
University of Southern Queensland

Faculty of Engineering & Surveying

Speech Compression System for Student Feedback

A dissertation submitted by

D. Hugo

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Computer Systems Engineering

Submitted: October, 2008

Abstract

Sound is a vital part of daily life for most people, but has yet to be fully explored

in the area of education, particularly in terms of student feedback. Feedback so far

has generally been limited to documents if by students and teacher are apart, or by a

mixture of documents and talking if students and teacher are face-to-face.

The aim of this project is to change this situation, by automating the processes of

recording, editing, compression and playback of speech. By developing a series of

applications, one for the teacher and another for the student, this project hopes to

meet the needs of student feedback on such a scale as would be suitable for student

assessment in a university environment. Specifically, the design needs to meed the

following requirements:

• The teacher should be able to create, cut, edit, save and load sound files.

• The students should be able to open and play sound files sent to them by the

teacher.

• As an optional extra (if time permits), the teacher should be able to create a

naming convention using student ID’s.

• Able to be operated safely by both student and teacher.

Areas that are covered in this document include: sound waveforms, codecs, the meaning

of speech compression, comparison of development platforms during project develop-

ment, issues identified during development, various libraries investigated, the program

itself, and possible topics for future research.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

D. Hugo

0011222040

Signature

Date

Acknowledgments

I would like to thank my sister for donating her time to proofread this document.

I would also like to thank my supervisors Mark Phythan and John Leis for organizing

this project.

D. Hugo

University of Southern Queensland

October 2008

Contents

Abstract i

Acknowledgments iv

List of Figures ix

List of Tables x

Chapter 1 Introduction 1

1.1 Project Aims and Objectives . 2

1.2 Overview of the Dissertation . 3

Chapter 2 Background 4

2.1 Background . 4

2.1.1 Software and Sound . 4

2.1.2 Sound Waveforms and Compression 5

2.1.3 Codecs . 6

2.1.4 The Decision . 8

CONTENTS vi

2.2 Research And Project Objectives . 9

2.2.1 Research . 9

2.2.2 Issue Identification . 10

2.2.3 Design and Development . 10

2.2.4 Final Program . 10

2.2.5 Dissertation . 10

2.3 Timelines . 11

2.3.1 Proposed Program . 11

2.4 Consequential Effects . 11

2.5 Safety Issues . 12

2.6 Summary . 12

Chapter 3 Methodology And Design 13

3.1 Methodology . 13

3.1.1 Software Development . 13

3.1.2 Codec Choice . 14

3.2 Design Requirements . 14

3.3 Constraints and Alternatives . 15

3.3.1 Project Constraints . 15

3.3.2 Alternatives . 16

3.4 Ethics, Safety, and Other Requirements 16

CONTENTS vii

3.5 Resource Planning . 17

3.6 Summary . 18

Chapter 4 Program Development 19

4.1 Issues With Development . 19

4.1.1 Development Platforms . 19

4.1.2 Development Environment . 23

4.2 Programming Issues . 23

4.2.1 Saving and Loading Files . 23

4.2.2 Sound Playback . 24

4.3 Summary . 24

Chapter 5 The Final Version 25

5.1 The Program . 25

5.2 Summary . 27

Chapter 6 Conclusions and Further Work 28

6.1 Achievement of Project Objectives . 28

6.2 Further Work . 28

References 29

Appendix A Project Specification 30

CONTENTS viii

Appendix B Source Code 32

List of Figures

2.1 Inside a CELP encoder. (Juin-Hway 1992) 7

2.2 Inside a CELP decoder. (Juin-Hway 1992) 7

5.1 Sample screen-shot of final version in Windows XP. 26

5.2 Sample screen-shot of the decompressor working in Windows Vista. . . . 27

List of Tables

2.1 Proposed program for project completion. 11

Chapter 1

Introduction

Sound is an essential part of daily life. It is not quite as an essential part of the

process, however, when it comes to the feedback process between student and assessors.

There is a limited number of programs available that cater to speech, and even less

are specifically tailored to compression, editing, and playback on a wide scale such as

would be suitable for student assessment at a university environment.

Feedback between student and assessor is limited due to time and medium, usually

email, electronic document, or handwritten notes. Such forms are usually terse and

to the point because of time constraints, and handwritten notes are generally the

worst form of all to receive as feedback (this makes no comment as to handwritten

assignments). Feedback via electronic documents, while seeming straightforward, is

compounded by the lack of an industry standard document format, compounded by

some vendor’s tendency to continually change proprietary document format codes.

All this makes it hard for students to receive proper guidance on their work, or at the

very least read the comments provided by the assessor. Nor does this mean that the

feedback will be followed. For instance, according to van Till (2003), ”There was no

evidence to show that students responded to the teachers feedback. For example, a

comment from a teacher suggested a student should make changes to a diagram. This

was not actioned by the student.”

1.1 Project Aims and Objectives 2

The situation is slightly easier for students who can receive face-to-face feedback. Even

then, however, difficulties may be encountered in terms of accent, speech that is too

fast, too slow, etc. But this is still no help for students and teachers separated by

distance.

This leads to the inevitable conclusion that adding the ability to provide sound files to

the assessor’s feedback abilities will improve the teaching methods a great deal. How-

ever, converting sound into electronic form encounters a number of problems. This

project aims to attempts to address these problems and counter them with an applica-

tion.

1.1 Project Aims and Objectives

The aim of the project is to automate the processes of recording, editing, compression

and playback of speech for student assessment. Specifically, this involves several objec-

tives that will need to be completed in order for the project to be considered complete.

These include:

• Study existing material relating to sound

• Research methods relating to sound compression

• Identify issues likely to be encountered during the course of the project

• Design and develop a program that will meet the final criteria in the design brief

• Produce a final program

• Present the project at the engineering conference

• Write an academic dissertation on the lessons learned

1.2 Overview of the Dissertation 3

1.2 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 describes the basic problem and provides background information.

Chapter 3 discusses the methodology and design of the application(s).

Chapter 4 considers the program’s development over time.

Chapter 5 explains the final program and how it works.

Chapter 6 concludes the dissertation and suggests further work in the area of research

and program development.

Chapter 2

Background

2.1 Background

Broadly speaking, the project was a combination of software and sound. There were

plenty of sound applications available, and plenty of video applications. However, when

one narrowed the field down to speech applications, the choice became much smaller.

The fact was, there were not very many editors out there. There were programs that

performed similar tasks, but they failed to cover all aspects of the given requirements.

There were no one source that covered all aspects of the project due to its unique

nature.

2.1.1 Software and Sound

Most sound applications, if not devoted almost entirely to music or video, when applied

to speech have seemed to devote themselves to converting text to speech. The most

common example of this were the screen-reader applications, such as JAWS for the

blind, which was basically a speech synthesizer. Very few applications entered the gap

in between, for converting actual speech into a sound file, let alone editing the file.

One possible approach to this gap would be that of speech recognition. This involved

the tedious and time-consuming process of converting speech to text, and transmitting

2.1 Background 5

this to the receiver, in this case the student. However, this is known to be inaccurate,

with a low success rate, and it takes time to train the system to recognise the speech of

the recorder (the assessor), and the system would have to be trained for each assessor’s

speech patterns. Needless to say, this approach was briefly considered and then rejected.

Editing a sound waveform with current applications was too generalised for the needs

dictated by this project task. These applications were also not user-friendly and re-

quired significant user training for the user to become proficient in their usage. Thus

a more specialised approach needed to be taken.

Before explaining this approach, perhaps it would be good to explain what sound

waveforms are in this digital age, and why manipulating them was so problematic.

2.1.2 Sound Waveforms and Compression

Sound waveforms are generally stored in files, that is, bitstreams (a timed series of

bits), more commonly known as streams. A file is simply a stationary stream, that is,

a bitstream that has been captured and stored on computer storage media. Streams,

on the other hand, can be moved over a network, be it a LAN or the Internet – hence

the common Internet term ’streaming media’, which technically refers to the method

of delivery of the media and not the media itself.

According to Spanias (1994), ”Speech Coding or Speech Compression is the field con-

cerned with obtaining compact digital representations of voice signals for the purpose of

efficient transmission or storage....The objective in speech coding is to represent speech

with a minimum number of bits while maintaining its perceptual quality.” The trouble

comes in that there are a number of ways in which to create a representation of sampled

sound waveform.

Sound waveforms themselves are sampled or compressed into files and are decompressed

into streams via codecs. A codec, as the name suggests, is code in memory that is used

whenever needed to compress or decompress a portion of a stream from one format to

another. Common codecs are mpeg, aac, ogg-vorbis, flac, and wma.

2.1 Background 6

2.1.3 Codecs

All codecs work by basically choosing a method of compression that is deemed to

be most efficient and then using it to compress and decompress the sound waveform.

Although that is a bit simplistically termed. According to (Liesenborgs 2000), the three

most common codec forms are waveform coding, vocoders, and hybrid coding.

Waveform coding is where the signal is stored in such a way that the resulting signal

will have the same general shape as the original. As such, they apply to audio signals

in general and no just to speech. In brief, they include such methods as differential

coding, differential PCM (DPCM), adaptive PCM (ADPCM), Delta modulation (DM),

vector quantisation (VQ coding), and transform coding.

Vocoders exploit the fact that it is speech that is being compressed, and encode in-

formation about how the information was produced by the human vocal chords rather

than the waveform itself. For instance, whether it is voiced (’a’, ’f’, etc.), silent (’sh’,

etc.), or mixed. (Spanias 1994) One of the more common forms is a linear predictive

coding (LPC), which applies a difference equation to each sample such that each sample

is basically a linear combination of the previous one.

It is well known, however, that waveform coding does not perform well below 16 kbps,

and vocoders, while able to perform at low data rates and still produce intelligible

speech, will also render the speaker unrecognisable. Hybrid coding seeks out the best

of both worlds.

Hybrid coding seek to keep the waveform recognisable, that is, to keep both the speech

intelligible and the speaker recognisable while still being able to perform in the low

data rates. There are residual excited linear predictors (RELP), and codebook excited

linear predictors (CELP). As the latter are what the project used, this is what will be

focused on.

2.1 Background 7

Inside a CELP Codec

Think of a codec like a little black box which can wrap a present up and unwrap it

again, where the present is the sound waveform. Inside the codec is a encoder and

decoder, shown in Figures 2.1 and 2.2 respectively.

Figure 2.1: Inside a CELP encoder. (Juin-Hway 1992)

Figure 2.2: Inside a CELP decoder. (Juin-Hway 1992)

The CELP encoder splits the incoming data up into ”chunks” called frames and at-

tempts a process called analysis-by-synthesis. It has a codebook, like a dictionary, and

2.1 Background 8

tries all candidates for the waveform data until the coding error reaches a minimum,

at which point it turns the encoded data over to the decoder. In this way, it hopes to

minimise the coding error between the synthesised speech and the input speech.

The decoder, as shown on page 7, is functionally opposite that of the encoder. The

filter at the end is designed to make the speech appear natural, and not synthesised

(as most vocoded speech appears to).

2.1.4 The Decision

As already noted, file compression is a major part of the project, and the codec is

how this takes place. Therefore, the choice of codec is a critical part of the suitable

compression system, and leaves two options: creation of one’s own codec, or using a

pre-existing codec.

Creating a codec for the use of the system is a potential choice, but risky. There are

many codecs already available and fair proportions of them are proprietary and/or have

patents underlying them. There is thus a risk that a new codec would infringe on these

patents. Also, creating a codec specifically for the new application could tie the user

to a new file format for that specific application. The new codec would also have to be

carefully written to ensure that other audio programs, encoders and decoders, would

be able to handle the new file format.

On the other hand, using a more widely known codec is safer, but not without its own

share of drawbacks. The main drawback is patent infringements and the resulting legal

minefield this causes. There are also the documented overheads of using pre-existing

codecs which involve the quality and quantity of the compression that the codec can

produce. The codec at a certain bit-rate (number of bits that are conveyed or processed

per unit of time) can only compress so far, and the quality of the output will only be

so good. For instance, a 128 kb ogg-vorbis stream is much superior to a 128 kb mp3

stream.

This example has proved why research was so important in this project to meet its

aims.

2.2 Research And Project Objectives 9

2.2 Research And Project Objectives

The aim of the project was to automate the processes of recording, editing, compression

and playback of speech for student assessment. Specifically, this involved several objec-

tives that needed to be completed in order for the project to be considered complete.

These included:

• Study existing material relating to sound

• Research methods relating to sound compression

• Identify issues likely to be encountered during the course of the project

• Design and develop a program that will meet the final criteria in the design brief

• Produce a final program

• Present an academic dissertation on the lessons learned

2.2.1 Research

The existing compression methods research was vital. The speech compression aspect

was a significant part of this project, as file sizes had to be minimised to allow for storage

and fast transfer. Research in this area identified suitable compression systems.

Tailoring the research for voice files and quality of sound was also vital because, as

shown above, the final file given to students from the assessor was to be designed

specifically for speech, with a reasonably intelligible quality for hearing. Again, research

in this area identified a suitable codec system, eventually deciding on the CELP codec,

as this area was closely tied to the first area of research.

Research into the ability to edit the waveform was another aspect that received atten-

tion, as due to the nature of the project, the editing was being done ’in-house’, by the

program itself.

2.2 Research And Project Objectives 10

2.2.2 Issue Identification

Issue identification provided the link between the research portion and the design and

development stages of the project. What this implies was that issues were be identified

in both stages, and required both stages working together in a kind of symbiosis to

resolve these issues.

For example, as already noted, one of the biggest issues involved is speech compression

(or how much the voice is compressed when creating the final file). This was a key

area when selecting codecs for research. Then the issue of ideal bit-rates for speech

compression while still maintaining quality was addressed, which prompted further

specific research and program development. Other issues which arose will be discussed

further in Chapter 4.

2.2.3 Design and Development

Design and development was another main area of the project. As indicated previously,

it was a dynamic and ongoing area, where the information and data found during the

research stage was applied and developed to the program. Exactly how dynamic will

be discussed in Chapter 4.

2.2.4 Final Program

Construction of the final program according to the final design of this size took much

time. Coding and debugging any application of this size and nature was always going

to be massive undertaking, as this dissertation shows in Chapter 3 to Chapter 5.

2.2.5 Dissertation

The dissertation was the ultimate goal of the project. The dissertation has documented

the research, design, and development and presented all these stages as part of a unified

whole.

2.3 Timelines 11

Table 2.1: Proposed program for project completion.

Task Status Date in 2008

Specification Completion 25 March

Appreciation Completion 26 May

Research Completion 30 June

Design and Development Completion 30 June

Final Program Commence 30 June

Tidy-up Commence 1 September

Draft Dissert Completion 14 September

Conference September

Project Completion 30 October

2.3 Timelines

While the current schedule is hazy, there are some definite deadlines in place. However,

some changes may yet take place to meet the goals as these deadlines approach.

2.3.1 Proposed Program

Please note that while Research is listed as being complete on 30 June, it does not mean

that no further research will be carried out after that date. It is simply the projected

date on which the major research, or a significant portion of which, is expected to be

complete. Further research will be carried out as needed after that date. The same

principle applies to design and development, although it is hoped that this adjustment

will be limited.

2.4 Consequential Effects

Long-term consequences and effects are hard to determine and harder to measure, as

most of them are intangible.

2.5 Safety Issues 12

As an eventual part of the student feedback process, the assessor will be able to deliver

much more complete and detailed feedback to the student. The student will then

be able to complete later assignments and exams to a higher standard than would

otherwise have been possible with lower quality feedback. By making use of voice

recordings, this lightens the load on both assessor and student, as the student does not

have to decipher handwriting and the assessor has a lighter examination load. It also

forms a bond between teacher and student that would not otherwise have been formed,

especially for external students who might have no other form of contact besides the

written word. It would thus go a long way towards aiding the learning and discovery

process, and move towards an excellent standard of online education.

2.5 Safety Issues

There are relatively few physical safety issues in this project, as it is a project based

mainly in the digital world.

More intangible risks include such ones as a loss of data incident. This is a real danger

to the project, and can only be avoided by regular and routine backup of data.

2.6 Summary

This project to develop recoding, editing, compression, and playback of speech is a

fairly large and complex task. It requires careful research, design and development,

and the writing of a reasonably involved application. This project combines both

sound engineering skills with software. As with all projects of a software engineering

nature, careful management of time and resources need to be maintained in order for

the final objectives to be successfully completed.

It is hoped that this project will, at the very least, provide the groundwork for improved

relations between student and assessor and vastly improve the student feedback process

at universities in the future.

Chapter 3

Methodology And Design

3.1 Methodology

The overall design method used for the project is an incremental or progressive method.

With the dissertation and presentation being the ultimate goals, these should be written

progressively and concurrently with the other stages to ensure these remain up-to-date

and advanced.

3.1.1 Software Development

The choice was made early on to use a Rapid Application Development (RAD) tool,

in this case the CodeGear C++ Builder application. (CodeGear is a subsidiary of

Borland.) This was in order to make sure the practical part of the project was complete

with sufficient time for the written work.

RAD is known for speeding up the software development process. A task which would

normally up to twelve or twenty-four months can be completed in six months, which is

well within the scope of this project. RAD is a concept that products can be developed

faster and of higher quality through:

• Gathering requirements using workshops or focus groups

3.2 Design Requirements 14

• Prototyping and early, reiterative user testing of designs

• The re-use of software components

• A rigidly paced schedule that defers design improvements to the next product

version

• Less formality in reviews and other team communication

It is a concept that seemed catered for project development, and applying all or some

of its ideas here seemed that it would indeed lead to a higher quality final product.

3.1.2 Codec Choice

Research into this area is expected to identify a suitable compression system, or codec.

The most likely candidate of research at this stage is that of benchmarking. A bench-

mark in itself is the standard by which something else is measured. The process of

benchmarking is to measure the performance of an item relative to another item in an

impartial and scientific manner. This process, in audio terms, generally involves collat-

ing a wide range of standard sample sound files. These are then run through various

sound compression methods (codecs) and measured to see which method obtained the

best results, mixing quality of output with compression rate.

3.2 Design Requirements

The design requirements for the project was to develop an application suite for the

student and teacher. The teacher application had to capture input from the microphone

and compress it, while the student application had to decompress sound data and play

it back. The student application is thus a cut-down version of the teacher’s (complete)

version of the application. Depending on time within the project schedule, the teacher

application may be extended to utilise a list of student identification numbers to set up

a file-naming convention when saving files. (Refer to Appendix for original specification

and details.)

3.3 Constraints and Alternatives 15

3.3 Constraints and Alternatives

As with any software project, there are a number of things to consider in a software

project of this size. Due to the open nature of the project specification, one would think

that the sky is the limit – for instance, additional features could be added that do not

conflict with the specifications as time permits. An example of this would be designing

the user interface so that it is as user-friendly and accessible as possible (depending on

the development platform, as will be later explained).

Another point to consider was the format to use for the sound files. Providing the

method used to read the sound-files is itself free from patent issues, there is a choice of

what format to use in which to read and to save the sound files. The options include

pre-existing formats such mp3, wave, etc., and also the possibility of writing one’s own

format. This latter option, however, was deemed beyond the scope of the project.

The former option, relying on pre-existing formats, did however bring up the issue of

project constraints and patents.

3.3.1 Project Constraints

What the application under development cannot do is infringe on software patents.

Perhaps it is not clear what a software patent is. A software patent defines a method

or idea implemented in software and prevents other software developers from making

their own implementations of that idea or method without paying the inventor of the

patent a fee. For commercial projects this fee would not be a problem because the

revenue stream could cover the development costs. This project is for an educational

institution which would like to see costs minimized, and thus development methods

where software patents would be an issue were avoided.

3.4 Ethics, Safety, and Other Requirements 16

3.3.2 Alternatives

One of the alternatives investigated at an early stage was compression and decompres-

sion using one of the free codecs implemented in the ffmpeg library. The ffmpeg library

is a software library, that is, a collection of program routines in a single file that make

it easier for the software developer and the computer to remember where the routines

are.

This effort was hampered by lack of an overall guide to the ffmpeg library. Despite this,

a decompression routine was written that could read the audio track of any format.

However, lack of centralized documentation made writing a compression routine diffi-

cult. The various stages of writing a compression routine (selecting a format, selecting

a codec, selecting parameters) was documented in comments of the source code in dif-

ferent parts the library, making it difficult to form the coherent view needed to code in

confident manner. It would have been nice if a guide to writing a custom compression

routine was included. This coding method was abandoned for these reasons.

The coding method that replaced it was a library that could compress with a few lines

of code. It shall be discussed further in a later section of the thesis, Chapter 4.

Another topic that received much attention was the development platform under which

the software was developed. As this played a part in program development, however,

it shall be discussed further in Chapter 4, as will the development environment.

3.4 Ethics, Safety, and Other Requirements

The ethics of a project of this nature have mainly to do with plagiarism. The first area

this appears is to with patents, and this has already been discussed and considered.

The second area is that of the source code of the application itself. However, all code

used was original, in that no source code in the actual application came from sources

external to the author. The third area is that of references to the current ”body of

work” in the outside world. However, much of the information used in this project

came from the pre-existing knowledge base of the author, therefore such references are

3.5 Resource Planning 17

limited in number.

There is also not much that has to be said in terms of safety considerations. The final

application has demonstrated no memory leaks or segmentation faults. Moreover, reg-

ular compilation after every few lines of completed code ensured rigorous and complete

testing throughout program development, and all known errors have been eliminated.

The application is also safe in the sense that when the user presses the wrong button

(i.e. clicking ”Paste” before ”Copy”), relevant error message(s) appear warning the

user of the mistake.

There are no other requirements to be considered.

3.5 Resource Planning

As with any project, some resources were required for project completion, and the

degree and amount of resources used varied depending on the project and the expected

outcome.

Initial negotiations and specifications stated that a program would be delivered to

the university. This was the stated goal, and this was the aim of the project. Time

constraints may yet cause this program to be a scaled-down version, a prototype of

the final version. Regardless, there are certain aspects that can be stated with a high

degree of confidence.

Certain resources that are definite to be required are as follows:

• ISP plan for relatively unrestricted Internet access with high download limits, as

some (most) of the information relating to waveforms comes in large file sizes.

• Latest versions of software and licensed access to code and software.

• Computer time to access and collate the research from various sources.

• Computer-time to program and debug the code for the application.

3.6 Summary 18

• Reliable data storage facilities (with backups) to store all research, word-processing

files, and code as they are found, collated, coded, etc.

• The costs involved will be covered by the researcher, using savings set aside for

the project.

3.6 Summary

It was found through the course of program development that the best development

platform to use was actually an open source, cross-platform combination of the GNU

compiler with the Allegro library instead of a more commercial-based combination.

Not only was this easier, but this will also make the final application(s) more widely

available to a wider audience.

Further topics of research in this area could include creating a ”prettier” GUI, and

either improving the latency or finding a work-around.

The ethics and safety issues have been considered, and eliminated as a matter of concern

as much as is possible.

Chapter 4

Program Development

As has been hinted at in previous chapters, development of the final version was not

without its battles. From choice of codec to platform to development environment, a

number of obstacles had to be overcome before the final version could be produced.

4.1 Issues With Development

As was discussed in Chapter 3, an initial decision was to use a Rapid Application

Development (RAD), in this case the CodeGear C++ Builder application known as

Borland. This is what is known as a development platform. However, certain issues

arose with this, as will be discussed below.

4.1.1 Development Platforms

A development platform is a suite of tools provided by a third party to aid the software

developer write code more quickly and efficiently. It may be supported by a text editor

with a compiler and linker capability. This is known as a integrated development

environment, shortened to an IDE. IDEs come in many versions, and as a result have

different advantages and disadvantages that influence their use. In developing of this

project’s software, there was a choice of the development platfrom that leant towards

4.1 Issues With Development 20

Borland or GNU as the compiler, with Win32/DirectX or Allegro being the respective

code-base.

Borland and Win32

The version of Borland in particular is Borland C Builder 5. The reason this version

chosen was that it allowed for relatively quick generation of a windows-based graphical

user interface, as all the interface code was done by the application itself. However,

Borland was not without its drawbacks. The toolkit it came with was outdated (sevem

years old at time of writing) and incomplete. It was incomplete in that it was not

suited for making a serious sound-based application as the toolkit it provided had no

sound support.

The main problem with this version of Borland, however, was that it placed limits on

how much memory could be allocated – for the less computer-literate, access to mem-

ory via memory allocation is very important for calculations and sound manipulation.

There were two options to access more memory when the limit was reached. The first

was to access the Windows API and access memory that way; needless to say, it was

a very complicated and painful method to do this every time memory needed to be

accessed. The second method was to perform a memory-mapped allocation from a file

on the disk (that is, a file that listed all the needed memory locations). Not only would

updating this file be tedious every time the program changed or needed updated, but

there was a security risk of leaving such an important file on the disk (the risk of bad

sectors on the disk, inappropriate access, waste of space, time to access, etc.).

If Borland had allowed proper memory access, there would be no need for resorting to

another vendor.

Another drawback of Borland was that to use Windows, via the Win32 API, one also

needed to use DirectX.

The Win32 API is a 32-bit based Application Programming Interface designed to in-

teract with the Windows environment. It is simply a number of header files with

associated functions that allow the programmer and developer to perform various tasks

4.1 Issues With Development 21

in the Windows environment, such as access memory, access hardware, create dialogs

with various features, etc.

However, in terms of using the Win32 API in this application, a number of problems

were encountered.

In terms of capturing sound and playing it back, using the Win32 API was very slow.

It required constant polling (checking and accessing) of the sound-card, taking up

resources which could have been used better elsewhere. It was also a fairly ”messy”

and consuming process to capture the data from the sound-card (see later comments on

DirectX). Using Win32 API for sound-based application was, a whole, counter-intuitive.

While using the API for many programs in the Windows environment may intuitive

and relatively simple, using it to create a serious sound-based application is not.

The main reason for this counter-intuitiveness was based on the messaging system Win-

dows uses to control its processes, in particular its idle processes. When the computer

is running ”idle”, then Windows will switch over to one of these idle processes to oc-

cupy processor time until such time as the computer is ”busy” again. Unfortunately,

this is always not a desirable situation. In a sound-based application, an ”idle” state

occurs while the computer is recording sound, particular silence (aka ”no sound”). To

overcome this, the application would require complete control over the computer while

recording to prevent the running of any other processes while recording. This is not

something that Win32 is designed to allow.

As has been previously mentioned, DirectX is an integral part of the Win32 API. In

particular, DirectX is how the Win32 API accesses hardware. However, like the Win32

API, it is also ”bulky” to use, creating a lot of unnecessary lines of code to do simple

hardware operations. In this way, it holds the programmer where there is no need to

do so, even though its use is common practice.

The reasons listed above led to the consideration of the second development platform,

namely that of the GNU and Allegro combination.

4.1 Issues With Development 22

GNU and Allegro

GNU refers to the GNU C/C++ compiler, which is free, open source, and cross-platform

compatible. This compiler comes with the standard glibc and glibc++, that is, general

C and C++ libraries, which contain standard functions and perform as the programmer

expects, especially in the area of memory allocation. There are no problems with

memory access as was experienced with Borland here. Moreover, GNU also can handle

properly implemented messaging, which is where Allegro comes in.

Allegro is a library of functions, originally intended for computer games and other types

of multimedia programming. Like GNU compiler, it is free, open source, and runs on

a variety of platforms (Linux, Windows, DOS, Macintosh, etc.). Despite being its own

library of functions, it can also interface with the standard C/C++ library. As a result,

there is no need to worry about things like virtual memory, etc. and the core logic of

the program written using Allegro is simpler. Another reason for the simpler logic is

that Allegro is not ”bulky” in how it accesses hardware. Whether it uses DirectX,

OpenGL or some other method, it is hidden within a function, and yet the library is

not cumbersome nor as painful to use as some higher-level libraries. In this senses, it

provides more of a ”middle-ware” function for the programmer and developer, with a

stable interface that is relatively easy to use. And unlike the DirectX documentation,

its manual actually makes sense.

However, Allegro does have its disadvantages. Its main disadvantage was its latency

issues. There was a one second delay between input and display – i.e. between taking

in input from the microphone and showing it on screen. On the other hand, output is

shown much quicker. This was because the output buffer can be specified, but the input

buffer was hard-wired into Allegro to be a certain amount. The second disadvantage

was that Allegro has some very ”un-pretty” GUI code, as it was originally based on

Atari GEM system. At this point of development, however, the application was more

focused on actually working, not on how pretty it looked – although that is a rather

effective teaching tool for a GUI.

With the development platform decided, the development environment could now be

chosen.

4.2 Programming Issues 23

4.1.2 Development Environment

The development environment is the tool that allows one to use the development plat-

form, in this case the GNU compiler. The environment that was chosen was that of

DevCpp, by Bloodshed Software. The version in particular used was 4.9.9.2, or version

5 beta, which uses the GNU compiler.

4.2 Programming Issues

During the process of programming, other issues arose as well. These had mainly to

do with saving and loading files, and sound playback – critical features of the final

program.

4.2.1 Saving and Loading Files

Accessing the codec was a large part of the program’s ability to save and load files.

As part of the initial debugging process, the program would accept the names given it

via the Save/Load dialog(s) as a ”throw-away”, that is, it would accept the names but

would not do anything with them but would discard them. To perform the function

properly of saving and loading files, it needed to access the codec. To do this, it needed

the Speex library.

Technically, Speex is both a codec and a library and it comes from Xiph.Org Foun-

dation, the people who also made the ogg-vorbis codec. Speex is a Open Source/Free

Software patent-free audio compression format designed for speech which can achieve

compression ratios from 10:1 up to 28:1. According to its own codec manual, ”Dur-

ing development, we were careful not to use techniques known to be patented and we

searched through the USPTO database to see if anything we were doing was covered.”

(Valin 2007) Interacting with Speex, however, is a manual task, where one must set

most options manually, but there is also an added layer of control over the format of

the final sound file.

4.3 Summary 24

A simpler method would be to access the libfishsound library, which also uses the Speex

library. In general, to use libfishsound requires very few lines of code, and one would

obtain a compressed sound waveform in an official file format. However, attempts to

compile the library were repeatedly unsuccessful, and libfishsound itself was under a

relatively open license, it was encumbered by restrictions by its dependent distribution

(the developer of one of its dependent libraries refused to release a statically linked

version).

Thus is was decided to write with Speex directly instead of libfishsound.

4.2.2 Sound Playback

Sound playback caused a few problems in development.

Because sound capture and playback is so interwined, it was had to work out which

one was playing up when the program would not play the sound-file properly. Was it

not capturing the sound properly in the first place, or was there something wrong with

the playback routines?

It took some time to track down, and quite a bit of testing, but the problems were

tracked down to a ”divide by 2” bug in the playback routines. When this line of code

was removed, the sound files captured played back very well.

4.3 Summary

Developing this program can only be described as an adventure. A number of obstacles

were encountered and had to be overcome. From choice of codec, to development plat-

form and environment, to sound problems, all of them were overcome quite successfully.

The program that resulted works.

Chapter 5

The Final Version

5.1 The Program

The teacher’s application window is separated into two parts, the primary buffer, and

the secondary buffer. The primary buffer is where the capturing takes place, and the

secondary buffer receives pasted portions from the primary buffer through simple copy

and pasting techniques. Files are opened in primary buffer and saved through the

secondary buffer. Each buffer has a viewing window and three sliders representing the

beginning and end of a selection window and the current playback position. Buttons

to the side of each viewing window correspond to the actions that can be performed

on each buffer, such as copy, paste, play, stop, pause, etc. When a portion of a buffer

is played, only the portion of the selection window is played. When a copy and paste

movement is performed from the primary buffer, to the secondary buffer, the selected

portion of the primary buffer is copied to the end of the secondary buffer and the size

of the secondary buffer increases accordingly.

The capture window is displayed by clicking the capture button next to the primary

buffer’s viewing window or by selecting it from the file menu. A scope of the micro-

phone is constantly displayed while the capture window is active to aid in microphone

calibration. Buttons to the right start and stop recording, and accept or cancel the

current session of microphone recording. Captured data can be appended onto the end

5.1 The Program 26

of an existing session by re-entering the capture window from the main window.

Perhaps it is not exactly clear how copy and pasting in the application works. Copy

and pasting works through the first of the two sliders beneath each viewing window,

which are also responsible for maintaining the current selection range of the viewing

window’s buffer. It is the selection range that decides what is copied and also played.

Suppose the first bar is moved to 25

The student’s window is very similar to the teacher’s window. The secondary buffer, the

capture ability of the primary buffer, and the ability to select a range from the viewing

window are all removed from the application. It is essentially a read-only, open-only,

play-only version of the teacher application as everything to do with manipulation of

the waveform has been removed. To the side of the viewing window the play pause

and stop buttons are larger to make the program more ’user-friendly’ and since there

is more space available.

Figure 5.1: Sample screen-shot of final version in Windows XP.

5.2 Summary 27

Figure 5.2: Sample screen-shot of the decompressor working in Windows Vista.

5.2 Summary

The final version of the application presents both student and teacher windows. It is a

full and complete and working application that meets the stated aims of the project.

Due to time constraints, however, the optional extra of adding the ability of the teacher

to have file-naming convention as per student ID’s has not been implemented. This

would necessitate adding database facilities to the application, which were beyond the

time and scope of the project. This would perhaps be a topic for further research and

development.

Chapter 6

Conclusions and Further Work

6.1 Achievement of Project Objectives

All Project objectives have been met.

6.2 Further Work

Because the application was programmed with Allegro, there are some latency issues,

as noted in Chapter 3. Further development could improve these, or develop a work-

around. Also noted in this chapter was certain drawbacks of Allegro’s GUI code, not

so much the positioning of the interface features but the lack of ”prettiness”. However,

at this stage of development, it was determined that making the application work was

the focus, and not the so-called ”bells and whistles”.

References

Juin-Hway, C. e.-a. (1992), ‘A low-delay celp coder for the ccitt 16 kb/s speech coding

standard’, IEEE Journal on Selected Areas in Communications 10(5).

Liesenborgs, J. (2000), Voice over ip in networked virtual environments, Master’s thesis,

Universiteit Maastricht, Netherlands.

http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Thesis

current October 2008.

Spanias, A. S. (1994), Speech coding: A tutorial review, in ‘Proceedings of the IEEE’,

Vol. 82, IEEE.

Valin, J. (2007), The Speex Codec Manual, version 1.2 beta 3 edn.

http://speex.org/docs/manual/speex-manual.pdf

current October 2008.

van Till, E. (2003), An Evaluation of the Quality of Teacher Feedback to Students: A

Study of Numeracy Teaching in the Primary Education Sector, Massey University’s

Institute for Professional Development and Educational Research, Albany.

http://www.aare.edu.au/03pap/kni03053.pdf

current October 2008.

http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Thesis
http://speex.org/docs/manual/speex-manual.pdf
http://www.aare.edu.au/03pap/kni03053.pdf

Appendix A

Project Specification

31

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project

Project Specification

FOR: David Ian HUGO

TOPIC: Speech Compression System for student feedback

SUPERVISORS: Mr Mark PHYTHIAN

PROJECT SPONSORSHIP: University of Southern Queensland

PROJECT AIM: This project aims to automate the process of record-

ing, editing, compression and playback of speech for

student assessment.

PROGRAMME: (Issue A, March 25, 2008)

1) Research existing speech compression methods and comment on

their suitability for producing low file sizes.

2) Research speaker-specific compression, such as whether improved

performance and/or relative quality is desired.

3) Design and develop software to record, edit, compress speech from

a microphone or portable recordable device.

4) Design and develop software for students to decompress and play-

back edited recordings.

5) Add optional features to software in (2) such as importing a list

of student names to set up a file naming convention where appro-

priate.

6) Present an academic dissertation on the lessons learned.

AGREED (student) (supervisor)

Dated: / / 2008 Dated: / / 2008

Examiner/CoExaminer

Appendix B

Source Code

33

Modules developed were divided up according to function. In the teacher application

this included the performed initialization and de-initialization (main.cpp), the main

editor window (editor.cpp), the capture window (capture.cpp), and a fourth module

containing miscellaneous helper functions (sndhelp.cpp).

The main module is responsible for initializing the allegro library, setting up the sound

playback and capture devices, and a timer callback.

Listing B.1: A basic Windows program.
#include <a l l e g r o . h>
#include <wi na l l e g . h>
#include ” capture . h”
#include ” e d i t o r . h”
void i n i t () ;
void d e i n i t () ;

volat i le int f rame counter = 0 ;

void my timer handler ()
{

f rame counter++;
}

int main ()
{

i n i t () ;
editor window () ;
d e i n i t () ;
return 0 ;

}
END OF MAIN()

void i n i t ()
{

int depth , r e s ;
a l l e g r o i n i t () ;
depth = desk top co l o r dep th () ;
i f (depth == 0) depth = 32 ;
s e t c o l o r d e p t h (depth) ;
r e s = set g fx mode (GFX AUTODETECT WINDOWED, 800 , 600 , 0 , 0) ;
i f (r e s != 0) {

a l l e g r o m e s s a g e (a l l e g r o e r r o r) ;
e x i t (−1);

}
s e t w i n d o w t i t l e (”Sound Compressor”) ;

d e t e c t d i g i d r i v e r (DIGI AUTODETECT) ;
i f (i n s t a l l s o u n d (DIGI DIRECTX(0) , MIDI NONE, NULL) == −1) {

a l l e g r o m e s s a g e (a l l e g r o e r r o r) ;
e x i t (−1);

}
i f (i n s t a l l s o u n d i n p u t (DIGI DIRECTX(0) , MIDI NONE) != 0) {

a l l e g r o m e s s a g e (a l l e g r o e r r o r) ;

34

e x i t (−1);
}

i n s t a l l t i m e r () ;
i n s t a l l k e y b o a r d () ;
i n s t a l l m o u s e () ;

LOCK VARIABLE(frame counter) ;
LOCK FUNCTION(my timer handler) ;

i n s t a l l i n t (my timer handler , 2 5 0) ;

show mouse (s c r e en) ;
/∗ add o ther i n i t i a l i z a t i o n s here ∗/

}

void d e i n i t ()
{

c l e a r k e y b u f () ;
/∗ add o ther d e i n i t i a l i z a t i o n s here ∗/

}

The editor module is responsible for keeping track of the playback positions and the

current selection ranges. Controls reference each other in the control structure by index

(particularly the playback and the selection range controls).

Listing B.2: A basic Windows program.
#ifndef editorH
#define editorH

void editor window (void) ;
int my button proc (int msg , DIALOG ∗d , int c) ;
void i n i t d i a l o g c o l o r s (DIALOG ∗ dlg) ;

#endif
Listing B.3: A basic Windows program.

#include <a l l e g r o . h>
#include <mem. h>
#include ” sndhelp . h”
#include ” capture . h”

extern volat i le int f rame counter ;
int n e w f i l e (void) ;
int o p e n f i l e (void) ;
int capture (void) ;
int save (void) ;
int copy (void) ;
int paste (void) ;
int qu i t (void) ;
int about (void) ;
int t e s t t o n e (void) ;
int my button proc (int msg , DIALOG ∗d , int c) ;
int my button proc ex (int msg , DIALOG ∗d , int c) ;
int d waveform proc (int msg , DIALOG ∗d , int c) ;
int d playback proc (int msg , DIALOG ∗d , int c) ;
int play (DIALOG ∗d) ;
int pause (DIALOG ∗d) ;

35

int stop (DIALOG ∗d) ;
void render waveform (BITMAP ∗bmp, unsigned short ∗data , unsigned l ength , unsigned fg , unsigned bg) ;

char ∗ s e c o n d b u f f e r = NULL;
int s e c o n d b u f f e r s i z e = 0 ;

char ∗ c l i p b o a r d b u f f e r = NULL;
int c l i p b o a r d b u f f e r s i z e = 0 ;

/∗ the f i r s t menu in the menubar ∗/
MENU menu1 [] =
{

{ ”&New \ tC t r l+N” , newf i l e , NULL, 0 , NULL } ,
{ ”&Open \ tC t r l+O” , o p e n f i l e , NULL, 0 , NULL } ,
{ ”Ca&pture \ tC t r l+p” , capture , NULL, 0 , NULL } ,
{ ”&Save \ tC t r l+S” , save , NULL, 0 , NULL } ,
{ ”&Quit \ tq /Esc” , quit , NULL, 0 , NULL } ,
{ NULL, NULL, NULL, 0 , NULL }

} ;

/∗ the he l p menu ∗/
MENU helpmenu [] =
{

{ ”&About \tF1” , about , NULL, 0 , NULL } ,
{ ”&Test tone ” , t e s t tone , NULL, 0 , NULL } ,
{ NULL, NULL, NULL, 0 , NULL }

} ;

/∗ the main menu−bar ∗/
MENU the menu [] =
{

{ ”&F i l e ” , NULL, menu1 , 0 , NULL } ,
//{ ”&Second ” , NULL, menu2 , 0 , NULL } ,
{ ”&Help” , NULL, helpmenu , 0 , NULL } ,
{ NULL, NULL, NULL, 0 , NULL }

} ;

/∗ here i t comes . . . the b i g ug l y d i a l o g s t r u c t u r e ∗/
DIALOG e d i t o r d i a l o g [] =
{

/∗ (d i a l o g proc) (x) (y) (w) (h) (f g) (bg) (key) (f l a g s)
(d1) (d2) (dp) (dp2) (dp3) ∗/

/∗ t h i s e lement j u s t c l e a r s the screen , t h e r e f o r e i t shou ld come be f o r e the o the r s ∗/
{ d c l e a r p r o c , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , NULL, NULL, NULL } ,

/∗ a menu bar − note how i t auto−c a l c u l a t e s i t s dimension i f they are not g iven ∗/
{ d menu proc , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , the menu , NULL, NULL } ,

/∗ f i r s t waveform d i s p l a y ∗/
{ d waveform proc , 90 , 30 , 700 , 200 , 0 , 0 , 0 ,

0 , 2 , 0 , NULL, (void∗)& buf f e r , (void∗)& b u f f e r s i z e } ,

36

{ d s l i d e r p r o c , 87 , 235 , 706 , 10 , 0 , 0 , 0 ,
0 , 699 , 0 , NULL, NULL, NULL } ,

{ d s l i d e r p r o c , 87 , 250 , 706 , 10 , 0 , 0 , 0 ,
0 , 699 , 699 , NULL, NULL, NULL } ,

{ d s l i d e r p r o c , 87 , 265 , 706 , 10 , 0 , 0 , 0 ,
0 , 699 , 0 , NULL, NULL, NULL } ,

/∗ a bunch o f d e s c r i p t i v e t e x t e lements ∗/
{ d r t ex t p roc , 78 , 220 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ”CURSORS” , NULL, NULL } ,
{ d r t ex t p roc , 78 , 235 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” Se l a” , NULL, NULL } ,
{ d r t ex t p roc , 78 , 250 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” Se l b” , NULL, NULL } ,
{ d r t ex t p roc , 78 , 265 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ”Playback” , NULL, NULL } ,

/∗ second waveform d i s p l a y ∗/
{ d waveform proc , 90 , 300 , 700 , 200 , 0 , 0 , 0 ,

0 , 10 , 0 , NULL, (void∗)& second bu f f e r , (void∗)& s e c o n d b u f f e r s i z e
} ,

{ d s l i d e r p r o c , 87 , 505 , 706 , 10 , 0 , 0 , 0 ,
0 , 699 , 0 , NULL, NULL, NULL } ,

{ d s l i d e r p r o c , 87 , 520 , 706 , 10 , 0 , 0 , 0 ,
0 , 699 , 699 , NULL, NULL, NULL } ,

{ d s l i d e r p r o c , 87 , 535 , 706 , 10 , 0 , 0 , 0 ,
0 , 699 , 0 , NULL, NULL, NULL } ,

/∗ another bunch o f d e s c r i p t i v e t e x t e lements ∗/
{ d r t ex t p roc , 78 , 490 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ”CURSORS” , NULL, NULL } ,
{ d r t ex t p roc , 78 , 505 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” Se l a” , NULL, NULL } ,
{ d r t ex t p roc , 78 , 520 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” Se l b” , NULL, NULL } ,
{ d r t ex t p roc , 78 , 535 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ”Playback” , NULL, NULL } ,

/∗ the q u i t and s i d e bu t tons use our customized d i a l o g procedure , us ing dp3 as c a l l b a c k ∗/
{ my button proc , 10 , 30 , 70 , 20 , 0 , 0 , ’ o ’ , D EXIT ,

0 , 0 , (void ∗) ”&Open” , NULL, (void ∗) o p e n f i l e } ,
{ my button proc , 10 , 55 , 70 , 20 , 0 , 0 , ’ a ’ , D EXIT ,

0 , 0 , (void ∗) ”C&apture ” , NULL, (void ∗) capture } ,
{ my button proc , 10 , 190 , 70 , 20 , 0 , 0 , ’ c ’ , D EXIT ,

0 , 0 , (void ∗) ”&Copy” , NULL, (void ∗) copy } ,

{ my button proc , 10 , 300 , 70 , 20 , 0 , 0 , ’ s ’ , D EXIT ,
0 , 0 , (void ∗) ”&Save” , NULL, (void ∗) save } ,

{ my button proc , 10 , 460 , 70 , 20 , 0 , 0 , ’p ’ , D EXIT ,
0 , 0 , (void ∗) ”&Paste ” , NULL, (void ∗) paste } ,

{ my button proc , 630 , 570 , 160 , 20 , 0 , 0 , ’ q ’ , D EXIT ,
0 , 0 , (void ∗) ”&Quit” , NULL, (void ∗) qu i t } ,

/∗ p layback bu t tons and nonv i sua l p layback procedures ∗/
{ my button proc ex , 10 , 280 , 10 , 10 , 0 , 0 , 0 , D EXIT ,

27 , 0 , (void ∗) ”>” , NULL, (void ∗) play } ,
{ my button proc ex , 25 , 280 , 10 , 10 , 0 , 0 , 0 , D EXIT ,

27 , 0 , (void ∗) ”\”” , NULL, (void ∗) pause } ,

37

{ my button proc ex , 40 , 280 , 10 , 10 , 0 , 0 , 0 , D EXIT ,
27 , 0 , (void ∗) ”O” , NULL, (void ∗) stop } ,

{ d playback proc , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 2 , 0 , NULL, (void∗)& buf f e r , (void∗)& b u f f e r s i z e
} ,

{ my button proc ex , 10 , 550 , 10 , 10 , 0 , 0 , 0 , D EXIT ,
31 , 0 , (void ∗) ”>” , NULL, (void ∗) play } ,

{ my button proc ex , 25 , 550 , 10 , 10 , 0 , 0 , 0 , D EXIT ,
31 , 0 , (void ∗) ”\”” , NULL, (void ∗) pause } ,

{ my button proc ex , 40 , 550 , 10 , 10 , 0 , 0 , 0 , D EXIT ,
31 , 0 , (void ∗) ”O” , NULL, (void ∗) stop } ,

{ d playback proc , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 10 , 0 , NULL, (void∗)& second bu f f e r , (void∗)& s e c o n d b u f f e r s i z e
} ,

/∗ keyboard s ho r t c u t s ∗/
{ d keyboard proc , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , KEY F1 , 0 , (void ∗) about , NULL, NULL } ,
{ d keyboard proc , 0 , 0 , 0 , 0 , 0 , 0 , ’n ’− ’ ‘ ’ ,

0 , 0 , 0 , (void ∗) newf i l e , NULL, NULL } ,
{ d keyboard proc , 0 , 0 , 0 , 0 , 0 , 0 , ’ o ’− ’ ‘ ’ ,

0 , 0 , 0 , (void ∗) o p e n f i l e , NULL, NULL } ,
{ d keyboard proc , 0 , 0 , 0 , 0 , 0 , 0 , ’ a ’− ’ ‘ ’ ,

0 , 0 , 0 , (void ∗) capture , NULL, NULL } ,
{ d keyboard proc , 0 , 0 , 0 , 0 , 0 , 0 , ’ s ’− ’ ‘ ’ ,

0 , 0 , 0 , (void ∗) save , NULL, NULL } ,
{ d y i e l d p r o c , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , NULL, NULL, NULL } ,
{ NULL, 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , NULL, NULL, NULL }
} ;

unsigned long xtosample (unsigned x , unsigned l im i t , unsigned width) {
return (unsigned) ((((unsigned long long) l i m i t)∗x)/ width) ;

}

/∗ New f i l e c a l l b a c k ∗/
int n e w f i l e (void)
{

i f (b u f f e r) {
f r e e (b u f f e r) ;
b u f f e r = NULL;
b u f f e r s i z e == 0 ;
render waveform ((BITMAP∗) (e d i t o r d i a l o g [2] . dp) , (unsigned short ∗) bu f f e r , b u f f e r s i z e , e d i t o r d i a l o g [2] . fg , e d i t o r d i a l o g [2] . bg) ;

}
return D O K ;

}

/∗ Open f i l e c a l l b a c k ∗/
int o p e n f i l e (void)
{

char f i l ename [1 0 2 4] = ”” ;
i f (f i l e s e l e c t e x (”Open f i l e ” , f i l ename , NULL, 1023 , 640 , 480) != 0) {

38

a l e r t (” S e l e c t ed f i l e : ” , ”” , f i l ename , ”Ok” , NULL, 0 , 0) ;
r e a d b u f f e r f r o m f i l e (f i l ename , bu f f e r , b u f f e r s i z e) ;
render waveform ((BITMAP∗) (e d i t o r d i a l o g [2] . dp) , (unsigned short ∗) bu f f e r , b u f f e r s i z e , e d i t o r d i a l o g [2] . fg , e d i t o r d i a l o g [2] . bg) ;

}
return D O K ;

}

/∗ Capture waveform c a l l b a c k ∗/
int capture (void)
{

capture window () ;
render waveform ((BITMAP∗) (e d i t o r d i a l o g [2] . dp) , (unsigned short ∗) bu f f e r , b u f f e r s i z e , e d i t o r d i a l o g [2] . fg , e d i t o r d i a l o g [2] . bg) ;
return D O K ;

}

/∗ save f i l e c a l l b a c k ∗/
int save (void)
{

char f i l ename [1 0 2 4] = ”” ;
i f (s e c o n d b u f f e r s i z e == 0) {

a l e r t (”Cannot save empty b u f f e r ” , ”” , ”Put some data in i t f i r s t ” , ”Ok I ’ l l put some data in i t ” , NULL, 0 , 0) ;
return D O K ;

}

i f (f i l e s e l e c t e x (”Save f i l e ” , f i l ename , NULL, 1023 , 640 , 480) != 0) {
a l e r t (” S e l e c t ed f i l e : ” , ”” , f i l ename , ”Ok” , NULL, 0 , 0) ;
w r i t e b u f f e r t o f i l e (f i l ename , s e cond bu f f e r , s e c o n d b u f f e r s i z e) ;

}
return D O K ;

}

/∗ copy waveform se c t i on c a l l b a c k ∗/
int copy (void)
{

i f (b u f f e r s i z e == 0) {
a l e r t (”Cannot copy empty b u f f e r ” , ”” , ”Put some data in i t f i r s t ” , ”Ok I ’ l l put some data in i t ” , NULL, 0 , 0) ;
return D O K ;

}
unsigned s e l 1 = e d i t o r d i a l o g [3] . d2 ; // ge t p o s i t i o n o f s l i d e r
unsigned s e l 2 = e d i t o r d i a l o g [4] . d2 ; // ge t p o s i t i o n o f s l i d e r
unsigned se lmin = MIN(se l 1 , s e l 2) ;
unsigned selmax = MAX(se l1 , s e l 2) ;
unsigned sample beg in = xtosample (selmin , b u f f e r s i z e /2 , e d i t o r d i a l o g [2] . w) ;
unsigned sample end = xtosample (selmax+1, b u f f e r s i z e /2 , e d i t o r d i a l o g [2] . w) ;
unsigned s a m p l e s i z e = sample end−sample beg in ;

i f (c l i p b o a r d b u f f e r) { f r e e (c l i p b o a r d b u f f e r) ; }
c l i p b o a r d b u f f e r = (char∗) mal loc (s a m p l e s i z e ∗2) ;
i f (c l i p b o a r d b u f f e r != NULL) {

c l i p b o a r d b u f f e r s i z e = s a m p l e s i z e ∗2 ;
memcpy(c l i p b o a r d b u f f e r , b u f f e r +(sample beg in ∗2) , s a m p l e s i z e ∗2) ;

} else {
c l i p b o a r d b u f f e r s i z e = 0 ;
a l e r t (” Cl iboard e r r o r ” , ”” , ”Not enough memory f o r that opera t i on ” , ” I ’ l l f r e e some memory” , NULL, 0 , 0) ;

}

39

return D O K ;
}

/∗ pas t e waveform se c t i on c a l l b a c k ∗/
int paste (void)
{

i f (c l i p b o a r d b u f f e r s i z e == 0) {
a l e r t (”Cannot paste empty b u f f e r ” , ”” , ”Put some data in i t f i r s t ” , ”Ok I ’ l l put some data in i t ” , NULL, 0 , 0) ;
return D O K ;

}
s e c o n d b u f f e r = (char∗) r e a l l o c (s e cond bu f f e r , s e c o n d b u f f e r s i z e + c l i p b o a r d b u f f e r s i z e) ;
memcpy(s e c o n d b u f f e r + s e c o n d b u f f e r s i z e , c l i p b o a r d b u f f e r , c l i p b o a r d b u f f e r s i z e) ;
s e c o n d b u f f e r s i z e += c l i p b o a r d b u f f e r s i z e ;
render waveform ((BITMAP∗) (e d i t o r d i a l o g [1 0] . dp) , (unsigned short ∗) s e cond bu f f e r , s e c o n d b u f f e r s i z e , e d i t o r d i a l o g [1 0] . fg , e d i t o r d i a l o g [1 0] . bg) ;
return D O K ;

}

/∗ Used as a menu−ca l l b a c k , and by the q u i t bu t ton . ∗/
int qu i t (void)
{

i f (a l e r t (” Rea l ly Quit ?” , NULL, NULL, ”&Yes” , ”&No” , ’ y ’ , ’ n ’) == 1)
return D CLOSE;

else
return D O K ;

}

/∗ Our about box . ∗/
int about (void)
{

a l e r t (”∗ Sound Compressor ∗” ,
”” ,
”A program to compress audio from f i l e and microphone” ,
”Ok” , 0 , 0 , 0) ;

return D O K ;
}

int t e s t t o n e (void) {
p l a y t e s t t o n e () ;
return D O K ;

}

/∗ Another menu c a l l b a c k . ∗/
int menu cal lback (void)
{

char s t r [2 5 6] ;
us t rzcpy (s t r , s izeof s t r , active menu−>t ex t) ;
a l e r t (” S e l e c t ed menu item : ” , ”” , u s t r tok (s t r , ”\ t ”) , ”Ok” , NULL, 0 , 0) ;
return D O K ;

}

/∗ A custom d i a l o g procedure , de r i v ed from d bu t t on proc . I t i n t e r c e p t s
∗ the D CLOSE return o f d bu t ton proc , and c a l l s the func t i on in dp3 .

40

∗/
int my button proc (int msg , DIALOG ∗d , int c)
{

int r e t = d button proc (msg , d , c) ;
i f (r e t == D CLOSE && d−>dp3) {

d−>f l a g s ˆ= D DIRTY;
return ((int (∗) (void)) d−>dp3) () ;

}
return r e t ;

}

/∗ A custom d i a l o g procedure , de r i v ed from d bu t t on proc . I t i n t e r c e p t s
∗ the D CLOSE return o f d bu t ton proc , and c a l l s the func t i on in dp3 .
∗/

int my button proc ex (int msg , DIALOG ∗d , int c)
{

int r e t = d button proc (msg , d , c) ;
i f (r e t == D CLOSE && d−>dp3) {

d−>f l a g s ˆ= D DIRTY;
return ((int (∗) (DIALOG ∗)) d−>dp3) (d) ;

}
return r e t ;

}

void i n i t d i a l o g c o l o r s (DIALOG ∗ dlg)
{

/∗ s e t up co l o r s ∗/
g u i f g c o l o r = makecol (0 , 0 , 0) ;
gu i mg co lo r = makecol (128 , 128 , 1 28) ;
g u i b g c o l o r = makecol (224 , 224 , 22 4) ;
s e t d i a l o g c o l o r (dlg , g u i f g c o l o r , g u i b g c o l o r) ;

/∗ whi te co l o r f o r d c l e a r p r o c and a l l the o ther procs ∗/
dlg [0] . bg = makecol (255 , 255 , 2 5 5) ;
for (int i = 1 ; d lg [i] . proc ; i++)

i f (d lg [i] . proc == d t e x t p r o c | |
dlg [i] . proc == d c t e x t p r o c | |
dlg [i] . proc == d r t e x t p r o c)
d lg [i] . bg = dlg [0] . bg ;

}

void render waveform (BITMAP ∗bmp, unsigned short ∗data , unsigned l ength , unsigned fg , unsigned bg) {
c l e a r t o c o l o r (bmp, bg) ;
i f (data==NULL)

return ;

unsigned w = bmp−>w;
unsigned h = bmp−>h ;
unsigned l i m i t = length /2 ;
unsigned j , s1 , s2 ;
unsigned v ;
for (int i = 0 ; i < w; i++) {

s1 = xtosample (i , l im i t ,w) ;
s2 = xtosample (i +1, l im i t ,w) ;
v = 0 ;

41

for (j = s1 ; j < s2 ; j++) {
v += (((unsigned long) data [j]) ∗ h)>>16;

}
v /= (s2 − s1) ;

v l i n e (bmp, i , h/2 , v , f g) ;
v l i n e (bmp, i , h/2 , h−v , f g) ;

}
}

int d waveform proc (int msg , DIALOG ∗d , int c)
{

char ∗∗ b u f f e r = (char ∗∗)d−>dp2 ;
int ∗ b u f f e r s i z e = (int ∗)d−>dp3 ;

switch (msg) {
case MSG START:

i f (d−>d1 < 10)
d−>f g = makecol (255 , 0 , 0) ;

else
d−>f g = makecol (0 , 0 , 2 5 5) ;

d−>dp = (void ∗) c reate b i tmap (d−>w, d−>h) ;
render waveform ((BITMAP∗)d−>dp , (unsigned short ∗)∗ bu f f e r , ∗ b u f f e r s i z e , d−>fg , d−>bg) ;
break ;

case MSG END:
destroy bitmap ((BITMAP∗)d−>dp) ;
break ;

case MSGDRAW:
b l i t ((BITMAP∗)d−>dp , screen , 0 , 0 , d−>x , d−>y , d−>w, d−>h) ;
v l i n e (screen , d−>x+e d i t o r d i a l o g [d−>d1 +3] . d2 , d−>y , d−>y+d−>h−1, (f rame counter &1) ? makecol (0 , 255 ,0) : 0) ;
v l i n e (screen , d−>x+e d i t o r d i a l o g [d−>d1 +2] . d2 , d−>y , d−>y+d−>h−1, (f rame counter &1) ? makecol (255 ,255 ,255) : 0) ;
v l i n e (screen , d−>x+e d i t o r d i a l o g [d−>d1 +1] . d2 , d−>y , d−>y+d−>h−1, (f rame counter &1) ? makecol (255 ,255 ,255) : 0) ;
break ;

case MSG IDLE:
d−>f l a g s |= D DIRTY;
break ;

}
return D O K ;

}

struct PLAYBACKSTATE {
int waveform index ;
char ∗∗ b u f f e r ;
int ∗ b u f f e r s i z e ;
AUDIOSTREAM ∗ stream ;
int d e l t a ;

} ;

const int STREAMINGSIZE = 4096 ;
const int STREAMINGLIMIT = 8192 ;

/∗ d p l ayback p roc updates an audiostream in MSG IDLE i f dp−>stream i s not NULL
∗ i t i s a non v i s u a l e lement
∗ DURING INIT :

42

∗ d1 i s index o f a s s o c i a t e d d waveform proc
∗
∗ WHILE PLAYING:
∗ dp i s PLAYBACKSTATE
∗ d1 i s next sample to load
∗ d2 i s sample to end p layback
∗/

int d playback proc (int msg , DIALOG ∗d , int c)
{

PLAYBACKSTATE∗ pbs = (PLAYBACKSTATE∗)d−>dp ;
switch (msg) {

case MSG START:
pbs = (PLAYBACKSTATE∗) mal loc (s izeof (PLAYBACKSTATE)) ;
pbs−>waveform index = d−>d1 ;
pbs−>b u f f e r = (char∗∗)d−>dp2 ; // e d i t o r d i a l o g [d−>d2] . dp2 ;
pbs−>b u f f e r s i z e = (int ∗)d−>dp3 ; // e d i t o r d i a l o g [d−>d2] . dp3 ;
pbs−>stream = NULL;
d−>dp = (void ∗) pbs ;
d−>d1 = 0 ;
d−>d2 = 0 ;
break ;

case MSG END:
i f (pbs−>stream) s top aud io s t r eam (pbs−>stream) ;
f r e e (pbs) ;
break ;

case MSG IDLE:
i f (pbs−>stream != NULL) {

unsigned short ∗mem chunk = (unsigned short ∗) g e t a u d i o s t r e a m b u f f e r (pbs−>stream) ;
i f (mem chunk != NULL) { // R e f i l l t he stream bu f f e r .

int l ength = MIN(d−>d2 − d−>d1 , STREAMINGSIZE) ;
i f (l ength > 0) {

memset (mem chunk , 127 , STREAMINGLIMIT) ;
//d−>d1 += re samp l e bu f f e r up (mem chunk , ((unsigned shor t ∗)∗ pbs−>b u f f e r)+d−>d1 , STREAMINGLIMIT, l en g t h ∗2 , 11025 , 8000 , pbs−>d e l t a) ;
memcpy(mem chunk , ((unsigned short ∗)∗pbs−>b u f f e r)+d−>d1 , l ength ∗2) ;
f r e e a u d i o s t r e a m b u f f e r (pbs−>stream) ;
d−>d1 += STREAMINGSIZE;
i f (d−>d1 > d−>d2) { d−>d1 = d−>d2 ; }
e d i t o r d i a l o g [e d i t o r d i a l o g [pbs−>waveform index] . d1 +3] . d2 = // p layback po s i t i o n con t r o l

xtosample (d−>d1 , e d i t o r d i a l o g [pbs−>waveform index] . w, ∗pbs−>b u f f e r s i z e / 2) ; // sample to p o s i t i o n
} else {

memset (mem chunk , 127 , STREAMINGSIZE) ;
f r e e a u d i o s t r e a m b u f f e r (pbs−>stream) ;
s top aud io s t r eam (pbs−>stream) ;
pbs−>stream = NULL;

}

}
}
break ;

}
return D O K ;

}

int play (DIALOG ∗d)
{

PLAYBACKSTATE∗ pbs = (PLAYBACKSTATE∗) e d i t o r d i a l o g [d−>d1] . dp ;

43

i f (pbs−>stream == NULL) {
unsigned s e l a = e d i t o r d i a l o g [e d i t o r d i a l o g [pbs−>waveform index] . d1 +1] . d2 ;
unsigned s e l b = e d i t o r d i a l o g [e d i t o r d i a l o g [pbs−>waveform index] . d1 +2] . d2 ;
unsigned se lmin = MIN(se l a , s e l b) ;
unsigned selmax = MAX(se la , s e l b) ;
int ∗ b u f f e r s i z e = (int ∗) e d i t o r d i a l o g [pbs−>waveform index] . dp3 ;
unsigned sample beg in = xtosample (selmin , ∗ b u f f e r s i z e /2 , e d i t o r d i a l o g [2] . w) ;
unsigned sample end = xtosample (selmax+1, ∗ b u f f e r s i z e /2 , e d i t o r d i a l o g [2] . w) ;
e d i t o r d i a l o g [d−>d1] . d1 = sample beg in ;
e d i t o r d i a l o g [d−>d1] . d2 = sample end ;

char str msg [1 0 2 4] ;
u s p r i n t f (str msg , ”%d %d” , sample begin , sample end) ;
a l e r t (” Playing area ” , ”” , str msg , ”Ok” , NULL, 0 , 0) ;

pbs−>d e l t a = 0 ;
pbs−>stream = play aud io s t r eam (STREAMINGSIZE, 16 , FALSE, 11025 , 255 , 1 2 8) ;
i f (pbs−>stream == NULL)

a l e r t (”Playback” , ”” , ”Couldn ’ t begin ” , ”Ok I ’ l l t ry again ” , NULL, 0 , 0) ;
}
return D O K ;

}

int pause (DIALOG ∗d)
{

PLAYBACKSTATE∗ pbs = (PLAYBACKSTATE∗) e d i t o r d i a l o g [d−>d1] . dp ;
i f (pbs−>stream != NULL) {

s top aud io s t r eam (pbs−>stream) ;
pbs−>stream = NULL;

}
else

pbs−>stream = play aud io s t r eam (STREAMINGSIZE, 16 , FALSE, 11025 , 255 , 1 2 8) ;
return D O K ;

}

int stop (DIALOG ∗d)
{

PLAYBACKSTATE∗ pbs = (PLAYBACKSTATE∗) e d i t o r d i a l o g [d−>d1] . dp ;
i f (pbs−>stream != NULL) {

s top aud io s t r eam (pbs−>stream) ;
pbs−>stream = NULL;

}
return D O K ;

}

void editor window (void)
{

i n i t d i a l o g c o l o r s (e d i t o r d i a l o g) ;
do d i a l og (e d i t o r d i a l o g , −1);

i f (b u f f e r) { f r e e (b u f f e r) ; }
i f (s e c o n d b u f f e r) { f r e e (s e c o n d b u f f e r) ; }

i f (c l i p b o a r d b u f f e r) { f r e e (c l i p b o a r d b u f f e r) ; }

44

}

The capture module is responsible for capturing data from the recording device and

allocating data during recording.
Listing B.4: A basic Windows program.

#ifndef captureH
#define captureH

extern char∗ b u f f e r ;
extern int b u f f e r s i z e ;
void capture window (void) ;

#endif
Listing B.5: A basic Windows program.

#include <a l l e g r o . h>
#include <mem. h>
#include ” sndhelp . h”
#include ” e d i t o r . h”

char∗ b u f f e r = NULL;
int b u f f e r s i z e = 0 ;

int s t a r t (void) ;
int stop (void) ;
int done (void) ;
int cance l (void) ;
int d capture proc (int msg , DIALOG ∗d , int c) ;

bool captur ing ; // i f we are cap tur ing data from the sound card
int s c r a t c h b u f f e r s i z e ; // s i z e o f the in t e rmed ia t e s c ra t ch b u f f e r
unsigned short ∗ s c r a t c h b u f f e r ; // in t e rmed ia t e s c ra t ch b u f f e r where data goes b e f o r e p roece s s ing

char samp le s a s s e conds [2 0] ; // used by f i e l d 3 −− seconds
char s a m p l e s a s t e x t [2 0] ; // used by f i e l d 5 −− sample s i z e o f b u f f e r

DIALOG c a p t u r e d i a l o g [] =
{

/∗ (d i a l o g proc) (x) (y) (w) (h) (f g) (bg) (key) (f l a g s)
(d1) (d2) (dp) (dp2) (dp3) ∗/

/∗ t h i s e lement i s a shadow box t h e r e f o r e i t shou ld come be f o r e the o the r s ∗/
{ d shadow box proc , 0 , 0 , 600 , 200 , 0 , 0 , 0 ,

0 , 0 , 0 , NULL, NULL, NULL } ,
{ d ctext proc , 10 , 10 , 580 , 180 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ”Capture waveform” , NULL, NULL } ,

/∗ l o t s o f d e s c r i p t i v e t e x t e lements ∗/
{ d text proc , 20 , 50 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” Seconds captured : ” , NULL, NULL } ,
{ d r t ex t p roc , 240 , 50 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” 00 :00 ” , NULL, NULL } ,
{ d text proc , 20 , 70 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” S i z e o f b u f f e r : ” , NULL, NULL } ,
{ d r t ex t p roc , 240 , 70 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , (void ∗) ” 00000000000 ” , NULL, NULL } ,

/∗ the cance l bu t t ons and s t a r t / s top use our customized d i a l o g procedure , us ing dp3 as c a l l b a c k ∗/
{ my button proc , 430 , 50 , 160 , 20 , 0 , 0 , ’ s ’ , D EXIT ,

0 , 0 , (void ∗) ”&Star t ” , NULL, (void ∗) s t a r t } ,

45

{ my button proc , 430 , 80 , 160 , 20 , 0 , 0 , ’ t ’ , D DISABLED |D EXIT ,
0 , 0 , (void ∗) ”S&top ” , NULL, (void ∗) stop } ,

{ my button proc , 430 , 140 , 160 , 20 , 0 , 0 , ’d ’ ,
D EXIT , 0 , 0 , (void ∗) ”&Done” , NULL, (void ∗) done } ,

{ my button proc , 430 , 170 , 160 , 20 , 0 , 0 , ’ c ’ , D EXIT ,
0 , 0 , (void ∗) ”&Cancel ” , NULL, (void ∗) cance l } ,

/∗ the record proc consumes a l l cpu c y c l e s ˆ ˆ ∗/
{ d capture proc , 20 , 90 , 390 , 90 , 0 , 0 , 0 ,

0 , 0 , 0 , NULL, NULL, NULL } ,
//{ d y i e l d p r o c , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , NULL, NULL, NULL } ,
{ NULL, 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , NULL, NULL, NULL }
} ;

/∗ Used by the s t a r t bu t ton . ∗/
int s t a r t (void)
{

c a p t u r e d i a l o g [6] . f l a g s |= D DISABLED;
c a p t u r e d i a l o g [7] . f l a g s &= ˜D DISABLED;
c a p t u r e d i a l o g [7] . f l a g s |= D DIRTY;
captur ing = true ;
return D O K ;

}

/∗ Used by the s top but ton . ∗/
int stop (void)
{

captur ing = f a l s e ;
c a p t u r e d i a l o g [7] . f l a g s |= D DISABLED;
c a p t u r e d i a l o g [6] . f l a g s &= ˜D DISABLED;
c a p t u r e d i a l o g [6] . f l a g s |= D DIRTY;
return D O K ;

}

/∗ Used by the done but ton . ∗/
int done (void)
{

i f (captur ing) {
i f (a l e r t (”Paused” , NULL, ”Are you sure you want to stop ?” , ”&Yes” , ”&No” , ’ y ’ , ’ n ’) == 1)

return D CLOSE;
else

return D O K ;
}
return D CLOSE;

}

/∗ Used by the cance l bu t ton . ∗/
int cance l (void)
{

i f (captur ing) {
i f (a l e r t (”Paused” , NULL, ”Are you sure you want to stop ?” , ”&Yes” , ”&No” , ’ y ’ , ’ n ’) == 1)

return D CLOSE;

46

else
return D O K ;

} else {
return D CLOSE;

}
}

/∗ Used to update the d i s p l a y o f samples captured ∗/
void update d i sp lay (void) {

// i n t sec = b u f f e r s i z e / (8000 ∗ 2) ;
int s ec = b u f f e r s i z e / (11025 ∗ 2) ;
int min = sec / 60 ;
u s p r i n t f (samples as seconds , ”%02d:%02d” , min , s ec %60);
u s p r i n t f (samp le s a s t ex t , ”%dk” , b u f f e r s i z e /1024) ;

c a p t u r e d i a l o g [3] . dp = sample s a s s e conds ;
c a p t u r e d i a l o g [5] . dp = s a m p l e s a s t e x t ;
c a p t u r e d i a l o g [3] . f l a g s |= D DIRTY;
c a p t u r e d i a l o g [5] . f l a g s |= D DIRTY;

}

/∗ Used to capture data ∗/
int d capture proc (int msg , DIALOG ∗d , int c)
{

switch (msg) {
case MSG START:

d−>bg = makecol (255 , 255 , 255) ;
d−>f g = makecol (2 5 5 , 0 , 0) ;
update d i sp lay () ;
s c r a t c h b u f f e r s i z e = s t a r t s o u n d i n p u t (11025 , 16 , 0) ;
i f (s c r a t c h b u f f e r s i z e > 0) {

s c r a t c h b u f f e r = (unsigned short ∗) mal loc (s c r a t c h b u f f e r s i z e) ;
} else {

a l l e g r o m e s s a g e (”sound card not capable o f 8khz 16 b i t capture ”) ;
return D CLOSE;

}
d−>dp = (void ∗) c reate b i tmap (d−>w, d−>h) ;
break ;

case MSG END:
stop sound input () ;
f r e e (s c r a t c h b u f f e r) ; // no need to check f o r n u l l as i t i s on ly p o s s i b l e
s c r a t c h b u f f e r = 0 ; // to be here i f s c r a t c h b u f f e r i s a l l o c a t e d
destroy bitmap ((BITMAP∗)d−>dp) ;
break ;

case MSGDRAW:
{

int w = MIN(d−>w, s c r a t c h b u f f e r s i z e / 2) ;
int y , bg = d−>bg , f g = d−>f g ;

for (int i =0; i<w; i++) {
i f (s c r a t c h b u f f e r [i] < 0x8000) {

y = s c r a t c h b u f f e r [i]∗d−>h/65535;
v l i n e ((BITMAP∗)d−>dp , i , 0 , y−1, bg) ;
v l i n e ((BITMAP∗)d−>dp , i , y , d−>h/2 , f g) ;

47

v l i n e ((BITMAP∗)d−>dp , i , d−>h/2+1, d−>h , bg) ;
}
else {

y = s c r a t c h b u f f e r [i]∗d−>h/65535;
v l i n e ((BITMAP∗)d−>dp , i , 0 , d−>h/2−1, bg) ;
v l i n e ((BITMAP∗)d−>dp , i , d−>h/2 ,y , f g) ;
v l i n e ((BITMAP∗)d−>dp , i , y+1, d−>h , bg) ;

}
}
b l i t ((BITMAP∗)d−>dp , screen , 0 , 0 , d−>x , d−>y , d−>w, d−>h) ;

}
break ;

case MSG IDLE:
i f (read sound input (s c r a t c h b u f f e r) && captur ing) {

i f (! b u f f e r && b u f f e r s i z e == 0) // f i x up r e a l l o c o f NULL bug
b u f f e r = (char∗) mal loc (s c r a t c h b u f f e r s i z e) ;

else
b u f f e r = (char∗) r e a l l o c (bu f f e r , b u f f e r s i z e + s c r a t c h b u f f e r s i z e) ;

memcpy(b u f f e r+b u f f e r s i z e , s c r a t c h b u f f e r , s c r a t c h b u f f e r s i z e) ;
b u f f e r s i z e += s c r a t c h b u f f e r s i z e ;

update d i sp lay () ;
}
d−>f l a g s |= D DIRTY;
break ;

}
return D O K ;

}

void capture window (void)
{

int s t a r t b u f f e r s i z e = b u f f e r s i z e ;

captur ing = f a l s e ;
s c r a t c h b u f f e r s i z e = 0 ;

c e n t r e d i a l o g (c a p t u r e d i a l o g) ;
i n i t d i a l o g c o l o r s (c a p t u r e d i a l o g) ;
int r e t = popup dia log (captur e d i a l og , 6) ;
i f (r e t == −1 | | r e t == 9) {

i f (b u f f e r) {
i f (s t a r t b u f f e r s i z e == 0) {

f r e e (b u f f e r) ;
b u f f e r = NULL;
b u f f e r s i z e = 0 ;

} else {
b u f f e r = (char∗) r e a l l o c (bu f f e r , s t a r t b u f f e r s i z e) ;
b u f f e r s i z e = (b u f f e r != NULL) ? s t a r t b u f f e r s i z e : 0 ;

}
}

}
}

The helper module contains helper functions that belong to no particular module and

are used throughout the application.

48

Listing B.6: A basic Windows program.
#ifndef sndhelpH
#define sndhelpH

void p l a y t e s t t o n e (void) ;
int re sample buf f e r down (unsigned short ∗dest , unsigned short ∗ src , int l ength , int wanted rate , int sample rate) ;
int r e s amp l e bu f f e r up (unsigned short ∗dest , unsigned short ∗ src , int d e s t l i m i t , int s r c l e n g t h , int wanted rate , int sample rate , int &d e l t a) ;
void w r i t e b u f f e r t o f i l e (char ∗ f i l ename , char ∗ bu f f e r , int b u f f e r s i z e) ;
void r e a d b u f f e r f r o m f i l e (char ∗ f i l ename , char∗ &buf f e r , int &b u f f e r s i z e) ;
#endif

Listing B.7: A basic Windows program.
#include <a l l e g r o . h>
#include <speex / speex . h>
#include <math . h>
#include <mem. h>
#include <s t d i o . h>
#include ” sndhelp . h”

void p l a y t e s t t o n e (void)
{

int dwLength = 36000;
f loat amp [] = {8000.0 f , 8000 .0 f , 8000 .0 f , 8000 .0 f } ;
unsigned begin [] = {0 , 5000 , 10000 , 15000} ;
f loat f a c t o r [] = {M PI /60 .0 , M PI /50 .0 , M PI /40 .0 , M PI / 3 0 . 0} ;
SAMPLE ∗smp = create sample (16 , 0 , 44100 , dwLength) ;
i f (smp == NULL) { a l l e g r o m e s s a g e (” couldn ’ t c r e a t e sample b u f f e r ! ”) ; return ; }
short ∗ lpWrite = (short ∗)smp−>data ; // Sound card data i s unsigned but

// c a l c u l a t i n g s i gned data i s e a s i e r
for (unsigned int i = 0 ; i < dwLength ; i ++) {

lpWrite [i] = (short) (amp [0] ∗ s i n (i ∗ f a c t o r [0])) ; amp [0] ∗= 0 . 9 9 9 7 ;
i f (i>begin [1]) { lpWrite [i] += (short) (amp [1] ∗ s i n (i ∗ f a c t o r [1])) ; amp [1] ∗= 0 . 9 9 9 7 ; }
i f (i>begin [2]) { lpWrite [i] += (short) (amp [2] ∗ s i n (i ∗ f a c t o r [2])) ; amp [2] ∗= 0 . 9 9 9 7 ; }
i f (i>begin [3]) { lpWrite [i] += (short) (amp [3] ∗ s i n (i ∗ f a c t o r [3])) ; amp [3] ∗= 0 . 9 9 9 7 ; }
((unsigned short ∗) lpWrite) [i] ˆ= 0x8000 ;

}
int vo i c e = play sample (smp , 255 , 128 , 1000 , 0) ;
i f (vo i c e < 0) { a l l e g r o m e s s a g e (”no v o i c e s a v a i l a b l e ! ”) ; }
while (v o i c e g e t p o s i t i o n (vo i c e) >= 0) ;
dest roy sample (smp) ;

}

#define FRAME SIZE 160
void w r i t e b u f f e r t o f i l e (char ∗ f i l ename , char ∗ bu f f e r , int b u f f e r s i z e)
{

// b u f f e r and b u f f e r s i z e are l en g t h o f the sample b u f f e r in by tes ,
// not samples , so f i r s t we have to conver t b e f o r e doing math on i t .
// We pass arrays around t h i s way to prevent a l l o c a t i o n confus ion .
unsigned short ∗ s h o r t b u f f e r = (unsigned short ∗) b u f f e r ;
int s h o r t b u f f e r s i z e = b u f f e r s i z e / 2 ;

// speex manual says we shou ld resample from 11025 Hz to 8000 Hz
// be f o r e saving , but the codec seems to handle i t .
f loat input [FRAME SIZE] ;
char data [2 5 6] ;
int numbytes ;
void ∗ e n c s t a t e ;
SpeexBits b i t s ;

49

int pos = 0 ;
int tmp = 8 ; // (15 kbps)
int l en ;
FILE ∗ fp = fopen (f i l ename , ”wb”) ;
i f (! fp) { a l e r t (” Error ” , ”” , ”Couldn ’ t wr i t e to f i l e or f i l e in use by another a p p l i c a t i o n ” , ”Ok” , NULL, 0 , 0) ; return ; }
e n c s t a t e = s p e e x e n c o d e r i n i t (&speex nb mode) ;
s p e e x e n c o d e r c t l (enc s ta t e , SPEEX SET QUALITY, &tmp) ;
s p e e x b i t s i n i t (& b i t s) ;
while (t rue) {

l en = MIN(FRAME SIZE, s h o r t b u f f e r s i z e − pos) ;
i f (l en < FRAME SIZE) { break ; } // chuck out l a s t frame
// copy 16− b i t v a l u e s to f l o a t so speex can work on them
for (int i = 0 ; i < l en ; i++)

input [i] = s h o r t b u f f e r [pos + i] − 0x8000 ;
pos += len ;
// f l u s h the b i t s the s t r u c t to work on a new s e t
s p e e x b i t s r e s e t (& b i t s) ;
// encode the frame
speex encode (enc s ta t e , input , &b i t s) ;
numbytes = s p e e x b i t s w r i t e (& b i t s , data , 2 5 6) ;
f w r i t e (&numbytes , s izeof (int) , 1 , fp) ;
f w r i t e (data , 1 , numbytes , fp) ;

}
// c l ean up
spe ex encode r de s t roy (e n c s t a t e) ;
s p e e x b i t s d e s t r o y (& b i t s) ;
f c l o s e (fp) ;

}

void r e a d b u f f e r f r o m f i l e (char ∗ f i l ename , char∗ &buf f e r , int &b u f f e r s i z e)
{

// b u f f e r and b u f f e r s i z e are l en g t h o f the sample b u f f e r in by tes ,
// not samples , so f i r s t we have to conver t b e f o r e doing math on i t .
// We pass arrays around t h i s way to prevent a l l o c a t i o n confus ion .
short ∗ s h o r t b u f f e r = (short ∗) b u f f e r ;
int s h o r t b u f f e r s i z e = b u f f e r s i z e / 2 ;

f loat output [FRAME SIZE] ;
char data [2 0 0] ;
int numbytes ;
void ∗ d e c s t a t e ;
SpeexBits b i t s ;
FILE ∗ fp = fopen (f i l ename , ” rb”) ;
int tmp = 1 ;
i f (! fp) { a l e r t (” Error ” , ”” , ”Couldn ’ t open f i l e or f i l e in use by another a p p l i c a t i o n ” , ”Ok” , NULL, 0 , 0) ; return ; }
b u f f e r s i z e = 0 ;
d e c s t a t e = s p e e x d e c o d e r i n i t (&speex nb mode) ;
s p e e x d e c o d e r c t l (de c s ta t e , SPEEX SET ENH, &tmp) ;
s p e e x b i t s i n i t (& b i t s) ;
i f (b u f f e r == NULL) {

s h o r t b u f f e r = (short ∗) mal loc (4) ; // f i x up r e a l l o c o f NULL bug
b u f f e r = (char∗) s h o r t b u f f e r ;

}
while (t rue) {

f r ead (&numbytes , s izeof (int) , 1 , fp) ;
i f (f e o f (fp)) { break ; }

50

f r ead (data , 1 , numbytes , fp) ;
// decoder frame
s p e e x b i t s r e a d f r o m (& bi t s , data , numbytes) ;
speex decode (dec s ta t e , &b i t s , output) ;
// output to b u f f e r
s h o r t b u f f e r = (short ∗) r e a l l o c (bu f f e r , b u f f e r s i z e + (FRAME SIZE∗ 2)) ;
b u f f e r = (char∗) s h o r t b u f f e r ;
for (int i =0; i<FRAME SIZE; i++) {

s h o r t b u f f e r [b u f f e r s i z e /2 + i] = output [i] ;
s h o r t b u f f e r [b u f f e r s i z e /2 + i] ˆ= 0x8000 ;

}
b u f f e r s i z e += FRAME SIZE∗2 ;

}
spe ex encode r de s t roy (d e c s t a t e) ;
s p e e x b i t s d e s t r o y (& b i t s) ;
f c l o s e (fp) ;

}

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter Introduction
	Project Aims and Objectives
	Overview of the Dissertation

	Chapter Background
	Background
	Software and Sound
	Sound Waveforms and Compression
	Codecs
	The Decision

	Research And Project Objectives
	Research
	Issue Identification
	Design and Development
	Final Program
	Dissertation

	Timelines
	Proposed Program

	Consequential Effects
	Safety Issues
	Summary

	Chapter Methodology And Design
	Methodology
	Software Development
	Codec Choice

	Design Requirements
	Constraints and Alternatives
	Project Constraints
	Alternatives

	Ethics, Safety, and Other Requirements
	Resource Planning
	Summary

	Chapter Program Development
	Issues With Development
	Development Platforms
	Development Environment

	Programming Issues
	Saving and Loading Files
	Sound Playback

	Summary

	Chapter The Final Version
	The Program
	Summary

	Chapter Conclusions and Further Work
	Achievement of Project Objectives
	Further Work

	References
	Appendix Project Specification
	Appendix Source Code

