);
 if (ret != ESP_OK) {
 printf("sd_card_read_file_dynamic failed: %d\n", ret);
 sd_card_deinit();
 return -1;
 }

 // /////////////////////////////////////
 // Append to unit01.txt on new line.
 size_t append_data1_len = read_size + 2;
 char *append_data1 = (char *)malloc(append_data1_len);
 // Add new line.
 snprintf(append_data1, append_data1_len, "\n%s", read_buffer);
 // Unit Test: sd_card_append_file.
 ret = sd_card_append_file(write_path, append_data1);
 if (ret != ESP_OK) {
 printf("First sd_card_append_file failed: %d\n", ret);
 free(read_buffer);
 free(append_data1);
 sd_card_deinit();
 return -1;
 }
 free(append_data1);

 // ///////////////////////////////////
 // Append to unit01.txt on new line.
 const char *append_data2 = "sd_card_append_file success.";
 size_t append_data2_len = strlen(append_data2) + 2;
 char *append_data2_formatted = (char *)malloc(append_data2_len);
 // Add new line.
 snprintf(append_data2_formatted, append_data2_len, "\n%s", append_data2);
 // Unit Test: sd_card_append_file.
 ret = sd_card_append_file(write_path, append_data2_formatted);
 if (ret != ESP_OK) {
 printf("Second sd_card_append_file failed: %d\n", ret);
 free(read_buffer);

156

 free(append_data2_formatted);
 sd_card_deinit();
 return -1;
 }
 free(append_data2_formatted);

 // ////////////////
 // Unmount SD card
 // Unit Test: sd_card_deinit.
 sd_card_deinit();

 return 0;
}

Unit Test Artefacts

File Name: unit01_read.txt

File Content:

Content of unit01_read.txt

File Name: unit01.txt

File Content:

sd_card_init success.

Content of unit01_read.txt

sd_card_append_file success.

6.3.2. UT02 - Embedded Architecture of Slave Controller

Source Code Implementation

File Name: peripheral_config.h

File Content:

#ifndef PERIPHERAL_CONFIG_H
#define PERIPHERAL_CONFIG_H

#include "value_types.h"

typedef enum {
 DIRECTION_INPUT,
 DIRECTION_OUTPUT
} PinDirection;

typedef enum {
 SIGNAL_DIGITAL,

157

 SIGNAL_ANALOG
} PinSignalType;

typedef enum {
 VIRTUAL_PERIPHERAL,
 PIN_PERIPHERAL
} PeripheralType;

typedef struct PinPeripheral {
 char* PeripheralID;
 int GPIONumber;
 PinDirection PinDirection;
 PinSignalType PinSignalType;
 ValueType PeripheralDataType;
 JsonValue* PeripheralValue;
} PinPeripheral;

typedef struct {
 const char* PeripheralID;
 PinDirection PinDirection;
 PinPeripheral* pin_peripheral;
} PinPeripheralMapping;

extern PinPeripheralMapping* PinPeripheralSystemContext;
extern size_t PinPeripheralSystemContextSize;

#endif

File Name: peripheral_update.h

File Content:

#ifndef PERIPHERAL_UPDATE_H
#define PERIPHERAL_UPDATE_H

#include "esp_err.h"

typedef enum {
 UPDATE_READ,
 UPDATE_WRITE
} UpdateType;

esp_err_t peripheral_update(UpdateType update_type);

#endif

158

File Name: peripheral_update.c

File Content:

File Name: sd_card_interface.h

File Content:

#ifndef SD_CARD_INTERFACE_H
#define SD_CARD_INTERFACE_H

#include "esp_err.h"

// Initialise and mount the SD card filesystem.
esp_err_t sd_card_init(void);
// Write string data to path.
esp_err_t sd_card_write_file(const char *path, const char *data);
// Append string data to path.
esp_err_t sd_card_append_file(const char *path, const char *data);
// Read file from path. Dynamic allocation in memory for dynamic file sizes.
esp_err_t sd_card_read_file_dynamic(const char *path, char **buffer, size_t
*file_size);
// Unmount the SD card filesystem and deinitialise
void sd_card_deinit(void);

#endif

File Name: sd_card_interface.c

File Content:

// ///////////////////
// Include libraries
// External Components
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include <errno.h>
#include "esp_vfs_fat.h"
#include "sdmmc_cmd.h"
#include "driver/sdspi_host.h"
#include "driver/spi_common.h"
// Custom Components
#include "sd_card_interface.h"

// ///////////
// Definitions
#define MOUNT_POINT "/sdcard"

159

// GPIO Assignment for SD Card Interface ESP32-C6-DevKit
#define PIN_NUM_MISO 6 // GPIO6
#define PIN_NUM_MOSI 4 // GPIO4
#define PIN_NUM_CLK 5 // GPIO5
#define PIN_NUM_CS 7 // GPIO7

static sdmmc_card_t *card;
static sdmmc_host_t host = SDSPI_HOST_DEFAULT();

// //////////////////
// Initalise sd card.
esp_err_t sd_card_init(void)
{
 esp_err_t ret;

 // Configure mount.
 esp_vfs_fat_sdmmc_mount_config_t mount_config = {
 .format_if_mount_failed = false,
 .max_files = 5,
 .allocation_unit_size = 16 * 1024,
 };
 // Update host configuration.
 host.slot = SPI2_HOST;
 host.max_freq_khz = SDMMC_FREQ_DEFAULT;
 // Configure SPI bus.
 spi_bus_config_t bus_cfg = {
 .mosi_io_num = PIN_NUM_MOSI,
 .miso_io_num = PIN_NUM_MISO,
 .sclk_io_num = PIN_NUM_CLK,
 .quadwp_io_num = -1,
 .quadhd_io_num = -1,
 .max_transfer_sz = 4000,
 };
 // Initialize SPI bus.
 ret = spi_bus_initialize(host.slot, &bus_cfg, SDSPI_DEFAULT_DMA);
 if (ret != ESP_OK) {
 return ret;
 }
 // Configure SD card slot.
 sdspi_device_config_t slot_config = SDSPI_DEVICE_CONFIG_DEFAULT();
 slot_config.gpio_cs = PIN_NUM_CS;
 slot_config.host_id = host.slot;
 // Mount the filesystem.
 ret = esp_vfs_fat_sdspi_mount(MOUNT_POINT, &host, &slot_config,
&mount_config, &card);
 if (ret != ESP_OK) {
 spi_bus_free(host.slot);
 return ret;

160

 }

 return ESP_OK;
}

// //////////////////
// Write to sd card.
esp_err_t sd_card_write_file(const char *path, const char *data)
{
 char full_path[128];
 snprintf(full_path, sizeof(full_path), "%s/%s", MOUNT_POINT, path);

 // Open file for writing.
 FILE *f = fopen(full_path, "w");
 if (f == NULL) {
 return ESP_FAIL;
 }
 // Write data to file.
 size_t data_len = strlen(data);
 size_t bytes_written = fwrite(data, 1, data_len, f);
 fclose(f);
 // Ensure all data was written
 if (bytes_written != data_len) {
 return ESP_FAIL;
 }

 return ESP_OK;
}

// //////////////////
// Append to sd card.
esp_err_t sd_card_append_file(const char *path, const char *data)
{
 char full_path[128];
 snprintf(full_path, sizeof(full_path), "%s/%s", MOUNT_POINT, path);

 // Open file for appending.
 FILE *f = fopen(full_path, "a");
 if (f == NULL) {
 return ESP_FAIL;
 }
 // Append data to file.
 size_t data_len = strlen(data);
 size_t bytes_written = fwrite(data, 1, data_len, f);
 fclose(f);
 // Ensure all data was written
 if (bytes_written != data_len) {
 return ESP_FAIL;

161

 }

 return ESP_OK;
}

// //////////////////////
// Read dynamic size from sd card.
esp_err_t sd_card_read_file_dynamic(const char *path, char **buffer, size_t
*file_size)
{
 char full_path[128];
 snprintf(full_path, sizeof(full_path), "%s/%s", MOUNT_POINT, path);
 // Open file for reading.
 FILE *f = fopen(full_path, "r");
 if (f == NULL) {
 return ESP_FAIL;
 }
 // Determine file size.
 if (fseek(f, 0, SEEK_END) != 0) {
 fclose(f);
 return ESP_FAIL;
 }
 long size = ftell(f);
 if (size < 0) {
 fclose(f);
 return ESP_FAIL;
 }
 *file_size = (size_t)size;
 rewind(f);
 // Allocate read buffer.
 *buffer = malloc(*file_size + 1);
 if (*buffer == NULL) {
 fclose(f);
 return ESP_ERR_NO_MEM;
 }
 // Read file content.
 size_t bytes_read = fread(*buffer, 1, *file_size, f);
 fclose(f);
 // Ensure entire file was read.
 if (bytes_read != *file_size) {
 free(*buffer);
 return ESP_FAIL;
 }
 (*buffer)[bytes_read] = '\0';

 return ESP_OK;
}

162

// //////////////////////
// Sd card deinitalise
void sd_card_deinit(void)
{
 esp_vfs_fat_sdcard_unmount(MOUNT_POINT, card);
 spi_bus_free(host.slot);
}

Unit Test Source Code Files

File Name: main.c process diagram

File Content:

163

164

Unit Test Artefacts

File Name: unit02.txt

File Content:

Unit Test 02 - Start

Read: 2 = 124

Read: 10 = true

Write: 22 = false

6.3.3. UT03 – Embedded JSON Serialiser

Source Code Implementation

File Name: value_types.h

File Content:

#ifndef VALUE_TYPES_H
#define VALUE_TYPES_H

#include <stddef.h>
#include <stdbool.h>

typedef enum {
 TYPE_INVALID,
 TYPE_INT,
 TYPE_FLOAT,
 TYPE_STRING,
 TYPE_BOOL,
 TYPE_CHAR
} ValueType;

typedef union {
 int int_val;
 float float_val;
 const char* str_val;
 bool bool_val;
 char char_val;
} JsonValueUnion;

typedef struct {
 ValueType type;
 JsonValueUnion value;
} JsonValue;

#endif

165

File Name: json_file_seraliser.c

File Content:

// ///////////////////
// Include libraries
// External Components
#include "cJSON.h"
#include "esp_log.h"
#include <string.h>
#include <stdlib.h>
// Custom Components
#include "json_file_serialiser.h"
#include "sd_card_interface.h"
#include "get_schema_content.h"

static const char* TAG = "json_file_serialiser";

// Function Prototypes
static cJSON* get_terminal_value(const char* schema_name, const char*
property_name, int object_index);
static bool traverse_schema(cJSON* schema_node, const char* schema_name,
cJSON* json_node, int object_index);

char* json_schema_serialiser(const char* schema_name) {
 // Read JSON schema from SD card
 char* schema_content = NULL;
 size_t schema_size = 0;

 ESP_LOGI(TAG, "Reading schema file: %s", schema_name);
 esp_err_t ret = sd_card_read_file_dynamic(schema_name, &schema_content,
&schema_size);
 if (ret != ESP_OK) {
 ESP_LOGE(TAG, "Failed to read schema file: %s", schema_name);
 return NULL;
 }

 // Parse the JSON schema
 cJSON* schema_root = cJSON_Parse(schema_content);
 if (schema_root == NULL) {
 ESP_LOGE(TAG, "Failed to parse schema: %s", schema_name);
 free(schema_content);
 return NULL;
 }
 free(schema_content);

 // Determine the type of the root element
 cJSON* type_item = cJSON_GetObjectItem(schema_root, "type");
 if (type_item == NULL) {
 ESP_LOGE(TAG, "Schema root does not have a 'type' field");

166

 cJSON_Delete(schema_root);
 return NULL;
 }

 cJSON* json_root = NULL;
 if (strcmp(type_item->valuestring, "object") == 0) {
 json_root = cJSON_CreateObject();
 } else if (strcmp(type_item->valuestring, "array") == 0) {
 json_root = cJSON_CreateArray();
 } else {
 ESP_LOGE(TAG, "Unsupported root type in schema: %s", type_item-
>valuestring);
 cJSON_Delete(schema_root);
 return NULL;
 }

 if (json_root == NULL) {
 ESP_LOGE(TAG, "Failed to create JSON root element");
 cJSON_Delete(schema_root);
 return NULL;
 }

 // Start recursive traversal
 if (!traverse_schema(schema_root, schema_name, json_root, 0)) {
 ESP_LOGE(TAG, "Failed to traverse schema");
 cJSON_Delete(schema_root);
 cJSON_Delete(json_root);
 return NULL;
 }

 // Serialise the constructed JSON to a string
 char* json_string = cJSON_PrintUnformatted(json_root);
 if (json_string == NULL) {
 ESP_LOGE(TAG, "Failed to serialize JSON");
 cJSON_Delete(schema_root);
 cJSON_Delete(json_root);
 return NULL;
 }
 cJSON_Delete(schema_root);
 cJSON_Delete(json_root);

 return json_string;
}

// Recursive function to traverse the schema and construct the JSON
static bool traverse_schema(cJSON* schema_node, const char* schema_name,
cJSON* json_node, int object_index) {
 cJSON* type_item = cJSON_GetObjectItem(schema_node, "type");

167

 if (type_item == NULL) {
 ESP_LOGW(TAG, "Schema node does not have a 'type' field");
 return false;
 }

 const char* node_type = type_item->valuestring;

 if (strcmp(node_type, "object") == 0) {
 // Process object properties
 cJSON* properties = cJSON_GetObjectItem(schema_node, "properties");
 if (properties == NULL) {
 ESP_LOGW(TAG, "Object type node missing 'properties'");
 return false;
 }

 cJSON* property = NULL;
 cJSON_ArrayForEach(property, properties) {
 const char* property_name = property->string;
 cJSON* property_definition = property;

 cJSON* prop_type_item = cJSON_GetObjectItem(property_definition,
"type");
 if (prop_type_item == NULL) {
 ESP_LOGW(TAG, "Property '%s' does not have a 'type' field",
property_name);
 continue;
 }

 const char* property_type = prop_type_item->valuestring;

 if (strcmp(property_type, "object") == 0) {
 // Handle nested object
 cJSON* nested_object = cJSON_CreateObject();
 if (!traverse_schema(property_definition, schema_name,
nested_object, object_index)) {
 cJSON_Delete(nested_object);
 continue;
 }
 cJSON_AddItemToObject(json_node, property_name,
nested_object);
 } else if (strcmp(property_type, "array") == 0) {
 // Handle array
 cJSON* array_node = cJSON_CreateArray();
 // Retrieve array size using the property key
 JsonValue array_size_result = get_schema_content(schema_name,
property_name, object_index);
 if (array_size_result.type != TYPE_INT) {

168

 ESP_LOGE(TAG, "Failed to retrieve array size for property:
%s", property_name);
 cJSON_Delete(array_node);
 continue;
 }
 int array_size = array_size_result.value.int_val;

 // Get the 'items' definition for array elements
 cJSON* items_definition =
cJSON_GetObjectItem(property_definition, "items");
 if (items_definition == NULL) {
 ESP_LOGW(TAG, "Array property '%s' missing 'items'
definition", property_name);
 cJSON_Delete(array_node);
 continue;
 }

 // Iterate over array elements
 for (int i = 0; i < array_size; i++) {
 cJSON* item_node = NULL;
 cJSON* item_type_item =
cJSON_GetObjectItem(items_definition, "type");
 if (item_type_item == NULL) {
 ESP_LOGW(TAG, "Array items do not have a 'type'
field");
 continue;
 }

 const char* item_type = item_type_item->valuestring;

 if (strcmp(item_type, "object") == 0) {
 // Handle object within array
 item_node = cJSON_CreateObject();
 if (!traverse_schema(items_definition, schema_name,
item_node, i)) {
 cJSON_Delete(item_node);
 continue;
 }
 } else if (strcmp(item_type, "array") == 0) {
 // Handle nested array
 item_node = cJSON_CreateArray();
 if (!traverse_schema(items_definition, schema_name,
item_node, i)) {
 cJSON_Delete(item_node);
 continue;
 }
 } else {
 // Handle terminal type within array

169

 item_node = get_terminal_value(schema_name,
property_name, i);
 if (item_node == NULL) {
 ESP_LOGW(TAG, "Value for array '%s' index %d is
NULL", property_name, i);
 continue;
 }
 }

 cJSON_AddItemToArray(array_node, item_node);
 }

 cJSON_AddItemToObject(json_node, property_name, array_node);
 } else {
 // Handle terminal property
 cJSON* value = get_terminal_value(schema_name, property_name,
object_index);
 if (value == NULL) {
 ESP_LOGW(TAG, "Value for property '%s' is NULL",
property_name);
 continue;
 }
 cJSON_AddItemToObject(json_node, property_name, value);
 }
 }
 } else if (strcmp(node_type, "array") == 0) {
 // Handle array at root level
 cJSON* array_node = json_node;

 // Retrieve array size using the property key
 cJSON* title_item = cJSON_GetObjectItem(schema_node, "title");
 if (title_item == NULL) {
 ESP_LOGW(TAG, "Array node missing 'title' for property key");
 return false;
 }
 const char* array_property_name = title_item->valuestring;

 JsonValue array_size_result = get_schema_content(schema_name,
array_property_name, object_index);
 if (array_size_result.type != TYPE_INT) {
 ESP_LOGE(TAG, "Failed to retrieve array size for property: %s",
array_property_name);
 return false;
 }
 int array_size = array_size_result.value.int_val;

 // Get the 'items' definition for array elements
 cJSON* items_definition = cJSON_GetObjectItem(schema_node, "items");

170

 if (items_definition == NULL) {
 ESP_LOGW(TAG, "Array property '%s' missing 'items' definition",
array_property_name);
 return false;
 }

 // Iterate over array elements
 for (int i = 0; i < array_size; i++) {
 cJSON* item_node = NULL;
 cJSON* item_type_item = cJSON_GetObjectItem(items_definition,
"type");
 if (item_type_item == NULL) {
 ESP_LOGW(TAG, "Array items do not have a 'type' field");
 continue;
 }

 const char* item_type = item_type_item->valuestring;

 if (strcmp(item_type, "object") == 0) {
 // Handle object within array
 item_node = cJSON_CreateObject();
 if (!traverse_schema(items_definition, schema_name, item_node,
i)) {
 cJSON_Delete(item_node);
 continue;
 }
 } else if (strcmp(item_type, "array") == 0) {
 // Handle nested array
 item_node = cJSON_CreateArray();
 if (!traverse_schema(items_definition, schema_name, item_node,
i)) {
 cJSON_Delete(item_node);
 continue;
 }
 } else {
 // Handle terminal type within array
 item_node = get_terminal_value(schema_name,
array_property_name, i);
 if (item_node == NULL) {
 ESP_LOGW(TAG, "Value for array '%s' index %d is NULL",
array_property_name, i);
 continue;
 }
 }

 cJSON_AddItemToArray(array_node, item_node);
 }
 } else {

171

 // Handle terminal property at root level
 cJSON* value = get_terminal_value(schema_name, NULL, object_index);
 if (value == NULL) {
 ESP_LOGW(TAG, "Value for root level item is NULL");
 return false;
 }
 cJSON_AddItemToArray(json_node, value);
 }

 return true;
}

// Helper function to get terminal value
static cJSON* get_terminal_value(const char* schema_name, const char*
property_name, int object_index) {
 JsonValue result = get_schema_content(schema_name, property_name,
object_index);

 if (result.type == TYPE_INVALID) {
 ESP_LOGW(TAG, "Invalid type for property: %s", property_name ?
property_name : "(null)");
 return NULL;
 }

 switch (result.type) {
 case TYPE_STRING:
 return cJSON_CreateString(result.value.str_val);
 case TYPE_INT:
 return cJSON_CreateNumber(result.value.int_val);
 case TYPE_FLOAT:
 return cJSON_CreateNumber(result.value.float_val);
 case TYPE_BOOL:
 return cJSON_CreateBool(result.value.bool_val);
 default:
 ESP_LOGW(TAG, "Unsupported type for property: %s", property_name ?
property_name : "(null)");
 return NULL;
 }
}

File Name: json_file_seraliser.h

File Content:

#ifndef JSON_FILE_SERIALISER_H
#define JSON_FILE_SERIALISER_H

#include "cJSON.h"

172

// Serialize a JSON schema into a JSON file
char* json_schema_serialiser(const char* schema_name);

#endif

File Name: get_schema_content.c

File Content:

#include "get_schema_content.h"
#include "schema1_property.h"
#include "schema2_property.h"
#include "schema3_property.h"
#include "schema4_property.h"
#include "schema5_property.h"
#include <string.h>
#include "esp_log.h"

static const char *TAG = "get_schema_content";

// Define the function pointer type for retrieval functions
typedef JsonValue (*RetrievalFunction)(int object_index);

// Struct for mapping schema and property to retrieval functions
typedef struct {
 const char* schema_name;
 const char* property_name;
 RetrievalFunction function;
} SchemaPropertyMapping;

// Lookup table mapping schema-property pairs to functions
static SchemaPropertyMapping schema_property_lookup_table[] = {
 // Schema1 properties
 {"schema1.json", "string_prop", get_string_property},
 {"schema1.json", "int_prop", get_integer_property},
 {"schema1.json", "float_prop", get_float_property},
 {"schema1.json", "bool_prop", get_boolean_property},

 // Schema2 properties
 {"schema2.json", "child_string_prop", get_child_string_property},
 {"schema2.json", "child_int_prop", get_child_int_property},
 {"schema2.json", "main_float_prop", get_main_float_property},
 {"schema2.json", "main_bool_prop", get_main_bool_property},

 // Schema3 properties
 {"schema3.json", "level1_string_prop", get_level1_string_property},
 {"schema3.json", "level2_int_prop", get_level2_int_property},
 {"schema3.json", "level3_bool_prop", get_level3_bool_property},

173

 {"schema3.json", "level4_string_prop", get_level4_string_property},
 {"schema3.json", "level4_int_prop", get_level4_int_property},
 {"schema3.json", "level3_float_prop", get_level3_float_property},
 {"schema3.json", "root_bool_prop", get_root_bool_property},

 // Schema4 properties
 {"schema4.json", "Controllers", get_schema4_array_size},
 {"schema4.json", "string_prop", get_schema4_string_prop},
 {"schema4.json", "int_prop", get_schema4_int_prop},
 {"schema4.json", "float_prop", get_schema4_float_prop},
 {"schema4.json", "bool_prop", get_schema4_bool_prop},

 // Schema5 properties
 {"schema5.json", "UnitTests", get_schema5_UnitTests_size},
 {"schema5.json", "unit_test_name", get_schema5_unit_test_name},
 {"schema5.json", "unit_test_ID", get_schema5_unit_test_ID},
 {"schema5.json", "unit_test_state", get_schema5_unit_test_state},
 {"schema5.json", "controller_role", get_schema5_controller_role},
 {"schema5.json", "controller_ID", get_schema5_controller_ID},
 {"schema5.json", "unit_test_log_files", get_schema5_unit_test_log_files_size},
 {"schema5.json", "log_file_name", get_schema5_log_file_name},
 {"schema5.json", "log_file_version", get_schema5_log_file_version},
 {"schema5.json", "parameter", get_schema5_sub_routine_parameter},
 {"schema5.json", "parameter_value", get_schema5_sub_routine_parameter_value},
 {NULL, NULL, NULL}
};

// Function to look up the correct retrieval function based on schema and property
static RetrievalFunction lookup_function(const char* schema_name, const char*
target_property) {
 // Iterate through the lookup table to find a matching schema-property pair
 for (int i = 0; schema_property_lookup_table[i].schema_name != NULL; i++) {
 if (strcmp(schema_property_lookup_table[i].schema_name, schema_name) == 0 &&
 strcmp(schema_property_lookup_table[i].property_name, target_property) == 0) {
 return schema_property_lookup_table[i].function;
 }
 }
 return NULL;
}

// Main get_schema_content() Function
JsonValue get_schema_content(const char* schema_name, const char* target_property, int
object_index) {
 // Retrieve the function pointer based on schema_name and target_property
 RetrievalFunction retrieval_function = lookup_function(schema_name, target_property);

 if (retrieval_function == NULL) {

174

 ESP_LOGE(TAG, "Schema '%s' or property '%s' not recognized.", schema_name,
target_property);
 // Return a JsonValue with type TYPE_INVALID
 JsonValue error_result;
 error_result.type = TYPE_INVALID;
 return error_result;
 }

 // Call the corresponding function pointer to retrieve the property value
 JsonValue result = retrieval_function(object_index);

 return result;
}

File Name: get_schema_content.h

File Content:

// get_schema_content.h

#ifndef GET_SCHEMA_CONTENT_H
#define GET_SCHEMA_CONTENT_H

#include <stdbool.h>

// Function to retrieve content based on schema and property
JsonValue get_schema_content(const char* schema_name, const char*
target_property, int object_index);

#endif

Unit Test Source Code Files

File Name: main.c

File Content:

File Name: get_schema_content.c

File Content:

File Name: schema1_property.c

File Content:

File Name: schema2_property.c

175

File Content:

File Name: schema3_property.c

File Content:

File Name: schema4_property.c

File Content:

File Name: schema5_property.c

File Content:

Unit Test Artefacts

File Name: schema1.json.

File Content:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Schema1",
 "type": "object",
 "properties": {
 "string_prop": {
 "type": "string",
 "description": "A string property."
 },
 "int_prop": {
 "type": "integer",
 "description": "An integer property."
 },
 "float_prop": {
 "type": "number",
 "description": "A floating-point number property."
 },
 "bool_prop": {
 "type": "boolean",
 "description": "A boolean property."
 }
 },
 "required": ["string_prop", "int_prop", "float_prop", "bool_prop"],
 "additionalProperties": false
}

File Name: schema2.json

176

File Content:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Schema2",
 "type": "object",
 "properties": {
 "parent_prop": {
 "type": "object",
 "properties": {
 "child_string_prop": {
 "type": "string",
 "description": "A string property inside a nested object."
 },
 "child_int_prop": {
 "type": "integer",
 "description": "An integer property inside a nested object."
 }
 },
 "required": ["child_string_prop", "child_int_prop"]
 },
 "main_float_prop": {
 "type": "number",
 "description": "A floating-point number at the root level."
 },
 "main_bool_prop": {
 "type": "boolean",
 "description": "A boolean property at the root level."
 }
 },
 "required": ["parent_prop", "main_float_prop", "main_bool_prop"],
 "additionalProperties": false
}

File Name: schema3.json

File Content:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Schema3",
 "type": "object",
 "properties": {
 "level1_prop": {
 "type": "object",
 "properties": {
 "level1_string_prop": {
 "type": "string",
 "description": "A string property at level 1."

177

 },
 "level2_prop": {
 "type": "object",
 "properties": {
 "level2_int_prop": {
 "type": "integer",
 "description": "An integer property at level 2."
 },
 "level3_prop": {
 "type": "object",
 "properties": {
 "level3_bool_prop": {
 "type": "boolean",
 "description": "A boolean property at level 3."
 },
 "level4_prop": {
 "type": "object",
 "properties": {
 "level4_string_prop": {
 "type": "string",
 "description": "A deeply nested string property at
level 4."
 },
 "level4_int_prop": {
 "type": "integer",
 "description": "A deeply nested integer property at
level 4."
 }
 },
 "required": ["level4_string_prop", "level4_int_prop"]
 },
 "level3_float_prop": {
 "type": "number",
 "description": "A float property at level 3."
 }
 },
 "required": ["level3_bool_prop", "level3_float_prop",
"level4_prop"]
 }
 },
 "required": ["level2_int_prop", "level3_prop"]
 }
 },
 "required": ["level1_string_prop", "level2_prop"]
 },
 "root_bool_prop": {
 "type": "boolean",
 "description": "A boolean property at the root level."

178

 }
 },
 "required": ["level1_prop", "root_bool_prop"],
 "additionalProperties": false
}

File Name: schema4.json

File Content:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Schema4",
 "type": "object",
 "properties": {
 "Controllers": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "string_prop": {
 "type": "string",
 "description": "A string property."
 },
 "int_prop": {
 "type": "integer",
 "description": "An integer property."
 },
 "float_prop": {
 "type": "number",
 "description": "A floating-point number property."
 },
 "bool_prop": {
 "type": "boolean",
 "description": "A boolean property."
 }
 },
 "required": ["string_prop", "int_prop", "float_prop", "bool_prop"],
 "additionalProperties": false
 }
 }
 },
 "required": ["Controllers"],
 "additionalProperties": false
}

File Name: schema5.json

179

File Content:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "UnitTestsSchema",
 "type": "object",
 "required": ["UnitTests"],
 "properties": {
 "UnitTests": {
 "type": "array",
 "minItems": 1,
 "items": {
 "type": "object",
 "required": ["unit_test_profile", "unit_test_controller",
"unit_test_log_files"],
 "properties": {
 "unit_test_profile": {
 "type": "object",
 "required": ["unit_test_name", "unit_test_ID",
"unit_test_state"],
 "properties": {
 "unit_test_name": {
 "type": "string",
 "minLength": 1,
 "maxLength": 100,
 "description": "Name of the unit test."
 },
 "unit_test_ID": {
 "type": "integer",
 "minimum": 1,
 "description": "Unique identifier for the unit
test."
 },
 "unit_test_state": {
 "type": "boolean",
 "description": "State of the unit test (true
for passed, false for failed)."
 }
 },
 "description": "Profile information for a unit test."
 },
 "unit_test_controller": {
 "type": "object",
 "required": ["controller_role", "controller_ID"],
 "properties": {
 "controller_role": {
 "type": "string",
 "enum": ["Master", "Slave"],

180

 "description": "Role of the controller within
the system."
 },
 "controller_ID": {
 "type": "integer",
 "minimum": 1,
 "description": "Unique identifier for the
controller."
 }
 },
 "description": "Controller details associated with the
unit test."
 },
 "unit_test_log_files": {
 "type": "array",
 "minItems": 0,
 "items": {
 "type": "object",
 "required": ["log_file_name", "log_file_version",
"sub_routine"],
 "properties": {
 "log_file_name": {
 "type": "string",
 "minLength": 1,
 "maxLength": 100,
 "description": "Name of the log file."
 },
 "log_file_version": {
 "type": "number",
 "minimum": 0.0,
 "description": "Version number of the log
file."
 },
 "sub_routine": {
 "type": "object",
 "required": ["parameter",
"parameter_value"],
 "properties": {
 "parameter": {
 "type": "string",
 "minLength": 1,
 "description": "Name of the sub-
routine parameter."
 },
 "parameter_value": {
 "type": "integer",
 "description": "Value of the sub-
routine parameter."

181

 }
 },
 "description": "Details of a sub-routine
associated with the log file."
 }
 },
 "description": "Details of a log file associated
with the unit test."
 },
 "description": "Array of log files related to the unit
test."
 }
 },
 "description": "A unit test entry containing profile,
controller, and log file information."
 }
 }
 },
 "description": "Schema for unit tests."
}

File Name: schema1_output.json

File Content:

{
 "string_prop": "String Value",
 "int_prop": 1997,
 "float_prop": 19.950000762939453,
 "bool_prop": true
}

File Name: schema2_output.json

File Content:

{
 "parent_prop": {
 "child_string_prop": "Nested String Value",
 "child_int_prop": 123
 },
 "main_float_prop": 45.669998168945312,
 "main_bool_prop": true
}

File Name: schema3_output.json

File Content:

182

{
 "Controllers": [
 {
 "string_prop": "Controller1_String",
 "int_prop": 100,
 "float_prop": 123.44999694824219,
 "bool_prop": true
 },
 {
 "string_prop": "Controller2_String",
 "int_prop": 200,
 "float_prop": 678.9000244140625,
 "bool_prop": false
 }
]
}

File Name: schema4_output.json

File Content:

{
 "UnitTests": [
 {
 "unit_test_profile": {
 "unit_test_name": "UnitTest1",
 "unit_test_ID": 101,
 "unit_test_state": true
 },
 "unit_test_controller": {
 "controller_role": "Master",
 "controller_ID": 201
 },
 "unit_test_log_files": [
 {
 "log_file_name": "LogFile1",
 "log_file_version": 1.1000000238418579,
 "sub_routine": {
 "parameter": "ParameterA",
 "parameter_value": 301
 }
 },
 {
 "log_file_name": "LogFile2",
 "log_file_version": 2.2000000476837158,
 "sub_routine": {
 "parameter": "ParameterB",
 "parameter_value": 302
 }

183

 }
]
 },
 {
 "unit_test_profile": {
 "unit_test_name": "UnitTest2",
 "unit_test_ID": 102,
 "unit_test_state": false
 },
 "unit_test_controller": {
 "controller_role": "Slave",
 "controller_ID": 202
 },
 "unit_test_log_files": [
 {
 "log_file_name": "LogFile1",
 "log_file_version": 1.1000000238418579,
 "sub_routine": {
 "parameter": "ParameterA",
 "parameter_value": 301
 }
 }
]
 }
]
}

File Name: schema5_output.json

File Content:

{
 "UnitTests": [
 {
 "unit_test_profile": {
 "unit_test_name": "UnitTest1",
 "unit_test_ID": 101,
 "unit_test_state": true
 },
 "unit_test_controller": {
 "controller_role": "Master",
 "controller_ID": 201
 },
 "unit_test_log_files": [
 {
 "log_file_name": "LogFile1",
 "log_file_version": 1.1000000238418579,
 "sub_routine": {
 "parameter": "ParameterA",

184

 "parameter_value": 301
 }
 },
 {
 "log_file_name": "LogFile2",
 "log_file_version": 2.2000000476837158,
 "sub_routine": {
 "parameter": "ParameterB",
 "parameter_value": 302
 }
 }
]
 },
 {
 "unit_test_profile": {
 "unit_test_name": "UnitTest2",
 "unit_test_ID": 102,
 "unit_test_state": false
 },
 "unit_test_controller": {
 "controller_role": "Slave",
 "controller_ID": 202
 },
 "unit_test_log_files": [
 {
 "log_file_name": "LogFile1",
 "log_file_version": 1.1000000238418579,
 "sub_routine": {
 "parameter": "ParameterA",
 "parameter_value": 301
 }
 }
]
 }
]
}

6.3.4. Bluetooth BLE Connection Interface

Source Code Implementation

Unit Test Source Code Files

185

Unit Test Artefacts

6.3.5. Master Controller Configuration

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.3.6. Slave Controller Configuration

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.3.7. UT11 - Master Controller’s Control Logic Engine Parser

Source Code Implementation

File Name: instruction_types.h

File Content:

#ifndef INSTRUCTION_TYPES_H
#define INSTRUCTION_TYPES_H

#include "value_types.h"

typedef enum {
 OP_LOAD_CONST,
 OP_AND,
 OP_OR,
 OP_NOT,
 OP_IDENTITY,
 OP_EQ,
 OP_NEQ,

186

 OP_GT,
 OP_GTE,
 OP_LT,
 OP_LTE,
 OP_END
} OpCode;

typedef struct {
 OpCode Opcode;
 union {
 JsonValue* OperandValue;
 } OperandData;
} Instruction;

#endif

File Name: control_logic_parser.h

File Content:

Unit Test Source Code Files

Unit Test Artefacts

6.3.8. UT12 - Master Controller’s Control Logic Engine Interpreter

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.3.9. UT13 - Master Controller’s Control Logic Engine State Manager

Source Code Implementation

Unit Test Source Code Files

187

Unit Test Artefacts

6.3.10. UT14 - Slave Controller’s Control Logic Engine Action Dispatcher

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.3.11. Command Message Communication

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

188

6.4. Appendix D: Integration Testing
6.4.1. Master Controller and Slave Controller Communication Engine

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.4.2. Master Controller Initialisation and Slave Controller Initialisation

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.4.3. Master Controller’s Configuration Engine and Control Logic Engine
Integration

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.4.4. Master Controller’s Control Logic Engine and Communication Engine
Integration

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

189

6.4.5. Master Controller’s Configuration Engine and Control Logic Engine
Integration

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.4.6. Slave Controller’s Control Logic Engine and Communication Engine
Integration

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

190

6.5. Appendix E: System Testing
6.5.1. Operational Escape Room Purpose Testing

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.5.2. Operational Escape Room User Purpose Testing

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

191

6.6. Appendix F: Performance Testing
6.6.1. Operational Communication Coverage Performance Testing

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.6.2. Operational Communication Latency Performance Testing

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.6.3. Concurrent Slave Controller Communication to Master Controller
Performance Testing

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

6.6.4. Concurrent Control Logic Evaluation Performance Testing

Source Code Implementation

Unit Test Source Code Files

Unit Test Artefacts

