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v 

One of the problems of functional observers is the complexity in their design, proposed

design methods seem to offer a trade-off between the observers’ general applicability to 

a wide range of systems, degree of order reduction and simplicity. In this project we 

attempt to take a non-linear 19
th 

order insulin-glucose physiological model, linearise the 

system, apply a model reduction technique and design a state feedback controller which 

utilises Darouach’s functional observer to supply the linear function of the states for

feedback. A new result that relaxes the sufficient and necessary conditions for the 

existence of the Darouach observer is discussed. This result increases the range of

systems to which this observer can be applied.  

Abstract  

Ever since David Luenberger introduced the problem of observing the state vector of a 

deterministic linear time-invariant multi-variable system [1] [2], there have been numer-

ous studies on the design and optimisation of observers for reduced-order. Of particular 

interest is one type of observer presented in [1], the functional observer.  
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Chapter 1

Introduction

1.1 Overview

Control systems are used to regulate the behaviour of dynamic systems and are found
in a variety of machines, products and processes. They control quantities such as mo-
tion, speed, heat flow, fluid pressure, tension, voltage, and current. Many control theory
concepts are based on sensors measuring quantities that describe the state of the system.
The desired output can then be achieved by manipulating the inputs of the system. This
common control scheme where the system state vector is made available to the controller
is known as feedback control. In some instances physical sensors can degrade the per-
formance of a control system. According to Ellis [4], physical sensors can suffer from
numerous common problems. First, sensors and their associated cabling can be expensive,
raising the overall cost of the control system. Second, it can be impractical to measure
some signals for reasons such as a harsh operating environment, relative motion between
the sensor and the controller or the object of interest not being readily accessible. Third,
sensors introduce inherent errors such as stochastic noise, cyclical errors, and bounded
responsiveness. These limitations prevent all the state variables necessary to describe the
state of the system from being provided. Hence only an incomplete state vector can be
supplied for feedback. This very issue has led to research into the state observer which
would estimate those state variables.

1.2 Observers

The state observation problem centres on the reconstuction of all the state variables us-
ing knowledge of available system inputs and outputs. Known as an observer or state
reconstructor, observers can be used to augment or replace sensors altogether in a control
system. Observers are algorithms that combine sensed signals with knowledge about the
control system to produce estimated or observed signals. These estimated signals can be
more accurate, less expensive to produce and more reliable than sensed signals. Observer
theory offers designers a powerful alternative to having sensors measure quantities for
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the control system [4]. Significant developments in observer literature dates back to the
1960s through the research of Luenberger and Kalman. David Luenberger’s papers have
prompted further research into the design, simplification and optimisation of observers.
His paper ”Observers for Multivariate Systems” in 1966 presents three distinct types of
observers: the Full-State Observer, Reduced-Order Observer and the Functional Observer.
Of particular interest is the fact that Luenberger mentions the possibility of reconstructing
a single linear functional of the unknown state vector [1]. It is frequently the case that
only a linear function of the system state vector is required for feedback; as Luenberger
notes [1] this situation arises in the design of a linear, time-invariant, state feedback for a
single-input system. Typically a linear feedback control law of the form Kx is required to
be estimated; this signal can be provided by the functional observer.

1.3 Linear State Space Systems

In order to design a control system, a mathematical model that describes the behaviour
of the system must first be produced. There are various ways of achieving this, with state
space representation being one possible method of modelling the physical system. State
space representation models the physical system as a set of input, output and state vari-
ables related by first-order differential equations all expressed in matrix form.

The dynamic behaviour of many systems can at any time be described by the linear
time-invariant model

ẋ(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(t) (1.2)

where x(t) ∈ Rn is the system state, u(t) ∈ Rp is the control input to the system, and
the output of the system y(t) ∈ Rm represents some linear combination of the system
states x(t). The state of a dynamic system is the smallest set of (state) variables such
that the knowledge of these variables at time t = t0 and knowledge of the input for t ≥ 0
is sufficient to determine the system for t ≥ t0 [5]. The matrices A,B and C are assumed
to have compatible dimensions and for time-invariant systems are independent of time
(constant). The inputs and outputs of the system are expressed as a function of the
system state and time, so that for any given state, the input can be determined to drive
a particular output.

1.4 Project Motivation

The need for functional observers stems from the ubiquitous nature of state feedback con-
trol strategies. Modern optimal control laws almost invariably have control commands
based ultimately upon the state variables. In addition, useful design tools such as pole
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INTRODUCTION

placement are most easily implemented in a state feedback framework. As previously
mentioned, a complete state vector is rarely available for use in state feedback, so it is
necessary for the design to be modified. A useful approach is to use state estimates in
place of actual state variables for use in the control law, these estimates will come from
an observer or Kalman filter. In order to limit the scope of the research, the discussions
will be limited to the observer.

Luenberger, in his 1966 paper [1], introduces three types of observers, two of which have
been developed sufficiently to be used in industry. The general problem of reconstruct-
ing linear functions of the state is still an open problem due to the great complexities of
the problem. However, over the forty odd years that has past since it was first raised,
significant progress has been made in the literature. The attractive features of the func-
tional observer however, are undeniable. It’s major advantage is that it is of much lower
order than can be achieved with a full-order or reduced order observer. A lower order
reduces computational burden and hence provides a relatively economical option to the
designer. The functional observer also combines the observer and controller into a single
entity which removes the need to place observer poles. Furthermore the single unit reduces
wiring, eliminating a source of cabling and connector noise.

1.5 Review of Literature

To implement a state-variable feedback control law for a system in which the states are
not measurable directly, the values of state variable, or the value of a linear function of the
states must be estimated, using historical and current data for both the input and output
variables. A solution to this problem was presented by Kalman [6], [7] who proposed the
so-called Kalman Filter for use in optimal feedback control schemes with a high signal to
noise ratio [8]. This solution is not appropriate in the general case, being too heavily influ-
enced by disturbances and by placing additional constraints on the system. Kalman filters
are also, by definition, of non-minimal order, requiring that the filter order match the order
of the system. In 1964 Luenberger [9] [1], showed that an observer can be constructed for
the continuous time deterministic case which produces stable results with errors tending
to zero as time approaches infinity. The so-called Luenberger filter also reduces the nec-
essary order of the observer to n− p where n is the system order and p is the number of
outputs. Luenberger’s earlier work was expanded upon significantly in the next 7 years to
include time-varying systems, discrete systems and stochastic systems [10], [11] and [12].
In 1971 Luenberger released a paper [2] summarising the results of the accumulated works.

The construction of an observer with a lower dimension than a full state observer was
first presented by Bass and Gura [13] and Luenberger [9] [1]. In many applications a state
observer, one which observes all state variables, can not be designed due to restrictive
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design conditions. Details of these restrictions are discussed later and are presented in
many papers, [1], [2], [14], and [15]. In the case of a large system, the observer order
required to estimate the states is unreasonably high, making implementation impractical.
Fortunately, estimation of all states is rarely required. For the case where a linear com-
bination of two or more states is sufficient, a functional observer can be designed under
weaker conditions [16] and of a far lower order [1].

The development of functional observers can be mapped by a number of key papers,
though this is by no means intended as an exhaustive list of techniques. Rather, it serves
to illuminate the direction which the development of functional observers has taken.

1.5.1 Fortmann and Williamson - 1972

Fortmann and Williamson [17] is one of the first papers to address necessary and sufficient
conditions for the existence of a functional observer. An algorithm for determining a
minimal order q single output observer of given output and pole configuration is outlined.
Fortmann and Williamson also supply an algorithm where the multi-output case is reduced
via a canonical form to an output-coupled set of single output systems, which can then
be treated by a single output approach. Finally, they developed a method which, unlike
Luenberger’s, does not require the observer matrix and the system matrix A have different
poles.

1.5.2 Murdoch - 1973

Murdoch [18] notes that the design algorithm presented by Luenberger is impractical
when applied to large systems and in this paper Murdoch presents an algorithm more
suitable for use on a digital computer than the previous methods. The paper presents
a design of an observer of minimum order and arbitrary dynamics that provides a linear
function of the state vector. Murdoch states that minimum order of the observer is (v−1)
where v is the observability index of the system. Murdoch’s method gives us the freedom
to arbitrarily assign observer eigenvalues with the same mild conditions of Luenberger’s,
that the eigenvalues of N be distinct from those of A

1.5.3 Moore and Ledwich - 1975

Moore and Ledwich [19] seeks to understand the necessary and sufficient conditions sur-
rounding the design and existence of a pth order observer. The technique is lengthy and
based on decision theory, the mathematics is arduous and the authors do not use standard
notation.
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1.5.4 Gupta, Fairman and Hinamoto - 1981

Gupta et al [8] presented a method for the design of an observer for the reconstruction
of a single linear functional of the state variables for a finite-dimensional system. The
aim of the method is to construct an observer (which does not require the system to
be transformed to a Luenberger canonical form which would place restrictions upon the
selection of eigenvalues in the system). It has been observed [20] and [21] that while
the observer eigenvalues need only lie in the left hand side of the complex plane to ensure
stability and asymptotic estimation, the eigenspectrum of the observer must be determined
by additional requirements in certain applications.

1.5.5 Tsui - 1985

Tsui’s paper [15] presents some modifications to the Gupta et al. algorithm. The most
significant improvement being the use of a transformation to place A in lower block Hes-
senberg form. The Hessenberg form is a triangular matrix with additional elements on
the sub-diagonal. The matrix possesses some useful properties for these applications; it
has an easily calculated rank and provides the observability index by definition. Tsui’s
algorithm modifies some of the computation which, whilst not significantly reducing the
number of calculations to be made, reduces the error in the calculation. Although this is
rather insignificant given the speed and accuracy of today’s computers, the method does
play a part in reducing the error in a feedback system. Again, this particular solution is
suitable for a time-invariant linear system requiring a single linear feedback.

In the same year Tsui also published a paper on the design of Multifunctional Ob-
servers [22]. This algorithm still allows for arbitrary eigenvalues, to ensure stability, and
a maximum order of m(v− 1) where m is the number of functions which are required and
v is the observability index of (A,C). The order of the system is, however, significantly
reduced for functionals which share components. This paper uses a similar method to
the single functional algorithm relying on a similar transformation into lower Hessenberg
form. This method has a wider range of applications than single functional observers.
For instance, observers calculated in this manner could be used to control more than one
system with the same state variables. It can also handle multiple input systems or systems
which have different feedback systems depending on some external variables.

1.5.6 Aldeen and Trinh - 1999

Aldeen and Trinh [23] introduces a design method for the functional observer, which bases
the observer order on the ratio of independent output measurements to independent input
measurements. For high order systems which have far more outputs than inputs, the order
can be reduced to the minimum proposed by Murdoch [24] and Tsui [15]. This observer
design method is relatively easy to implement and only requires the linear equations be
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satisfied along with typical observer constraints. An advantage of this method over those
proposed by Tsui [22] [25] and Gupta et. al. [8] is that the system matrices do not need to
be transformed to any other canonical form. The obvious drawback to this method is that
systems with a considerably large number of inputs compared with the system outputs
would have a large order approaching (or equal to) that required in a full-state observer.

1.5.7 Datta and Sarkissian - 2000

Datta and Sarkissian [26] introduces a new algorithm designed for high performance com-
puting to solve the Syvester-observer equations. The paper also includes a new algorithm
for the direct, and efficient, implementation of the standard functional observer. Both
algorithms are compared to Van Dooren’s algorithm for reduced-order state estimation
and are demonstrated to perform better than Van Dooren’s algorithm [27].

1.5.8 Darouach - 2000

Aldeen and Trinh [23] provides a simple algorithm for the design of a functional observer.
The algorithm provides sufficient conditions for the existence of such an observer, but does
not provide the necessary conditions. This implies where the algorithm fails to yield a
result (non-existence), nothing more is known about the system. It is desirable for the
algorithm to include necessary conditions for its use to accompany the sufficient conditions
of its design. Darouach presents the necessary and sufficient conditions for the existence
of an rth order observer, where r is the required number of functions to be estimated.
Darouach [16] provides the necessary and sufficient conditions for both the continuous-
time and discrete-time systems and as well as an elegant algorithm for designing the
observer.

1.6 Contributions to the Dissertation

This dissertation has been written as an introductory reference for functional observers. It
is expected that the reader has a strong grasp of fundamental linear algebra and calculus.
To facilitate understanding of the concepts discussed, I have attempted to provide anno-
tated derivations for many of the key results within the literature. If the reader requires
a more rigorous handling of the concepts, I have endeavoured to provide relevant citation
to journal papers for further reading.

The application chosen to demonstrate the order-reducing ability of the functional observer
is in the field of glucose regulation. The human glucose-insulin model used in this study
is of suitably high order. In implementing the functional observer we encounter the many
issues related to system minimalisation and controller design.
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1.7 Summary  

We have now defined the topic of functional observers and gained some insight into the

work that has been done in this area of research. It is important to note that the problem

of solving for a minimal order functional observer that is applicable to wide class of

systems is still an open one and this study will illustrate some of those limitations in one 

of the current techniques.  

1.8 Dissertation Structure 

This dissertation comprises of the following chapters:  

• Chapter 1 (this chapter) introduces the problem and deals with the main motivation

behind the project. A literature review of various approaches to solving the observer 

problem is presented.  

• Chapter 2 provides a background to some of the mathematical and theoretical con-

cepts that are required in the analysis and eventual implementation of the functional

observer.  

• Chapter 3 introduces the full-state observer and the reduced-order observer and 

describes the construction of each.  

• Chapter 4 builds upon the knowledge of observers from Chapter 3 which culminates in

the functional observer problem. Standard notation is defined for the detailed analysis 

of Darouach’s functional observer.  

• Chapter 5 provides an application for the functional observer. A glucose-insulin 

regulation problem using pole-placement is presented. A lengthy design process that 

begins from a 19
th 

order non-linear system is provided. The design process entails 

linearisation, model reduction through balanced truncation technique, control law 

design and finally a functional observer implementation to provide the linear 

functional state feedback.  

• Chapter 6 concludes the paper, summarising the results and provides some sugges-

tions to the reader for further areas of research.  

• Appendix A documents the project specification.  

• Appendix B contains a collection of Matlab code that was written to obtain the results 

for Chapter 5.  
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Chapter 2

Background

The following sections introduce some of the key concepts and tools that are used in the
literature.

2.1 Linearisation

One may question why most control theory results apply to linear systems when in fact
most physical processes are non-linear in nature. There are at least two reasons for con-
centrating on linear systems:

• There is extensive literature on and knowledge of vectors and matrices from linear
algebra, and they are powerful tools in the analysis of linear systems. Generalis-
ing a system to the non-linear case seldom leads to results that are amenable to
implementation except in special cases.

• The linear model can in many cases provide reasonable approximations to the non-
linear model, because of the fact that the system is being controlled. The linear
assumption becomes increasingly valid as the system operates closer to some oper-
ating point from which the linear approximation is taken. The very fact that control
systems tend to regulate a system close to some operating point ensures that the
linearisation approximation is reasonable.

As Khalil [28] points out, due to the powerful tools available for linear systems we should,
whenever possible, make use of linearisation to learn as much as we can about the be-
haviour of a non-linear system. Let us now examine how a linear model can be used to
form an approximation of a non-linear system.

A non-linear model is typically of the form

ẋ(t) = f [x(t), u(t), t] (2.1)

y(t) = g[x(t), t] (2.2)

9



2.1. LINEARISATION

A linear model of the form found in (1.1) and (1.2) can be used as an approximation to
the non-linear system presented in (2.1) and (2.2) by linearising the non-linear system
about some nominal state trajectory x0(t) and a nominal input u0(t). If we consider small
excursions from the nominal value, that is δx(t) , x(t) − x0(t) and δu(t) , u(t) − u0(t),
a Taylor series expansion of (2.1) and (2.2) about [x0(t), u0(t), t] will yield

f [x(t), u(t), t] = f [x0(t), u0(t), t] + A0(t)δx(t) + B0(t)δu(t) + α0[x(t), u(t), t] (2.3)

g[x(t), t] = g[x0(t), t] + C0(t)δx(t) + β0[δx(t), t] (2.4)

where α0[x(t), u(t), t] and β0[δx(t), t] are the higher-order terms (second and higher) in
the Taylor series expansion. The matrices

A0(t) , ∂f

∂x

∣∣∣
x0,u0,t

, B0(t) , ∂f

∂u

∣∣∣
x0,u0,t

C0(t) , ∂g

∂x

∣∣∣
x0,u0,t

(2.5)

are Jacobian matrices of appropriate dimensions (see definition in Section 4.1), evaluated
at known system nominal values [x0(t), u0(t), t]. By ignoring the second and higher-order
expansion terms, we effectively linearise the system. This yields the following

δẋ(t) = A0(t)δx(t) + B0δu(t) (2.6)

δy(t) = C0(t)δx(t) (2.7)

Both equations (2.6) and (2.7) form the linearised perturbation model. This model pro-
vides a close approximation of the non-linear model provided that the non-linear effects are
relatively small, or equivalently, provided that higher-order expansion terms α0[x(t), u(t), t]
and β0[δx(t), t] are small for all time t.

This relationship is shown graphically in Figure 2.1 where a new set of axes, δx and δf(x),
is created about point A, and f(x) is approximately equal to f(x0) for small perturbations
about this new origin.
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BACKGROUND

Figure 2.1: Non-linear System Linearised about Point A

2.2 Controllability and Observability

There are two properties of linear state-space descriptions that are often necessary as-
sumptions about a system for controller and observer construction. In order to construct
an observer we require that the system be minimal, that is the system must be controllable
and observable. Essentially these terms imply that for a system of equations it is possible
to control the state of each variable by altering the inputs (controllable), and that each
state variable can be extracted by measuring the output of the system. The following
definitions appear in O’Reilly [14].

Definition 1.1 [14] pg.6
The state of the continuous-time linear system (1.1), (1.2) is said to be reachable (from
the zero state) at time t if there exists a τ ≤ t and an input u ∈ Rr which transfers the
zero state at time τ to the state x at time t.

Definition 1.2 [14] pg.6
The continuous-time linear system (1.1), (1.2) is said to be controllable (to the zero state)
if, given any initial state x(τ), there exists a t ≥ τ and a u ∈ Rr such that x(t) = 0.

Definition 1.3 [14] pg.7
Let y(t; τ, x, u) denote the output response of the linear system (1.1), (1.2) to the initial
state x(τ). Then the (present) state x(τ) of the linear system is unobservable if the (future)

11



2.2. CONTROLLABILITY AND OBSERVABILITY

output
y(t; τ, x, 0) = 0

for all t ≥ τ .

The proofs accompanying these definitions are given by Kalman et al. [29].

A useful example is to consider a diagonal system, as it is in parallel form.




ẋ1

ẋ2

...
ẋn




=




a1 0 0
0 a2 0

. . .

0 0 an







x1

x2

...
xn




+




b1

b2

...
bn




u (2.8)

y =
[

c1 c2 . . . cn

]



x1

x2

...
xn




(2.9)

This system realisation will be controllable if and only if bi 6= 0 for i = 1, 2, . . . , n and the
system is completely observable if and only if ci 6= 0 for i = 1, 2, . . . , n. Although this is
a simple example it succinctly demonstrates the potential difficulties. Each state variable
xi is affected by the input u scaled by a respective value of bi, if any bi is zero then it
follows that the input cannot affect the variable xi. Similarly if the respective value of ci

is zero then the variable does not make any contribution to the output y, and so cannot be
extracted from the output data. This becomes more difficult to note as the system grows
more complex, because the input may affect variables which themselves form part of the
equations for other state variables (these are indirectly affected by the inputs). Similarly
if the output y is composed of only some variables, but these are in turn made from other
variables, then the secondary variables are also observable through the system output.

To overcome these intuitive difficulties in determining whether a system is either con-
trollable or observable, Controllability and Observability matrices are defined. For the
standard system

ẋ(t) = Ax(t) + Bu(t) (2.10)

y(t) = Cx(t)

we define the Controllability matrix as

C =
[

B AB · · · An−1B
]

(2.11)

12
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for an nth order system. It can be shown [30] that for a system to be completely controllable

rank [C] = n (2.12)

The controllability matrix should contain n linearly independent columns (or rows). Since
the test applies to the matrices, it is sometimes said that the matrix pair (A,B) is con-
trollable if (2.12) holds.

Similarly, we define the Observability matrix O as

O =




C

CA
...

CAn−1




(2.13)

Again, it is a requirement that O contains n linearly independant rows (or columns) for
system observability, which is equivalent to

rank[O] = n (2.14)

When a system is both controllable and observable we refer to it as a minimal system.
Luenberger indicates that for an observer to exist the system must be minimal. This is
broadly correct for a full state Luenberger observer. Our focus, however, is on Functional
Observers. Although it can be shown [14] that those state variables which are included in
the feedback must necessarily be observable, it is not necessary that the entire system be
minimal. This is of great significance when reducing the complexity and order of functional
observers, and will become apparent in the following sections.

2.2.1 Controllability and Observability Index

The controllability and observability indices are found by reducing the matrices to find
linearly independent rows and by allocating a number beginning from zero to each inde-
pendent row. This idea was introduced by Luenberger [1] and is used in many papers as
the lower bound on observer order. O’Reilly [14] showed that for a full system observer
the minimum order is v−1, where v is the observability index. We find that this condition
can be relaxed for the functional observer case and indeed it is the lower bound only when
we wish to arbitrarily allocate the system eigenvalues. The indices are defined as follows,
for a system that is controllable/(observable), there exists a smallest number k/(v) such

13
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that

rank
[

B
... AB

... A2B
... · · · ... Ak−1B

]
= n (Controllability Index)

rank




C

CA
...

CAv−1




= n (Observability Index)

(2.15)

2.3 Minimal Realisations

A system is minimal if and only if it is fully state controllable and fully observable. Minimal
systems are invariant to similarity transformations, so neither controllability or observabil-
ity of a minimal system is affected by similarity transformations. However, as we shall see
in Chapter 5, not all the systems are minimal. It would therefore be useful to have tech-
niques in which non-controllable and/or non-observable systems can be represented and
also have methods for these non-controllable/non-observable state variables to be sepa-
rated out. One possible way in which this can be achieved is via similarity transformations.
Much of this discussion on realisations can be attributed to T. Kailath [31].

2.3.1 Similarity Transformations

The state-space equations used to model a system are non-unique. Therefore it is possible
to transform a given system into another system of a different form whilst still maintaining
the same input/output behaviour.

A non-singular transformation matrix T1 can be chosen to transform the state vector as
shown

x(t) = T1x̂(t) (2.16)

By taking the derivative of (2.16) and substituting into the state-space equations (2.10)
we get

˙̂x(t) = (T−1
1 AT1)x̂(t) + (T−1

1 B)u(t)

y(t) = (CT1)x̂(t) + (D)u(t)

The two realisations {A,B, C,D} and {T−1
1 AT1, T

−1
1 B,CT1, D} are called similar realisa-

tions. Alternatively, if the transformation matrix is defined as x̂(t) = T2x(t), the similar
realisation is {T2AT−1

2 , T2B,CT−1
2 , D}.

14
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2.3.2 Representation of Non-controllable Realisations

Let A, B,C be such that if
rank C(A,B) = r < n (2.17)

Then there is always a transformation matrix T such that the realisation

{
Ā = T−1AT, B̄ = T−1B, C̄ = CT

}
(2.18)

has the form

Ā =

[
Āc Ācc̄

0 Āc̄

]
, B̄ =

[
B̄c

0

]
, C̄ =

[
C̄c C̄c̄

]
(2.19)

where the transformation matrix T of rank n has the following structure

T =
[

B AB . . . Ar−1B v1 v2 . . . vn−r

]
(2.20)

where the last n− r column vectors v1, v2, . . . , vn−r are chosen such that they are linearly
independent of the first r columns of the transformation matrix T .

This realisation has the following two useful properties,

1. The r × r subsystem {Āc, B̄c, C̄c} is controllable.

2. The subsystem has the same transfer function as the original system.

2.3.3 Representation of Non-Observable Realisations

A dual statement can be made about the non-observable realisation. Thus if

rank O(C, A) = r < n (2.21)

we can find a nonsingular matrix T such that the realisation

{
Ā = TAT−1, B̄ = TB, C̄ = CT−1

}
(2.22)

has the form

Ā =

[
Āo 0
Āoō Āō

]
, B̄ =

[
B̄o

B̄ō

]
, C̄ =

[
C̄o 0

]
(2.23)
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where the transformation matrix T of rank = n has the structure

T =




C

CA
...

CAr−1

v1

v2

...
vn−r




(2.24)

This realisation has two useful properties

1. The r × r subsystem {Āo, B̄o, C̄o} is observable.

2. The subsystem has the same transfer function as the original system.

The above results suggests that it is possible to produce a minimal realisation from any
given realisation.

2.4 Balanced Model Reduction

Balanced truncation is a simple and powerful method of model reduction first introduced
by Moore [32]. The method takes the approach of transforming a given system into what
is known as a balanced realisation, a form in which the Grammians are equal and diagonal.
Once the system is in this form, the states are truncated from the system with the weakest
states being truncated first. The relative dominance of the states in the system are given
by the Hankel Singular values.

2.5 Linear State Feedback

Linear state feedback is a method in feedback control theory that allows all closed loop
poles to be placed in a predetermined location. In contrast to frequency domain methods,
linear state feedback methods can be applied to a wider class of systems than trans-
form methods, namely multiple-input, multiple-output systems. One of the drawbacks of
frequency domain methods of design, using either root locus or frequency response tech-
niques, is that the method does not allow us to specify all poles of a system with an order
higher than two [33]. The ability to freely place poles is desirable as the poles correspond
directly to the eigenvalues of the system, which in turn control certain transient response
characteristics such as overshoot, rise time, etc.
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Let us consider an nth order feedback control system whose nth order closed loop charac-
teristic equation is of the form

det[sI −A] = sn + an−1s
n−1 + · · ·+ a1s + a0 = 0 (2.25)

There are n coefficients ai for i = 0, 1, . . . , n−1 whose values can be adjusted to determine
the system’s closed loop pole location. Let us now consider the linear time-invariant model
described by (1.1) and (1.2) where

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

In a state feedback arrangement, each state variable xi is fed back to form the control
input, u, through some gain ki which can be adjusted to yield the desired closed loop pole
locations. The feedback loop through the gains, ki, is represented in Figure 2.2 by the
feedback vector −K. This feedback gain is also known as a control law. The purpose of
the control law is to allow us to assign a set of pole locations for the closed-loop system.

Figure 2.2: Linear-State Feedback System [3]

2.5.1 Pole Placement

Pole placement is a relatively simple state feedback design tool. Provided that the system
is completely controllable, the poles of the closed loop system are arbitrarily placed in
the complex plane. The ability to freely assign eigenvalues through some choice of K is
generally attributed to Wonham [34], where it is assumed that complex eigenvalues only
occur in conjugate pairs. Consistent with Figure 2.2,the input control law to the system
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is
u(t) = −Kx(t) (2.26)

where
K =

[
k1 k2 · · · kn

]
(2.27)

Based on our system equations (1.1), (1.2) and control law equation (2.26), the following
closed loop system equations are obtained

ẋ(t) = (A−BK)x(t) (2.28)

y(t) = Cx(t) (2.29)

It can be readily shown that the closed loop characteristic equation can be written as

det(sI − (A−BK)) = sn + (an−1 + kn)sn−1 + (an−2 + kn−1)sn−2

+ · · ·+ (a1 + k2)s + (a0 + k1) = 0 (2.30)

If we now assume that the desired characteristic equation for appropriate pole placement
is

sn + dn−1s
n−1 + dn−2s

n−2 + · · ·+ d2s
2 + d1s + d0 = 0 (2.31)

where the di’s are the desired coefficients, we equate equations (2.30) and (2.31) to obtain

ki+1 = di − ai i = 0, 1, 2, . . . , n− 1 (2.32)

This is known as characteristic equation matching, and yields the feedback gain matrix
K. It should be noted that there are other algorithms, such as Ackermann’s formula and
Bass Gura’s formula which are relatively easier to implement electronically.

The next important question would be appropriate values for di. Unlike frequency domain
methods where only a conjugate pair of complex poles need to be placed, n poles now need
to be placed. There are several general guidelines for pole locations to ensure desirable
closed loop system characteristics such as stability. When selecting pole locations, it is
beneficial to design for minimal amount of control effort. The amount of control effort
is related to how far the closed-loop poles are moved and is also increased by moving
poles that are close to zeros. A pole placement philosophy that aims to minimise moving
poles and concentrate on fixing only undesirable characteristics will avoid large increases
in bandwidth or efforts to move poles, thus allowing smaller control actuators and associ-
ated components.
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2.5.2 Linear Quadratic Regulator

The theory of optimal control is concerned with the mathematics of operating a system
at minimum cost. One of the main results from the theory is provided by the linear
quadratic regulator (LQR), a state feedback controller which minimises some cost func-
tion J . The primary motivation for the theory is to remove some of the guess work in
iterating arbitrary pole locations (as achieved in Section 2.5.1), and instead choosing pole
locations that provide a compromise between control effort, magnitude, and the speed of
the response while still guaranteeing a stable system. Let us now introduce the algorithm
with some comments behind the mathematical reasoning of the approach and also the
final solution [35].

Again, let us continue our discussion with a state feedback system of control law u(t) =
−Kx(t), which yields the following system equation

ẋ(t) = (A−BK)x(t) (2.33)

y(t) = Cx(t)

The objective of the LQR is to provide a feedback gain matrix K that minimises some
performance index or cost function

J =
∫ ∞

0
[xT (t)Qx(t) + uT (t)Ru(t)]dt (2.34)

where Q and R are positive-semidefinite and positive-definite matrices respectively, for
all t, thus ensuring that the cost function J we are minimising is non-negative. The cost
function represents a weighted sum of the state and control signals energy, where Q and R

are designed to account for the relative importance of the state and control signals energy.

Substituting u(t) = −Kx(t) into (2.34) and factorising we obtain

J =
∫ ∞

0
[xT (t)Qx(t) + xT (t)KT RKx(t)]dt =

∫ ∞

0
[xT (t)(Q + KT RK)x(t)]dt (2.35)

This can be treated as a parameter optimisation problem where we set

xT (t)[Q + KT RK]x(t) = − d

dt
[xT (t)Px(t)] (2.36)

If we then apply the product rule and substitute the closed loop system equation (2.33)
we obtain

xT (t)[Q + KT RK]x(t) = −ẋT (t)Px(t)− xT (t)Pẋ(t)

= −[((A−BK)x(t))T Px(t)− xT (t)P (A−BK)x(t)]

= −xT (t)[(A−BK)T P + P (A−BK)]x(t) (2.37)
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In comparing both sides of the equation, the equation holds true for all x(t) if the following
is true

(A−BK)T P + P (A−BK) = −(Q + KT RK) (2.38)

Given that R is a symmetric positive-definite matrix we can express R as

R = T T T (2.39)

where T is some non-singular matrix.

Re-arranging and simplifying (2.38) gives

AT P −KT BT P + PA− PBK + Q + KT RK = 0 (2.40)

Let us now set K = R−1BT P , and introduce two extra terms which do not affect the
equality (the reason for this becomes clearer further on in the derivation)

AT P + PA− PBK + Q + KT RK −KT BT P + P T BT−1TK

+P T BT−1(T T )−1BT P = 0 (2.41)

This can then be expressed as

AT P + PA− PBR−1BT P + Q + [TK − (T T )−1BT P ]T [TK − (T T )−1BT P ] = 0

(2.42)

Minimising the cost function J with respect to K requires the minimisation of

xT (t)[TK − (T T )−1BT P ]T [TK − (T T )−1BT P ]x(t) (2.43)

Since this expression is non-negative, the minimum occurs when it is zero, or when

TK = (T T )−1BT P (2.44)

and hence

K = T−1(T T )−1BT P = R−1BT P (2.45)

The final result is a state feedback control law

u(t) = −Kx(t) = −R−1BT Px(t) (2.46)

in which P must satisfy the following reduced Riccati equation to ensure that (2.42) holds.

AT P + PA− PBR−1BT P + Q = 0 (2.47)
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Chapter 3

Types of Observers

Prior to discussing the role of observers in reconstructing an incomplete or inaccessible
state vector of a linear system with an incomplete or inaccessible state vector, we should
first consider a linear feedback system with a completely accessible state vector. If the
state x(t) of the open-loop system is completely available, a linear feedback control law is
of the form

u(t) = −Kx(t) (3.1)

The matrix K is designed to pass a linear combination of state variables into the system
inputs for use in a control law. When the input is applied to (1.1), the closed-loop system
is then,

ẋ(t) = (A−BK)x(t) (3.2)

The dynamic response of the state vector in (3.2) may be asymptotically driven to the de-
sired null vector if a feedback gain matrix K can be chosen, such that the matrix A−BK

has eigenvalues to the left-hand side of the complex plane.

A conceptual diagram of full-state feedback is shown in Figure 2.2 where the control
law u = −Kx is computed assuming full knowledge of the state vector x(t). This system
regulates itself against unknown disturbances affecting the output, by inputting the control
law to hold the output steady. It can be readily modified to regulate itself around some
desired reference signal for a tracking application.

3.1 Observer Categories

As demonstrated, the dynamic response of a controllable system can be altered through the
implementation of a linear state feedback controller in (3.1). Such an application requires
that system parameters and the current state x(t) of the system be completely available.
In the event that states are unavailable, a state observer is required to reconstruct or
estimate the states that are required as inputs to the controller. The observer should
simulate the actual system accurately, to provide an estimation of the states required for
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feedback. For the observer to be of any practical use, the error between the model and
the real system be asymptotically zero.

Figure 3.1: Closed-loop Observer for State Feedback

Figure 3.1 illustrates the role of the observer in reconstructing the states of the system
so that it may be used for feedback into the controller. The concept of a compensator is
introduced, which is simply an observer and controller working together to provide the
feedback path. In this chapter the full-state observer and the reduced-order observer will
be discussed in detail, to facilitate understanding of the functional observer.

3.1.1 Full-State Observer

As the name suggests, the full-state or full-order observer estimates all the states of the
system. Luenberger in 1966 [1], defines this observer and introduces the conditions which
must be satisfied in order for the observer to exist. It follows that a system with n state
variables requires an observer of nth order for full state estimation. Let us consider the
linear time-invariant system of (1.1),

ẋ(t) = Ax(t) + Bu(t) (3.3)

y(t) = Cx(t) (3.4)

For this system we now assume that x(t) cannot be measured directly and that we must
form an observer to reconstruct the state variables. To reconstruct all the state variables
we introduce the variable x̂(t), denoting an approximation of the state x(t) as opposed to
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the actual state. We define an observer with the following dynamics

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t)− Cx̂(t)) (3.5)

This form of observer uses the system inputs, u(t), and outputs, y(t), to estimate the state
variables, x(t). The first two terms are a model of the system dynamics while third term is
dependent on the difference between the actual output and the expected output based on
the current estimated state, and thus represents the mismatch between the system model
and the actual system.

Figure 3.2: Schematic of a Full-Order Observer [3]

If we define the error to the system as

e(t) , x(t)− x̂(t) (3.6)

Then in taking the derivative and substituting (3.3), (3.4), and (3.5), we can obtain the
error dynamics as follows

ė(t) = ẋ(t)− ˙̂x(t)

= (Ax(t) + Bu(t))− (Ax̂(t) + Bu(t) + L(y(t)− Cx̂(t)))

= (Ax(t) + Bu(t))− (Ax̂(t) + Bu(t) + L(Cx(t)− Cx̂(t)))

= (A− LC)x(t)− (A− LC)x̂(t)
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Incorporating the definition in (3.6), this collapses to the following differential equation,

ė(t) = (A− LC)e(t) (3.7)

This differential equation can be readily solved, the solution being an exponential function
of the form

e(t) = e(A−LC)te(t0) (3.8)

Clearly, for the estimation error to approach zero, the eigenvalues of exponent (A− LC)
must have negative real parts, or equivalently (A − LC) must be Hurwitz. Since the
system is time-invariant, the system parameters A and C are constant. The matrix L
must therefore be chosen to satisfy those conditions via the method of pole positioning.
Following the Principle of Duality, presented by O’Reilly [14], and based upon linear state
feedback results, we shall formalise these concepts in the following Theorem

Theorem 3.1 [14] Theorem (1.16)
Corresponding to the real matrices A and C, there is a real matrix L such that the set
of eigenvalues of (A − LC) can be arbitrarily assigned (subject to complex eigenvalues
occurring in conjugate pairs) if and only if the pair (A,C) is completely observable.

This important result defines the requirement for a full-state observer to exist. It high-
lights that if the original system is unobservable then it is not possible to construct a
full-state observer.

Assuming however, that the system is observable, the question of how the location of the
poles will affect the performance of the observer must be addressed. Since the purpose of
the observer is to provide the system state to the controller, the observer must provide an
estimated signal to the controller that tends toward the actual states rapidly and accu-
rately. Otherwise the controller will yield an incorrect control signal u = −Kx̂.

The positioning of poles in (A − LC) determines several performance characteristics of
the observer, of which the most important is the observer transient response. As the real
component of the poles become increasingly negative (move further left in the complex
plane), the estimated states tend toward the actual state more rapidly. Unfortunately,
this also results in the elements of L becoming larger, thus amplifying sensor noise and
resulting in a less accurate signal.

We shall now consider the state feedback using the reconstructed states with the following
control law

u(t) = −Kx̂(t) (3.9)

Assuming an appropriate choice for matrix L, the estimation error e(t) will be zero in
steady state. The initial transient response of the full-order observer will be investigated
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by considering the full-order observer presented in Figure 3.2. Of particular interest when
analysing the transient response, is whether the introduction of the observer will degrade
system stability.

The closed loop system is completed through the interconnection of the controller (3.9)
and observer (3.5) to the open-loop system (3.3), (3.4). It is described by the composite
system

[
ẋ(t)
˙̂x(t)

]
=

[
A −BK

GC A−GC −BK

][
x(t)
x̂(t)

]
(3.10)

y(t) =
[

C 0
] [

x(t)
x̂(t)

]
(3.11)

From the observer definition (3.5), the definition of the reconstruction error (3.6), and
prescribed control law (3.9), ẋ(t) and ė(t) can be derived as follows

ẋ(t) = Ax(t) + Bu(t) = Ax(t)−BKx̂(t)

= Ax(t)−BK(x(t)− e(t)) = (A−BK)x(t) + (BK)e(t) (3.12)

ė(t) = ẋ(t)− ˆ̇x = Ax(t)−Ax̂(t) + L(Cx(t)− Cx̂(t))

= (A− LC)e(t) (3.13)

In terms of the error between the model and real system, this results in

[
ẋ(t)
ė(t)

]
=

[
A−BK BK

0 A− LC

][
x(t)
e(t)

]
(3.14)

(3.15)

To investigate system stability, we shall consider the eigenvalues of the system by analysing
the characteristic polynomial

det

(
λI2n −

[
A−BK BK

0 A− LC

] )
(3.16)

= det (λIn − (A−BK))× det (λIn − (A− LC)) (3.17)

This leads us to a result on eigenvalue assignability and asymptotic stability of the overall
closed-loop control system represented by (3.10)

Theorem 3.2 [14] Theorem (1.17)
If the linear system is completely controllable and completely observable, there exist gain
matrices F and G such that the 2n eigenvalues of the system matrix of the closed loop
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system can be arbitrarily assigned, in particular to positions in the left hand complex
plane.

Note that the introduction of an observer results in an impaired transient response to the
closed loop system, as a result of the non-zero reconstruction error. If designed correctly,
this degradation in performance diminishes exponentially along with the error e(t), thus
demonstrating the application of the state reconstructor.

This form of observer is simple in its implementation. According to Theorem 3.1, as
long as the system is fully observable, there are no restrictions on the pole positions of
the observer. There is also no added limit on the generality of the observer as there is
no requirement for the system to be given in a specific canonical form. However, the
observer does suffer from the fact that it reconstructs the whole state vector, which may
not necessarily be required. This inherent redundancy is addressed in the reduced-order
observer.

3.1.2 Reduced-Order Observer

The full-order observer (3.5) is of order n, being equal to the number of states in the
original system (1.1). Although simple both conceptually and in its construction, there
are some inherent redundancies in its design. Recall our objective of reconstructing the
state variables x(t) ∈ Rn, and that the system outputs contain m linear combinations of
the variables. Intuitively, the remaining n−m states may be reconstructed by an observer
of order n − m which should provide the rest of the states. The following analysis will
confirm this conjecture.

The design of the reduced-order observer is based on a partitioned form of the system
dynamics

[
ẋm(t)
ẋu(t)

]
=

[
A11 A12

A21 A22

][
xm(t)
xu(t)

]
+

[
B1

B2

]
u(t) (3.18)

y(t) =
[

Im 0
] [

xm(t)
xu(t)

]
(3.19)

where xm denotes states that are measurable and xu denotes states that are not measurable
or unknown (note that from this point, in order to assist in presenting the derivation we
have dropped the (t) to indicate time-varying). The identity matrix Im in (3.19) is an
m×m matrix and the zero matrix is of dimensions m× (n−m), which gives

y = xm (3.20)

The system partition (3.18) yields the following two equations
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ẋm = A11xm + A12xu + b1u (3.21)

ẋu = A21xm + A22xu + b2u (3.22)

The first of these equations (3.21) can be re-arranged to form an intermediate variable z

z = A12xb = ẋm −A11xm −B1u (3.23)

The dynamics of the reduced-order observer are defined by the following

˙̂xu = A22x̂u + A21xm + Buu + L(z −A12x̂b) (3.24)

The construction is similar to the full-order observer case, with the last term being a cor-
rection term. This correction term is based on the modelling error between the derivative
of the actual measured state ẋm and estimated measured state ˙̂xm.

Notice that z in (3.23) requires knowledge of ẋm which may be construct by differentiating
the signal. However, differentiating will severely degrade the signal if there is a small
quantity of additive noise in the measurements. This difficulty can nonetheless be resolved
by redefining the reduced-order estimator states in terms of a new state vector as follows

z = x̂u − Ly (3.25)

Taking the derivative of (3.25) and substituting (3.20), (3.24) and (3.25) gives

ż = ˙̂xu − Lẋm

= (A22 − LA12)x̂u + (A21 − LA11)y + (B2 − LB1)u (3.26)

Since we require the observer to be outputting x̂u, x̂u should not appear in the expression.
We therefore make use of (3.25) to give the following

ż = (A22 − LA12)(z + Ly) + (A21 − LA11)y + (B2 − LB1)u

= (A22 − LA12)z + (A21 − LA11 + (A22 − LA12)L)y + (B2 − LB1)u

= Fz + Gy + Hu (3.27)

where

F = A22 − LA12 (3.28a)

G = A21 − LA11 + FL (3.28b)

H = B2 − LB1 (3.28c)
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A schematic of the full feedback system with the reduced-order observer, represented by
Equations (3.18), (3.19), and (3.27), is presented in Figure 3.3. In light of the fact that
y(t) = xm(t), it is important to note how y(t) acts as inputs to the dynamic part of the
observer in (3.24) as well as contributing directly to the state estimate xu(t) in (3.27).
This results in the estimate xu(t) being more susceptible to measurement errors in y(t)
than in the full-state observer case. The feedback loop is completed with the reduced-order
observer providing the unknown states to augment known states. These are then made
available to the controller.

Figure 3.3: Schematic of a Reduced-Order Observer

Again, recall the error definition (3.6). Modifying this for the reduced-order case, taking
the derivative to obtain (3.29), then substituting (3.22) and (3.24), followed by (3.26), we
finally obtain the error dynamics in terms of the error,

ė = ẋu − ˙̂xu (3.29)

= A22(xu − x̂u)− LA12(xu − x̂u)

= (A22 − LA12)e (3.30)

This result is remarkably similar to that in the full-state observer case (3.7). The matrix
pair (A12, A22) must be completely observable. A useful Lemma is presented by Luen-
berger [2], which states that if (C, A) is completely observable, then so is (A12, A22). To
drive the error asymptotically to zero, the same approach as the full-state observer is
taken whereby the observer gain L is chosen such that the eigenvalues of (A22 − LA12)
lie in the left half complex plane. Theoretically, the eigenvalues could be moved arbitrar-
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ily towards negative infinity, which would yield rapid convergence. However, this tends
to result in the observer acting like a differentiator, and becoming highly sensitive to noise.

An order reduction of m is not of much significance for a single output system, especially
when considering the low cost of integrated circuits. However, for multiple output sys-
tems, a somewhat more substantial reduction in observer order is possible, which reduces
observer complexity.

29



30



Chapter 4

Functional Observer Design

Functional observers take advantage of a recurring theme in state feedback control. That
is, frequently in feedback applications, only a linear combination or function of the state
variables Kx(t) is required, rather than complete knowledge of the state vector. In the
previous chapter, the focus was on the reconstruction of the whole state vector, high-
lighting a redundant feature. The question therefore arises as to whether a less complex
observer can be constructed to produce a linear function of the states. This is possible
and the chapter is concerned with the construction of the functional observer, and an
investigation into one particular design algorithm that has been proposed. The primary
aim of the literature is to produce observers that are of further reduced order and that
are stable. In addition, it is interesting to note whether the designs place any restrictions
(such as pole location) on the observer which may affect its performance.

A major result for this problem was first presented by Luenberger [1], for the functional
observer to be able to estimate any linear combination of states, it must itself have order
of at least v−1 where v is known as the observability index. It is defined by Luenberger [2]
as the least positive integer for which the matrix

[
C ′ ... A′C ′ ... (A′)2C ′ ... · · · ... (A′)v−1C ′

]

has rank n. This gives rise to the following theorem

Theorem 4.1 [14] Theorem (3.1)
A single linear functional of the state of a linear system can be reconstructed by an observer
with v− 1 eigenvalues that may be chosen arbitrarily (where v is the observability index of
the system).

For any completely observable system v − 1 ≤ n −m. Further, it is often the case that
the order v− 1 of a linear functional observer is less than the order n−m of the reduced-
order observer. As a consequence, observing a linear function of the states may afford a
significant reduction in observer order compared to observing the entire state vector.

31



4.1. NOTATION

4.1 Notation

There are numerous algorithms that have been proposed for solving the observer. One of
the problems of comparing different algorithms is the choice of notation used by different
authors, namely the choice of letter allocation for the system matrix parameters and their
associated dimensions. For a clear and rigorous analysis of different design techniques,
a consistent notation approach must be defined. To prevent confusion associated with
inconsistencies, notation will be based as closely as possible to Darouach’s paper [16] on
functional observers, as Darouach’s paper features prominently in this dissertation and as
it retains much of Luenberger’s [2] notation for the system parameter matrices. We can
define the system as follows

ẋ(t) = Ax(t) + Bu(t) (4.1)

y(t) = Cx(t) (4.2)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. Without loss of generality, we assume that
the system is completely controllable, completely observable, and that B and C are of full
rank. The objective of the functional observer is to reconstruct the typical linear feedback
control law of the form

z(t) = Lx(t) (4.3)

where L is known and is of appropriate dimensions. In order to reconstruct the state
function we require an observer of the form

ẇ(t) = Nw(t) + Jy(t) + Hu(t) (4.4)

ẑ(t) = Dw(t) + Ey(t) (4.5)

where w(t) ∈ Rq, and ẑ(t) ∈ Rr is the estimate of z(t). The system matrices A,B, and C

and observer matrices N, J,H, D, and E are defined as follows,

A ∈ Rn×n N ∈ Rq×q

B ∈ Rn×m J ∈ Rq×p

C ∈ Rp×n H ∈ Rq×m

L ∈ Rr×n D ∈ Rr×q

E ∈ Rr×p

Figure 4.1 illustrates the role of the functional observer in reconstructing the control law
to be directly fed back into the system. In contrast to the observers discussed in the
previous chapter, the compensator is housed in the one observer block which, depending
on the implementation, may reduce wiring and associated connection noise. The diagram
also illustrates the fact that the estimated linear combination need not form part of the
control strategy, namely feedback control, but could be for any purpose with the same

32



FUNCTIONAL OBSERVER DESIGN

Figure 4.1: Feedback Control Law Lx implemented by a Functional Observer

design method. Also, unlike preceding chapters, in a state feedback design approach, the
designed control law gain is L as opposed to K.

4.2 Functional State Reconstruction Problem

Having defined the notation to be used, we can continue with our discussion of the linear
function reconstruction problem. If we assume that any states which are unobservable
can be eliminated by defining a lower dimensional observer state vector, then the order q

of the observer in (4.4) and (4.5) should be less than or equal to the reduced-order state
observer derived in Chapter 3 (q ≤ n−m).

The observer w(t) provides a reconstruction of the state variables, while ẑ(t) approximates
Lx(t). The output ẑ(t) provides an asymptotic estimate of Lx(t) if

lim
t→∞ [ẑ(t)− Lx(t)] = 0 (4.6)

It stands to reason that if z(t) estimates Lx(t), then w(t) estimates some other linear
combination of x(t), call it Px(t). This is formalised by Luenberger [2] and gives rise to
following theorem.

Theorem 4.2 [14] Theorem (3.2)
The completely observable qth order functional observer of (4.4) and (4.5) will estimate
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Lx(t) if and only if the following conditions hold:

N is a stability matrix (4.7a)

JC = PA−NP (4.7b)

H = PB (4.7c)

L = DP + EC (4.7d)

Although a formal proof of Theorem 4.2 will not be presented, it is necessary to verify and
comment on the reasoning underlying the observer conditions. Taking a similar approach
as the one in the previous chapter, we will define the observer error in estimating the
states as

e(t) , w(t)− Px(t) (4.8)

If we take the derivative of this, and then substitute the observer equation (4.4) and system
equations (4.1) and (4.2) we obtain

ė(t) = ẇ(t)− Pẋ(t)

= Nw(t) + JCx(t) + Hu(t)− PAx(t)− PBu(t) (4.9)

Applying conditions (4.7b) and (4.7c) yields

ė(t) = Nw(t) + (PA−NP )x(t) + PBu(t)− PAx(t)− PBu(t)

= Nw(t)−NPx(t)

= Ne(t) (4.10)

The solution to this differential equation is an exponential function of the form,

e(t) = eNt (4.11)

Clearly N controls the dynamics of the observer. Applying condition (4.7a) we obtain the
following result,

lim
t→∞ e(t) = w(t)− Px(t) = 0 (4.12)

Our main objective is to verify that the observer correctly estimates the control law Lx(t)
which is the equivalent to (4.6). From the substitution of the observer equation (4.5), the
substitution of the system output (4.2), and finally the application of condition (4.7d), we
arrive at the following

ez(t) = ẑ(t)− Lx(t)

= Dw(t) + ECx(t)− Lx(t)

= D(w(t)− Px(t)) (4.13)
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We expect this to asymptotically approach zero as a result of (4.12).

From this analysis, it is clear that the first three conditions (4.7a), (4.7b), and (4.7c) are
to provide some estimate of the linear combination of the states Px(t), such that its the
estimates error will be asymptotically zero. Further, in the case of (4.7b), A and N are
designed such that they do not share common eigenvalues, ensuring that P has a unique
solution. The last condition (4.7d), then takes those states to provide the estimate for
Lx(t) which is verified to be convergent.

If we consider a closed loop feedback system with input u(t) = Lx(t), which is estimated
by the observer (4.5) in Figure 4.1, we can derive ẋ and ė by using condition (4.7d) as
follows

ẋ(t) = Ax(t) + Bu(t) = Ax(t)−B(Dw(t) + Ey(t))

= Ax(t) + BDw(t) + BECx(t)

= Ax(t) + BDw(t) + B(L−DP )x(t)

= (A + BL)x(t) + (BD)e(t) (4.14)

ė(t) = Ne(t) (4.15)

This yields a composite system similar to that of the full-state observer in (3.14)

[
ẋ(t)
ė(t)

]
=

[
A + BL BD

0 N

][
x(t)
e(t)

]
(4.16)

Aside from the difference in notation and the fact that the control law is Lx(t) instead of
−Kx(t), they are very similar. Matrix element N is required to be a stability to matrix
just as A− LC in the full-state observer in (3.14).

Considering the constraints presented in Theorem 4.2, the functional state reconstruction
problem revolves around designing the smallest possible rth order observer with all observer
matrices satisfying the conditions (a)-(d). Ideally, a small r should not compromise other
favourable aspects of the observer, such as freedom of eigenvalue assignment and algorithm
simplicity, so that it can be readily implemented in practice.

4.3 Darouach Functional Observer

Existence and Design of Functional Observers

for Linear Systems: 2000 [16]

Darouach provides a simple method for designing a rth order functional observer. He

35



4.3. DAROUACH FUNCTIONAL OBSERVER

mentions that the solution to the functional observer problem is related to the optimal
unbiased functional filter problem, especially in satisfying condition (4.7b). Darouach pro-
vides the necessary and sufficient conditions for the existence and stability of the functional
observer. This culminates in a straight forward algorithm for the design of a minimal or-
der observer based on the system parameters. The strength of this algorithm lies in its
elegant implementation, which, unlike numerous other design approaches, does not require
any ad hoc design decisions. This design approach also clearly specifies the necessary and
sufficient conditions for the existence of the observer.

4.3.1 Summary

To be consistent with the notation prescribed in Section 4.1, we should first note that in
Darouach’s method that the matrix D is an identity matrix.

Darouach’s analysis commences with the observer condition (4.7b). This type of equation
is known as a Sylvester equation, and its solution has been the subject of considerable
research. The Sylvester equation is manipulated to an equivalent form

PA−NP − JC = 0 (4.17)

⇒ (PA−NP − JC)
[

L+ I − L+L
]

= 0 (4.18)

where L+ denotes the Moore-Penrose generalised inverse of matrix L. If we then apply
the modified condition (4.7d), where P = L − EC and where we set K = J − NE, we
obtain the following

N = PAL+ −KCL+ (4.19)

and

PĀ = KC̄ (4.20)

where

Ā = A(I − L+L) and C̄ = C(I − L+L) (4.21)

Two important conditions are presented in Section 4.3.2, the first is to test for necessary
and sufficient conditions for the existence of the observer, and if it does exist, a subsequent
condition ensures that the matrix N is Hurwitz and the observer is stable.

4.3.2 The Algorithm

In order to satisfy the conditions in Theorem 4.2, we present the following Lemma.
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Lemma 1 [16]:

rank




LA

CA

C

L




= rank




CA

C

L


 (4.22)

rank




sL− LA

CA

C


 = rank




CA

C

L


 , s ∈ C,<(s) ≥ 0 (4.23)

Whether condition (4.22) is satisfied can be determined by analysing the ranks of the
matrices on the LHS and RHS of 4.22). The author shows in [16] that Condition (4.23)
is equivalent to the detectability of the pair (F,G), where

F = LAL+ − LA(I − L+L)

[
CA(I − L+L)
C(I − L+L)

]+ [
CAL+

CL+

]
(4.24)

G =

(
I −

[
CA(I − L+L)
C(I − L+L)

][
CA(I − L+L)
C(I − L+L)

]+)[
CAL+

CL+

]
(4.25)

where L+ denotes the Moore-Penrose generalized inverse of matrix L. Furthermore, if
matrices J,H and E satisfy Theorem 4.2, a Hurwitz matrix N is given by

N = F − ZG (4.26)

where matrix Z is obtained by any pole placement method so that F − ZG is stable.

Matrices E and K are obtained according to

[ E K ] = LĀΣ+ + Z(I − ΣΣ+) (4.27)

where Ā = A (I − L+L), C̄ = C (I − L+L) and Σ =

[
CĀ

C̄

]
, and matrix J is obtained

according to
J = K + NE (4.28)

whilst matrix H is obtained according to

H = (L− EC) B (4.29)

By using this algorithm we can compute all the observer parameters which provide a
functional observer of the form

ẇ(t) = Nw(t) + Jy(t) + Hu(t) (4.30)

ẑ(t) = w(t) + Ey(t) (4.31)
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Figure 4.2: Exploded view of Darouach Functional Observer

The block diagram of the Darouach Functional Observer depicted above has three main
areas, the blue area represents the system dynamics, the red area constructs some linear
combination of the states w(t) or equation (4.30), whilst the output of the summing
function in the bottom left constructs the required state function or equation (4.31)

4.3.3 Summary

It is evident from the above-mentioned algorithm that no strict canonical forms are re-
quired. This makes the design attractive for implementation. The method allows for some
control of the observer eigenvalues and guarantees stability of the observer system through
condition (4.23). The eigenvalues of the observer are set according to the equation

N = F − ZG (4.32)

where F and G are intermediate matrices defined in the algorithm. The matrix Z is
arbitrary and is used to set the eigenvalues of the observer. Whilst the design method
allows arbitrary eigenvalues, the exact choice for Z is not immediately obvious. Another
attractive feature is that it can be readily extended to discrete time systems.
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Chapter 5

Insulin Regulation Problem

Diabetes Mellitus is an incurable disease that is estimated to be affecting more than 180
million people worldwide. Characterised by the inability of the pancreas to regulate blood
glucose concentration [36], diabetes can over time cause damage to the heart, blood ves-
sels, eyes, kidneys, and nerves. Type 1 Diabetes Mellitus, also known as insulin-dependent
diabetes, is characterised by the inability of the pancreas to release appropriate amounts of
insulin. The hormone insulin metabolises glucose, which is then absorbed by the cells [37].
Conversely, Type 2 Diabetes Mellitus is a metabolic disorder characterised by insulin re-
sistance, and as a result is also referred to as non insulin-dependent diabetes.

Inadequate secretion of insulin by the diabetic pancreas results in poor maintenance of
normoglycemia, defined as the normal condition of blood glucose concentrations in the
70-100 mg/dL range [36]. After non-diabetic subjects have a meal, the glucose level in-
creases, with a peak at 120-140 mg/dL for a period of two hours, followed by a decrease
to normoglycemic level. In diabetic patients, the blood glucose level remains at a hy-
perglycemic level for a long period of time [37]. Therefore, external doses of insulin are
systematically required to control the disease. However, over-delivery of exogenous in-
sulin can cause hypoglycemia (defined as the condition of blood glucose concentrations
less than 60 mg/dL) which can lead to insulin shock [36]. As a result, it is important to
regulate a diabetic patient’s blood glucose concentrations within tight physiological limits.

Currently, the treatment for insulin-dependent patients includes subcutaneous (under the
skin) insulin treatment. This type of treatment may require up to four or five daily injec-
tions, usually corresponding with mealtimes. The amount of insulin injected is typically
based on a glucose measurement (finger prick method), an approximation of the glucose
content of the upcoming meal, and the estimated insulin release kinetics from the subcu-
taneous depot [36].

An alternative treatment solution comprises of a device that delivers insulin intravenously.
The device consists of a mechanical pump, a glucose sensor that is either in vivo (inside a
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living organism) or measures glucose from the skin, and a mathematical algorithm which
regulates the mechanical pump given the sensor measurement. Intravenous delivery of in-
sulin has significant advantages over open-loop solutions such as injections or slow release
preparations. This form of delivery features: (i) rapid delivery with negligible dead-time;
(ii) a higher percentage of drug reaching the blood stream; (iii) faster response to insulin
over-delivery; (iv) potential for improved closed-loop controller performance. In addition,
instead of using a conventional finger prick method to monitor blood glucose, an im-
plantable glucose sensor or skin sensor could be used, therefore increasing patient comfort
and thus compliance with the treatment [36].

5.1 Type I Diabetic Patient Model

The human glucose-insulin model used in this dissertation is based on the initial works
of Sorenson [38], which is then further modified and presented by Parker [36]. The model
uses compartmental modelling techniques, where individual compartments are obtained
by performing mass balances around tissues important to glucose or insulin dynamics. The
principal advantage of a compartmental technique is that the model design is based on
an understanding of physiology within the body. Consequently, numerical simulations can
yield insight into the physiological parameters [39]. As depicted in Figure 5.1 there are six
compartments isolating each organ, being the brain, heart/lungs, gut, liver, kidney, and
periphery. The arrows indicate the flow of blood and each box represents a compartment.
The model combines the stomach and intestinal effects into the gut compartment, and
muscle and adipose tissue effects into the periphery compartment. Glucose is transported
by the blood to various compartments via convection. Once in a compartment, glucose and
insulin are either metabolised, or transported via diffusion into a tissue sub-compartment
where they are subsequently metabolised.

The notation used for the model description is presented in Table 5.1.
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Figure 5.1: Compartmental Diagram of the Glucose and Insulin Systems in a Type 1
Diabetes Patient
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Model Variables
A = auxiliary equation state (dimensionless)
B = fractional clearance (I, dimensionless; N, L/min)
G = glucose concentration (mg/dL)
I = insulin concentration (mU/L)
N = glucagon concentration (normalised, dimensionless)
Q = vascular plasma flow rate (L/min)
q = vascular blood flow rate (dL/min)
T = transcapillary diffusion time constant (min)
V = volume (L)
v = volume (dL)
Γ = metabolic source or sink rate(mg/min or mU/min)
Glucose Model Sub and Superscripts
A = hepatic artery
B = brain
BU = brain uptake
C = capillary space
G = glucose
H = heart and lungs
HGP = hepatic glucose production
HGU = hepatic glucose uptake
I = insulin
IHGP = insulin effect on HGP
IHGU = insulin effect on HGU
IV I = intravenous insulin infusion
K = kidney
KC = kidney clearance
KE = kidney excretion
L = liver
LC = liver clearance
N = glucagon
NHGP = glucagon effect on HGP
P = periphery (muscle/adipose tissue)
PC = peripheral clearance
PGU = peripheral glucose uptake
PIR = pancreatic insulin release
PNC = pancreatic glucagon clearance
PNR = pancreatic glucagon release (normalised)
RBCU = red blood cell uptake
S = gut (stomach/intestine)
SIA = insulin absorption into the blood stream from subcutaneous depot
SU = gut uptake
T = tissue space

Table 5.1: Notation for Type 1 Diabetes Model
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The glucose submodel differential mass balance equations are given by

ĠC
B = (GC

H −GC
B)

qB

vC
B

− (GC
B −GT

B)
vT
B

TBvC
B

(5.1)

ĠT
B = (GC

B −GT
B)

1
TB

− ΓBU

vT
B

(5.2)

ĠC
H = (GC

BqB + GC
LqL + GC

KqK + GC
P qP −GC

HqH − ΓRBCU )
1

vC
H

(5.3)

ĠC
S = (GC

H −GC
S )

qs

vC
S

+
Γmeal

vC
S

− Γsu

vC
S

(5.4)

ĠC
L = (GC

HqA + GC
S qS −GC

LqL)
1

vC
L

+
ΓHCP

vC
L

− ΓHGU

vC
L
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ĠC
K = (GC

H −GC
K)

qK

vC
K

− ΓKE

vC
K

(5.6)

ĠC
P = (GC

H −GC
P )

qP

vC
P

+ (GT
P −GC

P )
vT
P

TG
P vC

P

(5.7)

ĠT
P = (GC

P −GT
P )

1
TG

P

− ΓPGU

vT
P

(5.8)

The metabolic source and sink terms (Γi [=] mg/min) in the above equations are defined
by

ΓBU = 70 (5.9)

ΓRBCU = 10 (5.10)

ΓSU = 20 (5.11)

ΓHGP = 155AIHGP (2.7 tanh(0.388N)−ANHGP )

× [1.425− 1.406 tanh 0.6199(
GC

L

101
− 0.4969)] (5.12)

ȦIHGP =
1
25

[1.2088− 1.138 tanh(1.669
IC
L

21.43
− 0.8885)−AIHGP ] (5.13)

ȦNHGP =
1
65

[
2.7 tanh(0.388N)− 1

2
−ANHGP ] (5.14)

ΓHGU = 20AIHGU [5.6648 + 5.6589 tanh(2.4375(
GC

L

101
− 1.48))] (5.15)

ȦIHGU =
1

25min
[2 tanh(0.549

IC
L

21.43
)−AIHGU ] (5.16)

ΓKE =

{
71 + 71 tanh[0.011(GC

K − 460)] for GC
K < 460 mg/dL

0.872GC
K − 300 for GC

K ≥ 460 mg/dL
(5.17)

ΓPGU =
35GT

P

86.81
[7.035 + 6.51623 tanh 0.33827(

IT
P

5.304
− 5.82113)] (5.18)

(5.19)
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The insulin sub-model mass balances are given by

İC
B = (IC

H − IC
B )

QB

V C
B

(5.20)

İC
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L QL + IC
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1
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İC
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İC
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İC
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− ΓKC

V C
K
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İC
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İT
P = (IC

P − IT
P )

1
T I

P

+
ΓSIA − ΓPC

V T
P

(5.26)

(5.27)

The related metabolic sinks (Γi[=] mU/min) are

ΓLC = FLC(IC
HQA + IC

S QS + ΓPIR) (5.28)

ΓPIR = 0, no pancreatic insulin release (5.29)

ΓKC = FKCIC
KQK (5.30)

ΓPC =
IT
P

1− FPC
(5.31)

Glucagon, the potentiator responsible for stimulating glucose release into the bloodstream,
is modelled as a single blood pool compartment, governed by the mass balance

Ṅ = (ΓPNR −N)
FPNC

VN
(5.32)

Glucagon release from the α-cells of the pancreas (Γi[=]µg/min) is defined by

ΓPNR = [1.3102− 0.61016 tanh 1.0571(
IC
H

15.15
− 0.46981)]

× [2.9285− 2.095 tanh 4.18(
GC

H

91.89
− 0.6191)] (5.33)

Overall, the diabetic patient is modelled by nineteen differential equations, eleven of those
describing glucose dynamics, seven describing insulin dynamics, and a single one describing
the compartment for glucagon.
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5.2 Linearisation of Diabetic Insulin-Glucose Model

From the diabetic patient model presented in Section 5.1, it is clear that this is a non-linear
model. The question of how to deal with the non-linear model in regulating blood-glucose
levels in the diabetic patient thus arises. Motivated by the fact that functional observers
are based on linear systems, one possibility is to make a linearised approximation to the
non-linear model, allowing us to apply linear theory. This requires us to provide a nominal
operating point from which we can linearise the model.

5.2.1 Operating Point

The system output is the peripheral tissue glucose concentration (i.e. the glucose con-
centration of interstitial fluid that surrounds an individual cell in the body), and it is
represented by equation (5.8). The use of these glucose measurements provides accurate
blood glucose levels. The control input is the insulin entering the patient through an intra-
venous route, which is modelled by equation (5.21). The model also incorporates a second
input, corresponding to a meal, which for control formulation is seen like a disturbance
input in equation (5.4). The meal can be simulated by the model presented in Lehmann
and Deutsch [40].

As mentioned in Section 2.1, a nominal operating point from which the Jacobian matrices
can be evaluated is required in order to form our system matrices. The nominal operat-
ing point is chosen to represent a healthy human, the idea being that the controller will
regulate the patient about this operating point. The nominal operating point is based on
an insulin delivery rate of 22.3 mU/min [41], and on meal disturbances having a nominal
value of 0 mg/min (absorption into the bloodstream).

Using these nominal inputs, we take the non-linear model and model the steady-state val-
ues of the state variables to construct a state vector at equilibrium. From these values we
can then evaluate the appropriate Jacobian to form our 19th order linearised system model.

Evaluating the appropriate Jacobian matrix at the equilibrium states will yield a state-
space system of the form

ẋ(t) = Ax(t) + Bu(t) (5.34)

y(t) = Cx(t) (5.35)
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The steady-state values provided by the non-linear models are as follows

Equilibrium steady state values x0 for 19th order non-linear model

1) GC
B = 75.7804 2) GT

B = 43.1137 3) GC
H = 87.6448 4) GC

S = 85.6646

5) GC
L = 97.9247 6) GC

K = 87.6409 7) GC
P = 84.3674 8) GT

P = 80.4398

9) AIHGP = 1.1593 10) ANHGP = −0.0997 11) AIHGU = 0.9276 12) IC
B = 32.6663

13) IC
H = 32.6663 14) IC

S = 32.6663 15) IC
L = 19.5998 16) IC

K = 22.8664

17) IC
P = 84.3674 18) IT

P = 11.4332 19) N = 0.7880

Table 5.2: Steady State Values from Non-Linear Model

The system matrices A, B, and C are presented as follows

Elements of System Matrix B ∈ R19×1 matrix
Bi,j refers to the ith row and jth column element in matrix B

B13,1 =
−1
V C

H

= −1.0152 (All other unspecified matrix elements are zero)

Table 5.3: Linearised B Matrix

Elements of System Matrix C ∈ R1×19 matrix
Ci,j refers to the ith row and jth column element in matrix C

C1,8 = 1 (All other unspecified matrix elements are zero)

Table 5.4: Linearised C Matrix
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Elements of System Matrix A ∈ R19×19 matrix
Ai,j refers to the ith row and jth column element in matrix A

A1,1 = −2.298 A1,2 = 0.6122 A1,3 = 1.6857
A2,1 = 0.4762 A2,2 = −0.4762
A3,1 = 0.4275 A3,3 = −3.1667 A3,5 = 0.913 A3,6 = 0.7319
A3,7 = 1.0942
A4,3 = 0.9018 A4,4 = −0.9018
A5,3 = 0.0996 A5,4 = 0.4024 A5,5 = −0.5817 A5,9 = 5.6958
A5,10 = −7.3338 A5,11 = −0.6961 A5,19 = 7.0072
A6,3 = 1.5303 A6,6 = −1.5304
A7,3 = 1.4519 A7,7 = −2.7481 A7,8 = 1.2962
A8,7 = 0.200 A8,8 = −0.2091 A8,18 = −0.057
A9,9 = −0.04 A9,15 = −0.0024
A10,10 = −0.0154 A10,19 = 0.0073
A11,11 = −0.04 A11,15 = 0.0016
A12,12 = −1.6981 A12,13 = 1.6981
A13,12 = 0.4569 A13,13 = −3.1675 A13,15 = 0.9137 A13,16 = 0.731
A13,17 = 1.066
A14,13 = 0.7619 A14,14 = −0.7619
A15,13 = 0.0947 A15,14 = 0.3789 A15,15 = −0.7895
A16,13 = 1.4257 A16,16 = −1.8535
A17,13 = 1.4286 A17,17 = −1.8571 A17,18 = 0.4286
A18,17 = 0.05 A18,18 = −0.0795
A19,3 = −0.0014 A19,13 = −0.0004 A19,19 = −0.0916

(All other unspecified matrix elements are zero)

Table 5.5: Linearised A Matrix

5.3 Model Reduction

From the linearised system matrices, we find that the system is neither controllable nor
observable. From a controllability point of view, this implies that certain compartments
in the insulin-glucose model are physically isolated from intravenous infusion. This is rea-
sonable, as it is unlikely that insulin alone will be able to drive all states to desired values,
as certain states are a function of other physiological processes decoupled from the input.
From an observability point of view, this implies that information about all states of the
system cannot be deduced from the sensed glucose measurement alone. The system must
be minimal in order for a controller and functional observer to be designed.

To overcome this problem we apply similarity transformations to separate out control-
lable and observable states. It then becomes important to ask what can be done about
the non-controllable states. If these modes are stable then it may not be important that
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their eigenvalues are unchanged. In fact, we can verify that the eigenvalues of the uncon-
trollable partition are stable, and as a result that the system as a whole can be stabilised.

Knowing the number of controllable and observable states, we then apply a balanced
model reduction to provide a system that is both minimal and that has similar input-
output characteristics as the original system. The similarity transforms provide us with
nine states that are both controllable and observable. Accordingly, this is the order that
our model should be reduced to. The resulting reduced order system must preserve the
required input-output properties and must also be a good approximation of the full order
equivalent for appropriate control design.

Using Matlab we apply balanced model reduction to obtain a 9th order model. Although
this process produces a minimal system, due to the transformations involved in the model
reduction process (see Section 2.4), it results in the loss of biological meaning. The original
model has a good biological map, where each individual state has its own biological signif-
icance. The reduced-order model on the other hand, is strictly mathematical, the states
lose their biological meaning thereby making the model ‘non-biological’. Most importantly,
from a control design point of view, the reduced-order model retains its input-output bi-
ological correspondence, in that the dynamics of the lower-order states, once scaled to an
output (through y(t) = Cx(t)), return meaningful values for the biological quantities of
interest. Therefore, provided we are not overly concerned with meaning of the states, a
functional observer can be used to supply the control law to stabilise the system.

Further details of the reduced-order system matrices can be obtained by running the m.file
in Matlab (glucosemodelreduction.m). From this point onwards, all analysis will be based
on the model reduced system matrices. The observability and controllability matrices are
now of full rank, allowing us to proceed with controller and observer design. Possible
future work could test for controllability and observability of different arbitrary operating
points to gain further knowledge of the non-linear model.

Figure 5.2 presents the frequency response of the full-order and reduced-order SISO mod-
els. The region of interest is the bandwidth region, defined as the portion of frequency
spectrum in which control is effective. The process model begins to exhibit behavioural
changes for frequencies greater than 100 rad/sec. This is sufficient to capture all the full-
order behaviour as we only expect the fastest disturbances affecting the patient to have
a time constant of approximately five minutes [41]. In fact, it may be possible to reduce
the model further whilst still retaining sufficient accuracy, and should be a topic of future
work.
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Figure 5.2: Effect of Model Reduction as a Function of Frequency

5.4 Controller Design

Having linearised the system to produce a state space model of the form in equation (5.34),
the linear model can be used to analyse the system characteristics of the glucose-insulin
model. One important characteristic, that will provide background information about
the system as well as information for designing the controller, is the open-loop system
response. The open-loop linearised system’s eigenvalues of system matrix A are

eig(A) =




−4.6168
−0.8197 + 0.2692i
−0.8197− 0.2692i

−0.2385
−0.1745
−0.0098
−0.0769
−0.0401
−0.0489




(5.36)

Since all the eigenvalues of the system have negative real parts, the system is stable. The
open-loop response of the system is presented in Figure 5.3.
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Figure 5.3: Open-loop Response of Glucose-Insulin Model

The sensed output, on the vertical axis, presents a patient’s glucose level outside the
normoglycemic range (ie. after a meal). Recall that the nominal operating point is based
on an insulin infusion rate of 22.3 mU/min. A diabetic patient would have glucose levels
that remain high for extended periods of time after a meal, so the closed-loop system
should aim to drive the glucose to normoglycemic levels in a comparatively short period
of time.

5.4.1 Pole Placement Design

A controller based on pole placement can be used to improve the system characteristics
such that closed-loop performance will satisfy the required criteria: namely that the glu-
cose level be returned to normal levels in comparatively less time.

Recall from Section 2.5.1 that in choosing new pole locations, the general philosophy is to
minimise control effort (in this case insulin input), whilst satisfying required design criteria,
in this case providing normoglycemic conditions for the patient. From the eigenvalues of
the open-loop system presented in (5.36), the sixth element is relatively unstable. We shift
this pole 0.02 to the left to yield the following control law

L =
[

0.0976 0.0012 0.0963 −0.0397 −0.0016 −0.0033 0.0016 0.0002 −0.0001
]
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This yields the following closed-loop response and insulin control effort

Figure 5.4: Close-loop Response of Pole Assignment Scheme 1

Figure 5.5: Insulin Control Effort for Pole Assignment 1
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The graph of the closed-loop response of Figure 5.4 shows significant overshoot past the
nominal operating point of 80.4 mg/dL. Whether this overshoot would adversely affect
the patients’ short or long term health is beyond the scope of this dissertation. It would
be reasonable to expect that a healthy persons’ glucose level would fluctuate within nor-
moglycemic range, nonetheless information on this issue should be readily available. If an
overshoot cannot be allowed, an alternate set of pole locations must be found.

By leaving the sixth element and moving elements seven to nine to the left by 0.05 we
obtain a feedback gain matrix of

L =
[

0.5042 −0.3576 −0.4314 0.2069 0.0219 −0.0116 0.0110 0.0023 −0.0012
]

This yields the closed-loop response in Figure 5.6

Figure 5.6: Close-loop Response of Pole Assignment Scheme 2

The new pole choices have eliminated the overshoot and the system is critically damped.
In terms of control effort the first solution is more efficient in the usage of insulin but
suffers from overshoot. This pole configuration will be used to analyse the control effort
required to drive the glucose concentration back to desired values.

It is also important to note that the theory allows for the control law to produce a negative
input. Clearly in this particular application, insulin cannot be drawn out of the patient.
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This problem could be overcome by setting any negative values to zero. Possible future
work could model the effect of this.

Figure 5.7: Insulin Control Effort for Pole Assignment 2

Figure 5.7 describes the control effort required to drive the glucose dynamics back to
nominal values for the second pole placement scheme. There is a slight overshoot, the
control effort reverts back to its nominal 22.3 mU/min operating point in steady-state.
Comparing Figure 5.6 and 5.7, the dynamics of the output and input are very similar with
some time-delay.

5.4.2 Linear Quadratic Regulator

The LQR design involves selecting matrices Q and R such that the performance of the
closed-loop system regulates glucose levels within the physiological range mentioned ear-
lier. From Section 2.5.2, matrix Q determines the relative importance of the state values
deviating from zero, and matrix R determines the relative importance of the input u (in-
sulin infusion) deviating from zero.

A problem associated with designing the Q matrix is that it requires knowledge of individ-
ual state information. This makes it difficult to design the R and Q matrices (see Section
2.5.2) for the regulator, as it is not clear what is being optimised. It is nonetheless possible
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to obtain a transformation matrix which identifies the makeup of the new states. These
new states are a linear combination of the old states and, if appropriate, can be optimised
by the regulator.

Another way around the problem is to consider optimising the output exclusively. This
approach only requires us to appreciate the biological meaning of the output (which we
do). Consider the cost function J from equation (2.34)

J =
∫ ∞

0
[xT (t)Qx(t) + uT (t)Ru(t)]dt (5.37)

The first term of the integrand optimises state energy, a Q matrix needs to be designed
that optimises the output. Now consider the output equation

y(t) = Cx(t) (5.38)

Modifying cost function J from (5.37) and substituting (5.38) gives

J =
∫ ∞

0
[yT (t)y(t) + uT (t)Ru(t)]dt

=
∫ ∞

0
[xT (t)CT Cx(t) + uT (t)Ru(t)]dt

From the above result, this solves our matrix Q such that

Q = CT C

The eigenvalues for matrix Q are then

eig(Q) =




0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0802




(5.39)

which verifies that Q is positive-semidefinite.

The matrix R on the other hand can be readily solved since there is only one input for
which we are optimising. Matrix R is a 1 × 1 matrix, the value of which will determine
the relative importance of input energy (insulin) optimisation. The next issue is iterating
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for values of R to obtain satisfactory closed-loop performance. We trial for R being values
of one and five.

For a matrix selection of Q = CT C and R = [1], we obtain a feedback gain matrix of

L =
[

0.1578 −0.0140 −0.0154 −0.0014 −0.0003 −0.0002 0.0001 0.0000 0.0000
]

which yields the closed-loop response of Figure 5.8

Figure 5.8: Close-loop Response of LQR with R = 1

The LQR controller returns the glucose level back to nominal values in just over an hour
with practically no overshoot, this is a marked improvement in the rise time relative to
that achieved by the pole placement (scheme 2) method.
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The insulin effort against time is described by Figure 5.9

Figure 5.9: Insulin Control Effort for LQR with R = 1

For a matrix selection of Q = CT C and R = [5], we obtain a feedback gain matrix of

L =
[

0.0512 −0.0090 −0.0025 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
]

and yields the closed-loop response of Figure 5.10.

The insulin effort against time is described by Figure 5.11.
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Figure 5.10: Close-loop Response of LQR with R = 5

Figure 5.11: Insulin Control Effort for LQR with R = 5
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5.4.3 Comparison of Different Design Methods

From Section 2.5, it was explained that both pole placement and the LQR approach are
valid techniques in designing the controller for the glucose regulator. In order to determine
which is best suited to the application we need to conduct some performance comparisons
between the two methods.

To help determine the suitability of both methods, we should recall the objective of the
glucose regulator. The main purpose of the regulator is to return the patients’ blood
glucose levels within normoglycemic levels comparatively faster than without a controller
whilst also minimising two input parameters: (i) total insulin used, and (ii) the maximum
insulin infusion rate. Maintaining glucose levels within normoglycemia ranges is impor-
tant for the long term health of the patient. Since insulin is a consumable and requires
replenishing, another objective of the design is to minimise the total insulin used. Further,
by minimising the insulin infusion rate, smaller components can be used (ie. mechanical
pump), thus decreasing the size of the implantable unit.

From inspecting Figures 5.12 and 5.13 we can notice some trends. There is a trade-off
between how fast the glucose concentrations are returned to normoglycemic levels and
the amount of insulin used to achieve the closed-loop response. LQR (R = 5) uses the
least insulin and has the softest transient response. Pole placement (scheme 2) has the
sharpest initial transient response but also requires the highest rate of insulin infusion, and
therefore may require a larger mechanical pump. Although its initial transient response
is sharpest, after approximately an hour, scheme 1 slows significantly while the other pole
choices continue to drive glucose levels down. It seems that pole placement (scheme 1) and
LQR (R = 1) are the most suitable for the application, although scheme 1 does suffer from
significant overshoot. Therefore, the LQR method with matrix R set to 1 offers the best
trade-off between shortest settling time, minimal use of insulin and negligible overshoot.
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Figure 5.12: Comparison of Closed-loop Response

Figure 5.13: Comparison of Insulin Control Effort
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5.5 Darouach Functional Observer

Having designed the linear control law, let us consider how to provide the state vector for
feedback. A starting point is to measure those states. However as the state space was
transformed by model reduction, the usefulness of sensors is limited. Further, even if the
appropriate sensors were available, a patient may object to having numerous sensors be-
ing attached ex vivo and/or in vivo. This increases the chance of treatment being rejected.

The discussion of observer theory in Chapters 3 and 4 provides designers with numerous
alternatives for estimating the state vector. To demonstrate the order-reducing capabili-
ties of the functional observer, the Darouach functional observer will be used to directly
estimate the linear control law.

5.5.1 Existence Conditions - A New Result

From Section 4.3.2, the necessary and sufficient condition for the existence of the Darouach
functional observer is given by the following lemma

rank




LA

CA

C

L




= rank




CA

C

L


 (5.40)

The system and gain matrices violate this Lemma with the LHS(4) 6= RHS(3). Clearly,
the existence conditions for a minimal order observer cannot be met, and therefore the
design of the observer cannot proceed.

There is however, a result that can overcome this problem; although at the expense of
obtaining a minimal order observer. This involves designing a higher-order observer which
may still be of lower order relative to a reduced-order observer. Designing a higher-order
observer implies estimating additional states. If we append some matrix R to the feedback
gain vector L then the existence conditions will become

rank




LA

RA

CA

C

L

R




= rank




CA

C

L

R




(5.41)

where R can be chosen such that the RHS is of full rank n, which also implies that the
LHS is of full rank n, thus satisfying the new condition.
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To ensure that R is linearly independent of L, the form of R is defined as

R = null




CA

C

L


 (5.42)

This is appended to L forming L̄ as follows

L̄ =

[
L

R

]
(5.43)

which results in

rank(R) + rank




CA

C

L


 = n (5.44)

This makes both sides of Lemma 5.40 equal to full rank n and therefore satisfies the nec-
essary and sufficient condition for the existence of the observer. In this case, n is equal to
nine, and it yields an observer of order seven. This is still smaller than the order achievable
through a reduced-order observer (see Section 3.1.2).

The performance of the functional observer can be tested by plotting the error dynamics of
the error function in equation (4.10). This error function presented in Figure 5.14 should
asymptotically approach zero in finite time.
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Figure 5.14: Observer Error of Functional Observer

The zero asymptotic error ensures that the control law estimate tends towards the correct
function of states and ensures intended closed-loop dynamics. This completes the design
process and successfully demonstrates the functional observer being used in a real world
application. Its complexity is reduced relative to other known observers, namely the
reduced-order observer, and its performance is demonstrated to be satisfactory. This
functional observer can therefore be used in place of a reduced-order observer.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Although the primary objective of this dissertation was to apply a Darouach functional
observer in a real world problem, the application required us to consider a number of
issues. The conclusions drawn may be of assistance to students who undertake similar
projects in the future.

6.1.1 Linearisation

The system model that we used to describe glucose-insulin dynamics is non-linear, whilst
observer theory is based on linear time-invariant systems. It was therefore necessary to
linearise the system. This required a nominal operating point, which was achieved by
simulating the non-linear model for some nominal input and then taking the steady-state
values of the individual states to form a state vector. The Jacobian matrices can then be
evaluated.

6.1.2 Model Reduction

The linearised model was found to be non-minimal, and a number of techniques were con-
sidered to convert the model to a minimal system. In the model reduction technique used,
the least observable and controllable states were discarded. Fortunately, the discarded
uncontrollable states were stable. If this were not the case, these states would have grown
indefinitely and a control solution for the system would not have been possible altogether.

It was also demonstrated that model reduction did not change the process behaviour
appreciably for our frequency region of interest. Most model reduction techniques are
based on transforming the state-space to another equivalent realisation with similar input-
output characteristics. As a result, the biological significance of the states is lost. If the
state information is of importance, this may pose a significant problem as there is no
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alternative method of obtaining a minimal realisation. In the context of insulin regulation,
having the states retain their biological information is, although desirable, not essential.

6.1.3 Controller Design

Optimal control is well-suited for glucose regulation because of the fact that it can opti-
mise insulin usage whilst still minimising time taken for states to reach nominal operating
points. These desirable characteristics were conclusively demonstrated by analysing the
closed-loop responses in addition to the control effort required.

To allow for comparison, a pole placement technique was also used. This technique con-
siders the input/output relationship in tuning the controller parameters, and allows the
dynamics of the glucose concentration to be modified as required to stay within physio-
logical limits.

6.1.4 Observer Design

Having considered all these issues, we attempted to implement the Darouach functional
observer. We found that modification of the feedback gain matrix was needed to satisfy
the rank conditions required for the existence of the observer. This resulted in an observer
that is of lower order than a reduced-order observer. Other techniques should be trialled to
determine whether a different approach could yield an even lower order observer. However,
the Darouach observer is stable, and its error asymptotically approaches zero making it a
plausible design choice.

6.2 Future Work

There are a number of issues that are worthy of further attention. These issues are largely
trivial and could be studied by using the techniques documented in this dissertation.
These issues included (i) linearisation about different operating points, (ii) choosing the
optimal order for model reduction, (iii) investigating further into pole locations and LQR
matrix Q and R iterations, and (iv) investigating into different functional observer design
techniques that may yield lower order observers for this application.

Being the primary focus of the dissertation, further work could be conducted in relation
to the functional observer. Firstly, although the existence conditions for the Darouach
observer were successfully relaxed, producing an observer of order less than n − m, the
claimed observer of ‘much less order’ was not conclusively demonstrated. This was due to
the existence conditions, initially not being satisfied. Future work could seek to obtain a
different R matrix to append, further minimising the order. Most importantly however,
the successful implementation of the functional observer into an application should pave
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the way for other developments such as implementing simultaneous functional observers.

As Moreno [42] notes, the simultaneous observation problem arises when a single observer
is required to observe two or more linear plants; for example when a robust observer is
designed to converge despite certain failures in components of the system. The ability of
this observer to correctly estimate the states of a system which has two or more operating
points, makes this technique particularly useful for the blood glucose regulation problem.

Figure 6.1: A Simultaneous Functional Observer Operating about Points A and B

If we consider Figure 6.1, the linearised approximation error E increases as the system
operates away from the nominal operating point. This results in model error, which flows
onto errors in control and observation. The simultaneous functional observer will give
designers the option of designing for more than one operating point. As the number of
operating points increase, the resolution of estimation improves, which could eventually
yield a result for non-linear function of state estimation.
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Appendix B

Matlab Code

It should be noted that code has been modified for presentation. Matlab code should
be run off the CD instead of copying from this section. Copying code from this section
verbatim will not compile.

B.1 Linearisation of 19th Order Non-linear Glucose-Insulin

Model

clear

%Initialise constants

v_bC=3.5; %dL

v_bT=4.5; %dL

v_hC=13.8; %dL

v_sC=11.2; %dL

v_lC=25.1; %dL

v_kC=6.6; %dL

v_pC=10.4; %dL

v_pT=67.4; %dL

V_bC=0.265; %L

V_hC=0.985; %L

V_sC=0.945; %L

V_lC=1.14; %L

V_kC=0.505; %L

V_pC=0.735; %L

V_pT=6.3; %L

V_n=9.93; %L

q_b=5.9; %dL/min

q_h=43.7; %dL/min

q_s=10.1; %dL/min
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B.1. LINEARISATION OF 19TH ORDER NON-LINEAR GLUCOSE-INSULIN
MODEL

q_l=12.6; %dL/min

q_a=2.5; %dL/min

q_k=10.1; %dL/min

q_p=15.1; %dL/min

Q_b=0.45; %L/min

Q_h=3.12; %L/min

Q_s=0.72; %L/min

Q_l=0.9; %L/min

Q_a=0.18; %L/min

Q_k=0.72; %L/min

Q_p=1.05; %L/min

F_pnc=0.910; %L/min

T_b=2.1; %min

T_pG=5.0; %min

T_pI=20; %min

F_kC=0.3;

F_lC = 0.4;

F_pC = 0.15;

Gamma_bu=70; %constant

Gamma_rbcu=10; %constant

Gamma_su=20; %constant

Gamma_meal=166.667;

Gamma_kc=13.161;

Gamma_ke=0;

Gamma_lc=28.515;

Gamma_pc=8.3239;

Gamma_pgu=97.79;

Gamma_pir=0; %No pancreatic insulin release

Gamma_pnr=3.1776;

Gamma_sia=0; %no insulin given at subcut depot

Gamma_ivi=-50;

%Initialise variables

syms G_bC G_bT G_hC G_sC G_lC G_kC G_pC G_pT A_ihgp A_nhgp A_ihgu

I_bC I_hC I_sC I_lC I_kC I_pC I_pT N

f = [(G_hC-G_bC)*q_b/v_bC-(G_bC-G_bT)*(v_bT/(T_b*v_bC)); %1

(G_bC-G_bT)/T_b-Gamma_bu/v_bT; %2

(G_bC*q_b+G_lC*q_l+G_kC*q_k+G_pC*q_p-G_hC*q_h-Gamma_rbcu)/v_hC; %3
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(G_hC-G_sC)*q_s/v_sC+Gamma_meal/v_sC-Gamma_su/v_sC; %4

(G_hC*q_a+G_sC*q_s-G_lC*q_l)/v_lC+(155*A_ihgp*[2.7*tanh(0.388*N)-

A_nhgp]*[1.425-1.406*tanh(0.6199*(G_lC/101-0.4969))])/v_lC-(20*

A_ihgu*[5.6648+5.6589*tanh(2.4375*(G_lC/101-1.48))])/v_lC; %5

%Note: For our operating pt. G_kC<460mg/dL

(G_hC-G_kC)*q_k/v_kC-(71+71*tanh(0.011*(G_kC-460)))/v_kC; %6

(G_hC-G_pC)*q_p/v_pC+(G_pT-G_pC)*v_pT/(T_pG*v_pC); %7

(G_pC-G_pT)/T_pG-((35*G_pT)/86.81*[7.035+6.51623*tanh(0.33827*

(I_pT/5.304-5.82113))])/v_pT; %8

1/25*[1.2088-1.138*tanh(1.669*I_lC/21.43-0.8885)-A_ihgp]; %9

1/65*[(2.7*tanh(0.388*N)-1)/2-A_nhgp]; %10

1/25*(2*tanh(0.549*I_lC/21.43)-A_ihgu); %11

(I_hC-I_bC)*Q_b/V_bC; %12

(I_bC*Q_b+I_lC*Q_l+I_kC*Q_k+I_pC*Q_p-I_hC*Q_h-Gamma_ivi)/V_hC; %13

(I_hC-I_sC)*Q_s/V_sC; %14

(I_hC*Q_a+I_sC*Q_s-I_lC*Q_l)/V_lC+(Gamma_pir-

(F_lC*(I_hC*Q_a+I_sC*Q_s+Gamma_pir)))/V_lC ; %15

(I_hC-I_kC)*Q_k/V_kC-(F_kC*I_kC*Q_k)/V_kC; %16

(I_hC-I_pC)*Q_p/V_pC-(I_pC-I_pT)*V_pT/(T_pI*V_pC); %17

(I_pC-I_pT)/T_pI+(Gamma_sia-I_pT/((1-F_pC)/F_pC*1/Q_p-1/

(T_pI*V_pT)))/V_pT; %18

([1.3102-0.61016*tanh(1.0571*(I_hC/15.15-0.46981))]*[2.9285-

2.095*tanh(4.18*(G_hC/91.89-0.6191))]-N)*F_pnc/V_n %19

];

v = [G_bC, G_bT, G_hC, G_sC, G_lC, G_kC, G_pC, G_pT, A_ihgp,

A_nhgp, A_ihgu, I_bC, I_hC, I_sC, I_lC, I_kC, I_pC, I_pT, N];

J = jacobian(f,v)
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B.2. EVALUATE JACOBIAN AT NOMINAL OPERATING POINT

B.2 Evaluate Jacobian at Nominal Operating Point

clear all

% A System matrix : Jacobian J evaluated at nominal operating point.

% Define nominal operating points

I_lC=19.59979141104307;

I_hC=32.66631901840506;

I_pT=11.43321165644186;

G_hC=87.64475678894864;

G_lC=97.92471015319093;

G_kC=87.64086499938452;

G_pT=80.43977141513683;

A_ihgp=1.15926668712183;

A_nhgp=-0.09965111223031;

A_ihgu=0.92755488089528;

N=0.78798420699630;

V_hC=0.985; %L

A=[ ... 19x19 matrix

B=[0;

0;

0;

0;

0;

0;

0;

0;

0;

0;

0;

0;

-1/V_hC;

0;

0;

0;

0;

0;

0];

C=[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

D=0;

rank(A)
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B.3 Model Reduction

clear

% A System matrix : Jacobian J evaluated at nominal operating point.

% Define nominal operating points

I_lC=19.59979141104307;

I_hC=32.66631901840506;

I_pT=11.43321165644186;

G_hC=87.64475678894864;

G_lC=97.92471015319093;

G_kC=87.64086499938452;

G_pT=80.43977141513683;

A_ihgp=1.15926668712183;

A_nhgp=-0.09965111223031;

A_ihgu=0.92755488089528;

N=0.78798420699630;

V_hC=0.985; %L

A=[ ... 19x19 matrix

B=[0;

0;

0;

0;

0;

0;

0;

0;

0;

0;

0;

0;

-1/V_hC;

0;

0;

0;

0;

0;

0];

C=[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

D=0;

sys=ss(A,B,C,D);

T1start=[];
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B.3. MODEL REDUCTION

n=rank(sys.a);

fprintf( ...

’The order of System Matrix A is %g.\n’,n)

r =rank(ctrb(sys)); %Since r<n => Must obtain minimal realisation

%Create T1 to isolate controllable states

for i=1:r

T1start=[T1start A^(i-1)*B];

end

v1=[rand(n,n-r)];

T1=[T1start v1];

%Hard Code first T1 generated

T1=[0,0,0,0,0.004910168127286,-0.043523391454114,...,...];

rank(T1);

Abar=inv(T1)*A*T1;

Bbar=inv(T1)*B;

Cbar=C*T1;

%Setting a tolerance value for numbers less than 1E-7

for i=1:n,

for j=1:n,

if abs(Abar(i,j))<1E-7,

Abar(i,j)=0;

end

end

end

% From inspection of Abar we decide that the cutoff

% should be 11th order

% Create controllable matrices: Ac, Bc, Cc

Ac = Abar(1:11,1:11);

Bc = Bbar(1:11);

Cc = Cbar(1:11);

%Use eig(Anotc) to check if non-controllable states are stable

Anotc=Abar(10:19,10:19);

fprintf( ...

’The controllability matrix of Ac,Bc is rank %g.\n’,(rank(ctrb(Ac,Bc))))

fprintf( ...

’The observability matrix of Ac,Cc is rank %g.\n’,(rank(obsv(Ac,Cc))))

n=rank(ctrb(Ac,Bc));

r=rank(obsv(Ac,Cc));

T2start=[];

for i=1:r
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T2start=[T2start;

Cc*Ac^(i-1);];

end

v2=[rand(n-r,n)];

T2=[T2start;

v2];

%Hard Code first T2 generated

T2=[0,0,0,0.004136174746978,-0.021976482959224,0.102551693023201,...,...];

rank(T2)

Acbar=T2*Ac*inv(T2);

Bcbar=T2*Bc;

Ccbar=Cc*inv(T2);

%Clean up matrix Acbar

%Setting a tolerance value for numbers less than 1E-7

for i=1:n,

for j=1:n,

if abs(Acbar(i,j))<1E-7,

Acbar(i,j)=0;

end

end

end

% From inspection of Acbar we decide that the cutoff should be 9th order

% Create controllable observable matrices: Aco, Bco, Cco

Aco = Acbar(1:9,1:9);

Bco = Bcbar(1:9);

Cco = Ccbar(1:9);

fprintf( ...

’The controllability matrix of Aco,Bco is rank %g.\n’,(rank(ctrb(Aco,Bco))))

fprintf( ...

’The observability matrix of Aco,Cco is rank %g.\n’,(rank(obsv(Aco,Cco))))

% Perform balanced model reduction on 9th order system

[Ab,Bb,Cb,Db,totbnd,hsv]=balmr(A,B,C,D,1,9)

sysb=ss(Ab,Bb,Cb,Db);

[Y,T,X]=initial(sysb,[250*ones(1,1),zeros(1,8)],300);

%Vertical shift to account for 80.4 operating point

Y=Y+80.4*ones(length(Y),1);

plot(T,Y)

xlabel(’Time (mins)’);

ylabel(’Glucose Concentration (mg/dL)’);
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B.4. CONTROLLER AND DAROUACH OBSERVER DESIGN

B.4 Controller and Darouach Observer Design

clear all

Ab=[9x9 matrix];

Bb=[9x1 matrix];

Cb=[1x9 matrix];

Db=[0];

sysb=ss(Ab,Bb,Cb,Db);

%Controller Design

%********************************************************************

%Poles of closed loop system scheme 1

%poles = eig(sysb)-[zeros(5,1);0.02;0;0;0];

%Poles of closed loop system scheme 2

poles = eig(sysb)-[zeros(6,1);0.05;0.05;0.05];

Lcont = place(Ab,Bb,poles);

sysnew=ss(Ab-Bb*Lcont,Bb,Cb,Db);

[Y,T,X]=initial(sysnew,[300*ones(1,1),zeros(1,8)],300);

%Vertical shift to account for 80.4 operating point

Y=Y+80.4*ones(length(Y),1);

[U]=Lcont*X’;

%Vertical shift to account for 22.3 operating point

U=U+22.3*ones(1,length(U));

figure(1)

plot(T,Y);

grid

xlabel(’Time (mins)’);

ylabel(’Glucose Concentration (mg/dL)’);

figure(2)

plot(T,U);

grid

xlabel(’Time (mins)’);

ylabel(’Insulin Control Effort (mU/min)’);

A=Ab;

B=Bb;

C=Cb;

D=Db;

%Contruct new Lbar to relax existence condition

R= null([C*A;Lcont;C])’;

L=[Lcont;R];

80



MATLAB CODE

%Darouach Functional Observer

%********************************************************************

%Test for Lemma 1 Equation (10)

rank([L*A;C*A;C;L])

rank([C*A;C;L])

if(rank([L*A;C*A;C;L]) ~= rank([C*A;C;L]))

disp(’Lemma 1 condition not met’)

end;

%Define A_hat and C_hat from Equation (9)

A_hat = A*(eye(length(A))-pinv(L)*L);

C_hat = C*(eye(length(C))-pinv(L)*L);

%Define Sigma

Sigma = [C*A_hat; C_hat];

%Step 1) of Darouach’s design algorithm: Obtain matrices F & G from

%Equations (18) and (19) respectively.

F = L*A*pinv(L)-L*A_hat*pinv(Sigma)*[C*A*pinv(L); C*pinv(L)]

G = (eye(length(Sigma*pinv(Sigma)))-Sigma*pinv(Sigma))

*[C*A*pinv(L); C*pinv(L)]

sizeg=size(G);

%Step 2)Z can be assigned arbitrarily

%Z=[zeros(sizeg(2),sizeg(1)-1),ones(sizeg(2),1)]

Z=[ones(sizeg(2),sizeg(1))]

% Equation (17)

N = F-Z*G

%Step 3) of design algorithm : Determin E,K and J

temp = L*A_hat*pinv(Sigma) + Z*(eye(length(Sigma*pinv(Sigma)))

-Sigma*pinv(Sigma))

[tempr,tempc]=size(temp);

E = temp(:,1:tempc/2)

K = temp(:,tempc/2+1:tempc)

J = K+N*E

%Step 4)

P = L-E*C

H = P*B

%Coding the System Dynamics

%***********************************************************
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B.4. CONTROLLER AND DAROUACH OBSERVER DESIGN

%Initialise variables with arbitrary initial conditions

% n=length(A);

% o=length(N);

% x(:,1) = [ones(n,1)];

% w(:,1) = [ones(o,1)];

% u = [5];

%

% for i=1:18000

% x_dot = A*x(:,i)+B*u;

% x(:,i+1)=x(:,i)+0.01*x_dot;

% temp1 = L*x(:,i);

% temp2 = C*x(:,i);

% z1(:,i) = temp1;

% y1(:,i) = temp2(:);

%

% w_dot = N*w(:,i)+J*y1(:,i)+H*u;

% w(:,i+1) = w(:,i)+0.01*w_dot;

% temp3 = w(:,i)+E*y1(:,i);

% z_hat1(:,i) = temp3;

% end

% %Plot error function of functional observer e =z-z_hat

% error=(z1(1,:)-z_hat1(1,:));

% plot(error)

% xlabel(’Time’); ylabel(’Error’);

%Using Matlab in-built functions

%***********************************************************

%Define dimensions and the combined system matrix

m=length(A);

o=length(N);

B=[B zeros(m,o-1)]

% Construct composite system

Acomb=[A-B*L,-B;zeros(o,m),N]

n=length(Acomb);

% Simulate to t secs

time=25;

sys=ss(Acomb,eye(n),eye(n),eye(n));

x0=[50*ones(m,1);zeros(o,1)]

%Simulate the time response
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t=0:0.1:time;

[y,t,x]=initial(sys,x0,t);

e2=x’;

e2=e2(n-o:n,:);

figure(3)

%Plot the time response

plot(t,e2(1,:),’-’);grid %Observer Error

xlabel(’Time (secs)’); ylabel(’Error’);
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B.5. LQR CONTROLLER DESIGN

B.5 LQR Controller Design

clear all

Ab=[9x9 matrix];

Bb=[9x1 matrix];

Cb=[1X9 matrix];

Db=[0];

sysb=ss(Ab,Bb,Cb,Db);

%LQR Controller Design

%********************************************************************

Q=Cb’*Cb;

R=input(’Input R = ’); %Weightiing for control effort

[L]=lqr(sysb,Q,R) % Feedback gain matrix

sysnew=ss(Ab-Bb*L,Bb,Cb,Db);

[Y,T,X]=initial(sysnew,[300*ones(1,1),zeros(1,8)],300);

%Vertical shift to account for 80.4 operating point

Y=Y+80.4*ones(length(Y),1);

[U]=L*X’;

%Vertical shift to account for 22.3 operating point

U=U+22.3*ones(1,length(U));

figure(1)

plot(T,Y);

grid

xlabel(’Time (mins)’);

ylabel(’Glucose Concentration (mg/dL)’);

figure(2)

plot(T,U);

grid

xlabel(’Time (mins)’);

ylabel(’Insulin Control Effort (mU/min)’);
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