
University of Southern Queensland
Faculty of Engineering & Surveying

Remote Access of Automated Test Equipment

A dissertation submitted by

Nathan John Hetherington

in fulfillment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems) &
Bachelor of Information Technology (Applied Computer Science)

Submitted: October,2004

i

Abstract

The control of Programmable Instruments using the GPIB, is possible through the use
of Application Programmers Interface (API). This thesis investigates the possibilities of
using a web server to provide remote access, to allow interactive control of the instruments
in an Automated Test Equipment(ATE) rack.

Fully documented programs where developed using the lcc-win32 software develop-
ment environment, and tested using an Apache web server. Programs and web pages
where developed for all the instruments included in the ATE Rack.

A web server to host all the pages developed for interaction with the ATE rack
was configured to provide a password controlled system. But due to security issues
regarding the PC that the equipment is attached to, connection to the Internet was not
possible. But some tests where performed to simulate the various components that the
Internet is comprised of, to detect possible errors that may occur.

ii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

154 ENG4111 / 4112 – Project Reference Book – B

Figure 11.3: The required text and layout of the Certification page of your dissertation. Substitute your
name and student number as indicated (*) and reproduce the text exactly as shown
here.

I certify that the ideas, designs and experimental work, results, analyses and
conclusions set out in this dissertation are entirely my own effort, except where
otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted
for assessment in any other course or institution, except where specifically
stated.

My Full Name (*)

Student Number: XXXXXXXX (*)

Signature

Date

Acknowledgements

The assistance received by continuous meeting with one of my supervisor David Parsons
through the duration of the project, aiding in the various aspects of the ATE equipment
and the direction of this project. Also for acquiring and passing on of information relevant
to this project.

The assistance received by supervisor John Leis with regards to the different as-
pect of this project and possible solutions.

The assistance received by laboratory technician Terry , who helped with gaining
access to the ATE equipment and assistance when problems where encountered.

My partner Rebecca who tolerated me through this stressful time, and got me
coffee.

v

vi

Contents

1 Introduction 1

2 IEEE 488 General Purpose Interface Bus 3

2.1 History of IEEE 488 Standard . 3

2.2 Type of IEEE 488 Cards Available . 4

2.3 IEEE 488 Connector and Wire Configuration 5

2.3.1 Data Bus . 6

2.3.2 Transfer Bus . 6

2.3.3 Management Bus . 7

2.4 IEEE 488 Connection Details . 7

3 Application Programmers Interface Libraries 11

3.1 Standard Instrument Control Library . 11

3.1.1 SICL Commands . 12

3.2 Virtual Instrument Standard Architecture 14

4 Remote Access Implementation Method 17

4.1 Project Background . 17

4.2 Project Implementation Outline . 18

5 Writing C Programs 21

5.1 Data Types and Structures . 22

5.1.1 Basic Data Types . 22

vii

5.1.2 Data Arrays . 25

5.1.3 Structures . 26

5.2 Variable Scope . 27

5.3 Input/Output in C . 28

5.3.1 Standard I/O with keyboard and monitor 28

5.3.2 Using files for I/O . 30

5.4 Functions . 31

6 Common Gateway Interface 33

6.1 HTML CGI Program Calling Method . 34

6.2 CGI Program Basic Structure . 34

6.2.1 Obtaining Input . 35

6.2.2 Processing Data . 36

6.2.3 Output from CGI Application . 37

7 Writing CGI Programs for Devices 39

7.1 Step 1: Open a Session with the Device . 39

7.2 Step 2: Getting Data from Input String . 40

7.3 Step 3: Obtain Device Commands . 40

7.4 Step 4: Changing Settings on the Device 42

7.5 Step 5: Error Detection . 42

7.6 Step 6: Output Results . 42

7.7 Compiling Device Programs . 43

8 Creating Web Pages for Remote Access 45

8.1 HTML Basics . 45

8.2 Frames . 49

8.3 Creating HTML pages for ATE Instruments 52

9 Setting Up an Apache Web Server 55

9.1 Installing Apache . 56

viii

9.2 General Configuration . 58

9.3 Configuring Server . 59

9.3.1 Controlling Access . 59

9.4 Adding Web Pages and CGI Programs . 61

10 System Test 63

11 Conclusion 65

11.1 Suggested Further Development . 65

A Project Specification 69

B ASCII Character Set 71

C GPIB Interface Cards 73

D HTML Pages 85

D.1 Function Generator . 85

D.2 Switch Unit . 86

D.3 Power Supply . 87

D.4 Oscilloscope . 88

E CGI Applications 91

E.1 Basic CGI Applications . 91

E.1.1 CGI get Method . 91

E.1.2 CGI post Method . 97

E.2 CGI Programs for Devices . 100

E.2.1 Function Generator . 100

E.2.2 Oscilloscope . 107

E.2.3 Switch Unit . 113

E.2.4 Power Supply . 121

F Basic C Programs 127

ix

F.1 Data Types . 127

F.2 Structures . 128

F.3 Variable Scope . 129

F.4 Input/Output Example . 129

G Application Interface Library 131

G.1 VISA Library . 131

G.2 SICL Library . 255

H Device Manuals 345

H.1 Function Generator . 345

H.1.1 Quick Reference . 345

H.2 Oscilloscope . 356

H.3 MUX . 413

H.4 Power Supply . 434

x

Chapter 1

Introduction

The objective of this project was to develop a method of providing remote access between
a users computer and the devices in the Automated Test Equipment rack. This access
method was to be in a manner that overcomes some of the problems with the system
that was investigated previously. In completing this project the following steps had to be
achieved:

1. Interface card had to be identified

2. Application Programmers Interface Libraries had to be obtained

3. Device command had to be Identified

4. Programs that Interface with device had to be written

5. Web pages for interaction with devices had to be written

6. Web server had to be installed and configured

At the moment there is no system that provides remote access to the Automated Test
Equipment, this is due to limitations enforced by the Information Technology Services
department of the University. The previous system never evolved further then the setup
phase before these limitations where put in place for security reasons. The software that
was going to be used was Hewlett Packard Virtual Engineering Environment Version 5
and was the predecessor of the software being used on the PC connected to the Test
equipment. Version 5 provided remote access, but was hard to configure and required
software ports left open (listening) that are not used by the standard applications
permitted by firewalls.

1

Along with the inherited security problems that the software processed, the Win-
dows 95 Operating system on which the software ran also created a security threat to the
whole University network. And to compound the already large deficiencies of the system,
it’s performance was troublesome and unpredictable. Hence a need for a method that
would remove the security problems and hopefully improve the reliability and performance
is the foundation of this project.

The major proportion of this project is the software generated to provide the re-
mote access. The complete code for this project is contained on the CD-ROM attached to
the back of the thesis. This CD is broken it to the various stages required to implement
the remote access that was produced by the project. The directories and the files that
they contain are :

1. Libraries : Contains the API library files need to write a program.

2. Manuals : Contains the various device manuals that contain the commands for each
device.

3. HTML files : Contains the Web pages need to interface with the devices.

4. C files : Contains the cgi programs source files that interface with the devices.

5. Apache : Contains the installation executable for the Apache Web Server.

2

Chapter 2

IEEE 488 General Purpose Interface
Bus

The concept of using Automated Test Equipment for automation of test that are mundane
and prone to user errors is becoming more of an widely used technique. The ability to
write a program for a test sequence is becoming more attractive, as programs that provide
a graphical user interfaces become available. These software packages allow the user to
interact with the ATE systems via an interface card, without having to worry about the
underlying system. The interface protocol that most ATE systems uses is known as the
IEEE 488 standard, and has become a solid foundation for future ATE equipment to build
on.

2.1 History of IEEE 488 Standard

The IEEE 488 standard was original started in the late 1960’s as the Hewlett Packard
Interface Bus(HPIB), this was the protocol that Hewlett Packard originally devised
to connect and control devices that they manufactured. With the introduction of
programmable devices the need arose for the introduction of a standard by which devices
from different manufactures could interfaced was required.

In 1975 the Institute of Electrical and Electronic Engineers (IEEE) published the
IEEE 488 standard that detailed the electrical, mechanical and functional specifications
of the interface bus. This interface bus was specifically designed for the interaction with
programmable instrumentation and was reviewed in 1978 but no major changes where
made to the standard. This standard is now in world wide use by the major programmable
instrumentation manufactures and known by three different names:

3

1. Hewlett Packard Interface Bus (HPIB)

2. General Purpose Interface Bus (GPIB)

3. IEEE 488 Bus.

Work on standard continued as the original standard did not outline the syntax and
formating conventions for the communications with devices. Finally the new standard was
completed and released as the IEEE 488.2, with the original standard being dubbed IEEE
488.1. This standard contained information on Codes, Formats, Protocols, and Common
Commands for use with the IEEE 488 standard. The new standard did not replace the
original, with most new devices supporting both, instead it provides a reasonable level of
compatibility.

Finally in 1990 the IEEE 488 standard was appended to include the Standard
Commands for Programmable Instrumentation (SCPI) documents. The Standard
Commands for Programmable Instrumentation is the most recent attempt to provide
compatibility between Programmable Instrumentation from different manufactures, this
is topic of [15] . This standard defines specific commands that each instrument class must
obey, if followed this will provide complete compatible and configurable systems among
these instruments.

2.2 Type of IEEE 488 Cards Available

Currently on the market there are many manufactures that are producing IEEE 488.1
and 488.2 cards for interfacing with programmable instruments.Some of the major
manufactures being National Instruments and Agilent Technologies Inc. Each of which are
compatible with the different instrument manufactures due to the standards specifications
and each with their own system drivers and API libraries.

Currently there are a few different interconnection methods between the interface
card and programmable Instrument. The main ones being the CN24 connector and cable
that uses a 24 pin connector and cable with 24 wires, the RS232 and Universal Serial
Bus(USB). The Last two connection methods are not commonly used as they are serial
connections, and the ASCII characters used by the IEEE 488 standard is more suited for a
Parallel transfer media such as the first method. Appendix C contains the various GPIB in-
terface card produced by Industrial Automation Products and the card used in this project.

4

The speeds that the serial communication can obtain is less then that of the par-
allel systems, this is due to the fact that they can only send 1 bit at a time. But
the distances that a serial communication link can send is usually larger and the error
recovery is easier as the use of a parity bit is often sufficient to correct errors. In parallel
communication if an error occurs then more then one bit may be corrupted and retransmit
is required. The type of communication link required depends on environment under
which the equipment will be used, but the advantages of the 24 wire connection make it
the dominant method used.

2.3 IEEE 488 Connector and Wire Configuration

The type of connectors and wiring depends upon the type of interface card that is chosen
to interface with the devices. In this section the original 24 wire cable and connector will
be considered.The cable and connectors often refereed to as the CN24 connector due to the
fact that they are comprised of 24 connector pins and 24 wires, the picture below depicts
such cables and connectors:

Figure 2.1: IEEE 488 CN24 cable and connectors

As mention the cable that is usually used for GPIB interactions is a 24 wire cable, of which
8 of these wires are used for ground. The remaining 16 wires are then broken into three
groups:

1. Data Bus

2. Transfer Bus

5

3. Management Bus

2.3.1 Data Bus

The data bus occupies 8 of the 16 signal wires, this is due to the fact that most of the
devices use the ASCII character set for there interactions. The ASCII character set only
requires a 7-bit number, but most computer systems use 8-bits(1 byte). The advantages
of using the ASCII character is that the commands can be recognizable to humans and
the data can be manipulated quite easily in programming languages. The data bus is
used to transfer data, control information and address.

An example of how the devices use this is shown using the APPL: command used
by the Function Generator, It contains 5 ASCII characters that can be sent via the data
bus one at a time in binary. So the decimal equivalent of how this command would be
sent is 65,80,80,76 and 58. The devices store the characters in a buffer then apply the
command, assuming the command is a valid one.

2.3.2 Transfer Bus

The transfer bus provides a handshaking protocol that allows the system to communicate
Asynchronously. It does so by allocating each of it’s three wire a specific meaning, such as
Not Ready for Data, Not Data Accepted and Data Available. Through the use of these
control line the system can communication without conflicts and the state of the device
can easily be obtain by checking the signals on these wires.

When a device wishes to transmit data on the bus, it sets the DAV line high
(data not valid), and checks to see that the NRFD and NDAC lines are both low, and
then it puts the data on the data lines. When all the devices that can receive the data
are ready, each releases its NRFD (not ready for data) line. Then when the last receiver
releases NRFD, and it goes high, the interface takes DAV low indicating that valid data
is now on the bus. In response each receiver takes NRFD low again to indicate it is busy
and releases NDAC (not data accepted) when it has received the data. When the last
receiver has accepted the data, NDAC will go high and the device can set DAV high again
to transmit the next byte of data.

This form of handshaking communication allows the devices to transmit at their
own pace and provides error detection through the use if the NDAC(not data accepted)
line. If any device fails to perform it’s part of the handshaking and releases NRFD or
NDAC lines then data cannot be sent, this will eventually result in a timeout error.

6

2.3.3 Management Bus

There are 5 wire allocated to manage the flow of data bytes across the interface and
control amongst the various devices connected on the one bus.

The ATN (Attention) signal is asserted by the Interface Card to indicate that it
is placing an address or control byte on the data bus. ATN is released to allow the
assigned device to place status or data on the data bus. The interface card regains control
by reasserting ATN, this is normally done synchronously with the handshake to avoid
confusion between control and data bytes.

The EOI (End or Identify) signal has two uses. A device may apply a signal on
the EOI line simultaneously with the last byte of data to signal the end-of-data. The
interface card can assert EOI along with ATN to initiate a parallel poll. Although
many devices do not use parallel poll, all devices should use EOI to end transfers (many
currently available devices do not).

The IFC (Interface Clear) signal is set high only by the System Controller in or-
der to initialize all device interfaces to a known state. After releasing IFC, the System
Controller is the Active Controller.

The REN (Remote Enable) signal is asserted only by the System Controller. Its
assertion does not place devices into remote control mode; REN only enables a
device to go into remote mode when addressed to listen. When in remote mode, a
device will ignore its local front panel controls until the local button is press on that device.

The SRQ (Service Request) line is like an interrupt: it may be asserted by any
device to request the interface card to take some action. The interface card must
determine which device is signaling SRQ by conducting a serial poll. The requesting
device releases SRQ when it is polled.

2.4 IEEE 488 Connection Details

Through the use of the Transfer and Management Bus the IEEE 488 standard is able to
have up to 15 devices connected simultaneously, with each device being assigned a unique
Primary address ranging from 0-30. This is similar to the way that Ethernet works,
the data is broadcast to all devices and the device uses the addressing information to
determine if the data was intended for them. A secondary address may also be assigned
to each device, also ranging from 0 to 30, but this address is optional and is usually not

7

assigned.

The cables that link the devices is a shielded 24-wire cable, and the distances al-
lowed by the standard is either 20 meters or 2 times the number of instrument connected
to the bus, whichever is smaller. The speeds that are achieved by the GPIB standard are
in the range of 250 Kbytes/sec to 1MBytes/sec, note it is in Bytes/sec due to the fact
that the 8 data bus line. When considering the operating speed of the interface bus the
cable size must be taken into consideration, if high speeds are desired the the length on
cables used to connect the devices and interface card must be small.
The pin allocation is depicted in the following diagram:

Figure 2.2: IEEE 488 CN24 Connector Pin Configuration

From the diagram and Green[5] it can be seen that the 16 signal wires are broken down as
follows :

Data Bus:

DI01 - DI08 Data bus }

Management Bus:
} Ten

REN Remote Enable } Synchronous
EOI End or Identify } Signals

ATN Attention #

8

IFC Interface Clear #
SRQ Service Request # Six

Transfer Bus Asynchronous

NRFD Not Ready For Data # Signals
NDAC Not Data Accept # Twisted Pairs
DAV Data Available #

This shows how the IEEE 488 standard handles the transfer of both synchronous and
asynchronous data.

9

10

Chapter 3

Application Programmers Interface
Libraries

An Application Program Interface as defined by (www.whatis.com,2004) is the specific
method prescribed by a computer operating system or by an application program by
which a programmer writing an application program can make requests of the operating
system or another application. In the case of this project the desired API is for the GPIB
card, so that programs can be written to interface with the programmable instruments
via the GPIB interface card.

After some researching on the topic of an API for the GPIB interface card con-
tained in the system that the remote access is to be implemented, the manufactures of
the card Agilent Technologies Inc provide the API for download as part of a drivers
suit. Contained with the drivers which are necessary for correct operation of the card,
are two API’s. Which where the Standard Instrument Control Libraries and the Virtual
Instrument Standard Architecture, and these will be discussed further in the following
sections.

3.1 Standard Instrument Control Library

The Standard Instrument Control Library is a modular instrument communications
library that works with a variety of computer architectures, I/O interfaces and operating
systems according to [14]. This Library allows programs to be written in C/C++ or
Visual Basic that can interface with a GPIB card. One of the advantages as stated in [14]
is that programs written using this library can be ported at the source code level from
one system to another without, or with very few changes.

11

One down fall of the SICL library is that they are Hewlett Packard dependent,
meaning that they can only be used in conjunction with Hewlett Packard hardware.
Although it is limiting, the advantage is that the library is efficient,reliable and easy
to use with HP hardware. Also the library can be used to communicate over the
different interface methods used for programmable instrument communications such as
HPIB,GPIB,RS-232 and USB. This library contains a 32-bit and a 16-bit version for
windows, which is an advantage as the system connected to the ATE rack is running the
Windows c©95 operating system which is a 16-bit OS. The SICL library was the only one
that worked on the equipment in question for this project, so all programs written will
use this library.

3.1.1 SICL Commands

The reader is referred to [14] for a more detailed explanation of the commands and
specifics of developing applications using the SICL library, But a brief overview of some
of the important aspect of the library will be discussed in the following sections. The
concepts discussed in this section are Instrument independent and will be used for the
development on CGI programs in a later section. There are a few example programs
within [14] so these programs will be referred to rather than new example.

The first thing that an application has to do before it can interface with a device,
is create what is known as a device session which creates an ID by which the application
can identify the device it is talking too. As mentioned in the IEEE 488 standard each
device is given a unique address(see Table 7.1), this address in what is used by the SICL
library when communicating with a device. Also when the drivers for the GPIB card are
setup, the interface card is given a unique name so that more one interface card can be in
the one system at a time, each can be identified by it unique name. The way a session is
open is similar to the way that C opens a file and is displayed by the following code:

id = iopen(”hpib7,9”)

From the line of code above it can be seen that the iopen function is used open a
session with a device. It only requires the one argument which is a string that identifies
the interface card hpib7 and the address of the device on that interface 9. If the
function is successful then a variable of type INST will be returned and stored in the
id variable and will return 0 if it fails, INST is a user defined data type that is de-

12

fined by the library. This id will be used by the functions that read and write to the devices.

After a session is created then the iprintf and ipromptf functions can be used to
communicate with the device. The strings that these functions use are ASCII characters,
and are dependent on the device with which the interaction are with. The use of these
two functions are :

iprintf(id,”APPL:%s:%s\n”,wave type,VtoV Peek)
iscanf(id,”%t”,buff)
iprompt(id,”*IDN?\n”,”%t”,buff)

The iprintf function can be used with two or three arguments, and follows a simi-
lar format to the fprintf function for C. The first argument is compulsory as it contains
the device’s identity that is used in the communication. The second argument is the
string that is sent to the device, this string can be a constant string or composed of string
variable as long as it follows the format that the device expects. If the second argument
contains variable then a third argument must be used and is the list of variable names
that correspond to the format identifiers contained in the string.

The iscanf function is the similar to the C scanf function, except for the addition
of the session identifier. The function will read the data on the GPIB and will store it in
the variable passed to it, the %t format string specifies that an ASCII string will be read
back. The iprompt function prompts the device with the string specified and then stores
the response from the device in the variable in the fourth argument. The same sequence
of events could be achieved by using the iprintf followed by a iscanf, but this function
makes the process neat with only one line required.

Finally after all interactions with the device have been completed then the device
session must be close, just like a file in C. This is done using the iclose method passing
the session id as it’s argument like follows:

iclose(id)

For the purpose of assisting in the writing of reliable code the library provides
two functions to add in error detection and correction. The first of which is ioerror which
installs a default error handling routine which is called if any of the SICL functions result
in an error. The second of which is itimeout which allows the programmer to specify a
time(in milliseconds) that SICL will wait for a response from a device. When incorporated
into applications the programmer can detect errors and take action to minimize or fix

13

such errors.

3.2 Virtual Instrument Standard Architecture

The VISA library is similar to SICL, except they where developed with compatibility in
mind, allowing the library to be used on any manufactures hardware. Agilent Virtual
Instrument Software Architecture (VISA) is an IO library designed according to the
VXIplug&play System Alliance that allows software developed from different vendors to
run on the same system as stated in [19].

As with SICL, the VISA must create a device session before any communications
between the interface card and programmable instrument can take place. The way that
this is done is different then the SICL as two commands are need to create a session.
These commands are :

viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, ”GPIB0::22::INSTR”,VI NULL,VI NULL,&vi);

With the VISA driver a session with the default resource manager must be cre-
ated before a session with a device. This is due to the fact that VISA is an object-oriented
system and the word ’resource’ more specifically refers to a particular implementation
(or instance in object-oriented terms) of a Resource Class. The resource manager
is what maintains all of the class instances, so the class that is about to be create
must be registered with it. This class is then linked to the device, this section is
similar to SICL. The interface card is identity and the address of the device are
specified via a string. The next two arguments are VI NULL which means ”Do not
return the number of bytes transferred”, these are constants defined in the VISA
library which alter the operation of the VISA functions. Finally the last argument
is the address of a session variable and is exactly the same as the ID variable in the
SICL library, it is used by the I/O functions to determine what devices they are talking too.

The Input and output functions of the VISA library works exactly the same as in
SICL. These functions are viPrintf and viScanf and their arguments are exactly the same
as the previously explained iprintf and iscanf, each requiring a session id, a string and the
name of any variables that are being used in the string. The following shows their operation:

viPrintf(vi,”*IDN?\n”);
viScanf(vi, ”%t”, buf);

14

Closing the session after all the interactions have taken place is performed via the viClose
command with the session id being passed to it as it’s argument. The VISA library has
a large range of error detection functions and are explained in full in [19] and user are
referred to this manual if more information is desired.

15

16

Chapter 4

Remote Access Implementation
Method

With the advances in modern communication systems the potential to provide remote
access to application is becoming easier. The Internet has spawned an enormous following
and has become a multimedia base communications network. Due to the structure of
the Internet it is quite reliable and cheap and for these reasons has become an enormous
success. But because it is a shared media and the number of clients cannot always be
known, it’s performance cannot be measured exactly.

Taking into mind the Internet’s inherent advantages and disadvantages this is the
media that was in mind during the creation of this project. Nearly everyone can gain
access to the Internet from a vast number of locations around the world and due to it’s
shared nature the cost is relatively low, hence making it a perfect resource. However
the shared nature that makes the Internet so appealing causes a problem, security. This
problem has manifested itself recently as hackers write viruses, worms and Trojan horses
that gain access to systems thought to be secure, causing the need for protection.

4.1 Project Background

Some of the issues mentioned above are the exact reason that the previous attempts
to provide remote access to the ATE racks failed. The problem in this case was that
the software HP-VEE V5.0 that was being used to provide the remote access created a
security hole in the Universities firewall. The way that the software operated required

17

that a software port be left open so the server could listen on this port for any attempts
to connect. Hence for correct operation this required that the Firewall did not block this
port. As stated by [2] having any open ports exposes you to potential attacks that might
exploit known or yet-unknown vulnerabilities, this page also contains links to sites the
help identify open ports.

The vulnerabilities that [2] is talking about are those that exist either in the Op-
erating system itself, or Trojan horses that have found their way onto the system. In
the case of the system that the HP-VEE software was installed on, the Windows c©95
operating system is being used. This operating system was designed when networking
and the Internet where not very popular, so the concept of security was over looked or
undermined. So as well as the software leaving a port open, the OS on which it run could
also jeopardize the security of the whole university network.

With this in mind one way around the firewall would be to use an application
that uses a port that is allowed by the firewall. That is exactly why for this project the
web server based system was chosen as this application uses port 80 (HTTP) which is
allowed by nearly all firewalls. Also most web servers have the ability to specify the files
that can be access by a user and also can implement password access. The implementation
is similar to that used by most web pages that obtain data and process it in some manner,
such as a database searches that the google search engine performs.

4.2 Project Implementation Outline

The concept of the way that the remote access will be implemented for the ATE rack, is
the Common Gate Way Interface Method which will be discussed in detail in chapter 6.
But for now the diagram below shows the basic configuration of this method:

The diagram shows the communication paths between the different elements of this
implementation. At the centre of the system is the PC with a GPIB card, this system could
possibly contain multiple interface cards, and is a detrimental part of the implementation.
The PC is responsible for the communications between the user via the Internet and the
ATE rack via the GPIB card, and is responsible for controlling and monitoring the access
to the services that it provides.

The way that the PC performs these tasks is through an Apache Web Server that
is installed and configured to provide the services described previously. All configuration
changes can be done via configuration file and are discussed in chapter 9. The web server
allows the user to access web pages for interacting with the ATE systems, and these web

18

Figure 4.1: Implementation of Remote Access using Web Server

pages allow the user to enter data to change settings on the programmable instrument.
Once the data is retrieved by the web server, it is passed onto an application.

This application then uses this data to determine the changes to the Instrument
that the user desires. The program uses the SICL API to communicate with the device
and the desired setting are enforced. For the purpose of detecting problems, the device
is queried and the results of this query are check against the data sent by the user. The
application is then responsible for replying to the user, and must do so in the form of a
HTML code. This response will be displayed to the user as a web page and will inform
the user if their request was successful or not.

Because of the modular structure of this implementation, the division of devices
can be done using separate web pages for each device and even for the different device
sub commands. The way that this is done is up to implementor and is easily changed,

19

making the system easily maintainable. Each web page has one or more corresponding
CGI program that is responsible for carrying out the changes on the programmable
instrument that it corresponds to. If the ATE rack is upgrade or a device is replace, then
it is possible to alter the system with minimal effort.

Also the addition of providing advanced features, such as sequencing, this could
be done via separate web pages with their corresponding CGI program. Each page
would handle one or more of the steps for the sequence. The actual way that this is
implemented is entirely up to the programmer, and due to the modular structure, the
separate components could be used separately or in various sequences.

20

Chapter 5

Writing C Programs

The first and often most important decision when undertaking a software development
project is what programming language to use. Some of the criteria that must be
considered, as outline in [16], these are Readability, Writability, Reliability and Cost.
Each criteria must be considered in great detail as their weighting will vary for differ-
ent projects, for example a real-time system will place greater importance in the reliability.

Also in conjunction with these criteria, other factors can greatly influence the de-
cision of what programming language to use. In the case of this project, the availability of
the Application Programmers Interface for a programming language played a major roll.
The API for the GPIB interface card was only available for C/C++ and Visual Basic, so
a decision between the two had to be made.

Visual Basic is a simple programming language that allow the user to write pro-
grams quick and easily. But as with nearly everything this advantage comes with a cost,
visual basic programs can be unreliable and can be limiting in what features are provide
for the programmer to use.

The C/C++ programming language on the other hand is one with a much longer
history and although it is a high-level language, it also provides low-level features that the
programmer can implement into there code. C/C++ are languages that are very powerful
and provide the programmer with a large array of features, but can be dangerous if used
incorrectly by the programmer.

Although I have had experience with both of these languages, the C/C++ pro-
gramming language is the one that was chosen for this project. This is due to the fact
that I have had more experience with the language and the programs compiled in C/C++

21

are more efficient (eg. Run faster, more reliable) than most other languages. In addition
the advantage of object-oriented programming provided by C++ allows for more efficient
code to be produced if desired.

The reader is referred to suitable introductory books if the fundamentals of C/C++
are not known. Suitable books include “Beginning with C” by Ron House [6] and
Object-Oriented Programming in C++ by Richard Johnsonbaugh and Martin Kalin [12],
however the some of the basics will be outlined in the following chapter.

5.1 Data Types and Structures

The most important structure in any programming language is the variables in which data
can be stored, manipulated and retrieved. The C/C++ language has a vast variety of data
types that the user can user and structures that allows the user to group variables that
logically belong in one structure.

5.1.1 Basic Data Types

Within C there are a few data types and the user can define their own, each of which are
used to associate the data stored with it’s meaning and method of processing. A table
below shows the various data types, the amount of memory they occupy and the type of
data stored in them.

There are three basic data types:

1. char - ASCII characters.

2. int - Integer numbers.

3. float - Floating point numbers.

4. Pointers - Stores memory addresses.

The type of data that can be allocated to each variable is enforce by the compiler, so that
unintentional assignments don’t result data loss and hard to find bugs. The use can force
the allocation of a variable into a different type via type casting, this is done by placing a
(data type) in front of the variable to be converted.

22

For example :

int var = (int)float var;

This will cause the floating point variable to be converted to a integer variable and
assigned to int var.

Data Types Num. of Bytes Variable Example
char 1 a,g,b,A,G
int 4 1,2,7,8,12

float 4 1.2,20.4,100.3

Table 5.1: Basic Data Types and Sizes

These data types can only hold a certain range of values, for integers this is -2,147,483,648
to +2,147,483,647. If this range is to short for the desired variable then a modifier, that
increases or decreases the number of bytes used by the data type, can be used. There is
four of these modifiers available in C/C++, these are :

1. short

2. long

3. signed

4. unsigned

The first two of these modifiers change the number of bytes allocated to the data type it
is used in conjunction with. The last two deal with weather or not the most significant
bit is used as the sign bit, if it is 1 the number is negative and 0 is positive.

23

The following table shows the ranges of variables if the modifier is used :

Data Types Num. of Bytes Range
short int 2 -32,768 to +32,768

unsigned short int 2 0 to +65,535
unsigned int 4 0 to +4,294,967,295

int 4 -2,147,483,648 to +2,147,483,648
long int 4 -2,147,483,648 to +2,147,483,648

signed char 1 -128 to +127
unsigned char 1 0 to +255

float 4 Increases accuracy
double 8 Increases accuracy

long double 16 Increases accuracy

Table 5.2: Effects of modifiers and data type size

The way that a variable is as follows :

int variable name;

long int Variable Name;

Note that the C language is case sensitive, so in the above example two separated
variables will be created. The size of the variables are dependent on the system that the
programs is compiled on. Because of this a method of determining the size of a data type
is required, especially for dynamic memory allocation. In C the function sizeof(variable)
does exactly that, it’s usage is as follows:

size = sizeof(variable);

This will return an integer variable which is the number of bytes that the data
type occupies. By using this function then programs can be written to perform reliably no
matter what the size of the data types, especially when the program is obtaining memory
dynamically. An example program is shown in Appendix C, it shows how to define various
data types and the use of the sizeof function.

The final data type that C provide is the pointer, this data type is used to store
memory addresses. This data type allows C programs with a very powerful tool, as it

24

allows for functions to access variable outside their scope and the allocation on dynamic
variables. With the use of pointer the programmer is able to create abstract data types
that can grow in size dynamically, which useful when the number of elements is unknown.

The basic way to define a pointer is by putting a * character directly in front of
the variable name. The pointer can be of various data types so that the compile will
know how many bytes there are to each variable. This is required for features such as
the increment and decrement functions provided by C on pointers. The creation of a C
pointer is demonstrated in the following code:

int *int ptr;
int ptr = malloc(5*sizeof(int));

The first line of code creates a pointer to a int type variable, at this stage the
pointer is full of random garbage which happens to occupy the memory location assigned
to it by the compiler. The second line user the malloc function to create a block of
memory with 5 integer sized variables, note that the 5 could easily be a variable with any
value. If the malloc function is successful in the creation of this memory block then the
address of the first byte of the block is returned and entered into the int ptr variable,
however if malloc fails NULL is returned.

The most important thing to note here is that the variable int ptr contains the
address of the variable, hence to access the contents of the memory address the indirection
operator (*) must be used. This must be placed before the variable name, similar to the
way the pointer is created, then the pointer can be used just like a normal variable. This
property will be shown in the following example:

*int ptr = 4;
printf(”The pointer contains %d \”);

5.1.2 Data Arrays

The previous data types are only capable of holding one variable at a time. In most cases
such as a string of characters are need, especially when writing programs for the GPIB as
the commands to the devices are comprised of string of ASCII characters. So a way in
which logically grouped data can be stored is required.

25

The C/C++ languages provide the user with the ability to define an array of a
specific data type of any dimension. The way in which an array is created and indexed is
as follows :

char array[10];
int intarray[10][10];
array[0]= ’h’;
intarray[0][0] = 2;

With indexing an array in C the index range is from 0 to the size-1, so in the
example above the index is 0 to 9. The second line in the example shows how a multi
dimensional array is created, the indexing is the same as a single dimensional array except
an index for each dimension is required.

5.1.3 Structures

In most cases it is common that different data types are required to identify an object, for
example a student may have a Name, age, Student number and grade point average. So it
makes sense to group this type of data into one entity, this is the purpose of C structures
and C++ classes. The following code is an example of how a structure is created and
defined as a new data type in C is as follows:

typedef Struct Student {
int age,student number;
char name[30];
float GPA;

} STUDENT;

After the structure is defined using the typedef function then the user can create
a variable of this type in the same manner as a standard data structure. The label
assigned to the data types in the string after the right parentheses and before the semi
colon, in this case STUDENT. The creation of a student variable is as follows:

STUDENT St1;

26

After the variable has been created then each of it’s elements can be access using
the ’.’ operator. The following shows the student data type being used:

St1.age=18;
strcpy(St1,”Nathan”);
printf(”Age is %d \n”,St1.age);

A full example program of the use of structures is found in Appendix C.2 .

5.2 Variable Scope

One of the most important considerations whenever writing C programs is the scope of a
variable. The scope of a variable as defined by [16] is the range of statements in which the
variable is visible. If the scope of variables is not considered then this can lead to hard to
find bugs. A small sample program below displays variable scope:

/** 1

* File Name: scope.c * 2

* * 3

* Description: This program demonstrates the scope of * 4

* variables in C * 5

* * 6

* Written By: Nathan Hetherington * 7

**/ 8

#include <stdio.h> 9

#include <stdlib.h> 10

#include <string.h> 11

12

int x; 13

14

// Defines sub routine 15

void sub1(void){ 16

int x=50; 17

printf("x is %d in Sub1\n",x); 18

} 19

20

int main(void){ 21

22

27

x=10; 23

printf("x is %d in the main function \n",x); 24

25

sub1(); 26

27

printf("x is %d after sub1\n",x); 28

29

sleep(5000); 30

return 0; 31

} 32

33

34

The results from running this program after it is compiled results in the following output :

x is 10 in the main function
x is 50 in Sub1
x is 10 after Sub1

From examining the output the variable x defined before the main function is
seen through out the whole main function, the x variable defined in the Sub1 function is
only visible to the statements in sub1. If Sub1 was meant to change the x variable, then
this could lead to problems and in a program with more line could be difficult to find.
This shows that create care with respects to variable scope must be taken when writing C
programs.

5.3 Input/Output in C

The C programming language allows the user to read and write to what is referred to the
stdin(Standard Input) and stdout(Standard Output). This standard input and output is
by default the keyboard and monitor respectively, but C also allows the user to specify a
file or some other I/O device. The interfacing with I/O is done via functions provided by
the C standard libraries , such as stdio.h and stdlib.h, or API libraries for the I/O device
such as the sicl.h and visa.h libraries for this project.

5.3.1 Standard I/O with keyboard and monitor

There are a few functions provided by the standard C libraries that read from the
keyboard, their use depends on the type of data desired. Two such functions are scanf
and gets , the first obtains a single variable of the type specified and the second is used to

28

get a string of characters. The output is handle by the one function printf and prints the
contents of the variables passed to it, the way the variable is interpreted depends on the
variable format identifier used.The following is a table of some of the format identifiers
available:

Format Identifier Variable type
%d %i Decimal signed integer.

%o Octal integer.
%x %X Hex integer.

%u Unsigned integer.
%c Character.
%s String.
%f double.

%e %E double.
%g %G double.

%p pointer.
%n Number of characters written by this printf.

Table 5.3: Format Identifiers used with I/O functions

The printf function can be called to print either a constant string that the pro-
grammer hard codes in, a variable within the program or a combination of the two. The
code below shows an example of each :

printf(”This is a Constant String\n”);
printf(” %d %f \n”,int var,float var);
printf(” The integer variable has the value %d \n”,int var);

From the examples above we can see that the printf function requires 2 argu-
ments. The first is the string that will be printed, this string must contain formating
identifiers and control characters (\n for new line). And the second argument is the
list of variable that correspond to the format identifiers. Care must be taken to en-
sure that the variable names are in the right order, otherwise incorrect data will be printed.

The scanf function is as follows :

scanf(%d,&int var);

29

This shows that the scanf function also requires two arguments, the first tell the
function what type of data is expected and the second argument is the variable that the
data will be stored in. The important thing to note is the use of the ampersand operator,
this operator in C means ”the address of”, and is important for the function to know the
memory address of the variable.

5.3.2 Using files for I/O

C allows the user to use files for input and output and does so in a similar manner to the
standard I/O functions. The only difference is that an ID for the file is needed, and is
created using the fopen() method and after used the file must be closed using the fclose().
These functions are used in the following manner:

FILE *id;
id = fopen(”Filename.txt”,’r’)

In order to read and write to files a pointer to the file must be created, this
pointer is type FILE and is defined in the stdlib.h C library. Once a pointer of this type
is created then the fopen method is used to link the file to the pointer, and it requires two
arguments. The first of these arguments are the file name that is in the form of a string,
this string can be hard coded in of enter by the user into a character array. The second
argument is the mode the file will be opened in, and there are a few different modes that
can be used when accessing a file, they are as follows:

Format Identifier Variable type File Created? If File Exists?
a Appending . Yes Append to

a+ Reading and appending. Yes Append to
r Read only. No If not found returns NULL

r+ Reading and writing. No If not found returns NULL
w Write only. Yes Overwritten

w+ Reading and writing. Yes Overwritten

Table 5.4: fopen File modes

After the file has been linked to the pointer, then the file can be written to and read from.
These task are performed using the fprintf() and fscanf, which are similar to the function
for standard I/O except they require file pointer. The Examples below demonstrate this:

30

fprintf(ID, ”Number %d:\t %d\n”, i+1, score[i]);
fscanf(fp, ”%d”, &i);

From the examples above it can be seen that their use is exactly the same as to
standard I/O, except for the addition of the file pointer. All format identifiers and control
sequences are exactly the same.

5.4 Functions

Within C this allow the user to write functions that perform some task and can be called
by the user in a similar manner to those defined by the C libraries. The advantage of this
is that the user can write a function that performs a certain task, and call it when desired
instead of replicating the code each time the task is needed. The following code defines
a function that multiples two numbers, of course a function may do more complex thing
then this :

int mult(int x,int y){
int z=0;
z = x*y;
return z;

}

From this we can see the basic structure of the a C function. This first impor-
tant value is the return type of the function, this tell what data type will be returned
from the function. The next is the name of the function, and can be any name as long as
it does not contain any of C’s special characters. Finally the last element of a function
is the arguments, this is the data that is passed to the function for processing. There
is no real limits on the number of arguments that a function can have, but is up to the
programmer to limit this to a reasonable amount.

The main function is a special case of a function, but the same rules exist. Fi-
nally if no return type or arguments are needed then the void data type can be used. And
the user is referred to Appendix C for sample programs.

31

32

Chapter 6

Common Gateway Interface

The Common Gateway Interface as defined by [3] is a standard for interfacing external
applications with information servers, such as HTTP or Web servers. This allows the
user to pass information that can be processed by the application to achieve some goal,
this type of interface is used for a large variety of tasks. These task range from simple
applications that query a database or process order information for On-line shopping, to
more complex applications that control equipment such a space telescope or programmable
electronic test equipment, the reason for this project.

When using the Common Gateway Interface, the web server allows the user to
run the application locally on the server. This is the most important point, the application
is not run on the user’s system, it is run on the system that the web server is installed on.
So because of this fact the programmer must take some precautions writing CGI programs
to ensure the security of the system is preserved. As outlined in [3] this security is usually
controlled by the administrator of the web server, and is performed by controlling the
directories that the user can access. The CGI applications reside in their own directory,
this informs the web server to execute these file rather that display them on the browser.

To ensure a more efficient and compatible system, CGI programs can be written
in a variety of programming languages. The most used languages for CGI programs are
C/C++, Perl and Unix Stripting Languages (BASH,KORN, etc.). If a language such as
C/C++ or Visual Basic are used, then the program must be compiled and the resulting
executable placed in the cgi bin directory of the web server. In the case of scripting
languages such as Perl which are interrupted languages rather then compiled, the script
can be placed directly into the cgi bin, and an interpretor will need to be installed and
functioning on the system. It is worth noting that the interpreted languages will be slower
than their compiled counterparts, so if efficiency is of importance then a language such of

33

C/C++ should be used.

6.1 HTML CGI Program Calling Method

The common way that CGI programs are integrated into web pages, is to have a button
that once click causes the application to be run. The HTML code that does this must
also specify the method which will be used for passing the information to the application.
The code below is responsible for this :

<FORM METHOD=”POST” ACTION=”/cgi-bin/cgipost.exe”>
... Code for data entry goes ...
<INPUT TYPE=”submit” VALUE=”Press to Submit”>
</FORM>

This input is pretty self explanatory, it consists of the method of input data and
the application to run when the submit button is pressed. The string in the action
section contains the path of the application, and is referenced from the web servers main
directory. There are no limitations on the number of forms displayed on the one web page,
so it is possible to have multiple submit buttons corresponding to separate applications.
Caution must be taken when using multiple forms to ensure the correct application is
called for each data set.

6.2 CGI Program Basic Structure

The basic operation of the CGI is shown in the following picture obtained form [4]:

From this figure, it can be see that is the Common Gateway interface is comprise of the
three components mentioned in Chapter 4. This section will deal with the creation of the
Gateway programs depicted in the diagram. All CGI applications will follow the same
basic structure, and are comprised of three sections. These are obtaining input from the
user, performing applications task and outputting a web page to user containing the status
of the application. The reader is referred to Appendix E.1 which contains CGI example
programs obtained from [13].

34

Figure 6.1: Flow of data to a gateway application

6.2.1 Obtaining Input

The main purpose of a CGI program is to obtain information from a web page, then use
this information to carry out some tasks. There are two way that a CGI program can
obtain data from a web page, and these are:

1. GET – the data are passed within the query string of the URL. For example, ac-
cessing the URL http://server.edu/stuff/cgi program?query string sends the data in-
cluded in query string to the HTTP server running on the machine server.edu.

2. POST – the data are sent as a message body that follows the request message sent
by the client to the server. This is more complex than GET, but allows for more
complex data. This method uses Standard I/O to pass the data to the application.

35

Looking at the examples in Appendix E.1 it can be seen that the get method uses
environment variables to pass the data to the application. The application then reads the
environment variables by using the getenv() function. This function requires the name of
the environment variable to be obtained, and returns the contents of the contents of the
environment variable specified by the argument.

The environment variable that is on interest in the get method is QUERY STRING, this
is a string that contains all the information from the web page that the application is
to process. The format of this string is the same no matter weather the GET or POST
method is used, and is as follows:

TEXT LINE ONE=some+text&TEXT LINE TWO=default+value
&TEXT LINE THREE=1234&PASSWORD FIELD=secret

The sections in capital letters are the names of the input fields on the web page,
the field name and value are separated by the ’=’ character and any white space
is replaced by a ’+’ character. Each of the separate fields are separated using the &
character, so the application must use these special characters to filter out the desired data.

The post method is much simpler to use, as the data is read from the Standard
input. This is done using the following line :

bytesRead = read(STDIN, &readBuf[0], READ BUFLEN);

The function requires three arguments, then first specifies what input to read
from and in this case is STDIN, which is defined previously as 0. The second argument
is where the data read from the standard in is to be stored, the text in this argument
specifies the first byte of the buffer readBuf. The last argument tells the function the size
of the buffer, this is so it can keep track of how much more data can be placed in the
buffer.

6.2.2 Processing Data

As mentioned previously the data is sent to the application as one large string, this string
must first be processed and the different elements separated. After the string has been
processed and it’s elements are obtained and stored in different variable, then the appli-
cation can use the data to perform any task desired. In the case of this project after the
data has been obtained then it can be used to change the settings on the Automated Test
Equipment.

36

6.2.3 Output from CGI Application

After the application is finished performing all the tasks it is required to, then it must
respond to the user with some feedback. This response must be in the from of a HTML
web page and must contain all the headers and trailers that a standard web page contains.
This can be seen in the examples in Appendix E.1.1, with lines 51 to 62 of cgiget.c
defining the HTML header and 262 to 264 adding the HTML trailer.

Any code can be entered between the header and trailer as long as the code fol-
lows the HTML format. The programmer can use any functions from the string.h library
to manipulate the strings that will be displayed on the web page, and all information will
be in the form of ASCII characters. Because the program is what is responsible for the
reply, then the information that is sent back can depend on the results of the processing,
making the application capable of dynamic web development. The sending of data back
to the user is performed using the printf() within C, which prints to the standard output.

37

38

Chapter 7

Writing CGI Programs for Devices

The programs that are written for interacting with the devices of the ATE, will follow
the structure outlined in the previous chapter on Common Gateway Interface. The cgi
program written for the Function generator will be the eample referred to in this chapter
while describing the process involved in the creation of these programs. The process
described for this application is exactly the same for each device, with little variation, so
can be used to create programs for the different programmable instruments available.

7.1 Step 1: Open a Session with the Device

In order to communicate with a device, the programmer must create an interface session
with the device. The method to do this was outlined in chapter 3, where the iopen()
function is used to open a session and requires the address of the device. In the CGI
program for the 33120A device, the address can be defined as a constant using the #define
mechanism in C.

#define DEVICE ADDRESS ”hpib7,10”

This allows the programmer to use DEVICE ADDRESS whenever the actual de-
vice address is required, during compilation this is replaced with ”hpib7,10”. This
is not compulsory, but makes the code easier to understand and change later. If the
address of the device changes then only the definition string will need to be updated.
Using this address, a session can then be opened and the resulting ID will be use when

39

communicating with the device. At the completion of the program this session must be
closed using the iclose function, failing to do so will cause later run programs to act
unpredictably.

Device Address
33120A Function Generator 10

54602B Oscilloscope 7
34970A Switch Unit 9
6624A Power Supply 5

Table 7.1: Addresses of Devices in ATE Rack

7.2 Step 2: Getting Data from Input String

As mention previously the data that is enter into the fields of the web page are read
into the program as one string. So the application must separate the data from
this large string. The format convention of the input string is, a = is used to sep-
arate the data label and actual data and the & is used to separate the different data inputs.

So the programmer can simply step through the input string, looking for the ’=’
character. Once this character is located then all characters between it and the next &
character is the data wanted. In the CGI programs there is a function that takes the
input string as the input argument and steps through the array of characters, separating
the various data. The user is referred to the CGI program for the function generator,
the code for the function getVariables(char *Buffer). This function will change from
application to application, and it’s sequencing is dictated by the sequence on the data
fields on the corresponding web page.

7.3 Step 3: Obtain Device Commands

The first step in the creation of the device command is to obtain the syntax of the
commands that will be sent to the device. The best source for such information is the
User’s Manual or Programmers Manual produced by the manufactures of the instrument.
For this project, these documents where obtained from the Agilent Technologies web site.

Once the device settings being changed have been determined, then the syntax of
the command to be sent to the device must be looked up in the manual. All commands
are hierarchal, this means that commands have subcommands that can be used in

40

conjunction, to specify the exact setting of the device to be changed. One example of
this is the APPLy command, that allows setting to be applied on the device, some of the
sub-commands are:

:SINusoid [<frequency> [,<amplitude> [,<offset>]]]
:SQUare [<]frequency> [,<amplitude> [,<offset>]]]
:TRIangle [<frequency> [,<amplitude> [,<offset>]]]
:RAMP [<frequency> [,<amplitude> [,<offset>]]]
:NOISe [<frequency—DEF> [,<amplitude> [,<offset>]]]
:DC [<frequency—DEF> [,<amplitude—DEF> [,<offset>]]]
:USER [<frequency> [,<amplitude> [, <offset>]]]

From the above examples, the different are fields have the following meanings:

• Square brackets ([]) indicate optional keywords
or parameters.

• Braces ({ }) enclose parameters within a command string.
Default parameters are shown in bold.

• Triangle brackets (< >) indicate that you must
substitute a value for the enclosed parameter.

So using the information contained above, a string can be generated to change set-
ting can be generated. This string can then be sent to the device, and the desired
changes will be made. For example the following code will set the function genera-
tor to produce a sine wave with a frequency of 12Khz, 2V peak to Peak and an offset of 0V.

APPL:SIN 12Khz 2V 0V

Note that a semi-colon is used to separate the different command levels and there
is a space between the different input fields. When this string is sent to the device, a
newline character must also be sent to notify the device of the end of the command.
In the program written for function generator, the SIN section of this command string
depends on what is selected by the user.

41

7.4 Step 4: Changing Settings on the Device

Using the command created using the data obtained from the user and the commands for
the device, demonstrated in the previous step. The string can then be sent to the device
using the printf() function. This is done in the following way:

iprintf(id,”APPL:SIN %s,%s, %s\n”,Frequency,PtPVolts,Offset);

This is the line in the code that will actually implements the changes on the
device.

7.5 Step 5: Error Detection

After the string has been sent to the device, then it must be checked that the change was
actually implemented. The easiest way to check that the changes have been implemented
is to query the device for it’s current setting, this can then be compared to the string
that was sent to the device. The devices current settings can be obtained by using the
iprompt() function.

ipromptf(id, ”APPL?\n”, ”%t”, temp);

This will cause the current setting to be in the variable temp as a string, this can
then be compared using the string compare function strcmp(). If the two strings are the
same then strcpy will return 0, and then the appropriate action can be taken.

7.6 Step 6: Output Results

Depending on the result of the strcmp function, a result must be sent to the user to inform
on the status of their request. If the settings of the device where successfully changed, then
a web page stating that the settings have been applied will result. If the program fails, then
the user is informed to try again. There are nothing that the user can do if the problem
is with the hardware, in this case an error file is written and it is up the administrator to
check this file. Later implementations may sent an e-mail to the lab technician, informing
them that an error has occurred.

42

7.7 Compiling Device Programs

When compiling programs that make use of the SICL library, then some sets must be taken.
First is the inclusion of the sicl.h header file, which contains the prototype definitions of
the functions provided by the library. And finally, is informing the link which library file
contains the machine code for the functions defined in the header. In the case of this
project sicl32.lib was the appropriate file.

43

44

Chapter 8

Creating Web Pages for Remote
Access

The Hyper Text Mark-Up Language is a plain text based language, and can be created,
edited or viewed using a simple text editor on any computer platform. HTML is similar
to a scripting language as the web browsers reads the HTML file and determines the way
of formating the data from the code. This makes HTML multi-platform as long as a web
browser exist for that platform. Also with the modular structure of the web browser, this
allows for different services to be provided via plug-in. This makes the power of HTML
almost unlimited.

8.1 HTML Basics

The HTML language is based on what is known as HTML tags, these are used to
notify the browser of formatting method. The basic structure for all HTML tags are
<HTML TAG> to indicate the beginning of an HTML environment and </HTML TAG>
to finish the effect of this environment.

The first tag that must exist is the <HTML> tag as it tells the web browser
where the HTML code begins and ends. This alone would created a valid web page and
could be loaded, but the result would be a blank screen. After the beginning and end of
the HTML file is defined there are two more sections that need to be created.

The first of these sections is the HEAD, this section contains information about
the web page. One such element is the TITLE of the web page, the contents of
this field will appear in the browsers title bar. Additionally the contents of the

45

TITLE field will be used for the history list of the browser and also will be the title
entered when the page is book marked.The final section that a web page will consist of is
the BODY, this section contains all the information that is to be displayed on the web page.

The following code will produce a simple template for a web page:

<HTML>
<HEAD>
<CENTER><TITLE> Simple Web Page </TITLE></CENTER>
</HEAD>
<BODY>
<H1>This is a Simple Web Page !!</H1>
</BODY>
</HTML>

And the resulting web page from the code above is :

Figure 8.1: Simple HTML page

From the simple template, this code can be added to to make more complex HTML
pages. There are heaps of HTML tags that allow the developer to customize the
appearance of the web page they are developing. Typing text into the body section of the
HTML page will result in the text being displayed in the default font and size. But tags
must be used to format the appearance of the text,tables, division lines and other elements.

The HTML language provides the developer with a large range of features, just
like a word processor, to create format documents. The developer can insert pic-

46

tures,table, itemized lists and change the appearance of various elements of their page.
There are such a large number of element that can be changed through the use of HTML
tags, that readers are referred to introductory HTML books such as [1] or the Internet for
various formatting information.

Another important feature that HTML provide is the ability to create data entry
field, these are what will be used by this project to pass data to the CGI programs. There
a few different types of data entry fields, but the ones of interest for this project are, the
text entry field and radio buttons. The first element creates a box in which plain text can
enter, the maximum size of which can be set. The next has a grouped set of options, of
which only one can be selected at any time.

The tags just mentioned will be displayed by the following code and explained af-
ter the code:

<!−− This creates a comment > 1

<HTML> 2

<HEAD> 3

<TITLE> Customized Web Page </TITLE> 4

</HEAD> 5

<BODY BACKGROUND="background.jpg" TEXT="#FFFFFF"> 6

<CENTER><H1>This is a Simple Web Page !!</H1></CENTER> 7

8

<P>This is an Itemized List:</P> 9

<HR> 10

 11

Item 1 12

Item 2 13

Item 2A 14

Item 2B 15

 16

Item 3 17

Item 4 18

 19

<HR> 20

21

<P>Radio Buttons:</P> 22

<input type="radio" name="group1" value="Button1" checked> Button 1
 23

<input type="radio" name="group1" value="Button2"> Button 2
 24

<input type="radio" name="group1" value="Button3"> Button 3
 25

<input type="radio" name="group1" value="Button4"> Button 4
 26

27

<HR> 28

47

<TABLE align="center" border="3" width="668" cellpadding="3" id="table1"> 29

<TR> 30

<TD width="222">Text 1 : 31

<input type="text" name="text1" size="20"> 32

</TD> 33

<TD width="222">Text 2 : 34

<input type="text" name="text2" size="20"> 35

</TD> 36

</TR> 37

</TABLE> 38

39

</BODY> 40

</HTML> 41

This code contain only a small proportion of some of the features provided by the HTML
language, but the use of options shown in the example demonstrates the convention
used for HTML options. Line 6 shows how options for the body section can be used to
alter the appearance of the overall page, the BACKGROUND option allow the back-
ground of the page to be set to a color or an image, the TEXT option defines the fonts color.

The use of the HR, P and BR tags show how they can be used to alter the ap-
pearance of the page. The P tag defines a paragraph, and creates the spacing before and
after the text that the code encloses. The BR tag creates a line break and does not require
a </BR> tag , this is the same as <HR> except a horizontal line is created across the page.

HTML provides the ability to create a list, the list will be numbered or have bul-
let points depending what tag encloses the list. In this case the UL tag is used and
produces a bullet pointed list, if OL was used then the list would be numbered. Each
element of the list enclosed within the list type are specified by the LI tag. The addition
of another list type can be used to create a sub list within another list.

The radio buttons can contain an unlimited amount of elements, but only one ele-
ment can be selected at any time. The group is specified using the name field, all elements
with the same name will belong to a group. The value field is used to separate each of
the elements of a group, this is so that the individual button can be identified. One final
feature of the radio button is the ability to specify a default value, this is so that one of
the group is always selected, and is done using the checked option.

Finally is the text entry field, this element allows the user to under strings that
can be used by a CGI program. This element is created using the input tag, the type of
input is specified using the type field and the size option specifies the number of characters
that can fit in text field. Just like the radio buttons the text field has it’s own unique

48

name, specified in the name field. The way that the text fields are displayed in the above
example, uses a table structure which allows the creation of a matrix with the text fields
as the elements. This structure is simple to create, with the ¡TR¿ tag used to create a
matrix row and the TD tags create columns. This allow the developer to group similar
fields to create some logical grouping of data.

The figure below shows the page resulting from the code :

Figure 8.2: Web page with Background and other elements.

8.2 Frames

Also HTML allows the developer to create what are called frames, which allows multiple
Web Pages to be displayed at one time. Using this structure the developer can use one of
the HTML pages as a navigator to the other pages. This is the method used to provide
access the the different programmable instruments in the ATE rack. The following figure
displays the main page designed for this project, and the code after the figure shows how
a form is created:

49

Figure 8.3: HTML Frames

<html> 1

2

<head> 3

<!−− DOCTYPE HTML −−> 4

<!−− A Basic HTML Frames example −−> 5

<!−− Nathan Hetherington 2004 −−> 6

7

<title>ATE Remote Access</title> 8

9

<!−− this is for use by web search robots −−> 10

<!−− "keywords" is used for searching −−> 11

<!−− "description" is the summary returned −−> 12

13

<meta name="author" content="Nathan Hetheington"> 14

<meta name="keywords" content="html"> 15

50

<meta name="description" content="Provide remote access to ATE equiptment"> 16

17

<!−−−> 18

<!−− 150 = pixels, * = remainder −−><!−− *** warning: if only a single panel *** −−> 19

<!−− do not use nested frameset environment −−> 20

<!−− 10%=percentage −−> 21

<!−−−> 22

<!−−−> 23

<!−−−> 24

25

</head> 26

27

<frameset cols="300,*" border="5"> 28

<frame src="Frames_files/NavPanel.html" name="Nav"> 29

<frameset rows="85%,15%"> 30

<frame src="Frames_files/Project.html" name="Upper"> 31

<frame src="Frames_files/Static.html" name="Lower" scrolling="no"> 32

</frameset></frameset> 33

34

<noframes> 35

<BODY> 36

<P> This document uses frames </p> 37

This is in the noframes section 38

</body> 39

40

</noframes> 41

42

</html> 43

The code for this page was obtained from [13] and altered to suit need of this desired imple-
mentation. The important section of this code is lines 28-33, as this section is responsible
for the division of the page into frames. The frameset tag is used to specify the sections
containing the information about how the page is to divided, this division can be vertically
using the cols option or horizontally with the rows option. The size of the divisions are
specified with the option used, and can be expressed as number of pixels or as a percentage.

After the frame sizes have been specified, the pages that must be loaded into each
section must indicated. This is the purpose of lines 29,31 and 32 and various options can
be applied to each frame, such as the no scrolling option that is enabled for the static
frame. The division of the page and manner in which the pages operate is entirely up to
the developer, and allows for the implementation of more powerful, user friendly sites.

51

8.3 Creating HTML pages for ATE Instruments

The creation of HTML pages is a creative process, and aspects such as appearance and
operation can vary tremendously. But in the case of web pages for use with programmable
instruments, there are a few aspects of the implementation that remain constant. For
example the way that settings are changed is dependent on the way feature being set
operates, and usually varies from device to device. Some setting of a device may be
limited to a set of values, for example the wave type produced by the function generator,
so for this reason radio buttons more suit the acquisition of such information.

It is not totally necessary that the right input type be used, but it makes the de-
velopment of CGI code easier. If a text box entry was used to acquire the wave type
desired, then the CGI application would have to check that the entered wave type is valid
and take action if it was not. With the use of the best suited input method, then the need
to code for error detection and correction is not necessary.

So for the implementation of web pages for the devices, a simple analysis of the
feature that the device provides was required. Features that only contain a discrete
number of setting are more suited for implementation using radio buttons, if a continuous
number of values where available then a text box should be used. The web page created
for interaction with the HP 33120A Function Generator is shown in the following figure:

The function generator’s web page above shows how multiple functionality can be
implemented on the one page. For this web page the selection of the waveform type is
done using radio buttons, this makes sense as there are only the four different waveforms
that the web page will provide. The selection of frequency, peak to peak voltage and
voltage offset is done using text boxes.

Creating web pages for each device allows the user to access and alter the settings
of the specific device that the page was written for. But the desire to provide some
form of sequencing to the user may be desired. This could be done by creating web
pages for each step in the sequence, then via a navigation frame such as the one used
for the main implementation above could be used to step through the steps. Providing

52

Figure 8.4: HP 33120A Function Generator Web Page

the sequencing in this manner would reduce the size an complexity of the CGI programs
that are responsible for each step. This structure would also make it possible to use the
individual components in a various number of sequences, and each step would be easily
maintainable.

Alternatively the implementation of sequencing could be done via the use of a
page with the individual steps all listed, with the submit button only available for the
step currently available. Through the use of a complex CGI program for each step, a web
page with the submit button for the next step being returned after the changes have been
implemented. This manner of implementing the sequencing has the advantage of stepping
the user through the step automatically, the main disadvantage of this method is the cgi
cannot be used for another sequence. If a new sequence was desired then a new web page
and corresponding CGI programs would need to be created.

Another aspect of creating web pages for the ATE devices, is the type and num-
ber of settings that should be implemented on each page. For some devices, such as the
Power Supply, using one page to contain all the possible settings is sufficient. But in the
case of other devices such as the Function Generator, Oscilloscope and MUX, there are
far too many options to be included on the one page. So some form dividing the these

53

setting must be decided.

As mention in chapter 7, the device settings are separated into sub command and
using these divisions would make sense. This type of devision would make the develop-
ment of CGI programs that are responsible only for a certain sub-command, decreasing
their size and complexity. Also be cause the sub-division of command is done based on
the function they provide, this type of division is logical.

But there is no need to implement all the commands and sub commands, as a
majority of these features many not be need or could be out of the scope of the users
knowledge. So providing access to only a small group of commands is also possible, and
the commands omitted could be left as their default or set to a desire value. Creating the
web pages in this manner controls the type of settings that the user can use, and helps
in the coding of corresponding CGI programs. The code for the pages created for this
project are located in Appendix D, these page contain only basic features for each device.
The other features for the devices can be implemented in a similar manner.

54

Chapter 9

Setting Up an Apache Web Server

The web server used in the implementation of this system does not matter, as long as it is
capable of providing the Common Gateway Interface method. There are various reasons
for choosing Apache as a web server, for both this project and web hosting in general.
This first is Apache’s dominance in the web server domain, this is illustrated by the graph
shown in the figure below. The only other web server that has a noticeable following is
Microsoft’s Internet Information Server, which is shipped with Windows Server operating
systems.

In addition to it dominance of the market, Apache is also a cross-platform web server.
This means that versions of Apache can be obtained for various operating systems, such
as Microsoft Windows, Mac Os and Linux/Unix. From the view of this project this is
beneficial, as the system could be implemented in another Operating System, inheriting
their security and reliability advantages.

Probably the most appealing aspect of the Apache web server, is the amount of
On-Line documentation and support that is available. This is due to the fact that Apache
is an Open Source program, making it free to the public. And because this software is
open source, this means that any software bugs and security holes are often detected
and corrected much quicker then commercial products. Apache can be obtained from
www.apache.org and is free for download in various versions and platforms. This site
also contains a large amount of documentation for the installation and configuration of
the apache server.

For this project an older version of apache web server was required, this is due to
the fact that the system that apache was to be installed to contains the Windows 95
Operating System. Attempts to install new versions resulted in problems, mainly due to

55

Figure 9.1: Market Share of Various Web Servers

the fact that later versions are designed to take advantage of Thread technology. The
Windows 95 OS is not a true multi-tasking OS and does not support the use of threads.
Also it is worth noting that using Windows 95 for a web server is advised against, because
of the security risks that the OS creates. So for further development of the process
developed by this project, it is advised that a different OS is used for the system.

9.1 Installing Apache

As mentioned earlier, Apache can be downloaded from www.apache.org or various mirror
sites and can be obtained in binary or source form. If the source code version is acquired,
then it must be compiled prior to installation. The advantage of the source version is that
in the compilation process, it can be optimized for optimal performance on that system.
But a majority of the time the binary version is sufficient, and comes in .exe or .msi format.

There is not much difference between these two formats, except the msi files are
smaller. The msi windows installer technology contains all data and instructions required
to install the application on a system. In order to use a msi file then the msi.dll dynamic li-
brary must be installed, this is not necessary in later versions of Windows such as XP,2000.

For the Windows 95 operating system, the winsock libraries have to be updated

56

to winsock 2 before installing the apache server. The winsock libraries are what the
windows OS uses for network communication, and contains functions for the creation,
destruction and use of TCP communications. Web servers use TCP for their communica-
tions, which as stated in [18]:

1. Accept a TCP connection from client(a browser).

2. Get the name of the file requested.

3. Get the file (from disk).

4. Return the file to the client.

5. Release the TCP connection.

The file required to add support for msi files and update the winsock libraries are on the
attached CD, or can be obtained from Microsoft’s web site.

Once the desired version of the Apache web server is acquired, then simply exe-
cuting the exe or msi will initiated the installation process. The installation process
is pretty much self automated, except where information about the Domain and
Administrators e-mail address are required. An example of this is shown in the figure 10.

Figure 9.2: Apache Installation

57

9.2 General Configuration

Most of the configuration settings that relate to the operation of the web server are done
via the httpd configuration file. This file is located in the confs directory, which is in the
directory that the server was installed to. This file is a text based file, that is read by the
server during loading.

An example of some of the configuration changes that are handled by this file, is
the location of the web pages and the cgi programs. This allows the user to specify any
directory that contains web pages that will be accessible for users. This configuration file
is divided into three sections :

1. Global Environment

2. ’Main’ server configuration

3. Virtual Hosts

The Global Environment allows settings such as the root directory where log file and
configuration files are located. Also certain aspects of the operation of the web server can
be changed via global environments, such as Timeout, Whether or not to allow persistent
connections and maximum number of requests a server process serves. Aspects such as
the number of request processed and the timeout are important for this project.

For the ATE remote access we want only one person changing the device settings
at a time, using this global variable is not a very effective method of providing mutual
exclusion. So for future implementation a better method of limiting access to one user
at a time would be needed. Also the timeout property of the server may need to be
changed, if the application applying the changes on the device takes to long the a time
out may result. This could mean that a timeout may result when there is no problems
on the server side, so increasing this timeout would help prevent this problem. But in
order to not have the user waiting too long, so an approximation of the longest command
processing time and a maximum round triptime for the request would need to be estimated.

The next section of the configuration file deals with the location of various files
need by the server, including the HTML page that the server will provide access to.
Along with this it also specifies the that access will be controlled, allowing or denying
based on user names and passwords or IP addresses. This is where security settings can
be enforced, through the selection of appropriate options.

58

Finally this last section allows the establishment of virtual hosts, which allows
multiple domain/hostnames to exist on the one server. This maybe desirable if the server
is to host web pages for different sites, such as a web hosting service would provide. In
the case of this project there is no need to have multiple domains or hostnames, so this
section will be left as is.

As mentioned earlier, there are many sources of apache web server configuration
on the Internet. Hence the user is advised to search on the Internet for help regarding to
the configuration of Apache Web Servers, if more detail is required. The site from which
the Apache server is obtained, www.apache.org is recommended as a good starting
point for such information.

9.3 Configuring Server

After the web server is installed, then all configurations are done via the httpd configu-
ration file. This file is accessed and edited using a simple text editor, and contains code
that look similar to HTML code. This file is read by the server application upon starting
and specifies the operation of certain aspects of the server.

9.3.1 Controlling Access

For this project, there is the desire to provide a form of controlling access to this web site.
Through the use of the httpd configuration file ,files created by the administrator and a
file created by an application provide by the apache server, this facility can be provided.

The first stage in configuring controlled access is the creation of a password file,
this is done using a program that comes with the apache server called htpasswd. This
application is executed with three arguments, the first is the options that the user wishes
to enable, secondly is the file that will store the user/password information created and
last is the user that will be entered into the file. The basic operation of this application is
as follows:

htpasswd -c /usr/local/apache/passwd/passwords username

The user will be prompted to enter the password, this will cause the creation of a

59

file in the specified directory. This file contains the users name and the encrypted
version of the password, this is so later authentication can be achieved by comparing the
encrypted version of the enter password with that in the file. Note that the -c flag is only
use to create the file, if a user is to be added to an existing password file then this flag
is submitted. This is very important as using the -c flag will cause the file to be overwritten.

Care must be taken in the placement of this file, as it contains password informa-
tion that could be used to guess the actual password. For this reason this should
be placed in a directory that the http server cannot access. Also the permissions of
the file must be set to allow access by the web server user, hence deny access to other users.

After the password in created and placed in a directory, then the configuration
files must be set to use this newly created password file. This is done by creating and
placing a file in the directory that is password protected, this file must be give the name
htaccess. The fields that must be entered into this file are now describe :

AuthType Authentication type being used.
AuthName The authentication realm or name.
AuthUserFile The location of the password file.
AuthGroupFile The location of the group file, if any.
Require The requirement(s) which must be satisfied in

order to grant admission.

The htaccess file created for the project’s web server is as follows:

AuthName ”ATE User Login : ”
AuthType Basic
AuthUserFile ”c:/Program Files/Apache Group/Apache2/conf/htpasswd”
AuthGroupFile /dev/null
require valid-user

From this it can be seen that the basic authentication is used to control the ac-
cess to the devices, this could be and of the various authentication setting depending on
the desired effect. The path to the password file is specified by the AuthUserFile line,
and was placed in the conf directory which is only accessible by the web server. And the
required field specifies that in order to be granted access the user must be have an entry
in the password file, and the passwords must exist.

Finally after all files have been created and placed in their correct directories,

60

then the httpd configuration file must be edited to inform the server to use password
access. This is done by editing AllowOverride option of the <Directory ”C:/Program
Files/Apache Group/Apache2/htdocs”> section, which specifies access to the web pages
in this directory. The AuthConfig option is used to activate the password access, after all
these steps are done then the web server must be restarted.

9.4 Adding Web Pages and CGI Programs

After the web server has been installed and configured as desired, then adding the contents
of the web page is simply a case of placing the files in the correct directory. In the case of
the html pages and cgi programs, this is the directory specified using the <Directory ...
>.

The defaults for these fields are the htdocs and cgi-bin directories located in the
directory where the web server was installed on the system. Once the files have been
placed in their correct directories, then any links or references to these files in the HTML
pages must be updated to reflect there current placement.

61

62

Chapter 10

System Test

The testing of this system was simply a matter of seeing weather it worked under certain
circumstances, as there are no real other measurable performance aspects. The system
must be test in a manner that would simulate it’s normal operation if implemented in the
real world. If operation under these circumstances then there is no reason why the system
would not operate correctly through the Internet.

The ideal way of testing this system, would be to provide the remote access sys-
tem to be accessible via the Internet. But this was not possible, due to difficulties
imposed by the information technology services due the possible security faults. This is
understandable as the windows 95 has many security faults, and is not recommended as a
web server as specified by the apache web server developers.

So in order to test this system and eliminate any chances of compromising the
security of the Universities network, the different components that a majority of
the Internet used. The first element is over an ordinary Ethernet network, once
success has been proven on this configuration, a router will be implemented. The router
will allow the testing of how the system operates, when going from one network to another.

For the test of the system over an Ethernet, the PC’s where given IP addresses
192.168.0.1 and 192.168.0.2 respectively.The second address was assigned to the PC
running the remote access system created by this project. Gaining access to the system
from the second PC, was simple a matter of entering 192.168.0.2\frames.html into the
address bar of the web browser of the first PC.

Once performed the introduction web page loaded, and the function generators
page was chosen. Entering data into the fields and pressing the submit button resulted in

63

the desired changes on the instrument, then another device was chosen and also proved
successful. This means that the system operated successfully as predicted, under the first
test circumstances.

The next test required the configuration of a router, in this case a laptop with an
on-board network card and a PCMCIA network card. One of the Network Interface
Card(NIC) was given an address of 192.168.0.1 and the other 192.168.2.1, and an entry
was entered in the routing table of this PC so that information from one network to the
other was passed to the correct interface device. Two PC’s where connected to the laptop
through the use of two network hubs, and each PC assigned an IP address that was from
the same network of the NIC device of the laptop connected to the same hub. The system
was tested using the ping command, and it was found that each host was reachable
through the router.

Now the same test as previously used was duplicated, except the IP address was
192.168.0.2, and the PC being used was on a different network. The system was also
proven successful under these circumstances. There was no noticeable delay, due to the
router, but this was expected as on the Internet usually more than one router exists and
the networks are processing more of a load.

So from these test, it is expected that the system will operate correctly over the
Internet. Of course a much longer delay would be expected, but not enough to effect the
system’s performance. This is due to the fact that more routers would be traversed and
the propagation delays caused by the communication media, the usual round trip time is
around 200 ms. This would be noticeable, but the system only sends a small amount of
data and would not be expect to cause the system to fail.

64

Chapter 11

Conclusion

At the completion of the thesis the system provides a small amount of functionality for
each device, and web pages through which the interactions are performed. An Apache
web server that hosted these web pages and provided password controlled access, was
installed and configured. This was the major achievements of the project.

The web pages created to provide remote access to the devices could be used to
provide access to the ATE Rack for external students. This would benefit student that
would normally have to travel long distances to access these devices. Also assignments and
practical assessments could be created using web pages and CGI programs, for students
to complete remotely.

Also it is suggested that the systems that the ATE equipment is attached to is
updated with more powerful computers. This will improve the security and performance
of both the existing system and the system produced by this project. It will also help
improve the development and testing of software developed using the methods outlined in
the thesis.

The initial direction of this project was not as the author expect, with a client/server
software development. The development of a web based system was emphasized by the
Supervisor, as it solves some of the existing problems, so this was fully developed.

11.1 Suggested Further Development

Improvements to the current remote access system could include:

65

• The implementation of more functionality
for each device.

• Development of a sequence of events for some
test.

• Possibly the implementation of a graphical interface
using Flash media web pages.

• Implement CGI programs using the VISA API library.

66

Bibliography

[1] Michael Anderson. HTML Complete. Sybex, San Francisco, 1st edition, 1999.

[2] UNKNOWN AUTHOR. Danger of Open Port 139. ONLINE,
http://expertanswercenter.techtarget.com/eac/knowledgebaseAnswer/
0,295199,sid63 gci980344,00.html, ACCESSED 14/10/2004.

[3] UNKNOWN AUTHOR. The Common Gateway Interface. ONLINE,
http://hoohoo.ncsa.uiuc.edu/cgi/, ACCESSED 17/8/2004.

[4] UNKNOWN AUTHOR. An Introduction to The Common Gateway Interface. ON-
LINE, http://www.utoronto.ca/webdocs/CGI/cgi1.html, ACCESSED 18/8/2004.

[5] Paul G. Green. Intelligent HPIB Intrument Control. USQ, Toowoomba, QLD, Aus-
tralia, 1st edition, 1992.

[6] Ron House. Beginning with C. THOMAS NELSON AUST, 2nd edition, 1994.

[7] Michael I. Hyman and Robert Arnson. Visual C++ 5 for Dummies. IDG Books
Worldwide, Inc., 919 E. Hillsdale Blvd, 2nd edition, 1997.

[8] Agilent Technologies Inc. Agilent 33120A Function/Arbitrary Waveform Generator -
Quick Reference Guide, 1997-2003.

[9] Agilent Technologies Inc. Agilent 33120A Function/Arbitrary Waveform Generator -
User’s Guide, 1997-2003.

[10] Agilent Technologies Inc. Agilent 34970A Data Acquistion/Switch Unit - Quick Ref-
erence Guide, 1997-2003.

[11] Agilent Technologies Inc. Agilent 34970A Data Acquistion/Switch Unit - User’s Guide,
1997-2003.

[12] Richard Johnsonbaugh & Martin Kalin. Object-Oriented Programming in C++. Pren-
tice Hall, Upper Saddle River, New Jersey, 2nd edition, 2000.

67

[13] John Leis. HTML,Forms and CGI. ONLINE,
http://www.usq.edu.au/users/leis/notes/html/index.html, ACCESSED 4/6/2004.

[14] Hewlett Packard. HP Standard Instrument Control Library - User’s Guide for Win-
dows, 3rd edition, 1996.

[15] John M. Pieper. Automatic Measurement Control. Rohde & Schwarz GmbH & Co.
KG, Muhldorfstrabe 15, 81671 Munchen, Germany, 1st edition, 2003.

[16] Robert W. Sebesta. Concepts of Programming Languages. Addison Wesley, 75 Ail-
ington Street, Suite 300, Boston, MA, 5th edition, 2002.

[17] STROUSTRUP. C++ PROGRAMMING LANGUAGE. ADDISON WESLEY, 3rd
edition, 2000.

[18] Andrew S. Tanenbaum. Computer Networks. Pearson Education, Inc., Upper Saddle
River, New Jersey 07458, 4th edition, 2003.

[19] Agilent Technologies. Agilent VISA - User’s Guide, 5th edition, 2001.

68

University of Southern Queensland
Faculty of Engineering & Surveying

Remote Access of Automated Test Equipment

A dissertation submitted by

Nathan John Hetherington

in fulfillment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems) &
Bachelor of Information Technology (Applied Computer Science)

Submitted: October,2004

i

Appendix A

Project Specification

69

70

Appendix B

ASCII Character Set

71

���������	

Decimal ASCII Binary

32 blank 00100000

33 ! 00100001

34 " 00100010

35 # 00100011

36 $ 00100100

37 % 00100101

38 & 00100110

40 (00101000

41) 00101001

42 * 00101010

44 , 00101100

45 - 00101101

46 . 00101110

65 A 01000001

66 B 01000010

67 C 01000011

68 D 01000100

69 E 01000101

70 F 01000110

71 G 01000111

72 H 01001000

73 I 01001001

74 J 01001010

75 K 01001011

76 L 01001100

77 M 01001101

78 N 01001110

79 O 01001111

80 P 01010000

81 Q 01010001

82 R 01010010

83 S 01010011

84 T 01010100

85 U 01010101

86 V 01010110

87 W 01010111

88 X 01011000

89 Y 01011001

90 Z 01011010

Decimal ASCII Binary

91 [01011011

92 / 01011100

93] 01011101

94 ^ 01011110

95 _ 01011111

96 ’ 01100000

97 a 01100001

98 b 01100010

99 c 01100011

100 d 01100100

101 e 01100101

102 f 01100110

103 g 01100111

104 h 01101000

105 i 01101001

106 j 01101010

107 k 01101011

108 l 01101100

109 m 01101101

110 n 01101110

111 o 01101111

112 p 01110000

113 q 01110001

114 r 01110010

115 s 01110011

116 t 01110100

117 u 01110101

118 v 01110110

119 w 01110111

120 x 01111000

121 y 01111001

122 z 01111010

123 { 01111011

124 | 01111100

125 } 01111101

126 ~ 01111110

Appendix C

GPIB Interface Cards

73

F-01

Industrial
Automation
Products

G
P

IB

GPIB

F

PCI Bus SERIES

PC Card SERIES

ISA Bus SERIES

F-07
F-07
F-08

Standard Type

Low Profile PCI Series

PCI Bus Series

Compact PCI Bus Series

PC Card Series

F-05
Features Of GPIB F SeriesF-04

F-05
F-06
F-06

GPIB Bus master transmission / High performance GPIB F Series

Lineup / Basics KnowledgeF-02

HOME PAGE : www.contec.com

Name IEE-488.2 Speed [bps]
Bus Master
Transmison

Bus Analyer
Function

Software
Page

ACX-PAC(W32) API-PAC(W32)

GP-IB(LPCI)F 1.5Mbyte/sec (Max.) 6 6 - Attached F-056

GP-IB(PCI)F 1.5Mbyte/sec (Max.) 6 6 - Attached F-056

GP-IB(PCI)F 1.5Mbyte/sec (Max.) 6 6 - Attached F-056

GP-IB(PCI) 1.2Mbyte/sec (Max.) - 6 6 Attached F-056

GP-IB(PCI)L 120Kbyte/sec (Max.) - 6 6 Attached F-056

High performance F Series for PCI Bus

Standard Series for PCI Bus

4PCI Bus / Low Profile PCI Bus

Sender: 2Kbyte
Reveiver:2Kbyte

Sender: 2Kbyte
Reveiver:2Kbyte

FIFO
Memory

Sender: 2Kbyte
Reveiver:2Kbyte

Sender: 2Kbyte
Reveiver:2Kbyte

-

Name IEE-488.2 Speed [bps]
Bus Master
Transmison

Bus Analyer
Function

Software
Page

ACX-PAC(W32) API-PAC(W32)

GP-IB(LPCI)F 1.5Mbyte/sec (Max.) 6 6 - Attached F-066

High performance F Series for PCI / Low Profile PCI slot

High performance F Series for PCI Bus

4PC Card

Sender: 2Kbyte
Reveiver:2Kbyte

FIFO
Memory

Name IEE-488.2 Speed [bps]
Bus Master
Transmison

Bus Analyer
Function

Software
Page

ACX-PAC(W32) API-PAC(W32)

GP-IB(CPCI)F 1.5Mbyte/sec (Max.) 6 6 - Attached F-066

High performance F Series

4Compact PCI Bus

Sender: 2Kbyte
Reveiver:2Kbyte

FIFO
Memory

[Lineup]

GP-IB(PM) 6 50Kbyte/sec (Max.) - - - 6 Attached F-07

Name IEE-488.2 IEE488.2 Speed [bps]
Bus Master
Transmison

Bus Analyer
Function

Software
Page

ACX-PAC(W32) API-PAC(W32)

GP-IB(PC)F
Using FIFO: 1Mbyte/sec (Reveiver)

700Kbyte/sec (Sender)
- - 6 6 F-086 6

Standard Series

4ISA Bus

6

FIFO
Memory

GP-IB(PC) 6 - DMA:300Kbyte/sec(Max.) - - - 6 6 F-08

F-08GP-IB(PC)L 6 6
Nomal: 120Kbyte/sec(Max.)
DMA: 400Kbyte/sec(Max.) - - - 6 6

F-02

G
PIB

[GPIB] Lineup/Basic Knowledge

Feature

Lineup/Basic
Knowledge

Low Profile
PCI Bus

PCI Bus

Compact
PCI Bus

PC Card

PCI Bus

PC Card

ISA Bus

High performance
F Series

Standard
Type

HOME PAGE : www.contec.com

Industrial
Automation

Products

High performance F Series for PCI / Low Profile PCI

Basic Knowledge Concerning GPIB Communication

Bus analyzer function
It analyses the data flowing
on the line and monitors the
status of each signal.

FIFO memory
FIFO is a storage device
which stands for First In First
Out. A board equipped with
FIFO memory is capable of
transmitting/receiving bulk
data at high speeds.

3Functions

The output is performed�
in the order of input.

Input Output

FIFO memory

1. GPIB communication standards

GPIB (General Purpose Interface
Bus) was originally developed as
an interface between a computer
and a measurement device. HP-IB
which was an in-house standard
of Hewlett Packard was later
approved by IEEE (Institute of
Electrical and Electronic
Engineers) to become the global
standard and is presently adopted
by many measurement devices. It
is capable of connecting up to 15
devices. This standard is also
called IEEE-488, IEEE-IB and
IEC625, but they are practically
the same as HP-IB.

3GPIB (IEEE-488)

As a host protocol of IEEE-488.1,
it provides additional rules
concerning the grammar of
character data and numeric
representation as well as the
commands and queries that can
be commonly used among each
device as a supplement to the
transfer procedure stipulated in
IEEE-488.1. Therefore, IEEE
488.2-compliant interface boards
also satisfy the communication
requirements provided in IEEE-
488.1.

3IEEE-488.2

4m (Max.)

Thermometer Reluctances meter Digital multi-meter

X-Y Plotter

Personal
computer

Loop�
connection�

isn't accepted

IEEE-488.2

GPIB(IEEE-488)
Measuring instrument

Common commands and queries

Representation of characters and numbers

Connection and transfer procedures

Personal�
computer

HOME PAGE : www.contec.com

F-03

G
PIB

[GPIB] Lineup/Basic Knowledge

Feature

Lineup/Basic
Knowledge

Low Profile
PCI Bus

PCI Bus

Compact
PCI Bus

PC Card

PCI Bus

PC Card

ISA Bus

High performance
F Series

Standard
Type

HOME PAGE : www.contec.com

Industrial
Automation
Products

[GPIB] Features of high-grade and high-speed type (GPIB F Series)

The new series of PC GPIB communication boards are equipped with all the desired features including IEEE-
488.2 compliance, bus master high-speed data transmission and GPIB bus line analysis. The major features
and functions of this series, include:

4Low Profile PCI bus supported : GP-IB(LPCI)F

4PCI bus supported : GP-IB(PCI)F, GP-IB(PCI)FL

4Compact PCI bus supported : GP-IB(CPCI)F

4PC Card (CardBus) supported : GP-IB(CB)F

1. Compliant with IEEE-488.2
Compliant with IEEE-488.2, it is capable of
controlling various external devices which satisfy
this standard.

2. Maximum transfer speed: 1.5Mbyte/sec
Maximum transfer speed is capable of
communicating with a maximum transfer speed of
1.5Mbyte/sec.

3. Bus master transfer
Bus master transfer function allows for the transfer
of bulk data between PC and the board without
applying additional load on CPU.

4. 2Kbyte FIFO both for transmission and reception
2Kbyte FIFO is provided respectively for
transmission and reception, allowing for high-speed
transmission of small to large size data.
High-speed transmission is also possible with
interface message using FIFO.

5. GPIB bus analyzer
Equipped with GPIB bus analyzer (excluding GP-
IB(PCI)FL), it is capable not only of analyzing the
signals which flow on GPIB bus but also of
conducting signal analysis while GPIB
communication is in progress on the board.

6. SPAS event (slave mode)
In addition to the conventional GPIB controller
(1PD7210), event (SPAS) is also provided at the
time of serial poll, allowing for highly flexible system
configuration.

7. High-precision timer
The built-in high-precision application timer enables
the precise time monitoring on Windows.

8. Stable supply over the long term
The unit is equipped with high-speed GPIB
controller (1PD7210-upper compatible) developed
by CONTEC. Therefore, stable supply over the
long term is assured.

9. Diagnosis program
A diagnosis program is provided as a tool for
supporting the system configuration. Diagnosis
program is capable of conducting hardware
operation check (interrupt / I/O access) and simple
communication test with connected devices.

10. Driver library API-PAC(W32)
The standardly equipped driver library allows you
to create Windows application software using
various languages supporting Win32API function
such as Visual Basic and Visual C/C++ in
combination with LabVIEW.

11. Additional functions
4Line monitoring function

Line monitoring function is capable of reading the
status of all the control lines (IFC, ATN, SRQ, REN,
EOI, DAV, NRFD and NDAC) and latch data as well
as the status of data line (DIO1 to DIO8) excluding
GP-IB(PCI)FL.

4FIFO communication
FIFO memory provided on the board can be used
for transmission and reception. Since the
communication is controlled on the board side,
high-speed communication is possible regardless of
the CPU speed. The actual communication speed
will be the speed of the slowest device in
accordance with GPIB communication standard.

4Analyzer function (excluding GP-IB(PCI)FL)
By using the memory provided on the board, it can
analyze the status change of all the lines on the
GPIB cable. (Maximum 64K data can be fetched.)
Analyzer function can be used to determine the
point at which a failure has occurred or to check the
data which flows on the line. This function can be
used on the analyzer utility (Analyzer.exe).

PCN-T02 2m

PCN-T04 4m

GPIB Cable

This connector adapter is
highly convenient when the
expansion slot of a PC has
an extended depth or when
there is an interference with
the cable from the
neighboring board.

GPIB standard-compliant,
this dedicated connection
cable is noise-resistant and
highly reliable.

CN-GP/C

GPIB Connector Adapter

Cable & Accessories

Double
Shield

F-04

G
PIB

[GPIB] Feature

Feature

Lineup/Basic
Knowledge

Low Profile
PCI Bus

PCI Bus

Compact
PCI Bus

PC Card

PCI Bus

PC Card

ISA Bus

High performance
F Series

Standard
Type

HOME PAGE : www.contec.com

Industrial
Automation

Products

[GPIB] High Performance GPIB F Series PCI / Low Profile PCI

GPIB Bus
Master

API function library attachment

High-performance IEEE-488.2/GPIB board
GP-IB(LPCI)F

GPIB Bus
Master

API function library attachment

High-performance IEEE-488.2/GPIB board
GP-IB(PCI)F

GPIB Bus
Master

API function library attachment

Low cost High-performance IEEE-488.2/GPIB
board
GP-IB(PCI)FL

3SPECIFICATIONS
Interface Type IEEE488.1, IEEE488.2
Channels 1ch
Speed 1.5M byte/sec (Max.)
Data Format 8 parallel limes, 3 handshake lines
Signal logic Negative logic Low level : 0.8V or less,

Interrupt
High level : 2.0V or more
One interrupt request signal as INTA

I/O address Any 128-byte boundary
Cable length betw een device 4m or less
Total cable length 20m or less

Connectable number of Max. 15 devices

Option
Software -

Accessories
Cables/Connector

CN-GP/C
PCN-T02, PCN-T04

Connecter 555139-1[AMP] or equivalent

4Compliant with IEEE-488.1 and IEEE-488.2
4Maximum transfer speed of 1.5Mbyte/sec
4Bus master transfer allows for the transfer of bulk data

without applying additional load on CPU.
42Kbyte FIFO is provided respectively for transmission and

reception.
4Equipped with GPIB bus analyzer function.
4The unit is equipped with high-speed GPIB controller

developed by CONTEC. Therefore, stable supply over the
long term is assured.

Power consumption (Max.) +5VDC 400mA

PCI bus/
Dimension (mm)

32bit, 33MHz,5V/
121.69(L)x63.41(H)

3SPECIFICATIONS
Interface Type IEEE488.1, IEEE488.2
Channels 1ch
Speed 1.5Mbyte/sec (Max.)
Data Format 8 parallel limes, 3 handshake lines
Signal logic Negative logic Low level : 0.8V or less,

Interrupt
High level : 2.0V or more
One interrupt request signal as INTA

I/O address Any 128-byte boundary
Cable length betw een device 4m or less
Total cable length 20m or less
Connectable number of Max. 15 devices

Option
Software -

Accessories
Cables/Connector

CN-GP/C
PCN-T02, PCN-T04

Connecter 555139-1[AMP] or equivalent

4Compliant with IEEE-488.1 and IEEE-488.2
4Maximum transfer speed of 1.5Mbyte/sec
4Bus master transfer allows for the transfer of bulk data

without applying additional load on CPU.
42Kbyte FIFO is provided respectively for transmission and

reception.
4Equipped with GPIB bus analyzer function.
4The unit is equipped with high-speed GPIB controller developed by

CONTEC. Therefore, stable supply over the long term is assured.

Power consumption (Max.) +5VDC 400mA

PCI bus/
Dimension (mm)

32bit, 33MHz, 5V/
121.69(L)x63.41(H)

3SPECIFICATIONS
Interface Type IEEE488.1, IEEE488.2
Channels 1ch
Speed 1.5Mbyte/sec (Max.)
Data Format 8 parallel limes, 3 handshake lines

Signal logic
Negative logic Low level : 0.8V or less,

Interrupt
High level : 2.0V or more
One interrupt request signal as INTA

I/O address Any 128-byte boundary
Cable length betw een device 4m or less
Total cable length 20m or less
Connectable number of Max. 15 devices

Option
Software -

Accessories
Cables/Connector

CN-GP/C
PCN-T02, PCN-T04

Connecter 555139-1[AMP] or equivalent

4Compliant with IEEE-488.1 and IEEE-488.2
4Maximum transfer speed of 1.5Mbyte/sec
4Bus master transfer allows for the transfer of bulk data

without applying additional load on CPU.
42Kbyte FIFO is provided respectively for transmission and

reception.
4The unit is equipped with high-speed GPIB controller

developed by CONTEC. Therefore, stable supply over the
long term is assured.

Power consumption (Max.) +5VDC 400mA

PCI bus/
Dimension (mm)

32bit, 33MHz, 5V/
121.69(L)x63.41(H)

F-05

G
PIB

Feature

Lineup/Basic
Knowledge

Low Profile
PCI Bus

PCI Bus

Compact
PCI Bus

PC Card

PCI Bus

PC Card

ISA Bus

High performance
F Series

Standard
Type

HOME PAGE : www.contec.com

Industrial
Automation
Products

FEA
TU

R
ES

FEA
TU

R
ES

FEA
TU

R
ES

Compact
GPIB Bus

Master
API function library attachment

High-performance IEEE-488.2/GPIB board
GP-IB(CPCI)F

GPIB Bus
Master

API function library attachment

CardBus
High-performance IEEE-488.2/GPIB board
GP-IB(CB)F

3SPECIFICATIONS
Interface Type IEEE488.1, IEEE488.2
Channels 1ch
Speed 1.5Mbyte/sec (Max.)
Data Format 8 parallel limes, 3 handshake lines

Signal logic
Negative logic Low level : 0.8V or less,

Interrupt
High level : 2.0V or more
One interrupt request signal as INTA

I/O address Any 128-byte boundary
Cable length betw een device 4m or less
Total cable length 20m or less
Connectable number of Max. 15 devices

Option
Software -

Accessories
Cables/Connector

CN-GP/C
PCN-T02, PCN-T04

Connecter 555139-1[AMP] or equivalent

4Compliant with IEEE-488.1 and IEEE-488.2
4Maximum transfer speed of 1.5Mbyte/sec
4Bus master transfer allows for the transfer of bulk data

without applying additional load on CPU.
42Kbyte FIFO is provided respectively for transmission and

reception.
4Equipped with GPIB bus analyzer function.
4The unit is equipped with high-speed GPIB controller developed by

CONTEC. Therefore, stable supply over the long term is assured.

Power consumption (Max.) +5VDC 400mA

PCI bus/
Dimension (mm) Compact PCI/3Ux4HP

3SPECIFICATIONS
Interface Type IEEE488.1, IEEE488.2
Channels 1ch
Speed 1.5Mbyte/sec (Max.)
Data Format 8 parallel limes, 3 handshake lines

Signal logic
Negative logic Low level : 0.8V or less,

Interrupt
High level : 2.0V or more
One interrupt request signal as INTA

I/O address Any 128-byte boundary
Cable length betw een device 4m or less
Total cable length 20m or less
Connectable number of Max. 15 devices

Option
Software -

Accessories
Cables/Connector

CN-GP/C
PCN-T02, PCN-T04

Length of an attached cable 2m

4Compliant with IEEE-488.1 and IEEE-488.2
4Maximum transfer speed of 1.5Mbyte/sec
4Bus master transfer allows for the transfer of bulk data

without applying additional load on CPU.
42Kbyte FIFO is provided respectively for transmission and

reception.
4Equipped with GPIB bus analyzer function.
4The unit is equipped with high-speed GPIB controller developed by

CONTEC. Therefore, stable supply over the long term is assured.

Power consumption (Max.) +5VDC 400mA

Card type CardBus TYPE II
Weight 250g (include a cable)

F-06

G
PIB

[GPIB] High Performance GPIB F Series Compact PCI Bus/PC Card

Feature

Lineup/Basic
Knowledge

Low Profile
PCI Bus

PCI Bus

Compact
PCI Bus

PC Card

PCI Bus

PC Card

ISA Bus

High performance
F Series

Standard
Type

HOME PAGE : www.contec.com

Industrial
Automation

Products

FEA
TU

R
ES

FEA
TU

R
ES

3SPECIFICATIONS
Interface Type
Channels
Speed
Data Format
Signal logic
Interrupt
I/O address
Cable length between device
Total cable length
Connectable number of device
Power consumption (Max.)

IEEE488.1, IEEE488.2
1ch
1.2Mbyte/sec (Max.)
8 parallel limes, 3 handshake lines
Negative logic Low level : 0.8V or less, High level : 2.0V or more
One interrupt request signal as INTA
Any 16-byte boundary
4m or less
20m or less
Max. 15 devices
+5VDC 970mA

4Data can be transmitted at a maximum transmission rate of
1.2 Mbyte/sec

41Mbyte of FIFO is built in for data transmission and
reception, so the maximum capacity data communication
can be conducted

4Contains a GPIB bus analyzer function

GPIB Memory
on board

FEA
TU

R
ES

API function library attachment [API-PAC(W32)]

GP-IB(PCI)

IEEE-488.2/GPIB Interface Board

555139-1[AMP] or equivalent

32bit, 33MHz, 5V/
121.69(L)x106.68(H)

ACX-PAC(W32)BP, ACX-PAC(W32)AP,
SUPPORT-PAC(PC)202 Ver.2.30 upper,

CN-GP
PCN-02, PCN-04

Connector

PCI bus/
Dimension (mm)
Option

Software

Accessories
Cables/Connector

3SPECIFICATIONS
Interface Type
Channels
Speed
Data Format

Signal logic

Controller chip
Interrupt
I/O address
Cable length between device
Total cable length
Connectable number of device

IEEE488.1, IEEE488.2
1ch
120Kbyte/sec (Max.)
8 parallel limes, 3 handshake lines
Negative logic L-Level: 0.8V or less
H-Level: 2.0V or more
CONTEC original FPGA (uPD7210C compatible)
One interrupt request signal as INTA
Any 32-byte boundary
4m or less
20m or less
Max. 15 devices

4Conforming to the IEEE-488.2 standard, the GP-IB(PCI)L can
exchange signals with a variety of external devices
compliant with the standard

4The board can use the CONTEC FPGA (uPD7210C
compatible) as a GPIB controller for long-term stable supply

FEA
TU

R
ES

API function library attachment [API-PAC(W32)]

GP-IB(PCI)L

IEEE-488.2/GPIB Interface Board

+5VDC 300mA
555139-1[AMP] or equivalent
32bit, 33MHz, 5V/
121.69(L)x106.68(H)

ACX-PAC(W32)BP Ver.2.1 upper,
ACX-PAC(W32)AP Ver.2.1 upper,
SUPPORT-PAC(PC)202 Ver.2.40 upper,

CN-GP
PCN-02, PCN-04

Power consumption (Max.)
Connector
PCI Bus/
Dimension (mm)
Option

Software

Accessories
Cables/Connector

4Conforms to IEEE-488.2 specifications
4Data transfer can be performed at a maximum rate of

50Kbytes/sec

GPIB

IEEE-488.2/GPIB Interface Card
GP-IB(PM)

FEA
TU

R
ES

API function library attachment [API-PAC(W32)]

3SPECIFICATIONS
Channels
Type
Interface type
Speed
Signal logic
Total cable length
Cable length between device
Connectable number of device(Max.)
Interrupt Request Level

1
IEEE488.1, IEEE488.2
8 parallel limes, 3 handshake lines
50Kbyte/sec (Max.)
Low logic level : 0.8V or less, High logic level : 2.0V or more
20m
4m
Max. 15 devices
One of IRQ 3-7, 9-12, 14 or 15

I/O address
Power consumption (Max.)
Operating Temp./Humidity
Length of an attached cable
Card type
Weight
Option

Software

Cables/Connector

Any 16-byte boundary
DC+5V 100mA
0-50;;, 20-90%RH (no condensation)

2m
PCMCIA 2.1/JEIDA 4.2, 16-bit PC Card, JEIDA Type II
250g (include a cable)

ACX-PAC(W32)BP, ACX-PAC(W32)AP,
SUPPORT-PAC(PC)202

PCN-02, PCN-04

GPIB

Card

F-07

G
PIB

[GPIB] PCI Bus/PC Card

Feature

Lineup/Basic
Knowledge

Low Profile
PCI Bus

PCI Bus

Compact
PCI Bus

PC Card

PCI Bus

PC Card

ISA Bus

High performance
F Series

Standard
Type

HOME PAGE : www.contec.com

Industrial
Automation
Products

HOME PAGE : www.contec.com

IEEE-488/GPIB
Interface Board

IEEE-488
Interface Board

DMA IEEE-488/GPIB
Interface Board

IEEE488.1, IEEE488.2 IEEE-488.1
1ch

[DMA mode]
400Kbyte/sec (Max.)

[DMA]Sender/Receiver: 60Kbyte/sec,
[FIFO]Sender:700Kbyte/sec, Reciver:1Mbyte/sec

[DMA]Sender/Receiver:
300Kbyte/sec

8 parallel lines, 3 handshake lines

Low level: 0.8V or less, High level:
2.0V or more (Negative logic)

TTL-level (Negative logic)

- CH1~CH3 (jumper selectable)
CONTEC original FPGA (1PD7210C compatible) PD7210 or equivalent

1 interrupt request signal as INTA One of IRQ 3~7, 9~12, 14 or 15 One of IRQ 3~7, 9

Any of 32-byte boundary Any of 17-byte boundary Any of 9-byte boundary
4m or less
20m or more
15 devices (Max.)
+5VDC 350mA +5VDC 750mA +5VDC 400mA
555139-2(AMP) 57LE-20240-77C0D35G [DDK] or equivalent

AT Bus / 163.0(L) x 107.0(H) AT Bus / 163.0(L) x 122.0(H) XT Bus / 116.0(L) x 107.0(H)

ACX-PAC(W32)BP, ACX-PAC(W32)AP,
API-PAC(W32), SUPPORT-PAC(PC)202,
SUPPORT-PAC(98)202

ACX-PAC(W32)BP, ACX-PAC(W32)AP,
API-PAC(W32), SUPPORT-PAC(PC)202

CN-GP/C
PCN-T02, PCN-T04

- 6 6

Channels
Interface type

Speed

Data type

Signal logic

DMA channels
Controller chip

I/O address
Cable length between devices
Total cable length
Connectable devices

Interrupt

Power consumption (Max.)

CE marking

Connector

Bus / Dimension (mm)

Option
Software

Accessories
Cables / Connector

Notes: Software of option is required.

Model

Specification

GP-IB(PC)L GP-IB(PC)F GP-IB(PC)

For the optional items, please refer to Page G-01 (support software).

F-08

G
PIB

[GPIB] ISA Bus

Feature

Lineup / Basic
Knowledge

Low Profile
PCI Bus

PCI Bus

Compact
PCI Bus

PC Card

PCI Bus

PC Card

ISA Bus

High performance
F Series

Standard
Type

HOME PAGE : www.contec.com

Industrial
Automation

Products

Data Sheet

High-Performance ISA GPIB
Interface
for Windows®

Agilent 82341C

• Built-in buffering for speed
• Agilent VEE compatibility
• BASIC for Windows compatibility
• Microsoft languages compatibility
• SICL/VISA support

Agilent 82341C

Description

The Agilent Technologies 82341C is a low cost, high-
performance IEEE-488 interface and software for ISA-
based PCs. With the 82341C it is easy to access and control
instruments and exchange data. This is a high-speed, 16-bit
card with built-in buffering, which de-couples GPIB
transfers from ISA bus transfers. Buffering provides I/O and
system performance that is superior to direct memory
access (DMA)—up to 750 KB/s.

The 82341C includes SICL and VISA I/O software for
Windows 95/98/NT/2000.

The GPIB interface card plugs into an ISA slot in the
backplane of your PC. Via a GPIB cable, this card connects
to GPIB instruments.

For VXI applications a GPIB cable connects the card to the
command module in Slot 0 of the VXI mainframe.

Refer to the Agilent Technologies Website for instrument
driver availability and downloading instructions, as well as
for recent product updates, if applicable.

2

Ordering Information

Description Product No.

High-Performance ISA GPIB Interface
for Windows

82341C

Add Manual Set 82341C 0B1
Upgrade from 82335B 82341C AGE

Microsoft®, Windows®, MS Windows®
and Windows NT®, are U.S. registered
trademarks of Microsoft Corporation.

Product Specifications

Operating system: Windows 95/98/NT/2000

Controller: PC

I/O library: SICL / VISA

Backplane: ISA

Max. I/O speed: 750 KB/s

Buffering: Built-in

Languages: Agilent VEE, C/C++, BASIC for Windows,
Visual Basic

Agilent Technologies’
Test and Measurement Support,
Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while
minimizing your risk and problems. We strive to ensure that you get the test
and measurement capabilities you paid for and obtain the support you need.
Our extensive support resources and services can help you choose the right
Agilent products for your applications and apply them successfully. Every
instrument and system we sell has a global warranty. Support is available
for at least five years beyond the production life of the product. Two
concepts underlie Agilent’s overall support policy: "Our Promise" and "Your
Advantage."

Our Promise
Our Promise means your Agilent test and measurement equipment will
meet its advertised performance and functionality. When you are choosing
new equipment, we will help you with product information, including
realistic performance specifications and practical recommendations from
experienced test engineers. When you use Agilent equipment, we can verify
that it works properly, help with product operation, and provide basic
measurement assistance for the use of specified capabilities, at no extra
cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert
test and measurement services, which you can purchase according to your
unique technical and business needs. Solve problems efficiently and gain a
competitive edge by contracting with us for calibration, extra-cost upgrades,
out-of-warranty repairs, and on-site education and training, as well as
design, system integration, project management, and other professional
engineering services. Experienced Agilent engineers and technicians
worldwide can help you maximize your productivity, optimize the return on
investment of your Agilent instruments and systems, and obtain dependable
measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test &
measurement needs.

Online assistance:
www.agilent.com/find/assist

Phone or Fax
United States:
(tel) 1 800 452 4844

Canada:
(tel) 1 877 894 4414
(fax) (905) 282 6495

China:
(tel) 800 810 0189
(fax) 1 0800 650 0121

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599

Taiwan:
(tel) 080 004 7866
(fax) (886 2) 2545 6723

Other Asia Pacific Countries:
(tel) (65) 375 8100
(fax) (65) 836 0252
Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change
without notice.

© Agilent Technologies, Inc. 2001
Printed in USA August 1, 2001
5966-2718E

Appendix D

HTML Pages

D.1 Function Generator

<html> 1

2

<head><title align=center> 33120A 15Mhz Function/Arbitrary waveform genterator </title> 3

<h1 align=center> 33120A Function/Arbitrary Waveform Generator </h1> 4

</head> 5

<BODY> 6

<FORM action=/cgi−bin/cgiprogram1.exe method=post> 7

<TABLE align="center" border="1" width="668" cellpadding="3" id="table1"> 8

9

<center> Select Waveform Type : 10

 11

<input type="radio" name="group1" value="Sine" checked> Sine
 12

<input type="radio" name="group1" value="Triangular"> Triangular
 13

<input type="radio" name="group1" value="Square"> Square
 14

<input type="radio" name="group1" value="Ramp"> Ramp
 15

<hr> 16

17

18

<TR> 19

<TD width="222">Frequency : 20

<input type="text" name="freq1" size="20"> 21

</TD> 22

<TD width="300">Peak To Peek Voltage : 23

<input type="text" name="ptpvolt" size="20"> 24

</TD> 25

<TD width="222">Offset : 26

<input type="text" name="Offs" size="20"> 27

</TD> 28

</TR> 29

85

</TABLE> 30

31

</CENTER> 32

<CENTER> 33

<INPUT type=submit value="Press to Submit"> 34

</CENTER> 35

</FORM> 36

<FORM action=/cgi−bin/cgipost.exe method=post> 37

<TABLE align="center" border="1" width="668" cellpadding="3" id="table1"> 38

39

<CENTER> Sweep over a range of frequencies : 40

 41

42

<TR> 43

<TD width="222">From : 44

<input type="text" name="From" size="20"> 45

</TD> 46

<TD width="300">To : 47

<input type="text" name="To" size="20"> 48

</TD> 49

<TD width="222">Step : 50

<input type="text" name="Step" size="20"> 51

</TD> 52

</TR> 53

</TABLE> 54

55

</CENTER> 56

<CENTER> 57

<INPUT type=submit value="Press to Submit"> 58

</CENTER> 59

</FORM> 60

</BODY> 61

62

</html> 63

D.2 Switch Unit

<html> 1

2

<head><title align=center> 34970A Data Acquisition/Switch Unit </title> 3

<h1 align=center> 34970A Data Acquisition/Switch Unit </h1> 4

</head> 5

<BODY> 6

7

<FORM action=/cgi−bin/34970open.exe method=post> 8

<TABLE align="center" border="1" width="668" cellpadding="3" id="table1"> 9

86

<CENTER> 10

<TR> 11

<TD width="222">Open switches(For multiple seperate with ’,’): 12

<input type="text" name="freq1" size="20"> 13

</TD> 14

15

</TR> 16

</CENTER> 17

</TABLE> 18

<CENTER> 19

<INPUT type=submit value="Press to Submit"> 20

</CENTER> 21

</FORM> 22

23

<FORM action=/cgi−bin/34970c`ose.exe method=post> 24

<TABLE align="center" border="1" width="668" cellpadding="3" id="table1"> 25

<CENTER> 26

<TR> 27

<TD width="222">Close switches(For multiple seperate with ’,’): 28

<input type="text" name="freq1" size="20"> 29

</TD> 30

31

</TR> 32

</CENTER> 33

</TABLE> 34

<CENTER> 35

<INPUT type=submit value="Press to Submit"> 36

</CENTER> 37

</FORM> 38

39

</BODY> 40

41

</html> 42

D.3 Power Supply

<html> 1

2

<head><title align=center> 6624A System DC Power Supply </title> 3

<h1 align=center> 6624A System DC Power Supply </h1> 4

</head> 5

6

<BODY> 7

<FORM action=/cgi−bin/6624a.exe method=post> 8

9

<center> Select Supply Number : 10

87

 11

<input type="radio" name="group1" value="1" checked> 1
 12

<input type="radio" name="group1" value="2">2
 13

<input type="radio" name="group1" value="3"> 3
 14

<input type="radio" name="group1" value="4"> 4
 15

<hr> 16

17

18

<TABLE align="center" border="1" width="668" cellpadding="3" id="table1"> 19

<CENTER> 20

<TR> 21

<TD width="222">Voltage: 22

<input type="text" name="freq1" size="20"> 23

</TD> 24

25

</TR> 26

</CENTER> 27

</TABLE> 28

29

<CENTER> 30

<INPUT type=submit value="Press to Submit"> 31

</CENTER> 32

</FORM> 33

</BODY> 34

35

</html> 36

D.4 Oscilloscope

<html> 1

2

<head><title align=center> 54602B Osilliscope </title> 3

<h1 align=center> 54602B Osilliscope </h1> 4

</head> 5

<body> 6

<center> 7

<FORM action=/cgi−bin/54602b.exe method=post> 8

<TABLE align="center" border="1" width="668" cellpadding="3" id="table1"> 9

10

<hr> 11

<center> Select Desired Channel : 12

 13

<input type="radio" name="channel" value="CHANNEL1" checked> Channel 1 14

<input type="radio" name="channel" value="CHANNEL2"> Channel 2 15

<input type="radio" name="channel" value="CHANNEL3"> Channel 3 16

<input type="radio" name="channel" value="CHANNEL4"> Channel 4 17

88

</center> 18

19

<hr> 20

<center> Select Horizontal Scale (Time/div) : 21

 22

<input type="radio" name="time" value="5s" checked> 5s 23

<input type="radio" name="time" value="2s"> 2s 24

<input type="radio" name="time" value="1s"> 1s
 25

<input type="radio" name="time" value=500ms"> 500ms 26

<input type="radio" name="time" value="200ms"> 200ms 27

<input type="radio" name="time" value="50ms"> 50ms 28

<input type="radio" name="time" value="20ms"> 20ms 29

<input type="radio" name="time" value="10ms"> 10ms 30

<input type="radio" name="time" value="5ms"> 5ms 31

<input type="radio" name="time" value="2ms"> 2ms 32

<input type="radio" name="time" value="1ms"> 1ms
 33

<input type="radio" name="time" value="500us"> 500us 34

<input type="radio" name="time" value="200us"> 200us 35

<input type="radio" name="time" value="100us"> 100us 36

<input type="radio" name="time" value="50us"> 50us 37

<input type="radio" name="time" value="20us"> 20us 38

<input type="radio" name="time" value="10us"> 10us 39

<input type="radio" name="time" value="5us"> 5us 40

<input type="radio" name="time" value="2us"> 2us 41

<input type="radio" name="time" value="1us"> 1us
 42

<input type="radio" name="time" value="500ns"> 500ns 43

<input type="radio" name="time" value="200ns"> 200ns 44

<input type="radio" name="time" value="100ns"> 100ns 45

<input type="radio" name="time" value="50ns"> 50ns 46

<input type="radio" name="time" value="20ns"> 20ns 47

<input type="radio" name="time" value="10ns"> 10ns 48

<input type="radio" name="time" value="5ns"> 5ns 49

<input type="radio" name="time" value="2ns"> 2ns 50

<input type="radio" name="time" value="1ns"> 1ns
 51

<hr> 52

<center> Select Vertical Scale (Volts/div) : 53

 54

<input type="radio" name="Vscale" value="5V" checked> 5V 55

<input type="radio" name="Vscale" value="2V"> 2V 56

<input type="radio" name="Vscale" value="1mV"> 1V
 57

<input type="radio" name="Vscale" value="500mV"> 500mV 58

<input type="radio" name="Vscale" value="200mV"> 200mV 59

<input type="radio" name="Vscale" value="100mV"> 100mV 60

<input type="radio" name="Vscale" value="50mV"> 50mV 61

<input type="radio" name="Vscale" value="20mV"> 20mV 62

<input type="radio" name="Vscale" value="10mV"> 10mV
 63

<input type="radio" name="Vscale" value="5mV"> 5mV 64

<input type="radio" name="Vscale" value="2mV"> 2mV 65

89

<input type="radio" name="Vscale" value="1mV"> 1mV
 66

<hr> 67

</center> 68

69

<INPUT type=submit value="Press to Submit"> 70

</CENTER> 71

</FORM> 72

73

</body> 74

75

76

</html> 77

90

Appendix E

CGI Applications

E.1 Basic CGI Applications

E.1.1 CGI get Method

/* cgiget.c 1

* CGI using GET method (environment variables) 2

* 3

* See cgiget.html for use in conjunction with a HTML file. 4

* 5

* Sample output: 6

* 7

QUERY˙STRING -¿ TEXT˙LINE˙ONE=some+text&TEXT˙LINE˙TWO=default+value& 8

TEXT˙LINE˙THREE=1234&PASSWORD˙FIELD=secret 9

SERVER˙SOFTWARE -¿ Apache/1.3.19 (Win32) 10

SERVER˙NAME -¿ estaff100.eng.usq.edu.au 11

SERVER˙PROTOCOL -¿ HTTP/1.1 12

GATEWAY˙INTERFACE -¿ CGI/1.1 13

PATH˙INFO is undefined 14

REMOTE˙HOST is undefined 15

SERVER˙USER is undefined 16

REQUEST˙METHOD -¿ GET 17

REMOTE˙ADDR -¿ 139.86.65.100 18

HTTP˙ACCEPT -¿ image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, 19

application/vnd.ms-excel, application/msword, application/vnd.ms-powerpoint, 20

HTTP˙USER˙AGENT -¿ Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt) 21

HTTP˙REFERRER is undefined 22

* 23

* This code only shows some of the CGI environment variables - 24

* see cgishow.c for a complete list. 25

* 26

91

* John Leis Aug 1998 27

* Revised June 2001 28

*/ 29

30

#include <stdio.h> 31

#include <stdlib.h> 32

#include <string.h> 33

34

#define MAX˙CGILEN 2048 35

#define TMP˙BUFLEN 512 36

37

// holds the contents of the http output (not including the header) 38

static char contentBuf[MAX˙CGILEN+1]; 39

40

int main() 41

{ 42

char *pName, *pValue; 43

int contentLen; 44

char tmpBuf[TMP˙BUFLEN+1]; 45

46

47

// buffer which contains the content, ie HTML output 48

contentBuf[0] = ’\0’; 49

50

strcat(contentBuf, "<HTML>\n"); 51

strcat(contentBuf, "<BODY>\n\n"); 52

53

strcat(contentBuf, "<P>\n"); 54

strcat(contentBuf, " <I> cgiget.c V 1.1 John Leis </I> \n"); 55

strcat(contentBuf, "</P>\n\n"); 56

57

strcat(contentBuf, "<P>\n"); 58

strcat(contentBuf, " <H2> Here’s the result: </H2> \n"); 59

strcat(contentBuf, "</P>\n\n"); 60

61

strcat(contentBuf, "<P>\n"); 62

63

// retrieve environment variable 64

pName = "QUERY_STRING"; 65

pValue = getenv(pName); 66

if(pValue) 67

{ 68

// environment variable is defined 69

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 70

strcat(contentBuf, tmpBuf); 71

} 72

else 73

{ 74

92

sprintf(tmpBuf, " %s is undefined \n", pName); 75

strcat(contentBuf, tmpBuf); 76

} 77

strcat(contentBuf, "
\n"); 78

79

pName = "SERVER_SOFTWARE"; 80

pValue = getenv(pName); 81

if(pValue) 82

{ 83

// environment variable is defined 84

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 85

strcat(contentBuf, tmpBuf); 86

} 87

else 88

{ 89

sprintf(tmpBuf, " %s is undefined \n", pName); 90

strcat(contentBuf, tmpBuf); 91

} 92

strcat(contentBuf, "
\n"); 93

94

pName = "SERVER_NAME"; 95

pValue = getenv(pName); 96

if(pValue) 97

{ 98

// environment variable is defined 99

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 100

strcat(contentBuf, tmpBuf); 101

} 102

else 103

{ 104

sprintf(tmpBuf, " %s is undefined \n", pName); 105

strcat(contentBuf, tmpBuf); 106

} 107

strcat(contentBuf, "
\n"); 108

109

pName = "SERVER_PROTOCOL"; 110

pValue = getenv(pName); 111

if(pValue) 112

{ 113

// environment variable is defined 114

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 115

strcat(contentBuf, tmpBuf); 116

} 117

else 118

{ 119

sprintf(tmpBuf, " %s is undefined \n", pName); 120

strcat(contentBuf, tmpBuf); 121

} 122

93

strcat(contentBuf, "
\n"); 123

124

pName = "GATEWAY_INTERFACE"; 125

pValue = getenv(pName); 126

if(pValue) 127

{ 128

// environment variable is defined 129

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 130

strcat(contentBuf, tmpBuf); 131

} 132

else 133

{ 134

sprintf(tmpBuf, " %s is undefined \n", pName); 135

strcat(contentBuf, tmpBuf); 136

} 137

strcat(contentBuf, "
\n"); 138

139

pName = "PATH_INFO"; 140

pValue = getenv(pName); 141

if(pValue) 142

{ 143

// environment variable is defined 144

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 145

strcat(contentBuf, tmpBuf); 146

} 147

else 148

{ 149

sprintf(tmpBuf, " %s is undefined \n", pName); 150

strcat(contentBuf, tmpBuf); 151

} 152

strcat(contentBuf, "
\n"); 153

154

pName = "REMOTE_HOST"; 155

pValue = getenv(pName); 156

if(pValue) 157

{ 158

// environment variable is defined 159

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 160

strcat(contentBuf, tmpBuf); 161

} 162

else 163

{ 164

sprintf(tmpBuf, " %s is undefined \n", pName); 165

strcat(contentBuf, tmpBuf); 166

} 167

strcat(contentBuf, "
\n"); 168

169

pName = "SERVER_USER"; 170

94

pValue = getenv(pName); 171

if(pValue) 172

{ 173

// environment variable is defined 174

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 175

strcat(contentBuf, tmpBuf); 176

} 177

else 178

{ 179

sprintf(tmpBuf, " %s is undefined \n", pName); 180

strcat(contentBuf, tmpBuf); 181

} 182

strcat(contentBuf, "
\n"); 183

184

pName = "REQUEST_METHOD"; 185

pValue = getenv(pName); 186

if(pValue) 187

{ 188

// environment variable is defined 189

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 190

strcat(contentBuf, tmpBuf); 191

} 192

else 193

{ 194

sprintf(tmpBuf, " %s is undefined \n", pName); 195

strcat(contentBuf, tmpBuf); 196

} 197

strcat(contentBuf, "
\n"); 198

199

pName = "REMOTE_ADDR"; 200

pValue = getenv(pName); 201

if(pValue) 202

{ 203

// environment variable is defined 204

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 205

strcat(contentBuf, tmpBuf); 206

} 207

else 208

{ 209

sprintf(tmpBuf, " %s is undefined \n", pName); 210

strcat(contentBuf, tmpBuf); 211

} 212

strcat(contentBuf, "
\n"); 213

214

pName = "HTTP_ACCEPT"; 215

pValue = getenv(pName); 216

if(pValue) 217

{ 218

95

// environment variable is defined 219

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 220

strcat(contentBuf, tmpBuf); 221

} 222

else 223

{ 224

sprintf(tmpBuf, " %s is undefined \n", pName); 225

strcat(contentBuf, tmpBuf); 226

} 227

strcat(contentBuf, "
\n"); 228

229

pName = "HTTP_USER_AGENT"; 230

pValue = getenv(pName); 231

if(pValue) 232

{ 233

// environment variable is defined 234

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 235

strcat(contentBuf, tmpBuf); 236

} 237

else 238

{ 239

sprintf(tmpBuf, " %s is undefined \n", pName); 240

strcat(contentBuf, tmpBuf); 241

} 242

strcat(contentBuf, "
\n"); 243

244

pName = "HTTP_REFERRER"; 245

pValue = getenv(pName); 246

if(pValue) 247

{ 248

// environment variable is defined 249

sprintf(tmpBuf, " %s -> %s \n", pName, pValue); 250

strcat(contentBuf, tmpBuf); 251

} 252

else 253

{ 254

sprintf(tmpBuf, " %s is undefined \n", pName); 255

strcat(contentBuf, tmpBuf); 256

} 257

strcat(contentBuf, "
\n"); 258

259

260

// trailer 261

strcat(contentBuf, "</P>\n\n"); 262

strcat(contentBuf, "</BODY>\n"); 263

strcat(contentBuf, "</HTML>\n"); 264

265

// now create the output according to the HTTP protocol 266

96

267

// initial string specifies content text/plain, text/html etc 268

printf("Content-type: text/html\n"); 269

270

// content length 271

contentLen = strlen(contentBuf); 272

printf("Content-length: %d\n", contentLen); 273

274

// **** blank line is important here (separates header & body) **** 275

printf("\n"); 276

277

// now the content itself 278

printf("%s", contentBuf); 279

280

return 0; 281

} 282

283

E.1.2 CGI post Method

/* cgipost.c 1

* CGI using POST method (standard input/output) 2

* Note that this method is different to the GET method – 3

* the input comes from standard input (stdin), and 4

* not the environment variable QUERY STRING 5

* 6

* See cgipost.html for use in conjunction with a HTML file. 7

* 8

* Example output: 9

cgipost.c V 1.1 John Leis 10

11

Here’s the result: 12

13

CONTENT LENGTH = 98 14

data read: 15

TEXT LINE ONE=test&TEXT LINE TWO=default+value&TEXT LINE THREE=0123&PASSWORD FIELD=secret+password 16

* 17

* 18

* John Leis 19

* Revised June 2001 20

*/ 21

22

#include <stdio.h> 23

#include <stdlib.h> 24

25

#include <string.h> 26

97

#include <unistd.h> 27

28

29

#define MAX CGILEN 2048 30

#define TMP BUFLEN 512 31

#define READ BUFLEN 512 32

33

// holds the contents of the http output (not including the header) 34

static char contentBuf[MAX CGILEN+1]; 35

36

#ifndef STDIN 37

#define STDIN 0 38

#endif STDIN 39

40

#ifndef STDOUT 41

#define STDOUT 1 42

#endif STDOUT 43

44

int main() 45

{ 46

int bytesRead, bytesLeft; 47

char *pName, *pValue; 48

int contentLen; 49

char tmpBuf[TMP BUFLEN+1]; 50

char readBuf[READ BUFLEN+1]; 51

52

53

// buffer which contains the content, ie HTML output 54

contentBuf[0] = ’\0’; 55

56

strcat(contentBuf, "<HTML>\n"); 57

strcat(contentBuf, "<BODY>\n\n"); 58

59

strcat(contentBuf, "<P>\n"); 60

strcat(contentBuf, " <I> cgipost.c V 1.1 John Leis </I> \n"); 61

strcat(contentBuf, "</P>\n\n"); 62

63

strcat(contentBuf, "<P>\n"); 64

strcat(contentBuf, " <H2> Here’s the result: </H2> \n"); 65

strcat(contentBuf, "</P>\n\n"); 66

67

strcat(contentBuf, "<P>\n"); 68

69

// for testing only 70

//sprintf(tmpBuf, "20"); 71

//setenv("CONTENT_LENGTH", tmpBuf, 1); 72

73

pName = "CONTENT_LENGTH"; 74

98

pValue = getenv(pName); 75

if(pValue) 76

{ 77

sprintf(tmpBuf, " %s = %s
\n", pName, pValue); 78

strcat(contentBuf, tmpBuf); 79

80

bytesLeft = atoi(pValue); 81

do 82

{ 83

bytesRead = read(STDIN, &readBuf[0], READ BUFLEN); 84

85

// null−terminate 86

if(bytesRead > 0) 87

{ 88

readBuf[bytesRead] = ’\0’; 89

bytesLeft −= bytesRead; 90

} 91

} while((bytesLeft > 0) && (bytesRead > 0)); 92

93

if(bytesRead > 0) 94

{ 95

sprintf(tmpBuf, " data read: \n"); 96

strcat(contentBuf, tmpBuf); 97

98

strcat(contentBuf, "
\n"); 99

strcat(contentBuf, " <I>\n"); 100

101

sprintf(tmpBuf, " %s\n", readBuf); 102

strcat(contentBuf, tmpBuf); 103

strcat(contentBuf, " </I>\n"); 104

} 105

else 106

{ 107

sprintf(tmpBuf, " no data read \n"); 108

strcat(contentBuf, tmpBuf); 109

} 110

} 111

else 112

{ 113

sprintf(tmpBuf, " %s is undefined \n", pName); 114

strcat(contentBuf, tmpBuf); 115

} 116

117

// trailer 118

strcat(contentBuf, "</P>\n\n"); 119

strcat(contentBuf, "</BODY>\n"); 120

strcat(contentBuf, "</HTML>\n"); 121

122

99

123

// now create the output according to the HTTP protocol 124

125

// initial string specifies content text/plain, text/html etc 126

printf("Content-type: text/html\n"); 127

128

// content length 129

contentLen = strlen(contentBuf); 130

printf("Content-length: %d\n", contentLen); 131

132

// **** blank line is important here (separates header & body) **** 133

printf("\n"); 134

135

// now the content itself 136

printf("%s", contentBuf); 137

138

return 0; 139

} 140

E.2 CGI Programs for Devices

E.2.1 Function Generator

// This is a CGI program to change settings on the 33120a Function Generator 1

/* 33120A.c 2

* CGI using POST method (standard input/output) 3

* Note that this method is different to the GET method – 4

* the input comes from standard input (stdin), and 5

* not the environment variable QUERY STRING 6

* 7

* See cgipost.html for use in conjunction with a HTML file. 8

* 9

* Example output: 10

11

12

Here’s the result: 13

14

CONTENT LENGTH = 98 15

data read: 16

TEXT LINE ONE=test&TEXT LINE TWO=default+value&TEXT LINE THREE=0123&PASSWORD FIELD=secret+password 17

* 18

* 19

* 20

*/ 21

22

100

#include <stdio.h> 23

#include <stdlib.h> 24

#include <string.h> 25

#include <unistd.h> 26

#include "sicl.h" 27

28

#define DEVICE ADDRESS "hpib7,10" 29

30

31

#define MAX CGILEN 2048 32

#define TMP BUFLEN 512 33

#define READ BUFLEN 512 34

35

// holds the contents of the http output (not including the header) 36

static char contentBuf[MAX CGILEN+1]; 37

38

#ifndef STDIN 39

#define STDIN 0 40

#endif 41

42

#ifndef STDOUT 43

#define STDOUT 1 44

#endif 45

46

// Function Prototypes 47

void getVariables(char *readBuf); 48

49

// Variables for changes to equiptment 50

char Frequency[7]; 51

char PtPVolts[5]; 52

char WavType[12]; 53

char Offset[5]; 54

char desired[30]; 55

char actual[30]; 56

57

int main() 58

{ 59

FILE *Out; 60

int bytesRead, bytesLeft; 61

char *pName, *pValue; 62

int contentLen; 63

char tmpBuf[TMP BUFLEN+1]; 64

char readBuf[READ BUFLEN+1]; 65

INST id; 66

char buff[256]; 67

68

// Install a default SICL error handler that logs an error message and 69

// exits. On Windows 95 view messages with the SICL Message Viewer, 70

101

// and on Windows NT 71

ionerror(I ERROR EXIT); 72

73

// Open a device session using the DEVICE ADDRESS 74

id=iopen(DEVICE ADDRESS); 75

// Write the *RST string (and send an EOI indicator) to put the instrument 76

// in a known state. 77

iprintf(id, "*RST\n"); 78

ipromptf(id, "*IDN?\n", "%t", buff); 79

//printf("Device = %s\n",buff); 80

81

// Open the output file 82

Out=fopen("output.txt","w"); 83

84

// buffer which contains the content, ie HTML output 85

contentBuf[0] = ’\0’; 86

87

strcat(contentBuf, "<HTML>\n"); 88

strcat(contentBuf, "<BODY>\n\n"); 89

90

strcat(contentBuf, "<P>\n"); 91

strcat(contentBuf, " <I> 33120.c V 1.1 Nathan Hetherington </I> \n"); 92

strcat(contentBuf, "</P>\n\n"); 93

94

strcat(contentBuf, "<P>\n"); 95

strcat(contentBuf, " <H2> Here’s the result: </H2> \n"); 96

strcat(contentBuf, "</P>\n\n"); 97

98

strcat(contentBuf, "<P>\n"); 99

100

// for testing only 101

//sprintf(tmpBuf, "20"); 102

//setenv("CONTENT_LENGTH", tmpBuf, 1); 103

104

pName = "CONTENT_LENGTH"; 105

pValue = getenv(pName); 106

107

108

109

if(pValue) 110

{ 111

sprintf(tmpBuf, " %s = %s
\n", pName, pValue); 112

strcat(contentBuf, tmpBuf); 113

114

bytesLeft = atoi(pValue); 115

do 116

{ 117

bytesRead = read(STDIN, &readBuf[0], READ BUFLEN); 118

102

119

// null−terminate 120

if(bytesRead > 0) 121

{ 122

readBuf[bytesRead] = ’\0’; 123

bytesLeft −= bytesRead; 124

} 125

} while((bytesLeft > 0) && (bytesRead > 0)); 126

127

if(bytesRead > 0) 128

{ 129

sprintf(tmpBuf, " data read: \n"); 130

strcat(contentBuf, tmpBuf); 131

132

strcat(contentBuf, "
\n"); 133

strcat(contentBuf, " <I>\n"); 134

135

sprintf(tmpBuf, " %s\n", readBuf); 136

strcat(contentBuf, tmpBuf); 137

strcat(contentBuf, " </I>\n"); 138

} 139

else 140

{ 141

sprintf(tmpBuf, " no data read \n"); 142

strcat(contentBuf, tmpBuf); 143

} 144

} 145

else 146

{ 147

sprintf(tmpBuf, " %s is undefined \n", pName); 148

strcat(contentBuf, tmpBuf); 149

} 150

151

152

153

154

// Manipulate the input string 155

fprintf(Out,"%s\n",readBuf); 156

getVariables(readBuf); 157

fprintf(Out,"WavType value = %s\n",WavType); 158

fprintf(Out,"Frequency value = %s\n",Frequency); 159

fprintf(Out,"Point to Point voltage value = %s\n",PtPVolts); 160

fprintf(Out,"Offset voltage value = %s\n",Offset); 161

162

163

// Set the Function generator 164

if((strcmp(WavType,"Sine")==0)){ 165

fprintf(Out,"Setting a Sine waveform!\n"); 166

103

iprintf(id,"APPL:SIN %s,%s, %s\n",Frequency,PtPVolts,Offset); 167

168

// Created the desired string 169

strcat(desired, "APPL:SIN "); 170

strcat(desired,Frequency); 171

strcat(desired," , "); 172

strcat(desired,PtPVolts); 173

strcat(desired," , "); 174

strcat(desired,Offset); 175

strcat(desired,"\n"); 176

177

}else if((strcmp(WavType,"Triangular")==0)){ 178

fprintf(Out,"Setting a Tringular waveform!\n"); 179

iprintf(id,"APPL:TRI %s,%s, %s\n",Frequency,PtPVolts,Offset); 180

181

// Created the desired string 182

strcat(desired, "APPL:TRI "); 183

strcat(desired,Frequency); 184

strcat(desired," , "); 185

strcat(desired,PtPVolts); 186

strcat(desired," , "); 187

strcat(desired,Offset); 188

strcat(desired,"\n"); 189

190

}else if((strcmp(WavType,"Square")==0)){ 191

fprintf(Out,"Setting a Square waveform!\n"); 192

iprintf(id,"APPL:SQU %s,%s, %s\n",Frequency,PtPVolts,Offset); 193

194

// Created the desired string 195

strcat(desired, "APPL:SQU "); 196

strcat(desired,Frequency); 197

strcat(desired," , "); 198

strcat(desired,PtPVolts); 199

strcat(desired," , "); 200

strcat(desired,Offset); 201

strcat(desired,"\n"); 202

203

}else{ 204

fprintf(Out,"Setting a Ramp waveform!\n"); 205

iprintf(id,"APPL:RAMP %s,%s, %s\n",Frequency,PtPVolts,Offset); 206

207

// Created the desired string 208

strcat(desired, "APPL:RAMP "); 209

strcat(desired,Frequency); 210

strcat(desired," , "); 211

strcat(desired,PtPVolts); 212

strcat(desired," , "); 213

strcat(desired,Offset); 214

104

strcat(desired,"\n"); 215

216

} 217

218

219

220

ipromt(id,"APPL?\n","%t",actual) 221

222

if(strcmp(actual,desired)==0){ 223

strcat(contentBuf, "<P> <H1> Changes Successful !!!!!!</H1></P>\n"); 224

}else{ 225

strcat(contentBuf, "<P> <H1> Changes Unsuccessful !!!!!!</H1></P>\n"); 226

} 227

228

// trailer 229

strcat(contentBuf, "</P>\n\n"); 230

strcat(contentBuf, "</BODY>\n"); 231

strcat(contentBuf, "</HTML>\n"); 232

233

234

// now create the output according to the HTTP protocol 235

236

// initial string specifies content text/plain, text/html etc 237

printf("Content-type: text/html\n"); 238

239

// content length 240

contentLen = strlen(contentBuf); 241

printf("Content-length: %d\n", contentLen); 242

243

// **** blank line is important here (separates header & body) **** 244

printf("\n"); 245

246

// now the content itself 247

printf("%s", contentBuf); 248

249

250

251

// Close files 252

fclose(Out); 253

254

//iclose(id); 255

256

// For WIN16 programs, call siclcleanup before exiting to release 257

// resources allocated by SICL for this application. This call is a 258

// no−op for WIN32 programs. 259

// siclcleanup(); 260

261

return 0; 262

105

} 263

// 264

// Function Name: getVariables(char *Buffer) 265

// 266

// 267

// 268

void getVariables(char *Buffer){ 269

270

int index=0,count=0; 271

272

273

while(Buffer[index]!= ’=’){ 274

index++; 275

} 276

index++; 277

while(Buffer[index] != ’&’){ 278

WavType[count]=Buffer[index]; 279

index++; 280

count++; 281

} 282

count++; 283

index++; 284

WavType[count]=’\0’; 285

printf("WavType value = %s\n",WavType); 286

287

while(Buffer[index]!= ’=’){ 288

index++; 289

} 290

count = 0; 291

index++; 292

while(Buffer[index] != ’&’){ 293

Frequency[count]=Buffer[index]; 294

index++; 295

count++; 296

} 297

count++; 298

Frequency[count]=’\0’; 299

printf("Frequency value = %s\n",Frequency); 300

while(Buffer[index]!= ’=’){ 301

index++; 302

} 303

count = 0; 304

index++; 305

while(Buffer[index] != ’&’){ 306

PtPVolts[count]=Buffer[index]; 307

index++; 308

count++; 309

} 310

106

count++; 311

PtPVolts[count]=’\0’; 312

printf("Point to Point voltage value = %s\n",PtPVolts); 313

314

while(Buffer[index]!= ’=’){ 315

index++; 316

} 317

318

319

count = 0; 320

index++; 321

while(Buffer[index] != ’\0’){ 322

Offset[count]=Buffer[index]; 323

index++; 324

count++; 325

} 326

count++; 327

Offset[count]=’\0’; 328

printf("Offset voltage value = %s \n",Offset); 329

} 330

E.2.2 Oscilloscope

// This is the first draft of the cgi program for the 54602B Osilloscope 1

/* 54602.c 2

* CGI using POST method (standard input/output) 3

* Note that this method is different to the GET method – 4

* the input comes from standard input (stdin), and 5

* not the environment variable QUERY STRING 6

*/ 7

8

#include <stdio.h> 9

#include <stdlib.h> 10

#include <string.h> 11

#include <unistd.h> 12

#include "sicl.h" 13

14

#define DEVICE ADDRESS "hpib7,7" 15

16

17

#define MAX CGILEN 2048 18

#define TMP BUFLEN 512 19

#define READ BUFLEN 512 20

21

// holds the contents of the http output (not including the header) 22

static char contentBuf[MAX CGILEN+1]; 23

107

24

#ifndef STDIN 25

#define STDIN 0 26

#endif 27

28

#ifndef STDOUT 29

#define STDOUT 1 30

#endif 31

32

// Function Prototypes 33

void getVariables(char *readBuf); 34

35

// Variables for changes to equiptment 36

char Time[7]; 37

char Vscale[5]; 38

char Channel[10]; 39

char actual[30]; 40

char desired[30] 41

42

int main() 43

{ 44

FILE *Out; 45

int bytesRead, bytesLeft; 46

char *pName, *pValue; 47

int contentLen; 48

char tmpBuf[TMP BUFLEN+1]; 49

char readBuf[READ BUFLEN+1]; 50

INST id; 51

char buff[256]; 52

53

// Install a default SICL error handler that logs an error message and 54

// exits. On Windows 95 view messages with the SICL Message Viewer, 55

// and on Windows NT 56

ionerror(I ERROR EXIT); 57

58

// Open a device session using the DEVICE ADDRESS 59

id=iopen(DEVICE ADDRESS); 60

// Write the *RST string (and send an EOI indicator) to put the instrument 61

// in a known state. 62

iprintf(id, "*RST\n"); 63

ipromptf(id, "*IDN?\n", "%t", buff); 64

printf("Device = %s\n",buff); 65

66

// Open the output file 67

Out=fopen("54602b.txt","w"); 68

69

// buffer which contains the content, ie HTML output 70

contentBuf[0] = ’\0’; 71

108

72

strcat(contentBuf, "<HTML>\n"); 73

strcat(contentBuf, "<BODY>\n\n"); 74

75

strcat(contentBuf, "<P>\n"); 76

strcat(contentBuf, " <I> cgiprogram1.c V 1.1 Nathan Hetherington </I> \n"); 77

strcat(contentBuf, "</P>\n\n"); 78

79

strcat(contentBuf, "<P>\n"); 80

strcat(contentBuf, " <H2> Here’s the result: </H2> \n"); 81

strcat(contentBuf, "</P>\n\n"); 82

83

strcat(contentBuf, "<P>\n"); 84

85

// for testing only 86

//sprintf(tmpBuf, "20"); 87

//setenv("CONTENT_LENGTH", tmpBuf, 1); 88

89

pName = "CONTENT_LENGTH"; 90

pValue = getenv(pName); 91

92

93

94

if(pValue) 95

{ 96

sprintf(tmpBuf, " %s = %s
\n", pName, pValue); 97

strcat(contentBuf, tmpBuf); 98

99

bytesLeft = atoi(pValue); 100

do 101

{ 102

bytesRead = read(STDIN, &readBuf[0], READ BUFLEN); 103

104

// null−terminate 105

if(bytesRead > 0) 106

{ 107

readBuf[bytesRead] = ’\0’; 108

bytesLeft −= bytesRead; 109

} 110

} while((bytesLeft > 0) && (bytesRead > 0)); 111

112

if(bytesRead > 0) 113

{ 114

sprintf(tmpBuf, " data read: \n"); 115

strcat(contentBuf, tmpBuf); 116

117

strcat(contentBuf, "
\n"); 118

strcat(contentBuf, " <I>\n"); 119

109

120

sprintf(tmpBuf, " %s\n", readBuf); 121

strcat(contentBuf, tmpBuf); 122

strcat(contentBuf, " </I>\n"); 123

} 124

else 125

{ 126

sprintf(tmpBuf, " no data read \n"); 127

strcat(contentBuf, tmpBuf); 128

} 129

} 130

else 131

{ 132

sprintf(tmpBuf, " %s is undefined \n", pName); 133

strcat(contentBuf, tmpBuf); 134

} 135

136

137

138

// Manipulate the input string 139

fprintf(Out,"%s\n",readBuf); 140

getVariables(readBuf); 141

fprintf(Out,"Time value = %s\n",Time); 142

fprintf(Out,"Vertical Scale value = %s\n",Vscale); 143

fprintf(Out,"Channel selected are = %s\n",Channel); 144

145

//Setting the Parameters for the Oscilloscope 146

iprintf(id,"TIM:RANG %s\n",Time); 147

iprintf(id,"%s:RANG %s\n",Channel,Vscale); 148

149

// Change settings on Oscilloscope 150

151

iprompt(id,"TIM:RANG?\n",%t,actual); 152

strcat(desired, Time); 153

154

if(strcmp(actual,desired)==0){ 155

iprompt(id,"%s:RANG?\n",%t,Channel,actual); 156

strcat(desired, Channel); 157

strcat(desired, ":"); 158

strcat(desired, Vscale); 159

160

if(strcmp(actual,desired)==0){ 161

strcat(contentBuf, "<P> <H1> Changes Successful !!!!!!</H1></P>\n"); 162

}else{ 163

strcat(contentBuf, "<P> <H1> Changes Unsuccessful !!!!!!</H1></P>\n"); 164

} 165

166

}else{ 167

110

strcat(contentBuf, "<P> <H1> Changes Unsuccessful !!!!!!</H1></P>\n"); 168

} 169

170

171

172

// trailer 173

strcat(contentBuf, "</P>\n\n"); 174

strcat(contentBuf, "</BODY>\n"); 175

strcat(contentBuf, "</HTML>\n"); 176

177

178

// now create the output according to the HTTP protocol 179

180

// initial string specifies content text/plain, text/html etc 181

printf("Content-type: text/html\n"); 182

183

// content length 184

contentLen = strlen(contentBuf); 185

printf("Content-length: %d\n", contentLen); 186

187

// **** blank line is important here (separates header & body) **** 188

printf("\n"); 189

190

// now the content itself 191

printf("%s", contentBuf); 192

// Close files 193

fclose(Out); 194

195

iclose(id); 196

197

// For WIN16 programs, call siclcleanup before exiting to release 198

// resources allocated by SICL for this application. This call is a 199

// no−op for WIN32 programs. 200

// siclcleanup(); 201

202

return 0; 203

} 204

// 205

// Function Name: getVariables(char *Buffer) 206

// 207

// 208

// 209

void getVariables(char *Buffer){ 210

211

int index=0,count=0; 212

213

214

while(Buffer[index]!= ’=’){ 215

111

index++; 216

} 217

index++; 218

while(Buffer[index] != ’&’){ 219

Channel[count]=Buffer[index]; 220

index++; 221

count++; 222

} 223

count++; 224

index++; 225

Channel[count]=’\0’; 226

printf("Time value = %s\n",Channel); 227

count=0; 228

while(Buffer[index]!= ’=’){ 229

index++; 230

} 231

index++; 232

while(Buffer[index] != ’&’){ 233

Time[count]=Buffer[index]; 234

index++; 235

count++; 236

} 237

count++; 238

index++; 239

Time[count]=’\0’; 240

printf("Time value = %s\n",Time); 241

242

while(Buffer[index]!= ’=’){ 243

index++; 244

} 245

count = 0; 246

index++; 247

while(Buffer[index] != ’\0’){ 248

Vscale[count]=Buffer[index]; 249

index++; 250

count++; 251

} 252

count++; 253

Vscale[count]=’\0’; 254

printf("Vertical Scale value = %s\n",Vscale); 255

256

} 257

258

112

E.2.3 Switch Unit

Open

// This is the first draft of the cgi program for the Switch Unit to open switches 1

/* 34970open.c 2

* CGI using POST method (standard input/output) 3

* Note that this method is different to the GET method – 4

* the input comes from standard input (stdin), and 5

* not the environment variable QUERY STRING 6

* 7

* See cgipost.html for use in conjunction with a HTML file. 8

9

10

Here’s the result: 11

12

CONTENT LENGTH = 98 13

data read: 14

TEXT LINE ONE=test&TEXT LINE TWO=default+value&TEXT LINE THREE=0123&PASSWORD FIELD=secret+password 15

* 16

* 17

* 18

*/ 19

20

#include <stdio.h> 21

#include <stdlib.h> 22

#include <string.h> 23

#include <unistd.h> 24

#include "sicl.h" 25

26

#define DEVICE ADDRESS "hpib7,10" 27

28

29

#define MAX CGILEN 2048 30

#define TMP BUFLEN 512 31

#define READ BUFLEN 512 32

33

// holds the contents of the http output (not including the header) 34

static char contentBuf[MAX CGILEN+1]; 35

36

#ifndef STDIN 37

#define STDIN 0 38

#endif 39

40

#ifndef STDOUT 41

#define STDOUT 1 42

#endif 43

44

113

// Function Prototypes 45

void getVariables(char *readBuf); 46

47

// Variables for changes to equiptment 48

char chan list[30]; 49

char actual[30]; 50

char desired[30]; 51

52

int main() 53

{ 54

55

int bytesRead, bytesLeft; 56

char *pName, *pValue; 57

int contentLen; 58

char tmpBuf[TMP BUFLEN+1]; 59

char readBuf[READ BUFLEN+1]; 60

INST id; 61

char buff[256]; 62

63

// Install a default SICL error handler that logs an error message and 64

// exits. On Windows 95 view messages with the SICL Message Viewer, 65

// and on Windows NT 66

ionerror(I ERROR EXIT); 67

68

// Open a device session using the DEVICE ADDRESS 69

id=iopen(DEVICE ADDRESS); 70

// Write the *RST string (and send an EOI indicator) to put the instrument 71

// in a known state. 72

iprintf(id, "*RST\n"); 73

ipromptf(id, "*IDN?\n", "%t", buff); 74

//printf("Device = %s\n",buff); 75

76

// buffer which contains the content, ie HTML output 77

contentBuf[0] = ’\0’; 78

79

strcat(contentBuf, "<HTML>\n"); 80

strcat(contentBuf, "<BODY>\n\n"); 81

82

strcat(contentBuf, "<P>\n"); 83

strcat(contentBuf, " <I> 34970open.c V 1.1 Nathan Hetherington </I> \n"); 84

strcat(contentBuf, "</P>\n\n"); 85

86

strcat(contentBuf, "<P>\n"); 87

strcat(contentBuf, " <H2> Here’s the result: </H2> \n"); 88

strcat(contentBuf, "</P>\n\n"); 89

90

strcat(contentBuf, "<P>\n"); 91

92

114

// for testing only 93

//sprintf(tmpBuf, "20"); 94

//setenv("CONTENT_LENGTH", tmpBuf, 1); 95

96

pName = "CONTENT_LENGTH"; 97

pValue = getenv(pName); 98

99

100

101

if(pValue) 102

{ 103

sprintf(tmpBuf, " %s = %s
\n", pName, pValue); 104

strcat(contentBuf, tmpBuf); 105

106

bytesLeft = atoi(pValue); 107

do 108

{ 109

bytesRead = read(STDIN, &readBuf[0], READ BUFLEN); 110

111

// null−terminate 112

if(bytesRead > 0) 113

{ 114

readBuf[bytesRead] = ’\0’; 115

bytesLeft −= bytesRead; 116

} 117

} while((bytesLeft > 0) && (bytesRead > 0)); 118

119

if(bytesRead > 0) 120

{ 121

sprintf(tmpBuf, " data read: \n"); 122

strcat(contentBuf, tmpBuf); 123

124

strcat(contentBuf, "
\n"); 125

strcat(contentBuf, " <I>\n"); 126

127

sprintf(tmpBuf, " %s\n", readBuf); 128

strcat(contentBuf, tmpBuf); 129

strcat(contentBuf, " </I>\n"); 130

} 131

else 132

{ 133

sprintf(tmpBuf, " no data read \n"); 134

strcat(contentBuf, tmpBuf); 135

} 136

} 137

else 138

{ 139

sprintf(tmpBuf, " %s is undefined \n", pName); 140

115

strcat(contentBuf, tmpBuf); 141

} 142

143

// Apply changes on Switch Unit 144

iprintf(id,"ROUT:OPEN %s\n",chan list); 145

iprompt(id,"ROUT:OPEN?\n",%t,actual); 146

147

if(strcmp(actual,desired)==0){ 148

strcat(contentBuf, "<P> <H1> Changes Successful !!!!!!</H1></P>\n"); 149

}else{ 150

strcat(contentBuf, "<P> <H1> Changes Unsuccessful !!!!!!</H1></P>\n"); 151

} 152

153

154

// trailer 155

strcat(contentBuf, "</P>\n\n"); 156

strcat(contentBuf, "</BODY>\n"); 157

strcat(contentBuf, "</HTML>\n"); 158

159

160

// now create the output according to the HTTP protocol 161

162

// initial string specifies content text/plain, text/html etc 163

printf("Content-type: text/html\n"); 164

165

// content length 166

contentLen = strlen(contentBuf); 167

printf("Content-length: %d\n", contentLen); 168

169

// **** blank line is important here (separates header & body) **** 170

printf("\n"); 171

172

// now the content itself 173

printf("%s", contentBuf); 174

175

176

// Manipulate the input string 177

fprintf(Out,"%s\n",readBuf); 178

getVariables(readBuf); 179

180

//iclose(id); 181

182

// For WIN16 programs, call siclcleanup before exiting to release 183

// resources allocated by SICL for this application. This call is a 184

// no−op for WIN32 programs. 185

// siclcleanup(); 186

187

return 0; 188

116

} 189

// 190

// Function Name: getVariables(char *Buffer) 191

// 192

// 193

// 194

void getVariables(char *Buffer){ 195

196

int index=0,count=0; 197

198

199

while(Buffer[index]!= ’=’){ 200

index++; 201

} 202

index++; 203

while(Buffer[index] != ’&’){ 204

chan list[count]=Buffer[index]; 205

index++; 206

count++; 207

} 208

chan list=’\0’ 209

210

} 211

Close

// This is the first draft of the cgi program for the switch unit to close switches. 1

/* 34970close.c 2

* CGI using POST method (standard input/output) 3

* Note that this method is different to the GET method – 4

* the input comes from standard input (stdin), and 5

* not the environment variable QUERY STRING 6

* 7

*/ 8

9

#include <stdio.h> 10

#include <stdlib.h> 11

#include <string.h> 12

#include <unistd.h> 13

#include "sicl.h" 14

15

#define DEVICE ADDRESS "hpib7,9" 16

17

18

#define MAX CGILEN 2048 19

#define TMP BUFLEN 512 20

#define READ BUFLEN 512 21

117

22

// holds the contents of the http output (not including the header) 23

static char contentBuf[MAX CGILEN+1]; 24

25

#ifndef STDIN 26

#define STDIN 0 27

#endif 28

29

#ifndef STDOUT 30

#define STDOUT 1 31

#endif 32

33

// Function Prototypes 34

void getVariables(char *readBuf); 35

36

// Variables for changes to equiptment 37

char chan list[30]; 38

char actual[30]; 39

char desired[30]; 40

41

int main() 42

{ 43

FILE *Out; 44

int bytesRead, bytesLeft; 45

char *pName, *pValue; 46

int contentLen; 47

char tmpBuf[TMP BUFLEN+1]; 48

char readBuf[READ BUFLEN+1]; 49

INST id; 50

char buff[256]; 51

52

// Install a default SICL error handler that logs an error message and 53

// exits. On Windows 95 view messages with the SICL Message Viewer, 54

// and on Windows NT 55

ionerror(I ERROR EXIT); 56

57

// Open a device session using the DEVICE ADDRESS 58

id=iopen(DEVICE ADDRESS); 59

// Write the *RST string (and send an EOI indicator) to put the instrument 60

// in a known state. 61

iprintf(id, "*RST\n"); 62

ipromptf(id, "*IDN?\n", "%t", buff); 63

//printf("Device = %s\n",buff); 64

65

// Open the output file 66

Out=fopen("output.txt","w"); 67

68

// buffer which contains the content, ie HTML output 69

118

contentBuf[0] = ’\0’; 70

71

strcat(contentBuf, "<HTML>\n"); 72

strcat(contentBuf, "<BODY>\n\n"); 73

74

strcat(contentBuf, "<P>\n"); 75

strcat(contentBuf, " <I> 34970cloase.c V 1.1 Nathan Hetherington </I> \n"); 76

strcat(contentBuf, "</P>\n\n"); 77

78

strcat(contentBuf, "<P>\n"); 79

strcat(contentBuf, " <H2> Here’s the result: </H2> \n"); 80

strcat(contentBuf, "</P>\n\n"); 81

82

strcat(contentBuf, "<P>\n"); 83

84

// for testing only 85

//sprintf(tmpBuf, "20"); 86

//setenv("CONTENT_LENGTH", tmpBuf, 1); 87

88

pName = "CONTENT_LENGTH"; 89

pValue = getenv(pName); 90

91

92

93

if(pValue) 94

{ 95

sprintf(tmpBuf, " %s = %s
\n", pName, pValue); 96

strcat(contentBuf, tmpBuf); 97

98

bytesLeft = atoi(pValue); 99

do 100

{ 101

bytesRead = read(STDIN, &readBuf[0], READ BUFLEN); 102

103

// null−terminate 104

if(bytesRead > 0) 105

{ 106

readBuf[bytesRead] = ’\0’; 107

bytesLeft −= bytesRead; 108

} 109

} while((bytesLeft > 0) && (bytesRead > 0)); 110

111

if(bytesRead > 0) 112

{ 113

sprintf(tmpBuf, " data read: \n"); 114

strcat(contentBuf, tmpBuf); 115

116

strcat(contentBuf, "
\n"); 117

119

strcat(contentBuf, " <I>\n"); 118

119

sprintf(tmpBuf, " %s\n", readBuf); 120

strcat(contentBuf, tmpBuf); 121

strcat(contentBuf, " </I>\n"); 122

} 123

else 124

{ 125

sprintf(tmpBuf, " no data read \n"); 126

strcat(contentBuf, tmpBuf); 127

} 128

} 129

else 130

{ 131

sprintf(tmpBuf, " %s is undefined \n", pName); 132

strcat(contentBuf, tmpBuf); 133

} 134

135

// trailer 136

strcat(contentBuf, "</P>\n\n"); 137

strcat(contentBuf, "</BODY>\n"); 138

strcat(contentBuf, "</HTML>\n"); 139

140

141

// now create the output according to the HTTP protocol 142

143

// initial string specifies content text/plain, text/html etc 144

printf("Content-type: text/html\n"); 145

146

// content length 147

contentLen = strlen(contentBuf); 148

printf("Content-length: %d\n", contentLen); 149

150

// **** blank line is important here (separates header & body) **** 151

printf("\n"); 152

153

// now the content itself 154

printf("%s", contentBuf); 155

156

157

// Manipulate the input string 158

fprintf(Out,"%s\n",readBuf); 159

getVariables(readBuf); 160

161

// Apply changes on Switch Unit 162

iprintf(id,"ROUT:CLOS %s\n",chan list); 163

iprompt(id,"ROUT:CLOS?\n",%t,actual); 164

165

120

if(strcmp(actual,desired)==0){ 166

strcat(contentBuf, "<P> <H1> Changes Successful !!!!!!</H1></P>\n"); 167

}else{ 168

strcat(contentBuf, "<P> <H1> Changes Unsuccessful !!!!!!</H1></P>\n"); 169

} 170

171

172

173

//iclose(id); 174

175

// For WIN16 programs, call siclcleanup before exiting to release 176

// resources allocated by SICL for this application. This call is a 177

// no−op for WIN32 programs. 178

// siclcleanup(); 179

180

return 0; 181

} 182

// 183

// Function Name: getVariables(char *Buffer) 184

// 185

// 186

// 187

void getVariables(char *Buffer){ 188

189

int index=0,count=0; 190

191

192

while(Buffer[index]!= ’=’){ 193

index++; 194

} 195

index++; 196

while(Buffer[index] != ’&’){ 197

chan list[count]=Buffer[index]; 198

index++; 199

count++; 200

} 201

chan list=’\0’ 202

203

} 204

205

E.2.4 Power Supply

// This is the first draft of the cgi program for the Power Supply 1

/* 6624a.c 2

* CGI using POST method (standard input/output) 3

121

* Note that this method is different to the GET method – 4

* the input comes from standard input (stdin), and 5

* not the environment variable QUERY STRING 6

* 7

* 8

* 9

* = 10

11

Here’s the result: 12

13

CONTENT LENGTH = 98 14

data read: 15

TEXT LINE ONE=test&TEXT LINE TWO=default+value&TEXT LINE THREE=0123&PASSWORD FIELD=secret+password 16

* 17

* 18

* 19

*/ 20

21

#include <stdio.h> 22

#include <stdlib.h> 23

#include <string.h> 24

#include <unistd.h> 25

#include "sicl.h" 26

27

#define DEVICE ADDRESS "hpib7,5" 28

29

30

#define MAX CGILEN 2048 31

#define TMP BUFLEN 512 32

#define READ BUFLEN 512 33

34

// holds the contents of the http output (not including the header) 35

static char contentBuf[MAX CGILEN+1]; 36

37

#ifndef STDIN 38

#define STDIN 0 39

#endif 40

41

#ifndef STDOUT 42

#define STDOUT 1 43

#endif 44

45

// Function Prototypes 46

void getVariables(char *readBuf); 47

48

// Variables for changes to equiptment 49

char Channel[5]; 50

char Volts[20]; 51

122

char desired[30],actual[30]; 52

53

int main() 54

{ 55

56

int bytesRead, bytesLeft; 57

char *pName, *pValue; 58

int contentLen; 59

char tmpBuf[TMP BUFLEN+1]; 60

char readBuf[READ BUFLEN+1]; 61

INST id; 62

char buff[256]; 63

64

// Install a default SICL error handler that logs an error message and 65

// exits. On Windows 95 view messages with the SICL Message Viewer, 66

// and on Windows NT 67

ionerror(I ERROR EXIT); 68

69

// Open a device session using the DEVICE ADDRESS 70

id=iopen(DEVICE ADDRESS); 71

72

// Write the *RST string (and send an EOI indicator) to put the instrument 73

// in a known state. 74

iprintf(id, "*RST\n"); 75

ipromptf(id, "*IDN?\n", "%t", buff); 76

printf("Device = %s\n",buff); 77

78

79

// buffer which contains the content, ie HTML output 80

contentBuf[0] = ’\0’; 81

82

strcat(contentBuf, "<HTML>\n"); 83

strcat(contentBuf, "<BODY>\n\n"); 84

85

strcat(contentBuf, "<P>\n"); 86

strcat(contentBuf, " <I> 6624A.c V 1.1 Nathan Hetherington </I> \n"); 87

strcat(contentBuf, "</P>\n\n"); 88

89

strcat(contentBuf, "<P>\n"); 90

strcat(contentBuf, " <H2> Here’s the result: </H2> \n"); 91

strcat(contentBuf, "</P>\n\n"); 92

93

strcat(contentBuf, "<P>\n"); 94

95

// for testing only 96

//sprintf(tmpBuf, "20"); 97

//setenv("CONTENT_LENGTH", tmpBuf, 1); 98

99

123

pName = "CONTENT_LENGTH"; 100

pValue = getenv(pName); 101

102

103

104

if(pValue) 105

{ 106

sprintf(tmpBuf, " %s = %s
\n", pName, pValue); 107

strcat(contentBuf, tmpBuf); 108

109

bytesLeft = atoi(pValue); 110

do 111

{ 112

bytesRead = read(STDIN, &readBuf[0], READ BUFLEN); 113

114

// null−terminate 115

if(bytesRead > 0) 116

{ 117

readBuf[bytesRead] = ’\0’; 118

bytesLeft −= bytesRead; 119

} 120

} while((bytesLeft > 0) && (bytesRead > 0)); 121

122

if(bytesRead > 0) 123

{ 124

sprintf(tmpBuf, " data read: \n"); 125

strcat(contentBuf, tmpBuf); 126

127

strcat(contentBuf, "
\n"); 128

strcat(contentBuf, " <I>\n"); 129

130

sprintf(tmpBuf, " %s\n", readBuf); 131

strcat(contentBuf, tmpBuf); 132

strcat(contentBuf, " </I>\n"); 133

} 134

else 135

{ 136

sprintf(tmpBuf, " no data read \n"); 137

strcat(contentBuf, tmpBuf); 138

} 139

} 140

else 141

{ 142

sprintf(tmpBuf, " %s is undefined \n", pName); 143

strcat(contentBuf, tmpBuf); 144

} 145

146

// Manipulate the input string 147

124

fprintf(Out,"%s\n",readBuf); 148

getVariables(readBuf); 149

150

// Set the Power Supply 151

iprintf(id,"VOLT %s,%s, 0V\n",Channel,Volts); 152

153

// trailer 154

strcat(contentBuf, "</P>\n\n"); 155

strcat(contentBuf, "</BODY>\n"); 156

strcat(contentBuf, "</HTML>\n"); 157

158

159

// now create the output according to the HTTP protocol 160

161

// initial string specifies content text/plain, text/html etc 162

printf("Content-type: text/html\n"); 163

164

// content length 165

contentLen = strlen(contentBuf); 166

printf("Content-length: %d\n", contentLen); 167

168

// **** blank line is important here (separates header & body) **** 169

printf("\n"); 170

171

// now the content itself 172

printf("%s", contentBuf); 173

174

// Close files 175

fclose(Out); 176

iclose(id); 177

178

// For WIN16 programs, call siclcleanup before exiting to release 179

// resources allocated by SICL for this application. This call is a 180

// no−op for WIN32 programs. 181

siclcleanup(); 182

183

return 0; 184

} 185

// 186

// Function Name: getVariables(char *Buffer) 187

// 188

// 189

// 190

void getVariables(char *Buffer){ 191

192

int index=0,numVar=1,count=0; 193

194

while(Buffer[index]!= ’=’){ 195

125

index++; 196

} 197

index++; 198

while(Buffer[index] != ’&’){ 199

Channel[count]=Buffer[index]; 200

index++; 201

count++; 202

} 203

count++; 204

Frequency[count]=’\0’; 205

206

while(Buffer[index]!= ’=’){ 207

index++; 208

} 209

210

211

count = 0; 212

index++; 213

while(Buffer[index] != ’\0’){ 214

Volts[count]=Buffer[index]; 215

index++; 216

count++; 217

} 218

219

Volts[count]=’\0’; 220

} 221

126

Appendix F

Basic C Programs

F.1 Data Types

/** 1

* File Name: datatypes.c * 2

* * 3

* Description: This program defines various data types and * 4

* prints their size in bytes. * 5

* * 6

* Written By: Nathan Hetherington * 7

**/ 8

#include <stdio.h> 9

#include <stdlib.h> 10

11

12

int main(void){ 13

14

char Char; 15

int integer; 16

long int l int; 17

float Float; 18

long Long; 19

double Double; 20

21

printf("The size of an int is %d\n",sizeof(integer)); 22

printf("The size of an char is %d\n",sizeof(Char)); 23

printf("The size of an float is %d\n",sizeof(Float)); 24

printf("The size of an long is %d\n",sizeof(Long)); 25

printf("The size of an double is %d\n",sizeof(Double)); 26

printf("The size of an long int is %d\n",sizeof(l int)); 27

28

127

sleep(5000); 29

return 0; 30

31

} 32

33

34

F.2 Structures

/** 1

* File Name: struct.c * 2

* * 3

* Description: This program defines a stucture data types * 4

* and prints their contents. * 5

* * 6

* Written By: Nathan Hetherington * 7

**/ 8

#include <stdio.h> 9

#include <stdlib.h> 10

#include <string.h> 11

12

int main(void){ 13

14

typedef struct Student{ 15

int age, student number; 16

char name[30]; 17

float GPA; 18

}STUDENT; 19

20

STUDENT St1; 21

22

St1.age=21; 23

St1.student number=22556677; 24

strcpy(St1.name,"Nathan Hetherington"); 25

St1.GPA=4.76; 26

27

28

printf("\nThe student %s of age %d \n",St1.name,St1.age); 29

printf("has the student number %d and GPA of %f\n",St1.student number,St1.GPA); 30

31

32

sleep(5000); 33

return 0; 34

} 35

128

F.3 Variable Scope

/** 1

* File Name: scope.c * 2

* * 3

* Description: This program demonstrates the scope of * 4

* variables in C * 5

* * 6

* Written By: Nathan Hetherington * 7

**/ 8

#include <stdio.h> 9

#include <stdlib.h> 10

#include <string.h> 11

12

int x; 13

14

// Defines sub routine 15

void sub1(void){ 16

int x=50; 17

printf("x is %d in Sub1\n",x); 18

} 19

20

int main(void){ 21

22

x=10; 23

printf("x is %d in the main function \n",x); 24

25

sub1(); 26

27

printf("x is %d after sub1\n",x); 28

29

sleep(5000); 30

return 0; 31

} 32

33

34

F.4 Input/Output Example

/** 1

* File Name: inout.c * 2

* * 3

* Description: This program demonstrates the basic input and* 4

* output. * 5

* * 6

129

* Written By: Nathan Hetherington * 7

**/ 8

#include <stdio.h> 9

#include <stdlib.h> 10

#include <string.h> 11

12

13

int main(void){ 14

15

int integer; 16

char character,string[20]; 17

18

19

/* This is the Input Phase */ 20

printf("\nEnter A integer : "); 21

scanf("%d",&integer); 22

23

printf("\nEnter a Character : "); 24

scanf("%c",&character); 25

26

printf("\nEnter a string(Enter terminates input) : "); 27

gets(string); 28

29

/* This is the Output phase */ 30

printf("\nThe Integer entered is %d",integer); 31

printf("\nThe Character entered is %c",character); 32

printf("\n%s is the string\n",string); 33

34

sleep(5000); 35

return 0; 36

37

} 38

130

Appendix G

Application Interface Library

G.1 VISA Library

131

Agilent VISA
User�s Guide

Manual Part Number: E2090-90040
Printed in U.S.A. E0701

Contents 3

Contents
Agilent VISA User�s Guide

Front Matter... 9
Notice .. 9
Warranty Information .. 9
U.S. Government Restricted Rights .. 9
Trademark Information ... 10
Printing History ... 10
Copyright Information ... 10

1. Introduction .. 11
What�s in This Guide?.. 13
VISA Overview... 14

Using VISA and SICL ... 14
VISA Support .. 15
VISA Documentation .. 16
Contacting Agilent .. 16

2. Building a VISA Application in Windows .. 17
Building a VISA Program (C/C++) ... 19

Compiling and Linking VISA Programs (C/C++) 19
Example VISA Program (C/C++) .. 21

Building a VISA Program (Visual Basic) 23
Visual Basic Programming Considerations 23
Example VISA Program (Visual Basic) 25

Logging Error Messages.. 29
Using the Event Viewer .. 29
Using the Message Viewer ... 29
Using the Debug Window ... 30

3. Building a VISA Application in HP-UX ... 31
Building a VISA Program in HP-UX ... 33

Example Source Code ... 33
Example Program Contents ... 34
Running the Example Program .. 34
Compiling and Linking a VISA Program 35
Logging Error Messages .. 35

Using Online Help.. 36
Using the HyperHelp Viewer .. 36
Using HP-UX Manual Pages .. 36

Contents 4

4. Programming with VISA ..37
VISA Resources and Attributes ..39

VISA Resources ..39
VISA Attributes ..40

Using Sessions...41
Including the VISA Declarations File (C/C++)41
Adding the visa32.bas File (Visual Basic)41
Opening a Session ..41
Addressing a Session ..44
Closing a Session ...46
Searching for Resources ...47

Sending I/O Commands ...49
Types of I/O ..49
Using Formatted I/O ..49
Using Non-Formatted I/O ..59

Using Events and Handlers ...62
Events and Attributes ..62
Using the Callback Method ...69
Using the Queuing Method ...77

Trapping Errors...82
Trapping Errors ...82
Exception Events ..83

Using Locks ...87

5. Programming via GPIB and VXI ..93
GPIB and VXI Interfaces Overview ..95

General Interface Information ...95
GPIB Interfaces Overview ...96
VXI Interfaces Overview ...98
GPIB-VXI Interfaces Overview ..100

Using High-Level Memory Functions ...102
Programming the Registers ..102
High-Level Memory Functions Examples104

Using Low-Level Memory Functions ...107
Programming the Registers ..107
Low-Level Memory Functions Examples109

Using Low/High-Level Memory I/O Methods112
Using Low-Level viPeek/viPoke .. 112
Using High-level viIn/viOut .. 113
Using High-level viMoveIn/viMoveOut 113

Contents 5

Using the Memory Access Resource... 117
Memory I/O Services .. 117
MEMACC Attribute Descriptions .. 120

Using VXI-Specific Attributes .. 123
Using the Map Address as a Pointer 123
Setting the VXI Trigger Line ... 125

6. Programming via LAN .. 127
LAN Interfaces Overview ... 129

LAN Hardware Architecture .. 129
LAN Software Architecture ... 131
LAN Client Interface Overview ... 133
VISA LAN Client Interface Overview 136
LAN Server Interface Overview .. 140

Communicating with GPIB Devices via LAN.............................. 141
Addressing a Session ... 141
Using Timeouts over LAN .. 143
LAN Signal Handling on HP-UX ... 145

7. VISA Language Reference .. 147
VISA Functions Overview .. 149

VISA Functions by Interface/Resource 149
VISA Functions by Type ... 153

viAssertIntrSignal ... 158
viAssertTrigger... 160
viAssertUtilSignal .. 163
viBufRead .. 165
viBufWrite .. 167
viClear.. 169
 viClose .. 171
viDisableEvent .. 173
viDiscardEvents ... 176
viEnableEvent ... 179
viEventHandler .. 184
viFindNext ... 189
viFindRsrc ... 190
viFlush ... 195
viGetAttribute .. 197
viGpibCommand .. 199
viGpibControlATN.. 201
viGpibControlREN ... 203
viGpibPassControl ... 205
viGpibSendIFC .. 207
viIn8, viIn16, and viIn32 .. 208
viInstallHandler .. 211

Contents 6

viLock ..213
viMapAddress...217
viMapTrigger...220
viMemAlloc ...223
viMemFree..225
viMove ..226
viMoveAsync ..229
viMoveIn8, viMoveIn16, and viMoveIn32233
viMoveOut8, viMoveOut16, and viMoveOut32236
viOpen ..239
viOpenDefaultRM ...243
viOut8, viOut16, and viOut32 ...245
viParseRsrc ..248
viPeek8, viPeek16, and viPeek32 ..251
viPoke8, viPoke16, and viPoke32 ..252
viPrintf ..253
viQueryf ..262
viRead ..264
viReadAsync...267
viReadSTB ...269
viReadToFile ..271
viScanf..274
viSetAttribute ..284
viSetBuf ..286
viSPrintf ..288
viSScanf ...290
viStatusDesc...292
viTerminate...293
viUninstallHandler...295
viUnlock..297
viUnmapAddress ..298
viUnmapTrigger ...299
viVPrintf ..301
viVQueryf..303
viVScanf ...305
viVSPrintf..307
viVSScanf ...309
viVxiCommandQuery..311
viWaitOnEvent..314
viWrite...320
viWriteAsync...322
viWriteFromFile ..324

Contents 7

A. VISA Library Information .. 327
VISA Type Definitions.. 329
VISA Error Codes (Alphabetical) ... 332
VISA Error Codes (by Function) .. 336
VISA Directories Information ... 368

Windows Directory Structure .. 368
Editing the VISA Configuration ... 370

B. VISA Resource Classes ... 373
Resource Classes Overview.. 375

Resource Classes vs. Interface Types 375
Interface Types vs. Resource Classes 376
Resource Class Descriptions ... 376

Instrument Control (INSTR) Resource....................................... 377
INSTR Resource Overview .. 377
INSTR Resource Attributes .. 378
INSTR Resource Attribute Descriptions 384
INSTR Resource Events .. 391
INSTR Resource Operations .. 393

Memory Access (MEMACC) Resource...................................... 395
MEMACC Resource Overview ... 395
MEMACC Resource Attributes ... 396
MEMACC Resource Attribute Descriptions 398
MEMACC Resource Events ... 400
MEMACC Resource Operations .. 401

GPIB Bus Interface (INTFC) Resource...................................... 402
INTFC Resource Overview .. 402
INTFC Resource Attributes .. 402
INTFC Resource Attribute Descriptions 404
INTFC Resource Events .. 406
INTFC Resource Operations .. 408

VXI Mainframe Backplane (BACKPLANE) Resource 409
BACKPLANE Resource Overview 409
BACKPLANE Resource Attributes 410
BACKPLANE Resource Attribute Descriptions 411
BACKPLANE Resource Events ... 412
BACKPLANE Resource Operations 412

Servant Device-Side (SERVANT) Resource 413
SERVANT Resource Overview .. 413
SERVANT Resource Attributes .. 414
SERVANT Resource Attribute Descriptions 415
SERVANT Resource Events .. 417
SERVANT Resource Operations 419

Contents 8

TCPIP Socket (SOCKET) Resource ..420
SOCKET Resource Overview ...420
SOCKET Resource Attributes ...420
SOCKET Resource Attribute Descriptions422
SOCKET Resource Event ...423
SOCKET Resource Operations ..424

Glossary ..425

Index ..431

 9

Notice
The information contained in this document is subject to change without
notice.

Agilent Technologies shall not be liable for any errors contained in this
document. Agilent Technologies makes no warranties of any kind with
regard to this document, whether express or implied. Agilent Technologies
specifically disclaims the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for any
direct, indirect, special, incidental, or consequential damages, whether
based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information
A copy of the specific warranty terms applicable to your Agilent Technologies
product and replacement parts can be obtained from Agilent Technologies,
Inc.

U.S. Government Restricted Rights
The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as "commercial computer
software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-
7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial
item" as defined in FAR 2.101(a), or as "Restricted computer software" as
defined in FAR 52.227-19 (Jun 1987) (or any equivalent agency regulation
or contract clause), whichever is applicable. You have only those rights
provided for such Software and Documentation by the applicable FAR or
DFARS clause or the Agilent standard software agreement for the product
involved.

10

Trademark Information
Microsoft®, Windows ® 95, Windows ® 98, Windows ® Me,
Windows ® 2000, and Windows NT® are U.S. registered trademarks of
Microsoft Corporation. All other brand and product names are trademarks
or registered trademarks of their respective companies.

Printing History
Edition 1 - May 1996
Edition 2 - September 1996
Edition 3 - February 1998
Edition 4 - July 2000
Edition 5 - July 2001

Copyright Information
Agilent Technologies VISA User�s Guide
Edition 5
Copyright © 1984 -1988 Sun Microsystems, Inc.
Copyright © 1996, 1998, 2000, 2001 Agilent Technologies, Inc.
All rights reserved.

11

1

Introduction

12 Introduction

Introduction

This Agilent Technologies VISA User�s Guide describes the Agilent Virtual
Instrument Software Architecture (VISA) library and shows how to use it to
develop instrument drivers and I/O applications on Windows 95, Windows
98, Windows Me, Windows NT 4.0, and Windows 2000, and on HP-UX
version 10.20. This chapter includes:

� What�s in This Guide?
� VISA Overview

NOTE

Before you can use VISA, you must install and configure VISA on your
computer. See Agilent IO Libraries Installation and Configuration Guide
for Windows for installation on Windows systems. See Agilent IO
Libraries Installation and Configuration for HP-UX for installation on
HP-UX systems.

This guide shows programming techniques using C/C++ and Visual
Basic. Since VISA and SICL are different libraries, using VISA functions
and SICL functions in the same I/O application is not supported. Unless
indicated, Windows NT refers to Windows NT 4.0.

Introduction 13

Introduction
What�s in This Guide?

What�s in This Guide?
� Chapter 1 - Introduction describes the contents of this guide,

provides an overview of VISA, and shows how to contact Agilent
Technologies.

� Chapter 2 - Building a VISA Application in Windows describes how
to build a VISA application in a Windows environment. An example
program is provided to help you get started programming with VISA.

� Chapter 3 - Building a VISA Application in HP-UX describes how to
build a VISA application in the HP-UX environment. An example
program is provided to help you get started programming with VISA.

� Chapter 4 - Programming with VISA describes the basics of VISA
and lists some example programs. The chapter also includes
information on creating sessions, using formatted I/O, events, etc.

� Chapter 5 - Programming via GPIB and VXI gives guidelines to use
VISA to communicate over the GPIB, GPIB-VXI, and VXI interfaces
to instruments.

� Chapter 6 - Programming via LAN gives guidelines to use VISA to
communicate over a LAN (Local Area Network) to instruments.

� Chapter 7 - VISA Language Reference provides an alphabetical
reference of supported VISA functions.

� Appendix A - VISA Library Information lists VISA data types and
their definitions, VISA error codes, and VISA directory information.

� Appendix B - VISA Resource Classes describes the six VISA
Resource Classes, including attributes, events, and operations.

� Glossary includes a glossary of terms and their definitions.

14 Introduction

Introduction
VISA Overview

VISA Overview
VISA is a part of the Agilent IO Libraries. The Agilent IO Libraries consists
of two libraries: Agilent Virtual Instrument Software Architecture (VISA) and
Agilent Standard Instrument Control Library (SICL). This guide describes
VISA for supported Windows and HP-UX environments.

For information on using SICL in Windows, see the Agilent SICL User�s
Guide for Windows. For information on using SICL in HP-UX, see the
Agilent Standard Instrument Control Library User�s Guide for HP-UX. For
information on the Agilent IO Libraries, see the Agilent IO Libraries
Installation and Configuration Guide.

Using VISA and SICL
Agilent Virtual Instrument Software Architecture (VISA) is an IO library
designed according to the VXIplug&play System Alliance that allows
software developed from different vendors to run on the same system.

Use VISA if you want to use VXIplug&play instrument drivers in your
applications, or if you want the I/O applications or instrument drivers that
you develop to be compliant with VXIplug&play standards. If you are using
new instruments or are developing new I/O applications or instrument
drivers, we recommend you use Agilent VISA.

Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Agilent that is portable across many I/O interfaces and
systems. You can use Agilent SICL if you have been using SICL and
want to remain compatible with software currently implemented in SICL.

Introduction 15

Introduction
VISA Overview

VISA Support
Agilent VISA is an I/O library that can be used to develop I/O applications
and instrument drivers that comply with the VXIplug&play standards.
Applications and instrument drivers developed with VISA can execute on
VXIplug&play system frameworks that have the VISA I/O layer. Therefore,
software from different vendors can be used together on the same system.

VISA Support on
Windows

This 32-bit version of VISA is supported on Windows 95, Windows 98,
Windows Me, Windows NT, and Windows 2000. (Support for the 16-bit
version of VISA was removed in version H.01.00 of the Agilent IO Libraries.)
C, C++, and Visual Basic are supported on all these Windows versions.

For Windows, VISA is supported on the GPIB, VXI, GPIB-VXI, Serial
(RS-232), and LAN interfaces. VISA for the VXI interface on Windows NT
is shipped with the Agilent Embedded VXI Controller product only. LAN
support from within VISA occurs via an address translation such that a
GPIB interface can be accessed remotely over a computer network

VISA Support on
HP-UX

VISA is supported on the GPIB, VXI, GPIB-VXI, and LAN interfaces on
HP-UX version 10.20. LAN support from within VISA occurs via an address
translation such that a GPIB interface can be accessed remotely over a
computer network

VISA Users VISA has two specific types of users. The first type is the instrumentation
end user who wants to use VXIplug&play instrument drivers in his or her
applications. The second type of user is the instrument driver or I/O
application developer who wants to be compliant with VXIplug&play
standards.

Software development using VISA is intended for instrument I/O and
C/C++ or Visual Basic programmers who are familiar with the Windows 95,
Windows 98, Windows Me, Windows 2000, Windows NT, or HP-UX
environment. To perform VISA installation and configuration on Windows NT
or HP-UX, you must have system administration privileges on the Windows
NT system or super-user (root) privileges on the HP-UX system.

16 Introduction

Introduction
VISA Overview

VISA Documentation
This table shows associated documentation you can use when programming
with Agilent VISA in the Windows or HP-UX environment.

Contacting Agilent
� In the USA and Canada, you can reach Agilent Technologies at

these telephone numbers:

USA: 1-800-452-4844
Canada: 1-877-894-4414

� Outside the USA and Canada, contact your country�s Agilent support
organization. A list of contact information for other countries is
available on the Agilent web site:

http://www.agilent.com/find/assist

Agilent VISA Documentation

Document Description
Agilent IO Libraries Installation and
Configuration Guide for Windows

Shows how to install, configure, and maintain the Agilent IO
Libraries on Windows.

Agilent IO Libraries Installation and
Configuration Guide for HP-UX

Shows how to install, configure, and maintain the Agilent IO
Libraries on HP-UX.

VISA Online Help Information is provided in the form of Windows Help.

VISA Example Programs Example programs are provided online to help you develop
VISA applications.

VXIplug&play System Alliance VISA
Library Specification 4.3

Specifications for VISA.

IEEE Standard Codes, Formats,
Protocols, and Common Commands

ANSI/IEEE Standard 488.2-1992.

VXIbus Consortium specifications
(when using VISA over LAN)

TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification - VXI-11.1, Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3,
Rev. 1.0

17

2

Building a VISA Application in
Windows

18 Chapter 2

Building a VISA Application in Windows

This chapter gives guidelines to build a VISA application in a Windows
environment. The chapter contains the following sections:

� Building a VISA Program (C/C++)
� Building a VISA Program (Visual Basic)
� Logging Error Messages

Chapter 2 19

Building a VISA Application in Windows
Building a VISA Program (C/C++)

Building a VISA Program (C/C++)
This section gives guidelines to build VISA programs using C/C++ language,
including:

� Compiling and Linking VISA Programs (C/C++)
� Example VISA Program (C/C++)

Compiling and Linking VISA Programs (C/C++)
This section provides a summary of important compiler-specific
considerations for several C/C++ compiler products when developing Win32
applications.

Linking to VISA
Libraries

Your application must link to one of the VISA import libraries as follows,
assuming default installation directories.

� VISA on Windows 95, Windows 98, or Windows Me:

C:\Program Files\VISA\WIN95\LIB\MSC\VISA32.LIB
(Microsoft compilers)
C:\Program Files\VISA\WIN95\LIB\BC\VISA32.LIB
(Borland compilers)

� VISA on Windows NT or Windows 2000:

C:\Program Files\VISA\WINNT\LIB\MSC\VISA32.LIB
(Microsoft compilers)
C:\Program Files\VISA\WINNT\LIB\BC\VISA32.LIB
(Borland compilers)

Microsoft Visual
C++ Version 6.0
Compilers

1 Select Project|Update All Dependencies from the menu.

2 Select Project|Settings from the menu and click the
C/C++ button.

3 Select Code Generation from the Category list box and
select Multi-Threaded using DLL from the Use Run-Time
Libraries list box. (VISA requires these definitions for Win32.)
Click OK to close the dialog boxes.

20 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (C/C++)

4 Select Project | Settings from the menu. Click the Link
button and add visa32.lib to the Object/Library Modules list
box. Optionally, you may add the library directly to your project file.
Click OK to close the dialog boxes.

5 You may want to add the include file and library file search paths.
They are set by:

� Select Tools | Options from the menu.

� Click the Directories button to set the include file path.

� Select Include Files from the Show Directories For
list box.

� Click the Add button and type one of the following:
C:\Program Files\VISA\WIN95\INCLUDE OR
C:\Program Files\VISA\WINNT\INCLUDE.

6 Select Library Files from the Show Directories For
list box.

7 Click the Add button and type one of the following:
C:\Program Files\VISA\WIN95\LIB\MSC OR
C:\Program Files\VISA\WINNT\LIB\MSC

Borland C++
Version 4.0
Compilers

You may want to add the include file and library file search paths. They
are set under the Options|Project menu selection. Double-click
Directories from the Topics list box and add one of the following:

C:\Program Files\VISA\WIN95\INCLUDE
C:\Program Files\VISA\WIN95\LIB\BC

OR

C:\Program Files\VISA\WINNT\INCLUDE
C:\Program Files\VISA\WINNT\LIB\BC

Chapter 2 21

Building a VISA Application in Windows
Building a VISA Program (C/C++)

Example VISA Program (C/C++)
This section lists an example program called idn that queries a GPIB
instrument for its identification string. This example assumes a Win32
Console Application using Microsoft or Borland C/C++ compilers on
Windows.

� For VISA on Windows 95, Windows 98, and Windows Me, the idn
example files are in \Program Files\VISA\WIN95\AGVISA\SAMPLES.

� For VISA on Windows NT or Windows 2000, the idn example files
are in \Program Files\VISA\WINNT\AGVISA\SAMPLES.

Example C/C++
Program Source
Code

The source file idn.c follows. An explanation of the various function calls in
the example is provided directly after the program listing. If the program runs
correctly, the following is an example of the output if connected to a 54601A
oscilloscope. If the program does not run, see the Event Viewer for a list
of run-time errors.

HEWLETT-PACKARD,54601A,0,1.7

/*idn.c
This example program queries a GPIB device for an
identification string and prints the results. Note
that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR",VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viPrintf(vi, "*RST\n");
/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");

22 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (C/C++)

/* Read results */
viScanf(vi, "%t", buf);

/* Print results */
printf("Instrument identification string: %s\n", buf);

/* Close session */
viClose(vi);
viClose(defaultRM);}

Example C/C++
Program Contents

A summary of the VISA function calls used in the example C/C++ program
follows. For a more detailed explanation of VISA functionality, see Chapter
4 - Programming With VISA. See Chapter 7 - VISA Language Reference for
more detailed information on these VISA function calls.

Function(s) Description

visa.h This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

ViSession The ViSession is a VISA data type. Each object that will establish a
communication channel must be defined as ViSession.

viOpenDefaultRM You must first open a session with the default resource manager with the
viOpenDefaultRM function. This function will initialize the default
resource manager and return a pointer to that resource manager session.

viOpen This function establishes a communication channel with the device
specified. A session identifier that can be used with other VISA functions
is returned. This call must be made for each device you will be using.

viPrintf and
viScanf

These are the VISA formatted I/O functions that are patterned after those
used in the C programming language. The viPrintf call sends the
IEEE 488.2 *RST command to the instrument and puts it in a known state.
The viPrintf call is used again to query for the device identification
(*IDN?). The viScanf call is then used to read the results.

viClose This function must be used to close each session. When you close a
device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.

Chapter 2 23

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)

Building a VISA Program (Visual Basic)
This section gives guidelines to build a VISA program in the Visual Basic
language, including:

� Visual Basic Programming Considerations
� Example VISA Program (Visual Basic)

Visual Basic Programming Considerations
Some considerations for programming in Visual Basic follow.

Required Module for
a Visual Basic VISA
Program

Before you can use VISA specific functions, your application must add the
visa32.bas VISA Visual Basic module found in one of the following
directories (assuming default installation directories). For Windows 2000/NT,
C:\Program Files\VISA\winnt\include\. For Windows 95/98/Me,
C:\Program Files\VISA\winnt\include\.

Installing the
visa32.bas File

To install visa32.bas:

1 Select Project | Add Module from the menu
2 Select the Existing tab
3 Browse and select the visa32.bas file from applicable directory
4 Click the Open button

VISA Limitations in
Visual Basic

VISA functions return a status code which indicates success or failure of the
function. The only indication of an error is the value of returned status code.
The VB Error variable is not set by any VISA function. Thus, you cannot use
the 'ON ERROR' construct in VB or the value of the VB Error variable to
catch VISA function errors.

VISA cannot callback to a VB function. Thus, you can only use the
VI_QUEUE mechanism in viEnableEvent. There is no way to install a
VISA event handler in VB.

VISA functions that take a variable number of parameters (viPrintf,
viScanf, viQueryf) are not callable from VB. Use the corresponding
viVPrintf, viVScanf and viVQueryf functions instead.

You cannot pass variables of type Variant to VISA functions. If you attempt
this, the Visual Basic program will probably crash with a 'General Protection
Fault' or an 'Access Violation'.

24 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)

Format Conversion
Commands

The functions viVPrintf, viVscanf and viVqueryf can be called
from VB, but there are restrictions on the format conversions that can be
used. Only one format conversion command can be specified in a format
string (a format conversion command begins with the % character).

For example, the following is invalid:

status = viVPrintf(vi, "%lf%d" + Chr$(10), ...)

Instead, you must make one call for each format conversion command, as
shown in the following example:

status = viVPrintf(vi, "%lf" + Chr$(10), dbl_value)
status = viVPrintf(vi, "%d" + Chr$(10), int_value)

Numeric Arrays When reading to or writing from a numeric array, you must specify the first
element of a numeric array as the params parameter. This passes the
address of the first array element to the function. For example, the following
code declares an array of 50 floating point numbers and then calls
viVPrintf to write from the array.

Dim flt_array(50) As Double
status = viVPrintf(id, "%,50f", dbl_array(0))

Strings When reading in a string value with viVScanf or viVQueryf, you must
pass a fixed length string as the params parameter. To declare a fixed
length string, instead of using the normal variable length declaration:

Dim strVal as String

use the following declaration, where 40 is the fixed length.

Dim strVal as String * 40

Chapter 2 25

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)

Example VISA Program (Visual Basic)
This section lists an example program called idn that queries a GPIB
instrument for its identification string. This example builds a Standard EXE
application for WIN32 programs using the Visual Basic 6.0 programming
language.

For VISA on Windows 95, Windows 98, or Windows Me, the idn example
files are in C:\Program Files\VISA\WIN95\AGVISA\SAMPLES\ vb\idn.
For VISA on Windows NT or Windows 2000, the idn example files are in
C:\Program Files\VISA\WINNT\AGVISA\SAMPLES\vb\idn.

Steps to Run the
Program

The steps to build and run the idn example program follow.

1 Connect an instrument to a GPIB interface that is compatible with
IEEE 488.2.

2 Start the Visual Basic 6.0 application.

3 Start a new Visual Basic Standard EXE project. VB 6.0 will open
a new Project1 project with a blank Form, Form1.

4 From the menu, select Project | Add Module, select the
Existing tab, and browse to the idn directory.

5 The idn example files are located in directory vb\samples\idn.
Select the file idn.bas and click Open. Since the Main() subroutine
is executed when the program is run without requiring user
interaction with a Form, Form1 may be deleted if desired. To do
this, right-click Form1 in the Project Explorer window and select
Remove Form1.

6 VISA applications in Visual Basic require the VISA Visual Basic
(VB) declaration file visa32.bas in your VB project. This file
contains the VISA function definitions and constant declarations
needed to make VISA calls from Visual Basic.

NOTE

This example assumes you are building a new project (no .vbp file exists
for project). If you do not want to build the project from scratch, from the
menu select File | Open Project... and select and open the
idn.vbp file and skip to Step 9.

26 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)

7 To add this module to your project in VB 6.0, from the menu select
Project | Add Module, select the Existing tab, browse to
the directory containing the VB Declaration file, select visa32.bas,
and click Open.

8 The name and location of the VB declaration file depends on which
operating system is used. Assuming the 'standard' VISA directory
C:\Program Files\Visa or the 'standard' VXIpnp directory
C:\VXIpnp, the visa32.bas file can be located in one of these
directories:

\winnt\include\visa32.bas (Windows NT/2000)
\win95\include\visa32.bas (Windows 95/98/Me)

9 At this point, the Visual Basic project can be run and debugged.
You will need to change the VISA Interface Name and address in
the code to match your device�s configuration.

10 If you want to compile to an executable file, from the menu select
File | Make idn.exe... and press Open. This will create
idn.exe in the idn directory.

Example Program
Source Code

An explanation of the various function calls in the example is provided after
the program listing. If the program runs correctly, the following is an example
of the output in a Message Box if connected to a 54601A oscilloscope.

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, see the Event Viewer for a list of run-time
errors. The source file idn.bas follows.

Option Explicit
'''
' idn.bas
' This example program queries a GPIB device for an identification
' string and prints the results. Note that you may have to change the
' VISA Interface Name and address for your device from "GPIB0" and "22",
' respectively.
'''
Sub Main()

Dim defrm As Long 'Session to Default Resource Manager
Dim vi As Long 'Session to instrument
Dim strRes As String * 200 'Fixed length string to hold results

Chapter 2 27

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)

' Open the default resource manager session
Call viOpenDefaultRM(defrm)

 ' Open the session to the resource
 ' The "GPIB0" parameter is the VISA Interface name to a GPIB

' instrument as defined in
 ' Start | Programs | Agilent IO Libraries | IO Config
 ' Change this name to what you have defined your VISA Interface.
 ' "GPIB0::22::INSTR" is the address string for the device.

' this address will be the same as seen in:
 ' Start | Programs | Agilent IO Libraries | VISA Assistant
 ' after the VISA Interface Name is defined in IO Config)

 Call viOpen(defrm, "GPIB0::22::INSTR", 0, 0, vi)

 ' Initialize device
 Call viVPrintf(vi, "*RST" + Chr$(10), 0)

 ' Ask for the device's *IDN string.
 Call viVPrintf(vi, "*IDN?" + Chr$(10), 0)

 ' Read the results as a string.
 Call viVScanf(vi, "%t", strRes)

 ' Display the results
 MsgBox "Result is: " + strRes, vbOKOnly, "*IDN? Result"

 ' Close the vi session and the resource manager session
 Call viClose(vi)
 Call viClose(defrm)
End Sub

28 Chapter 2

Building a VISA Application in Windows
Building a VISA Program (Visual Basic)

Example Program
Contents

A summary of the VISA function calls used in the example Visual Basic
program follows. For a more detailed explanation of VISA functionality, see
Chapter 4 - Programming with VISA. See Chapter 7 - VISA Language
Reference for more detailed information on these VISA function calls.

Function(s) Description

viOpenDefaultRM You must first open a session with the default resource manager with the
viOpenDefaultRM function. This function will initialize the default
resource manager and return a pointer (defrm) to that resource manager
session.

viOpen This function establishes a communication channel with the device
specified. A session identifier (vi) that can be used with other VISA
functions is returned. This call must be made for each device you will be
using.

viVPrintf and
viVScanf

These are the VISA formatted I/O functions. The viVPrintf call sends
the IEEE 488.2 *RST command to the instrument (plus a linefeed
character) and puts it in a known state. The viVPrintf call is used again
to query for the device identification (*IDN?). The viVScanf call is then
used to read the results (strRes) that are displayed in a Message Box.

viClose This function must be used to close each session. When you close a
device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.

Chapter 2 29

Building a VISA Application in Windows
Logging Error Messages

Logging Error Messages
When developing or debugging your VISA application, you may want to view
internal VISA messages while your application is running. You can do this
by using the Message Viewer utility (for Windows 95/98/Me), the Event
Viewer utility (for Windows 2000/NT), or the Debug Window (for Windows
95/98/2000/Me/NT). There are three choices for VISA logging:

� Off (default) for best performance
� Event Viewer/Message Viewer
� Debug Window

Using the Event Viewer
For Windows 2000 or Windows NT, the Event Viewer utility provides a
way to view internal VISA error messages during application execution.
Some of these internal messages do not represent programming errors and
are actually error messages from VISA which are being handled internally
by VISA. The process to use the Event Viewer is:

� Enable VISA logging from the Agilent IO Libraries Control, click
VISA Logging | Event Viewer.

� Run your VISA program.

� View VISA error messages by running the Event Viewer.
From the Agilent IO Libraries Control, click Run Event Viewer.
VISA error messages will appear in the application log of the Event
Viewer utility.

Using the Message Viewer
For Windows 95, Windows 98, or Windows Me, the Message Viewer utility
provides a way to view internal VISA error messages during application
execution. Some of these internal messages do not represent programming
errors and are actually error messages from VISA which are being handled
internally by VISA.

The Message Viewer utility must be run BEFORE you run your VISA
application. However, the utility will receive messages while minimized.
This utility also provides menu selections for saving the logged messages to
a file and for clearing the message buffer.

30 Chapter 2

Building a VISA Application in Windows
Logging Error Messages

The process to use the Message Viewer is:

� Enable VISA logging from the Agilent IO Libraries Control, click
VISA Logging | Message Viewer.

� Start the Message Viewer. From the Agilent IO Libraries Control,
click Run Message Viewer.

� Run your VISA program.

� View error messages in the Message Viewer window.

Using the Debug Window

� When VISA logging is directed to the Debug Window, VISA writes
logging messages using the Win32 API call OutputDebugString().
The most common use for this feature is when debugging your VISA
program using an application such as Microsoft Visual Studio. In this
case, VISA messages will appear in the Visual Studio output
window. The process to use the Debug Window is:

� Enable VISA logging from the Agilent IO Libraries Control. Click
VISA Logging | Debug Window.

� Run your VISA program from Microsoft Visual Studio (or
equivalent application).

� View error messages in the Visual Studio (or equivalent) output
window.

31

3

Building a VISA Application in
HP-UX

32 Chapter 3

Building a VISA Application in HP-UX

This chapter gives guidelines to build a VISA application on HP-UX version
10.20 or later. The chapter contains the following sections:

� Building a VISA Program in HP-UX
� Using Online Help

Chapter 3 33

Building a VISA Application in HP-UX
Building a VISA Program in HP-UX

Building a VISA Program in HP-UX
This section lists and example program called idn that queries a GPIB
instrument for its identification string. The idn example program is located
in the following subdirectory:

opt/vxipnp/hpux/hpvisa/share/examples

Example Source Code
The source file idn.c follows. An explanation of the various function calls in
the example is provided directly after the program listing.

/*idn.c
This program queries a GPIB device for an ID string and prints
the results. Note that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::24::INSTR", VI_NULL,VI_NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");

/* Read results */
viScanf(vi, "%t", buf);

/* Print results */
printf ("Instrument identification string: %s\n", buf);

/* Close sessions */
viClose(vi);
viClose(defaultRM);

}

34 Chapter 3

Building a VISA Application in HP-UX
Building a VISA Program in HP-UX

Example Program Contents
A summary of the VISA function calls used in the example program follows.
For a more detailed explanation of VISA functionality, see Chapter 4 -
Programming with VISA. See Chapter 7 - VISA Language Reference for
more detailed information on these VISA calls.

visa.h. This file is included at the beginning of the file to provide the function
prototypes and constants defined by VISA.

ViSession. The ViSession is a VISA data type. Each object that will
establish a communication channel must be defined as ViSession.

viOpenDefaultRM. You must first open a session with the default resource
manager with the viOpenDefaultRM function. This function will initialize
the default resource manager and return a pointer to that resource manager
session.

viOpen. This function establishes a communication channel with the device
specified. A session identifier that can be used with other VISA functions is
returned. This call must be made for each device you will be using.

viPrintf and viScanf. These are the VISA formatted I/O functions that are
patterned after those used in the C programming language. The viPrintf
call sends the IEEE 488.2 *RST command to the instrument and puts it in
a known state. The viPrintf call is used again to query for the device
identification (*IDN?). The viScanf call is then used to read the results.

viClose. This function must be used to close each session. When you close
a device session, all data structures that had been allocated for the session
will be deallocated. When you close the default manager session, all
sessions opened using that default manager session will be closed.

Running the Example Program
To run the idn example program, type the program name at the command
prompt. For example:

idn

If the program run correctly, the following is an example of the output if
connected to a 54601A oscilloscope:

 Hewlett-Packard,54601A,0,1.7

Chapter 3 35

Building a VISA Application in HP-UX
Building a VISA Program in HP-UX

If you have problems running the idn example program, first check to make
sure the device address specified in your program is correct. If the program
still does not run, check the I/O configuration. See the Agilent I/O Libraries
Installation and Configuration Guide for HP-UX for information on I/O
configuration.

Compiling and Linking a VISA Program
You can create your VISA applications in ANSI C or C++. When compiling
and linking a C program that uses VISA, use the -lvisa command line
option to link in the VISA library routines. The following example creates the
idn executable file:

cc -Aa -o idn idn.c -lvisa

� The -Aa option indicates ANSI C
� The -o option creates an executable file called idn
� The -l option links in the VISA library

Logging Error Messages
To view any VISA internal errors that may occur on HP-UX, edit the
/etc/opt/vxipnp/hpux/hpvisa/hpvisa.ini file. Change the
ErrorLog= line in this file to the following:

ErrorLog=true

The error messages, if any, will be then be printed to stderr.

36 Chapter 3

Building a VISA Application in HP-UX
Using Online Help

Using Online Help
Online help for VISA on HP-UX is provided with Bristol Technology's
HyperHelp Viewer, or in the form of HP-UX manual pages (man pages), as
explained in the following subsections.

Using the HyperHelp Viewer
The Bristol Technology HyperHelp Viewer allows you to view the VISA
functions online. To start the HyperHelp Viewer with the VISA help file,
type:

hyperhelp/opt/hyperhelp/visahelp.hlp

When you start the Viewer, you can also specify any of the following options

Using HP-UX Manual Pages
To use manual pages, type the HP-UX man command followed by the VISA
function name:

man function
The following are examples of selecting online help on VISA functions:

man viPrintf
man viScanf
man viPeek

-k keyword Opens the Viewer and searches for the specified
keyword.

-p partial_keyword Opens the Viewer and searches for a specific
partial keyword.

-s viewmode Opens the Viewer in the specified viewmode.
If 1 is specified as the viewmode, the Viewer is
shared by all applications. If 0 is specified, a
separate Viewer is opened for each application
(default).

-display display Opens the Viewer on the specified display.

37

4

Programming with VISA

38 Chapter 4

Programming with VISA

This chapter describes how to program with VISA. The basics of VISA are
described, including formatted I/O, events and handlers, attributes, and
locking. Example programs are also provided and can be found in the
SAMPLES subdirectory on Windows environments or in the examples
subdirectory on HP-UX.

See Appendix A - VISA Library Information for the specific location of the
example programs on your operating system. For specific details on VISA
functions, see Chapter 7 - VISA Language Reference. This chapter contains
the following sections:

� VISA Resources and Attributes
� Using Sessions
� Sending I/O Commands
� Using Events and Handlers
� Trapping Errors
� Using Locks

Chapter 4 39

Programming with VISA
VISA Resources and Attributes

VISA Resources and Attributes
This section introduces VISA resources and attributes, including:

� VISA Resources
� VISA Attributes

VISA Resources
In VISA, a resource is defined as any device (such as a voltmeter) with
which VISA can provide communication. VISA defines six resource classes
that a complete VISA system, fully compliant with the VXIplug&play Systems
Alliance specification, can implement. Each resource class includes:

� Attributes to determine the state of a resource or session or to set
a resource or session to a specified state.

� Events for communication with applications.

� Operations (functions) that can be used for the resource class.

A summary description of each resource class supported by Agilent VISA
follows. See Appendix B - VISA Resource Classes for a description of the
attributes, events, and operations for each resource class.

NOTE

Although the Servant Device-Side (SERVANT) resource is defined by the
VISA specification, the SERVANT resource is not supported by Agilent
VISA. See Appendix B - VISA Resource Classes for a description of the
SERVANT resource.

Resource Class Interface Types Resource Class Description

Instrument Control (INSTR) Generic, GPIB, GPIB-VXI,
Serial, TCPIP, VXI

Device operations (reading, writing,
triggering, etc.).

GPIB Bus Interface (INTFC) Generic, GPIB Raw GPIB interface operations (reading,
writing, triggering, etc.).

Memory Access (MEMACC) Generic, GPIB-VXI, VXI Address space of a memory-mapped bus
such as the VXIbus.

40 Chapter 4

Programming with VISA
VISA Resources and Attributes

VISA Attributes
Attributes are associated with resources or sessions. You can use attributes
to determine the state of a resource or session or to set a resource or
session to a specified state.

For example, you can use the viGetAttribute function to read the state
of an attribute for a specified session, event context, or find list. There are
read only (RO) and read/write (RW) attributes. Use the viSetAttribute
function to modify the state of a read/write attribute for a specified session,
event context, or find list.

The pointer passed to viGetAttribute must point to the exact type
required for that attribute: ViUInt16, ViInt32, etc. For example, when
reading an attribute state that returns a ViUInt16, you must declare a
variable of that type and use it for the returned data. If ViString is
returned, you must allocate an array and pass a pointer to that array for the
returned data.

Example: Reading a
VISA Attribute

This example reads the state of the VI_ATTR_TERMCHAR_EN attribute and
changes it if it is not true.

ViBoolean state, newstate;
newstate=VI_TRUE;
viGetAttribute(vi, VI_ATTR_TERMCHAR_EN, &state);
if (state err !=VI_TRUE) viSetAttribute(vi,

VI_ATTR_TERMCHAR_EN, newstate);

VXI Mainframe Backplane
(BACKPLANE)

Generic, GPIB-VXI, VXI
(GPIB-VXI BACKPLANE
not supported)

VXI-defined operations and properties of
each backplane (or chassis) in a VXIbus
system.

Servant Device-Side Resource
(SERVANT)

GPIB, VXI, TCPIP (not
supported)

Operations and properties of the
capabilities of a device and a device's
view of the system in which it exists.

TCPIP Socket (SOCKET) Generic, TCPIP Operations and properties of a raw
network socket connection using TCPIP.

Resource Class Interface Types Resource Class Description

Chapter 4 41

Programming with VISA
Using Sessions

Using Sessions
This section shows how to use VISA sessions, including:

� Including the VISA Declarations File (C/C++)
� Adding the visa32.bas File (Visual Basic)
� Opening a Session to a Resource
� Addressing a Session
� Closing a Session
� Searching for Resources

Including the VISA Declarations File (C/C++)
For C and C++ programs, you must include the visa.h header file at the
beginning of every file that contains VISA function calls:

#include "visa.h"

This header file contains the VISA function prototypes and the definitions for
all VISA constants and error codes. The visa.h header file also includes the
visatype.h header file.

The visatype.h header file defines most of the VISA types. The VISA types
are used throughout VISA to specify data types used in the functions. For
example, the viOpenDefaultRM function requires a pointer to a parameter
of type ViSession. If you find ViSession in the visatype.h header file,
you will find that ViSession is eventually typed as an unsigned long. VISA
types are also listed in Appendix A - VISA System Information.

Adding the visa32.bas File (Visual Basic)
You must add the visa32.bas Basic Module file to your Visual Basic Project.
The visa32.bas file contains the VISA function prototypes and definitions for
all VISA constants and error codes.

Opening a Session
A session is a channel of communication. Sessions must first be opened on
the default resource manager, and then for each resource you will be using.

� A resource manager session is used to initialize the VISA system.
It is a parent session that knows about all the opened sessions. A
resource manager session must be opened before any other
session can be opened.

42 Chapter 4

Programming with VISA
Using Sessions

� A resource session is used to communicate with a resource on an
interface. A session must be opened for each resource you will be
using. When you use a session you can communicate without
worrying about the type of interface to which it is connected. This
insulation makes applications more robust and portable across
interfaces.

Resource Manager
Sessions

There are two parts to opening a communications session with a specific
resource. First, you must open a session to the default resource manager
with the viOpenDefaultRM function. The first call to this function initializes
the default resource manager and returns a session to that resource
manager session. You only need to open the default manager session once.
However, subsequent calls to viOpenDefaultRM returns a unique session
to the same default resource manager resource.

Resource Sessions Next, you open a session with a specific resource with the viOpen function.
This function uses the session returned from viOpenDefaultRM and
returns its own session to identify the resource session. The following shows
the function syntax:

viOpenDefaultRM(sesn);
viOpen(sesn, rsrcName, accessMode, timeout, vi);

The session returned from viOpenDefaultRM must be used in the sesn
parameter of the viOpen function. The viOpen function then uses that
session and the resource address specified in the rsrcName parameter to
open a resource session. The vi parameter in viOpen returns a session
identifier that can be used with other VISA functions.

Your program may have several sessions open at the same time by creating
multiple session identifiers by calling the viOpen function multiple times.
The following table summarizes the parameters in the previous function
calls.

Parameter Description

sesn A session returned from the viOpenDefaultRM function that identifies the
resource manager session.

rsrcName A unique symbolic name of the resource (resource address).

Chapter 4 43

Programming with VISA
Using Sessions

Example: Opening a
Resource Session

This example shows one way of opening resource sessions with a GPIB
multimeter and a GPIB-VXI scanner. The example first opens a session
with the default resource manager. The session returned from the resource
manager and a resource address is then used to open a session with the
GPIB device at address 22. That session will now be identified as dmm
when using other VISA functions.

The session returned from the resource manager is then used again with
another resource address to open a session with the GPIB-VXI device at
primary address 9 and VXI logical address 24. That session will now be
identified as scanner when using other VISA functions. See "Addressing
a Session" for information on addressing particular devices.

ViSession defaultRM, dmm, scanner;
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR",VI_NULL,

VI_NULL,&dmm);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,

VI_NULL,&scanner);
.
viClose(scanner);
viClose(dmm);
viClose(defaultRM);

Parameter Description

accessMode Specifies the modes by which the resource is to be accessed. The value
VI_EXCLUSIVE_LOCK is used to acquire an exclusive lock immediately upon
opening a session. If a lock cannot be acquired, the session is closed and an
error is returned. The VI_LOAD_CONFIG value is used to configure attributes
specified by some external configuration utility. If this value is not used, the
session uses the default values provided by this specification.
Multiple access modes can be used simultaneously by specifying a "bit-wise
OR" of the values. (Must use VI_NULL in VISA 1.0.).

timeout If the accessMode parameter requires a lock, this parameter specifies the
absolute time period (in milliseconds) that the resource waits to get unlocked
before this operation returns an error. Otherwise, this parameter is ignored.
(Must use VI_NULL in VISA 1.0.)

vi This is a pointer to the session identifier for this particular resource session.
This pointer will be used to identify this resource session when using other
VISA functions.

44 Chapter 4

Programming with VISA
Using Sessions

Addressing a Session
As shown in the previous section, the rsrcName parameter in the viOpen
function is used to identify a specific resource. This parameter consists of
the VISA interface name and the resource address. The interface name is
determined when you run the VISA configuration utility. This name is usually
the interface type followed by a number.

The following table illustrates the format of the rsrcName for different
interface types. INSTR is an optional parameter that indicates that you are
communicating with a resource that is of type INSTR, meaning instrument.
The keywords are:

� ASRL establishes communication with asynchronous serial devices.
� GPIB establishes communication with GPIB devices or interfaces.
� GPIB-VXI is used for GPIB-VXI controllers.
� TCPIP establishes communication with LAN instruments.
� VXI is used for VXI instruments.

Interface Typical Syntax
ASRL ASRL[board][::INSTR]

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB GPIB[board]::INTFC

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board][::VXI logical address]::BACKPLANE

TCPIP TCPIP[board]::host address[::LAN device name]::INSTR

TCPIP TCPIP[board]::host address::port::SOCKET

VXI VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board][::VXI logical address]::BACKPLANE

Chapter 4 45

Programming with VISA
Using Sessions

The following table describes the parameters used above.

Some examples of valid symbolic names follow.

Parameter Description

board This optional parameter is used if you have more
than one interface of the same type. The default
value for board is 0.

host address The IP address (in dotted decimal notation) or the
name of the host computer/gateway.

LAN device name The assigned name for a LAN device. The default is
inst().

port The port number to use for a TCP/IP Socket
connection.

primary address This is the primary address of the GPIB device.

secondary address This optional parameter is the secondary address of
the GPIB device. If no secondary address is
specified, none is assumed.

VXI logical address This is the logical address of the VXI instrument.

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface
VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI
controlled VXI system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary
address 0 in GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface
number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

46 Chapter 4

Programming with VISA
Using Sessions

Example: Opening a
Session

This example shows one way to open a resource session with the GPIB
device at primary address 23.

ViSession defaultRM, vi;
.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::23::INSTR", VI_NULL,

VI_NULL,&vi);
.
.
viClose(vi);
viClose(defaultRM);

Closing a Session
The viClose function must be used to close each session. You can close
the specific resource session, which will free all data structures that had
been allocated for the session. If you close the default resource manager
session, all sessions opened using that resource manager session will be
closed.

Since system resources are also used when searching for resources
(viFindRsrc), the viClose function needs to be called to free up find lists.
See "Searching for Resources" for more information on closing find lists.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default VXI
system, which is interface 0.

GPIB-VXI2::
BACKPLANE

Mainframe resource for default chassis on GPIB-VXI
interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB interface 1.

VXI0::SERVANT Servant/device-side resource for VXI interface 0.

TCPIP0::1.2.3.4::999::
SOCKET

Raw TCPIP access to port 999 at the specified
address.

TCPIP::devicename@
company.com::INSTR

TCPIP device using VXI-11 located at the specified
address. This uses the default LAN Device Name of
inst0.

Chapter 4 47

Programming with VISA
Using Sessions

Searching for Resources
When you open the default resource manager, you are opening a parent
session that knows about all the other resources in the system. Since the
resource manager session knows about all resources, it has the ability to
search for specific resources and open sessions to these resources. You
can, for example, search an interface for devices and open a session with
one of the devices found.

Use the viFindRsrc function to search an interface for device resources.
This function finds matches and returns the number of matches found
and a handle to the resources found. If there are more matches, use the
viFindNext function with the handle returned from viFindRsrc to
get the next match:

viFindRsrc(sesn, expr, findList, retcnt, instrDesc);
.
.
viFindNext(findList, instrDesc);
.
.
viClose (findList);

Where the parameters are defined as follows.

The handle returned from viFindRsrc should be closed to free up all the
system resources associated with the search. To close the find object, pass
the findList to the viClose function.

Parameter Description

sesn The resource manager session.

expr The expression that identifies what to search (see table that
follows).

findList A handle that identifies this search. This handle will then be used
as an input to the viFindNext function when finding the next
match.

retcnt A pointer to the number of matches found.

instrDesc A pointer to a string identifying the location of the match. Note
that you must allocate storage for this string.

48 Chapter 4

Programming with VISA
Using Sessions

Use the expr parameter of the viFindRsrc function to specify the interface
to search. You can search for devices on the specified interface. Use the
following table to determine what to use for your expr parameter.

Example: Searching
VXI Interface for
Resources

This example searches the VXI interface for resources. The number of
matches found is returned in nmatches, and matches points to the string that
contains the matches found. The first call returns the first match found, the
second call returns the second match found, etc. VI_FIND_BUFLEN is
defined in the visa.h declarations file.

ViChar buffer [VI_FIND_BUFLEN];
ViRsrc matches=buffer;
ViUInt32 nmatches;
ViFindList list;
.
.
viFindRsrc(defaultRM, "VXI?*INSTR", &list, &nmatches,

 matches);
. .
.
viFindNext(list, matches);
.
.
viClose(list);

NOTE

Because VISA interprets strings as regular expressions, the string
GPIB?*INSTR applies to both GPIB and GPIB-VXI devices.

Interface expr Parameter

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

ASRL ASRL[0-9]*::?*INSTR

All ?*INSTR

Chapter 4 49

Programming with VISA
Sending I/O Commands

Sending I/O Commands
This section gives guidelines to send I/O commands, including:

� Types of I/O
� Using Formatted I/O
� Using Non-Formatted I/O

Types of I/O
Once you have established a communications session with a device, you
can start communicating with that device using VISA's I/O routines. VISA
provides both formatted and non-formatted I/O routines.

� Formatted I/O converts mixed types of data under the control of a
format string. The data is buffered, thus optimizing interface traffic.

� Non-formatted I/O sends or receives raw data to or from a device.
With non-formatted I/O, no format or conversion of the data is
performed. Thus, if formatted data is required, it must be done by
the user.

You can choose between VISA's formatted and non-formatted I/O routines.
However, since the non-formatted I/O performs the low-level I/O, you should
not mix formatted I/O and non-formatted I/O in the same session. See the
following sections for descriptions and examples using formatted I/O and
non-formatted I/O in VISA.

Using Formatted I/O
The VISA formatted I/O mechanism is similar to the C stdio mechanism.
The VISA formatted I/O functions are viPrintf, viQueryf, and
viScanf. There are also two non-buffered and non-formatted I/O functions
that synchronously transfer data, called viRead and viWrite and two that
asynchronously transfer data, called viReadAsync and viWriteAsync.

These are raw I/O functions and do not intermix with the formatted I/O
functions. See "Using Non-Formatted I/O" in this chapter. See Chapter 7 -
VISA Language Reference for more information on how data is converted
under the control of the format string.

50 Chapter 4

Programming with VISA
Sending I/O Commands

Formatted I/O
Functions

As noted, the VISA formatted I/O functions are viPrintf, viQueryf, and
viScanf.

� The viPrintf functions format according to the format string and
send data to a device. The viPrintf function sends separate arg
parameters, while the viVPrintf function sends a list of
parameters in params:

viPrintf(vi, writeFmt[, arg1][, arg2][, ...]);
viVPrintf(vi, writeFmt, params);

� The viScanf functions receive and convert data according to the
format string. The viScanf function receives separate arg
parameters, while the viVScanf function receives a list of
parameters in params:

viScanf(vi, readFmt[, arg1][, arg2][, ...]);
viVScanf(vi, readFmt, params);

� The viQueryf functions format and send data to a device and then
immediately receive and convert the response data. Hence, the
viQueryf function is a combination of the viPrintf and
viScanf functions. Similarly, the viVQueryf function is a
combination of the viVPrintf and viVScanf functions. The
viQueryf function sends and receives separate arg parameters,
while the viVQueryf function sends and receives a list of
parameters in params:

viQueryf(vi, writeFmt, readFmt[, arg1][, arg2][, ...]);
viVQueryf(vi, writeFmt, readFmt, params);

Formatted I/O
Conversion

The formatted I/O functions convert data under the control of the format
string. The format string specifies how the argument is converted before it is
input or output. The format specifier sequence consists of a % (percent)
followed by an optional modifier(s), followed by a format code.

%[modifiers]format code
Zero or more modifiers may be used to change the meaning of the format
code. Modifiers are only used when sending or receiving formatted I/O. To
send formatted I/O, the asterisk (*) can be used to indicate that the number
is taken from the next argument.

Chapter 4 51

Programming with VISA
Sending I/O Commands

However, when the asterisk is used when receiving formatted I/O, it
indicates that the assignment is suppressed and the parameter is discarded.
Use the pound sign (#) when receiving formatted I/O to indicate that an
extra argument is used. The following are supported modifiers. See the
viPrintf function in Chapter 7 - VISA Language Reference for additional
enhanced modifiers (@1, @2, @3, @H, @Q, or @B).

� Field Width. Field width is an optional integer that specifies how
many characters are in the field. If the viPrintf or viQueryf
(writeFmt) formatted data has fewer characters than specified in the
field width, it will be padded on the left, or on the right if the � flag is
present.

You can use an asterisk (*) in place of the integer in viPrintf or
viQueryf (writeFmt) to indicate that the integer is taken from the
next argument. For the viScanf or viQueryf (readFmt) functions,
you can use a # sign to indicate that the next argument is a
reference to the field width.

The field width modifier is only supported with viPrintf and
viQueryf (writeFmt) format codes d, f, s, and viScanf and
viQueryf (readFmt) format codes c, s, and [].

Example: Using
Field Width Modifier

The following example pads numb to six characters and sends it to
the session specified by vi:

int numb = 61;
viPrintf(vi, "%6d\n", numb);

Inserts four spaces, for a total of 6 characters: 61

� .Precision. Precision is an optional integer preceded by a period.
This modifier is only used with the viPrintf and viQueryf
(writeFmt) functions. The meaning of this argument is dependent on
the conversion character used. You can use an asterisk (*) in place
of the integer to indicate the integer is taken from the next argument.

52 Chapter 4

Programming with VISA
Sending I/O Commands

Example: Using the
Precision Modifier

This example converts numb so that there are only two digits to the
right of the decimal point and sends it to the session specified by vi:

float numb = 26.9345;
viPrintf(vi, "%.2f\n", numb);

Sends : 26.93

� Argument Length Modifier. The meaning of the optional argument
length modifier h, l, L, z'' or Z is dependent on the conversion
character, as listed in the following table. Note that z and Z are not
ANSI C standard modifiers.

Format Code Description

d Indicates the minimum number of digits to appear is
specified for the @1, @H, @Q, and @B flags, and the
i, o, u, x, and X format codes.

f Indicates the maximum number of digits after the
decimal point is specified.

s Indicates the maximum number of characters for the
string is specified.

g Indicates the maximum significant digits are specified.

Argument
Length

Modifier

Format
Codes

Description

h d, b, B Corresponding argument is a short integer or
a reference to a short integer for d. For b or
B, the argument is the location of a block of
data or a reference to a data array. (B is only
used with viPrintf or viQueryf (writeFmt).)

l d, f,
b, B

Corresponding argument is a long integer or
a reference to a long integer for d. For f, the
argument is a double float or a reference to a
double float. For b or B, the argument is the
location of a block of data or a reference to a
data array. (B is only used with viPrintf or
viQueryf (writeFmt).)

Chapter 4 53

Programming with VISA
Sending I/O Commands

� , Array Size. The comma operator is a format modifier that allows
you to read or write a comma-separated list of numbers (only valid
with %d and %f format codes). It is a comma followed by an integer.
The integer indicates the number of elements in the array. The
comma operator has the format of ,dd where dd is the number of
elements to read or write.

For viPrintf or viQueryf (writeFmt), you can use an asterisk
(*) in place of the integer to indicate that the integer is taken from
the next argument. For viScanf or viQueryf (readFmt), you can
use a # sign to indicate that the next argument is a reference to the
array size.

Example: Using
Array Size Modifier

This example specifies a comma-separated list to be sent to the
session specified by vi:
int list[5]={101,102,103,104,105};
viPrintf(vi, "%,5d\n", list);

Sends: 101,102,103,104,105

� Special Characters. Special formatting character sequences will
send special characters. The following describes the special
characters and what will be sent.

The format string for viPrintf and viQueryf (writeFmt) puts a
special meaning on the newline character (\n). The newline
character in the format string flushes the output buffer to the device.

L f Corresponding argument is a long double or
a reference to a long double.

z b, B Corresponding argument is an array of floats
or a reference to an array of floats. (B is only
used with viPrintf or viQueryf (writeFmt).)

Z b, B Corresponding argument is an array of
double floats or a reference to an array of
double floats. (B is only used with viPrintf or
viQueryf (writeFmt).)

Argument
Length

Modifier

Format
Codes

Description

54 Chapter 4

Programming with VISA
Sending I/O Commands

All characters in the output buffer will be written to the device with an
END indicator included with the last byte (the newline character).
This means you can control at what point you want the data written
to the device. If no newline character is included in the format string,
the characters converted are stored in the output buffer. It will
require another call to viPrintf, viQueryf (writeFmt), or
viFlush to have those characters written to the device.

This can be very useful in queuing up data to send to a device. It
can also raise I/O performance by doing a few large writes instead
of several smaller writes. The * while using the viScanf functions
acts as an assignment suppression character. The input is not
assigned to any parameters and is discarded.

The grouping operator () in a regular expression has the highest
precedence, the + and * operators in a regular expression have the
next highest precedence after the grouping operator, and the or
operator | in a regular expression has the lowest precedence.
Some example expressions follow the table.

Special
Characters and

Operators

Description

? Matches any one character.

\ Makes the character that follows it an ordinary character
instead of special character. For example, when a question
mark follows a backslash (e.g.,� '\?�), it matches the '?'
character instead of any one character.

[list] Matches any one character from the enclosed list. A hyphen
can be used to match a range of characters.

[^list] Matches any character not in the enclosed list. A hyphen
can be used to match a range of characters.

* Matches 0 or more occurrences of the preceding character
or expression.

+ Matches 1 or more occurrences of the preceding character or
expression.

exp|exp Matches either the preceding or following expression. The or
operator | matches the entire expression that precedes or
follows it and not just the character that precedes or follows it.
For example, VXI|GPIB means (VXI) | (GPIB), not
VXI(I|G)PIB.

Chapter 4 55

Programming with VISA
Sending I/O Commands

(exp) Grouping characters or expressions.

� � Sends a blank space.

\n Sends the ASCII line feed character. The END identifier will
also be sent.

\r Sends an ASCII carriage return character.

\t Sends an ASCII TAB character.

\### Sends ASCII character specified by octal value.

\" Sends the ASCII double quote character.

\\ Sends a backslash character.

Example Expression Sample Matches

GPIB?*INSTR Matches GPIB0::2::INSTR,
GPIB1::1::1::INSTR, and GPIB-
VXI1::8::INSTR

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB-VXI1::8::INSTR

GPIB[0-9]::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB12::8::INSTR.

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not
GPIB0::2::INSTR or GPIB12::8::INSTR

VXI?*INSTR Matches VXI0::1::INSTR but not
GPIB-VXI0::1::INSTR

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but not
VXI0::1::INSTR

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and
GPIB-VXI0::1::INSTR

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not
VXI0::5::INSTR

ASRL1+::INSTR Matches ASRL1::INSTR and ASRL11::INSTR
but not ASRL2::INSTR

Special
Characters and

Operators

Description

56 Chapter 4

Programming with VISA
Sending I/O Commands

Format Codes. This table summarizes the format codes for sending and
receiving formatted I/O.

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and
VXI0::3::INSTR but not ASRL2::INSTR

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and
VXI0::1::INSTR

?*INSTR Matches all INSTR (device) resources

?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and
GPIB-VXI1::MEMACC

VXI0::?* Matches VXI0::1::INSTR, VXI0::2::INSTR,
and VXI0::MEMACC

?* Matches all resources

Format Codes Description

viPrintf/viVPrintf and viQueryf/viVqueryf (writeFmt)

d, i Corresponding argument is an integer.

f Corresponding argument is a double.

c Corresponding argument is a character.

s Corresponding argument is a pointer to a null terminated string.

% Sends an ASCII percent (%) character.

o, u, x, X Corresponding argument is an unsigned integer.

e, E, g, G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

b, B Corresponding argument is the location of a block of data.

viPrintf/viVPrintf and viQueryf/viVqueryf (readFmt)

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character sequence.

s,t,T Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

Example Expression Sample Matches

Chapter 4 57

Programming with VISA
Sending I/O Commands

Example: Receiving
Data From a
Session

This example receives data from the session specified by the vi parameter
and converts the data to a string.

char data[180];
viScanf(vi, "%t", data);

Formatted I/O
Buffers

The VISA software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers. You can modify the size of the buffer using the viSetBuf function.
See Chapter 7 - VISA Language Reference for more information on this
function.

The write buffer is maintained by the viPrintf or viQueryf (writeFmt)
functions. The buffer queues characters to send to the device so that they
are sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string. It may occasionally be flushed at other non-deterministic times, such
as when the buffer fills.

When the write buffer flushes, it sends its contents to the device. If you set
the VI_ATTR_WR_BUF_OPER_MODE attribute to VI_FLUSH_ON_ACCESS,
the write buffer will also be flushed every time a viPrintf or viQueryf
operation completes. See "VISA Attributes" in this chapter for information
on setting VISA attributes.

The read buffer is maintained by the viScanf and viQueryf (readFmt)
functions. It queues the data received from a device until it is needed by the
format string. Flushing the read buffer destroys the data in the buffer and
guarantees that the next call to viScanf or viQueryf reads data directly
from the device rather than data that was previously queued.

If you set the VI_ATTR_RD_BUF_OPER_MODE attribute to
VI_FLUSH_ON_ACCESS, the read buffer will be flushed every time a
viScanf or viQueryf operation completes. See "VISA Attributes" in this
chapter for information on setting VISA attributes.

[Corresponding argument must be a character pointer.

b Corresponding argument is a pointer to a data array.

Format Codes Description

58 Chapter 4

Programming with VISA
Sending I/O Commands

You can manually flush the read and write buffers using the viFlush
function. Flushing the read buffer also includes reading all pending response
data from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator from
the device.

Example: Sending
and Receiving
Formatted I/O

This C program example shows sending and receiving formatted I/O. The
example opens a session with a GPIB device and sends a comma operator
to send a comma-separated list. This example program is intended to show
specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments or in the examples subdirectory
on HP-UX. See Appendix A - VISA Library Information for locations of
example programs on your operating system.

/*formatio.c
This example program makes a multimeter measurement
with a comma-separated list passed with formatted
I/O and prints the results. You may need to change
the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
double res;
double list [2] = {1,0.001};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&efaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Set up device and send comma separated list */
viPrintf(vi, "CALC:DBM:REF 50\n");
viPrintf(vi, "MEAS:VOLT:AC? %,2f\n", list);

Chapter 4 59

Programming with VISA
Sending I/O Commands

/* Read results */
viScanf(vi, "%lf", &res);

/* Print results */
printf("Measurement Results: %lf\n", res);
/* Close session */
viClose(vi);
viClose(defaultRM);}

Using Non-Formatted I/O
There are two non-buffered, non-formatted I/O functions that synchronously
transfer data called viRead and viWrite. Also, there are two non-
formatted I/O functions that asynchronously transfer data called
viReadAsync and viWriteAsync. These are raw I/O functions and
do not intermix with the formatted I/O functions.

Non-Formatted I/O
Functions

The non-formatted I/O functions follow. For more information, see the
viRead, viWrite, viReadAsync, viWriteAsync, and viTerminate
functions in Chapter 7 - VISA Language Reference.

� viRead. The viRead function synchronously reads raw data from
the session specified by the vi parameter and stores the results in
the location where buf is pointing. Only one synchronous read
operation can occur at any one time.

viRead(vi, buf, count, retCount);

� viWrite. The viWrite function synchronously sends the data
pointed to by buf to the device specified by vi. Only one
synchronous write operation can occur at any one time.

viWrite(vi, buf, count, retCount);

� viReadAsync. The viReadAsync function asynchronously reads
raw data from the session specified by the vi parameter and stores
the results in the location where buf is pointing. This operation
normally returns before the transfer terminates. Thus, the operation
returns jobId, which you can use with either viTerminate to abort
the operation or with an I/O completion event to identify which
asynchronous read operation completed.

viReadAsync(vi, buf, count, jobId);

60 Chapter 4

Programming with VISA
Sending I/O Commands

� viWriteAsync. The viWriteAsync function asynchronously
sends the data pointed to by buf to the device specified by vi.
This operation normally returns before the transfer terminates.
Thus, the operation returns jobId, which you can use with either
viTerminate to abort the operation or with anI/O completion event
to identify which asynchronous write operation completed.

viWriteAsync(vi, buf, count, jobId);

Example: Using
Non-Formatted
I/O Functions

This example program illustrates using non-formatted I/O functions to
communicate with a GPIB device. This example program is intended to
show specific VISA functionality and does not include error trapping. Error
trapping, however, is good programming practice and is recommended in
your VISA applications. See "Trapping Errors" in this chapter.

/*nonfmtio.c
This example program measures the AC voltage on a
multimeter and prints the results. You may need to
change the device address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char strres [20];
unsigned long actual;

/* Open session to GPIB device at address 22 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viWrite(vi, (ViBuf)"*RST\n", 5, &actual);

/* Set up device and take measurement */
viWrite(vi, (ViBuf)"CALC:DBM:REF 50\n", 16, &actual);
viWrite(vi, (ViBuf)"MEAS:VOLT:AC? 1, 0.001\n", 23,

&actual);

/* Read results */
viRead(vi, (ViBuf)strres, 20, &actual);

Chapter 4 61

Programming with VISA
Sending I/O Commands

/* NULL terminate the string */
strres[actual]=0;

/* Print results */
printf("Measurement Results: %s\n", strres);

/* Close session */
viClose(vi);
viClose(defaultRM);

}

62 Chapter 4

Programming with VISA
Using Events and Handlers

Using Events and Handlers
This section gives guidelines to use events and handlers, including:

� Events and Attributes
� Using the Callback Method
� Using the Queuing Method

Events and Attributes
Events are special occurrences that require attention from your application.
Event types include Service Requests (SRQs), interrupts, and hardware
triggers. Events will not be delivered unless the appropriate events are
enabled.

Event Notification There are two ways you can receive notification that an event has occurred:

� Install an event handler with viInstallhandler, and enable one
or several events with viEnableEvent. If the event was enabled
with a handler, the specified event handler will be called when the
specified event occurs. This is called a callback.

� Enable one or several events with viEnableEvent and call the
viWaitOnEvent function. The viWaitOnEvent function will
suspend the program execution until the specified event occurs or
the specified timeout period is reached. This is called queuing.

NOTE

VISA cannot callback to a Visual Basic function. Thus, you can only use
the queuing mechanism in viEnableEvent. There is no way to install a
VISA event handler in Visual Basic.

NOTE

VISA cannot callback to a Visual Basic function. This means that you can
only use the VI_QUEUE mechanism in viEnableEvent. There is no way
to install a VISA event handler in Visual Basic.

Chapter 4 63

Programming with VISA
Using Events and Handlers

The queuing and callback mechanisms are suitable for different
programming styles. The queuing mechanism is generally useful for non-
critical events that do not need immediate servicing. The callback
mechanism is useful when immediate responses are needed. These
mechanisms work independently of each other, so both can be enabled at
the same time. By default, a session is not enabled to receive any events by
either mechanism.

The viEnableEvent operation can be used to enable a session to respond
to a specified event type using either the queuing mechanism, the callback
mechanism, or both. Similarly, the viDisableEvent operation can be
used to disable one or both mechanisms. Because the two methods work
independently of each other, one can be enabled or disabled regardless of
the current state of the other.

Events That can be
Enabled

The following table shows the events that are implemented for Agilent VISA
for each resource class, where AP = Access Privilege, RO - Read Only, and
RW = Read/Write. Note that some resource classes/events, such as the
SERVANT class are not implemented by Agilent VISA and are not listed in
the following tables.

Once the application has received an event, information about that event
can be obtained by using the viGetAttribute function on that particular
event context. Use the VISA viReadSTB function to read the status byte of
the service request..

Instrument Control (INSTR) Resource Events

VI_EVENT_SERVICE_REQUEST
Notification that a service request was received from the device.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
SERVICE_REQ

64 Chapter 4

Programming with VISA
Using Events and Handlers

VI_EVENT_VXI_SIGP
Notification that a VXIbus signal or VXIbus interrupt was received from the device.

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
VXI_STOP

VI_ATTR_SIGP_
STATUS_ID

The 16-bit Status/ID value
retrieved during the IACK
cycle or from the Signal
register.

RO ViUInt16 0 to FFFFh

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the device. For VISA, the only triggers that can be
sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1*

* Agilent VISA can also return VI_TRIG_PANEL_IN (exception to the VISA Specification)

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

Chapter 4 65

Programming with VISA
Using Events and Handlers

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

ViString N/A

Memory Access (MEMACC) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_
IO_COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements that
were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

RO ViString N/A

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range

66 Chapter 4

Programming with VISA
Using Events and Handlers

.

GPIB Bus Interface (INTFC) Resource Events

VI_EVENT_GPIB_CIC
Notification that the GPIB controller has gained or lost CIC (controller in charge) status

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
CIC

VI_ATTR_GPIB_RECV_
CIC_STATE

Controller has become
controller-in-charge.

RO ViBoolean VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK
Notification that the GPIB controller has been addressed to talk

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
TALK

VI_EVENT_GPIB_LISTEN
Notification that the GPIB controller has been addressed to listen.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_GPIB_
LISTEN

VI_EVENT_CLEAR
Notification that the GPIB controller has been sent a device clear message.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_CLEAR

Chapter 4 67

Programming with VISA
Using Events and Handlers

VI_EVENT_TRIGGER
Notification that a trigger interrupt was received from the interface.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_SW

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed.

RO ViJobId N/A

VI_ATTR_BUFFER Address of buffer used in an
asynchronous operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME The name of the operation
generating the event.

RO ViString N/A

68 Chapter 4

Programming with VISA
Using Events and Handlers

VXI Mainframe Backplane (BACKPLANE) Resource Events

VI_EVENT_TRIG
Notification that a trigger interrupt was received from the backplane. For VISA, the only triggers that can
be sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_
ID

The identifier of the triggering
mechanism on which the
specified trigger event was
received.

RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_EVENT_VXI_VME_SYSFAIL
Notification that the VXI/VME SYSFAIL* line has been asserted.

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_
VME_SYSFAIL

VI_EVENT_VXI_VME_SYSRESET
Notification that the VXI/VME SYSRESET* line has been reset

Event Attribute Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_VXI_
VME_SYSRESET

TCPIP Socket (SOCKET) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range

VI_ATTR_EVENT_TYPE Unique logical identifier of the
event.

RO ViEventType VI_EVENT_IO_
COMPLETION

VI_ATTR_STATUS Return code of the asynch-
ronous I/O operation that has
completed

RO ViStatus N/A

Chapter 4 69

Programming with VISA
Using Events and Handlers

Example: Reading
Event Attributes

Once you have decided which attribute to check, you can read the attribute
using the viGetAttribute function. The following example shows one
way you could check which trigger line fired when the VI_EVENT_TRIG
event was delivered.

Note that the context parameter is either the event context passed to your
event handler, or the outcontext specified when doing a wait on event. See
"VISA Attributes" in this chapter for more information on reading attribute
states.

ViInt16 state;
.
.
viGetAttribute(context, VI_ATTR_RECV_TRIG_ID, &state);

Using the Callback Method
The callback method of event notification is used when an immediate
response to an event is required. To use the callback method for receiving
notification that an event has occurred, you must do the following. Then,
when the enabled event occurs, the installed event handler is called.

� Install an event handler with the viInstallHandler function
� Enable one or several events with the viEnableEvent function

VI_ATTR_JOB_ID Job ID of the asynchronous
operation that has completed

RO ViJobId N/A

VI_ATTR_BUFFER Address of a buffer that was
used in an asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT Actual number of elements
that were asynchronously
transferred.

RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_OPER_NAME Name of the operation
generating the event.

RO ViString N/A

TCPIP Socket (SOCKET) Resource Event

VI_EVENT_IO_COMPLETION
Notification that an asynchronous operation has completed.

Event Attributes Description AP Data Type Range

70 Chapter 4

Programming with VISA
Using Events and Handlers

Example: Using the
Callback Method

This example shows one way you can use the callback method.

ViStatus _VI_FUNCH my_handler (ViSession vi,
ViEventType

eventType, ViEvent context, ViAddr usrHandle) {

/* your event handling code here */

return VI_SUCCESS;
}
main(){
ViSession vi;
ViAddr addr=0;
.
.
viInstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,

addr);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,

VI_NULL);
.

/* your code here */
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,

addr);
.
}

Installing Handlers VISA allows applications to install multiple handlers for for an event type on
the same session. Multiple handlers can be installed through multiple
invocations of the viInstallHandler operation, where each invocation
adds to the previous list of handlers.

If more than one handler is installed for an event type, each of the handlers
is invoked on every occurrence of the specified event(s). VISA specifies that
the handlers are invoked in Last In First Out (LIFO) order. Use the following
function when installing an event handler:

viInstallHandler(vi, eventType, handler, userHandle);

Where the parameters are defined as follows:

Chapter 4 71

Programming with VISA
Using Events and Handlers

The userHandle parameter allows you to assign a value to be used with the
handler on the specified session. Thus, you can install the same handler for
the same event type on several sessions with different userHandle values.
The same handler is called for the specified event type.

However, the value passed to userHandle is different. Therefore the
handlers are uniquely identified by the combination of the handler and the
userHandle. This may be useful when you need a different handling method
depending on the userHandle.

Example: Installing
an Event Handler

This example shows how to install an event handler to call my_handler when
a Service Request occurs. Note that VI_EVENT_SERVICE_REQ must also
be an enabled event with the viEnableEvent function for the service
request event to be delivered.

viInstallHandler(vi, VI_EVENT_SERVICE_REQ, my_handler,
addr);

Use the viUninstallHandler function to uninstall a specific handler.
Or you can use wildcards (VI_ANY_HNDLR in the handler parameter) to
uninstall groups of handlers. See viUninstallHandler in Chapter 7 -
VISA Language Reference for more details on this function.

Writing the Handler The handler installed needs to be written by the programmer. The event
handler typically reads an associated attribute and performs some sort of
action. See the event handler in the example program later in this section.

Parameter Description

vi The session on which the handler will be installed.

eventType The event type that will activate the handler.

handler The name of the handler to be called.

userHandle A user value that uniquely identifies the handler for the
specified event type.

72 Chapter 4

Programming with VISA
Using Events and Handlers

Enabling Events Before an event can be delivered, it must be enabled using the
viEnableEvent function. This function causes the application to be
notified when the enabled event has occurred, Where the parameters are:

viEnableEvent(vi, eventType, mechanism, context);

Using VI_QUEUE in the mechanism parameter specifies a queuing method
for the events to be handled. If you use both VI_QUEUE and one of the
mechanisms listed above, notification of events will be sent to both
locations. See the next subsection for information on the queuing method.

Example: Enabling a
Hardware Trigger
Event

This example illustrates enabling a hardware trigger event.

viInstallHandler(vi, VI_EVENT_TRIG, my_handler,&addr);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);

The VI_HNDLR mechanism specifies that the handler installed for
VI_EVENT_TRIG will be called when a hardware trigger occurs.

If you specify VI_ALL_ENABLE_EVENTS in the eventType parameter, all
events that have previously been enabled on the specified session will be
enabled for the mechanism specified in this function call.

Use the viDisableEvent function to stop servicing the event specified.

Parameter Description

vi The session on which the handler will be installed.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled. It can be
enabled in several different ways. You can use VI_HNDLR in
this parameter to specify that the installed handler will be called
when the event occurs. Use VI_SUSPEND_HNDLR in this
parameter which puts the events in a queue and waits to call
the installed handlers until viEnableEvent is called with
VI_HNDLR specified in the mechanism parameter. When
viEnableEvent is called with VI_HNDLR specified, the
handler for each queued event will be called.

context Not used in VISA 1.0. Use VI_NULL.

Chapter 4 73

Programming with VISA
Using Events and Handlers

Example: Trigger
Callback

This example program installs an event handler and enables the trigger
event. When the event occurs, the installed event handler is called. This
program is intended to show specific VISA functionality and does not include
error trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors" in this
chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments or in the examples subdirectory
on HP-UX. See Appendix A - VISA Library Information for locations of
example programs on your operating system.

/* evnthdlr.c
This example program illustrates installing an event
handler to be called when a trigger interrupt occurs.
Note that you may need to change the address. */

#include <visa.h>
#include <stdio.h>

/* trigger event handler */
ViStatus _VI_FUNCH myHdlr(ViSession vi, ViEventType

eventType, ViEvent ctx, ViAddr userHdlr){
ViInt16 trigId;

/* make sure it is a trigger event */
if(eventType!=VI_EVENT_TRIG){

/* Stray event, so ignore */
return VI_SUCCESS;

}
/* print the event information */
printf("Trigger Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get the trigger that fired */
viGetAttribute(ctx, VI_ATTR_RECV_TRIG_ID, &trigId);
printf("Trigger that fired: ");
switch(trigId){

case VI_TRIG_TTL0:
printf("TTL0");
break;

default:
printf("<other 0x%x>", trigId);
break;

}

74 Chapter 4

Programming with VISA
Using Events and Handlers

printf("\n");

return VI_SUCCESS;
}

void main(){
ViSession defaultRM,vi;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL,

&vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);
/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_TRIG, myHdlr,
(ViAddr)10);
viEnableEvent(vi, VI_EVENT_TRIG, VI_HNDLR, VI_NULL);
/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* unenable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_TRIG, VI_HNDLR);

viUninstallHandler(vi, VI_EVENT_TRIG, myHdlr,
(ViAddr)10);

/* close the sessions */
viClose(vi);
viClose(defaultRM);

}

Example: SRQ
Callback

This program installs an event handler and enables an SRQ event. When
the event occurs, the installed event handler is called. This example
program is intended to show specific VISA functionality and does not include
error trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors" in this
chapter.

This program is installed on your system in the SAMPLES subdirectory on
Windows environments or in the examples subdirectory on HP-UX. See
Appendix A - VISA Library Information for locations of example programs on
your operating system.

Chapter 4 75

Programming with VISA
Using Events and Handlers

/* srqhdlr.c
This example program illustrates installing an event
handler to be called when an SRQ interrupt occurs.
Note that you may need to change the address. */

#include <visa.h>
#include <stdio.h>
#if defined (_WIN32)

#include <windows.h> /* for Sleep() */
#define YIELD Sleep(10)

#elif defined (_BORLANDC_)
#include <windows.h> /* for Yield() */
#define YIELD Yield()

#elif defined (_WINDOWS)
#include <io.h> /* for _wyield */
#define YIELD _wyield()

#else
#include <unistd.h>
#define YIELD sleep (1)

#endif

int srqOccurred;

/* trigger event handler */
ViStatus _VI_FUNCH mySrqHdlr(ViSession vi, ViEventType

eventType, ViEvent ctx, ViAddr userHdlr){

ViUInt16 statusByte;

/* make sure it is an SRQ event */
if(eventType!=VI_EVENT_SERVICE_REQ){

/* Stray event, so ignore */
printf("\nStray event of type 0x%lx\n", eventType

);
return VI_SUCCESS;

}
/* print the event information */
printf("\nSRQ Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get the status byte */
viReadSTB(vi, &statusByte);
printf("...Status byte is 0x%x\n", statusByte);

srqOccurred = 1;
return VI_SUCCESS;

76 Chapter 4

Programming with VISA
Using Events and Handlers

}
void main(){

ViSession defaultRM,vi;
long count;

/* open session to message based VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL, VI_NULL,
&vi);

/* Enable command error events */
viPrintf(vi, "*ESE 32\n");

/* Enable event register interrupts */
viPrintf(vi, "*SRE 32\n");

/* install the handler and enable it */
viInstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr,
(ViAddr)10);
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,
VI_NULL);

srqOccurred = 0;

/* Send a bogus command to the message based device to
cause an SRQ. Note: 'IDN' causes the error -- 'IDN?'
is the correct syntax */
viPrintf(vi, "IDN\n");

/* Wait a while for the SRQ to be generated and for the
handler to be called. Print something while we wait */

printf("Waiting for an SRQ to be generated .");
for (count = 0 ; (count < 10) && (srqOccurred ==
0);count++) {

long count2 = 0;
printf(".");
while ((count2++ < 100) && (srqOccurred ==0)){

YIELD;
}

}
printf("\n");

/* disable and uninstall the handler */
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, mySrqHdlr,

Chapter 4 77

Programming with VISA
Using Events and Handlers

(ViAddr)10);
/* Clean up - do not leave device in error state */
viPrintf(vi, "*CLS\n");

/* close the sessions */
viClose(vi);
viClose(defaultRM);
printf("End of program\n");}

Using the Queuing Method
The queuing method is generally used when an immediate response from
your application is not needed. To use the queuing method for receiving
notification that an event has occurred, you must do the following:

� Enable one or several events with the viEnableEvent function.
� When ready to query, use the viWaitOnEvent function to check

for queued events.

If the specified event has occurred, the event information is retrieved and the
program returns immediately. If the specified event has not occurred, the
program suspends execution until a specified event occurs or until the
specified timeout period is reached.

Example: Using the
Queuing Method

This example program shows one way you can use the queuing method.

main();
ViSession vi;
ViEventType eventType;
ViEvent event;
.
.
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE,
VI_NULL);
.
.
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,

VI_TMO_INFINITE,
&eventType, &event);

.

.
viClose(event);
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
}

78 Chapter 4

Programming with VISA
Using Events and Handlers

Enabling Events Before an event can be delivered, it must be enabled using the
viEnableEvent function:

viEnableEvent(vi, eventType, mechanism, context);

where the parameters are defined as follows:

When you use VI_QUEUE in the mechanism parameter, you are specifying
that the events will be put into a queue. Then, when a viWaitOnEvent
function is invoked, the program execution will suspend until the enabled
event occurs or the timeout period specified is reached. If the event has
already occurred, the viWaitOnEvent function will return immediately.

Example: Enabling a
Hardware Trigger
Event

This example illustrates enabling a hardware trigger event.

viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

The VI_QUEUE mechanism specifies that when an event occurs, it will go
into a queue. If you specify VI_ALL_ENABLE_EVENTS in the eventType
parameter, all events that have previously been enabled on the specified
session will be enabled for the mechanism specified in this function call.
Use the viDisableEvent function to stop servicing the event specified.

Wait on the Event When using the viWaitOnEvent function, specify the session, the event
type to wait for, and the timeout period to wait:

viWaitOnEvent(vi, inEventType, timeout, outEventType, outContext);

The event must have previously been enabled with VI_QUEUE specified as
the mechanism parameter.

Parameter Description

vi The session the handler will be installed on.

eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled.
Specify VI_QUEUE to use the queuing method.

context Not used in VISA 1.0. Use VI_NULL.

Chapter 4 79

Programming with VISA
Using Events and Handlers

Example: Wait on
Event for SRQ

This example shows how to install a wait on event for service requests.

viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE,
VI_NULL);

viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ,
VI_TMO_INFINITE,

&eventType, &event);
.
.
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);

Every time a wait on event is invoked, an event context object is created.
Specifying VI_TMO_INFINITE in the timeout parameter indicates that the
program execution will suspend indefinitely until the event occurs. To clear
the event queue for a specified event type, use the viDiscardEvents
function.

Example: Trigger
Event Queuing

This program enables the trigger event in a queuing mode. When the
viWaitOnEvent function is called, the program will suspend operation until
the trigger line is fired or the timeout period is reached. Since the trigger
lines were already fired and the events were put into a queue, the function
will return and print the trigger line that fired.

This program is intended to show specific VISA functionality and does not
include error trapping. Error trapping, however, is good programming
practice and is recommended in your VISA applications. See "Trapping
Errors" in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments or in the examples subdirectory
on HP-UX. See Appendix A - VISA Library Information for locations of
example programs on your operating system.

/* evntqueu.c
This example program illustrates enabling an event
queue using viWaitOnEvent. Note that you must change
the device address. */

#include <visa.h>
#include <stdio.h>

void main(){
ViSession defaultRM,vi;
ViEventType eventType;
ViEvent eventVi;
ViStatus err;

80 Chapter 4

Programming with VISA
Using Events and Handlers

ViInt16 trigId;

/* open session to VXI device */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL,
&vi);

/* select trigger line TTL0 */
viSetAttribute(vi, VI_ATTR_TRIG_ID, VI_TRIG_TTL0);

/* enable the event */
viEnableEvent(vi, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

/* fire trigger line, twice */
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);
viAssertTrigger(vi, VI_TRIG_PROT_SYNC);

/* Wait for the event to occur */
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, &eventType,

&eventVi);
if(err==VI_ERROR_TMO){

printf("Timeout Occurred! Event not received.\n");
return;

}

/* print the event information */
printf("Trigger Event Occurred!\n");
printf("...Original Device Session = %ld\n", vi);

/* get trigger that fired */
viGetAttribute(eventVi, VI_ATTR_RECV_TRIG_ID,

&trigId);
printf("Trigger that fired: ");
switch(trigId){

case VI_TRIG_TTL0:
printf("TTL0");
break;

default:
printf("<other 0x%x>",trigId);
break;

}
printf("\n");

/* close the context before continuing */
viClose(eventVi);

Chapter 4 81

Programming with VISA
Using Events and Handlers

/* get second event */
err=viWaitOnEvent(vi, VI_EVENT_TRIG, 10000, &eventType,
&eventVi);
if(err==VI_ERROR_TMO){

printf("Timeout Occurred! Event not received.\n");
return;

}
printf("Got second event\n");

/* close the context before continuing */
viClose(eventVi);

/* disable event */
viDisableEvent(vi, VI_EVENT_TRIG, VI_QUEUE);

/* close the sessions */
viClose(vi);
viClose(defaultRM);

}

82 Chapter 4

Programming with VISA
Trapping Errors

Trapping Errors
This section gives guidelines to trap errors, including:

� Trapping Errors
� Exception Events

Trapping Errors
The example programs in this guide show specific VISA functionality and
do not include error trapping. Error trapping, however, is good programming
practice and is recommended in all your VISA application programs. To trap
VISA errors you must check for VI_SUCCESS after each VISA function call.

If you want to ignore WARNINGS, you can test to see if err is less than (<)
VI_SUCCESS. Since WARNINGS are greater than VI_SUCCESS and
ERRORS are less than VI_SUCCESS, err_handler would only be called
when the function returns an ERROR. For example:

if(err < VI_SUCCESS) err_handler (vi, err);

Example: Check for
VI_SUCCESS

This example illustrates checking for VI_SUCCESS. If VI_SUCCESS is not
returned, an error handler (written by the programmer) is called. This must
be done with each VISA function call.

ViStatus err;
.
.
err=viPrintf(vi, "*RST\n");
if (err < VI_SUCCESS) err_handler(vi, err);
.
.

Example: Printing
Error Code

The following error handler prints a user-readable string describing the error
code passed to the function:

void err_handler(ViSession vi, ViStatus err){

char err_msg[1024]={0};
viStatusDesc (vi, err, err_msg);
printf ("ERROR = %s\n", err_msg);
return;

}

Chapter 4 83

Programming with VISA
Trapping Errors

Example: Checking
Instrument Errors

When programming instruments, it is good practice to check the instrument
to ensure there are no instrument errors after each instrument function. This
example uses a SCPI command to check a specific instrument for errors.

void system_err(){

ViStatus err;
char buf[1024]={0};
int err_no;

err=viPrintf(vi, "SYSTEM:ERR?\n");
if (err < VI_SUCCESS) err_handler (vi, err);

err=viScanf (vi, "%d%t", &err_no, &buf);
if (err < VI_SUCCESS) err_handler (vi, err);

while (err_no >0){
printf ("Error Found: %d,%s\n", err_no, buf);
err=viScanf (vi, "%d%t", &err_no, &buf);

}
err=viFlush(vi, VI_READ_BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

err=viFlush(vi, VI_WRITE_BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

}

Exception Events
An alternative to trapping VISA errors by checking the return status after
each VISA call is to use the VISA exception event. On sessions where an
exception event handler is installed and VI_EVENT_EXCEPTION is enabled,
the exception event handler is called whenever an error occurs while
executing an operation.

Exception Handling
Model

The exception-handling model follows the event-handling model for
callbacks and it uses the same operations as those used for general event
handling. For example, an application calls viInstallHandler and
viEnableEvent to enable exception events. The exception event is like
any other event in VISA, except that the queueing and suspended handler
mechanisms are not allowed.

84 Chapter 4

Programming with VISA
Trapping Errors

When an error occurs for a session operation, the exception handler is
executed synchronously. That is, the operation that caused the exception
blocks until the exception handler completes its execution. The exception
handler is executed in the context of the same thread that caused the
exception event.

When invoked, the exception handler can check the error condition and
instruct the exception operation to take a specific action. It can instruct the
exception operation to continue normally (by returning VI_SUCCESS) or to
not invoke any additional handlers in the case of handler nesting (by
returning VI_SUCCESS_NCHAIN).

As noted, an exception operation blocks until the exception handler
execution is completed. However, an exception handler sometimes may
prefer to terminate the program prematurely without returning the control to
the operation generating the exception. VISA does not preclude an
applicationfrom using a platform-specific or language-specific exception
handling mechanism from within the VISA exception handler.

For example, the C++ try/catch block can be used in an application in
conjunction with the C++ throw mechanism from within the VISA exception
handler. When using the C++ try/catch/throw or other exception-handling
mechanisms, the control will not return to the VISA system. This has several
important repercussions:

1 If multiple handlers were installed on the exception event, the
handlers that were not invoked prior to the current handler will
not be invoked for the current exception.

2 The exception context will not be deleted by the VISA system when
a C++ exception is used. In this case, the application should delete
the exception context as soon as the application has no more use
for the context, before terminating the session. An application
should use the viClose operation to delete the exception context.

3 Code in any operation (after calling an exception handler) may not
be called if the handler does not return. For example, local
allocations must be freed before invoking the exception handler,
rather than after it.

One situation in which an exception event will not be generated is in the
case of asynchronous operations. If the error is detected after the operation
is posted (i.e., once the asynchronous portion has begun), the status is
returned normally via the I/O completion event.

Chapter 4 85

Programming with VISA
Trapping Errors

However, if an error occurs before the asynchronous portion begins (i.e., the
error is returned from the asynchronous operation itself), then the exception
event will still be raised. This deviation is due to the fact that asynchronous
operations already raise an event when they complete, and this I/O
completion event may occur in the context of a separate thread previously
unknown to the application. In summary, a single application event handler
can easily handle error conditions arising from both exception events and
failed asynchronous operations.

Using the
VI_EVENT_
EXCEPTION Event

You can use the VI_EVENT_EXCEPTION event as notification that an error
condition has occurred during an operation invocation. The following table
describes the VI_EVENT_EXCEPTION event attributes.

Example:Exception
Events

/* This is an example of how to use exception events
 to trap VISA errors. An exception event handler must
 be installed and exception events enabled on all
 sessions where the exception handler is used.*/

#include <stdio.h>
#include <visa.h>
 ViStatus __stdcall myExceptionHandler (
 ViSession vi,
 ViEventType eventType,
 ViEvent context,
 ViAddr usrHandle
) {
 ViStatus exceptionErrNbr;
 char nameBuffer[256];
 ViString functionName = nameBuffer;
 char errStrBuffer[256];
 /* Get the error value from the exception context */
 viGetAttribute(context, VI_ATTR_STATUS,

&exceptionErrNbr);
/* Get the function name from the exception context */
 viGetAttribute(context, VI_ATTR_OPER_NAME,

functionName);

Attribute Name Access
Privilege

Data Type Range Default

VI_ATTR_EVENT_TYPE RO Global ViEventType VI_EVENT_EXCEPTION N/A

VI_ATTR_STATUS RO Global ViStatus N/A N/A

VI_ATTR_OPER_NAME RO Global ViString N/A N/A

86 Chapter 4

Programming with VISA
Trapping Errors

errStrBuffer[0] = 0;
 viStatusDesc(vi, exceptionErrNbr, errStrBuffer);
 printf("ERROR: Exception Handler reports\n" "(%s)\n",
 "VISA function '%s' failed with error 0x%lx\n",

"functionName, exceptionErrNbr, errStrBuffer);
 return VI_SUCCESS;
}
void main(){
 ViStatus status;
 ViSession drm;
 ViSession vi;
 ViAddr myUserHandle = 0;

 status = viOpenDefaultRM(&drm);
 if (status < VI_SUCCESS) {
 printf("ERROR: viOpenDefaultRM failed with error =

0x%lx\n", status);
 return;
 }
/* Install the exception handler and enable events for it
*/
 status = viInstallHandler(drm, VI_EVENT_EXCEPTION,

myExceptionHandler, myUserHandle);
 if (status < VI_SUCCESS)
{
 printf("ERROR: viInstallHandler failed with error

0x%lx\n", status);
 }

status = viEnableEvent(drm, VI_EVENT_EXCEPTION, VI_HNDLR,
VI_NULL);

 if (status < VI_SUCCESS) {
 printf("ERROR: viEnableEvent failed with error

0x%lx\n", status);
 }

/* Generate an error to demonstrate that the handler
 will be called */

 status = viOpen(drm, "badVisaName", NULL, NULL, &vi);
 if (status < VI_SUCCESS) {

printf("ERROR: viOpen failed with error 0x%lx\n"
"Exception Handler should have been called\n"
"before this message was printed.\n",status);

 }
}

Chapter 4 87

Programming with VISA
Using Locks

Using Locks
In VISA, applications can open multiple sessions to a VISA resource
simultaneously. Applications can, therefore, access a VISA resource
concurrently through different sessions. However, in certain cases,
applications accessing a VISA resource may want to restrict other
applications from accessing that resource.

Lock Functions For example, when an application needs to perform successive write
operations on a resource, the application may require that, during the
sequence of writes, no other operation can be invoked through any other
session to that resource. For such circumstances, VISA defines a locking
mechanism that restricts access to resources.

The VISA locking mechanism enforces arbitration of accesses to VISA
resources on a per-session basis. If a session locks a resource, operations
invoked on the resource through other sessions either are serviced or are
returned with an error, depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all sessions have full
privilege to invoke any operation and update any global attributes. Sessions
are not required to have locks to invoke operations or update global
attributes. However, if some other session has already locked the resource,
attempts to update global attributes or invoke certain operations will fail.

See descriptions of the individual VISA functions in Chapter 7 - VISA
Language Reference to determine which would fail when a resource is
locked.

viLock/viUnlock
Functions

The VISA viLock function is used to acquire a lock on a resource.

viLock(vi, lockType, timeout, requestedKey, accessKey);

The VI_ATTR_RSRC_LOCK_STATE attribute specifies the current locking
state of the resource on the given session, which can be either
VI_NO_LOCK, VI_EXCLUSIVE_LOCK, or VI_SHARED_LOCK.

The VISA viUnlock function is then used to release the lock on a resource.
If a resource is locked and the current session does not have the lock, the
error VI_ERROR_RSRC_LOCKED is returned.

88 Chapter 4

Programming with VISA
Using Locks

VISA Lock Types VISA defines two different types of locks: Exclusive Lock and Shared Lock.

� Exclusive Lock - A session can lock a VISA resource using the lock
type VI_EXCLUSIVE_LOCK to get exclusive access privileges to the
resource. This exclusive lock type excludes access to the resource
from all other sessions.

If a session has an exclusive lock, other sessions cannot modify
global attributes or invoke operations on the resource. However, the
other sessions can still get atttributes.

� Shared Lock - A session can share a lock on a VISA resource with
other sessions by using the lock type VI_SHARED_LOCK. Shared
locks in VISA are similar to exclusive locks in terms of access
privileges, but can still be shared between multiple sessions.

If a session has a shared lock, other sessions that share the lock
can also modify global attributes and invoke operations on the
resource (of course, unless some other session has a previous
exclusive lock on that resource). A session that does not share the
lock will lack these capabilities.

Locking a resource restricts access from other sessions and, in the case
where an exclusive lock is acquired, ensures that operations do not fail
because other sessions have acquired a lock on that resource. Thus, locking
a resource prevents other, subsequent sessions from acquiring an exclusive
lock on that resource. Yet, when multiple sessions have acquired a shared
lock, VISA allows one of the sessions to acquire an exclusive lock along with
the shared lock it is holding.

Also, VISA supports nested locking. That is, a session can lock the
same VISA resource multiple times (for the same lock type) via multiple
invocations of the viLock function. In such a case, unlocking the resource
requires an equal number of invocations of the viUnlock function. Nested
locking is also explained in detail later in this section.

Some VISA operations may be permitted even when there is an exclusive
lock on a resource, or some global attributes may not be read when there is
any kind of lock on the resource. These exceptions, when applicable, are
mentioned in the descriptions of the individual VISA functions and attributes.

See Chapter 7 - VISA Language Reference for descriptions of individual
functions to determine which are applicable for locking and which are not
restricted by locking.

Chapter 4 89

Programming with VISA
Using Locks

Example: Exclusive
Lock

This example shows a session gaining an exclusive lock to perform the
viPrintf and viScanf VISA operations on a GPIB device. It then
releases the lock via the viUnlock function.

/* lockexcl.c
This example program queries a GPIB device for an
identification string and prints the results. Note
that you may need to change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,VI_NULL,

&vi);

/* Initialize device */
viPrintf (vi, "*RST\n");

/* Make sure no other process or thread does anything
to this resource between viPrintf and viScanf calls */

viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,
VI_NULL);

/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
viScanf (vi, "%t", &buf);
/* Unlock this session so other processes and threads
can use it */
viUnlock (vi);

/* Print results */
printf ("Instrument identification string: %s\n",
buf);
/* Close session */
viClose (vi);
viClose (defaultRM);}

90 Chapter 4

Programming with VISA
Using Locks

Example: Shared
Lock

This example shows a session gaining a shared lock with the accessKey
called lockkey. Other sessions can now use this accessKey in the
requestedKey parameter of the viLock function to share access on the
locked resource. This example then shows the original session acquiring an
exclusive lock while maintaining its shared lock.

When the session holding the exclusive lock unlocks the resource via the
viUnlock function, all the sessions sharing the lock again have all the
access privileges associated with the shared lock.

/* lockshr.c
This example program queries a GPIB device for an
identification string and prints the results. Note
that you must change the address. */

#include <visa.h>
#include <stdio.h>

void main () {

ViSession defaultRM, vi;
char buf [256] = {0};
char lockkey [256] = {0};

/* Open session to GPIB device at address 22 */
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR",

VI_NULL,VI_NULL,&vi);

/* acquire a shared lock so only this process and
processes

that we know about can access this resource */
viLock (vi, VI_SHARED_LOCK, 2000, VI_NULL, lockkey);

/* at this time, we can make 'lockkey' available to
other processes that we know about. This can be done
with shared memory or other inter-process communication
methods. These other processes can then call
"viLock(vi,VI_SHARED_LOCK, 2000, lockkey, lockkey)"
and they will also have access to this resource. */

/* Initialize device */
viPrintf (vi, "*RST\n");

Chapter 4 91

Programming with VISA
Using Locks

/* Make sure no other process or thread does anything
to this resource between the viPrintf() and the
viScanf()calls Note: this also locks out the processes
with which we shared our 'shared lock' key. */

viLock (vi, VI_EXCLUSIVE_LOCK, 2000, VI_NULL,VI_NULL);
/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
viScanf (vi, "%t", &buf);

/* unlock this session so other processes and threads
can use it */
viUnlock (vi);

/* Print results */
printf ("Instrument identification string: %s\n",
buf);

/* release the shared lock also*/
viUnlock (vi);

/* Close session */
viClose (vi);
viClose (defaultRM);

}

92 Chapter 4

Programming with VISA
Using Locks

Notes:

93

5

Programming via GPIB and VXI

94 Chapter 5

Programming via GPIB and VXI

VISA supports three interfaces you can use to access GPIB and VXI
instruments: GPIB, VXI, and GPIB-VXI. This chapter provides information to
program GPIB and VXI devices via the GPIB, VXI or GPIB-VXI interfaces,
including:

� GPIB and VXI Interfaces Overview
� Using High-Level Memory Functions
� Using Low-Level Memory Functions
� Using High/Low-Level Memory I/O Methods
� Using the Memory Access Resource
� Using VXI-Specific Attributes

See Chapter 4 - Programming with VISA for general information on VISA
programming for the GPIB, VXI, and GPIB-VXI interfaces. See Chapter 7 -
VISA Language Reference for information on the specific VISA functions.

Chapter 5 95

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview

GPIB and VXI Interfaces Overview
This section provides an overview of the GPIB, GPIB-VXI, and VXI
interfaces, including:

� General Interface Information
� GPIB Interfaces Overview
� VXI Interfaces Overview
� GPIB-VXI Interfaces Overview

General Interface Information
VISA supports three interfaces you can use to access instruments or
devices: GPIB, VXI, and GPIB-VXI. The GPIB interface can be used to
access VXI instruments via a Command Module. In addition, the VXI
backplane can be directly accessed with the VXI or GPIB-VXI interfaces.

What is an IO
Interface?

An IO interface can be defined as both a hardware interface and as a
software interface. The IO Config utility is used to associate a unique
interface name with a hardware interface. The IO Libraries use an Interface
Name or Logical Unit Number to identify an interface. This information is
passed in the parameter string of the viOpen function call in a VISA
program.

IO Config assigns an Interface Name and Logical Unit Number to the
interface hardware, and other necessary configuration values for an
interface when the interface is configured. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for IO Config information.

VXI Device Types When using GPIB-VXI or VXI interfaces to directly access the VXI backplane
(in the VXI mainframe), you must know whether you are programming a
message-based or a register-based VXI device (instrument).

A message-based VXI device has its own processor that allows it to
interpret high-level commands such as Standard Commands for
Programmable Instruments (SCPI). When using VISA, you can place the
SCPI command within your VISA output function call. Then, the message-
based device interprets the SCPI command. In this case you can use the
VISA formatted I/O or non-formatted I/O functions and program the
message-based device as you would a GPIB device.

96 Chapter 5

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview

However, if the message-based device has shared memory, you can access
the device's shared memory by doing register peeks and pokes. VISA
provides two different methods you can use to program directly to the
registers: high-level memory functions or low-level memory functions.

A register-based VXI device typically does not have a processor to interpret
high-level commands. Therefore, the device must be programmed with
register peeks and pokes directly to the device's registers. VISA provides
two different methods you can use to program register-based devices:
high-level memory functions or low-level memory functions.

GPIB Interfaces Overview
As shown in the following figure, a typical GPIB interface consists of a
Windows PC with one or more GPIB cards (PCI and/or ISA) cards installed
in the PC and one or more GPIB instruments connected to the GPIB cards
via GPIB cable. I/O communication between the PC and the instruments is
via the GPIB cards and the GPIB cable. This figure shows GPIB instruments
at addresses 3 and 5.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB Cable

82350 GPIB Card #2

GPIB Interface (82350 PCI GPIB Cards)

Chapter 5 97

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview

Example: GPIB
(82350) Interface

The GPIB interface system in the following figure consists of a Windows PC
with two 82350 GPIB cards connected to three GPIB instruments via GPIB
cables. For this system, the IO Config utility has been used to assign GPIB
card #1 a VISA name of �GPIB0� and to assign GPIB card #2 a VISA name
of �GPIB1�. VISA addressing is as shown in the figure.

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB CableInterface VISA Names

82350 GPIB Card #2

VISA Name

 "GPIB0"

 "GPIB1"

VISA Addressing

viOpen (... "GPIB0::5::INSTR"...)
viOpen (... "GPIB0::3::INSTR"...)
viOpen (... "GPIB1::3::INSTR"...)

GPIB Interface (82350 PCI GPIB Cards)

Open IO path to GPIB instrument at address 5 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #1
Open IO path to GPIB instrument at address 3 using 82350 Card #2

98 Chapter 5

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview

VXI Interfaces Overview
As shown in the following figure, a typical VXI (E8491) interface consists of
an E8491 PC Card in a Windows PC that is connected to an E8491B
IEEE-1394 Module in a VXI mainframe via an IEEE-1394 to VXI cable. The
VXI mainframe also includes one or more VXI instruments.

Example: VXI
(E8491B) Interfaces

The VXI interface system in the following figure consists of a Windows PC
with an E8491 PC card that connects to an E8491B IEEE-1394 to VXI
Module in a VXI Mainframe. For this system, the three VXI instruments
shown have logical addresses 8, 16, and 24. The IO Config utility has been
used to assign the E8491 PC card a VISA name of �VXI0�. VISA addressing
is as shown in the figure.

For information on the E8491B module, see the Agilent E8491B User�s
Guide. For information on VXI instruments, see the applicable VXI
Instrument User�s Guide.

Windows PC

VXI (E8491) Interfaces

VXI Mainframe

. . .

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .
E8491 PC Card

IEEE-1394
to VXI

Chapter 5 99

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview

E8491 PC Card

Windows PC

. . .

Interface VISA Name

VISA Name

"VXI0"

VISA Addressing

viOpen (... "VXI0::24::INSTR"...)

VXI Interface (E18491B IEEE-1394 to VXI Module)

Open IO path to VXI instrument at logical address 24 using
E8491 PC Card and E8491 IEEE-1394 to VXI Module

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeIEEE-1394 to VXI

LA 8 LA 24 LA 16

100 Chapter 5

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview

GPIB-VXI Interfaces Overview
As shown in the following figure, a typical GPIB-VXI interface consists of a
GPIB card (82350 or equivalent) in a Windows PC that is connected via a
GPIB cable to an E1406A Command Module. The E1406A sends
commands to the VXI instruments in a VXI mainframe. There is no direct
access to the VXI backplane from the PC.

NOTE

For a GPIB-VXI interface, VISA uses a DLL supplied by the Command
Module vendor to translate the VISA VXI calls to Command Module
commands that are vendor-specific. The DLL required for Agilent/
Hewlett-Packard Command Modules is installed by the Agilent IO
Libraries Installer. This DLL is installed by default when Agilent VISA
is installed.

GPIB Card

Windows PC

. . .

GPIB-VXI (E1406A) Interfaces

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeGPIB

Chapter 5 101

Programming via GPIB and VXI
GPIB and VXI Interfaces Overview

Example: GPIB-VXI
(E1406A) Interface

The GPIB-VXI interface system in the following figure consists of a Windows
PC with an 82350 GPIB card that connects to an E1406A Command Module
in a VXI Mainframe. The VXI mainframe includes one or more VXI
instruments.

When the IO Libraries were installed, a GPIB-VXI driver with GPIB address
9 was also installed and the E1406A was configured for primary address 9
and logical address (LA) 0. The three VXI instruments shown have logical
addresses 8, 16, and 24.

The IO Config utility has been used to assign the GPIB-VXI driver a VISA
Name of �GPIB-VXI0� and to assign the 82350 GPIB card a VISA name of
�GPIB0�. VISA addressing is as shown in the figure.

For information on the E1406A Command Module, see the Agilent E1406A
Command Module User�s Guide. For information on VXI instruments, see
the applicable VXI instrument User�s Guide.

82350 GPIB Card

Windows PC

. . .

Interface VISA Name

VISA Name

"GPIB-VXI0"

"GPIB0"

VISA Addressing

viOpen (... "GPIB-VXI0::24::INSTR"...)

GPIB-VXI Interface (E1406A Command Module)

Open IO path to VXI instrument at logical address 24 using
82350 GPIB Card and E1406A VXI Command Module at
GPIB primary address 9

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI Mainframe

GPIB

GPIB-VXI Driver
GPIB Address 9 Primary

Address 9

LA 0 LA 8 LA 24 LA 16

102 Chapter 5

Programming via GPIB and VXI
Using High-Level Memory Functions

Using High-Level Memory Functions
High-level memory functions allow you to access memory on the interface
through simple function calls. There is no need to map memory to a window.
Instead, when high-level memory functions are used, memory mapping and
direct register access are automatically done.

The tradeoff, however, is speed. High-level memory functions are easier to
use. However, since these functions encompass mapping of memory space
and direct register access, the associated overhead slows program
execution time. If speed is required, use the low-level memory functions
discussed in �Using Low-Level Memory Functions�.

Programming the Registers
High-level memory functions include the viIn and viOut functions for
transferring 8-, 16-, or 32-bit values, as well as the viMoveIn and
viMoveOut functions for transferring 8-, 16-, or 32-bit blocks of data into
or out of local memory. You can therefore program using 8-, 16-, or 32-bit
transfers.

High-Level Memory
Functions

This table summarizes the high-level memory functions.

Function Description

viIn8(vi, space, offset, val8); Reads 8 bits of data from the specified offset.

viIn16(vi, space, offset, val16); Reads 16 bits of data from the specified
offset.

viIn32(vi, space, offset, val32); Reads 32 bits of data from the specified
offset.

viOut8(vi, space, offset, val8); Writes 8 bits of data to the specified offset.

viOut16(vi, space, offset, val16); Writes 16 bits of data to the specified offset.

viOut32(vi, space, offset, val32); Writes 32 bits of data to the specified offset.

viMoveIn8(vi, space, offset, length, buf8); Moves an 8-bit block of data from the
specified offset to local memory.

Chapter 5 103

Programming via GPIB and VXI
Using High-Level Memory Functions

Using viIn and
viOut

When using the viIn and viOut high-level memory functions to program to
the device registers, all you need to specify is the session identifier, address
space, and the offset of the register. Memory mapping is done for you. For
example, in this function:

viIn32(vi, space, offset, val32);

vi is the session identifier and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device's
memory in the given address space.The space parameter determines which
memory location to map the space. Valid space values are:

� VI_A16_SPACE - Maps in VXI/MXI A16 address space
� VI_A24_SPACE - Maps in VXI/MXI A24 address space
� VI_A32_SPACE - Maps in VXI/MXI A32 address space

The val32 parameter is a pointer to where the data read will be stored.
If, instead, you write to the registers via the viOut32 function, the val32
parameter is a pointer to the data to write to the specified registers. If the
device specified by vi does not have memory in the specified address
space, an error is returned. The following example uses viIn16.

ViSession defaultRM, vi;
ViUInt16 value;
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24", VI_NULL, VI_NULL, &vi);
viIn16(vi, VI_A16_SPACE, 0x100, &value);

viMoveIn16(vi, space, offset, length, buf16); Moves a 16-bit block of data from the
specified offset to local memory.

viMoveIn32(vi, space, offset, length, buf32); Moves a 32-bit block of data from the
specified offset to local memory.

viMoveOut8(vi, space, offset, length, buf8); Moves an 8-bit block of data from local
memory to the specified offset.

viMoveOut16(vi, space, offset, length, buf16); Moves a 16-bit block of data from local
memory to the specified offset.

viMoveOut32(vi, space, offset, length, buf32); Moves a 32-bit block of data from local
memory to the specified offset.

Function Description

104 Chapter 5

Programming via GPIB and VXI
Using High-Level Memory Functions

Using viMoveIn
and viMoveOut

You can also use the viMoveIn and viMoveOut high-level memory
functions to move blocks of data to or from local memory. Specifically, the
viMoveIn function moves an 8-, 16-, or 32-bit block of data from the
specified offset to local memory, and the viMoveOut functions moves an
8-, 16-, or 32-bit block of data from local memory to the specified offset.
Again, the memory mapping is done for you.

For example, in this function:

viMoveIn32(vi, space, offset, length, buf32);
vi is the session identifier and offset is used to indicate the offset of the
memory to be mapped. offset is relative to the location of this device's
memory in the given address space. The space parameter determines which
memory location to map the space and the length parameter specifies the
number of elements to transfer (8-, 16-, or 32-bits).

The buf32 parameter is a pointer to where the data read will be stored.
If, instead, you write to the registers via the viMoveOut32 function, the
buf32 parameter is a pointer to the data to write to the specified registers.

High-Level Memory Functions Examples
Two example programs follow that use the high-level memory functions to
read the ID and Device Type registers of a device at the VXI logical address
24. The contents of the registers are then printed out.

The first program uses the VXI interface and the second program accesses
the backplane with the GPIB-VXI interface. These two programs are
identical except for the string passed to viOpen.

Example: Using the
VXI Interface (High-
Level) Memory
Functions

This program uses high-level memory functions and the VXI interface to
read the ID and Device Type registers of a device at VXI0::24.

/* vxihl.c
This example program uses the high-level memory
functions to read the id and device type registers
of the device at VXI0::24. Change this address if
necessary. The register contents are then

displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>
void main () {

Chapter 5 105

Programming via GPIB and VXI
Using High-Level Memory Functions

ViSession defaultRM, dmm;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL, VI_NULL,

&dmm);

/* Read instrument id register contents */
viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

/* Read device type register contents */
viIn16(dmm, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

Example: Using the
GPIB-VXI Interface
(High-Level)
Memory Functions

This program uses high-level memory functions and the GPIB-VXI interface
to read the ID and Device Type registers of a device at GPIB-VXI0::24.

/*gpibvxih.c
This example program uses the high-level memory

functions
to read the id and device type registers of the device

at
GPIB-VXI0::24. Change this address if necessary. The

register
contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main ()
{

ViSession defaultRM, dmm;

106 Chapter 5

Programming via GPIB and VXI
Using High-Level Memory Functions

unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR",

VI_NULL,VI_NULL, &dmm);

/* Read instrument id register contents */
viIn16(dmm, VI_A16_SPACE, 0x00, &id_reg);

/* Read device type register contents */
viIn16(dmm, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n",

devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

Chapter 5 107

Programming via GPIB and VXI
Using Low-Level Memory Functions

Using Low-Level Memory Functions
Low-level memory functions allow direct access to memory on the interface
just as do high-level memory functions. However, with low-level memory
function calls, you must map a range of addresses and directly access the
registers with low-level memory functions, such as viPeek32 and
viPoke32.

There is more programming effort required when using low-level memory
functions. However, the program execution speed can increase.
Additionally, to increase program execution speed, the low-level memory
functions do not return error codes.

Programming the Registers
When using the low-level memory functions for direct register access, you
must first map a range of addresses using the viMapAddress function.
Next, you can send a series of peeks and pokes using the viPeek and
viPoke low-level memory functions. Then, you must free the address
window using the viUnmapAddress function. A process you could use is:

1 Map memory space using viMapAddress.

2 Read and write to the register's contents using viPeek32 and
viPoke32.

3 Unmap the memory space using viUnmapAddress.

Low-Level Memory
Functions

You can program the registers using low-level functions for 8-, 16-, or 32-bit
transfers. This table summarizes the low-level memory functions.

Function Description

viMapAddress(vi, mapSpace,
mapBase, mapSize, access,
suggested, address);

Maps the specified memory
space.

viPeek8(vi, addr, val8); Reads 8 bits of data from address
specified.

viPeek16(vi, addr, val16); Reads 16 bits of data from
address specified.

108 Chapter 5

Programming via GPIB and VXI
Using Low-Level Memory Functions

Mapping Memory
Space

When using VISA to access the device's registers, you must map memory
space into your process space. For a given session, you can have only one
map at a time. To map space into your process, use the VISA
viMapAddress function:

viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested,
address);
This function maps space for the device specified by the vi session.
mapBase, mapSize, and suggested are used to indicate the offset of the
memory to be mapped, amount of memory to map, and a suggested starting
location, respectively. mapSpace determines which memory location to map
the space. The following are valid mapSpace choices:

VI_A16_SPACE - Maps in VXI/MXI A16 address space
VI_A24_SPACE - Maps in VXI/MXI A24 address space
VI_A32_SPACE - Maps in VXI/MXI A32 address space

A pointer to the address space where the memory was mapped is returned
in the address parameter. If the device specified by vi does not have
memory in the specified address space, an error is returned. Some example
viMapAddress function calls are:

/* Maps to A32 address space */
viMapAddress(vi, VI_A32_SPACE, 0x000, 0x100, VI_FALSE,

VI_NULL,&address);
/* Maps to A24 address space */

viMapAddress(vi, VI_A24_SPACE, 0x00, 0x80, VI_FALSE,
VI_NULL,&address);

viPeek32(vi, addr, val32); Reads 32 bits of data from
address specified.

viPoke8(vi, addr, val8); Writes 8 bits of data to address
specified.

viPoke16(vi, addr, val16); Writes 16 bits of data to address
specified.

viPoke32(vi, addr, val32); Writes 32 bits of data to address
specified.

viUnmapAddress(vi); Unmaps memory space
previously mapped.

Function Description

Chapter 5 109

Programming via GPIB and VXI
Using Low-Level Memory Functions

Reading and Writing
to Device Registers

When you have mapped the memory space, use the VISA low-level memory
functions to access the device's registers. First, determine which device
register you need to access. Then, you need to know the register's offset.
See the applicable instrument User manual for a description of the registers
and register locations. You can then use this information and the VISA low-
level functions to access the device registers.

Example: Using
viPeek16

An example using viPeek16 follows.

ViSession defaultRM, vi;
ViUInt16 value;
ViAddr address;
ViUInt16 value;
.
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM, "VXI::24::INSTR", VI_NULL, VI_NULL,

&vi);
viMapAddress(vi, VI_A16_SPACE, 0x00, 0x04, VI_FALSE,

VI_NULL, &address);
viPeek16(vi, addr, &value)

Unmapping Memory
Space

Make sure you use the viUnmapAddress function to unmap the memory
space when it is no longer needed. Unmapping memory space makes the
window available for the system to reallocate.

Low-Level Memory Functions Examples
Two example programs follow that use the low-level memory functions to
read the ID and Device Type registers of the device at VXI logical address
24. The contents of the registers are then printed out. The first program uses
the VXI interface and the second program uses the GPIB-VXI interface to
access the VXI backplane. These two programs are identical except for the
string passed to viOpen.

Example: Using the
VXI Interface (Low-
Level) Memory
Functions

This program uses low-level memory functions and the VXI interface to read
the ID and Device Type registers of a device at VXI0::24.

/*vxill.c
This example program uses the low-level memory
functions to read the id and device type registers
of the device at VXI0::24. Change this address if
necessary. The register contents are then displayed.*/

110 Chapter 5

Programming via GPIB and VXI
Using Low-Level Memory Functions

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

void main () {

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "VXI0::24::INSTR", VI_NULL,

VI_NULL, &dmm);

/* Map into memory space */
viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10,

VI_FALSE,VI_NULL, &address);

/* Read instrument id register contents */
viPeek16(dmm, address, &id_reg);

/* Read device type register contents */
/* ViAddr is defined as a void so we must cast
/* it to something else to do pointer arithmetic */
viPeek16(dmm, (ViAddr)((ViUInt16 *)address + 0x01),

&devtype_reg);

/* Unmap memory space */
viUnmapAddress(dmm);

/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);

/* Close sessions */
viClose(dmm);
viClose(defaultRM);

}

Chapter 5 111

Programming via GPIB and VXI
Using Low-Level Memory Functions

Example: Using the
GPIB-VXI Interface
(Low-Level) Memory
Functions

This program uses low-level memory functions and the GPIB-VXI interface
to read the ID and Device Type registers of a device at GPIB-VXI0::24.

/*gpibvxil.c
This example program uses the low-level memory
functions to read the id and device type registers
of the device at GPIB-VXI0::24. Change this address
if necessary. Register contents are then displayed.*/

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>
void main () {

ViSession defaultRM, dmm;
ViAddr address;
unsigned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,

VI_NULL,&dmm);

/* Map into memory space */
viMapAddress(dmm, VI_A16_SPACE, 0x00, 0x10, VI_FALSE,

VI_NULL, &address);

/* Read instrument id register contents */
viPeek16(dmm, address, &id_reg);

/* Read device type register contents */
/* ViAddr is defined as a void * so we must cast
/* it to something else to do pointer arithmetic */
viPeek16(dmm, (ViAddr)((ViUInt16 *)address + 0x01),

&devtype_reg);

/* Unmap memory space */
viUnmapAddress(dmm);
/* Print results */
printf ("ID Register = 0x%4X\n", id_reg);
printf ("Device Type Register = 0x%4X\n", devtype_reg);
/* Close sessions */
viClose(dmm);
viClose(defaultRM);}

112 Chapter 5

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods

Using Low/High-Level Memory I/O Methods
VISA supports three different memory I/O methods for accessing memory
on the VXI backplane, as shown. All three of these access methods can be
used to read and write VXI memory in the A16, A24, and A32 address
spaces. The best method to use depends on the VISA program
characteristics.

� Low-level viPeek/viPoke
� viMapAddress
� viUnmapAddress
� viPeek8, viPeek16, viPeek32
� viPoke8, viPoke16, viPoke32

� High-level viIn/viOut
� viIn8, viIn16, viIn32
� viOut8, viOut16, viOut32

� High-level viMoveIn/viMoveOut
� viMoveIn8, viMoveIn16, viMoveIn32
� viMoveOut8, viMoveOut16, viMoveOut32

Using Low-Level viPeek/viPoke
Low-level viPeek/viPoke is the most efficient in programs that require
repeated access to different addresses in the same memory space.

The advantages of low-level viPeek/viPoke are:

� Individual viPeek/viPoke calls are faster than viIn/viOut or
viMoveIn/viMoveOut calls.

� Memory pointer may be directly dereferenced in some cases for the
lowest possible overhead.

The disadvantages of low-level viPeek/viPoke are:

� viMapAddress call is required to set up mapping before
viPeek/viPoke can be used.

� viPeek/viPoke calls do not return status codes.
� Only one active viMapAddress is allowed per vi session.
� There may be a limit to the number of simultaneous active

viMapAddress calls per process or system.

Chapter 5 113

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods

Using High-level viIn/viOut
High-level viIn/viOut calls are best in situations where a few widely
scattered memory access are required and speed is not a major
consideration.

The advantages high-level viIn/viOut are:

� Simplest method to implement.
� No limit on number of active maps.
� A16, A24, and A32 memory access can be mixed in a single vi

session.

The disadvantage of high-level viIn/viOut calls is that they are slower
than viPeek/viPoke.

Using High-level viMoveIn/viMoveOut
High-level viMoveIn/viMoveOut calls provide the highest possible
performance for transferring blocks of data to or from the VXI backplane.
Although these calls have higher initial overhead than the viPeek/viPoke
calls, they are optimized on each platform to provide the fastest possible
transfer rate for large blocks of data.

For small blocks, the overhead associated with viMoveIn/voMoveOut
may actually make these calls longer than an equivalent loop of viIn/
viOut calls. The block size at which viMoveIn/viMoveOut becomes
faster depends on the particular platform and processor speed.

The advantages of high-level viMoveIn/viMoveOut are:

� Simple to use.
� No limit on number of active maps.
� A16, A24, and A32 memory access can be mixed in a single vi

session.
� Provides the best performance when transferring large blocks of

data.
� Supports both block and FIFO mode.

The disadvantage of viMoveIn/viMoveOut calls is that they have higher
initial overhead than viPeek/viPoke.

114 Chapter 5

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods

Example: Using VXI
Memory I/O

This program demonstrates using various types of VXI memory I/O.

/* memio.c
This example program demonstrates the use of various
memory I/O methods in VISA. */

#include <visa.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST "VXI0::24::INSTR"

void main () {
ViSession defaultRM, vi;
ViAddr address;
ViUInt16 accessMode;
unsigned short *memPtr16;
unsigned short id_reg;
unsigned short devtype_reg;
unsigned short memArray[2];

/*Open default resource manager and session to instr*/
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, VXI_INST, VI_NULL,VI_NULL, &vi);

/* ==
Low level memory I/O = viPeek16 = direct memory
dereference (when allowed)
==*/

/* Map into memory space */
viMapAddress (vi, VI_A16_SPACE, 0x00, 0x10, VI_FALSE,

VI_NULL, &address);

/* ===
Using viPeek
==*/

Read instrument id register contents */
viPeek16 (vi, address, &id_reg);

/* Read device type register contents
ViAddr is defined as a (void *) so we must cast it
to something else in order to do pointer arithmetic. */

Chapter 5 115

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods

viPeek16 (vi, (ViAddr)((ViUInt16 *)address + 0x01),
&devtype_reg);

/* Print results */
printf (" viPeek16: ID Register = 0x%4X\n", id_reg);
printf (" viPeek16: Device Type Register = 0x%4X\n",

devtype_reg);

/* Use direct memory dereferencing if supported */
viGetAttribute(vi, VI_ATTR_WIN_ACCESS, &accessMode);
if (accessMode == VI_DEREF_ADDR) {

/* assign pointer to variable of correct type */
memPtr16 = (unsigned short *)address;

/* do the actual memory reads */
id_reg = *memPtr16;
devtype_reg = *(memPtr16+1);

/* Print results */
printf ("dereference: ID Register = 0x%4X\n",

id_reg);
printf ("dereference: Device Type Register = 0x%4X\n",

devtype_reg);
}

/* Unmap memory space */
viUnmapAddress (vi);

/*==
 High Level memory I/O = viIn16
 === */

/* Read instrument id register contents */
viIn16 (vi, VI_A16_SPACE, 0x00, &&id_reg);

/* Read device type register contents */
viIn16 (vi, VI_A16_SPACE, 0x02, &devtype_reg);

/* Print results */
printf (" viIn16: ID Register = 0x%4X\n", id_reg);
printf (" viIn16: Device Type Register = 0x%4X\n",
devtype_reg);

116 Chapter 5

Programming via GPIB and VXI
Using Low/High-Level Memory I/O Methods

/* ==
High Level block memory I/O = viMoveIn16

The viMoveIn/viMoveOut commands do both block read/
write and FIFO read write. These commands offer the
best performance for reading and writing large data
blocks on the VXI backplane. For this example we are
only moving 2 words at a time. Normally, these
functions would be used to move much larger blocks of data.

If the value of VI_ATTR_SRC_INCREMENT is 1 (the
default),viMoveIn does a block read. If the value of
VI_ATTR_SRC_INCREMENT is 0, viMoveIn does a FIFO read.
If the value of VI_ATTR_DEST_INCREMENT is 1 (the default),
viMoveOut does a block write. If the value of
VI_ATTR_DEST_INCREMENT is 0, viMoveOut does a FIFO write.
== */

/* Demonstrate block read.
Read instrument id register and device type register
into an array.*/
viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2, memArray);

/* Print results */
printf (" viMoveIn16: ID Register = 0x%4X\n",

memArray[0]);
printf (" viMoveIn16: Device Type Register = 0x%4X\n",
memArray[1]);

/* Demonstrate FIFO read.
First set the source increment to 0 so we will
repetitively read from the same memory location.*/
viSetAttribute(vi, VI_ATTR_SRC_INCREMENT, 0);

/* Do a FIFO read of the Id Register */
viMoveIn16 (vi, VI_A16_SPACE, 0x00, 2, memArray);

/* Print results */
printf (" viMoveIn16: 1 ID Register = 0x%4X\n",

memArray[0]);
printf (" viMoveIn16: 2 ID Register = 0x%4X\n",

 memArray[1]);
/* Close sessions */
viClose (vi);
viClose (defaultRM); }

Chapter 5 117

Programming via GPIB and VXI
Using the Memory Access Resource

Using the Memory Access Resource
For VISA 1.1 and later, the Memory Access (MEMACC) Resource type has
been added to VXI and GPIB-VXI. VXI::MEMACC and GPIB-VXI::MEMACC
allow access to all of the A16, A24, and A32 memory by providing the
controller with access to arbitrary registers or memory addresses on
memory-mapped buses.

The MEMACC resource, like any other resource, starts with the basic
operations and attributes of other VISA resources. For example, modifying
the state of an attribute is done via the the operation viSetAttribute
(see Appendix B - VISA Resource Classes for details).

Memory I/O Services
Memory I/O services include high-level memory I/O services and low-level
memory I/O services.

High-Level Memory
I/O Services

High-level Memory I/O services allow register-level access to the interfaces
that support direct memory access, such as the VXIbus, VMEbus, MXIbus,
or even VME or VXI memory through a system controlled by a GPIB-VXI
controller. A resource exists for each interface to which the controller has
access.

You can access memory on the interface bus through operations such as
viIn16 and viOut16. These operations encapsulate the map/unmap and
peek/poke operations found in the low-level service. There is no need to
explicitly map the memory to a window.

Low-Level Memory
I/O Services

Low-level Memory I/O services also allow register-level access to the
interfaces that support direct memory access. Before an application can use
the low-level service on the interface bus, it must map a range of addresses
using the operation viMapAddress.

Although the resource handles the allocation and operation of the window,
the programmer must free the window via viUnMapAddress when finished.
This makes the window available for the system to reallocate.

118 Chapter 5

Programming via GPIB and VXI
Using the Memory Access Resource

Example: MEMACC
Resource Program

This program demonstrates one way to use the MEMACC resource to open
the entire VXI A16 memory and then calculate an offset to address a specific
device.

/* peek16.c */
#include <stdio.h>
#include <stdlib.h>
#include <visa.h>

#define EXIT 1
#define NO_EXIT 0

/* This function simplifies checking for VISA errors. */
void checkError(ViSession vi, ViStatus status, char *errStr,
int doexit){

char buf[256];
if (status >= VI_SUCCESS)

return;
buf[0] = 0;
viStatusDesc(vi, status, buf);
printf("ERROR 0x%lx (%s)\n �%s�\n", status, errStr,

buf);
if (doexit == EXIT)

exit (1);
}

void main() {
ViSession drm;
ViSession vi;
ViUInt16 inData16 = 0;
ViUInt16 peekData16 = 0;
ViUInt8 *addr;
ViUInt16 *addr16;
ViStatus status;
ViUInt16 offset;

status = viOpenDefaultRM (&drm);
checkError(0, status, "viOpenDefaultRM", EXIT);

/* Open a session to the VXI MEMACC Resource*/
status = viOpen(drm, "vxi0::memacc", VI_NULL, VI_NULL,

&vi);
checkError (0, status, "viOpen", EXIT);

Chapter 5 119

Programming via GPIB and VXI
Using the Memory Access Resource

/* Calculate the A16 offset of the VXI REgisters for the
device at VXI logical address 8. */
offset = 0xc000 + 64 * 8;

/* Open a map to all of A16 memory space. */
status = viMapAddress(vi,VI_A16_SPACE,0,0x10000,

VI_FALSE,0,(ViPAddr)(&addr));
checkError(vi, status, "viMapAddress", EXIT);

/* Offset the address pointer retruned from
viMapAddress for use with viPeek16. */
addr16 = (ViUInt16 *) (addr + offset);

/* Peek the contents of the card�s ID register (offset 0
from card�s base address. Note that viPeek does not
return a status code. */
viPeek16(vi, addr16, &peekData16);

/* Now use viIn16 and read the contents of the same
register */
status = viIn16(vi, VI_A16_SPACE,

(ViBusAddress)offset,
&inData16);

checkError(vi, status, "viIn16", NO_EXIT);

/* Print the results. */
printf("inData16 : 0x%04hx\n", inData16);
printf("peekData16: ox%04hx\n", peekData16);

viClose(vi);
viClose (drm);

}

120 Chapter 5

Programming via GPIB and VXI
Using the Memory Access Resource

MEMACC Attribute Descriptions

Generic MEMACC
Attributes

The following Read Only attributes (VI_ATTR_TMO_VALUE is Read/Write)
provide general interface information.

VXI and GPIB-VXI
Specific MEMACC
Attributes

The following attributes, most of which are read/write, provide memory
window control information.

Attribute Description

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout
value of VI_TMO_IMMEDIATE means operation should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.
VI_ATTR_DMA_ALLOW_EN Specifies whether I/O accesses should use DMA (VI_TRUE) or

Programmed I/O (VI_FALSE).

Attribute Description

VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_INCREMENT Used in viMoveInxx operation to specify how much the
source offset is to be incremented after every transfer. The
default value is 1 and the viMoveInxx operation moves
from consecutive elements.

If this attribute is set to 0, the viMoveInxx operation will
always read from the same element, essentially treating the
source as a FIFO register.

Chapter 5 121

Programming via GPIB and VXI
Using the Memory Access Resource

VI_ATTR_DEST_INCREMENT Used in viMoveOutxx operation to specify how much the
destination offset is to be incremented after every transfer.
The default value is 1 and the viMoveOutxx operation
moves into consecutive elements.

If this attribute is set to 0, the viMoveOutxx operation will
always write to the same element, essentially treating the
destination as a FIFO register.

VI_ATTR_WIN_ACCESS Specifies modes in which the current window may be
addressed: not currently mapped, through the viPeekxx or
viPokexx operations only, or through operations and/or by
directly de-referencing the address parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR Base address of the interface bus to which this window is
mapped.

VI_ATTR_WIN_SIZE Size of the region mapped to this window.

VI_ATTR_SRC_BYTE_ORDER Specifies the byte order used in high-level access
operations, such as viInxx and viMoveInxx, when
reading from the source.

VI_ATTR_DEST_BYTE_ORDER Specifies the byte order used in high level access
operations, such as viOutxx and viMoveOutxx, when
writing to the destination.

VI_ATTR_WIN_BYTE_ORDER Specifies the byte order used in low-level access
operations, such as viMapAddress, viPeekxx, and
viPokexx, when accessing the mapped window.

VI_ATTR_SRC_ACCESS_PRIV Specifies the address modifier used in high-level access
operations, such as viInxx and viMoveInxx, when reading
from the source.

VI_ATTR_DEST_ACCESS_PRIV Specifies address modifier used in high-level access
operations such as viOutxx and viMoveOutxx, when
writing to destination.

VI_ATTR_WIN_ACCESS_PRIV Specifies address modifier used in low-level access
operations, such as viMapAddress, viPeekxx, and
viPokexx, when accessing the mapped window.

Attribute Description

122 Chapter 5

Programming via GPIB and VXI
Using the Memory Access Resource

GPIB-VXI Specific
MEMACC Attributes

The following Read Only attributes provide specific address information
about GPIB hardware.

MEMACC Resource
Event Attribute

The following Read Only events provide notification that an asynchronous
operation has completed.

Attribute Description

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to which the GPIB-VXI is
attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB-VXI controller used by the
session.

VI_ATTR_GPIB_SECONDARY_ADD
R

Secondary address of the GPIB-VXI controller used by
the session.

Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS Return code of the asynchronous I/O operation that has
completed.

VI_ATTR_JOB_ID Job ID of the asynchronous I/O operation that has
completed.

VI_ATTR_BUFFER Address of a buffer used in an asynchronous operation.

VI_ATTR_RET_COUNT Actual number of elements that were asynchronously
transferred.

Chapter 5 123

Programming via GPIB and VXI
Using VXI-Specific Attributes

Using VXI-Specific Attributes
VXI specific attributes can be useful to determine the state of your VXI
system. Attributes are read only and read/write. Read only attributes specify
things such as the logical address of the VXI device and information about
where your VXI device is mapped. this section shows how you might use
some of the VXI specific attributes. See Appendix B - VISA Resource
Classes for information on VISA attributes.

Using the Map Address as a Pointer
The VI_ATTR_WIN_ACCESS read-only attribute specifies how a window
can be accessed. You can access a mapped window with the VISA low-level
memory functions or with a C pointer if the address is de-referenced. To
determine how to access the window, read the VI_ATTR_WIN_ACCESS
attribute.

VI_ATTR_WIN_
ACCESS Settings

The VI_ATTR_WIN_ACCESS read-only attribute can be set to one of the
following:

Setting Description

VI_NMAPPED Specifies that the window is not mapped.

VI_USE_OPERS Specifies that the window is mapped and you can
only use the low-level memory functions to access
the data.

VI_DEREF_ADDR Specifies that the window is mapped and has a de-
referenced address. In this case you can use the
low-level memory functions to access the data, or
you can use a C pointer. Using a de-referenced C
pointer will allow faster access to data.

G.2 SICL Library

255

Standard Instrument Control Library

User’s Guide

2

 3

Notice
The information contained in this document is subject to change without
notice.

Test & Measurement Systems Inc. (TAMS) shall not be liable for any errors
contained in this document. TAMS makes no warranties of any kind with
regard to this document, whether express or implied. TAMS specifically
disclaims the implied warranties of merchantability and fitness for a
particular purpose. TAMS shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract, tort, or any
other legal theory, in connection with the furnishing of this document or the
use of the information in this document.

Warranty Information
A copy of the specific warranty terms applicable to your Test &
Measurement Systems Inc. product and replacement parts can be obtained
from your local Sales and Service Office.

U.S. Government Restricted Rights
The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as “commercial computer
software” as defined in DFARS 252.227-7013 (Oct 1988),
DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995),
as a “commercial item” as defined in FAR 2.101(a), or as “Restricted
computer software” as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable.
You have only those rights provided for such Software and Documentation
by the applicable FAR or DFARS clause or the TAMS standard software
agreement for the product involved.

4

Copyright 1984, 1985, 1986, 1987, 1988 Sun Microsystems, Inc.

Microsoft, Windows NT, and Windows 95 are U.S. registered trademarks of
Microsoft Corporation.

Pentium is a U.S. registered trademark of Intel Corporation.

Copyright 1994, 1995, 1996, 1997, 1998 Hewlett-Packard Company.
All rights reserved.

Copyright 2001, 2003Test & Measurement Systems.
All rights reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.

 5

Printing History
This is the seventh edition of the Standard Insrtument Control Library
User’s Guide (for HP-UX). Note: on previous editions the Reference section
was actually a separate manual. On previous versions, the manual was
operating system specific.

Edition 1 - May 1994

Edition 2 - September 1994

Edition 3 - January 1995

Edition 4 - November 1995

Edition 5 - July 1998

Edition 6 - August 2001

Edition 7 - August 2003

6

Contents-7

Contents

1. Introduction
SICL Overview... 20

SICL Features.. 20
SICL User.. 21

Related Documents... 22
Other SICL Learning Products.. 22
Other Documentation .. 23

2. Getting Started with SICL
Reviewing a SICL Program.. 27
Compiling and Linking a SICL Program ... 29

Using Shared Libraries.. 29
Running an SICL Program ... 31
Getting Online Help ... 32

Using Manual Pages.. 32
Where to Go Next... 33

3. Using SICL
Including the sicl.h Header File.. 37
Opening a Communications Session .. 38

Device Sessions... 39
Interface Sessions.. 40
Commander Sessions .. 41

Sending I/O Commands ... 42
Formatted I/O .. 42
Non-Formatted I/O.. 52

Using Asynchronous Events... 54
SRQ Handlers.. 54
Interrupt Handlers ... 55
Temporarily Disabling/Enabling Asynchronous Events................... 55
Asynchronous Events and Unix Signals .. 57
Interrupt Handler Example.. 59

Using Error Handlers.. 61

SICL User’s Guide
Edition 7

Contents-8

Error Handler Example ... 62
Using Locking .. 64

Lock Actions ... 65
Locking in a Multi-user Environment... 66
Locking Example .. 67

4. Using SICL with GPIB
Creating a Communications Session

with GPIB.. 71
Communicating with GPIB Devices ... 72

Addressing GPIB Devices... 72
SICL Function Support with GPIB Device Sessions 74
GPIB Device Session Example ... 75

Communicating with GPIB Interfaces ... 77
Addressing GPIB Interfaces.. 77
SICL Function Support with

GPIB Interface Sessions... 78
GPIB Interface Session Examples... 79

Communicating with GPIB Commanders.. 85
Addressing GPIB Commanders .. 85
SICL Function Support with

GPIB Commander Sessions ... 87
Summary of GPIB Specific Functions ... 88

5. Using SICL with GPIO
Creating a Communications Session

with GPIO ... 91
Communicating with GPIO Interfaces ... 92

Addressing GPIO Interfaces.. 92
SICL Function Support with

GPIO Interface Sessions .. 93
GPIO Interface Session Example.. 95
GPIO Interrupts Example.. 96

Summary of GPIO Specific Functions ... 98

 Contents-9

6. Using SICL with VXI/MXI
Creating a Communications Session with VXI/MXI103
Communicating with VXI/MXI Devices..104

Message-Based Devices ..105
Register-Based Devices...109

Communicating with VXI/MXI Interfaces...118
Addressing VXI/MXI Interface Sessions ..118
VXI/MXI Interface Session Example ...120

Communicating with VME Devices...121
Declaring Resources ..122
Mapping VME Memory ..123
 Reading and Writing to the Device Registers125
Unmapping Memory Space...125
VME Interrupts..125
VME Example ...126

Looking at SICL Function Support with VXI/MXI130
Device Sessions ...130
Interface Sessions ..131

 Using SICL Trigger Lines ...132
 Using i?blockcopy for DMA Transfers ...135
Using VXI Specific Interrupts ..138

Processing VME Interrupts Example ..140
Summary of VXI/MXI Specific Functions...141

7. Using SICL with RS-232
Creating a Communications Session

with RS-232...145
Communicating with RS-232 Devices ...146

Addressing RS-232 Devices..146
SICL Function Support with RS-232 Device Sessions148
RS-232 Device Session Example ..149

Communicating with RS-232 Interfaces ..150
Addressing RS-232 Interfaces ...150
SICL Function Support with RS-232 Interface Sessions151
RS-232 Interface Session Example ...154

Summary of RS-232 Specific Functions ..156

Contents-10

8. Using SICL with LAN
Overview of SICL LAN ... 163

LAN Software Architecture .. 165
SICL LAN Server.. 167

Considering LAN Configuration and Performance............................. 168
Communicating with Devices over LAN... 169

LAN-gatewayed Sessions ... 169
LAN Interface Sessions... 176

Using Timeouts with LAN ... 178
LAN Timeout Functions ... 178
Default LAN Timeout Values ... 179
Timeout Configurations to Be Avoided .. 182
Application Terminations and Timeouts... 183

Using Signal Handling with LAN .. 184
SIGIO Signals ... 184
SIGPIPE Signals ... 185

Summary of LAN Specific Functions .. 186

9. Troubleshooting Your
SICL Program
Installing an Error Handler ... 189
Looking at Error Codes and Messages... 190
Troubleshooting SICL.. 192

Compile and Link Errors... 192
Run-time Errors... 194

Troubleshooting SICL over LAN (Client and Server) 195
SICL LAN Client Problems and Possible Solutions....................... 197
SICL LAN Server Problems and Possible Solutions 199

Troubleshooting SICL over RS-232... 202
No Response from Instrument... 202
RS-232 Port Allocation and HP-UX termio Functions................... 202
Data Received from Instrument is Garbled..................................... 203
Data Lost During Large Transfers .. 203

Troubleshooting SICL over GPIO.. 204
Bad Address (for iopen) .. 204
Operation Not Supported .. 205
No Device.. 206

 Contents-11

Generic I/O Error...206
Bad Parameter ...207

Where to Find Additional Information ...208

10. SICL Language Reference
IABORT ...212
IBLOCKCOPY...213
IBLOCKMOVEX...215
ICAUSEERR ..217
ICLEAR..218
ICLOSE ..219
IDEREFPTR ...220
IFLUSH ..221
IFREAD..223
IFWRITE ..225
IGETADDR..226
IGETDATA ..227
IGETDEVADDR..228
IGETERRNO..229
IGETERRSTR ..231
IGETGATEWAYTYPE ...232
IGETINTFSESS ...233
IGETINTFTYPE ..234
IGETLOCKWAIT..235
IGETLU..236
IGETLUINFO...237
IGETLULIST ...238
IGETONERROR ..239
IGETONINTR ..240
IGETONSRQ..241
IGETSESSTYPE ..242
IGETTERMCHR..243
IGETTIMEOUT ...244
IGPIBATNCTL ..245
IGPIBBUSADDR...246
IGPIBBUSSTATUS ...247
IGPIBGETT1DELAY ..249

Contents-12

IGPIBLLO.. 250
IGPIBPASSCTL... 251
IGPIBPPOLL ... 252
IGPIBPPOLLCONFIG... 253
IGPIBPPOLLRESP.. 254
IGPIBRENCTL .. 255
IGPIBSENDCMD .. 256
IGPIBSETT1DELAY... 257
IGPIOCTRL ... 258
IGPIOGETWIDTH .. 263
IGPIOSETWIDTH... 264
IGPIOSTAT ... 266
IHINT ... 269
IINTROFF .. 271
IINTRON.. 272
ILANGETTIMEOUT... 273
ILANTIMEOUT... 274
ILOCAL ... 277
ILOCK.. 278
IMAP .. 280
IMAPX ... 283
IMAPINFO... 286
IONERROR.. 288
IONINTR.. 291
IONSRQ ... 293
IOPEN .. 294
IPEEK... 296
IPEEKX8, IPEEKX16, IPEEKX32 ... 297
IPOKE .. 298
IPOKEX8, IPOKEX16, IPOKEX32 .. 299
IPOPFIFO... 300
IPRINTF... 302
IPROMPTF... 312
IPUSHFIFO.. 313
IREAD.. 315
IREADSTB... 317
IREMOTE .. 318
ISCANF.. 319

 Contents-13

ISERIALBREAK ...329
ISERIALCTRL...330
ISERIALMCLCTRL ..334
ISERIALMCLSTAT ..335
ISERIALSTAT ...336
ISETBUF ..340
ISETDATA...342
ISETINTR...343
ISETLOCKWAIT...351
ISETSTB...352
ISETUBUF ...353
ISWAP..355
ITERMCHR..357
ITIMEOUT ...358
ITRIGGER..359
IUNLOCK ..361
IUNMAP...362
IUNMAPX..364
IVERSION..365
IVXIBUSSTATUS ...366
IVXIGETTRIGROUTE ...369
IVXIRMINFO ..370
IVXISERVANTS ...372
IVXITRIGOFF ...373
IVXITRIGON...375
IVXITRIGROUTE ...377
IVXIWAITNORMOP ..379
IVXIWS..380
IWAITHDLR..381
IWRITE ..383
IXTRIG...384
_SICLCLEANUP ...387

A. The SICL Files

B. Updating HP-UX 9 SICL Applications
Building SICL Applications on HP-UX 11i ...399

Contents-14

Linking with the Archive
Library on HP-UX 9.. 400

C. The SICL Utilities
iclear ... 403
ipeek ... 405
ipoke ... 406
iread .. 407
iwrite... 408

D. Customizing your VXI/MXI System
Overview of VXI/MXI Configuration.. 411
The VXI/MXI Resource Manager (ivxirm) ... 412
The VXI/MXI Configuration Files... 413

The vximanuf.cf Configuration File.. 414
The vximodel.cf Configuration File.. 414
The dynamic.cf Configuration File ... 414
The vmedev.cf Configuration File .. 415
The irq.cf Configuration File .. 415
The cmdrsrvt.cf Configuration File... 416
The names.cf Configuration File... 416
The oride.cf Configuration File... 416
The ttltrig.cf Configuration File .. 417

The iproc Utility (Initialization and SYSRESET)................................ 418
Viewing the VXIbus System Configuration... 421
VXI/MXI Configuration Utilities... 422
iproc.. 423
ivxirm ... 425
ivxisc... 428

 Contents-15

Contents-16

1

Introduction

18 Chapter 1

Introduction

Introduction

Welcome to the Standard Instrument Control Library (SICL) User’s Guide.
This manual describes how to use SICL. A getting started chapter steps you
through the process of building and running a simple SICL program. The
basics of SICL programming are covered in the following chapter, and later
chapters describe how to use SICL with specific interfaces; GPIB, GPIO,
VXI/MXI, RS-232, and, LAN. Also included is a complete SICL language
Reference.

See the I/O Libraries Installation and Configuration Guide for detailed
information on SICL installation and configuration.

This manual contains the following:

• Chapter 2 - Getting Started with SICL steps you through building and
running a simple example program. This is a good place to start if you
are a first-time SICL user.

• Chapter 3 - Using SICL describes the basics of SICL along with some
detailed example programs. You can find information on communication
sessions, addressing, error handling, and more.

• Chapter 4 - Using SICL with GPIB describes communicating over the
GPIB interface. Example programs are also provided.

• Chapter 5 - Using SICL with GPIO describes how to communicate
over the GPIO interface. Example programs are also provided.

• Chapter 6 - Using SICL with VXI/MXI provides detailed information
about communicating over the VXIbus.

• Chapter 7 - Using SICL with RS-232 describes how to communicate
over the RS-232 interface. Example programs are also provided.

• Chapter 8 - Using SICL with LAN describes how to communicate over
a LAN. Example programs are also provided.

• Chapter 9 - Troubleshooting Your SICL Program describes some of
the most common SICL programming problems and provides hints to
help you solve the problems.

• Chapter 10 - SICL Language Reference provides a complete
description of all of the available SICL functions and C languag syntax.

19 Chapter 1

This guide also contains the following appendices:

• Appendix A - The SICL Files summarizes where the SICL files are
located on your system.

• Appendix B - Updating HP-UX 9 SICL Applications describes how to
update your SICL applications that were written on HP-UX 9 to work on
HP-UX 11i.

• Appendix C - The SICL Utilities describes the SICL utilities that can be
used to read and write to devices or interfaces from the command line.

• Appendix D - Customizing your VXI/MXI System documents how
you can customize your VXI/MXI system. VXI/MXI configuration
utilities are documented as well.

This guide also contains a Glossary of terms and their definitions, as well as
an Index.

20 Chapter 1

Introduction
SICL Overview

SICL Overview
SICL is a modular instrument communications library that works with a
variety of computer architectures, I/O interfaces, and operating systems.
Applications written in C or C++ using this library can be ported at the
source code level from one system to another without, or with very few,
changes.

SICL uses standard, commonly used functions to communicate over a wide
variety of interfaces. For example, a program written to communicate with a
particular instrument on a given interface can also communicate with an
equivalent instrument on a different type of interface. This is possible
because the commands are independent of the specific communications
interface. SICL also provides commands to take advantage of the unique
features of each type of interface, thus giving the programmer complete
control over I/O communications.

SICL Features
SICL has several features that distinguish it from other I/O libraries:

• Portability
• Centralized error handling
• Formatted I/O
• Device, interface, and commander communications sessions
• Asynchronous event notification

Chapter 1 21

Introduction
SICL Overview

SICL User
SICL is intended for instrument I/O and C/C++ programmers who are
familiar with the HP-UX or Linux operating system. This manual does not
attempt to teach the C programming language or instrument I/O concepts.

22 Chapter 1

Introduction
Related Documents

Related Documents

Other SICL Learning Products

• I/O Libraries Installation and Configuration Guide provides a detailed
installation procedure with information on how to configure your system
to run SICL.

• SICL Online Help is provided in the form of Unix manual pages (man
pages).

• SICL Example Programs are provided in the
/opt/sicl/share/examples directory. These examples are designed
to help you develop your SICL applications more easily.

Chapter 1 23

Introduction
Related Documents

Other Documentation
• HP-UX 11i Learning Products (http://docs.hp.com/)

- HP-UX 11i Installation and Update Guide
- HP C/HP-UX Reference Manual
- HP-UX Linker and Libraries User’s Guide
- Software Distributor Administration Guide for HP-UX 11i
- Managing Systems and Workgroups: A Guide for HP-UX System

Administrators

• Linux Learning Products
- Redhat Linux Installation Guide
- GCC Manuals (http://www.gnu.org/)
- Linux Network Administrator’s Guide by Olaf Kirch (O’Reilly &

Associates)

• VXI Interface Learning Products
- TAMS 80100B PCI-VXI Controller Installation & Operations

Instructions

• GPIO Interface Learning Products
- TAMS PCI GPIO Card (71622/81622) Installation and Operations

Instructions

• GPIB Interface Learning Products
- TAMS PCI GPIB Card (70488/80488) Installation and Operations

Instructions.
- HP/Agilent E2078A User’s Guide.
- Tutorial Description of the Hewlett-Packard Interface Bus (HPIB)

• Series 700 RS-232 Interface Learning Products
- The RS-232 Solution by Joe Campbell, SYBEX Publishing

24 Chapter 1

Introduction
Related Documents

• LAN Learning Products
- Networking Overview
- Installing and Administering LAN/9000 Software
- Administering ARPA Services

• LAN/GPIB Gateway Learning Products
- TAMS 3010 LAN I/O Gateway Installation and Configuration Guide
- HP/Agilent E2050 LAN/GPIB Gateway Installation and

Configuration Guide

• VXIbus Consortium Specifications
- The VMEbus Specification
- The VMEbus Extensions for Instrumentation
- TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
- TCP/IP-VXIbus Interface Specification - VXI-11.1, Rev. 1.0
- TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
- TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3,

Rev. 1.0

2

Getting Started with SICL

26 Chapter 2

Getting Started with SICL

This chapter steps you through building and running your first SICL
program. If you plan to develop SICL applications, go through this chapter
to ensure you perform all the steps required to build and run a SICL
program.

This chapter contains the following sections:

• Reviewing an SICL Program

• Compiling and Linking an SICL Program

• Running an SICL Program

• Getting Online Help

• Where to Go Next

If you need additional information on any of the SICL functions, see Chapter
10 for details.

Chapter 2 27

Getting Started with SICL
Reviewing a SICL Program

Reviewing a SICL Program
Example programs are included in your SICL product to help you get started
using SICL. Copies of the example programs are located in the
/opt/sicl/share/examples directory.

The following is a simple C program that uses SCPI commands to query an
GPIB instrument for its identification string and print the results.

/* idn.c
The following program uses SICL to query an HPIB

instrument for an identification string and prints the
results. */
#include <stdio.h>
#include <sicl.h> /* SICL header file */

/* Modify this line to reflect the address of your device */
#define DEVICE_ADDRESS "hpib,0"
void main()
{

/* declare a device session id */
INST id;
char buf[256];

/* error handler to exit if an error is detected */
ionerror(I_ERROR_EXIT)

/* open a device session with device at DEVICE_ADDRESS */
id = iopen (DEVICE_ADDRESS);

/* set timeout value to 1 sec */
itimeout (id, 1000);

/*send SCPI *RST command and prompt for id string*/
iprintf (id, "*RST\n");
ipromptf (id, "*IDN?\n", "%t", buf);

/* print contents of buf */
printf ("%s\n", buf);

 /* close device session */
iclose (id);

}

28 Chapter 2

Getting Started with SICL
Reviewing a SICL Program

Note The newline character (\n) in the iprintf and ipromptf functions in
the previous example flushes the output buffer to the device and appends an
END indicator to the newline. Sometimes flushing is needed for the device,
and it is good practice to include this after each instrument command. You
can specify when the buffer is flushed with the SICL isetbuf function.
See Chapter 10 for information on this SICL function.

The SICL example program includes the following:

sicl.h This header file must be included at the beginning of your program to
provide the function prototypes and constants defined by SICL.

DEVICE_
ADDRESS

This constant is defined specifically for this example. It is used to specify
the device address. This address is then used in the iopen function call.

INST This is a type definition defined by SICL. It is used to represent a unique
identifier that describes a specific device or interface.

ionerror This is a SICL function that installs an error handler that is automatically
called if any SICL calls result in an error. I_ERROR_EXIT specifies that
the error message is printed out and the program exited.

iopen This SICL function creates a device session with the device attached to the
address specified in DEVICE_ADDRESS constant.

itimeout This function is called to set the length of time that SICL will wait for an
instrument to respond. Different timeout values can be set for different
sessions as needed.

iprintf,
ipromptf

These formatted I/O functions are patterned after those used in the C
programming language. They support the standard ANSI C format string,
plus added formats defined specifically for instrument I/O.

iclose This function closes the session with the specified device.

For more details on SICL features, see Chapter 3, "Using SICL." You can
also see Chapter 10 for specifics about these SICL function calls.

Chapter 2 29

Getting Started with SICL
Compiling and Linking a SICL Program

Compiling and Linking a SICL Program
You can create your SICL applications in C, ANSI C, or C++. When
compiling and linking a C program that uses SICL, use the -lsicl
command line option to link in the SICL library routines. The following
example creates the idn executable file on HP-UX 11i:

cc -Aa -o idn idn.c -lsicl

on Linux, use

gcc -o idn idn.c -lsicl

• The -Aa option specifies ANSI C on HP-UX
• The -o option creates an executable file called idn.
• The -l option links in the shared SICL library.

If you are building an application that was originally built on HP-UX 9, or if
you need to link with the SICL archive libraries on HP-UX 9, see Appendix
B, "Updating HP-UX 9 SICL Applications."

Using Shared Libraries
If your program uses a shared library that calls SICL, you must explicitly
link the SICL library routines even if your program does not call SICL
functions. If any part of your program performs instrument I/O, you must
link the SICL library routines.

The following example shows the process of creating a shared library that
calls SICL and using it with an end program on HP-UX 11i:

cc -Aa +z -c library.c -lsicl
ld -b -o library.sl library.o
cc -Aa -o y y.c library.sl -lsicl

on Linux, use

gcc -c library.c -lsicl
ld -shared -o library.so library.o
gcc -o y y.c -L. -llibrary -lsicl

30 Chapter 2

Getting Started with SICL
Compiling and Linking a SICL Program

Note If you fail to link the SICL library routines, you may get duplicate symbol
errors when linking the end program or you may get undefined symbol
errors memory fault (coredump) errors when you run the program.

Chapter 2 31

Getting Started with SICL
Running an SICL Program

Running an SICL Program
Execute your SICL program by typing the program name at the command
prompt. For example:

idn

When using an HP/Agilent 54601A Four Channel Oscilloscope, you should
get something similar to the following:

Hewlett-Packard,54601A,0,1.7

If you have problems running the idn example program, first check to make
sure the device address specified in your program is correct. If the program
still doesn’t run, check the I/O configuration by running the iosetup
utility. See the I/O Libraries Installation and Configuration Guide for
information on running iosetup.

32 Chapter 2

Getting Started with SICL
Getting Online Help

Getting Online Help
Online help is offered in the form of Unix manual pages (man pages). You
can get help on the following SICL functions:

• SICL function calls

• SICL utilities

Using Manual Pages
To use manual pages, type the Unix man command followed by the SICL
function call or utility:

man name

The following are examples of getting online help on SICL function calls
and utilities: Examples of SICL function calls:

man iprintf
man ipromptf
man iread

Examples of SICL utilities:

man ipeek
man iread
man ivxisc

Chapter 2 33

Getting Started with SICL
Where to Go Next

Where to Go Next
Once you have your SICL example program running, you can continue with
Chapter 3, "Using SICL." Additionally, you should look at the chapters that
describe how to use SICL with your particular I/O interface:

• Chapter 4 - "Using SICL with GPIB"

• Chapter 5 - "Using SICL with GPIO"

• Chapter 6 - "Using SICL with VXI/MXI"

• Chapter 7 - "Using SICL with RS-232"

• Chapter 8 - "Using SICL with LAN"

If you have any problems, see Chapter 9, "Troubleshooting Your SICL
Program."

34 Chapter 2

Getting Started with SICL
Where to Go Next

3

Using SICL

36 Chapter 3

Using SICL

This chapter first describes how to use SICL and some of the basic features,
such as error handling and locking. Detailed example programs are also
provided to help you understand how these features work. Copies of the
example programs are located in the /opt/sicl/share/examples
directory.

This chapter contains the following sections:

• Including the sicl.h Header File
• Opening a Communications Session
• Sending I/O Commands
• Using Asynchronous Events
• Using Error Handlers
• Using Locking

For specific details on SICL function calls, see Chapter 10.

Chapter 3 37

Using SICL
Including the sicl.h Header File

Including the sicl.h Header File
You must include the sicl.h header file at the beginning of every file that
contains SICL calls. This header file contains the SICL function prototypes
and the definitions for all SICL constants and error codes:

#include <sicl.h>

38 Chapter 3

Using SICL
Opening a Communications Session

Opening a Communications Session
A communications session is a channel of communication with a particular
device, interface, or commander:

• A device session is used to communicate with a specific device
connected to an interface. A device is a unit that receives commands
from a controller. Typically a device is an instrument but could be a
computer, a plotter, or a printer.

• An interface session is used to communicate with a specified interface.
Interface sessions allow you to use interface specific functions (for
example, igpibsendcmd).

• A commander session is used to communicate with the interface
commander. Typically a commander session is used when a computer
connected to the interface is acting like a device.

There are two parts to opening a communication session with a specific
device, interface, or commander. First, you must create an instance of a
SICL session by declaring a variable of type INST. Once the variable is
declared, then you can open the communication channel by using the SICL
iopen function:

INST id; id = iopen (addr);

Where id is declared with the type INST and communicates to a device,
interface, or commander. The addr parameter is a string expression which
specifies a device session address, interface session address, or a commander
session address. See the sections that follow for details on creating the
different types of communications sessions.

Your program may have several sessions open at the same time by creating
multiple INST identifiers with the iopen function. Use the SICL iclose
function to close a channel of communication.

Chapter 3 39

Using SICL
Opening a Communications Session

Device Sessions
A device session allows you direct access to a device without worrying
about the type of interface to which it is connected. On GPIB, for example,
you do not have to address a device to listen before sending data to it. This
insulation makes applications more robust and portable across interfaces,
and is recommended for most applications.

Device sessions are the recommended way of communicating using SICL.
They provide the highest level of programming, best overall performance,
and best portability.

Addressing
Device

Sessions

To create a device session, specify either the interface symbolic name or
logical unit and a particular device’s address in the addr parameter of
the iopen function. The interface symbolic name and logical
unit are defined during the system configuration. See the I/O Libraries
Installation and Configuration Guide for information on these values.

The logical unit is an integer corresponding to the interface. The
device address generally consists of the symbolic name or logical
unit and an integer that corresponds to the device’s address. It may also
include a secondary address which is also an integer.

Note Secondary addressing is not supported on the VXI and RS-232 interfaces.

40 Chapter 3

Using SICL
Opening a Communications Session

The following are valid device addresses:

The following is an example of opening a device session with the GPIB
device at bus address 23:

INST dmm;
dmm = iopen ("hpib,23");

More on addressing specific devices can be found in the interface-specific
chapter (for example, "Using SICL with GPIB") later in this manual.

Interface Sessions
An interface session allows low-level control of the specified interface.
There is a full set of interface-specific SICL functions for programming
features that are specific to a particular interface type (GPIB, VXI, etc).
This gives you full control of the activities on a given interface, but does
make for less portable code.

Addressing
Interface
Sessions

To create an interface session, specify either the interface symbolic
name or logical unit in the addr parameter of the iopen function.
The interface symbolic name and logical unit are defined during
the system configuration. See the I/O Libraries Installation and
Configuration Guide for information on these values.

The logical unit is an integer that corresponds to a specific interface.
The symbolic name is a string which uniquely describes the interface.

7,23 Device at bus address 23 connected to an interface
card at logical unit 7.

7,23,1 Device at bus address 23, secondary address 1,
connected to an interface card at logical unit 7.

hpib,23 Device at bus address 23 and symbolic name hpib.

hpib2,23,1 Device at bus address 23, secondary address 1,
connected to a second GPIB interface with symbolic
name hpib2.

vxi,128 Device at logical address 128 and symbolic name vxi.

Chapter 3 41

Using SICL
Opening a Communications Session

The following are valid interface addresses:

The following example opens an interface session with the GPIB interface:

INST dmm;
dmm = iopen ("hpib");

More on addressing specific interfaces can be found in the interface-specific
chapter (for example, "Using SICL with GPIB") later in this manual.

Commander Sessions
The commander session allows you to talk to the interface controller.
Typically, the controller is the computer used to communicate with devices
on the interface. However, when the controller is no longer the active
controller, or passes control, commander sessions can be used to talk to the
controller. In this mode, the interface is acting like a device on the interface
(non-controller).

Addressing
Commander

Sessions

To create a commander session, specify either the interface symbolic
name or logical unit followed by a comma and then the string cmdr
in the iopen function. The interface symbolic name and logical
unit are defined during the system configuration. See the I/O Libraries
Installation and Configuration Guide for information on these values. The
following are valid commander addresses:

The following is an example of creating a commander session with the
GPIB interface:

INST cmdr; cmdr = iopen("hpib,cmdr");

7 Interface card at logical unit 7.

hpib GPIB interface with the symbolic name hpib.

hpib2 Second GPIB interface with the symbolic name
hpib2.

hpib,cmdr GPIB commander session.

7,cmdr Commander session on interface at logical unit 7.

42 Chapter 3

Using SICL
Sending I/O Commands

Sending I/O Commands
Once you have established a communications session with a device,
interface, or commander, you can start communicating with that session
using either formatted I/O or non-formatted I/O.

• Formatted I/O converts mixed types of data under the control of a format
string. The data is buffered, thus optimizing interface traffic. The
formatted I/O routines are geared towards instruments and are very
efficient in I/O.

• Non-formatted I/O sends or receives raw data to or from a device,
interface, or commander. With non-formatted I/O, no formatting or
conversion of the data is performed. Thus, if formatted data is required,
it must be done by the user.

See the following sections for a complete description and examples of using
formatted I/O and non-formatted I/O.

Formatted I/O
The SICL formatted I/O mechanism is similar to the C stdio mechanism.
SICL formatted I/O, however, is designed specifically for instrument
communication and is optimized for IEEE 488.2 compatible instruments.
The three main functions for formatted I/O are as follows:

• The iprintf function formats according to the format string and sends
data to the session specified by id:

iprintf (id, format [,arg1][,arg2][,...]);

• The iscanf function receives data from the session specified by id and
converts the data according to the format string:

iscanf(id, format [,arg1][,arg2][,...]);

Chapter 3 43

Using SICL
Sending I/O Commands

• The ipromptf function formats data according to the writefmt string
and sends data to the session specified by id and then immediately
receives the data and converts it according to the readfmt string:

ipromptf(id, writefmt, readfmt [,arg1][,arg2][,...]);

See Chapter 10 for more information on these functions.

The formatted I/O functions are buffered. There are two non-buffered and
non-formatted I/O functions called iread and iwrite. See the "Non-
formatted I/O" section later in this chapter. These are raw I/O functions and
do not intermix with the formatted I/O functions.

If raw I/O must be mixed, use the ifread/ifwrite functions. They have
the same parameters as iread and iwrite, but read or write raw data to
or from the formatted I/O buffers. Refer to the "Formatted I/O Buffers"
section later in this chapter for more details.

Formatted I/O
Conversion

The formatted I/O functions convert data under the control of the format
string. The format string specifies how each argument is converted before it
is input or output. The typical format string syntax is as follows:

%[format flags][field width][.precision][,array size]
[argument modifier]conversion character

See iprintf, ipromptf, and iscanf in Chapter 10 for more
information on how data is converted under the control of the format string.

Format Flags. Zero or more flags may be used to modify the meaning of the
conversion character. The format flags are only used when sending
formatted I/O (iprintf and ipromptf). The following are supported
format flags:

44 Chapter 3

Using SICL
Sending I/O Commands

Format Flags for iprintf and ipromptf

The following example converts numb into a IEEE 488.2 floating point
number (NR2) and sends it to the session specified by id:

int numb = 61; iprintf (id, "%@2d", numb);
Sends: 61.000000

Flag Description

@1

@2

@3

@H

@Q

@B

+

–

space

#

0

Converts to a IEEE 488.2 NR1 number.

Converts to a IEEE 488.2 NR2 number.

Converts to a IEEE 488.2 NR3 number.

Converts to a IEEE 488.2 hexadecimal number.

Converts to a IEEE 488.2 octal number.

Converts to a IEEE 488.2 binary number.

Prefixes number with sign (+ or -).

Left justifies result.

Prefixes number with blank space if positive or with - if
negative.

Use alternate form. For o conversion, print a leading zero. For
x or X, a nonzero will have 0x or 0X as a prefix. For e, E, f, g, or
G, the result will always have one digit on the right of the
decimal point.

Causes the left pad character to be a zero for all numeric
conversion types.

Chapter 3 45

Using SICL
Sending I/O Commands

Field Width. Field width is an optional integer that specifies the minimum
number of characters in the field. If the formatted data has fewer characters
than specified in the field width, it will be padded. The padded character is
dependent on various flags. You can use an asterisk (*) in place of the
integer to indicate that the integer is taken from the next argument.

The following example pads numb to six characters and sends it to the
session specified by id:

int numb = 61;
iprintf (id, "%6d", numb);

Inserts four characters, for a total of six characters: 61

.Precision. Precision is an optional integer that is preceded by a period.
When used with conversion characters e, E, and f, the number of digits to
the right of the decimal point is specified. For the d, i, o, u, x, and X
conversion characters, the minimum number of digits to appear is specified.
For the s, and S conversion characters, the precision specifies the maximum
number of characters to be read from the argument. This field is only used
when sending formatted I/O (iprintf and ipromptf). You can use an
asterisk (*) in place of the integer to indicate that the integer is taken from
the next argument.

The following example converts numb so that there are only two digits to
the right of the decimal point and sends it to the session specified by id:

float numb = 26.9345;
iprintf (id, "%.2f", numb);

Sends : 26.93

46 Chapter 3

Using SICL
Sending I/O Commands

,Array Size. The comma operator is a format modifier which allows you to
read or write a comma-separated list of numbers (only valid with %d and
%f conversion characters). It is a comma followed by an integer. The
integer indicates the number of elements in the array argument. The comma
operator has the format of ,dd where dd is the number of elements to read
or write.

The following example specifies a comma separated list to be sent to the
session specified by id:

int list[5]={101,102,103,104,105};
iprintf (id, "%,5d", list);

Sends: 101,102,103,104,105

Argument Modifier. The meaning of the optional argument modifier h, l,
w, z, and Z is dependent on the conversion character:

Argument Modifiers

Argument
Modifier

Conversion
Character

Description

h d, i Corresponding argument is a short integer.

h f Corresponding argument is a float for iprintf or a
pointer to a float for iscanf.

l d, i Corresponding argument is a long integer.

l b, B Corresponding argument is a pointer to an array
of long integers.

l f Corresponding argument is a double for iprintf or
a pointer to a double for iscanf.

w b, B Corresponding argument is a pointer to an array
of short integers.

z b, B Corresponding argument is pointer to an array of
floats.

Z b, B Corresponding argument is a pointer to an array
of doubles.

Chapter 3 47

Using SICL
Sending I/O Commands

Conversion Characters. The conversion characters for sending and
receiving formatted I/O are different. The following tables summarize the
conversion characters for each:

iprintf and ipromptf Conversion Characters

The following example sends an arbitrary block of data to the session
specified by the id parameter. The asterisk (*) is used to indicate that the
number is taken from the next argument:

long int size = 1024;
char data [1024];

.

.
iprintf (id, "%*b", size, data);

Sends 1024 characters of block data.

Conversion
Character

Description

d, i Corresponding argument is an integer

f Corresponding argument is a double.

b, B Corresponding argument is a pointer to an arbitrary block
of data.

c, C Corresponding argument is a character.

t Controls whether the END indicator is sent with each LF
character in the format string.

s, S Corresponding argument is a pointer to a null terminated
string.

% Sends an ASCII percent (%) character.

o, u, x, X Corresponding argument is an unsigned integer.

e, E, g, G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

f Corresponding argument is a pointer to a FILE descriptor
opened for reading.

48 Chapter 3

Using SICL
Sending I/O Commands

iscanf and ipromptf Conversion Characters

The following example reads characters up to the first white space character
from the session specified by the id parameter and puts the characters into
data:

char data[180];
iscanf (id, "%s", data);

Conversion
Character

Description

d, i, n Corresponding argument must be a pointer to an integer.

e, f, g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character
sequence.

s, S, t Corresponding argument is a pointer to a string.

o, u, x Corresponding argument must be a pointer to an unsigned
integer.

[Corresponding argument must be a character pointer.

F Corresponding argument is a pointer to a FILE descriptor
opened for writing.

Chapter 3 49

Using SICL
Sending I/O Commands

Formatted I/O
Example

The following ANSI C example shows how to use the formatted I/O
functions to send and receive data. This example opens an GPIB
communications session with a Multimeter and sends a comma operator to
send a comma separated list to the Multimeter. The lf conversion
characters are then used to receive a double back from the Multimeter.

/* formatio.c
This example program makes a multimeter measurement
with a comma separated list passed with formatted I/O
and prints the results */

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;
double res;
double list[2] = {1,0.001};
char buf[80];

/* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen ("hpib,16");
itimeout (dvm, 10000);

/* Initialize dvm */
iprintf (dvm, "*RST\n");

/* Set up multimeter and send comma separated list */
iprintf (dvm, "CALC:DBM:REF 50\n");
iprintf (dvm, "MEAS:VOLT:AC? %,2lf\n", list);

/* Read the results */
iscanf (dvm,"%lf", &res);

/* Print the results */
printf ("Result is %f\n",res);

/* Close the multimeter session */
iclose (dvm);

}

50 Chapter 3

Using SICL
Sending I/O Commands

Format String The format string for iprintf puts a special meaning on the newline
character (\n). The newline character in the format string flushes the output
buffer. All characters in the output buffer will be written with an END
indicator included with the last byte (the newline character). This means
that you can control at what point you want the data written. If no newline
character is included in the format string for an iprintf call, then the
converted characters are stored in the output buffer. It will require another
call to iprintf or a call to iflush to have those characters written.
iflush only sends the data queued in the buffer, and not the END indicator
as in iprintf. Note that newline characters output from an output
parameter do not cause a flush; only newlines in the format string do.

This can be very useful in queuing up data to send to a device. It can also
raise I/O performance by doing a few large writes instead of several smaller
writes. This behavior can be changed by the isetbuf and isetubuf
functions. See the next section, "Formatted I/O Buffers."

The format string for iscanf ignores most white-space characters.
Newlines (\n) and carriage returns (\r), however, are treated just like
normal characters in the format string, which must match the next non-
white-space character read.

Formatted I/O
Buffers

The SICL software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by the iprintf and the write portion of the
ipromptf functions. It queues characters to send so that they are sent in
large blocks, thus increasing performance. The write buffer automatically
flushes when it sends a newline character from the format string (see the %t
conversion character to change this feature). It also flushes immediately
after the write portion of the ipromptf function. It may occasionally be
flushed at other non-deterministic times, such as when the buffer fills. When
the write buffer flushes, it sends its contents.

The read buffer is maintained by the iscanf and the read portion of the
ipromptf functions. It queues the data received until it is needed by the
format string. The read buffer is automatically flushed before the write
portion of an ipromptf. Flushing the read buffer destroys the data in the
buffer and guarantees that the next call to iscanf or ipromptf reads data
directly rather than data that was previously queued.

Chapter 3 51

Using SICL
Sending I/O Commands

Note Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator from
the device.

See the isetbuf function for other options for buffering data.

Overview of
Formatted I/O

The following set of functions are related to formatted I/O:

ifread Obtains raw data directly from the read formatted I/O
buffer. This is the same buffer that iscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer.
This is the same buffer that iprintf uses.

iprintf Converts data via a format string and writes the
arguments appropriately.

iscanf Reads data, converts this data via a format string, and
assigns the values to your arguments.

ipromptf Sends, then receives, data from a device/instrument. It
also converts data via format strings that are identical to
iprintf and iscanf. The advantage of this function is that
the iprintf and iscanf parts are done together.

iflush Flushes the formatted I/O read and write buffers. A flush
of the read buffer means that any data in the buffer is
lost. A flush of the write buffer means that any data in the
buffer is written to the session’s target address.

isetbuf Sets the size of the formatted I/O read and the write
buffers. A size of zero (0) means no buffering. Note that
if no buffering is used, performance can be severely
affected.

isetubuf Sets the read or the write buffer to your allocated buffer.
The same buffer cannot be used for both reading and
writing. Also you should be careful in using buffers that
are automatically allocated.

52 Chapter 3

Using SICL
Sending I/O Commands

Non-Formatted I/O
There are two non-buffered, non-formatted I/O functions called iread and
iwrite. These are raw I/O functions and do not intermix with the
formatted I/O functions. If raw I/O must be mixed, use the ifread and
ifwrite functions. They have the same parameters as iread and
iwrite, but read or write raw data to or from the formatted I/O buffers.

The non-formatted I/O functions are described as follows:

• The iread function reads raw data from the device or interface
specified by the id parameter and stores the results in the location where
buf is pointing:

iread(id, buf, bufsize, reason, actualcnt);

• The iwrite function sends the data pointed to by buf to the interface or
device specified by the id parameter:

iwrite(id, buf, datalen, end, actualcnt);

See Chapter 10 for more information on these functions.

Chapter 3 53

Using SICL
Sending I/O Commands

Non-formatted
I/O Example

The following example illustrates using non-formatted I/O to communicate
with a Multimeter over the GPIB interface The SICL non-formatted I/O
functions iwrite and iread are used for the communication. A similar
example is used to illustrate formatted I/O later in this chapter.

/* nonformatio.c
This example program measures AC voltage on a
multimeter and prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;
char strres[20];

/* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen ("hpib,16");
itimeout (dvm, 10000);

/* Initialize dvm */
iwrite (dvm, "*RST\n", 5, 1, NULL);

/* Set up multimeter and take measurement */
iwrite (dvm,"CALC:DBM:REF 50\n", 16, 1, NULL);
iwrite (dvm,"MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

/* Print the results */
printf("Result is %s\n", strres);

/* Close the multimeter session */
iclose(dvm);

}

54 Chapter 3

Using SICL
Using Asynchronous Events

Using Asynchronous Events
Asynchronous events are events that happen outside the control of your
application. These events include Service Requests (SRQ) and interrupts.
An SRQ is a notification that a device requires service. Any device can
generate an SRQ. Both devices and interfaces can generate interrupts.

By default, creating a session enables asynchronous events. However, the
library will not report any events to the application until the appropriate
handlers are installed in your program.

SRQ Handlers
The ionsrq function installs an SRQ handler. The currently installed SRQ
handler is called any time its corresponding device or interface generates an
SRQ. If an interface is unable to determine which device on the interface
generated the SRQ, all SRQ handlers assigned to that interface will be
called.

Therefore, an SRQ handler cannot assume that its corresponding device
generated an SRQ. The SRQ handler should use the ireadstb function to
determine whether its device generated an SRQ. If two or more sessions
refer to the same device, and have handlers installed, the handlers for each of
the sessions are called.

Chapter 3 55

Using SICL
Using Asynchronous Events

Interrupt Handlers
Two distinct steps are required for an interrupt handler to be called. First, the
interrupt handler must be installed. Second, the interrupt event or events
need to be enabled. The ionintr function installs an interrupt handler.
The isetintr function enables notification of the interrupt event or
events.

An interrupt handler can be installed with no events enabled. Conversely,
interrupt events can be enabled with no interrupt handler installed. Only
when both an interrupt handler is installed and interrupt events are enabled
will the interrupt handler be called.

Temporarily Disabling/Enabling Asynchronous Events
To temporarily prevent all SRQ and interrupt handlers from executing, use
the iintroff function. This disables all asynchronous handlers for all
sessions in the process.

To re-enable asynchronous SRQ and interrupt handlers previously disabled
by iintroff, use the iintron function. This enables all asynchronous
handlers for all sessions in the process, that had been previously enabled.

Note These functions do not affect the isetintr values or the handlers
(ionsrq or ionintr) in any way. See ionintr and ionsrq in
Chapter 10.

Default is on.

56 Chapter 3

Using SICL
Using Asynchronous Events

Note It is possible to overflow SICL’s interrupt queue if too many interrupts are
generated while notification is disabled.

Calls to iintroff/iintron may be nested, meaning that there must be
an equal number of on’s and off’s. This means that calling the iintron
function may not actually re-enable notification of interrupts.

Occasionally, you may want to suspend a process and wait until an event
occurs that causes a handler to execute. The iwaithdlr function causes
the process to suspend until either an enabled SRQ or interrupt condition
occurs and the related handler executes. Once the handler completes its
operation, this function returns and processing continues. For this function
to work properly, your application must turn interrupts off before enabling
asynchronous events (that is, use iintroff). The iwaithdlr function
behaves as if interrupts are enabled. Interrupts are still disabled after the
iwaithdlr function has completed. Only calls to iintron will re-
enable interrupts.

Note Interrupts must be disabled if you are using iwaithdlr. Use iintroff
to disable notification of interrupts.

The reason for disabling notification of interrupts is that the interrupt may
occur between the isetintr and iwaithdlr and, if you only expect one
interrupt, it might come before the iwaithdlr. Notification may not
occur, that is, the handler may not get called. This may or may not be the
effect you desire.

Chapter 3 57

Using SICL
Using Asynchronous Events

For example:

...
iintroff ()
ionintr (vxi, trigger_handler);
isetintr (vxi, I_INTR_TRIG, I_TRIG_TTL0 | I_TRIG_TTL7);
...
ivxitrigon (vxi, I_TRIG_TTL0);
while (!done)

iwaithdlr (0);
iintron ();
...

Asynchronous Events and Unix Signals

Note If you are using SICL LAN, see the "LAN and Signal Handling" section in
Chapter 8, "Using SICL with LAN."

SICL hpib and vxi interfaces use an Unix signal to implement interrupts
and SRQs. The default SICL signal is SIGUSR2. This signal is managed
completely by the SICL library. Your application must avoid SICL’s signal
completely. Do not attempt to mask it, send it, or install a handler for it.

If your application needs SIGUSR2 for some purpose other than SICL, you
can instruct SICL to use a different signal. This is done with the isetsig
function. The following example selects signal 29 for SICL use:

isetsig(29);

If you use isetsig, you must call it before any other function in your
program. Also, you must pick an alternate signal carefully to avoid
conflicting with other Unix resources.

58 Chapter 3

Using SICL
Using Asynchronous Events

Protecting I/O
Calls Against

Interrupts

It is standard Unix behavior for I/O calls like iread and iprintf to be
interrupted when the process receives a signal. If your process is not
expecting to receive signals, such I/O side effects will probably be masked
by the other standard behavior of unexpected signals: death of your process.
If you are expecting signals, you may not want them to abort SICL I/O
operations.

This can be solved by blocking or ignoring any expected signals while doing
I/O activity. After I/O is complete, the original signal action can be restored.
The choice to block or ignore depends on the need of your application.
Ignored signals are not queued; blocked signals have a one-deep queue and
are acted on as soon as the block is removed.

The following programming segment shows signal blocking. SIGALARM
and SIGINT are blocked during an iscanf call.

.

.
/* temporarily block 2 signals */
 old_mask = sigblock(sigmask (SIGINT) | sigmask (SIGALRM));

/* call protected I/O function */
iscanf (id, "%f", &mydata);

/* restore original signal mask */
sigsetmask (old_mask);

Chapter 3 59

Using SICL
Using Asynchronous Events

Interrupt Handler Example
The following is an ANSI C example that installs an interrupt handler and
enables the interrupts on the VXI TTL trigger lines. When the TTL trigger
line is asserted, the installed interrupt handler is called.

/* interrupts.c
* This is an example of the interrupt handling in SICL. This
* program installs an interrupt handler and enables the
* interrupts on trigger and waits for the interrupt. */

#include <sicl.h>
#include <stdio.h>
#include <unistd.h>

int intr = 0;

void trigger_handler (INST id, long reason, long secval) {
/* indicate that the interrupt happened */
intr = 1;

} /* end of trigger_handler */

main ()
{

INST id;

/* start child process to fire trigger line */
if (fork()==0)

child();

ionerror (I_ERROR_EXIT);
iintroff();

id = iopen ("vxi");

/* set the interrupt handler */
ionintr (id, trigger_handler);

/* what interrupts to handle (interrupt on ttl 0 or 7 firing) */
isetintr (id, I_INTR_TRIG, I_TRIG_TTL0 | I_TRIG_TTL7);

60 Chapter 3

Using SICL
Using Asynchronous Events

/* Wait for interrupt to happen (30 second timeout) */
iwaithdlr (30000);

if (intr == 1)
printf ("Interrupt handler called.\n");

else
printf ("ERROR: Interrupt handler not called.\n");

iclose (id);
}

child ()
{

INST id;

/* Let the parent get into iwaithdlr */
sleep (2);

ionerror (I_ERROR_EXIT);

id = iopen ("vxi");

/* pulse TTL0 */
ivxitrigon (id, I_TRIG_TTL0);
ivxitrigoff (id, I_TRIG_TTL0);

iclose (id);
exit (0);

}

Chapter 3 61

Using SICL
Using Error Handlers

Using Error Handlers
When a SICL function call results in an error, it typically returns a special
value such as a NULL pointer, or a non-zero error code. SICL provides a
convenient mechanism for handling errors. SICL allows you to install an
error handler for all SICL functions within an application.

It is important to note that error handlers are per-process, not per-session.
That is, one handler will work for all sessions in a process. This allows your
application to ignore the return value and simply permits the error procedure
to detect errors and recover. The error handler is called before the function
that generated the error completes.

The function ionerror is used to install an error handler. It is defined as
follows:

int ionerror (proc);
void (*proc)();

Where:

void proc (id, error);
INST id;
int error;

The routine proc is the error handler and is called whenever a SICL error
occurs. Two special reserved values of proc may be passed to the
ionerror function:

This mechanism has substantial advantages over other I/O libraries, because
error handling code is located away from the center of your application.
This makes the application easier to read and understand.

I_ERROR_EXIT This value installs a special error handler
which will print a diagnostic message and then
terminate the process.

I_ERROR_NO_EXIT This value installs a special error handler
which will print a diagnostic message and then
allow the process to continue execution.

62 Chapter 3

Using SICL
Using Error Handlers

Error Handler Example
Typically, in an application, error handling code is intermixed with the I/O
code. However, with SICL error handling routines, no special error
handling code is inserted between the I/O calls. Instead, a single line at the
top (calling ionerror) installs an error handler that gets called any time a
SICL call results in an error.

In this example a standard, system-defined error handler is installed that
prints a diagnostic message and exits.

/* errhand.c
This example demonstrates how a SICL error handler
 can be installed */

#include <sicl.h>
#include <stdio.h>

main ()
{

INST dvm;
double res;

ionerror (I_ERROR_EXIT);
dvm = iopen ("hpib,16");
itimeout (dvm, 10000);
iprintf (dvm, "%s\n", "MEAS:VOLT:DC?");
iscanf (dvm, "%lf", &res);
printf ("Result is %f\n", res);
iclose (dvm);

exit (0);
}

Chapter 3 63

Using SICL
Using Error Handlers

The following is an ANSI C example of writing and implementing your own
error handler:

/* errhand2.c
This program shows how you can install your own
error handler */

#include <sicl.h>
#include <stdio.h>

void err_handler (INST id, int error) {
fprintf (stderr, "Error: %s\n", igeterrstr (error));
exit (1);

}

main () {
INST dvm;
double res;

ionerror (err_handler);
dvm = iopen ("hpib,16");
itimeout (dvm, 10000);
iprintf (dvm, "%s\n", "MEAS:VOLT:DC?");
iscanf (dvm, "%lf", &res);
printf ("Result is %f\n", res);
iclose (dvm);

exit (0);
}

Now, if any of the SICL functions result in an error, your error routine will
be called.

Note If an error occurs in iopen, the id that is passed to the error handler may not
be valid.

64 Chapter 3

Using SICL
Using Locking

Using Locking
Because SICL allows multiple sessions on the same device or interface, the
action of opening does not mean you have exclusive use. In some cases this
is not an issue, but should be a consideration if you are concerned with
program portability.

The SICL ilock function is used to lock an interface or device. The SICL
iunlock function is used to unlock an interface or device.

Locks are performed on a per-session (device, interface, or commander)
basis. If a session within a given process locks a device or interface, then
that device or interface can only be accessed from that session.

Locks can be nested. The device or interface only becomes unlocked when
the same number of unlocks are done as the number of locks. Doing an
unlock without a lock returns the error I_ERR_NOLOCK.

What does it mean to lock? Locking an interface (from an interface session)
restricts other device and interface sessions from accessing this interface.
Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to access the interface for
this device. Locking a commander (from a commander session) restricts
other commander sessions from accessing this commander.

Caution It is possible for an interface session to access an interface which is serving a
device locked from a device session. This interface access usually allows
the interface session to address or reset any device on the interface. In such a
case, data may be lost from the device session that was underway.

In particular, be aware that both the HP/Agilent Visual Engineering
Environment (HP/Agilent VEE) and the TAMS BASIC applications use
SICL interface sessions. Hence, I/O operations from either of these
applications can supersede any device session that has a lock on a particular
device. Use interface session locks in your own program if these
applications may be running simultaneously with your program.

Chapter 3 65

Using SICL
Using Locking

Not all SICL routines are affected by locks. Some routines that simply set or
return session parameters never touch the interface hardware and therefore
work without locks. Each function defined in Chapter 10 has a section,
"Affected by functions," that lists the keyword LOCK if the function is
affected by locks. Functions without this keyword are not affected.

Lock Actions
If a session tries to perform any SICL function that obeys locks on an
interface or device that is currently locked by another session, the default
action is to suspend the call until the lock is released or, if a timeout is set,
until it times out.

This action can be changed with the isetlockwait function (see Chapter
10 for a full description). If the isetlockwait function is called with the
flag parameter set to 0 (zero), the default action is changed. Rather than
causing SICL functions to suspend, an error will be returned immediately.

To return to the default action, or to suspend and wait for an unlock, call the
isetlockwait function with the flag set to any non-zero value.

66 Chapter 3

Using SICL
Using Locking

Locking in a Multi-user Environment
In a multi-user/multi-process environment where devices are being shared, it
is a good idea to use locking to help ensure exclusive use of a particular
device or set of devices. (However, as explained in the previous section,
"Using Locking," remember that an interface session can access a device
locked from a device session.) In general, it is not friendly behavior to lock
a device at the beginning of an application and unlock it at the end. This can
result in deadlock or long waits by others who want to use the resource.

The recommended way to use locking is per transaction. Per transaction
means that you lock before you setup the device, then unlock after all the
desired data has been acquired. When sharing a device, you cannot assume
the state of the device, so the beginning of each transaction should have any
setup needed to configure the device or devices to be used.

Chapter 3 67

Using SICL
Using Locking

Locking Example
The following example show how device locking can be used to grant
exclusive access to a device by an application. This example uses an HP/
Agilent 34401 Multimeter.

/* locking.c
This example shows how device locking can be
used to grant exclusive access to a device */

#include <sicl.h>
#include <stdio.h>
main() {

INST dvm;

char strres[20];

/* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen ("hpib,16");
itimeout (dvm, 10000);

/* Lock the multimeter device to prevent access from
other applications */

ilock(dvm);

/* Take a measurement */
iwrite (dvm, "MEAS:VOLT:DC?\n", 14, 1, NULL);

/* Read the results */
iread (dvm, strres, 20, NULL, NULL);

/* Release the multimeter device for use by others */
iunlock(dvm);

/* Print the results */
printf("Result is %s\n", strres);

 /* Close the multimeter session */
iclose(dvm);

}

68 Chapter 3

Using SICL
Using Locking

4

Using SICL with GPIB

70 Chapter 4

Using SICL with GPIB

The HPIB interface (Hewlett-Packard Interface Bus) is Hewlett-Packard’s
implementation of the IEEE 488.1 Bus. Other IEEE 488 versions include
GPIB (General Purpose Interface Bus) and IEEE Bus. GPIB and HPIB are
both used in the discussions and examples in this chapter. The HPIB related
SICL functions have the string GPIB embedded in the function name.

This chapter explains how to use SICL to communicate over GPIB. In order
to communicate over GPIB, you must have loaded the GPIB fileset during
the system installation. See the I/O Libraries Installation and Configuration
Guide for information.

This chapter describes in detail how to open a communications session and
communicate with GPIB devices, interfaces, or controllers. The example
programs shown in this chapter are also provided in the
/opt/sicl/share/examples directory.

This chapter contains the following sections:

• Creating a Communications Session with GPIB

• Communicating with GPIB Devices

• Communicating with GPIB Interfaces

• Communicating with GPIB Commanders

• Summary of GPIB Specific Functions

Chapter 4 71

Using SICL with GPIB
Creating a Communications Session with GPIB

Creating a Communications Session
with GPIB
Once you have determined that your GPIB system is setup and operating
correctly, you may want to start programming with the SICL functions. First
you must determine what type of communication session you need. The
three types of communications sessions are device, interface, and
commander.

72 Chapter 4

Using SICL with GPIB
Communicating with GPIB Devices

Communicating with GPIB Devices
The device session allows you direct access to a device without worrying
about the type of interface to which it is connected. The specifics of the
interface are hidden from the user.

Addressing GPIB Devices
To create a device session, specify either the interface symbolic name or
logical unit and a particular device’s address in the addr parameter of
the iopen function. The interface symbolic name and logical
unit are defined during the system configuration. See the I/O Libraries
Installation and Configuration Guide for information on these values.

The following are example GPIB addresses for device sessions:

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified
during the configuration. The name used in your SICL program must match
the logical unit or symbolic name specified in the system
configuration. Other possible interface names are GPIB, gpib, HPIB, etc.

hpib,7 A device address corresponding to the device at
primary address 7 and symbolic name hpib.

hpib,3,2 A device address corresponding to the device at
primary address 3, secondary address 2, and
symbolic name hpib.

hpib,9,0 A device address corresponding to the device at
primary address 9, secondary address 0, and
symbolic name hpib.

Chapter 4 73

Using SICL with GPIB
Communicating with GPIB Devices

SICL supports both primary and secondary addressing on GPIB interfaces.

Remember that the primary address must be between 0 and 30 and that the
secondary address must be between 0 and 30. The primary and secondary
addresses correspond to the GPIB primary and secondary addresses.

Note If you are using an GPIB Command Module to communicate with VXI
devices, the secondary address must be specified to select a specific
instrument in the cardcage. Secondary addresses of 0, 1, 2, . . .31 correspond
to VXI instruments at logical addresses of 0, 8, 16, . . . 248, respectively.

The following is an example of opening a device session with an GPIB
device at bus address 16:

INST dmm
dmm = iopen ("hpib,16");

74 Chapter 4

Using SICL with GPIB
Communicating with GPIB Devices

SICL Function Support with GPIB Device Sessions
The following describes how some SICL functions are implemented for
GPIB device sessions.

GPIB Device
Session

Interrupts

There are no device-specific interrupts for the GPIB interface.

GPIB Device
Sessions and

Service
Requests

GPIB device sessions support Service Requests (SRQ). On the GPIB
interface, when one device issues an SRQ, the library will inform all GPIB
device sessions that have SRQ handlers installed. (See ionsrq in Chapter
10.) This is an artifact of how GPIB handles the SRQ line. The interface
cannot distinguish which device requested service. Therefore, the library
acts as if all devices require service. Your SRQ handler can retrieve the
device’s status byte by using the ireadstb function. It is good practice to
ensure that a device isn’t requesting service before leaving the SRQ handler.
The easiest technique for this is to service all devices from one handler.

The data transfer functions work only when the GPIB interface is the Active
Controller. Passing control to another GPIB device causes the interface to
lose active control.

iwrite Causes all devices to untalk and unlisten. It then sends
this controller’s talk address followed by unlisten and then
the listen address of the corresponding device session.
Then it sends the data over the bus.

iread Causes all devices to untalk and unlisten. It sends an
unlisten, then sends this controller’s listen address
followed by the talk address of the corresponding device
session. Then it reads the data from the bus.

ireadstb Performs a GPIB serial poll (SPOLL).

itrigger Performs an addressed GPIB group execute trigger
(GET).

iclear Performs a GPIB device clear (DCL) on the device
corresponding to this session.

Chapter 4 75

Using SICL with GPIB
Communicating with GPIB Devices

GPIB Device Session Example
The following example illustrates communicating with an GPIB device
session. This example opens two GPIB communications sessions with VXI
devices (through a VXI Command Module). Then a scan list is sent to a
switch, and measurements are taken by the multimeter every time a switch is
closed.

76 Chapter 4

Using SICL with GPIB
Communicating with GPIB Devices

/* hpibdev.c
This example program sends a scan list to a switch and
while looping closes channels and takes measurements.*/

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;
INST sw;

double res;
int i;

/* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter and switch sessions */
dvm = iopen ("hpib,9,3");
sw = iopen ("hpib,9,14");
itimeout (dvm, 10000);
itimeout (sw, 10000);

/*Set up trigger*/
iprintf (sw, "TRIG:SOUR BUS\n");

/*Set up scan list*/
iprintf (sw,"SCAN (@100:103)\n");
iprintf (sw,"INIT\n");

for (i=1;i<=4;i++)
{

/* Take a measurement */
iprintf (dvm,"MEAS:VOLT:DC?\n");

/* Read the results */
iscanf (dvm,"%lf",&res);

/* Print the results */
printf ("Result is %f\n",res);

/*Trigger to close channel*/
iprintf (sw, "TRIG\n");

}
/* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

}

Chapter 4 77

Using SICL with GPIB
Communicating with GPIB Interfaces

Communicating with GPIB Interfaces
Interface sessions allow you direct low-level control of the interface. You
must do all the bus maintenance for the interface. This also implies that you
have considerable knowledge of the interface. Additionally, when using
interface sessions, you need to use interface specific functions. The use of
these functions means that the program can not be used on other interfaces
and, therefore, becomes less portable.

Addressing GPIB Interfaces
To create an interface session on your GPIB system, specify either the
interface symbolic name or logical unit in the addr parameter of
the iopen function. The interface symbolic name and logical
unit are defined during the system configuration. See the I/O Libraries
Installation and Configuration Guide for information on these values.

The following are example GPIB interface addresses:

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified
during the configuration. The name used in your SICL program must match
the logical unit or symbolic name specified in the system
configuration. Other possible interface names are GPIB, gpib, HPIB,
IEEE488, etc.

hpib An interface symbolic name.

hpib2 An interface symbolic name.

7 An interface logical unit.

78 Chapter 4

Using SICL with GPIB
Communicating with GPIB Interfaces

 The following example opens a interface session with the GPIB interface:

INST hpib;
hpib = iopen ("hpib");

SICL Function Support with
GPIB Interface Sessions
The following describes how some SICL functions are implemented for
GPIB interface sessions.

GPIB Interface
Session

Interrupts

There are specific interface session interrupts that can be used. See
isetintr in Chapter 10 for information on the interface session interrupts.

There are no device specific interrupts for the GPIB interface.

iwrite Sends the specified bytes directly to the interface without
performing any bus addressing. The iwrite function
always clears the ATN line before sending any bytes, thus
ensuring that the GPIB interface sends the bytes as data,
not command bytes.

iread Reads the data directly from the interface without
performing any bus addressing.

itrigger Performs a GPIB group execute trigger (GET) without
additional addressing. This function should be used with
the igpibsendcmd to send an UNL followed by the
device addresses. This will allow the itrigger function
to be used to trigger multiple GPIB devices
simultaneously.

Passing the I_TRIG_STD value to the ixtrig routine
also causes a broadcast GPIB group execute trigger
(GET). There are no other valid values for the ixtrig
function.

iclear Performs a GPIB interface clear (pulses IFC and REN),
which resets the interface.

Chapter 4 79

Using SICL with GPIB
Communicating with GPIB Interfaces

GPIB Interface
Sessions and

Service
Requests

GPIB interface sessions support Service Requests (SRQ). On the GPIB
interface, when one device issues an SRQ, the library will inform all GPIB
interface sessions that have SRQ handlers installed. (See ionsrq in
Chapter 10.) It is good practice to ensure that a device isn’t requesting
service before leaving the SRQ handler. The easiest technique for this is to
service all devices from one handler.

GPIB Interface Session Examples

Checking the
Bus Status

The following example program is an ANSI C program that retrieves the
GPIB interface bus status information and displays it for the user.

80 Chapter 4

Using SICL with GPIB
Communicating with GPIB Interfaces

/* hpibstatus.c
The following example retrieves and displays HPIB bus
 status information. */

#include <stdio.h>
#include <sicl.h>

main()
{

INST id; /* session id */
int rem; /* remote enable */
int srq; /* service request */
int ndac; /* not data accepted */
int sysctlr; /* system controller */
int actctlr; /* active controller */
int talker; /* talker */
int listener; /* listener */
int addr; /* bus address */

/* exit process if SICL error detected */
ionerror(I_ERROR_EXIT);

/* open HPIB interface session */
id = iopen("hpib");
itimeout (id, 10000);

/* retrieve HPIB bus status */
igpibbusstatus(id, I_GPIB_BUS_REM, &rem);
igpibbusstatus(id, I_GPIB_BUS_SRQ, &srq);
igpibbusstatus(id, I_GPIB_BUS_NDAC, &ndac);
igpibbusstatus(id, I_GPIB_BUS_SYSCTLR, &sysctlr);
igpibbusstatus(id, I_GPIB_BUS_ACTCTLR, &actctlr);
igpibbusstatus(id, I_GPIB_BUS_TALKER, &talker);
igpibbusstatus(id, I_GPIB_BUS_LISTENER, &listener);
igpibbusstatus(id, I_GPIB_BUS_ADDR, &addr);

/* display bus status */
printf("%-5s%-5s%-5s%-5s%-5s%-5s%-5s%-5s\n", "REM",

 "SRQ", "NDC", "SYS", "ACT", "TLK", "LTN", "ADDR");
 printf("%2d%5d%5d%5d%5d%5d%5d%6d\n", rem, srq, ndac,

sysctlr, actctlr, talker, listener, addr);
return 0;

}

Chapter 4 81

Using SICL with GPIB
Communicating with GPIB Interfaces

Communicating
with Devices
via Interface

Sessions

The following example program sets up two GPIB instruments over an
interface session and has the instruments communicate with each other.

The 3 main parts of this program are as follows:

• Read the data from the scope (get_data).
• Print some statistics about the data (massage_data).
• Have the scope send the data to a printer (print_data).
/* hpibintr.c

This program requires a 54601A digitizing oscilloscope
or compatible) and a printer capable of printing in HP
RASTER GRAPHICS STANDARD (e.g. thinkjet).
This program will tell the scope to take a reading on
channel 1, then send the data back to this program.
Then some simple statistics about the data is printed.
The program then tells the scope to send the data
directly to the printer, illustrating how the
controller does not have to be directly involved in an
HPIB transaction.*/

#include <stdio.h> /* used for printf() */
#include <stdlib.h> /* used for exit() */
#include <sicl.h> /* SICL header file */

/* defines */
#define INTF_ADDR "hpib"
#define SCOPE_ADDR INTF_ADDR ",7"

/* function prototypes */
void initialize (void);
void get_data (void);
void massage_data (void);
void print_data (void);
void cleanup (void);
void srq_hdlr (INST id);

/* global data */
float pre[10];
INST scope;
INST intf;

82 Chapter 4

Using SICL with GPIB
Communicating with GPIB Interfaces

void main() {
ionerror(I_ERROR_EXIT);
scope = iopen(SCOPE_ADDR);
intf = iopen(INTF_ADDR);

initialize();
get_data();
massage_data();
print_data();
cleanup();

iclose(scope);
iclose(intf);

}

void initialize() {
/* initialize the hpib interface and scope */
iclear(intf);
itimeout(scope, 5000);
itimeout(intf, 5000);
iclear(scope);
igpibllo(intf);

}

void get_data() {
short readings[5000];
int count;

/* setup scope to accept waveform data */
iprintf(scope, "*RST\n");
iprintf(scope, ":autoscale\n");

/* setup up the waveform source */
iprintf(scope, ":waveform:format word\n");

/* input waveform preamble to controller */
iprintf(scope, ":digitize channel1\n");
iprintf(scope, ":waveform:preamble?\n");
iscanf(scope, "%,10f", pre);

/* command scope to send data */
iprintf(scope, ":waveform:data?\n");

Chapter 4 83

Using SICL with GPIB
Communicating with GPIB Interfaces

/* enter the data */
count = 5000;
iscanf(scope, "%#wb\n", &count, readings);
printf ("received %d words\n", count);

}

void massage_data() {
float vdiv;
float off;
float sdiv;
float delay;
char id_str[50];

vdiv = 32 * pre[7];
off = (128 - pre[9]) * pre[7] + pre[8];
sdiv = pre[2] * pre[4] / 10;
delay = (pre[2] / 2 - pre[6]) * pre[4] + pre[5];

/* retrieve the scope’s ID string */
ipromptf(scope, "*IDN?\n", "%s", id_str);

 /* print the statistics about the data */
printf("\nOscilloscope ID: %s\n", id_str);
printf(" ---------- Current settings -----------\n");
printf(" Volts/Div = %f V\n", vdiv);
printf(" Offset = %f V\n", off);
printf(" S/Div = %f S\n", sdiv);
printf(" Delay = %f S\n", delay);

}

void print_data() {
unsigned char status;
char cmd[5];

/* tell the scope to SRQ on ’operation complete’*/
iprintf(scope, "*SRE 32; *ESE 1\n");

/* tell the scope to print */
iprintf(scope, ":print?; *OPC\n");

84 Chapter 4

Using SICL with GPIB
Communicating with GPIB Interfaces

/* tell scope to talk and printer to listen. The listen
command is formed by adding 32 to the device address
of the device to be a listener. The talk command is
formed by adding 64 to the device address of the
device to be a talker */

cmd[0] = 63; /* 63 is unlisten */
cmd[1] = 32+1; /* printer is at address 1, make it a listener*/
cmd[2] = 64+7; /* scope is at address 7, make it a talker*/
cmd[3] = ’\0’; /* terminate the string */

igpibsendcmd(intf, cmd, 3);

/* set up our SRQ handler to be called when the scope
finishes printing */

ionsrq(scope, srq_hdlr);

/* now, the ATN line must be set to FALSE */
igpibatnctl(intf, 0);

/* wait for SRQ before continuing program */
status = 0;
while(status == 0) {

iwaithdlr(120000L);

/* make sure it was the scope requesting service */
ireadstb(scope, &status);
status &= 64;

}

/* clear the status byte so the scope can assert SRQ
 again if needed. */

iprintf(scope, "*CLS\n");
}

void cleanup() {
/* give local control back to the scope */
ilocal(scope); }

void srq_hdlr(INST id) {
/* this handler does nothing. we will use iwaithdlr()in

the code above to determine when the handler gets called. */
}

Chapter 4 85

Using SICL with GPIB
Communicating with GPIB Commanders

Communicating with GPIB Commanders
Commander sessions are intended for use on GPIB interfaces that are not
active controller. In this mode, a computer that is not the controller is acting
like a device on the GPIB bus. In a commander session, the data transfer
routines work only when the GPIB interface is not active controller.

Addressing GPIB Commanders
To create a commander session on your GPIB interface, specify either the
interface symbolic name or logical unit in the addr parameter
followed by a comma and the string cmdr in the iopen function. The
interface symbolic name and logical unit are defined during the
system configuration. See the I/O Libraries Installation and Configuration
Guide for information on these values.

The following are example GPIB addresses for commander sessions:

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified
during the configuration. The name used in your SICL program must match
the logical unit or symbolic name specified in the system
configuration. Other possible interface names are GPIB, gpib, HPIB, etc.

hpib,cmdr A commander session with the hpib symbolic name.

hpib2,cmdr A commander session with the hpib2 symbolic name.

7,cmdr A commander session with the interface at logical unit 7.

86 Chapter 4

Using SICL with GPIB
Communicating with GPIB Commanders

The following example opens a commander session the GPIB interface:

INST hpib;
hpib = iopen ("hpib,cmdr");

Chapter 4 87

Using SICL with GPIB
Communicating with GPIB Commanders

SICL Function Support with
GPIB Commander Sessions
The following describes how some SICL functions are implemented for
GPIB commander sessions.

 GPIB
Commander

Session
Interrupts

There are specific commander session interrupts that can be used. See
isetintr in Chapter 10 for information on the commander session
interrupts.

iwrite If the interface has been addressed to talk, the data
is written directly to the interface. If the interface has
not been addressed to talk, it will wait to be
addressed to talk before writing the data.

iread If the interface has been addressed to listen, the
data is read directly from the interface. If the
interface has not been addressed to listen, it will wait
to be addressed to listen before reading the data.

isetstb Sets the status value that will be returned on a
ireadstb call (i.e. when this device is Serial
Polled). Bit 6 of the status byte has a special
meaning. If bit 6 is set, the SRQ line will be set. If
bit 6 is clear, the SRQ line will be cleared.

88 Chapter 4

Using SICL with GPIB
Summary of GPIB Specific Functions

Summary of GPIB Specific Functions

Note Using these GPIB interface specific functions means that the program can
not be used on other interfaces and, therefore, becomes less portable.

SICL GPIB Functions

Function Name Action

igpibatnctl
igpibbusaddr|
igpibbusstatus
igpibgett1delay

igpibllo
igpibpassctl
igpibppoll
igpibppollconfig
igpibppollresp
igpibrenctl
igpibsendcmd
igpibsett1delay

Sets or clears the ATN line
Change bus address
Return requested bus data
Retrieves the T1 delay setting on the GPIB interface
Sets bus in Local Lockout Mode
Passes active control to specified address
Performs a parallel poll on the bus
Configures device for PPOLL response
Sets PPOLL state
Sets or clears the REN line
Sends data with ATN line set
Sets the T1 delay on the GPIB interface

344

Appendix H

Device Manuals

H.1 Function Generator

H.1.1 Quick Reference

345

 Front-Panel Menu Reference

Use Recall Menu as a shortcut to
recall the last command executed.

Page 1

Agilent 33120A
Function / Arbitrary Waveform Generator
Quick Reference Guide

 The APPLy Commands

(see page 138 in User’s Guide)

APPLy

 :SINusoid [<frequency> [,<amplitude> [,<offset>]]]
 :SQUare [<frequency> [,<amplitude> [,<offset>]]]
 :TRIangle [<frequency> [,<amplitude> [,<offset>]]]
 :RAMP [<frequency> [,<amplitude> [,<offset>]]]
 :NOISe [<frequency|DEF> [,<amplitude> [,<offset>]]]
 :DC [<frequency|DEF> [,<amplitude|DEF> [,<offset>]]]
 :USER [<frequency> [,<amplitude> [,<offset>]]]

APPLy?

 Output Configuration Commands

(see page 145 in User’s Guide)

[SOURce:]
 FUNCtion:SHAPe {SIN|SQU|TRI|RAMP|NOIS|DC|USER}

 FUNCtion:SHAPe?

[SOURce:]

 FREQuency {<frequency>|MIN|MAX}
 FREQuency? [MIN|MAX]

[SOURce:]

 PULSe:DCYCle {<percent>|MIN|MAX}
 PULSe:DCYCle? [MIN|MAX]

[SOURce:]

 VOLTage {<amplitude>|MIN|MAX}
 VOLTage? [MIN|MAX]

 VOLTage:OFFSet {<offset>|MIN|MAX}
 VOLTage:OFFSet? [MIN|MAX]
 VOLTage:UNIT {VPP|VRMS|DBM|DEF}
 VOLTage:UNIT?

OUTPut:LOAD {50|INF|MIN|MAX}
OUTPut:LOAD? [MIN|MAX]

OUTPut:SYNC {OFF|ON}
OUTPut:SYNC?

• Square brackets ([]) indicate optional keywords
 or parameters.

• Braces ({ }) enclose parameters within a command string.
 Default parameters are shown in bold.

• Triangle brackets (< >) indicate that you must
 substitute a value for the enclosed parameter.

2

 Modulation Commands

(see page 154 in User’s Guide)

[SOURce:]

 AM:DEPTh {<depth in percent>|MIN|MAX}
 AM:DEPTh? [MIN|MAX]
 AM:INTernal:FUNCtion {SIN|SQU|TRI|RAMP|NOIS|USER}
 AM:INTernal:FUNCtion?

 AM:INTernal:FREQuency {<frequency>|MIN|MAX}
 AM:INTernal:FREQuency? [MIN|MAX]
 AM:SOURce {BOTH|EXT}
 AM:SOURce?
 AM:STATe {OFF|ON}
 AM:STATe?

[SOURce:]

 FM:DEViation {<peak deviation in Hz>|MIN|MAX}
 FM:DEViation? [MIN|MAX]
 FM:INTernal:FUNCtion {SIN|SQU|TRI|RAMP|NOIS|USER}
 FM:INTernal:FUNCtion?

 FM:INTernal:FREQuency {<frequency>|MIN|MAX}
 FM:INTernal:FREQuency? [MIN|MAX]
 FM:STATe {OFF|ON}
 FM:STATe?

[SOURce:]

 BM:NCYCles {<# cycles>|INF|MIN|MAX}
 BM:NCYCles? [MIN|MAX]

 BM:PHASe {<degrees>|MIN|MAX}
 BM:PHASe? [MIN|MAX]

 BM:INTernal:RATE {<frequency>|MIN|MAX}
 BM:INTernal:RATE? [MIN|MAX]
 BM:SOURce {INT|EXT}
 BM:SOURce?
 BM:STATe {OFF|ON}
 BM:STATe?

 FSK Commands

(see page 167 in User’s Guide)

[SOURce:]

 FSKey:FREQuency {<frequency>|MIN|MAX}
 FSKey:FREQuency? [MIN|MAX]

 FSKey:INTernal:RATE {<rate in Hz>|MIN|MAX}
 FSKey:INTernal:RATE? [MIN|MAX]
 FSKey:SOURce {INT|EXT}
 FSKey:SOURce?
 FSKey:STATe {OFF|ON}
 FSKey:STATe?

3

 Sweep Commands

(see page 170 in User’s Guide)

[SOURce:]

 FREQuency:STARt {<frequency>|MIN|MAX}
 FREQuency:STARt? [MIN|MAX]

 FREQuency:STOP {<frequency>|MIN|MAX}
 FREQuency:STOP? [MIN|MAX]

[SOURce:]
 SWEep:SPACing {LIN|LOG}
 SWEep:SPACing?

 SWEep:TIME {<seconds>|MIN|MAX}
 SWEep:TIME? [MIN|MAX]
 SWEep:STATe {OFF|ON}
 SWEep:STATe?

 Arbitrary Waveform Commands

(see page 174 in User’s Guide)

[SOURce:]

 FUNCtion:USER {<arb name>|VOLATILE}
 FUNCtion:USER?
 FUNCtion:SHAPe USER
 FUNCtion:SHAPe?

DATA VOLATILE, <value>,<value>, . . .
DATA:DAC VOLATILE, {<binary block>|<value>,<value>, . . . }

DATA:ATTRibute:AVERage? [<arb name>]
DATA:ATTRibute:CFACtor? [<arb name>]
DATA:ATTRibute:POINts? [<arb name>]
DATA:ATTRibute:PTPeak? [<arb name>]

DATA:CATalog?

DATA:COPY <destination arb name> [,VOLATILE]

DATA:DELete <arb name>
DATA:DELete:ALL

DATA:NVOLatile:CATalog?
DATA:NVOLatile:FREE?

FORMat:BORDer {NORMal|SWAPped} Specify Byte Order
FORMat:BORDer?

4

 System-Related Commands

(see page 188 in User’s Guide)

DISPlay {OFF|ON}
DISPlay?

DISPlay:TEXT <quoted string>
DISPlay:TEXT?
DISPlay:TEXT:CLEar

SYSTem:BEEPer

SYSTem:ERRor?

SYSTem:VERSion?

*IDN?

*RST

*TST?

*SAV {0|1|2|3} State 0 is the power-down state.
*RCL {0|1|2|3} States 1, 2, and 3 are user-defined.

MEMory:STATe:DELete {0|1|2|3}

 Triggering Commands

(see page 186 in User’s Guide)

TRIGger:SOURce {IMM|EXT|BUS}
TRIGger:SOURce?

*TRG

 Status Reporting Commands

(see page 209 in User’s Guide)

SYSTem:ERRor?

*CLS

*ESE <enable value>
*ESE?

*ESR?

*OPC

*OPC?

*PSC {0|1}
*PSC?

*SRE <enable value>
*SRE?

*STB?

*WAI

5

 Copyright Agilent Technologies, Inc. 1994-2002
Printed in Malaysia March 2002 E0302

 SCPI Status System

(see page 201 in User’s Guide)

�������������
 33120-90009

 Calibration Commands

(see page 193 in User’s Guide)

CALibration?

CALibration:COUNt?

CALibration

 :SECure:CODE <new code>
 :SECure:STATe {OFF|ON},<code>
 :SECure:STATe?

CALibration:SETup <0|1|2|3| . . . |84>
CALibration:SETup?

CALibration:STRing <quoted string>
CALibration:STRing?

CALibration:VALue <value>
CALibration:VALue?

6

 IEEE-488.2 Common Commands

(see page 209 in User’s Guide)

*CLS

*ESE <enable value>
*ESE?

*ESR?

*IDN?

*OPC

*OPC?

*PSC {0|1}
*PSC?

*RST

*SAV {0|1|2|3}
*RCL {0|1|2|3}

*SRE <enable value>
*SRE?

*STB?

*TRG

*TST?

*WAI

 RS-232 Interface Commands

(see page 200 in User’s Guide)

SYSTem:LOCal

SYSTem:REMote

SYSTem:RWLock

 Phase-Lock Commands (Option 001)

(see the 33120A Option 001 User’s and Service Guide)

PHASe:ADJust <radians>
PHASe:ADJust?

PHASe:REFerence

PHASe:UNLock:ERRor:STATe {OFF|ON}
PHASe:UNLock:ERRor:STATe?

OUTPut:TRIGger:IMMediate

OUTPut:TRIGger:STATe {OFF|ON}
OUTPut:TRIGger:STATe?

For RS-232 wiring and connection information,
see page 195 in the User’s Guide.

7

 Simplified Programming Overview

Using the APPLy Command
The APPLy command provides the most straightforward method
to program the function generator over the remote interface.
For example, the following statement outputs a 3 Vpp sine wave
at 5 kHz with a -2.5 volt offset:

 "APPL:SIN 5 KHZ, 3.0 VPP, -2.5 V"

Using the Low-Level Commands
Although the APPLy commands provide the most straight-
forward method to program the function generator, the
low-level commands give you more flexibility to change
individual parameters. For example, the following statements
output a 3 Vpp sine wave at 5 kHz with a -2.5 volt offset:

 "FUNC:SHAP SIN"
 "FREQ 5.0 KHZ"
 "VOLT 3.0 VPP"
 "VOLT:OFFS -2.5 V"

Reading a Query Response
Only the query commands (commands that end with “ ? ”) will
instruct the function generator to send a response message.
Queries return either output values or internal instrument
settings. For example, the following statements read the error
queue and print the most recent error:

 dimension statement
 "SYST:ERR?"
 bus enter statement
 print statement

Selecting a Trigger Source
When burst modulation or frequency sweep is enabled, the
function generator will accept an immediate internal trigger,
a hardware trigger from the rear-panel Ext Trig terminal, or a
software (bus) trigger. By default, the internal trigger source
is selected. If you want the function generator to use the external
source or a bus trigger, you must select that source. For example,
the following statements output a 3-cycle burst each time the
Ext Trig terminal receives the rising edge of a TTL pulse:

 "BM:NCYC 3"
 "TRIG:SOUR EXT"
 "BM:STAT ON"

8

 Error Messages

This is a partial listing of error messages. See chapter 5 in the
User’s Guide for more information.

-102, “Syntax error” Check for blank space before or after a
colon in command header, or before a comma.

-103, “Invalid separator” Check for a comma used instead of a
colon, semicolon, or blank space – or a blank instead of a comma.

-108, “Parameter not allowed” Check for extra parameters in
the command string.

-109, “Missing parameter” Check for omitted parameters in
the command string.

-113, “Undefined header” Check the spelling of the command
or you may have used an invalid command.

-221, “Settings conflict” The requested setting is in conflict
with the present configuration.

-222, “Data out of range” Check for a numeric parameter value
that is outside the valid range for the command.

-224, “Illegal parameter value” Check for an invalid discrete
parameter choice for the command.

-330, “Self-test failed” The *TST? command failed.

-350, “Too many errors” More than 20 errors have occurred.

-410, “Query INTERRUPTED” The output buffer contains data
from a previous command (the previous data is not overwritten).

781, “Not enough memory to store new arb waveform” Up to four
user-defined waveforms can be stored in non-volatile memory.
Use DATA:DEL to delete downloaded waveforms.

783, “Arb waveform name too long” The arb name can contain
up to 8 characters. The first character must be a letter (A-Z),
but the remaining characters can be number (0-9) or “ _ ”.

785, “Specified arb waveform does not exist” The arb name
specified has not been downloaded into VOLATILE memory.

786, “Cannot delete a built-in arb waveform” You cannot delete
the five built-in arb waveforms.

787, “Cannot delete the currently selected active arb waveform”
You cannot delete the arb waveform that is currently being output.

9

 Power-On and Reset State

The parameters marked with a bullet (•) are stored in
non-volatile memory. The factory settings are shown.

NOTE: The power-on state will be different if you have enabled
the power-down storage mode. See “Power-Down Recall Mode”
on page 109 for more information.

10

H.2 Oscilloscope

356

Programmer’s Guide

Publication number 54600-97032
April 2001

This guide contains programming information for the following
Agilent oscilloscope models:

54600
54601
54602
54603
54610
54615
54616

For Safety information, Warranties, and Regulatory
information, see the pages behind the Index.

© Copyright Agilent Technologies 1995-1996, 2001
 All Rights Reserved

Agilent 54600-Series
Oscilloscopes

Programming the Oscilloscope

When you attach an interface module to the rear of the Agilent 54600-
Series Oscilloscopes, the oscilloscope becomes programmable. That is,
you can hook a controller (such as a PC or workstation) to the
oscilloscope, and write programs on that controller to automate
oscilloscope setup and data capture. Both GPIB (also known as
IEEE-488) and RS-232-C interfaces are available.

The following figure shows the basic structure of every program you
will write for the oscilloscope.

Initialize

To ensure consistent, repeatable performance, you need to start the
program, controller, and oscilloscope in a known state. Without
correct initialization, your program may run correctly in one instance
and not in another. This might be due to changes made in
configuration by previous program runs or from the front panel of the
oscilloscope.

· Program initialization defines and initializes variables, allocates
memory, or tests system configuration.

· Controller initialization ensures that the interface to the
oscilloscope (either GPIB or RS-232) is properly setup and ready
for data transfer.

· Oscilloscope initialization sets the channel, trigger, timebase, and
acquisition subsystems for the desired measurement.

ii

Capture

Once you initialize the oscilloscope, you can begin capturing data for
measurement. Remember that while the oscilloscope is responding to
commands from the controller, it is not performing acquisitions. Also,
when you change the oscilloscope configuration, any data already
captured is most likely invalid.

To collect data, you use the DIGITIZE command. This command
clears the waveform buffers and starts the acquisition process.
Acquisition continues until the criteria, such as number of averages,
completion criteria, and number of points is satisfied. Once the
criteria is satisfied, the acquisition process is stopped. The acquired
data is displayed by the oscilloscope, and the captured data can be
measured, stored in memory in the oscilloscope, or transferred to the
controller for further analysis. Any additional commands sent while
DIGITIZE is working are buffered until DIGITIZE is complete.

You could also start the oscilloscope running, then use a wait loop in
your program to ensure that the oscilloscope has completed at least
one acquisition before you make a measurement. This is not
recommended, because the needed length of the wait loop may vary,
causing your program to fail. DIGITIZE, on the other hand, ensures
that data capture is complete. Also, DIGITIZE, when complete, stops
the acquisition process, so that all measurements are on displayed
data, not a constantly changing data set.

Analyze

After the oscilloscope has completed an acquisition, you can find out
more about the data, either by using the oscilloscope measurements
or by transferring the data to the controller for manipulation by your
program. Built-in measurements include IEEE standard parametric
measurements (such as Vpp, frequency, pulse width) or the
positioning and reading of voltage and time markers.

Using the WAVEFORM commands, you can transfer the data to your
controller for special analysis, if desired.

iii

In This Book

The Agilent 54600-Series Oscilloscopes Programmer’s Guide is your
introduction to programming the Agilent 54600-Series Oscilloscopes using an
instrument controller. This book, with the online Agilent 54600-Series

Oscilloscopes Programmer’s Reference, provides a comprehensive
description of the oscilloscope’s programmatic interface. The Programmer’s

Reference is supplied as a Microsoft Windows Help file on a 3.5" diskette.

To program the Agilent 54600-Series Oscilloscope, you need an interface
module, such as the Agilent 54650A or 54651A. You also need an instrument
controller that supports either the IEEE-488 or RS-232-C interface
standards, and a programming language capable of communicating with these
interfaces. You can also use the Agilent 54655A/56A Test Automation Module
and the Agilent 54658A/59B Measurement/Storage Module.

Chapter 1 gives a general overview of oscilloscope programming.

Chapter 2 shows a simple program, explains its operation, and
discusses considerations for data types.

Chapter 3 discusses the general considerations for programming the
instrument over an GPIB interface.

Chapter 4 discusses the general considerations for programming the
instrument over an RS-232-C interface.

Chapter 5 describes conventions used in representing syntax of
commands throughout this book and in the online Agilent 54600-Series

Oscilloscopes Programmer’s Reference, and gives an overview of the
command set.

Chapter 6 discusses the oscilloscope status registers and how to use
them in your programs.

Chapter 7 tells how to install the Agilent 54600-Series Oscilloscopes

Programmer’s Reference online help file in Microsoft Windows, and
explains help file navigation.

Chapter 8 lists all the commands and queries available for
programming the oscilloscope.

iv

For information on oscilloscope
operation, see the Agilent 54600-Series

Oscilloscopes User and Service Guide.
For information on interface
configuration, see the documentation for
the oscilloscope and the interface card
used in your controller (for example, the
82341C interface for IBM PC-compatible
computers).

Programming Getting Started2

Programming over GPIB3

Programming over RS-232-C4

Index

Programming and
Documentation Conventions5

Status Reporting6

Installing and Using the
Programmer’s Reference7

Programmer’s Quick Reference8

Introduction to Programming1

v

vi

Contents

1 Introduction to Programming

Talking to the Instrument 1–3
Program Message Syntax 1–4
Combining Commands from the Same Subsystem 1–7
Duplicate Mnemonics 1–7
Query Command 1–8
Program Header Options 1–9
Program Data Syntax Rules 1–10
Program Message Terminator 1–12
Selecting Multiple Subsystems 1–12

2 Programming Getting Started

Initialization 2–3
Autoscale 2–4
Setting Up the Instrument 2–4
Example Program 2–5
Using the DIGitize Command 2–6
Receiving Information from the Instrument 2–8
String Variables 2–9
Numeric Variables 2–10
Definite-Length Block Response Data 2–11
Multiple Queries 2–12
Instrument Status 2–12

3 Programming over GPIB

Interface Capabilities 3–3
Command and data concepts 3–3
Addressing 3–4
Communicating over the bus 3–5
Lockout 3–6
Bus Commands 3–6

4 Programming over RS-232-C

Interface Operation 4–3
Cables 4–3

Contents–1

Minimum three-wire interface with software protocol 4–4
Extended interface with hardware handshake 4–5
Configuring the Interface 4–7
Interface Capabilities 4–8
Communicating over the RS-232-C bus 4–9
Lockout Command 4–10

5 Programming and Documentation Conventions

Command Set Organization 5–3
The Command Tree 5–6
Truncation Rules 5–10
Infinity Representation 5–11
Sequential and Overlapped Commands 5–11
Response Generation 5–11
Notation Conventions and Definitions 5–12
Program Examples 5–13

6 Status Reporting

Serial Poll 6–6

7 Installing and Using the Programmer’s Reference

To install the help file under Microsoft Windows 7–3
To get updated help and program files via the Internet 7–4
To start the help file 7–5
To navigate through the help file 7–6

8 Programmer’s Quick Reference

Conventions 8–3
Suffix Multipliers 8–3
Commands and Queries 8–4

Index

Contents

Contents–2

1

Introduction to Programming

Introduction to Programming

Chapters 1 and 2 introduce the basics for remote programming of an
oscilloscope. The programming instructions in this manual conform to
the IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. The programming instructions provide the means of
remote control.

To program the Agilent 54600-series oscilloscope you must add either
an GPIB (for example, Agilent 54650A) or RS-232-C (for example,
Agilent 54651A) interface to the rear panel.

You can perform the following basic operations with a controller and
an oscilloscope:

· Set up the instrument.

· Make measurements.

· Get data (waveform, measurements, configuration) from the
oscilloscope.

· Send information (pixel image, configurations) to the oscilloscope.

Other tasks are accomplished by combining these basic functions.

Languages for Program Examples

The programming examples for individual commands in this manual are written
in Agilent BASIC, C, or SICL C.

1–2

Talking to the Instrument

Computers acting as controllers communicate with the instrument by
sending and receiving messages over a remote interface. Instructions for
programming normally appear as ASCII character strings embedded inside
the output statements of a “host” language available on your controller. The
input statements of the host language are used to read in responses from the
oscilloscope.

For example, Agilent BASIC uses the OUTPUT statement for sending
commands and queries. After a query is sent, the response is usually read in
using the ENTER statement.

Messages are placed on the bus using an output command and passing the
device address, program message, and terminator. Passing the device address
ensures that the program message is sent to the correct interface and
instrument.

The following Agilent BASIC statement sends a command which sets the
bandwidth limit of channel 1 on:
OUTPUT < device address > ;":CHANNEL1:BWLIMIT ON"<terminator>

The < device address > represents the address of the device being
programmed. Each of the other parts of the above statement are explained in
the following pages.

Introduction to Programming
Talking to the Instrument

1–3

Program Message Syntax

To program the instrument remotely, you must understand the command
format and structure expected by the instrument. The IEEE 488.2 syntax
rules govern how individual elements such as headers, separators, program
data, and terminators may be grouped together to form complete
instructions. Syntax definitions are also given to show how query responses
are formatted. The figure below shows the main syntactical parts of a typical
program statement.

Program Message Syntax

Output Command

The output command is entirely dependent on the programming language.
Throughout this manual, Agilent BASIC is used in most examples of
individual commands. If you are using other languages, you will need to find
the equivalents of Agilent BASIC commands like OUTPUT, ENTER, and
CLEAR in order to convert the examples. The instructions listed in this
manual are always shown between quotation marks in the example programs.

Device Address

The location where the device address must be specified is also dependent
on the programming language you are using. In some languages, this may be
specified outside the output command. In Agilent BASIC, this is always
specified after the keyword OUTPUT. The examples in this manual assume
the oscilloscope is at device address 707. When writing programs, the address
varies according to how the bus is configured.

Figure 1–1

Introduction to Programming
Program Message Syntax

1–4

Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal, or C.
The only time a parameter is not meant to be expressed as a string is when
the instruction’s syntax definition specifies <block data>, such as learnstring.
There are only a few instructions which use block data.

Instructions are composed of two main parts:

· The header, which specifies the command or query to be sent.

· The program data, which provide additional information needed to clarify
the meaning of the instruction.

Instruction Header

The instruction header is one or more mnemonics separated by colons (:)
that represent the operation to be performed by the instrument. The
command tree in chapter 5 illustrates how all the mnemonics can be joined
together to form a complete header (see chapter 5, “Programming and
Documentation Conventions”).

The example in figure 1 is a command. Queries are indicated by adding a
question mark (?) to the end of the header. Many instructions can be used as
either commands or queries, depending on whether or not you have included
the question mark. The command and query forms of an instruction usually
have different program data. Many queries do not use any program data.

White Space (Separator)

White space is used to separate the instruction header from the program
data. If the instruction does not require any program data parameters, you do
not need to include any white space. In this manual, white space is defined as
one or more spaces. ASCII defines a space to be character 32 (in decimal).

Program Data

Program data are used to clarify the meaning of the command or query. They
provide necessary information, such as whether a function should be on or
off, or which waveform is to be displayed. Each instruction’s syntax definition
shows the program data, as well as the values they accept. The section
“Program Data Syntax Rules” in this chapter has all of the general rules about
acceptable values.

When there is more than one data parameter, they are separated by
commas (,). Spaces can be added around the commas to improve readability.

Introduction to Programming
Program Message Syntax

1–5

Header Types

There are three types of headers:

· Simple Command headers.

· Compound Command headers.

· Common Command headers.

Simple Command Header Simple command headers contain a single
mnemonic. AUTOSCALE and DIGITIZE are examples of simple
command headers typically used in this instrument. The syntax is:

<program mnemonic><terminator>

Simple command headers must occur at the beginning of a program message;
if not, they must be preceded by a colon.

When program data must be included with the simple command header (for
example, :DIGITIZE CHAN1), white space is added to separate the data from
the header. The syntax is:
<program mnemonic><separator><program data><terminator>

Compound Command Header Compound command headers are a
combination of two program mnemonics. The first mnemonic selects the
subsystem, and the second mnemonic selects the function within that
subsystem. The mnemonics within the compound message are separated
by colons. For example:

To execute a single function within a subsystem:
:<subsystem>:<function><separator><program data><terminator>

(For example :CHANNEL1:BWLIMIT ON)

Common Command Header Common command headers control IEEE
488.2 functions within the instrument (such as clear status). Their
syntax is:

*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command
header. *CLS is an example of a common command header.

Introduction to Programming
Program Message Syntax

1–6

Combining Commands from the Same Subsystem

To execute more than one function within the same subsystem a semi-colon
(;) is used to separate the functions:
:<subsystem>:<function><separator><data>;
 <function><separator><data><terminator>

(For example :CHANNEL1:COUPLING DC;BWLIMIT ON)

Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For
example, the function mnemonic RANGE may be used to change the vertical
range or to change the horizontal range:
:CHANNEL1:RANGE .4

sets the vertical range of channel 1 to 0.4 volts full scale.
:TIMEBASE:RANGE 1

sets the horizontal time base to 1 second full scale.

CHANNEL1 and TIMEBASE are subsystem selectors and determine which
range is being modified.

Introduction to Programming
Combining Commands from the Same Subsystem

1–7

Query Command

Command headers immediately followed by a question mark (?) are queries.
After receiving a query, the instrument interrogates the requested function
and places the answer in its output queue. The answer remains in the output
queue until it is read or another command is issued. When read, the answer is
transmitted across the bus to the designated listener (typically a controller).
For example, the query :TIMEBASE:RANGE? places the current time base
setting in the output queue. In Agilent BASIC, the controller input statement:
ENTER < device address > ;Range

passes the value across the bus to the controller and places it in the variable
Range.

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by the
instrument. For example, the command :MEASURE:RISETIME? instructs the
instrument to measure the rise time of your waveform and places the result
in the output queue.

The output queue must be read before the next program message is sent. For
example, when you send the query :MEASURE:RISETIME? you must follow
that query with an input statement. In Agilent BASIC, this is usually done
with an ENTER statement immediately followed by a variable name. This
statement reads the result of the query and places the result in a specified
variable.

Read the Query Result First

Sending another command or query before reading the result of a query causes
the output buffer to be cleared and the current response to be lost. This also
generates a query interrupted error in the error queue.

Introduction to Programming
Query Command

1–8

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Instrument responses, however, are always
returned in uppercase.

Program command and query headers may be sent in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form.
TIMEBASE:DELAY 1US - long form
TIM:DEL 1US - short form

Programs written in long form are easily read and are almost
self-documenting. The short form syntax conserves the amount of controller
memory needed for program storage and reduces the amount of I/O activity.

Command Syntax Programming Rules

The rules for the short form syntax are shown in chapter 5, “Programming and
Documentation Conventions.”

Introduction to Programming
Program Header Options

1–9

Program Data Syntax Rules

Program data is used to convey a variety of types of parameter information
related to the command header. At least one space must separate the
command header or query header from the program data.
<program mnemonic><separator><data><terminator>

When a program mnemonic or query has multiple program data a comma
separates sequential program data.
<program mnemonic><separator><data>,<data><terminator>

For example, :MEASURE:TVOLT 1.0V,2 has two program data: 1.0V and 2.

There are two main types of program data which are used in commands:
character and numeric program data.

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:MODE command can be
set to normal, delayed, XY, or ROLL. The character program data in this case
may be NORMAL, DELAYED, XY, or ROLL. The command
:TIMEBASE:MODE DELAYED sets the time base mode to delayed.

The available mnemonics for character program data are always included
with the instruction’s syntax definition. When sending commands, either the
long form or short form (if one exists) may be used. Upper-case and
lower-case letters may be mixed freely. When receiving query responses,
upper-case letters are used exclusively.

Numeric Program Data

Some command headers require program data to be expressed numerically.
For example, :TIMEBASE:RANGE requires the desired full scale range to be
expressed numerically.

For numeric program data, you have the option of using exponential notation
or using suffix multipliers to indicate the numeric value. The following
numbers are all equal:

28 = 0.28E2 = 280e-1 = 28000m = 0.028K = 28e-3K.

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric data parameters which accept fractional
values are called real numbers.

Introduction to Programming
Program Data Syntax Rules

1–10

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you would send a byte representing the ASCII code for
the character “9” (which is 57). A three-digit number like 102 would take up
three bytes (ASCII codes 49, 48, and 50). This is taken care of automatically
when you include the entire instruction in a string.

Embedded Strings

Embedded strings contain groups of alphanumeric characters which are
treated as a unit of data by the oscilloscope. For example, the line of text
written to the advisory line of the instrument with the :SYSTEM:DSP
command:
:SYSTEM:DSP"This is a message."

Embedded strings may be delimited with either single (’) or double (")
quotes. These strings are case-sensitive and spaces act as legal characters
just like any other character.

Introduction to Programming
Program Data Syntax Rules

1–11

Program Message Terminator

The program instructions within a data message are executed after the
program message terminator is received. The terminator may be either an NL
(New Line) character, an EOI (End-Or-Identify) asserted in the GPIB
interface, or a combination of the two. Asserting the EOI sets the EOI control
line low on the last byte of the data message. The NL character is an ASCII
linefeed (decimal 10).

New Line Terminator Functions

The NL (New Line) terminator has the same function as an EOS (End Of String)
and EOT (End Of Text) terminator.

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon enables you to enter a new subsystem. For
example:
<program mnemonic><data>;:<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

Combining Compound and Simple Commands

Multiple commands may be any combination of compound and simple
commands.

Introduction to Programming
Program Message Terminator

1–12

2

Programming Getting Started

Programming Getting Started

This chapter explains how to set up the instrument, how to retrieve
setup information and measurement results, how to digitize a
waveform, and how to pass data to the controller.

Languages for Programming Examples

The programming examples in this guide are written in Agilent BASIC, C, or
SICL C.

2–2

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. Agilent BASIC provides
a CLEAR command which clears the interface buffer:
CLEAR 707 ! initializes the interface of the instrument

When you are using GPIB, CLEAR also resets the oscilloscope’s parser. The
parser is the program which reads in the instructions which you send it.

After clearing the interface, initialize the instrument to a preset state:
OUTPUT 707;"*RST" ! initializes the instrument to a preset
state.

Information for Initializing the Instrument

The actual commands and syntax for initializing the instrument are discussed in
the common commands section of the online Agilent 54600-Series
Oscilloscopes Programmer’s Reference.

Refer to your controller manual and programming language reference manual
for information on initializing the interface.

Programming Getting Started
Initialization

2–3

Autoscale

The AUTOSCALE feature performs a very useful function on unknown
waveforms by setting up the vertical channel, time base, and trigger level of
the instrument.

The syntax for the autoscale function is:
:AUTOSCALE<terminator>

Setting Up the Instrument

A typical oscilloscope setup would set the vertical range and offset voltage,
the horizontal range, delay time, delay reference, trigger mode, trigger level,
and slope. A typical example of the commands sent to the oscilloscope are:
:CHANNEL1:PROBE X10;RANGE 16;OFFSET 1.00<terminator>
:TIMEBASE:MODE NORMAL;RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100ms/div) with delay of
100 ms. Vertical is set to 16V full-scale (2 V/div) with center of screen at 1V
and probe attenuation set to 10.

Programming Getting Started
Autoscale

2–4

Example Program

This program demonstrates the basic command structure used to program
the oscilloscope.

10 CLEAR 707 ! Initialize instrument interface
20 OUTPUT 707;"*RST" ! Initialize inst to preset state
30 OUTPUT 707;":TIMEBASE:RANGE 5E-4" ! Time base to 50 us/div
40 OUTPUT 707;":TIMEBASE:DELAY 0" ! Delay to zero
50 OUTPUT 707;":TIMEBASE:REFERENCE CENTER" ! Display reference at center
60 OUTPUT 707;":CHANNEL1:PROBE X10" ! Probe attenuation to 10:1
70 OUTPUT 707;":CHANNEL1:RANGE 1.6" ! Vertical range to 1.6 V full scale
80 OUTPUT 707;":CHANNEL1:OFFSET -.4" ! Offset to -0.4
90 OUTPUT 707;":CHANNEL1:COUPLING DC" ! Coupling to DC
100 OUTPUT 707;":TRIGGER:MODE NORMAL" ! Normal triggering
110 OUTPUT 707;":TRIGGER:LEVEL -.4" ! Trigger level to -0.4
120 OUTPUT 707;":TRIGGER:SLOPE POSITIVE" ! Trigger on positive slope
130 OUTPUT 707;":ACQUIRE:TYPE NORMAL" ! Normal acquisition
140 OUTPUT 707;":DISPLAY:GRID OFF" ! Grid off
150 END

· Line 10 initializes the instrument interface to a known state.

· Line 20 initializes the instrument to a preset state.

· Lines 30 through 50 set the time base mode to normal with the horizontal
time at 50 ms/div with 0 s of delay referenced at the center of the graticule.

· Lines 60 through 90 set the vertical range to 1.6 volts full scale with center
screen at -0.4 volts with 10:1 probe attenuation and DC coupling.

· Lines 100 through 120 configure the instrument to trigger at -0.4 volts
with normal triggering.

· Line 130 configures the instrument for normal acquisition.

· Line 140 turns the grid off.

Programming Getting Started
Example Program

2–5

Using the DIGitize Command

The DIGitize command is a macro that captures data satisfying the
specifications set up by the ACQuire subsystem. When the digitize process is
complete, the acquisition is stopped. The captured data can then be
measured by the instrument or transferred to the controller for further
analysis. The captured data consists of two parts: the waveform data record
and the preamble.

Ensure New Data is Collected

After changing the oscilloscope configuration, the waveform buffers are
cleared. Before doing a measurement, the DIGitize command should be sent to
the oscilloscope to ensure new data has been collected.

When you send the DIGitize command to the oscilloscope, the specified
channel signal is digitized with the current ACQuire parameters. To obtain
waveform data, you must specify the WAVEFORM parameters for the
waveform data prior to sending the :WAVEFORM:DATA? query.

Set :TIMebase:MODE to NORMal when Using :DIGitize

:TIMebase:MODE must be set to NORMal to perform a :DIGitize or to perform
any WAVeform subsystem query. A "Settings conflict" error message will be
returned if these commands are executed when MODE is set to ROLL, XY, or
DELayed. Sending the *RST (reset) command will also set the time base mode
to normal.

The number of data points comprising a waveform varies according to the
number requested in the ACQuire subsystem. The ACQuire subsystem
determines the number of data points, type of acquisition, and number of
averages used by the DIGitize command. This allows you to specify exactly
what the digitized information contains.

Programming Getting Started
Using the DIGitize Command

2–6

The following program example shows a typical setup:

OUTPUT 707;":ACQUIRE:TYPE AVERAGE"<terminator>
OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminator>
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:FORMAT BYTE"<terminator>
OUTPUT 707;":ACQUIRE:COUNT 8"<terminator>
OUTPUT 707;":WAVEFORM:POINTS 500"<terminator>
OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:DATA?"<terminator>

This setup places the instrument into the averaged mode with eight averages.
This means that when the DIGitize command is received, the command will
execute until the signal has been averaged at least eight times.

After receiving the :WAVEFORM:DATA? query, the instrument will start
passing the waveform information when addressed to talk.

Digitized waveforms are passed from the instrument to the controller by
sending a numerical representation of each digitized point. The format of the
numerical representation is controlled with the :WAVEFORM:FORMAT
command and may be selected as BYTE, WORD, or ASCII.

The easiest method of transferring a digitized waveform depends on data
structures, formatting available and I/O capabilities. You must scale the
integers to determine the voltage value of each point. These integers are
passed starting with the leftmost point on the instrument’s display. For more
information, see the waveform subsystem commands and corresponding
program code examples in the online Agilent 54600-Series Oscilloscopes

Programmer’s Reference.

Aborting a Digitize Operation Over GPIB

When using GPIB, a digitize operation may be aborted by sending a Device
Clear over the bus (CLEAR 707).

Programming Getting Started
Using the DIGitize Command

2–7

Receiving Information from the Instrument

After receiving a query (command header followed by a question mark), the
instrument interrogates the requested function and places the answer in its
output queue. The answer remains in the output queue until it is read or
another command is issued. When read, the answer is transmitted across the
interface to the designated listener (typically a controller). The input
statement for receiving a response message from an instrument’s output
queue typically has two parameters; the device address, and a format
specification for handling the response message. For example, to read the
result of the query command :CHANNEL1:COUPLING? you would execute
the Agilent BASIC statement:
ENTER <device address> ;Setting$

where <device address> represents the address of your device. This would
enter the current setting for the channel one coupling in the string variable
Setting$.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MEASURE:RISETIME?, you must follow that query with an input statement.
In Agilent BASIC, this is usually done with an ENTER statement.

Sending another command before reading the result of the query causes the
output buffer to be cleared and the current response to be lost. This also
causes an error to be placed in the error queue.

Executing an input statement before sending a query causes the controller to
wait indefinitely.

The format specification for handling response messages is dependent on
both the controller and the programming language.

Programming Getting Started
Receiving Information from the Instrument

2–8

String Variables

The output of the instrument may be numeric or character data depending
on what is queried. Refer to the specific commands for the formats and types
of data returned from queries.

Express String Variables Using Exact Syntax

In Agilent BASIC, string variables are case sensitive and must be expressed
exactly the same each time they are used.

Address Varies According to Configuration

For the example programs in the help file, assume that the device being
programmed is at device address 707. The actual address varies according to
how you have configured the bus for your own application.

The following example shows the data being returned to a string variable:
10 DIM Rang$[30]
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Rang$
40 PRINT Rang$
50 END

After running this program, the controller displays:

+8.00000E-01

Programming Getting Started
String Variables

2–9

Numeric Variables

The following example shows the data being returned to a numeric variable:
10 OUTPUT 707;":CHANNEL1:RANGE?"
20 ENTER 707;Rang
30 PRINT Rang
40 END

After running this program, the controller displays:

.8

Programming Getting Started
Numeric Variables

2–10

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data
to be transmitted over the system interface as a series of 8-bit binary data
bytes. This is particularly useful for sending large quantities of data or 8-bit
extended ASCII codes. The syntax is a pound sign (#) followed by a
non-zero digit representing the number of digits in the decimal integer. After
the non-zero digit is the decimal integer that states the number of 8-bit data
bytes being sent. This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:

The “8” states the number of digits that follow, and “00004000” states the
number of bytes to be transmitted.

Programming Getting Started
Definite-Length Block Response Data

2–11

Multiple Queries

You can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable
or into multiple numeric variables. For example, you could read the result of
the query :TIMEBASE:RANGE?;DELAY? into the string variable Results$
with the command:
ENTER 707;Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon. For example, the response of the query
:TIMEBASE:RANGE?;DELAY? would be:
<range_value>; <delay_value>

Use the following program message to read the query
:TIMEBASE:RANGE?;DELAY? into multiple numeric variables:
ENTER 707;Result1,Result2

Instrument Status

Status registers track the current status of the instrument. By checking the
instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more. Chapter
6, “Status Reporting” explains how to check the status of the instrument.

Programming Getting Started
Multiple Queries

2–12

3

Programming over GPIB

Programming over GPIB

This section describes the GPIB interface functions and some general
concepts. In general, these functions are defined by IEEE 488.1. They
deal with general interface management issues, as well as messages
which can be sent over the interface as interface commands.

For more information on connecting the controller to the oscilloscope,
see the documentation for the GPIB interface card you are using.

3–2

Interface Capabilities

The interface capabilities of the oscilloscope, as defined by IEEE 488.1, are
SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT1, C0, and E2.

Command and data concepts

The interface has two modes of operation:

· command mode

· data mode

The bus is in the command mode when the ATN line is true. The command
mode is used to send talk and listen addresses and various bus commands,
such as a group execute trigger (GET).

The bus is in the data mode when the ATN line is false. The data mode is
used to convey device-dependent messages across the bus. The
device-dependent messages include all of the instrument commands and
responses.

Programming over GPIB
Interface Capabilities

3–3

Addressing

Set the instrument address by using the front panel controls on the
oscilloscope after the GPIB interface has been installed on the rear panel of
the oscilloscope.

1 Press Print/Utility , then press the I/O Menu softkey.

2 Press the Inst Addr softkey to select the instrument address. Increment
the address by successively pressing the Inst Addr softkey. The address
can also be incremented or decremented by turning the knob closest to
the Cursors key.

· Each device on the GPIB resides at a particular address, ranging from 0 to
30.

· The active controller specifies which devices talk and which listen.

· An instrument may be talk addressed, listen addressed, or unaddressed by
the controller.

If the controller addresses the instrument to talk, the instrument remains
configured to talk until it receives an interface clear message (IFC), another
instrument’s talk address (OTA), its own listen address (MLA), or a universal
untalk command (UNT).

If the controller addresses the instrument to listen, the instrument remains
configured to listen until it receives an interface clear message (IFC), its own
talk address (MTA), or a universal unlisten command (UNL).

Programming over GPIB
Addressing

3–4

Communicating over the bus

Since GPIB can address multiple devices through the same interface card,
the device address passed with the program message must include not only
the correct interface select code, but also the correct instrument address.

Interface Select Code (Selects Interface)

Each interface card has a unique interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is typically “7” for GPIB controllers.

Instrument Address (Selects Instrument)

Each instrument on an GPIB must have a unique instrument address
between decimal 0 and 30. The device address passed with the program
message must include not only the correct instrument address, but also the
correct interface select code.

DEVICE ADDRESS = (Interface Select Code * 100) + (Instrument Address)

For example, if the instrument address for the oscilloscope is 4 and the
interface select code is 7, when the program message is passed, the routine
performs its function on the instrument at device address 704.

For the oscilloscope, the instrument address is typically set to

Oscilloscope Device Address

The examples in this manual and in the online Agilent 54600-Series
Oscilloscopes Programmer’s Reference assume the oscilloscope is at device
address 707.

See the documentation for your GPIB interface card for more information on
select codes and addresses.

Programming over GPIB
Communicating over the bus

3–5

Lockout

You can use the SYSTem:LOCK ON command to disable front-panel control
while a program is running. By default, the instrument accepts and executes
bus commands, and the front panel is entirely active.

Restore Front-Panel Control

Cycling power also restores front panel control.

With GPIB, the instrument is placed in the lockout mode by sending the local
lockout command (LLO). The instrument can be returned to local by
sending the go-to-local command (GTL) to the instrument.

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands are
received by the instrument.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, and clear any pending commands.
If either of these commands is sent during a digitize operation, the digitize
operation is aborted.

Interface Clear (IFC)

The interface clear (IFC) command halts all bus activity. This includes
unaddressing all listeners and the talker, disabling serial poll on all devices,
and returning control to the system controller.

Programming over GPIB
Lockout

3–6

8

Programmer’s Quick Reference

Introduction

The Programmer’s Quick Reference provides the commands and
queries with their corresponding arguments and returned formats for
the Agilent 54600-Series Oscilloscopes. The arguments for each
command list the minimum argument required. The part of the
command or query listed in uppercase letters refers to the short form
of that command or query. The long form is the combination of the
uppercase and lowercase letters. Any optional parameters are listed at
the end of each parameter listing.

This quick reference lists commands for the following Agilent
oscilloscope models:

54600
54601
54602
54603
54610
54615
54616

8–2

Conventions

The following conventions used in this guide include:

< > Indicates that words or characters enclosed in angular
brackets symbolize a program code parameter or an
GPIB command.

::= "is defined as." <A>::= indicates that <A> can be replaced by
in any statement containing <A>.

| "or" Indicates a choice of one element from a list. For
example, <A> | indicates <A> or but not both.

... Indicates that the element preceding the ellipses may
be repeated one or more times.

[] Indicates that the bracketed items are optional.

{ } Indicates that when items are enclosed by braces,
one, and only one of the elements may be selected.

{N,..,P} Indicates selection of one integer between N and P
inclusive.

Suffix Multipliers

The following suffix multipliers are available for arguments.

EX :: = 1E18 M :: = 1E-3

PE :: = 1E15 U :: = 1E-6

T :: = 1E12 N :: = 1E-9

G :: = 1E9 P :: = 1E-12

MA :: = 1E6 F :: = 1E-15

K :: = 1E3 A :: = 1E-18

For more information regarding specific commands or queries, please refer to
the online Agilent 54600-Series Oscilloscopes Programmer’s Reference.

Programmer’s Quick Reference
Conventions

8–3

Commands and Queries

The following tables facilitate easy access to each command and query for
the Agilent 54600-Series Oscilloscopes. The commands and queries are
divided into separate categories with each entry alphabetized.

The arguments for each command list the minimum argument required. The
part of the command or query listed in uppercase letters refers to the short
form of that command or query. The long form is the combination of the
uppercase and lowercase letters.

These commands also show specific information about how the command
operates on a particular oscilloscope model. For additional information, refer
to the online Agilent 54600-Series Oscilloscopes Programmer’s Reference.

Programmer’s Quick Reference
Commands and Queries

8–4

Command Query Options and Query Returns

:ACQuire:COMPlete
 <complete_argument>

:ACQuire:COMPlete? <complete_argument> ::= 0 to 100; an integer in NR1 format

:ACQuire:COUNt
 <count_argument>

:ACQuire:COUNT? <count_argument> ::= 8, 64, or 256; an integer in NR1 format

n/a :ACQuire:POINts? For all models except 54615/16:
1 to 4000; an integer in NR1 format.

For the 54615/16:
1 to 5000; an integer in NR1 format.

n/a :ACQuire:SETup? ACQuire:TYPE{NORM | AVER | PEAK};
COUNt<count_argument>;

(8, 64, or 256; an integer in NR1 format);
POINts<points_argument>;

For all models except 54615/16:
1 to 4000; an integer in NR1 format.
For the 54615/16:
1 to 5000; an integer in NR1 format.

COMPlete<complete_argument>
0 to 100; an integer in NR1 format

:ACQuire:TYPE
 <acq_type>

:ACQuire:TYPE? <acq_type> ::= {NORMal | AVERage | PEAK}

:ASTore n/a n/a

:AUToscale n/a n/a

:BLANk
 <display>

n/a <display> ::=
{CHAN <n> | PMEM{1 | 2}} for the 54600/01/02/03/15/16
{CHAN <n> | PMEM{1 | 2} | EXTernal} for the 54610

<n> ::=
1 or 2; an integer in NR1 format for the 54600/03/10/15/16
1, 2, 3, or 4; an integer in NR1 format for the 54601/02

:CHANnel<n>:BWLimit
 {ON | OFF}

:CHANnel<n>:BWLimit? {ON | OFF}
<n> ::= 1 or 2; an integer in NR1 format

:CHANnel<n>:COUPling
 {AC | DC | GND}

:CHANnel<n>:COUPling? {AC | DC | GND}
<n> ::=

1 or 2; an integer in NR1 format for 54600/03/10/15/16
1, 2, 3 or 4; an integer in NR1 format for the 54601/02

:CHANnel<n>:INPut
 {FIFTy | ONEMeg}

:CHANnel<n>:INPut? {FIFTy | ONEMeg}
<n> ::= 1 or 2; an integer in NR1 format

:CHANnel<n>:INVert
 {ON | OFF}

:CHANnel<n>:INVert? {ON | OFF}
<n> ::= 1 or 2; an integer in NR1 format

:CHANnel:MATH
 {OFF | PLUS | SUBTract}

:CHANnel:MATH? {OFF | PLUS | SUBTract}

:CHANnel<n>:OFFSet
 <offset_argument>

:CHANnel<n>:OFFSet? <offset_argument> ::= offset value in volts in <NR3> format.
<n> ::=

1 or 2; an integer in NR1 format for 54600/03/10/15/16
1, 2, 3 or 4; an integer in NR1 format for the 54601/02

:CHANnel<n>:PMODe
 {AUTo | MANual}

:CHANnel<n>:PMODe? {AUT | MAN}
<n> ::= 1 or 2; an integer in NR1 format

Programmer’s Quick Reference
Commands and Queries

8–5

Command Query Options and Query Returns

:CHANnel<n>:PROBe
 <attenuation>

:CHANnel<n>:PROBe? <attenuation> ::=
X1, X10, X100 for 51600/01/02/03
X1, X10, X20, X100 for the 54610/15/16

<n> ::=
1 or 2; an integer in NR1 format for 54600/03/10/15/16
1, 2, 3 or 4; an integer in NR1 format for the 54601/02

:CHANnel<n>:PROTect
 {OFF | ON}

:CHANnel<n>:PROTect? {OFF | ON}
<n> ::= 1 or 2; an integer in NR1 format

:CHANnel<n>:RANGe
 <range_argument>

:CHANnel<n>:RANGe? <range_argument> ::= Full-scale range value for channels 1 or 2 in
NR3 format, and {LOW | HIGH} for channels 3 or 4.

n/a :CHANnel<n>:SETup? For 54600/01/02/03 channels 1 and 2:
CHANnel<n>:RANGe <range>; OFFSet <offset>; COUPling {AC | DC |
GND}; BWLimit {ON | OFF}; INVert {ON | OFF}; VERNier {ON | OFF};
PROBe {X1 | X10 | X100}

For 54610/15/16 channel 1:
CHANnel1:RANGe <range>; OFFSet <offset>; COUPling {AC | DC |
GND}; BWLimit {ON | OFF}; INVert {ON | OFF}; VERNier {ON | OFF};
PROBe {X1 | X10 | X20 | X100}; PMODe {AUT | MAN}; INPut {FIFTy |
ONEMeg}; PROTect {OFF | ON}

For 54610/15/16 channel 2:
CHANnel2:RANGe <range>; OFFSet <offset>; COUPling {AC | DC |
GND}; BWLimit {ON | OFF}; INVert {ON | OFF}; VERNier {ON | OFF};
PROBe {X1 | X10 | X20 | X100}; PMODe {AUT | MAN}; INPut {FIFTy |
ONEMeg}; PROTect {OFF | ON}; SKEW <skew_value>

For 54601/02 channels 3 or 4:
CHANnel<n>:RANGe {HIGH | LOW}; OFFSet <offset>; COUPling {DC |
GND}; PROBe {X1 | X10 | X100}

:CHANnel2:SKEW
 <skew_argument>

:CHANnel2:SKEW? <skew_argument> ::= the skew value in seconds in <NR3> format

:CHANnel<n>:VERNier
 {ON | OFF}

:CHANnel<n>:VERNier? {ON | OFF}

*CLS n/a n/a

:DIGitize
 CHANnel<n>,
[CHANnel<n>]

n/a n/a

:DITHer
 {ON | OFF}

:DITHer? {ON | OFF}

:DISPLAY:COLumn
 <number>

:DISPLAY:COLumn? <number> ::= 0 through 63; an integer in NR1 format

:DISPlay:CONNect
 {ON | OFF}

:DISPlay:CONNect? {ON | OFF}

:DISPlay:DATA
 <binary block_data>

:DISPlay:DATA? <binary block_data> ::= 16256 bytes of data in IEEE 488.2 # format

Programmer’s Quick Reference
Commands and Queries

8–6

Command Query Options and Query Returns

:DISPlay:GRID
 {ON | OFF | SIMPle | TV}

:DISPlay:GRID? {ON | OFF | SIMPle | TV}

:DISPlay:INVerse
 {ON | OFF}

:DISPlay:INVerse? {ON | OFF}

:DISPlay:LINE
<string>

n/a <string> ::= any series of ASCII characters enclosed in quotation marks

:DISPlay:PALette
<palette_number>

:DISPlay:PALette? <palette_number> ::= 0 through 6; an integer in NR1 format

:DISPlay:PIXel
<x>, <y>, <intensity>

:DISPlay:PIXel? <x>,<y> For 54616C:
<x> ::= x coordinate of the pixel to be set; an integer (0 to 500) in NR1

format
<y> ::= y coordinate of the pixel to be set; an integer (0 to 275) in NR1

format
<intensity> (comand) ::= an integer in NR1 format:

0 to clear pixel
1 to light pixel in autostore plane
2 to light pixel in graticule plane

<intensity> (query) ::= an integer in NR1 format:
0 for pixel off
1 for autostore and any text on
2 for any waveforms on
3 for autostore and any text on, and any waveform on

For all other models:
<x> ::= x coordinate of the pixel to be set; an integer (0 to 511) in NR1

format
<y> ::= y coordinate of the pixel to be set; an integer (0 to 303) in NR1

format
<intensity> (command) ::= an integer in NR1 format:

0 to clear pixel
1 for half-bright
2 for full-bright
other value to clear pixel

<intensity> (query) ::= an integer in NR1 format:
0 for pixel off
1 for pixel with half-bright on
2 for pixel with full-bright on
3 for pixel with both half-bright and full-bright on

:DISPlay:ROW
 <row number>

:DISPlay:ROW? <row number> ::= 1...20; an integer in NR1 format

Programmer’s Quick Reference
Commands and Queries

8–7

Command Query Options and Query Returns

n/a :DISPlay:SETup? :DISPlay:ROW <row_number>;
<row_number> ::= 1...20; an integer in NR1 format

COLumn <column_number>;
<column_number> ::= 0...63; an integer in NR1 format

INVerse <inverse>;
<inverse> ::= {ON | OFF}

GRID <grid>;
<grid> ::= {ON | OFF}

SOURce <source>;
<source> ::= {PMEMory1 | PMEMory2}

CONNect <connect_status>
<connect_status> ::= {ON | OFF}

PALette <palette_number> (54616C only)
<palette_number> ::= 0...6; an integer in NR1 format

:DISPlay:SOURce
 <value>

:DISPlay:SOURce? <value> ::= {PMEMory1 | PMEMory2}

:DISPlay:TEXT BLANk n/a n/a

:ERASe
 <value>

n/a <value> ::= {PMEMory1 | PMEMory2}

*ESE
 <mask_argument>

*ESE? <mask_argument> ::= 0...255; an integer in NR1 format

Bit Weight Enables
7 128 NOT USED
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Error
1 2 TRG - Trigger Query
0 1 OPC - Operation Complete

n/a *ESR? <status> ::= 0...255; an integer in NR1 format

:EXTernal:COUPling
 {DC | AC | GND}

:EXTernal:COUPling? {DC | AC | GND}

:EXTernal:INPut
 {FIFTy | ONEMEG}

:EXTernal:INPut? {FIFTy | ONEMEG}

:EXTernal:OFFSet
 <offset_argument>

:EXTernal:OFFSet? <offset_argument> ::= offset value in volts in NR3 format

:EXTernal:PMODe
 {AUTo | MANual}

:EXTernal:PMODe? {AUTo | MANual}

:EXTernal:PROBe
 <attenuation>

:EXTernal:PROBe? <attenuation> ::= {X1 | X10 | X20 | X100} for the 54610/15/16

:EXTernal:PROTect
 {OFF | ON}

:EXTernal:PROTect? {OFF | ON}

Programmer’s Quick Reference
Commands and Queries

8–8

Command Query Options and Query Returns

n/a :EXTernal:SETup? For the 54610:
EXTernal:OFFSet <offset_value>; COUPling {DC | AC | GND};
PROBe {X1 | X10 | X20 | X100}; PMODe {AUTo | MANual};
INPut {FIFTy | ONEMeg}; PROTect {OFF | ON}; SKEW <skew_value>

For the 54615/16:
EXTernal:COUPling {DC | AC | GND}; PROBe {X1 | X10 | X20 | X100};
PMODe {AUTo | MANual}; INPut {FIFTy | ONEMeg}; PROTect {OFF | ON}

:EXTernal:SKEW
 <skew_value>

:EXTernal:SKEW? <skew_value> ::= external trigger skew value in seconds in NR3 format

:FUNCtion2:CENTer
 <frequency>

:FUNCtion2:CENTer? <frequency> ::= the current center frequency in NR3 format.
The range of legal values is from 0 Hz to 10.00 GHz.

:FUNCtion2:MOVE
 {LEFT)

n/a n/a

:FUNCtion<N>:OFFSet
 <offset>

:FUNCtion<N>:OFFSet? <offset> ::= the value at center screen in NR3 format.
The range of legal values is +-10 times the current sensitivity of the
selected function.

<N> ::= 1 or 2

:FUNCtion<N>:OPERation
 <operation>

:FUNCtion<N>:OPERation? <operation> ::=
{ADD | SUBTract | MULTiply} for :FUNCtion1:OPERation
{INTegrate | DIFFerentiate | FFT} for :FUNCtion2:OPERation

<N> ::= 1 or 2

n/a :FUNCtion2:PEAKs?
{FREQ1 | DB1 | FREQ2 |
DB2}

<measurement> ::= {FREQ1 | DB1 | FREQ2 | DB2}.
The measurement is the value of the peak specified in NR3 format.

:FUNCtion<N>:RANGe
 <range>

:FUNCtion<N>:RANGe? <range> ::= the full-scale vertical axis value in NR3 format.
The range for FUNCtion1 is 8E-6 to 8E+6.
The range for the INTegrate function is 8E-9 to 400E+3.
The range for the DIFFerentiate function is 8E-6 to 1.6E11.
The range for the FFT function is 8 to 400 dB/div.

<N> ::= 1 or 2

:FUNCtion2:REFerence
 <level>

:FUNCtion2:REFerence? <level> ::= the current reference level in NR3 format.
The range of legal values is from -160.0 dBV to +240.0 dBV in
increments of 2.5 dBV.

:FUNCtion2:SOURce
 {CHANnel1 | CHANnel2 |
FUNCtion1}

:FUNCtion2:SOURce? {CHANnel1 | CHANnel2 | FUNCtion1}.
The current reference level value is in NR3 format. The range of
legal values is from -160.0 dBV to +240.0 dBV in increments of 2.5 dBV.

:FUNCtion2:SPAN

:FUNCtion2:SPAN? ::= the current frequency span in NR3 format.
Legal values are 1.221 Hz to 9.766 Ghz

:FUNCtion<N>:VIEW
 {ON | OFF}

:FUNCtion<N>:VIEW? {ON | OFF}
<N> ::= 1 or 2

:FUNCtion2:WINDow
 {RECTangular | HANNing |
 FLATtop | EXPonent}

n/a {RECTangular | HANNing | FLATtop | EXPonent}

Programmer’s Quick Reference
Commands and Queries

8–9

Command Query Options and Query Returns

n/a *IDN? HEWLETT-PACKARD,<model>, 0, X.X
<model> ::= the model number of the instrument
<X.X> ::= the software revision of the instrument

n/a *LRN? <learn_string> ::= a maximum of 218 bytes of data in IEEE 488.2 # format

:MASK:CREATe n/a n/a

:MASK:DATA :MASK:DATA? <header> ::= block header that contains the ASCII characters
#8000998

and is sent prior to the data.
<mask_data> ::= 998 bytes of data that represent the currently
selected

mask template.

:MASK:DESTination
 {TRACe | PRINter}

:MASK:DESTination? {TRACe | PRINter}

:MASK:FAILmode
 {IN | OUT}

:MASK:FAILmode? {IN | OUT}

:MASK:INCRement
 {ON | OFF}

:MASK:INCRement? {ON | OFF}

:MASK:NUMBer
 <number>

:MASK:NUMBer? <number> ::= memory (1 or 2)

:MASK:POSTfailure
 {RUN | STOP}

:MASK:POSTfailure? {RUN | STOP}

:MASK:SAVE
 {ON | OFF}

:MASK:SAVE? {ON | OFF}

n/a :MASK:STATistics? <compares, failures, failure %> ::=
current number of mask tests performed
number of failures detected
percentage of failures

:MASK:TEST
 {ON | OFF}

:MASK:TEST? {ON | OFF}

:MASK:TOLerance
 <value>

:MASK:TOLerance? <value> ::= the tolerance used when creating a mask template.
The entered value can be from 0.00 to 20.0 percent.

n/a :MEASure:ALL? <value list> ::=
<FREQ result>, <PERIOD result>, <+ WID result>, <- WID result>,
<RISE result>, <FALL result>, <VPP result>, <DUTY CYCLE result>,
<VRMS result>, <VMAX result>, <VMIN result>, <VTOP result>,
<VBASE result>, <VAVG result>, <VAMP result>, <Vovershoot result>,
<Vpreshoot result>

<result> ::= individual measurement results in NR3 format

:MEASure:DEFine DELay
 <edge1>,<edge2>

:MEASure:DEFine? DELay <edgeN> ::= the edge selection for channels 1 and 2.
N is the selected edge number (1 to 5).

:MEASure:DELay :MEASure:DELay? <return_value> ::= floating point number delay time in seconds in NR3
format

:MEASure:DUTYcycle :MEASure: DUTYcycle? <return_value> ::= ratio of positive pulse width to period in NR3 format

Programmer’s Quick Reference
Commands and Queries

8–10

Command Query Options and Query Returns

:MEASure:FALLtime :MEASure:FALLtime? <return_value> ::= time in seconds between the 10% and 90% voltage
levels in NR3 format

:MEASure:FREQuency :MEASure:FREQuency? <return_value> ::= frequency in Hertz in NR3 format

:MEASure:LOWer
 <voltage>

:MEASure:LOWer? <voltage> ::= the user-defined lower threshold in volts in NR3 format

:MEASure:NWIDth :MEASure:NWIDth? <return_value> ::= negative pulse width in seconds in NR3 format

:MEASure:OVERshoot :MEASure:OVERshoot? <voltage> ::= the percent of the overshoot of the selected waveform in
NR3 format

:MEASure:PERiod :MEASure:PERiod? <return_value> ::= waveform period in seconds in NR3 format

:MEASure:PHASe :MEASure:PHASe? <return_value> ::= the phase angle value in degrees in NR3 format

:MEASure:PREShoot :MEASure:PREShoot? <return_value> ::= the percent of preshoot of the selected waveform in
NR3 format

:MEASure:PSTArt
 <value>

:MEASure:PSTArt? <value> ::= the relative position of time marker 1 in degrees in NR3
format

:MEASure:PSTOp
 <value>

:MEASure:PSTOp? <value> ::= the relative position of time marker 2 in degrees in NR3
format

:MEASure:PWIDth :MEASure:PWIDth? <return_value> ::= width of positive pulse in seconds in NR3 format

:MEASure:RISEtime :MEASure: RISEtime? <return_value> ::= rise time in seconds in NR3 format

:MEASure:SCRatch n/a n/a

:MEASure:SET100 n/a n/a

:MEASure:SET360 n/a n/a

:MEASure:SHOW
 {ON | OFF}

:MEASure:SHOW? {ON | OFF}

:MEASure:SOURce
CHANnel <n>

:MEASure:SOURce? <n> ::=
1 or 2; an integer in NR1 format for 54600/03/10/15/16
1, 2, 3 or 4; an integer in NR1 format for the 54601/02

n/a :MEASure:TDELta? <return_value> ::= time difference in seconds between start and stop
markers in NR3 format

:MEASure:THResholds
 {T1090 | T2080 | VOLTage}

:MEASure:THResholds? {T1090 | T2080 | VOLTage}

:MEASure:TSTArt
 <value>

:MEASure:TSTArt? <value> ::= time at the start marker in seconds in NR3 format

:MEASure:TSTOp
 <value>

:MEASure:TSTOp? <value> ::= time at the stop marker in seconds in NR3 format

n/a :MEASure:TVOLt
 <tvolt_argument>,
<slope><occurrence>

<tvolt_argument> ::= positive or negative voltage level that the
waveform

 must cross.
<slope> ::= direction of the waveform when <tvolt_argument> is
crossed.
<occurrence> ::= number of crossings to be reported.
<return_value> ::= time in seconds of specified voltage crossing in
NR3 format

Programmer’s Quick Reference
Commands and Queries

8–11

Command Query Options and Query Returns

:MEASure:UPPer
 <voltage>

:MEASure:UPPer? <voltage> ::= the user-defined upper threshold in volts in NR3 format

:MEASure:VAMPlitude :MEASure:VAMPlitude? <return_value> ::= the amplitude of the selected waveform in volts in
NR3 format

:MEASure:VAVerage :MEASure:VAVerage? <return_value> ::= calculated average voltage in NR3 format

:MEASure:VBASe :MEASure:VBASe? <base_voltage> ::= voltage at the base of the selected waveform in
NR3 format

n/a :MEASure:VDELta? <return_value> ::= delta V value in volts in NR3 format

:MEASure:VMAX :MEASure:VMAX? <return_value> ::= maximum voltage of the selected waveform in NR3
format

:MEASure:VMIN :MEASure:VMIN? <return_value> ::= minimum voltage of the selected waveform in NR3
format

:MEASure:VPP :MEASure:VPP? <return_value> ::= voltage peak to peak in NR3 format

:MEASure:VPSTArt
 <value>

:MEASure:VPSTArt? <value> ::= the relative position of voltage marker 1 in percent in NR3
format

:MEASure:VPSTOp
 <value>

:MEASure:VPSTOp? <value> ::= the relative position of voltage marker 2 in percent in NR3
format

:MEASure:VRMS :MEASure:VRMS? <return_value> ::= calculated dc RMS voltage in NR3 format

:MEASURE:VSTArt
 <vstart_argument>

:MEASure:VSTArt? <vstart_argument> ::= voltage value for VMarker 1 in NR3 format
<return_value> ::= voltage at VMarker 1 in NR3 format

:MEASure:VSTOp
 <vstop_argument>

:MEASure:VSTOp? <vstop_argument> ::= voltage value for VMarker 2 in NR3 format
<return_value> ::= voltage at VMarker 2 in NR3 format

n/a :MEASure:VTIMe
 <vtime_argument>

<vtime_argument> ::= displayed time from trigger in seconds in NR3
format
<return_value> ::= voltage at the specified time in NR3 format

:MEASure:VTOP :MEASure:VTOP? <return_value> ::= voltage at the top of the waveform in NR3 format

Programmer’s Quick Reference
Commands and Queries

8–12

Command Query Options and Query Returns

:MENU
<integer>

:MENU? <integer> ::= the following:
Menu Number
No menu selected 0
Channel 1 1
Channel 2 2
Channel 3 (54601/02) 3
External Trigger (54610/15/16) 3
Channel 4 (54601/02) 4
Math 5
Trigger source 6
Trigger mode 7
Trigger slope 8
Main/delayed (horizontal) 9
Time measurements 10
Voltage measurements 11
Cursors 12
Trace 13
Setup 14
Display 15
Utility/Print 16

:MERGe
<pixel memory>

n/a <pixel memory> ::= {PMEMory1 | PMEMory2}

*OPC *OPC? ASCII "1" is placed in the output queue when all pending device
operations have completed.

n/a *OPT? n identifies the module and option pairing.
X.X identifies the module software revision.

Module: No Opt. 005 With Opt. 005
Basic Interface 0,X.X 50,X.X
Test Automation 1,X.X 51,X.X
Measurement/Storage 2,X.X 52,X.X

n/a :PRINt? [enhancement] [enhancement] ::= [HIRes [,PCLColor]]
HIRes ::= contains both half-bright and full-bright display information
PCLColor ::= color DeskJet selection only on 54616C

*RCL
 <value>

n/a <value> ::= {1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 }

*RST n/a See reset values in the online Programmer’s Reference.

:RUN n/a n/a

*SAV
 <value>

n/a <value> ::= {1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 }

:SEQuence:NEXT n/a n/a

:SEQuence:PREVious n/a n/a

:SEQuence:PROTect
 {ON | OFF}

:SEQuence:PROTect? <protect> ::= {ON | OFF}, which reports the status of the protection.

:SEQuence:RESet n/a n/a

Programmer’s Quick Reference
Commands and Queries

8–13

Command Query Options and Query Returns

:SEQuence:SETup
 {MASK | STEP}, <number>,
 <header> <setup_string>

:SEQuence:SETup?
{MASK | STEP}, <number>

MASK ::= an individual mask sent to the setup string.
STEP ::= an individual step sent to the setup string.
<number> ::= the mask number or step number sent to the setup string.
<header> ::= the type of setup to be sent or returned:

For individual masks, ::= #800001000.
For individual steps, ::= #800000244.
For whole sequences, ::= #800064122.

<setup_string> ::= the setup string to be sent:
For individual masks, := 1000-byte string.
For individual steps, ::= 244-byte string.
For whole sequences, ::= 64122-byte string.

:SEQuence:STEP
 <number>

:SEQuence:STEP? <number> ::= an integer from 1 to 100 in NR1 format

n/a :SEQuence:TEST? <result> ::= an integer from 0 to 3 in NR1 format:
0 = pass
1 = fail minimum limit line
2 = fail maximum limit line
3 = fail both minimum and maximum limit lines

*SRE
<mask>

*SRE? <mask> ::= sum of all bits that are set, 0,...,255; an integer in NR1
format. <mask> ::= following values:

Bit Weight Enables
7 128 Not Used
6 64 RQS - Request Service
5 32 ESB - Event Status Bit
4 16 MAV - Message Available
3 8 Not used
2 4 Not used
1 2 Not used
0 1 Not used

n/a :STATus?
<display>

{ON | OFF}
<display> ::=

{CHANnel <n> | PMEMory{1 | 2}} for the 54600/01/02/03/15/16
{CHANnel <n> | PMEMory{1 | 2} | EXTernal} for the 54610

<n> ::=
1 or 2; an integer in NR1 format for the 54600/03/10/15/16
1, 2, 3, or 4; an integer in NR1 format for the 54601/02

n/a *STB? <value> ::= 0,...,255; an integer in NR1 format, as shown in the following:

Bit Weight Name Condition
7 128 ---- NOT USED
6 64 RQS/MS 0 = instrument has no reason for service

1= instrument is requesting service
5 32 ESB 0 = no event status conditions occurred

1 = enabled event status condition occurred
4 16 MAV 0 = no output messages are ready

1 = an output message is ready
3 8 ---- 0 = not used
2 4 ---- 0 = not used
1 2 ---- 0 = not used
0 1 ---- 0 = not used

Programmer’s Quick Reference
Commands and Queries

8–14

Command Query Options and Query Returns

:STOP n/a n/a

:SYSTem:DSP
 <string>

n/a <string> ::= quoted ASCII string

n/a :SYSTem:ERRor? <error> ::= an integer error code
See error values in the online Programmer’s Reference.

:SYSTem:KEY
 <key_code>

:SYSTem:KEY? <key_code> ::= -1 to 16, or 19 to 50; an integer
See key code values in the online Programmer’s Reference.

:SYSTem:LOCK
<value>

:SYSTem:LOCK? <value> ::= {ON | OFF}

:SYSTem:SETup
 <setup_data>

:SYSTem:SETup? <setup_data> ::= a maximum of 218 bytes of data in IEEE 488.2 # format.

n/a :TER? <return_value> ::= 0 or 1

:TIMebase:DELay
 <delay_value>

:TIMebase:DELay? <delay_value> ::= time from trigger to display reference in seconds.
The display reference is left or center in NR3 format.

:TIMebase:MODE
 <value>

:TIMebase:MODE? <value> ::= {NORMal | DELayed | XY | ROLL}

:TIMebase:RANGe
 <range_value>

:TIMebase:RANGe? <range_value> ::= the following values in NR3 format:
50 ns through 50 s for 54603
20 ns through 50 s for 54600/01/02
10 ns through 50 s for 54610/15/16

:TIMebase:REFerence
 {LEFT | CENTer}

:TIMebase:REFerence? <return_value> ::= {LEFT | CENTer} for Normal or Delayed modes.
<return_value> ::= {CENTer | RIGHt} for ROLL mode.

n/a :TIMebase:SETup? For all models except the 54615/16:
TIMebase:MODE {NORM | DEL | XY};RANGe <range>;
DELay <delay>;REF {LEFT | CENT};VERN {ON | OFF}

For the 54615/16:
TIMebase:MODE {NORM | DEL | XY};RANGe <range>;
DELay <delay>;REF {LEFT | CENT}

<range> ::= the following values in NR3 format:
50 ns through 50 s for 54603
20 ns through 50 s for 54600/01/02
10 ns through 50 s for 54610/15/16

<delay> ::= time from trigger to delay reference in seconds in NR3
format

:TIMebase:VERNier
 {ON | OFF}

:TIMebase:VERNier? {ON | OFF}

:TRACe:CLEAR
 <N>

n/a <N> ::= the trace memory number (1 to 100)

:TRACe:DATA
 <N>,<trace_data>

:TRACe:DATA? <N> <N> ::= the trace memory number (1 to 100).
<header> ::= the 10-byte block header that contains the ASCII
characters

#8000nnnnn and is sent prior to the data. (nnnnn is the number of
bytes in the data string.)

<trace_data> ::= a maximum of 16,342 bytes of data, setup, and label
 information that represents the current trace.

Programmer’s Quick Reference
Commands and Queries

8–15

Command Query Options and Query Returns

:TRACe:MODE
 <N> {ON | OFF}

:TRACe:MODE? <N> <N> ::= 1 to 100
<return_state> ::= {ON | OFF}

:TRACe:SAVE
 <N>

n/a <N> ::= the trace memory number (1 to 100).

*TRG n/a n/a

:TRIGger:COUPling
 {AC | DC}

:TRIGger:COUPling? {AC | DC}

:TRIGger:FIELd
 {ALTernate | ONE | TWO |
 VERTical}

:TRIGger:FIELd? {ALTernate | ONE | TWO | VERTical}

:TRIGger:HOLDoff
 <holdoff_time>

:TRIGger:HOLDoff? <holdoff_time> ::= the holdoff time value in seconds in NR3 format.

:TRIGger:LEVel
 <level_argument>

:TRIGger:LEVel? <return_value> ::= the trigger level in volts in NR3 format.

:TRIGger:LINE
 <line_number>

:TRIGger:LINE? <line_number> ::= integer in NR1 format.

:TRIGger:MODE
 {AUTLevel | AUTO |
 NORMal | SINGle | TV}

:TRIGger:MODE? {AUTLevel | AUTO | NORMal | SINGle | TV}

:TRIGger:NREJect
 {OFF | ON}

:TRIGger:NREJect? {OFF | ON}

:TRIGger:OPTMode
 {LINE | FIELD1 | FIELD2 |
VERTical |
 ALLLINES | ALLFLDS}

:TRIGger:OPTMode? {LINE | FIELD1 | FIELD2 | VERTical | ALLLINES | ALLFLDS}

:TRIGger:POLarity
 {POSitive | NEGative}

:TRIGger:POLarity? {POS | NEG}

:TRIGger:REJect
 {OFF | LF | HF}

:TRIGger:REJect? {OFF | LF | HF}

n/a :TRIGger:SETup? TRIG:MODE {AUTL | AUTO | NORM | SING | TV}; SOURCE <source>;
LEVEL <level>; HOLD <time>; SLOPE {POS | NEG}; COUP {AC | DC};
REJ {OFF | LF | HF}; NREJ {ON | OFF}; POL {POS | NEG}; TVMODE
<tvmode>;
TVHF {ON | OFF}

<level> ::= trigger level in volts in NR3 format
<time> ::= holdoff time value in seconds in NR3 format
<source> ::=

{CHAN{1 | 2} | EXT | LINE} for 54600/03/10/15/16
{CHAN{1 | 2 | 3 | 4} | LINE} for 54601/02

<tvmode>::=
{FIELD1 | FIELD2 | LINE} for 54600/01/03
{FIELD1 | FIELD2 | LINE | VERT} for 54602/10/15/16

:TRIGger:SLOPe
 {NEGative | POSitive}

:TRIGger:SLOPe? {NEG | POS}

Programmer’s Quick Reference
Commands and Queries

8–16

Command Query Options and Query Returns

:TRIGger:SOURce
 <source>

:TRIGger:SOURce? <source> ::=
{CHANnel1 | CHANnel2 | EXTernal | LINE} for 54600/03/10/15/16
{CHANnel1 | CHANnel2 | CHANnel3 | CHANnel4} for 54601/02

:TRIGger:STANdard
 {GENeric | NTSC | PAL |
 PALM | SECam}

:TRIGger:STANdard? {GENeric | NTSC | PAL | SECam}

:TRIGger:TVHFrej
 {OFF | ON}

:TRIGger:TVHFrej? {OFF | ON}

:TRIGger:TVMode
 <mode>

:TRIGger:TVMode? <mode> ::=
{LINE | FIELD1 | FIELD2} for 54600/01/03/15/16
{LINE | FIELD1 | FIELD2 | VERTical} for 54602/10

:TRIGger:VIR
 {ON | OFF}

:TRIGger:VIR? {ON | OFF}

n/a *TST? <result> ::= 0 or non-zero value; an integer in NR1 format
0 indicates the test passed.
Non-zero indicates the test failed.

:VAUToscale n/a n/a

:VIEW
 <display>

n/a <display> ::=
{CHANnel <n> | PMEMory{1 | 2}} for the 54600/01/02/03/15/16
{CHANnel <n> | PMEMory{1 | 2} | EXTernal} for the 54610

<n> ::=
1 or 2; an integer in NR1 format for the 54600/03/10/15/16
1, 2, 3, or 4; an integer in NR1 format for the 54601/02

*WAI n/a n/a

:WAVeform:BYTeorder
 <value>

:WAVeform:BYTeorder? <value> ::= {LSBFirst | MSBFirst}

:WAVeform:DATA
<binary block data in #
format>

:WAVeform:DATA? <binary block length bytes>, <binary data>

For example, to transmit 4000 bytes of data, the syntax would be:
#800004000<4000 bytes of data><NL>

8 is the number of digits that follow
00004000 is the number of bytes to be transmitted
<4000 bytes of data> is the actual data

:WAVeform:FORMat
 <value>

:WAVeform:FORMat? <value> ::= {ASC | WORD | BYTE}

:WAVeform:POINts
 <value>

:WAVeform:POINts? <value> ::= integer {100 | 200 | 250 | 400 | 500 | 800 | 1000 | 2000 | 4000 |
5000}
in NR1 format

Programmer’s Quick Reference
Commands and Queries

8–17

Command Query Options and Query Returns

n/a :WAVeform:PREamble? <preamble_block> ::= <format NR1>, <type NR1>, <points NR1>,
<count NR1>, <xincrement NR3>, <xorigin NR3>, <xreference NR1>,
<yincrement NR3>, <yorigin NR3>, <yreference NR1>

<format> ::= an integer in NR1 format:
0 for ASCii format
1 for BYTE format
2 for WORD format

<type> ::= an integer in NR1 format:
0 for AVERage type
1 for NORMal type
2 for PEAK detect type

<count> ::= an integer in NR1 format:
1, always 1 and is present for compatibility

:WAVeform:SOURce
 CHANnel <n>

:WAVeform:SOURce? <n> ::=
{1 | 2} for the 54600/03/10/15/16
{1 | 2 | 3 | 4} for the 54601/02

n/a :WAVeform:TYPE? <return_mode> ::= {NORMal | PEAK | AVERage}

n/a :WAVeform:XINCrement? <return_value> ::= x-increment in the current preamble in NR3 format

n/a :WAVeform:XORigin? <return_value> ::= x-origin value in the current preamble in NR3 format

n/a :WAVeform:XREFerence? <return_value> ::= x-reference value in the current preamble in NR1
format

n/a :WAVeform:YINCrement? <return_value> ::= y-increment value in the current preamble in NR3
format

n/a :WAVeform:YORigin? <return_value> ::= y-origin in the current preamble in NR3 format

n/a :WAVeform:YREFerence? <return_value>::= y-reference value in the current preamble in NR1
format

Programmer’s Quick Reference
Commands and Queries

8–18

H.3 MUX

413

��������	�
���������

SCPI Command Summary

The following conventions are used for SCPI command syntax for remote
interface programming:

• Square brackets ([]) indicate optional keywords or parameters.

• Braces ({ }) enclose parameter choices within a command string.

• Triangle brackets (< >) enclose parameters for which you must
substitute a value.

• A vertical bar (|) separates multiple parameter choices.

Rules for Using a Channel List

Many of the SCPI commands for the 34970A include a scan_list or ch_list
parameter which allow you to specify one or more channels. The channel
number has the form (@scc), where s is the slot number (100, 200, or 300) and
cc is the channel number. You can specify a single channel, multiple channels,
or a range of channels as shown below.

• The following command configures a scan list to include only channel 10
on the module in slot 300.

 ROUT:SCAN (@310)

• The following command configures a scan list to include multiple
channels on the module in slot 200. The scan list now contains only
channels 10, 12, and 15 (the scan list is redefined each time you send a
new ROUTe:SCAN command).

 ROUT:SCAN (@210,212,215)

• The following command configures a scan list to include a range of
channels. When you specify a range of channels, the range may contain
invalid channels (they are ignored), but the first and last channel in the
range must be valid. The scan list now contains channels 5 through 10
(slot 100) and channel 15 (slot 200).

 ROUT:SCAN (@105:110,215)

Note to Writer: Scale PDF file to 85% (printer setting for LJet 4)

Final Cut Size: 5.5 x 8.5 inches

��������������������������������������� ���

 Scan Measurement Commands

(see page 226 in the User’s Guide)

MEASure
 :TEMPerature? {TCouple|RTD|FRTD|THERmistor|DEF}
 ,{<type>|DEF}[,1[,{<resolution>|MIN|MAX|DEF}]] ,(@<scan_list>)
 :VOLTage:DC? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :VOLTage:AC? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :RESistance? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :FRESistance? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :CURRent:DC? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :CURRent:AC? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :FREQuency? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :PERiod? [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
 :DIGital:BYTE? (@<scan_list>)
 :TOTalize? {READ|RRESet} ,(@<scan_list>)

 Monitor Commands

(see page 237 in the User’s Guide)

ROUTe
 :MONitor (@<channel>)
 :MONitor?

ROUTe
 :MONitor:STATe {OFF|ON}
 :MONitor:STATe?

ROUTe:MONitor:DATA?

 Scan Statistics Commands

(see page 233 in the User’s Guide)

CALCulate
 :AVERage:MINimum? [(@<ch_list>)]
 :AVERage:MINimum:TIME? [(@<ch_list>)]
 :AVERage:MAXimum? [(@<ch_list>)]
 :AVERage:MAXimum:TIME? [(@<ch_list>)]
 :AVERage:AVERage? [(@<ch_list>)]
 :AVERage:PTPeak? [(@<ch_list>)]
 :AVERage:COUNt? [(@<ch_list>)]
 :AVERage:CLEar [(@<ch_list>)]

DATA:LAST? [<num_rdgs>,][(@<channel>)]

 This command redefines the scan list when executed.
 Default parameters are shown in bold.

2

 Scan Configuration Commands

(see page 226 in the User’s Guide)

ROUTe
 :SCAN (@<scan_list>)
 :SCAN?
 :SCAN:SIZE?

TRIGger
 :SOURce {BUS|IMMediate|EXTernal|ALARm1|ALARm2|ALARm3|ALARm4|TIMer}
 :SOURce?

TRIGger
 :TIMer {<seconds>|MIN|MAX}
 :TIMer?

TRIGger
 :COUNt {<count>|MIN|MAX|INFinity}
 :COUNt?

ROUTe
 :CHANnel:DELay <seconds>[,(@<ch_ list>)]
 :CHANnel:DELay? [(@<ch_list>)]
 :CHANnel:DELay:AUTO {OFF|ON}[,(@<ch_list>)]
 :CHANnel:DELay:AUTO? [(@<ch_list>)]

FORMat
 :READing:ALARm {OFF|ON}
 :READing:ALARm?
 :READing:CHANnel {OFF|ON}
 :READing:CHANnel?
 :READing:TIME {OFF|ON}
 :READing:TIME?
 :READing:UNIT {OFF|ON}
 :READing:UNIT?

FORMat
 :READing:TIME:TYPE {ABSolute|RELative}
 :READing:TIME:TYPE?

ABORt

INITiate

READ?

 Scan Memory Commands

(see page 235 in the User’s Guide)

DATA:POINts?

DATA:REMove? <num_rdgs>

SYSTem:TIME:SCAN?

FETCh?

R? [<max_count>]

 This command redefines the scan list when executed.
 This command applies to all channels in the instrument (Global setting).

 Default parameters are shown in bold.

3

 Scanning With an External Instrument

(see page 239 in the User’s Guide)

ROUTe
 :SCAN (@<scan_list>)
 :SCAN?
 :SCAN:SIZE?

TRIGger
 :SOURce {BUS|IMMediate|EXTernal|TIMer}
 :SOURce?

TRIGger
 :TIMer {<seconds>|MIN|MAX}
 :TIMer?

TRIGger
 :COUNt {<count>|MIN|MAX|INFinity}
 :COUNt?

ROUTe
 :CHANnel:DELay <seconds>[,(@<ch_ list>)]
 :CHANnel:DELay? [(@<ch_list>)]

ROUTe
 :CHANnel:ADVance:SOURce {EXTernal|BUS|IMMediate}
 :CHANnel:ADVance:SOURce?

ROUTe
 :CHANnel:FWIRe {OFF|ON}[,(@<ch_list>)]
 :CHANnel:FWIRe? [(@<ch_list>)]

INSTrument
 :DMM {OFF|ON}
 :DMM?
 :DMM:INSTalled?

 This command redefines the scan list when executed.
 This command applies to all channels in the instrument (Global setting).

 Default parameters are shown in bold.

4

 Temperature Configuration Commands

(see page 219 in the User’s Guide)

CONFigure
 :TEMPerature {TCouple|RTD|FRTD|THERmistor|DEF}
 ,{<type>|DEF}[,1[,{<resolution>|MIN|MAX|DEF}]] ,(@<scan_list>)
CONFigure? [(@<ch_list>)]

UNIT
 :TEMPerature {C|F|K}[,(@<ch_list>)]
 :TEMPerature? [(@<ch_list>)]

[SENSe:]TEMPerature:TRANsducer
 :TYPE {TCouple|RTD|FRTD|THERmistor|DEF}[,(@<ch_list>)]
 :TYPE? [(@<ch_list>)]

[SENSe:]TEMPerature:TRANsducer
 :TCouple:TYPE {B|E|J|K|N|R|S|T}[,(@<ch_list>)]
 :TCouple:TYPE? [(@<ch_list>)]
 :TCouple:CHECk {OFF|ON}[,(@<ch_list>)]
 :TCouple:CHECk? [(@<ch_list>)]

[SENSe:]TEMPerature:TRANsducer
 :TCouple:RJUNction:TYPE {INTernal|EXTernal|FIXed}[,(@<ch_list>)]
 :TCouple:RJUNction:TYPE? [(@<ch_list>)]
 :TCouple:RJUNction {<temperature>|MIN|MAX}[,(@<ch_list>)]
 :TCouple:RJUNction? [(@<ch_list>)]

[SENSe:]TEMPerature:RJUNction? [(@<ch_list>)]

[SENSe:]TEMPerature:TRANsducer
 :RTD:TYPE {85|91}[,(@<ch_list>)]
 :RTD:TYPE? [(@<ch_list>)]
 :RTD:RESistance[:REFerence] <reference>[,(@<ch_list>)]
 :RTD:RESistance[:REFerence]? [(@<ch_list>)]

[SENSe:]TEMPerature:TRANsducer
 :FRTD:TYPE {85|91}[,(@<ch_list>)]
 :FRTD:TYPE? [(@<ch_list>)]
 :FRTD:RESistance[:REFerence] <reference>[,(@<ch_list>)]
 :FRTD:RESistance[:REFerence]? [(@<ch_list>)]

[SENSe:]TEMPerature:TRANsducer
 :THERmistor:TYPE {2252|5000|10000}[,(@<ch_list>)]
 :THERmistor:TYPE? [(@<ch_list>)]

[SENSe:]
 TEMPerature:NPLC {0.02|0.2|1|2|10|20|100|200|MIN|MAX}[,(@<ch_list>)]
 TEMPerature:NPLC? [{(@<ch_list>)|MIN|MAX}]

 This command redefines the scan list when executed.
 Default parameters are shown in bold.

5

 Voltage Configuration Commands

(see page 223 in the User’s Guide)

CONFigure
 :VOLTage:DC [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 VOLTage:DC:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 VOLTage:DC:RANGe? [{(@<ch_list>)|MIN|MAX}]
 VOLTage:DC:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 VOLTage:DC:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 VOLTage:DC:RESolution {<resolution>|MIN|MAX}[,(@<ch_list>)]
 VOLTage:DC:RESolution? [{(@<ch_list>)|MIN|MAX}]

[SENSe:]
 VOLTage:DC:APERture {<time>|MIN|MAX}[,(@<ch_list>)]
 VOLTage:DC:APERture? [{(@<ch_list>)|MIN|MAX}]

[SENSe:]
 VOLTage:DC:NPLC {0.02|0.2|1|2|10|20|100|200|MIN|MAX}[,(@<ch_list>)]
 VOLTage:DC:NPLC? [{(@<ch_list>)|MIN|MAX}]

INPut
 :IMPedance:AUTO {OFF|ON}[,(@<ch_list>)]
 :IMPedance:AUTO? [(@<ch_list>)]

[SENSe:]
 ZERO:AUTO {OFF|ONCE|ON}[,(@<ch_list>)]
 ZERO:AUTO? [(@<ch_list>)]

CONFigure
 :VOLTage:AC [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 VOLTage:AC:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 VOLTage:AC:RANGe? [{(@<ch_list>)|MIN|MAX}]
 VOLTage:AC:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 VOLTage:AC:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 VOLTage:AC:BANDwidth {3|20|200|MIN|MAX}[,(@<ch_list>)]
 VOLTage:AC:BANDwidth? [{(@<ch_list>)|MIN|MAX}]

 This command redefines the scan list when executed.
 Default parameters are shown in bold.

6

 Resistance Configuration Commands

(see page 224 in the User’s Guide)

CONFigure
 :RESistance [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 RESistance:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 RESistance:RANGe? [{(@<ch_list>|MIN|MAX}]
 RESistance:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 RESistance:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 RESistance:RESolution {<resolution>|MIN|MAX}[,(@<ch_list>)]
 RESistance:RESolution? [{(@<ch_list>)|MIN|MAX}]
 RESistance:APERture {<time>|MIN|MAX}[,(@<ch_list>)]
 RESistance:APERture? [{(@<ch_list>)|MIN|MAX}]
 RESistance:NPLC {0.02|0.2|1|2|10|20|100|200|MIN|MAX}[,(@<ch_list>)]
 RESistance:NPLC? [{(@<ch_list>)|MIN|MAX}]

[SENSe:]
 RESistance:OCOMpensated {OFF|ON}[,(@<ch_list>)]
 RESistance:OCOMpensated? [(@<ch_ list>)]

CONFigure
 :FRESistance [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 FRESistance:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 FRESistance:RANGe? [{(@<ch_list>)|MIN|MAX}]
 FRESistance:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 FRESistance:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 FRESistance:RESolution {<resolution>|MIN|MAX}[,(@<ch_list>)]
 FRESistance:RESolution? [{(@<ch_list>)|MIN|MAX}]
 FRESistance:APERture {<time>|MIN|MAX}[,(@<ch_list>)]
 FRESistance:APERture? [{(@<ch_list>)|MIN|MAX}]
 FRESistance:NPLC {0.02|0.2|1|2|10|20|100|200|MIN|MAX}[,(@<ch_list>)]
 FRESistance:NPLC? [{(@<ch_list>)|MIN|MAX}]

[SENSe:]
 FRESistance:OCOMpensated {OFF|ON}[,(@<ch_list>)]
 FRESistance:OCOMpensated? [(@<ch_ list>)]

 This command redefines the scan list when executed.
 Default parameters are shown in bold.

7

 Current Configuration Commands

(see page 224 in the User’s Guide)

Valid only on channels 21 and 22 on the 34901A multiplexer module.

CONFigure
 :CURRent:DC [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 CURRent:DC:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 CURRent:DC:RANGe? [{(@<ch_list>)|MIN|MAX}]
 CURRent:DC:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 CURRent:DC:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 CURRent:DC:RESolution {<resolution>|MIN|MAX}[,(@<ch_list>)]
 CURRent:DC:RESolution? [{(@<ch_list>)|MIN|MAX}]

[SENSe:]
 CURRent:DC:APERture {<time>|MIN|MAX}[,(@<ch_list>)]
 CURRent:DC:APERture? [{(@<ch_list>)|MIN|MAX}]

[SENSe:]
 CURRent:DC:NPLC {0.02|0.2|1|2|10|20|100|200|MIN|MAX}[,(@<ch_list>)]
 CURRent:DC:NPLC? [{(@<ch_list>)|MIN|MAX}]

CONFigure
 :CURRent:AC [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 CURRent:AC:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 CURRent:AC:RANGe? [{(@<ch_list>)|MIN|MAX}]
 CURRent:AC:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 CURRent:AC:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 CURRent:AC:BANDwidth {3|20|200|MIN|MAX}[,(@<ch_list>)]
 CURRent:AC:BANDwidth? [{(@<ch_list>)|MIN|MAX}]

 This command redefines the scan list when executed.
 Default parameters are shown in bold.

8

 Frequency and Period Configuration Commands

(see page 214 in the User’s Guide)

CONFigure
 :FREQuency [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 FREQuency:VOLTage:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 FREQuency:VOLTage:RANGe? [{(@<ch_ list>)|MIN|MAX}]
 FREQuency:VOLTage:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 FREQuency:VOLTage:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 FREQuency:APERture {0.01|0.1|1|MIN|MAX}[,(@<ch_list>)]
 FREQuency:APERture? [{(@<ch_list>)|MIN|MAX}]

[SENSe:]
 FREQuency:RANGe:LOWer {3|20|200|MIN|MAX}[,(@<ch_list>)]
 FREQuency:RANGe:LOWer? [{(@<ch_list>)|MIN|MAX}]

CONFigure
 :PERiod [{<range>|AUTO|MIN|MAX|DEF}
 [,<resolution>|MIN|MAX|DEF}],] (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 PERiod:VOLTage:RANGe {<range>|MIN|MAX}[,(@<ch_list>)]
 PERiod:VOLTage:RANGe? [{(@<ch_ list>)|MIN|MAX}]
 PERiod:VOLTage:RANGe:AUTO {OFF|ON}[,(@<ch_list>)]
 PERiod:VOLTage:RANGe:AUTO? [(@<ch_list>)]

[SENSe:]
 PERiod:APERture {0.01|0.1|1|MIN|MAX}[,(@<ch_list>)]
 PERiod:APERture? [{(@<ch_list>)|MIN|MAX}]

 This command redefines the scan list when executed.
 Default parameters are shown in bold.

9

 Mx+B Scaling Commands

(see page 244 in the User’s Guide)

CALCulate
 :SCALe:GAIN <gain>[,(@<ch_list>)]
 :SCALe:GAIN? [(@<ch_list>)]
 :SCALe:OFFSet <offset>[,(@<ch_list>)]
 :SCALe:OFFSet? [(@<ch_list>)]
 :SCALe:UNIT <quoted_string>[,(@<ch_ list>)]
 :SCALe:UNIT? [(@<ch_list>)]

CALCulate:SCALe:OFFSet:NULL [(@<ch_list>)]

CALCulate
 :SCALe:STATe {OFF|ON}[,(@<ch_list>)]
 :SCALe:STATe? [(@<ch_list>)]

 Alarm Limit Commands

(see page 247 in the User’s Guide)

OUTPut
 :ALARm[1|2|3|4]:SOURce (@<ch_list>)
 :ALARm[1|2|3|4]:SOURce?

CALCulate
 :LIMit:UPPer <hi_limit>[,(@<ch_ list>)]
 :LIMit:UPPer? [(@<ch_list>)]
 :LIMit:UPPer:STATe {OFF|ON}[,(@<ch_list>)]
 :LIMit:UPPer:STATe? [(@<ch_list>)]

CALCulate
 :LIMit:LOWer <lo_limit>[,(@<ch_ list>)]
 :LIMit:LOWer? [(@<ch_list>)]
 :LIMit:LOWer:STATe {OFF|ON}[,(@<ch_list>)]
 :LIMit:LOWer:STATe? [(@<ch_list>)]

SYSTem:ALARm?

OUTPut
 :ALARm:MODE {LATCh|TRACk}
 :ALARm:MODE?
 :ALARm:SLOPe {NEGative|POSitive}
 :ALARm:SLOPe?

OUTPut
 :ALARm{1|2|3|4}:CLEar
 :ALARm:CLEar:ALL

STATus
 :ALARm:CONDition?
 :ALARm:ENABle <enable_value>
 :ALARm:ENABle?
 :ALARm[:EVENt]?

Ch 01
DIO (LSB)

Ch 02
DIO (MSB)

Ch 03
Totalizer

Ch 04
DAC

Ch 05
DAC

CALCulate
 :COMPare:TYPE {EQUal|NEQual}[,(@<ch_list>)]
 :COMPare:TYPE? [(@<ch_list>)]
 :COMPare:DATA <data>[,(@<ch_list>)]
 :COMPare:DATA? [(@<ch_list>)]
 :COMPare:MASK <mask>[,(@<ch_list>)]
 :COMPare:MASK? [(@<ch_list>)]
 :COMPare:STATe {OFF|ON}[,(@<ch_list>)]
 :COMPare:STATe? [(@<ch_list>)]

 This command applies to all channels in the instrument (Global setting).
 Default parameters are shown in bold.

10

 Digital Input Commands

(see page 255 in the User’s Guide)

Ch 01
DIO (LSB)

Ch 02
DIO (MSB)

Ch 03
Totalizer

Ch 04
DAC

Ch 05
DAC

CONFigure:DIGital:BYTE (@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]DIGital:DATA:{BYTE|WORD}? [(@<ch_list>)]

 Totalizer Commands

(see page 256 in the User’s Guide)

Ch 01
DIO (LSB)

Ch 02
DIO (MSB)

Ch 03
Totalizer

Ch 04
DAC

Ch 05
DAC

CONFigure:TOTalize {READ|RRESet} ,(@<scan_list>)
CONFigure? [(@<ch_list>)]

[SENSe:]
 TOTalize:TYPE {READ|RRESet}[,(@<ch_list>)]
 TOTalize:TYPE? [(@<ch_list >)]

[SENSe:]
 TOTalize:SLOPe {NEGative|POSitive}[,(@<ch_list>)]
 TOTalize:SLOPe? [(@<ch_list>)]

[SENSe:]TOTalize:CLEar:IMMediate [(@<ch_ list>)]

[SENSe:]TOTalize:DATA? [(@<ch_ list>)]

 Digital Output Commands

(see page 258 in the User’s Guide)

Ch 01
DIO (LSB)

Ch 02
DIO (MSB)

Ch 03
Totalizer

Ch 04
DAC

Ch 05
DAC

SOURce
 :DIGital:DATA[:{BYTE|WORD}] <data> ,(@<ch_list>)
 :DIGital:DATA[:{BYTE|WORD}]? (@<ch _list>)

SOURce:DIGital:STATe? (@<ch_list>)

 DAC Output Commands

(see page 258 in the User’s Guide)

Ch 01
DIO (LSB)

Ch 02
DIO (MSB)

Ch 03
Totalizer

Ch 04
DAC

Ch 05
DAC

SOURce
 :VOLTage <voltage> ,(@<ch_list>)
 :VOLTage? (@<ch_list>)

 This command redefines the scan list when executed.
 Default parameters are shown in bold.

11

 Switch Control Commands

(see page 259 in the User’s Guide)

ROUTe
 :CLOSe (@<ch_list>)
 :CLOSe:EXCLusive (@<ch_list>)
 :CLOSe? (@<ch_list>)

ROUTe
 :OPEN (@<ch_list>)
 :OPEN? (@<ch_list>)

ROUTe:DONE?

SYSTem:CPON {100|200|300|ALL}

 Scan Triggering Commands

(see page 228 in the User’s Guide)

TRIGger
 :SOURce {BUS|IMMediate|EXTernal|ALARm1|ALARm2|ALARm3|ALARm4|TIMer}
 :SOURce?

TRIGger
 :TIMer {<seconds>|MIN|MAX}
 :TIMer?

TRIGger
 :COUNt {<count>|MIN|MAX|INFinity}
 :COUNt?

*TRG

INITiate

READ?

 State Storage Commands

(see page 261 in the User’s Guide)

*SAV {0|1|2|3|4|5}
*RCL {0|1|2|3|4|5}

MEMory:STATe
 :NAME {1|2|3|4|5} [,<name>]
 :NAME? {1|2|3|4|5}

MEMory:STATe:DELete {0|1|2|3|4|5}

MEMory:STATe
 :RECall:AUTO {OFF|ON}
 :RECall:AUTO?

MEMory:STATe:VALid? {0|1|2|3|4|5}

MEMory:NSTates?

 This command applies to all channels in the instrument (Global setting).
 Default parameters are shown in bold.

12

 System-Related Commands

(see page 264 in the User’s Guide)

SYSTem
 :DATE <yyyy>,<mm>,<dd>
 :DATE?
 :TIME <hh>,<mm>,<ss.sss>
 :TIME?

FORMat
 :READing:TIME:TYPE {ABSolute|RELative}
 :READing:TIME:TYPE?

*IDN?

SYSTem:CTYPe? {100|200|300}

DIAGnostic
 :POKE:SLOT:DATA {100|200|300}, <quoted_string>
 :PEEK:SLOT:DATA? {100|200|300}

DISPlay {OFF|ON}
DISPlay?

DISPlay
 :TEXT <quoted_string>
 :TEXT?
 :TEXT:CLEar

*RST

SYSTem:PRESet

SYSTem:CPON {100|200|300|ALL}

SYSTem:ERRor?

SYSTem:ALARm?

SYSTem:VERSion?

*TST?

 Interface Configuration Commands

(see page 269 in the User’s Guide)

SYSTem:INTerface {GPIB|RS232}

SYSTem:LOCal

SYSTem:REMote

SYSTem:RWLock

Default parameters are shown in bold.

13

 Status System Commands

(see page 286 in the User’s Guide)

*STB?
*SRE <enable_value>
*SRE?

STATus
 :QUEStionable:CONDition?
 :QUEStionable[:EVENt]?
 :QUEStionable:ENABle <enable_value>
 :QUEStionable:ENABle?

*ESR?
*ESE <enable_value>
*ESE?

STATus
 :ALARm:CONDition?
 :ALARm[:EVENt]?
 :ALARm:ENABle <enable_value>
 :ALARm:ENABle?

STATus
 :OPERation:CONDition?
 :OPERation[:EVENt]?
 :OPERation:ENABle <enable_value>
 :OPERation:ENABle?

DATA:POINts
 :EVENt:THReshold <num_rdgs>
 :EVENt:THReshold?

*CLS

*PSC {0|1}
*PSC?

*OPC

 Calibration Commands

(see page 292 in the User’s Guide)

CALibration?

CALibration:COUNt?

CALibration
 :SECure:CODE <new_code>
 :SECure:STATe {OFF|ON},<code>
 :SECure:STATe?

CALibration
 :STRing <quoted_string>
 :STRing?

CALibration
 :VALue <value>
 :VALue?

14

 Service-Related Commands

(see page 294 in the User’s Guide)

INSTrument
 :DMM {OFF|ON}
 :DMM?
 :DMM:INSTalled?

DIAGnostic
 :DMM:CYCLes?
 :DMM:CYCLes:CLEar (1|2|3}

DIAGnostic
 :RELay:CYCLes? [(@<ch_list>)]
 :RELay:CYCLes:CLEar [(@<ch_list>)]

*RST

SYSTem:PRESet

SYSTem:CPON {100|200|300|ALL}

SYSTem:VERSion?

*TST?

 IEEE 488.2 Common Commands

*CLS

*ESR?
*ESE <enable_value>
*ESE?

*IDN?

*OPC

*OPC?

*PSC {0|1}
*PSC?

*RST

*SAV {0|1|2|3|4|5}
*RCL {0|1|2|3|4|5}

*STB?
*SRE <enable_value>
*SRE?

*TRG

*TST?

Default parameters are shown in bold.

15

 Agilent 34901A 20-Channel Multiplexer

(see page 164 in the User’s Guide)

 Agilent 34902A 16-Channel Multiplexer

(see page 166 in the User’s Guide)

16

 Agilent 34903A 20-Channel Actuator

(see page 168 in the User’s Guide)

 Agilent 34904A 4x8 Matrix

(see page 170 in the User’s Guide)

17

 Agilent 34905A/6A Dual 4-Channel RF Multiplexers

(see page 172 in the User’s Guide)

 Agilent 34908A 40-Channel Single-Ended Multiplexer

(see page 174 in the User’s Guide)

18

 Agilent 34907A Multifunction Module

(see page 176 in the User’s Guide)

19

 Factory Reset State

The table below shows the state of the instrument after a FACTORY RESET
from the Sto/Rcl menu or *RST command from the remote interface.

Measurement Configuration
 Function
 Range
 Resolution
 Integration Time
 Input Resistance
 Channel Delay
 Totalizer Reset Mode
 Totalizer Edge Detect

Scanning Operations
 Scan List
 Reading Memory
 Min, Max, and Average
 Scan Interval Source
 Scan Interval

 Scan Count

 Scan Reading Format
 Monitor in Progress

Mx+B Scaling
 Gain Factor (“M”)
 Scale Factor (“B”)
 Scale Label

Alarm Limits
 Alarm Queue
 Alarm State
 HI and LO Alarm Limits
 Alarm Output
 Alarm Output Configuration
 Alarm Output State
 Alarm Output Slope

Module Hardware
 34901A, 34902A, 34908A
 34903A, 34904A
 34905A, 34906A
 34907A

System-Related Operations
 Display State
 Error Queue
 Stored States

Factory Reset State
 DC Volts
 Autorange
 51⁄2 digits
 1 PLC
 10 MΩ (fixed for all DCV ranges)
 Automatic Delay
 Count Not Reset When Read
 Rising Edge

Factory Reset State
 Empty
 All Readings are Cleared
 All Statistical Data is Cleared
 Immediate
 Front Panel = 10 Seconds
 Remote = Immediate
 Front Panel = Continuous
 Remote = 1 Scan Sweep
 Reading Only (No Units, Channel, Time)
 Stopped

Factory Reset State
 1
 0
 Vdc

Factory Reset State
 Not Cleared
 Off
 0
 Alarm 1
 Latched Mode
 Output Lines are Cleared
 Fail = Low

Factory Reset State
 Reset: All Channels Open
 Reset: All Channels Open
 Reset: Channels s11 and s21 Selected
 Reset: Both DIO Ports = Input, Count = 0,
 Both DACs = 0 Vdc

Factory Reset State
 On
 Errors Not Cleared
 No Change

 �������������
 34970-90009

© Copyright Agilent Technologies, Inc. 1997-2003
 Printed in Malaysia March 2003 E0303

Quick Reference

H.4 Power Supply

434

Series N6700 User’s Guide 67

5
Introduction to Programming
SCPI Commands 68
SCPI Messages 70
SCPI Conventions and Data Formats 72
SCPI Command Completion 74
Device Clear 74

This chapter contains a brief introduction to the SCPI Programming
language. SCPI (Standard Commands for Programmable Instruments)
is a programming language for controlling instrument functions over
the GPIB.

SCPI provides instrument control with a standardized command
syntax and style, as well as a standardized data interchange format
for various classes of instruments..

SCPI Commands

68 Series N6700 User’s Guide

SCPI Commands
SCPI has two types of commands, common and subsystem.

 Common commands generally control overall power system
functions, such as reset, status, and synchronization. All common
commands consist of a three-letter mnemonic preceded by an
asterisk: *RST *IDN? *SRE 8

 Subsystem commands perform specific power system functions.
They are organized into an inverted tree structure with the "root"
at the top. The following figure shows a portion of a subsystem
command tree, from which you access the commands located
along the various paths.

Multiple Commands in a Message
Multiple SCPI commands can be combined and sent as a single
message with one message terminator. There are two important
considerations when sending several commands within a single
message:

 Use a semicolon to separate commands within a message.

 There is an implied header path that affects how commands are
interpreted by the power system.

The header path can be thought of as a string that gets inserted
before each command within a message. For the first command in a
message, the header path is a null string. For each subsequent
command the header path is defined as the characters that make up
the headers of the previous command in the message up to and
including the last colon separator. An example of a message with two
commands is:

OUTPut:STATe ON,(@1);PROTection:CLEar (@1)

which shows the use of the semicolon separating the two commands,
and also illustrates the header path concept. Note that with the
second command, the leading header "OUTPut" was omitted because
after the "OUTPut:STATe ON" command, the header path became

:OUTPut [:STATe]

:DELay

:INHibit

ROOT

:MODE

:STATus

:CONDition?

:OPERation [:EVEN]?

:FALL

:RISE

SCPI Commands

Series N6700 User’s Guide 69

defined as "OUTPut" and thus the instrument interpreted the second
command as:

OUTPut:PROTection:CLEar (@1)

In fact, it would have been syntactically incorrect to include the
"OUTP" explicitly in the second command, since the result after
combining it with the header path would be:

OUTPut:OUTPut:PROTection:CLEar (@1)

which is incorrect.

Moving Among Subsystems
In order to combine commands from different subsystems, you need
to be able to reset the header path to a null string within a message.
You do this by beginning the command with a colon (:), which
discards any previous header path. For example, you could clear the
output protection and check the status of the Operation Condition
register in one message by using a root specifier as follows (the short
form is used in the next two examples):

OUTP:PROT:CLE(@1);:STAT:OPER:COND?(@1)

The following message shows how to combine commands from
different subsystems as well as within the same subsystem:

VOLT:LEV 7.5,(@1);PROT 10,(@1);:CURR:LEV 0.25,(@1)

Note the use of the optional header LEVel to maintain the correct
path within the subsystems, and the use of the root specifier to move
between subsystems.

Including Common Commands
You can combine common commands with system commands in the
same message. Treat the common command as a message unit by
separating it with a semicolon (the message unit separator). Common
commands do not affect the header path; you may insert them
anywhere in the message.

OUTPut OFF,(@1);*RCL 1;OUTPut ON,(@1)

Using Queries
Observe the following precautions with queries:

 Add a blank space between the query indicator (?) and any
subsequent parameter such as a channel list.

 Allocate the proper number of variables for the returned data.

 Read back all the results of a query before sending another
command to the power system. Otherwise, a Query Interrupted
error will occur and the unreturned data will be lost.

SCPI Messages

70 Series N6700 User’s Guide

Coupled Commands
When commands are coupled it means that the value sent by one
command is affected by the settings of another command. The
following commands are coupled:

 [SOURce:]CURRent and [SOURce:]CURRent:RANGe.

 [SOURce:]VOLTage and [SOURce:]VOLTage:RANGe.

If a range command is sent that places an output on a range with a
lower maximum setting than the present level, an error is generated.
This also occurs if a level is programmed with a value too large for
the present range.

These types of errors can be avoided by sending the both level and
range commands as a set, in the same SCPI message. For example,

CURRent 10,(@1);CURRent:RANGe 10,(@1)<NL>

will always be correct because the commands are not executed until
the message terminator is received. Because the range and setting
information is received as a set, no range/setting conflict occurs.

SCPI Messages
There are two types of SCPI messages, program and response.

 A program message consists of one or more properly formatted
SCPI commands sent from the controller to the power system.
The message, which may be sent at any time, requests the power
system to perform some action.

 A response message consists of data in a specific SCPI format
sent from the power system to the controller. The power system
sends the message only when commanded by a program message
"query."

The following figure illustrates the SCPI message structure.

Data

Keywords

Keyword Separator

Message Unit Separators

Message Unit Query Indicator

Message Terminator

Root Specifier

VOLT : LEV 10, (@1) ; PROT ON, (@1) ; : CURR? (@1) <NL>

Channel

Space

SCPI Messages

Series N6700 User’s Guide 71

The Message Unit
The simplest SCPI command is a single message unit consisting of a
command header (or keyword) followed by a message terminator.
The message unit may include a parameter after the header. The
parameter can be numeric or a string.

ABORt<NL>

VOLTage 20,(@1)

Channel List Parameter
The channel parameter is required to address one or more channels.
It has the following syntax:

(@<channel> [,<channel>][,<channel>][,<channel>])

You can also specify a range of sequential channels as follows:

<start_channel> : <end_channel>

For example, (@2) specifies channel 2 and (@1:3) specifies channels 1
through 3. A maximum of 4 channels may be specified through a
combination of single channels and ranges. Query results are channel
list order-sensitive. Results are returned in the order they are
specified in the list.

NOTE When adding a channel list parameter to a query, you must include a space
character between the query indicator (?) and the channel list parameter.
Otherwise error –103, Invalid separator will occur.

Headers
Headers, also referred to as keywords, are instructions recognized by
the power system. Headers may be in the long form or in the short
form. In the long form, the header is completely spelled out, such as
VOLTAGE, STATUS, and DELAY. In the short form, the header has
only the first three or four letters, such as VOLT, STAT, and DEL.

When the long form notation is used in this document, the capital
letters indicate the equivalent short form. For example, MEASure is
the long form, and MEAS indicates the short form equivalent.

Query Indicator
Following a header with a question mark turns it into a query
(VOLTage?, VOLTage:TRIGgered?). The ? is the query indicator. If a
query contains a parameter, place the query indicator at the end of
the last header, before the parameter.

VOLTage:TRIGgered? MAX,(@1)

SCPI Conventions and Data Formats

72 Series N6700 User’s Guide

Message Unit Separator
When two or more message units are combined into a compound
message, separate the units with a semicolon.

STATus:OPERation?(@1);QUEStionable?(@1)

Root Specifier
When it precedes the first header of a message unit, the colon
becomes the root specifier. It tells the command parser that this is
the root or the top node of the command tree.

Message Terminator
A terminator informs SCPI that it has reached the end of a message.
The following messages terminators are permitted:

 newline <NL>, which is ASCII decimal 10 or hex 0A.

 end or identify <END> (EOI with ATN false)

 both of the above <NL><END>

 also <CR><NL>

In the examples of this guide, there is an assumed message
terminator at the end of each message.

SCPI Conventions and Data Formats

Conventions
The following SCPI conventions are used throughout this guide.

Angle brackets < > Items within angle brackets are parameter abbreviations. For example, <NR1>
indicates a specific form of numerical data.

Vertical bar | Vertical bars separate alternative parameters. For example, VOLT | CURR indicates
that either "VOLT" or "CURR" can be used as a parameter.

Square Brackets [] Items within square brackets are optional. The representation [SOURce:]VOLTage
means that SOURce: may be omitted.

Braces { } Braces indicate parameters that may be repeated zero or more times. It is used
especially for showing arrays. The notation <A>{<,B>} shows that parameter "A"
must be entered, while parameter "B" may be omitted or may be entered one or
more times.

Parentheses () Items within parentheses are used in place of the usual parameter types to specify
a channel list. The notation (@1:3) specifies a channel list that includes channels
1, 2, and 3. The notation (@1,3) specifies a channel list that includes only channels
1 and 3.

SCPI Conventions and Data Formats

Series N6700 User’s Guide 73

Data Formats
Data programmed or queried from the power system is ASCII. The
data may be numerical or character string.

Numeric Data Formats

Symbol Response Formats
<NR1> Digits with an implied decimal point assumed at the right of the least-

significant digit. Examples: 273
<NR2> Digits with an explicit decimal point. Example: .0273
<NR3> Digits with an explicit decimal point and an exponent. Example: 2.73E+2
 Parameter Formats
<NRf> Extended format that includes <NR1>, <NR2> and <NR3>. Examples: 273

273. 2.73E2
<NRf+> Expanded decimal format that includes <NRf> and MIN MAX. Examples:

273 273. 2.73E2 MAX.
MIN and MAX are the minimum and maximum limit values that are implicit in
the range specification for the parameter.

<Bool> Boolean Data. They can be numeric (0, 1), or named (ON, OFF).
<SPD> String program data. String parameters enclosed in single or double quotes.

Suffixes and Multipliers

Class Suffix Unit Unit with Multiplier
Current A ampere MA (milliampere)
Amplitude V volt MV (millivolt)
Time S second MS (millisecond)
Common Multipliers
1E3 K kilo
1E-3 M milli
1E-6 U micro

Response Data Types

Symbol Response Formats
<CRD> Character Response Data. Permits the return of character

strings.
<AARD> Arbitrary ASCII Response Data. Permits the return of

undelimited 7-bit ASCII. This data type has an implied message
terminator.

<SRD> String Response Data. Returns string parameters enclosed in
single or double quotes.

SCPI Command Completion

74 Series N6700 User’s Guide

SCPI Command Completion
SCPI commands sent to the power system are processed either
sequentially or in parallel. Sequential commands finish execution
before a subsequent command begins. Parallel commands allow other
commands to begin executing while the parallel command is still
executing.

The following is a list of parallel commands. You should use some
form of command synchronization as discussed in this section before
assuming that these commands have completed.

OUTPUT:STATE INITIATE
VOLT OUTPUT:PROTECTION:CLEAR
CURR FUNC:MODE

The *WAI, *OPC, and *OPC? common commands provide
different ways of indicating when all transmitted commands,
including any parallel ones, have completed their operations. Some
practical considerations for using these commands are as follows:

*WAI This command prevents the power system from processing subsequent
commands until all pending operations are completed. For example,
the *WAI command can be used to make a current measurement after
an output on command has completed:

OUTPUT ON,(@1);*WAI;:MEAS:CURR? (@1)

*OPC? This command places a 1 in the Output Queue when all pending
operations have completed. Because it requires your program to read
the returned value before executing the next program statement,
*OPC? can be used to cause the controller to wait for commands to
complete before proceeding with its program.

*OPC This command sets the OPC status bit when all pending operations
have completed. Since your program can read this status bit on an
interrupt basis, *OPC allows subsequent commands to be executed.

NOTE The trigger subsystem must be in the Idle state for the status OPC bit to be
true. As far as triggers are concerned, OPC is false whenever the trigger
subsystem is in the Initiated state.

Device Clear
You can send a Device Clear at any time to abort a SCPI command
that may be hanging up the GPIB interface. Device Clear clears the
input and output buffers of the power system and prepares the
power system to accept a new command string. The status registers,
error queue, and all configuration states are left unchanged by Device
Clear. The following statement shows how to send a device clear over
the GPIB interface using Agilent BASIC:

CLEAR 705 IEEE-488 Device Clear

Series N6700 User’s Guide 75

6
Language Dictionary
SCPI Command Summary 76
Calibration Subsystem 80
Measurement Subsystem 82
Output Subsystem 86
Source Subsystem 89
Status Subsystem 96
System Commands 103
Trigger Subsystem 107

This section gives the syntax and parameters for all the IEEE 488.2
SCPI commands and the Common commands used by the power
system. It is assumed that you are familiar with the material in
chapter 5, which explains the terms, symbols, and syntactical
structures used here and gives an introduction to programming. You
should also be familiar with chapter 4, in order to understand how
the power system functions.

Subsystem commands are specific to instrument functions. They can
be a single command or a group of commands. The groups are
comprised of commands that extend one or more levels below the
root. The subsystem commands are arranged alphabetically
according to the function they perform.

Common commands are defined by the IEEE 488.2 standard to
perform common interface functions. They begin with an * and
consist of three letters (command) or three letters and a ? (query).
Common commands are grouped along with the subsystem
commands according to the function they perform.

SCPI Command Summary

76 Series N6700 User’s Guide

SCPI Command Summary

Subsystem Commands

NOTE Some [optional] commands have been included for clarity.
Not all commands apply to all models.

SCPI Command Description
ABORt
 :ACQuire (@chanlist) Resets the measurement trigger system to the Idle state
 :TRANsient (@chanlist) Resets the transient trigger system to the Idle state

CALibrate
 :CURRent
 [:LEVel] <NRf>, (@channel) Calibrates the output current programming
 :MEASure <NRf>, (@channel) Calibrates the current measurement
 :PEAK (@channel) Calibrates the peak current limit (Agilent N6751A/52A/61A/62A)
 :DATA <NRf> Enters the calibration value
 :DATE <SPD>, (@channel) Sets the calibration date
 :DPRog (@channel) Calibrates the current downprogrammer
 :LEVel P1 | P2 | P3 Advances to the next calibration step
 :PASSword <NRf> Sets the numeric calibration password
 :SAVE Saves the new cal constants in non-volatile memory
 :STATE <Bool> [,<NRf>] Enables/disables calibration mode
 :VOLTage
 [:LEVel] <NRf>, (@channel) Calibrates the output voltage programming
 :CMRR (@channel) Calibrates common mode rejection ratio (N6751A/52A/61A/62A)
 :MEASure <NRf>, (@channel) Calibrates the voltage measurement

DISPlay[:WINDow]:VIEW METER1 | METER4 Selects 1-channel or 4-channel meter view

FETCh (Note 1) | MEASure
 [:SCALar]
 :CURRent [:DC]? (@chanlist) Returns the average output current
 :VOLTage [:DC]? (@chanlist) Returns the average output voltage
 :ARRay (Array commands only on Agilent N6761A/62A and Option 054)
 :CURRent [:DC]? (@chanlist) Returns the instantaneous output current
 :VOLTage [:DC]? (@chanlist) Returns the instantaneous output voltage

INITiate
 [:IMMediate] (Acquire command only on Agilent N6761A/62A and Option 054)
 :ACQuire (@chanlist) Enables the measurement system to receive triggers
 :TRANsient (@chanlist) Enables the output transient system to receive triggers
 :CONTinuous
 :TRANsient <Bool>, (@chanlist) Enables/disables continuous transient triggers

OUTPut
 [:STATe] <Bool>, [NORelay], (@chanlist) Enables/disables the specified output channel(s)
 :DELay
 :FALL <NRf+>, (@chanlist) Sets the output turn-off sequence delay
 :RISE <NRf+>, (@chanlist) Sets the output turn-on sequence delay
 :INHibit
 :MODE LATChing | LIVE | OFF Sets the remote inhibit input

SCPI Command Summary

Series N6700 User’s Guide 77

SCPI Command Description
OUTPut (continued)
 :PON
 :STATe RST | RCL0 Programs the power-on state
 :PROTection
 :CLEar (@chanlist) Resets latched protection
 :COUPle <Bool> Enables/disables channel coupling for protection faults
 :DELay <NRf+>, (@chanlist) Sets over-current protection programming delay

SENSe
 :CURRent [:DC]
 :RANGe [:UPPer] <NRf+>, (@chanlist) Selects the current measurement range (Agilent N6761A/62A)
 :FUNCtion “VOLTage” | ”CURRent”, (@chanlist) Selects the measurement function
 :SWEep (Sweep commands only on Agilent N6761A/62A and Option 054)
 :OFFSet:POINts <NRf+>, (@chanlist) Defines the trigger offset in the measurement sweep
 :POINts <NRf+>, (@chanlist) Defines the number of data points in the measurement
 :TINTerval <NRf+>, (@chanlist) Sets the measurement sample interval
 :VOLTage [:DC]
 :RANGe [:UPPer] <NRf+>, (@chanlist) Selects the voltage measurement range (Agilent N6761A/62A)
 :WINDow [:TYPE] HANNing | RECTangular, (@chanlist) Selects the measurement window (N6761A/62A and Option 054)

[SOURce:]
 CURRent
 [:LEVel]
 [:IMMediate][:AMPLitude] <NRf+>, (@chanlist) Sets the output current
 :TRIGgered [:AMPLitude] <NRf+>, (@chanlist) Sets the triggered output current
 :MODE FIXed | STEP | LIST, (@chanlist) Sets the current trigger mode
 :PROTection
 :STATe <Bool>, (@chanlist) Enables/disables over-current protection on the selected output
 :RANGe <NRf+>, (@chanlist) Sets the output current range (Agilent N6761A/62A)
 DIGital
 :INPut:DATA? Reads the state of the digital port pins
 :OUTPut:DATA <NRf> Sets the digital port
 :PIN1 | :PIN2 | :PIN3 | :PIN4 | :PIN5 | :PIN6 | :PIN7
 :FUNCtion DIO | DINP | TOUT | TINP | FAUL1 | INH2 Sets the selected pin’s function (1PIN1 only; 2PIN3 only)
 :POLarity POSitive | NEGative Sets the selected pin’s polarity
 LIST (List commands only on Agilent N6761A/62A and Option 054)
 :COUNt <NRf+> | INFinity, (@chanlist) Sets the list repeat count
 :CURRent [:LEVel] <NRf> {,<NRf>. . .}, (@chanlist) Sets the current list
 :POINts? (@chanlist) Returns the number of current list points
 :DWELl <NRf> {,<NRf>. . .}, (@chanlist) Sets the list of dwell times
 :POINts? (@chanlist) Returns the number of dwell list points
 :STEP ONCE | AUTO, (@chanlist) Specifies how the list responds to triggers
 :TERMinate
 :LAST <Bool>, (@chanlist) Sets the list termination mode
 :TOUTput
 :BOSTep[:DATA] <Bool> {,<Bool>. . .}, (@chanlist) Sets the steps to generate triggers at the Begin Of Step
 :POINts? (@chanlist) Returns the number of beginning of step list points
 :EOSTep[:DATA] <Bool> {,<Bool>. . .}, (@chanlist) Sets the steps to generate triggers at the End Of Step
 :POINts? (@chanlist) Returns the number of end of step list points
 :VOLTage[:LEVel] <NRf> {,<NRf>. . .}, (@chanlist) Sets the voltage list
 :POINts? (@chanlist) Returns the number of voltage level points
 STEP
 :TOUTput <Bool>, (@chanlist) Generate a trigger output on the voltage or current step transient

SCPI Command Summary

78 Series N6700 User’s Guide

SCPI Command Description
[SOURce:] (continued)
 VOLTage
 [:LEVel]
 [:IMMediate][:AMPLitude] <NRf+>, (@chanlist) Sets the output voltage
 :TRIGgered [:AMPLitude] <NRf+>, (@chanlist) Sets the triggered output voltage
 :MODE FIXed | STEP | LIST, (@chanlist) Sets the voltage trigger mode
 :PROTection
 [:LEVel] <NRf+>, (@chanlist) Sets the over-voltage protection level
 :RANGe <NRf+>, (@chanlist) Sets the output voltage range (Agilent N6761A/62A)
 :SLEW <NRf+> | INFinity, (@chanlist) Sets the output voltage slew rate

STATus
 :OPERation
 [:EVENt]? (@chanlist) Returns the value of the operation event register
 :CONDition? (@chanlist) Returns the value of the operation condition register
 :ENABle <NRf>, (@chanlist) Enables specific bits in the Event register
 :NTRansition <NRf>, (@chanlist) Sets the Negative transition filter
 :PTRansition <NRf>, (@chanlist) Sets the Positive transition filter
 :PRESet Presets all enable and transition registers to power-on
 :QUEStionable
 [:EVENt]? (@chanlist) Returns the value of the questionable event register
 :CONDition? (@chanlist) Returns the value of the questionable condition register
 :ENABle <NRf>, (@chanlist) Enables specific bits in the Event register
 :NTRansition <NRf>, (@chanlist) Sets the Negative transition filter
 :PTRansition <NRf>, (@chanlist) Sets the Positive transition filter

SYSTem
 :CHANnel
 [:COUNt]? Returns the number of output channels in a mainframe
 :MODel? (@chanlist) Returns the model number of the selected channel
 :OPTion? (@chanlist) Returns the option installed in the selected channel
 :SERial? (@chanlist) Returns the serial number of the selected channel
 :COMMunicate
 :RLSTate LOCal | REMote | RWLock Specifies the Remote/Local state of the instrument
 :TCPip:CONTrol? Returns the control connection port number
 :ERRor? Returns the error number and error string
 :GROup
 :CATalog? Returns the groups that have been defined
 :DEFine (@chanlist) Group multiple channels together to create a single output
 :DELete (channel) Removes the specified channel from a group
 :ALL Ungroups all channels
 :PASSword:FPANel:RESet Resets the front panel lock password to zero
 :REBoot Returns the unit to its power-on state
 :VERSion? Returns the SCPI version number

TRIGger
 :ACQuire (Acquire commands only on Agilent N6761A/62A and Option 054)
 [:IMMediate] (@chanlist) Triggers the measurement immediately
 :SOURce BUS | PIN<pin> | TRAN<chan>, (@chanlist) Sets the measurement trigger source
 :TRANsient
 [:IMMediate] (@chanlist) Triggers the output immediately
 :SOURce BUS | PIN<pin> | TRAN<chan>, (@chanlist) Sets the output trigger source

SCPI Command Summary

Series N6700 User’s Guide 79

Common Commands

Command Description Command Description
*CLS Clear status *RDT? Return output channel descriptions
*ESE <NRf> Standard event status enable *RST Reset
*ESE? Return standard event status enable *SAV <NRf> Saves an instrument state
*ESR? Return event status register *SRE <NRf> Set service request enable register
*IDN? Return instrument identification *SRE? Return service request enable register
*OPC Enable "operation complete" bit in ESR *STB? Return status byte
*OPC? Return a "1" when operation complete *TRG Trigger
*OPT? Return option number *TST? Performs self-test, then returns result
*RCL <NRf> Recalls a saved instrument state *WAI Pauses additional command processing

until all device commands are done

*RST Settings

These settings are set by the *RST (Reset) command
Calibration Function (Note 1) Measurement (continued)
CAL:STAT OFF SENS:SWE:OFFS:POIN 0
Current Function SENS:SWE:TINT 20.48E−6
[SOUR:]CURR 80 mA SENS:VOLT:RANG MAX
[SOUR:]CURR:MODE FIX SENS:WIND RECT
[SOUR:]CURR:PROT:STAT OFF Output Function
[SOUR:]CURR:RANG MAX OUTP OFF
[SOUR:]CURR:TRIG MIN OUTP:DEL:FALL 0
Digital Function OUTP:DEL:RISE 0
[SOUR:]DIG:OUTP:DATA 0 OUTP:PROT:COUP OFF
Display Function OUTP:PROT:DEL 0.02
DISP:VIEW METER1 OUTP:REL OFF
List Function (Note 1) Step Function
[SOUR:]LIST:COUN 1 [SOUR:]STEP:TOUT FALSE
[SOUR:]LIST:CURR MIN Trigger Function
[SOUR:]LIST:DWEL 0.001 INIT:CONT:TRAN OFF
[SOUR:]LIST:STEP AUTO TRIG:ACQ:SOUR BUS
[SOUR:]LIST:TERM:LAST OFF TRIG:TRAN:SOUR BUS
[SOUR:]LIST:TOUT:BOST OFF Voltage Function
[SOUR:]LIST:TOUT:EOST OFF [SOUR:]VOLT MIN
[SOUR:]LIST:VOLT MIN [SOUR:]VOLT:MODE FIX
Measurement Function [SOUR:]VOLT:PROT:LEV MAX
SENS:CURR:RANG MAX [SOUR:]VOLT:RANG MAX
SENS:FUNC “VOLT” [SOUR:]VOLT:SLEW MAX
SENS:SWE:POIN 1024 [SOUR:]VOLT:TRIG MIN

Note 1 The calibration state and all list settings are not saved by the *SAV command.

Calibration Subsystem

80 Series N6700 User’s Guide

Calibration Subsystem
The calibration subsystem lets you calibrate the power system. Only
one channel can be calibrated at a time. Refer to Appendix B for
details.

NOTE If calibration mode has not been enabled with CALibrate:STATe, the calibration
commands will generate an error. Use CALibrate:SAVE to save any changes,
otherwise all changes will be lost when you exit calibration mode.

CALibrate:CURRent[:LEVel] <value>, (@<channel>)

This command initiates calibration of the output current. The value
that you enter selects the range that is being calibrated.

CALibrate:CURRent:MEASure <value>, (@<channel>)

This command initiates calibration of the current measurement
range. The value that you enter selects the range that is being
calibrated.

CALibrate:CURRent:PEAK (@<channel>)

This command initiates calibration of the peak current limit.

CALibrate:DATA <value>

This command enters a calibration value that you obtain by reading
an external meter. You must first select a calibration level (with
CALibrate:LEVel) for the value being entered. Data values are
expressed in base units - either volts or amperes, depending on
which function is being calibrated.

CALibrate:DATE <date>, (@<channel>)
CALibrate:DATE?

This command stores the date that the power module was last
calibrated. The calibration date is stored in nonvolatile memory.
Enter any ASCII string up to 16 characters. The query returns the
date.

NOTE The firmware does not interpret the string format. The information is not used
by the firmware. The command is only provided to store the calibration date.

CALibrate:DPRog (@<channel>)

This command initiates calibration of the current downprogrammer.

Calibration Subsystem

Series N6700 User’s Guide 81

CALibrate:LEVel {P1|P2|P3}

This command is used to advance to the next level in the calibration.
P1 is the first calibration level; P2 is the second level; P3 is the third
level.

NOTE Some calibration sequences may require some settling time after sending
CAL:LEV but before reading the data from the DVM and sending CAL:DATA.

CALibrate:PASSword <password>

This command lets you change the calibration password. A new
password is automatically stored in nonvolatile memory and does not
have to be stored with CALibrate:SAVE. If the password is set to 0,
password protection is removed and the ability to enter calibration
mode is unrestricted. The factory-default password 0 (zero).

CALibrate:SAVE

This command saves calibration constants in non-volatile memory
after the calibration procedure has been completed. If calibration
mode is exited by programming CALibration:STATe OFF without first
saving the new constants, the previous constants are restored.

CALibrate:STATe {ON|OFF} [,<password>]
CALibrate:STATe?

This command enables or disables calibration mode. Calibration
mode must be enabled for the power system to accept any calibration
commands. The first parameter specifies the ON (1) or OFF (0) state.
The second parameter is the password.

A numeric password is required if calibration mode is being enabled
and the existing password is not 0. If the password is not entered or
is incorrect, an error is generated and the calibration mode remains
disabled. The query returns only the state, not the password.

The *RST value = OFF.

NOTE When the calibration state is changed from enabled to disabled, new calibration
constants are lost unless they have already been stored with CALibrate:SAVE.

CALibrate:VOLTage[:LEVel] <value>, (@<channel>)

This command initiates calibration of the output voltage. The value
that you enter selects the range that is being calibrated.

CALibrate:VOLTage:CMRR (@<channel>)

This command initiates calibration of the voltage common mode
rejection ratio.

Display Subsystem

82 Series N6700 User’s Guide

CALibrate:VOLTage:MEASure <value>, (@<channel>)

This command initiates calibration of the voltage measurement
range. The value that you enter selects the range that is being
calibrated.

Display Subsystem
The display subsystem lets you control the front panel display.

DISPlay[:WINDow]:VIEW {METER1|METER4}
DISPlay[:WINDow]:VIEW?

This command selects the output channel view of the front panel
display. METER1 displays one output channel. METER4 displays all
output channels up to a maximum of four.

The *RST value = METER1.

Measurement Subsystem

Series N6700 User’s Guide 83

Measurement Subsystem
The measurement subsystem consists of Measure, Fetch, and Sense
commands.

Measure commands measure the output voltage or current. They
trigger the acquisition of new data before returning the reading.
Measurements are performed by digitizing the instantaneous output
voltage or current for a specified time interval, storing the results in
a buffer, and calculating the average value. Use Measure commands
when the measurement does not need to be synchronized with any
other event.

Fetch commands return a reading computed from previously
acquired data. If you take a voltage measurement, you can fetch only
voltage data. If you take a current measurement, you can fetch only
current data. Use Fetch commands when it is important that the
measurement be synchronized with a triggered event.

Sense commands control the current measurement range, the
bandwidth detector of the power system, and the data acquisition
sequence.

Agilent Models N6761A and N6762A have simultaneous voltage and
current measurement capability. In this case BOTH voltage and
current are acquired, regardless of the parameter that is being
measured. To return both values of a simultaneous measurement,
first use the MEASure command to measure either the output voltage
or current. Then use the FETCh command to return the other
parameter.

NOTE The FETCh:ARRay, MEASure:ARRay, and SENSe commands do not apply to all
models (Refer to chapter 1, “Model Differences”).

FETCh:ARRay:CURRent[:DC]? (@<chanlist>)
FETCh:ARRay:VOLTage[:DC]? (@<chanlist>)

MEASure:ARRay:CURRent[:DC]? (@<chanlist>)
MEASure:ARRay:VOLTage[:DC]? (@<chanlist>)

These queries return an array containing the digitized output current
in amperes or output voltage in volts. The data returned by the
FETCh command is the result of the last measurement command or
acquisition trigger. The data is valid until the next MEASure or
INITiate command occurs.

The output voltage or current is digitized whenever a measurement
command is sent or an acquisition trigger occurs. The sampling rate
is set by SENSe:SWEep:TINTerval. The position of the trigger relative
to the beginning of the data buffer is determined by
SENSe:SWEep:OFFSet. The number of points returned is set by
SENSe:SWEep:POINts.

Measurement Subsystem

84 Series N6700 User’s Guide

FETCh[:SCALar]:CURRent[:DC]? (@<chanlist>)
FETCh[:SCALar]:VOLTage[:DC]? (@<chanlist>)

MEASure[:SCALar]:CURRent[:DC]? (@<chanlist>)
MEASure[:SCALar]:VOLTage[:DC]? (@<chanlist>)

These queries return the DC output current in amperes or output
voltage in volts. The data returned by the FETCh command is the
result of the last acquisition. The data is valid until the next
MEASure or INITiate command occurs.

The output voltage or current is digitized whenever a measurement
command is sent or an acquisition trigger occurs. The time interval is
set by SENSe:SWEep:TINTerval. The position of the trigger relative to
the beginning of the data buffer is determined by
SENSe:SWEep:OFFSet. The number of points returned is set by
SENSe:SWEep:POINts.

SENSe:CURRent[:DC]:RANGe[:UPPer] {<value>|MIN|MAX}, (@<chanlist>)
SENSe:CURRent[:DC]:RANGe[:UPPer]? (@<chanlist>)

This command selects a DC current measurement range on models
that have multiple ranges. The value that you enter must be higher
than the maximum current that you expect to measure. Units are in
amperes. The instrument selects the range with the best resolution
for the value entered. When queried, the returned value is the
maximum DC current that can be measured on the range that is
presently set.

Refer to Appendix A for the available ranges for each model.

The *RST value = the highest available range.

SENSe:FUNCtion {“VOLTage”|”CURRent”}, (@<chanlist>)
SENSe:FUNCtion? (@<chanlist>)

This command selects a measurement function on models that do not
have simultaneous voltage and current measurement capability. This
command is required so that the acquisition system knows which
measurement function to acquire when a measurement is triggered.

The *RST value = “VOLTage”.

SENSe:SWEep:OFFSet:POINts {<points>|MIN|MAX}, (@<chanlist>)
SENSe:SWEep:OFFSet:POINts? (@<chanlist>)

This command defines the offset in a data sweep when an acquire
trigger is used on models that have measurement controls.
Programmed values can range from -4095 through 2,000,000,000
(2E9). Negative values represent data samples taken prior to the
trigger. Positive values represent the delay after the trigger occurs
but before the samples are acquired.

The *RST value = 0.

Measurement Subsystem

Series N6700 User’s Guide 85

SENSe:SWEep:POINts {<points>|MIN|MAX}, (@<chanlist>)
SENSe:SWEep:POINts? (@<chanlist>)

This command defines the number of points in a measurement on
models that have measurement controls. Programmed values can
range from 1 to 4096.

The *RST value = 1024.

SENSe:SWEep:TINTerval {<interval>|MIN|MAX}, (@<chanlist>)
SENSe:SWEep:TINTerval? (@<chanlist>)

This command defines the time period between samples in seconds
on models that have measurement controls. Programmed values can
range from 0.00002048 to 40000 seconds. Values are rounded to the
nearest 20.48 microsecond increment.

The*RST value = 20.48 microseconds.

SENSe:VOLTage[:DC]:RANGe[:UPPer] {<value>|MIN|MAX}, (@<chanlist>)
SENSe:VOLTage[:DC]:RANGe[:UPPer]? (@<chanlist>)

This command selects a DC voltage measurement range on models
that have multiple ranges. The programmed value must be the
maximum voltage that you expect to measure. Units are in volts. The
instrument selects the range with the best resolution for the value
entered. When queried, the returned value is the maximum DC
voltage that can be measured on the range that is presently set.

Refer to Appendix A for the available ranges for each model.

The *RST value = the highest available range.

SENSe:WINDow[:TYPE] {HANNing|RECTangular}, (@<chanlist>)
SENSe:WINDow[:TYPE]? (@<chanlist>)

This command sets the window function used in DC measurement
calculations on models that have measurement controls. Select from:

HANNing A signal conditioning window that reduces errors in DC measurement
calculations in the presence of periodic signals such as AC line ripple. The
Hanning window multiplies each point in the sample by the function cosine4.

RECTangular A window that returns measurement calculations with no signal conditioning.

Note that neither window function alters the instantaneous voltage
or current data returned in the measurement array.

The *RST value = RECTangular.

Output Subsystem

86 Series N6700 User’s Guide

Output Subsystem
The Output subsystem controls the output, power-on, protection, and
relay functions.

OUTPut[:STATe] {ON|OFF}, [NORelay],(@<chanlist>)
OUTPut[:STATe]? (@<chanlist>)

This command enables or disables the specified output channel(s).
The enabled state is ON (1); the disabled state is OFF (0). The state of
a disabled output is a condition of zero output voltage and a zero
source current. If output and sense relays are installed (Option 761),
they will open when the output is disabled and close when the output
is enabled. The query returns 0 if the output is off, and 1 if the output
is on.

The NORelay optional parameter lets you turn the output state on or
off and leave the state of the relays unchanged. When not specified,
the relays open and close as the output is turned off and on.

Separate delays can be programmed for the off-to-on and the on-to-
off transition using OUTPut:DELay:RISE and OUTput:DELay:FALL.

The *RST value = OFF.

NOTE Because of internal circuit start-up procedures and any installed relay options,
the output on command may take between 35 and 50 milliseconds to complete
its function. Conversely, the output off command may take between 20 and 25
milliseconds to complete its function. To mitigate this built-in delay, you can
program the output to zero volts rather than using the output on/off command.

OUTPut[:STATe]:DELay:FALL {<delay>|MIN|MAX}, (@<chanlist>)
OUTPut[:STATe]:DELay:FALL? (@<chanlist>)

This command sets the delay in seconds that the instrument waits
before disabling the specified output. It affects on-to-off transitions
including changes in the OUTPut:STATe as well as transitions due to
changes in the voltage range or current range. It does NOT affect
transitions to off caused by protection functions. Delay times can
range from 0 to 1.023 seconds in increments of 1 millisecond.

This command allows multiple output channels to turn off in
sequence. Each output will not turn off until its delay time has
elapsed.

The *RST value = 0.

NOTE Output channel turn-on and turn-off characteristics vary across the three
module types - DC Power, Autoranging, and Precision (Refer to chapter 1,
“Model Differences”). When several channels of the same module type are
programmed by this command, output sequencing is precisely determined by
the programmed delays.

Output Subsystem

Series N6700 User’s Guide 87

However, when outputs of different module types are sequenced using this
command, there may be an additional offset of a few milliseconds from one
output to another. This offset is the same for each module type and is
repeatable. Once you have characterized this offset, using an oscilloscope for
example, you can adjust the programmed delays to compensate for the offset
and give the desired output sequencing.

Outputs within the same module type can also have an offset if one model has
output relays (Option 761) and another does not. These offsets are also
repeatable and can be compensated for by adjusting the programmed delay
values.

OUTPut[:STATe]:DELay:RISE {<delay>|MIN|MAX}, (@<chanlist>)
OUTPut[:STATe]:DELay:RISE? (@<chanlist>)

This command sets the delay in seconds that the instrument waits
before enabling the specified output. It affects all off-to-on transitions
including changes in the OUTPut:STATe as well as transitions due to
OUTPut:PROTection:CLEar. Delay times can range from 0 to 1.023
seconds in increments of 1 millisecond.

This command allows multiple output channels to turn on in
sequence. Each output will not turn on until its delay time has
elapsed.

The *RST value = 0.

NOTE Refer to the note under OUTPut:DELay:FALL, which also applies to
OUTPut:DELay:RISE.

OUTPut:INHibit:MODE {LATChing|LIVE|OFF}
OUTPut:INHibit:MODE?

This command selects the mode of operation of the Inhibit input
(INH). The inhibit function shuts down ALL output channels in
response to an external signal on the Inhibit input. If an output
channel has been turned off by OUTPut:STATe, the inhibit function
does not affect the output channel while it is in the OFF state. The
Inhibit mode setting is stored in non-volatile memory.

The following modes can be selected:

LATChing Causes a logic-true transition on the Inhibit input to disable all outputs. The
outputs remain disabled until the Inhibit input is returned to logic-false and the
latched INH status bit is cleared by sending the OUTP:PROT:CLE command or a
protection clear command from the front panel.

LIVE Allows the enabled outputs to follow the state of the Inhibit input. When the
Inhibit input is true, the outputs are disabled. When the Inhibit input is false,
the outputs are re-enabled.

OFF The Inhibit input is ignored.

Output Subsystem

88 Series N6700 User’s Guide

OUTPut:PON:STATe {RST|RCL0}
OUTPut:PON:STATe?

This command determines if the power-on state is set to the *RST
(RST) state or the instrument state stored in memory location 0
(RCL0). The parameter is saved in non-volatile memory. Instrument
states can be stored using the *SAV command.

Refer to *RST and *RCL under “System Commands” for more
information.

OUTPut:PROTection:CLEar (@<chanlist>)

This command clears the latched protection status that disables the
output when an over-voltage, over-temperature, over-current, power-
fail, or Inhibit status condition is detected. All conditions that
generate the fault must be removed before the latched status can be
cleared. The output is restored to the state it was in before the fault
condition occurred.

NOTE If a protection shutdown occurs during an output list, the list continues running
even though the output is disabled. When the protection status is cleared and
the output becomes enabled again, the output will be set to the values of the
step that the list is presently at.

OUTPut:PROTection:COUPle {ON|OFF}
OUTPut:PROTection:COUPle?

This command enables/disables output coupling for protection faults.
When enabled, ALL output channels are disabled when a protection
fault occurs on any output channel. The enabled state is On (1); the
disabled state is Off (0). When disabled, only the affected output
channel is disabled when a protection fault is triggered.

The *RST value = OFF.

OUTPut:PROTection:DELay {<delay>|MIN|MAX}, (@<chanlist>)
OUTPut:PROTection:DELay? (@<chanlist>)

This command sets the over-current protection programming delay.
This prevents momentary changes in status that can occur during
reprogramming from triggering the over-current protection function.
Programmed values can range from 0 to 255 milliseconds.

The *RST value = 20 ms.

Source Subsystem

Series N6700 User’s Guide 89

Source Subsystem
The Source subsystem programs the current, digital, list, step, and
voltage functions.

NOTE The SOURce:CURRent:RANge, SOURce:VOLTage:RANge, and SOURce:LIST
commands do not apply to all models (Refer to Chapter 1, “Model Differences”).

[SOURce:]CURRent[:LEVel][:IMMediate][:AMPLitude]
{<value>|MIN|MAX}, (@<chanlist>)
[SOURce:]CURRent[:LEVel][:IMMediate][:AMPLitude]? (@<chanlist>)
[SOURce:]CURRent[:LEVel]:TRIGgered[:AMPLitude]
{<value>|MIN|MAX}, (@<chanlist>)
[SOURce:]CURRent[:LEVel]:TRIGgered[:AMPLitude]? (@<chanlist>)

These commands set the immediate and the triggered current level of
the output channel. The values are programmed in amperes. The
immediate level is the output current setting. The triggered level is a
stored value that is transferred to the output when a Step transient is
triggered. This command is coupled with [SOURce:]CURRent:RANGe.

The *RST value = MIN.

[SOURce:]CURRent:MODE {FIXed|STEP|LIST}, (@<chanlist>)
[SOURce:]CURRent:MODE? (@<chanlist>)

These commands determine what happens to the output current
when the transient system is initiated and triggered.

FIXed The output voltage remains at the immediate value.

STEP The output goes to the triggered level when a trigger occurs.

LIST The output follows the programmed step value when a trigger occurs.
This function does not apply to all models (see Chapter 1, “Model Differences”).
The *RST value = FIXed.

[SOURce:]CURRent:PROTection:STATe {ON|OFF}, (@<chanlist>)
[SOURce:]CURRent:PROTection:STATe? (@<chanlist>)

This command enables or disables the over-current protection (OCP)
function. The enabled state is On (1); the disabled state is Off (0). If
the over-current protection function is enabled and the output goes
into constant current operation, the output is disabled and the
Questionable Condition status register OCP bit is set.

The current limit setting determines when the output channel goes
into constant current operation. An over-current condition can be
cleared with OUTPut:PROTection:CLEar after the cause of the
condition is removed.

The *RST value = OFF.

Source Subsystem

90 Series N6700 User’s Guide

[SOURce:]CURRent:RANGe {<value>|MIN|MAX}, (@<chanlist>)
[SOURce:]CURRent:RANGe? (@<chanlist>)

This command only applies to models that have programmable
ranges. Refer to Appendix A for the available ranges for each model.

This command sets the output current range. Units are in amperes.
The instrument selects the range with the best resolution for the
value entered. When queried, the returned value is the maximum DC
current that can be output on the range that is presently set.

This command is coupled with the [SOURce:]CURRent command.
This means that if a range command is sent that places an output on
a range with a lower maximum current than the present current
level, an error is generated. This also occurs if a current level is
programmed with a value too large for the present range.

These types of errors can be avoided by sending the both level and
range commands in the same SCPI message. When the range and
setting information is received as a set, no range/setting conflict
occurs.

The *RST value = the highest available range.

NOTE If programming a range value causes a range change to occur while the output
is enabled, the output will be temporarily disabled while the range switch
occurs. The transition from on-to-off and then from off-to-on will also be
delayed by the settings of OUTPut:DELay:FALL and OUTPut:DELay:RISE.

[SOURce:]DIGital:INPut:DATA?

This query reads the state of the digital control port. The query
returns the state of pins 1 through 7 in bits 0 through 6 respectively.

[SOURce:]DIGital:OUTPut:DATA <value>
[SOURce:]DIGital:OUTPut:DATA?

This command sets the output data on the digital control port when
that port is configured for Digital I/O operation. The port has seven
signal pins and a digital ground pin. In the binary-weighted value
that is written to the port, the pins are controlled according to the
following bit assignments.

Pin Bit Pin Bit
1 0 4 3
2 1 5 4
3 2 6 5

 7 6

The query returns the last programmed value of the bits. To read the
actual state of the pin, use [SOURce:]DIGital:INPut:DATA?

Source Subsystem

Series N6700 User’s Guide 91

[SOURce:]DIGital:PIN1:FUNCtion {DIO|DINPut|TOUTput|TINPut|FAULt}
[SOURce:]DIGital:PIN2:FUNCtion {DIO|DINPut|TOUTput|TINPut}
[SOURce:]DIGital:PIN3:FUNCtion {DIO|DINPut|TOUTput|TINPut|INHibit}
[SOURce:]DIGital:PIN4:FUNCtion {DIO|DINPut|TOUTput|TINPut}
[SOURce:]DIGital:PIN5:FUNCtion {DIO|DINPut|TOUTput|TINPut}
[SOURce:]DIGital:PIN6:FUNCtion {DIO|DINPut|TOUTput|TINPut}
[SOURce:]DIGital:PIN7:FUNCtion {DIO|DINPut|TOUTput|TINPut}
[SOURce:]DIGital:PIN<1-7>:FUNCtion?

These commands set the functions of the digital port pins. The pin
functions are saved in non-volatile memory.

DIO The pin is a general-purpose ground-referenced digital input/output. The output
can be set with [SOURce:]DIGital:OUTPut:DATA <value>.

DINPut The pin is in digital input-only mode. The digital output data of the
corresponding pin is ignored.

TOUTput The pin is configured as a trigger output. When configured as a trigger output,
the pin will only generate output triggers if the Step or List transient system has
been configured to generated trigger signals.

TINPut The pin is configured as a trigger input. When configured as a trigger input, the
pin can be selected as a source of measurement and transient trigger signals.

FAULt Applies only to pin 1. Setting FAULt means that pin 1 functions as an isolated
fault output. The fault signal is true when any output is in a protected state
(from OCP, OVP, OT, PF, or INH). Note also that Pin 2 serves as the isolated
common for pin 1. When pin 1 is set to the FAULt function, the instrument
ignores any commands to program pin 2. Queries of pin 2 will return FAULt.
If pin 1 is changed from FAULt to another function, pin 2 is set to DINPut.

INHibit Applies only to pin 3. When pin 3 is configured as an inhibit input, a true signal
at the pin will disable all output channels.

[SOURce:]DIGital:PIN1:POLarity {POSitive|NEGative}
[SOURce:]DIGital:PIN2:POLarity {POSitive|NEGative}
[SOURce:]DIGital:PIN3:POLarity {POSitive|NEGative}
[SOURce:]DIGital:PIN4:POLarity {POSitive|NEGative}
[SOURce:]DIGital:PIN5:POLarity {POSitive|NEGative}
[SOURce:]DIGital:PIN6:POLarity {POSitive|NEGative}
[SOURce:]DIGital:PIN7:POLarity {POSitive|NEGative}
[SOURce:]DIGital:PIN<1-7>:POLarity?

These commands set the polarity of the digital port pins. The pin
polarities are saved in non-volatile memory.

Setting a polarity to POSitive means that a logical true signal is a
voltage high at the pin. Setting the polarity NEGative means that a
logical true signal is a voltage low at the pin. For trigger inputs and
outputs, POSitive means a rising edge; NEGative means a falling edge.

Source Subsystem

92 Series N6700 User’s Guide

[SOURce:]LIST:COUNt {<count>|MIN|MAX|INFinity}, (@<chanlist>)
[SOURce:]LIST:COUNt? (@<chanlist>)

This command sets the number of times that the list is executed
before it is completed. Applies only to models with list capability.
The range is 1 through 256. Use INFinity to execute a list indefinitely.
In this case, use ABORt:TRANsient to stop the list.

The *RST value = 1.

[SOURce:]LIST:CURRent[:LEVel] <curr> {,<curr>}, (@<chanlist>)
[SOURce:]LIST:CURRent[:LEVel]? (@<chanlist>)

This command specifies the current setting for each list step in
amperes. Applies only to models with list capability. A comma-
delimited list of up to 512 steps may be programmed.

The *RST value = 1 step with a value of MIN.

[SOURce:]LIST:CURRent:POINts? (@<chanlist>)

This query returns the number of points (steps) programmed in the
current list. Applies only to models with list capability.

[SOURce:]LIST:DWELl <time> {,<time>}, (@<chanlist>)
[SOURce:]LIST:DWELl? (@<chanlist>)

This command specifies the dwell time for each list step. Applies only
to models with list capability. A comma-delimited list of up to 512
steps may be programmed. Dwell time is the time that the output will
remain at a specific step. Dwell times can be programmed from 0 to
262.143 seconds with the following resolution:
Range in seconds Resolution
0 to 0.262143 1 microsecond
0 to 2.62143 10 microseconds
0 to 26.2143 100 microseconds
0 to 262.143 1 millisecond

At the end of the dwell time, the output state of the unit depends
upon the LIST:STEP program settings. See LIST:STEP

The order in which the values are entered determines the sequence
when the list executes.

The *RST value = 1 step with a value of 0.001.

[SOURce:]LIST:DWELl:POINts? (@<chanlist>)

This query returns the number of points (steps) in the dwell list.
Applies only to models with list capability.

Source Subsystem

Series N6700 User’s Guide 93

[SOURce:]LIST:STEP {ONCE|AUTO}, (@<chanlist>)
[SOURce:]LIST:STEP? (@<chanlist>)

This command specifies how the list responds to triggers. Applies
only to models with list capability.

ONCE Causes the output to remain at the present step until a trigger advances it to
the next step. Triggers that arrive during the dwell time are ignored.

AUTO Causes the output to automatically advance to each step, after the receipt of an
initial starting trigger. The steps are paced by the dwell list. As each dwell time
elapses, the next step is immediately output.
The *RST value = AUTO.

[SOURce:]LIST:TERMinate:LAST {ON|OFF}, (@<chanlist>)
[SOURce:]LIST:TERMinate:LAST? (@<chanlist>)

This command determines the output value when the list terminates.
Applies only to models with list capability. The state is either ON (1)
or OFF (0). When ON, the output voltage or current remains at the
value of the last list step. The value of the last voltage or current list
step becomes the IMMediate value when the list completes. When
OFF, and also when the list is aborted, the output returns to the
settings it was at before the list started.

The *RST value = OFF.

[SOURce:]LIST:TOUTput:BOSTep[:DATA] {ON|OFF}{,{ON|OFF}}, (@<chanlist>)
[SOURce:]LIST:TOUTput:BOSTep[:DATA]? (@<chanlist>)

This command specifies which list steps generate a trigger out signal
at the beginning of the list step (BOSTep). Applies only to models
with list capability. A comma-delimited list of up to 512 steps may be
programmed. The state is either ON (1) or OFF (0). A trigger is only
generated when the state is set to ON.

The *RST value = 1 step with a value of OFF.

[SOURce:]LIST:TOUTput:EOSTep[:DATA] {ON|OFF}{,{ON|OFF}}, (@<chanlist>)
[SOURce:]LIST:TOUTput:EOSTep[:DATA]? (@<chanlist>)

This command specifies which list steps generate a trigger out signal
at the end of the list step’s (EOSTep) dwell time. Applies only to
models with list capability. A comma-delimited list of up to 512 steps
may be programmed. The state is either ON (1) or OFF (0). A trigger
is only generated when the state is set to ON.

The *RST value = 1 step with a value of OFF.

[SOURce:]LIST:VOLTage[:LEVel] <volt> {,<volt>}, (@<list>)
[SOURce:]LIST:VOLTage[:LEVel]? (@<chanlist>)

This command specifies the voltage setting for each list step in volts.
Applies only to models with list capability. Up to 512 steps may be
programmed. The values are separated by commas.

The *RST value = 1 step with a value of MIN.

Source Subsystem

94 Series N6700 User’s Guide

[SOURce:]LIST:VOLTage:POINts? (@<chanlist>)

This query returns the number of points (steps) in the voltage list,
not the point values. Applies only to models with list capability.

[SOURce:]STEP:TOUTput {ON|OFF}, (@<chanlist>)
[SOURce:]STEP:TOUTput? (@<chanlist>)

This command specifies whether an output trigger signal is generated
when a transient voltage or current step occurs. The state is either
ON (1) or OFF (0). A trigger is generated when the state is True.

The *RST value = OFF.

[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude]
{<value>|MIN|MAX},(@<chanlist>)
[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude]? (@<chanlist>)
[SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPLitude]
{<value>|MIN|MAX}, (@<chanlist>)
[SOURce:]VOLTage[:LEVel]:TRIGgered[:AMPLitude]? (@<chanlist>)

These commands set the immediate and the triggered voltage level of
the output channel. The values are programmed in volts. The
immediate level is the output voltage setting. The triggered level is a
stored value that is transferred to the output when a Step transient is
triggered. This command is coupled with [SOURce:]VOLTage:RANGe.

The *RST value = MIN.

[SOURce:]VOLTage:MODE {FIXed|STEP|LIST}, (@<chanlist>)
[SOURce:]VOLTage:MODE? (@<chanlist>)

These commands determine what happens to the output voltage
when the transient system is initiated and triggered.

FIXed The output voltage remains at the immediate value.

STEP The output goes to the triggered level when a trigger occurs.

LIST The output follows the programmed list step value when a trigger occurs.
This function does not apply to all models (see Chapter 1, “Model Differences”).

The *RST value = FIXed.

[SOURce:]VOLTage:PROTection:LEVel {<value>|MIN|MAX}, (@<chanlist>)
[SOURce:]VOLTage:PROTection:LEVel? (@<chanlist>)

This command sets the over-voltage protection (OVP) level of the
output channel. The values are programmed in volts. If the output
voltage exceeds the OVP level, the output is disabled and the
Questionable Condition status register OV bit is set. An over-voltage
condition can be cleared with the Output Protection Clear command
after the condition that caused the OVP trip is removed.

The *RST value = MAX.

Source Subsystem

Series N6700 User’s Guide 95

[SOURce:]VOLTage:RANGe {<value>|MIN|MAX}, (@<chanlist>)
[SOURce:]VOLTage:RANGe? (@<chanlist>)

This command only applies to models that have programmable
ranges. Refer to Appendix A for the available ranges for each model.

This command sets the output voltage range. Units are in volts. The
instrument selects the range with the best resolution for the value
that is entered. When queried, the returned value is the maximum
voltage that can be output on the range that is presently set.

This command is coupled with the [SOURce:]VOLTage command.
This means that if a range command is sent that places an output on
range with a lower maximum voltage than the present voltage level,
an error is generated. This also occurs if a voltage level is
programmed with a value too large for the present range.

These types of errors can be avoided by sending the both level and
range commands in the same SCPI message. When the range and
setting information is received as a set, no range/setting conflict
occurs.

The *RST value = the highest available range.

NOTE If programming a range value causes a range change to occur while the output
is enabled, the output will be temporarily disabled while the range switch
occurs. The transition from on-to-off and then from off-to-on will also be
delayed by the settings of OUTPut:DELay:FALL and OUTPut:DELay:RISE.

[SOURce:]VOLTage:SLEW[:IMMediate] {<value>|MIN|MAX|INF}, (@<chanlist>)
[SOURce:]VOLTage:SLEW[:IMMediate]? (@<chanlist>)

This command sets the voltage slew rate in volts per second. The slew
rate setting affects all programmed voltage changes, including those
due to the output state turning on or off. The slew rate can be set to
any value between 0 and 9.9E37. For very large values, the slew rate
will be limited by the analog performance of the output circuit. The
keywords MAXimum or INFinity set the slew rate to maximum.

Internally, the slew rate is controlled by a 24-bit register. The slowest
or minimum slew rate is a function of the full-scale voltage range. For
a model with a 50 V range, the minimum slew rate is about 4.76 V/s.
For other voltage ranges the minimum slew rate is proportional to
this value, so for a model with a 5 V range the minimum slew rate is
about 0.476 V/s. The unit accepts slew rates as low as 0 V/s, but
values sent to the 24-bit register will be limited at 1 count.

The query returns the value that was sent, unless the value was less
than the minimum slew rate, in which case the minimum value is
returned. The LSB weight of the 24-bit register can be queried using
VOLT:SLEW? MIN. The exact value varies slightly according to the
voltage calibration.

The *RST value = 9.9E37.

Status Subsystem

96 Series N6700 User’s Guide

Status Subsystem
Status register programming lets you determine the operating
condition of the power system at any time. The power system has
three groups of status registers; Operation, Questionable, and
Standard Event. The Operation and Questionable status groups each
consist of the Condition, Enable, and Event registers as well as NTR
and PTR filters.

The Standard Event status group is also programmed using Common
commands. Common commands control additional status functions
such as the Service Request Enable and the Status Byte registers.

Operation Status Group
The Operation Status registers record signals that occur during
normal operation. As shown below, the group consists of a
Condition, PTR/NTR, Event, and Enable register. The outputs of the
Operation Status register group are logically-ORed into the
OPERation summary bit (7) of the Status Byte register.

Questionable Status Group
The Questionable Status registers record signals that indicate
abnormal operation. As shown below, the group consists of the same
register types as the Status Operation group. The outputs of the
Questionable Status group are logically-ORed into the QUEStionable
summary bit (3) of the Status Byte register.

Standard Event Status Group
The Standard Event registers are programmed by Common
commands. The Standard Event event register latches events relating
to communication status. It is a read-only register that is cleared
when read. The Standard Event enable register functions similarly to
the enable registers of the Operation and Questionable status groups.

Status Byte Register
This register summarizes the information from all other status
groups as defined in the IEEE 488.2 Standard Digital Interface for
Programmable Instrumentation.

MSS and RQS Bits
MSS is a real-time (unlatched) summary of all Status Byte register
bits that are enabled by the Service Request Enable register. MSS is
set whenever the power system has one or more reasons for
requesting service. *STB? reads the MSS in bit position 6 of the
response but does not clear any of the bits in the Status Byte register.

The RQS bit is a latched version of the MSS bit. Whenever the power
system requests service, it sets the SRQ interrupt line true and
latches RQS into bit 6 of the Status Byte register. When the controller

Status Subsystem

Series N6700 User’s Guide 97

does a serial poll, RQS is cleared inside the register and returned in
bit position 6 of the response. The remaining bits of the Status Byte
register are not disturbed.

MAV Bit and Output Queue
The Output Queue is a first-in, first-out (FIFO) data register that
stores power system-to-controller messages until the controller reads
them. Whenever the queue holds one or more bytes, it sets the MAV
bit (4) of the Status Byte register.

LOGICAL
OR

LOGICAL
OR

PON

CME

EXE

DDE

QYE

OPC 0

2

3

4

5

7

1

4

8

16

32

128

1

4

8

16

32

128

EVENT ENABLE

STANDARD EVENT
STATUS

ERROR QUEUE

QUEUE
NOT

EMPTY

Error

Error

Error

STATUS BYTE

SERVICE
REQUEST
ENABLE

LOGICAL
OR

SERVICE
REQUEST

GENERATION

8

16

32

128

8

16

32

128

RQS

OPER

MSS

ESB

MAV

QUES

4

5

6

7

UNR

OT

OV 0

4

QUESTIONABLE STATUS
(IDENTICAL REGISTERS FOR EACH CHANNEL)

10

CONDITION

LOGICAL
OR

EVENT ENABLE

QSUMCHAN 1

SAME
AS

CHAN 1

LOGICAL
OR

PTR/NTR

1

16

1024

1

16

1024

1

16

1024

1

16

1024

3

LOGICAL
OR

CHAN 2

CHAN 3

CHAN 4

QSUM

QSUM

QSUM

CHAN 2

CHAN 3

CHAN 4

OSUM

CONDITION

0

2

PTR/NTR EVENT ENABLE

1
CV
CC

SAME
AS

CHAN 1

CHAN 1

OSUM

OSUM

1
2

4

OC 1

OFF
OSUM

OPERATION STATUS
(IDENTICAL REGISTERS FOR EACH CHANNEL)

PF 2 4 4

2

4 4
2 2 2

CP+ 3 8 888

CP - 5 32 323232

INH 9 512 512512512

64

4
3WTG 8

16

1
2

4
8
16

1
2

4
8
16

1
2

4
8
16WTG

OUTPUT QUEUE

QUEUE
NOT

EMPTY

Data

Data

Data

2ERR

meas

trans

44

*STB? *SRE<n>
*SRE?

*ESR?

STAT:QUES:COND?

*ESE<n>
*ESE?

SYST:ERR?

STAT:QUES:PTR |:NTR <n>
STAT:QUES:PTR |:NTR ?

STAT:QUES:EVEN?

STAT:QUES:ENAB <n>
STAT:QUES:ENAB?

STAT:OPER:COND?

STAT:OPER:EVEN?

STAT:OPER:ENAB <n>
STAT:OPER:ENAB?STAT:OPER:PTR |:NTR <n>

STAT:OPER:PTR |:NTR ?

PROT 11
2048 204820482048

Status Subsystem

98 Series N6700 User’s Guide

STATus:PRESet

This command sets all defined bits in the Status system’s PTR
registers and clears all bits in the NTR and Enable registers.

Operation Register Questionable Register Preset Settings
STAT:OPER:ENAB STAT:QUES:ENAB 0 all bits disabled
STAT:OPER:NTR STAT:QUES:NTR 0 all bits disabled
STAT:OPER:PTR 31 all defined bits enabled
 STAT:QUES:PTR 3647 all defined bits enabled

STATus:OPERation[:EVENt]? (@<chanlist>)

This query returns the value of the Operation Event register. The
Event register is a read-only register, which stores (latches) all
events that are passed by the Operation NTR and/or PTR filter.
Reading the Operation Event register clears it. The bit configuration
of the Operation status registers is as follows:

Bit Position 15-5 4 3 2 1 0
Bit Value − 16 8 4 2 1
Bit Name − WTG-tran WTG-meas OFF CC CV
WTG-tran = The transient system is waiting for a trigger.
WTG-meas = The measurement system is waiting for
 a trigger

OFF = The output is programmed off
CC = The output is in constant current
CV = The output is in constant voltage

STATus:OPERation:CONDition? (@<chanlist>)

This query returns the value of the Operation Condition register.
That is a read-only register, which holds the live (unlatched)
operational status of the power system.

STATus:OPERation:ENABle <value>, (@<chanlist>)
STATus:OPERation:ENABle? (@<chanlist>)

This command and its query set and read the value of the
Operational Enable register. This register is a mask for enabling
specific bits from the Operation Event register to set the operation
summary bit (OPER) of the Status Byte register. This bit (bit 7) is the
logical OR of all the Operational Event register bits that are enabled
by the Status Operation Enable register.

Status Subsystem

Series N6700 User’s Guide 99

STATus:OPERation:NTRansition <value>, (@<chanlist>)
STATus:OPERation:PTRansition <value>, (@<chanlist>)
STATus:OPERation:NTRansition? (@<chanlist>)
STATus:OPERation:PTRansition? (@<chanlist>)

These commands set and read the value of the Operation NTR
(Negative-Transition) and PTR (Positive-Transition) registers. These
registers serve as polarity filters between the Operation Condition
and Operation Event registers to cause the following actions:

 When a bit in the Operation NTR register is set to 1, then a 1-to-0
transition of the corresponding bit in the Operation Condition
register causes that bit in the Operation Event register to be set.

 When a bit of the Operation PTR register is set to 1, then a 0-to-1
transition of the corresponding bit in the Operation Condition
register causes that bit in the Operation Event register to be set.

 If the same bits in both NTR and PTR registers are set to 1, then
any transition of that bit at the Operation Condition register sets
the corresponding bit in the Operation Event register.

 If the same bits in both NTR and PTR registers are set to 0, then
no transition of that bit at the Operation Condition register can
set the corresponding bit in the Operation Event register.

STATus:QUEStionable[:EVENt]? (@<chanlist>)

This query returns the value of the Questionable Event register. The
Event register is a read-only register, which stores (latches) all events
that are passed by the Questionable NTR and/or PTR filter. Reading
the Questionable Event register clears it. The bit configuration of the
Questionable status registers is as follows:

Bit Position 15-12 11 10 9 8-6 5 4 3 2 1 0
Bit Value − 2048 1024 512 − 32 16 8 4 2 1
Bit Name − PROT UNR INH − CP − OT CP+ PF OC OV
PROT = The output has been disabled because it is
coupled to a protection condition that occurred on
another channel.
UNR = The output is unregulated
INH = The output is inhibited by an external signal
CP– = The output is limited by the negative power limit

OT = The over-temperature protection has tripped
CP+ = The output is limited by the positive power limit
PF = The output is disabled by the power-fail - which may be
caused by a low-line or brownout condition on the AC line
OC = The output is disabled by the over-current protection
OV = The output is disabled by the over-voltage protection

STATus:QUEStionable:CONDition? (@<chanlist>)

This query returns the value of the Questionable Condition register.
That is a read-only register, which holds the real-time (unlatched)
questionable status of the power system.

Status Subsystem

100 Series N6700 User’s Guide

STATus:QUEStionable:ENABle <value>, (@<chanlist>)
STATus:QUEStionable:ENABle? (@<chanlist>)

This command and its query set and read the value of the
Questionable Enable register. This register is a mask for enabling
specific bits from the Questionable Event register to set the
questionable summary bit (QUES) of the Status Byte register. This bit
(bit 3) is the logical OR of all the Questionable Event register bits that
are enabled by the Questionable Status Enable register.

STATus:QUEStionable:NTRansiton <value>, (@<chanlist>)
STATus:QUEStionable:PTRansiton <value>, (@<chanlist>)
STATus:QUEStionable:NTRansition? (@<chanlist>)
STATus:QUEStionable:PTRansition? (@<chanlist>)

These commands set or read the value of the Questionable NTR
(Negative-Transition) and PTR (Positive-Transition) registers. These
registers serve as polarity filters between the Questionable Condition
and Questionable Event registers to cause the following actions:

 When a bit of the Questionable NTR register is set to 1, then a 1-
to-0 transition of the corresponding bit of the Questionable
Condition register causes that bit in the Questionable Event
register to be set.

 When a bit of the Questionable PTR register is set to 1, then a 0-
to-1 transition of the corresponding bit in the Questionable
Condition register causes that bit in the Questionable Event
register to be set.

 If the same bits in both NTR and PTR registers are set to 1, then
any transition of that bit at the Questionable Condition register
sets the corresponding bit in the Questionable Event register.

 If the same bits in both NTR and PTR registers are set to 0, then
no transition of that bit at the Questionable Condition register
can set the corresponding bit in the Questionable Event register.

*CLS

This command causes the following actions on the status system:

 Clears the Standard Event Status, Operation Status Event, and
Questionable Status Event registers

 Clears the Status Byte and the Error Queue

 If *CLS immediately follows a program message terminator
(<NL>), then the output queue and the MAV bit are also cleared.

Status Subsystem

Series N6700 User’s Guide 101

*ESE
*ESE?

This command programs the Standard Event Status Enable register
bits. The programming determines which events of the Standard
Event Status Event register (see *ESR?) are allowed to set the ESB
(Event Summary Bit) of the Status Byte register. A "1" in the bit
position enables the corresponding event.

All of the enabled events of the Standard Event Status Event Register
are logically ORed to cause the Event Summary Bit (ESB) of the
Status Byte Register to be set. The query reads the Standard Event
Status Enable register. The bit configuration of the Standard Event
register is as follows:

Bit Position 7 6 5 4 3 2 1 0
Bit Value 128 − 32 16 8 4 − 1
Bit Name PON − CME EXE DDE QUE − OPC
PON = Power-on has occurred
CME = Command error
EXE = Execution error

DDE = Device-dependent error
QUE = Query error
OPC = Operation complete

*ESR?

This query reads the Standard Event Status Event register. Reading
the register clears it. The bit configuration is the same as the
Standard Event Status Enable register (see *ESE).

*OPC
*OPC?

The command is mainly used for program synchronization. It causes
the instrument to set the OPC bit (bit 0) of the Standard Event Status
register when the instrument has completed all pending operations
sent before the *OPC command. Pending operations are complete
when:

 All commands sent before *OPC, including paralleled commands,
have been completed. Most commands are sequential and are
completed before the next command is executed. Commands that
affect output voltage, current, or state, relays, and trigger actions
are executed in parallel with subsequent commands. *OPC
provides notification that all parallel commands have completed.

 All triggered actions are completed

*OPC does not prevent processing of subsequent commands, but the
OPC bit will not be set until all pending operations are completed.

*OPC? causes the instrument to place an ASCII "1" in the Output
Queue when all pending operations are completed. *OPC? does not
suspend processing of commands.

Status Subsystem

102 Series N6700 User’s Guide

*SRE
*SRE?

This command sets the value of the Service Request Enable Register.
This register determines which bits from the Status Byte Register are
summed to set the Master Status Summary (MSS) bit and the Request
for Service (RQS) summary bit. A 1 in any Service Request Enable
Register bit position enables the corresponding Status Byte Register
bit. All such enabled bits are then logically ORed to cause the MSS bit
(bit 6) of the Status Byte Register to be set.

When the controller conducts a serial poll in response to SRQ, the
RQS bit is cleared, but the MSS bit is not. When *SRE is cleared (by
programming it with 0), the power system cannot generate an SRQ to
the controller. The query returns the current state of *SRE.

*STB?

This query reads the Status Byte register, which contains the status
summary bits and the Output Queue MAV bit. Reading the Status
Byte register does not clear it. The input summary bits are cleared
when the appropriate event registers are read. The MAV bit is cleared
at power-on, by *CLS, or when there is no more response data
available.

A serial poll also returns the value of the Status Byte register, except
that bit 6 returns Request for Service (RQS) instead of Master Status
Summary (MSS). A serial poll clears RQS, but not MSS. When MSS is
set, it indicates that the power system has one or more reasons for
requesting service.

Bit Position 7 6 5 4 3 2 1 − 0
Bit Value 128 64 32 16 8 4 −
Bit Name OPER MSS

(RQS)
ESB MAV QUES ERR −

OPER = Operation status summary
MSS = Master status summary
(RQS) = Request for service
ESB = Event status byte summary

MAV = Message available
QUES = Questionable status summary
ERR = Error queue not empty

*WAI

This command instructs the power system not to process any further
commands until all pending operations are completed. Pending
operations are as defined under the *OPC command. *WAI can be
aborted only by sending the power system a Device Clear command.

System Commands

Series N6700 User’s Guide 103

System Commands
System commands control system functions that are not directly
related to output control, measurement, or status functions. Common
commands are also used to control system functions.

SYSTem:CHANnel[:COUNt]?

This query returns the number of output channels in a mainframe.

SYSTem:CHANnel:MODel? (@<chanlist>)

This query returns the model numbers of the selected output
channels. Model numbers are comma-delimited.

SYSTem:CHANnel:OPTion? (@<chanlist>)

This query returns a list of options installed in each channel given in
the channel list. The list of options for each channel is surrounded by
double quotes. If there are no options installed in a channel, an
empty pair of double quotes is returned.

SYSTem:CHANnel:SERial? (@<chanlist>)

This query returns the serial numbers of the selected output
channels. Serial numbers are comma-delimited.

SYSTem:COMMunicate:RLSTate {LOCal|REMote|RWLock}
SYSTem:COMMunicate:RLSTate? (@<chanlist>)

This command configures the remote/local state of the instrument
according to the following settings.

LOCal The instrument is set to front panel and remote interface control.

REMote The instrument is set to front panel and remote interface control.

RWLock The front panel keys are disabled. The instrument can only be controlled via the
remote interface. This programmable setting is completely independent from
the front panel lock/unlock function that is available from the front panel menu.

The remote/local state can also be set by interface commands over
the GPIB and some other I/O interfaces. When multiple remote
programming interfaces are active, the interface with the most
recently changed remote/local state determines the instrument’s
remote/local state.

The remote/local state is unaffected by *RST or any SCPI commands
other than SYSTem:COMMunicate:RLState. At power-on, the state is
LOCal.

SYSTem:COMMunicate:TCPip:CONTrol?

This query returns the control connection port number. This is used
to open a control socket connection to the instrument.

System Commands

104 Series N6700 User’s Guide

SYSTem:ERRor?

This query returns the next error number and its corresponding
message string from the error queue. The queue is a FIFO (first-in,
first-out) buffer that stores errors as they occur. As it is read, each
error is removed from the queue. When all errors have been read, the
query returns 0, “No error”. If more errors are accumulated than the
queue can hold, the last error in the queue will be -350, “Too many
errors” (see Appendix D for error codes).

SYSTem:GROup:CATalog?

This query returns information about channels that are grouped. The
defined groups are enclosed in quotes. For example, the returned
string “1,2,3”, “4” indicates that channels 1, 2, and 3 are grouped.
Channel 4 is not grouped, as it appears by itself in the quote string.

SYSTem:GROup:DEFine (@<chanlist>)

This command defines a list of output channels as a paralleled group.
This effectively creates a single output with higher current and power
capability. You can group up to four channels per mainframe.
Channels must have identical model numbers and options installed.

After the channels are wired in parallel and defined as a group, they
can be addressed using any of the channel-specific SCPI commands
by sending the channel number of the lowest channel in the group.

Group channel lists are stored in non-volatile memory and are
unaffected by *RST or *RCL. But the group channel settings (voltage,
current, etc.) are set and saved by *RST or *RCL.

This command deletes any previously saved states. However, for the
group changes to take effect, you must also reboot the unit. Either
cycle AC power or send the SYSTem:REBoot command.

SYSTem:GROup:DELete <channel>

This command removes the indicated channel from a group. It leaves
the other channels in the group intact.. When ungrouping a channel,
you must also remove the parallel connections between the output
and sense terminals of that channel.

This command deletes any previously saved states. However, for the
group changes to take effect, you must also reboot the unit. Either
cycle AC power or send the SYSTem:REBoot command.

SYSTem:GROup:DELete:ALL

This command restores a group of channels that have been grouped
back to an ungrouped state. When ungrouping channels, you must
also remove all paralleled connections between channels.

This command deletes any previously saved states. However, for the
group changes to take effect, you must also reboot the unit. Either
cycle AC power or send the SYSTem:REBoot command.

System Commands

Series N6700 User’s Guide 105

SYSTem:PASSword:FPANel:RESet

This command resets the front panel lockout password to the factory-
shipped setting, which is zero (0). This command does not reset the
calibration password.

NOTE The front panel password can also be reset to 0 by setting an internal switch on
the unit. This switch will also reset the calibration password to 0. Refer to
Appendix B under “Calibration Switches” for more information.

SYSTem:REBoot

This command causes the instrument to reboot to its power-on state.

SYSTem:VERSion?

This query returns the SCPI version number to which the instrument
complies. The returned value is of the form YYYY.V, where YYYY
represents the year and V is the revision number for that year.

*IDN?

This query requests the power system to identify itself. It returns a
string of four fields separated by commas.

Field Information
Agilent Technologies
N67xxA
0
<A>.xx.xx

Manufacturer
Mainframe model number followed by a letter suffix
Zero or mainframe serial number if available
Revision levels of firmware

*OPT?

This query requests the mainframe to identify any installed options.
A 0 indicates no options are installed.

*RCL <state>

This command restores the power system to a state that was
previously stored in memory locations 0 through 1 with the *SAV
command. All instrument states are recalled except for the following:

 The trigger system is set to the Idle state by an implied ABORt
command (this cancels any uncompleted trigger actions).

 Calibration is disabled by setting CALibration:STATe to OFF.

 All list settings are set to their *RST values.

 All status registers are set to their PRESet values.

NOTE The device state stored in location 0 is automatically recalled at power turn-on
when the Output Power-On state is set to RCL 0.

System Commands

106 Series N6700 User’s Guide

*RDT?

This query returns a description of the output channels installed in a
mainframe. Semicolons separate multiple channel descriptions.

Field Information
CHAN <c>
description

Channel number
Description of the output channel

*RST

This command resets the volatile memory of the power system to a
factory-defined state (see “*RST Settings” at the beginning of this
chapter).

*RST also forces the ABORt:ACQuire and ABORt:TRANsient
commands. This cancels any measurement or output trigger actions
presently in process, and resets the two WTG bits in the Status
Operation Condition register.

*SAV <state>

CAUTION This command causes a write cycle to nonvolatile memory. Nonvolatile memory
has a finite maximum number of write cycles. Programs that repeatedly cause
write cycles to nonvolatile memory can eventually exceed the maximum
number of write cycles and cause the memory to fail.

This command stores the present state of the power system to the
specified location in non-volatile memory. Up to 2 states can be
stored - in locations 0 and 1. Any state previously stored in the same
location will be overwritten. Use the *RCL command to retrieve
instrument states. Refer to *RST Settings” at the beginning of this
chapter for a list of instrument settings that can be saved.

If a particular state is desired at power-on, it should be stored in
location 0. It will then be automatically recalled at power turn-on if
the Output Power-On state is set to RCL0.

Note that list data (and the calibration state) is not saved as part of
the *SAV operation. This means that all list data that is sent to the
instrument will be lost when the power system is turned off.

Also, data saved in non-volatile memory, described in the Non-
volatile Factory Settings table at the end of chapter 3, is not affected
by the *SAV command.

*TST?

This query causes the power system to do a self-test and report any
errors. A 0 indicates the power system passed self-test. A 1 indicates
one or more tests failed. Selftest errors are written to the error queue
(see Appendix D). Note that *TST? also forces an *RST command.

Trigger Subsystem

Series N6700 User’s Guide 107

Trigger Subsystem
The Trigger subsystem consists of the Abort, Initiate, and Trigger
commands.

Abort commands cancel any triggered actions.

Initiate commands initialize the trigger system. This enables the
trigger system to receive triggers.

Trigger commands control the remote triggering of the power system.
They specify the trigger source for the transient and the
measurement system and also generate software triggers.

ABORt:ACQuire (@<chanlist>)
ABORt:TRANsient (@<chanlist>)

These commands cancel any measurement or transient trigger
actions presently in process. The two WTG bits in the Status
Operation Condition register are also reset. These commands are
executed at power-on and upon execution of *RST.

INITiate[:IMMediate]:ACQuire (@<chanlist>)
INITiate[:IMMediate]:TRANsient (@<chanlist>)

These commands control the enabling of both measurement and
transient triggers. When a trigger is initiated, an event on a selected
trigger source causes the specified triggering action to occur. If the
trigger system is not initiated, all triggers are ignored.

INITiate:CONTinuous:TRANsient {ON|OFF},(@<chanlist>)
INITiate:CONTinuous:TRANsient? (@<chanlist>)

This command continuously initiates the output trigger system. The
enabled state is ON (1); the disabled state is OFF (0). With continuous
triggering disabled, the output trigger system must be initiated for
each trigger using the INITiate:TRANsient command.

The *RST value = OFF.

TRIGger:ACQuire[:IMMediate] (@<chanlist>)

This command sends an immediate trigger to the measurement
system. When the trigger system is initiated, a measurement trigger
causes the power system to measure the output voltage or current
and store the results in a buffer. The measured quantity, voltage or
current is specified by the SENSe:FUNCtion command.

TRIGger:ACQuire:SOURce {BUS|PIN<pin>|TRANsient<chan>}, (@<chanlist>)
TRIGger:ACQuire:SOURce? (@<chanlist>)

This command selects the trigger source for the measurement trigger
system. The following trigger sources can be selected:

Trigger Subsystem

108 Series N6700 User’s Guide

BUS GPIB device trigger, *TRG, or <GET> (Group Execute Trigger).

PIN<pin> Selects an output port connector pin. Pins 1 – 3 can be configured as external
trigger sources. The [SOURce:]DIGital:PIN<n>:FUNCtion command programs
the function of each pin. The [SOURce:]DIGital:PIN<n>:POLarity command
programs the polarity of each pin.

TRANsient<chan> Selects the transient system of one of the output channels as the external
trigger source. The following commands are used to generate triggers from the
transient system: [SOURce:]STEP:TOUTput, [SOURce:]LIST:TOUTput:BOSTep,
and [SOURce:]LIST:TOUTput:EOSTep.

The *RST value = BUS.

TRIGger:TRANsient[:IMMediate] (@<chanlist>)

This command generates an immediate transient trigger regardless of
the selected trigger source. Output triggers affect the following
functions: voltage, current, and current limit. You must initiate the
output trigger system before you can send any triggers.

When sent, the output trigger will:

 Initiate an output change as specified by the Current Triggered or
Voltage Triggered commands.

 Clears the WTG-tran bit in the Status Operation Condition
register after the transient trigger sequence has completed.

TRIGger:TRANsient:SOURce {BUS|PIN<pin>|TRANsient<chan>}, (@<chanlist>)
TRIGger:TRANsient:SOURce?

This command selects the trigger source for the output trigger
system. The following trigger sources can be selected:

BUS GPIB device trigger, *TRG, or <GET> (Group Execute Trigger).

PIN<pin> Selects an output port connector pin. Pins 1 – 3 can be configured as external
trigger sources. The [SOURce:]DIGital:PIN<n>:FUNCtion command programs
the function of each pin. The [SOURce:]DIGital:PIN<n>:POLarity command
programs the polarity of each pin.

TRANsient<chan> Selects the transient system of one of the output channels as the trigger
source. The following commands are used to generate triggers from the
transient system: [SOURce:]STEP:TOUTput, [SOURce:]LIST:TOUTput:BOSTep,
and [SOURce:]LIST:TOUTput:EOSTep.

The *RST value = BUS.

*TRG

This command generates a trigger when the trigger subsystem has
BUS selected as its source. The command has the same affect as the
Group Execute Trigger (<GET>) command.

Series N6700 User’s Guide 109

7
Programming Examples
Output Programming Example 110
List Programming Example 111
Digitizer Programming Example113

This chapter contains several example programs to help you develop
programs for your own application. The example programs are for
illustration only, and are provided with the assumption that you are
familiar with the programming language being demonstrated and the
tools used to create and debug procedures. See Chapter 6, “Language
Dictionary” for the SCPI command syntax.

You have a royalty-free right to use, modify, reproduce and distribute
the example programs (and/or any modified version) in any way you
find useful, provided you agree that Agilent Technologies has no
warranty, obligations, or liability for any example programs.

The example programs are in Microsoft Visual BASIC 6.0 using the
VISA COM IO library. You must first load the VISA COM library to
use these examples. The VISA COM IO library is available with
version M or later of the Agilent IO libraries for Windows.

NOTE Before using the example code in Visual BASIC, you must reference two VISA
COM objects. In Visual BASIC, go to Projects>References and select Agilent
VISA COM Resource Manager 1.0 (filename= AgtRM.dll) and VISA COM 1.0
Type Library (filename = VisaCom.tlb). To use this sample code in Visual Basic
.NET, see the VISA COM documentation to reference VISA COM in a Visual
BASIC project. Copy the code provided in this chapter and call the subroutine
for each example.

Microsoft, Visual BASIC, and Windows are U.S. registered trademarks of Microsoft
Corporation.

Output Programming Example

110 Series N6700 User’s Guide

Output Programming Example
This is a simple program that sets a voltage, current, over-voltage,
and the status of over-current protection. When done, the program
checks for instrument error and gives a message if there is an error.

Sub main_List()
 Dim IDN As String
 Dim GPIBaddress As String
 Dim ErrString As String

 ' This variable controls the channel number to be programmed
 Dim channel As String

 ' This variable controls the voltage
 Dim VoltSetting As Double

 ' This variable measures the voltage
 Dim MeasureVoltString As String

 ' This variable controls the current
 Dim CurrSetting As Double

 ' This variable controls the over voltage protection setting
 Dim overVoltSetting As Double

 'These variables are necessary to initialize the VISA COM.
 Dim ioMgr As AgilentRMLib.SRMCls
 Dim Instrument As VisaComLib.FormattedIO488

 ' The following command line provides the program with the VISA name of the
 ' interface that it will communicate with. It is currently set to use GPIB.
 GPIBaddress = "GPIB0::5::INSTR"

 ' Use the following line instead for LAN communication
 ' TCPIPaddress="TCPIP0::141.25.36.214"

 ' Use the following line instead for USB communication
 ' USBaddress = "USB0::2391::1799::US00000002"

 ' Initialize the VISA COM communication
 Set ioMgr = New AgilentRMLib.SRMCls
 Set Instrument = New VisaComLib.FormattedIO488
 Set Instrument.IO = ioMgr.Open(GPIBaddress)

 ' The next three command lines set the voltage, current, and over voltage
 VoltSetting = 3
 CurrSetting = 1.5 ' amps
 overVoltSetting = 10

 ' This variable can be changed to program any channel in the mainframe
 channel = "(@1)" ' channel 1

 With Instrument
 ' Send a power reset to the instrument
 .WriteString "*RST"

 ' Query the instrument for the IDN string
 .WriteString "*IDN?"
 IDN = .ReadString

Output Programming Example

Series N6700 User’s Guide 111

 ' Set the voltage
 .WriteString "VOLT" & Str$(VoltSetting) & "," & channel

 ' Set the over voltage level
 .WriteString "VOLT:PROT:LEV " & Str$(overVoltSetting) & "," & channel

 ' Set current level
 .WriteString "CURR " & Str$(CurrSetting) & "," & channel

 ' Turn on over current protection
 .WriteString "CURR:PROT:STAT ON," & channel

 ' Turn the output on
 .WriteString "OUTP ON," & channel

 ' Measure the voltage
 .WriteString "MEAS:VOLT? " & channel
 MeasureVoltString = .ReadString
 MsgBox "Measured Voltage is " & MeasureVoltString & "At channel" & channel

 ' Check instrument for any errors
 .WriteString "Syst:err?"
 ErrString = .ReadString

 ' give message if there is an error
 If Val(ErrString) Then
 MsgBox "Error in instrument!" & vbCrLf & ErrString
 End If
 End With

End Sub

List Programming Example
This program executes a 10 point current and voltage list. It also
specifies 10 different dwell times. When done, the program checks for
instrument error and gives a message if there is an error.

Sub main_List()
 Dim IDN As String
 Dim GPIBaddress As String
 Dim ErrString As String
 Dim channel As String

 'These variable are necessary to initialize the VISA COM.
 Dim ioMgr As AgilentRMLib.SRMCls
 Dim Instrument As VisaComLib.FormattedIO488

 ' The following command line provides the program with the VISA name of the
 ' interface that it will communicate with. It is currently set to use GPIB.
 GPIBaddress = "GPIB1::5::INSTR"

 ' Use the following line instead for LAN communication
 ' TCPIPaddress="TCPIP0::141.25.36.214"

 ' Use the following line instead for USB communication
 ' USBaddress = "USB0::2391::1799::US00000002"

Output Programming Example

112 Series N6700 User’s Guide

 ' Initialize the VISA COM communication
 Set ioMgr = New AgilentRMLib.SRMCls
 Set Instrument = New VisaComLib.FormattedIO488
 Set Instrument.IO = ioMgr.Open(GPIBaddress)

 ' These next three strings are the points in the list.
 ' All three strings are the same length.
 ' The first one controls voltage, the second current, and the third dwell time
 Const voltPoints = "1,2,3,4,5,6,7,8,9,10"
 Const currPoints = "0.5,1,1.5,2,2.5,3,3.5,4,4.5,5"
 Const dwellPoints = "1,2,0.5,1,0.25,1.5,0.1,1,0.75,1.2"

 ' This variable can be changed to program any channel in the mainframe
 channel = "(@1)" ' channel 1

 With Instrument
 ' Send a power reset to the instrument
 .WriteString "*RST"

 ' Query the instrument for the IDN string
 .WriteString "*IDN?"
 IDN = .ReadString

 ' Set the voltage mode to list
 .WriteString "VOLT:MODE LIST," & channel

 ' Set the current mode to list
 .WriteString "CURR:MODE LIST," & channel

 ' Send the voltage list points
 .WriteString "LIST:VOLT " & voltPoints & "," & channel

 ' Send the Current list points
 .WriteString "LIST:CURR " & currPoints & "," & channel

 ' Send the dwell points
 .WriteString "LIST:DWEL " & dwellPoints & "," & channel

 ' Turn the output on
 .WriteString "OUTP ON," & channel

 ' Set the trigger source to bus
 .WriteString "TRIG:TRAN:SOUR BUS," & channel

 ' Initiate the transient system
 .WriteString "INIT:TRAN " & channel

 ' Trigger the unit
 .WriteString "*TRG"

 ' Check instrument for any errors
 .WriteString "Syst:err?"
 ErrString = .ReadString

 ' give message if there is an error
 If Val(ErrString) Then
 MsgBox "Error in instrument!" & vbCrLf & ErrString
 End If
 End With

End Sub

Digitizer Programming Example

Series N6700 User’s Guide 113

Digitizer Programming Example
This program uses the voltage in step mode and also demonstrates
how to set up and use the digitizer. When done, the program checks
for instrument error and gives a message if there is an error.

Sub main_List()
 Dim IDN As String
 Dim GPIBaddress As String
 Dim ErrString As String
 Dim channel As String
 Dim measPoints As Long
 Dim measOffset As Long
 Dim VoltSetting As Double
 Dim finalVoltage As Double
 Dim timeInterval As Double
 Dim VoltPoints() As Variant
 Dim i As Long

 'These variables are necessary to initialize the VISA COM.
 Dim ioMgr As AgilentRMLib.SRMCls
 Dim Instrument As VisaComLib.FormattedIO488

 ' The following command line provides the program with the VISA name of the
 ' interface that it will communicate with. It is currently set to use GPIB.
 GPIBaddress = "GPIB0::5::INSTR"

 ' Use the following line instead for LAN communication
 ' TCPIPaddress="TCPIP0::141.25.36.214"

 ' Use the following line instead for USB communication
 ' USBaddress = "USB0::2391::1799::US00000002"

 ' Initialize the VISA COM communication
 Set ioMgr = New AgilentRMLib.SRMCls
 Set Instrument = New VisaComLib.FormattedIO488
 Set Instrument.IO = ioMgr.Open(GPIBaddress)

 ' This controls the number of points the measurement system measures
 measPoints = 100

 ' This controls the number of points to offset the measurement (positive for
 ' forward, negative for reverse)
 measOffset = 0

 ' This sets the time between points
 timeInterval = 0.0025

 ' This controls the voltage
 VoltSetting = 5

 ' This is the final voltage that will be triggered
 finalVoltage = 10

 ' This variable can be changed to program any channel in the mainframe
 channel = "(@1)" ' channel 1

 With Instrument
 ' Send a power reset to the instrument
 .WriteString "*RST"

Digitizer Programming Example

114 Series N6700 User’s Guide

 ' Query the instrument for the IDN string
 .WriteString "*IDN?"
 IDN = .ReadString

 ' Put the Voltage into step mode which causes it to transition from one
 ' voltage to another upon receiving a trigger
 .WriteString "VOLT:MODE STEP," & channel

 ' Set the voltage
 .WriteString "VOLT" & Str$(VoltSetting) & "," & channel

 ' Go to final value
 .WriteString "VOLT:TRIG" & Str$(finalVoltage) & "," & channel

 ' Turn the output on
 .WriteString "OUTP ON," & channel

 ' Set the bus as the transient trigger source
 .WriteString "TRIG:TRAN:SOUR BUS," & channel

 ' Set the number of points for the measurement system to use as an offset
 .WriteString "SENS:SWE:OFFS:POIN" & Str$(measOffset) & "," & channel

 ' Set the number of points that the measurement system uses
 .WriteString "SENS:SWE:POIN" & Str$(measPoints) & "," & channel

 ' Set the time interval between points
 .WriteString "SENS:SWE:TINT" & Str$(timeInterval) & "," & channel

 ' Set the measurement trigger source
 .WriteString "TRIG:ACQ:SOUR BUS," & channel

 ' Initiate the measurement trigger system
 .WriteString "INIT:ACQ " & channel

 ' Initiate the transient trigger system
 .WriteString "INIT:TRAN " & channel

 ' Trigger the unit
 .WriteString "*TRG"

 ' Read back the voltage points
 .WriteString "FETC:ARR:VOLT? " & channel
 VoltPoints = .ReadList

 ' Print the first 10 voltage points
 For i = 0 To 9
 Debug.Print i, VoltPoints(i)
 Next i

 ' Check instrument for any errors
 .WriteString "Syst:err?"
 ErrString = .ReadString

 ' give message if there is an error
 If Val(ErrString) Then
 MsgBox "Error in instrument!" & vbCrLf & ErrString
 End If
 End With

End Sub

