
  ENG4111 / 4112 - Dissertation 

Joshua Walton  W0026275 

 

University of Southern Queensland 

Faculty of Engineering and Surveying 

 

 

Investigation of a Variable Ride Height 

Suspension for an Automobile  
 

 

 
A dissertation submitted by 

 

Mr Joshua Graeme Walton 

 

 

 
in fulfilment of the requirements of  

 

Courses ENG4111 and 4112 Research Project 

 

 

 
towards the degree of 

 

Bachelor of Mechanical Engineering 

 

 

 

 
Submitted: November 2008 



  ENG4111 / 4112 - Dissertation 

Joshua Walton i W0026275 

ABSTRACT 
 

This dissertation investigates a new way of varying the ride height for a 

passenger vehicle.  It follows the design process from the first step of checking 

history, background and current development of suspension.  Next it looks at 

building the concept of a new air spring which attempts to maintain a relatively 

constant pressure while increasing the area over which this pressure is acting.  

Material and manufacture process selection are conducted for the new concept 

and a process of vibration analysis for an automobile is undertaken.   

 

This investigation has been successful in developing a design for a new height 

adjustable suspension however the scope of this study did not allow for adequate 

testing to prove its viability and allow the design to be progressed into 

manufacture.  Despite this lack of testing, the system in theory will provide for a 

more comfortable ride and a much more versatile vehicle.  This new system of 

suspension will be able to perform in a wide variety of applications and 

environments without length setup or adjustment. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 Outline of the study 

 
This project is focused on modelling and analysing a new variable height 

suspension system for a passenger car.  The project intends to undertake detailed 

static and dynamic analysis of a new variable height suspension system, model 

the suspension system and propose a complete design for a particular 

automobile.  This is entirely theoretical and analysis will be computer based due 

to the time constraints placed on this project. 

 

 

1.2 Introduction 

 
The cars of today tend to be only made for one purpose.  It would be near 

impossible to find a car that not only caters for a smooth ride over rough roads 

but can also minimise roll when cornering tightly on smooth roads.  Variable 

ride height suspensions are by no means a new idea, but don’t offer the 

versatility being pursued in the outcome of this project.  Limitations in current 

systems come about by not catering for a change in spring rate as the car’s 

height is being altered.  The result is a less than optimum solution in a smaller 

range of running conditions.   

 

Australian’s in general are required to travel massive distances every year over 

roads that vary greatly in quality.  For anyone who enjoys the luxury of a low 

riding car and the associated handling benefits, they are forced to sacrifice 

comfort when driving on rough roads.  Innovation is required to produce a 

system that will be able to function in all conditions and for all applications.   

 

This project is based entirely on theoretical concepts and mathematical analysis.  

The solution obtained cannot be proven by physical construction and testing due 

to the time constraints applied to this project.  These time constraints may mean 

this project cannot successfully produce a system that satisfies the aims of this 

project.  However more important than the solution itself is the process involved 

in deciding whether or not a successful solution has be found.  This project will 

define the process needed to analyse a suspension system and can therefore be 

used to continue this study or be applied to other studies involving four point 

suspension on motor vehicles. 

 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 2 W0026275 

Because of the personalised nature of each individual vehicle suspension, this 

project will only investigate the new system for one model of vehicle.  For this 

project that vehicle will be a 1996 Series I, VS Commodore due to the 

availability of this vehicle for gaining data to be analysed.  Despite the fact only 

one application will be studied, it will be easy for the same principles and 

system identified in this project to be applied to any other vehicle.  Once the 

system has been created and testing procedures established, the personalisation 

of the system for each individual vehicle will be a natural step forward.  

 

At the outset, time will be spent investigating current technology to prevent 

wasted time spent on covering already developed areas of this research and 

development.  Then with a well rounded view of current innovation, the design 

and testing of a system to satisfy the aims of this project can be completed with 

a much stronger sense of direction and in a shorter space of time. 

 

Developing a complete solution requires a wide variety of vibration analyses on 

the system to be in question.  The behaviour and response of the car as it is 

acted on by the road affects the drivers comfort and ability to navigate different 

types of roads at varying speeds.  This project will seek to simulate the extremes 

to which suspension in Australia might be made subject to, and furthermore the 

affects passed onto the driver in each situation.  Results for the new suspension 

method will be compared and contrasted to a set of control results established 

for a standard suspension system in use today. 

 

It is important that the analysis of vehicle suspension and vibration be sound in 

its consideration of all factors and variables to ensure sufficient accuracy for the 

results to be projected directly into the real world.  Following the conclusions of 

this project there may be a desire to continue the development of this idea and 

produce physical prototypes.  Therefore despite this projects immediate 

theoretical basis, it will be possible for the solution to be taken and put directly 

into service. 

 

 
1.3 The Problem 

 
Cars have undergone rapid evolution over the 20

th
 century and during the entire 

process suspension has been critical to the cars ride and handling.  Suspension 

governs the way in which a car holds on to the road, takes corners and how 

much road variation is transmitted to the occupants.   

 

Take almost any car that is manufactured today and you will find that it is only 

suitable for driving the way in which it was intended by the manufacturer.  For 

instance a base model family car like a Commodore or a Camry is made to 
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ensure a comfortable ride at relatively low speeds.  If a car like this were to be 

driven fast in cornering manoeuvres or rapidly accelerated/decelerated, the 

driver would notice the car become unstable and begin to pitch and roll.  This 

reaction is a direct result of the suspensions limited functioning capacity 

purposely intended by the designers.  Next take a sports car with low profile 

tyres and stiff suspension.  A car like this is well suited to smooth roads and fast 

driving but take it outside the city or on an unsealed road and the driver comfort 

and the cars life span declines rapidly.  The general rule in making cars is that 

they are made for one purpose only and using it beyond that purpose is 

detrimental to the safety, comfort and life span of the vehicle.  My aim is to 

produce a new way of suspending a car that will allow it to multitask.  I want to 

design a new strut that adjusts between a sports-like ride and a soft cushioning 

ride.  By fitting this strut I want the driver to have the ability to modify the cars 

height and handling while driving to accommodate such a radical transition as 

going from racing on smooth track to driving on unsealed roads.  

 

The new struts primary purpose will be to meet the performance demands of 

users across the board by increasing functionality.  Its development will not be 

constrained by an increase in cost or greater use of power however these factors 

will rank as highly important throughout the design process.  This project is 

conducted with the recognition that this new strut is by no means an essential 

improvement but rather a luxury and an after market upgrade. Its viability will 

depend on the degree to which it succeeds to meet its intended design criteria 

and at what cost this comes. 

 

 

1.4 Research Objectives 

 
This project aims at creating a versatile method of suspension capable of 

adjusting its resting height and spring constant.  This suspension must permit the 

car on which it is installed to enjoy improved, sustainable and successful use 

over a greater variety of road conditions.  The suspension must provide comfort 

and safety for the driver by dissipating vibrations from the worst of road 

conditions.  In meeting these aims, the specific objectives below are to be 

pursued: 

 
• Review literature relating to the development and current advancements 

in suspension technology, particularly in the area of adjustable suspension. 

 

• Develop a method of achieving car height and spring rate adjustment. 

 

• Produce a design concept for the new suspension system. 
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• Determine and implement a way of modelling the new system of 

suspension for analysis purposes 

 

• Develop assessment criteria that can be used to determine the relative 

success or failure of the suspension system in meeting the project aims. 

 

• Run a full analysis using the chosen method of model taking into account 

different driving variables such as road condition, car load, and car height. 

 

• Optimise the design concept using the gained results and finalise the 

design by producing detailed drawings. 

 

 

1.5 Conclusions: Chapter 1 

 
This dissertation aims to develop a new versatile method of adjustable 

suspension for an automobile. This research will hopefully identify ways of 

suspending a car that had not yet been considered.  Modelling methods used 

within this project will prove useful for any study with a focus on vibration 

analysis of automobiles.  The final design produced by this dissertation will be 

ready for prototyping and physical testing with a view to moving the design 

closer to a production. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

2.1 Introduction 
 

The movie ‘Hitch’(2005) contains a line spoken by Alex Hitchins:  

 

“You can’t know where you’re going until you know where you’ve been”.   

 

The context in which this statement was said bears no relevance to this project, 

but the statement itself does.  Without a proper review into the literature 

associated with this problem there is no way of knowing whether the solution 

developed is simply retracing an already defined path in the history of 

suspension.  This chapter will assist in understanding the background to the 

problem identified in this dissertation.   

 

 

2.2 Development of Suspension 

 
Suspension has and always will be one of the most defining aspects of a cars 

handling, comfort, and safety.  The development and progression of the motor 

car over the last century draws strong parallels to the development of the 

suspension on which it rides.  With cars becoming faster, and a growing 

expectation for increased comfort and safety, suspension has had to evolve and 

cater for all these needs.   

 

The Sumerians were the earliest recorded civilisation and yet all those thousands 

of years ago vehicles were being used and the inherent need for suspension was 

born.  From the ox cart used by the Sumerians came more advanced carriages 

and chariots.  While none of these vehicles at this stage had incorporated 

suspension they did contain a certain degree of well thought out engineering.  

The chariots for instance were made as light as possible for increased 

performance.  The wheels were so light that they were removed when the chariot 

was not in use so that they could not squash into an oval shape.  The desire for 

greater performance and innovation was evident but it would not be until the 8
th

 

century that suspension would be born. 

 

The first attempt at lessening the jolts transmitted from the primitive roads of 

medieval time came in the form of an ox drawn carriage suspended with steel 

chain and rested upon straw-covered baskets.  The result was a terribly unstable 

ride but the general theory carried on into subsequent designs.  By the 15
th
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century the chains were replaced with leather straps on coaches and then in the 

17
th

 century the metal spring came into existence. 

 

The first steel spring was a flat plate and was used on carriages by the French.  

This led to the leaf spring being created.  The leaf spring utilised multiple layers 

of springs which actually worked to dampen some of the jolts as a result of the 

friction between each layer.  With the advent of this leaf spring the ‘eight 

springer’ was created in 1804 by a man named Obadiah Elliot.  The most 

revolutionary aspect of this new vehicle was that each of the four wheels was 

fixed to the carriage via two leaf springs opposed to each other.  In the past horse 

drawn vehicles required a heavy under-carriage below the suspended carriage, 

where as now with this new design the carriage could be fixed directly to the 

axles via springs.  This meant lighter vehicles capable of greater speed and 

improved safety. 

 

The coil spring was first patented in 1763 by R. Twedell but didn’t make its 

entrance into the automobile industry until Daimler used them on their twin 

cylinder in the late 1800’s.  Other means of suspending a car included torsion 

bars and even early attempts at air suspension.  It wasn’t until 1934 that a great 

deal of car manufacturers started using the coil spring extensively.   

 

Until the late 1800’s springs were mounted on cars with out any deliberate 

attempt to prevent the continual oscillation that comes from compressing and 

releasing a spring.  A man by the name of J.M.M. Truffault was the first to 

incorporate a friction device on his motorbike in 1898.  This device was later 

modified and fitted to an Oldsmobile becoming the first automobile shock 

absorber.  It worked simply with two levers hinged together with a rubber pad at 

the interface and a bolt that could be tightened or loosened.  This type of shock 

absorber could be defined as a friction type absorber.  Following this design 

came the hydraulic shock and the air shock which still have their place in the 

engineering of today’s cars. 

 

Air suspension was first attempted in 1909 but the system leaked proving it 

useless.  Firestone released their air suspension in 1933 and became the first to 

do so successfully.  The four springs were replaced with air filled bellows 

supplied by a small compressor.  Unfortunately this system proved rather 

expensive in comparison to conventional springs and even today the use of air 

springs requires more setup and more cost. 

 

Suspension has always faced a dilemma in the fact that it seeks to create the 

softest ride and yet in order to damp the oscillations, the shock absorbers actually 

cancel out the softening action of the springs.  As a result springs and the shock 

absorbers actually work against each other.  In effect there is no perfect solution 
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to suspension just a great deal of middle ground where an optimum setting can 

be achieved between hard and soft suspension. 

 

As long as roads have bumps and ripples, a car will always require a form of 

suspension and even today development continues in a never ceasing battle to be 

better, to innovate and to improve. 

 

 

2.3 Height Adjustable Suspension 

 
Motor vehicles cater for multitudes of people all demanding performance in a 

vast array of situations.  It is not surprising then that standard production line 

cars sometimes don’t provide the versatility or performance required by an 

owner.  One way in which these aspects of a vehicle can be improved is by 

including or installing a method of adjusting the ride height.  By adjusting the 

ride height of a vehicle its aerodynamics, economy, handling, vibration response 

and carrying capacity can all be affected for the better.  While very few cars are 

produced standard with height adjustable suspension, it can be a useful device 

that some choose to fit after market. 

 

There are three basic forms of height adjustable suspension. The first utilises a 

standard coil spring although the spring itself may sometimes be far from 

standard.  Systems using coil springs generally require manual adjustment to 

affect a change in height.  Other means of height adjustment utilise either air or a 

combination of hydraulic fluid and air known as a hydropneumatic suspension. 

 

Coil springs can be used to vary a vehicles ride height by moving the lower stop 

of the spring up and down.  The spring remains unchanged in the process and the 

height is modified by effectively mounting the car at a different point up along 

the spring.  The images shown in Figure 2.3.1 are coil height adjustable 

suspensions commercially marketed by Tien, Koni and Suzuki.  Adjusting this 

type of suspension is done manually and requires time and effort in partially 

disassembling the vehicle in order to access the adjusting screw.  The springs 

used in many of these forms of suspension contain variations in pitch and coil 

diameter to attempt to account for the handling requirements of the different 

height settings.  However the spring rate cannot be changed as the car is lowered 

and hence extra stiffening of the suspension is sourced from adjustable dampers.  

This solution to height adjustment is most suited to users who intend to race their 

vehicle.  Others who are requiring greater versatility from their vehicle may find 

this system requires too much time and effort to achieve that versatility.  Above 

all other positives of this system stands the cost.  While this may not benefit all 

users requiring adjustable suspension it is a simple and cost effective method. 
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Figure 2.3.1 – Coil spring height adjustable suspension. 

 

Air suspension as mentioned in the previous section has been used on vehicles at 

varying frequencies and with mixed success.  Air systems can also be used as a 

means of achieving height adjustment in the vehicle.  By using a series of air 

springs similar to the ones shown in Figure 2.3.2 and combining it with a 

compressor, controller, valving and a dryer, height variation can be automated 

substantially.  With this method the height can be adjusted from inside the 

vehicle at any time by increasing and decreasing the pressure.  It has an added 

advantage in that the controller can also perform the task of levelling the car if 

height sensors are placed in each spring.  Levelling is valuable when heavy loads 

must be carried and large deflections of ordinary springs are not wanted.  Air 

suspension has long been the trusted springing method for heavy vehicles and 

has very tentatively begin edging its way into smaller vehicles.  Existing air 

springs do have the drawback that they cannot simply replace a coil spring in all 

their behavioural properties.  While the properties of air suit heavy vehicle 

transport they are not as easily put to work underneath a light automobile.  There 

lack of popularity within smaller vehicles is also due to their elevated cost when 

compared to a coil spring.  These systems are a more costly solution than the coil 

springs however their versatility and ease of adjustment makes their cost 

worthwhile.   

 

 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 9 W0026275 

 
 

Figure 2.3.2 – Air springs. 

 

The final option for height adjustment is with a hydropneumatic system which 

combines air/gas and hydraulic fluid, separated by a diaphragm, to spring the 

vehicle.  This system of suspension is typified by the use of spherical reservoirs 

positioned at the top of each strut on the vehicle.  A section view of these 

reservoirs is shown in Figure 2.3.3 and identifies the two halves of the system.  

The top half of the system is a gas at pressure and this is separated from a 

hydraulic fluid by a centrally located diaphragm.  Instead of a standard spring 

and damper making up the strut, a simple piston or syringe is positioned where 

the normal strut would be positioned.  As the suspension is compressed the 

piston forces hydraulic fluid into the spherical reservoir through a hole which 

serves as the damper of the system.  The size of this hole can be varied to 

achieve the required damping rate.  As the hydraulic fluid is forced into the 

sphere it compresses the gas in the top section which then acts as a spring and 

absorbs the force applied by the fluid.  Once the suspension is no longer being 

compressed, the added pressure in the gas forces the fluid to return into the 

piston.   

 

While the initial theory of this system seems simple enough it cannot run 

effectively without interconnections between all four corners of the car.  The 

hydraulic fluid is pressurized via a hydraulic pump driven directly from the 

engine.  This pump can also be used in braking and power steering and hence is 

not just another device required to run a luxury system.  From this pump lines 

are run to apply pressure in the hydraulic fluid and adjust the height of the 

vehicle.  Also numerous connections between opposing struts forward and aft are 
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needed to assist in levelling the car and also help create a stabilising effect 

similar to that of a stabilising bar.  The system must be made quite complex to 

ensure that the hydraulic fluid is allowed to flow between struts but only when 

needed.  For instance if the front left wheel hits a bump the fluid should be able 

to flow across to the right front wheel and apply a lifting force to that wheel in 

order to level the car and detract from the abruptness of the impact.  However if 

this is an open circuit and the fluid is simply allowed to pass at will between the 

two spheres then during continuous slow cornering the car would gradually fall 

to the outside of the turn as hydraulic fluid is forced from the outside strut across 

to the inside.  Therefore numerous valves and additional spheres are used within 

the circuit to make the hydraulic fluid perform similar tasks to mechanical 

components in a conventional suspension system. 

 

 

 
 

Figure 2.3.3 – Hydropneumatic suspension. 

 

The system of hydropneumatic suspension is one of substantial complexity but 

does provide a very comfortable ride.  One of the drawbacks of this design is that 

in time there may be issues with hydraulic leaks and possibly pump failures that 

could be messy and costly to fix. 

 

Height adjustable suspension is performed successfully in a number of ways.  It 

seems all these methods have their advantages and disadvantages and none of 

them can claim to be the most desirable solution.  It seems in all these systems  

that complexity or limited functionality restricts their versatility and 

improvement in this field is definitely capable.   



  ENG4111 / 4112 - Dissertation 

Joshua Walton 11 W0026275 

2.4 Motor Vehicle Geometry 

 
By definition the suspension of a car includes not only the strut but also the 

arm(s) by which the strut and wheel are attached to the car.  Early types of 

suspension suffered road holding problems whenever the cars height changed 

over bumps or around corners.  This was caused by the suspension arm altering 

the wheels camber and hence reducing the contact area of the tyre.  Modern day 

suspensions use arm configurations that maintain the camber as the cars height 

above the road changes.  This means that changing the height of the car with a 

new strut will not adversely affect the contact area of the tyre because the height 

variation intended in this investigation will be within the manufacturers own 

limits of normal suspension movement.  Many variations of suspension arms 

exist however because these hold no relevance to the design of this new spring, 

they need not be explored further.   

 

 

2.5 Dynamics of a Car 

 
This project aims at discovering an effective alternate means of suspending a car.  

In order to determine the effectiveness of any new suspension system there must 

first be a method available to test and compare the suspension to real world and 

existing suspensions.  It would be impossible to evaluate this new method for all 

models of cars and still remain within the scope of this project.  A more realistic 

approach is to select one type of car, then model the suspension to only suit that 

motor vehicle.  Then by running tests on both the existing suspension and the 

new suspension without changing the geometry or basic constraints of the car, a 

result for effectiveness can be achieved.   

 

The vehicle chosen to be used in this project as seen in Figure 2.5.1 is a 1995 

Holden Commodore VS Series 1 Vacationer.  This is the vehicle I own and 

would have used for physical testing had time within this project permitted.  By 

choosing this vehicle it is easy for me to analyse, understand and model its 

behaviour based on my own observations.  
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Figure 2.5.1 – Holden Commodore VS Series 1 Vacationer. 

 

The suspension beneath this model of Holden Commodore is made up of: 

 

 

• Front 

… McPherson strut 

… Wet sleeve shock absorber 

… Direct acting stabiliser 

… Progressive rate coil springs   

  

• Rear 

… Five Link Live Axle 

… Trailing arms 

… Panhard rod 

… Progressive rate coil springs 

… Stabiliser bar 

   

The setup on this commodore is the most common form of suspension found on 

modern cars today.  The Macpherson strut shown in Figure 2.5.2 was invented 

by an engineer at Fiat but was named after Earl S. Macpherson who developed 

the strut. This suspension can be used on both front and back of vehicles but is 

most commonly found on the front.  It consists of a wheel hub, a link locating 

the bottom of the hub, and a main upright housing the coil spring and shock 

absorber.  The Macpherson strut is a simple and cheap form of suspension which 

has ensured its popularity.  Another positive is the small amount of space it 

consumes leaving more room in the engine bay.  It has a few draw backs because 

of its geometry and subsequent tendency to alter the wheels camber when the 

height is changed.  Also because the main upright is fixed to the body of the car 
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it transmits much more vibration and road noise to the body of the car than other 

forms of suspension.   

 

 
 

Figure 2.5.2 – McPherson strut suspension. 

 

 

The rear axle of this Commodore is solid and fixed at five points.  A similar 

configuration for is shown in Figure 2.5.3.  This axle makes up one of two main 

forms of rear suspension with independent rear suspension being the other 

popular choice. Four of the fixing points along the solid axle are connected to 

trailing arms that sweep back off the body of the car to locate the axle forward 

and back and allow it to swing up and down.  The fifth fixing point connects to a 

Panhard rod which stops the axle from moving side to side.  An alternative to a 

Panhard rod is a watt’s linkage. 
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Figure 2.5.3 – Solid five point rear axle with Panhard rod. 

 

The progressive rate coil springs are almost impossible to model accurately 

without an equation being supplied by the manufacturer.  An attempt was made 

to obtain the spring rates from Holden but they could not be procured.  

Fortunately data for a Holden Commodore was found within the thesis work of 

Lars Svedung which he himself gained directly from the Holden Motor 

Company.  The spring rate is said to vary from 19-23 N/mm and can be 

approximated with a constant value of 21.6 N/mm.  A graph shown in Figure 

2.5.4 shows data supplied by the company for the spring rate. 

 

 

 
 

Figure 2.5.4 – Company supplied spring data. 
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Along with data for the variable spring rate came values for the damping 

coefficients of Holden’s wet sleeve shock absorber.  A plot in Figure 2.5.5 shows 

experimental values of the damping force.  As is stated in the figure, the 

damping coefficient can be approximated with a two standard values.  The first 

value is for compression and is equal to 0.2 N/(m/s) while the second value for 

extension is 1.4 N/(m/s).   

 

 

 
 

Figure 2.5.5 – Company supplied damper data. 

 

Both front and rear suspensions on the Commodore are linked laterally across 

the car via a stabilising or anti-roll bar.  Stabilisers help the car remain level 

while cornering or whilst the car is subject to bumps on only one side of the 

vehicle.  A typical stabilising bar can be seen in Figure 2.5.6 linking both sides 

of a double wish bone suspension.  A stabilising bar works by applying opposing 

force to the coil spring on the opposite side of the car to which the suspension is 

being forced upwards.  The opposing force prevents the unloaded side of the car 

from rising up and further de-levelling the vehicle.  
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Figure 2.5.6 – Stabilising bar. 

 

In the mechanics of the suspension of this Holden Commodore all these 

components work together and are critical to the performance and handling of 

the car.  Understanding the physical makeup of this suspension can provide the 

basis for a sound theoretical investigation and analysis of this suspension. 

 

 

2.6 Conclusions: Chapter 2 

 
The field of automotive engineering plays such a major role in the fast paced 

world of today.  Suspension alone can be seen as a field that has and continues to 

be developed and changed to produce new and exciting solutions to our every 

increasing list of demands.  One of these demands being our need for greater 

versatility in the area of suspension has been met through adjustable coils, air 

springs and hydropneumatic solutions.  These systems then combined with 

linkages and fixtures form a dynamic situation with countless possible 

combinations and behaviours.  While no ‘right’ way of suspending a car may 

ever be established it is encouraging to see engineering’s continued push to 

improve and refine. 
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 CHAPTER 3 

 

CONCEPT DEVELOPMENT AND DESIGN 
 

3.1 Introduction 
Every product, invention or innovation began with a single idea.  At some point 

in time, in some place, in one persons head, an idea came to life and sparked a 

process of development.  No product we use in this modern age ever came into 

being without time and effort spent in turning an idea into a viable reality.  Even 

the biggest or most complex projects started with an idea and were slowly 

unfolded to build an accurate picture of how the idea might be brought into 

existence.  This chapter will follow the process of development for the variable 

ride height suspension from its initial idea through until the aims and objectives 

have been achieved with a viable solution. 

 

 

3.2 The First Idea 
Many new ideas are born from a perceived need and in this case the same is true.  

Existing suspension systems successfully provide the ability to adjust car ride 

height but do not in the same act succeed in varying the spring rate.  As well as 

this the height adjustment on existing units is not a simple operation but instead 

involves time and effort.  The initiation of the idea for this investigation began 

with the desire to create an adjustable spring that would change its spring 

constant by itself as its open height was varied. (See Figure 3.2.1)  By adjusting 

the spring rate with the open height, the closed reaction force of the spring can 

be kept the same and hence prevent a car from bottoming out. 

 

The starting point for innovation was considering whether existing designs could 

be furthered to include better automation in their adjustment capabilities.  For 

instance in systems where an adjustable mechanical screw is used to move the 

lower spring mount further down the strut and effectively lower the vehicle.  The 

adjusting screw could be made to operate via electrical motor or servo activated 

remotely from the cabin.  This function combined with the existing remote shock 

adjustment would allow the entire system to be adjusted easily.  However the 

size of motor or servo needed to move the spring base would be much too large 

to be deemed viable for cost, space and power consumption reasons.  Other 

methods of adjusting a steel spring were not considered with any weight due to 

the complexity of the design that would be needed. 

 

The first concept to be given significant thought was the idea of using an air 

cylinder.  The attractive principle of an air cylinder is its ability to change initial 

volume. Then no matter what size of initial volume left in the cylinder, the slide 

would never be capable of bottoming out due to the inverse relationship between  
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Figure 3.2.1 – Illustrating the varying spring constant. 

 

pressure and area.  Take any cylinder of any diameter with a slide.  The cavity is 

sealed and the pressure in the cylinder is atmospheric.  So we know that as this 

cylinder is allowed to compress, the amount of the air inside does not change.  

As the slide compresses the air, the pressure doubles every time the volume 

halves.  Therefore it is virtually impossible for the slide to reach the bottom of 

the cylinder because the pressure would be infinite.   

 

 
 

Figure 3.2.2 – The very first concept. 

 

 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 19 W0026275 

Again take the same cylinder but position the slide at the middle of the cylinder 

and at this point make the pressure atmospheric.  From this point seal the amount 

of air in the cylinder and begin compressing the volume.  As the slide moves 

down the pressure increases similarly to the first situation except the pressures 

are scaled over a shorter distance.  In this situation the slide will again never 

reach the bottom of the cylinder because the pressure would have to be infinite. 

This principle is illustrated in Figure 3.2.2 as a closed circuit that could simply 

circulate air from the top of the cylinder to the bottom and hence change the 

position at which the slide was comfortable to be at rest. 

 

 
 

Figure 3.2.3 –The inverse relationship between volume and pressure. 

 

This idea seemed attractive initially due to the fact that by simply altering the 

mass of air in the cylinder the spring height could change and the slide would 

never suffer from bottoming out.  Unfortunately the problem with this idea came 

about by the same gas property that made the proposition attractive in the first 

place.  Given an inverse increase in pressure as the volume decreased as shown 

in Figure 3.2.3, the pressure rose increasingly faster and did not provide an 

adequate approximation to a spring.  A spring generally has a fairly constant 

ratio between deflection and opposing force which makes the absorbsion of 

irregularities seem smooth.  When this constant ratio is replaced by an inverse 

one, the irregularities are absorbed far too quickly and larger forces are passed 

through into the mounting of the spring. In the case of an automobile the spring 

mounting becomes the chassis and the seat of the occupants which results in a 

rough ride.  Due to this factor the idea of a cylinder could not be further explored. 
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3.3 The Right Theory 
Achieving great adjustment in this suspension had to come about by the use of 

air.  Air provides an easy means of adjustment by simply modifying pressure or 

volume through hoses, valves and pumps.  Despite the inability of an air cylinder 

to perform the required job, the use of air began to be explored further with an 

aim to convert the inverse relationship of the air and pressure into a linear 

relationship between some other two variables. 

 

A simple look at the gas equation (3.1) proves that unless this device can alter 

the density or temperature rapidly enough to account for the changes in volume 

then no linear relationship can be found. The gas equation states that the pressure 

in a vessel will be equal to the product of the density, gas constant and 

temperature all divided by volume of the vessel.   

 

 P =
ρ AR AT

V

fffffffffffffffffffffff
 (3.1) 

 

Instead of manipulating the gas a new method of adjusting the force of the spring 

had to be found.  By analysing the basic formula for pressure (3.2) an option was 

discovered.  This equation states the pressure is equal to force divided by area.  

 

 P =
F

A

fffff
 (3.2) 

 

By transferring the area across to the other side of the equation it becomes an 

equation for force and states that force is equal to the pressure multiplied by the 

area.   

 

 F = P AA (3.3) 

 

When comparing this with the general spring force equation (3.4) which states 

that the force is equal to the spring constant multiplied by the deflection of the 

spring a similarity is observed.   

 

 F = k A x  (3.4) 

 

By choosing to hold the pressure constant as (k) and only vary the area linearly 

as a function of height (z), the equation will be transformed into a spring 

equation with a linear spring constant.   

 

 F = P AA z
` a

 (3.5) 
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The assumptions made to achieve this spring equation do work nicely but now 

need justifying rationally.  For instance maintaining pressure may not be possible 

over the entire range of compaction involved with a linear spring.  Also 

increasing the area linearly with respect to height variations may be a difficult 

feat to achieve.  Less pressure variation can be achieved by not altering the 

volume of a chamber significantly during operation.  This means however that 

the chamber volume needs to be larger in order to decrease the percentage 

volume made up by the cavity in the spring.  Having realised zero pressure 

variation to be an impossible goal, the assumption was made that during 

complete compaction of the spring the volume change may be able to be kept to 

half.  Therefore according to equation (3.5) the assumed pressure increase over 

the full length of operation would be twofold.  If the linear area increase could be 

achieved, the force to vertical displacement graph (Figure 3.3.1) would 

approximate a straight line and hence a linear spring constant.  From this graph 

the inverse relationship can be seen to have its affect, however the graph remains 

flat enough to allow an approximate straight line of best fit.  This graph proves 

the theory and made possible the continued development of this idea.   

 

 
 

Figure 3.3.1 –The linear relationship approximation between area and force. 

 

Traditionally the air bag suspensions in use today are of a cylindrical 

construction.  To achieve an area increase during compaction of the spring a 

cylindrical bag was considered.  With the area growing externally from an initial 

radius r1 by an amount ∆r the relationship for linking area to radius is found to 

be: 

 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 22 W0026275 

 ∆A = π A 2 A r1 A∆r
b c

+ ∆r2

D E
 (3.6) 

 

This is not a linear relationship thanks to the squared terms, however by 

attempting an increase in area both internally and externally from a circle of 

radius r1 a new relationship can be found to be: 

 

 ∆A = 4 Aπ A r1 A∆r  (3.7) 

 

This relationship is linear and means if the system to be designed can increase 

area internally and externally it will have a good approximation to a standard 

spring constant. 

 

 

3.4 Concept Development 
While developing the theory for this investigation a parallel process of 

developing multiple concept ideas ran with it.  These existed as mental pictures 

and sketches right from the inception of this investigation.  Some of these 

concepts were given thought and created before the theory was fully understood, 

while others were developed after realising the true goal of this design.  As a 

result most of the initial concepts hold no technical value in the build up of 

theory and understanding for this investigation.  However whether technically 

relevant or irrelevant to the final solution, all these concepts help complete the 

picture of the mental process of this design. 

 

 
 

Figure 3.4.1 –Early concepts for an air strut. 
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Some of the earliest concepts as seen in Figure 3.4.1 were based around creating 

some way of ensuring the air bag could prevent the car from bottoming out 

during operation.  These ideas allowed the normal operation of the of the air bag 

as it rolls itself up and down a vertical column but created sudden stops where 

the air bag be squashed against and not allowed to roll any further.  The 

increased area acted on by the bag would prevent further vertical deflection of 

the strut.  In operation this method was thought to do the job by allowing the 

operator to lower the vehicle to any height and still remain assured that the car 

could not reach the limit of its travel.  In a situation where the car might be used 

for track racing the vehicle could be lowered right down to the stop and enjoy a 

vast stiffening of the suspension as a result.  The chances of this system 

accommodating the huge variations in required ride height, handling and road 

conditions without causing discomfort to the passengers seemed very slim.  The 

idea was abandoned as the thought process was developed further. 

 

 
 

Figure 3.4.2 –Attempts at achieving an area growth via vertical displacement. 

 

From this point on the concepts revolved around achieving an increase in area 

over the whole stroke of the strut.  Simple concepts of this line of thought are 

illustrated in Figure 3.4.2 and show the use of conical shaped formers and rubber 

bladders that facilitate the area increase.  At this point in the design the need to 

increase the area externally as well as internally was not realised.  Problems with 

these concepts also existed and began with the formers and bag being unattached 

to the centre column over a long distance.  This would mean the strut could be 

prone to collapse as the bag and former buckle away from the central shaft.  
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Another problem existed in the large bag section and its ability to hold its shape 

under high levels of pressure.  In true operation the shape of the bag could not be 

expected to look as idealist as shown in these sketches.  Finally these designs 

sought the need to seal the central shaft at some point along a sliding surface to 

prevent air leaks.  Considering the number of times the seal would have to slide 

up and down the shaft in its lifetime it appeared completely impractical to 

assume the strut would sustain an air tight seal for even a short period of time. 

 

 
 

Figure 3.4.3 –Area growth internally and externally. 

 

It was at this point in the design stage that the need to increase the area internally 

and externally was realised.  Not only did this cater for the need to increase the 

area linearly in relation to the height but it was also considered that a completely 

air tight seal could be achieved with this new method. On top of these two 

advantages was another positive of being able to support the bag on the central 

shaft at the breaks in the sections over its entire length.   

 

By using a reservoir comprised of an internal and external flexible layer as 

shown in Figure 3.4.3, any sliding seal could be removed and the central shaft 

could be run up the middle of the reservoir without having to be directed through 

into the air cavity.  At this stage it was also deemed necessary to split the flexible 

reservoir into smaller sections defined by some type of steel former holding the 

reservoir in shape and allowing each individual section to squash together during 

compaction and hence gain an increase in area.  Without the former the reservoir 

would simply balloon outward and inward and cease to function.  Due to the 

space constrictions these smaller sections were needed to prevent the bag 
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ballooning out and taking up too much space in the wheel well of the vehicle.  

These initial concepts for achieving internal and external area growth used a 

thick wire ring to simply restrict the bags expansion at certain positions.  The 

rubber not in direct contact with the rings would then only be affected by 

pressure and could naturally balloon out but only to a limit imposed by the size 

of the sections. As the strut is compacted the individual sections would squash 

down on top of each other and create an increase in area varying with height.  It 

was decided that in this design the area increase could not be controlled well 

enough.  This was evident by considering the way in which the rubber would 

tend to balloon and how that would affect the sections squashing together. There 

were concerns that the area would not increase at a constant rate and create an 

unpredictable reaction force from the strut.   

 

 
 

Figure 3.4.4 –Attempt at volume segregation. 

 

Another idea explored on the way to a final solution was using individual air 

reservoirs in the form of donuts.  These small reservoirs would be stacked on top 

of each other along with a sheet metal former which would separate each donut.  

As the strut was compressed the donuts would deform around the former and 

supply the area increase needed.  The main disadvantage of this idea was the 

practicality of linking each of the individual reservoirs adequately enough to 

allow rapid air flow which is required in this design.  Without the air in each 

section being capable of being transferred to an accumulator quickly, the 

pressure would spike before the chamber could be drained of excess air and the 

jolts of the road would not be absorbed successfully.  In the Figure 3.4.4 this 

system is illustrated along with a bleed off line running into one of the donuts.  
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This would not be easy to protect during operation and may be a cause of 

concern for reliability.   

 

The positive taken from the design in Figure 3.4.4 is the shape of the formers. 

Previous concepts displayed in Figure 3.4.3 have positive attributes associated 

with the single reservoir and having a path for rapid air flow down through the 

gap between the internal flexible layer and the external flexible layer.  Both these 

concepts have the advantage of locating the bag on the central rod and allowing 

the bag to be designed to fit within any size of cavity.  These positives were 

major contributors in advancing the design towards completion and to a point 

where all the objectives and aims could be met. 

 

 

3.5 The Final Concept 
The last step in the production of a solution to this problem came about through a 

combination of ideas developed in many of the initial concepts.  The final 

concept is shown in Figure 3.5.1 and is made up of three basic components.  The 

first of these is the rubber bag or reservoir which is shaped to have internal and 

external ribs.  Helping keep these ribs defined under pressure and also provide a 

surface for the bag to be squashed upon during compaction are internal and 

external steel rings.  These rings are sloped to achieve approximately ninety 

degrees of angle between the exposed surface of the ring and the reservoir and 

provide a mirror to the reservoir with respect to the horizontal plane.  This angle 

is thought to help the reservoir be laid out upon the rings uniformly during 

compaction due to the way the bags shape will follow the rings when rolled 

down them.   By keeping all angles with in the structure identical the spring can 

be compressed to a very small percentage of its open height.   

 

Positive attributes of this design include the central cavity to allow for the shaft 

of a shock absorber to be inserted.  This shaft will also permit the central rings to 

be located and not allowed to wander or buckle out from under the load.  The 

segmented design means this air spring can be made to be any length by simply 

stacking a greater number of sections on top of one another.  The design utilises 

no sliding seals and air flow through the whole spring is unimpeded. The angle 

of the rings and shape of the bag have sought to do away with having to take into 

consideration the bulging of the reservoir.  Instead using this design the pressure 

inside the bag and its resulting shape is manipulated to create a controlled 

reaction force dependent only on the height to which the spring has been 

compressed.  Although the outside rings are not located like the central ones, the 

ability they have to move around is very little and the stability of the spring is 

ensured by the limited travel of the central discs.   
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Figure 3.5.1 – The final concept expanded and compressed. 

 

The open bottom end of the reservoir is intended to be attached to a base which 

acts as a cavity for the air to rush to when the spring is compressed.  By 

providing a cavity for the storage of air, the pressure of the spring can be kept 

relatively constant throughout the process.  From the beginning this cavity was 

intended to be positioned directly below the spring and hence allow there to be 

no difficulty with transporting air or keeping sufficient seals.  However as Figure 

3.5.2 shows, the idea was then changed to make use of a remote cavity or 

accumulator due to the space and height restrictions of the area of service.  This 

remote cavity would be linked to the base of the spring via large diameter hosing 

to allow unrestricted flow back and forth between the two components. If a 

cavity was positioned directly below the spring it would subtract too much 

height and travel from the spring.   
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Figure 3.5.2 – Two cavity illustrations. 

 

This concept still requires some thought to bring it to a stage where it can be 

manufactured but it is successful at this stage in the way it meets the objectives 

of this investigation. The sloping rings on the outside will prevent any foreign 

material from gathering on or in the spring.  Also the shape of this final solution 

stands it in good stead for being able to replace existing steel springs of any 

shape or size. From this point on the process of concept development ends and 

the design can be carried forth into more processes that pave the way for this 

system to be put into production. 

 

 

3.6 Adjusting the Concept for Manufacture 
While the theory of how this spring will operate is logical, the design depicted in 

these concepts does not make sense from a manufacturing standpoint.  This 

concept needs modifications that do not alter the way in which it operates but 

make it possible to manufacture and assemble. 

 

The most crucial aspect of the design is ensuring the flexible rubber reservoir is 

able to be produced.  During conceptualising this rubber bag was considered to 

be a single piece.  While this is ideal for sealing purposes it is not possible.  The 

internal steel rings cannot be inserted into their positions with the shape of the 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 29 W0026275 

bag as it is now.  To solve this problem there are two possible solutions.  Firstly 

the internal rings could be integrated into the rubber bag from the time of 

manufacture.  If this was at all possible it would certainly require a difficult and 

complex manufacturing process.  The second solution is to split the flexible 

rubber bag into smaller sections as shown in Figure 3.6.1 and these will then 

become joined onto the rings during assembly.  These smaller sections would be 

identical and could mean less setup for tooling but the sealing of the sections 

would be critical to making this design work.  If the rubber were joined to the 

rings via a crimping action and vulcanising, the seal should stand the test of time. 

The picture shown in Figure 3.6.1 shows the crimping action on the rings as 

having been closed.  The rings would be manufactured with the clamping jaw 

open so the rubber sections can be inserted and vulcanised to the inside of the 

jaw and then the jaw can be squashed closed over the rubber. 

 

 
 

Figure 3.6.1 – Individual joined sections of flexible rubber. 

 

All components of this final concept now perform their task and are entirely 

capable of being made successfully.  The conceptualising has not taken this 

design very far into the real of manufacture but has produced a visual idea that is 

capable of successful manufacture.  While this concept and its components are 

by no means simple and straight forward to manufacture, they do perform their 

job which is to satisfy the objectives of this investigation.  The following chapter 

will continue the task of defining how this system will be built by undertaking 

the manufacturing process and materials selection. 
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CHAPTER 4 

 

MANUFACTURE 
 

4.1 Introduction 
 

The design established in the previous chapter has been developed to accomplish 

the functional requirements of the problem.  This chapter will carry on the design 

process and define the manufacturing processes involved in effectively, 

economically and simply making the theoretical design into a physical reality.  

Multiple options for manufacture will be explored before selecting the most 

suitable process for this specific situation.  If necessary the design may undergo 

changes to allow for a more favourable manufacturing cycle. 

 

 

4.2 Component Separation 
 

In order to define manufacturing processes and materials for the design it must 

be split into its separate parts that can be manufactured individually and then 

assembled.  The overall design for the spring has been split up into the following 

components.   

 

• Flexible Bag Sections 

• Shaping Rings 

• Upper mount 

• Lower mount 

 

The sections that follow from here will examine each of these parts individually 

to determine the most appropriate material and manufacturing processes. 

 

 

4.3 Flexible Bag Sections 
 

As seen in the previous chapter, the bag is made up of numerous sections of 

flexible material shaped to form ribs that must be joined and sealed to the rigid 

rings creating one long compactable spring.  These flexible pieces will be subject 

to continual distortion and tension as the bag is compacted.  As well as this the 

bag will be exposed to forces of nature that will seek to minimise its life span.  

The finished product must be able to: 

 

• Withstand the tension it experiences from the internal pressure. 

• Flex but not stretch when in operation. 
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• Resist degrading when exposed to UV light. 

• Be attached and sealed to other materials. 

• Be cost effective. 

 

The shapes of these flexible sections pose extra difficulty in manufacturing.  

While selecting a suitable material may seem a simple task, the way in which 

that material may be worked into the shape require complicates the matter.  The 

solution to this manufacturing problem must be found with a combined look into 

materials and which respective forming operations are suitable for both the 

material and the finished product being sought. 

 

A quick glance at any air suspension system from their inception up until this 

day will prove the fact that rubber is the common material used in flexible bag 

situations.  There are a number of reasons for its prolific use.  Rubber can be 

moulded, extruded and formed into many different shapes and then cured to 

maintain that initial shape.  Rubber can be reinforced with fibres and has 

excellent ability to bond to various different fibre materials.  Rubber can also be 

bonded or in effect glued to hard surfaces.  The stiffness, strength and stability of 

the rubber may be manipulated to suit a specific service application by varying 

the constituents that make up the rubber.  Rubbers ability to serve in a situation 

where sealing and flexibility are essential makes it the primary candidate for use 

in flexible bag suspensions.  Selecting the right type of rubber for this particular 

realm of service will require a well rounded understanding of rubber in general. 

 

 

4.3.1 Rubber Technology 
Rubber was originally sourced from trees until the 1900’s when innovation 

and the introduction of the motor vehicle saw the need and consequently the 

first supply of synthetic rubber.  At present very little natural rubber is used 

due to the lack of supply and its unreliable properties.  Instead synthetic rubber 

offers consistency and predictability as well as a variety of properties 

depending on where the rubber might be used.   

 

Rubber is a polymer of isoprene and is made by firstly producing monomers 

and then putting them through a process of polymerisation to form rubber.  

The chemical definition and composition of rubber is known and can be found 

in the book ‘Rubber Technology and Manufacture’ (1971). Deeper insight into 

the chemical aspects of rubber is beyond the scope of this study and will not 

be explored further here.  Bearing greater relevance to this study is the 

physical properties of rubber and having a broad understanding of rubber 

composition and its affect on properties. 

 

Rubber by itself is does not provide a very useful or practical material.  Very 

early on in the history of rubber there was not even an understanding of curing 
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and vulcanising rubber.  This meant rubber was always tacky and had very 

little strength and needed to be coated in powders to cover the sticky surface 

of the rubber.  It was perhaps by accident and because of this method of 

coating that vulcanising was discovered to occur when the rubber was coated 

with sulphur and heated.  Instead of the material being sticky it transformed 

into an elastic and tough material that could not be dissolved in solvents.  

From this discovery rubber became highly useful and continued to prove its 

value as the development of additives further improved its properties. 

 

Rubber additives consist of accelerators, fillers, plasticisers, softeners and 

extenders.   Accelerators assist in the rapid curing of rubber.  Natural rubber 

tends to cure more quickly than synthetic rubber so accelerators are generally 

added to the synthetic rubber to bring its curing time in line with natural 

rubber.  Fillers cover a wide range of additives and can be included in the 

rubber mix for many purposes such as:  

 

• Reinforcing 

• Colouring 

• Adding Bulk 

• Texturing  

• Modifying rates of friction and wear  

• Creating UV Stability 

• Stiffening 

• Increasing Durability 

• Heat Resistance 

 

The most common filler is Carbon Black which is basically fine carbon 

particles and helps create a structure within the rubber and consequently 

increase its strength.  The difference in strength brought about by including 

carbon black is a tenfold increase.  Different grades and types of carbon can be 

added to attain various properties.  Table 4.1 gives a general overview and 

comparison of the various forms of rubber available. 
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Table 4.1 –  Properties of varying forms of rubber. 

 

Once the rubber mixture has been determined it can then be spread over a 

textile of some kind to further increase its usefulness.  In the motor vehicle 

industry this aspect of rubber technology plays a large part in enabling the 

rubber to perform its job properly.  Steel and soft fibre belts in tyres and fabric 

sandwiched sheets in air bags are two examples of this method of reinforcing 

being used.  Without the textiles holding the rubber together while under 

pressure it would very easily split and fail.  The degree of benefit associated 

with the textile reinforcing will depend on three aspects of the textile.  Firstly 

there will be an intermolecular attraction between the fibre and the polymer 

which will vary in strength and be governed by the choice of material making 

up the textile.  Secondly the geometric structure of the thread or yarn will 

affect the mechanical adhesion between the rubber and fabric.  A greater 

amount of thread ends will provide a better adhesion but may cause a decrease 

in strength because of the discontinuation of the thread within the textile.  The 

last factor affecting the adhesion is the weave of the fabric.  A more open 

weave will create more opportunity for the rubber to penetrate into the textile 

while a closed weave may decrease the quality of adhesion by limiting 

penetration.  While modifying the properties of rubber with additives is a 

simple task performed by mixing, the use of textiles requires manufacturing 

processes to incorporate the rubber into the textile so that they cannot be easily 

stripped from each other during their lifespan.  
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Methods of manufacturing rubber components include the following processes: 

 

• Extruding  

… Results in long lengths of various shapes.  Some shapes are 

simple while others can be complex extrusions for use in 

specific applications like window trim. 

• Calendering  

… Creates rubber in sheet form by passing it through series of 

rollers.  This method can be used to incorporate textiles into 

the flat rubber sheet by rolling textile and rubber between 

the same rollers. 

• Solvent Dispersion  

… Spreads rubber over textile by scraping a rubber dough 

across a sheet with a knife edge then evaporating the 

solvent and curing the left over rubber. 

• Moulding  

… Used to form items of required shapes in moulds similar to 

metal casting. 

• Bonding  

… Attaching rubber to foreign material such as metals to form 

composite products.  This is usually performed with a 

process of vulcanisation. 

 

 

4.3.2 Material Selection 

Having acquired an understanding of the way rubber has evolved, is composed 

and is produced, the choice must be made as to which grade of rubber should 

be used for this specific application.  The comparisons made in figure…give a 

very good overview of properties relevant to the application intended for its 

service.  When comparing the materials a number of different forms of rubber 

seemed fitting.  Natural rubber was ruled out immediately due to its 

unreliability and variability.  Of the other rubbers, the properties found to have 

greatest weighting in this decision in order of importance were: 

 

• Permeability to Gases 

… Needed to ensure that no air from within the bag will be 

likely to leak through the rubber and cause a decrease in car 

height. 

• Tensile Strength 

… Needed to ensure the bag can withstand high pressures. 
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• Adhesion to Metal 

… Needed to ensure adequate hold and seal between the bag 

sections and the rigid rings.  This part of the design is most 

susceptible to failure and must be treated with care. 

• Resistance to Chemicals and Harsh Environment 

… Needed to ensure the rubber is stable when exposed to oil, 

fuel, sunlight, water and heat. 

• Abrasion Resistance 

… Needed to ensure the bag is not likely to wear itself away in 

the action of compressing and expanding during its lifetime. 

 

Assessing the permeability to gases helped narrow the choice of rubber to 

three possibilities including Butyl, Neoprene, and Hypalon.  Further 

consideration of the tensile strength ruled out Butyl rubber and left only two 

options.  Of these two forms of rubber the decision between the two was quite 

difficult.  However Neoprene was found to be the most suitable material for 

due to its greater resilience or rebound.  In an application where the rubber 

will continually be flexed and placed under varying stress it is important the 

rubber is not affected adversely by this motion but instead is able to retain its 

original form.  Neoprene also offers excellent adhesion to metal, excellent 

resistance to all environmental considerations that may be of concern and 

finally it has excellent abrasion resistance.   

 

The material selection is not complete without choosing appropriate textile 

reinforcement.  Early on in the development of rubber the only reinforcing 

used was cotton because of its easy adhesion to the rubber.  Now with the 

advent of adhesives, materials that do not naturally provide great adhesion to 

rubber can be made to function well as reinforcing.  As a result of this 

synthetic fibres such as rayon, nylon and polyester are common reinforcing 

materials.  From Table 6.16 found in Rubber Technology and Manufacture 

(1971) and reproduced below as Table 4.2, the available range of industrial 

reinforcing can be seen.  This table defines polyester as the strongest form of 

reinforcing.  However in the columns closer to the right of the table it can be 

seen that polyester does not offer the best strength to weight ratio.  Instead 

Polyvinylalcohol seems to provide the best strength qualities due to its lower 

density and high level of strength.  For these reasons polyvinylalcohol 

reinforcing has been chosen for the flexible sections of rubber.  This 

reinforcing will ensure the longest possible lifespan and durability of the 

rubber material. 
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Specific Strength Specific Modulus 

Material 
Density 
(g/cm

3
) 

Strength 
(Kgf/mm

2
) 
(cm x 10

6
) (g/den.) 

Modulus 
(kgf/mm

2
) 

(cm x 10
6
) (g/den.) 

Rubber (tread) 1.1 2 0.19 0.2 0.7 0.062 0.1 

Silk 1.25 60 4.6 5 350 27.5 30 

Cotton 1.54 70 4.6 5 1000 62.5 70 

Rayon (dry) 1.52 70 4.6 5 1900 12.5 140 

Nylon 1.14 90 8.1 9 500 38 40 

Polyester 1.40 110 8.1 9 1100 76 90 

Polyvinylalcohol 1.28 100 8.1 9 1600 125 120 

Polypropylene 0.92 70 8.1 9 700 76 85 

Glass 2.56 350 13.7 15 7500 280 320 

Steel 7.8 280 3.8 4 21000 280 300 

Carbon Fibre 1.95 210 11.2 12 42000 2150 2400 

 

Table 4.2 – Mechanical properties of industrial fibres. 

 

 

4.3.3 Manufacturing Process Selection 
The sections of flexible bag pose an interesting manufacturing challenge.  The 

odd shape and the circular nature will mean that custom tooling will need to be 

produced.   

 

To gain the correct shape of these sections with the reinforcing sandwiched in 

the middle of rubber layers, the textile will firstly need to be custom woven 

into the required shape.  If a standard fabric in sheet form was used, it would 

need to be cut and rejoined in multiple sections and would mean a sacrifice in 

strength.  The best option is to manufacture three different pieces of woven 

fabric, for the inside sections, the outside sections and the top piece to join the 

inside rings to the outside rings.  Custom woven sections will have continuous 

fibre and can be run through a series of shaped rollers for coating with rubber.  

 

Calendering will not work as a means of coating the rubber because of the 

profile of the sections.  If two custom rollers were made to sandwich the 
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textile and press rubber into the fabric the rollers would create varying friction 

factors as they rolled together which would give varying degrees of adhesion.  

The best option for coating the fabric is via spreading.  The profiled fabric will 

be spun by two sets of rollers creating a tight section of the fabric where a 

knife can be run against a flat surface to spread solvent thinned neoprene 

rubber across the fabric.  This process will need to be done once for the inner 

coating and once for the outer coating.  Following this the section of 

composite material can be heated and cured for a short period of time.   

 

While this whole process will be extremely costly to set up, the benefit of 

ensuring the flexible sections are manufactured correctly is well worthwhile. 

Assuming this system is viable and begins mass production, the cost of tooling 

will become far outweighed by the efficiency and reliability of the process. 

 

 

4.4 Rigid Rings 
 

This component of the mechanism plays a number of important roles in the 

functioning of the system.  The rings primary purpose is to hold the shape of the 

bag and by the angle of its faces must define the rate of area increase as the bag 

is compressed.  The rings also join together the small sections of flexible bag to 

produce one continuous cavity and must therefore give adequate sealing on the 

sections of flexible bag.  In doing these things the rings should also: 

 

• Minimise or negate any wear of the bag.   

• Be capable of withstanding degradation in harsh environments.   

• Have adequate strength within the expected range of loading 

conditions. 

• Achieve all these objectives with as little cost as possible. 

 
 

4.4.1 Material Selection 
The way in which the rigid rings have been designed mean they must join the 

flexible bag sections by clamping and sealing the free ends of rubber material.  

The rings must do this by grabbing the free ends inside a formed jaw that runs 

the full circumference of the disk.  This clamping action means the rings 

should be made from a material that can be manufactured in some way to 

create the open jaw ready for assembly.  Then once the rubber has been 

inserted into the jaw the material must be able to be formed, yield and allow 

the jaw to be closed.  The closing action of the jaw must not work harden the 

jaw to the point where it has become weak.  The material used for constructing 

these rings should be carefully selected to fulfil the mechanical requirements 

while also maximising cost effectiveness.  In order to select the most 
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appropriate material the following tables have been extracted from various 

texts to allow a comparison to be made between common steels, metals and 

alloys. 

 

 

Density Cost/tonne Relative  Cost/m
3
 Relative  

Material 

kg/m3 $/tonne $/tonne $/m
3
 $/m

3
 

Carbon Steel 7820 1375 1 10752 1,0 

Alloy Steels 7820 2075 1,51 16225 1,5 

Cast Iron 7225 2075 1,51 14990 1,4 

Stainless Steel 7780 11125 8,1 86552 8,0 

Aluminium/alloys 2700 5550 4,0 14985 1,4 

Copper /Alloys 8900 13875 10,1 123487 11,5 

Zinc alloys 7100 5550 4,0 39405 3,7 

Magnesium /alloys 1800 10000 7,3 18000 1,8 

Titanium /alloys 4500 42500 30,9 191250 17,4 

Nickel alloys 8900 45000 32,7 400500 36,8 

 

Table 4.3 – Costing for various types of steel, metal and alloy. 

 

The table above should not be trusted as an accurate source of market price.  

Metal prices are always changing and would need to be confirmed just prior to 

purchase so as to achieve an accurate price estimate.  However this table does 

provide a good price level comparison which should be accurate given any 

fluctuations in market price.   

 

It is not necessary to choose the cheapest material for these rigid rings. 

However it is more desirable to have a lower costing material if all the other 

design parameters are met by the material.  Costs do not generally increase 

directly in relation to physical properties of a material.  A situation may exist 

where two materials with similar physical properties are priced very 

differently. Ideally a balance should be struck to achieve the best “bang for 

you buck”.  This saying means that a material should not be chosen based 

solely on either cost or physical properties.  Instead the two should be played 
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against one another to ensure a great deal of extra money is not being spent for 

little or no increase in physical properties. 

 

 

Fresh Water Sea Water Air 
Metal 

Static/Turb Static/Turb City/Indust 

Grey Cast Iron- 
Plain or Low Alloy  

4/3  4/3  3  

Cast Iron Ni_Resist. 
(14% Ni, 7% Cu, 2% Cr bal Fe)  

5/5  5/5  4  

Ductile Iron Ni_Resist. 
(24 % Ni, bal Fe)  

5/5  5/5  4  

Mild Steel- Low Alloy steels  4/3  4/2  3  

Stainless Steel Ferritic 
(17% Cro)  

4/6  1/4  3  

Stainless Steel Austenitic 
(18% Cro ,8% Ni )  

6/6  2/5  4  

Stainless Steel Austenitic 
(18% Cro 12% Ni, 2.5% Mo )  

6/6  3/5  6  

Stainless Steel Austenitic 
(20% Cro 29% Ni, 2.5% Mo,3.5% Cu )  

6/6  4/6  6  

Copper Nickel alloys 
(Up to 30% Ni)  

6/6  6/6  5  

Nickel Commercial 
(99% Ni)  

3/5  6/6  4  

Aluminium Brass  6/6  4/5  5  

Bronze 
(88% Cu,5% Sn,5% Ni,2% Zn)  

6/6  5/5  5  

Aluminium Alloys  4/5  0-5/4  5  

Titanium  6/6  6/6  6  

 

Table 4.4 – Corrosion resistance of various steels, metals and alloys 

 

The table shown here gives a rating for how affective various metals are at 

resisting corrosion in specific environments.  The scale of ratings begins at 

zero and designates the metal is unsuitable for a specific application.  The best 

rating is six and designates a metal is excellent for service in the indicated 

environment.   

 

The metal components of this air spring can be made subject to all three of the 

environments included in Table 4.4.  Values of corrosion for a static and 
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turbulent fluid are given in the table however for this process of material 

selection the corrosive fluid is assumed to be static.  Reasonable corrosive 

resistance in these solid rings is a requirement.   Selecting a material that can 

provide absolute corrosive resistance would ensure greatest longetivity of the 

system but may not be possible due to costs. 
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Sand Casting            

Investment Casting            

Die Casting            

Impact Extrusion            

Cold Heading            

Closed Die Forging            

Powder Metal Processing            

Hot Extrusion            

Rotary Swaging            

Machining (from stock)            

ECM            

EDM            

Sheet Metal (stamp/bend)            

 

Table 4.5 – Compatibility between processes and materials 

 

This table shows manufacturing processes that can be performed on various 

common types of materials.  White squares indicate that the process is readily 
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performed on a material.  Grey squares indicate the process is not commonly 

used on a specific material but does not rule out its use. Finally the black 

squares indicate the process is unsuitable for the material designated. 

 

The solid rings for this air spring will need to eventually become a mass 

produced item.  Not only will the system be produced on a production line but 

each spring assembly will require multiples of these rings.  For this purpose 

the manufacturing processes chosen may require significant tooling and this 

can be justified in the long term.   

 

 

Yield Stress Ultimate Stress 

Material 

(MPa) (MPa) 

Elongation 
(%) 

Carbon Steel 350 520 30 

Alloy Steels 290 415 24 

Cast Iron 350 450 15 

Stainless Steel 200 500 40 

Aluminium/alloys 90 150 12 

Copper /Alloys 350 551 50 

Zinc alloys 200 300 7 

Magnesium /alloys 120 200 7 

Titanium /alloys 140 240 54 

Nickel alloys 860 1000 20 

 

Table 4.6 – Strength values for various types of steel, metal and alloy. 

 

This table shows the ultimate or tensile stress, yield stress and percentage 

elongation before failure for some common metals.  The strength required by 

these rings is unknown at present but can be calculated easily given that: 

 

• Maximum load per strut is 500 kg. 

• The maximum load per strut is applied to the smallest spring area. 

(i.e. the spring is fully extended) 
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• The stress in the rings can be approximated by evaluating the hoop 

stress as if the rings were a part of a cylindrical pressure vessel.  

This assumption will not be entirely accurate so the stress will be 

increased by a factor two.  The increase is necessary because the 

rings are not closed pressure vessels and because of this they 

cannot be expected to have the same rigidity or strength. 
 

Now the smallest area on which the spring can apply its pressure is when it is 

fully extended and the bag has not been rolled out upon the rings.  At this 

point area A is equal to the area contained by the external radius ro minus the 

area contained by the internal radius ri. 

 
  ro = 56.5 mm = 0.0565 m   
  r

i
= 38.5 mm = 0.0385 m   

 

 # A = π A ro
2

b c
@ π A r i

2
b c

 (4.1) 

 

A = 5371 mm2 = 0.005371 m2  
 

The pressure within the spring can be calculated with equation (4.2): 

 

   P =
F

A

fffff
 (4.2) 

 

  # P =
5000 N

0.005371 m 2

ffffffffffffffffffffffffffffffffffffffff
  

 

  P = 931 kPa  
 

Now the formula for calculating hoop stress is: 

 

    σ
h

=
P A r

t

fffffffffffff
  (4.3) 

 

Where P is the pressure of the cylindrical vessel, r is the radius of the cylinder, 

and t is the thickness of the wall. The radius and thickness are taken off the 

final design for the rigid rings and the values are measured at the outermost 

point of the external ring.  This position has been assumed to be susceptible to 

the most stress. 

 

  r = 83 mm = 0.083 m   

  t = 4 mm = 0.004 m   
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   #σ
h

=
931000 A0.083

0.004
ffffffffffffffffffffffffffffffffffffffffffffff

  

 
   #σ

h
= 19.3 MPa   

 

After taking into account the double factor for inaccuracies of the hoop stress 

model and also apply a factor of safety of three, the required yield stress of 

this rigid ring material is found to be: 

 

 σ
yield

= σ
h
A 2 times inaccuracy factor
b c

A 3 times safety factor
b c

  (4.4) 

 
   σ

yield
= 115.8 MPa  

 

Therefore when using the Table 4.6 the smallest allowable yield stress for 

selecting a material is 115.8 Mega Pascals.   

 

All the tables above can now be compared and contrasted with each other to 

select the most appropriate material.  These tables define the most important 

aspects for our material selection and cover a wide range of possibly 

appropriate material.   

 

The material chosen after a process of elimination is alloy steel.  The reason 

for this choice is heavily weighted on the price.  A step up from alloy steel to a 

stainless steel will see the price increase five fold. Also in many cases for 

stainless steels the corrosion resistance in static salt water is not significantly 

better than alloy steel.  The strength of alloy steel is very sufficient for this 

application and it can be put through every manufacturing process we might 

be inclined to use.  Other steels that were considered were the stainless steels 

and copper alloys.  These two materials were compatible with all the 

manufacturing processes we desired and copper alloys in particular had 

exceptional corrosive resistance.  However both these materials would have 

required much more cost and were therefore deemed unacceptable.  Although 

alloy steel does not have perfect corrosion resistance it should provide enough 

resistance to ensure a long life in this application and prevent wear of the 

flexible rubber bag.  When this system is physically tested the corrosion 

resistance can be observed and the material can be upgraded to stainless steel 

or copper alloy if needed.  For now though the cost effectiveness of the alloy 

steel make it the best option for the rigid rings. 

 

 

4.4.2 Manufacturing Process Selection 

The rigid rings provide a difficult problem to solve as far as manufacturing 

processes are involved.  The rings are rather small and intricate and need to be 
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finished smoothly.  On top of this the shape of them as shown in Figure 4.4.2.1 

means that simply machining them out of a billet will create far too much 

waste.  The figure shows two sets of jaws which represent both the 

manufactured shape (solid line) and the squashed jaw position (dashed line) 

after the rubber has been inserted.  Upon consideration it is evident that no 

single process can be used to manufacture these rings.  Some combination of 

processes will be needed to bring these rings to a point where they meet the 

desired specifications for this design. If there are to be multiple processes used 

it seems obvious that the first process will be used to form the basic shape 

while the second process will create the required surface finish as well as the 

detail. 

 

 

 
 

Figure 4.4.2.1 – Revolved profile of both internal and external rigid rings. 

 

The first process can be any number of manufacturing processes.  The roughed 

out shape hopefully obtained from the first process is shown in Figure 4.4.2.2.  

The dotted lines in this figure represent the area to be removed in the second 

process.  The rings could be formed via casting; however investment casting 

which is costly would be the only casting method capable of achieving a 

smooth surface finish.  Given that simple machining processes are out the only 

other attractive solution form roughing out these parts is hot forging.  This 

process will enable a smooth finish over most of the part and can create the 

exact shape we need with great repeatability.  Hot forging this part will 

involve starting with a disc of hot material that can be sat in the bottom of a 

two part mould.  The top section of mould is then dropped to meet the first and 

stamp the hot material between the two dies until all cavities of the mould 

have been filled.  Hot forging will leave a flash around the inside and outside 

of the part due to excess material that is not able to fit in the mould once it has 

been closed.  This flash is necessary to ensure the mould is completely filled.  
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Once the hot material has been stamped for the first time and the shape has 

been made the flash can be removed roughly in a second stamping process.  

Further removal of flash and cleaning will need to be performed in the second 

process.   

 

 

 
 

Figure 4.4.2.2 – Revolved profile of rough shape. 

 

Once forging of these rings have been completed the jaws must be cut into the 

rough shape and the whole part must be cleaned and smoothed.  Given these 

rings are circular the most simple option for completing this step of 

manufacture is turning these features into the rings.  Both internal and external 

rings may be held in a machine centre while the necessary cuts are made with 

a tooling point. Once the cuts have been made then the whole disk can be 

smoothed with a fine grinding operation also performed in a machine centre. 

 

The processes selected to manufacture the rigid rings have been selected out of 

necessity.  The rings have been designed to perform a task and could not be 

modified in any way to allow a more straight forward manufacturing process.  

While in many cases a part may be designed with manufacturing in mind this 

was not the case with these rings.  Despite that fact the manufacturing 

processes assigned to these disks should allow good repeatability and cost 

effectiveness when put into a production line. 

 

 

4.5 Upper Mount 
 

Part of this design is allowing the spring to be fitted into a position where an 

existing spring is already located.  For this to be done it needs to be fixed top and 

bottom to an already existing mounting point.  The top mounting point for this 

spring is a flat surface where the spring can bolt onto at the top of the wheel arch.   
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The final design of the top mount is shown in Figure 4.5.1 and has been created 

from two pieces that will be stitch welded together.  The material for the upper 

mount will be alloy steel to match the material used in making the rigid rings.  

As with the rigid rings, the lower piece of this mound will be created by hot 

forging a billet of material and then grinding the surface smooth.  The upper 

section of this mount can be manufactured by stamping a disc of flat sheet that 

has been laser cut.  The stamping will require a former to be manufactured but 

this process need not be completed with any great form of accuracy.  The only 

concern for the upper section is that the holes are consistently positioned at the 

right pitch circle diameter. 

 

 
 

Figure 4.5.1 – Upper mount. 

 

The hole in the middle of the forged component makes provision for the shock 

absorber shaft to protrude through this plate and also be attached to the car. 

 

This top mount is not attached to the rest of the spring but simply sits on the 

uppermost point of the flexible bag.  This loose method of attaching the top 

mount is acceptable because the shock absorber and its shaft will not allow the 

lower sections of the spring to fall away or move sideways in relation to the top 

mount. 

 

 

4.6 Lower Mount 
 

The bottom mount of the spring poses a much more challenging concept.  This 

part of the spring has one more job than the upper mount which is to provide an 

outlet for the air in the cavity to be transported to an accumulator.  In order to 

perform this task the lower mount has been designed as a cavity with two 

openings.  One of these openings is a large circular ring that permits the flexible 
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bag to be joined onto the base and provide free flow of air from the bag into the 

lower mount.  The other opening consists of multiple holes that allow the lower 

mount to be connected to an accumulator mounted remotely from the spring.   

 

Manufacturing this item can be done in a number of ways.  One idea is to cast 

the lower mount.  A concept for the casting is shown in Figure 4.6.1.  The reason 

this concept is not one whole casting but instead includes a capping plate is to 

allow access from the underside of the casting to fix the flexible bag in place.  

Once the flexible bag has been secured to the casting then the capping plate is 

attached and a perfect seal is obtained.   The large threaded holes in the capping 

plate provide a place for hose fittings to be attached to the bottom of the base.  

These hoses will link the base to the accumulator. 

 

 

 
 

Figure 4.6.1 – Lower mount manufactured by casting. 

 

While casting the lower mount can certainly be done successfully it may not be 

the most economical way to produce this component.  Casting such a complex 

part will be costly and time consuming and then once it has been cast it will still 

require some machining.  A better option for manufacturing this item is to make 

use of the rigid rings that are already being manufactured and place them within 

a welded assembly to achieve the same result.  The lower mount manufactured 

by welding is shown in Figure 4.6.2.  The welded assembly is comprised of 

standard rings at the top of the mount.  These rings are then welded to a rolled 

piece of flat creating a cylinder for the outside and a short piece of heavy walled 
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tube creating a cylinder for the inside.  At the base of the mount is a cut, drilled 

and tapped piece of plate that joins the inner and outer cylinders and has 

gusseting strengthening the transition. 

 

 

 
 

Figure 4.6.2 – Lower mount manufactured by welding. 

 

This method of manufacturing the lower mount seems much more straight 

forward to make and far less costly.  By using this method the tooling created for 

the rigid rings is serving a purpose in this area of the design as well.  Also any 

additional components needed are very simple to manufacture.  For all these 

reasons the base will be welded. 

 

 

4.7 Conclusions: Chapter 4 
 

Manufacturing and materials selection has been conducted for the major 

components of this design.  The air spring will be manufactured as four distinct 

parts then assembled.   

 

The flexible rubber sections are to be manufactured from neoprene rubber with 

polyvinylalcohol reinforcing fibre by a process of spreading.  The rigid rings will 

be manufactured from alloy steel by firstly hot forging the rough shape and then 

machining and grinding to a finished product in a machine centre.  All steel 
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components will be made from the same alloy steel used in these rigid rings.  

The top mount will be comprised of a hot forged then grinded top ring welded to 

a pressed laser cut plate.  Finally the lower mount will be comprised of standard 

rings and various plates and tube sections to form a welded assembly. 

 

Assembly will involve joining the flexible rubber sections by firstly vulcanising 

the rubber to the inside of the jaws found on each rigid ring.  Once the 

vulcanising has been completed the jaws will be crimped shut to provide extra 

hold on the flexible bag sections. 

 

The information contained in this chapter can now be used to implement 

prototype creation and lead into physical testing. 

 

 

 

 

 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 50 W0026275 

CHAPTER 5 

 

VIBRATION ANALYSIS 
 

5.1 Introduction 
 

The effectiveness of any suspension is decided by how successfully it carries a 

vehicle on the road when subject to unexpected and continually variable 

conditions.  The suspension will determine what kind of reaction a vehicle will 

have when driven over roads with specific forms of undulation.   A vehicle 

primarily designed for sealed roads and fast driving will generally not be 

equipped with a suspension that will allow comfortable driving on unsealed 

roads.  In the same manner an off road vehicle as a generalisation will not 

perform well at high speeds when taken around corners.  In order to determine 

what kind of performance can be expected from a particular form of suspension 

it is wise to conduct a vibration analysis. When this analysis is performed before 

manufacture the vibration response of the system can be estimated to ensure the 

desired road holding and handling performance is met. 

 

In the case of this new form of suspension it is important that its fundamental 

success is ensured before any physical testing is done and too much money is 

wasted on the idea.  For an analysis of this kind on a new form of suspension it 

would be desirable to have a set of standard results to compare and contrast the 

new data with.  Therefore a vibration analysis will be simulated on the existing 

suspension and results recorded before any analysis is conducted on the new 

suspension. 

 

 

5.2 Evaluation Method 
 

When conducting any form of testing, there needs to be criteria for determining 

the success or failure during the testing procedure.  These criteria cannot be 

developed once the tests have been run because in most cases the success criteria 

will determine the measurements taken throughout the test.  Without a criteria 

defining success there is no telling what the design parameters are and whether 

they have been met and to what extent.  For instance if a formula one racing 

team were to consider an FJ Holden as a possibility for their vehicle in next years 

competition and set about testing its performance, how would they determine it 

unfit?  They may have the idea that if the car can run and drive it must be fit to 

be used in this competition.  However if this was the case they would be terribly 

mistaken!  There are two ways they can go about testing the vehicle.  Firstly they 

can evaluate to aims of the competition which would be maximum speed, 

handling achieved within a set or rules and guidelines.  Given this criteria they 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 51 W0026275 

can then set about testing and developing the car to evaluate and improve its 

current speed.  Secondly they can compare their vehicle to others in the 

competition.  While their team may be able to squeeze every last ounce of speed 

and manoeuvrability from this FJ, it will never compare to the speed of a real 

formula one race car.  Therefore in evaluating success it is also important to have 

some means of comparing a new design to existing ones.   

 

The purpose of suspension on any vehicle is to smooth out an undulating road 

and in doing so improve: 

 

• Driver comfort 

• Stability 

• Safety 

• Carrying ability 

• The life of the vehicle 

  

The main aspect that will be studied in this analysis will be driver comfort.  

Determining a vehicles overall stability and safety would require a more 

complex model than the one used in this study.  This study will only take into 

account straight line motion and while this does not come close to mimicking a 

real car it all its forms of operation, the scope of this study does not allow time 

for a deeper analysis.  This new form of suspension is destined to be used in a 

wide variety of road conditions contingent on its success in those situations.  

Therefore by comparing this new suspension with an existing one and firstly 

assessing the aspects of vibration that affect comfort, the overall success can be 

roughly measured.  In all likeliness if the suspension can perform within 

comfortable limits for various road conditions then it has a good chance of also 

providing the stability and safety required for its complete success. 

 

Throughout the development of suspension there have been a number of generic 

guidelines developed to assist in manufacturing a successful system of 

suspension.  According to Braun (2002) these guidelines can be summarised in 

the following four points: 

 

• In view of the human comfort, the suspension systems should be 

designed to achieve low vertical mode natural frequency of the 

sprung mass.  A limiting value for this natural frequency is 

approximately 1 Hz to ensure adequate rattle space and it should 

not be greater than 1.5 Hz for passenger vehicles. 

 

• Forces due to wheel motions and unbalance are transmitted to the 

sprung mass through the suspension.  The unsprung mass (wheel 

hop) natural frequency therefore should lie outside the frequency 

range of vibration to which the human body is most sensitive.  This 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 52 W0026275 

implies that the vertical mode frequency of the unsprung mass 

should not be less than 8 Hz.  On the other hand, larger frequencies 

will demand stiff tire affecting ride quality.  A practical value for 

unsprung mass natural frequency is around 10 Hz. 

 

 

• Pitch and bounce frequencies should be close together. The pitch 

motion of the sprung mass enhances the bounce motion of the body 

at a location away from the c.g., such as the driver location in a 

long wheelbase truck or bus.  The bounce natural frequency less 

than 1.2 times the pitch frequency gives good results. 

 

• When a vehicle goes over a bump, the front axle is subjected to the 

impact occurring at τd(L/V) seconds before the rear axle. This will 

excite the pitch resonance, which is more annoying than the 

vertical motion.  Designing rear suspension with slightly larger ride 

rate than the front will introduce higher frequency of oscillation for 

the rear than the front.  This will convert the pitch motion to a 

bounce motion within half a cycle after the bump is passed.  Based 

on common operating speeds, V, and wheelbase, L, the rear 

suspension may be assigned 20-30 percent larger ride rate, or the 

c.g. should be closer to the rear axle then the front. 

 

These considerations in suspension manufacture have been found to be most 

important and during simulation it will be these factors that we use to measure 

success. 

 

 

5.3 Theoretical Modelling Methods 
 

A dynamic analysis on an automobile can be performed in numerous ways 

depending on the desired complexity of the model and solution.  The difficulty 

with modelling a system like car suspension is dealing with increasing numbers 

of degrees of freedom (DOF).  The complexity of the model is decided by the 

number of DOF’s to include within the model.  

 

The most complex of these models requires seven degrees of freedom to define 

its motion.  This model known as a full-car model assigns a DOF for each of the 

four wheels and then three DOF’s for the body of the car.  The body is defined 

with one DOF assigned to the vertical displacement of the centre of gravity and 

the other two DOF’s assigned to the pitch and roll.  This model is most accurate 

and can be used for dynamic analysis of countless situations including: 
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• Variations in road texture across the vehicle 

• Variations in centre of gravity 

• Cornering 

• Accelerating and decelerating 

 

This model is most suited for an accurate and in depth analysis but its complex 

solution places it outside the scope of this study. 

 

The simplest form of model for a system of suspension is performed with only 

two DOF’s.  This model is known as a quarter-car model because it takes into 

account only one strut of the vehicle.  The DOF’s in this model are assigned to 

the wheel and the body of the car connected to the wheel via the strut.  This type 

of model is limited in its ability to assess a suspensions success.  It may serve a 

purpose during initial feasibility testing but as an isolated strut it ceases to 

provide an accurate example of the cars behaviour at the mercy of the spring.  So 

much of the vibration response comes as a result of the interaction between each 

of the four wheels of the car and isolating one can cause misleading results.   

 

A form of simulation that takes a middle ground between both of the previous 

methods is the half-car model.  This way of simulating a car requires four DOF’s. 

This model can be seen as a 2D side on view of a car with the wheels, the 

vertical height of the c.g. and the pitch accounting for each DOF.  While this 

model is not as accurate or realistic as the full-car model it allows for a much 

simpler analysis due to the fewer DOF’s involved.  Not only this but because the 

front and rear wheels are considered together the pitching of the car can be 

simulated.  Even though the roll is not considered in this model the pitching is 

considered a far more important aspect of the car when determining the vibration 

response on a straight stretch of road.  Once this method of simulation has been 

mastered the step up to modelling with seven DOF would be much easier to 

understand and make successful. 

 

The theoretical model being used in this study is the half-car or four DOF model.  

This was chosen because of its much simpler nature in comparison to the larger 

model. The larger model only really proves its worth once different road inputs 

are used for both sides of the car and when lateral accelerations are applied.  

Within the scope of this investigation the simpler model can return accurate and 

informative results that satisfy our aims and objectives. 

 

 

5.4 Creating a Half-Car Model 
 

The process of testing a new suspension was undertaken with the use of a four 

DOF, half-car model.  Before any simulation or testing can be conducted the 

model must first be created and formulated to a point where values associated 
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with the suspension can be entered into the model and vibration response data 

can be returned.  To begin this process the vehicle with all its springs, dampers 

and masses has be converted into a set of equations that define the relationships 

of relative motion between all these components.  The first step in this process is 

creating a free body diagram (FBD) of the 2D car with four degrees of freedom.  

This FBD can be seen in Figure 5.4.1 and shows the critical positions as being 

the centre of the wheels, the centre of gravity for the car and the road position for 

both front and back wheel.   

 

 

 
 

Figure 5.4.1 – Free body diagram for a half-car model. 

 

The variables of interest to this investigation are listed below.  These variables 

will facilitate the visualisation of the motion of each component of the vehicle 

model. 

 

•  zs   

•  zs
A   

•  zs
AA   

•  φ   

•  φ
A
  

•  φ
AA

  

•  z
uf   
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•  z
uf
A   

•  z
uf
AA   

•  zur   

•  zur
A   

•  zur
AA   

 

From the FBD above, the equations of motion for each distinct part of the 

vehicle can be written.  These equations take the form of the general equation of 

motion (5.1).  These equations are derived by considering each part of the model 

individually and accounting for all the forces affecting its motion.  The arrow 

directions in the FBD indicate 

 

 m A zAA + c A zA + k A z = 0  (5.1) 

 

The equation of motion for the vertical motion of the car body (sprung mass) is 

found to be: 

 

 ms zs
AA + k

sf
@ zs + l

f
φ

b c
+ z

uf

D E
+ k sr @ zs@ lr φ

b c
+ zur

D E
  

 

      + csf @ zs
A + l f φ

A
d e

+ zuf
A

F G
+ csr @ zs

A
@ lr φ

Ab c
+ zur
A

D E
= 0  (5.2) 

 

The equation of motion for the rotation of the car body (sprung mass) is found to 

be: 

 

 I s φ
AA

+ l f k sf zs@ l f φ
b c

@ zuf

D E
+ lr k sr @ zs@ lr φ

b c
+ zur

D E
  

 

      + l f csf zs
A
@ l f φ

A
d e

@ zuf
A

F G
+ lr csr @ zs

A
@ lr φ

Ab c
+ zur
A

D E
= 0  (5.3) 

 

The equation of motion for the front wheel (front unsprung mass) is found to be: 

 

 muf zuf
AA + k sf zs@ l f φ

b c
@ zuf

D E
+ k tf @ zuf + zof

B C
  

 

      + csf zs
A
@ l f φ

A
d e

@ zuf
A

F G
+ ctf @ zuf

A + zof
A

B C
= 0  (5.4) 

 

The equation of motion for the rear wheel (rear unsprung mass) is found to be: 
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 mur zur
AA + k sr zs + lr φ

b c
@ zur

D E
+ k tr @ zur + zor

@ A
  

 

      + csr zs
A + lr φ

Ab c
@ zur
A

D E
+ ctr @ zur

A + zor
A

B C
= 0  (5.5) 

 

In order to use these equations within matrices for the purpose of solving the 

dynamic problem they must first be rearranged into multiples of the variables of 

interest that were listed below the FBD.   

 

From equation (5.2): 

 

 ms zs
AA + zs @ k sf @ k sr

b c
+ zs
A
@ csf @ csr

b c
+ φ l f k sf @ lr k sr

b c
  

 

      + φ
A

l f csf @ lr csr

b c
+ zuf k sf + zuf

A csf + zur k sr + zur
A csr = 0  (5.6) 

 

From equation (5.3): 

 

 

I s φ
AA

+ zs l f k sf @ lr k sr

b c
+ zs
A l f csf @ lr csr

b c
+ φ @ l f

2
k sf @ lr

2
k sr

d e
+ φ
A
@ l f

2
csf @ lr

2
csr

d e

  

 

      @ zuf l f k sf

b c
@ zuf
A l f csf

b c
+ zur lr k sr

b c
+ zur
A lr csr

b c
= 0 (5.7) 

 

From equation (5.4): 

 

 muf zuf
AA + zs k sf + zs

A csf @ φ k sf l f

b c
@φ
A

csf l f

b c
+ zuf @ k tf @ k sf

b c
  

 

      + zuf
A
@ ctf @ csf

b c
=@ k tf zof @ ctf zof

A   (5.8) 

 

From equation (5.5): 

 

 mur zur
AA + zs k sr + zs

A csr + φ k sr lr

b c
+ φ
A

csr lr

b c
+ zur @ k tr@ k sr

b c
  

 

      + zur
A
@ ctr@ csr

` a
=@ k tr zor@ ctr zor

A   (5.9) 

 

Now these equations form the basis for our vehicle model and can now be used 

for two different forms of analysis covered in the following two sections.   
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Before the analysis can begin, the values for each of the unknowns in the 

preceding equations must be found.  In the case of this analysis the values will be 

specific to a Holden Commodore as outlined in chapter two. 

 

Taken from chapter two and supplied by the manufacturer are the spring and 

damping rates: 

 

 k
sf

= k sr = 21.6 kN
m
.  

 

 c
sf

= csr = 0.8
N

m s+
b c,

 

 

According to the vehicle manual the maximum allowable loads for each of the 

axles measured on a weighbridge is: 

 
 Maximum Front Axle Load = 900kg  

 
 Maximum Rear Axle Load = 1025kg  

 

Contained within these maximum axle loads are the unsprung masses.  The 

values shown below for this analysis correspond to only one side of the car and 

therefore only half of the total unsprung mass of the vehicle. 

 
 m

uf
= 30kg  

 
 mur = 60kg  

 

Also from the vehicle manual are the dimensions of the car: 

 

 Wheelbase = 2.7m  
 
 Height = 1.45m  

 
 Length = 4.8m  

 

By working with the axle loads and the wheelbase a simple force analysis yields 

the distances between the centre of gravity and the wheels: 

 
 l

f
= 1.4m  

 
 lr = 1.3m  
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The mass of the vehicle for this analysis can be derived from the axle loads and 

the unsprung masses: 

 

 ms =
900kg + 1025kg
b c

2

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
@m

uf
@mur = 872kg  

 

The second moment of inertia for the vehicle can be found by considering the 

side of view of the car as a rectangle and using equation (5.10). 

 

 I =
1
12
.

m l
2
+ h

2
b c

 (5.10) 

 

Where I is the second moment of inertia, m is the mass of the vehicle and the 

other two variables designate the length and height.  Therefore the second 

moment of inertia for the car assuming that the centre of gravity sits half a metre 

from the ground is: 

 

 I s =
1
12
.

ms l
2
+ h

2
b c

= 1674 kg Am2   

 

The value for a spring and damping constant to represent the tyres contact with 

the road must be determined approximately.  As the tyre comes in contact with 

the road, the area over which it applies its pressure increases as shown in Figure 

5.4.2. which results in a spring effect. 

 

 

 
 

Figure 5.4.2 – Tyre contact with road. 

 

Assuming a tyre pressure of 40PSI or 276kPa and drawing dimensions from 

Figure 5.4.2, then the spring constant for the tyres will be approximately: 
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 k
tf

= k tr = 847.2 kN
m
.  

 

The damping constant for the tyres is not able to be accurately estimated and will 

simply be given an identical value to the dampers joining the wheels to the 

vehicle.  During analysis the value will be modified if need be. 

 

 ctf = ctr = 0.8
N

m s+
b c,

 

 

Having defined every variable associated with the theoretical model of the 

Holden Commodore the analysis for this vehicle is ready to proceed.  A 

summary of all the determined values is given below: 

 

 

•  ms = 872kg  

•  I s = 1674 kg Am2  

•  m
uf

= 30kg   

•  mur = 60kg   

•  k
sf

= 21.6 kN m+   

•  k sr = 21.6 kN m+   

•  c
sf

= 0.8 N m s+
b c)

  

•  csr = 0.8 N m s+
b c)

  

•  k
tf

= 847.2 kN m+   

•  k tr = 847.2 kN m+   

•  c
tf

= 0.8 N m s+
b c)

 

• ctr = 0.8 N m s+
b c)

 

•  l f = 1.4m   

•  lr = 1.3m   

 

 

5.5 Free Vibration Analysis 
 

The first way in which the equations developed in section 5.4 can be used is to 

run a free vibration analysis to determine natural frequencies by making the 

variables zor  and zor
A  equal to zero.  By doing this we can remove the forced 

vibration component of the model.  Making these terms zero will make the right 
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hand side of equations (5.8) and (5.9) equal to zero.  The resulting equations are 

shown below: 

 

 muf zuf
AA + zs k sf + zs

A csf @ φ k sf l f

b c
@φ
A

csf l f

b c
+ zuf @ k tf @ k sf

b c
  

 

      + zuf
A
@ ctf @ csf

b c
= 0  (5.11) 

 

 

 mur zur
AA + zs k sr + zs

A csr + φ k sr lr

b c
+ φ
A

csr lr

b c
+ zur @ k tr@ k sr

b c
  

 

      + zur
A
@ ctr@ csr

` a
= 0  (5.12) 

 

Using equations (5.6), (5.7), (5.10), and (5.11), the mass (M), damper (C) and 
spring (K) matrices may be created for use in a matrix version of the equation of 

motion (5.12) shown below.  These matrices are created by filling in 4x4 
matrices with the multiples of the variables of interest.  The remaining matrices 

in the equation below contain the variables of interest in 4x1 matrices.  
 

 MA zAA + C A zA + K A z = 0  (5.13) 
 

The matrices containing the variables of interest become: 
 

 zAA =

zs
AA

φ
AA

z
uf
AA

zur
AA

H
LLLLLLJ

I
MMMMMMK
         zA =

zs
A

φ
A

z
uf
A

zur
A

H
LLLLLLJ

I
MMMMMMK
          z =

zs

φ
z

uf

zur

H
LLLLJ

I
MMMMK  

 

And the mass (M), damper (C) and spring (K) matrices according to equations 
become: 

 

 M =

ms 0 0 0

0 I s 0 0

0 0 m
uf

0

0 0 0 mur

H
LLLLLJ

I
MMMMMK
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 C =

@ c
sf
@ csr

b c
l

f
c

sf
@ lr csr

b c
c

sf
csr

l
f
c

sf
@ lr csr

b c
@ l f

2
c

sf
@ lr

2
csr

d e
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f
c

sf

b c
lr csr

b c

c
sf

@ l
f
c

sf

b c
@ c

tf
@ c
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b c
0

csr lr csr

b c
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H
LLLLLLLLLLLLLJ

I
MMMMMMMMMMMMMK

 

 

 K =

@ k
sf
@ k sr

b c
l

f
k

sf
@ lr k sr

b c
k

sf
k sr

l
f
k

sf
@ lr k sr

b c
@ l f

2
k

sf
@ lr

2
k sr

d e
@ l

f
k

sf

b c
lr k sr

b c

k
sf

@ l
f
k

sf

b c
@ k

tf
@ k

sf

b c
0

k sr lr k sr

b c
0 @ k sr@ k tr

b c

H
LLLLLLLLLLLLLJ

I
MMMMMMMMMMMMMK

 

 

According to Braun (2002), these three driving matrices for our model can be 

combined into one 8x8 dynamic matrix shown below: 

 

 Dynamic Matrix = @M
@ 1

C @M
@ 1

K

I 0

F G
 

 

Where I  is a 4x4 identity matrix.  The purpose of this can be seen when it is 

used within the following equation: 

 

 
zAA

zA

D E
= @M

@ 1
C @M

@ 1
K

I 0

F G
A

zA

z

D E
 (5.14) 

 

Now according to Braun (2002) the eigenvalue solution of the dynamic matrix 

will yield four pairs of complex conjugates eigenvalues of the form: 

 

 s
i
= α

i
F jβ

i
 (5.15) 

 

From the values contained within the eigenvalue solutions three aspects of the 

suspension can be determined: 

 

•  Natural frequency of the ith mode: 

 

 ωn
i
= α

i
2 + β

i

2qwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww (5.16) 

 

•  Damped natural frequency of the ith mode: 
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 ω
d

i

= β
i

LLL
MMM (5.17) 

 

•  Damping ratio of the ith mode: 

 

 ξ
i
=
@α

i

ωn
i

ffffffffffffff
 (5.18) 

 

Matlab was used for the process of creating the necessary matrices and 

performing the required calculations in order to return eigenvalue solutions for 

the suspension system of the Holden Commodore.  The script required for these 

solutions can be found in Appendix A and the resulting eigenvalues are shown 

below. 

 

  eigenvalues =

69.4944
49.1739

@ 69.4405
@ 49.1467

6.4656

7.4664
@ 6.4642
@ 7.4646

H
LLLLLLLLLLLLLLJ

I
MMMMMMMMMMMMMMK

 

 

These values don’t fit with the textbook definition of the results.  After an 

investigation and some fiddling the negative signs used to create the dynamic 

matrix were removed to give the following results: 

 

 eigenvalues =

@ 0.03 + 170.18i

@ 0.03@ 170.18i

@ 0.01 + 120.34i

@0.01@ 120.34i

@ 0.0 + 6.93i

@ 0.0@ 6.93i

@ 0.0 + 8.00i

@ 0.0@ 8.00i

H
LLLLLLLLLLLLLLJ

I
MMMMMMMMMMMMMMK

 

 

This form of solution fits with the expected results spelled out by Braun (2002).  

The need for the modification to the dynamic matrix and the change in results is 

thought to be due to an error in the assumed direction at which the forces in the 

model were acting while the equations of motion were being developed.  Despite 

this assumed error in the direction of forces for the equations of motion it 

appears this simple correction of the dynamic matrix has repaired the problem 

and these results can now be analysed. 
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The set of results for the eigenvalues contains eight complex conjugates while 

Braun (2002) states that the expected result should be only four sets of complex 

conjugates.  For this reason the top four complex conjugates will be discarded 

due to the extraordinarily high frequency in comparison to the expected results 

outlined in section 5.2.  Therefore taking the bottom four results and assuming 

they correspond to the vertical body motion, rotational body motion, front wheel 

vertical motion and rear wheel vertical motion respectively the following results 

for natural frequencies and damping ratio were found: 

 
 ωn z s

= ω
d

Z s

= ωn φ
= ω

dφ
= 6.93 

 
 ξ

z s
= ξ

φ
= 0 

 
 ωn z

uf

= ωd
Z

u f

= ωn zu r

= ωd z ur

= 8.00 

 
 ξ

z
uf

= ξ
zur

= 0 

 

The results for the natural frequencies of the unsprung masses fall very close to 

the desired values.  On the other hand the natural frequencies for the sprung mass 

in both its DOF’s are much higher than anticipated.  Also the damping ratio 

being found to be zero does not seem to be right.  Despite these concerns over 

the accuracy of the results there is no could be no other results gained.  The 

model was tweaked and changed but always returned the same results.  It seems 

that the model is accurate according to Braun (2002) but doesn’t seem to make 

terrific sense logically. 

 

5.6 Forced Vibration Analysis 
 

The second way in which the equations of 5.4 might be used in analysing the 

vibration of this suspension system is to use them in concurrence with a specific 

road function and analyse the vibration response.  In order to do this analysis a 

road function defining z
of  and zor  must be selected and this would then be 

substituted into equations (5.5) and (5.6).  The by solving for the response of all 

critical points in the model, a visual of the vibration can be created. 

 

A sinusoidal input will be simple to include in this formula and has been chosen 

as the shape of the road.  The bumps in the road will be made 100mm top to 

bottom and the frequency of the bumps will be every two metres.  The function 

defining this road with respect to time then becomes: 

 

  z
of

t
` a

= Asin ωt
` a

 (5.18) 
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Where A  is the amplitude in metres, ω  is the angular velocity in radians per 

second and t  is the time in seconds. 

 

Assuming the car is travelling a 60km/h or 16.667m/s the values for the road 

function become: 

 

 A = 0.05m  

 ω = 52.36 rad s+  
 

Therefore the road function for the front wheel becomes: 

 

 z
of

t
` a

= 0.05sin 52.36 t
` a

 (5.19) 

 

Now the road function for the rear wheel must be delayed from the front wheel.  

This is simply a matter of adjusting the time input into the equation so as to 

delay the function by the time it takes the car to travel its wheelbase.  The 

function for the rear wheel will be: 

 

 zor t
` a

= Asin ω t@ del
` ab c

 (5.20) 

 

Where del  is the time taken for the car to travel the length of its wheelbase.  

Therefore the delay needed for this equation is: 

 

 del = l
f

+ lr

b c
V

)
= 2.7 16.667+ = 0.162 seconds  (5.21) 

 

Now the equation for the road function at the rear wheel becomes: 

 

 zor t
` a

= 0.05sin 52.36 t@ 0.162
` ab c

 (5.22) 

 

The two equations for the road function at the front and rear wheel have been 

created.  However these now both need differentiating to give the velocity of the 

vertical motion of the road as the car passes over the top.  These velocities are 

also required to define the road movement in the model. 

 

 z
of
A t
` a

= 2.168cos 52.36 t
` a

 (5.23) 

 

 zor
A t
` a

= 2.168cos 52.36 t@ 0.162
` ab c

 (5.24) 

 

This completes the definition of the road function for this simulation.  In order to 

now run the simulation the equations (5.6) to (5.9) must be placed within a 
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differential solver in Matlab.  Using this software helps in developing accurate 

solutions to this model and also facilitates the conversion of raw data into a 

working image of the vehicle. 

 

For this analysis the “ode113” function was used within Matlab as it is well 

suited to higher order differential equations.  The equations developed in section 

5.4 were modified to isolate the accelerations.  By doing this these equations 

then became suitable for use inside this differential solver.  Instead of only 

solving the differential equations and returning a set of graphs displaying the 

relative movements of the various components of the model, it was thought a 

good idea to create an image of the car in motion.  For this reason the 

programming in Matlab existed within three distinct programs.   

 

The first program “AnalysisDriver.m” is a driving program and is the only 

program required to be executed.  The program begins by defining any variables 

needed within itself for later plotting results that are handed back to it from one 

of the other programs.  It then defines a period of time for the simulation as well 

as the initial conditions for the model.  Once these have been created it then calls 

to the solver “halfcarmodel.m” and gives it the time and initial conditions it has 

created.  The solver creates any variables it needs, solves for the vibration 

response and then passes back the solution to the driving program.  Once the 

driving program has received a solution back from the solver it then calls the 

third program “FourDOFplot.m” and hands it the solution.  This program exists 

for the sole purpose of creating a visual picture of the vehicle motion.  It pulls 

apart the results obtained from the solver and converts them into a full scale 

motion picture of the car (Figure 5.6.1) as it rides across the road.  The 

simulation time is set to ten seconds and due to processing limitations the speed 

at which the visual can run is far less than real time.  The visual will run until the 

exit button is pressed and following this control is passed back to the driving 

program where it finishes the cycle by plotting a series of graphs describing the 

motion of the various components of the car.  These programs can be found in 

Appendix B.   

 

 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 66 W0026275 

 
 

Figure 5.6.1 – Motion picture of car. 

 

The computer simulation of this vehicle was intended to include the ability to 

have complete user entry of the vehicle specifications, road conditions and speed. 

However when programming the user interface it was difficult pass the variables 

between programs and added difficulty meant that a lack of time forced this 

option to be abandoned.    

 

The results obtained from solving the model with the road function defined as in 

equations (5.19), (5.22), (5.23), and (5.24) are shown below in Figure 5.6.2 

through to Figure 5.6.4.  These results show a period at the beginning of the 

simulation where the results for velocity and acceleration are quite sporadic and 

then settle down after a few seconds.  The initial position of the car has been set 

within the model so the wheels are sitting on the road at the start of the 

simulation.  However the car is stationary when the analysis begins so the violent 

response in the velocity and acceleration at the beginning of the simulation are 

understandable due to the spike they must endure off the start.  As the results 

show, these crazy results settle down as the dampers come into play and a more 

natural vibration can be seen.   
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Figure 5.6.2 – Position results for forced vibration. 
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Figure 5.6.3 – Velocity results for forced vibration. 
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Figure 5.6.4 – Acceleration results for forced vibration. 
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These results provide a good insight into the vibration of a motor vehicle.  The 

different trends in the position, velocity and acceleration along with the variation 

between components can be seen easily when comparing these plots.  If this 

investigation had more time it would be possible to run multiple analyses on 

different road forms to see the vibration response in many more different 

situations.  

 

While these results are interesting and seem relatively accurate, it is obvious that 

this model has a number of inconsistencies with the real world.  Firstly the 

wheels are tied to the ground with a damper and spring.  The result of this is a 

force that not only pushes the tire up off the ground but also pull the tire back 

down.  In actual fact the model would be much more accurate if the tyre could be 

modelled with a spring that can only act when the tyre is in contact with the 

ground.  Achieving this goes outside the scope for this project but is entirely 

possible with some clever programming in Matlab. Another problem with this 

model is the damping constant of the tyre not being known.  If an accurate 

approximation for this constant could be found then the accuracy of this model 

could be given more weight.   

 

This model could be improved in a number of ways.  More user interface and 

automation could allow quick adjustments to road and vehicle properties.  A 

capacity for acceleration and deceleration would also expand the model into a 

more realistic realm.  Ultimately the model could be extended to a seven DOF 

system and account for all components within the vehicle.  If all these 

improvements could be made then the program would become a useful tool in 

determining spring and damping rates to suit specific and varied road conditions. 

 

 

5.7 Conclusions: Chapter 5 
 

A half-car model has been created successfully and used in analysing forced and 

free vibration for a system of suspension belonging to a Holden Commodore.  

Natural frequencies were determined but contain unknown error and forced 

vibration response has been plotted and animated.  The model developed in this 

chapter lays the framework for extending the vehicle model right through into a 

full-car, seven DOF system. Such a system would be capable of taking into 

consideration all aspects affecting a cars ride and handling. Within the scope of 

this investigation the model could not be extended past this point.  Furthermore 

time constraints meant that multiple analyses could not be completed using this 

model.  Only a single sinusoidal forced vibration analysis was conducted.  Given 

more time the model can be set up to facilitate quick adjustments to vehicle and 

road properties.  This model is certainly not perfect and cannot be claimed to 

mimic real life but it does provide an interesting visual to contemplate vibration 

response within suspension systems. 
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CHAPTER 6 

 

CONCLUSIONS 
 

6.1 Introduction 
 

This investigation has surveyed a full overview of passenger vehicle suspension.  

In an attempt to develop a new improved method of height adjustable suspension 

this project has covered the entirety of suspension from its inception right 

through to modern day systems, manufacture and testing.  

 

 

6.2 Discussion 
 

This investigation has succeeded in developing a new concept for a height 

adjustable spring.  The concept relies on pressurised air for its operation.  Unlike 

existing air springs that function by compressing the air inside them in order to 

increase pressure and the resulting reaction force.  This new system seeks to 

maintain a relatively constant pressure and adjust the area over which it acts in 

order to achieve an increase in opposing force as the spring is compressed.  This 

design more closely resembles the characteristics of a genuine steel spring which 

has a linear relationship linking force and deflection.  While a physical model of 

the spring was not able to be produced in this project, the theory of the design 

has been established and stands to be further explored. 

 

This new concept provides a fresh avenue for exploring air springs.  Its design 

does not limit its height and its diameter could be infinitely variable.  Problems 

have always existed in manufacturing air spring components that are free of 

leaks but with this design the reservoir uses no sliding seals and can be easily 

kept air tight.  The design of the ribbing creates a perfect situation for preventing 

sediment build up.  The steep angles of the sides prevent any deposits that could 

cause wear. 

 

The new spring has been assessed and developed for manufacture also.  A 

process of selecting materials and manufacturing processes was conducted for 

the new concept.  Where needed the design was rethought to ensure that 

manufacture and assembly was possible and that the life span of the components 

would be adequate for the task at hand.  

 

A spring or system of suspension must be proven through a process of vibration 

analysis.  This investigation saw the development of a half-car model for 

observing the vibration response of a system of suspension.  The model was used 
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to determine the response of an existing suspension on a Holden Commodore.  

Time constraints prevented the use of the model to critically appraise the new 

height adjustable system.  However given that the model created can only take 

into account constant spring rates, the vibration analysis of the new suspension 

fitted to the commodore would have been no different to that of the standard 

suspension.  Changing the model from one type of spring to another could only 

be done in the half-car model by changing the spring constant.  With the new 

spring however it would be designed to match the spring constant of the standard 

spring underneath the Commodore at the standard ride height.  If time had 

allowed it would have been interesting to assess the effectiveness of then raising 

the car in the model using the height adjustable spring and then checking its 

continued effectiveness at different heights.  With air springs the best model for 

simulating the vibration response would be one that can account for a spring with 

a varying rate.  It is a luxurious assumption to believe that the spring rate will 

remain constant over the full length of its travel.  The model being used limits 

effective comparisons between springs due to its inability to take a variable rate 

spring.   

 

Despite the model not being used to analyse the new height adjustable spring it 

has been a worthwhile process in developing a set of programs that can simulate 

a cars vibration response.  Graphs and an animation have been created of the car 

undergoing a sinusoidal forced vibration on the road.  Admittedly the model has 

inaccuracies that could not be removed and hence the results are not concurrent 

with a real life situation.  However despite some inaccuracies this model lays the 

foundation for further expansion into vibration analysis and response.  

 

 

6.3 Further Research and Recommendations 
 

The scope of this project did not allow an in depth analysis on the new system of 

suspension.  Complex programs could in the future be employed to run full FEA 

analysis on components to ensure their strength and viability.  On top of this a 

more accurate vibration model should be employed to assess the air bags success.  

Depending on cost it may be more beneficial to construct a prototype for 

physical testing of the vibration response.  Accurately modelling the air bag with 

all its components interacting may require too much effort and hence place a 

prototype, however costly, as a more desirable option.   

 

Accurate estimations of natural frequencies induced in a car with the new air bag 

should be determined.  Again the produce this accurate estimation a physical 

model my be required. 

 

Assuming the air bag can be prototyped the next step would be to put it into 

service for a period of time to assess its effectiveness in a real life situation. 
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The model created and used within this project should be further developed so 

that the tyres are no longer tied down to the road.  A more accurate 

approximation to a cars vibration would be possible if the tyre were able to 

separate itself from the road.   

 

 

6.4 Summary of Chapter 6 
 

This investigation into a new method of height adjustable suspension has 

identified new ways of suspending a car.  The new method has not however been 

put through adequate testing at this stage to affirm its absolute success.  The 

theory of the design is promising but a proper vibration analysis is needed to 

completely confirm the design.  This investigation has covered a broad spectrum 

of aspects associated with suspension and its design and use.  The principles, 

models and theories used within this investigation hold great potential for further 

development of this new idea for varying a vehicles ride height. 
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APPENDIX A 

 
 

University of Southern Queensland 

Faculty of Engineering and Surveying 

 

ENG 4111/2 Research Project 

PROJECT SPECIFICATION 
 

FOR:   JOSHUA WALTON 

 

TOPIC: Investigation of a variable ride height suspension for an 

automobile 
SUPERVISOR: Dr. Jayantha Ananda Epaarachchi 

ENROLMENT: ENG 4111 – S1, 2007 

   ENG 4112 – S2, 2007 

 

PROJECT AIM: This project aims to model and analyse a variable height 

suspension system for a passenger car.  The project intends 

to undertake detailed static and dynamic analysis of a 

variable height suspension system, model the suspension 

system and propose a complete design for a particular 

automobile. 

 

PROGRAMME:  Issue A,  20
th

 March 2007 

 

1. Research the development of suspension technology including but not 

confined to traditional coil springs, air springs, shock absorbers and 

adjustable configurations.  

2. Analyse and critically evaluate existing means of height adjustable 

suspension and how it succeeds or fails to meet the project aim. 

3. Research legal and physical constraints on the design of a new suspension 

assembly. 

4. Consider and document alternative methods for changing a car’s ride height. 

5. Design a suspension assembly that can function in every role of existing 

suspensions as well as allowing height and handling variation tied together 

in the one adjustment. 

6. Static and Dynamic Analysis of the proposed system. 
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7. Design and 3D modelling of the final design 

8. Implementation and costing 

As time permits: 

9. Construct prototype assembly and conduct testing to evaluate its behaviour 

relative to the theoretical testing. 

 

 

AGREED:                                         (student)                                              

(supervisor) 

(dated)          /         /              . 
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APPENDIX B 

 

 
%-------------------------------------------------------------------------% 
% ----------------------freevibrationsolution.M-------------------------- % 
%-------------------------------------------------------------------------% 
% 
% PROJECT: Investigation of a Variable Ride Height Suspension for an 
% Automobile 
 
% FILE NAME: freevibrationsolution.m 
% 
% Input Variables:  Nil 
% Output Variables: eigen 
% 
% This program determines the eigenvalue solutions for a vibration analysis 
% on a four DOF half-car model.  The program defines all the required data 
% for the car and produces mass, damper and spring matrices for the  
% equation of motion of the vehicle.  Once these matrices are found it 
% solves for the eigenvalue solutions of a dynamic matrix made up of all 
% three of the matrices needed for the vehicles equation of motion.  The 
% eigenvalue solutions are displayed in the matlab window. 
% 
% Written by Joshua Walton - 0050026275 
% Date of last revision: 20th October 2008 
% 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
 
%Define the spring constant for the front spring connecting the sprung mass 
%to the unsprung mass 
    ksf = 21600; %N/m 
 
%Define the spring constant for the rear spring connecting the sprung mass 
%to the unsprung mass 
    ksr = 21600; %N/m 
     
%Define the spring constant for the front tyre as it comes in contact with 
%the road 
    %ktf = 100*ksf; %N/m 
    ktf = 847200; %N/m 
     
%Define the spring constant for the rear tyre as it comes in contact with 
%the road 
    %ktr = 100*ksr; %N/m 
    ktr = 847200; %N/m 
     
%Define the damping constant for the front shock absorber connecting the 
%sprung and unsprung mass 
    csf = 0.8; %N/(m/s) 
     
%Define the damping constant for the rear shock absorber connecting the 
%sprung and unsprung mass 
    csr = 0.8; %N/(m/s) 
     
%Define the damping constant for the front shock absorber connecting the 
%tire to the road 
    ctf = 0.8; %N/(m/s) 
     
%Define the damping constant for the rear shock absorber connecting the 
%tire to the road 
    ctr = 0.8; %N/(m/s) 
     
%Define the unsprung mass for the front and back of the car 
    muf = 30;  %Front unsprung mass    
    mur = 60;  %Rear unsprung mass 
     
%Define the weight and dimensions of the car 
    mfr = 421; 
    mrr = 451; 
    l = 2.7; 
    lf = 1.4; 
    lr = 1.3; 
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%Define the total sprung mass 
    ms = mfr + mrr; 
 
%Define a height for the car where the centre of gravity would be located 
%at half this distance from the ground 
    h = 1; 
 
%Define the moment of inertia for the pitching rotation of the car 
    Is=(1/12)*((2*mfr)+(2*mrr))*((l.^2)+(h.^2)); 
         
%Create the mass, damper and spring matrices 
    M = [ms 0 0 0;0 Is 0 0;0 0 muf 0;0 0 0 mur]; 
     
    C = [(-csf-csr), ((lf*csf)-(lr*csr)), csf, csr; 
        ((lf*csf)-(lr*csr)),((-(lf.^2)*csf)-((lr.^2)*csr)),(-lf*csf),(lr*csr); 
        csf, (-lf*csf), (-ctf-csf), 0; 
        csr, lr*csr, 0, (-csr-ctr)]; 
     
    K = [(-ksf-ksr), ((lf*ksf)-(lr*ksr)), ksf, ksr; 
        ((lf*ksf)-(lr*ksr)),((-(lf.^2)*ksf)-((lr.^2)*ksr)),(-lf*ksf),(lr*ksr); 
        ksf, (-lf*ksf), (-ktf-ksf), 0; 
        ksr, lr*ksr, 0, (-ksr-ktr)]; 
 
%Create identity and zero matrices for use in creating the dynamic matrix 
    I = [1,0,0,0; 
        0,1,0,0; 
        0,0,1,0; 
        0,0,0,1]; 
     
    Zero = [0,0,0,0; 
        0,0,0,0; 
        0,0,0,0; 
        0,0,0,0]; 
     
%Create the dynamic matrix 
    DYN = [(inv(M)*C),(inv(M)*K); 
        I, Zero]; 
     
%Determine the eigenvalues of the dynamic matrix 
    eigen = eig(DYN) 
     
%-------------------------------------------------------------------------% 
%---------------------------END OF PROGRAM--------------------------------% 
%-------------------------------------------------------------------------%  
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APPENDIX C 
 

 
%-------------------------------------------------------------------------% 
% --------------------------AnalysisDriver.M----------------------------- % 
%-------------------------------------------------------------------------% 
% 
% PROJECT: Investigation of a Variable Ride Height Suspension for an 
% Automobile 
 
% FILE NAME: AnalysisDriver.m 
% 
% Input Variables:  Nil 
% Output Variables: Nil 
% 
% Driving File for differential analysis of 4 degree of freedom system  
% modelling the suspension on an automobile.  This program defines values 
% and calls both a differential solver and a drawing program before 
% dispaying the solution data in graph form as it closes. 
% 
% Written by Joshua Walton - 0050026275 
% Date of last revision: 20th October 2008 
% 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Define the wheelbase of the car 
    l = 2.7; 
         
%Define the speed of the car; 
    Vkm = 60;  %speed in km/h 
    V = (60*1000)/3600; 
 
%Create the amplitude value for the road function 
    global F0 
    F0 = 0.05; 
 
%Create the angular velocity for the road function 
    lambda = 2;  %Wavelength of oscillation 
    w = ((V/lambda)*2*pi);  %angular velocity of oscillation 
 
%Create the delay value for the road function 
    del = 2.7/V; 
 
%------------------------------------------------------------------------%     
%------------------------------------------------------------------------% 
%Define the time matrix for the analysis 
    tspan = [0:0.01:10]; 
 
%Determine the initial position of the rear wheel accounting for the delay 
%in the road function 
    zurinitial = F0*sin(w*del); 
    zsinitial = zurinitial/2; 
    phiinitial = tan(zurinitial/l); 
 
%Define initial conditions matrix 
    y0 = [zsinitial;0;phiinitial;0;0;0;zurinitial;0]; 
 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Call ODE function to solve the differential function 
    [t,y] = ode113('halfcarmodel',tspan,y0); 
 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Call function to run animation of the vibration simulation 
    fin = FourDOFplot(t,y) 
 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Solve road functions for the purpose of creating graphs 
    zof = F0*sin(w*t); 
    zor = F0*sin(w*(t-del)); 
    zofdot = F0*w*cos(w*t); 
    zordot = F0*w*cos(w*(t-del)); 
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    zof2dot = -F0*w*w*sin(w*t); 
    zor2dot = -F0*w*w*sin(w*(t-del)); 
 
%Convert the angle of the car into degrees for the purpose of creating 
%graphs 
    angle = (y(:,3)*180)/pi; 
    angledot = (y(:,4)*180)/pi; 
 
% Change the figure window to encompass the whole screen 
    scrsz = get(0,'ScreenSize'); 
    set(gcf,'Position',scrsz,'color', [0.992157 0.917647 0.796078],... 
        'Name','Position Results') 
     
%Plot the results relating to the position of the model 
    subplot (611); 
    plot(t,zof); 
    xlabel('time (s)'); 
    ylabel('(m)'); 
    title('Vertical Position of the Ground Beneath the Front Wheel',... 
        'FontWeight','Bold'); 
     
    subplot (612); 
    plot(t,zor); 
    xlabel('time (s)'); 
    ylabel('(m)'); 
    title('Vertical Position of the Ground Beneath the Rear Wheel',... 
        'FontWeight','Bold'); 
     
    subplot (613); 
    plot(t,y(:,1)); 
    xlabel('time (s)'); 
    ylabel('(m)'); 
    title('Vertical Position of the Vehicles C.G. (Sprung Mass)',... 
        'FontWeight','Bold'); 
     
    subplot (614); 
    plot(t,angle); 
    xlabel('time (s)'); 
    ylabel('(deg)'); 
    title('Angular Displacement of the Vehicle Body from Horizontal (Sprung 
Mass)',... 
        'FontWeight','Bold'); 
     
    subplot (615); 
    plot(t,y(:,5)); 
    xlabel('time (s)'); 
    ylabel('(m)'); 
    title('Vertical Position of the Front Wheel (Unsprung Mass)',... 
        'FontWeight','Bold'); 
     
    subplot (616); 
    plot(t,y(:,7)); 
    xlabel('time (s)'); 
    ylabel('(m)'); 
    title('Vertical Position of the Rear Wheel (Unsprung Mass)',... 
        'FontWeight','Bold'); 
     
% New figure window 
% Plot the results relating to the velocity of the model. 
    hfig = figure; 
    set(gcf,'Position',scrsz,'color', [0.992157 0.917647 0.796078],... 
        'Name','Velocity Results'); 
     
    subplot (611); 
    plot(t,zofdot); 
    xlabel('time (s)'); 
    ylabel('(m/s)'); 
    title('Vertical Velocity of the Ground Beneath the Front Wheel',... 
        'FontWeight','Bold'); 
     
    subplot (612); 
    plot(t,zordot); 
    xlabel('time (s)'); 
    ylabel('(m/s)'); 
    title('Vertical Velocity of the Ground Beneath the Rear Wheel',... 
        'FontWeight','Bold'); 
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    subplot (613); 
    plot(t,y(:,2)); 
    xlabel('time (s)'); 
    ylabel('(m/s)'); 
    title('Vertical Velocity of the Vehicles C.G. (Sprung Mass)',... 
        'FontWeight','Bold');  
     
    subplot (614); 
    plot(t,angledot); 
    xlabel('time (s)'); 
    ylabel('(deg/s)'); 
    title('Angular Velocity of the Vehicles Body (Sprung Mass)',... 
        'FontWeight','Bold'); 
     
    subplot (615); 
    plot(t,y(:,6)); 
    xlabel('time (s)'); 
    ylabel('(m/s)'); 
    title('Vertical Velocity of the Front Wheel (Unsprung Mass)',... 
        'FontWeight','Bold'); 
     
    subplot (616); 
    plot(t,y(:,8)); 
    xlabel('time (s)'); 
    ylabel('(m/s)'); 
    title('Vertical Velocity of the Rear Wheel (Unsprung Mass)',... 
        'FontWeight','Bold'); 
 
%-------------------------------------------------------------------------% 
%-------------------------------------------------------------------------% 
%Repeat the process used in the half car model to determine the 
%accelerations of the model 
 
%-------------------------------------------------------------------------% 
%-------------------------------------------------------------------------% 
%Define the spring constant for the front spring connecting the sprung mass 
%to the unsprung mass 
    ksf = 21600; %N/m 
 
%Define the spring constant for the rear spring connecting the sprung mass 
%to the unsprung mass 
    ksr = 21600; %N/m 
     
%Define the spring constant for the front tyre as it comes in contact with 
%the road 
    ktf = 847233; %N/m 
     
%Define the spring constant for the rear tyre as it comes in contact with 
%the road 
    ktr = 847233; %N/m 
     
%Define the damping constant for the front shock absorber connecting the 
%sprung and unsprung mass 
    csf = 0.8; %N/(m/s) 
     
%Define the damping constant for the rear shock absorber connecting the 
%sprung and unsprung mass 
    csr = 0.8; %N/(m/s) 
     
%Define the damping constant for the front shock absorber connecting the 
%tire to the road 
    ctf = 80; %N/(m/s) 
     
%Define the damping constant for the rear shock absorber connecting the 
%tire to the road 
    ctr = 80; %N/(m/s) 
     
%Define the unsprung mass for the front and back of the car 
    muf = 30;  %Front unsprung mass    
    mur = 60;  %Rear unsprung mass 
     
%Define the dimensions of the car 
    mfr = 421; 
    mrr = 451; 
    l = 2.7; 
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    lf = 1.4; 
    lr = 1.3; 
     
%Define the total sprung mass 
    ms = mfr + mrr; 
 
%Define a height for the car where the centre of gravity would be located 
%at half this distance from the ground 
    h = 1; 
 
%Define the moment of inertia for the pitching rotation of the car 
    Is=(1/12)*((2*mfr)+(2*mrr))*((l.^2)+(h.^2)); 
     
%Calculate the accelerations for the model 
    zs2dot = (-(((csf+csr).*y(:,2))/ms))-((((lr*csf)... 
        -(lf*csf)).*y(:,4))/ms)+((csf.*y(:,6))/ms)+((csr.*y(:,8))/ms)... 
        -(((ksf+ksr).*y(:,1))/ms)-((((lr*ksr)-(lf*ksf)).*y(:,3))/ms)... 
        +((ksf.*y(:,5))/ms)+((ksr.*y(:,7))/ms); 
     
    theta2dot = (-((((lr*csr)-(lf*csf)).*y(:,2))/Is))... 
        -(((((lr.^2)*csr)+((lf.^2)*csf)).*y(:,4))/Is)... 
        -((lf*csf.*y(:,6))/Is)+((lr*csr.*y(:,8))/Is)... 
        -((((lr*ksr)-(lf*ksf)).*y(:,1))/Is)... 
        -(((((lr.^2)*ksr)+((lf.^2)*ksf)).*y(:,3))/Is)... 
        -((lf*ksf.*y(:,5))/Is)+((lr*ksr.*y(:,7))/Is); 
         
    zuf2dot = ((ktf*F0*sin(w*-t))/muf)-((ctf*F0*w*cos(w*-t))/muf)... 
        +((csf.*y(:,2))/muf)-((lf*csf.*y(:,4))/muf)... 
        -(((csf+ctf).*y(:,6))/muf)+((ksf.*y(:,1))/muf)... 
        -((lf*ksf.*y(:,3))/muf)-(((ksf+ktf).*y(:,5))/muf); 
         
    zur2dot = ((ktr*F0*sin(w*(-t+del)))/mur)... 
        -((ctr*F0*w*cos(w*(-t+del)))/mur)+((csr.*y(:,2))/mur)... 
        +((lr*csr.*y(:,4))/mur)-(((csr+ctr).*y(:,8))/mur)... 
        +((ksr.*y(:,1))/mur)+((lr*ksr.*y(:,3))/mur)... 
        -(((ksr+ktr).*y(:,7))/mur); 
 
%Convert angle into degrees for the purpose of graphing     
    angle2dot = (theta2dot*180)/pi; 
     
% New figure window 
% Plot the results relating to the Acceleration of the model. 
    hfig = figure; 
    set(gcf,'Position',scrsz,'color', [0.992157 0.917647 0.796078],... 
        'Name','Acceleration Results'); 
     
    subplot (611); 
    plot(t,zof2dot); 
    xlabel('time (s)'); 
    ylabel('(m/s/s)'); 
    title('Vertical Acceleration of the Ground Beneath the Front Wheel',... 
        'FontWeight','Bold'); 
     
    subplot (612); 
    plot(t,zor2dot); 
    xlabel('time (s)'); 
    ylabel('(m/s/s)'); 
    title('Vertical Acceleration of the Ground Beneath the Rear Wheel',... 
        'FontWeight','Bold'); 
     
    subplot (613); 
    plot(t,zs2dot); 
    xlabel('time (s)'); 
    ylabel('(m/s/s)'); 
    title('Vertical Acceleration of the Vehicles C.G. (Sprung Mass)',... 
        'FontWeight','Bold');  
     
    subplot (614); 
    plot(t,angle2dot); 
    xlabel('time (s)'); 
    ylabel('(deg/s/s)'); 
    title('Angular Acceleration of the Vehicles Body (Sprung Mass)',... 
        'FontWeight','Bold'); 
     
    subplot (615); 
    plot(t,zuf2dot); 
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    xlabel('time (s)'); 
    ylabel('(m/s/s)'); 
    title('Vertical Acceleration of the Front Wheel (Unsprung Mass)',... 
        'FontWeight','Bold'); 
     
    subplot (616); 
    plot(t,zur2dot); 
    xlabel('time (s)'); 
    ylabel('(m/s/s)'); 
    title('Vertical Acceleration of the Rear Wheel (Unsprung Mass)',... 
        'FontWeight','Bold'); 
                
%-------------------------------------------------------------------------% 
%Clear everything 
    clear; 
    clc; 
 
%-------------------------------------------------------------------------% 
%-----------------------------END OF PROGRAM------------------------------% 
%-------------------------------------------------------------------------% 
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APPENDIX D 

 

 
%-------------------------------------------------------------------------% 
% ---------------------------halfcarmodel.M------------------------------ % 
%-------------------------------------------------------------------------% 
% 
% PROJECT: Investigation of a Variable Ride Height Suspension for an 
% Automobile 
 
% FILE NAME: halfcarmodel.m 
% 
% Input Variables:  t,y 
% Output Variables: xdot 
% 
% This is a differential solver for a half-car dynamic analysis of 
% vibration.  This function recieves a period of time and intitial 
% conditions and solves for the vibration response of a car. 
% 
% Written by Joshua Walton - 0050026275 
% Date of last revision: 20th October 2008 
% 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Function to differentiate the car model% 
    function xdot = halfcarmodel(t,y); 
 
%------------------------------------------------------------------------% 
%Define the spring constant for the front spring connecting the sprung mass 
%to the unsprung mass 
    ksf = 21600; %N/m 
 
%Define the spring constant for the rear spring connecting the sprung mass 
%to the unsprung mass 
    ksr = 21600*1.1; %N/m 
     
%Define the spring constant for the front tyre as it comes in contact with 
%the road 
    ktf = 847233; %N/m 
     
%Define the spring constant for the rear tyre as it comes in contact with 
%the road 
    ktr = 847233; %N/m 
     
%Define the damping constant for the front shock absorber connecting the 
%sprung and unsprung mass 
    csf = 0.8; %N/(m/s) 
     
%Define the damping constant for the rear shock absorber connecting the 
%sprung and unsprung mass 
    csr = 0.8; %N/(m/s) 
     
%Define the damping constant for the front shock absorber connecting the 
%tire to the road 
    ctf = 80; %N/(m/s) 
     
%Define the damping constant for the rear shock absorber connecting the 
%tire to the road 
    ctr = 80; %N/(m/s) 
     
%Define the unsprung mass for the front and back of the car 
    muf = 30;  %Front unsprung mass    
    mur = 60;  %Rear unsprung mass 
     
%Define the dimensions of the car 
    mfr = 421; 
    mrr = 451; 
    l = 2.7; 
    lf = 1.4; 
    lr = 1.3; 
     
%Define the total sprung mass 
    ms = mfr + mrr; 
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%Define a height for the car where the centre of gravity would be located 
%at half this distance from the ground 
    h = 1; 
 
%Define the moment of inertia for the pitching rotation of the car 
    Is=(1/12)*((2*mfr)+(2*mrr))*((l.^2)+(h.^2)); 
     
%Define the speed of the car; 
    Vkm = 60;  %speed in km/h 
    V = (60*1000)/3600; %speed in m/s 
     
%Create the amplitude value for the road function 
    F0 = 0.05; 
 
%Create the frequency value for the road function 
    lambda = 2;  %Wavelength of oscillation 
    w = ((V/lambda)*2*pi);  %Angular velocity 
 
%Create the delay value for the road function 
    del = 2.7/V; 
     
%------------------------------------------------------------------------% 
 
%Create the results matrix for the differential solver 
    xdot = zeros(8,1); 
 
%Define the functions driving the derivative 
    xdot(1) = y(2); 
    xdot(2) = (-(((csf+csr)*y(2))/ms))-((((lr*csf)-(lf*csf))*y(4))/ms)... 
        +((csf*y(6))/ms)+((csr*y(8))/ms)-(((ksf+ksr)*y(1))/ms)... 
        -((((lr*ksr)-(lf*ksf))*y(3))/ms)+((ksf*y(5))/ms)+((ksr*y(7))/ms); 
    xdot(3) = y(4); 
    xdot(4) = (-((((lr*csr)-(lf*csf))*y(2))/Is))... 
        -(((((lr.^2)*csr)+((lf.^2)*csf))*y(4))/Is)-((lf*csf*y(6))/Is)... 
        +((lr*csr*y(8))/Is)-((((lr*ksr)-(lf*ksf))*y(1))/Is)... 
        -(((((lr.^2)*ksr)+((lf.^2)*ksf))*y(3))/Is)-((lf*ksf*y(5))/Is)... 
        +((lr*ksr*y(7))/Is); 
    xdot(5) = y(6); 
    xdot(6) = ((ktf*F0*sin(w*-t))/muf)-((ctf*F0*w*cos(w*-t))/muf)... 
        +((csf*y(2))/muf)-((lf*csf*y(4))/muf)-(((csf+ctf)*y(6))/muf)... 
        +((ksf*y(1))/muf)-((lf*ksf*y(3))/muf)-(((ksf+ktf)*y(5))/muf); 
    xdot(7) = y(8); 
    xdot(8) = ((ktr*F0*sin(w*(-t+del)))/mur)... 
        -((ctr*F0*w*cos(w*(-t+del)))/mur)+((csr*y(2))/mur)... 
        +((lr*csr*y(4))/mur)-(((csr+ctr)*y(8))/mur)+((ksr*y(1))/mur)... 
        +((lr*ksr*y(3))/mur)-(((ksr+ktr)*y(7))/mur); 
     
%-------------------------------------------------------------------------% 
%-----------------------------END OF PROGRAM------------------------------% 
%-------------------------------------------------------------------------% 
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APPENDIX E 
 

 
%-------------------------------------------------------------------------% 
% ---------------------------FourDOFplot.M------------------------------ % 
%-------------------------------------------------------------------------% 
% 
% PROJECT: Investigation of a Variable Ride Height Suspension for an 
% Automobile 
 
% FILE NAME: FourDOFplot.m 
% 
% Input Variables:  t,y 
% Output Variables: fin 
% 
% This is a program to animate a cars vibration response to a given road 
% input.  This program uses data from a half-car model and uses it to 
% create a visualisation of the car as it travels over the road.  This is 
% only a side on view of the car even though the plotting is done in 3D.   
% The visualisation has been created so that if the model was changed to  
% a full-car model then the program could be modified to display a 3D  
% image of the vehicles response. 
% 
% Written by Joshua Walton - 0050026275 
% Date of last revision: 20th October 2008 
% 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Function called by the analysis driver 
    function [fin] = FourDOFplot(t,y) 
     
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Create the coordinate vectors for the side profile picture of the 4DOF 
%vehicle simulation 
%------------------------------------------------------------------------% 
%Creating the Tyre Tread Cylinders 
    set=[-1:0.1:1]; 
    set1=(sqrt(8-set.^2)/30)+315; 
    r=[236, 315, set1(1,:), 315,236]; 
    [xt,yt,zt]=cylinder(r,100); 
    zt=zt*240; 
 
%Creating the Tyre Rim Cylinders 
    set2=[212:-0.5:189]; 
    set3=[189:0.5:212]; 
    r2=[236,212,set2(1,:),0,0,0,set3(1,:),212,236]; 
    [xr,yr,zr]=cylinder(r2,100); 
    zr=zr*240; 
 
%Creating the tyre Hub Cylinders 
    set4=78*ones(40); 
    set5=[78:-0.5:50]; 
    set6=[50:0.5:78]; 
    r3=[0,set6(1,:),set4(1,:),set5(1,:),0]; 
    [xh,yh,zh]=cylinder(r3,100); 
    zh=(zh*120)+30; 
 
%Front Right Wheel Tread 
    xt1=zt-120; 
    yt1=yt-2; 
    zt1=xt+315; 
 
%Front Right Wheel Rim 
    xr1=zr-120; 
    yr1=yr-2; 
    zr1=xr+315; 
 
%Front Right Wheel Hub 
    xh1=zh-120; 
    yh1=yh-2; 
    zh1=xh+315; 
 



  ENG4111 / 4112 - Dissertation 

Joshua Walton 86 W0026275 

%Rear Right Wheel Tread 
    xt3=xt1; 
    yt3=yt1+2700; 
    zt3=zt1; 
 
%Rear Right Wheel Rim 
    xr3=xr1; 
    yr3=yr1+2700; 
    zr3=zr1; 
 
%Rear Right Wheel Hub 
    xh3=xh1; 
    yh3=yh1+2700; 
    zh3=zh1; 
 
%Create the point of the centre of gravity for the car 
    l=2700; 
    h=1000; 
    cgx = 0; 
    cgy = l/2; 
    cgz = h/2; 
 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Create figure window the size of the screen ready for the simulation 
    scrsz = get(0,'ScreenSize'); 
    figure('Position',scrsz,'MenuBar','none','color', [1 1 1]); 
 
%------------------------------------------------------------------------% 
% Create the variable m for use with the exit control 
    global m; 
    m=0; 
     
% Create increment to distinguish when the simulation has reached the end 
    tinc = 1; 
     
% Create final increment number to be used as a flag when the time 
% increment reaches that value. 
    incf = length(t); 
 
% Exit button for terminating the animation 
    uicontrol('String','Exit','Units','Normalized',... 
        'Position',[0.05 0.05 0.1 0.06],'FontWeight','bold',... 
        'Tag','pushbutton1','Callback','global m,m=1;'); 
 
%Determine the points on the profile of the car body relative to the 
%position of the centre of gravity and pitch of the car 
    archy = [-395:50:395]; 
    archang = acos(archy/395); 
    archz = (395*sin(archang))+285; 
    bodyy = [-385,archy,385,2315,(archy+2700),3085,3450,3915,3915,... 
        3865,3900,3295,2565,1100,400,-750,-906,-946,-946,-700,-385]; 
    bodyz = [220,archz,220,220,archz,220,270,400,630,650,1020,1060,... 
        1448,1400,1000,750,540,500,280,230,220]; 
    bodyhyp = sqrt(((bodyy-cgy).^2)+((bodyz-cgz).^2)); 
    plength = length(bodyhyp); 
    bodyx = zeros(plength,1); 
     
%Check the quadrant of the body point and calculate the angle accordingly 
    poscheck = 1; 
     
    while poscheck <= plength 
        if (bodyy(1,poscheck)-cgy) >= 0 
            if (bodyz(1,poscheck)-cgz) >= 0 
                bodyang(1,poscheck) = atan((bodyz(1,poscheck)-cgz)./... 
                    (bodyy(1,poscheck)-cgy)); 
            end 
        end 
             
        if (bodyy(1,poscheck)-cgy) <= 0 
            if (bodyz(1,poscheck)-cgz) >= 0 
                bodyang(1,poscheck) = (atan((bodyz(1,poscheck)-cgz)./... 
                    (bodyy(1,poscheck)-cgy)))+pi; 
            end 
        end 
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        if (bodyy(1,poscheck)-cgy) <= 0   
            if (bodyz(1,poscheck)-cgz) <= 0 
                bodyang(1,poscheck) = (atan((bodyz(1,poscheck)-cgz)./... 
                    (bodyy(1,poscheck)-cgy)))+pi; 
            end 
        end 
             
        if (bodyy(1,poscheck)-cgy) >= 0 
            if (bodyz(1,poscheck)-cgz) <= 0 
                bodyang(1,poscheck) = (atan((bodyz(1,poscheck)-cgz)./... 
                    (bodyy(1,poscheck)-cgy)))+(2*pi); 
            end 
        end 
        poscheck = poscheck + 1; 
    end 
 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Create variables to be used in plotting an image of the road 
 
%Define the speed of the car; 
    Vkm = 60;  %speed in km/h 
    V = (60*1000)/3600; %speed in m/s 
     
%Create the amplitude value for the road function 
    F0 = 0.05; 
 
%Create the frequency value for the road function 
    lambda = 2;  %Wavelength of oscillation 
    w = V/lambda;  %Frequency of oscillation 
 
%Create the delay value for the road function 
    del = 2.7/V; 
 
%------------------------------------------------------------------------% 
%------------------------------------------------------------------------% 
%Begin Simulation Loop until interrupted 
    while m==0; 
     
%Find the current body profile using the angular offset supplied from the 
%differential solution 
        zsy = (bodyhyp.*cos(bodyang+y(tinc,3)))+cgy; 
        zsz = (bodyhyp.*sin(bodyang+y(tinc,3)))+cgz+(y(tinc,1)); 
     
%Find the current positions of the wheels 
        zuf1 = zt1 + (y(tinc,5)*1000);  
        zuf2 = zr1 + (y(tinc,5)*1000); 
        zuf3 = zh1 + (y(tinc,5)*1000); 
     
        zur1 = zt3 + (y(tinc,7)*1000); 
        zur2 = zr3 + (y(tinc,7)*1000); 
        zur3 = zh3 + (y(tinc,7)*1000); 
     
%Determine the road function at this instant in time 
        tspan = [0:0.01:10]; 
        roady = [-1200:5:4000]; 
        roadz = (F0*1000)*sin((roady-((tspan(tinc))*V*1000))/... 
            ((lambda*1000)/(2*pi))); 
        roadlength = length(roady); 
        roadx = zeros(roadlength,1); 
     
%Plot Wheel Treads 
        hold off; 
        surf(xt1,yt1,zuf1,'FaceColor',[0.1,0.1,0.1],'EdgeColor','none'),... 
            camlight right,camlight right,campos([900,1500,800]),... 
            camtarget([-1000,1500,800]),camva('auto'),xlim([-1200 900]),... 
            ylim([-1200 4000]),zlim([-400 1600]); 
        axis equal; 
        showaxes('hide'); 
        %visible off; 
        hold on; 
        surf(xt3,yt3,zur1,'FaceColor',[0.1,0.1,0.1],'EdgeColor','none'); 
 
%Plot Wheel Rims 
        surf(xr1,yr1,zuf2,'FaceColor',[0.8,0.8,0.8],'EdgeColor','none'); 
        surf(xr3,yr3,zur2,'FaceColor',[0.8,0.8,0.8],'EdgeColor','none'); 
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%Plot Wheel Hubs 
        surf(xh1,yh1,zuf3,'FaceColor',[0.8,0.8,0.8],'EdgeColor','none'); 
        surf(xh3,yh3,zur3,'FaceColor',[0.8,0.8,0.8],'EdgeColor','none'); 
 
%Plot the profile of the body of the car 
        patch(bodyx,zsy,zsz,'g'); 
     
%Plot the profile of the road at this instant 
        plot3(roadx,roady,roadz); 
     
%Display the time 
        text(0,500,2200,{t(tinc)},'FontSize',50); 
        text(0,1300,2200,'Seconds','FontSize',30); 
     
%Increment time marker 
        if tinc < incf 
        tinc = tinc + 1; 
        elseif tinc == incf 
        tinc = 1; 
        end 
 
%Create pause to slow down the animation and allow it to be viewed   
        pause(0.001) 
 
%End the while loop of the simulation when the exit button has been pushed 
    end 
 
%Define finish marker to be returned to the driving file 
    fin = 1; 
 
%Close the animation window 
    close 
     
%-------------------------------------------------------------------------% 
%----------------------------END OF PROGRAM-------------------------------% 
%-------------------------------------------------------------------------% 
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APPENDIX F 

 

 

Consequential Effects 

 
A car’s normal functioning is very easily taken for granted.  It is hard to imagine 

that every time I or anyone else enters a car they are literally placing their lives 

in an engineer’s hand.  As I embark on this design process I am fully aware of 

the consequences of creating something that is crucial to a car’s and its 

occupant’s safety. 

 

It may be safe to say that in most cases when a car experiences a failure of some 

sort it is possible to control the incident and prevent injury to the occupants.  

However when a design is gambling with peoples lives I want to make sure it’s 

perfectly safe.  I recall the firestone incident in America a few years ago whereby 

tyres on Ford Explorers would burst while travelling at high speeds.  This was 

proven to have come about by using poorly manufactured tyres and the result 

was numerous deaths.  The suspension is such an integral part of a cars basic 

function that accepting any chance of consequential effects is unacceptable.   

 

The new design must be proven to be free from any chance of mechanical failure 

when exposed to greater than average stresses.  In this case a safety factor will be 

used on top of the maximum expected normal loading.  In order to achieve this 

fail safe state it may require me to over engineer the strut to a certain degree.  

While this may be viewed as wasteful in regards to both materials and power 

usage it is worth it for ensuring a fail free product.  Should a mechanical failure 

occur with the strut so close near the tyre, the final result could be catastrophic?  

I can only begin to imagine such things occurring as a punctured tyre and 

steering failure which is reason enough to over-engineer. 

 

A car’s stability is derived from its suspension which means that the 

controllability of the car into which the strut will be fitted will be directly 

affected.  In designing and testing this new strut I need to be confident that all 

the aspects of the struts reaction to the road will not adversely affect the cars 

stability.  Consequences that may come about by upsetting the car’s stability may 

be an inability to maintain control of the car at high speeds or around corners.  

With traffic moving in the opposite direction there is no room for mistakes in 

this area of the design. 

 

Ultimately there is potential for loss of life if this new design does not function 

properly.  The two main areas for concern are mechanical failure and loss of 

control however within these two broad umbrellas are limitless aspects of the 

design that will contribute to either undermining or approving the design for safe 
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use.  During the design process every aspect of the strut will be assessed as to the 

risk of either failing or causing failure and will be engineered until proven to 

pose no threat.  I realise I have an ethical responsibility to ensure that my desire 

to achieve success does not override my commitment to quality and safety.  If at 

any point I become aware that the design is not suitably meeting the safety 

standards of modern day vehicles I recognise that I have the responsibility to 

report on this and then seek to rectify the problem.  

 

In the same ethical mind frame I realise that care has to be taken to respect the 

designs and patents of existing manufacturers.  While I will be gaining a 

thorough understanding of existing suspension designs to prevent me from 

covering the same ground of others before me, I will be careful to respect their 

intellectual property. 
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