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Abstract

Within the microwave spectrum, new technologies such as the Internet of Things, 5G
and Wi-Fi 6 are being implemented into an already allocated frequency spectrum. As
the Australian Communications and Media Authority seeks new frequency management
tools, cognitive radio techniques could reduce the alloted frequency bands or improve

frequency utilisation within the microwave spectrum.

As cognitive radio research is generally focused on applying or modifying cognitive ra-
dio techniques for niche cases, there is a need for real-world applications or practical

simulation data of cognitive radio techniques applied to new or upcoming technologies.

From a review of available cognitive radio techniques, a non-cooperative Maximum-
Minimum Eigenvalue (MME) Detection method was chosen to gather practical signal

detection data of 5G New Radio, LTE and Wi-Fi 6 signals.

Using Python, the limited practical simulation data indicated that 5G New Radio is
easier to detect when compared to LTE and Wi-Fi 6. Limited testing of the correlative
and additive noise suggested that low signal-to-noise environments can result in false

detections or reduction in detection ability.

Further work applying cognitive radio techniques to other microwave spectrum signals is

required, as well as real-world testing.
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Chapter 1

Introduction

1.1 Problem Specification

With the arrival of 5G and the Internet of Things, the microwave spectrum is facing
increased demand for frequency space. According to the Australian Communications
Media Authority, new technologies like 5G and Wi-Fi 6 are contested for frequency space
and are expected to operate in the same frequency band (Australian Communications

and Media Authority 2024, pp. 20-21).

To help manage the frequency allocations in Australia, the Australian Communications
Media Authority have contracted Spectrum Center Inc. to develop a modern frequency
spectrum management system (Australian Communications and Media Authority 2024,
pg. 23). The allocation, management and control of frequency spectrum has been a seri-
ous issue since the United States Government idenitified spectrum access and utilisation

problems in 2002 (Haykin 2005).

This is still an ongoing problem that the United States Government continues to recognise
as 'The Spectrum Crunch’ problem, where spectrum demand requires allocations for
new spectrum efficient systems or the development of better multi-access communication

systems (National Institute of Standards and Technology 2022).

Using cognitive radio, it is hoped that better multi-access communication systems can be

developed to ease 'The Spectrum Crunch’ by utilising frequency space more efficiently.
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Introduction

1.2

Aim and Objectives

By completing this project, it is hoped that signal detection data that allows for practical

applications or real-world testing can be gathered on microwave spectrum signals.

Thus, to accomplish this aim, the following objectives must be achieved:

Identification of signal detection techniques for microwave spectrum signals.

Identification of frequency bands within the microwave spectrum that are currently

underutilised or at high-risk of interference.

Identification of signals operating within high-risk or underutilised microwave fre-

quency bands.
Creation or collection of a dataset containing signals from the microwave spectrum.
Creation of a signal detection testing environment.

Successful detection of a microwave frequency signal using a chosen signal detection

technique.
Verification of the impact of noise in signal detection.
Statistical analysis of signal detection results.

Creation and testing of a cognitive radio system in a real-world environment.
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1.3 Scope and Limitations

Due to the significant scope of the microwave spectrum, 300 MHz to 300 GHz (North
American Space Administration 2010), the project must be limited to testing a limited
number of microwave spectrum signals or frequency bands. This is to avoid spending a
significant amount of time investigating low-risk underutilised systems and/or communi-
cation systems with difficult to find documentation. For example, investigating high-end
microwave frequency signals (around 300 GHz) or microwave spectrum transmission sys-

tems with little publicly available research.

Additionally, the project’s aim has been reduced from implementing a cognitive radio
solution (smart system capable of identifying and using an open frequency band) to the

testing and collection of microwave spectrum signal data for future applications.

The project has also been limited to simulations of one signal detection method to gather
data, as the testing of multiple signal detection methods and real-world testing may not

be viable due to time and budgetary concerns.
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1.4 Overview

This dissertation is organised as follows:

Chapter 1 contains an introduction to the frequency utilisation, allocation and interfer-

ence problem, as well as the project aim, scope, objectives and limitations.

Chapter 2 contains a review of cognitive radio and signal detection research, as well as

a review of the microwave spectrum signals to be tested.

Chapter 3 contains the dataset collection method, the chosen signal detection method,
the creation of a signal detection testing environment, the analysis of results and

the expected results.
Chapter 4 contains the various signal detection tests and their results.

Chapter 5 contains the conclusions, achieved project outcomes and suggestions for fur-

ther work.



Chapter 2

Literature Review

2.1 Cognitive Radio

Given the existence of potential issues in the microwave spectrum, cognitive radio may
allow for users to smartly and independently access the microwave spectrum without

interfering with critical infrastructure or other users.

Building on the work of J. Mitola, Simon Haykin suggested the use of cognitive radio to
intelligently detect and use spectrum holes, frequency bands within a spectrum that were
not used by a primary user (user who is typically alloted to the frequency band), as a
method to allow other non-primary users (secondary/opportunistic users) to access the

desired spectrum (Haykin 2005).

The ideal cognitive radio system, as presented by Haykin, must be able to learn from
its radio environment and adapt itself (the radio system) to changes within the radio
environment to communicate reliably and efficiently within the radio system’s operational

frequency spectrum (Haykin 2005).

It is from this definition that the concept of the 'Cognitive Cycle’ was developed, which

can be seen in Figure 2.1 as taken from Shekhawat & Yadav (2021) in their review.
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Figure 2.1: The Cognitive Cycle taken from Shekhawat & Yadav (2021)

From the works of Haykin (2005) and Shekhawat & Yadav (2021), the cognitive cycle
shows how a cognitive radio system should operate. Given a radio environment, a cogni-
tive radio system is expected to analyse and detect relevant spectrum information, which
allows the cognitive radio to determine available spectrum holes (absence of primary users
or unused frequency bands) and make a decision regarding the ability to transmit without

interfering with primary user or others (Haykin 2005, Shekhawat & Yadav 2021).

Currently, it is expected that cognitive radio techniques can be applied to modern com-
munications networks and applications such as 5G and Internet of Things. A recent
review by Guiliano, Hilal, Alsadi, Gadsen & Yawney (2022) proposes that Cognitive Ra-
dio could be integrated into a Internet of Things (IoT) application by seperating known

ToT processes into layers, forming a cognitive cycle.

For 5G, a conference paper by Kakalou, Psannis, Goudos, Yioultsis, Kantartzis & Ishibashi
(2019) proposes the use of radio environment maps to record spectrum and channel in-
formation for cognitive radio learning, while the conference paper by Ramyea & Kasthuri

(2018) identifies eigenvalue detection as a superior signal detection method for 5G.

In the case of Wi-Fi, a spectrum sensing study by Hanna & Sydor (2012) , identified both
Wi-Fi low channel occupancy and low interference in an outdoor urban environment,

using a Cognitive Radio Learning platform. It was found that a practical real-world
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application of cognitive radio may allow for the usage of both unused and underutilised

channels within a section of Ottawa, Canada.

However, it is difficult to find real-world applications or practical simulations of cognitive
radio techniques that allow for direct comparison between communication systems or
signal types. Information regarding practical spectrum sensing or signal detection would
be useful for future practical applications in communication channel utilisation and/or
detecting hostile secondary users. The spectrum sensing study by Hanna & Sydor (2012)
discussed previously, is an example of practical cognitive radio data that could be applied

further.

The research identified in this project is primarily theoretical, proposals or specialised
analysis of selected communication networks or signals within conference papers. There-
fore, it is likely that a research gap exists, concering practical simulations results and
real-world implementations of cognitive radio techniques applied to microwave spectrum

signals in general.

Thus, cognitive radio techniques or applications within the microwave spectrum should
be investigated. However, due to time constraints, this project is primarily focused on
signal detection of a microwave spectrum-based signal, as signal detection should allow

for further determination of spectrum availability.
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2.2 Cooperative and Non-Cooperative Signal Detection

With Cognitive Radio identified and defined, the methods of signal detection must be
identified. In general, there is two approaches to signal detection that must be considered:

Cooperative and Non-Cooperative signal detection.

A review by Shekhawat & Yadav (2021) provides three models of cooperative signal

detection that can be reduced to:

1. Centralised Cooperative Sensing, where information from secondary users (or signal
detectors) is relayed to a Fusion Center to determine whether a secondary user can

transmit safely.

2. Decentralised Cooperative Sensing, where information is shared amongst secondary
users, allowing secondary users to independently determine channel availability from

shared knowledge.

3. Relay Assisted Cooperative Sensing, where information is either sent directly to, or
via a secondary user (acting as a relay) to the Fusion Center, allowing the Fusion

Center to determine whether a secondary user can transmit safely.

In these models identified by Shekhawat & Yadav (2021), Cooperative Signal Detection
is demonstrated to be the cooperation between multiple secondary users to determine
the channel availabilty, which is susceptible to general sensing issues and cooperative
sensor network limitations in modern or upcoming communication networks, while Non-
Cooperative Signal Detection (also defined as Classical Signal Detection), is signal de-
tection conducted by a single secondary user, which is susceptible to incorrect signal

detection in communication networks.

As cooperative and non-cooperative signal detection identifies whether secondary users
will cooperate to detect signals, it is important to understand that non-cooperative sig-
nal detection (or spectrum sensing) can refer to signal detection (or spectrum sensing)
techniques used by secondary users. The review by Shekhawat & Yadav (2015) identifies

9 variants of non-cooperative spectrum sensing methods which are listed on the following

pages.
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e Current Signal Detection / Spectrum Sensing Methods

1. Short Time Fourier Transform (Windowed Fourier Transform)

— Fourier transform applied to segemented sections of a signal via window

functions to determine frequency components of a signal.
2. Periodogram

— Fast Fourier Transform applied to rectangular windowed signal to deter-

mine the frequency components of a signal.
3. Multitaper Spectrum Estimation

— Averaged Periodogram method using varying window functions to deter-
mine the frequency components of a signal with greater accuracy.
4. Quadrature Mirror Filter Banks
— The transmitting frequency spectrum is split into frequency bands which

is monitored by two filters per frequency band to determine the presence

of a signal and its frequency components.
5. Energy Detection

— A signal is analysed to determine its energy and compared against a signal-

to-noise threshold to determine signal presence.
6. Matched Filter Detection

— Through use of filters and knowledge of the transmitted signal, the trans-
mitted signal’s response to an impulse is measured against a reference to

determine the presence of a signal.
7. Cyclostationary Feature Detection

— Using knowledge of the transmitted signal, repeated signal features (such
as frequency switching sequences, etc.) are used to identify the presence

of a signal.
8. Waveform Based Detection

— Known signals transmitted at selected times in wireless systems are used
to identify the presence of a signal by comparison to reference or known

signals.
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e Emerging Signal Detection / Spectrum Sensing Methods

1. Wavelet Concept

— Using filter banks, the signal is decomposed into filtered outputs known as
wavelet packets (of varying resolutions) that are used to map the signal’s
frequency components. Variants of this concept are examined in the study

by Shekhawat & Yadav (2015).

These non-cooperative methods can be used in cooperative signal detection, as the study
by Armi, Saad, Arshad & Y (2010) uses energy detection (identified previously as a non-
cooperative signal detection method) to determine that a cooperative signal detection
system reliant on a single secondary user detecting a signal (the OR Fusion Rule) is more
likely to detect a signal, over various signal to noise ratios, compared to non-cooperative
signal detection and cooperative signal detection relying on all secondary users detecting
a signal (the AND Fusion Rule). Additionally, increasing the number of secondary users
within a cooperative sensing system is increases the likelihood of detecting a signal (Armi

et al. 2010).

Thus, cooperative signal detection may determine the presence of a signal using a decision
making rule (such as the OR-Rule or AND-Rule) from the information supplied by the
non-cooperative methods used at any detector (or secondary user) within the sensing

network.

Despite the advantages of cooperative signal detection, the needs and capabilities of a
single user in a crowded transmission environment must be considered. As such, non-
cooperative signal detection techniques, such as those listed previously, must be inves-
tigated further to determine applicable signal detection methods within the microwave

spectrum.
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2.3 Signal Detection Methods

2.3.1 General Signal Detection Theory

The following sections (Section 2.3.2 to Section 2.3.4) will discuss energy detection, eigen-
value detection and other methods of signal detection as they apply to cognitive radio
and/or spectrum sensing. In general, these methods share a common approach to signal

detection.

Approaching signal detection as a hypothesis problem, signal detection methods generally
create a null hypothesis and alternative hypothesis (Ivanenko & Bezruk 2016). In general,

the null (Hp) and alternative (H;) hypotheses are defined as

Hy:n

H11$+77

where 7 is additive noise and s is the transmitted signal (Ivanenko & Bezruk 2016). Thus,
the null hypothesis (Hpy) suggests that only noise is present (n(n)) while the alternative
hypothesis (H;) suggests a signal, affected by correlative and additive noise is present

(Ivanenko & Bezruk 2016).

The presentation of the null (Hy) and alternative (H;) hypotheses can vary, depending
on the method and research study. However, the hypotheses generally form the basis of
signal detection methods which aim to confirm or deny the null hypothesis (Ivanenko &

Bezruk 2016). These methods will be discussed later within their relevant sections.

Thus, in general, signal detection methods aim to confirm or deny a null hypothesis using

statistical methods.
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2.3.2 Energy Detection

Energy detection, as noted earlier, analyses the power of a signal and compares the
power against a signal-to-noise threshold to determine signal presence (Shekhawat &

Yadav 2015).

This test statistic (average power), measured against the signal to noise threshold, is

calculated using
N
1
T= > luin) (21)
n=1

where N represents the number of samples, T; represents the energy detection test statistic
at the 7 th secondary user (or signal detector) and y; represents the signal combined with
noise at the ¢ th secondary user (Captain & Joshi 2018, Kalamkar & Banerjee 2013, Zeng
& Liang 2009).

Cooperative signal detection scales the energy detection test statistic by using the equation

1 M
T = MZ;T (2:2)
1=

where M represents the total number of secondary users (or detectors) and all other values
are as previously defined in Equation 2.1 (Captain & Joshi 2018, Zeng & Liang 2009),

allowing secondary users to be easily integrated within a cooperative cognitive network.

The average power (test statistic) is compared with a pre-selected noise power value, that
requires knowledge of the noise conditions to accurately estimate (Zeng & Liang 2009,
Ramyea & Kasthuri 2018). If the test statistic is greater than the selected threshold, then

a signal is present, otherwise a signal is not present (Ramyea & Kasthuri 2018).

It follows then, that a major issue with energy detection is noise uncertainity, where
variation in noise (due to time and position within an transmitting environment) can
introduce errors into the comparison between the test statistic and selected threshold as
additive or correlative noise will influence the test statistic resulting in false alarms or

false positives (Yawada, Wei & Kiki 2015).



2.3 Signal Detection Methods 13

The conference paper by Kalamkar & Banerjee (2013) investigates a uniform noise uncer-
tainity model and a noise uncertainity range model (only minimum and maximum noise
known) for a generalised variant of energy detection which is shown below in Equation

2.3. N
_ 1 p
[ = ngllyl(n)\ (2.3)

It was found that the conventional energy detector model (Equation 2.1) performs bet-
ter than generalised energy detector models in uniform noise uncertainity, but performs

similarly for a noise uncertainity of £ 0.5 dB (Kalamkar & Banerjee 2013).

Further studies have been completed on noise uncertainity for energy detection methods.
The conference paper by Captain & Joshi (2018) derives and simulates (via monte-carlo)

the effect of noise uncertainity on cooperative energy detection.

As such, the energy detection method described previously (Equation 2.1) should allow
for the detection of signals in the microwave spectrum, assuming an accurate noise power

threshold is selected.

However, as noted earlier, an eigenvalue method (maximum eigenvalue detection) was
found to be more likely to detect a 5G signal when compare to energy detection and other
signal detection methods Ramyea & Kasthuri (2018). Additionally, eigenvalue detection is
identified to be a blind detection method, requiring no knowledge of signal characteristics

or the transmission environment (Zeng & Liang 2009, Ramyea & Kasthuri 2018).

Thus, to avoid the identified issues with energy detection, eigenvalue based detection

methods will be considered.
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2.3.3 Eigenvalue Detection
Eigenvector Theory

Before discussing the eigenvalue detection method, the underlying theory of eigenvectors

and eigenvalues must be discussed.

To start, eigenvalues and eigenvectors are the result of the equation
AX =)XX (2.4)

where \ represents a non-zero scalar value (eigenvalue), X represents a non-trivial (non-
zero) n X 1 vector solution to Equation 2.4 and A is a square matrix n X n in size (James,

Burley, Clements, Dyke, Searl & Wright 2015).

Manipulating Equation 2.4, we arrive at the characteristic equation
det [\I— A| =0 (2.5)

which can be solved for a polynomial series of A (eigenvalues) that can be solved further

for the individual eigenvalues of A (James et al. 2015).

It is important to note that eigenvectors can be real or complex, positive or negative and

repeated (James et al. 2015).

Additionally, for a real symmetrical matrix of dimensions n x n, the eigenvalues will be

real numbers (James et al. 2015).

Applied to eigenvalue based signal detection, eigenvalue theory is used with random ma-
trix theory to derive a signal presence threshold to be compared with eigenvalues (Zeng
& Liang 2009). These eigenvalues are obtained from a statistical matrix and are repre-

sentative of the variance of the signal noise (Zeng & Liang 2009).

In the case of signal absence, these eigenvalues are equal and repeated, which is the basis
of signal detection for the Maximum-Minimum Eigenvalue method (Zeng & Liang 2009).
This method, and the proceeding works will be discussed in the following section (Section

2.3.3).

Thus, eigenvalues are representative of signal characteristics, taken from a statistical

matrix which will be discussed in the following section (Section 2.3.3).
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Eigenvalue Detection Method

In the following section, the superscript T denotes the transpose of a matrix. For example,

x! is the transpose of x.

So far, the Eigenvalue detection method has been identified as a reliable method to detect
5G signals (Ramyea & Kasthuri 2018), and a blind detection method that does not require

prior signal knowledge (Zeng & Liang 2009).

Within eigenvalue detection, there are two main methods to consider, Maximum FEigen-
value Detection (MED) proposed by Zeng, Liang & Koh (2008) and Maximum-Minimum
Eigenvalue (MME) Detection proposed by Zeng & Liang (2009). Both of these methods
rely on the formation of a sample covariance matrix, formed by auto-correlating the vector

containing the sampled signal (Zeng et al. 2008, Zeng & Liang 2009).

For MED, this process is completed by the auto-correlation equation,

Ng—1
)\(l):]\lfs S a(mys(m—1), 1=0,1,...,L—1 (2.6)

m=0

which is used to approximate the sample covariance matrix

BY0) A1) AL —1)]
B ~ A1) A(0) AL - 2) o
ML-1) AL-2) ... \0) |

that eigenvalues can be extracted from (Zeng et al. 2008).

In equations 2.6 and 2.7, A is used as a variable. This is how the equations are presented
in the MED conference paper by Zeng et al. (2008). Please note that going forward, A

will be used to refer to eigenvalues.

Note that L represents in both MME and MED represents smoothing factor (a positive
integer selected by the user), Ny represents (in both MME and MED) the number of
samples, f{z(Ns) or R, (N;) represents the sample covariance matrix which is a square
matrix used in statistics to determine the variance and covariance of multiple variables
(Wikipedia 2024b, CueMath 2024) and x(n) represents the sample vector of the received
signal (Zeng et al. 2008, Zeng & Liang 2009).
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For MME (Zeng & Liang 2009), the sample covariance matrix is formed by the equation,

| L2tN

which is reliant on the definitions:
x(n) = [z1(n), z2(n), ..., zp(n)]T (2.9)
x(n) = [xT(n),x"(n—1),...,x (n—L+1)T (2.10)

These definitions for x and X are for a system with M secondary users, allowing MME
detection to be scaled for a cooperative cognitive network (Zeng et al. 2008, Zeng &

Liang 2009).

To link these covariance matrices to signal detection, the studies (Zeng et al. 2008) and
(Zeng & Liang 2009) substitutes the null hypothesis signal or signal absence (Hp : n(n))
in place of z(n) (recieved and presently transmitted signal) in both MED and MME.

From this substitution the sample covariance matrix becomes a measure of noise variance,
equating all eigenvalues (of the sample covariance matrix) to the noise variance (Zeng &
Liang 2009) and therefore obtaining the ratio

Amaz _ 1 (2.11)

)\min

as the eigenvalues are all equivalent to the variance of the noise or Az = Amin = 02 in

7
MME detection (Zeng & Liang 2009).

(Zeng & Liang 2009) then suggests that alternate hypothesis scenarios (signal is present)
will result in

Mmaz (2.12)

)\min
where \p,qz 18 the maximum eigenvalue and Ay, is the minimum eigenvalue of the sample

covariance matrix.

In the case of Maximum Figenvalue Detection, the maximum eigenvalue becomes equal
to the noise variance in the absence of a signal (Aaz = o*%) or greater than the noise

variance in the presence of a signal (Apmqz > a%) (Zeng et al. 2008).
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In short, using the null hypothesis and alternate hypothesis signals, the MME conference
paper by (Zeng & Liang 2009) and the MED conference paper by Zeng et al. (2008),
equate eigenvalues to the signal noise variance and determine eigenvalue ratios or criteria

according to the method.

Both methods (Zeng et al. 2008, Zeng & Liang 2009) use Random Matrix Theory and
the first order Tracy-Widom distribution (a random matrix related distribution for the
maximum eigenvalue) to determine an equation for a threshold unique to each method.
These thresholds must be exceeded by either the MME ratio or maximum eigenvalue

(MED method) for a signal to be present (Zeng et al. 2008, Zeng & Liang 2009).

Note that within the MED conference paper by (Zeng et al. 2008), the signal presence
criteria is given as

Amaz > '70'»,27 (213)

which must be true for a signal to be present.

Note that v is the signal presence threshold, O'% is the variance of the noise and A\;,qz
is the maximum eigenvalue of the MED covariance matrix (see Equation 2.7, where A

represents an autocorrelation).

Alternatively, the MME conference paper states the signal presence criteria as

Amag > (2.14)

)\min

which must be true for a signal to be present (Zeng & Liang 2009).

Thus, the Maximum-Minimum Eigenvalue (MME) detection method will be used in this
project, as MED is reliant on noise variance. Further discussion on MME detection in
relation to this project (testing, application, formulae) can be seen in Section REF of the

Methodology.

Other detection methodologies have been dismissed for requiring prior knowledge of the

signal or careful selection of thresholds to avoid false positives.

Within the eigenvalue detection field, there are many applications and modifications. A
small set of these applications and modifications will be discussed in the following sections

(Section 2.3.3 and Section 2.3.3).
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Modifications

Within eigenvalue based sensing, there are several modifications, variants and alternatives
to both MME and MED methods. Some modifications, variants or alternatives to MME
and MED methods are listed below.

The MME conference paper by Zeng & Liang (2009) discussed previously also presents
Energy with Minimum Eigenvalue (EME) detection as an applicable signal detection
method. The EME method compares the ratio of the average (recieved) signal power
and minimum eigenvalue (of the sample covariance matrix) against a threshold unique to
EME (Zeng & Liang 2009). Within the conference paper, EME was found to be a viable
during testing (Zeng & Liang 2009). However, due to the complexity of the threshold

equation, this method was not chosen for testing.

The conference paper by Ali, Zhao, Jin & Yoo (2019) presents and simulates several dif-
ference eigenvalue detection methods and found that the Maximum-Minimum Eigenvalue
Sum (MMES) and Product (MMEP) detection methods were the best performers in a

multiple primary and secondary user enivronment.

A conference paper by Sharma, Chatzinotas & Ottersten (2014) revisited the derivation
of the MED threshold, suggesting and testing an alternative threshold that was found
to be significantly more accurate for correlated noise in —10 dB Signal-to-Noise Ratio
and higher. However, the alternative threshold introduces significant complexity into the
threshold calculations as two definite integrals have been incorporated (Sharma et al.

2014).
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Applications

A conference paper by Ramyea & Kasthuri (2018) identifies that an eigenvalue detector is
able to detect a 5G primary user more reliably compared to other spectrum sensing meth-
ods. It should be noted that the eigenvalue detection method used was Maximum Eigen-
value Detection (MED) as this conference paper has been discussed previously (Ramyea

& Kasthuri 2018).

For Maximum-Minimum Eigenvalue detection, a conference paper by Althaf & Prema
(2018) tested Maximum-Minimum Eigenvalue (MME), Energy with Minimum Eigenvalue
(EME), Energy Detection and a Covariance Matrix detection method in a real-world

environment with signal transmitting with a centre frequency of 93.5 MHz.

The results of this conference paper found MME to present the highest possible probabil-
ity of detection for the lowest possible probability of false alarm (Althaf & Prema 2018).
While a validation of MME, the central transmitting frequency was outside of the mi-
crowave spectrum, suggesting the paper is of limited application to the microwave fre-

quency bands.
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2.3.4 Alternative Methods

As the eigenvalue detection method is selected signal detection method, the following
segments (Section 2.3.4 to Section 2.3.4) will provide a limited and brief overview of an

unmentioned detection method and its applications.

Deep-Learning Applications

Deep-learning, the process of training neural networks to analyse information in stages
(Google 2024), has been successfully applied to the cognitive radio as signal detection
or spectrum sensing. Deep-learning is applied by training a neural network on a large
dataset to learn and identify characteristics of the dataset according to the dataset’s labels

(Google 2024).

In the journal paper by Wei, Zheng, Zhou, Zhang, Lou, Zhao & Yang (2022), two deep-
learning neural network methodolgies are proposed to detect Direct Sequence Spread
Spectrum (DSSS) signals which can appear as white noise. As signal detection is formu-
lated as a binary problem with a null and alternative hypothesis (signal is absent and

signal is present respectively) deep-learning is readily applicable (Wei et al. 2022).

The two deep-learning neural networks were trained on DSSS and white noise signals,
allowing the neural network (with adequate time training) to remember the difference
and correctly identify signals at a greater accuracy in all cases (such as interference,
multipathing, pink noise, etc.) when compared to traditional autocorrelation detection

(Wei et al. 2022).

Another journal paper by Kot, Teh, Razul & Su (2022) proposes and tests a hybrid neu-
ral network design against known deep-learning and signal detection methods in a non-
cooperative cognitive radio environment. Operating in uncertain noise, unknown modu-
lation and a rayleigh fading channel (attenuation in the form of a rayleigh distribution)
the proposed neural network design is able to detect signals on-par with trained models

(in the case of unknown modulation) or better than current methods (Kot et al. 2022).
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Statistical Tests

Statistical tests, such as the Kolmogorov-Smirnov and Pearson Chi-Square tests can be
applied to spectrum sensing by evaluating the probability distribution of a signal’s samples
against a known distribution as Goodness-Of-Fit test (de Carvalho, Lopes & Alencar

2015a).

The paper by de Carvalho et al. (2015a) compares three known statistic tests (Kurtosis,
Skewness and Jarque-Bera) by their performance in a rayleigh fading channel (attenuation
in the form of a rayleigh distribution) which demonstrated the probability of detection re-
quiring an increase in SNR by approximately 15 dB to reach parity with non-faded results.
Further testing in other fading channels was announced (de Carvalho et al. 20154), but
the application and viability of statistical tests as a spectrum sensing techniques appears
to be limited. Other spectrum sensing techniques may provide easier implementation and

better results.

Further investigation has yielded similar niche cases, of research applying statistical tests
to niche distributions outside the scope of this project, such as the study by Luo, Wang,
Zhang & Luo (2015) applying a variation of the Kolmogorov-Smirnov test to a symmetric

alpha stable noise channel.

Due to the complex and niche nature of these statistical test applications, further review
will be not be conducted in favour of blind detection methods such as energy detection

or eigenvalue detection.
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2.4 Microwave Frequency Signals

As the microwave frequency spectrum spans 300 MHz to 300 GHz (North American Space
Administration 2010), the allocated frequency bands and their usage within this spectrum

are identifiable by the Australian Radiofrequency Spectrum Plan 2021.

As Australia is a member of the International Telecommunications Union (ITU), fre-
quency band allocations must be made to accomodate both ITU Radio Regulations and
Australian Government allocations. (Communications & Authority 2024, Australian Ra-

diofrequency Spectrum Plan 2021).

Presented within the Australian Radiofrequency Spectrum Plan 2021, the microwave spec-
trum has been allocated from 300 MHz to 275 GHz, with general usage and frequency
bands listed. For example, the frequency band 399.9 to 400.05 MHz (within the microwave
spectrum) lists the band being allocated to "MOBILE-SATELLITE (Earth-to-space)”
with footnotes regarding ITU and Australia usage (Australian Radiofrequency Spectrum

Plan 2021, pg. 45).

However, due to limitations in available datasets, only 5G New Radio, LTE and two
variants of Wi-Fi 6 can be discussed and analysed as these are present in the dataset by
Subray (2023). The following sections (Section 2.4.1 to Section 2.4.3) cover the general
usage of these signals and their general frequency bands (or operational frequencies) within
Australia. However, it should be noted, that with the possible exception of 5G New Radio

(Section 2.4.1), all signals should exist within the microwave frequency spectrum.

2.4.1 5G New Radio

The 5G New Radio (5G NR) is an Orthogonal Frequency Division Multiplexing (OFDM)
transmission standard to allow users to access wireless communications networks (Wikipedia
2024a). Within Australia, 5G NR can currently operate on various frequency bands be-
tween 5 MHz and 1 GHz for various telecommunications providers (Wikipedia 2024¢). As
such, it is possible that any dataset containing 5G NR signals may contain 5G NR signals

outside of the microwave spectrum.
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2.4.2 LTE

Long-Term Evolution (LTE) is a wireless communications standard using Orthogonal
Frequency-Division Multiple Access (OFDMA) to allow users to access wireless commu-
nication networks (Gills, Jones & Beaver 2024). Within Australia, LTE can currently
operate on the frequency bands at 700 MHz, 850 MHz, 900MHz, 2.1 GHz, 2.3 GHz and
2.6 GHz (Wikipedia 2024d). Thus, LTE should be present within the microwave frequency

spectrum during Australian operation.

2.4.3 Wi-Fié6

Wi-Fi 6 or IEEE 802.11ax is an Orthogonal Frequency Division Multiple Access (OFDMA)
wireless communication standard typically operating around 2.4 or 5 GHz (RF Wireless
World 2024b, Intel Technologies 2024). Within the available dataset, Wi-Fi 6 MCS6 and
Wi-Fi 6 MCS7 signals have been included (Subray 2023), which uses 64 Quadrature Am-
plitude Modulation at different bit and code rates (RF Wireless World 2024a). Thus,
Wi-Fi 6 should be present within the microwave frequency spectrum during Australian

operation.
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2.4.4 Industrial, Scientific and Medical Bands

Within the Australian Radiofrequency Spectrum Plan 2021, there are 13 ISM Bands from
ITU and Australian Government allocations, which can be seen in Table 2.1 on Page 25.
According to the Australian Radiofrequency Spectrum Plan 2021, several of these bands
require the user to operate at their own risk, subject to ITU and Australian provisions

(Australian Radiofrequency Spectrum Plan 2021, pg. 98 and pg. 177).

As such, these bands must be investigated to determine whether significant and repeatable
interference is occurring. An investigation by Wituski & Dietl (2020) found that parallel
networks and conflicting transmission standards (WLAN and Blutetooth specifically) were
interfering within the 2.4 GHz ISM Band. Additionally, an Italian Hospital’s usage of the
2.4 GHz band was recorded, allowing for the modelling of typical interference and their

distributions (Mucchi & Carpini 2014).

However, it should be noted due to the age of the Italian Hospital conference paper
(published in 2014) and the situation review by Wituski & Dietl (2020) that these studies
provide a limited view into potential interference sources and/or conflicting transmission
schemes. The Italian Hospital study in particular will not feature potential interference
from Internet of Things devices, the profileration of Bluetooth/Wi-Fi capable devices
and/or new standard in communication schemes. Conversely, due to the localised nature
of the interference investigation by Wituski & Dietl (2020), it is expected that several

competing transmission schemes have been omitted.

Thus, it expected that the 2.4 GHz ISM band (2 400 - 2 500 MHz ISM band in Table 2.1
on Page 25) has the potential for significant interference. Thankfully, the Subray (2023)
dataset contains Wi-Fi 6 which can operate at the 2.4 GHz ISM band. Therefore, signal
detection techniques can be applied to a potential interfering signal type within a ISM

band.
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Table 2.1: Table of ISM Bands within the Interational Telecommunication Union and Aus-

tralia

Frequency Band | Units | Centre Frequency
6 765 - 6 795 kHz 6 780
13 553 - 13 567 | kHz 13 560
26 957 - 27 283 | kHz 27 120
40.66 - 40.70 MHz 40.68
433.05 - 434.79 | MHz 433.92
902 - 928 MHz 915
918 - 926 MHz 922
2400 - 2 500 MHz 2 450
5 725 - 5875 MHz 5 800
24 - 24.25 GHz 24.125
61 - 61.5 GHz 61.25
122 - 123 GHz 122.5
244 - 246 GHz 245
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2.5 Summary

In this literature review, it was identified that:

1. Cognitive Radio (Section 2.1)

e Cognitive radio is the smart detection and utilisation of spectrum holes (avail-
able frequency bands) for transmission without interfering with primary users

or critical infrastructure.

e The majority of the featured research in the literature review is theoretical,

proposals or specialised analysis.
e There is a lack of practical simulation results and real-world testing/data.
2. Cooperative and Non-Cooperative Signal Detection (Section 2.2)
e In cooperative signal detection, secondary users (opportunistic users not nor-
mally part of the frequency band) cooperate to detect available spectrum holes.
e Cooperative signal detection is generally more reliable at detecting signals.
e Multiple signal detection methods exist.

e Non-cooperative signal detection refers to signal detection methods for a single

user.

e Cooperative signal detection can use non-cooperative signal detection methods

at each secondary user.

e To consider the needs of a single user, non-cooperative signal detection was

selected.
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3. Signal Detection Methods (Section 2.3)
e Signal detection uses a null (signal absent) and alternate (signal present) hy-
pothesis.
e Energy detection compares average power with a chosen noise power threshold.
e Energy detection is susceptible to noise uncertainity (changing noise power).

e The eigenvalue method was selected due to higher chance of detecting 5G

signals and its ability to detect without prior knowledge of a signal.
e Eigenvalue and eigenvector theory was briefly covered.

e Maximum Eigenvalue Detection (MED) and Maximum-Minimum Eigenvalue

(MME) methods were discussed.

e Kigenvalues are obtained from the sample covariance matrix in eigenvalue de-

tection.

e The eigenvalues correspond to noise power and therefore form the basis of

eigenvalue detection.
e The Maximum-Minimum Eigenvalue signal detection method was selected.

e Various modifications and applications of eigenvalue signal detection were dis-

cussed.

e Deep-Learning signal detection is more successful in identifying signals in a

variety of circumstances.

e Statistical tests can be applied to signal detection.
4. Microwave Frequency Signals (Section 2.4

e The microwave spectrum spans 300 MHz to 275 GHz in Australia.

e Only 5G New Radio, LTE and Wi-Fi 6 were discussed due to limitations in

the chosen dataset.

e [t is possible the dataset contains 5G New Radio signals that operate outside

the microwave spectrum.
e The Industrial, Scientific and Medical (ISM) bands in Australia were identified.
e The 2.4 GHz band may have significant interference.

e Wi-Fi 6 operates within the 2.4 GHz band.






Chapter 3

Methodology

3.1 Eigenvalue Detection of Signals

In the paper by Zeng & Liang (2009), an algorithm to calculate the Maximum-Minimum

Eigenvalue (MME) is listed with some of the require equations missing.

This algorithm for MME is:

1. Calculate the sample covariance matrix.

2. Obtain the minimum and maximum eigenvalue of the sample covariance matrix.
3. Calculate the eigenvalue ratio (Amaz/Amin)-

4. Calculate the threshold (7).

5. Compare the eigenvalue ratio to the threshold. If the eigenvalue is greater than the

threshold, a signal is present.

However, in it’s basic state, MME is scaled for multiple secondary users or M > 1.
In the case of a single secondary user, the sample covariance matrix must be redetermined.

First, listing the equation for the sample covariance matrix:

L—

1 2+N,
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Note that for MME detection, N, is the number of samples, R, is the sample covariance

matrix, L is the smoothing factor and superscript 7" represents the transpose of a matrix.

Using the definitions for x(n) and x(n) (where z;(n) represents the ith signal sample

vector) from the paper by Zeng & Liang (2009), we obtain:

x(n) = [z1(n),...,zy(n)]" (3.2)

x(n) = [xT(n),xT(n—-1),...,xI(n—L+1)" (3.3)

As x;(n) represents the ith signal sample vector, and a version of MME for a single

secondary user is desired, let M = 1. Subsituting, we obtain:

x(n) = z(n) (3.4)

x(n) = [zT(n), 2T (n —1),... .27 (n — L+ 1)]T (3.4 — 3.3)
To calculate the sample covariance matrix, lets determine the range of x that will be used.

Substituting the range n = L — 1 to n = L — 2 + N, into Equation 3.4 — 3.3 we obtain:

X(L—1) = [2T(L - 1),27(L - 2),...,27(0)]" (3.5)

X(L -2+ N,) = [#7(L =2+ N,), 2T (L =3+ Ny),..., 2T (N, — 1)]T (3.6)

As the sample covariance matrix is a square symmetrical matrix, we can substitute Equa-
tion 3.4 — 3.3 into Equation 3.1 to arrive at an equation for sample covariance matrix of

a single secondary user.

Substituting Equation 3.4 — 3.3 into Equation 3.1 we should obtain
[ z(n) ]

L-24N; x(n—1)
[z(n) z(n—1) ... xz(n—L+1) (3.7)

|z(n— L+1)]

which will generate a square symmetrical R, matrix.

It should be noted, that the upper limit of the sum in Equation 3.7 will result in a index
value of L — 2 + N, which exceeds Ny if L > 2. As N, represents the total number of
samples within the recieved signal (or number of samples total), Equation 3.7 begins to

fall apart.
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This is solved by treating Equation 3.7 as a auto-correlation, which was the process to
determine the sample covariance matrix of the Maximum Eigenvalue Detector (Chapter

2 Section 2.3.3). This means, any value of n that exceeds Ns must result in zero.

Expressed mathematically, accounting for Python array indexing,

z(n) 0<n<Ng—1
x(n) = =) (3.8)

0 n > Ny

must be observed for Equation 3.7 to result in a square symmetrical matrix that represents

the sample covariance matrix.

With an equation determined for the sample covariance matrix (Equation 3.7), the algo-

rithm and its required equations can be restated.
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Copying over the required equations from Zeng & Liang (2009), the algorithm for Maximum-

Minimum Eigenvalue detection becomes:

1. Calculate the sample covariance matrix using

_ () .
L—2+N, (n—1
R (Ns) = Ni = z(n) z(n—1) ... z(n—L+ 1)] (3.7)
8 n=L-1
_x(n — L+ 1)_
for
z(n) 0<n<Ng—1
z(n) = (3.8)
0 n > Ny

2. Obtain the minimum and maximum eigenvalue of the sample covariance matrix

(Ra(Ns)).
3. Calculate the eigenvalue ratio (Apmaz/Amin)-

4. Calculate the threshold () using

_ (N4 VML)’ <1+ (VA + VML) "
7= (\/ﬁs*\/mf (NyML)/6

- Pfa)> (3.9)

5. Compare the eigenvalue ratio to the threshold, if Ayaz/Amin > 7 then a signal is

present. Otherwise, a signal is absent.

Note: L is the smoothing factor, n is the sample number, x(n) is the recieved signal, N is
the number of samples, R, is the sample covariance matrix, M is the number of secondary
users (M = 1), Py, is the probability of false alarm and Ffl is the Tracy-Widom order

1 inverse cumulative distribution function.
Thus, the algorithm for Maximum-Minimum Eigenvalue detection is listed above.

Note: Due to large signal datasets, the MME Algorithm will be applied to N sized frames
of the dataset with a smoothing factor of L. The probability of false alarm will be set to

10% (Pyfq = 10%) and the number of secondary users will remain M = 1.

Note 2: The Threshold (7) is constant and only varies when Ny or L changes.



3.2 Collection of Data 33
3.2 Collection of Data

During the project, it became apparent that a microwave spectrum dataset could not be
created in a timely manner. As such, the dataset collection turned to available online

datasets.

As some dataset websites were unavailable, the search expanded to sites such as Kag-
gle.com, a website that hosted free creative-commons licensed datasets. Doing some

minor searching, the Subray (2023) dataset was found and downloaded.

The 'Real-World Wireless Communication Dataset’, or Subray (2023) dataset, contained
a set of signals using Wi-Fi 6, LTE and 5G New Radio. As these signals are within
the microwave spectrum (assuming that the 5G New Radio data was recorded within
the microwave frequency spectrum according to previous observations in Section 2.4 of
the Literature Review) and the dataset was stored in an integer format, the dataset was

perfect for signal detection testing.

If the 'Real-World Wireless Communication Dataset’ contained Signal-to-Noise ratio data

instead of a sampled waveform, then another dataset would have been chosen.

Thus, the 'Real-World Wireless Communication Dataset’ was chosen for this project due

to the integer format and microwave spectrum signals.
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3.3 Creation of a Simulation Environment

Due to the availability of online datasets, the signal detection process will be simulated
within using Python 3.9.19 within the SPYDER IDE. To ensure that the analysis was
completed in a timely manner, the scientific computing Python modules NumPy and

SciPy were downloaded, installed and incorporated into the constructed Python code.

The Matplotlib Python module was included to generate figures and a Tracy-Widom
distribution module was included to calculate the inverse cumulative distributio function
for a Tracy-Widom distribution. In the eigenvalue detection method, this is the value

F[ (1 — Py,) which must be calculated to determine the threshold.

Using these modules and an available Tracy-Widom distribution Python module, the
simulation environment was created. As the Subray (2023) dataset stores the signals
in the signed NumPy 16-bit integer format, the Python code was constructed to safely

extract the data from the .data files provided in the dataset.

With the dataset safely extracted, the Python code should be able to construct a figure
for each of the signals in the dataset and save the figures as .png files, confirming that

the dataset can be used and files can be saved successfully.

To ensure the code correctly detects signals, a signal should be manually selected to
calibrate the variables L and N,. This process should result a signal being detected in
areas of high sample value (high signal power) and a detectable signal absence in areas

of low or zero sample value.

Note: For large sample size datasets, the python code should break the waveform up into

N sized frames and determine if there is a signal present within each frame.

Additionally, a figure of the signal waveform should be created with highlight areas de-

picting where the signal was detected.
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To perform the Maximum-Minimum Eigenvalue Detection method, the Maximum-Minimum
Eigenvalue (MME) detection algorithm described in Section 3.1 will be used. This algo-
rithm should require selected values for Ny, L and Pj, (Number of Samples, Smoothing
Algorithm and Probability of False Alarm respectively) as M = 1 has been selected.
Calibration wil be required to determine suitable values for Ny and L, as Py, has been

selected previously to be 10%.

Note: For large datasets, the code must be able to break the dataset into frames of size

N, and perform the MME algorithm over the entire dataset.

After calibration the Maximum-Minimum Eigenvalue detection method should be func-
tioning and tested against all signals of the Subray (2023) dataset as a baseline for further

work with additive or correlated noise.

For signal detection within the simulation environment to be relevant to real-world sce-
narios, the Python code should be able to ’inject’ a variety of signal noise strengths and
patterns into the tested signal patterns. Thus, after loading the data it is imperative that
a variety of noise profiles can be injected into the loaded datasets for testing. This should
result in several variations of the same dataset for testing, allowing for the relationship
between various noise profiles and the accuracy of signal detection to be determined.
Note that noise profiles will vary in terms of strength and frequency distribution. I.E.,

Gaussian and other forms of additive noise will be considered.

By detecting signals in a variety of noisy environments, it is hoped that 'real-world’ signal
detection can be approximated within the simulation environment. Where possible, it is
hoped that the dataset loading, noise injecting and signal detection testing methods can
be automated to ensure that the STE can become an automated simulation environment

to remove manual input requirements.

Should time permit, it is hoped that an automated testing environment would be able to
generate new signal datasets for testing using the previously loaded signals from the online
dataset. The new signal datasets should vary between dead-air (no signal transmitted)
and recieved signal data with a variety of injected noise to simulate real-world signal

detection.
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The dead-air interval between signals should be randomised for each new dataset. Ideally,
this system would randomly select signals from online datasets and randomly determine
the interval between each signal to generate a new dataset for a selected number of
samples. For example, the new dataset system should be able to select from known signal

datasets and known noise patterns to generate a dataset of any number of sample points.

This method of additive noise injection should reveal the extent Maximum-Minimum

Eigenvalue detection can detect the signal under additive or correlative noise.

If time permits further work, then the presence of multiple overlapping signals in a variety
of noisy environments should also be generated using the new signal dataset generation

method.

In summary, the Python code (in Appendix C) should be able to:

Extract the dataset.

Graph the dataset and save the figure to disk.

Perform Maximum-Minimum Eigenvalue Detection.

Save the Eigenvalue Ratio, Threshold and Detected Signal Presence results to disk.

Graph the dataset, highlight the signal detected areas and save the figure to disk.

Be calibrated from manual selections of L and Nj.

Add noise (of selected distributions) to the dataset signals.

If possible, the Python code should be able to automatically create custom signals using

the dataset signals, dead-air and additive noise.
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3.4 Expected Results and Data Analysis

Note: The average, minimum and maximum eigenvalue ratios will be discussed. A general

representation has been included below.

A’Iﬂ,CLCIS
A Avg. Ratio = Average( S ) (3.10)
AMin.Ratio = Minimum(i\\m@) (3.11)

i:jz) (3.12)

AMaz. Ratio = Maximum(

From the proposed Python code, we can expect three sets of results:

1. Calibration Results
2. Signal Detection Results

3. Added Noise Results
Each of the three results sets should output the following as individual .tzt files:

1. The Eigenvalue Ratios (Apmqaz/Amin) for all Samples/Frames of a Signal.
2. The Calculated Threshold Constant (7).

3. Signal Presence (as a Boolean) for all Samples/Frames of a Signal.

From these results, we can determine the average, minimum and maximum eigenvalue
ratio for the overall signal. This should provide a measure to compare the ease of signal
detection between signal types. For example, the 5G-NR being harder to detect than

Wi-Fi 6, due to a lower average eigenvalue ratio.

Note: The eigenvalue ratio, threshold and signal presence appear to be dimensionless.
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For the calibration results, there are four factors to consider, which are listed below.

L or Smoothing Factor

M or Number of Secondary Users

N or Number of Samples

Py, or Probability of False Alarm

From these factors, M =1 and Py, = 10% will be held constant. The variation of L and
N, should impact either the eigenvalue ratios, threshold (which varies due to Ng and L

being used to calculate 7) or the boolean signal detection values.

Thus, depending how the results change from varying L and N, the Python code will
be calibrated for optimal signal detection. Graphs will be used to visually confirm signal

presence.

Otherwise, the noise results and signal detection results will mainly be compared against
each other to determine the impact of noise on either signal presence or the eigenvalue
ratios. It is expected that additive and correlative noise will negatively affect the signal

detection code.
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3.5 Summary

1. Eigenvalue Detection of Signals (Section 3.1)
e The Maximum-Minimum Eigenvalue (MME) algorithm for M secondary users
was stated, with some equations missing.
e The MME Algorithm for M = 1 secondary users was derived.

e The MME Algorithm for M = 1 secondary users was stated with all equations.
2. Collection of Data (Secton 3.2)

e Could not construct a dataset in a timely matter.
e Began searching for datasets available on the internet.

e Found and selected a dataset stored in Integer format containing microwave

spectrum signals.
3. Simulation Environment (Section 3.3)

e In summary, the Python code (in Appendix C) should be able to:
— Extract the dataset.
— Graph the dataset and save the figure to disk.
— Perform Maximum-Minimum Eigenvalue Detection.

— Save the Eigenvalue Ratio, Threshold and Detected Signal Presence results
to disk.

— Graph the dataset, highlight the signal detected areas and save the figure
to disk.

— Be calibrated from manual selections of L and Nj.

Add noise (of selected distributions) to the dataset signals.

e If possible, the Python code should be able to automatically create custom

signals using the dataset signals, dead-air and additive noise.
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4. Expected Results (Section 3.4)

e Eigenvalue ratios will be compared to determine signal detectability.

Signal presence will be boolean.

All results will yield eigenvalue ratios, signal presence and the calculated

threshold for the length of a signal.

Graphs will be used to visually confirm signal presence.

e Noise is suspected to negatively impact signal detection.



Chapter 4

Results

4.1 Code Completeness Statement

The Python code (in Appendix C) is able to:

Extract the dataset.

Graph the dataset and save figures to disk.

Perform Maximum-Minimum Eigenvalue Detection.

Save the Figenvalue Ratio, Threshold and Detected Signal Presence results to disk.

Graph the dataset, highlight the signal detected areas and save the figure to disk.

Be calibrated from manual selections of L and V.

Add noise (Gaussian) to a dataset manually.

The Python code (in Appendix C) is unable to:

e Automatically create custom signals using the dataset signals, dead-air and additive

noise.
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4.2 Extraction of Data

Using the Python code constructed (Appendix C), the waveforms from the Subray (2023)
dataset have been successfully extracted and graphed on the following pages (Page 43 to
50) as Figures 4.1 to 4.15.

Note that the dataset waveforms are 40 000 000 samples long and are in NumPy’s signed
16-bit integer format. As such, the value of each sample can vary between -32 768 and

+32 767.

Due to the large sample size, the Maximum-Minimum Eigenvalue Algorithm was applied
to each waveform frame by frame. The definition of Ny was changed to the Number of

Samples per frame.

By inspection of the dataset waveforms, Wi-Fi 6 MCS7 Signal 1 was chosen to calibrate
the signal detection code, as there appeared to be several sections of inactivity (no signal
present) within the waveforms graph (Figure 4.13 on Page 49). However, as a result of
later calibration testing using Wi-Fi 6 MCS7 Signal 1 and custom waveforms derived from
Wi-Fi 6 MCS7 Signal 1, it was discovered that these sections were found to contain some

form of signal, by extrapolating results on a low-activity section of the waveform.

Thus, the waveforms of the Subray (2023) dataset has been successfully extracted and
graphed on the following pages (Page 43 to 50) as Figures 4.1 to 4.15 using Python code
(Appendix C). Wi-Fi 6 MCS7 Signal 1 was chosen to calibrate the MME Signal Detection
code (Appendix C).
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Figure 4.1: Graph of 5G New-Radio Signal 1

Figure 4.2: Graph of 5G New-Radio Signal 2
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Figure 4.3: Graph of 5G New-Radio Signal 3

Figure 4.4: Graph of LTE 30mbps Signal 1
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Figure 4.5: Graph of LTE 30mbps Signal 2

Figure 4.6: Graph of LTE 30mbps Signal 3
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Figure 4.7: Graph of LTE 50mbps Signal 1

Figure 4.8: Graph of LTE 50mbps Signal 2
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Figure 4.9: Graph of LTE 50mbps Signal 3

Figure 4.10: Graph of Wi-Fi 6 MCS6 30mbps Signal 1
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Figure 4.11: Graph of Wi-Fi 6 MCS6 30mbps Signal 2

Figure 4.12: Graph of Wi-Fi 6 MCS6 30mbps Signal 3
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Figure 4.13: Graph of Wi-Fi 6 MCS7 50mbps Signal 1

Figure 4.14: Graph of Wi-Fi 6 MCS7 50mbps Signal 2
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Figure 4.15: Graph of Wi-Fi 6 MCS7 50mbps Signal 3
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4.3 Calibration of Signal Detection using Wi-Fi 6 MCS7

Signal 1

As Maximum-Minimum Eigenvalue (MME) signal detection is reliant on several factors,

it is important to calibrate the signal detection prior to use.

In particular, MME was identified to rely on the following factors:

M the Oversampling factor

L the Smoothing factor

Py, the Probability of False Alarm

N, the Number of Samples (per frame)

Within these factors, L and N were chosen to be manipulated, as the oversampling factor
(M) is representative of the ratio between sampling and transmission frequency (which
cannot be changed or identified from the dataset) and the probability of false alarm (Py,)

should be held constant to simplify both signal detection and analysis.

Thus, holding M = 1 and Pf, = 10% constant and choosing L = 5, 10, 15 and N, =
1 000,10 000,100 000, MME signal detection was performed on Wi-Fi 6 MCS7 Signal
1 for all combinations of L and N to calibrate the signal detection code for maximum
stability in eigenvalue ratios and signal detection. This resulted in the creation of .txt
files containing the eigenvalue ratios, detected signal presence and thresholds for all tests.
The relevant minimum, maximum and average of these statistics for each test can be seen

in Table 4.1 on the following page.



Table 4.1: Tabulated Statistical Results from all Wi-Fi 6 MCS7 Signal 1 Calibration Tests

Eigenvalue Ratio Signal Presence
L | Ny(samples) (Amaz/Amin) Threshold Constant () | (Boolean, 0 or 1)
Minimum | Maximum | Average Average
5 1 000 0.0 66.9218 1.6261 1.3413 0.79343
5 10 000 1.1996 2.9642 1.5172 1.0973 1.0
5 100 000 1.2404 1.7885 1.4480 1.0298 1.0
10 1 000 0.0 189.8948 | 2.3184 1.5074 0.9669
10 10 000 1.3375 9.4778 2.0582 1.1382 1.0
10 100 000 1.5003 4.6010 1.8668 1.0418 1.0
15 1 000 0.0 237.2686 | 3.5515 1.64992 0.9957
15 10 000 1.6397 22.9371 3.1520 1.1709 1.0
15 100 000 1.8143 16.2344 2.4995 1.0511 1.0

Note that for Table 4.1, the Signal Presence at each sample frame has been averaged from their boolean values of 0 (False - No Signal) and 1 (True -
Signal Present). Any value less than 1.0 suggests that a signal was not detected in some frames. As identified later, a signal is present for all frames

of the dataset waveforms. Therefore, a Signal Presence Average of 1.0 is desirable.

Additional note: All values in Table 4.1 have been rounded to 4 decimal places.
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From Table 4.1 and the knowledge that a signal is always present throughtout the tested
signal’s dataset (Wi-Fi 6 MCST Signal 1), it is possible to infer that:

e As L increases and Ny is constant, the Eigenvalue Ratios tend to increase, the

Threshold Constant () decreases and the likelihood of detecting a signal increases.

e As Nj increases and L is constant, the Eigenvalue Ratio range (between minimum
and maximum ratios) reduces, the Threshold Constant () reduces and the likeli-

hood of detecting a signal increases.

e Ny = 1000 is prone to producing large maximum eigenvalue ratios and has failed

to produce a minimum eigenvalue ratio.

e N; =1 000 does not fully detect the present signal.

Regarding the failure to produce a minimum eigenvalue ratio, it was identified within the
eigenvalue/vector theory section (Section 2.3.3) that it is possible for all eigenvalues to

be zero, complex eigenvalues to be present or to have a minimum eigenvalue of zero.

In the case of ’all eigenvalues are zero’, the code sets the eigenvalue ratio to be zero. This
is the only case that can result in a minimum eigenvalue ratio of zero. All other cases are

handled by the python code or have not appeared during the running of the code.

Therefore, Ny = 1 000 calculates all eigenvalues to be zero for some unknown frames of
the signal. This is evidently an undesirable outcome from running the code, and may
have resulted in incorrect no signal detected’ determinations. Further evaluation of the
signal detection results was deemed necessary to determine if these determinations were

correct and within regions of low signal activity.

However, at the creation of Table 4.1, it was expected that the low signal activity sections
of the signal (Wi-Fi 6 MCS7 Signal 1 as Figure 4.13 on Page 49) would not have a signal
present. Later investigation would show that these low activity sections contained a signal
from both visual examination and signal detection results. To further examine the pattern
of signal detection, Wi-Fi 6 MCS7 Signal 1 was graphed and overlayed with the regions
where the signal was detected for each test. These figures (Figures 4.16 to 4.24) can be
found on the following pages (Pages 54 to 58).
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Figure 4.16: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 5
and Ny = 1000

Figure 4.17: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 5
and N, = 10 000
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Figure 4.18: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 5
and Ny = 100 000

Figure 4.19: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 10
and N, = 1000
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Figure 4.20: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 10
and Ny = 10 000

Figure 4.21: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 10
and Ny, = 100 000
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Figure 4.22: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 15
and Ny = 1000

Figure 4.23: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 15
and N, = 10 000
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Figure 4.24: Wi-Fi 6 MCS7 Signal 1 with signals detected in highlighted sections using L = 15
and Ny = 100 000

Note that Figures 4.16 to 4.24 on Pages 54 to 58 have the sections where the signal
was detected highlighted as a transparent pink block. Sections where the signal was not
detected are not highlighted. Sections that appear red are the result of inconsistent signal

detection.

From these figures, it is evident that the signal detection for Ny = 1 000 is flawed. Judging
by the striped red sections of Figures 4.16, 4.19 and 4.22, areas of high signal activity
(large sample values) are being incorrectly evaluated as having no signal present. To form
these stripes, the results must alternate rapidly between the signal being present or the
signal being missing over small segements of the overall signal waveform. As such, the
signal detection for N; = 1 000 is unstable and either Ny = 10 000 or Ny = 100 000
should be used.

However, despite the unstable signal detection, the results did not support the assumption
that low signal activity sections of the waveform do not contain a signal. This assumption
was a result of the visual examination of the waveform, as graphed previously in Figure

4.13 on Page 49.



4.3 Calibration of Signal Detection using Wi-Fi 6 MCS7 Signal 1 59

The eigenvalue ratio was suspected to be the main contributer to the instability of the
signal detection, as signal presence is determined by comparing the ratio to the threshold.
To investigate how the eigenvalues changed throughout the signal, the eigenvalue ratio
results were grouped by the Ny used to generate the results and graphed. The resulting

figures (Figures 4.25 to 4.27) can be found on the following pages (Pages 60 to 61).
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Figure 4.25: Graph of eigenvalue ratios per frame for various L and N, = 1000

Figure 4.26: Graph of eigenvalue ratios per frame for various L and N; = 10 000
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Figure 4.27: Graph of eigenvalue ratios per frame for various L and N, = 100 000

From Figure 4.27 (on Page 4.27), it is evident that increasing L can increase the eigenvalue
ratios, while maintaining the same distribution shape. By examination of the all figures
(Figure 4.25 to 4.27 on Page 60 to 61), it appears that increasing L can result in significant
spikes in the eigenvalue ratios. Since the signal detection was identified previously to be
unstable for Ny = 1 000, resulting in the stripes appearing on the signal detection graphs
(Figure 4.16, 4.19 and 4.22), Ny = 1 000 cannot be chosen as a calibration value, due to the
minimum eigenvalue ratio being zero and the large spikes in eigenvalue ratios throughout

Figure 4.25 on Page 60.

Due to the smaller amount and reduced value of the eigenvalue spikes for Ny = 100
000, Ns = 100 000 was chosen. This should avoid the minimum eigenvalue problems of
Ng = 1 000 and the high maximums and/or large eigenvalue ratio spikes of N, = 100
000. Additionally, since increasing L results in both larger eigenvalue ratios and spikes in

eigenvalue ratios, L = 5 was chosen to minimise the number of spikes in eigenvalue ratios.

Thus, to ensure that the signal detection is stable (no rapid alternating between signal

absence and signal presence), Ny = 100000 and L = 5 were chosen for further testing.

However, despite the identification of better values for L and Ny, the signal detection
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instability for Ns = 1 000 could not be explained by the eigenvalue figures (Figures 4.25
to 4.27 on Pages 60 to 61). This lead to the creation of custom signal waveforms (using
Wi-Fi 6 MCS7 Signal 1), to confirm the signal detection code correctly determines the
presence of a signal in ideal circumstances and to confirm the absence of a signal within
the low signal activity sections of Wi-Fi 6 MCS7 Signal 1 (areas of low sample value on
Figure 4.13 on Page 49). This process is covered in the following section (Section 4.4)
and succesfully confirms that the code is able to detect the presence/absence of a signal
in ideal conditions as well as identifying the presence of a signal within the low signal

activity sections of Wi-Fi 6 MCS7 Signal 1.

Thus, using the findings of the following section to validate the signal detection code
and constant signal presence throughout Wi-Fi 6 MCS7 Signal 1, as well as the findings
discussed in this section, Ny = 100 000 and L = 5 should avoid the ’all eigenvalues are
zero’ problem identified previously (during the discussion on Table 4.1 results) and allow
for more consistent eigenvalue ratios. Ng = 100 000 and L = 5 is used in all relevant

following sections.
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4.4 Calibration of Signal Detection using Custom Wave-

forms

Having successfully identified L = 5 and Ny = 100 000 as suitable values to stabilise the
eigenvalue ratio and potentially signal detection, a custom signal was created to determine

whether the signal detection code was functioning properly.

Using the first 200 000 samples of Wi-Fi MCS7 Signal 1, Custom Wave 1 featured in
Figure 4.28 was created. Custom Wave 1 has been padded with 100 000 samples with an
amplitude of zero, before and after the 200 000 samples of Wi-Fi MCS7 Signal 1. This
was intended to test whether the signal detection code could accuractely determine the

presence and absence of a signal in ideal conditions.

Figure 4.28: Custom Wave 1, created by padding 100 000 zero samples before and after the
first 200 000 samples of Wi-Fi MCS7 Signal 1
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Applying the signal detection code to Custom Wave 1, the signal detection results have
been represented graphically in Figure 4.29 below. By inspection of Figure 4.29, the signal
detection test was successful, as the zero sample areas of the custom waveform have been
successfully identified to not contain a signal. Thus, additional testing was required to
determine the presence of a signal within the low signal activity sections of Wi-Fi MCS7

Signal 1.

Note: L =5 and Ng; = 100 000 was used.

Figure 4.29: Custom Wave 1 with the detected signal areas highlighted
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With the signal detection code confirmed to be functional, Custom Wave 2 was created to
evaluate the low signal activity areas of Wi-Fi MCS7 Signal 1. Taking a 3 million sample
long slice of Wi-Fi MCS7 Signal 1, from sample 16 million to sample 19 million, Custom
Wave 2 was created and graphed in Figure 4.30 below.

By inspection of Figure 4.30, it was apparent that within the low signal activity sections
of Wi-Fi MCST Signal 1, some form of signal or noise was present. As the Subray (2023)
dataset does not provide information regarding the noise levels of the dataset signals,
it is assumed that a signal is present within the low signal activity sections of Wi-Fi
MCS7 Signal 1 (and other dataset signals). Regardless, signal detection was performed

on Custom Wave 2.

Figure 4.30: Custom Wave 2, a 3 million sample slice of Wi-Fi MCS7 Signal 1
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Having performed signal detection on Custom Wave 2, Figure 4.31 was created (shown be-
low), highlighting the sections where a signal has been detected. Due to poor paritioning,

the signal detection code did not operate on the last set of samples.

Otherwise, the signal detection code confirmed the presence of a signal in the low-activity
section of Wi-Fi MCS7 Signal 1 from sample 16 million to sample 19 million. It is inferred
that other low signal activity sections in Wi-Fi 6 MCS7 Signal 1 and other signals from
the Subray (2023) dataset also contain a signal.

Note: L =5 and Ng; = 100 000 was used.

Figure 4.31: Custom Wave 2 with the detected signal areas highlighted

Thus, the signal detection code has been successfully calibrated for signal detection using

M =1, Pj, = 10%, L = 5 and N, = 100 000.
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4.5 General Signal Detection

With calibration successfully completed, all of the signals provided in the Subray (2023)
dataset were extracted and tested using the signal detection code. The following variables

were used:

L=5 N, = 100000

M=1 Pty = 10%

The signal detection results have been graphed using the original signal waveforms (shown
previously as Figures 4.1 to 4.15 on Pages 43 to 50) by highlighting the relevant sections

where a signal was detected in pink.

These highlighted graphs can be seen as Figures 4.32 to 4.46 on Pages 67 to 74.

Figure 4.32: 5G NR Signal 1 with highlighted sections depicting the presence of a signal
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Figure 4.33: 5G NR Signal 2 with highlighted sections depicting the presence of a signal

Figure 4.34: 5G NR Signal 3 with highlighted sections depicting the presence of a signal
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Figure 4.35: LTE (30mbps) Signal 1 with highlighted sections depicting the presence of a

signal

Figure 4.36: LTE (30mbps) Signal 2 with highlighted sections depicting the presence of a

signal
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Figure 4.37: LTE (30mbps) Signal 3 with highlighted sections depicting the presence of a

signal

Figure 4.38: LTE (50mbps) Signal 1 with highlighted sections depicting the presence of a

signal
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Figure 4.39: LTE (50mbps) Signal 2 with highlighted sections depicting the presence of a

signal

Figure 4.40: LTE (50mbps) Signal 3 with highlighted sections depicting the presence of a

signal



72 Results

Figure 4.41: Wi-Fi 6 MCS6 Signal 1 with highlighted sections depicting the presence of a

signal

Figure 4.42: Wi-Fi 6 MCS6 Signal 2 with highlighted sections depicting the presence of a

signal
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Figure 4.43: Wi-Fi 6 MCS6 Signal 3 with highlighted sections depicting the presence of a

signal

Figure 4.44: Wi-Fi 6 MCS7 Signal 1 with highlighted sections depicting the presence of a

signal
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Figure 4.45: Wi-Fi 6 MCS7 Signal 2 with highlighted sections depicting the presence of a

signal

Figure 4.46: Wi-Fi 6 MCS7 Signal 3 with highlighted sections depicting the presence of a

signal
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By inspection of the signals with highlighted sections, Figures 4.32 to 4.46 on Pages 67
to 74, it appears that signal detection is successful, as the areas of relatively low signal

activity (low sample value) being identified to contain a signal.

This is under the assumption that the Subray (2023) dataset contains no additive or
correlative noise, suggesting that areas of relatively low signal activity (sample value)
contains a signal. This assumption was discussed previously in Section 4.4 (calibration

using custom waveforms).

Thus, with the Figures 4.32 to 4.46 visually examined that a signal is present throughout
all of the Subray (2023) dataset’s signal waveforms, further examination is required of
the numerical results to confirm a signal is detected for the entire signal waveform and to

identify differences between signal types.

The numerical results minimums, maximums and averages (where relevant) have been

listed in Table 4.2 and Table 4.3 on the following pages (Page 76 and Page 77).



Table 4.2: Tabulated Statistical Results from 5G NR and LTE Signal Detection Tests

Figenvalue Ratio Threshold | Signal Presence
Signal (Amaz/ Amin) Constant | (Boolean, 0 or 1)
Minimum | Maximum | Average (7) Average

5G-NR 1 2.4451 22.8274 4.3373 1.0298 1.0
5G-NR 2 2.9557 51.8365 8.4339 1.0298 1.0
5G-NR 3 2.5915 28.5279 6.3321 1.0298 1.0
LTE (30mbps) 1 1.1378 3.4516 1.6513 1.0298 1.0
LTE (30mbps) 2 1.2666 2.6212 1.6102 1.0298 1.0
LTE (30mbps) 3 1.1704 3.7619 1.6053 1.0298 1.0
LTE (50mbps) 1 1.1879 3.3823 1.6776 1.0298 1.0
LTE (50mbps) 2 1.1261 3.4439 1.4811 1.0298 1.0
LTE (50mbps) 3 1.1274 4.5145 1.8293 1.0298 1.0

Note: Due to how the Threshold () is calculated, all signals will share the same threshold value.

Note 2: Table 4.2 contains all the relevant numerical results for all of the 5G NR, LTE (30mbps) and LTE (50mbps) signals. Table 4.3 contains all

the relevant numerical results for all of the Wi-Fi 6 MCS6 and MCS7 signals.

Note 3: All values are rounded to 4 decimal places.
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Table 4.3: Tabulated Statistical Results from Wi-Fi 6 MCS6 and MCS7 Signal Detection Tests

Eigenvalue Ratio Threshold | Signal Presence
Signal (Amaz/ Amin,) Constant | (Boolean, 0 or 1)
Minimum | Maximum | Average () Average

Wi-Fi 6 MCS6 1 1.2349 2.1233 1.3766 1.0298 1.0
Wi-Fi 6 MCS6 2 1.2342 2.6028 1.4550 1.0298 1.0
Wi-Fi 6 MCS6 3 | 1.2587 1.9030 1.4071 1.0298 1.0
Wi-Fi 6 MCS7 1 1.2404 1.7885 1.4480 1.0298 1.0
Wi-Fi 6 MCS7 2 | 1.2179 1.9982 1.3903 1.0298 1.0
Wi-Fi 6 MCS7 3 1.2280 2.6351 1.5668 1.0298 1.0

Note: Due to how the Threshold () is calculated, all signals will share the same threshold value.

Note 2: Table 4.2 contains all the relevant numerical results for all of the 5G NR, LTE (30mbps) and LTE (50mbps) signals. Table 4.3 contains all
the relevant numerical results for all of the Wi-Fi 6 MCS6 and MCS7 signals.

Note 3: All values are rounded to 4 decimal places.
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Table 4.4: Signal Group and Average Minimum Eigenvalue Ratio from Table 4.2 and Table
4.3

Signal Group | Avg. Min. Eigenvalue Ratio
5G-NR 2.664

LTE (30mbps) 1.192

LTE (50mpbs) 1.147

Wi-Fi 6 MCS6 1.243

Wi-Fi 6 MCS7 1.229

Inspecting Table 4.2 and Table 4.3, it appears that the signal detection code has success-
fully detect the presence of a signal throughout all samples, confirming expectations from

visual inspection of the figures (Figures 4.32 to 4.46 on Pages 67 to 74).

By inspection, the maximum eigenvalue ratios from Table 4.2 for the 5G-NR signals
appear to be outliers. For all other signals, the maximum and average eigenvalue ratios
appear to be consistent and within a reasonable range, suggesting that LTE will be

detected more often than Wi-Fi 6 Signals due to a higher average eigenvalue ratio.

On the other hand, by comparing the minimum eigenvalue ratios with the threshold
constant, it appears that 5G-NR signals are significantly more likely to be detected than
LTE and Wi-Fi 6 signals, due to the higher minimum eigenvalue ratios. If only minimum
eigenvalue ratios and threshold constant is considered, then Wi-Fi 6 signals will be easier
to detect than LTE signals. The numerical average minimum eigenvalue ratio for each

signal group can be seen below in Table 4.4, which supports this observation.

Considering that consistent and accurate signal detection is desired, the minimum eigen-
value ratio will be considered as a comparable measure of signal detectability, if a signal

is present for all samples of the Subray (2023) dataset signals.

Therefore, in the absence of other statistics, it appears that 5G-NR signals are the eas-
iest to detect followed by Wi-Fi 6 signals and LTE signals using Maximum-Minimum

Eigenvalue detection.
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4.6 Signal Detection and Noise

Due to time constraints, only two trials could be completed. To investigate the effects of
noise on the signal detection code, Gaussian noise was multiplied and added to Wi-Fi 6

MCST Signal 1 in two seperate tests.

It was expected that the correlative (multiplicative) noise and added noise would nega-
tively affect the signal detection code’s ability to detect the signal. The correlative and
additive noise signal detection graphs can be seen in Figure 4.47 and Figure 4.48 respect-
fully on the following page. The numerical results for the additive, correlative and original

Wi-Fi 6 MCS7 Signal 1 can be seen in Table 4.5.

By inspection of Figure 4.47 and Figure 4.48, it appears that additive and correlative

noise had no effect on the signal detection.

However, by comparison of the eigenvalues of in Table 4.5, it is clear that correlative noise

reduces the eigenvalue ratio while additive noise increases the eigenvalue ratio.

This suggests, that additive noise increases the chance of a false alarm while correlative
noise decreases the chance of detection. Thus, in low signal-to-noise ratios, additive noise
will be detected as a signal while correlative noise will reduce the visibility of a transmitted

signal.

Table 4.5: Wi-Fi 6 MCS7 Signal 1 and Noise

Statistic Original | Correlated | Additive
Min. Eigenvalue Ratio. | 1.2404 1.1820 5.0798
Max. Eigenvalue Ratio. | 1.7885 1.5292 16.3330
Avg. Eigenvalue Ratio. | 1.4480 1.3190 9.9817
Signal Presence 1.0 1.0 1.0
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Figure 4.47: Wi-Fi 6 MCS7 Signal 1 with Multiplicative Noise

Figure 4.48: Wi-Fi 6 MCS7 Signal 1 with Additive Noise
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4.7 Discussion and Summary of Results

4.7.1 Summary

1. Code Completeness Statement (Section 4.1)

e Extraction, Graphing and MME Algorithm operational.
e Added noise code was implemented and tested briefly.

e Automated creation of custom signals not implemented.
2. Extraction of Data (Section 4.2)

e Data extraction successful.
e Data graphing successful.

e Selected Wi-Fi 6 MCS7 Signal 1 for calibration due to low sample value zones.

3. Calibration of Signal Detection using Wi-Fi 6 MCS7 Signal 1 (Section 4.3)

Detected signal highlighting on Signal Graph is successful.

Signal detection stripes present (alternating between detected and absent sig-

nal).

Low sample value zones appear to contain a signal.

Identified Ny =100 000 and L = 5 as ideal values for testing.
4. Calibration of Signal Detection using Custom Waveforms (Section 4.4)

e Verified the signal detection code correctly determining absence of signal.

e Discovered signal present in low sample value zones.
5. General Signal Detection (Section 4.5)

e All signals correctly detected.

e 5G-NR prone to large maximum eigenvalue ratios.

LTE has higher average eigenvalue ratio compared to Wi-Fi 6.

Wi-Fi 6 has higher minimum eigenvalue ratio compared to LTE.

5G-NR has highest minimum eigenvalue ratios.

5G-NR found to be easiest to detect.

LTE found to be hardest to detect (min. eigenvalue ratio)

Wi-Fi 6 slight easier than LTE to detect (min. eigenvalue ratio).
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4.7.2 Discussion

Unfortunately, due to a lack of time, additional datasets could not be integrated into
the project. As a result, statistical methods of evaluation, such as t-tests, where not

conducted due to a small sample size.

Within the small sample size, the results show that the 5G New Radio signals (as extracted
from the dataset) are the easiest to detect, followed by Wi-Fi 6 signals in Maximum-

Minimum Eigenvalue (MME) detection.

As the Australian Communications and Media Authority plans to have 5G and Wi-Fi 6
operate in the same frequency band (Communications & Authority 2024, pp. 20-21), the
limited results suggest that a cognitive radio methodology or device could be applied to

reduce Wi-Fi 6 and 5G interference.

However, this is reliant on 5G data not being influenced by additive or correlative noise,

which may have resulted in the large maximum eigenvalue ratios.

Future investigations into cognitive radio applications in the microwave spectrum should
include the construction of signal simulators for 5G, Wi-Fi 6 and other common microwave
spectrum signals, as the use of an online dataset that does not provide information regard-
ing noise levels or method of data capture can hamper calibration of the signal detection

code.

It was assumed previously that the low sample values zone or low signal activity areas of
the dataset signals contained the presence of a signal. This assumption was made in the

absence of practical information regarding how the dataset was captured/generated.

No real-world issues have been observed with LTE signals, but this is likely due to LTE
signals operating outside the ISM bands (comparison between known LTE operating
frequencies in Section 2.4.2 and ISM bands in Section 2.4.4). Further testing of LTE and
Wi-Fi 6 with a larger dataset may suggest that LTE and Wi-Fi 6 can be detected at
similar eigenvalue ratios. I.E., significantly large datasets of LTE and Wi-Fi 6 may show

an insignficant difference in eigenvalue ratios.

As such, it is possible to apply cognitive radio techniques to both Wi-Fi 6 and 5G in their

shared band of operation.



Chapter 5

Conclusions and Further Work
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5.1 Conclusions

With the upcoming changes to 5G and Wi-Fi 6 within the microwave spectrum, a review

of applicable cognitive radio signal detection techniques has been completed.

Using a maximim-minimum eigenvalue method and Python code, signal detection testing

was conducted on an online dataset.

Successful application of the maximum-minimum eigenvalue detection method has been
completed, with the results suggesting a cognitive radio system could be applied to 5G

and/or Wi-Fi 6 within their shared frequency band.

Limited testing of the effect of noise on maximum-minimum eigenvalue detection has been
completed, suggesting both correlative and additive Gaussian noise can negatively impact

the signal detection code.

Further work is required to evaluate LTE, 5G New Radio and Wi-Fi 6 signals as the

online dataset provides limited information regarding noise presence.
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5.2 Achievement of Project Objectives

5.2.1 Discussion

The following subsections are the listed project objectives from Chapter 1 Section 1.2

Identification of signal detection techniques for microwave spectrum signals

This objective has been achieved.

The literature review has identified several signal detection techniques that have and
can be applied to microwave spectrum signals. Although some were not discussed in
detail, cooperative methods or signal detection methods like cyclostationary detection

that requires prior knowledge could be applied to microwave spectrum signals.

For most signal detection techniques, it is a question of how the signal detection technique
was applied. In this case, while non-cooperative signal detection or spectrum sensing
techniques were chosen for testing, the identified cooperative and non-cooperative signal

detection techniques could be applied in further work.

Identification of frequency bands within the microwave spectrum that are

currently underutilised or at high-risk of interference

This objective has been partially achieved.

All ISM bands have been identified, as well as upcoming changes to both 5G and Wi-Fi 6.
However, underutilisation or interference was not investigated aside from the ISM band

at 2.4 GHz.
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Identification of signals operating within high-risk or underutilised microwave

frequency bands

This objective has been partially achieved.

The upcoming shared frequency allocation for 5G and Wi-Fi 6 represents two signals
potentially operating in a over-utilised frequency band. Additional signals should have

been identified.

Creation or collection of a dataset containing signals from the microwave

spectrum

This objective has been achieved.

The Subray (2023) dataset contains signals from the microwave spectrum. However,

additional datasets containing other microwave spectrum signals is needed.

Creation of a signal detection testing environment

This objective has been achieved.

Python code has been successful in testing signal detection.

Successful detection of a microwave frequency signal using a chosen signal

detection technique

This objective has been achieved.

The results section (Section 4) contain several signal waveforms that have been success-

fully identified as containing a signal.
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Verification of the impact of noise in signal detection

This objective has been partially achieved.

Limited testing has been conducted to examine the effect of noise on Maximum-Minimum

Eigenvalue detection.

Statistical analysis of signal detection results

This objective has not been achieved.

Statistical analysis requires larger datasets than the Subray (2023) dataset used in this

project.

Creation and testing of a cognitive radio system in a real-world environment

This objective has not been achieved.

This objective has been abandoned in favour of simulation testing, due to a lack of time.
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5.3 Further Work

5.3.1 Simulation Work

Further simulation work applying cognitive radio techniques to microwave spectrum sig-

nals is required as only three signals within the microwave spectrum were examined.

Additionally, the dataset used in this project was limited and provided insufficient infor-

mation regarding the presence of noise and the signal recording method.

Further work could be conducted using alternative datasets or constructed signal gener-

ators to ensure the noise presence or signal recording method is known.

Alternatively, further work with 5G and Wi-Fi 6 could be conducted to determine if a
cognitive radio system within a shared frequency band could accurately detect simulated

5G and Wi-Fi 6 signals.

5.3.2 Real-World Testing

With Wi-Fi 6 and 5G being allocated a shared frequency band, further work could be
conducted to confirm the previous findings that 5G signals were the easiest to detect.
Alternatively, real-world testing or data collection could be completed collect real-world
signal datasets and to estimate current transmitting environments and conditions from

collected data.
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Project:
Project Title: Cognitive Radio for Microwave Spectrum Access

Name: Joshua Knipe

Student 1D: [

Supervisor: John Leis

Specifications:

Introduction and Background:

Within the microwave spectrum, there is a continuous demand for increased frequency band
allocations to new and emerging devices. In particular, the emergence of 5G communications and
Internet of Things (loT) devices has caused the Australian Communications and Media Authority to
review and reduce existing bandwidth allocations to accommodate 5G and loT devices (ACMA 2019,
pp. 13 -17).

In the roll-out of these changes, some frequency bands have been identified for optimisation to
reduce their required spectrum band (ACMA 2019, p. 15). Thus, there is a need for spectrum
optimisation methods within the microwave spectrum (300 MHz to 300 GHz) to allow for further
reduction in allocated bandwidths.

One such method of reducing required bandwidth, is the use of cognitive dynamic systems (cognitive
radio). These systems are ‘smart’ systems able to determine available transmission frequencies in a
complex transmission environment by observing and learning from the transmission environment
(Alsadi et al. 2022). Various methods of cognitive radio have been simulated and may prove effective
at identifying valid frequencies for transmission (Kasthuri & Ramyea 2018) in a simulated
transmission environment. In theory, cognitive radio should allow for the detection and utilisation of
unused frequencies within a selected frequency band.

Additionally, cognitive radio could be used to avoid collisions/interference with high-risk devices or
frequency bands, such as 5G and radio altimeters used in aircraft. Although there is no sign of
interference between 5G and radio altimeters in Australia despite significant concerns in the United
States of America (Department of Infrastructure, Transport, Regional Development, Communications
and the Arts 2022), the Civil Aviation Safety Authority (2023) has stated that they will have a
mitigation frequency band. This is one such example that could benefit from the use of cognitive
radio techniques or systems to reduce the potential of interference significantly, aside from the use
of frequency mitigation bands.

Thus, it is hoped that this project will be able to identify problematic areas within the microwave
spectrum and construct a viable dynamic cognitive system (cognitive radio system) able to correctly
identify valid transmission frequency ranges within problematic frequency bands.
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Objective and Aims:

Using cognitive radio principles and techniques, the project will aim to create a cognitive radio
system for use in problematic bands of the microwave spectrum. It is expected that industrial,
scientific, and medical (ISM) frequency bands within the microwave spectrum, as well as 5G and loT
operating bands will be the primary focus of investigation.

Objectives:

Identify available signal detection techniques for microwave spectrum signals and frequency
bands.

Identify high-traffic and high-risk frequency bands within the microwave spectrum.
Identify communication schemes used in high-use and high-risk channels within the
microwave spectrum.

Collect or create a dataset of various microwave frequency signals for simulation.

Create a simulated transmission environment.

Apply identified signal detection techniques to selected microwave frequency channels via
controlled simulation.

Obtain a programmable VNA and perform real-world signal detection testing for a limited
number of transmitting devices.

Perform statistical analysis on both simulated and real-world tests.

Expected Outcomes:

Identification of cognitive radio techniques applicable to the microwave spectrum.
Understanding the high-use and high-risk channels within the microwave frequencies and
the expected signal behaviour.

Creation of a dataset and simulated testing environment containing various signals operating
on various frequencies within a band.

Successful identification of available frequency space for transmission in a simulated and
real-world transmission environment.

Recommendations for applicable cognitive radio methods and for further research.
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Work Plan:
Timeline:
Month Goal Content
Jan - Feb Choose and Plan Project e Choose project.
e Complete generalised work plan.
February Review Detection Methods e Review literature regarding cooperative
and non-cooperative signal detection.

e Review literature regarding cognitive
radio applications.

e Review literature regarding current
spectrum sharing methodologies.

March Review Microwave Spectrum e Review literature regarding both 5G and
and Draft Literature Review loT in the context of transmissions,
signals, spectrum sharing and expected
behaviour of signals within relevant
bands.

e Review and determine high traffic and/or
high-risk communication bands within
the microwave spectrum to determine if
cognitive radio applications are relevant.

e Review additional or required material
for literature review.

e Draft literature review.

April Finalise Literature Review e Finalise literature review.
and Construct Experimental e Apply signal detection methods reviewed
Methodology in February/March to methodology
design.

e Determine if valid datasets exist for
cognitive radio detection in the
microwave spectrum.

e If no valid datasets exist, create method
to simulate a dataset (via real-world data
capture or simulation of known signal
behaviour).

May Finalise Methodology e Communicate with supervisor and obtain

relevant permissions (risk-assessment
and other material).
e Construct the methodology report.
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June - August

Collect data and perform °
analysis

If needed, collect real-world data from
laboratory or anechoic chamber
(June/luly).

Create environment for signal detection
to test cognitive radio application
(June/luly).

Test cognitive radio method(s) on
created simulation of transmission
environment (July/Aug).

Perform statistical analysis (if possible)
on cognitive radio methods to determine
most viable method for selected
frequency band (if multiple methods
and/or frequency bands have been
selected).

August -
September

Draft Dissertation °

Construct a Dissertation draft for
submission, communicating with
supervisor regarding quality of draft.

September -
October

Dissertation finalisation, °
Reflection and Presentation

If needed, continue, and finalise on-
going data collection/analysis.

Finalise Dissertation when possible.
Complete reflection assignment.
Construct presentation, preferably using
available data.

Practise presentation.

Late October - | Finalise Dissertation e Finalise the Dissertation for submission,

November communicating where needed to
supervisor.

November - Await Results e Await submission results.

December e Submit Dissertation if not already

submitted.

Note: The above work-plan is generalised and subject to change according to UniSQ notifications
(e.g. change of presentation dates/month etc.).
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Required Resources:

At this stage, the required resources listed below are for the worst-case scenario where transmission
datasets cannot be obtained from available academic or industrial sources. Possible dataset sources
are listed for posterity.

Equipment:

e Programmable Vector Network Analyser (VNA) and appropriate peripherals to collect
transmission data and test cognitive radio techniques.

e Various (microwave frequency) antennas and/or (microwave frequency) transmission
equipment (e.g radios, Bluetooth devices, loT devices) for testing cognitive radio techniques
and data collection.

e Access to the UniSQ Toowoomba Anechoic Chamber or engineering laboratories.

Software:

e  MATLAB or Python (with NumPy, SciPy and other relevant modules) for simulation and data
analysis.
e  Microsoft Office or LaTeX to create and finalise reports.

Access:

IEEE Xplore (Database) for literature review.

ScienceDirect (Database) for literature review.

United States of America, National Library of Medicine, PubMed Central for literature review.
EBSCOHost Megafile Ultimate (Database) for literature review.
IEEE Dataport (and other data sources) as data sources for simulation.
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Alsadi, N, Gadsden, SA, Giuliano, A, Hilal, W & Yawney, J 2022, ‘A Review of Cognitive Dynamic
Systems and Cognitive |oT’, IEEE International 10T, Electronics and Mechatronics Conference 2022,
01-04 June 2022, Toronto, Canada, <https://ieeexplore.ieee.org/document/9795834>

Civil Aviation Safety Authority 2023, CASA to work with aviation sector on 5G, Government News
Article, Australian Government, viewed 09/02/2024, <https://www.casa.gov.au/about-us/news-
media-releases-and-speeches/casa-work-aviation-sector-5g>

Department of Infrastructure, Transport, Regional Development, Communications and the Arts 2022,
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Appendix C

Python Code

The Python Code used to generate the results in Chapter 4 is listed on the following

pages.
The code is split into individual functions.

To generate the results, the Python code will execute the main() function first, and
run through the functions extract_and_graph(), man_calibrate(), test_custom_wave() and

extract_and_test() in the order listed.

Function extract_and_graph() corresponds to the results in Chapter 4 Section 4.2.
Function man_calibrate() corresponds to the results in Chapter 4 Section 4.3.
Function test_custom_wave() corresponds to the results in Chapter 4 Section 4.4.
Function extract_and_test() corresponds to the results in Chapter 4 Section 4.5.

To stop these functions from executing, locate the main() function and comment out the

undesired function(s) using # which represents a single line comment in Python.
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Python Code

Listing C.1: Python Code

# —x— coding: utf—-8 —#—

200

@author: Joshua John Knipe || R

2000

import numpy as np

import scipy.linalg as spilin
import matplotlib.pyplot as plt
from TracyWidom import TracyWidom

def

def

loadTracyWidom ( betalnput ):

200

Code to load Tracy—Widom distribution based on Beta value.

Parameters
betalnput : Integer
Value of 1,2 or 4, to allow select of correct T-W Distribution .

Returns

TWDist : Object(?)
Tracy—Widom Distribution for selected beta value.
if betalnput = 1:
# Distribution Order 1
TWDist = TracyWidom (betalnput )
return TWDist
elif betalnput = 2:
# Distribution Order 2
TWDist = TracyWidom ( betalnput)
return TWDist
elif betalnput = 4:
# Distribution Order /4
TWDist = TracyWidom ( betalnput)
return TWDist
else:
TypeError (” Tracy—Widom: - Beta-outside -required - values!”)
return None

create_cov_mat (xn, L):

200

Code to generate the covariance matrixz for MME Signal Detection.

Parameters
xn : NumPy Array

Truncated sample vector
L : Integer

Smoothing factor
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Returns

Rz : NumPy Array
Square Sample Covariance Matriz

20

L_arr = np.arange (1, L)

xhat = np.zeros ([L, xn.size])
xn_len = xn.size
xhat [0, :] = xn
for i in L_arr:
xn_temp = np.zeros(xn.size)
xn_len = xn[i:]. size
xn_temp [0:xn_len] = xn[i:]
xhat[i, :] = xn_temp
xhat_tpose = xhat.transpose ()
Rx = np.zeros ([L, L])
xn_len = xn.size
L_arr = np.arange (0, xn_len)
for i in L_arr:
Rx = Rx + (xhat[:, i].reshape(L, 1)xxhat_tpose[i, :].reshape(l, L))

Rx = Rx/xn_len
return Rx

def MaxMinEigAlgo(data , frameSize ,M,L, Pfa):
Code to seperate dataset into frames and perform MME
detection on each frame.

Parameters
data : NumPy Array

Extracted data from Dataset
frameSize : Integer

Ns: Number of samples per frame
M : Integer

Number of Inputs (not relevant, deprecated)
L : Integer

Smoothing factor.
Pfa : TYPE

Probability of False Alarm

Returns

[Eigenvalue Ratio Array, Threshold Array, Signal Presence Array]

200

# Pre—load TracyWidom
TWDistMME = loadTracyWidom (1)
# Setup Rz

Ns_all = np.size (data)



106 Python Code

No_Of_Frame = np.arange (0, np.floor (Ns_all/frameSize).astype(int))
ratioEig = np.zeros ((No_Of Frame.size ,1))
gaml = np.zeros ((No_Of_Frame.size ,1))
signal_pres = np.zeros ((No_Of Frame.size ,1))
for i in No_Of_Frame:
frameStart = ixframeSize
frameEnd = frameStart+frameSize
temp_data = data[frameStart:frameEnd |
Ns = np.size (temp_data)
Xn = temp._data
Rx = create_cov_mat (Xn,L)
# Get EIGENVALUES
EigVecVal = spilin.eigh(Rx, eigvals_only = True, overwrite_a = True)
if np.size (EigVecVal[EigVecVal != 0]) != 0:
maxEig = np.max(EigVecVal)
minEig = np.min(EigVecVal[EigVecVal != 0])
# SETUP RATIO
ratioEig[i] = maxEig/minEig
else:
ratioEig[i] = 0
# SETUP THRESHOLD
gamlpl = ((np.sqrt(Ns) + np.sqrt (M«L))**2)/((np.sqrt(Ns) — np.sqrt (Mx«L
gamlp2 = 1 + (((np.sqrt(Ns) + np.sqrt (ML) )*x(—2/3))/((NssM«L)xx(1/6))
gaml[i] = gamlpl % gamlp2
# COMPARE RATIO AND THRESHOLD
if ratioEig[i] > gaml[i]:
signal_pres[i] = True
else:
signal_pres[i] = False
return [ratioEig, gaml, signal_pres|

def graphdata(data, dataname):

20

Code to gemerate graph of dataset.

Parameters

data : NumPy Array
DESCRIPTION.
dataname : String

Name of File / Graph.

Returns

None.

fig = plt.figure(figsize=(12, 8))

ax = plt.subplot ()

ax.plot (data, linestyle="—’, marker=".
ax.set_title (dataname)

9

, markersize=10)
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ax.set_xlabel (’Sample’)
ax.set_ylabel (’Sample-Value )
ax.grid ()

filename = dataname + ’.png’
fig .savefig(filename)

def savedata(data, dataname):
229

Code to save complete dataset, minimum, mazimum and average.

Parameters
data : NumPy Array

Data to be saved to disk.
dataname : String

Name of datafile.

Returns

None.

200

with open(dataname, ’w+’) as fi:
for line in data:
fi.write(’{}\n’.format(line))
fi.write(’{}\n’.format(np.average(data)))
fi.write(’{}\n’.format(np.min(data)))
fi.write(’{}\n’.format (np.max(data)))
fi.close ()

def scale_data(data, span):

200

Code to rescale data for graphing.

Parameters
data : NumPy Array

Data to be rescaled.
span : Integer

Size to rescale data to.

Returns
new_data : NumPy Array
Rescaled dataset.

200

new_data = np.zeros (span)

data_part = np.linspace (0, span, data.size+1, dtype=int)

for i in np.arange(0, data.size —1):
new_data[data_part[i]: data_part[i+1]] = data[i]

return new_data
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def signal_graph(wave_data, signal_data, wave_title, graph_title):

200

Code to graph waveform and detected signal regions.

Parameters
wave_data : NumPy Array
Waveform dataset/array.
signal_data : NumPy Array
Detected Signal Data.
wave_title : String
Name of Saved Figure
graph_title : String
Graph Title

Returns

None.

20

#
# Scale Data
#
X_span = np.linspace (0, wave_data.size —1, wave_data.size)
signal_plot = scale_data(signal_data ,wave_data.size)
#
# Setup Strings
#
fig_title = (’Plot-of-’ + graph_title
+ ’-with-Detected-Signal-Sections-Highlighted )
figname = wave_title + ’.png’
#
# Graph
#
fig = plt.figure(figsize=(12, 8))
ax = plt.subplot ()

ax.plot (wave_data, linestyle="—’, marker=".", markersize=10)
ax . fill_between (X_span, 0, 1, where=signal_plot >0, color = 'r’,
alpha = 0.2, transform = ax.get_xaxis_transform ())

ax.set_title(fig_-title)

ax.set_xlabel (’Sample -Number )

ax.set_ylabel (’Sample-Value )

ax.grid ()

fig .legend ([ "Waveform’, ’Signal-Detected’], loc = ’upper-right’)
fig.savefig(figname)

def main ():

2000

Code to execute all code used to gemnerate results.

Returns
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def

None.

2000

# When using this code, make sure to tag these out one by one,
# Because it takes a while to run!

extract_and_graph ()

man_calibrate ()

test_custom_wave ()

extract_and_test ()

noise_test ():

200

Code to generate correlative and additive noise test results.

Returns

None.

200

# Setup Variables

0.1
s = 100000

# Setup RNG

7
rng = np.random. default_rng (12312112024)

#
# Load Wi=Fi 6 MCS7 Signal 1

#
cal_wave = np.fromfile (’32274CA—-015-D20211123T131300M012278.data’ ,np.int16

#
# Noise 1 — Correlative

#

corr_wave = cal_ wavesxrng.random(cal_wave.size)

ratio_corr , gam_corr, signal_corr = MaxMinEigAlgo(corr_wave, Ns, M, L, Pfa
savedata(ratio_corr , 'ratio_noise_test_1.txt")

savedata(gam_corr, ’gamma_noise_test_1.txt’)

savedata(signal_corr, ’signal_noise_test_1.txt’)

#

# Noise 2 — Additive

#

signal = cal_-wave + (rng.random(cal_wave.size)*5000)

ratio_noise , gam_noise, signal_noise = MaxMinEigAlgo(signal ,Ns, M, L, Pfa)
savedata(ratio_noise , ’'ratio_noise_test_2.txt’)

savedata (gam _noise, ’'gamma _noise_test_2.txt’)

savedata(signal_noise, ’signal_noise_test_2.txt’)

#
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#

#

signal_graph (signal , signal_noise , ’Noise_Additive’,
"Additive - Noise-Test )

signal_graph (corr_wave, signal_corr, ’Noise_Correlated’,

"Correlative - Noise-Test )

def man_calibrate ():

200

Code to generate calibration results (non—custom waves).

Returns

None.

#

# Setup Variables
#

M=1

L1 =25

L2 = 10

L3 = 15

Pfa = 0.1

frameSizel = 1000
frameSize2 = 10000
frameSize3 = 100000

#

# Wifi MCS7

#

cal_-wave = np.fromfile (’32274CA-015-D20211123T131300M012278.data’,

np.intl6)

#

# L1, Nsi

#

ratio . LIN1, gam LIN1, signal LIN1 = MaxMinEigAlgo(cal_wave, frameSizel ,
M, L1, Pfa)

savedata (ratio LIN1, "LINI1_ratio.txt’)

savedata (gam_LIN1, ’LIN1_gamma.txt ")

savedata (signal LIN1, ’L1N1_signal.txt’)

#

# L1, Ns2

#

ratio . L1IN2, gam_LIN2, signal LIN2 = MaxMinEigAlgo(cal_-wave, frameSize2 ,
M, L1, Pfa)

savedata (ratio.LIN2, "LIN2_ratio.txt’)
savedata (gam LIN2, ’'LIN2 gamma.txt )
savedata (signal LIN2, "L1N2_signal.txt’)
7

# L1, Ns3

7
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ratio . LIN3, gam_LIN3, signal LIN3 = MaxMinEigAlgo(cal_-wave, frameSize3,

M, L1, Pfa)
savedata (ratio.LIN3 , ’*L1N3_ratio.txt’)
savedata (gam LIN3, ’'LIN3 gamma.txt )
savedata (signal LIN3, 'L1N3_signal.txt’)
#
# L2, Nsl
7

ratio L2N1, gam L2N1, signal L2N1 = MaxMinEigAlgo(cal_wave , frameSizel ,

M, L2, Pfa)
savedata (ratio . L2N1, ’L2NI1_ratio.txt’)
savedata (gam_L2N1, ’L2N1_gamma.txt )
savedata (signal L2N1, ’*L2N1_signal.txt’)
#
# L2, Ns2
#

ratio L2N2 | gam L2N2, signal L2N2 = MaxMinEigAlgo(cal_wave, frameSize2 ,

M, L2, Pfa)

savedata (ratio.L2N2 , "L2N2_ratio.txt’)

savedata (gam_L2N2, ’L2N2_gamma. txt ")

savedata (signal L2N2, ’L2N2_signal.txt’)

#

# L2, Ns3

#

ratio_.L2N3, gam_L2N3, signal L2N3 = MaxMinEigAlgo(cal_wave ,
frameSize3d , M,

savedata (ratio.L2N3, ’L2N3_ratio.txt’)

savedata (gam L2N3, ’'L2N3_gamma.txt )

savedata (signal L2N3, 'L2N3_signal.txt’)

#

# L3, Nsli

#

ratio_ L3N1, gam L3N1, signal L3N1 = MaxMinEigAlgo(cal_wave ,
frameSizel , M,

savedata (ratio L3N1, 'L3NI1_ratio.txt’)

savedata (gam_L3N1, ’L3Nl_gamma.txt’)

savedata (signal L3N1, ’L3N1_signal.txt’)

#

# L3, Ns2

#

ratio_.L3N2, gam_L3N2, signal L3N2 = MaxMinEigAlgo(cal_-wave ,
frameSize2 , M,

savedata (ratio.L3N2, ’L3N2_ratio.txt’)

savedata (gam _L3N2, ’'L3N2 gamma.txt )

savedata (signal L3N2, *L3N2_signal.txt’)

#

# L3, Ns3

#

ratio_.L3N3, gam_L3N3, signal L3N3 = MaxMinEigAlgo(cal_wave
frameSize3d , M,

savedata (ratio.L3N3, ’L3N3_ratio.txt’)

savedata (gam_L3N3, ’L3N3_gamma.txt’)

L2,

L3,

L3,

L3,

Pfa)

Pfa)

Pfa)

Pfa)
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savedata (signal L3N3, 'L3N3_signal.txt’)

#
# Setup X—azxis for detection testing

7

X N1 = np. floor (np.linspace (0, cal_-wave.size, ratio.LIN1.size))
X N2 = np. floor (np.linspace (0, cal_-wave.size, ratio.LIN2.size))
X N3 = np. floor (np.linspace (0, cal_-wave.size, ratio.LIN3.size))

7
#

#
signal _graph (cal_wave, signal LIN1, ’L1N1_SigDet’,

"Wi-Fi-6-MCS7-Signal-1-for-L-=-5-and-Ns-=-1-000")
signal _graph (cal_wave, signal LIN2, ’L1N2_SigDet’,
"Wi-Fi-6-MCS7-Signal-1-for-L-=-5-and-Ns-=-10-000")
signal _graph (cal_wave, signal LIN3, ’L1N3_SigDet’,
"Wi—Fi-6-MCS7- Signal -1-for-L-=-5-and-Ns-=-100-000")
signal _graph (cal_wave, signal L2N1, ’L2N1_SigDet’,
"Wi—Fi-6-MCS7- Signal-1-for-L-=-10-and-Ns-=-1-000")
signal_graph (cal_-wave, signal L2N2, ’L2N2_SigDet’,
"Wi—Fi-6-MCS7- Signal-1-for-L-=-10-and-Ns-=-10-000")
signal_graph (cal_-wave, signal L2N3, ’L2N3_SigDet’,
"Wi-Fi-6-MCS7-Signal-1-for-L-=-10-and-Ns-=-100-000")
signal_graph (cal_-wave, signal L3N1, ’L3N1_SigDet’,
"Wi-Fi-6-MCS7-Signal-1-for-L-=-15-and-Ns-=-1-000")
signal_graph (cal_-wave, signal L3N2, ’L3N2_SigDet’,
"Wi-Fi-6-MCS7-Signal-1-for-L-=-15-and-Ns-=-10-000")
signal_graph (cal_wave, signal L3N3, ’L3N3_SigDet’,
"Wi-Fi-6-MCS7-Signal-1-for-L-=-15-and-Ns-=-100-000")
#
# Graph Detection — L = 5
#
det_figl = plt.figure(figsize=(12, 8))
det_ax1l = plt.subplot ()
det_ax1l.plot (cal-wave, color="b’, linestyle="—",
marker=".", markersize=10)

det_ax1l.plot (X.N3, signal LIN3x6000, color="c’,

linestyle="-—", marker=".", markersize=10)
det_ax1l.plot (X_N2, signal LIN2%4000, color="g’,

linestyle="-—", marker=".", markersize=10)
det_ax1l.plot (X_N1, signal LIN1%2000, color="r",

linestyle="-—", marker=".", markersize=10)

det_ax1l.set_title (’Plot-with-overlayed-points-of-detected-signal-for-L-=-5
det_ax1l.set_xlabel (’Sample-Number’)
det_ax1l.set_ylabel (’Sample-Value’)
det_ax1l.grid ()
det_figl .legend ([ ’Original -Waveform’, 'Ns-=-100-000",
'Ns-=-10-000", ’'Ns-=-1000"], loc="upper-right’)
det_figlname = ’CalSigDetFigLl.png’
det_figl .savefig(det_figlname)

#
# Graph Detection — L = 10

#
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det_fig2 = plt.figure(figsize=(12, 8))

det_ax2 = plt.subplot ()

det_ax2.plot (cal_-wave, color="b’, linestyle="—",
marker=".", markersize=10)

det_ax2.plot (X_N3, signal L2N3%6000, color="c’,

linestyle="-—", marker=".", markersize=10)
det_ax2.plot (X_N2, signal L2N2%4000, color="g’,

linestyle="-—", marker=".", markersize=10)
det_ax2.plot (X_N1, signal L2N1%2000, color="r",

linestyle="-—", marker=".", markersize=10)

det_ax2.set_title (’Plot-with-overlayed-points-of-detected-signal-for-L-=-1
det_ax2.set_xlabel (’Sample-Number’)
det_ax2.set_ylabel (’Sample-Value ")
det_ax2.grid ()
det _fig2 .legend ([ ’Original -Waveform’, ’Ns-=-100-000 ",
"Ns-=-10-000", 'Ns-=-1000"], loc = ’upper-right’)
det_fig2name = ’CalSigDetFigL2.png’
det_fig2.savefig(det_fig2name)

#
# Graph Detection — L = 15

#

det_fig3d = plt.figure(figsize=(12, 8))

det_ax3 = plt.subplot ()

det_ax3.plot (cal_-wave, color = 'b’, linestyle="—"
marker=".", markersize=10)

det_ax3.plot (X N3, signal L3N3x6000, color = ’c¢’,

linestyle="—", marker=".", markersize=10)
det_ax3.plot (XN2, signal L3N2x4000, color = ’g’,

linestyle="—", marker=".", markersize=10)
det_ax3.plot (X_N1, signal L3N1x2000, color = ’'r’,

linestyle="—", marker=".", markersize=10)

det_ax3.set_title (’Plot-with-overlayed-points-of-detected-signal-for-L-=-1

det_ax3.set_xlabel (’Sample-Number’)

det_ax3.set_ylabel (’Sample-Value’)

det_ax3.grid ()

det_fig3 .legend ([ ’Original -Waveform’, "Ns-=-100-000", 'Ns-=-10-000 ",
"Ns-=-1000"], loc = ’upper-right’)

det_figlname = ’'CalSigDetFigL3.png’

det _fig3 .savefig(det_figlname)

#

# Compare L — Figure 1 (Ns = 1000)

#

figl = plt.figure(figsize=(12, 8))

axl = plt.subplot ()

axl.plot (ratio.L3N1, color = 'r’, linestyle="—",
marker=".", markersize=10)

axl.plot (ratio.L2N1, color = 'g’, linestyle="—",
marker=".", markersize=10)

axl.plot (ratio.L1IN1, color = ’b’, linestyle="—7",
marker=".", markersize=10)

axl.set_title (’Plot-of-Eigenvalue-Ratios-for-N-=-1000")
axl.set_xlabel ( ’Frame-Number’)
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axl.set_ylabel (’Eigenvalue-Ratio’)

axl.grid ()

figl.legend ([ 'L-=-15",’L-=-10",’'L-=-5"], loc = ’upper-right’)
figlname = 'LIN1toL3N1.png’

figl.savefig (figlname)

#

# Compare L — Figure 2 (Ns = 10 000)

#

fig2 = plt.figure(figsize=(12, 8))

ax2 = plt.subplot ()

ax2.plot (ratio.L3N2, color = 'r’, linestyle="—",
marker=".", markersize=10)

ax2.plot (ratio . L2N2, color = ’'g’, linestyle="—"
marker=".", markersize=10)

ax2.plot (ratio . LIN2, color = 'b’, linestyle="—",
marker=".", markersize=10)

ax2.set_title (’Plot-of-Eigenvalue-Ratios-for-N-=-10-000")
ax2.set_xlabel (’Frame-Number’)

ax2.set_ylabel (’Eigenvalue-Ratio’)

ax2.grid ()

fig2 .legend ([ 'L-=-15",'L-=-10",’L-=-5"], loc = ’upper-right’)
fig2name = ’L1IN2toL3N2.png’

fig2 .savefig (fig2name)

#

# Compare L — Figure 3 (Ns = 100 000)

#

figd = plt.figure(figsize=(12, 8))

ax3 = plt.subplot ()

ax3.plot (ratio.L3N3, color = ’r’, linestyle="—7",
marker=".", markersize=10)

ax3.plot (ratio_.L2N3, color = ’g’, linestyle="—7",
marker=".", markersize=10)

ax3.plot (ratio . LIN3, color = 'b’, linestyle="—",
marker=".", markersize=10)

ax3.set_title (’Plot-of-Eigenvalue-Ratios-for-N-=-100-000")
ax3.set_xlabel (’Frame-Number )

ax3.set_ylabel (’Eigenvalue-Ratio”)

ax3.grid ()

fig3 .legend ([ 'L-=-15",'L-=-10",’L-=-5"], loc = ’upper-right’)
figdname = ’L1IN3toL3N3.png’

fig3 .savefig (figdname)

def test_custom_wave ():

200

Code to generate Custom Wave Calibration Results.

Returns

None.

200

#
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#

#

M=1
L=25
Pfa = 0.1
Ns = 100000
#
#
#

cal_-wave = np.fromfile (’32274CA-015-D20211123T131300M012278.data’ ,np.int16
custom_wave = np.append (np.zeros(100000),cal_wave[0:200000])

custom_wave = np.append (custom_wave ,np.zeros (100000))

#

#

#

graphdata (custom_wave, ’Custom-Wave’)

#

#

#

ratio_custom , gam_custom, signal_custom = MaxMinEigAlgo(custom_wave, Ns, M
savedata(ratio_custom , ’custom_wave_ratio.txt’)

savedata (gam_custom , ’custom_wave gamma.txt’)

savedata (signal_custom , ’custom_wave_signal.txt’)

7
#
7

signal_graph (custom_wave , signal_custom , ’CustomWavel’, ’Custom-Wave-1")

#

7

#

custom_wave = cal_wave[16000000:19000000]

#

#

#

graphdata (custom_wave, ’'Custom-Wave-2")

7

#

7

ratio_custom , gam_custom, signal_custom = MaxMinEigAlgo(custom_wave, Ns, M
savedata(ratio_custom , ’custom_wave_2_ratio.txt’)
savedata (gam_custom, ’custom_wave_2_gamma.txt’)
savedata (signal_custom , ’custom_wave_2_signal.txt’)

#
#
7

signal_graph (custom_wave, signal_custom , ’CustomWave2’, ’'Custom-Wave-2")

def extract_and_graph ():

2000

Code to extract and graph all datasets.
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Returns

None.

2000

#
# 5G Data

#

print ('Extracting -5G-Data )

data_1.5G = np. fromfile (
’32274CF-dell —latitude —D20211201T191100M024240 . data’ ,np.int16)

data_2_.5G = np.fromfile (
’32274CF-dell —latitude —D20211201T191200M056171 . data’ ,np.int16)

data_3_.5G = np.fromfile (
’32274CF-dell —latitude —D20211201T191300M048183.data’ ,np.int16)

print (’Graphing-5G-Data )

graphdata (data_1_.5G, ”Recorded-5G-NR-Signal-1")

print ( ’Graph- Complete )

graphdata (data_-2_.5G, ”Recorded-5G-NR-Signal-2")

print ( 'Graph- Complete ”)

graphdata (data_3_.5G, ”Recorded-5G-NR-Signal-3")

print ( 'Graph- Complete ”)

print (’Deleting -5G-Data )

del data_1.5G, data_2_.5G, data_3_5G

#
# LTE 30mbps

#

print (’Extracting -LTE-30-Data’)

data_1_LTE_30 = np. fromfile (
’32274CF-dell —latitude —D20211125T150800M004475 . data’ ,np.int16)

data_2_LTE_30 = np. fromfile (
’32274CF-dell —latitude —D20211125T150900M 059227 . data’ ,np.int16)

data_3_.LTE_30 = np. fromfile (
’32274CF-dell —latitude —D20211125T151000M056507 . data’ ,np.int16)

print ( 'Graphing -LTE-30-Data’)

graphdata (data_-1_LTE_30, ”Recorded-LTE-30mbps-Signal-1")

print ( 'Graph- Complete ”)

graphdata (data_2_LTE_30, ”Recorded-LTE-30mbps-Signal-2")

print ( 'Graph- Complete ”)

graphdata (data_3_LTE_30, ”Recorded-LTE-30mbps-Signal-3")

print ( 'Graph- Complete ”)

print ('Deleting -LTE-30-Data’)

del data_1_LTE_30, data_2 LTE_30, data_3_.LTE_30

#
# LTE 50mbps

7
print ('Extracting -LTE-50-Data’)
data_1_LTE_50 = np. fromfile (
’32274CF—dell—latitude —D20211125T152000M052549 . data’ ,np.int16)
data_2_LTE_50 = np. fromfile (
’32274CF—-dell —latitude —D20211125T152100M004125 . data’ ,np.int16)
data_3_LTE_50 = np. fromfile (
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’32274CF-dell —latitude —D20211125T152400M046037 . data’ ,np.int16)
print ('Graphing -LTE-50-Data’)
graphdata (data_-1_LTE_50, ”Recorded-LTE-50mbps-Signal-1")
print ( 'Graph- Complete ”)
graphdata (data_2_LTE_50, ”Recorded-LTE-50mbps-Signal-2")
print ( 'Graph- Complete ”)
graphdata (data_-3_LTE_50, ”Recorded-LTE-50mbps-Signal-3")
print ( 'Graph- Complete ”)
print ('Deleting -LTE-50-Data )
del data_1_LTE_50, data_2 LTE_50, data_3_LTE_50

#
# Wi—fi 802.11ax MCS6 30mbps

#
print (’Extracting -Wi-Fi-MCS6-Data’)
data_1.802_11ax_MCS6_30 = np. fromfile (
’32274CA—015—D20211123T132300M011437 . data’ ,np.int16)
data_2_802_11ax_MCS6_30 = np. fromfile (
’32274CA—-015—D20211123T132400M058863 . data’ ,np.int16)
data_3_802_11ax_-MCS6.30 = np. fromfile (
’32274CA-015—-D20211123T133000M028048 . data’ ,np.int16)
print ('Graphing -Wi-Fi-MCS6- Data )
graphdata (data_1_802_11ax_MCS6_30 ,
”"Recorded -Wi—fi-802.11ax-MCS6-30mbps-Signal-17)
print ( 'Graph- Complete ”)
graphdata (data_2_.802_11ax_MCS6_30 ,
"Recorded -Wi—fi-802.11ax-MCS6-30mbps- Signal -2")
print ( 'Graph- Complete ”)
graphdata (data_3_.802_11ax_MCS6_30,
”"Recorded -Wi—fi-802.11ax-MCS6-30mbps- Signal-3")
print ( 'Graph- Complete ”)
print ('Deleting -Wi-Fi-MCS6- Data )
del data_1_.802_11ax_MCS6_.30, data_2_802_11ax_MCS6_30, data_3_802_11lax_MCS¢

#
# Wi—fi 802.11ax MCS7 50mbps

#
print (’Extracting -Wi-Fi-MCS7-Data’)
data_1.802_11ax_MCS7_50 = np. fromfile (
’32274CA—015—D20211123T131300M012278 . data’ ,np.int16)
data_2_802_11ax_MCS7_.50 = np. fromfile (
’32274CA—-015—D20211123T131400M 050226 . data’ ,np.int16)
data_3_802_11ax_-MCS7_.50 = np. fromfile (
’32274CA-015-D20211123T131500M053479 . data’ ,np.int16)
print ( 'Graphing -Wi-Fi-MCS7-Data )
graphdata (data_1_802_11ax_MCS7_.50,
"Recorded -Wi—fi-802.11ax-MCS7-50mbps- Signal-1")
print ( 'Graph- Complete ”)
graphdata (data_2_.802_11ax_MCS7_.50 ,
"Recorded -Wi—fi-802.11ax-MCS7-50mbps- Signal -2")
print ( 'Graph- Complete ”)
graphdata (data_3_.802_11ax MCS7.50,
”"Recorded -Wi—fi-802.11ax-MCS7-50mbps- Signal-3")
print ( 'Graph- Complete ”)



118 Python Code

print (’Deleting -Wi-Fi-MCS7-Data ’)
del data_1.802_11ax_MCS7.50, data_2_802_11ax_MCS7_.50, data_3_802_11lax_MCS"

def extract_and_test ():

2000

Code to extract all datasets and perform signal detection.

Returns

None.

20

#
# Start of Function — Print

#

print (’Start-of - Extracting -and- Testing ’)
#

# Setup Variables

#

Ns = 100000

L=25

M=1

Pfa = 0.1

#
# 5G Data

7
print ("Extracting -5G-Data )
data_1_5G = np.fromfile (
’32274CF—dell —latitude —D20211201T191100M024240 . data’ ,np.int16)
data_2_.5G = np.fromfile (
’32274CF-dell —latitude —D20211201T191200M056171 . data’ ,np.int16)
data_3_.5G = np.fromfile (
’32274CF-dell —latitude —D20211201T191300M048183 . data’ ,np.int16)
# Signal 1
print (’Testing-5G- Signal-1")
ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_-1_.5G, Ns, M, L, Pfa
print ( ’Saving -5G- Signal -1-Data’)
savedata(ratio_data, '5G_1_ratio.txt’)
savedata (gam_data, ’5G_1_gam.txt’)
savedata (signal_data, '5G_1_signal.txt’)
print (’Saved-5G- Signal-1-Data’)
# Signal 1 Graphing
signal_graph (data_1.5G, signal_data, ’'5G-NR-Signal-1’, '5G-NR-Signal-1")
# Signal 2
print (’Testing -5G- Signal-2")
ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_2 5G, Ns, M, L, Pfa
print (’Saving-5G- Signal -2-Data’)
savedata(ratio_data , '5G_2_ratio.txt’)
savedata (gam_data, ’5G_2_gam.txt’)
savedata (signal_data , '5G_2_signal.txt’)
print ( ’Saved-5G- Signal -2-Data’)
# Signal 2 Graphing
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signal_graph (data_2_.5G, signal_data, ’'5G-NR-Signal-2’, '5G-NR-Signal-2")

# Signal 3

print (’Testing-5G- Signal-37)

ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_3_.5G, Ns, M, L, Pfa

print (’Saving-5G- Signal -3-Data’)

savedata(ratio_data , '5G_3_ratio.txt’)

savedata (gam_data, ’5G_3_gam.txt’)

savedata (signal_data , '5G_3_signal.txt’)

print (’Saved-5G- Signal -3-Data’)

# Signal 3 Graphing

signal _graph (data_3_.5G, signal_data, ’'5GNR-Signal-3’, '5G-NR-Signal-3")

# Delete Data

print (’Clearing -5G-Data’)

del data_1.5G, data_2.5G, data_3.5G, ratio_data , gam_data, signal_data

print (’Cleared -5G-Data )

#

# LTE 30mbps

#

print (’Extracting -LTE-30-Data’)

data_1_LTE_30 = np. fromfile (
’32274CF-dell —latitude —D20211125T150800M004475.data’ ,np.int16)

data_2_LTE_30 = np. fromfile (
’32274CF-dell —latitude —D20211125T150900M059227 . data’ ,np.int16)

data_3_.LTE_30 = np. fromfile (
’32274CF-dell —latitude —D20211125T151000M056507 . data’ ,np.int16)

# Signal 1

print (’Testing -LTE-30-Signal-1")

ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_1_ LTE_30, Ns, M, L,

print (’Saving -LTE-30-Signal-1-Data’)

savedata(ratio_data , 'LTE_30_1_ratio.txt’)

savedata (gam_data, 'LTE_30_1_gam.txt’)

savedata (signal_data , 'LTE_30_1_signal.txt’)

print ( 'Saved -LTE-30-Signal -1-Data’)

# Signal 1 Graphing

signal _graph (data_1_ LTE_30, signal_data, ’LTE-30-Signal-1’, 'LTE-30-Signal

# Signal 2

print (’Testing -LTE-30- Signal-2")

ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_-2_.LTE_30, Ns, M, L,

print (’Saving -LTE-30- Signal-2-Data’)

savedata(ratio_data, 'LTE_30_2_ratio.txt’)

savedata (gam_data, 'LTE_30_2_gam.txt’)

savedata (signal_data , 'LTE_30_2_signal.txt’)

print (’Saved -LTE-30- Signal -2-Data’)

# Signal 2 Graphing

signal_graph (data_2_LTE_30, signal_data, ’LTE-30-Signal-2’, ’'LTE-30-Signal

# Signal 3

print (’Testing -LTE-30- Signal-37)

ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_3_ LTE_30, Ns, M, L,

print (’Saving -LTE-30- Signal -3-Data’)

savedata(ratio_data , 'LTE_30_3_ratio.txt’)

savedata (gam_data, 'LTE_30_3_gam.txt’)

savedata (signal_data , 'LTE_30_3_signal.txt’)
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print (’Saved -LTE-30- Signal -3-Data’)

# Signal 8 Graphing

signal_graph (data_3_.LTE_30, signal_data, 'LTE-30-Signal-3’, 'LTE-30-Signal

# Delete Data

print (’Clearing -LTE-30-Data’)

del data_ 1_LTE_30, data 2 LTE_30, data_3_LTE_30, ratio_data, gam_data, sig

print (’Cleared -LTE-30-Data’)

#

# LTE 50mbps

#

print ('Extracting -LTE-50-Data’)

data_1_LTE_50 = np. fromfile (
’32274CF-dell —latitude —D20211125T152000M052549 . data’ ,np.int16)

data_2_LTE_50 = np. fromfile (
’32274CF-dell —latitude —D20211125T152100M004125.data’ ,np.int16)

data_3_LTE_50 = np. fromfile (
’32274CF-dell —latitude —D20211125T152400M046037 . data’ ,np.int16)

# Signal 1

print (’Testing -LTE-50- Signal-1")

ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_.1_ LTE_50, Ns, M, L,

print (’Saving -LTE-50- Signal-1-Data’)

savedata(ratio_data, "LTE_50_1_ratio.txt’)

savedata (gam_data, 'LTE_50_1_gam.txt’)

savedata(signal_data, LTE_50_1_signal.txt’)

print ( ’Saved -LTE-50- Signal -1-Data’)

# Signal 1 Graphing

signal_graph (data_.1_LTE_50, signal_data, 'LTE-50-Signal-1’, 'LTE-50-Signal

# Signal 2

print (’Testing -LTE-50- Signal-2")

ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_-2_.LTE_50, Ns, M, L,

print (’Saving -LTE-50-Signal-2-Data’)

savedata(ratio_data , 'LTE_50_2_ratio.txt’)

savedata (gam_data, 'LTE_50_2 gam.txt’)

savedata (signal_data , 'LTE_50_2_signal.txt’)

print (’Saved -LTE-50- Signal -2-Data’)

# Signal 2 Graphing

signal _graph (data_ 2 LTE 50, signal_data, ’LTE-50-Signal-2’, 'LTE-50-Signal

# Signal 3

print (’Testing -LTE-50- Signal-3")

ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_3_LTE_50, Ns, M, L,

print (’Saving -LTE-50- Signal -3-Data’)

savedata(ratio_data , 'LTE_50_3_ratio.txt’)

savedata (gam_data, 'LTE_50_3_gam.txt’)

savedata (signal_data, LTE_50_3_signal.txt’)

print (’Saved -LTE-50- Signal -3-Data’)

# Signal 8 Graphing

signal_graph (data_3_.LTE_50, signal_data, ’LTE-50-Signal-3’, ’'LTE-50-Signal

# Delete Data

print (’Clearing -LTE-50-Data’)

del data_1_LTE_50, data 2 LTE_50, data_3_LTE_50, ratio_data , gam_data, sig

print (’Cleared -LTE-50-Data’)

#
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# Wi—fi 802.11azx MCS6 30mbps
#
print (’Extracting -Wi-Fi-MCS6-Data’)
data_1.802_11ax_MCS6_30 = np. fromfile (
’32274CA—015—D20211123T132300M011437 . data’ ,np.int16)
data_2_802_11ax_MCS6_30 = np. fromfile (
’32274CA—-015—D20211123T132400M 058863 . data’ ,np.int16)
data_3_802_11ax_-MCS6.30 = np. fromfile (
’32274CA-015-D20211123T133000M028048 . data’ ,np.int16)
# Signal 1
print (’Testing -Wi-Fi-MCS6- Signal-1")
ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_1_802_11ax_-MCS6_30 ,
Ns, M, L, Pfa)
print (’Saving -Wi-Fi-MCS6- Signal -1-Data’)
savedata(ratio_data , 'WiFi_MCS6_1_ratio.txt ")
savedata (gam_data, ’WiFi_MCS6_1_gam.txt ")
savedata (signal_data , *WiFi_MCS6_1_signal.txt’)
print ( ’Saved -Wi—Fi-MCS6- Signal -1-Data’)
# Signal 1 Graphing
signal_graph (data_-1_802_11ax_MCS6_30, signal_data, 'Wi-Fi-MCS6-Signal-1",
"Wi-Fi-MCS6- Signal-1")
# Signal 2
print (’Testing -Wi-Fi-MCS6- Signal-2")
ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_2_802_11lax MCS6_30 ,
Ns, M, L, Pfa)
print ( ’Saving -Wi-Fi-MCS6- Signal -2-Data’)
savedata(ratio_data , 'WiFi_MCS6_2_ratio.txt ")
savedata (gam_data, 'WiFi_MCS6_2_gam.txt )
savedata (signal_data , *WiFi_MCS6_2_signal.txt’)
print (’Saved -Wi—Fi-MCS6- Signal -2-Data )
# Signal 2 Graphing
signal_graph (data-2.802_11ax_MCS6_-30, signal_data, 'Wi-Fi-MCS6-Signal-27,
"Wi-Fi-MCS6- Signal -2")
# Signal 3
print (’Testing -Wi-Fi-MCS6- Signal-3")
ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_3_802_11ax_-MCS6_30 ,
Ns, M, L, Pfa)
print ( ’Saving -Wi—Fi-MCS6- Signal -3-Data’)
savedata(ratio_data , 'WiFi_MCS6_3_ratio.txt ")
savedata (gam_data, ’WiFi_MCS6_3_gam.txt’)
savedata (signal_data , *WiFi_MCS6_3_signal.txt’)
print ( ’Saved -Wi—Fi-MCS6- Signal -3-Data’)
# Signal 3 Graphing
signal _graph (data_3_.802_11ax_ MCS6_.30, signal_data, "Wi-Fi-MCS6-Signal-37,
"Wi-Fi-MCS6- Signal-3")
# Delete Data
print (’Clearing -Wi-Fi-MCS6-Data ’)
del data_1_802_11ax_MCS6_.30, data_2_802_11ax_MCS6_30
del data_3.802_11ax_MCS6_30, ratio_data , gam_data, signal_data
print (’Cleared -Wi~Fi-MCS6-Data ”)
#
# Wi—fi 802.11ax MCS7 50mbps
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#
print ('Extracting -Wi-Fi-MCS7-Data’)
data_1.802_11ax_MCS7_.50 = np. fromfile (
’32274CA-015—-D20211123T131300M012278 . data’ ,np.int16)
data_2_802_11ax_MCS7_.50 = np. fromfile (
’32274CA-015-D20211123T131400M050226 . data’ ,np.int16)
data_3_.802_11ax_MCS7_50 = np. fromfile (
’32274CA-015-D20211123T131500M053479 . data’ ,np.int16)
# Signal 1
print (’Testing -Wi-Fi-MCS7- Signal-1")
ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_1_802_11lax MCS7_50,
Ns, M, L, Pfa)
print ( ’Saving -Wi-Fi-MCS7- Signal -1-Data’)
savedata(ratio_data , *WiFi_MCS7_1_ratio.txt ")
savedata (gam_data, 'WiFi_MCS7_1_gam.txt’)
savedata (signal_data , *WiFi_MCS7_1_signal.txt’)
print (’Saved -Wi-Fi-MCS7- Signal -1-Data’)
# Signal 1 Graphing
signal_graph (data_-1.802_11ax_MCS7.50, signal_data, 'Wi-Fi-MCS7-Signal-1",
"Wi-Fi-MCS7- Signal-1")
# Signal 2
print (’Testing -Wi-Fi-MCS7- Signal-2")
ratio_.data , gam_data, signal_data = MaxMinEigAlgo(data_2_802_11ax_-MCS7_.50,
Ns, M, L, Pfa)
print (’Saving -Wi-Fi-MCS7- Signal -2-Data’)
savedata(ratio_data , 'WiFi_MCS7_2_ratio.txt ")
savedata (gam_data, ’WiFi_MCS7_2_gam.txt’)
savedata (signal_data , *WiFi_MCS7_2_signal.txt’)
print ( ’Saved -Wi—Fi-MCS7- Signal -2-Data’)
# Signal 2 Graphing
signal_graph (data_-2_.802_11ax_MCS7_50, signal_data, 'Wi-Fi-MCS7-Signal-2’,
"Wi-Fi-MCS7- Signal-2")
# Signal 3
print ('Testing -Wi-Fi-MCS7- Signal-3")
ratio_data , gam_data, signal_data = MaxMinEigAlgo(data_3_802_11lax MCS7_50,
Ns, M, L, Pfa)
print ( ’Saving -Wi-Fi-MCS7- Signal -3-Data’)
savedata(ratio_data , 'WiFi_MCS7_3_ratio.txt ")
savedata (gam_data, 'WiFi_MCS7.3_gam.txt’)
savedata (signal_data , *WiFi_MCS7_3_signal.txt’)
print ( ’Saved -Wi—Fi-MCS7- Signal -3-Data’)
# Signal 8 Graphing
signal_graph (data_-3.802_11ax_MCS7.50, signal_data, 'Wi-Fi-MCS7-Signal-3’,
"Wi-Fi-MCS7- Signal -3 ")
# Delete Data
print ('Clearing -Wi-Fi-MCS7-Data )
del data_1.802_11ax_MCS7.50, data_2_802_11ax_MCS7_50
del data_3_802_11ax_MCS7_.50, ratio_data , gam_data, signal_data
print (’Cleared -Wi~Fi-MCS7-Data ’)
#
# End of Function — Print

#



123

print ( 'End- of - Extracting -and- Testing )

if __name__ = ’'__main__":
main ()





