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Abstract

Vector solitary waves, or solitons, of a specific type called helical solitons appear in various models
of plasma physics and solids and play an important role in nonlinear wave dynamics. The helical
solitons are less studied in contrast to other types (bell-shaped, table-top-shaped solitons, envelope
solitons, and kinks). Preliminary investigations show that there are nontrivial interactions of plane
solitons differently oriented in space and can be described by vector modified Korteweg—de Vries
(vimKdV) equation. Two forms of the vinKdV equations are considered, integrable vimKdV and
the non integrable vimKdV. The integrable vimnKdV equation has exact analytical solution, non
integralable vinKdV equation is analyzed using numerical methods. The structure and interactions
of helical solitons with each other will be studied in this project by means of numerical modelling
of the governing vmKdV equations. The results obtained will be compared with the analytical

solutions of the integrable vmKdV equation.
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Chapter 1

Introduction

Nonlinear wave theory has been widely adopted in the area of physics. The field of quantum
mechanics demonstrated a relationship between waves and particles, further exploration in the
area of classical physics led to the study of certain type of wave equations that tend to retain the
shape and size indefinitely. Upon interaction, these waves preserve their shapes and speeds and
propagate through the medium behaving like classical particles. Such types of waves that propagate
through a medium preserving their characteristics are known as solitary waves or solitons. This
literature review looks at the origins of the soliton theory, the governing mathematical equations

and interactions among different soliton types.

The research project is aimed at analyzing a particular type of solitons viz., helical solitons that
are less studied and analyzed compared to other known soliton types. Helical solitons arise, in
particular, as a result of propagation of transverse non-linear waves in a chain of connected particles
(the dynamical system model will be presented in the later sections of the document). The content

of the review in chronological order is organized as follows:

Wave Theory: This section details the fundamental concepts of linear and nonlinear waves in

dispersive media.

Soliton History: This section looks at the origins of solitons initially documented as observational

science that later provided the framework for the formulation of Korteweg—de Vries (KdV) equa-



tion. The generalization of the KAV equation led to other equations and soliton types arising out

of these equations are discussed.

Vector modified KdV Equation: This section looks at the modification to the KdV equation by
introducing a vector component and the resulting behavior of waves that will lead to formation of
helical solitons. The structure and interactions of helical solitons with each other will be studied
in this research project. The results from numerical modelling will be compared with analytical

solutions for the validation.



Chapter 2

Wave Theory

A wave can be defined as a set of oscillations propagating through a medium that carry a signal
or energy from one part of the medium to another at a particular velocity. The propagation
of a wave through a medium is associated with changes in some of the properties, but remains
recognizable [5]. The time evolution phenomenon of a wave is mathematically modeled using
linear and nonlinear partial differential equations (PDEs), with wave profile represented by u(z,t)
where z is spatial coordinate and t is the time coordinate. Some examples of physical wave types

and their occurrences include [26]:
e Acoustic waves - audible sound, medical applications of ultrasound.

e Electromagnetic waves - electricity in various forms, radio waves, light waves in optical

fibers.
e Seismic waves - resulting from earthquakes in the form of P waves and S waves.

e Water waves - Capillary (short waves of a typical wavelength A ~ 2.5 cm) and gravity
waves (which exist due to the restoring force from the Earth’ gravity field) with wave lengths
greater than 2.5 cm. Gravity waves in turn can be classified as deep water waves and shallow

water waves depending on the relationship between the wavelength and water depth.

e Gravitational waves - Waves that are invisible and occur as fast ripples in space traveling

at the speed of light 1.86 x 10° miles/sec and are result of objects moving at high speeds

10



some examples of events where gravitational waves occur include two big stars orbiting each
other and a star exploding asymmetrically (supernova). The gravitational waves are detected
through use of sensitive instrument called LIGO (Laser Interferometer Gravitational-Wave

Observatory).

A well-understood form of wave motion consists of a pattern of crests and troughs representing a
sinusoidal wave, and this is commonly referred to as linear wave having the following characteristic

properties:
e The velocity and shape are independent of the amplitude.
e The sum of two linear waves will result in another linear wave.
e Linear waves have a small amplitude.

In contrast, a nonlinear wave is a large-amplitude wave and there will be distortion of the shape of
the wave as it propagates through a medium [27]. A representation of wave propagating through

a medium is shown in Figure 2.1.

u(x,t)

Crest Wavelength(A)

Amplitude{A)
T
I
|
|
., Trough \:
Time Period (1) ’
Figure 2.1: Wave form
The main attributes of a wave propagating through a medium include:
e Wavelength (N): the distance between adjacent crests
e Wave number (k): the ratio of one complete wave cycle to wavelength (k = 27”)

e Time period (T'): the time taken to complete one oscillation
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o [Frequency (f = %) number of oscillations completed per unit time
o Angular frequency (w = 2%) the angular displacement of element of wave per unit time

Waves are categorized into two main types viz., hyperbolic waves and dispersive waves. A prototype
representation of hyperbolic waves is considered to be a one-dimensional wave equation that is

linear second-order partial differential equation and satisfies the principle of superposition [1, 5].

Uy = Uy (2.1)

u(z,t) is the amplitude of the wave and ¢ is a positive constant. A general solution of (2.1) is the

well known as d’Alembert’s solution of the form
u(z,t) = f(x —ct) + g(x + ct). (2.2)

where f and g are arbitrary functions. The solution consists of two non interacting waves, f(z—ct)
refers to right moving wave and g(x + ct) represents a left moving wave at a constant speed c¢. The
arbitrary functions f and g can be determined by initial conditions u(x,0) and u|,_, [8, 4]. The

one-dimensional wave equation (2.1) can be rearranged to the following form:
(O —c0y) (Or +¢cOr)u=0 (2.3)
From (2.3) we have the following first order equations

U — cu, =0 (2.4)

u 4+ cu, =0 (2.5)

The equations (2.4) and (2.5) can be solved using the method of characteristics [4] resulting in
general solutions of the form u(x,t) = g(x + ct) and u(z,t) = f(z — ct) respectively where g and
f are arbitrary functions determined by initial conditions. Thus we see that for the linear second
order wave equation (2.1) and the first order equations (2.4) and (2.5) the solution consists of a

wave train moving either in the left or right direction at constant speed ¢ and the waves do not

12



interact with each other. Travelling waves applicable to non-linear equations are waves in which
the medium moves along the direction of propagation of wave. There are three type of travelling

waves depending on the shape of the wave [8, 16] shown in Figure 2.2.
e Wave trains that are spatially periodic, i.e., f(x + p) = f(x) for p > 0.

e A wave pulse that is asymptotically constant, i.e., hr:il u(z) and AT = A~ where A is a
T—r 00

constant.

e A wave front or wave back will be asymptotically constant, but A" # A~.

@ N U))/W A /\ /\ (@ \ @
I.“ I‘II‘ { J \\
fo \ \ s‘f \

Figure 2.2: Shapes of travelling wave(a), pulse (b), spatially-periodic wave (c), anti-kink and kink
wave (d) (from [16]).
2.1 Phase and Group Velocities

As the wave propagates through the medium, the crests and troughs of the wave components are

enclosed within an envelope [1] as shown in Figure 2.3.

Amplitude

Figure 2.3: Wave envelope

Two different velocity components are identified for propagating wave viz., phase velocity (v,) and
group velocity (vy) [1, 3]. The phase velocity (v, ) refers to the velocity of individual wave component

and is expressed in terms of angular frequency (w) and wave number () by the relation:

13



v, =Ww/K (2.6)

The group velocity (v,) refers to the velocity of the wave packets within the envelop and is given

by:
vy, = dw/dk (2.7)

From (2.6), we obtain w = kv,. Differentiating with respect to s, we obtain the following:

dw/dk = v, + kdv,/dk (2.8)

Using (2.7) we can establish the following relation between group velocity (v,) and phase velocity

(vp)
Vg = Uy + Kkdv,/dk (2.9)

If group velocity (v,) and phase velocity (v,) are equal then it results in a non-dispersive wave.
However if the velocities are different then the waves spread out as they propagate through the
medium, such type of waves are referred to as dispersive waves. In the next section we consider

equations that exhibit these wave properties.

2.1.1 Dispersionless Waves

A wave is said to be dispersive if the wave components propagate with different phase velocities,
resulting in localized wave packet to spread as it propagates through a medium. As a result,
the amplitude of wave packet decreases, while the total energy is conserved but redistributed
over a larger region of space. To examine dispersive nature of wave, a plane wave of the form
u(z,t) = e?**=9  where k is the wave number and w is the frequency is considered as a good
ansatz to the different wave equations. A dispersion relation describes the relationship between
the frequency w and the wave number k i.e, w = w(k) and represents a relation between the energy
of the system and momentum.The necessary conditions for dispersion are w(k) must be real and

W'(k) # 0 [4, 7, 3]. For the one-dimensional wave equation (2.1) the dispersion relation can be

14



obtained by calculating u; and wu,, from the plane wave solution.
= —jwelFrwt. g, = y2ed(kr—wt) (2.10)

Uy = jk,ej(k:c—wt); Upy = _k,2€j(k:c—wt) (211)

Substituting for u,, and u in (2.1) we obtain the linear relation (w? = ¢*k?) = w = +ck shown
in Figure 2.4. The phase velocity (v, = w/k = £c) and group velocity (v, = dw/dk = =£c) are
equal. Substituting w = +ck, we obtain u(z,t) = ek@Eet) - The solution has two components,
a right moving (z — ct) or left moving (z + ct) wave with a constant speed ¢ and therefore the
linear one-dimensional wave equation (2.1) is dispersionless i.e, the waves do not spread out as

they propagate.

w = —ck

Figure 2.4: Plot of w and k
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2.1.2 Dispersive and Dissipative Waves

To examine the dispersion and dissipation properties of wave propagation we consider the following

linear partial different equations [1].

Up + Uy — Ugy = 0 (2.13)

ej(k:z—wt)

Using ansatz u(z,t) = we obtain the following partial derivatives:

wp = —iwelFemW gy et ket gy o pRedlkeet) g, = ke ket

Substituting the above in (2.12)

—iwedkrmwt) o jpeihe=wt) _ypseitke=el) — (= (k) = k — k3

Substituting for w(k) in ansatz for u(x,t) we obtain the following:

U(l’,t) = ei(kx—(k—k;3)t) _ @ik(w—(l—kQ)t)

The phase velocity v, = w(k)/k = 1 — k? and group velocity v, = dw/dk = 1 — 3k*. Since v, # v,

d2w

and a2

# 0, this implies that wave components travel at different velocities and (2.12) represents

a dispersive wave and the general solution is given by [1]:
(e, t) = / A(R) eBe=e 0 g (k) =k — & (2.14)

A(k) represents the fourier transform of initial condition u(z,0). A representation of a dispersive

—x2/4

wave for the initial condition u(x,0) = e is shown in Figure 2.5.

In (2.13) for even derivative of u with respect to x, the equation changes to the following after

substituting the partial derivatives:

—iwedke=et) o jpeilhe=wt) 4 pdeilke=wt) — = (k) = k — ik?

16



1.00 -

—_—t=0
—_— t =05
0.75 - N
—_—t=25
050
S 0.25 -
0.00 - -
~0.25 -

-20 -10 0 10 20

Figure 2.5: Dispersive wave
Substituting for w(k) in ansatz for u(z,t) we obtain the following:

u(z, t) = ko= (=it — o=k2tti(k—t)

The phase velocity v, = w(k)/k = 1 — ik considering only the real value for w(k) we can establish
that phase velocity v, has a constant value of 1 and therefore the wave propagates a speed of unity
for all values of wave number k. In addition, as t — oo, there is an exponential decay due to e"‘“'zt,
and such types of waves are referred to as dissipative waves is shown in Figure 2.6. The observation

from (2.12) and (2.13) is that for odd powers in spatial derivatives there will be dispersion and for

even powers in spatial derivatives there will be dissipation.
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Figure 2.6: Exponential decay (dissipation)

2.1.3 Nonlinear Dispersionless Waves

To examine non-linear effects on wave motion we consider equations containing the non-linear term

uu,. The following equation is taken from [1].

w +uty +uy, =0 = u+ (1+w)u, =0 (2.15)

The above equation is a quasi-linear partial differential equation can be solved using the method
of characteristics [3], the general solution to (2.15) can be represented as u(x,t) = f(z — (1 + u)t)
where f is an arbitrary function determined by the given initial condition.The general solution
u(x,t) will be single-valued for a finite time and unique, and beyond a certain time it will result in
a non-unique solutions (multivalued), this results in a wave displaying discontinuity and and are

referred to as a “shock waves” shown in Figure 2.7.
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Figure 2.7: Wave discontinuity u(z,0) = sin(z)

In the next chapter we will look at the history of Solitons and provide overview of Korteweg—de

Vries (KdV) equation.
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Chapter 3

Soliton History

Solitons or solitary waves are the solutions to certain class of non-linear partial differential equa-
tions. The localized solutions of integrable equations are referred to as “solitons”, while localized
solutions of non-integrable equations are called “solitary waves” [27]. Nonetheless, in physical
application, such difference is ignored and both these terms are considered as synonyms. A soli-
tary wave was first observed by John Scott Russell in the Edinburgh—Glasgow canal in August
1834 which he described as “a great wave of translation”. He left the following description of the

observed phenomenon [2]:

“I believe I shall best introduce the phenomenon by describing the circumstances of my own first
acquaintance with it. I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in
the channel which it had put in motion; it accumulated round the prowl of the vessel in a state
of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming
the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of speed.
I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an
hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height.
Its height gradually diminished, and after a chase of one or two miles I lost it in the winding’s of

the channel. Such, in the month of August 1834, was my first chance interview with that singular

20



and beautiful phenomenon which I have called the Wave of Translation.”

John Scott Russell further carried out a series of experiments to simulate solitary waves in a water

tank.

Figure 3.1: Russell’s experiment to generate a solitary wave. (From [9]).

u =ufx,t)

— -

Figure 3.2: Solitary wave parameters (From [1]).

On the basis of these experiments, Russel presented a Report where he summarized his findings

1, 14, 27):

o The waves generated have constant speed and propagate over long distances preserving shape

and speed upon collision.

o The speed of the wave is directly proportional to amplitude and hence larger amplitude waves

travel faster.

21



o The speed of the wave can be described by the formula ¢>=g(h + a) and solitary waves were

referred to as gravity waves.
o The waves are localised and either decays or approaches constant at infinity.
e There can be only solitary elevations; solitary cavities (depressions) never occur.

Then, Boussinesq in 1871 and Rayleigh in 1876 gave the first theoretical description of solitary
waves by considering that the length of solitary waves is much greater than the depth of the water

with the following expression for perturbation of a water surface u(z,t) [3, 1]:

_3a

u(z,t) = asech? (8 — ct), (%= 75

(3.1)
This solution is valid only if soliton amplitude a is much less than the water depth h, i.e., a/h < 1.
The mathematical equation possessing solitary solutions was derived by Korteweg and de Vries in
1895 and is known as the Korteweg—de Vries (KdV) equation. In the dimensionless variables it
has the form [8, 3]:

Uy + OUy + Ugpy = 0 (3.2)

where u(zx,t) is the dimensionless water surface perturbation. The similar KdV equation was later
derived to describe weakly dispersive and weakly nonlinear wave processes in various physical

systems such as plasma physics, oceanography, solid state physics, and nonlinear optics [3].

Zabusky and Kruskal in 1965 numerically studied the formation of solitary wave within the KdV
equation from the sinusoidal initial perturbation as shown in Figure 3.3. They described their

findings in three steps [6]:

1. Initially the terms u; + wu, result in the steepening of the function u(z,t) in regions of

negative slope resulting in discontinuity.

2. In the second phase, the term u,,, becomes dominant and prevent formation of discontinuity.
Instead of the wave overturning, oscillations of a small wave length are formed that attain

steady state amplitudes.
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3. Then, “Solitary waves” are formed and move with the speeds linearly proportional to their

amplitudes.
30
(A):++--- t=0
-
- (B)--— t=tg
20 @f, ol (C)—— t=36tg
A
I_D S v

A SR

~. A
-0 aerT
0 D.EG H:} 1.5 2.0

NORMALIZED DISTANCE

Figure 3.3: Time evolution of u(z,t) from the sinusoidal initial condition — see the dotted line A.
(From [6]).

The “solitary wave pulses” retain their identities and resemble a particle-like behavior; hence,
they are called “solitons”. As follows from Eq. (3.2), the KdV equation contains three terms;
the first one, u; represents the time evolution, the second one, uu, represents the nonlinear term,
and the third one, u,,, is the dispersive term. The behavior of a wave profile can be analyzed by
considering the non-linear and dispersive terms separately in conjunction with the time evolution.

The balance between the nonlinearity and dispersion is responsible for the existence of solitons.

There are only certain classes of nonlinear partial differential equations that admit soliton solutions;
they are referred to as “completely integrable systems”. The conditions under which solitary waves

can be obtained is summarized in Figure 3.4.

In the next section the properties of KdV equation (3.2) are detailed along with “one-soliton” and

“two-soliton” solutions.
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Figure 3.4: Conditions which admit existence of solitary waves (from [10]).

3.1 Soliton solutions of the KdV equation

The KdV equation (3.2) is completely integrable; its particular exact solutions can be found by
considering a travelling wave solution of the form u(x,t) = f(x — c¢t). For the one-soliton the
solution is [§]:

u(z,t) = gsechQ (%E(x et — x0)> : (3.3)

where ¢ is the wave speed and x is the phase shift. A temporal development of u(x,t) with
¢ =4 and xy = 0 demonstrates a wave travelling in the form of a bell-shaped pulse having a fixed
amplitude and propagating with a constant speed. The wave pulse is localized so that u(z,t) — 0
when  — £oo [14] shown in Figure 3.5. The properties of KdV soliton can be summarized as

follows [27]:

o The amplitude and velocity are directly proportional and therefore large amplitude wave pulse

travels faster.

o The wave pulse is stationary; its shape does not change in the process of propagation. In the

co-moving coordinate frame it looks like an immouvable hill.

e Solitons are symmetrical at the point where they have maximums.
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Figure 3.5: Time evolution of soliton moving from left to right.

The interaction of two solitons moving with different speeds is elastic and resembles a particle-
like behavior. The principle of superposition is not applicable to the KdV equation because this
equation is nonlinear. However, there are several methods allowing us to describe an interaction of
two-solitons. In particular, the Inverse Scattering Method (ISM), Hirota transform method, and

some others [2, 1]. The two-soliton solution is given by the following expression [14, 7]:

12[3 + 4cosh(2x — 8t) + cosh(4x — 64t)]

t p—
u(z, ) [Bcosh(z — 28t) + cosh(3z — 36t)]?

(3.4)

A 2-soliton interaction plot of (3.4) at different times ¢ is shown in Figure 3.6.
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Figure 3.6: Two-soliton solution at different times.

The characteristics of nonlinear interaction of two KdV solitons depend on their speed (or ampli-

tude) ratio ¢;/co. The following types of interaction are possible [17, 18]:

e If ¢;/co < 3 the solitary waves experience a bounce and exchange speeds and shapes.
o If ¢;/co > 3 the solitary wave peaks merge first together, and then split apart restoring their

initial shapes and speeds.

In both cases, solitons experience spatial and temporal phase shifts. The bigger soliton shifts ahead,
and a smaller soliton shifts back. In the next section, different soliton types will be described that

arise in different nonlinear PDE’s.
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Chapter 4

Soliton types

There are two broad classifications of solitons viz., topological and non-topological solitons. Topo-
logical solitons are localized particle-like objects and superimpose nonlinearly retaining identity
after interaction and are therefore extremely stable. The velocity of the propagating wave does
not depend on the amplitude with boundary conditions at oo different from that of the physical
vacuum state. Topological solitons can be further divided into two subgroups taking into account
the time-dependent or permanent nature of the profile. A non-topological soliton will have the
boundary conditions at oo similar to that of the physical vacuum state. The physcial vacuum state
refers to the trivial background solution in which u(z,t) — 0 as  — £oo [14, 15, 21]. Some of the
different types of solitons arising out of characteristics of nonlinear partial differential equations

are detailed below.

4.1 Kink, antikink, and breathers

Kink and antikink solitons are topological solitons. They represent one-dimensional solitary waves,
and the solution value changes due to a transition from one state to another. A breather refers to
nonlinear localized excitations wherein energy accumulates in a bounded and oscillatory manner.
Once maximum amplitude is attained, the breather decays symmetrically on both sides of the

point of maximum amplitude. These types of soliton solutions are obtained from the Sine-Gordon

27



equation and appear in nonlinear optics, mechanical transmission lines, Josephson junctions, and

Bloch wall motion of magnetic crystals. The Sine-Gordon equation is of the form [14, 19]:

Uy — Uge + sin(u) =0, —oco<zx <00, 0<t<oo (4.1)

The kink and antikink soliton solutions of (4.1) are given by [19]:

Atan~! (eTmel) (4.2a)
U(-CU, t) - -1 ( —v(x—ct)
4tan~" (e ) (4.2b)

where v = \/1;_7 is the Lorenz contraction factor. Antikink soliton (4.2a) represents a 27 pulse,

and kink soliton (4.2b) represents a —27 pulse shown in Figure 4.1. The derivative of both kink
and antikink has the shape of soliton [10] shown in Figures 4.2 and 4.3.

= —— Kink
\;i 34 — Antikink

-4n -21 0 21 4

Figure 4.1: Kink and antikink soliton.
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Figure 4.3: Derivative of antikink

Other solutions of Sine-Gordon equation (4.1) demonstrate soliton interactions including kink-

kink collision and symmetric kink-antikink collision. For the kink-antikink solution, if the velocity
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parameter ¢ is considered imaginary, we obtain a bound state solution known as stationary
breathers, which is spatially localized and oscillates in time with frequency w is shown in Figure 4.4.

The breather solution is of the form [19, 32].

— ()2

u(z,t) = 4arctan VoY sin (wt) sech (\/mx)} (4.3)

w

5 A — w=0.3
— w=0.5
4 - — w=0.7
w=0.9
3_
S 21
X
3
1_
0_ -
o Y
_2_ T T T T T T T T T
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X

Figure 4.4: Breather oscillations at various frequencies

4.2 Envelop Solitons

Envelop solitons are solitary wave solutions that occur in a dispersive nonlinear medium. They
are further classified into “bright” solitons that have localized shape and decay at oo, and “dark”
solitons having a constant amplitude at oo [14, 3]. The envelop soliton is presented by nonlinear

Schrodinger equation (NLS) is given by:

ity + Uge + yJul*u =0, v is a constant, u(x,t) is complex (4.4)
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For an exact solution of (4.4) in the form wu(z,t) = v/2cos(2x — 3t) sech(z — 4t) [14], the envelop

soliton is shown in Figure 4.5.

1.5 A

NN Envelope
/ \ - Wave

-10.0 -75 -50 -25 0.0 2.5 5.0 7.5 10.0

Figure 4.5: Envelop soliton of NLS equation

4.3 Lump Solitons

A generalized form of KdV equation (3.2) was formulated for function in two space dimensions
and one time dimension (u = u(z,y,t)) in 1970 by Kadomstev-Petviashvili to describe weakly
dispersive waves and this equation is the well known Kadomstev-Petviashvili (KP) equation of the
form [20]:

Op (g + 6uty + Ugyy) + 30Uy, =0 (4.5)

Two forms of (4.5) are defined viz., KP1 for ¢ = 1 and KP2 for ¢ = —1. The KP1 equation
is completely integrable and has soliton solutions called “lumps” that are considered stable with
respect to interactions, whereas the KP2 equation is non integrable however lump solutions for
KP2 have been constructed numerically. Both these forms of equations have relevance in surface
and internal water waves, optical waves, elastic waves in thin plates, etc. An example of lump

solution is shown in Figure 4.6.

31



5 e e i -
\l‘r s 5 K

=10 -0

Figure 4.6: Lump soliton (From [20]).

In addition there are other types of solitons viz., “fat” and table-top solitons which are particular
solutions of Gardner equation, Kawahara solitons with oscillating tails that are solutions of gen-
eralised KdV equation containing third and fifth order dispersion terms [30] shown in Figure 4.7.
In the next chapter we consider helical solitons that change their polarisation during the course of

propagation.

X

[ 3 ] 5 11

Figure 4.7: Kdv (blue), fat (black) and table-top (red) solitons (From [30]).
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Chapter 5

Helical Solitons

5.1 Introduction

The type of solitons that change the orientation in space during the course of propagation are
referred to as a helical solitons. Such types of waves are known to exists in electrodynamics,
plasma physics, magnetohydrodynamics. Several papers have been published citing the occurence
of helical solitons with earliest example being for perturbations along a thin vortex filament in a
fluid by Hasimoto (1972) [22]. Gorshkov et al. [24] identified helical soliton solutions for circularly
polarized electromagnetic waves in nonlinear isotropic dispersive media. The solutions obtained
represented localized wave pulses and the duration of these wave pulses was comparable to rotation

period of field vector.

Karney et al. [23] investigated vector solitons for lower hybrid waves in plasma looking at the
close relevance between the complex modified KdV equation (CMKDV) and the modified KdV
equation. Two types of solitary waves were observed, a constant wave pulse and an envelope
solitary wave. An equation describing propagation of hybrid waves in homogeneous plasma was

derived, represented in the following form:
u; + (Ju’u) +uy, =0 (5.1)
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The two component vector u(x,t) = uy(x,t) +iuy(x,t) or in the polar form u(z,t) = r(x,t)e®®?
has the norm |u| = \/u? +u3. Equation (5.1) is also referred to as the vector modified KdV
(vimKdV) equation is non integrable and is analyzed numerically. The equation was also derived
for a dynamical system consisting of a chain of connected particles by an elastic string shown in
Figure 5.1. The details of derivation are included in [12, 25]. The displacement occurs in two
perpendicular directions viz., y and z transverse to the direction of wave propagation along x axis.
The wave motion included helical periodic waves with continuous rotations as well as solitary

waves, i.e. solitons. Another form of the equation that does not have direct physical relevance, but

_hnvE

Figure 5.1: Chain of particles linked by elastic springs from [11]

whose solutions can be considered similar to (5.1) under certain perturbations, is given by [11, 22]:
w, + |ulfu, + g =0 (5.2)

The above equation is considered to be a generalization of the complex modified KdV (mKdV)
equation that has a Lax pair with the same scaling symmetry (t — M\t, 2 — Az,u — A~'u ) and

hence is integrable and therefore exact analytical solution can be found [13]. In contrast for the
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non integrable vinKdV equation (5.1) an exact solution cannot be found, however helical solitons
were constructed using dynamical systems method [11]. By appropriate choice of a parameter ~,

equations (5.1) and (5.2) can be written in the following general form:
u; +vulfu, + (1 —7) (Jufu) + e, = 0. (5.3)

When v = 0 the above equation represents non-integral vector mKdV equation (5.1) and for v =1
the equation represents integrable vector mKdV equation (5.2). Equation (5.1) is considered to

be closely related to modified KAV equation for some positive constant k& given by:
uy + kulPug 4+ Upge = 0 (5.4)

In order to observe the relation between (5.1) and (5.4), the equation (5.1) can be written in the
following two forms [11, 23].
u; + [ul*u, + Ugp, = —u (Juf?) (5.5)

w, + 3ultu, + U, = 2iuful?e, (5.6)

For the two component vector u(z,t) = r(z,t)e’®@ we have |u?> = r? and (Jul?), = 2rr,, in
two limiting cases, the right-hand side in above equations can be neglected and they reduce to

integrable vinKdV equation (5.2):

1. For spatial variation of wave modulus = |u| greater than spatial variation of wave argument
© = arg(u), i.e., |r.| < |rO,].
2. For spatial variation of wave argument © = arg(u) greater than spatial variation of wave
modulus 7 = |uf, i.e., [rO,] < |ryl.
The integrable vector mKdV equation (5.2) has an exact solution which is given by the formula
(23, 11]:
u(z,t) = \W6 sech(\¢) [ cos(k€ — wt + 6p), sin(ké — wt + b)) (5.7)

where £ = x — Vi, k, and 0y are arbitrary constants, and V is the soliton speed. Another form

of exact solution to Eq. (5.2) in terms of hyperbolic secant function is given by the following
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expression [22] (see Appendix A):

z—Vt

u(z,t) = Asech ( ) [cosO(z,t), sinO(z,t)]. (5.8)

The parameters in equation (5.8) are defined as follows:

e Amplitude A and width A = \/76
2

A
e Velocity V = o 3k?

A2
e Angular frequency w = 2k 5 + 4k2>, where k is an arbitrary constant

e Phase O(z,t) = k(z — V) — wt

From the expression for the velocity V we can generate a stationary soliton by choosing, for
example, A = k+/18. A time evolution of one helical soliton as per Eq. (5.7) shows that the soliton

propagates with a constant speed for both positive and negative values of V' shown in Figure 5.2.

V=-1.451,t = 0.000 V=-1.451,t = 6.283

V=1.451,t = 0.000 V=1.451,t = 6.283

Figure 5.2: Helical soliton for V' = £1.451 (A = 2,k = 1.348,w = 15.683, and 6, = 0).
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For greater helicity, i.e., the number of turns around “z” axis, the helical solitons are similar to
envelope solitons for the NLS equation (4.4). The speeds of the envelope and carrier wave will be

different shown in Figure 5.3.

V=-1.451,k=48,t = 0.000 V=-1.451,k=48,t = 6.283

V=1.451,k=48,t = 0.000 V=1.451,k=48,t = 6.283

Figure 5.3: Helical soliton for V' = £1.451, k = 48

Both the integrable vector mKdV equation (5.2) and non-integrable vector mKdV (5.1) were solved
numerically (see Appendix B for the FORTRAN code implementation) using a finite difference
method (FDM). The stability of FDM numerical scheme has been validated by comparison of nu-
merical solutions with exact analytical solutions in [31]. In addition there are alternative numerical
methods developed by other authors for the solution of the vector mKdV equation, including mesh-
free collocation method by Marjan et al. [28] and split-step fourier method by Erbay [29]. The
numerical results generated by FORTRAN code were validated by comparison with the exact an-
alytical solution (5.7). For the data generated by FORTRAN code (Appendix B) the following

parameters were used:
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Parameter Value

Amplitude(4,) | V6

k1 (helicity) 3
Amplitude(A,) | 0.5v/6
ko (helicity) 1

Table 5.1: Parameter values.

The interaction of helical and plane solitons at different polarization angles was discussed in [12].
The interactions of helical solitons for different helicities, both for integrable and non-integrable
cases, are detailed in the next section. The system is modelled with a periodic boundary condition
along a ring of a circumference L, (0 < x < L). In this model, solitons can propagate in both
directions along the x-axis. We consider the interaction of two solitons, the bigger soliton was set
initially x = L/4, and the smaller soliton was set up at x = 3L/4. The larger soliton goes around
the circumference of the ring, interacts with the smaller soliton, and propagates within the loop.
For the data generated by FORTRAN code (see Appendix B), the spatial domain considered is
0 < z < 250. This scenario of soliton propagation is common to the four types of interactions
described below. Soliton interactions were simulated and can be viewed via the HTML file in a

browser.

5.1.1 Interaction of helical solitons in the integrable vimKdV with the

same helicity

In this type of interaction, a soliton with a smaller amplitude moves relatively faster compared
to the larger soliton. Once the collision occurs, the smaller soliton is positioned behind the larger

soliton and appears stationary while oscillating closer to the larger soliton shown in Figure 5.4.
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(a) Initial (b) Before Interaction

(c) Collision (d) After Collision

Figure 5.4: Integrable case — interaction of two helical solitons with the same helicity.

5.1.2 Interaction of helical solitons in the integrable vimKdV with the
opposite helicity

In this case, the elastic type of interaction occurred again like in the previous case. The solitons
moved away after the interaction and continued moving along the circumeference of the ring. This
is noticeable as the soliton with the larger amplitude moves to the left faster, leaving the smaller
soliton behind. Once the collision concludes, the initial form and oscillations of the carrier wave

remain the same as they were initially shown in Figure 5.5.

39



(a) Initial (b) Before Interaction

(c) Collision (d) After Collision

Figure 5.5: Integrable case — interaction of two helical solitons with the opposite helicity.

5.1.3 Interaction of two helical solitons in the non-integrable vimKdV

equation with the same helicity
The interaction of helical solitons in the non-integrable case with the same helicity is inelastic.
After the interaction, some portion of the energy transforms into a residual small amplitude wave.

This is purely transient, and once the interaction is completed, the solitons propagate, preserving

the original shapes shown in Figure 5.6.
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(a) Initial (b) Before Interaction

N Lo N

(c) Collision (d) After Collision

Figure 5.6: Non-integrable case — interaction of two helical solitons with the same helicity.

5.1.4 Interaction of two helical solitons in the non-integrable vimKdV
equation with the opposite helicity

In this type of interaction, there are disturbances or ripples along the z-axis. When solitons collide,
some portion of energy is radiated, and small ripples appear behind solitons. This indicates that
the interaction is inelastic. Thereafter, the solitons move away from each other, retaining their

shapes but not amplitudes shown in Figure 5.7.
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(a) Initial (b) Before Interaction

(¢) Collision (d) After Collision

Figure 5.7: Non-integrable case — interaction of two helical solitons with the opposite helicity.

5.2 Numerical results and discussion

Numerical calculations confirm the stability and robustness of helical solitons both in the integrable
and non integrable cases of the vector mKdV equations (5.2) and (5.1) using the same initial
conditions. The energy density are evaluated to ensure the stability of numerical scheme. The
energy density conservation is determined as I3 = [ |u|?dz, in the domain 0 < z < 250, and it is
noted that energy density is preserved in numerical calculations with a relative error of less than

0.03%. The helical soliton in the integrable case propagates with constant speed; this agrees with
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theoretical predictions and holds true for solitons propagating with the same or opposite helicity.

In order to examine the temporal stability of I3, the following formula was used to calculate the

relative error:

5(I,) = w % 100 % (5.9)

In the integrable case, for helical soliton interactions with the same and opposite helicities there was
an almost identical conservation of I3 with zero relative error at most data points 0 < T' < 5 expect
in the case of the same helicity at two instants of time at "~ 1 and T' ~ 3.8 when the percentage
of relative error attains §(/3) ~ 0.027%; this happens during the process of soliton interaction. The
result indicates that, in the integrable vector mKdV equation, energy is conserved and is shown

in Figure 5.8.

— 6(Is) — 6(Is)
0.025 A 0.04

0.020 A 0.02 A

0.015 1

0.00

6(I3)
6(I3)

0.010 1
—0.02 A

0.005 1
—0.04 A

0.000 1

(a) Same helicity (b) Opposite helicity

Figure 5.8: Integrable case — relative error §(13)% vs. time T

For the same initial condition in the non integrable case with the same helicity, there are small
disturbances which appear behind each soliton in the course of propagation; they are noticeable at
T =~ 0.3 with §(I3) ~ 0.0276. Thereafter, the variation is less pronounced shown in Figure 5.9(a).
In contrast, for the non integrable case with opposite helicity, the relative error §(/3) is very close
to zero up to T' &~ 1.7 when the variation of §(I3) becomes visible. This is caused by the energy

radiation before and after the interaction shown in Figure 5.9(b).
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— (1) | — 6(1)

(a) Same helicity (b) Opposite helicity

Figure 5.9: Non integrable case — relative error §(/3)% vs. time T

The choice of the parameter k in Eq. (5.8) in the initial condition establishes the presence of helical
solitons in integrable and non integrable case.s For the same initial conditions with k ~ 1.348,1.155
the integrable case presents helical solitons and agrees with the theoretical prediction. In contrast
to that, in the non-integrable case, the helical solitons disintegrates into several plane solitons

propagating at different angles [11] and is shown in Figure 5.10.
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Figure 5.10: Non integrable case plane solitons (From [11]).

However, when the parameter k becomes large, £ > 1, the difference between the integrable and

non-integrable cases becomes insignificant; therefore interaction of helical solitons with large &
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should be almost identical. This issue requires further investigation.
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Chapter 6

Conclusion

In this literature review, helical solitons were considered for two different forms of the vector
modified KdV equation one of which is integrable and another is non-integrable. The integrable
vmnKdV equation has an exact analytical solution and numerical simulation confirmed the presence
of helical solitons that matches theoretical prediction. However the integrable vimKdV equation
did not find application in physical sciences thus far. The non integrable form of the vmKdV
equation was considered for a modelling of various physical systems, for example, chain of particles
connected by a string. Numerical simulations confirmed the presence of helical solitons only for
negative velocities. In contrast to that, in the integrable vimKdV equation helical solitons can
propagate both with positive and negative velocities. The interaction of helical solitons in both
forms of equation were considered for the same and opposite helicities. The numerical simulations
confirm that soliton interactions are elastic in the integrable vmKdV equation but is inelastic in
the non-integrable vmKdV equation. A further area of research to be considered is the interaction

of helical solitions in a large domain with bigger helicities.
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Appendix A

Integrable vimKdV solution

This appendix derives the analytical solution for the integrable vector mKdV equation referenced

in Chapter 5. The integrable vector mKdV equation is given by:
w, + [u*u, + e =0, where u =y +iug = r(x,t)[cos O(z,t),sin O(z,1)] (A.1)
Assume a travelling wave solution for Eq. (A.1) of the form:
u(z,t) = U(x — Vi) = f(&)[cos O(z,t),sin O(z, t)] (A.2)

where £ = 2 — Vt,0(x,t) = k(x — Vt) — wt. The partial derivatives are listed in the table below:

Function | Partial Derivatives Value Comments
3 9x(£), 3t(§) L -V
S) 0:(0), 0,(O) k, —kV —w
f(§) ([ (), 0:(f(8)) =V f =4
FO) | 0ulf(9), Omaal£) | 7 " |5 =9 =%

The first partial derivative of u with respect to ¢ is

w; = 9,(f(cos©,sin O)) (A.3)
= —V f'(cos ©,sin O) + fO,(—sin O, cos O), (A.4)
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Substituting for ©;, we obtain:

u, = —Vf'(cos0,sin0) + f(—kV — w)(—sin O, cos O). (A.5)

The first partial derivative of u with respect to x is

u, = 9,(f(cos ©,sinO)) (A.6)
= f'(cos©,sinO) + fO,(—sin O, cos O). (A.7)

Substituting for ©,, we obtain:
u, = f'(cos ©,sinO) 4+ fk(—sin O, cos O), (A.8)

The second partial derivative of u with respect to x is

Uy, = 0, (f'(cosO,sinO) + fk(—sin O, cos O)) (A.9)
= f"(cos©,sinO) + f'O,(—sinO, cosO) + f'k(—sinO,cos O) + fO,(—cosO, —sin O).
(A.10)
Substituting for ©,, we obtain:
., = f"(cos©,sin©) + 2k f'(—sin ©, cos ©) + k*f(— cos O, — sin O). (A.11)
The third partial derivative of u with respect to x is
Uy = O, (f"(cos ©,sin O) + 2k f'(— sin ©, cos O) + k* f(— cos ©, — sin O)) (A.12)
= f"(cos©,sinO) + f"O,(—sin O, cos O) + 2k f"(—sin O, cos O) (A.13)

+2kf'O,(—cosO, —sinO) + k2 f'(—cos O, —sinO) + k*fO,(sin©, —cos ).  (A.14)
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Substituting for ©, = k, we obtain:

Wype = [ (cos©,sinO) + 3k f"(—sin®,cos ©) —  3k*f'(cosO,sin@®) . (A.15)
factoring out —??or (cos ©,sin ©)

The terms (cos ©,sin ©) and (—sin O, cos ©) are orthogonal since their dot product is zero. The
partial derivatives ug, u,, Uy, are represented in simpler form by considering v = (cos ©,sin 9),

and v, = (—sin O, cos ©); therefore, Egs. (A.8), (A.5), and (A.15) simplify to:

w=-Vfv+ (=kV —w)fvy, (A.16)
u, = f'v+kfvy, (A.17)
Wpre = (" — 32 f )V 4+ 3kf"v . (A.18)

Using |ul*> = f2, Eq. (A.1) becomes:
~VIv+ v+ vy 4+ v +3kfv, — 3k f'v=0. (A.19)
Grouping the terms for v, v, and after rearranging , we obtain:
(f" = (V 4+ 3 + 2 )W + (fPk 4+ 3kf")v. = 0. (A.20)
This results in two equations

(f" = (V43R f' + f2f) =0, (A.21)
Pk +3kf" =0. (A.22)

Consider Eq. (A.21); multiplying it by f’ and noting that f’ = Z_J; we obtain:
3
"= (V+3E)ff + gf' =0, (A.23)

d (" nd (2 d () _
i () -+ (3) + 5 (T) = A
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Integrating with respect to &, we obtain:

(f)?
2

2 4
—(V+ 3]{:2)% + % = K, where K is constant. (A.25)

For a localized solution such that f — 0, f' — 0, when |{| — oo and hence K = 0 , the above

equation can be simplified to:

(f')? = (V+3k*)f* - i f? {(v + 3k?) — ﬂ , or finally (A.26)

6
df f?

(A.27)

Equation (A.27) can be solved separation of variables and integrating both sides:

df
/f\/(v+3k2)_fg:i/d£:i£+c' (A.28)

The integral equation (A.28) can be analytically evaluated and has the well-know solution with

the sech profile:

f(§) = Asech (%) : (A.29)

where the amplitude A = /6(V + 3k2) and half-width A = v/6/A. The final expression for the
one-soliton solution of the integrable vector mKdV Eq. (A.1) is:

x—Vit
A

u(z,t) = Asech ( ) [ cos ©(x,t),sin O(z, 1)]. (A.30)

This solution with different parameters will be used for the creation of initial conditions for inte-

grable and non-integrable versions of vector mKdV equations.
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Appendix B

Program VMKDYV

This appendix contains the complete Fortran source code for the VMKDV (Vector Modified

Korteweg—de Vries) program used in the numerical simulations.

C 3k skok ok ok ok ook | skokokoskookokoskoskok | okook ok ok ok ok ok ok ok | sk sk skoskokok sk okok | okokokokok okok ok ok | sk sk sk sk sk skoskokok | okokok ok ok ok ok ok ok | ok
Spatial step H = RL/N, temporal step TAU
Step for data presentation: DT = NB*TAU
NWAY

1: for analitically given initial conditions

C
C
C
C NWAY 2: for numerical initial conditions
C Criterion of stability of the numerical scheme: TAU <, = 0.384xHx**3/B
C Used markers: 1-21
C ok %k %k sk sk sk sk sk | kok ok ok ok ok ok ok ok | kok ok ok ok ok ok ok ok |k ok sk ok ok ok ook ok | ok ok sk ok okokokokok | sk sk ok okokokokok ok | ok sk ok ok ok okok ok ok |k ok
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION P(100004) ,U(100004) ,V(100000),5(100001),
xP1(100004) ,U1(100004) ,V1(100000) ,51(100001) ,X(100000)
EQUIVALENCE (V(1),U(3)),(V1(1),U1(3))
COMMON/SLT/A,A1,B,RL
OPEN (10,FILE="Work1l .DAT’)
OPEN(11,FILE="Work2.DAT’)
OPEN (12 ,FILE="Work3.DAT’)
OPEN(13,FILE="Work4 .DAT’)
OPEN (14 ,FILE="Work5.DAT’)
OPEN (15 ,FILE="Work6 .DAT’)
OPEN (16 ,FILE="Work7 .DAT’)
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39

40

41

OPEN (17 ,FILE=’Work8.DAT’)

OPEN (18 ,FILE="Work9.DAT’)

OPEN (19 ,FILE="Work1O0.
OPEN (20,FILE="Work11l.
OPEN (21 ,FILE="Work1?2
OPEN (22 ,FILE="Work13
OPEN (23 ,FILE="Work14
OPEN (24 ,FILE="Work1l5
OPEN (25,FILE="Work16
OPEN (26 ,FILE="Work17
OPEN (27 ,FILE="Work18
OPEN (28 ,FILE="Work19
OPEN (29 ,FILE="Work20
OPEN (30,FILE="Work21
OPEN (32,FILE="Work22
OPEN (33,FILE="Work23
OPEN (34 ,FILE="Work24
OPEN (35,FILE="Work25
OPEN (36 ,FILE="Work26
OPEN (37 ,FILE="Work27
OPEN (38 ,FILE="Work28
OPEN (39,FILE="Work29
OPEN (40 ,FILE="Work30
OPEN (41 ,FILE="Work31
OPEN (42 ,FILE="Work32
OPEN (43,FILE="Work33
OPEN (44 ,FILE="Work34
OPEN (45,FILE="Work35
OPEN (46 ,FILE="Work36
OPEN (47 ,FILE="Work37
OPEN (48 ,FILE="Work38
OPEN (49 ,FILE="Work39
OPEN (50, FILE="Work40
OPEN (51 ,FILE="Work41l
OPEN (52 ,FILE="Work42
OPEN (53,FILE="Work43

DAT’)
DAT’)

.DAT?)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
.DAT’)
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57 OPEN (54 ,FILE="Work44 .DAT’)

58 OPEN (55,FILE="Work45.DAT’)

59 OPEN (56 , FILE=’Work46 .DAT’)

60 OPEN (57 ,FILE="Work47 .DAT’)

61 OPEN (58 ,FILE="Work48.DAT’)

62 OPEN (59 ,FILE="Work49.DAT’)

63 OPEN (60 ,FILE=’>Work50.DAT’)

64 OPEN (101 ,FILE=">CONTIN.DAT’) ! DATA FILE FOR RUN CONTINUATION WHEN NWAY=2
65 OPEN (102 ,FILE=">INTEGRALS.DAT’) ! INTEGRAL QUANTITIES

66 OPEN(103,FILE=">MINIMAX.DAT’>) ! MAXIMA AND MINIMA

67 OPEN (104 ,FILE="NEXTCALCUL.DAT’) ! DATA STORED FOR THE NEXT RUN

68| C sk skok sk ok ok ok | sk sk sk sk sk sk ok ok ok | ko ok ok ook ok ok ok | sk sk sk sk skok ok okok | okokok ook ook ok ok | ok ok sk sk sk sk skokok | okokok ok ok ok ok ok ok | ok

60| C Parameters

70 A=1.DO

71 A1=1!'11!'1.D0 ! For the non-integrable case Al=1 whereas for the integrable
case A1=0

72 B=1.DO

73 RL=2.5D2!5.0D0

74 N=10000"!200

75 H=RL/N

76 TAUcr=3.84D-1*H**3/B

77 TAU=5.0D-6!1.0D-6!5.0D-6

78 DT=1.0D-1!5.0D-1!5.0D-4

79 NP=50

80 PRINT 8

81 8 FORMAT (/1X, ’NWAY = 7°/

82 * ’ 1 - FOR ANALYTICALY GIVEN INITIAL CONDITION;’/
83 * ? 2 - FOR NUMERICALY GIVEN INITIAL CONDITION D)
84 READ (*,*) NWAY

85 write(x,*) A = > A, A1 = ° A1l

86 write (*,%) B = °,B, 'Rl = ’,RL

87 write (x,*x) °’TAU = ’ ,TAU, °>TAUcr = °’,TAUcr

88 write(x,*x) °H = °>,H, °DT = °’,DT

8 write (x,*) °N = °,N, ° NP = °,NP

90 PAUSE
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92 NB=DT/TAU+0.00001

93 write(*x,*) ’NB = ’,NB, °’ NWAY = ’ ,NWAY
94 Ni=N+1

95 N2=N+2

96 N3=N+3

97 N4=N+4

98 DO 11 IR=1,N

99 11 X(IR)=RL*(IR-1)/N

100 © sk sk sk sk sk sk sk sk | sk ok ok ok kokok ok ok | ok sk ok okokok ok sk ok | skoskokokok ok sk ok sk | skokok ok sk ok ok ok ok | kok ok sk sk ok ok ok ok | okok skok ok ok okokok | kox
101{C Initial conditions and first step

102 GO TO (1,2), NWAY

103 1 CALL STEP1(N,U,P,U1,P1,S,S1,A,A1,B,TAU,H,N1,N2,N3,N4)

104 T=0.DO

105 M=0

106 NB1=NB-1

107 © sk skosk sk sk sk skosk | sk ok ok ok kokok ok ok | ok sk ok okokok ok sk ok | skoskokokok ok sk ok ok | skokok ok sk ok ok ok ok | kok ok ok sk ok ok ook | okok sk ok ok ok okokok | kok
108 C Momentum and energy

109 DO 34 L=1,N

110 S(L)=P (L) **2

111 S1(L)=P1 (L) **2

12| 34 CONTINUE

113 SI1=0.DO

114 SI2=0.DO

115 SE1=0.DO

116 SE2=0.DO

117 DO 81 IJ=1,N

118 SE1=SE1+S(1J)
119 SI1=SI1+P(IJ)
120 SI2=SI2+P1(1J)
121 SE2=SE2+S1(IJ)

122| 81 CONTINUE

123 QI1=SI1/N

124 QI2=8SI2/N

125 QES=5.D-1*(SE1+SE2) /N
126 UMA=P (1)

127 UMA1=P1 (1)
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128 UMI=P (1)

129 UMI1=P1(1)

130 DO 334 I=2,N

131 IF (P(I).LE.UMA) GO TO 333
132 UMA=P(I)

133 LVMAX=I

134 333 IF(P(I).GE.UMI) GO TO 334

135 UMI=P(I)

136 LVMIN=I

1371 334 CONTINUE

138 DO 335 IM=2,N

139 IF(P1(IM).LE.UMA1) GO TO 336
140 UMA1=P1 (IM)

141 LU1MA=IM

42| 336 IF (P1(IM).GE.UMI1) GO TO 335
143 UMI1=P1(IM)

144 LUIMI=IM

145/ 335 CONTINUE

146 XMA=(LVMAX-1) *xH

147 XMI=(LVMIN-1)*H

148 X1MA=(LU1MA -1) *H

149 X1MI=(LUIMI-1) *H

150 PRINT 9,T,M,QI1,QI2,QES,UMA,XMA,UMI,XMI,UMALl,X1MA,UMI1,X1IMI
151 DO 10 J=1,N

152 S(J)=DSQRT (P (J+2) **2+P1 (J+2) *x*2)
153 10 CONTINUE

DO 15 J=1,N

S1(J)=0.

IF(H*xJ.LT.35.) GO TO 15
S1(J)=ATAN2(P1(J+2) ,P(J+2))
IF(H*J.GT.130.) S1(J)=PI/2.

Q Q a a a Q@

15 CONTINUE

160 DO 337 IX=1,N

161 WRITE (10,*) X(IX),P(IX+2),P1(IX+2),S(IX)
62| 337 CONTINUE

163 GO TO 314
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164| C ok sk ok sk sk ok sk ok | sk ok ok ok kokok ok ok | ok sk ok okokookook sk ok |k okokok ok ok sk ok sk | skokok ok sk ok ok ok ok | kok ok sk sk ok ok ok ok | okok sk ok ok ok okokok | kok
165 2 T = 0.DO

166 DO 300 LN=1,N4

167 READ (101 ,%*) P(LN),U(LN),P1(LN),U1(LN)

168 300 CONTINUE

169| C PAUSE
170 NB1=NB
171 PRINT 9,T
172| C PAUSE

173 | C %k sk sk %k %k ok sk | 5k 5k 5k 5k 5k 5k 5k 5k 5k | 5k 5k >k %k %k %k >k >k >k | 5k 5k 5k 5k 5k 5k 5k sk 5k | %k %k %k %k >k >k >k ok 5k | 5k 5k 5k 5k %k >k >k >k >k | %k >k >k >k >k >k >k k k | k%
174 314 CONTINUE
175 WRITE (102,9) T,M,QI1,QI2,QES,UMA,XMA,UMI,XMI,UMA1,X1MA,UMI1,X1MI

176 DO 4 I=1,NP
177 WRITE (*,*) °’NSTEP = ’,I, °T = >, T
178 DO 5 IA=1,NB1
179 UB1=U(1)

180 Uv1i=U1(1)
181 YU=U(2)

182 YU1=U1(2)
183 UF1=U(3)

184 UFE1=U1(3)
185 UF2=U(4)

186 UFE2=U1 (4)
187 DO 6 J=3,N2
188 UB2=UB1

189 UB1=YU

190 YU=UF1

191 UF1=0UF2

192 UF2=U(J+2)
193 Uv2=0V1

194 Uvi=YU1

195 YU1=UFE1

196 UFE1=UFE2

197 UFE2=U1(J+2)

108 | C %k 3k sk sk %k %k ok sk | 5k 5k 5k 5k 5k 5k 3k 5k 5k | >k >k >k %k %k %k >k >k >k | 5k 5k 5k 5k 3k 5k 5k 5k >k | %k %k %k %k >k >k >k >k 5k | 5k 5k 5k 5k 5k >k >k >k >k | %k >k >k >k >k >k >k 5k k | k%

199 P(J)=P(J)-(TAU/H) *((B/H*%2) *(UF2-2.D0*UF1+2.D0*UB1-UB2)
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&+Ax (YU**2+YU1 *%2+2 . DO*A1*A*xYU**2) x (UF1-UB1)+2.DO*A1*A*YU1*YUx
&(UFE1-UV1))
P1(J)=P1(J)-(TAU/H) *((B/H**2) *(UFE2-2.D0*UFE1+2.D0*UV1-UV2)
&+Ax (YUL1*%2+YU**%2+2 . DO*A1*A*xYU1*%2) * (UFE1-UV1)+2.DO*A1*A*YU1*xYU=*
&(UF1-UB1))
6 CONTINUE
DO 7 K=3,N2
W=P (K)
P(K)=U(K)
W1=P1 (K)
P1(K)=U1(K)
U1l (K)=W1
7 U(K)=W
U(1)=U(N1)
U(2)=U(N2)
U(N3)=U(3)
U(N4)=U(4)
U1 (1)=U1(N1)
U1 (2)=U1(N2)
U1(N3)=U1(3)
U1 (N4)=U1(4)
5 CONTINUE
NB1=NB
Cookskosk sk ok kokok |k sk sk sk sk sk sk sk ok | skoskoskoskoskoskoskoskok | oskoskoskoskoskoskookookok | ok ok k ok ok ok ok ok | okok ok ki k ok kok ok | skokokokokokokokok | kok
DO 234 L=1,N
S(L)=U(L+2) **2
S1(L)=U1(L+2) **2
234 CONTINUE
SI1=0.
SI2=0.
SE1=0.
SE2=0.
DO 281 IJ=1,N
SE1=SE1+S(1J)
SI1=SI1+V(I1J)
SI2=SI2+V1(IJ)
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236 SE2=SE2+S1(I1J)

237] 281 CONTINUE

238 QI1=SI1/N

239 QI2=SI2/N

240 QES=5.D-1*x(SE1+SE2) /N

241 UMA=V (1)

242 UMA1=V1(1)

243 UMI=V (1)

244 UMI1=V1(1)

245 DO 134 I0=2,N

246 IF (V(I0O).LE.UMA) GO TO 133
247 UMA=V (IO0)

248 LVMAX=IO0

210/ 133 IF(V(IO).GE.UMI) GO TO 134

250 UMI=V(IO)

251 LVMIN=IO

252 134 CONTINUE

253 DO 135 IM=2,N

25 IF (Vi(IM).LE.UMA1) GO TO 136
255 UMA1=V1(IM)

256 LU1MA=IM

257 136  IF(V1(IM).GE.UMI1) GO TO 135
258 UMI1=V1(IM)

259 LU1IMI=IM

260 135 CONTINUE

261 XMA=(LVMAX-1) *H

262 XMI=(LVMIN-1) *H

263 X1MA=(LU1MA -1) *H

264 X1MI=(LUIMI-1) *H

265 M=M+NB

266 T=T+DT

267| C PRINT 9,T,M,QI1,QI2,QES,UMA,XMA,UMI ,XMI,UMALl,X1MA,UMI1,X1MI
268 WRITE (102,22) T,QI1,QI2,QES
269 WRITE (103,23) T,UMA,XMA,UMI,XMI,UMA1,X1MA,UMI1,X1MI
270 DO 110 J=1,N

271 S(J)=DSQRT (V(J) *x*2+V1(J) **2)
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289

290

291

293

294

295

296

297

298

299

300

301

Q Q o a a @

C

C

C

110 CONTINUE
DO 115 J=1,N
S1(J)=0.
IF(H*J.LT.35.) GO TO 115
S1(J)=ATAN2(V1(J),V(JI))
IF(H*J.GT.130.) S1(J)=PI/2.
115 CONTINUE
DO 237 IX=1,N
WRITE (10+I,%) X(IX),P(IX+2),P1(IX+2),S(IX)
237 CONTINUE
4 CONTINUE
DO 200 LN=1,N4
WRITE (104 ,*) P(LN),U(LN),P1(LN),U1(LN)
200 CONTINUE
CLOSE (104)
%k ok ok ok %k %k ok sk | ok sk sk ok ok ok sk sk sk |k sk sk >k >k sk ok sk ok | sk sk sk sk sk sk sk sk sk |k sk >k >k >k sk sk sk sk | sk sk sk sk sk sk sk sk k| sk sk ok sk sk sk sk sk k| ok k
STOP
9 FORMAT(/1X,2HT=,G10.4,3X,2HM=,17,3X,’QI1=",G10.4,3X,’QI2=",G10.4,
&3X,’QES=",G16.10,1X,’UMA= ’,G10.4,3X,>XMA= ’>,G10.4,’°UMI= ’>,G10.4,
&3X,’XMI=>,G10.4,1X,’U1MA=",G10.4,3X, ’X1MA=",G10.4, UIMI=",G10.4,
&3X,’X1MI=>,G10.4)
22 FORMAT (4E12.4)
23 FORMAT (9E12.4)
END
%k 3k 3k %k %k %k ok sk | ok ok ok ok ok 5k 3k sk sk | %k %k %k %k %k %k >k >k >k | sk 5k 5k 5k 3k 3k sk sk >k | %k %k %k %k %k >k >k >k 5k | 5k 5k 5k 5k 5k >k >k >k >k | %k %k %k %k >k >k >k >k k | k%
SUBROUTINE INFUN(S,S1,N,H)
INITIAL CONDITION
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION S(1),S1(1)
COMMON/SLT/A,A1,B,RL
PI = 3.14159265359D0
AMP =2.0DO*DSQRT(6.D0)!0.0DO

AMP =1.0DO*DSQRT(6.D0)!0.0DO
AKO = 1.348D0 !For helicity
AKO = 3.DO0 !'For helicity

AKO = 0.DO
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309

310

311

316

DLT1 = DSQRT(6.D0O*B/A)/AMP ! - for the helical soliton
© DLT1 = DSQRT(2.DO*B/A)/AMP ! - for the plane nonintegrable soliton
C AMQ = 0.DO ! Amplitude of the second soliton

AMQ = 5.D-1*DSQRT(6.D0) ! Amplitude of the second soliton
DLT2 = DSQRT(6.DO*xB/A)/AMQ ! Width of the second soliton

AK2 = 1.0D0 ! Carrier wavenumber of the second soliton
C AK2 = 0.DO ! - for the plane soliton
315| C PHI2 = PI/6.D0 ! - for the plane soliton at the angle
C PHI1 = 0.DO
DO 2 K=1,N

X1 = H*K - 2.5D-1%RL
X2 = H*K - 7.5D-1%RL

PHI1 = AKOx*X1
PHI2 = AK2*xX2 ! for the helical soliton
S(K) = AMP*DSQRT(1.DO - (DTANH(X1/DLT1))=*%*2)*DCOS (PHI1)

&+ AMQ*DSQRT (1.DO0 - (DTANH(X2/DLT2))**2)*DCOS (PHI2)
S1(K) = AMP*DSQRT(1.DO - (DTANH(X1/DLT1))*%2)*DSIN(PHI1)
&+ AMQ*DSQRT (1.D0 - (DTANH(X2/DLT2))*%2)*DSIN(PHI2)
2 CONTINUE
RETURN
END

C s kook ok ok ko ok | ok ok ok ok ok ok ok Kk | ok ok ok ok sk ok ok ok sk | ok K ok ok ok sk ok ok ok |k ok sk kok ok Rk ok |k ok ok sk ok ok kR ok |k ok ok ok ok ok ok k ok |k k
SUBROUTINE STEP1(N,U,P,U1,P1,S,S1,A,A1,B,TAU,H,N1,N2,N3,N4)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION U(1),P(1),8(1),U1(1),P1(1),81(1)
EPS=1.D-3
T1=TAU
ASSIGN 11 TO JB
KB=1
DO 7 L=1,N4
U1(L)=0.DO
7 U(L)=0.DO
C s skook ok ok sk kok | ok sk ook ok ok ok ok sk k| ok ok ok ok 3k ok ok ok sk | ok ok ok ok ok sk ok ok ok |k ok sk ok ok ok sk ok ok | okok ok sk ok ok kR ok | ok ok ok ok ok ok ok k ok |k ok
9 CALL INFUN(S,S1,N,H)
DO 10 M=1,N

60




344 P1(M+2)=81(M)
345 10 P(M+2)=S(M)

346 P(1)=P(N1)
347 P(2)=P(N2)
348 P(N3)=P(3)
349 P(N4)=P (4)

350 P1(1)=P1(N1)
351 P1(2)=P1(N2)
352 P1(N3)=P1(3)
353 P1(N4)=P1(4)
354 GO TO JB

355  Ckkskskskokokok | skokkkskokkksk | skkkskskokkksk | skkskskskokkkk | skkskskskkkksk | skkskskskkkskk | kkskkkkkkk | x%
356 11 T1=5.D-1%T1
357 KB=KB *2

358 DO 6 I=1,KB
359 B1=P (1)

360 PE=P (2)

361 F1=P(3)

362 F2=P (4)

363 V1=P1(1)

364 PE1=P1(2)

365 FE1=P1(3)

366 FE2=P1 (4)

367 DO 8 J=3,N2

368 B2=B1

369 B1=PE

370 PE=F1

371 F1=F2

372 F2=P(J+2)
373 V2=V1

374 V1=PE1

375 PE1=FE1

376 FE1=FE2

377 FE2=P1(J+2)

378 | C %k %k %k k sk sk k k | >k %k %k %k >k >k >k >k 5k | 5k 5k 5k 5k 5k 5k >k >k >k | %k %k >k >k >k 5k 5k 5k 5k | 5k 5k 5k >k >k >k >k >k *k | >k >k >k >k >k 5k sk sk k | sk sk >k >k k k kkk | %k

379 P1(J)=PE1-T1*(B*(FE2-2.D0O*FE1+2.D0*V1-V2) +H**2*x (A* (PE1**x2+PE**x2) +
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380 &2 .DO*A*xA1*PE1*%2) *(FE1-V1)+2.DO*A1*xA*xH**2*xPE*xPE1*(F1-B1)) /H**3

381 8 P(J)=PE-T1*(B*(F2-2.DO*F1+2.D0*B1-B2) +H**2x (A*x(PE**2+PE1**2) +
382 &2 .DO*A*xA1*PE*%*2) *(F1-B1)+2.DO*xA1*A*xH**2xPE*xPE1*(FE1-V1)) /H**3
383 P(1)=P(N1)

384 P(2)=P(N2)

385 P(N3)=P(3)

386 P(N4)=P (4)

387 P1(1)=P1(N1)

388 P1(2)=P1(N2)

389 P1(N3)=P1(3)

390 P1(N4)=P1(4)

391 6 CONTINUE

302 C ok ok ok ok ok ok ok ok |k %k %k ok ok ok ok ok | 3k Kk ok ok ok ok ok k| ok okok ok ok ok k k| kok ok ok ok kR kR | okok ok ok kK kR ok | kok ok ok ok Rk ok ok | ko
393 E=0.DO

394 DO 5 JE=3,N2

395 E=E+(P(JE)-U(JE)) **2+(P1 (JE)-U1 (JE) ) **2
396 5 CONTINUE

397 E=DSQRT (E)

398 PRINT 1,T1,E

399 DO 4 MA=1,N4

400 U1 (MA)=P1(MA)

101 4 U(MA)=P(MA)

102 IF(E-EPS) 3,3,9

403 3 ASSIGN 2 TO JB

104 GO TO 9

105 C ok kkokkk ok | sk sk ok kok sk k ok k | skokskokskokkok ok | sk skok sk ok sk ok sk ok | skookskok sk ok sk ok ok | sk skok sk ok kok sk ok | skok kok ok kR ok % | % %

406 2 CONTINUE

407 1 FORMAT (5X,3HT1=,E10.4,5X,2HE=,E10.4)
108 RETURN

109 END

Listing B.1: Fortran code for VMKDYV program
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