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Abstract

The aim of this project is to design and test an add-on spring support for the legs of

Robug IV. This mechanism will allow the robot to operate with the 6bar air supply

available at the University of Southern Queensland.

A model of a leg is developed and tested for its accuracy. It includes both kinematic

and kinetic aspects of the leg. Loop closure equations and an iterative method are used

for the kinematics. The kinetic equations are derived using the force balancing method.

The model is used to develop a good design solution for the spring mechanism and to

predict its behaviour when manufactured and assembled.
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Chapter 1

Introduction

1.1 Project outline

Legged robotics have a long history. One of the newer projects is Robug IV, an eight

legged robot powered by air pressure. It was not originally built at the University of

Southern Queensland, nor did the laboratory at the University of Southern Queensland

possess a compressor with a high enough pressure to operate the robot.

The aim of this project is to design, model and test an add-on spring support for the

legs of Robug IV so that it can be operated on the 6bar available at the USQ laboratory.

1.2 Dissertation overview

Chapter 2 gives an introduction to the history of legged robotics and a number of

legged robots.

Chapter 3 deals with the four different Robug projects and their history.

Chapter 4 describes the development of a model that is used for the design of the

spring mechanism.

Chapter 5 deals with the test arrangement used to test the model and compares its

result to the one of the model.
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Chapter 6 describes how the add-on spring mechanism is designed.

Chapter 7 deals with the manufacture and assembly of the exoskeletal system.

Chapter 8 gives a prediction for the behaviour of the new exoskeletal system.

Chapter 9 contains final conclusions and states what further works need to be done.



Chapter 2

Legged Robots

2.1 Overview

The main focus in this chapter is the history of walking robots. The first two sections

give a short introduction to what legged robots are and why they are of such interest.

A number of projects will be introduced to illustrate the technological development.

2.2 Mobile robotics

Legged robots is one category of mobile robotics. A mobile robot can be defined as a

machine that is able to move from one location to another without human interaction.

Mobile robots can be air-based, water-based or land-based.

Most of the world’s robots are not mobile. They are automated stationary machines

that use manipulatory arms for one specific purpose such as welding. This type of

robot can be widely found in industrial production.

Stationary robots work in a known environment. Mobile robots need to be able to

handle complex and changing environments. This makes the design of mobile robots

much more complex. A very high level of artificial intelligence is required for the control
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system and the mechanics need to be strong enough to withstand uncontrollable factors.

The benefits of mobile robots are clear – they are flexible, as they can change location

and this opens up a whole new field of applications to robotics. Transportation and

work in hazardous areas are two of such applications.

‘Legged’ implies that the robot is land-based. Three types of land-based mobile robots

exist: legged, wheeled and tracked. Wheeled and tracked robots are easier to develop

as the number of degrees of freedom is much smaller. However, legged robotics have

the widest application range.

One example of a tracked robot is Merlin. Because it can be remotely controlled, it is

used to defuse bombs. This way humans can stay at a safe distance from the bomb.

Figure 2.1: Merlin holding a pipe bomb

Although tracked robots can operate on a larger range of surfaces than wheeled robots,

they do not have the flexibility humans or animals have. This explains the need for

legged robots.

2.3 Reasons for legged robotics

Using legs can be seen as the most natural way of motion on land. Humans and animals

use legs to walk and can access most terrains. A typical example that indicates the

limitations of wheeled locomotion is stairs. For vehicles such as cars or wheelchairs,
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stairs are an insurmountable obstacle. They can only be used on especially prepared

surfaces such as roads.

Humans, in contrast, can access rough terrains – forests, mountains or stairs. With

legs obstacles such rocks or fallen trees can be avoided. If legged robotics succeed this

can be seen as a revolution of locomotion. Machines would be able to access all terrains

that humans can access and possibly more. For example they could be able to climb

walls like spiders.

The Chernobyl nuclear catastrophe indicated the necessity for legged robotics. Haz-

ardous areas usually have a rough terrain that cannot be accessed by wheeled machines.

Humans on the other hand would put themselves at a massive medical risk in such a

catastrophe. Legged robots could be used to clear hazardous places without the risk

of injury or death. Such applications could be the handling of dangerous chemical or

radioactive materials.

2.4 Brief history of walking robots

It is difficult to date back the beginnings of legged robotics. Lewis (2002) sees the

beginning of research into walking machines in the 1960’s when the Phoney Pony was

built at the University of Southern California. Milestones in the Development of Legged

Robots (1999) on the other hand indicates that the first milestone in the development of

legged robots was in 1836 when Weber and Weber showed that the natural frequency of

a leg when swinging as a compound pendulum is similar to the cadence in live walking.

These differences in perspective occured as some sources only list legged robotics

projects that were planned or completed while other sources also recognise prelimi-

nary research that did not pursue the aim of actually building a walking robot.

In 1872 the Governor of California, Leland Stanford, asked Eadweard James Muybridge

to help settle a $25,000 bet (Miller & Hemsath 2004). Muybridge was to prove whether

or not horses have all four feet in the air simultaneously at some point when running.

It took him five years to develop the necessary techniques to stop motion photography
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and in 1977 Muybridge could prove that a horse indeed lifts all four feet at some

point while running. After this success he continued photographing animals in motion

documenting their gaits and published The horse in motion in 1877.

In 1893 L. A. Rygg obtained a patent for his design called ”The Mechanical Horse”

(Witte 2000). It looks like a crossing between a horse and a bicycle. A person would

sit on the back of the horse and use pedals to power it. There is no evidence that the

design was ever successfully built.

Figure 2.2: Rygg’s mechanical horse

In 1913 a patent was granted to Bechtolsheim for another human-powered machine

(Galt 1998). The design was radically different than Rygg’s design. Although probably

more realistic, no evidence of successfully building the 4-legged machine exists.

Although the idea of walking machines already existed at the end of the 18th century,

technology had not progressed enough until about 1960 to actually build walking ma-

chines. Considered to be the first computer controlled is the Phoney Pony, built in the

1960’s at the University of Southern California (Lewis 2002). The aspect of computer

control gave walking machines a new dimension. This was the start of turning legged

machines into legged robots.

Probably the first commercially used walking machine was Big Muskie. The Big Muskie

was a giant dragline owned by the Central Ohio Coal Company (Malkamaki 2004).

Construction began in 1966 and in 1969 Big Muskie was ready to remove overburden

from coal formations. It weighed 13,500 tons, had a bucket capacity of 325 tons and

was powered by 13,800 volts. Hydraulically driven feet were used to walk. Big Muskie
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was used until 1991 when it was no longer needed due to a depression in the demand

for Ohio coal.

In 1977 the OSU Hexapod was presented at the Ohio State University (Galt 1998). The

six-legged robot weighed 150kg and its legs were built to emulate insect legs. Continual

improvements made the USO Hexapod one of the most successful legged robot research

projects.

All of the legged robots mentioned above had at least 4 legs that allowed a statically

stable motion. This means that the robot could stand in a statically balanced position

on a number of legs while one or more legs were moved to the next position. Marc

Raibert developed a one-legged robot at the Carnegie-Mellon University in 1983 (Galt

1998). With only one leg, static equilibrium is impossible. The static equilibrium needs

to be replaced by a dynamic one. This is similar to riding a bicycle which is stable

as long as it is driven at a certain speeds but falls to one side when it comes to stop.

Achieving a dynamic equilibrium is difficult as a complex and very accurate control

system using sensors and micro-processors is needed. Raibert’s machine was able to

hop in one place, travel, keep its balance when disturbed and jump over small obstacles.

When finishing the Adaptive Suspension Vehicle project, Song & Waldron (1988) pub-

lished the much recognised book Machines that walk in which they discuss gait analysis,

gaits for level walking and for irregular terrain, coordination, leg and ankle design. Ac-

cording to Galt (1998) this book was the first that provided in-depth treatment of

statically stable walking machines and might be the most cited work used by legged

robotics researchers.

2.5 Current projects

2.5.1 The Honda walking robots

Honda started research and development of two-legged humanoid robots in 1986 (Honda

2005). Until today 11 experimental models, prototypes and humanoid robots were

built. The first experimental model in 1986 was used to examine the principles of two
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legged locomotion. Within the next four experimental models E1 to E4 Honda was

able to switch from static to dynamic locomotion and increased the walking speed from

0.25km/h to 4.7km/h. The last two experimental models E5 and E6 were used to

implement autonomous control.

Figure 2.3: evolution of Honda’s two-legged robots

Between 1993 and 1997 Honda built 3 prototypes of humanoid two-legged robots. The

second one, P2, was the world’s first self regulated two-legged humanoid robot. It was

1.82m tall and weighed 210kg. P2 was able to walk independently, walk up and down

stairs, push carts and perform other operations. It has astounded researchers with its

performance (Galt 1998).

In the year 2000 Honda presented Asimo that has a further advanced walking technol-

ogy. In comparison with P2 both height and weight were drastically reduced to 1.2m

and 43kg (Honda 2001).

2.5.2 Adaptive suspension vehicle

The above mentioned adaptive suspension vehicle is one of the larger legged robots with

approximate dimensions 5x3x2m and a weight of 3200kg (Galt 1998). A four cylinder



2.5 Current projects 9

petrol engine was used to power the legs.

Figure 2.4: The Adaptive Suspension Vehicle demonstration its towing capability

The ASV project started in 1982 and finished in 1990. Before Honda presented its

humanoid prototypes the ASV was the most sophisticated, self-contained and practical

walking machine ever developed.

2.5.3 Silex

Silex is a 6-legged robot developed by the Active Structure Laboratory (ASL) at the

Free University of Brussels. It weighs 13kg and is 50cm high (ASL 2005). Each leg has

three degrees of freedom that are controlled by DC motors.

The interesting part about Silex is its decentralised structure: each leg is controlled

by its own INTEL 87C196KC microcontroller. Three different levels of control were

implemented. The lowest level handles the leg trajectory and force control and is

implemented at the leg level in the 6 microcontrollers. The next highest level includes

gait and height control, the force distribution at the robot level and is automated. The

highest level is dealing with planning of direction and speed. These can be controlled

by a user with a joystick.
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Figure 2.5: Silex, the walking robot developed by the Free University of Brussels.

2.5.4 MECANT and WorkPartner

Mecant was developed by the Automation Technology Laboratory at the Helsinki Uni-

versity of Technology in Finland. It is a fully independent hydraulic six-legged walking

machine that weighs about 1100kg (MECANT, the Walking Machine 2005). The hy-

draulic system used to operate the legs is powered by a 38 kW 2-cylinder ultra-light

aeroplane engine with air cooling. The leg mechanism is a 2-dimensional pantograph

that can rotate around the vertical axis. The control system consists of a computer

network connecting seven on-board computers , sensors for the vehicle body and legs,

and a portable operator interface with radio control and communication facilities. The

vehicle is controlled remotely by an operator.

The MECANT project has been highly successful and its design has been used to

develop a legged tree cutter (Galt 1998). The success of MECANT is based on the

motion control system that is capable of terrain adaptation.

By now the MECANT project has been finshed und is succeeded by WorkPartner, a

light weight service robot. WorkPartner works interactively with people and is designed

to carry out everyday tasks in outdoor environments (WorkPartner - Information 2005).

Two manipulator arms allow the robot to execute tasks.
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Figure 2.6: MECANT walking in the type of environment it was designed for.

A very interesting concept is the use of a hybrid locomotion system. It allows motion

with legs and/or wheels at the same time. Such a system is more complex than a

normal wheeled or legged robot, but there is an opportunity to combine the benefits of

both legged and wheeled robots.

Figure 2.7: WorkPartner
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2.6 Summary

Legged robots are one category of mobile robots. The first research on the gait of

animals can be dated back more than 100 years. At the end of the 19th century the

first ideas for walking machines existed, but it was not until the 1960’s that a number

of research groups succeeded in building legged robots. Some legged robots such as Big

Muskie were commercially used, but most of them were research projects that were

trying to develop the necessary mechanics and control systems.



Chapter 3

The Robug Projects

3.1 Chapter Overview

Robug IV, which is currently located at the University of Southern Queensland, was

not a single project, but one in a large series of projects. The Robug projects were

developed by the Mobile Robotics Group (MRG) at the University of Portsmouth and

Portech. This chapter gives an introduction to the 4 Robugs.

Figure 3.1: Robug I with creator Arthur Collie
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3.2 Robug I

The very first walking robot developed by the MRG, Robug I, was a six-legged walking

robot base powered by compressed air (Galt 1998). It is displayed in figure 3.1 with

the robot’s chief design engineer Professor Arthur Collie.

3.3 Robug II

Robug II was primarily not a walking but a climbing robot. Apart from its own

12kg weight it can carry another approximately 12kg up a vertical wall (Staunen, was

die Zukunft bringt 2003). When it climbs, Robug II first tests whether the necessary

adhesion exists between the moving leg and the wall before the next leg is moved.

Figure 3.2: Robug II

The robot has 4 legs, each powered by 3 pneumatic cylinders (Galt 1998). The legs

each had three degrees of freedom and were organised as a spider-like structure. The

body was split into two modules that were joined by a pivot with a pneumatic cylinder

to bend the body. This mechanical configuration allowed Robug II to become the first

known robot to be able to transfer autonomously from the floor to a vertical wall.



3.4 Robug III 15

Like Silex Robug II has one microcontroller per leg. They were programmed with rule-

based behaviours to provide the robot with advanced capabilities such as searching for

footholds.

3.4 Robug III

Robug III was inspired by spiders and crabs (Robug III 2000). Its body is 0.8m long,

0.6m wide and 0.6m high and has eight 1m long pneumatically powered legs. Although

being a walking robot it can climb walls like Robug II with its vacuum gripper feet.

Four joints in each leg allow the robot to navigate over uneven terrain with a maximum

speed of 6m per minute.

Figure 3.3: Robug III

The cylinders are driven by a pneumatic drive system at 1300kPa (Galt 1998). These

high pressures are used to achieve a high power-to-weight ratio which allows higher

payload capabilities while minimising the possibility of damage when operating in un-

structured environments.

Robug III uses two different walking strategies (Galt 1998). ‘Crab walking’ is used to

move sideways through narrow passages. Apart from this, the Robug is capable of a
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longitudinal, spider-like gait. Robug III exhibited many significant advances in legged

robot research, in particular the demonstrated power-to-weight ratio and climbing abil-

ities.

3.5 Robug IV

The latest Robug project is Robug IV. Like Robug III it is an eight-legged pneumatically

actuated robot. It is capable of autonomous omnidirectional walking and climbing and

supports highly modular Plug-N-Play features (Waterman, Hewer & Cooke n.d.).

Figure 3.4: Robug IV

The design is ‘spider-like’. Attached to a central body are eight legs. Each leg is

0.7m long and has four actuated joints. Vacuum gripper feet allow the Robug to climb

vertical walls. The abductor, hip, and knee joints operate at up to 14bar, and the ankle

joint at 8bar in order to achieve a high power-to-weight ratio.

The control of the robot is highly distributed. Thirty-two embedded controllers are
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used, one for each joint in each leg. After a long study Infineons (formerly Siemens) 20

MHz, 16-bit C167CR microprocessor was chosen. The CAN (Control Area Network)

standard was selected as an ideal method of providing communications between different

processors distributed on the robot. This standard is used in other harsh environments

such as under bonnets in the automotive industry and has been well proven.

3.5.1 Robug IV at the University of Southern Queensland

Robug IV was acquired by the Faculty of Engineering and Surveying at the University of

Southern Queensland. It is now dissassembled in the Advanced Control laboratory. The

vacuum gripper feet were replaced by rubber feet and the ankle joints were eliminated

so that each leg now only has three degrees of freedom.

At this stage it is not possible to operate Robug IV at the University of Southern

Queensland due to missing control software and the air compressor at the Advanced

Control Laboratory delivers only 6 bar and not the 14bar Robug IV was originally

designed for. This is the reason for this project – the power-to-weight ratio is too small

without any supporting mechanism.

3.6 Summary

Robug IV, which is currently located at the University of Southern Queensland, was

the latest out of four Robug projects. At this stage it is not possible to operate Robug

IV.



Chapter 4

Modelling a Leg

4.1 Overview

The legs of RobugIV already exist. The weight of the robot is to be supported by a new

add-on spring mechanism. A prototype of this mechanism exists, but it needs to be

optimised. This chapter deals with creating a model for one leg of Robug IV in order

to optimise the spring mechanism. Firstly the requirements and expectations of the

model will be stated and then the kinematics and kinetics of a leg will be discussed. A

complete source code of the model written in Mathematica can be found in appendix

B.

4.2 Requirements and Assumptions

A model should always be as detailed as necessary and as simple as possible. Details

are necessary to achieve the required precision, but a very complex model is difficult

to create and its computation takes a lot of time. The first step in creating a model of

Robug IV is to state its requirements:

• Number of modelled legs

All eight legs of RobugIV are equivalent. For that reason only a model of one
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leg needs to be made. In later work this model could be used to create a further

model of the whole robot, but this is not necessary in order to support the weight

of the robot.

Figure 4.1: degrees of freedom, side and top view

• Degrees of freedom

There are three cylinders for each leg, and therefore each leg has three degrees of

freedom as can be seen in figure 4.1. One cylinder moves the lower part of the

leg, and one the upper. A third cylinder in the torso rotates the whole leg. The

displacement or position of the leg can be described by three coordinates, one for

each cylinder. These are defined in table 4.1

Table 4.1: coordinates to describe the displacement of a leg

coordinate description

r3 length of the lower cylinder in the leg

r7 length of the upper cylinder in the leg

θ angle between leg and torso

• Applied forces

Forces on the rubber foot can be applied in any direction, as shown in figure 4.2.

They create forces within the leg and on the hip joints. However the component

Fθ does not effect the cylinders inside the leg and the spring mechanism. On a

smooth surface both horizontal force components equal 0.



4.2 Requirements and Assumptions 20

Figure 4.2: applied forces, side and top view

• Model dimension

Both cylinders inside the leg and the spring mechanism are in one plane. Neither

the angle θ nor the force component Fθ affects them. Hence there is no need to

make a three dimensional model. A two dimensional model can include all the

aspects that are important to the spring mechanism.

• Gravity

Gravity is a crucial factor. Without gravity there would be no need to design

a mechanism to support the leg. However, the effects of gravity on a complex

system like the RobugIV leg are difficult to model. The first model neglects the

weight of the leg and only considers the weight of the torso. As shown in chapter

5, this model does not explain the test results.

In order to achieve better results, a second model includes the effects of gravity

with some simplifications. It concentrates the mass in three points. Doing so

leads to results which are a lot more accurate.

• Inertia

A model could include dynamic effects or neglect them. Force equals mass times

acceleration. Assuming that the legs move only slowly, acceleration is close to 0

and the inertial forces are therefore negligible.

• Friction

Friction exists in every joint of the leg. Both models assume this friction to be
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negligible. This assumption is valid for well lubricated smooth joints.

• Input and output

In order to optimise the spring mechanism and limit the pressure in the cylinders,

the model needs to calculate the pressures in the cylinders. That is the output.

The pressures depend on the lengths of the cylinders, the mounting position of

the spring on the plates and the forces on the foot. These are the input variables.

Thus the model can be seen as a function for the pressures, depending on a

number of variables.

4.3 Kinematics

4.3.1 Definition of variables and constants

The leg can be described as a linkage made up of a number of bars and joints, a plate

and, of course, the springs. In order to describe the leg mathematically, a number of

variables and constants is defined. These can be found in figure 4.3. All the lengths

except for r3 and r7 are constant, while all the angles except for φ1 and φ6 are variable.

4.3.2 Dimensions

Drawings of the different parts of the legs were not available, so the only way to get

the dimensions of the leg was to measure them. Although this might not be the most

accurate way, it has the advantage that mistakes that other people have made are not

propagated. The measured dimensions can be found in table 4.2. The range of motion

Table 4.2: measured dimensions

r1 0.104m r2 0.334m r4 .098m

r5 0.057m r6 0.066m r9 .397m

a3 0.057m a8 0.074m b3 .007m

φ1
22
180π φ6 1.867

for the cylinders is 0.225m ≤ r7 ≤ 0.280m and 0.285m ≤ r3 ≤ 0.380m.
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Figure 4.3: definition of angles and lengths
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4.3.3 Equations

The kinematic problem could be solved analytically or numerically. Because of the high

number of non-linear equations it is more reasonable to choose an iterative method.

One method to derive the necessary equations is using ‘loop closure equations’ (Mabie

& Reinholtz 1987a).

For each position of the cylinders six unknown angles exist: φ2, φ3, φ4, φ5, φ7 and

φ8. φ9 and φ10 are not necessary to describe the position of the leg, so they can be

calculated later. The following equations can be derived:

r1 sinφ1 + r4 sinφ4 − r6 sin(φ5 + φ6 − π)

− r5 sinφ5 − b3 sin(φ3 − 0.5π)− a3 sin φ3 = 0 (4.1)

r1 cos φ1 + r4 cos φ4 − r6 cos(φ5 + φ6 − π)

− r5 cos φ5 − b3 cos(φ3 − 0.5π)− a3 cos φ3 = 0 (4.2)

r5 sinφ5 − r7 sinφ7 + a8 sin φ8 − (r3 − a3) sinφ3 + b3 sin(φ3 − 0.5π) = 0 (4.3)

r5 cos φ5 − r7 cos φ7 + a8 cos φ8 − (r3 − a3) cos φ3 + b3 cos(φ3 − 0.5π) = 0 (4.4)

r2 sinφ2 + a8 sinφ8 − r3 sinφ3 = 0 (4.5)

r2 cos φ2 + a8 cos φ8 − r3 cos φ3 = 0 (4.6)

A very efficient method to solve these equations numerically is the multi-variable New-

ton Method. A benefit of Mathematica is, that it has a function called FindRoot

built in that solves equations using Newton methods (Wolfram Research 2005a). After

using this method, φ9 can be calculated according to equation 4.7, where 16
180π is a

measured value.

φ9 = φ8 −
16
180

π (4.7)

φ10 is given by the equation:

φ10 = arctan
(

r1 sinφ1 + (r4 − n) sinφ4 − h cos φ4

r1 cos φ1 + (r4 − n) cos φ4 + h sinφ4

)
(4.8)

The signs of both numerator and denominator are very important to determine φ10 in

the correct quadrant, as the tangent function is π-periodic. Mathematica provides a

function that automatically takes care of the quadrants.
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4.3.4 Starting values

The Newton Method needs a starting value for every unknown. Different starting values

can lead to different results, if the set of equations has more than one solution. This

is the case for the leg as can be seen in figure 4.4. The left solution is correct, the

right solution solves the equation, but is physically impossible. Hence it is important

to choose a good set of starting values to obtain the correct results.

Figure 4.4: effect of a good and bad set of starting values

Another effect of good starting values is that they accelerate the calculation by de-

creasing the number of computations necessary to achieve a certain level of accuracy.

Table 4.3: starting values

variable starting value for value [rad]

start2 φ2 2.545

start3 φ3 2.767

start4 φ4 2.490

start5 φ5 1.491

start7 φ7 -0.4224

start8 φ8 4.247

It is highly desirable to have one set of starting values that works for the whole range

of motion. One idea is to use the results of the angles that positioned the cylinders

somewhere in the middle of their range of motion. Doing this for r3 = 0.3325m and

r7 = 0.2525m leads to the results shown in table 4.3. The source code can be found in
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appendix B. A test reveals that these values lead to the correct results for the complete

range of motion.

4.4 Springs

For every spring exists a characteristic relation between its length l and the applied

force F . In the easiest case this relation is linear and the spring can mathematically

be represented by the linear equation

F = k · (l − l0) (4.9)

where k is the spring coefficient and l0 the theoretical unstretched length of the spring.

l0 is not necessarily the length that the spring returns to when no external force is

applied, because in some cases the coils of the spring touch each other so that the

spring cannot return to the unstressed state and therefore remains longer than l0.

Each leg of the Robug uses two springs of the same kind. I did a series of measurements

to find out whether this linear model is valid for the Robug’s springs and to find values

for k and l0

Table 4.4: weight on and length of the first spring

weight [kg] length [m]

0.0 0.1050

0.8 0.1051

1.2 0.1051

1.5 0.1055

1.8 0.1063

2.2 0.10735

2.7 0.1090

3.2 0.1106

3.9 0.1128

I attached weights to the springs. The weights stretched the spring due to gravity and
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I measured both the mass of the weights and the length of the spring. The data can

be found in tables 4.4 and 4.5.

Table 4.5: weight on and length of the second spring

weight [kg] length [m]

0.0 0.1065

0.8 0.1065

1.2 0.1068

1.5 0.1068

1.8 0.1071

2.2 0.1081

2.7 0.1096

3.2 0.1112

3.9 0.1134

Analysis of this data leads to the result that a certain threshold force is needed before

the length of the spring changes. Once the length changes, the change is linear to the

applied force as shown in figures 4.5 and 4.6. The lines represent the mathematical

model. They can be found by using the methods of linear regression for that section,

where the length of the spring changes.

Figure 4.5: characteristics of the first spring
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Figure 4.6: characteristics of the second spring

The unstressed length of spring 1 is then l01 = 0.1008m and the unstretched length of

spring 2 is l02 = 0.1015m. The respective spring coefficients are k1 = 3195N/m and

k2 = 3239N/m.

F = F1 + F2 (4.10)

as the two springs are in parallel. Equations 4.9 and 4.10 can be combined to calculate

the overall k:

k = k1 + k2 = 6434N/m (4.11)

and the overall l0:

l0 =
l01 · k1 + l02 · k2

k1 + k2
= 0.10115m (4.12)

Knowing the spring parameters, only the length r10 of the springs is necessary to

calculate the spring force F18. r10 can be calculated as:

r10 = 0.00875m +
(
(r1 sinφ1 + (r4 − n) sinφ4 − h cos φ4)2

+ (r1 cos φ1 + (r4 − n) cos φ4 + h sinφ4)2
)−2

(4.13)

During the experiments the springs were measured from one end to the other. The

0.00875m is a correction term, as the springs sit on the bolt on one side. The bolt
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radius is 5mm and the coil diameter of the spring is 2.5mm. On the other side the

springs go through the middle of the bolt, so only half the coil diameter is added. That

makes 5 + 2.5 + 1.25 = 8.75mm.

Now the spring force can be calculated:

F18 = k · (r10 − l0) (4.14)

4.5 Kinetics

4.5.1 Forces

One way to derive the necessary equations is the force-balancing method. It requires

the free body diagrams of all parts of the leg. Cylinders can be modelled as bars with

a variable length. These free body diagrams are shown in figure 4.7.

Equations for body (1):

F1 + F4 + F5 = G1 + G4 (4.15)

F2 + F3 + F6 = 0 (4.16)

−F1r9 cos(φ9 − π) + F2r9 sin(φ9 − π)

+ G1lG1 cos(φ9 − π)− F5a8 cos(−φ8)

− F6a8 sin(−φ8) = G1 (lG1 cos φ9

+ hG1 cos(φ9 − 0.5π)) (4.17)

Equations for body (2):

− F10 + F14 + F13 = 0 (4.18)

−F11 + F15 + F12 = 0 (4.19)

F14r5 cos(π − φ5) + F15r5 sin(π − φ5)

+ F13r6 cos(φ5 − π + φ6)− F12r6 sin(φ5 − π + φ6) = 0 (4.20)
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Figure 4.7: free body diagram
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Equations for body (3):

− F9 + F11 = 0 (4.21)

−F8 + F10 = G2 + G5 (4.22)

F8r7 cos φ7 − F9r7 sinφ7 = −G2lG2 cos φ7 −G5(r7 − lG5) cos φ7 (4.23)

The forces F16 and F17 are of no interest for the model. Hence only the moment

balancing equation of body (4) is needed:

− F4r3 cos φ3 − F14(a3 cos φ3 + b3 sinφ3)

+ F3r3 sinφ3 + F15(a3 sinφ3 − b3 cos φ3) = G3lG3 cos φ3

+ G6(r3 − lG6) cos φ3 (4.24)

Equations for body (6):

− F6 + F9 + F7 cos φ2 = 0 (4.25)

−F5 + F8 + F7 sinφ2 = 0 (4.26)

The bearing forces of the plate (7) are not necessary for the model. For that reason

only the moment balancing equation needs to be considered. The spring force F18 is

already known as it can be directly obtained from the length of the spring r10.

F13r4 cos φ4 + F12r4 sinφ4 = −F18r1 sin(φ10 − φ1) (4.27)

In order to solve these equations the forces on the foot F1 and F2 must be given:

F1 = F 0
1 (4.28)

F2 = F 0
2 (4.29)

This leads to a set of 15 linear equations for 15 forces, F1 to F15. They can be combined

and expressed in the matrix form:

mat · −→F = −→
b (4.30)

The function LinearSolve[mat ,−→b ] can be used to solve this equation in Mathemat-

ica. It uses different methods depending on what kind of matrix is given (Wolfram
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Research 2005b). Knowing the forces F1 to F15 the cylinder forces and pressures can

be calculated.

4.5.2 Cylinder pressures

Figure 4.8: upper cylinder piston free body diagram

Figure 4.8 shows the free body diagram of the rod of the upper cylinder. The cylinder

force Fucyl can be evaluated as:

Fucyl = G5 sin φ7 + F9 cos φ7 + F8 sinφ7 (4.31)

The upper cylinder has a power factor of Aucyl =1.7 sq. in. (Clippard Instrument

Laboratory 2005a). In SI units this is Aucyl = 1.097 · 10−3m2. This makes the pressure

p7 in [bar]:

p7 =
Fucyl

Aucyl
=

Fucyl

1.097 · 10−3 · 105
= 0.00912(G5 sinφ7 + F9 cos φ7 + F8 sinφ7) (4.32)

Figure 4.9: lower cylinder piston free body diagram

Figure 4.9 shows the free body diagram of the rod of the lower cylinder. The cylinder
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force Flcyl can be evaluated as:

Flcyl = −(G6 sinφ3 + F3 cos φ3 + F4 sinφ3) (4.33)

The lower cylinder has a power factor of Alcyl =1.2 sq. in. (Clippard Instrument

Laboratory 2005b). In SI units this is Alcyl = 7.742 · 10−4m2. This makes the pressure

p3 in [bar]:

p3 =
Flcyl

Alcyl
=

Flcyl

7.742 · 10−4 · 105
= −0.0129(G6 sinφ3 + F3 cos φ3 + F4 sinφ3) (4.34)

4.6 Weight of the leg

The equations in section 4.5 include forces due to gravity. A leg was measured to have

a total mass of 3.7kg. This information alone doesn’t help very much as the leg is not

a point mass, it is a complex system of a number of parts. The reduction to a point

mass is not reasonable as there is relative movement between the parts of the leg.

However, it was not possible to disassemble the whole leg in order to measure the mass

and centre of gravity of every single part. A compromise is to include the weights of

the major parts.

The weight of the lower part of the leg is represented by G1. Each cylinder can be

represented by two masses, one for the rod and one for the case. For the upper cylinder

these weights are G5 and G2. For the lower cylinder these weights are G6 and G3. The

weight of bar (5) in figure 4.7 can be relocated and described by half its weight, G4.

While this relocation does not change the results it simplifies the equations.

The values for all weights and their centres of gravity can be found in table 4.6. All

values are estimates, as a complete disassembly and measurement of the leg was not

possible.
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Table 4.6: weight distribution

weight value [N] location

G1 5.886 lG1 =0.165m and hG1 =0.03m

G2 13.2435 lG2 =0.09m

G3 11.772 lG3 =0.15m

G4 1.962

G5 0.4905 lG5 =0.035m

G6 0.981 lG6 =0.065m

4.7 Summary

The model of a leg is the combination of all the steps and equations described in this

chapter. It can be seen as a function for the cylinder pressures depending on the

position of the cylinders and the spring and on the forces on the foot of the leg, or:

p = p(r7, r3, n, h, F 0
1 , F 0

2 ) (4.35)

This function is used to optimise the add-on spring mechanism in chapter 6.



Chapter 5

Model Validation

5.1 Overview

The model described in chapter 4 is based on a number of assumptions. For that reason

an experiment was performed before using the model for optimisation. This chapter

deals with designing and performing such a test in order to verify the accuracy of the

model.

Firstly the test arrangement is discussed. The necessary modifications of the model are

described, before the results of the test and model are compared.

5.2 Test arrangement

It was not possible to operate the Robug at this stage of the project. For that reason

a special test arrangement had to be designed. A leg was taken from the robot and all

its valves were opened. It was mounted upside down in order to simulate the weight of

the robot by attaching weights to the foot. The lower cylinder was fixed to different

lengths r3.



5.3 Modifications of the model 35

Figure 5.1: test arrangement

A special plate was used which allows the attachment of springs in 8 different positions.

These positions can be described in n,h-coordinates and are listed in table 5.1.

Table 5.1: spring positions on the plate used in the test arrangement

position 1 2 3 4 5 6 7 8

n in [m] 0 0.014 0.028 0.042 0.056 0.070 0.084 0.098

h in [m] 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057

5.3 Modifications of the model

In the test arrangement the model is mounted upside down. In the model this effect

can be reached by changing the direction of gravity, or using negative weights. The

weight distribution of the modified model is shown in table 5.2.
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Table 5.2: modified weight distribution

weight value [N] location

G1 -5.886 lG1 =0.165m and hG1 =0.03m

G2 -13.2435 lG2 =0.09m

G3 -11.772 lG3 =0.15m

G4 -1.962

G5 -0.4905 lG5 =0.035m

G6 -0.981 lG6 =0.065m

The plates to mount the springs are included by setting the height h to h = 0.057m

and by expressing the length n as a function of the spring position k:

n(k) = 0.014(k − 1)m for k = 1, 2, ..., 8 (5.1)

Finally the kinetic boundary conditions need to be modified. The original model as-

sumed both foot forces F1 and F2 to be known (See equations 4.28 and 4.29). The aim

of the modified model is to calculate the weight that needs to be applied depending on

a certain position of the leg and springs.

As the valves of the upper cylinder were removed, the first boundary condition is that

the pressure in the upper cylinder equals 0. Using equation 4.31 that means:

F9 cos φ7 + F8 sinφ7 = −G5 sinφ7 (5.2)

The weights only apply a vertical force on the foot. So the second boundary condition

is that the horizontal force component F2 become 0.

F2 = 0 (5.3)
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5.4 Comparison of model and experiment

Table 5.3: lower cylinder fixed at r3 = 0.291m, spring located in position k = 1

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

229 3.9 4.5 3.50

231 3.6 4.6 3.49

235 3.4 4.7 3.47

241 3.2 4.8 3.41

259 2.7 5.2 3.10

273 2.2 5.8 2.70

Figure 5.2: comparison of test and model for r3 = 0.291m and the springs located in

position 1

The tests were performed before the modified model was evaluated. A string was used

to fix the lower cylinder to different lengths. Weights were attached to the foot which

caused the leg to shift to a different position. The position was measured for each

weight load.
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Table 5.4: lower cylinder fixed at r3 = 0.287m, spring located in position k = 3

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

228 2.4 3.3 2.25

231 2.2 3.4 2.25

253 1.9 4.1 2.14

272 1.2 5.1 1.78

278 0.9 6.0 1.58

288 0.0 15.6 0.72

Figure 5.3: comparison of test and model for r3 = 0.287m and the springs located in

position 3

The tables in this section list the test data and corresponding model results. After

the tests the modified model was used for the leg positions that were found in the

tests. In order to compare the calculated foot forces with the attached masses, the foot

forces in the model were transformed into masses by using the formula F = mg where

g = 9.81m/s on earth. In the figures that are used to visualise the data in the tables,

the masses are transformed into forces.
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Table 5.5: lower cylinder fixed at r3 = 0.287m, spring located in position k = 5

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

227 1.0 2.0 1.00

265 0.9 3.5 0.89

281 0.7 5.9 0.45

289 0.0 19.8 -1.25

Figure 5.4: comparison of test and model for r3 = 0.287m and the springs located in

position 5

The tables include a fourth column that represents a model that does not include the

weight of the leg. This is done to examine whether or not the weight of the leg can be

considered negligible. Such a model can be easily derived from the modified model by

setting G1 = G2 = G3 = G4 = G5 = G6 = 0. The test results clearly indicate that it is

necessary to include the weight of the leg. The results of the simplified model are not

consistent with the test results. In the case of small r3 values, the necessary attached

mass actually increases, while the test shows a decrease.
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Table 5.6: lower cylinder fixed at r3 = 0.336m, spring located in position k = 1

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

286 0.0 2.0 0.09

275 0.6 2.3 0.73

270 0.9 2.4 0.97

264 1.2 2.6 1.23

253 1.5 2.9 1.65

246 1.8 3.0 1.90

237 2.2 3.2 2.21

229 2.6 3.4 2.51

Figure 5.5: comparison of test and model for r3 = 0.336m and the springs located in

position 1

The accuracy of this model is a lot better. The average of the absolute values of the

differences between the model and the test result is 0.16kg. A closer look at the tables

reveals even more. Tests were done for different areas within the whole range of motion.

The results clearly indicate that the deviation differs depending on the position.
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Table 5.7: lower cylinder fixed at r3 = 0.336m, spring located in position k = 3

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

280 0.0 1.7 0.04

265 0.6 1.9 0.59

253 0.9 2.1 0.92

241 1.2 2.3 1.20

228 1.5 2.4 1.52

Figure 5.6: comparison of test and model for r3 = 0.336m and the springs located in

position 3

The difference between model and test is especially large for small values of r3. Looking

only at values of r3 ≥ 0.300m, the average of the absolute values of the differences

between the model and the test becomes 0.063kg. This can be clearly seen in the

figures in this section. The dots represent the tests, the continuous graphs represent

the model.
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Table 5.8: lower cylinder fixed at r3 = 0.336m, spring located in position k = 5

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

275 0.0 1.5 -0.05

259 0.2 1.5 0.25

249 0.4 1.5 0.39

238 0.5 1.5 0.52

Figure 5.7: comparison of test and model for r3 = 0.336m and the springs located in

position 5

While the model is very accurate for medium to large values of r3, it needs to be treated

carefully for large values of r3. For that part of the range of motion it is difficult to tell

whether the model or the test arrangement is inaccurate. Slightly wrong measurements

of the parts of the leg could affect the model. Or it could be the test arrangement as

for small values of r3 the foot stands close to the hip causing smaller lever arms and

due to the rounding of the foot the weights couldn’t be attached right at the tip of the

foot.
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Table 5.9: lower cylinder fixed at r3 = 0.381m, spring located in position k = 1

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

285 0.0 1.3 0.12

277 0.4 1.6 0.46

265 0.8 2.0 0.94

256 1.2 2.3 1.29

246 1.6 2.7 1.71

239 2.0 3.0 2.04

Figure 5.8: comparison of test and model for r3 = 0.381m and the springs located in

position 1

The last parameter to test was the spring position. Different spring positions were used

in the test arrangement for the same position of the upper cylinder. The tests show

that the modelling of the springs and their positions is accurate as no association can

be seen in the tables between an increased deviation and a particular spring position.
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Table 5.10: lower cylinder fixed at r3 = 0.381m, spring located in position k = 4

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

273 0.0 1.2 0.08

264 0.2 1.3 0.27

254 0.4 1.5 0.48

245 0.6 1.7 0.66

237 0.9 1.8 0.85

Figure 5.9: comparison of test and model for r3 = 0.381m and the springs located in

position 4
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Table 5.11: lower cylinder fixed at r3 = 0.381m, spring located in position k = 4

r7 [mm] measured weight [kg] simplified model [kg] model [kg]

267 0.0 1.1 0.05

255 0.2 1.3 0.23

238 0.4 1.4 0.47

Figure 5.10: comparison of test and model for r3 = 0.381m and the springs located in

position 5

5.5 Summary

The model that includes the weight of the leg is accurate, especially for large values

of r3. For small values of r3 the model should be treated with care. Different spring

positions do not affect the accuracy of the model.



Chapter 6

Design of the mechanism

6.1 Overview

This chapter deals with the design of the spring mechanism by using the model of the

leg. Parameters that could be changed are the spring coefficient, the unstressed length

and the position in which the springs are mounted on the plates. The aim is to find

a configuration that allows the Robug to be operated on the 6-bar air supply that is

available at the USQ lab.

One attempt is to minimise the pressure in the cylinders over the whole range of motion.

A second attempt is to define a typical range of motion and find a spring configuration

that allows the Robug to operate at an acceptable pressure level.

The last section deals with the predicted behaviour of the leg.

6.2 Overall Optimisation

The first attempt was to find the spring position that minimises the pressure in the

cylinders for the whole range of motion. The range of motion for the cylinders is

0.225m ≤ r7 ≤ 0.280m and 0.285m ≤ r3 ≤ 0.380m.
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It is not possible to calculate the derivative for the pressures because of the model being

numerical. For that reason a grid was put over the range of motion and the pressures

were calculated for every grid point. The highest calculated pressure is the pressure

needed to use the whole range of motion of the robot.

The first problem with this approach is that it takes a considerable amount of time to

calculate the pressures for every grid point. For a grid that uses a point every millimeter

5225 points need to be evaluated for each spring configuration.

The second and main problem is that it is not possible to find a position where the

needed pressure is below 10bar. For that reason the results of this approach are worth-

less for the design of the spring mechanism. However, they do show that it is not

possible to use the whole range of motion of the Robug with a 6bar air supply.

6.3 Limited range of motion approach

6.3.1 Typical range of motion

As it is not possible to use the whole range of motion, it is necessary to define a typical

range of motion that will normally be used. The robot needs to be able to stand up and

walk. In order to prevent feet sliding over the ground it is desirable that the feet do not

move horizontally. To prevent horizontal movement an association between r3 ad r7

needs to be found. This limits the degrees of freedom to 1. For 0.235m ≤ r7 ≤ 0.270m

a good approximation is:

r3 = 14.071m−1r2
7 − 6.345r7 + 1.028m (6.1)

which makes 0.314m ≤ r3 ≤ 0.341m. A benefit of this range of motion is the avoidance

of those small r3 values, for which model and test didn’t match. An animation of this

range of motion can be found on the attached CD-ROM.
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6.3.2 Types of motion

There are three different types of motion for the Robug. They differ in the number of

legs used simultaneously and in the forces on the feet.

• The first one is standing up. This means lifting the torso off the ground. All

8 legs can be used to stand up. The mass of a leg was measured to be 3.7kg,

and the torso 22.2kg. This makes the total mass 51.8kg. Distributing the weight

equally on all 8 legs, the foot force F1 becomes:

F1 =
51.8
8

· 9.81 = 63.52N (6.2)

For typical conditions the horizontal foot force can be assumed to be F2 = 0N.

• The second one is standing. In order to walk the robot must be able to stand

on a number of legs while the other legs are shifted. Typically the Robug could

stand on 6 legs (3 on each side) while two legs are up in the air. Distributing the

weight equally on 6 legs, the foot force becomes:

F1 =
51.8
6

· 9.81 = 84.7N (6.3)

Once again it can be assumed that F2 = 0N. A typical standing position is

r7 = 0.265m. Using equation 6.1, r3 becomes 0.3347m.

• The final one is lifting a leg off the ground. This needs to be done to take

a step. The starting position is the standing position. In order to lift the leg

a reasonable amount off the ground the range of motion taken into account is

0.265m ≥ r7 ≥ 0.250m. Again equation 6.1 is used to calculate r3.

When lifted, the foot does not touch the ground, and therefore F1 = F2 = 0N.

6.3.3 Selection of a position

The approach is to find the position for the existing springs that minimises the pressures

for the previously described motions. If the results are not good enough springs with

different parameters could be tried.
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The first step is to program a module maxp(n, h) which calculates the largest pressures

that occur over the limited range of motion depending on the spring position. The

source code of this module can be found in appendix B.5.

The internal variable zylmax describes the maximum pressure. The pressures are

calculated for all three types of motion. Using a step size of 2mm, 25 points need to

be evaluated. At each point the absolute cylinder pressures z3 and z7 are compared

with the absolute value of zylmax. If one of them is larger than the absolute value

of zylmax, zylmax is assigned a new value. Absolute values are used because the

pressures can be both negative and positive as the cylinders are two-way cylinders.

The additional variables zyl7pos, zylnummer and art are used to store additional

information about in which cylinder the maximum pressure appears, at what position

and during wich type of motion.

Figure 6.1: plot of the absolute value of maxp for −0.030m ≤ n ≤ 0.070m and 0.020m ≤

h ≤ 0.110m.
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The next step is to examine the maximum pressures for different values of n and h.

Having the possible size of the plates in mind, the area which is searched for a spring

position will be limited to −0.030m ≤ n ≤ 0.070m and 0.020m ≤ h ≤ 0.110m.

Figure 6.1 is a contour plot of |maxp|. The black strip indicates the area of the smallest

absolute values of maxp. The centre of the black strip can be approximated by a linear

function:

n(h) = 1.53h− 0.0908m (6.4)

Using equation 6.4 maxp(n, h) can be plotted for 0.020m ≤ h ≤ 0.110m as shown in

figure 6.2.

Figure 6.2: plot of the absolute value of maxp using the association shown in equation 6.4.

According to the plot, the position that minimises the necessary pressure supply is

h ≈ 0.093m and n ≈ 0.051. However there is a difference between a mathematical result

and a good engneering solution. A few more things need to be taken into consideration

before choosing a position for the springs.

One thing that needs to be considered is the force that is necessary to attach the

springs to the plates. The way the mechanism is designed the length r10 of the springs

is always longer than the lengths when no external forces are applied. This means that

the springs need to be stressed in order to get them into position for attaching them
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to the plates. The force necessary to stretch them that much may not be too high.

This force is also the force that will always remain in the springs as long as they are

attached to the legs. r10 is at a minimum when r7 = 0.280m and r3 = 0.285m. This is

the position in which the springs should be installed.

Another thing that needs to be considered is the maximum stress of the springs. If it

is too large the forces could become so high that the mechanism breaks. The spring

force is largest for r7 = 0.225m and r3 = 0.285m.

Using equation 6.4 both the minimum and maximum spring force can be plotted for

different spring positions as shown in figure 6.3.

Figure 6.3: plot of the minimum and maximum spring force depending on the spring

position.

Figures 6.2 and 6.3 show that there is no such thing as the ‘best’ position to attach the

springs to the plates. An increase in height h improves the maximum of the cylinder

pressures, but the price to pay is a higher spring force.

A compromise needs to be made that limits the cylinder pressures and does not result

in too large spring forces. A good value to select is h = 0.060m. Using equation 6.4

makes n = 0.001m. This position limits the maximum pressure to 4.7bar. It occurs in

cylinder r7 at the highest point the leg is lifted to in the described range of motion.
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4.7bar is a good value as the compressor at the USQ laboratory produces 6 bar. That

gives a safety factor of 1.28 which should compensate for dynamic effects and friction

that were not considered in the model.

Figure 6.4: position with the largest spring force value

With this position the combined spring force is limited to 584N. Two similar springs

are used in a parallel design, so the maximum force in each spring becomes 292N.

Figure 6.5: position with the smallest spring force value

The smallest force in each spring is 131N. It needs to be applied in order to attach each

spring. A normal person is able to apply a force of 131N, so this is an acceptable value.

6.4 Summary

It is not possible to design a spring mechanism that allows use of the whole range of

motion with a 6bar air supply. That is why a typical range of motion is defined in

equation 6.1.

Three types of motion were considered: standing up, standing and lifting a leg off

the ground. A good position to limit the maximum pressures is n = 0.001m and

h = 0.060m.



Chapter 7

Manufacture and Assembly of

the exoskeletal system

7.1 Chapter Overview

This chapter deals with the manufacturing of the add-on spring mechanism. Drawings

need to be made of the necessary parts, they need to be manufactured and assembled.

7.2 Necessary parts

The mechanism developed in chapter 6 uses the springs and bolts that already existed

previously to this project. As a result the only parts that need to be manufactured are

the plates to which the springs will be attached.

The parts need to have the correct holes allowing them to be assembled with the rest

of the leg. Figures 7.1 and 7.2 show technical drawings of the two plates.
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Figure 7.1: technical drawing of the first plate

Figure 7.2: technical drawing of the second plate
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7.3 Production and assembly

It was possible to have the plates manufactured at the Mechanical Workshop at the

University of Southern Queensland. However, the existing manufactured plates have

the holes for the springs in the wrong position.

This is due to an error in the model of the leg. This error was only found after the work

request form had already been submitted. When the error was corrected and the new

position for the springs was found not enough time was left to manufacture another set

of plates.

However, the plates that already exist are very similar to the ones designed in chapter

6. The first spring position is n = 0.000m and h = 0.0057m compared with n = 0.001m

and h = 0.0060m. This difference is so small that it is not absolutely necessary to have

the new plates manufactured.

The existing plates are already assembled, so no additional assembly had to be done.

Figure 7.3 shows a photo of the assembled mechanism.

Figure 7.3: spring mechanism
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7.4 Summary

The new plates were designed, but due to a modelling error plates with incorrect

positions were manufactured. However, the existing plates have a position similar to

the one on the new plates.



Chapter 8

Further analysis of the final

mechanism

8.1 Overview

After defining the parameters of the mechanism further analysis needs to be done. In

chapter 6 the maximum pressure for the typical range of motion was found to be 4.7

bar. However, what exactly will the pressures be like for the three different types of

motion?

So far the dynamic equilibrium was calculated for each position, but it was not checked

whether the equilibrium is stable. This is very important because if a position was

unstable, the leg would automatically shift to the closest stable position. This could

make it impossible to use the Robug. Another danger is that positions could exist where

the leg locks up, where it is not possible to move the leg by changing the pressures in

the cylinders. If such positions exist they need to be avoided.

The above mentioned aspects will be investigated for both the typical range of motion

and the whole range of motion.
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8.2 Estimated pressures

8.2.1 Typical range of motion

Maps can be plotted that show the pressures in both cylinders for the three different

types of motion.

Figure 8.1: pressures in cylinders r7 (black) and r3 (gray) when standing up for the typical

range of motion, n = 0.001m and h = 0.060m. The horizontal lines indicate ±5bar.

Figure 8.1 shows the pressures when standing up. The maximum pressure is approxi-

mately 4.0bar. This corresponds to a safety factor of 1.5. It is larger than the overall

safety factor of 1.28 which is good because the dynamic forces of the torso need to be

compensated for when it is lifted up.

The typical standing position was assumed to be r7 = 0.265m. Figure 8.2 shows that

the robot should be able to stand on just 6 legs at any point of the typical range of

motion.

Figure 8.3 shows the pressures when a leg is lifted off the ground. The pressure in

cylinder r3 becomes almost 0 as only the weight of the lower part of the leg rests on it.

The higher the leg is lifted the larger is the pressure in cylinder r7. For a wide range

of motion the pressure is below 5 bar, so it is not a problem to lift the leg high enough

to avoid obstacles.
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Figure 8.2: pressures in cylinders r7 (black) and r3 (gray) when standing for the typical

range of motion, n = 0.001m and h = 0.060m. The horizontal lines indicate ±5bar.

Figure 8.3: pressures in cylinders r7 (black) and r3 (gray) when lifting a leg for the typical

range of motion, n = 0.001m and h = 0.060m. The horizontal lines indicate ±5bar.

8.2.2 Whole range of motion

Knowing that it will be possible to operate the Robug on a 6bar air supply using the

the typical range of motion the next question is how much of the whole range of motion

is accessible?

Three dimensional plots can be created. Each plot shows the pressure of a cylinder for

a certain type of motion. It depends on the positions r3 and r7.
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Figure 8.4: pressure in cylinder r7 when standing up. n = 0.001m and h = 0.060m.

Figure 8.5: pressure in cylinder r3 when standing up. n = 0.001m and h = 0.060m.

Figures 8.4 and 8.5 show that almost the whole range of motion will be accessible when

Robug IV is standing up. The highest pressures are necessary for large values of r3,

that is, when the feet stand far away from the torso.
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Figure 8.6: pressure in cylinder r7 when standing. n = 0.001m and h = 0.060m.

Figure 8.7: pressure in cylinder r3 when standing. n = 0.001m and h = 0.060m.

The pressures that are necessary to stand on 6 legs are similar to those when standing

up as figures 8.6 and 8.7 show. A wide range of motion is accessible, which can be

approximately described by r3 < 0.35m.
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Figure 8.8: pressure in cylinder r7 when lifting a leg off the ground. n = 0.001m and

h = 0.060m.

Figure 8.9: pressure in cylinder r3 when lifting a leg off the ground. n = 0.001m and

h = 0.060m.

The necessary pressure in cylinder r3 is as expected very low when lifting a leg off the

ground as figures 8.4 and 8.5 show. The whole range of motion is available to r3 for
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any value of r7, but r7 is limited approximately to r7 > 0.24m.

8.3 Stability

A good analogy for the importance of stability is a ball on top of a hill. It will roll

down to one side or the other, although the top of the hill is a horizontal point. This is

because although the ball is in a state of equilibrium on top of the hill, this equilibrium

is unstable.

Something similar could exist for the cylinders of the robug. Figure 8.2 shows an

extreme value for the pressure in cylinder r7, but does that mean that this position is

unstable?

Figure 8.10: schematic drawing of a two-way cylinder

Figure 8.10 shows a schematic drawing of a two-way cylinder. The pressures in the

chambers are p1 and p2, F is the external force and the area of the piston is A. Assuming

A to be the same for both chambers the equilibrium is given by:

F

A
= p1 − p2 (8.1)

By defining an external pressure pex = F/A and an internal pressure pin = p1 − p2

equation 8.1 can be written as:

pex = pin (8.2)

The lengths j and k can be calculated to be j = ri,max − ri and k = ri − ri,min where

i = 3, 7.

Assuming that both valves are closed and that the temperature remains constant for

small changes in j and k, figure 8.11 shows a schematic plot of how pin changes with j.
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Figure 8.11: difference between a stable position and an unstable one

If pex > pin for a slightly increased value j0+∆j, and if pex < pin for a slightly decreased

value j0 −∆j the position is stable. This is so because, for any small disturbance, the

forces change in a way so that the cylinder returns to the balanced position. This

means, an equilibrium is stable if:

dpex

dj

∣∣∣∣
j=j0

>
dpin

dj

∣∣∣∣
j=j0

(8.3)

⇔ −dpex

dri

∣∣∣∣
j=j0

>
dp1

dj

∣∣∣∣
j=j0

− dp2

dj

∣∣∣∣
j=j0

(8.4)

⇔ −dpex

dri

∣∣∣∣
j=j0

>
dp1

dj

∣∣∣∣
j=j0

+
dp2

dk

∣∣∣∣
j=j0

(8.5)

pex does not exist in the form of a continuous function, so it is not possible to calculate

its derivative. But it can be approximated:

−dpex

dri

∣∣∣∣
j=j0

≈ −pex(ri,0 + ∆ri)− pex(ri,0)
∆ri

=
pex(ri,0)− pex(ri,0 + ∆ri)

∆ri
(8.6)

where ∆ri is a small value, e.g. 0.0001m. Assuming that the valves sit right on the

cylinder and are shut and assuming that the temperature is constant, the ideal gas law

can be used for p1:

p1 · j =
R · T ·m

A
= const. (8.7)

This makes the derivative at the point j = j0:

dp1

dj

∣∣∣∣
j=j0

= −R · T ·m
j2

∣∣∣∣
j=j0

= −p1(ri,0)
j

= − p1(ri,0)
ri,max − ri

(8.8)

The same procedure can be used for p2:

p2 · k =
R · T ·m

A
= const. (8.9)
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⇒ dp2

dk

∣∣∣∣
j=j0

= −R · T ·m
k2

∣∣∣∣
j=j0

= −p2(ri,0)
k

= − p2(ri,0)
ri − ri,min

(8.10)

Substituting and rearranging the terms in equation 8.5 we get:

pex(ri,0)− pex(ri,0 + ∆ri)
∆ri

> − p1(ri,0)
ri,max − ri

− p2(ri,0)
ri − ri,min

(8.11)

⇔ σi =
pex(ri,0)− pex(ri,0 + ∆ri)

∆ri
+

p1(ri,0)
ri,max − ri

+
p2(ri,0)

ri − ri,min
> 0 (8.12)

This stability condition can be used for both cylinders:

σ7 =
pex(r7)− pex(r7 + ∆r7)

∆r7
+

p1(r7)
0.300m− r7

+
p2(r7)

r7 − 0.225m
> 0 (8.13)

σ3 =
pex(r3)− pex(r3 + ∆r3)

∆r3
+

p1(r3)
0.380m− r3

+
p2(r3)

r3 − 0.285m
> 0 (8.14)

8.3.1 Typical range of motion

The inequalities 8.13 and 8.14 can be evaluated for the typical range of motion in order

to test the stability of each type of motion.

Figure 8.12: stability of cylinder r7 (black) and cylinder r3 (grey) when standing up

The pressures p1 and p2 are unknown, only their difference pin = pex is known. A

possible configuration is to set the smaller one of p1 and p2 to atmospheric pressure,

≈ 1bar. This means:

For pex ≥ 0 : p1 = pex + 1bar and p2 = 1bar (8.15)
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For pex < 0 : p1 = 1bar and p2 = 1bar− pex (8.16)

Figures 8.12 to 8.14 show the results for this configuration. σ7 and σ3 are greater than

0 for every position of the typical range of motion, so every position is stable and at

least this range of motion is safe to operate in.

Figure 8.13: stability of cylinder r7 (black) and cylinder r3 (grey) when standing

Figure 8.14: stability of cylinder r7 (black) and cylinder r3 (grey) when lifting a leg off the

ground

The source code that is needed to create the plots can be found in appendix B.7. As

r3 is a function of r7 for the typical range of motion, ∆r3 is calculated depending on

∆r7.
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8.3.2 Whole range of motion

The stability could be mapped for the whole range of motion in a similar way in which

it was developed for the typical range of motion. However there is no point in modelling

the stability over the whole range as in practice some parts of the range of motion are

inaccessible.

8.4 Dead points

Depending on the design some mechanism can lock. A point at which that happens is

called a dead point. The four-bar linkage shown in figure 8.15 for example stalls in the

dashed position if link 2 is driven (Mabie & Reinholtz 1987b).

Figure 8.15: 4 bar linkage

The legs of Robug IV were originally designed in a way that prevents stalling in a

position. The added spring mechanism does not change this as the kinematics of the

leg remain unchanged. During the tests no configuration could be found that made the

leg lock.

8.5 Summary

The further analysis of the spring mechanism shows that it will not only be possible

to operate the Robug using the typical range of motion, but a more extended one is

possible.

The leg with its spring mechanism is designed in a way that is stable and does not lock.



Chapter 9

Conclusions and Further Work

9.1 Achievement of Project Objectives

The following objectives have been addressed in this project:

Literature review of legged robotics

An investigation into legged robotics was carried out. Chapter 2 gives an overview

of the history of legged robotics and introduces a number of legged robots that

have been built.

Background and historical development of the Robug projects

The Robug that this project was based on is Robug IV, the fourth robot in a

series of legged robotics projects. Chapter 3 introduces all 4 Robugs that have

been built so far.

Design of an exoskeletal system to reduce the cylinder loads

A spring mechanism was developed that effectively reduces the cylinder loads.

Chapter 4 deals with the development of the necessary model. In chapter 6 the

design process is described.

Modelling the behaviour of this system on Robug

Chapter 4 describes the development of the model. It was used to investigate
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several aspects of the behaviour of the exoskeletal system. Chapter 8 describes

the results. It will be possible to operate the Robug using a wide range of motion.

Manufacture and assembly of the exoskeletal system

Chapter 7 gives information about the manufacture of the spring mechanism.

Due to an error within the model not enough time was left to manufacture the

correct plates, but plates similar to these already existed and were assembled.

Test and quantification of the behaviour of the system

A test arrangement was used to run several tests. These are described and com-

pared with the model in chapter 5. The model was found to be accurate for most

cases. It was not possible to test the final system on the Robug itself, as the

necessary software to operate the cylinders was not available at the completion

date of this project.

9.2 Further Work

There are several more aspects of the new exoskeletal system that could not be ad-

dressed due to time constraints and due to the fact that a working control system and

software for the Robug did not exist.

9.2.1 Test and quantification of the final system

To exactly quantify the behaviour of the new exoskeletal system it is necessary to test

the system on the Robug itself. This could not be achieved as the necessary software to

run such a test could not be completed before the completion date of this project. Tests

were performed with a passive leg in a different environment as described in chapter 5,

but these cannot completely replace a test on the Robug.
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9.2.2 Other modes of operation

In this project the Robug was always assumed to be in a horizontal position. But what

happens when the Robug climbs a hill or walks down stairs? This would have been

another very interesting aspect to include in this project.
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Figure A.1: Project Specification
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B.1 Introduction

This appendix consists of different source codes written in Mathematica. The main

code for the model can be found in section B.3. Most of the other programs use the

model code as a subroutine.

The variables used are explained along with the source code.

B.2 Starting values

This is a little routine that calculates starting values for the angles φ2, φ3, φ4, φ5, φ7

and φ8. The values for starti are guesses.

Table B.1: nomenclature

expression explanation

starti guessed starting values

ri lengths of links

ai, bi partial lengths

φi angles

erg1 result for the angles
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Figure B.1: source code to calculate the starting values

B.3 Model

This is the main code of the model. It defines a routine p in which all the kinematics

and kinetics are calculated. It also includes the option to create a sketch of the leg at

the position that is evaluated.
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Figure B.2: model source code page 1
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Figure B.3: model source code page 2
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Figure B.4: model source code page 3
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Table B.2: Nomenclature for the model. Protected expressions can only be seen within the

model they are used in.

expressions explanation

starti calculated starting values

p module that calculates the mechanics

n, h position of the spring on the plates

F1, F2 forces on the foot

r7 lengths of the upper cylinder

r3 lengths of the lower cylinder

ri lengths of links

ai, bi partial lengths

φi angles (protected)

erg1 result for the angles (protected)

punkti coordinates of end points of links

listi lists of end points to make a sketch

li, height1 lengths to describe the positions of weights

gi weights

s equivalent spring force

mat matrix for the force equations

b vector (right side of the force equations, protected)

kraft force vector (contains F1 to F15)

zi cylinder pressures

grafik plot / do not plot a sketch of the leg

B.4 Model Validation

B.4.1 Modified model

A few modifications had to be made to make the test arrangement and the model com-

parable. The module that calculates the modified mechanics is called modified(r7, r3, n),

where n describes the spring position, n = 1, 2, ..., 8.
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Figure B.5: modified model source code page 1
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Figure B.6: modified model source code page 2
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Figure B.7: modified model source code page 3

B.4.2 Comparison of model and test

Figure B.8 shows the source code that creates one of the plots which compares the

model with the test arrangement results. All comparison plots use a similar source

code.

Table B.3: Additional nomenclature for the comparison plots.

expressions explanation

versuch list of all test arrangement data

vers list of selected test arrangement data

modell list of corresponding model data
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Figure B.8: comparison of model and test source code

B.5 Mechanism design

This code first defines a module maxp(n, h) which gives the maximum pressures of the

typical range of motion for a given spring position. This module is then used to plot

figures 6.1 and 6.2.
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Figure B.9: maximum pressure source code

Table B.4: Additional nomenclature for the max. pressure source code.

expressions explanation

maxp(n, h) module that calculates the maximum pressure

zylmax maximum pressure

zylnummer cylinder in which zylmax occurs

zyl7pos position at which zylmax occurs

art type of motion during which zylmax occurs
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B.6 Pressure plots

B.6.1 Typical range of motion

Figure B.10: source code used to plot the pressures for the typical range of motion
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B.6.2 Whole range of motion

Code similar to the one shown in figure B.11 was used to plot the pressures in both

cylinders for all three types of motion.

Figure B.11: source code used to plot the pressures for the whole range of motion

B.7 Stability
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Figure B.12: source code used to examine the stability of a position within the typical

range of motion
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