
University of Southern Queensland

Faculty of Engineering & Surveying

Real-Time Monitoring and Control of a

Pressure Control System

A dissertation submitted by

Craig Struthers

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Electrical / Electronic)

Submitted: October, 2005

Abstract

Constant pressure control within a hydraulic pumping system is conventionally

performed by the use of an electric pump with a variable speed drive controlling

the speed of the pump. A pressure transmitter is used as a feedback to control

the speed of the pump which in turn, also controls the pressure in the system.

The aim of this project is to develop and test an automated pumping controller,

which is able to maintain constant pressure in a hydraulics system without any

physical contact with the medium. The medium in this instance being a pressure

transmitter.

This project was chosen in order to address the lack of products currently available

within the industrial control field for pump pressure control. Personal experience

has presented a number of instances where applications have required a pressure

feedback but because the medium is so corrosive and/or dangerous the pressure

transmitter becomes prohibitively expensive.

Along with the control system itself, a user interface was developed to oper-

ate over the ethernet ensuring the ability to utilise current WEB server interfaces

such as windows Explorer and the like.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying, and the staff of the University of Southern Queensland, do not

accept any responsibility for the truth, accuracy or completeness of material

contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at

the risk of the Council of the University of Southern Queensland, its Faculty of

Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitled “Research

Project” is to contribute to the overall education within the student’s chosen

degree program. This document, the associated hardware, software, drawings,

and other material set out in the associated appendices should not be used for

any other purpose: if they are so used, it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and

conclusions set out in this dissertation are entirely my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted

for assessment in any other course or institution, except where specifically stated.

Craig Struthers

Q97202949

Signature

Date

Acknowledgments

The author would like to thank DR Peng (Paul) Wen for his guidance and feed-

back during the course of this project work. The author also thanks his employer,

TRITEC Electrical Controls and Automation PTY LTD, for support, both mone-

tary and time-off, during the course of this project work and all previous subjects

undertaken at the University of Southern Queensland towards the fulfillment of

the Bachelor of Engineering degree program. The author would also like to ex-

tend a very big thank you to his wife Karen Struthers and son Jordan Struthers

for both their patience and help throughout the studying process.

Craig Struthers

University of Southern Queensland

October 2005

Contents

Abstract i

Acknowledgments iv

List of Figures x

List of Tables xiii

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Statement of the problem . 1

1.3 Aims and Objectives . 2

1.3.1 Develop and test an automated pumping controller 2

1.4 Significance of Study . 3

1.5 Scope and Limitation of Study . 4

1.6 Dissertation Layout . 5

CONTENTS vi

Chapter 2 Literature Review 6

2.1 Current environment . 6

2.2 Overview of pumping system . 9

2.3 Operating Philosophy of a Pump 10

2.4 Variable Speed Drive (VSD) . 12

2.4.1 Purpose of a VSD . 12

2.4.2 Programming Software for the VSD 14

2.4.3 Serial Communications . 18

2.4.4 MODBUS Protocol . 19

2.5 WEB Server and Java Applications 20

2.5.1 WEB Server . 20

2.5.2 Java Applications . 21

2.6 Pump and Motor equations . 22

2.7 Current direction in pump pressure control 27

2.8 Summary . 28

Chapter 3 Methodology 29

3.1 Resource Planning . 29

3.1.1 Equipment . 29

CONTENTS vii

3.1.2 Facilities . 34

3.1.3 Computers . 34

3.1.4 Software . 34

3.2 Construction of Test Equipment 35

3.3 Programming of the VSD . 38

3.4 Programming of the Web-interface 39

Chapter 4 Results and Discussions 40

4.1 Introduction . 40

4.2 Data . 41

4.2.1 Open Head System Tests 41

4.2.2 Closed Head System Tests 42

4.2.3 Fixed Speed Tests . 42

4.2.4 Closed Loop System Tests with Pressure Transducer . . . 49

4.2.5 Closed Loop System Tests using Algorithm 51

4.3 Comparison of Pressure Transducer and Algorithm 53

4.4 WEB Server - Interface . 54

4.4.1 Software Development . 54

4.4.2 Connection and Testing 56

CONTENTS viii

4.5 Obstacles . 57

Chapter 5 Future Works 59

Chapter 6 Conclusions 61

6.1 Overview and Obstacles . 61

6.2 Pressure System Controlled without a Pressure Transmitter . . . 62

6.3 Real-time Monitoring and Control System 63

6.4 Final Summary . 63

References 65

Appendix A Project Specification 68

Appendix B Variable Speed Drive (VSD) Operating Manual 71

Appendix C MODBUS Protocol & VSD Registers 88

C.1 MODBUS Protocol . 89

C.2 VSD Registers . 93

Appendix D JAVA Program 99

Appendix E PDL Communications Software 116

E.1 Drivelink Interface . 117

CONTENTS ix

E.2 Drivecom Software . 130

Appendix F Vysta Screen List of the Algorithm Test Program 133

Appendix G DAVEY Pump Data Sheets 135

List of Figures

2.1 Illustration of existing Pressure Control System. 7

2.2 Illustration of proposed Pressure Control System. 8

2.3 Illustration of a typical Pump Curve. 10

2.4 Illustration of the components of a Centrifugal Pump. 11

2.5 Illustration of the system architecture of a VSD. 13

2.6 This is an example of a VYSTA Schematic Connection Diagram . 15

2.7 This is an example of VYSTA Schematic Oval Function Block Menu 16

2.8 This is an example of a Read Variable Dialog Box 16

2.9 This is an example of a VYSTA Screen Layout 17

3.1 Closed Loop Testing System PI Diagram 36

3.2 This Photograph is of Closed Loop Testing System’s Pump and

Pressure Transmitter . 36

3.3 This Photograph is of the Closed Loop Testing System 37

LIST OF FIGURES xi

3.4 This Photograph is of the VSD 37

4.1 Plot of Pressure and Motor Current with speed being varied for

0% - 100% with the pump outlet valve fully open 41

4.2 Plot of Pressure and Motor Current with speed being varied for

0% - 100% with the pump outlet valve fully closed 42

4.3 Plot of Pressure and Motor Current when speed is held at 30% . . 44

4.4 Plot of Pressure and Motor Current when speed is held at 40% . . 45

4.5 Plot of Pressure and Motor Current when speed is held at 50% . . 45

4.6 Plot of Pressure and Motor Current when speed is held at 60% . . 46

4.7 Plot of Pressure and Motor Current when speed is held at 70% . . 46

4.8 Plot of Pressure and Motor Current when speed is held at 80% . . 47

4.9 Plot of Pressure and Motor Current when speed is held at 90% . . 47

4.10 Plot of Pressure and Motor Current when speed is held at 100% . 48

4.11 Plot showing closed loop system Pressure - with pressure trans-

mitter feedback . 49

4.12 closed loop system Vysta Program - with pressure transmitter feed-

back . 50

4.13 Plot showing closed loop system Pressure - with pressure trans-

mitter feedback . 51

4.14 closed loop system Vysta Program - with pressure transmitter feed-

back . 52

LIST OF FIGURES xii

4.15 Illustration of Control System JAVA GUI 54

List of Tables

2.1 MODBUS protocol subset utilised by the PDL Elite Series VSD . 19

4.1 GUI Control Functions . 55

Chapter 1

Introduction

1.1 Introduction

This dissertation completes the final requirements for the project work undertaken

in the combined semester 1 and 2 units ENG4111 and ENG4112 Research Project

for the final year of the Bachelor of Engineering degree program at the University

of Southern Queensland. It follows the submissions of the Project Appreciation,

the Project Specification appendix A and an oral presentation conducted during

week one of September 2005 Residential School. It is the formal outcome of the

research, planning and completion of the project topic as chosen by the author.

1.2 Statement of the problem

Each year there are many more pumps in use than are actually being supplied

new (Hydraulic Institute, Europump & the U.S. Department of Energys (DOE)

Industrial Technologies Program 2004). Pumps are utilised in almost all as-

pects of industry and engineering with an almost endless assortment of pumping

equipment available ranging in size, type and material of construction. Research

1.3 Aims and Objectives 2

contributing to advancements in pumping technology can potentially create im-

mense benefits for a large proportion of the engineering and industry sectors.

With today’s focus on energy efficiency and sustainability, the current pumping

environment provides an ideal opportunity to modify current pumping systems

in order to achieve a more efficient process. One way of achieving this goal is

by reducing the number of components within the pumping system itself. Not

withstanding the environmental advantages that this would provide, the added

benefits of removing a component from a conventional pump system include ease

of installation, reduction in the labour content, cost savings, and improved relia-

bility of the system.

Currently, within the industrial control field there appears to be a deficiency in

products designed specifically for the control of pumping systems. This is par-

ticularly evident in the application of constant pressure in a hydraulics system.

The current industry standard is to perform this process with multiple units and

a pressure transmitter feedback. This project proposes to develop a pumping

controller able to maintain constant pressure within the hydraulics system with-

out utilising a pressure transmitter and controller. Thus removing the pressure

transmitter component of the pumping system.

1.3 Aims and Objectives

1.3.1 Develop and test an automated pumping controller

The specific aim of this project as stated in the Project Specification appendix A

is to develop and test an automated pumping controller, which is able to maintain

constant pressure in a hydraulics system. The main purpose of this undertaking

is to ensure that the controller will have no physical contact with the medium.

The term medium refers specifically to the pressure transmitter component of

the pumping system. In completing the functionality of this project, a real-

1.4 Significance of Study 3

time monitoring, configuration and control system software package is also being

developed. The purpose of this is to enable users to interface with the system

and achieve a greater level of interactivity and functionality through the use of a

web browser.

1.4 Significance of Study

This project was chosen in order to find a practical solution to achieving pressure

feedback in pumping applications with highly corrosive or dangerous mediums.

At present, this particular aspect of the pumping industry does not appear to be

adequately addressed. Although pressure transmitters are available for mediums

that are considered dangerous and corrosive the cost of this component is highly

prohibitive. Furthermore, replacement or calibration of the pressure transmit-

ter component can be difficult and again not cost effective under such severe

conditions.

Research into current initiatives reveals that the main developments in sensorless

pump control are being undertaken predominantly within the medical field. In

common with most elements of business, the medical industry has been challenged

to lower costs, improve efficiencies and comply with environmental requirements.

Demand for improved technology that enables people to enjoy healthy and pro-

ductive lives has provided opportunities for engineers to modify pumping systems

such as artificial hearts and blood pumps. This has led to such developments as

the sensorless control of pump flow. The objective being to remove the invasive

pressure transmitter component from within the human body.

Despite the obvious benefits to the medical industry however, the foundation of

this project is on the application of this technology within the industrial field.

1.5 Scope and Limitation of Study 4

1.5 Scope and Limitation of Study

The scope and limitations of the work undertaken for this project is as follows:

1. The work undertaken has been conducted only within the offices of TRITEC

Electrical Controls & Automation PTY LTD.

2. TRITEC Electrical Controls & Automation PTY LTD have contributed

resources to this project with the understanding that any developments

resulting from this study will remain and become the property of this com-

pany.

3. The project outcomes are applicable for pumping systems within the indus-

trial sector only.

4. The project focus is specifically towards single pump use rather than multi-

stage or multiple pump systems.

5. All items and equipment utilised in the project have been selected on the

basis of size and cost considerations.

6. The majority of work in this project is based largely on the author’s expe-

rience within this field as minimal research on this particular topic could

be identified.

7. The project is subject to limitations revealed through the process of under-

taking the project itself which are identified in 4.5.

1.6 Dissertation Layout 5

1.6 Dissertation Layout

This dissertation is organised into six chapters including a number of tables and

appendices. The outline of the chapters is as follows:

Chapter 1 provides an introduction to the dissertation, describing briefly the

current industry standard, the aims and objectives of the project, the sig-

nificance of this study and the scope and limitations of the project itself.

Chapter 2 encompasses a literature review providing background on the current

pumping environment, the operating philosophy of a pump system, the

Variable Speed Drive, the WEB Server and JAVA applications, pump and

motor equations and the current direction in pump pressure control.

Chapter 3 consists of the methodology undertaken to achieve the aims and ob-

jectives of the project. It provides technical specifications of the equipment

used and discusses the procedures undertaken to construct the test equip-

ment as well as those to program the VSD and WEB-interface.

Chapter 4 is highly significant in that it provides the results obtained from the

various testing undertaken. Analysis of the results is provided along with

discussion of the programming outcomes and obstacles encountered as part

of the project process.

Chapter 5 examines areas intended to be addressed in future works. It includes

the possibility of multiple VSD applications along with further fine-tuning

to the WEB server Graphical User Interface.

Chapter 6 provides a conclusion examining the extent to which the project aims

and objectives were achieved in relation to the data obtained and analysis

of the final program written.

Chapter 2

Literature Review

2.1 Current environment

Every year there are a far greater number of pumps in use than are actually

being supplied new (Hydraulic Institute et al. 2004). Pumps are utilised in al-

most all aspects of industry and engineering, and range widely from feeds to

reactors, distillation columns in chemical engineering to pumping storm water in

civil and environmental engineering. There is an almost endless assortment of

pumping equipment available ranging in size, type and material of construction

(Nelik 1999, Karassik, Krutzsch, Fraser & Messina 1986). With today’s focus on

energy efficiency and sustainability, the current pumping environment provides

an ideal opportunity to modify current pumping systems in order to achieve an

efficient process that utilises less components (Hydraulic Institute et al. 2004).

This project proposes to remove the pressure transmitter component of pump

pressure control in order to achieve the reduction of a component. In addition

to environmental advantages, the added benefits of removing the pressure trans-

mitter from a conventional pump system include ease of installation; overcoming

the requirement to have a pressure transmitter signal mounted in the field at a

remote distance from the pump; reduction in the labour content of installing a

2.1 Current environment 7

pressure transmitter and the associated cabling which sometimes can be a long

distance from the pump; cost savings; and improved reliability of the system as

the new system would limit the components prone to failure.

Currently, within the industrial control field there appears to be a deficiency

in products designed for the control of pumping systems. This is particularly

evident in the application of constant pressure in a hydraulics system. The current

industry standard is to perform this process with multiple units and a pressure

transmitter feedback. Figure 2.1 demonstrates how pressure control in a hydraulic

pumping system is currently achieved. Note in particular the use of a pressure

transmitter in conjunction with a controller and a Variable Speed Drive.

Figure 2.1: Illustration of existing Pressure Control System.

2.1 Current environment 8

This project proposes to develop a pumping controller able to maintain constant

pressure within the hydraulics system without utilising a pressure transmitter and

controller. Figure 2.2, represents the proposed pressure control system whereby

all the pressure control is performed within the Variable Speed Drive itself, the

WEB server is simply a remote user interface. In order to understand how pres-

Figure 2.2: Illustration of proposed Pressure Control System.

sure control will be achieved without using a pressure transmitter it is necessary

to have a broad understanding of how a pump works.

2.2 Overview of pumping system 9

2.2 Overview of pumping system

For the purposes of this project pumped material is described in terms of fluid. It

must be acknowledged that some pumps can manage solids, however, the material

must demonstrate an overall liquid behaviour to do so (Nelik 1999). Arguably the

most fundamental means of categorising pumps is by the way in which energy

is conveyed to the pumped fluid (Nelik 1999, Karassik et al. 1986). By this

method all pumps can be separated into two major categories, either kinetic or

positive displacement. Under kinetic displacement, the rotating element known

as the impeller creates a centrifugal force which ’impels’ kinetic energy to the fluid

moving it from pump suction to the discharge (Nelik 1999). Alternatively, positive

displacement uses the corresponding motion of the pistons or the mechanical

action of the gears or other moving parts to move the fluid from suction to

discharge (Nelik 1999). A pumping system essentially consists a supply or suction

side, a pump with a driver and a discharge or delivery side (Nelik 1999).

There are two parameters within the pump system that are of primary interest

to this project, that of pressure and flow. The term flow is used to describe

how much of the fluid must be moved. Pressure indicates how much hydraulic

resistance must be overcome to move the fluid (Nelik 1999). Given a situation

where there are zero losses it could be assumed that all of the input power would

be transferred into moving the flow against the given pressure, however, other

factors must be taken into consideration such as pump speed, viscosity of the

fluid and gravity which also have an effect on flow and pressure (Nelik 1999).

A pump curve is a useful tool to demonstrate the relationship between pressure

and flow. The following figure 2.3 illustrates a typical pump curve. The shape of

the curve varies depending on the type of pump used (Nelik 1999). Pump curves

such as this will be utilised within this project to provide information as to how

the pump performs with respect to speed and pressure within the system.

2.3 Operating Philosophy of a Pump 10

Figure 2.3: Illustration of a typical Pump Curve.

2.3 Operating Philosophy of a Pump

The concept of pressure and flow also provides a useful distinction between types

of pumps. For instance, a positive displacement pump uses gears or pistons

to move the fluid and does not impart velocity to the liquid it is pumping. It

is therefore described as a flow generator (Nelik 1999, Darby 2001).A centrifu-

gal pump alternatively is known as a pressure generator because its rotating

element transfers the energy to the fluid. The momentum transferred by the

impeller increases both kinetic energy and the momentum of the fluid. The sub-

sequent kinetic energy is then converted to pressure energy which is known as the

head (Nelik 1999, Darby 2001). The pressure developed by the pump depends

upon a number of factors including the speed, shape and size of the impeller

(Darby 2001). The following figure 2.4 provides an excellent illustration of the

components of a typical centrifugal pump. It can be seen that the pump consists

of three components, an inlet duct, an impeller and a volute. Fluid enter the inlet

duct (D). As the shaft (A) rotates, the impeller (B) also rotates. The impeller

2.3 Operating Philosophy of a Pump 11

Figure 2.4: Illustration of the components of a Centrifugal Pump.

consists of a number of blades that project the fluid outward when rotating. The

centrifugal force gives the fluid a high velocity. The moving fluid passes through

the pump case (C) and into the volute (E). The volute chamber has a uniformly

increasing area which decreases the fluid’s velocity, which in turn converts the

velocity energy into pressure energy (Davidson 2002).

Not withstanding the fact that the centrifugal pump is one of the most widely used

pumps for transferring liquids, it also has excellent ability to control pressure, is

quiet in comparison to other pumps, has relatively low operating and maintenance

costs, takes up minimal floor space and can create a uniform, non pulsating flow

(Darby 2001, Davidson 2002). For these reasons the centrifugal pump has been

chosen for the purposes of this project.

2.4 Variable Speed Drive (VSD) 12

2.4 Variable Speed Drive (VSD)

2.4.1 Purpose of a VSD

The last part of the pumping system which has relevance to this project is the

Variable Frequency Drive or VFD which is now more commonly known as a

Variable Speed Drive or VSD. A VSD is an electronic controller that alters the

speed of an electric motor by means of modulating the power to that motor (Five

Star Electric Motors 2005). The VSD maintains constant pressure in a conven-

tional pumping system by receiving a signal from a pressure transmitter, and

corresponding the motor output relative to the feedback from the transmitter

(Five Star Electric Motors 2005). VSDs provide a number of advantages over

traditional methods of constant pressure control which have been taken into con-

sideration as part of this major project. Not only do VSDs cost less than other

alternatives to pressure control such as water towers for instance but they also

provide accurate pressure control; minimise water leakage; provide an efficient

delivery of power to the motor; are easily upgradeable; can increase pump life;

and can provide considerable energy savings (Five Star Electric Motors 2005).

Furthermore, and most significantly, a VSD allows for rapid adjustment of small

variations which greatly enhances its value to this project (Hydraulic Institute

et al. 2004). The VSD chosen for this project is a Microdrive Elite Series man-

ufactured by PDL Electronics. This particular VSD has the capacity to run a

user program in addition to its own operating system. Figure 2.5 illustrates the

architecture of the VSD utilised in this project. Note that it has a display board

which communicates to the main control board. This display board is capable

of being utilised as a user interface for entering parameters and controlling the

VSD.

2.4 Variable Speed Drive (VSD) 13

Figure 2.5: Illustration of the system architecture of a VSD.

2.4 Variable Speed Drive (VSD) 14

2.4.2 Programming Software for the VSD

The VSD has a user programming software which was developed by PDL called

Vysta. This software is a graphical icon based connection software. The VSD

has 30 registers that can be used for a user application written in Vysta. The

PDL Microdrive Elite Series are primarily motor controllers. Therefore any pro-

gramming that is done in Vysta must not interfere with their ability to control

the motor (Vysta Virtual Automation Programming Platform Version 2.0 - Help

File 2002). It is important that if the standard motor control functions like start-

ing, stopping and fault resetting for instance are to be disabled within the motor

controller, then these commands must be provided in the Vysta program (Vysta

Virtual Automation Programming Platform Version 2.0 - Help File 2002). The

Vysta program execution cycle occurs at 4mS. The inputs and outputs of each of

the function blocks are updated each cycle (Vysta Virtual Automation Program-

ming Platform Version 2.0 - Help File 2002). As a result it is imperative that the

input of a function block must not in any way be dependent on its own output

(Vysta Virtual Automation Programming Platform Version 2.0 - Help File 2002).

In order to program Vysta, the use of the Schematic Editor is required in addition

to the screen lists and it is relevant to the objectives of this project to possess a

broad understanding of both.

2.4 Variable Speed Drive (VSD) 15

The Schematic

The Schematic Editor enables a function block based control configuration to be

assembled as can be seen in figure 2.6. Function blocks are selected from Vysta’s

Figure 2.6: This is an example of a VYSTA Schematic Connection Diagram

Menu and interconnected using click and drag. The menu can be seen in figure

2.7.

Each Vysta program may only have one Schematic associated with it. A wide

range of standard logic and process control function blocks are available such as

PID controllers, comparators, logic gates and arithmetic functions for example.

A function block may be selected from the Menu multiple times (Vysta Virtual

Automation Programming Platform Version 2.0 - Help File 2002). Each function

block has its own configuration dialog box(es) for the various parameters associ-

ated with that function block as can be seen in figure 2.8.

It is possible to access Standard Elite Series system variables, however, custom

2.4 Variable Speed Drive (VSD) 16

Figure 2.7: This is an example of VYSTA Schematic Oval Function Block Menu

Figure 2.8: This is an example of a Read Variable Dialog Box

variables can be created for control purposes (Vysta Virtual Automation Program-

ming Platform Version 2.0 - Help File 2002). Variable values are both displayed

and entered by way of the motor controller’s Display Unit. When writing a Vysta

program that will run on a PDL AC motor controller, the Schematic Program is

required to interface with some of the standard motor controller functions (Vysta

Virtual Automation Programming Platform Version 2.0 - Help File 2002). The

Standard Program function block is used once in each Vysta program’s Schematic

to select the control source for the various functions (Vysta Virtual Automation

Programming Platform Version 2.0 - Help File 2002). Understanding the method

by which the VSD is programmed is critical to the overall project objectives. The

programming of the VSD is highly significant in that it is the method by which

the function of control (normally performed by the pressure transmitter) will be

achieved in the new pump control system. As mentioned previously the program-

ming of Vysta requires not only the use of a Schematic Editor but the Screen

2.4 Variable Speed Drive (VSD) 17

Lists as well.

User Defined Screens

The PDL Microdrive Elite Series VSD has a two line Liquid Crystal Display

(LCD) with a width of 16 characters (Vysta Virtual Automation Programming

Platform Version 2.0 - Help File 2002). Figure 2.9 shows the layout of the screen

menus that have been programmed for this project.

Figure 2.9: This is an example of a VYSTA Screen Layout

The Display Unit uses this Screen List when the program is active within the

2.4 Variable Speed Drive (VSD) 18

VSD. By using the Display Unit buttons, the various screens can be accessed and

displayed. Each screen can be used to display, for data entry or for parameter

adjustment (Vysta Virtual Automation Programming Platform Version 2.0 - Help

File 2002). The Screen List is in the form of a tree structure with sub-screens in a

branch known as children of the parent screen. The top screen in the hierarchy is

the status screen which contains special motor controller related information and

appears on the top line of the Display Unit while the other screens appear on the

bottom line (Vysta Virtual Automation Programming Platform Version 2.0 - Help

File 2002). Within the Screen List it is possible to select one or more screens and

perform typical editing operations for example cut, copy, paste, delete, insert and

edit to name a few. A Vysta program may contain multiple Screen Lists which

can be used to provide a multi-language support or to provide a function-specific

Screen List or a short-menu function (Vysta Virtual Automation Programming

Platform Version 2.0 - Help File 2002).

2.4.3 Serial Communications

The PDL Microdrive Elite Series contains built-in Serial Communications cir-

cuitry which enables them to be linked onto a MODBUS communications network

(Vysta Virtual Automation Programming Platform Version 2.0 - Help File 2002).

The two Serial Communications standards available in this Series are RS232 and

RS485. The RS485 network has a Multi-drop capability, allowing up to 240 slave

units to be linked to the one MODBUS master controller. The RS232 system

permits the connection of one unit only on a line. The PDL VSD acts as a slave

peripheral when connected on a MODBUS system. This means that the VSD

does not initiate MODBUS messages, this is performed by a MODBUS master

which in this project is the WEB server. The VSD can be controlled and/or

monitored as a slave unit from the WEB server (Vysta Virtual Automation Pro-

gramming Platform Version 2.0 - Help File 2002). All the controls, parameters,

and modes available on the VSD are available by using the MODBUS Serial

2.4 Variable Speed Drive (VSD) 19

communications. In addition to the functions available via the Display Unit of

the VSD, the MODBUS master can monitor and control a process by using the

VSD’s control board inputs and outputs (Vysta Virtual Automation Program-

ming Platform Version 2.0 - Help File 2002). The Vysta variables and associated

functionality of the Vysta program can also be fully integrated into the MODBUS

serial communications network. The Elite serial communications uses the hard-

ware standard RS232 and RS485 for the physical link and the industry standard

MODBUS protocol for the communications protocol (Vysta Virtual Automation

Programming Platform Version 2.0 - Help File 2002).

2.4.4 MODBUS Protocol

MODBUS is an open protocol which can be communicated over RS232 or any

other serial connection (Vysta Virtual Automation Programming Platform Ver-

sion 2.0 - Help File 2002). This project is using MODBUS to communicate from

the WEB server to and from the VSD. The serial communications protocol of

the Elite Series complies with the industry standard MODBUS protocol (Vysta

Virtual Automation Programming Platform Version 2.0 - Help File 2002). The

VSD supports a subset of the complete MODBUS function set listed in figure

2.1. MODBUS Function 3 and 16 refer to Holding Registers with addresses of

Table 2.1: MODBUS protocol subset utilised by the PDL Elite Series VSD

Function Description

3 Read Multiple Holding Registers

16 Force Multiple Holding Registers

the form 4XXXX (Vysta Virtual Automation Programming Platform Version 2.0

- Help File 2002). The VSD System variables have MODBUS addresses already

assigned and these are tabulated in Appendix C, which is the System Variable

Data Table (Vysta Virtual Automation Programming Platform Version 2.0 - Help

2.5 WEB Server and Java Applications 20

File 2002).

2.5 WEB Server and Java Applications

2.5.1 WEB Server

The WEB server chosen for this project is a device which has a primary role of

converting from ethernet to serial. A Serial Device allows for the ’transmission

of intelligent information from computer to computer, or from computer to a

peripheral, one bit at a time’ (Angelfire 2005). Serial communications was and

is the standard communications used within the industrial field. Serial devices

can be categorised as, input only devices, output only devices and input/output

devices (Web Enabling Your Serial Device 2002). Input only devices include mea-

surement and monitor devices such as temperature gauges, weather stations and

heart monitors. An output device include displays like sign boards and printers.

Input/output devices include controls and interactive devices like robotics, PLCs

and terminal sessions (Web Enabling Your Serial Device 2002). A technician in-

teracts with these devices typically from another ’hard wired’ serial device such

as a computer or controller. With recent technological advances it is now possible

to interact with these devices from a remote location using a WEB browser over

an Ethernet network (Web Enabling Your Serial Device 2002). It is now possible

to access low cost hardware to convert the RS232, RS422, or RS485 serial port

into an Ethernet interface. This can be accessed by any Internet Protocol (IP)

based application such as a WEB browser over an IP network from any place

in the world (Web Enabling Your Serial Device 2002). The serial data is simply

enclosed into TCP packets, which can travel through any IP based network. The

hardware which enables this process is known as a Device Server (Web Enabling

Your Serial Device 2002). Device Servers are inherently network aware. (Web

Enabling Your Serial Device 2002). This means that they have the ability to add

2.5 WEB Server and Java Applications 21

functionality like web services, e-mail and network diagnostics (Web Enabling

Your Serial Device 2002). Although the functionality of the device cannot be

changed, it is possible to enhance the user interface. Regardless of the device

functionality, a method to query and or control the device over the network is

required (Web Enabling Your Serial Device 2002). To perform the required pro-

gramming a browser-supported language like JAVA is needed. In order to connect

to the Device Server with a JAVA applet communicating with a serial device at-

tached to the Device Server requires familiarity with JAVA programming as well

as a JAVA compiler (Web Enabling Your Serial Device 2002). Understanding the

basic principles of JAVA is crucial to achieving the aims of this project.

2.5.2 Java Applications

The advent of the Internet and the World Wide Web fundamentally transformed

the computing industry into what it is today. In today’s world nearly all PCs are

connected to the Internet. As part of this transformation a new way to program

was developed which is known as JAVA (Schildt 2005). JAVA is the superior

language of the Internet and is a critical tool for programmers worldwide.

JAVA has had a profound effect on programming. In a network, there are two

categories of objects that can be transmitted between the server and a PC, that

is passive information and active programs. JAVA enables both types of objects

to be transmitted (Schildt 2005). An applet is a special form of JAVA program

that can be transmitted over the Internet and automatically executed by a JAVA

compatible WEB browser. A JAVA applet can be described as an intelligent

program unlike for instance an animation or media file. In effect, this means it

is a program that can respond to user input (Schildt 2005).

As a result of JAVA’s programming abilities as well as its compatibility with

the Lantronix embedded Web Server it is the programming tool chosen for this

project. In order to compile and run JAVA programs it is essential to acquire a

2.6 Pump and Motor equations 22

JAVA development system. The one chosen for this project is a JAVA Develop-

ment Kit available from Sun Microsystems (Schildt 2005).

2.6 Pump and Motor equations

The following equations have been selected as they provide a useful insight into

how the parameters within a pump system are interrelated. For this reason these

initial equations have been in the development of the mathematical model which

will be used to develop a control algorithm later in the project.

The following equation (2.1) known as Bernoulli’s equation is sourced from (Darby

2001). It provides a relationship between the work applied to the fluid by a

pump and the difference in pressure, with respect to the density of the fluid.

Furthermore it is also shown that the acceleration due to gravity and the product

of fluid pressure is also equal to the work done by the pump.

− w =
∆P

ρ
= gHp (2.1)

Where:

−w= Work by the Pump on the fluid

P = Pressure

ρ = The Density of the fluid

g = acceleration due to Gravity

Hp = Fluid pressure or Pump Head

Due to a pump not being 100% efficient, energy delivered from the motor is lost

due to losses such as friction and heat. Equation (2.2) demonstrates that pump

efficiency is equal to the work done by the pump divided by the work put into

2.6 Pump and Motor equations 23

the pump by the motor (Darby 2001).

ηe =
−w

−wm

(2.2)

Where:

ηe = Pump Efficiency

−w = Work by the Pump on the fluid

−wm = Work put into the Pump by the Motor

The following equation (2.3) assists in correct pump selection in that it also

provides consideration of system flow rate and determines the required brake

horsepower (HP) (Darby 2001).

HP = −wmm =
∆PQ

ηe

=
ρHpQ

ηe

(2.3)

Where:

−wm = Work put into the Pump by the Motor

m = is the momentum of the motor

P = Pressure

Q = the flowrate of the fluid

ηe = Pump Efficiency

ρ = The Density of the fluid

Hp = Fluid pressure or Pump Head

The following equation (2.4)provides the ability to relate power to torque and

angular velocity which in turn is also related to flow and head pressure (Darby

2001).

2.6 Pump and Motor equations 24

HP = Γω =
ρHpQ

ηe

(2.4)

Where:

Γ = Torque applied to the driving shaft of the pump

ω = angular velocity of the driving shaft

Q = the flowrate of the fluid

ηe = Pump Efficiency

ρ = The Density of the fluid

Hp = Fluid pressure or Pump Head

From Equation (2.5) it can be seen that the radius of the impeller of the pump

can now be related to flow and torque (Darby 2001).

Γ = mωRi
2 = ρQωRi

2 (2.5)

Where:

Γ = Torque applied to the driving shaft of the pump

m = is the momentum of the motor

ω = angular velocity of the driving shaft

Ri = the radius of the impeller

ρ = The Density of the fluid

Q = the flowrate of the fluid

With the angular momentum of the fluid entering the eye of the impeller being

neglected, it can be shown from equations (2.4) and (2.5) and solving for Hp,that

we can obtain an equation for Head Pressure which is equation (2.6)(Darby 2001).

2.6 Pump and Motor equations 25

Hp
∼=

ηeω
2Ri

2

g
(2.6)

Where:

Hp = Fluid pressure or Pump Head

ηe = Pump Efficiency

ω = angular velocity of the driving shaft

Ri = the radius of the impeller

g = acceleration due to Gravity

In order to calculate the power delivered to the pump shaft utilising the flow of

current to the motor is as per Equation (2.7). The term power factor determines

how much of the total power input to the motor is transferred to the pump shaft

(Chaurette 2005). Likewise, this applies to motor efficiency.

Ppump(Hp) =
1.34

1000

√
3V (V olts)A(Amps)ηmotorP.F. (2.7)

Where:

Ppump = Power consumed at the pump shaft in Hp

V = Motor Supply Voltage

A = Motor Supply Current

ηmotor = Motor Efficiency

P.F. = Power Factor

From manipulating the above equations, it is possible now to derive a direct

relationship of the pump parameters, which will in turn have a direct physical

relationship to the electrical characteristics of the motor driving the pump. This

is one of the foundation tasks of this project.

2.6 Pump and Motor equations 26

The following equations, equation (2.8), equation (2.9) and equation (2.10) are

the most basic of pump equations showing the relationship between Pump Speed,

Flow, Head (pressure) and Power. These three equations are of most interest to

this project with the equations substituted and transposed we end up with an

equation which has head pressure related to power within the system (Australian

Pump Manufacturers Association Ltd 1987).

(
Q1

Q2

)
=
(

N1

N2

)
(2.8)

Where:

Q = Flow in the System

N = Speed of the Pump

(
H1

H2

)
=
(

N1

N2

)2

(2.9)

Where:

H = Head Pressure in the System

N = Speed of the Pump

(
P1

P2

)
=
(

N1

N2

)3

(2.10)

Where:

P = Power of the Pump

N = Speed of the Pump

2.7 Current direction in pump pressure control 27

The following equation (2.11) is the resultant equation of such a substitution

and transposition. This equation lends itself to the application required in this

project and will be utilised within the test stages of this project.

H1 =
(

P1

P2

) 2
3

H2 (2.11)

Where:

P = Power of the Pump

H = Head Pressure in the System

2.7 Current direction in pump pressure control

Initial investigation into similar research as intended by this project revealed lim-

ited advancements in the area of pressure control without the use of a pressure

transmitter. Interestingly however, examples of similar research seemed to be

primarily concentrated within the medical industry. The primary reason for this

appears to be the need to avoid invasive extra components such as pressure trans-

mitters within the human body (Trinkl, Mesana, Havlik, Mitsui, Demunck, Dion,

Candelon & Monties 1991, Minghua & Longya 2000b). One example that is of

interest to this project is a ventricular assist device which can be permanently

implanted within the human body. The computer modeling of the interaction of

the electric motor and the blood pump within the circulatory system has paral-

lels with objectives of this project (Minghua & Longya 2000a). It must be noted

however, that this development is on a much smaller scale (ie physical flow and

pressure rates) of the pump than is anticipated within this project. In addition,

the application is highly specialised. Along similar lines is a project based upon

non-invasive measurements of blood pressure and flow utilising a centrifugal pump

(Kitamura, Matsushima, Tokuyama, Kono, Nishimura, Komeda, Yanai, Kijma &

2.8 Summary 28

Nojin 2000).

2.8 Summary

It may appear that a large proportion of the latter half of the Literature Review

is devoted to the technical specifications of the VSD, however this section is

crucial to understanding how the removal of the pressure transmitter component

from the pumping system can realistically be achieved. Certainly the overview

of the current environment and the pumping system provides a useful foundation

for understanding what are essentially the basic elements of the project, that

is; what is the current industrial situation in relation to the project; what is a

pumping system; how does a centrifugal pump operate; what is the role of the

pressure transmitter in terms of pressure control. The discussion of the VSD

and the WEB server and JAVA applications however is a crucial element in the

process that has been undertaken to complete the overall aims and objectives of

the project. Furthermore, the pump and motor equation section, again although

heavy in theory provides an essential foundation to the relationships between

pressure, motor current and speed that are examined in great detail within the

Chapter 4.

Chapter 3

Methodology

3.1 Resource Planning

3.1.1 Equipment

Following is the equipment that has been utilised for this project. Each item has

been carefully chosen for its suitability for the purpose of the project. Although

much of the theoretical background of this equipment has been provided within

the Literature Review, this section provides the technical specifications and the

reasoning behind the selection of the specific items utilised.

The Centrifugal Pump

As discussed in the Literature Review a centrifugal pump has been chosen for

this project. This form of pump consists of a shaft mounted impeller(s) rotating

unidirectionally within a casing. The liquid enters the impeller eye and acquires

energy in the form of velocity as it passes through the impeller passages. The

velocity head is converted into pressure head by the Volute which directs the liquid

3.1 Resource Planning 30

from the outer perimeter of the impeller to the pump discharge (Australian Pump

Manufacturers Association Ltd 1987).

There are 3 main types of Impellers

1. Radial Flow Impellers

2. Mixed Flow Impellers

3. Axial Flow Impellers

For this project the type of pump chosen is a Centrifugal pump with a Radial

Flow Impeller driven by a suitably sized Squirrel cage induction motor. The

pump is a manufactured by Davey Pumps Australia refer to appendix G.

The specifications for the pump are as follows:-

Manufacturer : Davey Pump Australia PTY LTD

Type : Centrifugal Pump

Model No. : ISO CM 50x32-200

Impeller Size : 200mm

Motor Power : 1.1KW

Voltage : 240VAC Three Phase

No. of Poles : 4

Speed : 1450RPM

Connection Type : Delta

Variable Speed Drive

Various brands of VSDs were considered, with final selection being a PDL Micro

Drive Elite refer to appendix B. The other VSDs considered include Danfoss,

3.1 Resource Planning 31

Telemechanique, Moeller and ABB, all of which were capable of controlling the

speed of the motor but the PDL drive had the added feature of being able to write

user software within the VSD thus eliminating the need for an additional con-

troller. The PDL drive uses an icon function block based programming language

called VYSTA which has been developed by PDL.

A Variable Speed Drive (VSD) is used to control the speed of a three phase squirrel

cage induction motor. The way this is achieved is to modify the frequency of the

supply to the motor, as this is the only non physical element that can be modified

in order to change the speed of the motor. From Equation (3.1) the above can

be seen to be the case.

N =
120f

P
− S (3.1)

N = Speed in RPM

f = Frequency of Motor Supply

P = Poles of The Motor

S = The Slip of the Motor (The difference from synchronous Speed)

The current method of control utilises VVVF which stands for Variable Voltage

Variable Frequency. This method of control also varies the voltage in proportion

with the Frequency so that the V/HZ ratio is kept constant refer to (PDL 2002).

The specifications for the VSD are as follows:-

Manufacturer : PDL Electronics NZ

Model No. : ME-12

Amps : 12A

Voltage Input : 240VAC Single Phase

Voltage Output : 240VAC Three Phase

3.1 Resource Planning 32

Web Server

A Lantronix Din Rail mounted Serial to Ethernet convertor / Web server was

selected. This unit has the ability to contain a Web page and also HTML links

to other servers and web sites if required. The unit can also be programmed to

perform calculations and control functions for the VSD system as well as be able

to be configured as an HMI (Human Machine Interface) from the VSD system to

the real world.

Manufacturer : Lantronix

Model No. : LA-XSDRIN-01 XPress DR-IAP

Casing : DinRail mounted case

Communications Type : (RS-485 or RS-422 or RS-232) to Ethernet

Voltage Input : 24VDC

Pressure Transmitter

A pressure transmitter was utilised so that the pressure that the pump delivers

for various speeds can be recorded. This enables calculations of the relationship

between motor current and system pressure which will be required for the final

system to be achieved. The Pressure transmitter was sized so that it could

handle the highest deliverable pressure by the pump which was 17.5 metres of

head which can be converted to pressure by using equation (3.2) as follows. By

substituting the Head and the Specific Gravity (SG) of the water at 4 Degrees C

of 1 a maximum pressure of 171.5 Kpa is achieved. The selected unit is capable

of reading this range and is an off the shelf industrial unit.

3.1 Resource Planning 33

p = 9.8×H × SG (3.2)

p = Pressure in Kpa

H = Head in metres

SG = Specific Gravity of Liquid

Manufacturer : Schneider Electric

Model No. : XMLE010U1C21

Casing : 40mm cylindrical case

Voltage Input : 24VDC

Output Signal : 4-20mA (current loop passed through a 500 Ohm resistor

to convert the signal into a Voltage signal)

Test Tanks

The Test Tank used is to be a 500 litre poly tank with a 2 inch outlet valve which

will feed the pump and a return line which will be fed back into the top of the

tank so that the system can maintain constant circulation

Manufacturer : Pine Crest Products

Model No. : ute500tnk

Capacity : 500 Litres

Material : polymer plastic

3.1 Resource Planning 34

Piping and Fittings

Various fittings and lengths of pipe required to make the pump circuit include

pipe work that starts at 2 inch (51mm) into the intake of the pump and one and

one quarter inch (32mm) from the pump discharge through the valve and back

to the tank.

3.1.2 Facilities

This Project was undertaken at the offices and workshops of Tritec Electrical

Controls And Automation PTY LTD.

3.1.3 Computers

The computer that has been used for this project is a TOSHIBA Satellite Pro

and the specifications are as per the following list.

Manufacturer : Toshiba

Model No. : PT831A-19MW8

Processor : Intel Pentium M

Memory : 512MB of Ram

CPU Speed : 1.69GHz

Hard Disk Size : 60GB

3.1.4 Software

The Computer Software to be utilised throughout this project is as per the fol-

lowing list:-

3.2 Construction of Test Equipment 35

Operating System : Windows XP Professional version 2002

: service pack 2

PDL VSD Communications : PDL Drivelink Version 2.7

PDL Parameters Setup : PDL Drivecom Version 3

PDL Programming : PDL VYSTA Version 2.0.0.0

JAVA Compiler : Sun Java version 7

Web Server Configuration : Lantronix Device Installer

Web Pages Setup : WEB2COB a DOS Application (converts Web

: pages to COB files which can be downloaded

: to the web server)

Documentation : LATEX

General Usage : Standard Windows and Microsoft Software

: packages

3.2 Construction of Test Equipment

The culmination of the previous specified equipment resulted in the final test

product as can be seen from figure 3.1. The figure shows a 500 litre water tank

with the outlet of this tank feeding into the pump. The outlet of the pump feeds

into the tank creating a closed loop system. On the output of the pump is installed

a pressure transmitter. This pressure transmitter has then been connected back

into the VSD and the VSD is then monitored for pressure, speed and motor

current readings. Figures 3.2, 3.3 and 3.4 show photo’s of the actual test

equipment used. It differs from the PI Diagram in figure 3.1 in that a valve has

not been installed in the outlet of the tank. This was not installed as the tank

and system did not require the ability of isolation of the tank outlet for servicing

as the system’s sole purpose was for testing and testing only.

3.2 Construction of Test Equipment 36

Figure 3.1: Closed Loop Testing System PI Diagram

Figure 3.2: This Photograph is of Closed Loop Testing System’s Pump and Pres-

sure Transmitter

3.2 Construction of Test Equipment 37

Figure 3.3: This Photograph is of the Closed Loop Testing System

Figure 3.4: This Photograph is of the VSD

3.3 Programming of the VSD 38

3.3 Programming of the VSD

Programming of the VSD involved utilising three softwares written and supplied

by PDL Electronics. The first software used was Vysta which is the actual pro-

gramming language that provides the platform to write the control applications.

The control applications are for both the conventional control system for testing

in addition to the end product of the control algorithm that does not require the

use of a pressure transmitter. Subsection 2.4.2 explained how the programming

software Vysta was used and how to configure and utilise it’s capabilities.

The next software that is used is PDL Drivelink Version 2.7. This software is

utilised to download the compiled Vysta program into the VSD. It also has the

ability to delete the Vysta program in the VSD and return the VSD to its original

configuration. This was required to be done throughout the project during the

various testing stages. Appendix E section E.1 contains the operating instruc-

tions for using this software. It is imperative that this software is understood

thoroughly so as correct operation of the VSD is achieved. This is true for all of

the software utilised during the duration of this project.

The last software that is required to be used is PDL Drivecom Version 3. This

software is used to read and write system variables within the VSD. Appendix

E section E.2 shows an overview of this software. This software was used to set

up variables used in the Vysta programs that have been written to achieve the

end result of the project. Utilising this software enabled testing of the Vysta

programs without writing additional display screens for the entering and viewing

of variables within the Vysta programs.

3.4 Programming of the Web-interface 39

3.4 Programming of the Web-interface

In order to develop the user interface, various types of WEB servers were investi-

gated. A Lantronix unit was chosen. It is 24 volt DC powered and has the ability

to communicate from Ethernet to RS-232, RS-422 or RS-485 all within the one

unit. The unit has the ability to run user software and web pages. These user

applications are required to be programmed in JAVA. The added benefit of using

this type of device is that any person within an organisation who has access to

their LAN or WAN can view and adjust parameters without the cost of further

software other than windows explorer. The WEB page for the WEB server was

written in JAVA and then compiled into an applet which was then implemented

by a HTML document. Once the HTML document was written and tested, all

the application programs and the HTML document were then downloaded to

the WEB server via a DOS application WEB2COB.EXE which was supplied by

Lantronix for this purpose. Once the WEB server has been downloaded to the

application it can be accessed by simply typing in the IP address of the WEB

server and the WEB page will then be displayed.

Chapter 4

Results and Discussions

4.1 Introduction

A program was written in Vysta which ramped the speed of the drive up and then

held it at maximum speed and then ramped it down again. This was done repet-

itively so that a pressure, speed and motor current relationship in an open head

and a closed head system could be obtained. Upon completion of the above, fur-

ther fixed speed tests were carried out and the results are recorded in the following

sections. When these results were recorded and analysed a control algorithm was

then developed and tested. This control algorithm was then compared with the

conventional control system in order to determine the extent to which the project

aims have been achieved.

4.2 Data 41

4.2 Data

4.2.1 Open Head System Tests

The first test that was conducted was the Open Head System Test. The reason for

conducting this test and the Closed Head Test was to obtain an indication as to

how the system would respond in terms of pressure and motor current when the

speed was varied. Figure 4.1 illustrates the motor current and pressure variance

in an open head system when the speed of the pump is varied from 0% to 100%

and vice versa. It shows that the motor current at 3.75 amps at full speed results

in a pressure of approximately 155 Kpa. This indicates that the motor current is

linearly proportional to both speed and pressure in the Open Head System. The

next test conducted was identical to this test apart from the output valve of the

pump being fully closed in order to achieve a closed head system.

Figure 4.1: Plot of Pressure and Motor Current with speed being varied for 0% -

100% with the pump outlet valve fully open

4.2 Data 42

4.2.2 Closed Head System Tests

Figure 4.2 illustrates the closed head pressure. This graph shows that the motor

current drops down to approximately 3 amps whilst the pressure increases up to

200 Kpa or thereabouts. This data indicates that there are pressure limitations

within the system. These limitations are that once the pressure of approximately

165 Kpa is reached, then the motor current begins to decrease until such time

that a minimum current of approximately 3 Amps is reached and maintained.

This current of 3 Amps will be held at this level as long as the motor pressure is

greater than the 165 Kpa.

Figure 4.2: Plot of Pressure and Motor Current with speed being varied for 0% -

100% with the pump outlet valve fully closed

4.2.3 Fixed Speed Tests

After conducting the initial Open and Closed Head Tests, it was determined

that further tests were required in order to better understand the relationships

4.2 Data 43

between system pressure, pump speed and motor Amps.

The following tests were designed to identify the response of pressure and motor

current only with a fixed speed. The speed initially was set at 30% due to the

fact that a centrifugal pump of the type utilised, does not start moving the fluid

until this point or at greater speed. Therefore, the lower speeds are irrelevant for

these tests.

In figures 4.3 to 4.10 there are three individual plots with respect to time. These

are as shown the plots with the units of amperes (A) for VSD AMPS, Kilo Pascals

(Kpa) for VSD ANALOG IN1 and percentage of full speed (%) for VSD SPD.

The data was obtained using a SCADA package called CITECT which used

MODBUS to communicate with the VSD to record the data in the plots. The

speed of the VSD was first set to 30% and then the outlet valve on the pump

was turned slowly from fully opened to the fully closed position and the data was

then recorded.

Figure 4.3 shows that the effect of closing the valve is very minimal as the pump

is not running at a high enough velocity to move the fluid it is pumping.

Figure 4.4 shows that when the pump is running at 40% speed there is also

minimal if any change in the motor current due to the position of the valve. This

is also the case for figure 4.5 which shows the speed set at 50%.

From figure 4.6 it can be seen that the speed is now set at 60% and that the motor

current is just beginning to deflect when the change in valve position occurs. Note

in each of these initial test data, that the pressure within the system represents

the position of the valve. The higher pressure being the closed position of the

valve and subsequently the lower pressure being the fully open position.

From figure 4.7 it can be seen that as the speed of the system increases then the

change in motor current with respect to pressure is greater and shows a more

obvious change.

4.2 Data 44

From figure 4.8 the motor current is of a lot larger swing than corresponding tests

where the speed was less.

From figures 4.9 and 4.10 both show a considerably greater change in motor

current in relation to pressure.

Figure 4.3: Plot of Pressure and Motor Current when speed is held at 30%

4.2 Data 45

Figure 4.4: Plot of Pressure and Motor Current when speed is held at 40%

Figure 4.5: Plot of Pressure and Motor Current when speed is held at 50%

4.2 Data 46

Figure 4.6: Plot of Pressure and Motor Current when speed is held at 60%

Figure 4.7: Plot of Pressure and Motor Current when speed is held at 70%

4.2 Data 47

Figure 4.8: Plot of Pressure and Motor Current when speed is held at 80%

Figure 4.9: Plot of Pressure and Motor Current when speed is held at 90%

4.2 Data 48

Figure 4.10: Plot of Pressure and Motor Current when speed is held at 100%

From the initial tests that were performed it is evident that below 60% of motor

speed it would be virtually impossible to control pressure in the pumping system

by modeling the motor current. This is due to the fact that the motor current

does not vary with the change in pressure. This provides a distinct limitation to

the project in that the pump selected for the system must have its pump curve

appropriately matched to the duty and conditions. From the results obtained thus

far it is evident that the control algorithm that is required to control pressure in a

pumping system without the use of a pressure transmitter will require the system

to operate around a known speed which can be calculated to approximately match

the pressure required in the system. At this point, due to the test data revealing

that the actual motor current decreases as the system pressure increases, the

information can be used as a feedback which will be used to finely adjust the

speed of the pump to control more closely the required pressure setpoint.

4.2 Data 49

4.2.4 Closed Loop System Tests with Pressure Transducer

The closed loop control of a conventional system with the use of a pressure trans-

mitter is achieved by utilising the internal PID capabilities of the VSD which has

an output as shown in figure 4.11. It can been seen that the pressure is controlled

constantly about the required setpoint of 65Kpa. From this data the best setpoint

to use for the Closed Loop System using the Control Algorithm was to be 65Kpa

as it can be seen from the conventional system, control is possible. Utilising this

Figure 4.11: Plot showing closed loop system Pressure - with pressure transmitter

feedback

data a program was created to test the conventional system. This program can

be seen in figure 4.12. This program makes use of the built in PID Function

Block within Vysta. The PID function block has two input variables which are

connected to the left of the function block. The top variable is the setpoint that is

being controlled to and the bottom variable is the feedback reference. The feed-

back reference is from the pressure transmitter and is connected into the analog

input of the VSD. This input is then scaled from 0 - 750 Kpa as this is the range

4.2 Data 50

of the pressure transmitter (the connection for the analog input on the VSD can

be seen in appendix B page 22). During this test the setting of the setpoint and

controlling of the drive was preformed by entering and controlling from the VSD

local display screen. The schematic shown in figure 4.12 provides the foundation

for the final control algorithm VSD program.

Figure 4.12: closed loop system Vysta Program - with pressure transmitter feed-

back

4.2 Data 51

4.2.5 Closed Loop System Tests using Algorithm

Testing of the system was carried out using the basis of the control algorithm

which has been derived from the tests carried out earlier and the understanding

of pumps that has been gained thus far through this project. Equation (2.11)

was utilised within this control algorithm with the addition of operating limits

set that allow the VSD to operate between a low speed and maximum speed.

These are set as close as possible to the speed required for the pressure setpoint

to be achieved.

Figure 4.13: Plot showing closed loop system Pressure - with pressure transmitter

feedback

From the graph obtained in figure 4.13 it can be shown that control around the

setpoint was achieved, with the pressure fluctuating marginally. This was due

largely to having to control system pressure by crude means of manually turning

the outlet valve on the pump for open to closed and vice versa. It can be said

therefore, that the control of the system pressure has been achieved. However, the

control algorithm requires further refinement in order to obtain a more accurate

4.2 Data 52

and smoother control response.

The program used to achieve the control with the control Algorithm as discussed

earlier is shown in figure 4.14. For the purposes of the test, the control program

has been written to only monitor motor current and control, with the calculated

setpoint being entered into the VSD program from the VSD user control screen.

This has been programmed in Vysta, with Appendix F providing the screen list

of the user control screen. The VSD is then placed into Automatic mode via the

user control screen and the previous data was obtained (the data in figure 4.13).

Figure 4.14: closed loop system Vysta Program - with pressure transmitter feed-

back

4.3 Comparison of Pressure Transducer and Algorithm 53

Equation (2.11) provides the relationship that the control and setpoint of the

pump are based upon. The previous results obtained gave a set of limits from

which the control points are calculated from. This was largely a trial and error

process to achieve a good control point. Further trial and error needs to be

undertaken to refine the control of the system further.

4.3 Comparison of Pressure Transducer and Al-

gorithm

A comparison between the conventional pressure control system (the system util-

ising a pressure transmitter feedback) and the Algorithm controlled system from

the test data obtained, revealed that the conventional system offers superior con-

trol of the pressure system. This is due to the fact that although the control

algorithm does work, (that is it is able to control pressure circumventing the

need for a pressure transmitter), it requires further refinement and testing to

achieve an improved level of control. This level would need to meet the current

level of control within industry. At this stage the control algorithm is unable to

achieve this. It is envisaged further refinement will achieve the desired level of

control and this is discussed in more detail in Chapter 5.

4.4 WEB Server - Interface 54

4.4 WEB Server - Interface

4.4.1 Software Development

Software for the WEB server was developed in JAVA. A copy of the source code

produced and tested so far is included in appendix D. The software is only 70%

complete as the focus of the project has primarily been on the development of a

control algorithm. The JAVA program has three main parts, the first being the

Graphical User Interface (GUI). This GUI has been developed to give the user of

the system the ability to setup and monitor the system performance. Figure 4.15

illustrates the layout of the GUI and the parameters which are able to be set and

viewed. As can be seen on the top left-hand side of the GUI there are a number

Figure 4.15: Illustration of Control System JAVA GUI

of different controls provided. These controls and their associated functions are

listed in the table 4.1.

4.4 WEB Server - Interface 55

Table 4.1: GUI Control Functions

CONTROL NAME FUNCTION

Status Field Indicates the current Status of the VSD ie.Ready,

Running,Fault,etc

Start Button This button allows the user to Start the VSD

when the mode is selected to Manual

Stop Button This button allows the user to Stop the VSD when

the mode is selected to Manual

Reset Button This button allows the user to reset any fault within

the VSD, it can be operated in any Mode

Speed Field Indicates the current speed of the VSD in % of full speed

Current Field Indicates the VSD motor current in Amps

Mode Field Indicates the current operating mode of the system,

it has two modes Automatic and Manual. Automatic mode

control the speed of the VSD to control pressure and

Manual mode runs the speed of the VSD to the setpoint that

is entered as well as the System being able to be

start/stopped from the start, stop buttons

Auto Button This button changes the mode of the system into Automatic

Manual Button This button changes the mode of the system into Manual

Setpoint Field Indicates the current setpoint of the system and also

allows the user to modify the setpoint

Up Button This button increases the value in the setpoint field

by 1% each time it is pressed, it is used for fine adjustment

Down Button This button decreases the value in the setpoint field

by 1% each time it is pressed, it is used for fine adjustment

4.4 WEB Server - Interface 56

The next part of the JAVA program was to write data from the JAVA application

to the WEB server and from the WEB server serial port to the VSD. The com-

mands sent from the JAVA application to the VSD were all MODBUS commands.

The MODBUS address and the commands used are shown in appendix C section

C.1 for the commands and section C.2 for the MODBUS addresses and variables

available. The structure of the MODBUS is shown in appendix C section C.1.

It shows that all the command strings have the requirement for a check sum. In

this case it requires a CRC16 check sum to be calculated and then attached to

the end of the command string. The code to develop this CRC16 check sum was

a major component of the JAVA program and can be seen in appendix D. It is

the last class within the JAVA program and it is appropriately named CRC16.

The final part of the JAVA program was to read data back from the VSD for

display and verification. When referring to verification it is meant to verify the

data that actually has been set to each critical parameter which is to be utilised

in the VSD. These parameters reside in the VSD and are independent of the

WEB server. This means that if the WEB server is not connected for instance

or simply not functioning then the VSD would still be able to control to the

desired setpoint and parameters. This means that the WEB server is only a

window into the VSD system which makes the only device within the system

that is critically required for the system to run being the VSD. At this stage,

this section of the program has only been tested for retrieving data for motor

speed and motor current. Discussion is provided in the later Chapter 5 regarding

further developments planned for the WEB server interface.

4.4.2 Connection and Testing

The WEB server was connected to the VSD by the in built RS-232 terminal

connections to the VSD RS-232 connections. Once it was connected the com-

munications were checked for correct operation by sending a start signal from

4.5 Obstacles 57

the WEB server by pressing the Start Button, with the system in Manual mode.

Operation and correct functionality of buttons was then checked and found to be

functioning correctly. The source code had now been proved and further exten-

sion of the capabilities of the JAVA code is now a matter of adding additional

commands when required.

4.5 Obstacles

Undertaking this project has presented a number of obstacles that have required a

degree of compromise in the approach taken. The overall scope and limitation of

the project was discussed earlier as can be see in Chapter 1 Section 1.5 in relation

to the broad approach to this project. Those obstacles specifically encountered

within later development and testing include the following:

1. Interpreting how the Vysta software worked within the VSD and then imple-

menting this program to perform the desired functions proved time consum-

ing. This software despite appearing to be a simple form of programming,

in practice requires quite complex and involved understanding of the func-

tion blocks within the software. A further complication is that there are

only three to four other companies Australia-wide that have access to this

software therefore help desk resources are limited to almost non-existent!

2. Similar to the previous obstacle it was found that in order to enable the

WEB server to interlink with the VSD and the WEB browser it was neces-

sary to achieve an unexpectedly high level of knowledge of JAVA.

3. Due to the cost constraints faced by this project it was not possible to

utilise larger equipment in VSDs and pumps. This would have enabled a

larger current change for pressure which would have provided better results

4.5 Obstacles 58

for the relationships between pressure, motor current and speed.

4. The main obstacle encountered was limitations experienced on closed head.

It became necessary to ensure that the system setpoint used for this ap-

plication was well under the closed head motor current and head pressure.

The reason for this is, if control is modeled on the power of the motor and

the system is then close headed, then control will be lost. This is due to the

fact that the pressure will be represented by a lower motor power than what

would have been found normally in an open headed system. This means

that the pump would want to speed up to reach the required setpoint thus

producing a higher pressure than the setpoint. To be able to do this on var-

ious systems the pump and motor would generally need to be of a greater

size than that used in a conventional system.

Despite encountering these obstacles, it was still possible to follow the essential

aims and objectives of this project. The results obtained confirm that control of

the pumping system can and has been achieved without using a pressure transmit-

ter. However given a more ideal set of conditions (ie without the aforementioned

obstacles) it is envisioned that a better level of control could have been achieved.

Chapter 5

Future Works

The outcomes of this project have presented a number of options to be pursued in

the future. As indicated the basic aims and objectives of the project in terms of

achieving control of a pumping system without the use of a pressure transmitter

have been reached. However, there are a number of refinements to be completed

before it could be a saleable system which are as follows:

1. To improve the control algorithm to achieve better and more accurate con-

trol over the whole range of the pump.

2. Perform more rigorous testing with a broader range of pumps and motors.

3. Complete the WEB server interface so that it has the ability to upload/download

parameter information from and to the VSD application. In addition, the

development of a monitoring mode which when entered will constantly up-

date values in the GUI in Real-time.

4. At this stage the interface is designed to control one VSD only. In the fu-

ture it is envisaged that this will be expanded to encompass multiple VSDs

60

in duty and standby applications.

5. Control has been achieved for single pump use only, in the future it is en-

visaged that control will encompass multiple and/or cascaded pumps.

Completion of these future objectives would enable this system to be utilised for

commercial purposes in a wide variety of industrial applications.

Chapter 6

Conclusions

6.1 Overview and Obstacles

The primary objective of this conclusion is to examine the extent to which the

project aims and objectives, as identified in the Introduction have been achieved.

The specific aim of this project was to develop and test an automated pumping

controller able to maintain constant pressure in a hydraulics system without the

use of a pressure transmitter. In addition, a real-time monitoring, configura-

tion and control system software package would be developed. The theory con-

tained within the Literature Review outlined the current pumping environment,

overview of a pumping system and relevant pump equations which contributes

towards an overall understanding of what the project is attempting to achieve.

Although highly technical in content, further discussion was given pertaining to

the Variable Speed Drive, the WEB Server and JAVA applications. This provided

a valuable insight into the process needed to be followed in order to achieve the

project objectives. It must be acknowledged that undertaking this project has

proven a challenge in terms of achieving a working knowledge of JAVA software

as well as PDL Vysta software, while at the same time becoming familiar with

the electromechanical relationships of the equipment chosen. To emphasise this

6.2 Pressure System Controlled without a Pressure Transmitter 62

point a number of obstacles have been identified as influencing the overall out-

comes of the project which includes cost constraints, limitations within the choice

of components and the difficulty of achieving a high level of understanding of the

software and programming languages. However, it was possible to proceed with

project as planned taking into consideration these constraints.

6.2 Pressure System Controlled without a Pres-

sure Transmitter

The Results and Discussions Chapter provides the significant outcomes from un-

dertaking this project. Numerous testing was undertaken, and it was found that

as the centrifugal pump does not start moving the fluid until 30% speed or greater

that the results from tests at the lower speeds were irrelevant. It became evi-

dent that below 60% of motor speed it would be virtually impossible to control

the pressure in the pumping system by modeling the motor current. This was

explained by the fact the variance in motor current is minimal with the change

in pressure. Therefore it was established that the control algorithm required to

control pressure in a pumping system without the use of a pressure transmitter

would require the system to operate around a known speed calculated to approx-

imately match the pressure required in the system. Further testing revealed that

the pressure is controlled constantly at the required setpoint of 65 Kpa. Utilis-

ing this data an algorithm was created to replicate the control process. Control

around the setpoint was achieved with some pressure fluctuation but this was due

in large part to having to control system pressure by means of manual operation

of the outlet valve of the pump. It can be concluded that control of the system

pressure was indeed achieved without the use of a pressure transmitter as identi-

fied in the initial aims and objectives of the project. However, further refinement

is necessary to obtain a more accurate and smoother control response. This was

further confirmed by comparison of the conventional pressure control system (ie

6.3 Real-time Monitoring and Control System 63

the system utilising a pressure transmitter) and the Algorithm controlled system

which revealed that the conventional system clearly provides superior control of

the pressure system.

6.3 Real-time Monitoring and Control System

Having established that control of the pumping system was achieved without the

use of a pressure transmitter it follows that consideration then be given to pro-

viding a real-time monitoring, configuration and control system software package.

As indicated previously, the level of understanding required of the programming

tools influenced to some extent the quality of the resulting software package.

The software package at this stage allows the user to view only motor current

and pump speed and change the mode of the system, as well as starting/stopping

and resetting a fault. Future works propose to complete the WEB server inter-

face so that it has the ability to upload/download parameter information from

and to the VSD application. In addition, the development of a monitoring mode

which will constantly update values in real-time. It can be concluded that a

very basic approximation of the aims and objectives of this project has in fact

been achieved. In order for this system to be suitable for commercial purposes

a number of additional refinements were identified as important future works.

This includes improvement of the control algorithm, more rigorous testing with

a broader range of pumps and motors and expansion of the system to include

multiple VSDs, and multiple and/or cascaded pumps.

6.4 Final Summary

As a result of undertaking this project it became clear that equipment within the

pumping industry is fast catching up to the IT age. The product/application pro-

6.4 Final Summary 64

posed in this project can conceivably provide immense benefits for the engineering

and industry sectors alike. It is ultimately envisaged that the pressure control

system identified in this project will, after further development, refinement and

thorough testing be marketed and sold within the pumping industry.

References

Angelfire (2005), Online Definition - Serial Device, [Online], Avail-

able:www.angelfire.com/ny3/diGi8tech/SGlossary.html, [Accessed 28 Sep-

tember 2005].

Australian Pump Manufacturers Association Ltd (1987), Australian Pump Tech-

nical Handbook, third edn, APMA LTD, Canberra.

Chaurette, J. (2005), Fluide Design - Solved Problems, [Online], Available:

http://www.fluidedesign.com/solved pumping problems.htm, [Accessed 10

May 2005].

Darby, R. (2001), Chemical Engineering Fluid Mechanics, second edn, Marcel

Dekker Incorporated, New York, [Online], Available: Ebrary Books Online,

[Accessed 30 April 2005].

Davidson, G. (2002), Centrifugal Pump: Parallel & Series Operation,

University of Pittsburgh School of Engineering, [Online], Available:

www.engr.pitt.edu/chemical/undergrad/lab manuals/centrifugal pumps.pdf,

[Accessed 10 August 2005].

Five Star Electric Motors (2005), Using Variable Frequency

Drives on Pump Systems, Five Star Electric Motors - Mo-

tors Controls Drives San Antonio, [Online], Available:

http://www.vfd.com/techarticles/vfd/Using/Variable/Frequency/Drives/on

/Pump/Systems.pdf, [Accessed 10 May 2005].

REFERENCES 66

Hydraulic Institute, Europump & the U.S. Department of Ener-

gys (DOE) Industrial Technologies Program (2004), Variable

Speed Pumping - A Guide to Successful Applications, [Online],

Available:http://www.bpma.org.uk/Executive/Summary/-vsp.pdf, [Ac-

cessed 9 May 2005].

Karassik, I., Krutzsch, W., Fraser, W. & Messina, J. (1986), Pump Handbook,

second edn, McGraw-Hill Book Company, New York.

Kitamura, T., Matsushima, Y., Tokuyama, T., Kono, S., Nishimura,

K., Komeda, M., Yanai, M., Kijma, T. & Nojin, C. (2000),

Physical Model-Based Indirect Measurements of Blood Pres-

sure and Flow Using a Centrifugal Pump, Vol. 24, [Online],

Available:http://www.blackwell-synergy.com/doi/abs/10.1046/j.1525-

1594.2000.06605.x?cookieSet=1,[Accessed 30 April 2005].

Minghua, F. & Longya, X. (2000a), Computer Modeling of Interac-

tions of an Electric Motor, Circulatory System, and Rotary Blood

Pump, Vol. 46, Lippincott Williams and Wilkins, Inc, [Online],

Available:http://www.asaiojournal.com/pt/re/asaio/abstract.00002480-

200009000-00020.htm:jsessionid=Caaje1MmOuqUAUj8YsI7IVvbGm3kBRC

za7cQ6bc4tMOaRdefqgxE1-4782852!-949856032!9001!-1, [Accessed 30 April

2005].

Minghua, F. & Longya, X. (2000b), Computer Simulation of Sensorless

Fuzzy Control of a Rotary Blood Pump to Assure Normal Phys-

iology, Vol. 46, Lippincott Williams & Wilkins, Inc., [Online],

Available:http://www.asaiojournal.com/pt/re/asaio/abstract.00002480-

200005000-00006.htm:jsessionid=CaXYOa2dfWTxXiAR51AKzg710gyP2D

bknAoBi8flARjdHXe1hG20!-4782852!-949856032!9001!-1, [Accessed 23

April 2005].

Nelik, L. (1999), Centrifugal and Rotary Pumps - Fundamentals with Applica-

tions, CRC Press, Boca Raton, Florida.

REFERENCES 67

PDL (2002), Principles of Induction Motors Drives, PDL Electronics, Napier,

New Zealand. 4501-100 Rev c.

Schildt, H. (2005), Java - A Beginner’s Guide, Third Edition, McGraw Hill Os-

borne, Emeryville, California.

Trinkl, J., Mesana, T., Havlik, P., Mitsui, N., Demunck, J., Dion, I., Candelon, B.

& Monties, J. (1991), Control of Pulsatile Rotary Pumps Without Pressure

Sensors, Vol. 37, [Online], Available: Compendex Database, [Accessed 13

May 2005].

Vysta Virtual Automation Programming Platform Version 2.0 - Help File (2002),

PDL Electronics, Napier, New Zealand.

Web Enabling Your Serial Device (2002), Lantronix, Irvine, California.

Appendix A

Project Specification

69

University of Southern

Queensland

Faculty of Engineering and

Surveying

ENG 4111 / ENG 4112 Research Project

Project Specification

For: Craig Struthers

Topic: Real-Time Monitoring and Control of a Pressure Control System.

Supervisor: Dr Peng (Paul) Wen

Enrollment: ENG 4111 - S1, X, 2005

ENG 4112 - S2, X, 2005

Project Aim:

To develop and test an automated pumping controller which can keep constant

pressure in a hydraulics system whilst having no physical contact with the medium

(ie. no pressure transmitter). The development of a real time monitoring, con-

figuration and control system software package to enable users to interface with

the system with minimal training.

Programme: Issue A, 21st March 2005

1. Research current industrial standards.

70

2. Research equipment such as motors, VSD’s and pumps for suitability.

3. Research current programming languages for compatibility with the chosen

equipment.

4. Design control algorithms and functionality required to achieve the end re-

sult.

5. Mathematically model the system so that physical attributes of the system

can be obtained and reviewed.

6. Investigate and develop an embedded WEB server communications system

for interfacing of the controller.

7. Build a prototype system and complete full functional testing.

As time permits:

1. Develop an off the shelf item for retail sale.

AGREED:

(Student) / / 2005

(Supervisor) / / 2005

Appendix B

Variable Speed Drive (VSD)

Operating Manual

 Elite Series – Getting Started 4201-179 Rev J

ELITE SERIES
GETTING STARTED

MANUAL

Head Office:
81 Austin Street
P.O. Box 741
Napier
New Zealand
Tel.: +64-6-843-5855
Fax.: +64-6-843-5185

Elite Series – Getting Started 4201-179 Rev J

7

RESET
POTSST TAR

ON OKNUR

FRAME 3

FRAME 1 & 2

MODEL H mm (ins)

FRAME 1 & 2
FRAME 3

W mm (ins) D mm (ins) Weight kg (lbs)

4 (0.16)

40
7

(1
6)

44
6.

5
(1

7.
6)

30 (1.2)

10
 (

0.
4)

28
9.

8
(1

1.
5)

H
6.

5
(0

.2
6

)

DW

4808-013 REV I

All dimensions in millimetres and (inches)

430 (17)
430 (17) 139 (5.5)

279 (11)
262 (10.3)
262 (10.3) 27 (60)

10-14 (22-31)

Figure 1.1: Microdrive Elite Frame 1 to 3 Dimensions

AC MOTOR CONTROLLER

UE-60, UE-75

UE-90

UE-115, UE-140

Lugs
Lifting

MODELS
Net

Weight kg (lbs)
Packaged

Weight kg (lbs)

4808-090 REV F

28
 (

1.
1)

97
0

(3
8.

2)

67
5

(2
6.

6)
13

6
(5

.4
)

313 (12.3)168.5 (6.6)
347 (13.7)

116 (4.6)

All dimensions in millimetres and (inches)

97 (213.85)

94 (207.24)

90 (198.42)

80.5 (177.47)

77.5 (170.86)

73.5 (162.04)

Figure 1.2: Ultradrive Elite Frame 4 Dimensions

Elite Series – Getting Started 4201-179 Rev J

16

4808-108 Rev A

PROTECTIVE
EARTH

CABLE

SHIELD
CLAMP

SCREENED
MOTOR
CABLE

SUPPLY

Figure 1.10: Microdrive Elite Frame 1 to 3 Screened Motor Cable Configuration

4808-110 Rev A

PROTECTIVE
EARTH

SHIELD
CLAMP

SCREENED
MOTOR
CABLE

CABLE
SUPPLY

Figure 1.11: Ultradrive Elite Frame 4 Screened Motor Cable Configuration

HVDC

INPUT

L1

OUTPUT U

L2 L3

V

4808-128 Rev A

SUPPLY
CABLE

CABLE
MOTOR

EARTH
PROTECTIVE

Figure 1.12: Ultradrive Elite Frame 5 Screened Motor Cable Configuration

Elite Series – Getting Started 4201-179 Rev J

17

WUOUTPUT

INPUT

HVDC V

+HVDC

L2 L3

PE PE

4808-129 Rev A

MOTOR

SUPPLY
CABLE

CABLE

EARTH
PROTECTIVE

Figure 1.13: Ultradrive Elite Frame 6 Screened Motor Cable Configuration

UOUTPUT

INPUT

PE

L1

HVDC V

L2

+ HVDC

W

L3

PE

4808-130 Rev A

PROTECTIVE
EARTH

SUPPLY
CABLE

CABLE
MOTOR

Figure 1.14: Ultradrive Elite Frame 7 Screened Motor Cable Configuration

1.3.2 MOTOR ROTATION

USE OF “+” AND “–”
“+” Speed is used to describe speed in the forward direction.
According to IEC34-7, the motor rotates clockwise when:
– viewed from the shaft end
– terminals U1, V1 and W1 or U2, V2 and W2 are connected to the Elite Series output phases U, V, W respectively
– the Elite Series is operating with “+” speed.
– “–” is used to describe speed in the reverse direction of the motor.

Elite Series – Getting Started 4201-179 Rev J

18

1.3.3 DISPLAY MOUNTING

The display unit may be rotated in 90° increments, to suit the mounting orientation of the Microdrive Elite Series. The
display unit may also be mounted remotely from the drive, to a maximum of 3 metres.

1.3.4 CONTROL WIRING

Control Wiring Recommendations
Bring the control wiring into the enclosure through the gland plate, and install glands to maintain IP54 integrity. Loom
control wiring and power wiring separately, at least 300 mm apart and crossing only at right angles. Control cables must
be screened to ensure correct operation. Connect the screen only to the ground at the Elite Series to prevent ground
loops.

Connection recommendations are:
Maximum tightening torque: 0.5 Nm (4.5 lb-in)
Maximum cable size: 1.5 mm2 appliance wire

(26 - 14 AWG Cu)
Maximum number of cables per terminal: Two
Cable stripping length: 7 mm (0.28 in)

The default configuration of the digital inputs is active high. i.e., the common of all multi-function input switches should be
connected to +24Vdc (Terminal T21).

The External Trip/PTC input must be connected to +24Vdc (Terminal T21) (when set for active high) for the Elite Series to
start and run a motor.

1.3.5 EARTHING OF CONTROL 0V

To comply with the requirements of a Class 1 earthing system, the Elite Series control 0V must be linked to earth at some
point. Connection of multiple earth points may cause earth loops and should be avoided. An earth link is provided
between Terminal T20 and the terminal surround plate and must be removed if not required. Removal will allow the 0V
point to float up to ±50Vdc (30Vac) from chassis earth.

1.3.6 SHAFT ENCODER SELECTION AND MOUNTING

The encoder orientation shown in the drawings in this manual (i.e., the connection of the A and B outputs) assumes the
encoder is to be connected directly to the non-drive end (non-shaft end) of the motor and that motor wiring orientation is
normal (motor terminals U1, V1 and W1 are connected to Elite Series terminals U, V, W, respectively). In this case, an
increasing count (Screen Z9) should correspond to rotation in the positive direction (motor shaft rotates clockwise when
the motor is viewed from the drive end), in response to a positive speed reference.

If the encoder direction is inverted (e.g., by mounting at the drive end or using an inverting belt coupling), A and B, or for a
differential encoder, A and A signals should be swapped. Refer Figure 5.4.

A shaft encoder will be needed if operating the Elite Series in closed loop vector control mode.

Choice of Encoder

If the Elite Series is to be used in Closed Loop Vector control mode, a shaft encoder will need to be connected to the
motor. A specification for a suitable encoder for a 50 or 60Hz motor is:

Encoder type:
Incremental, quadrature (bi-phase), differential or single-ended output. Push-pull output preferred to maximise range.

Recommended ppr:
1000 to 2000 ppr per motor pole pair, for directly driven encoder

Minimum ppr:
500 ppr per motor pole pair (4 pole motor = 1000 ppr)

Supply requirement:
5Vdc, 100mA maximum

Alternative Specification:
Type:
Single ended push-pull - will cause a reduction in noise immunity.
Or:
Single ended open collector - pulses will be distorted by long cables. For this type of encoder the product of cable length
(metres) x maximum frequency (kHz) should not exceed 1500. Absolute maximum cable length is 30 m.

Elite Series – Getting Started 4201-179 Rev J

21

RUN KONO

RA TTS STOP
RESET

Int.+24V

+24V

275Vac

T21

T20

T19

T18

T17

T16

T15

T14

T13

T12

T11

T10

T9

T8

T7

T6

T5

T4

T3

T2

T1

+24V

16k5

16k5

16k5

16k5

16k5

275Vac
275Vac

275Vac

16k5

FO

Screen all control cables

Relay Outputs

Non-inductive

250Vac /

2A
30Vdc

Rating

Relay 1
O/P

O/P
Relay 2

O/P
Relay 3

Relay Outputs

Programmable
Volt Free

2 x N.O.
1 x C.O.

3 x

External Dynamic Brake Control

Active
High

Active
Low

Display
Data

External

Switch

Dynamic
Brake

Display

RED

YELLOW(WHITE)

GREEN(BLACK)

Programmable
Inputs
Load

3mA
Max. Low

Current:

Fibre Optic Output

Active High

Active Low

or external trip input
Motor PTC

+24/0V
Control
Voltage:

Threshold:
Min. High

Threshold: 7.5V

15V

Motor
PTC Input

Multifunction
6 x

Inputs

4808-037 Rev K

Figure 1.17: Control Inputs and Outputs

Elite Series – Getting Started 4201-179 Rev J

22

T42

T41

T40

T39

T38

T37

T36

T35

T34

T33

T32

T31

T30

T29

T28

T27

T26

T25

T24

T23

T22 0V

0V

0V

0V

0V

Encoder

RS485 A

RS485 B

RS232 / RS485

RS232 Tx

RS232 Rx

A

A

B

B-

-

+5V max.100mA

-

-

+5V

A

B

+24Vcc +24Vcc

30V

10mA

2k7

2k7

2k7

2k7

250 Ohm

250 Ohm

F1
+5V Iso

485
RS

232
RS

Rx

Tx

Iso

FI

--

--

Screen all control cables

Analogue
Output 1
Analogue
Output 2

or 0 to 20mA
4 to 20mA

-10V to +10V; 5mA max
0V to +10V or

Format:

1k Ohm pot

or 0 to 20mA

0V to +10V
-10V to +10V
4 to 20mA

10mA to feed

Format:Analogue
Input 1

Input 2
Analogue

Incremental
Quadrature
Encoder
Max. Freq.
200 kHz

User +24V In/Out
500mA max.

Fibre Optic Input

Decoder

Encoder
Single-ended/

Differential

Fuse

User

Decoder

Int.

L

L

R >500 Ohm:

R <500 Ohm:

4808-038 Rev H

Figure 1.18: Control Inputs and Outputs

Elite Series – Getting Started 4201-179 Rev J

24

2.1 DISPLAY UNIT DESCRIPTION

2.1.1 THE DISPLAY UNIT AND KEYS

Refer to Figure 2.1 for Display Unit Details

STATUS LINE : Indicates drive status, overload status, output torque, output speed.

CONTROL LINE : Indicates screen number, screen description, parameter for adjustment.

SCREEN CONTROL KEYS
“+” and “−” keys enable scrolling between screen groups and subscreens.
“∗ ” allows unfolding of screens if required.
By holding down the “∗ ” key and using the “+” or “−” keys, individual modes or parameters can be adjusted, if allowed.

START / STOP-RESET PUSH-BUTTON
If keyboard control is enabled, these push-button allow starting or stopping/resetting of the Elite Series. This may be in
conjunction with external START and STOP push-button.

RESET
POTSST TAR

ON OKNUR

4808-002 Rev.F

Power
On

Running
Drive No Fault

(Flashing=Fault)

Status Line
Control Line

Control Keys

Figure 2.1: Elite Series Display Unit

2.1.2 SELECTION OF SCREENS

Screens are arranged in folded format. Each screen group has a main screen with the group identifying letter and
description. Folded under this main screen can be a number of subscreens, each of which has a single parameter or
mode for viewing or adjustment. These subscreens cannot be viewed until unfolded. Once unfolded, some subscreens
have a numerical parameter which may be adjusted. Others may have a list of options with each option separately
viewable and selectable. Extra screens or subscreens may become available when the Elite Series is in “Commissioning”
mode.

" " " "+

+" " " "

" "+

" "

" "+ " "

" "+ " " " "+ " "

" "
" "+

+" "
" "

*" "

" "*

STATUS

SCREEN

SCREEN

SCREEN

SCREEN

SCREEN

(Hidden)

SCREEN

SCREEN

SCREEN SCREEN

SCREEN

Increasing Nesting Level

4808-039 Rev F

Figure 2.2: Control of Screen Folding

Referring to Figure 2.2, when “+” or “−” are used to scroll through the screens, no subscreens are shown. If a particular
subscreen is required, scroll to the associated group, then press and release “∗ ”. This will unfold all of the screens
associated with that group. “+” will move down through the subscreens, stopping on the last subscreen in a group. “−”
will move up through the subscreens, until the group title is reached. This will cause the screens to automatically refold.

Elite Series – Getting Started 4201-179 Rev J

25

2.1.3 PARAMETER AND MODE ADJUSTMENT

Once a screen group has been unfolded and a screen selected, the parameter or mode displayed on the control line may
be adjusted. For a screen with access rights configured as “hidden” or “read only”, this adjustment may only be made if
the Elite Series is in COMMISSIONING mode.

Adjustment is done by depressing the “∗ ” key and using “+” or “-” keys, to increase or decrease the parameter
respectively.

2.2 CONFIGURING OF OPERATING MODE
Before livening the Elite Series motor controller, it is important that you know the intended operating mode and control
configuration of the drive. These may have been preset into the Elite Series before dispatch. Alternatively this may have
been predetermined by an Applications Engineer but still need to be programmed into the Elite Series. If this is the case,
you as the installer may have to temporarily set up a mode and configuration, to allow livening and testing.

2.2.1 OPERATING MODES

OPERATION Mode
This is the normal operating mode of the drive. Each screen will have a pre-configured access right, controlling whether it
is hidden, read only, or read-write. Thus operator access to screens can be controlled.

Read Only: The screen can be viewed, but not changed.
Read-Write: The screen can be viewed and the parameter changed when in OPERATION mode.
Hidden: The screen cannot be viewed or changed.

COMMISSIONING Mode
In this mode, each screen is visible and commissioning parameters may be adjusted, irrespective of the screen’s access
right. Some parameters are not adjustable while the drive is started or running.

Access to COMMISSIONING Mode may be controlled by a password.

2.2.2 SWAPPING BETWEEN OPERATION AND COMMISSIONING MODES

Selecting COMMISSIONING mode before a Password has been set:

Scroll to Main Screen Z.
Z COMMISSION=N

Hold down “∗ ” key and use “+” or “–” keys and the status line should change to:
Z COMMISSION=Y

All screens will now be visible, and all parameters be adjustable.

Selecting COMMISSIONING mode after a Password has been set:

Figure 2.3 illustrates the procedure for swapping between OPERATION and COMMISSIONING modes using a password.

Scroll to Main Screen Z. The display’s control (bottom) line will read:
Z COMMISSION=N

Hold down “∗ ” and use “+” or “–” keys and the screen will automatically display:
PASSWORD= ZZZZZ

Hold down “∗ ” key and use “+” or “–” keys until the correct password is reached. Then release the keys.

All screens will now be visible, and all parameters be adjustable.

Selecting OPERATION Mode:
To change from COMMISSIONING Mode to OPERATION Mode, scroll to Screen Group Z.

The display’s control line will read:
Z COMMISSION= Y

Hold dow “∗ ” key and use “+” or ” -” keys to toggle to :
Z COMMISSION=N

Elite Series – Getting Started 4201-179 Rev J

26

Press and hold " ",
adjust using " " or " "

To cancel setting
password, press

 " " or " "

Release " "

Commissioning
Mode

Operation
Mode

4808-032 Rev J

To exit
Commissioning mode

press " " and " " or " "

NO

YES

Press " " and " " or " "

PASSWORD
CORRECT?

Z1 PASSWRD = XXXXX

Z1 PASSWRD = ZZZZZ

Z COMMISSION = Y

Z COMMISSION = N

* +
+

+

*

*

* +

Figure 2.3: Setting Commission Mode after a Password has been set

2.2.3 SETTING A PASSWORD FOR THE FIRST TIME

Refer to Figure 2.4.
Once set to COMMISSIONING mode as described above, a password may be set up. Unfold Screen Group Z and scroll
to Screen Z1. The display will read:
Z1 PASSWORD=OFF

Hold down “∗ ” key and use “+” or “–” keys to set the required password.

4808-017 Rev F

Set up new password
using " " and " " or " "

Z1 PASSWRD = XXXXX

Z COMMISSION = Y

Z COMMISSION = N

Press" " to open submenu
" " to go to first screen

Z1 PASSWRD = OFF

in submenu
+

*

* +

Press " " and " " or " "* +

Commissioning

(Back up to Commission Screen)

Mode

Press " "

Press " " and " " or " "

Operation Mode

* +

Figure 2.4: Setting a Password for the First Time

What happens if a password is unknown or forgotten?
Once a password has been entered, a special hashing number is displayed on Screen Z when trying to enter
COMMISSIONING mode.

The display will read:
PASSWORD= ZZZZZ

Take a note of this number and contact a PDL Electronics Applications Engineer, who with suitable authority will be able
to pass this code through an algorithm to reconstruct the original password.

Elite Series – Getting Started 4201-179 Rev J

34

4.1 OPERATION MODE AND CONFIGURATION
Figure 4.2 summarises the Screen List available by default. Full descriptions of all screens are given in the Elite Series
Technical Manual, PDL Part No. 4201-180.

4.1.1 OPERATION MODES

The Elite Series may be set up to run in one of four operation modes. These are shown in Figure 4.1.

V/Hz Operating Mode:
For general-purpose speed control applications, e.g. pumps, fans, conveyors etc. A shaft encoder is not needed.This
open loop speed control mode generates an output with a fixed voltage vs frequency profile. Suitable for running multiple
parallel motors from one Elite Series. Select by setting Screen X1 Control Type = V/Hz.

Also use V/Hz mode when autotuning an Elite Series motor controller.

Closed Loop Vector Mode - Torque Control:
For use in torque control applications, e.g. winder systems, position control applications with an external speed-position
controller. A quadrature shaft encoder will be required on the motor, to provide rotor position feedback.

To set up this mode of operation, set the encoder pulses per motor shaft revolution on Screen N8 and program Screen X1
to Closed Loop Vector. Then select torque control mode, either by appropriately configuring one of the multi-function
inputs (Screen I7c to I7h, Selection 16 Speed/Torque Mode) and activating the switch, or by setting for torque control
mode (Screen A1 LOCAL MODE=TQ).

Closed Loop Vector Mode - Speed Control:
Recommended for servomotor type applications, where fast dynamic response is required, and for crane hoists and other
applications where full torque capability at zero speed is required. A quadrature shaft encoder is required on the motor, to
provide rotor position and speed feedback.

To set up this mode of operation, set the encoder pulses per motor shaft revolution on Screen N8 and program Screen
X1 to Closed Loop Vector. Then select speed mode, either by appropriately configuring one of the multi-function inputs
(Screen I7c to I7h, Selection 16 Speed/Torque Mode) and deactivating the switch, or by setting for speed control mode
(Screen A1 LOCAL MODE=SP).

When operating in closed loop vector mode, switching between speed control and torque control modes can be done
without stopping the Elite Series.

Open Loop Operating Mode:
For general-purpose speed control applications, e.g. pumps, fans, conveyors etc. A shaft encoder is not needed.
Configuration to this mode is set by programming Screen X1 to Open Loop Vector.

4808-034 Rev I

MODES
OPERATION

MODES
LOOP
OPEN

X1 CONTROL TYPE=00

X1 CONTROL TYPE=02

X1 CONTROL TYPE=01

X1 CONTROL TYPE=01

VECTOR
CLOSED LOOP

MODES
CLOSED LOOP SPEED MODE

CRANE HOISTS

POSITION CONTROLLERS
PRECISION SPEED CONTROLLERS

FULL TORQUE AT STANDSTILL

TORQUE BOOSTERS
POSITION CONTROLLERS

TENSION CONTROLLERS

CLOSED LOOP TORQUE MODE

WINDERS

USE FOR TUNING MOTOR PARAMETERS

V/Hz MODE

MULTIPLE MOTORS ON ONE DRIVE

GENERAL PURPOSE

OPEN LOOP VECTOR MODE

SPEED CONTROL

CONVEYORS
FANS
PUMPS

PUMPS,FANS,CONVEYORS
GENERAL PURPOSE SPEED CONTROL

Figure 4.1: Elite Series Operation Modes

Elite Series – Getting Started 4201-179 Rev J

35

4.1.2 INPUT CONFIGURATION

If Start–Stop/Reset is not required from the display unit, set Screen I1. (Refer to Elite Series Technical manual 4201-180).

Select the required speed or torque reference source from Screen I2, I3. If an alternative source is required, e.g. for
local/remote or auto/manual control, select from Screens I4, I5.

If Analogue Input 1 is to be used as a reference source, set format and scaling from Screens I6a, I6b, I6c. Similarly,
Screens I6d, I6e, I6f set up Analogue Input 2.

If a zero band is required, set on Screen I6g. This sets a definite zero speed or zero torque region when using either
analogue input.

If the fibre optic input is to be used as a reference source, set scaling from Screens I8a, I8b.

Configure the multi-function inputs (MFIs) from Screens I7. Screen I7a programs the MFIs in groups, while I7c to I7h
programs each individually.

Configure the MFIs for active high or active low from Screen I7b.

4.1.3 OUTPUT CONFIGURATION

Select the function, format and scaling of Analogue Output 1 from Screens O1a, O1b, O1c, O1d. Similarly, Screens O1e,
O1f, O1g, O1h set up Analogue Output 2.

Select the required output relay functions from Screens O2a, O2c, O2e, and their sense from Screens O2b, O2d, O2f.

If using the fibre optic output, set function and scaling from Screens O3a, O3b, and O3c.

4.1.4 ACCELERATION AND DECELERATION RATES

If operating the Elite Series as a speed controller, set required acceleration and deceleration rates from Screens R1, R2.
Generally, set for the required response without torque limiting when accelerating (indicated by TLT on status line of
display) and without excess regeneration on deceleration (indicated by VLT on status line). These rates active only when
speed controlling.

If two rates are required, set alternative rates and break speed on Screens R3, R4, R5.

Set required deceleration rate when emergency stopping on Screen R6.

Set an appropriate Stop Timeout on Screen S11.

4.1.5 SPEED AND TORQUE LIMITS

Set speed limits by Screens L2, L3. Normally set outside the range of the reference speed input. Should be active only
when in torque control mode on light load. Indicated by SLT on status line of display.

Set torque limits by Screens L4, L5. Normally set outside the range of the torque reference input. Should only be active
when in speed control modes, on overloads (indicated by TLT on status line of display). Also torque limiting becomes
active on loss of shaft encoder pulses when running in closed loop vector mode.

Set speed limit timeout on Screen L6. Drive will trip if speed limiting exceeds this time.

Set torque limit timeout on Screen L7. Drive will trip if torque limiting exceeds this time. Provides protection against loss
of shaft encoder pulses.

4.1.6 MULTI-REFERENCES

Set Screens M1 to M7 in conjunction with certain input modes (Screens I7) as preset torque or speed references.

Elite Series – Getting Started 4201-179 Rev J

36

4808-049 Rev. L

RUN t+100% S +100%

A1 LOCAL MODE=SP

A2 LOCAL TQ= +0.0%

A3 LOCAL SP=+100.0%

A4 TQ=+100%SP=+100%

A5 +7.5kW +1480RPM

A6 +16A +50.0Hz

A7 Tm=100% Ti=100%

A8 565Vdc 400Vac

C COMPARATOR

C1 COMP1 SEL= 02

C2 1 ON= +100%

READ-WRITE

READ ONLY

HIDDEN

MOTOR TEMP

ANALOG IN 2
ANALOG IN 1

FIBRE IN
ANALOG IN 1+2

INVERTER TEMP

PROCESS ERROR
PROCESS FB
PROCESS REF

OUTPUT CURR
FULL SCALE

REF TORQUE
REF SPEED
MOTOR TORQUE
MOTOR SPEED
MOTOR POWER
BUS VOLTAGE
OUTPUT VOLTS

NULL

C3 to +250%

-250% to C2

4800/9600
OFF /1200/2400/

1 to 240

1s/5s/25s/OFF

DEVICENET
MODBUS

OFF/1to100%

0 to 250sec

-250% to C5

C6 to +250%

H4 DEVICENET

H3b BAUDRATE= 9600

H3a COMMS ADR= 10

H3 MODBUS

H2 COMM T/O= OFF

H1 PROTOCOL = M

H SERIAL COMMS

D2 DB DUTY= OFF

D1 DB TIME= 10s

D DYNAMIC BRAKE

C6 2 OFF= + 90%

C5 2 ON= +100%

C4 COMP2 SEL= 02

C3 1 OFF= + 90%

F6 CLEAR HIST = N/Y

F5 NO FAULTS

F4 NO FAULTS

F3 NO FAULTS

F2 NO FAULTS

F1 NO FAULTS

F NO FAULTS

H4a Mac ID= 63

H4b Baud= 125kbps

H4c Ass In= 70

H4d Ass Out= 20

H4e CTRL SRC= 00

H4f REF SRC= 00

DNET REF
LOCAL REF

1/2/3/4/5/20/21/100

DNET DECIDES

LOCAL CTRL
DNET CTRL
DNET DECIDES

50/51/52/53/54/60/61/

125/250/500kbps

0 to 63

H3c PARITY= EVEN EVEN/ODD/NONE

A6a O/P CURRENTS

70/71/101

A7a TH= Ti=

H4g DNET STATUS

Figure 4.2: Default Screen Lists A-H

Elite Series – Getting Started 4201-179 Rev J

37

I INPUTS

I1 LOCAL S/STP=3

I2 REF S=LOCAL

I3 REF T=NULL

I4 AREF S=AIN1

I5 AREF T=NULL

I6 ANALOGUE I/P

PROCESS
MTRPOT

FIBRE

MREF
LOCAL

AIN1+2
AIN2
AIN1
NULL

START/STOP-RST
STOP-RESET
RESET ONLY
NONE

0-20mA
4-20mA
+/-10V
0-10V

-400% to 400%

MULTIREF 3 WRE
MULTIREF 2 WRE
ALL PROG

DISABLED
3 WIRE

MOTOR POT

HI/LO

UNUSED

STP/STRT-RST
START/STOP
STOP-RESET
ASTOP - RESET

INCH 2
INCH 1
RESET

STOP
START

I6a AI1=0-10V

I6b AI1 LO=+0%

I6c AL1 HI=+100%

I6d AI2=0-10V

I6e AI2 LO=+0%

I6f AI2 HI=+100%

I6g ZERO BAND=N/Y

I7 DIGITAL I/P

I7a I/P MODE=0

I7b POLARITY=Hi

I7c MFI1 SEL=00

I7d MFI2 SEL=00

I7e MFI3 SEL=00

I7f MFI4 SEL=00

I7g MFI5 SEL=00

I7h MFI6 SEL=00

I8 FIBRE I/P

I8a F LO=-100%

I8b F HI=+100%

I8c FIBREMODE=0

I8d FIB T/O = OFF

SP/TQ MODE
ALT REF
ALT ACCEL
INV INCH
INV TRQ/SPD
INV TORQUE
INV SPEED

-400% to 400%

NO CONTROL
MASTER

SLAVE TRIP
SLAVE RUN
SLAVE RUN-STP

SLAVE

1s/5s/25s/OFF

-250% to L3

L2 to +250%

-250% to L5

L4 to +250%

0 to 25s,INF

0 to 250%

25 to 150%

-250 to +250%

0 to 20%

-250% to+250%

L LIMITS

L2 MIN S= -110%

L3 MAX S=+110%

L4 MIN T=-150%

L5 MAX T=+150%

L6 SP T/O= INF

L7 TQ T/O= INF

L8 REGEN= 150%

L9 I LIMIT=3.0A

L10 SKIP 1= 0.0%

L11 SKIP 2= 0.0%

L12 SK BW=0.0%

M7 MREF7=+0.00%

M6 MREF6=+0.00%

M5 MREF5=+0.00%

M4 MREF4=+0.00%

M3 MREF3=+0.00%

M2 MREF2=+0.00%

M1 MREF1=+0.00%

M MULTIREFS

20 TO 150%l(RATED)

0 to 999V

0 to 400Hz

0 to 650kW

0 to 24000rpm

20 to 100%, OFF

0 to 8191ppr

DIFF/SING

N6 MTR COOL= 40%

N8 ENCODER= 0

N9 ENC I/P= DIFF

N1 MTR CUR= 14.6A

N2 MTR VOLT= 400V

N3 MTR FRQ= 50Hz

N4 MTR P=7.5kW

N5 MTR RPM= 1476

N NAMEPLATE

REMOTE / LOCAL
STRT/STP-RST
ASTOP

L13 GND ILT=12A

L14 MIN SP RUN=Y

OFF/0.1 TO 9999A

YES/NO

4808-050 Rev.L

MODEL DEPENDANT*

*

*

*

*

*

Figure 4.3: Default Screen Lists I-N

Elite Series – Getting Started 4201-179 Rev J

38

P PROCESS
FIBRE

0.0 to 250s

1.0 to 1000s,INF

0.1 to 10

AIN1+2

MTRPOT

P6 ERROR=0%

P2 FB SRC=NULL

P5 Td=0.0s

P4 Ti=INF

P3 Kc=0.1

P1 PR SRC=NULL

AIN1
NULL

FIBRE

AIN2

LOCAL
MREF

AT SET SPEED

BRK RELEASE

AIN1+2

PROCESS REF
PROCESS FB
PROCESS ERROR

WINDOW COMP
COMPARATOR 2

FIBRE ECHO
AIN1+2 ECHO
AIN2 ECHO
AIN1 ECHO
INVERTER TEMP
MOTOR TEMP
REF TORQUE
REF SPEED
MOTOR TORQUE
MOTOR SPEED
MOTOR POWER
BUS VOLTAGE
OUTPUT VOLTS
OUTPUT CURR
FULL SCALE

-250% to+250%

COMPARATOR 1
CURRENT LIMIT
VOLTAGE LIMIT
TORQUE LIMIT
SPEED LIMIT
SP REF SIGN
TQ REF SIGN
SPEED SIGN
TORQUE SIGN

O3a FIBRE O/P=06

NULL
AIN1
AIN2

O2f RELAY3 INV=N/Y

O2e RELAY3=08

O2d RELAY2 INV=N/Y

O2c RELAY2=05

O2b RELAY1 INV=N/Y

O2a RELAY1=02

O1h AO2 HI=+100%

O1g AO2 LO=-100%

O1f AO2=+/-10V

O3 FIBRE O/P

O2 DIGITAL O/P

NULL

ZERO SPEED

O/L WARNING
O/L FAULT
SUPPLY FAULT
DRIVE FAULT
NO FAULTS
ALWAYS ON
ALWAYS OFF

0-20mA
4-20mA

O1e AO2 O/P=02

O1d AO1 HI=+100%

O1c AO1 LO=-100%

O1b AO1=+/-10V

O1a AO1 O/P=06

O1 ANALOGUE O/P

O OUTPUTS

RUN
START

4808-051 Rev. K

+/-10V
0-10V

VISTA CONTROL

VISTA CONTROL

Figure 4.4: Default Screen Lists O-P

Elite Series – Getting Started 4201-179 Rev J

39

4808-052 Rev. O

Z12 F O/P=+0.0%

Z10 RLY:OXX DB:X

Z9 ENCODER= 0000

Z8 FI:X SERIAL:O

Z7 MFI:XOOXOX X

Z6 AO2=99=+20mA

Z5 AO1=99=+9.9V

Z11 F I/P=+0.0%

X4d STR BND = 10% 0 to 99%

0.0 to 10%/OFF

3 to100%

0 to 100%

0 to 999%

0 to 999%

0 to 300%

0.0 to 20%

0.0 to 20%

WW/NB

AUTO/4000 to 16000Hz

OFF/1 to 65535

INIT MTR PARAMS
INIT USER PARAMS
NO INIT

DEUTSCH
ENGLISH

X5h Ki I =13%

Y3 PROG 1 OF 1

X5i Kf W = 50%

Z4 Al2=99=+20mA

Z3 Al1=99=+9.9V

Z2 S/W1.1 H/W1.1

Z1 PASSWRD=OFF

Y1 LANGUAGE= 1

Z COMMISSION= NO

Y MENU OPTIONS

Y2 INITIALISE

X5g Kp I = 25%

X5f SWITCH FR = WW

X5e FREQ = AUTO

X5d SLIP COMP = N/Y

X5c DAMPING = 2.0%

X5b VLT SLP = 2.0%

X5a ILT SLP = 2.0%

X5 CONTROLLER TUNE

X4g Ki W = 30%

X4h Kd W = 0%

X4f Kp W = 20%

CURRENT CONTROLLED

FIXED BOOST
AUTO BOOST

40 to 100%

50 to 100%

0 to 20%

0 to 15%

40 to 800%

0 to 250%

O/L VECTOR
C/L VECTOR
V/Hz

DC BRK

SPIN
NORMAL

0 to150%

OFF
STOP R
SPIN
RAMP
NORMAL

0 to 3600sec

0.00 to 5.00s

X4c STR TQ = 0%

X4b STR TYP = AUTO

X4a MIN FLX = 100%

X3 MOTOR TUNE

X3e FL WEAK =100%

X3d SIGMA = 6.0%

X3c Rr = 6.0%

X3b Rs = 3.0%

X3a Lm = 190%

X2 AUTOTUNE = N

X4 LOAD TUNE

X1 CTRL TYPE = V/Hz

S8 BRAKE I= 0%

S1 START=NORMAL

S7 LOW V TRIP= N /Y

S4 ASTOP= NORMAL

S2 STOP= NORMAL

S5 STR DLY= 0.00s

S6 OFF DLY T= 1.0s

R8 TQ FILT= 0.00s

X TUNING

S START/STOP

0 to 60sec

0 to 10sec

0.02 to 1300%/s

OFF/0.1 to 250%

0.02 to 1300%/s

R7 SP FILT= 0.000s

R6 STOPR= 1300%/s

R4 ADEC= 10.0%/s

R3 AACC= 10.0%/s

R2 DEC= 10.0%/s

R1 ACC= 10.0%/s

R5 BRK S= OFF

R RATES

ESPAÑOL

S9 HOLD V= 0.0% 0 to 25%

OFF/1 to 30%S10 HEAT I= OFF

S11 STP T/O= 30s OFF/1 to 3600s

Y/N

X4i LS FL BO = 0%

X4j HS FL BO = 0%

X4k INERTIA K = 1

0 to 99%

0 to 99%

1 to 10

Z9a TACHO= 0.0%

INIT ALL

Figure 4.5: Default Screen Lists R-Z

Appendix C

MODBUS Protocol & VSD

Registers

C.1 MODBUS Protocol 89

C.1 MODBUS Protocol

Elite Series Serial Comms. 4201-206 Rev B

11

3 SUPPORTED MODBUS FUNCTIONS

3.1 INTRODUCTION
The Elite serial communications protocol adheres completely to the industry standard Modbus protocol. The Elite
supports a subset of the complete Modbus function set, listed in Table 3.1.

Function Description

3
Read Multiple Holding
Registers

16
Force Multiple Holding
Registers

4202-232 Rev A

Table 3.1 Modbus Functions supported by the Elite

Modbus Function 3 and 16 refer to Holding Registers with addresses of the form 4XXXX. All data address refer-
ences are made relative to the first address of the particular Modbus Function. In the case of Functions 3 and 16,
the first address is 40001(decimal), and this would be referenced as 00000.

An example Modbus Function 3 query message is shown in Fig. 3.1, and a typical response message is given in Fig.
3.2. A fuller explanation of the message contents is given in Section 3.2.

All word length(2 byte) variables are transmitted with the most significant byte first. The holding register contents are
transmitted in a 16-bit format with the most significant byte first. Where appropriate, negative numbers will be
transmitted in �two�s complement� format. If more than one register is requested, the lowest addressed register is
transmitted first and the other holding registers will follow in sequential order.

3.2 MODBUS FUNCTION 3 - READ MULTIPLE HOLDING REGISTERS
This function allows a Modbus master to acquire the contents of a holding register from the addressed slave unit.
This function will only access the individually addressed Elite and does not support global broadcast or group
broadcast addressing modes.

The Elite implementation of this function allows up to 16 holding registers to be read in one message. All registers
can be read through Function 3.

An example Modbus Query message showing the format of the Read Multiple Holding Registers is shown in Fig. 3.1.

The example shown in Fig. 3.1. reads from an Elite whose Modbus system address is 10(decimal), 0A(hexadecimal).
As the data addresses use relative addressing (refer Section 3.1) the starting address is relative to 40001. This
example reads the value of holding registers 40001 to 40003, so the starting address relative to 40001 is 0(decimal),
0000(hexadecimal).

Modbus System
Address

Modbus Function
Code

Data Address
Start(40001)

Number of
Holding

Registers(=3)
CRC

0AH 03H 00H 00H 00H 03H 04H B0H

4202-228 Rev A

Fig. 3.1 Example Modbus Message using RTU Framing

A typical response to the example Function 3 Query shown in Fig 3.1 is shown in Fig 3.2.

The data byte count is the number of data bytes following in the message. This is computed as two byes per
register, giving a byte count of six.

The data returned is interpreted as follows. The Data Address 40001 is the rated (nameplate) motor current and has
a value of (100% x 7537/8192) = 92.0% of the rated drive current (2.5A, so motor current is 0.92 x 2.5 = 2.3A). The
Data Address 40002 is the rated (nameplate) motor voltage and has a value of 230V. The Data Address 40003 is
the rated (nameplate) motor frequency and has a value of 50Hz.

Elite Series Serial Comms. 4201-206 Rev B

12

Modbus
System
Address

Modbus
Function

Code

Byte
Count

Data(40001)
(=7537)

Data(40002)
(=230)

Data(40003)
(=50)

CRC

0AH 03H 06H 1DH 71H 00H E6H 00H 32H 4DH E1H

4202-229 Rev A

Fig. 3.2 Example Modbus Message Response using RTU Framing

The CRC value is calculated from all the bytes in the response including the Modbus system address, Modbus
function code, the data address start, number of holding registers, the byte count and the data bytes. The method
used for calculating the CRC value is discussed in Appendix B.5. The data byte count is the number of data bytes in
the response message - 3 word length registers, each of 2 bytes gives 6 bytes of data.

When an error has occurred (e.g. by trying to read from a non-existent register), the Elite returns an exception
response containing an exception code indicating the type of error. Refer to Appendix B.6 for the exception re-
sponse format and an explanation of the exception codes.

3.3 MODBUS FUNCTION 16 - FORCE MULTIPLE HOLDING REGISTERS
This function allows a Modbus master to control the value of a number of holding registers in the addressed slave
unit. Any holding register which is not read-only may be forced to a new value. Since the Elite will still have control
over the value in each of the holding registers, the value may still be modified by the Elite after being set by the
Modbus master.

The Elite implementation of this function allows up to 16 holding registers to be forced in one message.

This function supports individual addressing as well global broadcast and group broadcast addressing modes.
Global broadcast and group addressing modes are discussed in more detail is Section 4.2 and Section 5.3.

An example Modbus Query message showing the format of the Force Multiple Holding Registers is shown in Fig. 3.3.

The example shown in Fig. 3.3 writes to an Elite whose Modbus system address is 10(decimal) 0A(hexadecimal).
The data address 40001 is the rated (nameplate) motor current and is modified to (100% x 1.5A / 2.5A) = 60% of
drive rated (nameplate current), so the actual value is (0.6 x 8192) = 4915(decimal), or 1333(hexadecimal). The data
address 40002 is the rated (nameplate) motor voltage and is modified to 400V(decimal), 190(hexadecimal).

Modbus
System
Address

Modbus
Function

Code

DataAddress
Start(40001)

Number of
Registers(=2)

Byte
Count

Data(40001)
(=4915)

Data(40002)
(=400)

CRC

0AH 10H 00H 00H 00H 02H 04H 13H 33H 01H 90H 23H FCH

4202-230 Rev A

Fig. 3.3 Function 16 - Force Multiple Holding Registers

A typical response to the example Function 16 Query shown in Fig 3.3 is shown in Fig 3.4.

The response contains the address of the first holding register and the number of registers modified.

Modbus
System
Address

Modbus
Function

Code

Data
Address

Start
(40001)

Number of
Registers

(=2)
CRC

0AH 10H 00H 00H 00H 02H 40H B3H

4202-231 Rev A

Fig. 3.4 Function 16 Response - Force Multiple Holding Registers Response

Elite Series Serial Comms. 4201-206 Rev B

13

It should be noted that a value modified over a Modbus message will not be stored in non-volatile memory
(EEPROM); the value will be lost when the Elite is powered down. A seperate message must be sent that causes a
value to be saved in EEPROM.

An example Modbus Query showing the format of a message to cause a rated name plate current to be saved to
EEPROM is shown in Fig. 3.5

Modbus
System
Address

Modbus
Function

Code

Data
Address
= 40885

Number
of

Registers

Byte
count

Data =
40001

CRC

0AH 10H 03H 74H 00 01H 02H 9CH 41H 45H E4H

4202-240 Rev A

Fig. 3.5 Example of message that causes rated name plate current to be saved to EEPROM

The CRC value is calculated from all the bytes in the response including the Modbus system address, Modbus
function code, the data bytes and the data byte count. The method used for calculating the CRC value is discussed
in Appendix B.5. The data byte count is the number of data bytes in the response message - 2 word length registers,
each of 2 bytes gives 4 bytes of data.

When an error has occurred (e.g. by trying to write to a read-only register), the Elite returns an exception response
containing an exception code indicating the type of error. Refer to Appendix B.6 for the exception response format
and an explanation of the exception codes.

C.2 VSD Registers 93

C.2 VSD Registers

Elite Series Serial Comms. 4201-206 Rev B

14

4 ELITE DATA REGISTERS

4.1 ELITE HOLDING REGISTERS
There are 188 holding registers in the Elite that can be accessed over the Modbus System. Section 4.3 summarises
the accessible Elite holding registers in Modbus data address order. Section 4.4 cross-references the parameters as
they appear on the Elite screens, to Elite holding registers. A more detailed explanation of each holding register is
given below. The Modbus system designer should refer to the Microdrive Elite Instruction Manual (PDL Part No.
4201-180) for more information.

Note: Modbus Function 3 allows up to 16 registers to be read at once.
Modbus Function 16 allows up to 16 registers to be written to at once.

4.2 SHORT-FORM MODBUS REGISTER DETAILS ORDERED BY MODBUS
ADDRESS

Address Screen Description Range Scaled Range

40001 N1 Rated (nameplate) motor current 20..150% 1638..12288

40002 N2 Rated (nameplate) motor volts 0..999Vac 0..999

40003 N3 Rated (nameplate) motor frequency 0..400Hz 0..400

40004 N4 Rated (nameplate) motor power 0..650kW 0..65000

40005 N6 Motor cooling at zero speed 20..101% 1638..8273

40006 N5 Rated (nameplate) motor speed 0..24000rpm 0..24000

40007 N8 Pulse per revolution of tacho encoder 0..8191ppr 0..8191

40008 X2 Autotune motor 0..1 0..1

40010 L8 Regeneration limit 0..250% 0..20480

40011 L2 Minimum speed -250%..Max Limit -20480..Max Limit

40012 L3 Maximum speed Min Limit..+250% Min Limit..+20480

40013 L6 Speed limit timeout 0..25s,INFINITE 0..26000

40014 L4 Minimum torque -250%..Max Limit -20480..Max Limit

40015 L5 Maximum torque Min Limit..+250% Min Limit..+20480

40016 L7 Torque limit timeout 0..25s,INFINITE 0..26000

40017 X4c Starting torque (boost) adjustment 0..250% 0..20480

40018 L9 Current limit 25..150% 2048..12288

40019 X4d Start Band 0..100% 0..8192

40020 D1 Time constant of dynamic brake resistor 0..250s 0..250

40021 D2 Duty rating of dynamic brake resistor OFF,1..100% 0..8192

40030 H3a Modbus serial comms address 1..240 1..240

40031 H3b Modbus serial comms baud-rate 0..3 0..3

40032 H2 Modbus serial comms timeout period 0..3 0..3

40040 - Acceleration rate reference 0.1..6000%/s 1..60000

40041 - Deceleration rate reference 0.1..6000%/s 1..60000

40042 R6 Decel(stopping) rate used when stopping 0.1..6000%/s 1..60000

40043 R7 Speed filter time constant 0..100s/(100%/s)*10 0..1000

40044 R8 Torque filter time constant 0..10s 0..10000

40050 S6 Off delay time 0..25s, INFINITE 0..2 6000

40051 S5 Start delay time 0..1s 0..1000

40052 - Stop mode in use 0..5 0..5

40053 S7 Mains power loss response 0..1 0..1

40056 S8 Level of dc current used for braking 0..150% 0..12288

40057 S1 V/Hz starting mode 0..2 0..2

40058 S9 DC Hold level 0..25% 0..2048

40059 S10 DC Heat level OFF, 1..30% 0..2458

40060 X3e Field weakening point 50..100% 4096..8192

Table 3.2: Elite Modbus Register Details

Note *** indicates that this parameter is a read only parameter.

Elite Series Serial Comms. 4201-206 Rev B

15

40061 X3a Main inductance 40..800% 3276..65535

40062 X3b Stator resistance 0..15% 0..1228

40063 X3c Rotor resistance 0..15% 0..1228

40064 X3d Total leakage 0..20% 0..1638

40066 X5g Current PI loop proportional gain 0..100% 0..8192

40067 X5h Current PI loop integral gain 0..100% 0..8192

40068 X4g Rotor speed PID loop integral gain 0..4096 0..4096

40069 X4h Rotor speed PID loop derivative gain 0..4096 0..4096

40070 X4f Rotor speed PID loop proportional gain 0..300% 0..24576

40071 X5i Rotor speed PID filter constant 3..100% 246..8192

40072 X5e Modulation type 0..1 0..1

40073 X5f Modulation frequency AUTO,4000..16000 3999..16000

40080 - Host reset control 0..1 0..1

40081 - Host stop control 0..1 0..1

40082 - Host start control 0..1 0..1

40083 - Host trip control 0..1 0..1

40084 - Speed / Torque Mode reference 0..1 0..1

40085 I1 Local start stop and reset control 0..3 0..3

40088 A3 Local speed reference -250..+250% -20480..+20480

40089 Status Line , overload, speed/torque indication *** 0..128 0..128

40090 Status Line, A5 Motor speed *** -400..+400% -32768..+32767

40091 Status Line Motor torque *** -400..+400% -32768..+32767

40092 A8 DC bus voltage *** 0..800% 0..65535

40093 A6 Current output *** 0..800% 0..65535

40094 - Tacho calculated rotor speed *** -32768..+32767 -32768..+32767

40095 F Current fault status *** 0..39 0..39

40098 A5 Power output *** -400..+400% -32768..+32767

40099 A8 Voltage output *** 0..800% 0..65535

40100 A7 Estimated motor temperature *** 0..800% 0..65535

40101 A7 Estimated inverter temperature *** 0..800% 0..65535

40102 - Estimated D/B resistor temperature *** 0..800% 0..65535

40103 - Reserved *** -50..100 -50..100

40104 - Reserved *** -50..100 -50..100

40107 I8c Fibre optic control mode select 0..5 0..5

40108 - Fibre reference input *** -400..+400% -32768..+32767

40110 - Fibre reference output *** -400..+400% -32768..+32767

40113 I8d Fibre optic communication timeout 0..3 0..3

40114 Z11 Fibre optic input value *** -400..+400% -32768..+32767

40116 I8a Fibre optic input low setpoint -400..+400% -32768..+32767

40117 I8b Fibre optic input high setpoint -400..+400% -32768..+32767

40120 Z3 Analogue input 1 value *** -400..+400% -32768..+32767

40121 Z4 Analogue input 2 value*** -400..+400% -32768..+32767

40122 Z5 Analogue output 1 value *** -400..+400% -32768..+32767

40123 Z6 Analogue output 2 value *** -400..+400% -32768..+32767

40124 - Analogue input 1+2 value *** -400..+400% -32768..+32767

40125 I6b Analogue input 1 low setpoint -400..+400% -32768..+32767

40126 I6c Analogue input 1 high setpoint -400..+400% -32768..+32767

40127 I6e Analogue input 2 low setpoint -400..+400% -32768..+32767

40128 I6f Analogue input 2 high setpoint -400..+400% -32768..+32767

40129 O1c Analogue output 1 low setpoint -400..+400% -32768..+32767

40130 O1d Analogue output 1 high setpoint -400..+400% -32768..+32767

40131 O1g Analogue output 2 low setpoint -400..+400% -32768..+32767

40132 O1h Analogue output 2 high setpoint -400..+400% -32768..+32767

Elite Series Serial Comms. 4201-206 Rev B

16

40133 I6g Zero band for analogue I/P sources 0..1 0..1

40134 I6a,Z3 Analogue input 1 format 0..3 0..3

40135 I6d,Z4 Analogue input 2 format 0..3 0..3

40136 O1b,Z5 Analogue output 1 format 0..3 0..3

40137 O1f,Z6 Analogue output 2 format 0..3 0..3

40138 I7b Multi-function input logical inversion 0..1 0..1

40139 N9 Encoder type select 0..1 0..1

40140 Z2 Software version *** 0..25.5 0..255

40141 Z2 Hardware version *** 0..25.5 0..255

40150 Y1 Screen list select 0..255 0..255

40151 Y3 Current Vista configuration select 0..255 0..255

40152 Y3 Number of Vista configurations *** 0..255 0..255

40153 - Vista block Error code *** 0..255 0..255

40161 A4 Reference speed -400..+400% -32768..+32767

40162 A4 Reference torque -400..+400% -32768..+32767

40170 Z7 Status of Multifunction input 1 (read only) 0..1 0..1

40171 Z7 Status of Multifunction input 2 *** 0..1 0..1

40172 Z7 Status of Multifunction input 3 *** 0..1 0..1

40173 Z7 Status of Multifunction input 4 *** 0..1 0..1

40174 Z7 Status of Multifunction input 5 *** 0..1 0..1

40175 Z7 Status of Multifunction input 6 *** 0..1 0..1

40176 Z7 Status of Multifunction I/P 7 / Ex.Trip *** 0..1 0..1

40180 - Elite stop signal *** 0..1 0..1

40181 - Elite start signal*** 0..1 0..1

40182 - Elite reset signal *** 0..1 0..1

40183 - Elite run command 0..1 0..1

40190 L10 Skip Speed 1 -250..+250% -20480..+20480

40191 L11 Skip Speed 2 -250..+250% -20480..+20480

40192 L12 Skip Bandwidth 0..20% 0..1638

40200 F6 Clear Fault History 0..1 0..1

40201 F1 Fault History 1 *** 0..39 0..39

40202 F2 Fault History 2 *** 0..39 0..39

40203 F3 Fault History 3 *** 0..39 0..39

40204 F4 Fault History 4 *** 0..39 0..39

40205 F5 Fault History 5 *** 0..39 0..39

40210 X4a Dynaflux minimum flux level 40..100% 3276..8192%

40211 X4b Select torque boost mode 0..2 0..2

40212 X5a Current limit slip value 0..10% 0..819

40213 X5b Voltage limit slip value 0..10% 0..819

40214 X5c No-load damping 0..20% 0..1638

40215 X5d Slip compensation enable 0..1 0..1

40220 P6 Process control error signal *** -400..+400% -32768..+32767

40221 - Process control enable *** 0..1 0..1

40222 - Process control reference value *** -400..+400% -32768..+32767

40223 - Process control feedback value *** -400..+400% -32768..+32767

40224 P1 Process control reference source select 0..7 0..7

40225 P2 Process control feedback source select 0..7 0..7

40226 P3 Process control gain factor 1..100 1..100

40227 P4 Process control integration time 10..10010 10..10010

40228 P5 Process control differential factor 0..2500 0..2500

40230 - Inverter rated voltage 400,690Vac 400,690

40231 - Inverter rated current 0..6553amps 0..65535

40613 - Drive identification code *** 0..65535 -

40885 - EEPROM Address*** 40001..49999 40001..49999

Elite Series Serial Comms. 4201-206 Rev B

17

(excluding 40885) (excluding 40885)

41001 I7c Multi-function input 1 select 0..18 0..18

41002 I7d Multi-function input 2 select 0..18 0..18

41003 I7e Multi-function input 3 select 0..18 0..18

41004 I7f Multi-function input 4 select 0..18 0..18

41005 I7g Multi-function input 5 select 0..18 0..18

41006 I7h Multi-function input 6 select 0..18 0..18

41007 I7a Multi-function input mode select 0..5 0..5

41010 C2 Comparator 1 �ON� setpoint -250..+250% -20480..+20480

41011 C3 Comparator 1 �OFF� setpoint -250..+250% -20480..+20480

41012 C1 Comparator 1 source select 0..18 0..18

41013 - Comparator 1 output *** 0..1 0..1

41014 I2 Speed reference source select 0..8 0..8

41015 I3 Torque reference source select 0..7 0..7

41016 I4 Alt speed reference source select 0..8 0..8

41017 I5 Alt torque reference source select 0..7 0..7

41019 - Multi-reference select *** 0..255 0..255

41020 M1 Multi-reference 1 setpoint -400..+400% -32768..+32767

41021 M2 Multi-reference 2 setpoint -400..+400% -32768..+32767

41022 M3 Multi-reference 3 setpoint -400..+400% -32768..+32767

41023 M4 Multi-reference 4 setpoint -400..+400% -32768..+32767

41024 M5 Multi-reference 5 setpoint -400..+400% -32768..+32767

41025 M6 Multi-reference 6 setpoint -400..+400% -32768..+32767

41026 M7 Multi-reference 7 setpoint -400..+400% -32768..+32767

41027 O2a Relay 1 source select 0..22 0..22

41028 O2c Relay 2 source select 0..22 0..22

41029 O2e Relay 3 source select 0..22 0..22

41030 O2b Invert the logic of Relay 1 0..1 0..1

41031 O2d Invert the logic of Relay 2 0..1 0..1

41032 O2f Invert the logic of Relay 3 0..1 0..1

41033 O1a Analogue output 1 source selection 0..18 0..18

41034 O1e Analogue output 2 source selection 0..18 0..18

41039 O3a Fibre optic output source select 0..18 0..18

41041 A2 Keyboard torque reference -250..+250% -20480..+20480

41042 A1 Keyboard speed/torque mode select 0..1 0..1

41043 R1 Acceleration rate 0.1..6000%/s 1..60000

41044 R2 Deceleration rate 0.1..6000%/s 1..60000

41045 R3 Alternative acceleration rate 0.1..6000%/s 1..60000

41046 R4 Alternative deceleration rate 0.1..6000%/s 1..60000

41047 R5 Break speed for Alt accel/decel 0..250% 0..20480

41048 S2 Usual stopping mode 0..5 0..5

41049 S4 Alternative stopping mode 0..5 0..5

41062 - Motorised potentiometer speed -400..+400% -32768..+32767

41063 - Motorised potentiometer torque *** -400..+400% -32768..+32767

41090 Status Line Inverter and Motor overload warning *** 0..16 0..16

41091 X1 Control mode select 0..2 0..2

41110 C5 Comparator 2 �ON� setpoint -250..+250% -20480..+20480

41111 C6 Comparator 2 �OFF� setpoint -250..+250% -20480..+20480

41112 C4 Comparator 2 source select 0..18 0..18

41113 - Comparator 2 output *** 0..1 0..1

41114 - Window comparator output *** 0..1 0..1

Note *** indicates that this parameter is a read only parameter.

Table 3.2 Elite Modbus Register Details

Elite Series Serial Comms. 4201-206 Rev B

18

Note 1: 40613 - Drive Identification Code

High Byte: 1 = Microdrive Low Byte: 1 = ME-2.5, 400V 66 = ME-38, 400V

2 = Microflo 33 = ME-6.5, 400V 2 = ME-46, 400V

3 = Microvector 65 = ME-10.5, 400V 35 = UE-60, 400V

4 = Elite Series 97 = ME-12, 400V 67 = UE-75, 400V

96 = ME-16, 400V 129= UE-90, 400V

64 = ME-18, 400V 36 = UE-115, 400V

128= ME-22.5, 400V 68 = UE-140, 400V

42 = ME-28, 400V

34 = ME-31, 400V

Appendix D

JAVA Program

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;
import java.net.*;
import java.io.*;
import java.lang.*;
import java.lang.String.*;
import java.text.*;
import java.util.*;

import javax.swing.JPanel;
import javax.swing.BorderFactory;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import javax.swing.JTabbedPane;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JTextField;
import javax.swing.JLabel;
import javax.swing.JApplet;

import java.awt.Button;
import java.awt.event.*;

public class Test extends Applet implements Runnable{
 static private boolean isapplet = true;
 static private InetAddress arg_ip = null;
 static private int arg_port = 0;
 Thread timer;

 public tcpip gtp = null;;
 InetAddress reader_ip = null;
 int port = 14000;

 int ControlLoop1 = 0;
 //The below are the command strings for the pushbuttons
 int [] StartCMD_Main= {0x0A,0x10,0x00,0x51,0x00,0x01,0x02,0x00,0x01};
 int [] StartCMD_RST_Main= {0x0A,0x10,0x00,0x51,0x00,0x01,0x02,0x00,0x00};
 int [] StopCMD_Main= {0x0A,0x10,0x00,0x50,0x00,0x01,0x02,0x00,0x01};
 int [] StopCMD_RST_Main= {0x0A,0x10,0x00,0x50,0x00,0x01,0x02,0x00,0x00};
 int [] ResetCMD_Main= {0x0A,0x10,0x00,0x4F,0x00,0x01,0x02,0x00,0x01};
 int [] AutoCMD_Main= {0x0A,0x10,0x01,0x2C,0x00,0x01,0x02,0x00,0x01};
 int [] ManCMD_Main= {0x0A,0x10,0x01,0x2D,0x00,0x01,0x02,0x00,0x01};
 int [] UpCMD_Main= {0x0A,0x06,0x00,0x02,0x00,0x32};
 int [] DownCMD_Main= {0x0A,0x06,0x00,0x02,0x00,0x32};

 //The below are the command strings for collecting status information
 int [] MotorSpeed_Main= {0x0A,0x03,0x00,0x5F,0x00,0x01};
 int [] MotorAmps_Main= {0x0A,0x03,0x00,0x5C,0x00,0x01};

 //The below are the returned status information
 double Motor_Speed_Int_Status;
 double Motor_Amps_Int_Status;

//Control Panel Variables.

 JButton btStart_PB;
 JButton btStop_PB;
 JButton btReset_PB;
 JButton btAuto_PB;
 JButton btManual_PB;
 JButton btUP_PB;
 JButton btDN_PB;
 JTextField tfSetpoint;
 JTextField tfMode;
 JTextField tfStatus;
 JLabel lbSetpoint_Label;
 JLabel lbStatus_Label;
 JLabel lbMode_Label;
 JTextField tfSpeed;
 JTextField tfCurrent;
 JLabel lbSpeed_LBL;
 JLabel lbCurrent_LBL;

Page 1

 JLabel lbPerc_LBL;
 JLabel lbAmps_LBL;
//**************************************
 JTextField tfMotor_KW;
 JTextField tfMotor_FLC;
 JLabel lbMotor_KW_LBL;
 JLabel lbMotor_FLC_LBL;
 JLabel lbMotor_V_LBL;
 JTextField tfMotor_V;
 JLabel lbLabel7;
 JLabel lbLabel8;
 JLabel lbLabel9;
 JLabel lbMotor_PF_LBL;
 JLabel lbMotor_Eff_LBL;
 JLabel lbMotor_SPD_LBL;
 JTextField tfMotor_PF;
 JTextField tfMotor_Eff;
 JTextField tfMotor_SPD;
 JLabel lbLabel10;
 JLabel lbLabel11;
 JLabel lbLabel12;
 JLabel lbLabel13;
//*************************************
 JTextField tfImpeller_Size;
 JTextField tfInlet_Size;
 JLabel lbImp_Size_LBL;
 JLabel lbInlet_Size_LBL;
 JLabel lbOutlet_Size_LBL;
 JTextField tfOutlet_Size;
 JLabel lbMaximum_FL_LBL;
 JLabel lbMaximum_Press_LBL;
 JLabel lbPump_Eff_LBL;
 JTextField tfMaximum_FL;
 JTextField tfMaximum_Press;
 JTextField tfPump_Eff;
 JLabel lbLabel1;
 JLabel lbLabel2;
 JLabel lbLabel3;
 JLabel lbLabel4;
 JLabel lbLabel5;
 JLabel lbLabel6;
 JLabel lbLabel20;
 JLabel lbLabel21;
 JLabel lbLabel22;
 JLabel lbLabel23;
 JButton btClose_PB;
 JButton btUpLoad_PB;
 JButton btDownLoad_PB;

 public void init()
 {
 gtp = null;
 reader_ip = null;
 port = 14000;
 }

//***

 public void run() {
 int i;
 byte[] in = new byte[100];
 //int ControlLoop1=0;
 int j;
 int[] a = new int[100];
 int[] b = new int[100];

 int[] ReturnedValues = new int[10];
 int result=0;
 Thread me = Thread.currentThread();
 while (timer == me) {
 try {
 Thread.currentThread().sleep(1000);
 }
 catch (InterruptedException e) { }
 if ((gtp != null) && ((i = gtp.available()) > 0)) {

 in = gtp.receive();

Page 2

 for (j = 0; j < in.length; j++) {
 a[j] = in[j];
 if (a[j] < 0){
 b[j]=256 + a[j];
 }
 else{
 b[j]=a[j];
 }
 //System.out.println("Integer value "+b[j]);
 //System.out.println("Integer value "+a[j]+" another
value "+b[j]);
 }
 result = (b[3]*256)+b[4];
 System.out.println("the result is "+result);
 ReturnedValues[1]=result;

 }
 System.out.println("The Motor Speed is "+ReturnedValues[1]);
 //System.out.println("The Motor Amps is "+ReturnedValues[2]);
 Motor_Speed_Int_Status = (Math.round((ReturnedValues[1] *
(40000))/32767));
 Motor_Amps_Int_Status = (Math.round((ReturnedValues[2] * (22.5 *
800))/65535));
 //System.out.println("The Motor Speed is
"+Motor_Speed_Int_Status/100);
 //System.out.println("The Motor Amps is
"+Motor_Amps_Int_Status/100);
 result=0;
 }

}
 public void start()
 {
 timer = new Thread(this);
 timer.start();
 String st = new String(" ");
 setFont(new Font("Dialog",Font.BOLD,16));
 setLayout(new GridLayout(6,3));

 GridBagConstraints c = new GridBagConstraints();
 c.gridx = 0; c.gridy = 0; c.gridwidth = 1; c.gridheight = 10;

 c.anchor = GridBagConstraints.CENTER;
 c.fill = GridBagConstraints.BOTH;
 c.insets = new Insets(5,5,5,5);
 setBackground(Color.yellow);
 setSize(200,200);

 if (isapplet) {
 try{
 reader_ip =
InetAddress.getByName(getCodeBase().getHost());
 }
 catch (UnknownHostException e){}
 }
 else {
 reader_ip = arg_ip;
 if (arg_port != 0) {
 port = arg_port;
 }
 }
 /* Open a socket to the Device Server's serial port */
 if (reader_ip != null) {
 if (gtp == null) {
 gtp = new tcpip(reader_ip, port);
 if (gtp.s == null) {
 st += "Connection FAILED! ";
 gtp = null;
 }
 }
 }
 if (gtp == null) {
 st += "Not Connected";
 add((new Label(st)), c);
 return;
 }
 st += "Connected";
 c.gridx = 10; c.gridy = 50; c.gridwidth = 3; c.gridheight = 1;
 c.weightx = 2; c.weighty =10.0; c.anchor = GridBagConstraints.WEST;
 c.fill = GridBagConstraints.BOTH;

Page 3

 add((new Label(st)), c);

//***

 **
 c.gridx = 500; c.gridy = 50; c.gridwidth = 3; c.gridheight = 1;
 c.weightx = 2; c.weighty =10.0; c.anchor = GridBagConstraints.WEST;
 c.fill = GridBagConstraints.BOTH;
 add((new CP_Gen()), c);
//***
**

 }
 public void destroy()
 {
 if (gtp != null)
 gtp.disconnect();
 gtp = null;
 }

 public void stop() {

 }

 public static void main(String[] args) {

 Frame frame = new Frame("TCP/IP Test");
 frame.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {
 System.exit(0);

 }

 });
 if (args.length > 0) {
 try{
 arg_ip = InetAddress.getByName(args[0]);
 }
 catch (UnknownHostException e){}
 if (args.length > 1) {
 try {
 arg_port = Integer.valueOf(args[1]).intValue();
 }
 catch (NumberFormatException e) {}
 }
 }
 Test ap = new Test();
 frame.add(ap);
 ap.init();
 isapplet = false;
 ap.start();
 frame.pack();
 frame.show();

 }

//***

/*
 * TextComponentTest
 * Tests out the java.awt.TextField and Java.awt.TextArea
 * Components
 */

public class TextComponentTest implements TextListener
 {
 public TextComponentTest()
 {
 TextField tf= new TextField();
 tf.addTextListener(this);
 add(tf);
 setVisible(true);
 }
 public void textValueChanged(TextEvent event)
 {
 TextComponent src = (TextComponent)event.getSource();
 System.out.println(src.getText());
 }
 }

//***

Page 4

/*
 * Routine for the interface panel.
 */
public class CP_Gen extends JFrame
{

class Control_Panel extends JPanel implements ActionListener
{

//**
 /**
 *Constructor for the Control_Panel object
 */
 public Control_Panel()
 {
 super();
 setBorder(BorderFactory.createTitledBorder("Motor Control"));

 GridBagLayout gbControl_Panel = new GridBagLayout();
 GridBagConstraints gbcControl_Panel = new GridBagConstraints();
 setLayout(gbControl_Panel);

 btStart_PB = new JButton("Start");
 btStart_PB.addActionListener(this);
 gbcControl_Panel.gridx = 1;
 gbcControl_Panel.gridy = 1;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btStart_PB, gbcControl_Panel);
 add(btStart_PB);

 btStop_PB = new JButton("Stop");
 btStop_PB.addActionListener(this);
 gbcControl_Panel.gridx = 1;
 gbcControl_Panel.gridy = 2;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btStop_PB, gbcControl_Panel);
 add(btStop_PB);

 btReset_PB = new JButton("Reset");
 btReset_PB.addActionListener(this);
 gbcControl_Panel.gridx = 1;
 gbcControl_Panel.gridy = 3;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btReset_PB, gbcControl_Panel);
 add(btReset_PB);

 btAuto_PB = new JButton("Auto");
 btAuto_PB.addActionListener(this);
 gbcControl_Panel.gridx = 3;
 gbcControl_Panel.gridy = 1;
 gbcControl_Panel.gridwidth = 2;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btAuto_PB, gbcControl_Panel);
 add(btAuto_PB);

 btManual_PB = new JButton("Manual");
 btManual_PB.addActionListener(this);
 gbcControl_Panel.gridx = 3;

Page 5

 gbcControl_Panel.gridy = 2;
 gbcControl_Panel.gridwidth = 2;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btManual_PB, gbcControl_Panel);
 add(btManual_PB);

 btUP_PB = new JButton("Up");
 btUP_PB.addActionListener(this);
 gbcControl_Panel.gridx = 3;
 gbcControl_Panel.gridy = 4;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btUP_PB, gbcControl_Panel);
 add(btUP_PB);

 btDN_PB = new JButton("Down");
 btDN_PB.addActionListener(this);
 gbcControl_Panel.gridx = 4;
 gbcControl_Panel.gridy = 4;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btDN_PB, gbcControl_Panel);
 add(btDN_PB);

 tfSetpoint = new JTextField();
 gbcControl_Panel.gridx = 3;
 gbcControl_Panel.gridy = 3;
 gbcControl_Panel.gridwidth = 2;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfSetpoint, gbcControl_Panel);
 add(tfSetpoint);

 tfMode = new JTextField();
 gbcControl_Panel.gridx = 3;
 gbcControl_Panel.gridy = 0;
 gbcControl_Panel.gridwidth = 2;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMode, gbcControl_Panel);
 add(tfMode);
 tfMode.setText("Automatic");

 tfStatus = new JTextField();
 gbcControl_Panel.gridx = 1;
 gbcControl_Panel.gridy = 0;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfStatus, gbcControl_Panel);
 add(tfStatus);
 //tfStatus = gtp.receive();

 lbSetpoint_Label = new JLabel(" Setpoint ");
 gbcControl_Panel.gridx = 2;
 gbcControl_Panel.gridy = 3;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;

Page 6

 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbSetpoint_Label, gbcControl_Panel);
 add(lbSetpoint_Label);

 lbStatus_Label = new JLabel("Status ");
 gbcControl_Panel.gridx = 0;
 gbcControl_Panel.gridy = 0;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbStatus_Label, gbcControl_Panel);
 add(lbStatus_Label);

 lbMode_Label = new JLabel(" Mode");
 gbcControl_Panel.gridx = 2;
 gbcControl_Panel.gridy = 0;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMode_Label, gbcControl_Panel);
 add(lbMode_Label);

 tfSpeed = new JTextField();
 gbcControl_Panel.gridx = 1;
 gbcControl_Panel.gridy = 5;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfSpeed, gbcControl_Panel);
 add(tfSpeed);
 //tfSpeed.setText(Double.toString(Motor_Speed_Int_Status));

 tfCurrent = new JTextField();
 gbcControl_Panel.gridx = 1;
 gbcControl_Panel.gridy = 6;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfCurrent, gbcControl_Panel);
 add(tfCurrent);

 lbSpeed_LBL = new JLabel("Speed");
 gbcControl_Panel.gridx = 0;
 gbcControl_Panel.gridy = 5;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.EAST;
 gbControl_Panel.setConstraints(lbSpeed_LBL, gbcControl_Panel);
 add(lbSpeed_LBL);

 lbCurrent_LBL = new JLabel("Current");
 gbcControl_Panel.gridx = 0;
 gbcControl_Panel.gridy = 6;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;

Page 7

 gbControl_Panel.setConstraints(lbCurrent_LBL, gbcControl_Panel);
 add(lbCurrent_LBL);

 lbPerc_LBL = new JLabel("%");
 gbcControl_Panel.gridx = 2;
 gbcControl_Panel.gridy = 5;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbPerc_LBL, gbcControl_Panel);
 add(lbPerc_LBL);

 lbAmps_LBL = new JLabel("A");
 gbcControl_Panel.gridx = 2;
 gbcControl_Panel.gridy = 6;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.WEST;
 gbControl_Panel.setConstraints(lbAmps_LBL, gbcControl_Panel);
 add(lbAmps_LBL);

//*************************************
 tfMotor_KW = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 1;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMotor_KW, gbcControl_Panel);
 add(tfMotor_KW);

 tfMotor_FLC = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 2;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMotor_FLC, gbcControl_Panel);
 add(tfMotor_FLC);

 lbMotor_KW_LBL = new JLabel(" Motor Size");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 1;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMotor_KW_LBL, gbcControl_Panel);
 add(lbMotor_KW_LBL);

 lbMotor_FLC_LBL = new JLabel(" Motor Current");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 2;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMotor_FLC_LBL, gbcControl_Panel);
 add(lbMotor_FLC_LBL);

 lbMotor_V_LBL = new JLabel(" Motor Voltage");
 gbcControl_Panel.gridx = 7;

Page 8

 gbcControl_Panel.gridy = 3;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMotor_V_LBL, gbcControl_Panel);
 add(lbMotor_V_LBL);

 tfMotor_V = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 3;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMotor_V, gbcControl_Panel);
 add(tfMotor_V);

 lbLabel7 = new JLabel(" KW");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 1;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel7, gbcControl_Panel);
 add(lbLabel7);

 lbLabel8 = new JLabel(" A");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 2;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel8, gbcControl_Panel);
 add(lbLabel8);

 lbLabel9 = new JLabel(" V");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 3;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel9, gbcControl_Panel);
 add(lbLabel9);

 lbMotor_PF_LBL = new JLabel(" Motor Power Factor");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 4;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMotor_PF_LBL, gbcControl_Panel);
 add(lbMotor_PF_LBL);

 lbMotor_Eff_LBL = new JLabel(" Motor Efficency");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 5;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;

Page 9

 gbControl_Panel.setConstraints(lbMotor_Eff_LBL, gbcControl_Panel);
 add(lbMotor_Eff_LBL);

 lbMotor_SPD_LBL = new JLabel(" Motor Speed");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 6;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMotor_SPD_LBL, gbcControl_Panel);
 add(lbMotor_SPD_LBL);

 tfMotor_PF = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 4;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMotor_PF, gbcControl_Panel);
 add(tfMotor_PF);

 tfMotor_Eff = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 5;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMotor_Eff, gbcControl_Panel);
 add(tfMotor_Eff);

 tfMotor_SPD = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 6;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMotor_SPD, gbcControl_Panel);
 add(tfMotor_SPD);

 lbLabel10 = new JLabel("COS");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 4;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel10, gbcControl_Panel);
 add(lbLabel10);

 lbLabel11 = new JLabel(" %");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 5;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel11, gbcControl_Panel);
 add(lbLabel11);

 lbLabel12 = new JLabel(" RPM");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 6;
 gbcControl_Panel.gridwidth = 1;

Page 10

 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel12, gbcControl_Panel);
 add(lbLabel12);

 lbLabel13 = new JLabel(" Motor Parameters");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 0;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel13, gbcControl_Panel);
 add(lbLabel13);
//*************************************

 lbLabel20 = new JLabel(" Pump Parameters");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 8;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel20, gbcControl_Panel);
 add(lbLabel20);

 tfImpeller_Size = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 9;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfImpeller_Size, gbcControl_Panel);
 add(tfImpeller_Size);

 tfInlet_Size = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 10;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfInlet_Size, gbcControl_Panel);
 add(tfInlet_Size);

 lbImp_Size_LBL = new JLabel(" Impeller Size");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 9;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbImp_Size_LBL, gbcControl_Panel);
 add(lbImp_Size_LBL);

 lbInlet_Size_LBL = new JLabel(" Inlet Pipe Size");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 10;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbInlet_Size_LBL, gbcControl_Panel);

Page 11

 add(lbInlet_Size_LBL);

 lbOutlet_Size_LBL = new JLabel(" Outlet Pipe Size");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 11;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbOutlet_Size_LBL, gbcControl_Panel);
 add(lbOutlet_Size_LBL);

 tfOutlet_Size = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 11;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfOutlet_Size, gbcControl_Panel);
 add(tfOutlet_Size);

 lbMaximum_FL_LBL = new JLabel(" Maximum Flow");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 12;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMaximum_FL_LBL, gbcControl_Panel);
 add(lbMaximum_FL_LBL);

 lbMaximum_Press_LBL = new JLabel(" Maximum Pressure");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 13;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbMaximum_Press_LBL, gbcControl_Panel);
 add(lbMaximum_Press_LBL);

 lbPump_Eff_LBL = new JLabel(" Pump Efficiency");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 14;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbPump_Eff_LBL, gbcControl_Panel);
 add(lbPump_Eff_LBL);

 tfMaximum_FL = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 12;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMaximum_FL, gbcControl_Panel);
 add(tfMaximum_FL);

 tfMaximum_Press = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 13;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;

Page 12

 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfMaximum_Press, gbcControl_Panel);
 add(tfMaximum_Press);

 tfPump_Eff = new JTextField();
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 14;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(tfPump_Eff, gbcControl_Panel);
 add(tfPump_Eff);

 lbLabel1 = new JLabel(" mm");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 9;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel1, gbcControl_Panel);
 add(lbLabel1);

 lbLabel2 = new JLabel(" mm");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 10;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel2, gbcControl_Panel);
 add(lbLabel2);

 lbLabel3 = new JLabel(" mm");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 11;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel3, gbcControl_Panel);
 add(lbLabel3);

 lbLabel4 = new JLabel(" L per Sec ");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 12;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel4, gbcControl_Panel);
 add(lbLabel4);

 lbLabel5 = new JLabel(" Kpa");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 13;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel5, gbcControl_Panel);
 add(lbLabel5);

Page 13

 lbLabel6 = new JLabel(" %");
 gbcControl_Panel.gridx = 10;
 gbcControl_Panel.gridy = 14;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel6, gbcControl_Panel);
 add(lbLabel6);

//*************************************

 lbLabel21 = new JLabel(" ");
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 15;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel21, gbcControl_Panel);
 add(lbLabel21);

 lbLabel22 = new JLabel(" ");
 gbcControl_Panel.gridx = 6;
 gbcControl_Panel.gridy = 0;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel22, gbcControl_Panel);
 add(lbLabel22);

 lbLabel23 = new JLabel(" ");
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 7;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 1;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(lbLabel23, gbcControl_Panel);
 add(lbLabel23);

 btClose_PB = new JButton("Close");
 btClose_PB.addActionListener(this);
 gbcControl_Panel.gridx = 9;
 gbcControl_Panel.gridy = 16;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btClose_PB, gbcControl_Panel);
 add(btClose_PB);

 btUpLoad_PB = new JButton("Upload");
 btUpLoad_PB.addActionListener(this);
 gbcControl_Panel.gridx = 7;
 gbcControl_Panel.gridy = 16;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btUpLoad_PB, gbcControl_Panel);
 add(btUpLoad_PB);

Page 14

 btDownLoad_PB = new JButton("Download");
 btDownLoad_PB.addActionListener(this);
 gbcControl_Panel.gridx = 8;
 gbcControl_Panel.gridy = 16;
 gbcControl_Panel.gridwidth = 1;
 gbcControl_Panel.gridheight = 1;
 gbcControl_Panel.fill = GridBagConstraints.BOTH;
 gbcControl_Panel.weightx = 1;
 gbcControl_Panel.weighty = 0;
 gbcControl_Panel.anchor = GridBagConstraints.NORTH;
 gbControl_Panel.setConstraints(btDownLoad_PB, gbcControl_Panel);
 add(btDownLoad_PB);

//*************************************
 }
//*************************************

 /**
 */
 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == btStart_PB)
 {
 // Action for btStart_PB
 CRC16(StartCMD_Main);
 CRC16(StartCMD_RST_Main);
 }
 if (e.getSource() == btStop_PB)
 {
 // Action for btStop_PB
 CRC16(StopCMD_Main);
 CRC16(StopCMD_RST_Main);
 }
 if (e.getSource() == btReset_PB)
 {
 // Action for btReset_PB
 CRC16(ResetCMD_Main);

 }
 if (e.getSource() == btAuto_PB)
 {
 // Action for btAuto_PB
 tfMode.setText("Automatic");
 CRC16(AutoCMD_Main);

 }
 if (e.getSource() == btManual_PB)
 {
 // Action for btManual_PB
 tfMode.setText("Manual");
 CRC16(ManCMD_Main);
 }
 if (e.getSource() == btUP_PB)
 {
 // Action for btUP_PB
 //CRC16(UpCMD_Main);
 CRC16(MotorAmps_Main);
 tfCurrent.setText(Double.toString(Motor_Amps_Int_Status/100));

 }
 if (e.getSource() == btDN_PB)
 {
 // Action for btDN_PB
 //CRC16(DownCMD_Main);
 CRC16(MotorSpeed_Main);
 tfSpeed.setText(Double.toString(Motor_Speed_Int_Status/100));
 }
 if (e.getSource() == btClose_PB)
 {
 // Action for btClose_PB
 //CRC16(DownCMD_Main);
 //Uploader ComIn = new Uploader();
 //byte [] feedback = ComIn;
 //System.out.println("This is the feedback from the Uploader "+ComIn);

 }
 }

Page 15

}

Control_Panel pnControl_Panel;

public CP_Gen()
{
 super("Main Control Panel");

 pnControl_Panel = new Control_Panel();

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setContentPane(pnControl_Panel);
 pack();
 show();
}
}
//***

/*
 * CRC16 Routine
 * This Routine Calculates the CRC frame and adds it to the command string,
 * It then send the command out the serial port on the web server.
 */
 public void CRC16 (int [] Buffer)
 {

 int Polynomial = 0xA001;
 int Length = Buffer.length;
 int CRC16 = 0xFFFF;
 int i,j;
 int Data = 0x0000;
 int Constant_K = 0x0001;

 for (i=0;i<=(Length-1);i++)
 {
 Data = Buffer[i];
 for (j=1;j<=8;j++)
 {
 if (((Data ^ CRC16) & Constant_K) == 1)
 {
 CRC16 = ((CRC16 >> 1) ^ Polynomial);
 }
 else
 {
 CRC16 = (CRC16 >> 1);
 }
 Data = Data >> 1;
 }
 }

 char [] CDD = new char [20];
 CDD [(Length-1)+1] = (char)(0x00FF & CRC16);

 CDD [(Length-1)+2] = (char)(CRC16 >> 8);
 for (i=0;i<=(Length-1);i++)
 {
 CDD [i]= (char)(Buffer[i]);
 }
 String str = new String(CDD);
 gtp.send(str);
 }
}

Page 16

Appendix E

PDL Communications Software

E.1 Drivelink Interface 117

E.1 Drivelink Interface

Introduction to PDL Configuration Utilities 9386-012 Rev B

INTRODUCTION TO
PDL

CONFIGURATION UTILITIES

Leaders in AC Motor Control

3

Introduction to PDL Configuration Utilities 9386-012 Rev B

CONTENTS

PDL DriveLink 5
Communications Setup 6
Loading a Vista program 8
Loading Elite Series System Code 9

PDL Modbus Logger 11
Setup 11
Operation 12
Reading and Writing System Variable Data 13
Reading and Writing Vista Variable Data 13
Logging Data to a File 14

5

PDL DriveLink

Introduction to PDL Configuration Utilities 9386-012 Rev B

The PDL Electronics DriveLink software is used for loading into the Elite
Series, a successfully compiled Vista program that is in the form of
filename.vlo. It is also used for upgrading the Elite Series System Code that
is in the form 0410aaXX.hex, where XX refers to the software release version.
To support a Vista program, the Elite Series software release version must be
version 3.0 or greater.

The Elite Series is connected to the PC via an RS232 serial communications
link. Below is a circuit diagram showing connections between 9 and 25 pin
"D" type plugs and the Elite Series communications terminals.

RS485 can be used for loading the Vista program (filename.vlo), but it is not
recommended for loading the Elite Series System Code (0410aaXX.hex).

6

Introduction to PDL Configuration Utilities 9386-012 Rev B

Communications Setup

Once the Elite Series has been connected to the PC and powered up, run
DriveLink (DRVLINK.EXE) on the PC. If the status indicates "No drive
detected, Invalid port number" as shown below, click the Comms Setup tab.

The Comms Setup tab allows the user to set the serial communication port
used on the PC and the Comms Speed (baud rate). Note the same baud rate
will have to be set in screen H3b of the Elite Series. The default baud rate is
9600.

7

Introduction to PDL Configuration Utilities 9386-012 Rev B

The Comms Setup tab also allows the user to address individual drives if a
multi-drop communications interface is being used (i.e. RS485). This address
must be the same as the address in screen H3a of the Elite Series that is
being communicated with. The default address in the Elite Series is 10. If the
Elite Series has Screen H3c (Parity) ensure that this is set to Even.

An RS232 serial communications link is recommended if DriveLink is to be
used to load the Elite Series System Code.

With the correct Comm Port and Comms Speed selected, the status should
report the Elite Series that is connected, the software version, hardware
version and the communications configuration. Clicking back on the Vista
Programs tab will show the amount of free program memory and the number
of Vista programs already loaded.

If communications has not been established, check the cable configuration
and also ensure the Elite Series is powered up.

Once the Comms Setup procedure is complete and communications has been
established, the Elite Series is ready to accept a Vista program or System
Code.

8

Introduction to PDL Configuration Utilities 9386-012 Rev B

Loading a Vista Program

The compiled Vista program is identified by the file extension .vlo (e.g.
filename.vlo - visual language object file). After the Vista program is
compiled the resultant .vlo file is placed in the same directory as the Vista
program netlist file (filename.nl).

To load a Vista program into an Elite Series, click on the Vista Programs tab.
The most recently loaded file name will be displayed in the text field under the
tab. To load a different Vista program click the button.

This will cause the Open dialog box to appear.

Select the Vista .vlo file to be loaded and click open.
You will be returned to the Vista Programs tab where the program file name
and path will be displayed together with the program size and RAM
requirement. To load the Vista program, click the Load Vista Program
button.

Once the program has finished loading, select the Vista program in screen Y3
of the Elite Series, typically program 2 of 2. The Elite Series will now be
operating on the Vista program.

If there is insufficient free memory in the Elite Series, the Vista programs
currently in the Elite Series will have to be cleared. To clear all the Vista
programs in the Elite Series, click the Clear All Vista Programs button.
Once this action is complete, new Vista programs can be loaded.

DriveLink clears all Vista programs by reloading System Code. If the DriveLink
folder does not contain a copy of the System Code that is in the Elite Series, it

9

Introduction to PDL Configuration Utilities 9386-012 Rev B

will extract it from the Elite Series. DriveLink will then reload this copy of the
System Code to clear the Vista programs.

DriveLink does not extract Vista programs from the Elite Series and therefore
it is essential that a copy of the Vista program is held external to the Elite
Series.

Loading Elite Series System Code

DriveLink can also be used to load Elite Series System Code. This provides
the ability to up-grade software as newer versions of Elite Series System
Code are released. When up-grading Elite Series software, care has to be
taken to ensure that the Elite Series is fitted with compatible hardware as
reported in the Software release notes (4226 document series). The Elite
Series must also have at least version 1.9 software already installed. The
software version is reported in screen Z2.
If DriveLink is to be used to load the System Code an RS232 serial
communications link is recommended.

To load Elite Series System Code, click on the System Code tab.

The most recently loaded System Code will be displayed in the text field under
the tab.
To load a different System Code click the button.

This will cause the Open dialogue box to appear.

Select the System Code file to be loaded and click open. You will be returned
to the System Code tab where the System Code file name and path will be
displayed.

10

Introduction to PDL Configuration Utilities 9386-012 Rev B

To load the System Code, click the Load System Code button. The Elite
Series System Code will now be loaded.

If the Elite Series contains a version of software that is not backed up in the
DriveLink folder, the Get Drive System Code button will extract the System
Code from the Elite Series.

Note: The communications must not be interrupted in any fashion during the
System Code transfer. Power must not be disconnected from the PC or Elite
Series during System Code transfer. This will result in an incomplete System
Code and the Elite Series will not operate.

It is recommended an RS232 serial communications link be used for System
Code transfer.

11

PDL Modbus Logger

Introduction to PDL Configuration Utilities 9386-012 Rev B

The PDL Electronics Modbus Logger is a serial communications program that
allows the user to monitor data stored in Vista variables that have been
assigned a Modbus address, or Elite Series System Variables. The Modbus
Logger message format is only compatible with Modbus function code 16.
This limits data addresses to values within the 4XXXX range (decimal). Refer
to the Elite Series Serial Communications Manual (4201-206) for a list of the
System Variable addresses.

Modbus Logger can continually monitor the data at the selected addresses by
using the Poll function. The Poll Time option sets the sampling rate (in
seconds) of the data. If the Log function is used in conjunction with the Poll
function the data will be logged to a file to allow further analysis. This file can
be opened in an Excel spreadsheet and a trend graph can be easily created.

Modbus Logger can also be used to write data to a valid Modbus address.
Care must be taken as the variable may be modified from another source (e.g.
variable is controlled by a Vista program).

The two main functions of Modbus Logger is the debugging of Vista programs
and the monitoring of system performance over time. To monitor Vista
variables, valid Modbus addresses must be assigned to the variables during
the Vista program creation.

When operating Modbus Logger ensure that no other serial communications
application (e.g. DriveLink) is running at the same time within the computer,
as this will cause incorrect program operation.

Setup

When Modbus Logger is run, the following dialog box appears.

Ensure the Drive selection box at the bottom left corresponds to the Elite
Series address, shown in screen H3a of the Elite Series. The default address
is 10.

12

Introduction to PDL Configuration Utilities 9386-012 Rev B

Using the File pull down menu select the Comms Setup option. The
following dialog box will appear.

Configure the settings for the correct communications port on the PC and the
correct Speed (Baud rate). The Stop Bits and Parity options should be set as
above and not need adjustment. (Note Elite Series default baud rate is 9600
and default Parity is Even).

Operation

More than one data address can be read from or sent to by clicking the +
button within Modbus Logger. Further additions to the dialogue box appear
as shown below. Redundant address fields can be removed by clicking the -
button.

More than one Elite Series may be monitored if RS485 is used and the
appropriate drive addresses entered.

13

Introduction to PDL Configuration Utilities 9386-012 Rev B

Reading and Writing System Variable Data

All System Variables are of a discrete data type, as opposed to a real number.
To view a System Variable, enter the address and ensure the Real tick box is
not checked. Refer to the Elite Series Serial Communications Manual
(Document 4201-206) for a list of the System Variable addresses.
If Poll is activated the data contained at that address will be displayed in the
centre box and automatically updated. The update rate is determined by the
Poll Time setting (seconds). If Poll is not activated, clicking the Receive All
button will initiate a one-shot read of the data.
Flags are displayed as either 00 or 01 and all other System Variables are
displayed in hexadecimal.

Reading and Writing Vista Variable Data

Vista variables are defined as either Real of Flag data type. To accommodate
the 32 bit real data type, valid Vista Modbus addresses must be a minimum of
2 significant bits apart. E.g. 42000, 42002, 42004 etc.
To view a Vista real variable, enter the Modbus address and click the Real
tick box. Flags are viewed by entering the correct address and not checking
the Real tick box.

If the Elite Series System Code is version 3.0, then the Real Swapped tick
box must be checked.

Due to a 16 bit limitation of the Send input box of Modbus Logger it is not
possible to write new values into real Vista variables, however it is possible to
write to a Vista flag variable.

14

Introduction to PDL Configuration Utilities 9386-012 Rev B

Logging data to a file

If the Poll function is used in conjunction with the Log function the data will be
logged in a Delimited file.
Before selecting the Log function, a (new) file must be created to store the
data. To create a new file, click the File pull down menu and select New. The
New dialogue box will appear.

In the File name field enter a name for the file. An extension is not necessary.
Then click the Save button.
Click Poll and click Log to begin logging the data to the file. Alternatively Log
Changes Only can be checked also, and this limits the size of the data file.
Once monitoring is complete de-select the Log function. The data file can
now be opened in an Excel spreadsheet for further analysis or graphing.

If logging is initiated before a file has been opened, Modbus Logger will
prompt for a new file to be opened. If logging is subsequently stopped and
started again, the last file used will be added to, unless a new file is created.

E.2 Drivecom Software 130

E.2 Drivecom Software

DriveComm3 is a Windows based software package that enables the
commissioning, monitoring and parameter transfer between PDL Electronics

motor control products and a PC.

With DriveComm3, the management of these parameters provides the user with the facility to inspect,
manipulate and print the settings within our software configured motor control products. Conversion

between software versions and also between sizes can be achieved easily through the file menu.

Detailed files can be built up for plant or machinery records. Tag names and item locations, as well as
serial number information can be stored. Diagnostic analysis can be undertaken with the Status Tab.
Monitoring parameters such as input and output voltages, frequency and current can provide a useful

commissioning and monitoring tool.

Access to the software is available free from our website, where a simple registration must be
 completed to enable us to keep users advised of software updates and enhancements.

http://www.pdl.co.nz/electronics/downloads.htm

PDL Electronics Ltd, 81 Austin Street, P O Box 741, Napier, New Zealand
Phone: +64 6 843 5855 Fax: +64 6 843 5185 Email: electronics@pdl.co.nz

Specifications

Drive / Starter Compatibility: Serial communications capable PDL Drives & Starters:
Microdrive, Elite, Xtravert and RVSx

Serial Communications: Modbus RTU

System Requirements: Min. 32 Mb Pentium 100, Windows 9x, NT, 2000
screen resolution 800 x 600 or greater.

Performance Features

Parameter List Key in new values for parameter; up-load or down-load all of, or a
set of, parameters from a drive / starter; set all of, or a set of,
parameters to their default values; save/restore parameters to/from
disk.

Multiple Drive Software Versions Support for multiple software versions/model sizes for
drives or starters of the same type.

Status Window Allows the user to continuously monitor various status
parameters on the connected drive or starter and to control
many of these from the PC.

Drive/starter Information A dialog box allows entry of user information about a drive /starter,
i.e. location, tag name etc.

Convert Parameter Files Allows the user to convert any parameter file into a file
compatible for use with a PDL AC motor controller of a different
software version and/or model size. DriveComm performs
the conversion while ensuring that all values in the destination file
are legitimate with respect to value ranges and scaling.

Communications Setup Manages the connection of the DriveComm software to the
physical drive or starter, i.e. the communications port, baud rate,
parity orientation and Modbus address.

Electronic Data Sheet Maintenance Add, remove and check EDS files.

Multilingual Support English, Spanish, German.

Printing Capabilities Print all or a selection of parameters.

Appendix F

Vysta Screen List of the

Algorithm Test Program

PDL Screen List - English - [V1][V2][V3][V4][V5][V6][V7]% -- [V8]

P *S1-Status Screen - System Status -- [V1]

*S2-Mode Screen - System Mode -- [V1]

*S3 - Setpoint Entry - Setpoint=[V1]

*S4-Speed and Current - Speed =[V4]RPM -- Current =[V2]A

*P- Pressure Control Settings - Pressure Ctrl

*P1- Motor Parameters - Motor Parameter

*P1A - Motor Size (KW) - Size =[V1]KW

*P1B - Motor Current (Amps) - Current =[V1]A

*P1C - Motor Voltage (Volts) - Voltage =[V1]V

*P1D - Motor Power Factor - P.F. =[V1]

*P1E - Motor Efficency (%) - Efficency =[V1]%

*P1F - Motor Speed (RPM) - Speed =[V1]RPM

*P2- Pump Parameters - Pump Parameter

*P2A - Pump Impeller Size (mm) - Impeller =[V1]mm

*P2B - Pump Inlet Pipe Size (mm) - Inlet =[V1]mm

*P2C - Pump Outlet Pipe Size (mm) - Outlet =[V1]mm

*P2D - Pump Maximum Flow (L/S) - Flow =[V1]L/S

*P2E - Pump Maximum Pressure (Kpa) - Press. =[V1]Kpa

*P2F - Pump Efficency (%) - Efficeny =[V1]%

*T3 - Loop Controls - Loop Controls

*T3c - Loop Gain - Gain=[V1]

*T3d - Loop Integral - INT=[V1]

*T3e - Loop Derivative - Derv=[V1]

Y - Menu Options - Y MENU OPTIONS

Y1 - Language Selection - Y1 LANGUAGE = [V1]

Y2 - Initialise Parameters - Y2 INITIALISE [V1]

Y3 Current Program - Y3 PROG [V1] OF [V2]

C Z - Commissioning Screens - Z COMMISSION=[V1] -- Z PASSWORD=[V2]

Z1 - Commissioning Mode Password - Z1 PASSWRD=[V1]

Z2 - Software/Hardware Versions - ELITE [V1]A[V2]V -- Z2 S/W[V3] H/W[V4]

Z2a Control Board Serial Number - Z2a Ser=

Z3 - Analogue Input 1 Value - Z3 AI1=[V1]=[V2][V3]

Z4 - Analogue Input 2 Value - Z4 AI2=[V1]=[V2][V3]

Z5 - Analogue Output 1 Value - Z5 AO1=[V1]=[V2][V3]

Z6 - Analogue Output 2 Value - Z6 AO2=[V1]=[V2][V3]

Z7 - Digital Input Values - Z7 MFI:[V1][V2][V3][V4][V5][V6] [V7]

Z8 - Fibre-Optic/Serial Communications Input Status - Z8 FI:[V1] SERIAL:[V2]

Z9 - Encoder Count - Z9 ENCODER=[V1]

Z9a Tacho Speed - Z9a TACHO=[V1]%

Z10 - Output Relay Status - Z10 RLY:[V1][V2][V3] DB:[V4]

Z11 - Fibre-Optic Input Value - Z11 F I/P=[V1]%

Z12 - Fibre-Optic Output Value - Z12 F O/P=[V1]%

Appendix G

DAVEY Pump Data Sheets

CF Series Bareshaft Pumps
CM Series Motor Pumps
ISO2858 Heavy Duty Industrial Centrifugal Pumps

H
/O

 &
 M

F
G

 S
C

O
R

E
S

B
Y

The Davey ISOspec® range has been designed to international standard ISO2858 ensuring a
sturdy & reliable, long lasting, high performing product that consumers have come to depend
on from Davey.

T E C H N I C A L S P E C I F I C AT I O N S

Suitable Applications
Water Supply
Commercial irrigation, booster stations,
municipal water supply, flood irrigation,
general transfer.

Industry
Cooling tower transfer, refrigeration
systems, commercial fountains, condensate
recovery, dairy wash down packages.

Environmental
Dust suppression in mining & quarry
applications, fume scrubbers for odour
control, water treatment transfer &
filtration.

Leisure
Water circulation in large aquatic centres,
backwash filtration in commercial pools,
water features & commercial fountains.

Building Services
Commercial heating, air conditioning
systems, pressure boosting, cooling tower &
fire service applications.

Pumped Liquids
Non aggressive & non combustible liquids.
Clean low viscous liquids free of fibres or
particles.

Operating Conditions
CF Series Bareshaft Pumps
Maximum flow 900m3/hr
Maximum total heads 160m
Liquid temperature* -15 to 140oC
Operating pressure 16 Bar
* With optional high temperature seal.

CM Series Motor Pumps
Maximum flow 410m3/hr
Maximum total heads 160m
Liquid temperature* -15 to 140oC
Operating pressure 16 Bar
* With optional high temperature seal.

ISO CM 125x100-200

Nominal diameter
of impeller (mm)

Diameter
of outlet (mm)

Diameter
of inlet (mm)

Motor pump

Series code of pump

The Davey ISOspec® Series is comprised of 29 standard sizes. Pumps with different impeller diameters and speeds are available to satisfy
various performance ranges. Performance curves within this catalogue are in compliance with ISO2858 standards.

Model Designation (Examples)
ISO CF 250x200-400

Nominal diameter
of impeller (mm)

Diameter
of outlet (mm)

Diameter
of inlet (mm)

Bareshaft pump

Series code of pump

T E C H N I C A L S P E C I F I C AT I O N S

3

Design Features

Bronze wear rings - fitted as standard,
replaceable front & rear wear rings with
optional materials, for a trouble-free
lifecycle.

Bronze impeller - in a closed design is
fitted as standard to prevent corrosion in
stationary or inactive situations. Cast 304SS
or 316SS are available on request. The use
of 3-D solid model (CAD) Computer Aided
Design and (CFD) Computational Fluid
Dynamics ensures high efficiencies,
reducing overall running costs. Impeller
diameters can be trimmed to suit specified
performance. ISOspec® impellers are
dynamically balanced, providing smooth,
vibration free operation, preventing
premature bearing failure.

Pump casing - highly efficient cast iron
volute casings, with flanges rated to
PN1.6MPa (16bar), drilled to AS2129, Table
E. Material options: 304SS or 316SS.

Casing o-ring - re-usable o-rings in Nitrile
for ease of re-assembly (optional materials
available).

Shaft seal - single, high quality John Crane
or approved equivalent mechanical seal with
carbon vs ceramic fitted as standard to all
ISOspec® Series pumps with other options
such as Silicone vs Silicone or high temp
also available.

Tappings - convenient suction & discharge
pressure gauge tappings plus volute drain,
fitted as standard to all ISOspec® Series
pumps.

Back pull-out design - allowing for easy
removal of rotating element without
disturbing the pipework, lagging or pump
volute casing. This is proven to reduce
downtime whilst performing routine
maintenance.

CM Series adaptor housing - heavy duty,
flanged to IEC accepting AS 1359 standard
designed motors.

Enlarged shaft - reduces shaft deflection.
Standard in 420SS & 316SS as an option.
Tapered & keyed shaft design allowing ease
of removal in maintenance & positive
locking whilst in operation (CF Series only).

Stub shaft - standard in 316SS, attached via
a heavy duty muff coupling assembly.
Tapered & keyed shaft design allowing ease
of removal in maintenance & positive
locking whilst in operation (CM Series only).

Bearings - Heavy duty SKF or approved
equivalent, greased for life, reducing
maintenance. Protected by a quality
manufactured lip seal reducing ingress of
moisture or foreign matter. Housed within
removable bearing cap cover assembly (CF
Series only).

CF Series bearing housing - Robust / heavy
duty, manufactured in high strength cast
iron providing trouble-free life cycle.

CM Series Motors - All motors are MEPS
compliant ensuring minimum efficiency
requirements to AS/NZS 1359.5.2000.
IP55, TEFC (totally enclosed fan cooled),
insulation class F, temperature rise class B,
415V, 50Hz. Other voltages available upon
request.

Davey ISOspec® design is in accordance with international standards of ISO2858, which
means ISOspec® Series pumps are interchangeable with other similar pumps, conforming to
the same standards. This ensures a robust, long lasting, high performing product consumers
have come to depend on from Davey.

T E C H N I C A L S P E C I F I C AT I O N S

5555

CM Series Arrangement

6

17

15

14

13

12

11

11

10
987

4 3 2 1165

1. Pump Casing 2. Impeller 3. Rear Casing Cover
4. Stub Shaft 5. Bell Housing 6. Motor
7. Bolt 8. Bolt 9. Bolt
10. O-ring 11. Bronze Wear Ring 12. Mechanical Shaft Seal
13. Impeller Washer 14. Impeller Nut 15. Impeller Key
16. Muff Coupling 17. Volute Drain Plug

T E C H N I C A L S P E C I F I C AT I O N S

77

CM Series Performance Range

T E C H N I C A L S P E C I F I C AT I O N S

9

CF & CM Series Performance Curve 50x32-200

6

m /h
L/s

(m)

3
0 5

0 1

4

2

10

32

3015 20

654

25

7 8

35

9 10

40

11 12

80

NPSHR

30

20

40

H(m)

60

70

50

182

8

194

205

217

228

50x32-200
SPEED: 2900rpm

55%

55%

45%

50%

53%

40%

53%50%
45%30%

5.5kW
4kW

7.5kW3kW

NPSHR

182mm 228mm

TM

12

L/s
m /h

(m)

NPSHR

7.5

5

2.5
3

0

0 0.5

5

1.51

8

6

4

2

15

10

12.5

H(m)

17.5

20

228

217

205

194

182

7.5 10

32.52

12.5

3.5 4

17.515

4.5 5

20

5.5 6

SPEED: 1450rpm
50x32-200

TM

51%

45%

51%
49%

45%

49%

1.1kW

0.55kW

0.75kW

0.37kW

30%
40%

228mmNPSHR

Performance to AS2417-2001 Annex A

T E C H N I C A L S P E C I F I C AT I O N S

6666666666

CM Series Dimensions - 4 Pole

Pump End Motor
In Out Imp kW Frame N3 B C E H2 H J K L H1 N2 N1 S1 N4 S T M2 M1 AD Kg

50 32 200 1.1 90S 140 100 90 209 180 289 104 10 100 160 190 240 14 180 493 260 70 100 N/A 54
1.5 90L 140 125 90 209 180 289 104 10 100 160 190 240 14 180 518 285 70 100 N/A 55

65 50 160 1.1 90S 140 100 90 209 160 289 104 10 100 132 190 240 14 180 493 260 70 100 N/A 47

65 40 200 1.1 90S 140 100 90 209 180 309 104 10 100 160 212 265 14 180 513 260 70 100 N/A 55
1.5 90L 140 125 90 209 180 309 104 10 100 160 212 265 14 180 538 285 70 100 N/A 56
2.2 100L 160 140 100 231 180 331 117 12 125 160 212 265 14 205 588 320 70 100 N/A 67

65 40 250 1.5 90L 140 125 90 218 225 318 104 10 100 180 250 320 14 180 547 285 95 125 N/A 77
2.2 100L 160 140 100 239 225 339 117 12 125 180 250 320 14 205 596 320 95 125 N/A 89
3 100L 160 140 100 239 225 339 117 12 125 180 250 320 14 205 596 320 95 125 N/A 91

65 40 315 3 100L 160 140 100 240 250 365 117 12 125 200 280 345 14 205 622 320 95 125 N/A 100
4 112M 190 140 112 247 250 372 130 12 125 200 280 345 14 245 642 340 95 125 N/A 105

5.5 132S 216 140 132 286 250 411 166 12 150 200 280 345 14 280 717 395 95 125 N/A 125

80 65 160 1.1 90S 140 100 90 209 180 309 104 10 100 160 212 265 14 180 513 260 70 100 N/A 54
1.5 90L 140 125 90 209 180 309 104 10 100 160 212 265 14 180 538 285 70 100 N/A 55

80 50 200 1.5 90L 140 125 90 209 200 309 104 10 100 160 212 265 14 180 538 285 70 100 N/A 59
2.2 100L 160 140 100 231 200 331 117 12 125 160 212 265 14 205 588 320 70 100 N/A 69
3 100L 160 140 100 231 200 331 117 12 125 160 212 265 14 205 588 320 70 100 N/A 71

80 50 250 3 100L 160 140 100 239.5 225 364.5 117 12 125 180 250 320 14 205 621.5 320 95 125 N/A 91
4 112M 190 140 112 246.5 225 371.5 130 12 125 180 250 320 14 245 641.5 340 95 125 N/A 95

5.5 132S 216 140 132 285.5 225 410.5 166 12 150 180 250 320 14 280 716.5 395 95 125 N/A 114

80 50 315 4 112M 190 140 112 247 280 372 130 12 125 225 280 345 14 245 642 340 95 125 N/A 108
5.5 132S 216 140 132 286 280 411 166 12 150 225 280 345 14 280 717 395 95 125 N/A 128
7.5 132M 216 178 132 286 280 411 168 12 150 225 280 345 14 280 757 435 95 125 N/A 138
11 160M 216 178 132 286 280 411 168 12 150 225 280 345 14 280 757 435 95 125 255 206

100 80 160 1.5 90L 140 125 90 219 200 319 104 10 100 160 212 280 14 180 548 285 95 125 N/A 76
2.2 100L 160 140 100 240 200 340 117 12 125 160 212 280 14 205 597 320 95 125 N/A 86
3 100L 160 140 100 240 200 340 117 12 125 160 212 280 14 205 597 320 95 125 N/A 88

2.2 100L 160 140 100 240 225 340 117 12 125 180 250 320 14 205 597 320 95 125 N/A 87

100 65 200 3 100L 160 140 100 240 225 340 117 12 125 180 250 320 14 205 597 320 95 125 N/A 89
4 112M 190 140 112 247 225 347 130 12 125 180 250 320 14 245 617 340 95 125 N/A 92

5.5 132S 216 140 132 286 225 386 166 12 150 180 250 320 14 280 692 395 95 125 N/A 110

100 65 250 4 112M 190 140 112 246.5 250 371.5 130 12 125 200 280 360 18 245 641.5 340 120 160 N/A 94
5.5 132S 216 140 132 285.5 250 410.5 166 12 150 200 280 360 18 280 716.5 395 120 160 N/A 113
7.5 132M 216 178 132 285.5 250 410.5 168 12 150 200 280 360 18 280 756.5 435 120 160 N/A 123

100 65 315 7.5 132M 216 178 132 311 280 436 168 12 150 225 315 400 18 280 782 435 120 160 N/A 186
11 160M 254 210 160 360 280 485 177 15 175 225 315 400 18 325 872 495 120 160 255 238
15 160L 254 254 160 360 280 485 178 15 175 225 315 400 18 325 917 540 120 160 255 259

125 100 200 4 112M 190 140 112 247 280 372 130 12 125 200 280 360 18 245 642 340 120 160 N/A 102
5.5 132S 216 140 132 286 280 411 166 12 150 200 280 360 18 280 717 395 120 140 N/A 121
7.5 132M 216 178 132 286 280 411 168 12 150 200 280 360 18 280 757 435 120 160 N/A 131

Top mount terminal box
only fitted up to 7.5 kW AD

A
N3
N4

H2
C

E

H B J

S

T

H1

N2

N1

M2

M1

L

OK OS1

IN
LE

T
DI

A.

OUTLET DIA.

T E C H N I C A L S P E C I F I C AT I O N S

6767

Notes: 1. Standard flange drilling to AS2129 Table E: 16 bar rating.
2. Dimensions in mm.
3. All motors listed are 415V.
4. All motors up to 7.5kW have top mounted terminal box.

N/A = Not Applicable

Pump End Motor
In Out Imp kW Frame N3 B C E H2 H J K L H1 N2 N1 S1 N4 S T M2 M1 AD Kg

125 100 250 7.5 132M 216 178 132 311 280 451 168 12 150 225 315 400 18 280 797 435 120 160 N/A 173
11 160M 254 210 160 360 280 500 177 15 175 225 315 400 18 325 887 495 120 160 255 246
15 160L 254 254 160 360 280 500 178 15 175 225 315 400 18 325 932 540 120 160 255 267

125 100 315 11 160M 254 210 160 360 315 500 177 15 175 250 315 400 18 325 887 495 120 160 255 252
15 160L 254 254 160 360 315 500 178 15 175 250 315 400 18 325 932 540 120 160 255 273

18.5 180M 279 241 180 373 315 513 198 15 175 250 315 400 18 355 952 560 120 160 270 314
22 180L 279 279 180 373 315 513 200 15 175 250 315 400 18 355 992 600 120 160 270 322

CM Series Dimensions - 4 Pole continued...

T E C H N I C A L S P E C I F I C AT I O N S

6868

50
x3

2-
16

0

65
x5

0-
16

0

80
x6

5-
16

0

50
x3

2-
20

0

65
x4

0-
20

0

80
x5

0-
20

0

1.1
kW

0.7

5k
W

2 P
OL

E
2 P

OL
E

8080 90
L

90
S

4 P
OL

E
4 P

OL
E

1.1
kW

1.5
kW

2 P
OL

E
2 P

OL
E

1.5
kW

2.2
kW

90
L

90
S

2.2
kW

4 P
OL

E
10

0L
1

10
0L

2
4 P

OL
E

3k
W

4k
W

3k
W

4 P
OL

E
2 P

OL
E

10
0L

11
2M

2 P
OL

E
4k

W
11

2M

7.5
kW

2 P
OL

E
2 P

OL
E

5.5
kW

13
2S

1
13

2S
2

13
2M

13
2S

4 P
OL

E

4 P
OL

E
7.5

kW

5.5
kW

15
kW

2 P
OL

E
16

0M
2

16
0M

1
2 P

OL
E

11
kW

15
kW

4 P
OL

E

4 P
OL

E
11

kW
16

0M

16
0L

18
.5k

W
2 P

OL
E

16
0L

22
kW

2 P
OL

E
4 P

OL
E

22
kW

18
0L

18
0M

18
.5k

W
4 P

OL
E

18
0M

St
ub

 sh
aft

Im
pe

lle
r

Ba
ck

pla
te

Be
ll h

ou
sin

g
Mu

ff c
ou

pli
ng

Mo
tor

Ca
sin

g
Fr

on
t w

ea
r r

ing
Re

ar
 w

ea
r r

ing

CM Series Shaft Module No. 1

T E C H N I C A L S P E C I F I C AT I O N S

69

10
0x

80
-1

60

10
0x

65
-2

00

12
5x

10
0-

20
0

65
x4

0-
25

0

80
x5

0-
25

0

10
0x

65
-2

50

1.5
kW

1.1
kW

4 P
OL

E
4 P

OL
E

90
L

90
S

2.2
kW

4 P
OL

E
10

0L
1

10
0L

2
4 P

OL
E

3k
W

4k
W

3k
W

4 P
OL

E
2 P

OL
E

10
0L

11
2M

2 P
OL

E
4k

W
11

2M

7.5
kW

2 P
OL

E
2 P

OL
E

5.5
kW

13
2S

1
13

2S
2

13
2M

13
2S

4 P
OL

E

4 P
OL

E
7.5

kW

5.5
kW

15
kW

2 P
OL

E
16

0M
2

16
0M

1
2 P

OL
E

11
kW

15
kW

4 P
OL

E

4 P
OL

E
11

kW
16

0M

16
0L

18
.5k

W
2 P

OL
E

16
0L

2 P
OL

E
22

kW
18

0M

80
x5

0-
31

5

65
x4

0-
31

5

45
kW

2 P
OL

E
22

5M

20
0L

2
20

0L
2

2 P
OL

E
2 P

OL
E

37
kW

30
kW

28
0S

2 P
OL

E
75

kW

25
0M

2 P
OL

E
55

kW

St
ub

 sh
aft

Im
pe

lle
r

Ba
ck

pla
te

Be
ll h

ou
sin

g
Mu

ff c
ou

pli
ng

Mo
tor

Ca
sin

g
Fr

on
t w

ea
r r

ing
Re

ar
 w

ea
r r

ing

CM Series Shaft Module No. 2

T E C H N I C A L S P E C I F I C AT I O N S

7070

12
5x

10
0-

25
0

15
0x

12
5-

25
0

10
0x

65
-3

15

12
5x

10
0-

31
5

15
0x

12
5-

31
5

12
5x

80
-4

00

7.5
kW

5.5
kW

4 P
OL

E
4 P

OL
E

13
2M

13
2S

11
kW

4 P
OL

E
16

0M
4 P

OL
E

15
kW

16
0L

4 P
OL

E
30

kW
20

0L

45
kW

4 P
OL

E

4 P
OL

E
37

kW
22

5S

22
5M

15
0x

12
5-

40
0

12
5x

10
0-

40
0

18
0L

18
0M

4 P
OL

E
4 P

OL
E

18
.5k

W
22

kW

28
0M

28
0S

2 P
OL

E
2 P

OL
E

90
kW

75
kW

25
0M

2 P
OL

E
55

/75
kW

28
0M

28
0S

4 P
OL

E
90

kW
4 P

OL
E

75
kW

31
5M

1
31

5M
2

2 P
OL

E
2 P

OL
E

13
2k

W
16

0k
W

11
0k

W
2 P

OL
E

31
5S

Ca
sin

g
Im

pe
lle

r
Ba

ck
pla

te
St

ub
 sh

aft
Be

ll h
ou

sin
g

Mu
ff c

ou
pli

ng
Mo

tor
Fr

on
t w

ea
r r

ing
Re

ar
 w

ea
r r

ing

CM Series Shaft Module No. 3

T E C H N I C A L S P E C I F I C AT I O N S

7171717171

CF & CM Series Seal Cavity Dimensions

A

D2D1

Module Seal size D1 D2 A

No. 1 32 56 48 42.5

No. 2 43 68 61 45

No. 3 53 90 73 47.5

No. 4 * 60 92 80 52.5

All dimensions in mm, unless otherwise stated.
*CM Series not available.

T E C H N I C A L S P E C I F I C AT I O N S

7272727272

Material Specifications

STANDARD CONSTRUCTION
Component Standard Australian British ASTM

Fitted Pump Standard Standard Standard

Casing Cast iron GG25 AS1830/T260 BS1452 - Gr260 A48-Class 35

Back Plate Cast iron GG25 AS1830/T260 BS1452 - Gr260 A48-Class 35

Bearing Housing (CF) Cast iron GG20 AS1830/T220 BS1452 - Gr220 A48-Class 30

Casing Wear Ring Bronze AS1565/836 BS1400 LG2 B584-C83600

Impeller Bronze AS1565/836 BS1400 LG2 B584-C83600

Impeller Key Stainless steel 420 AS1444/420 BS970 - Gr420-S37 A276 - type 420

Impeller Lock Nut Stainless steel 420 AS1444/420 BS970 - Gr420-S37 A276 - type 420

Shaft (CF) Stainless steel 420 AS1444/420 BS970 - Gr420-S37 A276 - type 420
(CM) Stainless steel 316 AS2074/H6B BS1504 - Gr316 A351-CF-8M

OPTIONAL MATERIAL CONSTRUCTION
Component Optional Australian British ASTM

Materials Standard Standard Standard

Casing Ductile iron AS 1831/400 BS2789-Gr500/7 A536-84 70-50-05
Stainless steel 304 AS 2074/H5C BS1504-Gr304 A351-CF-8
Stainless steel 316 AS 2074/H6B BS1504-Gr316 A351-CF-8M

Back Plate Ductile iron AS 1831 BS2789-Gr500/7 A536-84 70-50-05
Stainless steel 304 AS 2074/H5C BS1504-Gr304 A351-CF-8
Stainless steel 316 AS 2074/H6B BS1504-Gr316 A351-CF-8M

Casing Wear Ring Stainless steel 304 AS 2074/H5C BS1504-Gr304 A351-CF-8
Stainless steel 316 AS 2074/H6B BS1504-Gr316 A351-CF-8M

Impeller Stainless steel 304 AS 2074/H5C BS1504-Gr304 A351-CF-8
Stainless steel 316 AS 2074/H6B BS1504-Gr316 A351-CF-8M

Impeller Lock Nut Stainless steel 304 AS 2074/H5C BS1504-Gr304 A351-CF-8

Shaft (CF) Stainless steel 316 AS 1444/316 BS970-Gr316-S16 A276 type 316

Other materials available upon request, please contact Davey.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter Introduction
	Introduction
	Statement of the problem
	Aims and Objectives
	Develop and test an automated pumping controller

	Significance of Study
	Scope and Limitation of Study
	Dissertation Layout

	Chapter Literature Review
	Current environment
	Overview of pumping system
	Operating Philosophy of a Pump
	Variable Speed Drive (VSD)
	Purpose of a VSD
	Programming Software for the VSD
	Serial Communications
	MODBUS Protocol

	WEB Server and Java Applications
	WEB Server
	Java Applications

	Pump and Motor equations
	Current direction in pump pressure control
	Summary

	Chapter Methodology
	Resource Planning
	Equipment
	Facilities
	Computers
	Software

	Construction of Test Equipment
	Programming of the VSD
	Programming of the Web-interface
	Chapter Results and Discussions
	Introduction
	Data
	Open Head System Tests
	Closed Head System Tests
	Fixed Speed Tests
	Closed Loop System Tests with Pressure Transducer
	Closed Loop System Tests using Algorithm

	Comparison of Pressure Transducer and Algorithm
	WEB Server - Interface
	Software Development
	Connection and Testing

	Obstacles

	Chapter Future Works
	Chapter Conclusions
	Overview and Obstacles
	Pressure System Controlled without a Pressure Transmitter
	Real-time Monitoring and Control System
	Final Summary

	References

	Appendix Project Specification
	Appendix Variable Speed Drive (VSD) Operating Manual
	Appendix MODBUS Protocol & VSD Registers
	MODBUS Protocol
	VSD Registers
	Appendix JAVA Program
	Appendix PDL Communications Software
	Drivelink Interface
	Drivecom Software

	Appendix Vysta Screen List of the Algorithm Test Program
	Appendix DAVEY Pump Data Sheets

