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Abstract

Vector solitary waves, or solitons, of a specific type called helical solitons appear in various models

of plasma physics and solids and play an important role in nonlinear wave dynamics. The helical

solitons are less studied in contrast to other types (bell-shaped, table-top-shaped solitons, envelope

solitons, and kinks). Preliminary investigations show that there are nontrivial interactions of plane

solitons differently oriented in space and can be described by vector modified Korteweg–de Vries

(vmKdV) equation. Two forms of the vmKdV equations are considered, integrable vmKdV and

the non integrable vmKdV. The integrable vmKdV equation has exact analytical solution, non

integralable vmKdV equation is analyzed using numerical methods. The structure and interactions

of helical solitons with each other will be studied in this project by means of numerical modelling

of the governing vmKdV equations. The results obtained will be compared with the analytical

solutions of the integrable vmKdV equation.
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Chapter 1

Introduction

Nonlinear wave theory has been widely adopted in the area of physics. The field of quantum

mechanics demonstrated a relationship between waves and particles, further exploration in the

area of classical physics led to the study of certain type of wave equations that tend to retain the

shape and size indefinitely. Upon interaction, these waves preserve their shapes and speeds and

propagate through the medium behaving like classical particles. Such types of waves that propagate

through a medium preserving their characteristics are known as solitary waves or solitons. This

literature review looks at the origins of the soliton theory, the governing mathematical equations

and interactions among different soliton types.

The research project is aimed at analyzing a particular type of solitons viz., helical solitons that

are less studied and analyzed compared to other known soliton types. Helical solitons arise, in

particular, as a result of propagation of transverse non-linear waves in a chain of connected particles

(the dynamical system model will be presented in the later sections of the document). The content

of the review in chronological order is organized as follows:

Wave Theory : This section details the fundamental concepts of linear and nonlinear waves in

dispersive media.

Soliton History : This section looks at the origins of solitons initially documented as observational

science that later provided the framework for the formulation of Korteweg–de Vries (KdV) equa-
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tion. The generalization of the KdV equation led to other equations and soliton types arising out

of these equations are discussed.

Vector modified KdV Equation: This section looks at the modification to the KdV equation by

introducing a vector component and the resulting behavior of waves that will lead to formation of

helical solitons. The structure and interactions of helical solitons with each other will be studied

in this research project. The results from numerical modelling will be compared with analytical

solutions for the validation.
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Chapter 2

Wave Theory

A wave can be defined as a set of oscillations propagating through a medium that carry a signal

or energy from one part of the medium to another at a particular velocity. The propagation

of a wave through a medium is associated with changes in some of the properties, but remains

recognizable [5]. The time evolution phenomenon of a wave is mathematically modeled using

linear and nonlinear partial differential equations (PDEs), with wave profile represented by u(x, t)

where x is spatial coordinate and t is the time coordinate. Some examples of physical wave types

and their occurrences include [26]:

• Acoustic waves - audible sound, medical applications of ultrasound.

• Electromagnetic waves - electricity in various forms, radio waves, light waves in optical

fibers.

• Seismic waves - resulting from earthquakes in the form of P waves and S waves.

• Water waves - Capillary (short waves of a typical wavelength λ ∼ 2.5 cm) and gravity

waves (which exist due to the restoring force from the Earth’ gravity field) with wave lengths

greater than 2.5 cm. Gravity waves in turn can be classified as deep water waves and shallow

water waves depending on the relationship between the wavelength and water depth.

• Gravitational waves - Waves that are invisible and occur as fast ripples in space traveling

at the speed of light 1.86 × 105 miles/sec and are result of objects moving at high speeds
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some examples of events where gravitational waves occur include two big stars orbiting each

other and a star exploding asymmetrically (supernova). The gravitational waves are detected

through use of sensitive instrument called LIGO (Laser Interferometer Gravitational-Wave

Observatory).

A well-understood form of wave motion consists of a pattern of crests and troughs representing a

sinusoidal wave, and this is commonly referred to as linear wave having the following characteristic

properties:

• The velocity and shape are independent of the amplitude.

• The sum of two linear waves will result in another linear wave.

• Linear waves have a small amplitude.

In contrast, a nonlinear wave is a large-amplitude wave and there will be distortion of the shape of

the wave as it propagates through a medium [27]. A representation of wave propagating through

a medium is shown in Figure 2.1.

Figure 2.1: Wave form

The main attributes of a wave propagating through a medium include:

• Wavelength (λ): the distance between adjacent crests

• Wave number (κ): the ratio of one complete wave cycle to wavelength (κ = 2π
λ
)

• Time period (T ): the time taken to complete one oscillation
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• Frequency (f = 1
T
): number of oscillations completed per unit time

• Angular frequency (ω = 2π
T
): the angular displacement of element of wave per unit time

Waves are categorized into two main types viz., hyperbolic waves and dispersive waves. A prototype

representation of hyperbolic waves is considered to be a one-dimensional wave equation that is

linear second-order partial differential equation and satisfies the principle of superposition [1, 5].

utt = c2uxx (2.1)

u(x, t) is the amplitude of the wave and c is a positive constant. A general solution of (2.1) is the

well known as d’Alembert’s solution of the form

u(x, t) = f(x− ct) + g(x+ ct). (2.2)

where f and g are arbitrary functions. The solution consists of two non interacting waves, f(x−ct)

refers to right moving wave and g(x+ ct) represents a left moving wave at a constant speed c. The

arbitrary functions f and g can be determined by initial conditions u(x, 0) and ut|t=0 [8, 4]. The

one-dimensional wave equation (2.1) can be rearranged to the following form:

(∂t − c ∂x) (∂t + c ∂x)u = 0 (2.3)

From (2.3) we have the following first order equations

ut − c ux = 0 (2.4)

ut + c ux = 0 (2.5)

The equations (2.4) and (2.5) can be solved using the method of characteristics [4] resulting in

general solutions of the form u(x, t) = g(x + ct) and u(x, t) = f(x − ct) respectively where g and

f are arbitrary functions determined by initial conditions. Thus we see that for the linear second

order wave equation (2.1) and the first order equations (2.4) and (2.5) the solution consists of a

wave train moving either in the left or right direction at constant speed c and the waves do not
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interact with each other. Travelling waves applicable to non-linear equations are waves in which

the medium moves along the direction of propagation of wave. There are three type of travelling

waves depending on the shape of the wave [8, 16] shown in Figure 2.2.

• Wave trains that are spatially periodic, i.e., f(x+ p) = f(x) for p > 0.

• A wave pulse that is asymptotically constant, i.e., lim
x→±∞

u(x) and A+ = A− where A is a

constant.

• A wave front or wave back will be asymptotically constant, but A+ ̸= A−.

Figure 2.2: Shapes of travelling wave(a), pulse (b), spatially-periodic wave (c), anti-kink and kink
wave (d) (from [16]).

2.1 Phase and Group Velocities

As the wave propagates through the medium, the crests and troughs of the wave components are

enclosed within an envelope [1] as shown in Figure 2.3.

Figure 2.3: Wave envelope

Two different velocity components are identified for propagating wave viz., phase velocity (vp) and

group velocity (vg) [1, 3]. The phase velocity (vp) refers to the velocity of individual wave component

and is expressed in terms of angular frequency (ω) and wave number (κ) by the relation:
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vp = ω/κ (2.6)

The group velocity (vg) refers to the velocity of the wave packets within the envelop and is given

by:
vg = dω/dk (2.7)

From (2.6), we obtain ω = κvp. Differentiating with respect to κ, we obtain the following:

dω/dk = vp + κ dvp/dk (2.8)

Using (2.7) we can establish the following relation between group velocity (vg) and phase velocity

(vp)
vg = vp + κ dvp/dk (2.9)

If group velocity (vg) and phase velocity (vp) are equal then it results in a non-dispersive wave.

However if the velocities are different then the waves spread out as they propagate through the

medium, such type of waves are referred to as dispersive waves. In the next section we consider

equations that exhibit these wave properties.

2.1.1 Dispersionless Waves

A wave is said to be dispersive if the wave components propagate with different phase velocities,

resulting in localized wave packet to spread as it propagates through a medium. As a result,

the amplitude of wave packet decreases, while the total energy is conserved but redistributed

over a larger region of space. To examine dispersive nature of wave, a plane wave of the form

u(x, t) = ej(kx−ωt), where k is the wave number and ω is the frequency is considered as a good

ansatz to the different wave equations. A dispersion relation describes the relationship between

the frequency ω and the wave number k i.e, ω = ω(k) and represents a relation between the energy

of the system and momentum.The necessary conditions for dispersion are ω(k) must be real and

ω′′(k) ̸= 0 [4, 7, 3]. For the one-dimensional wave equation (2.1) the dispersion relation can be
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obtained by calculating utt and uxx from the plane wave solution.

ut = −jωej(kx−ωt); utt = −ω2ej(kx−ωt) (2.10)

ux = jkej(kx−ωt); uxx = −k2ej(kx−ωt) (2.11)

Substituting for uxx and utt in (2.1) we obtain the linear relation (ω2 = c2k2) ⇒ ω = ±ck shown

in Figure 2.4. The phase velocity (vp = ω/k = ±c) and group velocity (vg = dω/dk = ±c) are

equal. Substituting ω = ±ck, we obtain u(x, t) = ejk(x±ct). The solution has two components,

a right moving (x − ct) or left moving (x + ct) wave with a constant speed c and therefore the

linear one-dimensional wave equation (2.1) is dispersionless i.e, the waves do not spread out as

they propagate.

Figure 2.4: Plot of ω and k
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2.1.2 Dispersive and Dissipative Waves

To examine the dispersion and dissipation properties of wave propagation we consider the following

linear partial different equations [1].

ut + ux + uxxx = 0 (2.12)

ut + ux − uxx = 0 (2.13)

Using ansatz u(x, t) = ej(kx−ωt) we obtain the following partial derivatives:

ut ⇒ −iωej(kx−ωt), ux ⇒ ikej(kx−ωt), uxx ⇒ −k2ej(kx−ωt), uxxx ⇒ −ik3ej(kx−ωt)

Substituting the above in (2.12)

−iωej(kx−ωt) + ikej(kx−ωt) − ik3ej(kx−ωt) = 0 ⇒ ω(k) = k − k3

Substituting for ω(k) in ansatz for u(x, t) we obtain the following:

u(x, t) = ei(kx−(k−k3)t) = eik(x−(1−k2)t)

The phase velocity vp = ω(k)/k = 1− k2 and group velocity vg = dω/dk = 1− 3k2. Since vp ̸= vg

and d2ω
dk2

̸= 0, this implies that wave components travel at different velocities and (2.12) represents

a dispersive wave and the general solution is given by [1]:

u(x, t) =

∫ ∞

−∞
A(k) ei(kx−ω(k)t)dk, ω(k) = k − k3 (2.14)

A(k) represents the fourier transform of initial condition u(x, 0). A representation of a dispersive

wave for the initial condition u(x, 0) = e−x2/4 is shown in Figure 2.5.

In (2.13) for even derivative of u with respect to x, the equation changes to the following after

substituting the partial derivatives:

−iωej(kx−ωt) + ikej(kx−ωt) + k3ej(kx−ωt) = 0 ⇒ ω(k) = k − ik2
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Figure 2.5: Dispersive wave

Substituting for ω(k) in ansatz for u(x, t) we obtain the following:

u(x, t) = ei(kx−(k−ik2))t = e−k2t+i(k−t)

The phase velocity vp = ω(k)/k = 1− ik considering only the real value for ω(k) we can establish

that phase velocity vp has a constant value of 1 and therefore the wave propagates a speed of unity

for all values of wave number k. In addition, as t → ∞, there is an exponential decay due to e−k2t,

and such types of waves are referred to as dissipative waves is shown in Figure 2.6. The observation

from (2.12) and (2.13) is that for odd powers in spatial derivatives there will be dispersion and for

even powers in spatial derivatives there will be dissipation.
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Figure 2.6: Exponential decay (dissipation)

2.1.3 Nonlinear Dispersionless Waves

To examine non-linear effects on wave motion we consider equations containing the non-linear term

uux. The following equation is taken from [1].

ut + uux + ux = 0 ⇒ ut + (1 + u)ux = 0 (2.15)

The above equation is a quasi-linear partial differential equation can be solved using the method

of characteristics [3], the general solution to (2.15) can be represented as u(x, t) = f(x− (1 + u)t)

where f is an arbitrary function determined by the given initial condition.The general solution

u(x, t) will be single-valued for a finite time and unique, and beyond a certain time it will result in

a non-unique solutions (multivalued), this results in a wave displaying discontinuity and and are

referred to as a “shock waves” shown in Figure 2.7.
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Figure 2.7: Wave discontinuity u(x, 0) = sin(x)

In the next chapter we will look at the history of Solitons and provide overview of Korteweg–de

Vries (KdV) equation.
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Chapter 3

Soliton History

Solitons or solitary waves are the solutions to certain class of non-linear partial differential equa-

tions. The localized solutions of integrable equations are referred to as “solitons”, while localized

solutions of non-integrable equations are called “solitary waves” [27]. Nonetheless, in physical

application, such difference is ignored and both these terms are considered as synonyms. A soli-

tary wave was first observed by John Scott Russell in the Edinburgh–Glasgow canal in August

1834 which he described as “a great wave of translation”. He left the following description of the

observed phenomenon [2]:

“I believe I shall best introduce the phenomenon by describing the circumstances of my own first

acquaintance with it. I was observing the motion of a boat which was rapidly drawn along a

narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in

the channel which it had put in motion; it accumulated round the prowl of the vessel in a state

of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming

the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or diminution of speed.

I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an

hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height.

Its height gradually diminished, and after a chase of one or two miles I lost it in the winding’s of

the channel. Such, in the month of August 1834, was my first chance interview with that singular
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and beautiful phenomenon which I have called the Wave of Translation.”

John Scott Russell further carried out a series of experiments to simulate solitary waves in a water

tank.

Figure 3.1: Russell’s experiment to generate a solitary wave. (From [9]).

Figure 3.2: Solitary wave parameters (From [1]).

On the basis of these experiments, Russel presented a Report where he summarized his findings

[1, 14, 27]:

• The waves generated have constant speed and propagate over long distances preserving shape

and speed upon collision.

• The speed of the wave is directly proportional to amplitude and hence larger amplitude waves

travel faster.
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• The speed of the wave can be described by the formula c2=g(h + a) and solitary waves were

referred to as gravity waves.

• The waves are localised and either decays or approaches constant at infinity.

• There can be only solitary elevations; solitary cavities (depressions) never occur.

Then, Boussinesq in 1871 and Rayleigh in 1876 gave the first theoretical description of solitary

waves by considering that the length of solitary waves is much greater than the depth of the water

with the following expression for perturbation of a water surface u(x, t) [3, 1]:

u(x, t) = a sech2 (β − ct), β2 =
3a

h3
. (3.1)

This solution is valid only if soliton amplitude a is much less than the water depth h, i.e., a/h ≪ 1.

The mathematical equation possessing solitary solutions was derived by Korteweg and de Vries in

1895 and is known as the Korteweg–de Vries (KdV) equation. In the dimensionless variables it

has the form [8, 3]:

ut + 6ux + uxxx = 0 (3.2)

where u(x, t) is the dimensionless water surface perturbation. The similar KdV equation was later

derived to describe weakly dispersive and weakly nonlinear wave processes in various physical

systems such as plasma physics, oceanography, solid state physics, and nonlinear optics [3].

Zabusky and Kruskal in 1965 numerically studied the formation of solitary wave within the KdV

equation from the sinusoidal initial perturbation as shown in Figure 3.3. They described their

findings in three steps [6]:

1. Initially the terms ut + uux result in the steepening of the function u(x, t) in regions of

negative slope resulting in discontinuity.

2. In the second phase, the term uxxx becomes dominant and prevent formation of discontinuity.

Instead of the wave overturning, oscillations of a small wave length are formed that attain

steady state amplitudes.
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3. Then, “Solitary waves” are formed and move with the speeds linearly proportional to their

amplitudes.

Figure 3.3: Time evolution of u(x, t) from the sinusoidal initial condition – see the dotted line A.
(From [6]).

The “solitary wave pulses” retain their identities and resemble a particle-like behavior; hence,

they are called “solitons”. As follows from Eq. (3.2), the KdV equation contains three terms;

the first one, ut represents the time evolution, the second one, uux represents the nonlinear term,

and the third one, uxxx is the dispersive term. The behavior of a wave profile can be analyzed by

considering the non-linear and dispersive terms separately in conjunction with the time evolution.

The balance between the nonlinearity and dispersion is responsible for the existence of solitons.

There are only certain classes of nonlinear partial differential equations that admit soliton solutions;

they are referred to as “completely integrable systems”. The conditions under which solitary waves

can be obtained is summarized in Figure 3.4.

In the next section the properties of KdV equation (3.2) are detailed along with “one-soliton” and

“two-soliton” solutions.
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Figure 3.4: Conditions which admit existence of solitary waves (from [10]).

3.1 Soliton solutions of the KdV equation

The KdV equation (3.2) is completely integrable; its particular exact solutions can be found by

considering a travelling wave solution of the form u(x, t) = f(x − ct). For the one-soliton the

solution is [8]:

u(x, t) =
c

2
sech2

(√
c

2
(x− ct− x0)

)
, (3.3)

where c is the wave speed and x0 is the phase shift. A temporal development of u(x, t) with

c = 4 and x0 = 0 demonstrates a wave travelling in the form of a bell-shaped pulse having a fixed

amplitude and propagating with a constant speed. The wave pulse is localized so that u(x, t) → 0

when x → ±∞ [14] shown in Figure 3.5. The properties of KdV soliton can be summarized as

follows [27]:

• The amplitude and velocity are directly proportional and therefore large amplitude wave pulse

travels faster.

• The wave pulse is stationary; its shape does not change in the process of propagation. In the

co-moving coordinate frame it looks like an immovable hill.

• Solitons are symmetrical at the point where they have maximums.
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Figure 3.5: Time evolution of soliton moving from left to right.

The interaction of two solitons moving with different speeds is elastic and resembles a particle-

like behavior. The principle of superposition is not applicable to the KdV equation because this

equation is nonlinear. However, there are several methods allowing us to describe an interaction of

two-solitons. In particular, the Inverse Scattering Method (ISM), Hirota transform method, and

some others [2, 1]. The two-soliton solution is given by the following expression [14, 7]:

u(x, t) =
12[3 + 4cosh(2x− 8t) + cosh(4x− 64t)]

[3cosh(x− 28t) + cosh(3x− 36t)]2
(3.4)

A 2-soliton interaction plot of (3.4) at different times t is shown in Figure 3.6.
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(a) t = −1 (b) t = −0.5

(c) t = 0 (d) t = 0.1

Figure 3.6: Two-soliton solution at different times.

The characteristics of nonlinear interaction of two KdV solitons depend on their speed (or ampli-

tude) ratio c1/c2. The following types of interaction are possible [17, 18]:

• If c1/c2 < 3 the solitary waves experience a bounce and exchange speeds and shapes.

• If c1/c2 > 3 the solitary wave peaks merge first together, and then split apart restoring their

initial shapes and speeds.

In both cases, solitons experience spatial and temporal phase shifts. The bigger soliton shifts ahead,

and a smaller soliton shifts back. In the next section, different soliton types will be described that

arise in different nonlinear PDE’s.
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Chapter 4

Soliton types

There are two broad classifications of solitons viz., topological and non-topological solitons. Topo-

logical solitons are localized particle-like objects and superimpose nonlinearly retaining identity

after interaction and are therefore extremely stable. The velocity of the propagating wave does

not depend on the amplitude with boundary conditions at ∞ different from that of the physical

vacuum state. Topological solitons can be further divided into two subgroups taking into account

the time-dependent or permanent nature of the profile. A non-topological soliton will have the

boundary conditions at ∞ similar to that of the physical vacuum state. The physcial vacuum state

refers to the trivial background solution in which u(x, t) → 0 as x → ±∞ [14, 15, 21]. Some of the

different types of solitons arising out of characteristics of nonlinear partial differential equations

are detailed below.

4.1 Kink, antikink, and breathers

Kink and antikink solitons are topological solitons. They represent one-dimensional solitary waves,

and the solution value changes due to a transition from one state to another. A breather refers to

nonlinear localized excitations wherein energy accumulates in a bounded and oscillatory manner.

Once maximum amplitude is attained, the breather decays symmetrically on both sides of the

point of maximum amplitude. These types of soliton solutions are obtained from the Sine-Gordon
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equation and appear in nonlinear optics, mechanical transmission lines, Josephson junctions, and

Bloch wall motion of magnetic crystals. The Sine-Gordon equation is of the form [14, 19]:

utt − uxx + sin(u) = 0, −∞ < x < ∞, 0 < t < ∞ (4.1)

The kink and antikink soliton solutions of (4.1) are given by [19]:

u(x, t) =

4 tan−1
(
e+γ(x−ct)

)
4 tan−1

(
e−γ(x−ct)

) (4.2a)

(4.2b)

where γ = 1√
1−c2

is the Lorenz contraction factor. Antikink soliton (4.2a) represents a 2π pulse,

and kink soliton (4.2b) represents a −2π pulse shown in Figure 4.1. The derivative of both kink

and antikink has the shape of soliton [10] shown in Figures 4.2 and 4.3.

Figure 4.1: Kink and antikink soliton.
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Figure 4.2: Derivative of kink

Figure 4.3: Derivative of antikink

Other solutions of Sine-Gordon equation (4.1) demonstrate soliton interactions including kink-

kink collision and symmetric kink-antikink collision. For the kink-antikink solution, if the velocity
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parameter c is considered imaginary, we obtain a bound state solution known as stationary

breathers, which is spatially localized and oscillates in time with frequency ω is shown in Figure 4.4.

The breather solution is of the form [19, 32].

u(x, t) = 4 arctan

[√
1− ω2

ω
sin (ωt) sech

(√
1− ω2x

)]
(4.3)

Figure 4.4: Breather oscillations at various frequencies

4.2 Envelop Solitons

Envelop solitons are solitary wave solutions that occur in a dispersive nonlinear medium. They

are further classified into “bright” solitons that have localized shape and decay at ∞, and “dark”

solitons having a constant amplitude at ∞ [14, 3]. The envelop soliton is presented by nonlinear

Schrödinger equation (NLS) is given by:

iut + uxx + γ|u|2u = 0, γ is a constant, u(x, t) is complex (4.4)
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For an exact solution of (4.4) in the form u(x, t) =
√
2 cos(2x − 3t) sech(x − 4t) [14], the envelop

soliton is shown in Figure 4.5.

Figure 4.5: Envelop soliton of NLS equation

4.3 Lump Solitons

A generalized form of KdV equation (3.2) was formulated for function in two space dimensions

and one time dimension (u ⇒ u(x, y, t)) in 1970 by Kadomstev-Petviashvili to describe weakly

dispersive waves and this equation is the well known Kadomstev-Petviashvili (KP) equation of the

form [20]:

∂x (ut + 6uux + uxxx) + 3σuyy = 0 (4.5)

Two forms of (4.5) are defined viz., KP1 for σ = 1 and KP2 for σ = −1. The KP1 equation

is completely integrable and has soliton solutions called “lumps” that are considered stable with

respect to interactions, whereas the KP2 equation is non integrable however lump solutions for

KP2 have been constructed numerically. Both these forms of equations have relevance in surface

and internal water waves, optical waves, elastic waves in thin plates, etc. An example of lump

solution is shown in Figure 4.6.
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Figure 4.6: Lump soliton (From [20]).

In addition there are other types of solitons viz., “fat” and table-top solitons which are particular

solutions of Gardner equation, Kawahara solitons with oscillating tails that are solutions of gen-

eralised KdV equation containing third and fifth order dispersion terms [30] shown in Figure 4.7.

In the next chapter we consider helical solitons that change their polarisation during the course of

propagation.

Figure 4.7: Kdv (blue), fat (black) and table-top (red) solitons (From [30]).
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Chapter 5

Helical Solitons

5.1 Introduction

The type of solitons that change the orientation in space during the course of propagation are

referred to as a helical solitons. Such types of waves are known to exists in electrodynamics,

plasma physics, magnetohydrodynamics. Several papers have been published citing the occurence

of helical solitons with earliest example being for perturbations along a thin vortex filament in a

fluid by Hasimoto (1972) [22]. Gorshkov et al. [24] identified helical soliton solutions for circularly

polarized electromagnetic waves in nonlinear isotropic dispersive media. The solutions obtained

represented localized wave pulses and the duration of these wave pulses was comparable to rotation

period of field vector.

Karney et al. [23] investigated vector solitons for lower hybrid waves in plasma looking at the

close relevance between the complex modified KdV equation (CMKDV) and the modified KdV

equation. Two types of solitary waves were observed, a constant wave pulse and an envelope

solitary wave. An equation describing propagation of hybrid waves in homogeneous plasma was

derived, represented in the following form:

ut +
(
|u|2u

)
x
+ uxxx = 0 (5.1)
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The two component vector u(x, t) = u1(x, t)+ i u2(x, t) or in the polar form u(x, t) = r(x, t)eiΘ(x,t)

has the norm |u| =
√
u2
1 + u2

2. Equation (5.1) is also referred to as the vector modified KdV

(vmKdV) equation is non integrable and is analyzed numerically. The equation was also derived

for a dynamical system consisting of a chain of connected particles by an elastic string shown in

Figure 5.1. The details of derivation are included in [12, 25]. The displacement occurs in two

perpendicular directions viz., y and z transverse to the direction of wave propagation along x axis.

The wave motion included helical periodic waves with continuous rotations as well as solitary

waves, i.e. solitons. Another form of the equation that does not have direct physical relevance, but

Figure 5.1: Chain of particles linked by elastic springs from [11]
.

whose solutions can be considered similar to (5.1) under certain perturbations, is given by [11, 22]:

ut + |u|2ux + uxxx = 0 (5.2)

The above equation is considered to be a generalization of the complex modified KdV (mKdV)

equation that has a Lax pair with the same scaling symmetry (t → λ2t, x → λx,u → λ−1u ) and

hence is integrable and therefore exact analytical solution can be found [13]. In contrast for the
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non integrable vmKdV equation (5.1) an exact solution cannot be found, however helical solitons

were constructed using dynamical systems method [11]. By appropriate choice of a parameter γ,

equations (5.1) and (5.2) can be written in the following general form:

ut + γ|u|2ux + (1− γ)
(
|u|2u

)
x
+ uxxx = 0. (5.3)

When γ = 0 the above equation represents non-integral vector mKdV equation (5.1) and for γ = 1

the equation represents integrable vector mKdV equation (5.2). Equation (5.1) is considered to

be closely related to modified KdV equation for some positive constant k given by:

ut + k|u|2ux + uxxx = 0 (5.4)

In order to observe the relation between (5.1) and (5.4), the equation (5.1) can be written in the

following two forms [11, 23].

ut + |u|2ux + uxxx = −u
(
|u|2

)
x

(5.5)

ut + 3|u|2ux + uxxx = 2iu|u|2Θx (5.6)

For the two component vector u(x, t) = r(x, t)eiΘ(x,t) we have |u|2 = r2 and (|u|2)x = 2rrx, in

two limiting cases, the right-hand side in above equations can be neglected and they reduce to

integrable vmKdV equation (5.2):

1. For spatial variation of wave modulus r = |u| greater than spatial variation of wave argument

Θ = arg(u), i.e., |rx| ≪ |rΘx|.

2. For spatial variation of wave argument Θ = arg(u) greater than spatial variation of wave

modulus r = |u|, i.e., |rΘx| ≪ |rx|.

The integrable vector mKdV equation (5.2) has an exact solution which is given by the formula

[23, 11]:

u(x, t) = λ
√
6 sech(λξ)

[
cos(kξ − ωt+ θ0), sin(kξ − ωt+ θ0)

]
(5.7)

where ξ = x − V t, k, and θ0 are arbitrary constants, and V is the soliton speed. Another form

of exact solution to Eq. (5.2) in terms of hyperbolic secant function is given by the following
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expression [22] (see Appendix A):

u(x, t) = A sech

(
x− V t

∆

)[
cosΘ(x, t), sinΘ(x, t)

]
. (5.8)

The parameters in equation (5.8) are defined as follows:

• Amplitude A and width ∆ =

√
6

A

• Velocity V =
A2

6
− 3k2

• Angular frequency ω = 2k

(
A2

6
+ 4k2

)
, where k is an arbitrary constant

• Phase Θ(x, t) = k(x− V t)− ωt

From the expression for the velocity V we can generate a stationary soliton by choosing, for

example, A = k
√
18. A time evolution of one helical soliton as per Eq. (5.7) shows that the soliton

propagates with a constant speed for both positive and negative values of V shown in Figure 5.2.

Figure 5.2: Helical soliton for V = ±1.451 (λ = 2, k = 1.348, ω = 15.683, and θ0 = 0).
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For greater helicity, i.e., the number of turns around “x” axis, the helical solitons are similar to

envelope solitons for the NLS equation (4.4). The speeds of the envelope and carrier wave will be

different shown in Figure 5.3.

Figure 5.3: Helical soliton for V = ±1.451, k = 48

Both the integrable vector mKdV equation (5.2) and non-integrable vector mKdV (5.1) were solved

numerically (see Appendix B for the FORTRAN code implementation) using a finite difference

method (FDM). The stability of FDM numerical scheme has been validated by comparison of nu-

merical solutions with exact analytical solutions in [31]. In addition there are alternative numerical

methods developed by other authors for the solution of the vector mKdV equation, including mesh-

free collocation method by Marjan et al. [28] and split-step fourier method by Erbay [29]. The

numerical results generated by FORTRAN code were validated by comparison with the exact an-

alytical solution (5.7). For the data generated by FORTRAN code (Appendix B) the following

parameters were used:
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Parameter Value

Amplitude(A1)
√
6

k1 (helicity) 3

Amplitude(A2) 0.5
√
6

k2 (helicity) 1

Table 5.1: Parameter values.

The interaction of helical and plane solitons at different polarization angles was discussed in [12].

The interactions of helical solitons for different helicities, both for integrable and non-integrable

cases, are detailed in the next section. The system is modelled with a periodic boundary condition

along a ring of a circumference L, (0 ≤ x ≤ L). In this model, solitons can propagate in both

directions along the x-axis. We consider the interaction of two solitons, the bigger soliton was set

initially x = L/4, and the smaller soliton was set up at x = 3L/4. The larger soliton goes around

the circumference of the ring, interacts with the smaller soliton, and propagates within the loop.

For the data generated by FORTRAN code (see Appendix B), the spatial domain considered is

0 ≤ x ≤ 250. This scenario of soliton propagation is common to the four types of interactions

described below. Soliton interactions were simulated and can be viewed via the HTML file in a

browser.

5.1.1 Interaction of helical solitons in the integrable vmKdV with the

same helicity

In this type of interaction, a soliton with a smaller amplitude moves relatively faster compared

to the larger soliton. Once the collision occurs, the smaller soliton is positioned behind the larger

soliton and appears stationary while oscillating closer to the larger soliton shown in Figure 5.4.
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(a) Initial (b) Before Interaction

(c) Collision (d) After Collision

Figure 5.4: Integrable case – interaction of two helical solitons with the same helicity.

5.1.2 Interaction of helical solitons in the integrable vmKdV with the

opposite helicity

In this case, the elastic type of interaction occurred again like in the previous case. The solitons

moved away after the interaction and continued moving along the circumeference of the ring. This

is noticeable as the soliton with the larger amplitude moves to the left faster, leaving the smaller

soliton behind. Once the collision concludes, the initial form and oscillations of the carrier wave

remain the same as they were initially shown in Figure 5.5.
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(a) Initial (b) Before Interaction

(c) Collision (d) After Collision

Figure 5.5: Integrable case – interaction of two helical solitons with the opposite helicity.

5.1.3 Interaction of two helical solitons in the non-integrable vmKdV

equation with the same helicity

The interaction of helical solitons in the non-integrable case with the same helicity is inelastic.

After the interaction, some portion of the energy transforms into a residual small amplitude wave.

This is purely transient, and once the interaction is completed, the solitons propagate, preserving

the original shapes shown in Figure 5.6.
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(a) Initial (b) Before Interaction

(c) Collision (d) After Collision

Figure 5.6: Non-integrable case – interaction of two helical solitons with the same helicity.

5.1.4 Interaction of two helical solitons in the non-integrable vmKdV

equation with the opposite helicity

In this type of interaction, there are disturbances or ripples along the x-axis. When solitons collide,

some portion of energy is radiated, and small ripples appear behind solitons. This indicates that

the interaction is inelastic. Thereafter, the solitons move away from each other, retaining their

shapes but not amplitudes shown in Figure 5.7.
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(a) Initial (b) Before Interaction

(c) Collision (d) After Collision

Figure 5.7: Non-integrable case – interaction of two helical solitons with the opposite helicity.

5.2 Numerical results and discussion

Numerical calculations confirm the stability and robustness of helical solitons both in the integrable

and non integrable cases of the vector mKdV equations (5.2) and (5.1) using the same initial

conditions. The energy density are evaluated to ensure the stability of numerical scheme. The

energy density conservation is determined as I3 =
∫
|u|2dx, in the domain 0 ≤ x ≤ 250, and it is

noted that energy density is preserved in numerical calculations with a relative error of less than

0.03%. The helical soliton in the integrable case propagates with constant speed; this agrees with
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theoretical predictions and holds true for solitons propagating with the same or opposite helicity.

In order to examine the temporal stability of I3, the following formula was used to calculate the

relative error:

δ(I3) =
|I3(t)− I3(0)|

I3(0)
× 100% (5.9)

In the integrable case, for helical soliton interactions with the same and opposite helicities there was

an almost identical conservation of I3 with zero relative error at most data points 0 ≤ T ≤ 5 expect

in the case of the same helicity at two instants of time at T ≈ 1 and T ≈ 3.8 when the percentage

of relative error attains δ(I3) ≈ 0.027%; this happens during the process of soliton interaction. The

result indicates that, in the integrable vector mKdV equation, energy is conserved and is shown

in Figure 5.8.

(a) Same helicity (b) Opposite helicity

Figure 5.8: Integrable case – relative error δ(I3)% vs. time T

For the same initial condition in the non integrable case with the same helicity, there are small

disturbances which appear behind each soliton in the course of propagation; they are noticeable at

T ≈ 0.3 with δ(I3) ≈ 0.0276. Thereafter, the variation is less pronounced shown in Figure 5.9(a).

In contrast, for the non integrable case with opposite helicity, the relative error δ(I3) is very close

to zero up to T ≈ 1.7 when the variation of δ(I3) becomes visible. This is caused by the energy

radiation before and after the interaction shown in Figure 5.9(b).
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(a) Same helicity (b) Opposite helicity

Figure 5.9: Non integrable case – relative error δ(I3)% vs. time T

The choice of the parameter k in Eq. (5.8) in the initial condition establishes the presence of helical

solitons in integrable and non integrable case.s For the same initial conditions with k ≈ 1.348, 1.155

the integrable case presents helical solitons and agrees with the theoretical prediction. In contrast

to that, in the non-integrable case, the helical solitons disintegrates into several plane solitons

propagating at different angles [11] and is shown in Figure 5.10.

Figure 5.10: Non integrable case plane solitons (From [11]).

However, when the parameter k becomes large, k ≫ 1, the difference between the integrable and

non-integrable cases becomes insignificant; therefore interaction of helical solitons with large k
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should be almost identical. This issue requires further investigation.
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Chapter 6

Conclusion

In this literature review, helical solitons were considered for two different forms of the vector

modified KdV equation one of which is integrable and another is non-integrable. The integrable

vmKdV equation has an exact analytical solution and numerical simulation confirmed the presence

of helical solitons that matches theoretical prediction. However the integrable vmKdV equation

did not find application in physical sciences thus far. The non integrable form of the vmKdV

equation was considered for a modelling of various physical systems, for example, chain of particles

connected by a string. Numerical simulations confirmed the presence of helical solitons only for

negative velocities. In contrast to that, in the integrable vmKdV equation helical solitons can

propagate both with positive and negative velocities. The interaction of helical solitons in both

forms of equation were considered for the same and opposite helicities. The numerical simulations

confirm that soliton interactions are elastic in the integrable vmKdV equation but is inelastic in

the non-integrable vmKdV equation. A further area of research to be considered is the interaction

of helical solitions in a large domain with bigger helicities.
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Appendix A

Integrable vmKdV solution

This appendix derives the analytical solution for the integrable vector mKdV equation referenced

in Chapter 5. The integrable vector mKdV equation is given by:

ut + |u|2ux + uxxx = 0, where u = u1 + iu2 = r(x, t)[cosΘ(x, t), sinΘ(x, t)] (A.1)

Assume a travelling wave solution for Eq. (A.1) of the form:

u(x, t) = U(x− V t) = f(ξ)[cosΘ(x, t), sinΘ(x, t)] (A.2)

where ξ = x− V t,Θ(x, t) = k(x− V t)− ωt. The partial derivatives are listed in the table below:

Function Partial Derivatives Value Comments
ξ ∂x(ξ), ∂t(ξ) 1, −V
Θ ∂x(Θ), ∂t(Θ) k, −kV − ω

f(ξ) ∂t(f(ξ)), ∂x(f(ξ)) −V f ′, f ′ f ′ = df
dξ

f(ξ) ∂xx(f(ξ)), ∂xxx(f(ξ)) f ′′, f ′′′ f ′′ = d2f
dξ2

, f ′′′ = d3f
dξ3

The first partial derivative of u with respect to t is

ut = ∂t
(
f(cosΘ, sinΘ)) (A.3)

= −V f ′(cosΘ, sinΘ) + fΘt(− sinΘ, cosΘ), (A.4)
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Substituting for Θt, we obtain:

ut = −V f ′(cosΘ, sinΘ) + f(−kV − ω)(− sinΘ, cosΘ). (A.5)

The first partial derivative of u with respect to x is

ux = ∂x
(
f(cosΘ, sinΘ)) (A.6)

= f ′(cosΘ, sinΘ) + fΘx(− sinΘ, cosΘ). (A.7)

Substituting for Θx, we obtain:

ux = f ′(cosΘ, sinΘ) + fk(− sinΘ, cosΘ), (A.8)

The second partial derivative of u with respect to x is

uxx = ∂x
(
f ′(cosΘ, sinΘ) + fk(− sinΘ, cosΘ)) (A.9)

= f ′′(cosΘ, sinΘ) + f ′Θx(− sinΘ, cosΘ) + f ′k(− sinΘ, cosΘ) + fΘx(−cosΘ,− sinΘ).

(A.10)

Substituting for Θx, we obtain:

uxx = f ′′(cosΘ, sinΘ) + 2kf ′(− sinΘ, cosΘ) + k2f(− cosΘ,− sinΘ). (A.11)

The third partial derivative of u with respect to x is

uxxx = ∂x
(
f ′′(cosΘ, sinΘ) + 2kf ′(− sinΘ, cosΘ) + k2f(− cosΘ,− sinΘ)) (A.12)

= f ′′′(cosΘ, sinΘ) + f ′′Θx(− sinΘ, cosΘ) + 2kf ′′(− sinΘ, cosΘ) (A.13)

+ 2kf ′Θx(− cosΘ,− sinΘ) + k2f ′(− cosΘ,− sinΘ) + k2fΘx(sinΘ,− cosΘ). (A.14)
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Substituting for Θx = k, we obtain:

uxxx = f ′′′(cosΘ, sinΘ) + 3kf ′′(− sinΘ, cosΘ)− 3k2f ′(cosΘ, sinΘ)︸ ︷︷ ︸
factoring out −1 for (cosΘ, sinΘ)

. (A.15)

The terms (cosΘ, sinΘ) and (− sinΘ, cosΘ) are orthogonal since their dot product is zero. The

partial derivatives ut,ux,uxxx are represented in simpler form by considering v = (cosΘ, sinΘ),

and v⊥ = (− sinΘ, cosΘ); therefore, Eqs. (A.8), (A.5), and (A.15) simplify to:

ut = −V f ′v + (−kV − ω)fv⊥, (A.16)

ux = f ′v + kfv⊥, (A.17)

uxxx = (f ′′′ − 3k2f ′)v + 3kf ′′v⊥. (A.18)

Using |u|2 = f 2, Eq. (A.1) becomes:

−V f ′v + f 2f ′v + f 3kv⊥ + f ′′′v + 3kf ′′v⊥ − 3k2f ′v = 0. (A.19)

Grouping the terms for v, v⊥ and after rearranging , we obtain:

(f ′′′ − (V + 3k2)f ′ + f 2f ′)v + (f 3k + 3kf ′′)v⊥ = 0. (A.20)

This results in two equations

(f ′′′ − (V + 3k2)f ′ + f 2f ′) = 0, (A.21)

f 3k + 3kf ′′ = 0. (A.22)

Consider Eq. (A.21); multiplying it by f ′ and noting that f ′ = df
dξ

we obtain:

f ′f ′′ − (V + 3k2)ff ′ +
f 3

3
f ′ = 0, (A.23)

d

dξ

(
f ′2

2

)
− (v + 3k2)

d

dξ

(
f 2

2

)
+

d

dξ

(
f 4

12

)
= 0. (A.24)
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Integrating with respect to ξ, we obtain:

(f ′)2

2
− (V + 3k2)

f 2

2
+

f 4

12
= K, where K is constant. (A.25)

For a localized solution such that f → 0, f ′ → 0, when |ξ| → ∞ and hence K = 0 , the above

equation can be simplified to:

(f ′)2 = (V + 3k2)f 2 − f 4

6
= f 2

[
(V + 3k2)− f 2

6

]
, or finally (A.26)

df

dξ
= ±f

√
(V + 3k2)− f 2

6
(A.27)

Equation (A.27) can be solved separation of variables and integrating both sides:

∫
df

f
√

(V + 3k2)− f2

6

= ±
∫

dξ = ±ξ + C. (A.28)

The integral equation (A.28) can be analytically evaluated and has the well-know solution with

the sech profile:

f(ξ) = A sech

(
ξ

∆

)
, (A.29)

where the amplitude A =
√

6(V + 3k2) and half-width ∆ =
√
6/A. The final expression for the

one-soliton solution of the integrable vector mKdV Eq. (A.1) is:

u(x, t) = A sech

(
x− V t

∆

)[
cosΘ(x, t), sinΘ(x, t)

]
. (A.30)

This solution with different parameters will be used for the creation of initial conditions for inte-

grable and non-integrable versions of vector mKdV equations.
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Appendix B

Program VMKDV

This appendix contains the complete Fortran source code for the VMKDV (Vector Modified

Korteweg–de Vries) program used in the numerical simulations.

1 C********!*********!*********!*********!*********!*********!*********!**

2 C Spatial step H = RL/N, temporal step TAU

3 C Step for data presentation: DT = NB*TAU

4 C NWAY = 1: for analitically given initial conditions

5 C NWAY = 2: for numerical initial conditions

6 C Criterion of stability of the numerical scheme: TAU <, = 0.384*H**3/B

7 C Used markers: 1-21

8 C********!*********!*********!*********!*********!*********!*********!**

9 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

10 DIMENSION P(100004) ,U(100004) ,V(100000) ,S(100001) ,

11 *P1 (100004) ,U1 (100004) ,V1 (100000) ,S1 (100001) ,X(100000)

12 EQUIVALENCE (V(1),U(3)) ,(V1(1),U1(3))

13 COMMON/SLT/A,A1 ,B,RL

14 OPEN(10,FILE=’Work1.DAT’)

15 OPEN(11,FILE=’Work2.DAT’)

16 OPEN(12,FILE=’Work3.DAT’)

17 OPEN(13,FILE=’Work4.DAT’)

18 OPEN(14,FILE=’Work5.DAT’)

19 OPEN(15,FILE=’Work6.DAT’)

20 OPEN(16,FILE=’Work7.DAT’)
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21 OPEN(17,FILE=’Work8.DAT’)

22 OPEN(18,FILE=’Work9.DAT’)

23 OPEN(19,FILE=’Work10.DAT’)

24 OPEN(20,FILE=’Work11.DAT’)

25 OPEN(21,FILE=’Work12.DAT’)

26 OPEN(22,FILE=’Work13.DAT’)

27 OPEN(23,FILE=’Work14.DAT’)

28 OPEN(24,FILE=’Work15.DAT’)

29 OPEN(25,FILE=’Work16.DAT’)

30 OPEN(26,FILE=’Work17.DAT’)

31 OPEN(27,FILE=’Work18.DAT’)

32 OPEN(28,FILE=’Work19.DAT’)

33 OPEN(29,FILE=’Work20.DAT’)

34 OPEN(30,FILE=’Work21.DAT’)

35 OPEN(32,FILE=’Work22.DAT’)

36 OPEN(33,FILE=’Work23.DAT’)

37 OPEN(34,FILE=’Work24.DAT’)

38 OPEN(35,FILE=’Work25.DAT’)

39 OPEN(36,FILE=’Work26.DAT’)

40 OPEN(37,FILE=’Work27.DAT’)

41 OPEN(38,FILE=’Work28.DAT’)

42 OPEN(39,FILE=’Work29.DAT’)

43 OPEN(40,FILE=’Work30.DAT’)

44 OPEN(41,FILE=’Work31.DAT’)

45 OPEN(42,FILE=’Work32.DAT’)

46 OPEN(43,FILE=’Work33.DAT’)

47 OPEN(44,FILE=’Work34.DAT’)

48 OPEN(45,FILE=’Work35.DAT’)

49 OPEN(46,FILE=’Work36.DAT’)

50 OPEN(47,FILE=’Work37.DAT’)

51 OPEN(48,FILE=’Work38.DAT’)

52 OPEN(49,FILE=’Work39.DAT’)

53 OPEN(50,FILE=’Work40.DAT’)

54 OPEN(51,FILE=’Work41.DAT’)

55 OPEN(52,FILE=’Work42.DAT’)

56 OPEN(53,FILE=’Work43.DAT’)
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57 OPEN(54,FILE=’Work44.DAT’)

58 OPEN(55,FILE=’Work45.DAT’)

59 OPEN(56,FILE=’Work46.DAT’)

60 OPEN(57,FILE=’Work47.DAT’)

61 OPEN(58,FILE=’Work48.DAT’)

62 OPEN(59,FILE=’Work49.DAT’)

63 OPEN(60,FILE=’Work50.DAT’)

64 OPEN (101, FILE=’CONTIN.DAT’) ! DATA FILE FOR RUN CONTINUATION WHEN NWAY=2

65 OPEN (102, FILE=’INTEGRALS.DAT’) ! INTEGRAL QUANTITIES

66 OPEN (103, FILE=’MINIMAX.DAT’) ! MAXIMA AND MINIMA

67 OPEN (104, FILE=’NEXTCALCUL.DAT’) ! DATA STORED FOR THE NEXT RUN

68 C********!*********!*********!*********!*********!*********!*********!**

69 C Parameters

70 A=1.D0

71 A1=1!1!1.D0 ! For the non -integrable case A1=1 whereas for the integrable

case A1=0

72 B=1.D0

73 RL=2.5D2!5.0D0

74 N=10000!200

75 H=RL/N

76 TAUcr =3.84D-1*H**3/B

77 TAU =5.0D-6!1.0D -6!5.0D-6

78 DT=1.0D-1!5.0D -1!5.0D-4

79 NP=50

80 PRINT 8

81 8 FORMAT (/1X,’NWAY = ?’/

82 * ’ 1 - FOR ANALYTICALY GIVEN INITIAL CONDITION;’/

83 * ’ 2 - FOR NUMERICALY GIVEN INITIAL CONDITION ’)

84 READ (*,*) NWAY

85 write (*,*) ’A = ’,A, ’A1 = ’,A1

86 write (*,*) ’B = ’,B, ’Rl = ’,RL

87 write (*,*) ’TAU = ’,TAU , ’TAUcr = ’,TAUcr

88 write (*,*) ’H = ’,H, ’DT = ’,DT

89 write (*,*) ’N = ’,N, ’ NP = ’,NP

90 PAUSE

91 C********!*********!*********!*********!*********!*********!*********!**
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92 NB=DT/TAU +0.00001

93 write (*,*) ’NB = ’,NB, ’ NWAY = ’,NWAY

94 N1=N+1

95 N2=N+2

96 N3=N+3

97 N4=N+4

98 DO 11 IR=1,N

99 11 X(IR)=RL*(IR -1)/N

100 C********!*********!*********!*********!*********!*********!*********!**

101 C Initial conditions and first step

102 GO TO (1,2), NWAY

103 1 CALL STEP1(N,U,P,U1,P1,S,S1,A,A1,B,TAU ,H,N1,N2,N3,N4)

104 T=0.D0

105 M=0

106 NB1=NB -1

107 C********!*********!*********!*********!*********!*********!*********!**

108 C Momentum and energy

109 DO 34 L=1,N

110 S(L)=P(L)**2

111 S1(L)=P1(L)**2

112 34 CONTINUE

113 SI1=0.D0

114 SI2=0.D0

115 SE1=0.D0

116 SE2=0.D0

117 DO 81 IJ=1,N

118 SE1=SE1+S(IJ)

119 SI1=SI1+P(IJ)

120 SI2=SI2+P1(IJ)

121 SE2=SE2+S1(IJ)

122 81 CONTINUE

123 QI1=SI1/N

124 QI2=SI2/N

125 QES=5.D-1*( SE1+SE2)/N

126 UMA=P(1)

127 UMA1=P1(1)
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128 UMI=P(1)

129 UMI1=P1(1)

130 DO 334 I=2,N

131 IF (P(I).LE.UMA) GO TO 333

132 UMA=P(I)

133 LVMAX=I

134 333 IF(P(I).GE.UMI) GO TO 334

135 UMI=P(I)

136 LVMIN=I

137 334 CONTINUE

138 DO 335 IM=2,N

139 IF(P1(IM).LE.UMA1) GO TO 336

140 UMA1=P1(IM)

141 LU1MA=IM

142 336 IF (P1(IM).GE.UMI1) GO TO 335

143 UMI1=P1(IM)

144 LU1MI=IM

145 335 CONTINUE

146 XMA=(LVMAX -1)*H

147 XMI=(LVMIN -1)*H

148 X1MA=(LU1MA -1)*H

149 X1MI=(LU1MI -1)*H

150 PRINT 9,T,M,QI1 ,QI2 ,QES ,UMA ,XMA ,UMI ,XMI ,UMA1 ,X1MA ,UMI1 ,X1MI

151 DO 10 J=1,N

152 S(J)=DSQRT(P(J+2) **2+P1(J+2) **2)

153 10 CONTINUE

154 C DO 15 J=1,N

155 C S1(J)=0.

156 C IF(H*J.LT.35.) GO TO 15

157 C S1(J)=ATAN2(P1(J+2),P(J+2))

158 C IF(H*J.GT .130.) S1(J)=PI/2.

159 C 15 CONTINUE

160 DO 337 IX=1,N

161 WRITE (10,*) X(IX),P(IX+2),P1(IX+2),S(IX)

162 337 CONTINUE

163 GO TO 314
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164 C********!*********!*********!*********!*********!*********!*********!**

165 2 T = 0.D0

166 DO 300 LN=1,N4

167 READ (101 ,*) P(LN),U(LN),P1(LN),U1(LN)

168 300 CONTINUE

169 C PAUSE

170 NB1=NB

171 PRINT 9,T

172 C PAUSE

173 C********!*********!*********!*********!*********!*********!*********!**

174 314 CONTINUE

175 WRITE (102 ,9) T,M,QI1 ,QI2 ,QES ,UMA ,XMA ,UMI ,XMI ,UMA1 ,X1MA ,UMI1 ,X1MI

176 DO 4 I=1,NP

177 WRITE (*,*) ’NSTEP = ’,I, ’T = ’, T

178 DO 5 IA=1,NB1

179 UB1=U(1)

180 UV1=U1(1)

181 YU=U(2)

182 YU1=U1(2)

183 UF1=U(3)

184 UFE1=U1(3)

185 UF2=U(4)

186 UFE2=U1(4)

187 DO 6 J=3,N2

188 UB2=UB1

189 UB1=YU

190 YU=UF1

191 UF1=UF2

192 UF2=U(J+2)

193 UV2=UV1

194 UV1=YU1

195 YU1=UFE1

196 UFE1=UFE2

197 UFE2=U1(J+2)

198 C********!*********!*********!*********!*********!*********!*********!**

199 P(J)=P(J)-(TAU/H)*((B/H**2)*(UF2 -2.D0*UF1+2.D0*UB1 -UB2)
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200 &+A*(YU**2+ YU1 **2+2. D0*A1*A*YU**2)*(UF1 -UB1)+2.D0*A1*A*YU1*YU*

201 &(UFE1 -UV1))

202 P1(J)=P1(J)-(TAU/H)*((B/H**2)*(UFE2 -2.D0*UFE1 +2.D0*UV1 -UV2)

203 &+A*(YU1 **2+YU **2+2. D0*A1*A*YU1 **2)*(UFE1 -UV1)+2.D0*A1*A*YU1*YU*

204 &(UF1 -UB1))

205 6 CONTINUE

206 DO 7 K=3,N2

207 W=P(K)

208 P(K)=U(K)

209 W1=P1(K)

210 P1(K)=U1(K)

211 U1(K)=W1

212 7 U(K)=W

213 U(1)=U(N1)

214 U(2)=U(N2)

215 U(N3)=U(3)

216 U(N4)=U(4)

217 U1(1)=U1(N1)

218 U1(2)=U1(N2)

219 U1(N3)=U1(3)

220 U1(N4)=U1(4)

221 5 CONTINUE

222 NB1=NB

223 C********!*********!*********!*********!*********!*********!*********!**

224 DO 234 L=1,N

225 S(L)=U(L+2)**2

226 S1(L)=U1(L+2) **2

227 234 CONTINUE

228 SI1=0.

229 SI2=0.

230 SE1=0.

231 SE2=0.

232 DO 281 IJ=1,N

233 SE1=SE1+S(IJ)

234 SI1=SI1+V(IJ)

235 SI2=SI2+V1(IJ)
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236 SE2=SE2+S1(IJ)

237 281 CONTINUE

238 QI1=SI1/N

239 QI2=SI2/N

240 QES=5.D-1*( SE1+SE2)/N

241 UMA=V(1)

242 UMA1=V1(1)

243 UMI=V(1)

244 UMI1=V1(1)

245 DO 134 I0=2,N

246 IF (V(I0).LE.UMA) GO TO 133

247 UMA=V(I0)

248 LVMAX=I0

249 133 IF(V(I0).GE.UMI) GO TO 134

250 UMI=V(I0)

251 LVMIN=I0

252 134 CONTINUE

253 DO 135 IM=2,N

254 IF (V1(IM).LE.UMA1) GO TO 136

255 UMA1=V1(IM)

256 LU1MA=IM

257 136 IF(V1(IM).GE.UMI1) GO TO 135

258 UMI1=V1(IM)

259 LU1MI=IM

260 135 CONTINUE

261 XMA=(LVMAX -1)*H

262 XMI=(LVMIN -1)*H

263 X1MA=(LU1MA -1)*H

264 X1MI=(LU1MI -1)*H

265 M=M+NB

266 T=T+DT

267 C PRINT 9,T,M,QI1 ,QI2 ,QES ,UMA ,XMA ,UMI ,XMI ,UMA1 ,X1MA ,UMI1 ,X1MI

268 WRITE (102 ,22) T,QI1 ,QI2 ,QES

269 WRITE (103 ,23) T,UMA ,XMA ,UMI ,XMI ,UMA1 ,X1MA ,UMI1 ,X1MI

270 DO 110 J=1,N

271 S(J)=DSQRT(V(J)**2+V1(J)**2)
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272 110 CONTINUE

273 C DO 115 J=1,N

274 C S1(J)=0.

275 C IF(H*J.LT.35.) GO TO 115

276 C S1(J)=ATAN2(V1(J),V(J))

277 C IF(H*J.GT .130.) S1(J)=PI/2.

278 C 115 CONTINUE

279 DO 237 IX=1,N

280 WRITE (10+I,*) X(IX),P(IX+2),P1(IX+2),S(IX)

281 237 CONTINUE

282 4 CONTINUE

283 DO 200 LN=1,N4

284 WRITE (104 ,*) P(LN),U(LN),P1(LN),U1(LN)

285 200 CONTINUE

286 CLOSE (104)

287 C********!*********!*********!*********!*********!*********!*********!**

288 STOP

289 9 FORMAT (/1X,2HT=,G10.4,3X,2HM=,I7 ,3X,’QI1=’,G10.4,3X,’QI2=’,G10.4,

290 &3X,’QES=’,G16.10,1X,’UMA= ’,G10.4,3X,’XMA= ’,G10.4,’UMI= ’,G10.4,

291 &3X,’XMI=’,G10.4,1X,’U1MA=’,G10.4,3X,’X1MA=’,G10.4,’U1MI=’,G10.4,

292 &3X,’X1MI=’,G10 .4)

293 22 FORMAT (4E12 .4)

294 23 FORMAT (9E12 .4)

295 END

296 C********!*********!*********!*********!*********!*********!*********!**

297 SUBROUTINE INFUN(S,S1,N,H)

298 C INITIAL CONDITION

299 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

300 DIMENSION S(1),S1(1)

301 COMMON/SLT/A,A1 ,B,RL

302 PI = 3.14159265359 D0

303 C AMP =2.0D0*DSQRT (6.D0)!0.0D0

304 AMP =1.0D0*DSQRT (6.D0)!0.0D0

305 C AK0 = 1.348 D0 !For helicity

306 AK0 = 3.D0 !For helicity

307 C AK0 = 0.D0
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308 DLT1 = DSQRT (6.D0*B/A)/AMP ! - for the helical soliton

309 C DLT1 = DSQRT (2.D0*B/A)/AMP ! - for the plane nonintegrable soliton

310 C AMQ = 0.D0 ! Amplitude of the second soliton

311 AMQ = 5.D-1* DSQRT (6.D0) ! Amplitude of the second soliton

312 DLT2 = DSQRT (6.D0*B/A)/AMQ ! Width of the second soliton

313 AK2 = 1.0D0 ! Carrier wavenumber of the second soliton

314 C AK2 = 0.D0 ! - for the plane soliton

315 C PHI2 = PI/6.D0 ! - for the plane soliton at the angle

316 C PHI1 = 0.D0

317 DO 2 K=1,N

318 X1 = H*K - 2.5D-1*RL

319 X2 = H*K - 7.5D-1*RL

320 PHI1 = AK0*X1

321 PHI2 = AK2*X2 ! for the helical soliton

322 S(K) = AMP*DSQRT (1.D0 - (DTANH(X1/DLT1))**2)*DCOS(PHI1)

323 &+ AMQ*DSQRT (1.D0 - (DTANH(X2/DLT2))**2)*DCOS(PHI2)

324 S1(K) = AMP*DSQRT (1.D0 - (DTANH(X1/DLT1))**2)*DSIN(PHI1)

325 &+ AMQ*DSQRT (1.D0 - (DTANH(X2/DLT2))**2)*DSIN(PHI2)

326 2 CONTINUE

327 RETURN

328 END

329

330 C********!*********!*********!*********!*********!*********!*********!**

331 SUBROUTINE STEP1(N,U,P,U1,P1,S,S1,A,A1,B,TAU ,H,N1,N2,N3,N4)

332 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

333 DIMENSION U(1),P(1),S(1),U1(1),P1(1),S1(1)

334 EPS=1.D-3

335 T1=TAU

336 ASSIGN 11 TO JB

337 KB=1

338 DO 7 L=1,N4

339 U1(L)=0.D0

340 7 U(L)=0.D0

341 C********!*********!*********!*********!*********!*********!*********!**

342 9 CALL INFUN(S,S1,N,H)

343 DO 10 M=1,N
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344 P1(M+2)=S1(M)

345 10 P(M+2)=S(M)

346 P(1)=P(N1)

347 P(2)=P(N2)

348 P(N3)=P(3)

349 P(N4)=P(4)

350 P1(1)=P1(N1)

351 P1(2)=P1(N2)

352 P1(N3)=P1(3)

353 P1(N4)=P1(4)

354 GO TO JB

355 C********!*********!*********!*********!*********!*********!*********!**

356 11 T1=5.D-1*T1

357 KB=KB*2

358 DO 6 I=1,KB

359 B1=P(1)

360 PE=P(2)

361 F1=P(3)

362 F2=P(4)

363 V1=P1(1)

364 PE1=P1(2)

365 FE1=P1(3)

366 FE2=P1(4)

367 DO 8 J=3,N2

368 B2=B1

369 B1=PE

370 PE=F1

371 F1=F2

372 F2=P(J+2)

373 V2=V1

374 V1=PE1

375 PE1=FE1

376 FE1=FE2

377 FE2=P1(J+2)

378 C********!*********!*********!*********!*********!*********!*********!**

379 P1(J)=PE1 -T1*(B*(FE2 -2.D0*FE1 +2.D0*V1 -V2)+H**2*(A*(PE1 **2+PE**2)+
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380 &2.D0*A*A1*PE1 **2)*(FE1 -V1)+2.D0*A1*A*H**2*PE*PE1*(F1 -B1))/H**3

381 8 P(J)=PE-T1*(B*(F2 -2.D0*F1+2.D0*B1-B2)+H**2*(A*(PE**2+ PE1 **2)+

382 &2.D0*A*A1*PE**2)*(F1 -B1)+2.D0*A1*A*H**2*PE*PE1*(FE1 -V1))/H**3

383 P(1)=P(N1)

384 P(2)=P(N2)

385 P(N3)=P(3)

386 P(N4)=P(4)

387 P1(1)=P1(N1)

388 P1(2)=P1(N2)

389 P1(N3)=P1(3)

390 P1(N4)=P1(4)

391 6 CONTINUE

392 C********!*********!*********!*********!*********!*********!*********!**

393 E=0.D0

394 DO 5 JE=3,N2

395 E=E+(P(JE)-U(JE))**2+( P1(JE)-U1(JE))**2

396 5 CONTINUE

397 E=DSQRT(E)

398 PRINT 1,T1,E

399 DO 4 MA=1,N4

400 U1(MA)=P1(MA)

401 4 U(MA)=P(MA)

402 IF(E-EPS) 3,3,9

403 3 ASSIGN 2 TO JB

404 GO TO 9

405 C********!*********!*********!*********!*********!*********!*********!**

406 2 CONTINUE

407 1 FORMAT (5X,3HT1=,E10.4,5X,2HE=,E10.4)

408 RETURN

409 END

Listing B.1: Fortran code for VMKDV program
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