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Abstract

This document presents an overview of the fuel injection, traction control and automate

gearshift systems intended for implementation on the 2005 USQ SAE car.

Design guidelines and ‘in principle’ specifications are presented for various components

of the systems, background research and development is presented.

The procurement of various components of the systems has been accomplished, or is

discussed, to leave the project on a sound footing for further work.
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Chapter 1

Fuel Injection

1.1 Introduction

Fuel injection is used in production cars almost exclusively, having displaced the carbu-

rettor as a fuel metering device in the late 1980s. The main advantage of fuel injection is

that the amount of fuel delivered can be matched to the engines demand more precisely

than a carburettor can manage over a broad range of operating conditions.

A major driver of the widespread adoption of fuel injection has been the introduction

of environmental pollution legislation throughout the world. Such legislation has seen

the adoption of the catalytic converter as a means of compliance by the vehicle manu-

facturing community, this device only operates effectively in a narrow band about the

stoichiometric ratio of 14.7:1 air:fuel. The only way to effectively ensure this operating

point is to control the mixture at all times...therefore the use of fuel injection.

In motorsport fuel injection has been widely adopted as a means of tuning engines for

maximum power.
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Three major steps in the evolution of fuel injection can be identified;

• Mechanical systems eg, Bosch D-Jetronic, Hillborn, Rochester ( 1967)

• Analogue electronic systems eg, Bosch L-Jetronic (1974)

• Digital electronic systems eg, Bosch Motronic (1982)

A further sub-division can be made into;

• Throttle body (single point) injection; fuel is injected at the throttle body, forming

essentially an electronic carburettor. A disadvantage of SP systems is that no

compensation is available for the difference in gas flow to the individual cylinders.

Some argument is made for a greater mixing of air and fuel due to the passage

along the intake runners.

• Multi-point injection (MPI), where the fuel is injected individually at each intake

port. This allows control of the mixture for each cylinder, theoretically on every

intake cycle.

The majority of fuel injection systems on the market today are electronically controlled

multi-point systems. Although components are made by many different manufacturers,

most of the underlying technology was developed by Robert Bosch GMBH due to the

early acquisition of applicable patents.

1.1.1 System Overview

A generalised multi-point electronic fuel injection system as shown in Figure 1.1 con-

sists of;

• The Engine control unit (ECU)

• Various sensors attached to the ECU

• A pressure pump to supply fuel from the tank
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• The injectors, small high speed valves which meter the fuel

Figure 1.1: Fuel injection system

1.1.2 Sensors

Sensors are used in the engine control system to measure variables that affect the

engines fuel and ignition requirements. Typically these include;

• Manifold pressure (MAP); a strain gauge based sensor that has replaced the

earlier ‘hot wire’ or ‘flap and potentiometer mass air flow sensors.

• Crank angle; a reluctor or Hall effect device used to determine the position of the

motor with respect to top dead centre of the pistons in order to set ignition and

fuel injector pulse timing.

• Throttle position (TPS); reports demanded engine power output to the ECU.

• Engine coolant temperature; the ECU applies a correction factor or mode change

depending on the engines operating temperature.

• Exhaust gas oxygen (EGO); used for closed loop operation, provides feedback

to the ECU to enable limit cycle control of A/F ratio around the stoichiometric
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point. A typical EGO sensor operates at 300oC and may contain a heater element

to reduce non operational time.

• Cam angle sensor; required for fully sequential injection to synchronise the injec-

tor pulse to the intake valve opening.

To complete the listing of sensors, mention is made of the wide band EGO sensor, Bosch

LSU-4 or NTK UEGO. Instead of providing a +1,−1 voltage about the stoichiometric

point, this device reports the absolute EGO content, allowing the ECU to accurately

determine the A/F ratio for each cycle of operation. Bosch sensors can be sourced

second hand from Honda vehicles or new from CAPA performance for $332.51. It

would be advantageous to the operation of the SAE fuel injection as it would provide

finer tuning, but is not necessary.

1.1.3 Modes of operation

A guide to the various modes of operation of a fuel injection system is useful in under-

standing the sequence of events that occur when the vehicle is running. For a typical

engine there are seven modes employed, the ECU selects an operating mode based on

the instantaneous conditions determined from the sensors.

• Engine cranking; a low A/F ratio (rich mixture) is needed for the engine to start.

A preset value for engine revolutions is stored in the controller as a switch point

for this mode.

• Warm up; once started, the A/F ratio is kept rich to prevent engine stall and

becomes a function of the coolant temperature.

• Open loop control; once above a preset temperature, mixture control is governed

by the main open loop settings. Open loop mode is used where the EGO sensor

is not hot enough to provide a useful signal for closed loop operation.

• Closed loop control; the most desirable condition, the instantaneous A/F ratio is

corrected by feedback from the EGO. Emissions and fuel consumption are at a

minimum due to tight control around the stoichiometric point.
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• Full power; when the TPS reports a large throttle opening, a rich A/F ratio is

provided for the duration of the heavy load. This results in maximum torque with

poor economy and emissions control compared to closed loop operation. When

the need for enrichment is passed, control reverts to either open or closed loop

depending on the temperature of the EGO sensor.

• Deceleration; during deceleration a reduced A/F ratio scheme is implemented to

reduce emissions due to unburned fuel.

• Idle; engine speed is controlled to reduce roughness and stalling due to varying

loads, such as air conditioning or automatic transmission.

Ribbens, W B. 2003, Understanding Automotive Electronics, Elsevier Science, USA

Other modes of operation concern the sequence of injector firing, the case of a four

cylinder engine is considered;

• Bank fire; all the injectors are operated at once, once every revolution of the

engine. This method is the simplest electronically as it can be implemented

without a crank angle sensor and requires only one drive transistor in the ECU.

The disadvantages are; typically a larger injector is needed which may lead to

poor idle quality, individual cylinder control of the A/F ratio is not possible,

spark timing must be accomplished separately.

• Semi-sequential; two injectors are fired together. No cam sensor is required,

this regime typically produces more mid range torque and a reduction in fuel

consumption compared to batch fire. The ECU is synchronised to the engines

cycle by a crank angle sensor and can control ignition timing in ‘wasted spark’

mode.

• Sequential; requires both cam and crank angle sensors to synchronise the injector

pulse. Each cylinder is controlled individually allowing for the injection of fuel

during the intake cycle when the airflow velocity is greatest. This ensures the

best possible atomisation and greatest efficiency. A/F ratio and spark timing are

controlled for each cylinder.
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www.motec.com/products/ecu/tutorial.htm

1.2 Fuel Injection for SAE car

In motorsport use generally there is less emphasis placed on emissions and fuel con-

sumption than producing maximum power. In this regard it is common to run in open

loop mode, where an EGO sensor may be installed on the vehicle for data logging

purposes rather than as part of the active control system. A recent development is the

use of multiple oxygen sensors, such that the A/F ratio of each cylinder of the engine

is measured individually. Personal communication Rodney Pammenter, Australian

Champion Sprint Sedan

Given the inclusion of an economy trial in the SAE competition, the use of closed loop

operation seems warranted. This will allow greater flexibility in tuning the car for

circuit, acceleration and economy events; enhancing the possibility of scoring higher

points in the competition.

1.2.1 ECU

Initial research indicates that the development of an ECU is beyond the ability of the

author in the time available, due to the considerable hardware and software develop-

ment needed to produce a reliable unit.

Consideration was also given to ‘hacking’ an AC-Delco computer, this ECU is fitted to

many GM vehicles and is the most commonly modified OEM ECU. It is available from

car wreckers for approximately $100. Usually the extent of reprogramming is limited

to changing the fuel and ignition maps, in conjunction with other engine modifications

aimed at increasing vehicle performance. They have been known to be fitted to vehicles

other than original, but this option was discounted due to the lack of documentation

on, and compilers for complete reprogramming. As an example of the program size,

the listing for a Holden Commodore is 200 pages of machine code.

www.motec.com/products/ecu/tutorial.htm


1.2 Fuel Injection for SAE car 7

Instead, a choice is to be made from the range of commercially available units. Of

the ECU’s available in Australia (most of which are made here) the choice of the

professional racer is almost invariably Motec or Autronic. Both have a comprehensive

feature list, and are priced between $2000 - 3000, and up to $5000 for a ‘top of the line’

unit with all accessories. In view of the budget for the SAE car, both in actual and

reported cost, it is desirable to find a cheaper alternative.

An alternative was found when the manufacturer of ‘Adaptronic’ engine computers

offered an Adaptronic 420 unit to the team as sponsorship; the retail cost of the unit is

$1000. It was found that this ECU offers a list of features comparable with the entry

level Motec and Autronic units, and far in excess of the features found on other ECU’s

in the $1000 price range.

As supplied the ECU has the ‘basics’, programmable fuel injection and ignition; as

well as 8 programmable I/O lines which may be used for driver instrumentation and

gearshift functions. Provision is also made for traction control, the software of which

will form part of this project. There are many other features such as; load shedding,

idle speed and electronic wastegate control, that may not be used in this application.

1.2.2 Fuel injectors

As shown in Figure 1.2, the fuel injector is not an overly complex device, but they

are made to close tolerances and have a precise function. Important considerations are

spray pattern and the amount of fuel the injector will flow. This is helpfully given in

units of either lb/hr, gm/sec, or cc/min depending on manufacturer or data source.

Much emphasis is placed on using the correct size injector for the application. Too

small an injector can cause engine damage due to lean out at high RPM as the injector

cannot flow enough fuel, too large an injector results in poor control of fuel mixture at

low RPM as the injector cannot cycle quickly enough.

A generic formula for the sizing of fuel injectors is found in many articles on the subject.

This is;



1.2 Fuel Injection for SAE car 8

Figure 1.2: Section view of fuel injector

Flowrate(lbs/hr) =
MaxHp×Brake specific fuel consumption(BSFC)

number of injectors× duty cycle

The conversion from pounds per hour to cc/min is given by; cc/min = lbs/hr × 10.515

http://www.capa.com.au/library_injectors.htm

Where BSFC is the ratio of fuel flow rate to brake power output of the engine at a

fixed operating point, the units are lb/hr/hp. A generic figure for a naturally aspirated

production engine is 0.5 and a suitable injector duty cycle is 80 percent for reliable

operation of injectors. In the case of the USQ SAE car, the maximum power output

possible is in the region of 80 hp and number of injectors = 4, giving;

Injector size =
80 · 0.5
4 · 0.8

· 10.515 = 131.44cc/min

Also applicable and probably more specific is the following derivation;

Air =
RPM

2
× displacement× efficiency

Fuel =
Air
15.7

(1.1)

(1.2)

The units will be litres/minute.

http://www.capa.com.au/library_injectors.htm
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Leading to;

stuff

It is difficult to find information on injector sizes at the lower end of the scale, as most

attention is focussed on increasing the power output of larger engines. As calculated

above, for the SAE car a 130 cc/min injector is indicated, which is quite small. As

an example the BMW K100, which is a 1000cc motorcycle developing 90hp, uses 150

cc/min injectors, while commonly available car injectors range from 200 - 500 cc/min.

A comprehensive search of available data sources was conducted without producing a

result until a mention was found on an internet news group that indicated the standard

Hyundai Excel X2 injector was very small. A set of these injectors was sourced from

City Auto Wreckers Toowoomba and tested in the workshop of Peter MacCallum Fuel

Injection. It was found that the injectors flowed 120 cc/min at 2 bar, making them a

suitable choice for the application.

While much emphasis is placed on correct injector size, an area that does not rate as

highly in the available literature concerns injector spray patterns and placement.

Figure 1.3: Fuel injector spray patterns

As depicted in Figure 1.3, a variety of injector spray patterns are available, the main
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purpose of which is to direct the fuel stream at the intake valve and prevent the spray

condensing on the walls of the intake manifold. This increases fuel atomisation as the

fuel stream is both physically broken up by the valve cycling at 60Hz and vaporised

by combustion heat conducted through valve. Some cooling of the intake valve is

experienced, which can be desirable. In the case of the SAE car, a split stream pattern

would be ultimately desirable as the engine has a 4 valve head so each stream can be

directed at one of the two intake valves; however, the injectors sourced have a tight

cone pattern which is seen as a reasonable compromise.

Personal communication Peter McCallum, Peter McCallum Fuel Injection

1.2.3 Fuel delivery system

The purpose of the fuel delivery system is to supply pressurised fuel to the injectors,

as illustrated by the components shown in red in Figure 1.1.

• Pressure pump

• Fuel lines

• Fuel rail

• Pressure regulator

• Surge tank, if needed

Fuel pressure required is generally in the range of 2-3 bar depending on the injectors

design operating pressure; the desired flow rate is at least equal to the engines BSFC.

It is interesting to note that the sequence in which the injectors are fired also has

a effect on the fuel rail dynamics. Bank fire(all injectors at once) is the hardest to

keep the fuel rail pressure constant with and the rail charged. When all injectors

open simultaneously, there is maximum depletion of fuel from the rail, this causes the

pressure regulator to close off the return quickly to maintain pressure. This surging of

pressure in the rail may cause fuel rail knock, produced as the rail is shocked by the
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rapid discharging of the fuel supply and the rush of replacement fuel accompanied by

cycling of the pressure regulator.

Sequential injector firings are the most fuel rail friendly due to the minimal discharging

of the fuel rail by the firing of only one injector at a time, however fully sequential

injection requires more complex crank and cam angle sensors than bank fired systems.

A reasonable compromise is the use of a semi-sequential pattern where two injectors

are fired at once, this minimises both sensor complexity and pressure fluctuations and

is the system thought to be an appropriate choice for the SAE car.

1.2.4 SAE Rules relating to Fuel Injection Systems

The rules applicable to the fuel injection system fitted to the vehicle are reproduced

below, and provide little restriction on configuration and component choice.

3.5.3.7 Fuel Lines, Line Attachment and Protection Plastic fuel lines between the fuel

tank and the engine (supply and return) are prohibited. If rubber fuel line or hose

is used, the components over which the hose is clamped must have annular bulb or

barbed fittings to retain the hose. Also, clamps specifically designed for fuel lines must

be used. These clamps have three (3) important features, (i) a full 360 deg. wrap, (ii)

a nut and bolt system for tightening, and (iii) rolled edges to prevent the clamp cutting

into the hose. Worm- gear type hose clamps are not approved for use on any fuel line.

Fuel lines must be securely attached to the vehicle and/or engine. All fuel lines must

be protected from possible rotating equipment failure or collision damage.

3.5.3.8 High Pressure System Requirements (A) Fuel Lines On fuel injected systems,

any flexible fuel lines must be either (i) metal braided hose with either crimped-on or

reusable, threaded fittings, or (ii) reinforced rubber hose with some form of abrasion

resistant protection with fuel line clamps per 3.5.3.7. Note: Hose clamps over metal

braided hose will not be accepted. (B) Fuel Rail The fuel rail on a fuel injection

system must be securely attached to the engine cylinder block, cylinder head, or intake

manifold with 2005 Formula SAE Rules 44 mechanical fasteners. This precludes the

use of hose clamps, plastic ties, or safety wire.



Chapter 2

Traction Control Systems

2.0.1 Background to Traction Control

Traction control is part of a series of three technological developments that began

appearing in vehicles in the mid 1980’s. All three technologies originated from the

Robert Bosch Company in Germany, and all address the issue of reducing slippage

between the vehicles tyres and the road in various situations.

In chronological order, traction control developments are:

• Anti-lock brakes (ABS)(1978)

Anti-lock systems sense a wheel lock under braking and cycle the brake rapidly

via a high pressure pump to keep the wheel rolling. With the wheel rolling, more

braking force is transmitted to the road and steering control is retained.

• Traction control (TC)(1985)

This system acts in conjunction with the ABS to apply the brake on a spinning

wheel; or in the case of traction loss due to excess power applied, the engine

control unit (ECU) to modulate the engine torque.

• Stability control (ESC)(1995)

Stability control adds lateral acceleration, yaw rate and steering angle sensing

to the traction control system. The intention is to allow a computer system to
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control the brakes and engine in order to maintain the vehicles attitude within

set parameters. The braking action of the stability control system is illustrated

in Figure 2.0.1.

Figure 2.1: Braking action of ESC in Understeer and Oversteer

http://www.mucda.mb.ca/Stability.htm

As fitment to vehicles of ‘traction control’ systems becomes more common the lines

between the various systems are increasingly blurred. A stability control system implies

that ABS and TC are fitted, however, both TC and ABS may function as stand alone

systems.

2.0.2 Applications to Road Vehicles

The general premise of traction control in road vehicles is to prevent loss of control of

the vehicle due to driver error. This can occur as a result of control inputs such as

swerving to avoid an animal, panic braking, going too fast around a corner, or excessive

acceleration.

In these situations the computer systems can react much faster than a human to correct

an error, and the driver may be unaware that any intervention has occurred.

http://www.mucda.mb.ca/Stability.htm
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In the case of loss of traction due to excess engine torque being applied to the wheel,

the traction control system acts to modulate the power produced by introducing a

sequential ignition and fuel cut via interaction with the ECU.

As described in Kachroo, P. 1993, a further application of ESC systems is in the devel-

opment of automated highways, where the stability control of autonomous vehicles is

of interest.

2.0.3 Applications to Racing Vehicles

The use of traction control is causing great debate in motor racing. In most classes of

racing driver assist technology is currently banned; although the difficulty of enforcing

such a rule is leading to traction control systems being allowed.

In racing vehicles TC systems are usually employed to maintain wheel slip within set

limits under acceleration. It is left to the drivers skill to control the brakes and set the

vehicles attitude on the road. In its simplest form, a limit is applied to the engines rate

of acceleration to prevent the wheels being accelerated beyond the limit of assumed

tractive force.

Most classes of racing have alternately allowed and banned TC systems, with the 2005

CART and Formula 1 rules allowing traction control to be used. NASCAR remains the

exception; due to the general ban on digital electronics in the formula the governing

body is convinced that effective policing of the rule is possible.

A recent article in “Circle Track and Racing Technology” magazine states;

The overseeing powers of CART and Formula 1 have conceded that the

digital electronic evolution of engine management has progressed to the

point where they can’t effectively police electronic traction control (ETC).

NASCAR and other U.S. racing sanctioning groups with less technically

elaborate race cars and in-house expertise and resources are bound and

determined to stay this digital tidal wave.



2.1 Traction control in SAE racing 15

http://circletrack.com/techarticles/general/139_0211_traction_control/

Motorcycle racing has also seen the use of traction control systems in the World Su-

perbike series as it is permitted under current rules. British teams have admitted that

a traction control system is used by Ducati and also Yamaha, who have a bolt-on kit

available for any of its racing customers. http://www.crash.net/uk/en/news_view.

asp?cid=5&nid=105891

2.1 Traction control in SAE racing

The main purpose in applying traction control to the SAE car, as with any racing

vehicle, is to enhance driver control and reduce human error. As the drivers of this car

are not necessarily skilled at the performance driving, the provision of a system which

will assist in preventing loss of traction during acceleration is desirable to improve

driver confidence, performance and safety.

2.1.1 Sensor selection

It is common in most road vehicles to machine a toothed ring on the wheel hub and

generate a pulse train from the teeth of this ring passing a sensor. The resulting signal

from each wheel is used as an input for the speedometer, as well as TC and ABS

systems. For race applications where radiated heat from braking surfaces may be a

problem, a toothed ring can be mounted on the inside of the suspension upright as

shown in Figure 2.1.1.

In the case of the SAE car requirements for an effective sensor are;

• Small size

• Fast operation

• Rugged construction

• Reliable operation

http://circletrack.com/techarticles/general/139_0211_traction_control/
http://www.crash.net/uk/en/news_view.asp?cid=5&nid=105891
http://www.crash.net/uk/en/news_view.asp?cid=5&nid=105891
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Figure 2.2: Wheel sensor on a CART vehicle

http://www.machinedesign.com/ASP/strArticleID/55440/strSite/MDSite/

viewSelectedArticle.asp

• Light weight

Several options are available;

• Team developed sensor

• Inductive proximity sensor

• Hall Effect sensor

Initially it is proposed to use an inductive proximity sensor to generate a pulse train

from holes in the brake disc which would act to reduce manufacturing complexity

introduced by machining a suitable ring on the wheel hub, and negate weight gain

produced by adding a chopper wheel to the hub assembly.

Many models of sensor exist from a variety of manufacturers that would perform the

task well eg. Balluff or Pepperl and Fuchs, although from the point of view of the SAE

project expense must be minimised, which largely excludes the major brands.

http://www.machinedesign.com/ASP/strArticleID/55440/strSite/MDSite/viewSelectedArticle.asp
http://www.machinedesign.com/ASP/strArticleID/55440/strSite/MDSite/viewSelectedArticle.asp
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A suitable low cost solution is available from AutomationDirect in the form of;# AE1-

AN-2A, 8 mm diameter, 10-30 VDC, 3-wire, NPN, unshielded, 2.5 mm nominal sensing

distance, normally open output, 2.5KHz switching frequency, 2 meter cable $39.

Figure 2.3: AE1-AN-2A Inductive proximity sensor

www.automationdirect.com.au

To use this sensor it is proposed to mount it so that there is 2mm clearance between

the end of the sensor and the disc, the sensor will be triggered by the holes in the disc.

Another alternative is the ZD-1900 hall effect sensor from Jaycar. This device is small,

light, rugged, and cheap, and has been used extensively in automotive electronic ignition

systems for many years.

Figure 2.4: Jaycar ZD-1900 Hall Effect Sensor

http://www1.jaycar.com.au/

Use of this sensor would require chopper wheels to be fitted to the vehicle which would

marginally increase weight and require good alignment.

www.automationdirect.com.au
http://www1.jaycar.com.au/
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2.1.2 Configuration of the sensors

Based on the I/O capabilities of the Adaptronic ECU, 2 sensors will be used. It is

proposed that one will be installed on a front undriven wheel and the other on the

gearbox or rear axle.

This configuration should prove adequate as;

• The difference in acceleration of the front wheels will be negligible as neither is

driven, therefore it will not matter which wheel is used as a reference.

• Differences in rotational velocity are of no interest to the traction control system,

although more accurate control could conceivably be achieved during cornering

by comparing the left and right side conditions separately.

• Only the driven wheel is of interest at the rear of the car; a sensor reading rear

axle acceleration from the gearbox output or differential case will be effectively

reading the acceleration of the driven wheel.

• A scaling factor can be applied during processing to account for final drive ratio

and difference in the number of pulses per revolution front to rear.

2.2 Mathematical modelling

2.2.1 Vehicle Dynamics

The limit of force that can be exerted on a vehicle to accelerate, decelerate, and maintain

or change direction, is ultimately dictated by the tractive effort the tyres are able to

exert on the road, which can be empirically described in terms of a slip condition at

the interface.

Various complex dynamics exist between the road-tyre interface, vehicle suspension and

operator inputs, acting to make the force that can be generated before slip dependant

on;
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• The vehicles attitude on the road, which depends largely on the operator inputs.

• The ability of the suspension to maintain contact between the tyre and road,

which depends on the dynamic tuning of the suspension system to accommodate

a particular disturbance.

• The instantaneous co-efficient of friction between tyre and road, which depends

on the interaction between the particular tyre compound, road surface material

and surface conditions (dry,wet,snow).

• The stiffness of the vehicle chassis, which depends on the material, design and

loading.

However, if wheel slip is the desired control variable much of the intervening dynamics

can be disregarded because there is a direct relation between longitudinal wheel slip

and input torque.

This project will concentrate on longitudinal slip control, due to its focus on imple-

menting a slip controller for the SAE car under acceleration. It is considered that by

this control, an improvement in lateral slip will also result.

2.2.2 Equations of Motion

Forces at the wheel under acceleration are identified as;

• Engine torque

• Vehicle mass

• Tractive force

The major forces acting on the car as a whole are;

• Driving force from the wheels

• Aerodynamic drag
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• Rolling resistance

• Mechanical drag

• Road incline

For the purpose of the project a simplified model will be used as illustrated by the

following figure.

Figure 2.5: (a)Wheel and (b)Vehicle dynamics

Applying Newton’s 1st and 2nd laws to the model, and with reference to Morton, MA.

2004 and Olson et al 2003, equations for linear and angular velocity may be developed.

Figure 2.5 (a) depicts a single wheel constrained to move longitudinally in the x

direction, summing forces and moments gives;

Nv = −Mg

ω̇r =
Te − rFt

I
(2.1)

and;

Ft = µNv
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Where µ is the co-efficient of friction, M is the mass of the vehicle, g is the acceleration

due to gravity and J is the polar moment of inertia of the wheel.

Considering figure 2.5 (b); the front wheel is assumed not to slip as it is not driven,

and the rear wheel is assumed to be the same radius as the front. So that the dynamic

equation for the vehicle motion is;

V̇ =
nFt − Fv

Mv
(2.2)

Where n is the number of wheels on the vehicle.

If the states of the system are velocity of the vehicle and angular velocity of the wheels,

letting x1 = front wheel and, x2 = rear wheel, the following equations are derived;

x1 = ωf =
Vv

rw
(2.3)

ẋ1 =
V̇v

rw
=

nµNv − Fv

Mvr
(2.4)

x2 = ωr (2.5)

ẋ2 = ω̇r =
Te − rµNv

I
(2.6)

Percentage slip can be expressed as;

s =
ωr − ωf

ωr
=

x2 − x1

x2
(2.7)

Where ωr ≥ ωfs = 1− x1

x2
⇒ 1− s =

x2

x1

To put equation 2.7 into the general form ẋ = Ax+ bu, the derivative is taken so that;

ṡ =
d

dt

(
x2 − x1

x2

)
=

ẋ2x1 − x2ẋ1

x2
2

(2.8)

Substituting equations 2.3 to 2.6 into 2.8 and rearranging gives;
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ṡ =
[
Fv − nNvµ

Mvrωr
− (1− s)rω

Nvµ

Iωr

]
+

1− s

Iωr
Te (2.9)

(2.10)

2.2.3 Desired wheel slip

It is shown in Olsen et al (P.4) and Morton, M A. (P.5) that maximum tractive force

generated by a rubber tyre on dry asphalt occurs in the range of 10 - 20 percent slip.

Figure 2.6: Wheel Slip vs Friction Co-efficient
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2.3 Algorithm development

The basic premise of the traction control algorithm to be developed is to compare front

and rear wheel velocity and adjust engine power output to maintain a desired difference

between the two.

Provision has been made within the Adaptronic ECU for this purpose, it is possible

to retard the ignition in 0.2 degree increments by storing a negative value in ’glob-

alIgnTrim’, and introduce ignition and fuel injection pulse cutting through the use of

bit masking.

Within the ECU the raw pulse count from front and rear wheel speed sensor inputs

are converted to a frequency form and are available as the variables ’masterSpeed’ and

’slaveSpeed’, slavespeed is chosen to represent the rear wheel to indicate that this is

the controlled variable.

In a departure from the methods presented in Morton, M A. and Kachroo, P.; and

from concepts contained in Billingsley, J. Controlling With Computersand the course

ENG4406 Robotics and Machine Vision the following control method is developed.

A measure of slip is obtained as per Section 2.2.2 using the variables ’masterSpeed’ and

’slaveSpeed’; ṡ is derived from the rate of change of the variables using a free running

timer, which also provides an estimate of the vehicle velocity.

Control action is defined as;

u = a× Vv + b× s + c× ṡ (2.11)

Where a, b and c are empirically evaluated co-efficients; although it is thought that

more work on the mathematics would produce a robust definition.

Control action is proportional to the;

• Difference in velocity of the wheels (slip)

• Rate of change of slip of the wheels
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2.4 Conclusion

The algorithm suggested above was not implemented due to the late development of

the concept; a proportional algorithm was implemented in a test rig consisting of the

ECU and pulse generators and shown to work.

Given the success of the proposed control method in other applications (balancing

pendulum et al) it is considered that the method will be successful.

2.4.1 Launch control

Launch Control is a useful by-product of a combination of electronic systems in the race

car. Essentially it is function within the Traction Control system designed to automate

standing starts to maximise the initial acceleration. It is activated by pressing a button

on the dashboard when the car is stationary. This brings in a secondary rev-limit (for

example 6000 rpm) The throttle can then be fully depressed without over-revving the

engine, then the clutch is engaged, after which the traction control system controls the

wheelspin for consistent starts. When a preprogrammed engine speed is reached a gear

shift sequence is activated, ensuring that shifts are performed consistently.

It is conceivable that refinements may include a vehicle velocity vs slip relationship and

some hand over criteria, specific shift point for each gear may be implemented.
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Gearshift actuator

3.1 Rationale

Several purposes drive the consideration of a gearshift actuator on the SAE car. These

include;

• Enhancing driver safety by providing the driver with a means to change gear

without removing hands from steering wheel.

• Assisting the driver by automating upshifts during the acceleration test.

• Difficulty experienced shifting gears on the 2004 car

3.2 Design

Design options exist in the areas of;

• Power type to be used for actuation;

– Compressed air (Electropneumatic)

– Vacuum
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– Electricity

• Connection of actuator to gearbox;

– Rod

– Cable

The force needed to cause the gearbox to shift is measured at 100N on a 65mm lever

arm, for reliable operation 150N is suggested; stroke length required with this lever arm

is 20mm.

150
0.065

= 2.3kNm

3.2.1 Compressed Air

Electropneumatic systems are commonly used in drag racing applications; usually a

single acting cylinder to upshift a sequential gearbox or automatic transmission. Acti-

vation is by driver controlled switches or an output from the ECU.

The system consists of;

• Air storage tank

• Pressure regulator

• Valves

• Switches and plumbing

For the SAE car consideration is needed to determine a suitable operating pressure,

ram size, and storage tank size. The assumed working pressure of the storage tank is

7 bar, 100psi, so that the tank may be recharged during breaks in competition from

air supplies on site or from a small compressor.
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For a working pressure of 0.7MPa the actuator diameter required is;

A =
F

P
=

150
0.7

= 214mm2

D =

√
A× 4

π

= 16.5mm

A 20mm diameter ram with 50mm stroke is commonly available, specifically Automa-

tionDirect # DIC20M50 $39 is applicable.

Air consumption will be 314mm2 × 25mm = 0.008L per gearshift. From the SAE

2005 rules, estimated top speeds are 60kph for the autocross event (2 ×800m laps)and

105kph for the endurance event (22km). From gearing tables in the dissertation of

Jeremy Little (2004), 110kmh = 4th gear; thus requiring 8 gearshifts to go from 30 -

110 - 30 kph. The endurance event may then require up to 100 gearshifts to complete

(8 × 10 laps + some safety factor) and is the greatest concern. This indicates that a

minimum of 0.8L of air is required (100 × 0.08), in order to ensure operation for the

duration of the race 2L will be specified.

Using the principle that minimising the area of material used in construction will min-

imise the weight of the vessel;

A = 2πr2 + 2πrh

V = πr2h = 2× 106

A = 2πr2 +
4× 106

r
dA

dr
= 4πr − 4× 106

r2

rmin = 68.3mm

h = 136.6mm

So that a reservoir of 137 mm diameter and 137 mm height is required. There does

not appear to be a specific ADR or AS applicable to the construction of air pressure

vessels for use in vehicles; so AS1210-1997, ‘Pressure vessels’, is considered applicable.
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Without considering the detailed design of a storage tank, a guideline to material

thickness may be obtained from the standard. The minimum wall thickness from table

3.4.3, p.87, is 2mm; for unstayed flat ends,section 3.15.3 (p.131) is applicable;

t = d

√
p

Kfn

= 137

√
0.7

3× 43× 1
= 10.09mm

Where d = diameter, p = pressure, K = efficiency of joint, f = tensile strength of

material, n = factor for longitudinal welds in the end plate.

The total volume of material used in its construction is 414473 mm3, using 2800 kg/m3

for aluminium, the weight is 1.2 kg. Use of composite material may reduce the weight,

however filament wound construction is necessary.

Suitable ready made bottles can be found in the form of;

• Welding gas suppliers; 1.6 kg CO2 steel bottle, (111 × 235 = 2.2 L).

• Fire extinguisher; 2.5L, operating pressure, 1000kPa, steel body $80

• Aluminium cylinders are available from performance parts suppliers, but tend to

be expensive and larger than required.

Detailed specification of the valves and plumbing used in the system is also necessary

to ensure that the time constant is not too large, it is considered that 0.5 second would

ensure effective operation.

3.2.2 Vacuum

To use intake manifold vacuum as a power source, a storage tank with volume exceeding

the capacity of the actuator × the number of shifts at low vacuum is needed. When the

throttle is closed, vacuum is built up, which can then be used to shift gears when the

throttle is open. While the vehicle is driven on a circuit where there is a deceleration
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between gearshifts there should be no problem, however if multiple shifts are made at

high throttle openings the reservoir will be depleted.

The working pressure of a vacuum actuator is 1 bar at good vacuum, such as delivered

by a dedicated pump, and 0.5 bar when using intake manifold vacuum on an engine

in good condition.

The actuator diameter required is;

A =
F

P
=

150
0.05

= 3000mm2

D =

√
A× 4

π

= 62mm

In an attempt to quantify the time constant of a vacuum actuator Poiseuille’s law is

applied with ∆ P = 0.5 bar = 50 kPa and assuming a tube diameter of 10 mm, length

300 mm and viscosity of air at 1.789 E-5.

∆P = V
8ηl

πr4

50000 = V
8× 1.73× 10−5 × 0.3

π0.014

V = 37.8m/s

Reynolds number;

R =
ρV d

µ

=
1.229× 37.8× 0.01

1.73× 10−5

= 26853

If this calculation is correct the airflow in the tube may be turbulent, in which case the

velocity will be lower. This result indicates that the vacuum actuator, if connected to

the reservoir via a 10 mm tube and appropriate sized valve is capable of full stroke in

0.1s, which is a lot quicker than thought, and in the region of an air cylinder.

Doing the calculation over with a tube diameter of 5 mm gives a velocity of 2.4 m/s,
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and a time to full stroke of 1.6 s. This is in line with previous experience and seems

realistic.

The size of reservoir required is then, say 10 gearshifts 0.075 L per shift = 0.75 L. A

part that may suit the application is found in a Holden Commodore HVAC system; it

is a spherical ABS unit 130 mm diameter, 1.2 L. Various sized actuators are also found

as throttle actuators in cruise control systems or as part of the HVAC system.

3.2.3 Electricity

The use of electrical power is seen as a viable option as the generating system on

the vehicle of makes enough power (300W) to allow repeated operation of the shifter

without depleting the battery. An electric system offers a clear advantage over a vacuum

system in that there is a constant power source, and some advantage over the electro-

pneumatic system due to reduced complexity.

An investigation of commercial electric actuators was undertaken with little useful

result as the stroke length and force requirements could not be met. Few examples

were found of an electric actuator in this application, one is shown in figure 3.1 which

appears to use 2 solenoids in a push/pull arrangement.

It was decided to develop an actuator based on an automotive starter motor solenoid.

The force produced by a standard solenoid was measured at 120N, which was judged to

be sufficient to operate the gearshift. Two solenoids were obtained and the coils removed

to be mounted end to end in a new case; the configuration is shown in appendix B.

The solenoid thus produced did not perform the required function. At this stage the

proposed construction had been presented to a number of undergraduate and profes-

sional electrical engineers, who advised that ‘it should work’. No investigation by the

author of the principles of solenoid operation had been undertaken.

Upon investigation it was found that the failure of the end product may be attributed

to the use of aluminium in the design due to its lack of permeability. This was done to

reduce the weight of the solenoid, but produced the following areas of concern;
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Figure 3.1: Electric solenoid gearshift actuator

• Outer case; the steel case used in the original solenoid completes the magnetic

circuit around the outside of the coil, without which the force produced is dra-

matically reduced.

• End caps; magnetic attraction of the end cap to the slug is used to increase the

force produced at the end of the stroke. As the slug is naturally pulled into the

centre of the coil the end cap circuit is relied on to bias the flux in the direction

of travel.

• Rod; should have been steel to increase the volume of permeable material in the

core.

Reconstruction of the solenoid following these guidelines may result in a device that

produces the required force; although some calculations were done the result was incon-

clusive and finite element analysis may be the only way of showing this potential. The

weight of the device at present is 1.25 kg and reconstruction using steel will increase

this to 1.7 kg.

A further attempt was made to produce an electric shift device; based on a motorcycle

starter motor, shown in appendix C. The motor is driving an 80mm lever arm through
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a 5:1 reduction gear and torque limiting clutch; the device weighs 1.5 kg. No testing

was done on this device except to check the current draw (20A). A problem that has

not been addressed is that of returning the lever arm to centre after a gearshift, which

is necessary for correct operation of the gearbox. It is proposed to use reed switches to

sense the position of the arm and control it via the ECU.

In principle a sequence is enabled that cuts the ignition, drives the actuator to the limit

of travel causing a gearshift, then returns the arm to the centre ready for the next shift.

This introduces some complexity to the implementation; which may be avoided by the

use of springs to centre the arm if enough torque is available from the motor to drive

both gearshift and return spring.

Electric actuation methods were pursued as it was thought the resulting system would

be less complex than the use of compressed air, would not require recharging, be cheaper

to build, and lighter.

3.2.4 Connecting link

As the connection link is to transfer operating force from the actuator to the gearshift

mechanism of a motorcycle engine, a link is to be provided that is capable of both push

and pull. It appears that two methods exist, cable or rod. Of these choices, the rod

appears to be the easiest to implement provided the actuator can be mounted in an

appropriate position.

In the case of a cable system, either one cable capable of transmitting a compressive

load, or two cables used in tension are needed. It is likely that two smaller cables

in a pull/pull arrangement would be lighter than a cable large enough to be used in

compression.

To determine the connecting rod size and material, consideration is given to buckling

load and tensile stress. From Fundamentals of Machine Component Design p.209 buck-

ling load is considered using Euler’s equation. In the suggested application the rod is

a pin ended column therefore Le = L, and as it is thought that aluminium would offer

the lightest weight of readily available materials, E=70 GPa. From the desired load
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rating plus a safety factor of 2, Pcr=300N giving;

Pcr =
π2EI

L2
e

300 =
π2 × 70× 103 × I

4002

I = 69.48mm4

69.48 =
πd4

64
d = 6.13mm

Check tensile stress;

A =
π6.132

4

σ =
300

29.51
= 10.16MPa

So that the shifter device may be connected to the gearshift mechanism by means of

an aluminium rod 400mm or less in length with a diameter greater than 6.13mm if a

65 mm lever arm is applied to the gearshift shaft.

3.2.5 Result

Various systems for implementing gearshift actuation by remote switch have been ex-

plored, no detailed design or testing has been done.

It is considered that;

• Further work on the ‘motor in a box’ actuator will produce a good result; al-

though the current draw is not exceptionally high, it may be a problem dur-

ing extended operation and wiring and control circuitry must be sized accord-

ingly. Cost of a motorcycle starter motor is $300, a general purpose 300 W

DC motor is equivalent, these are priced at $40 but are larger and heavier.

www.oatleyelectronics.com/motors.html

www.oatleyelectronics.com/motors.html
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• Further development of the solenoid actuator presents many unknowns; at present

there is no weight or power saving over the motor device although it is smaller.

• The use of compressed air as a power source is seen to be problematic due to the

requirement that the system be recharged at intervals. It may possible to fit a

small compressor such as used for tyre inflation although this will increase the

weight of the system. Cost of this system is estimated at $400, weight 2.5-3 kg.

• If the calculations are correct, the use of vacuum as a power source may be

feasible as suitable lightweight ABS plastic actuators and reservoirs are found

in automotive applications. Two actuators would have to be used, one for each

direction and large bore valve block manufactured. A further advantage is the

safety of the system, there are no high currents or high pressures present removing

fire and explosion hazards.
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Conclusions and Further Work

There is much further work to be done on the various projects presented in this report.

Although the components for a fuel injection system were assembled and tested no

implementation was attempted. Without the ECU installed the testing of a traction

control algorithm was limited to simulation. Further implementation of a gearshift

device could have been attempted through the construction of a separate controller, for

which the design was done.

Significant ground work has been done in regard to the systems presented and it is

hoped that this contributes to a better outcome for the 2006 SAE team.
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AGREED__________________ (Student) _______________________ (Supervisors) 
   
  (Dated)___ / ___ / ___ 

University of Southern Queensland 
Faculty of Engineering and Surveying 

 
ENG4111/2 Research Project 
PROJECT SPECIFICATION 

 
FOR:   Reuben Molloy 
 
TOPIC:  Electronic Systems for USQ FSAE Car 
 
SUPERVISORS: Chris Snook 
    
PROJECT AIM: Implementation of programmable fuel injection, ignition 
and traction control on the USQ SAE race car 
 
SPONSORSHIP: USQ Faculty of Engineering 
   Andy Wyatt (Adaptronic) 
 
PROGRAMME: Issue A, 14/3/05 
 
1) Fuel Injection; 

• Research and compare available ECU’s 
• Research and specify appropriate fuel injectors and high 

pressure pump 
• Design high pressure fuel system to comply with FSAE rules 
• Implement system on vehicle 

 
2) Traction Control 

• Research and specify wheel velocity sensors  
• Research, design and implement traction control algorithms in 

ECU 
• Implement system on vehicle 

 
3) If time permits; 

• Design electric actuated gear shift mechanism 
• Integrate system with ECU for automatic shift at programmed 

engine speed 
• Provide for driver actuation of system 
• Implement system on vehicle 
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Electric Solenoid Gearshift
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Figure B.1: Solid model of electric solenoid gearshift actuator



Appendix C

Electric Motor Gearshift

Figure C.1: Motor-in-a-box gearshift actuator
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Figure C.2: Drive end view of motor-in-a-box gearshift actuator
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Figure C.3: End view of motor-in-a-box gearshift actuator



Appendix D

Fuel injection components
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Figure D.1: Fuel rail and injectors

Figure D.2: Throttle body
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Figure D.3: MAP and HEGO sensors
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