

University of Southern Queensland

Faculty of Engineering and Surveying

Fractal Video Compression

A dissertation submitted by

Khalid Kamali

in fulfilment of the requirements of

Courses ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems)

Submitted: October, 2005

i

Abstract

With the rapid increase in the use of computers and internet, the demand for higher

transmission and better storage is increasing as well. One way to solve this problem is by

using compression, in which a small amount of data can represent the much larger

amount of original data.

This dissertation describes the different techniques for data (image-video) compression in

general and, in particular, the new compression technique called Fractal Image

Compression. Fractal image compression is based on self-similarity, where one part of

an image is similar to the other part of the same image.

The most significant aspect of this project is the development of color images using

fractal-based color image compression, since little work has been done previously in this

area. The results obtained show that the fractal-based compression for the color images

works as well as for the gray-scale images. Nevertheless, the encoding of the color

images takes more time than the gray-scale images.

ii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 & ENG4112 Research Project

Limitation of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of
the Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying or the staff of the University of Southern Queensland.

This dissertation reports as educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled “Research Project’ is to
contribute to the overall education within the student’s chosen degree program. This
document, the associated appendices should not be used for any other purpose: if they are
so used, it is entirely at the risk of the user.

Prof G Baker
Dean
Faculty of Engineering and Surveying

iii

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course of institutions, except where specifically stated.

Khalid Kamali

0031137033

 Signature

 Date

iv

Acknowledgments

This project would not have been possible without the assistance and support of many

people. I would like to take this opportunity to thank my supervisor, Dr John Leis, my

family and friends for their encouragement and guidance throughout the year.

Khalid Kamali
University of Southern Queensland

October 2005

Table of Contents

Abstract .. i

Certification of Dissertation... iii
Acknowledgments.. iv

Chapter 1... 1
Introduction... 1

1.1 Project Objectives .. 2
1.2 Image Quality.. 2
1.3 Test Images ... 3
1.4 Outline of the Dissertation .. 4
Chapter 2... 5

Image and Video Compression... 5
2.1 Image Compression Methods ... 5
2.1.1 Huffman Coding .. 5
2.1.2 Arithmetic Coding ... 7
2.1.3 Vector Quantization ... 8
2.1.4 DCT (Discrete Cosine Transform)... 9
2.1.5 BTC (Block Truncated Coding)... 10
2.1.6 JPEG/JPG (Joint Photographic Experts Group) .. 11
2.2 Video Compression... 13
2.2.1 Frame Differencing.. 14
2.2.2 Motion-compensation Prediction... 14
2.3 Chapter Summary ... 15

Chapter 3... 16
Fractal Image Compression .. 16

3.1 History of Fractal Image Compression ... 16
3.2 How Does Fractal Image Compression Work? .. 16
3.3 The Contractive Mapping Fixed-Point Theorem.. 18
3.4 Fractal in Image Compression .. 18
3.5 Fractal Compression and the Self-similarity... 19
3.6 Affine Transformation .. 20
3.7 Iterated Function System .. 21
3.8 Fractal Image Compression algorithm.. 22
3.8.1 Encoding .. 22
3.8.2 Decoding.. 23
3.9 Chapter Summary ... 25

Chapter 4... 26
Performance of Fractal Image Compression... 26

4.1 Compression Rate ... 26
4.2 Image Quality.. 29
4.3 Fractal Vs JPEG/JPG and BTC... 32
4.4 Chapter Summary ... 36

Chapter 5... 37

Fractal Color Image Compression .. 37
5.2 Red, Green and Blue ... 37
5.3 YIQ and YUV... 40
5.4 Chapter Summary ... 44

Chapter 6... 45
Different Partitioning Methods ... 45

6.2 Quadtree Partitioning .. 45
6.3 Horizontal-Vertical Partitioning ... 46
6.4 Triangular Partitioning.. 47
6.5 Chapter Summary ... 48

Chapter 7... 49
Faster Encoding .. 49

Chapter 8... 51
Fractal Video Compression... 51

Chapter 9... 55
Conclusions and Further Work ... 55

9.1 Achievement of Objectives... 55
9.2 Further Work... 56

References... 57

List of Tables
Table 2.1: The probability for each character. .. 6
Table 2.2: The probability and range for each character in the arithmetic coding. 7
Table 2.3: The encoding steps in arithmetic coding. .. 8

List of Figures
Figure 1.1: Test Images... 3
Figure 2.1: Huffman code construction. ... 6
Figure 2.2: Block diagram of Vector Quantization image coder.. 9
Figure 2.3: DCT-based coding system.. 10
Figure 2.4: DCT basis ... 10
Figure 2.5: The basic JPEG/JPG Encoder and Decoder ... 12
Figure 2.6: Zigzag Coefficient Ordering .. 13
Figure 3.1: A copy machine.. 17
Figure 3.2: first three copies generated by the copy machine... 17
Figure 3.3: The output of the copy machine after n iterations.. 17
Figure 3.4: Lena image showing ranges and domains.. 19
Figure 3.5: Showing the original Lena image and the Decoded Images after 1, 2, 4 and 8
iterations.. 24
Figure 3.6: The Convergence towards the fixed point for Lena image 25
Figure 4.1: Decoded Lena image with error image using 4x4, 8x8 and 16x16 range blocks
... 28
Figure 4.2: The convergence of Lena image using 4x4, 8x8 and 16x16 range blocks..... 29
Figure 4.3: Quality of the decoded test images after 12 iterations 30
Figure 4.4: Original and Decompressed text image.. 31

Figure 4.5: Lena original and decoded zoomed in.. 32
Figure 4.6: PSNR values for the decoded text images using the three techniques with an
approximated compression rates for the three techniques .. 33
Figure 4.7: PSNR values for decompressed Lena image using different levels of
compression ratio for both fractal-based compression and JPEG/JPG............................. 34
Figure 4.8: Lena image decompressed using fractal-based compression and JPEG/JPG
with different compression ratios.. 35
Figure 5.1: color palette as a lookup table to produce a pixel .. 38
Figure 5.2: The Red, Green and Blue components of Lena color image.......................... 39
Figure 5.3: The convergence of the Red, Green and Blue images using the RGB
components ... 41
Figure 5.4: The convergence of the Red, Green and Blue images using the YIQ
components ... 42
Figure 5.5: The convergence of the Red, Green and Blue images using the YUV
components ... 42
Figure 5.6: (a) Original Lena color image. (b) Decompressed Lena color image using the
RGB components. (c) Decompressed Lena color image using the YIQ components. (d)
Decompressed Lena color image using the YUV components .. 43
Figure 6.1: Quadtree Partition... 46
Figure 6.2: Partitioning Lena image using H-V partition ... 47
Figure 6.3: Partitioning Lena image using Triangular partition 48
Figure 7.1: Lena image with domain blocks used in black... 50
Figure 8.1: Video clip frames ... 52
Figure 8.2: Range cubes and domain cube in a GOF ... 54

Appendices
Appendix A... 61
Appendix B ... 63

 1

Chapter 1

Introduction

Day by day, the demands for higher and faster technologies are rapidly increasing for

everyone. Although the technologies available now are considered more advanced than

30-40 years ago, people are still looking for improvements and enhancements. In the last

twenty years, computers have been developed and their price has reached a level of

acceptance where almost anyone can buy one. Nowadays, before purchasing computers,

customers are concerned about two things: (1) the speed of the CPU; and (2) the storage

and memory capacity.

Image and video compression helped to reduce the memory capacity and to have faster

transmission rates. Many compression techniques have been introduced and developed,

such as JPEG (joint photographic experts group) and GIF (graphics interchange format)

for image compression, as well as MPEG (moving picture experts group) for video

compression. Although some of these techniques showed significant and enhanced

performance in decreasing the cost of the transmission and storing data, the search for

alternatives continues. Fractal image or video compression is a new compression method

which is based on self-similarity within the different portions of the image. It might be

revolutionary in the world of data compression because of its high compression rate

compared with other methods, however, it suffers from some problems such as the time

taken for encoding. Until now, a lot of work has been done on fractal gray scale image

compression, although unfortunately not too much effort has been devoted to fractal color

image and video compression.

 2

1.1 Project Objectives

The main objectives of this project are:

1- To investigate and have a general idea of several compression techniques.

2- To investigate and have a good understanding of fractal image compression.

3- To use MATLAB to implement fractal image compression for both gray-scale

images and color images.

4- To discuss methods of improving the performance of fractal image compression.

5- To compare fractal image compression and some other compression techniques.

6- To investigate and use MATLAB to implement fractal video compression.

1.2 Image Quality

In this project PSNR (Peak Signal to Noise Ratio) is used to compute the quality of the

reconstructed image compared with the original image by measuring the differences

between the two images; the formula used to compute the PSNR is [8].

PSNR = 20 log10 ()rmsb / (1.1)

where b is the highest pixel value (255) and rms is the root mean square

differences between the two images. PSNR is measured in dB, the highest the

PSNR, the better the quality of the reconstructed image. Nevertheless, this is not

the only way used to measure the quality of images—there are other ways but

PSNR is the most widely used.

One other technique is also used here in this project. However, this technique will not

measure the quality of the image—in other words; it will not give us values. Rather, it

shows the differences between the original image and the reconstructed image, and this is

called the error image.

 3

1.3 Test Images

Throughout this project, a set of images been used to test the quality and the performance

of the fractal image compression and other types of compression. The gray-scale images

are of size 256 x 256 and the only color image is of size 512 x 512. Figure 1.1 shows the

full set of the test images.

 bird.bmp bridge.bmp camera.bmp

 circles.bmp crosses.bmp goldhill.bmp

 lena.bmp lenacolor.bmp montage.bmp

text.bmp

Figure 1.1: Test Images
(Source: Kominek, J 2002)

 4

1.4 Outline of the Dissertation

Chapter 2: Image and Video Compression. This chapter contains a brief description of

types of compression and some compression techniques for both images and videos.

Chapter 3: Fractal Image Compression. This chapter gives an overview the history of

fractal-based compression, together with some mathematical background and a brief

outline of the concept of fractal-based compression.

Chapter 4: Performance of Fractal Image Compression. This chapter shows the

performance of fractal image compression for gray-scale images in terms of quality and

compression rates, together with a comparison between fractal-based compression and

some other compression techniques.

Chapter 5: Fractal Color Image Compression. This chapter contains the methods used to

encode a color image using a fractal-based compression, and looks at the performance of

the decompression using different coordinate systems of the color image.

Chapter 6: Different Partitioning Methods. This chapter contains different partitioning

approaches in fractal image compression, and details the advantages and disadvantages of

using each approach.

Chapter 7: Faster Encoding. This chapter contains different procedures adopted to reduce

encoding time in the case of fractal image compression.

Chapter 8: Fractal Video Compression. This chapter contains the two methods used to

encode video sequences in fractal-based compression.

 5

Chapter 2

Image and Video Compression

2.1 Image Compression Methods

Primarily, there are two types of image compression: one is called lossless and the other

is lossy. Lossless method describes when the decompressed image is exactly as the

original image and there is no loss of information. On the other hand, lossy has some

information loss after decompressing the image, however, this loss of data is considered

negligible (if the loss of data is acceptable), since the difference between the

reconstructed image and the original image is not large and remains relatively unchanged.

This chapter looks at several compression techniques with a brief description of each one.

Some of those compression techniques belong to lossless compression and others to lossy

compression.

2.1.1 Huffman Coding

One of the oldest coding techniques is Huffman coding; it was first introduced by David

Huffman in 1952.

Huffman coding follows lossless method of encoding data. The idea of Huffman coding

is using short or a small number of bits to encode the data with the higher probabilities

and using a large number of bits to encode data with the least probabilities.

 6

For example, let’s take the encoding of this page that you are reading, then first to be

found is the probability for each character in this page; to make the example more simple,

let’s say this page only contains seven characters—each has a probability of what is

shown in the table below:

Character Probability

A 0.3
B 0.29
C 0.13
D 0.12
E 0.1
F 0.05
G 0.01

Table 2.1: The probability for each character.

Now, based on the probability of each character, a binary tree is formed, starting with two

child nodes which represent the two characters with the lowest probability. Taking these

two from the list we add the next lowest probability character to the tree, continuing to do

so until we reach to the root of the tree. After that we label one side of the tree with 0s

and the other with 1s (it does not matter which side is which).

 1
A 1
 1
B 0.7 0
 1
C 0.41 0
 1
D 0.28 0
 1
E 0.16 0
 1
F 0.06 0
 0
G

Figure 2.1: Huffman code construction.

0.3

0.29

0.1

0.01

0.05

0.12

0.13

 7

2.1.2 Arithmetic Coding

Arithmetic coding is a lossless type of compression, and it is very similar to Huffman

coding except for that it does not produce a single code for each symbol but, rather, it

produces a specific codeword for the whole message. The codeword is in the form of a

float point number between 0 and 1.

The idea in arithmetic coding is to generate a probability table in the same way as the

Huffman coding, and then to assign each symbol with a range between 0 and 1. The

symbols with higher probabilities will be assigned to wider ranges and the symbols with

lower probabilities be assigned to smaller ranges [5, 6, 20, 22].

For illustration, we will encode the word ‘TARA’. First, we form the following table

showing the probability and range for each character:

Character Probability Range

A 0.5 0.0-0.5
R 0.25 0.5-0.75
T 0.25 0.75-1.0

Table 2.2: The probability and range for each character in the arithmetic coding.

Then we start coding using the following algorithm [6]:

LOW = 0.0

HIGH = 1.0

WHILE not end of input stream

 Get next CHARACTER

 RANGE = HIGH – LOW

 HIGH = LOW + RANGE * high range

 Low = LOW + RANGE * low range

END While

Output LOW

 8

The following table (Table 2.3) shows how the range, high and low, changes as each

character is processed:

T Range=1 Low=0.75 High=1
A Range=0.25 Low=0.75 High=0.875
R Range=0.125 Low=0.8125 High=0.84375
A Range=0.03125 Low=0.8125 High=0.828125

Table 2.3: The encoding steps in arithmetic coding.

Final output of the encoding will be equal to 0.815.

The decoding process is simply the inverse of the encoding.

2.1.3 Vector Quantization

Vector Quantization (VQ) follows the lossy type of data compression. In VQ the

encoding process is quite complex, however, this complexity makes the decoding process

very fast.

In the process of image compression using vector quantization, first the image is divided

into smaller sections called target vectors. Then, each target vector will be encoded as a

code vector which is introduced by matching the target vector with the codeword from

the codebook (finding the minimum distortion). The codebook is formed from a

collection of many representative images, therefore, it should contain all the possible

representations of the target vectors. By transmitting only the index of each best matching

codeword it is possible to obtain a good compression ratio because each section of the

image will be only represented with an 8-bit codeword index. In the decoding process,

the decoder should have the same codebook as the encoder, and then simply by using the

saved codeword index and a look-up table the original image is reproduced [4, 8].

 9

Figure 2.2: Block diagram of Vector Quantization image coder
(Source: Bhaskaran-et-al, V 1995)

2.1.4 DCT (Discrete Cosine Transform)

Most of the image and video compression standards such as JPEG and MPEG are based

on the DCT coding. DCT compression is another type of lossy compression.

Discrete cosine transform is very much related to the well-known FFT (Fast Fourier

Transform), in as much as they both change the data from its current domain to frequency

domain, however, DCT only deals with real numbers—unlike FFT which suffers from

complex multiplications.

In DCT coding system the blocks (usually 8 x 8 blocks are chosen) of image are to be

transformed from spatial domain into a set of frequency domain representation. During

the encoding and due to the quantization process, there will be some data loss which will

not be recovered when the decoding process takes place (Inverse DCT). The quantization

process will cause zeroing of many of the DCT coefficients, which means having fewer

values representing the pixel. The nonzero values are then compressed using entropy

coding, which a type of lossless compression [1, 4, 22].

 10

Figure 2.3: DCT-based coding system
(Source: Bhaskaran-et-al, 1995)

Figure 2.4: DCT basis
(Source: Barnley, MF 1993)

2.1.5 BTC (Block Truncated Coding)

Block truncation coding is another type of lossy image compression technique (mainly

suited for gray scale images). Although this technique does not reach very high

compression ratios, it has the advantage of been very simple to implement, and also

 11

described as faster and more efficient than vector quantization. This is because in BTC

the conversion of the blocks into simpler forms will preserve some statistics of the

original blocks—unlike vector quantization which relies on the approximations of the

blocks in the codebook.

In this method the image is divided into blocks of pixels each with the size of n x n

(usually 4 x 4), then finding the mean or the average of the block to be used as a

threshold. Pixels are then classified to high or low, depending on that threshold. For the

reconstruction process of the block we will use two values, a and b—these two values

will be close enough to the original values.

a = x m - σ (q / (n – q)) 2/1 (2.1)

b = x m + σ ((n – q) / q) 2/1 (2.2)

where: x m is the mean, σ is the variance, q is number of pixels greater than mean and n

is the number of pixels in the block [5].

2.1.6 JPEG/JPG (Joint Photographic Experts Group)

Nowadays, JPEG/JPG is the most widely recognized compression; JPEG/JPG is a lossy

type of compression developed by the Joint Photographic Experts Group and was first

accepted as an international standard in 1992.

JPEG/JPG is based on DCT, and the encoding and the decoding of it consists of several

steps that each contributes to compression. The first step of the encoding process is

partitioning the image into blocks of 8 x 8, then for each block the FDCT (Forward

Discrete Cosine Transform) is computed. The 64 DCT coefficients are then scalar

quantized using the quantization table, and those coefficients ordered in a zigzag format

as shown in Figure 2.7. At the last stage of the JPEJ/JPG encoding is the “Entropy

 12

Encoder” which is used to send out the coefficients codes by using either Huffman

Coding or Arithmetic Coding. The decoding, as illustrated in Figure 2.6, is simply the

inverse process of the encoding [10, 15, 18, 22].

Figure 2.5: The basic JPEG/JPG Encoder and Decoder
(Source: Gibson-et-al, 1998)

 13

Figure 2.6: Zigzag Coefficient Ordering
(Source: Gibson-et-al, 1998)

2.2 Video Compression

Video is a number of images in sequence; therefore, the same way we compress images

can be applied on the video by compressing each frame of the video separately (this is

called intra-frame coding). Though this technique looks very simple, it is impractical

because it requires a very large memory space to store data. The best way to achieve a

better compression is in taking advantage of the similarities between the video frames

(this advantage is also used in fractal video compression and discussed in chapter 8 of

this dissertation). There are two main functions used in video coding [24]:

1- Prediction: create a prediction of the current frame based on one or more

previously transmitted frames.

2- Compensation: subtract the prediction from the current frame to produce a

‘residual frame’.

 14

2.2.1 Frame Differencing

The idea of frame differencing in video coding is to produce a residual frame by

subtracting the previous frame from the current frame; the residual frame will then be a

form of zero data, with light and dark areas (light indicates positive residual data and the

dark indicates negative residual data). Nevertheless, there will be more portions in the

residual frame with zero data than the light and dark; this is due to the similarity between

the frames (most of the pixels in the previous frame will be equal to the pixels in the

current frame). Therefore, since more of the residual frame is zero data, then the

compression efficiency will be further improved if we compress the residual frame

instead of the current frame. Frame differencing method in video coding faces a major

problem which is best illustrated by the following example. In the encoding and the

decoding process for the first frame, there will be no prediction, but the problem starts

with the second frame when the encoder uses the first frame as the prediction and

encodes the resulting residual frame. Here, we are dealing with a lossy type compression;

the decoded first frame is not exactly the same as the input frame, which leads to a small

error in the prediction of the second frame at the decoder. This error will increase as we

continue with the following frames and the result will be low quality in the decoded

video sequence.

There is one way in which this problem can be solved; the idea is that when we encode

the first frame we decoded immediately and use the decoded frame to form the prediction

for the second frame [24].

2.2.2 Motion-compensation Prediction

With frame differencing we can achieve a good compression, but only with frames of

video which are very similar. When the differences between the previous frame and the

current frame are not really similar, or there is a big change between the frames, then the

 15

compression may not be significant. This is due to the movement in the video scene. So,

in this type of frames we use another method of prediction called Motion-compensation

Prediction; where the achievement of better prediction is by estimating the movement and

compensating for it. Motion-compensation is similar to Frame differencing with two

extra steps [4, 24]:

1- Motion estimation: comparing a region in the current frame with the neighboring

regions of the previous decoded frame and finding the best match.

2- Motion Compensation: Subtracting the matching region from the current region.

The encoder will send the location of the best match to the decoder to perform the same

motion compensation operation in the process of decoding the current frame.

The residual frame in motion-compensation contains less data compared with frame

differencing (higher compression); however, motion-compensation is very

computationally intensive.

2.3 Chapter Summary

Image and video compression is very necessary to reduce the capacity required for

storing data and also to shorten the time required for sending data. Compression of image

and video is divided into two categories—lossy and lossless. With lossless compression

we cannot achieve high rates of compression but the decoded image or video will be

exactly same as the input; on the other hand, with lossy type we obtain high compression

rates but lose some data. However that loss of data is not significant since human visual

systems cannot detect it.

The techniques used in image coding can be used for the video as well, but in video

coding we take advantage of the similarity between the frames and, because of that, we

obtain higher compression rates compared with image compression.

 16

Chapter 3

Fractal Image Compression

3.1 History of Fractal Image Compression

The idea of fractals is not new—it goes back to the beginning of the last century.

However, no one really understood or paid attention to the importance of fractals and its

geometry until 1977 when Benoit Mandelbrot published his book The Fractal Geometry

of Nature. Mandelbrot, in his book, tried to show the existence of fractals in nature—like

clouds, mountains and trees. However, he did not think of fractals as a method for

compression. Michael Barnsley was the first person to use the idea of fractals in image

compression. It has been claimed that fractal coding may reach compression ratios up to

10000:1—which sounds like a very impressive rate of compression. However, it doesn’t

have a standard because it suffers from such problems as very expensive encoding time

and, therefore, it is still under discussion and being studied.

3.2 How Does Fractal Image Compression Work?

To better understand how fractal image compression works, we take an example of a

photocopier machine which takes an input image, reduces the image into half and then

produces three copies of the original image at the output (see Figure 3.1below):

 17

Figure 3.1: A copy machine.
(Source: Fisher, Y 1995)

Now if we feed back the output as an input and repeat the same process for two more

times, we will end up with the shape showing in Figure 3.2 below:

 initial image first copy second copy third copy

Figure 3.2: first three copies generated by the copy machine.
(Source: Fisher, Y 1995)

If we continue doing the same thing again and again for a number of times (n iterations),

at some stage we will reach the following (see Figure 3.3 below):

Figure 3.3: The output of the copy machine after n iterations.

(Source: Fisher, Y 1995)

This final image is called the attractor for this copying machine. Now, notice that the last

figure we ended up with is basically formed from the initial image (fractal), but this

image does not affect the final shape of the final image (the attractor); in fact, the position

 18

and the orientation of the copies will decide the final shape of the final image. In other

words, the final image will be determined by the way the input image is transformed.

This transformation of the input image must be contractive or, in other words, the

transformation of two points in the input image must bring the points closer at the output

[8].

3.3 The Contractive Mapping Fixed-Point Theorem

The contractive mapping fixed-point theorem state: A transformation XXf →: on a

metric space (X, d) is called contractive if there is a constant 10 <≤ s such that [1, 2, 8,

16]:

),(.))(),((yxdsyfxfd ≤ ∀ Xyx ∈,

(where s = contractivity factor)

And a point Xa∈ is called a fixed point of the transformation f if f (a) =a.

In other words, the convergence to the fixed point or the attractor depends on the

contractivity of the mappings. We say a map is contractive when it brings points closer to

each other. For example, let’s consider the map 2/)(xxf = —this map is contractive

because if we take any initial value to be x, then by computing f(x),f(f(x)), f 3 (x),…, the

convergence will be toward the fixed point which is 0.

3.4 Fractal in Image Compression

The idea of fractal image compression is based on the self-similarity sets of the image

(mainly works for natural images), where some parts of the image called range blocks is

 19

similar to larger parts of the same image called domain blocks. Fractal image

compression is of the lossy type, since the decompressed image is not the same as the

original image.

3.5 Fractal Compression and the Self-similarity

The self-similarity in images is unlike the self-similarity in fractals—in fractals

self-similarity is almost perfect or exactly the same. However, in real images, such as the

images of people, trees, clouds and nature, there are different types of self-similarity,

where one part of the image is similar to the other but not the entire image. Even the

self-similarity may not be identical. Figure 3.4 below shows the self-similarity of two

parts of the image with different scales; the small squares represent the ranges and the

large squares represent the domains:

Figure 3.4: Lena image showing ranges and domains
(Source: Fisher, Y 1995)

 20

3.6 Affine Transformation

The general form of the Affine Transformation in R 2 is [1, 9, 33]:

w ()x = w ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

x
x

 = ⎜⎜
⎝

⎛
c
a

⎟⎟
⎠

⎞
d
b

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

x
x

 + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
f
e

 (3.1)

The matrix ⎜⎜
⎝

⎛
c
a

⎟⎟
⎠

⎞
d
b

is equal to ⎜⎜
⎝

⎛

11

11

sin
cos

θ
θ

r
r

 ⎟⎟
⎠

⎞−

22

22

cos
sin
θ
θ

r
r

So, equation (1) can be written as:

w ()x =w ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

x
x

 = ⎜⎜
⎝

⎛

11

11

sin
cos

θ
θ

r
r

⎟⎟
⎠

⎞−

22

22

cos
sin
θ
θ

r
r

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

x
x

 + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
f
e

 (3.2)

Affine transformations are able to skew, stretch, scale, rotate and translate an input

image. There are thousands or millions of transformations, therefore, to make the

compression process easier (reducing the domain pool, decreasing the searching time);

Jacquin (Arnaud Jacquin, one of Barnsley’s students) suggested having the range and

domain blocks to be always square and the domain size to be twice the size of the range.

Also, he suggested having only eight transformations for the domain blocks:

1. Rotation by 0.

2. Rotation by 90.

3. Rotation by 180.

4. Rotation by 270.

5. Flip about horizontal median.

6. Flip about vertical median.

7. Flip about forward diagonal.

 21

8. Flip about reverse diagonal.

In dealing with gray scale images, intensity of pixels should be treated as a third spatial

dimension, thus the affine transformation for the gray scale images will become:

w ()x =w
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

x
x
x

=
⎜
⎜
⎜

⎝

⎛

0
c
a

0
d
b

⎟
⎟
⎟

⎠

⎞

s
0
0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

x
x
x

 +
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

o
f
e

 (3.3)

where s represents the contrast (luminance) and o represents the offset to the pixel

contrast which is the brightness of the transformation.

3.7 Iterated Function System

Iterated Function System (IFS) was first introduced by John Hutchinson in 1981 and

developed by Michael Barnsley in 1988. IFS play the main rule in fractal image

compression. From the word ‘iteration’ we know that it is something repeating. IFS takes

the output of the first iteration as the input to the second iteration and continues doing

that until it reaches the last iteration. Fractal image compression is based on Iterated

Function System; the idea of IFS is to have a finite set of contraction mappings in which

they are written as affine transformations. By applying IFS to a seed image (which is the

same size of the original image) and provided the mapping is contractive (reducing the

distance and bringing the points together), ultimately the final result is the attractor

image or the fixed point. Iterated function system is not really practical in terms of it

being hard to find the IFS for the entire image. PIFS (Partitioned Iterated Function

Systems) was thus the breakthrough in fractal image compression. In 1988, Arnaud

Jacquin developed the theory of Partitioned Iterated Function Systems (PIFS). The theory

states that instead of finding the IFS of the entire image, it is possible to partition the

 22

image into non-overlapping blocks of ranges and then apply IFS on each block of ranges

[22].

3.8 Fractal Image Compression algorithm

3.8.1 Encoding

The encoding process of fractal image compression is not complicated, but very time

consuming. In this project, the MATLAB codes written for this project (Appendix B)

deal with both gray-scaled and color images, and the algorithm used is the classical way

where the range and domain are square (later in the dissertation we will look at different

types of partitioning). We can sum the encoding process in the following steps:

1- Read an image (the images used in this project are of the square size).

2- Partition the image into non-overlapped blocks of ranges of square sizes covering

the whole image and non-overlapped blocks of domains (and we can take

overlapped blocks), twice the size of range block.

Note: Using non-overlapped domain blocks is much better since we will have a

larger domain pool to be compared with each of the range blocks for best

matching. However, it will take a very long time compared with non-overlapping

blocks of domain. Later in the dissertation it will be demonstrated that even with

using non-overlapped domain blocks the resulting decoded images are acceptable

in terms of quality.

3- Rescale the domain blocks (to the same size of range blocks) and find the eight

possible transformations for each block.

4- Compare each range block with whole domain blocks to find best match.

5- Save the following coefficients:

• The location of the domain.

• Best transformation.

• Contrast (scaling factor).

 23

• Offset.

6- Continue doing the same for the rest of the range blocks until the last one is

reached.

3.8.2 Decoding

The decoding in fractal compression is much faster compared with the encoding; here the

time depends on the number of iterations, however, we will see that only a few iterations

(usually after 4-8 iterations) are required to reach the fixed point or the attractor. In this

project, we will see that only after 4 iterations we are getting to the fixed point, as

illustrated in Figure 3.5 and Figure 3.6.

The following are the steps used in the decompressing process of fractal-based

compression:

1- Load the saved coefficients.

2- Create memory buffers for the range and domain screens.

3- Apply the Affine coefficients on the domain screen.

4- Copy the content of the domain screen to the range screen.

5- Take the output of first iteration (range screen) to be the input of the next

iteration.

6- Repeat doing the same until reaching the desired attractor.

 24

Original Lena Image

 Lena after 1iteration Lena after 2 iterations

 Lena after 4 iterations Lena after 8 iterations

Figure 3.5: Showing the original Lena image and the Decoded Images after 1, 2, 4 and 8

iterations.

 25

Figure 3.6: The Convergence towards the fixed point for Lena image.

3.9 Chapter Summary

Fractal image compression is mainly based on the self-similarity within the image; the

image is divided into blocks of ranges and domains. The main task in fractal image

compression is to find for each range block a corresponding domain block. The search for

the best match between the range and domain blocks makes the encoding

computationally very expensive, however, the following chapters explore some methods

which have been adopted to reduce the searching time.

The decoding in fractal image compression is very fast compared with encoding and it

depends on the number of iterations. The convergence of an image to its fixed-point

usually takes no more than 4-8 iterations.

 26

Chapter 4

Performance of Fractal Image Compression

This chapter focuses on the performance of fractal image compression in terms of

compression rate, image quality and comparison with two other compression techniques;

BTC (Block Truncated Coding) and JPEG/JPG (Joint Photographic Experts Group). The

codes used for fractal image compression were implemented using MATLAB (Appendix

B). BTC (Source: Lucey, 1998) and JPEG/JPG (Source: Skiljan, 2005) compression were

implemented using MATLAB and irfanview respectively.

4.1 Compression Rate

In fractal image compression the achievement of different levels of compression ratios

are dependent on the size of the range blocks. Compression occurs because each block of

range is represented by only five values. These values are [33]:

• e & f: Represent the location of the corresponding domain block and each takes 8

bits.

• M: Is the transformation of the domain block and takes 3 bits

• s: Is the contrast and takes 5 bits.

• o: is the offset and takes 6 bits.

 27

In this project, three different sizes of the range blocks are taken as the following; 4 x 4,

8 x 8 and 16 x 16. The compression ratio is then calculated as follows:

In the case of 4 x 4 range blocks, the compression rate is:

8 + 8 + 3 + 5 + 6 = 30 bits/(4 x 4) pixels (16 bytes)

= 1.875/pixel. (≈4.25:1)

In the case 8 x 8 range blocks, the compression rate is:

8 + 8 + 3 + 5 + 6 = 30 bits/(8 x 8) pixels (64 bytes)

= 0.46875/pixel. (≈17.00:1)

And in the case of 16 x 16 range blocks, the compression rate is:

8 + 8 + 3 + 5 + 6 = 30 bits/(16x16) pixels (256 bytes)

= 0.117/pixel. (≈68.00:1)

It is important to mention that experiments have shown that it is not necessary to have the

same value of s (contrast) used in the encoding to be used in the decoding process;

instead we can use a set of values for s between 0 and 1in the encoding process and use

only a single value or the same set for the decoding process, therefore, it is not necessary

to save the s values, which means obtaining a higher compression rate [7].

Unfortunately, the relationship between the quality and the compression rate is inversely

proportional. In other words, as the compression rate increases, the quality of the image

decreases. This is illustrated in Figure 4.1 which shows how the Lena image results in

poorer quality as the range size gets bigger (higher compression rates).

 28

 Lena 4x4 Error Image

 Lena 8x8 Error Image

 Lena 16x16 Error Image

Figure 4.1: Decoded Lena image with error image using 4x4, 8x8 and 16x16 range
blocks.

 29

Figure 4.2: The convergence of Lena image using 4x4, 8x8 and 16x16 range blocks.

4.2 Image Quality

The quality in fractal image compression depends on many factors. One factor—

mentioned in the previous section— is the size of the range block, but the main factor is

the type of the image. Using the test images for this project it can be seen that the

qualities of the output images are not all the same and in some cases the quality is very

poor—for example decoded text image, which substantiates the findings of chapter 2.

Fractal-based compression mainly works well with natural images, where there is more

possibility of self-similarity within the image. In Figure 4.3 it can be seen how much the

PSNR value of decoded text image is low compared with other images, and Figure 4.4

illustrates that decompressed image of text is very low in quality (decompressed text is

hard to read) even with a small size of range blocks (4 x 4).

 30

Figure 4.3: Quality of the decoded test images after 12 iterations

Another fact worth reiterating is that the image will not reach the fixed point (the final

output image) until after some number of iterations. In this project, the results have

shown that at least four iterations are required in order to gain a good output image

(reaching the fixed-point). On the other hand, in the case of the text image it does not

matter how many iterations are applied, the output image will always be low in quality

and unreadable.

Fractal-based compression based on the self-similarity, then the size of the domain pool,

also plays a significant role in the quality of the output image. With bigger domain pool

and more possible transformations of the domain blocks, each range block will have more

chance of finding the best/right corresponding domain block (best match). Consequently,

the more the domain block is similar to the range block, the more the quality of the output

image increases.

0
5

10
15
20
25
30
35

bir
d

bri
dg

e

ca
mera

cir
cle

s

cro
ss

es

go
ldh

ill
lena

mon
tage text

Test images

PS
N

R
(d

B
)

 31

Original text image

Decompressed text image using fractal 4x4

Figure 4.4: Original and Decompressed text image

One other important feature regarding the quality of fractal image compression is

Resolution Independency. Usually when zoom occurs at any point in a digitalized image,

after some stages the image becomes blocky. Nevertheless, in fractal image compression

 32

the decoded image will not be blocky and it will contain details at every scale (see Figure

4.5). The decoded process creates an artificial detail which was not presented in the

original image. This is due to the iterations in the decoding process; after each iteration

the details on the decoded image becomes smoother [5, 8, 16, 22].

Original image Decoded image

Figure 4.5: Lena original and decoded zoomed in.

(Source: Lu, N 1997)

4.3 Fractal Vs JPEG/JPG and BTC

In this section there will be a comparison between the fractal-based compression and two

other lossy type of compressions: JPEG/JPG (Joint Photographic Experts Group) and

BTC (Block Truncated Coding). However, since JPEG/JPG is widely used and one of the

most famous around the world, it will be discussed further in this section and contrasted

in terms of quality and compression ratios.

In Figure 4.6, using an approximated compression ratio for the three techniques, it is

obvious that the performance of JPEG/JPG is the best when compared with the other two

compressions, except for the text image. Though the PSNR value is not as low as in

fractal compression, it is the only case where it gives lower PSNR value than the BTC

coding. The BTC coding results (quality) are almost the same for the whole test images

and they are very close to the results of fractal image compression, except for some

images (crosses and text).

 33

0
10
20
30
40
50
60
70
80

bir
d
bri

dg
e

ca
mera

cir
cle

s

cro
ss

es

go
ldh

ill
len

a

mon
tag

e
tex

t

test images

PS
N

R
(d

B
)

BTC
FRACTAL 4x4
JPEG/JPG

Figure 4.6: PSNR values for the decoded text images using the three techniques with an
approximated compression rates for the three techniques.

The BTC code used in this project uses 4 x 4 blocks only, with a compression rate of 2

bits per pixel. On the other hand, the JPEG/JPG code used here can achieve different

levels of compression ratios. Therefore, this advantage is taken to compare between

fractal compression and JPEG/JPG on different levels of compression ratios. The

compression ratios for fractal compression are based on the size of the range and

calculated as in section 4.1.

The main common characteristic between the JPEG/JPG and fractal-based compression

that the performance of the both techniques depends on is the type of the image,. Fractal

image compression works very well with natural images, whilst JPEG/JPG compression

works best with geometric images such as crosses and circles.

 34

In figure 4.7 and 4.8 below it is shown how the JPEG/JPG compression works better than

fractal-based compression for different levels of compression ratio. In general, this is the

main advantage of JPEG/JPG compression, where it works very well—even with high

compression ratios and it starts losing quality with very high compression ratio.

0
5

10
15
20
25
30
35
40
45

4.25 : 1 17.00 : 1 68.00 : 1

Compression Ratio

PS
NR

(d
B)

JPEG/JPG
FRACTAL

Figure 4.7: PSNR values for decompressed Lena image using different levels of
compression ratio for both fractal-based compression and JPEG/JPG.

 35

 JPEG/JPG (≈ 4.25:1) Fractal 4x4 (≈ 4.25:1)

 JPEG/JPG (≈ 17.00:1) Fractal 8x8 (≈ 17.00:1)

 JPEG/JPG (≈ 68.00:1) Fractal 16x16 (≈ 68.00:1)

Figure 4.8: Lena image decompressed using fractal-based compression and JPEG/JPG

with different compression ratios.

 36

4.4 Chapter Summary

The advantage of using fractal image compression is that for each range block we have to

save only five coefficients, which will give the ability of obtaining a very high

compression ratio. The compression rate depends on the size of the range blocks—bigger

range blocks leads to higher compression ratio. However, the cost will be degradation in

the decoded image.

Fractal image compression does not work well for all types of images—it mainly works

well with natural types of images such as trees, mountains and humans. On the other

hand, the decompressed images of the fractal compression for unnatural images are very

poor in quality.

 37

Chapter 5

Fractal Color Image Compression

Little work has been done of fractal color image compression compared with the work

done on fractal gray-scaled image compression. This chapter looks at how the color

images are formed and how to use fractal-based compression for color images.

Additionally, there will be a demonstration and comparison between the uses of different

coordinate systems in the color images.

All the MATLAB codes used for this chapter are detailed in Appendix B, and only one

color image is used for illustration and comparison (Lena color image, with size of

512 x 512, range size of 8 x 8).

5.2 Red, Green and Blue

The human visual system is sensitive to three primary colors: red, green and blue.

Therefore, these three colors are used to represent colors in digitalized images or videos.

Usually 8 bits are reserved for each color, so in theory the number of colors possible

equals 2 24 . In general, many systems use a palette-based system to indirectly produce the

colors, using a look up table as depicted in Figure 5.1:

 38

Figure 5.1: color palette as a lookup table to produce a pixel
(Source: Leis, J 2002)

In a compressing process of a color image the main idea is to divide the image into its

three different layers or components (red, green and blue). It is then possible to compress

each of these layers separately, in other words, handle each of the layers as an

independent image [1, 8, 15, 16], therefore, the data needed to be stored and the time of

encoding will be three times what it takes for the gray-scaled image.

The figure in the next page shows the image of Lena separated into red, green and blue

components:

 39

Red component

Green Component

Blue component

Figure 5.2: The Red, Green and Blue components of Lena color image.

 40

In this project, the method outlined above is used to encode a color image using a fractal-

based compression. The code (Appendix B) used takes the color image and then separates

it into three different components and then encodes each of them in the same manner

used for the gray-scale images. In the decoding process each of the components will be

decoded separately and at the final stage all will be added together. The results of using

RGB components are illustrated in Figure 5.3 and Figure 5.6.

5.3 YIQ and YUV

RGB coordinate system is not the only system used; there are two other coordinate

systems which are universally used, namely, YUV and YIQ, where Y is the luminance or

brightness, I-U is the hue and Q-V is the saturation (the combination of the hue and

saturation is called chrominance).

These two systems are related to the R,G and B by a linear transformation as shown

below [1, 8, 16]:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Q
I
Y

 =
⎢
⎢
⎢

⎣

⎡

212.0
596.0
299.0

528.0
275.0

587.0

−
−

⎥
⎥
⎥

⎦

⎤
−

311.0
321.0

114.0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

 (5.1)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

V
U
Y

 =
⎢
⎢
⎢

⎣

⎡
−

615.0
147.0

299.0

515.0
289.0

587.0

−
−

⎥
⎥
⎥

⎦

⎤

− 100.0
436.0
114.0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

 (5.2)

The most important reason for using YIQ and YUV is that with these two it is possible to

significantly reach much higher compression ratios compared with using RGB, and with

only a small or negligible amount of degradation in the output image. The main reason is

that the human visual system is more sensitive to the luminance than the chrominance,

therefore, the I-U and Q-V can be decimated to one-half or one-quarter of their original

size.

 41

From the following figures it is obvious that compressing color image using YIQ and

YUV components is not much different than using the RGB components—almost in the

three cases the convergence is to the same fixed-point (see Figure 5.6); the output of the

three methods is very similar.

Figure 5.3: The convergence of the Red, Green and Blue images using the RGB
components.

 42

Figure 5.4: The convergence of the Red, Green and Blue images using the YIQ
components.

Figure 5.5: The convergence of the Red, Green and Blue images using the YUV
components.

 43

(a) (b)

 (c) (d)

Figure 5.6: (a) Original Lena color image. (b) Decompressed Lena color image using the
RGB components. (c) Decompressed Lena color image using the YIQ components. (d)

Decompressed Lena color image using the YUV components.

 44

5.4 Chapter Summary

In the fractal-based compression, the technique used to encode a color image is the same

as for the gray-scale image, except that color images are made from three layers instead

of one and each of these layers is to be compressed separately. RGB, YIQ and YUV

coordinate systems are used in the color images. With YIQ and YUV it is possible to

obtain higher compression ratios with a slight degradation in the output image compared

with RGB. YIQ and YUV are not the only alternatives available; there are other

coordinate systems like simplified color coordinate system LMN and equalized color

coordinate system EMN in which both perform as well as the YIQ and YUV [16].

 45

Chapter 6

Different Partitioning Methods

Image partitioning is one of the important issues in fractal image compression. The naive

or classical way of partitioning an image was having the range blocks in a fix square size

and the domain blocks being twice the size of the range block. However, other

partitioning methods have been used in which have a lesser number of blocks causing a

shorter encoding time, or to have more flexible partitioning leading to higher

compression rates. In this chapter, three different partitioning methods are presented:

6.2 Quadtree Partitioning

One of the most common used partitioning methods is the quadtree partition, in this

method the image is represented by number of layers in a tree structure as it is shown in

the figure below:

 46

Figure 6.1: Quadtree Partition
(Source: Fisher, Y 1995)

The original image (the root image) is first broken into four quadrants, then for each

range block it is compared with the domain block (transformed domain). If the distance

or the rms value between the range and the domain is below preselected threshold, then

no further partition is required. If this is not the case, then each range block will be

subdivided into four quadrants, and the process repeats until it reaches the preselected

maximum depth of the quadtree [8, 10, 16].

6.3 Horizontal-Vertical Partitioning

HV-partitioning is similar to quadtree partitioning; however, it splits the image in

rectangles instead of squares. Figure 6.2 illustrates the H-V partitioning.

The original image is to be considered as a rectangular image, and then the cutting of the

image will be either horizontally or vertically, depending on the splitting measure. At

each stage, there will be a check through all rectangles to decide which are to remain the

same and which need to be cut into two smaller rectangles. This continues in this way

until there is no more cutting possible. The advantage of HV-partitioning over quadtree

partitioning is its flexibility because the position of each block is changeable [8, 16].

 47

Figure 6.2: Partitioning Lena image using H-V partition.
(Source: Fisher, Y 1995)

6.4 Triangular Partitioning

The triangular partitioning is also similar to the quadtree partitioning in which each block

splits into smaller pieces whenever it is necessary. From the name, it is recognised that

the partition of the image is of the triangular shape. Starting with the original image to be

divided into two triangles, each can then be subdivided into four triangles; this process

will continue until no more partitioning is possible.

Due to the triangular shape of the partitioning, it gives higher and better flexibility of the

blocks compared with the H-V partitioning and quadtree partitioning [8, 16].

 48

Figure 6.3: Partitioning Lena image using Triangular partition.
(Source: Fisher, Y 1995)

6.5 Chapter Summary

The traditional way of image partitioning was square blocks of range and domain blocks.

Other partitioning methods have since been adopted to reduce the number of blocks in

order to improve the encoding time, like the Quadtree partitioning, and to have more

flexible partitioning to gain higher compression rates, like the H-V and Triangular

Partitioning.

There are other types of partitioning such as Fuzzy Hexagonal Partitioning, Mixed

Square Partitioning, Hexagonal Partitioning, Polygonal Partitioning and Split and Merge

partitioning [8, 16, 25, 26].

 49

Chapter 7

Faster Encoding

Fractal image compression has one main disadvantage: it is computationally expensive.

The time taken for each range to be compared with the domains in the domain pool is

very lengthy. Consider an image of the size 256 x 256. If the range blocks is of the size

4 x 4 then the number of range blocks will be (256/4) 2 = 4096 blocks. Domain blocks

are overlapped, so, the number of domain blocks will be (256 – 2 x 4 + 1) 2 = 62001

blocks. If there are only eight possible transformations for each domain block then the

total number will be 496,008 blocks, so, in total 496,008 x 4096 = 2,031,648,768

comparisons. Therefore, most of the work on fractal coding involved investigating

methods in order to reduce the encoding time [11, 26]:

1- One method used to reduce the encoding time is the classification scheme, where

the range blocks and the domain blocks are grouped in classes in which the ranges

and domain of the same characteristics will be in the same class. Consequently,

during the encoding, comparison process takes place with the range and the

domain of the same class—not the whole domain blocks. Therefore, encoding

time will be reduced.

2- One of the latest methods to improve the encoding time of fractal image

compression is by discarding all the domain blocks with high entropy. It has been

noted that not all domain blocks are used in fractal encoding; most of the domain

blocks used are located at the regions with high degree of structure, for instance,

 50

along the edges and high contrast regions of the image. As a result, having less

domain blocks to be compared with the range blocks will improve encoding time.

Figure 7.1 shows the domain blocks of the size 8 x 8 used in the encoding

process for the Lena image:

Figure 7.1: Lena image with domain blocks used in black.
 (Source: Hassaballah-et-al, 2005)

3- Another method of reducing the encoding time is comparing the range block with

neighboring domain blocks (domain that overlap the range blocks). It has been

observed that the best suitable blocks of domain to be compared with the range

blocks are the block which overlap with the range block. This will reduce the

search for the corresponding domain block for the range block from the entire

image to only some parts close to the range block.

Those methods mentioned above are not the only methods adopted to reduce the

encoding time in the fractal-based compression. There are other experiments that

showed significant results using wavelet-based block classification, DCT domain

block matching and Genetic Algorithm. For more information, read [19, 31, 34].

 51

Chapter 8

Fractal Video Compression

For fractal video compression, there are two extensions of still image compression. They

are frame-based compression and cube-based compression.

In frame-based compression, video clips and motion pictures are naturally divided into

segments according to scene changes [30]. Each segment, beginning with an initial

frame, is called an intra-coded frame, or I-frame. Each frame then can be coded mainly

using the motion codes by referencing its preceding frame called a P-frame, as a

predicted frame from its predecessor. The I-frames and the P-frames are also called

coarse frames and the frames that are added between any two of the I-frames and P-

frames are called bidirectional frames or B-frames (see Figure 8.1). Each B-frame is

coded using the prediction from both coarse frames immediately before and after it [3,

16].

In a 2-dimensinal fractal video compression system, the I-frames are compressed using

image compression technique. The I-frames are coded by 2-to-1 local and global self-

referencing fractal codes. While decoding such an I-frame, a hidden frame has been

created in each iteration. For example, if an I-frame F is created by 10 iterations from

some initial image F0 with self reference fractal codes, 10 consecutive P-frames will be

set that have the same set of codes and are identical to the I-frame fractal codes, but will

be referenced to the preceding frame instead of itself. Then, starting from the same initial

image F0, by the end, the tenth P-frame is clearly the same I-frame obtained in the first

 52

procedure. As a result, a fractal represented I-frame can be replaced by a sequence of P-

frames if a time delay is allowed [16].

Figure 8.1: Video clip frames.
(Source: Lu, N 1997)

In a cube based compression, image sequences are portioned into groups of frames, and

every group of frames is portioned into non-overlapped cubes of ranges and domains (see

Figure 8.2). The compression codes are computed and stored for every cube.

Every group of frames is called GOF. Each GOF can be compressed and decompressed

separately as an entity. Assuming temporal axis along the sequence, every GOF can be

considered as a large cuboid. In fractal compression, each GOF is portioned into non-

overlap small cuboids. Each cuboid is called as a range cuboid and denoted as R. The

sizes of edges of R may be different; especially the edge in the temporal direction may

vary from the horizontal direction and the vertical direction. In order to obtain the

approximate transformation of R, another overlap partition is necessary whose small parts

are called domain cuboids. The horizontal and the vertical edges of the domain cuboids

are twice as large as the range cuboids respectively. But the temporal edge of the domain

cuboids is the same as the one of the range cuboids. [30]

The cuboid algorithm of fractal video compression is given below [30]:

 53

Partition the motion image sequence to a series of GOF.

1. For each GOF the following steps have been done:

i. Partition the GOF into range cuboids and domain cuboids. The

horizontal and the vertical edges of the domain cuboids are twice as

large as the ones of the range cuboids respectively. The temporal edge

of the domain cuboids is the same size as the one of the range cuboids.

ii. For each range cuboid R the following steps have been done:

a. All domain cuboids are shrunk to codebook cuboids that are the

same sizes as R in three directions.

b. For each codebook cuboid D, compute the scale factor and the

offset factor α, β of D and the rms error between R and αD + βI.

c. Choose the optimal approximation R≈ αD + βI that have the

minimal rms error of all codebook cuboids.

d. Store α, β and the location of D of the optimal approximation as

the compression codes of R.

The frame-based compression can obtain high compression ratio, but the compression of

the current frame is related to the previous decompressed image, so there is a delay

between frames when decompressed and error may spread between frames. The cube-

based method can obtain the decompressed images with high qualities. Some studies use

adaptive partitioning to improve the compression ratio. However, if transmission error is

considered, the adaptive partition is not suitable because the partition information may be

lost during transmission [30].

 54

Figure 8.2: Range cubes and domain cube in a GOF
(Source: Wang, M 2004])

 55

Chapter 9

Conclusions and Further Work

9.1 Achievement of Objectives

In this project, the topics of image and video compression using different techniques were

investigated, in particular, the new compression method called fractal image-video

compression. Through this investigation the following was found:

1- All compression techniques belong to two types of compression, one called

lossless compression and the other called lossy compression. With lossy

compression, there is a loss in some data, but high compression rate is achieved;

with lossless compression, no data is lost but it is hard to achieve a high

compression rate.

2- Fractal image compression is a lossy type of compression based on self-similarity

within the image and mainly works well with natural type of images. It has the

ability to achieve high compression rates, however, with very high compression

rates it starts losing quality.

3- Though fractal compression works very well with gray-scale and color images, it

suffers from one main weakness. Fractal compression is computationally very

expensive. In this project, and using a personal computer (Pentium 4, CPU 2.40

GHz, RAM 480 MB), the fractal encoding time for a gray-scale image was

around one hour and for the color image was around three and half hours.

 56

However, as the speed of the CPU is rapidly increasing every year, maybe after

10 or 20 years the encoding time will not be such an issue.

4- Compared with fractal image compression, very little work has been done on

fractal video compression. Primarily, there are two methods in fractal video

compression: one is frame-based compression and the other is cube-based

compression.

5- Many methods have been adopted to improve the performance of fractal image

compression, such as using different partitioning and reducing the domain pool,

however, more investigation and study is required for further improvement.

9.2 Further Work

Unfortunately, less investigation has been carried out on fractal video compression when

compared with what has been done on still images, especially gray-scale images. This,

combined with time constraints, made it unfeasible to investigate this area more

comprehensively for this project, neither was it possible to use MATLAB to implement

fractal video compression based on the algorithm represented in Chapter 8.

Future work should concentrate on fractal video compression, trying to implement

fractal-based video compression and comparing the results with other video compression

methods such as MPEG. On the other hand, the improvement of encoding time remains a

significant challenge.

 57

References

[1] Barnsley, MF & Hurd, LP 1993, Fractal image compression, AK Peters, USA.

[2] Barnsley, MF 1993, Fractals everywhere, 2nd edn, Academic Press, USA.

[3] Barthel, KU & Voye, T, ‘Three-dimensional fractal video coding’, viewed 5th June

2005, <http://portal.acm.org/citation.cfm?id=839284.841398>.

[4] Bhaskaran, V & Konstantinides, K 1995, Image and video compression standards-

algorithm and architecture, Kluwer Academic Publisher, USA.

[5] Clarke, RJ 1995, Digital compression of still images and video, Academic Press

Limited, London.

[6] Crane, R 1997, A simplified approach to image processing, Prentice Hall, New

Jersey.

[7] Finlay, M & Blanton, KA 1993, Real-world fractals, M&T Books, New York.

[8] Fisher, Y (ed) 1995, Fractal image compression-theory and application, Springer-

Verlag, New York.

[9] Gharavi-Alkhansari, M & Huang, TS 1996, ‘Fractal-based image and video coding’,

in L Torres & M Kunt(eds), Video coding-the second generation approach, Kluwer

Academic, Boston.

[10] Gibson, JD, Berger, T, Lookabaugh, T, Lindbergh, D & Baker, RL 1998, Digital

compression for multimedia-principles & standards, Morgan Kaufmann, San Francisco.

 58

[11] Hassaballah, M, Makky, MM & Mahdy, YB 2005,’A fast fractal image compression

method based entropy’, Electronic Letters on Computer Vision and Image Analysis,

vol.5, no. 1, pp. 30-40.

[12] Kominek, J 2001, Waterloo fractal compression project, < http://links.uwaterloo.ca>

[13] Lalitha, EM & Satish, L 1998, ‘Fractal Image Compression for Classification of PD

Sources’, IIEE Transactions on Dielectrics and Electrical Insulation, vol.5, no.4, Augest,

viewed 20 July 2005, <http://eprints.iisc.ernet.in/archive/00001459/01/image.pdf>.

[14] Leis, J 2002, Digital signal processing-a matlab-based tutorial approach, Research

Studies Press Ltd, England.

[15] Li, ZN & Drew, MS 2004, Fundamentals of multimedia, Prentice Hall, Upper

Saddle River, NJ.

[16] Lu, N 1997, Fractal imaging, Academic Press, USA.

[17] Lucey, S 1998, IEEE transaction on communication, vol. com-27, no. 9, September

1979.

[18] Miano, J 1999, Compressed image file formats, ACM Press, New York.

[19] Mitra, SK, Murthy, CA & Kundu, MK 1998, ‘Technique for fractal image

compression using genetic algorithm’, IEEE Transaction on Image Processing, vol. 7,

no. 4, viewed 12 march 2005, <http://www.isical.ac.in/~malay/Papers/IP_4_1998.pdf>.

[20] Moffat, A & Turpin A 2002, Compression and coding algorithm, Kluwer Academic

Publishers, Boston.

 59

[21] Morris, B 2004, Fractal image compression for video, Bachelor of electrical &
electronic, University of Southern Queensland, Queensland.

[22] Nelson, M & Gailly JL 1996, The data compression book, 2nd edn, M&T Books,

USA.

[23] Puram, VG 1999, Image coding based of the fractal theory contractive image
transformation, Project, University of Kentucky, Kentucky, viewed 7 March 2005, <
http://voip.netlab.uky.edu/~venu/cs635/project.doc>.

[24] Richardson, IEG 2002, Video codec design-developing image and video

compression systems, John Willey & Sons , USA.

[25] Ruthl, M, Hartenstein, H & Saupe, D, 1997, ‘Adaptive partitioning for fractal image

compression’, IEEE International Conference on Image Processing, Santa Barbara,

October.

[26] Saupe, D & Ruhl, M 1996, Evolutionary fractal image compression, Proceeding of

IEEE International Conference on Image Processing, Lausanne, pp. 129-132.

[27] Saupe, D, 1996, ‘Lean domain pools for fractal image compression’, SPIE

Electronic Imaging’96, San Jose, January.

[28] Skiljan, I 2005, Irfanview, < http://www.irfanview.com>.

[29] Soberano, LA 2000, The mathematical foundation of image compression, University

of North Carolina, North Carolena, viewed 9 March 2005, <http://people.uncw.edu

/hermanr /signals /ImgComp_Soberano.PDF>.

[30] Wang, M, 2004, ‘Cubid method of fractal video compression’, International

Conference on Information Technology for Application, China.

 60

[31] Wohlberg, B & Jager, G, 1995, ‘Fast image domain fractal compression by DCT

domain block matching’, Electronic Letter, vol. 31, pp. 869-870, May.

[32] Wong, B 1993, Fractal image compression, Bachelor of engineering degree in
electrical engineering-computer systems , The University of Queensland, Queensland.

[33] Yang, GZ, Image compression, Department of Computing-Imperial College, viewed

15 March 2005, <http://www.doc.ic.ac.uk/~twh1/multimedia/mm-notes-3.pdf>.

[34] Zhang, Y & Po, LM 1996,’Speeding up fractal image encoding by wavelet-based

block classification’, Electronics Letters, November, vol.32, no.23, pp.2140-2140,

viewed 10 April 2005, <http://www.ee.cityu.edu.hk/~lmpo/publications/1996_EL_

Fractal.pdf>.

 61

Appendix A

Project Specification

 62

University of Southern Queensland
Faculty of Engineering and Surveying

ENG 4111/4112 Research Project

PROJECT SPECIFICATION

FOR : Khalid Kamali

TOPIC: Fractal Video Compression

SUPERVISOR: Dr. John Leis

ENROLMENT: ENG 4111 – S1, D, 2005
 ENG 4112 – S2, D, 2005

PROJECT AIM: The aim of this project is to investigate the variety of

image and video compression methods, especially fractal
compression for both images and video.

PROGRAMME: Issue A, 4th April 2005

1. Conduct a literature review of different image compression techniques.

2. Investigate the compression rates and computational efficiency of different

compression techniques.

3. Research fractal image compression, and compare fractal image compression
with other compression techniques in terms of compression rate, image
quality, compression/decompression time, and memory requirements.

4. Investigate the use of fractal compression for color images.

5. Use MATLAB to implement several techniques for still image compression,

and in particular fractal compression.

6. Investigate the possible applications of fractal compression to video
sequences. Implement the proposed methods in MATLAB.

And as time permits….
7. Investigate methods of reducing the computational complexity of the
 domain/range search required in fractal compression.

AGREED: ________________ (student) ________________ (supervisor)

DATE: ___/___/___

 63

Appendix B

MATLAB Codec for Fractal Gray-Scale & Color

Image Compression

 64

B.1 main_enc.M

function main_enc

% Syntax: <main_enc>

% Description: It asks the user for the image name and the size of the

% range. It does all necessary checking. Then it encodes

% the image using Fractal Image Compression.

% Inputs: Nill

% Outputs: The decompressed file

% Functions Used: fractal_enc, rgb2yuv, rgb2yiq

% Written by: Khalid Kamali

% Date: 9/7/2005

%%%

clear all;

clc;

% Taking the file name

file_name=input('Enter the file name:','s');

% Reading the image

readimage=imread(file_name);

[l w h]=size(readimage);

% Checking whether the image is square image or not.

while (l ~= w)

 disp('Image must be square (256x256 or 512x512 or 1024x1024 etc)');

 choice=input('Do you want to continue (y for yes or n for no):','s');

 if choice == 'y'

 file_name=input('Enter the file name:','s');

 readimage=imread(file_name);

 [l w h]=size(readimage);

 65

 else

 disp('Program terminated....');

 return;

 end

end

% Setting range sizes to 4, 8 or 16

ranges=[4 8 16];

% Getting the range size from the user.

choice = menu('Choose range size','4','8','16');

rangesize=ranges(choice);

% Compression of the gray image

if (h==1)

 disp('This is a grayscale image')

 choice=0;

 gray=readimage;

 coeff=fractal_enc(rangesize,gray);

% Compression of the color image

elseif(h==3)

 disp('This is a color image')

 red=double(readimage(:,:,1));

 green=double(readimage(:,:,2));

 blue=double(readimage(:,:,3));

 % Asking the user for the compression type of the color image

 choice = menu('Choose the type of the components','Red Green Blue','YUV','YIQ');

 % Compressing the color image using red,green and blue components

 66

 if choice==1

 coeff1=fractal_enc(rangesize,red);

 coeff2=fractal_enc(rangesize,green);

 coeff3=fractal_enc(rangesize,blue);

 % Compressing the color image using Y,U and V components

 elseif choice==2

 [Y, U, V]= rgb2yuv(red,green,blue); % Converting R,G,B into Y,U,V

 coeff1=fractal_enc(rangesize,Y);

 coeff2=fractal_enc(rangesize,U);

 coeff3=fractal_enc(rangesize,V);

 % Compressing the color image using Y,I and Q components

 else

 [Y, I, Q]= rgb2yiq(red,green,blue); % Converting R,G,B into Y,I,Q

 coeff1=fractal_enc(rangesize,Y);

 coeff2=fractal_enc(rangesize,I);

 coeff3=fractal_enc(rangesize,Q);

 end

else

 disp('!!! Not a known image !!!')

end

% Clearing all unnecessary variables

clear readimage w h ranges gray red green blue Y U V I Q fractal_enc;

% Saving image name, image size, range size, choice and the coefficent matrix

uisave;

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

 67

B.2 main_dec.M

function main_dec

% Syntax: <main_dec>

% Description: It asks the user for the number of iteration and then

% it decodes any grayscale or color image that is

% encoded using Fractal Image Compression.

% Inputs: Nill

% Outputs: Display the decompressed image

% Functions Used: fractal_dec, yuv2rgb, yiq2rgb

% Written by: Khalid Kamali

% Date: 9/7/2005

%%%

clear all;

clc;

% Loading the decompressed file

uiload

% Reading the origial image

[readimage, i_map]=imread(file_name);

% Getting the number of iteration

iter_mat=[1,2,4,6,8,10,12];

index=menu('Choose the number of iteration','1','2','4','6','8','10','12');;

num_iter=iter_mat(index);

% Calculating the domain size

domainsize=rangesize*2;

% Decompressing the grayscale image

 68

if choice==0

 rangeimage=fractal_dec(num_iter,l,rangesize,coeff);

% Decompressing the color image using red, green and blue components

elseif choice==1

 red=fractal_dec(num_iter,l,rangesize,coeff1);

 green=fractal_dec(num_iter,l,rangesize,coeff2);

 blue=fractal_dec(num_iter,l,rangesize,coeff3);

 rangeimage(:,:,1)=red;

 rangeimage(:,:,2)=green;

 rangeimage(:,:,3)=blue;

% Decompressing the color image using Y, U and V components

elseif choice==2

 Y=fractal_dec(num_iter,l,rangesize,coeff1);

 U=fractal_dec(num_iter,l,rangesize,coeff2);

 V=fractal_dec(num_iter,l,rangesize,coeff3);

 % Converting Y,U,V into R,G,B

 [red, green, blue]= yuv2rgb(Y, U, V);

 rangeimage(:,:,1)=red;

 rangeimage(:,:,2)=green;

 rangeimage(:,:,3)=blue;

 % Decompressing the color image using Y, I and Q components

else

 Y=fractal_dec(num_iter,l,rangesize,coeff1);

 I=fractal_dec(num_iter,l,rangesize,coeff2);

 Q=fractal_dec(num_iter,l,rangesize,coeff3);

 % Converting Y,I,Q into R,G,B

 69

 [red, green, blue]= yiq2rgb(Y, I, Q);

 rangeimage(:,:,1)=red;

 rangeimage(:,:,2)=green;

 rangeimage(:,:,3)=blue;

end

if choice==0

 error_image=double(readimage)-double(rangeimage);

else

 error_image(:,:,1)=double(readimage(:,:,1))-double(rangeimage(:,:,1));

 error_image(:,:,2)=double(readimage(:,:,2))-double(rangeimage(:,:,2));

 error_image(:,:,3)=double(readimage(:,:,3))-double(rangeimage(:,:,3));

end

subplot(1,3,1); imagesc(uint8(readimage)); colormap(i_map);

title('The original image');

subplot(1,3,2); imagesc(uint8(rangeimage));

title('The Decompressed image');

subplot(1,3,3); imagesc(uint8(error_image));

title('The Error image');

set(gcf,'Position',[200,200,600,300]);

choice=0;

while(choice~=5)

 choice = menu('Choose image','Show Original image','Show Compressed image','Show

Error image','Show all','Exit');hold on;

 switch choice

 case 1

 clf;

 imagesc(uint8(readimage));

 title('The original image');

 set(gcf,'Position',[200,150,400,400]);

 case 2

 clf;

 70

 imagesc(uint8(rangeimage));

 title('The Decompressed image');

 set(gcf,'Position',[200,150,400,400]);

 case 3

 clf;

 imagesc(uint8(error_image));

 title('The Error image');

 set(gcf,'Position',[200,150,400,400]);

 case 4

 clf

 subplot(1,3,1); imagesc(uint8(readimage));

 title('The original image');

 subplot(1,3,2); imagesc(uint8(rangeimage));

 title('The Decompressed image');

 subplot(1,3,3); imagesc(uint8(error_image));

 title('The Error image');

 set(gcf,'Position',[200,200,600,300]);

 case 5

 close all

 break;

 end

end

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

 71

B.3 fractal_enc.M

function [coeff] =frac_enc(r,plate)

% Syntax: <[rangeimage]=fractal_dec(num_iter,l,r,c)>

% Description: It encodes any grayscale or color image that is

% encoded using Fractal Image Compression.

% Inputs: r - The range size

% plate - Image matrix

% Outputs: coeff - The coefficient matrix of the compressed

% Fractal-based image.

% Written by: Khalid Kamali

% Date: 23/4/2005

%%%

[l w h]=size(plate);

plate=double(plate);

rangesize=r;

% Calculating the domain size

domainsize=rangesize*2;

i1=1:rangesize:l;

i2=rangesize:rangesize:l;

j1=1:rangesize:l;

j2=rangesize:rangesize:l;

a1=1:domainsize:l;

a2=domainsize:domainsize:l;

b1=1:domainsize:l;

b2=domainsize:domainsize:l;

coeff=[];

 72

for i=1:l/rangesize

 for j=1:l/rangesize

 range=plate(i1(i):i2(i),j1(j):j2(j));

 % o is the offset, the average of each range

 o=round(mean(mean(range)));

 range=range - o;

 % Initialize minerror1

 minerror1=100;

 % Partitioning the domain blocks(non-overlapping).

 for a=1:l/domainsize

 for b=1:l/domainsize

 D_unscaled=plate(a1(a):a2(a),b1(b):b2(b));

 % Now scaling the domain

 D_scale=D_unscaled(1:2:domainsize,1:2:domainsize);

 % Average of each domain block

 ave=mean(mean(D_scale));

 Domain=D_scale - ave;

 % Scaled domain with a 0 deg rotation

 DT_MAT(1:rangesize,1:rangesize,1)=Domain;

 % Scaled domain with a 90 deg rotaion

 DT_MAT(1:rangesize,1:rangesize,2)=rot90(Domain);

 % Scaled domain with a 180 deg rotaion

 DT_MAT(1:rangesize,1:rangesize,3)=rot90(rot90(Domain));

 % Scaled domain with a 270 deg rotaion

 DT_MAT(1:rangesize,1:rangesize,4)=rot90(rot90(rot90(Domain)));

 73

 % Scaled domain with a Horizontal flip

 DT_MAT(1:rangesize,1:rangesize,5)=flipud(Domain);

 % Scaled domain with a Vertical flip

 DT_MAT(1:rangesize,1:rangesize,6)=fliplr(Domain);

 % Scaled domain with a flip about forward diagonal

 DT_MAT(1:rangesize,1:rangesize,7)=transpose(Domain);

 % Scaled domain with a flip about reverse diagonal

 DT_MAT(1:rangesize,1:rangesize,8)=rot90(rot90(transpose(Domain)));

 % Now comparing each range with domain blocks, with each

 % possible transformation of the domain

 for Loop=1:8

 Domain=DT_MAT(1:rangesize,1:rangesize,Loop);

 % Calculating the contrast

 ss = sum(sum(range.*Domain))/sum(sum(Domain.^2));

 % Checking if contrast value is greater or equal to zero

 % and less than one.

 if ss >= 0 && ss < 1

 minerror=mae(ss*Domain - range);

 if minerror < minerror1

 minerror1 = minerror;

 e=a1(a);

 f=b1(b);

 M=Loop;

 s=round(ss*10); % Save s as integer

 end

 end

 end

 end

 74

 end

 coeff= [coeff; e f M o s]; % Saving the coefficients

 end

end

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

 75

B.4 fractal_dec.M

function [rangeimage]=fractal_dec(num_iter,l,r,c)

% Syntax: <[rangeimage]=fractal_dec(num_iter,l,r,c)>

% Description: It decodes any grayscale or color image that is

% encoded using Fractal Image Compression.

% Inputs: num_iter - The number of iteration.

% l - The size of the image

% r - The range size

% c - The coefficient matrix of the compressed

% Fractal-based image.

% Outputs: rangeimage - The decompressed matrix after applying

% IFS.

% Written by: Khalid Kamali

% Date: 23/4/2005

%%%

rangesize=r;

coeff=c;

domainsize=rangesize*2; % Calculating the domain size

i1=1:rangesize:l;

i2=rangesize:rangesize:l;

j1=1:rangesize:l;

j2=rangesize:rangesize:l;

a1=1:domainsize:l;

a2=domainsize:domainsize:l;

b1=1:domainsize:l;

b2=domainsize:domainsize:l;

 76

% Creating memory buffers for the domain and range screens

domainimage=zeros(l);

rangeimage=zeros(l);

% Implementing IFS on the compressed image

for iteration=1:num_iter

 for i=1:l/rangesize

 for j=1:l/rangesize

 % Reading data

 row=(i-1)*(l/rangesize)+j;

 % Location of domain

 e=coeff(row,1);

 % Location of domain

 f=coeff(row,2);

 % Affine transformation

 M=coeff(row,3);

 % Offset

 o=coeff(row,4);

 % Scaling factor(contrast)

 s=coeff(row,5);

 % Rescaling the domain blocks

 Domain=domainimage(e:e+domainsize-1,f:f+domainsize-1);

 Domain=Domain-mean(mean(Domain));

 % Transforming the domain

 switch M

 case 1

 77

 % If there is 0 deg rotation

 Domain=Domain;

 case 2

 % If there is 90 deg rotaion

 Domain=rot90(Domain);

 case 3

 % If there is 180 deg rotaion

 Domain=rot90(rot90(Domain));

 case 4

 % If there is 270 deg rotaion

 Domain=rot90(rot90(rot90(Domain)));

 case 5

 % If there is a Horizontal flip

 Domain=flipud(Domain);

 case 6

 % If there is a Vertical flip

 Domain=fliplr(Domain);

 case 7

 % If There is a flip about forward diagonal

 Domain=transpose(Domain);

 case 8

 % If there is a flip about reverse diagonal

 Domain=rot90(rot90(transpose(Domain)));

 end

 % Rescale domain, convert each domainsize x domainsize to

 % rangesize x rangesize

 D_scale=Domain(1:2:domainsize,1:2:domainsize);

 rangeimage(i1(i):i2(i),j1(j):j2(j))=((s/10) * D_scale + o);

 end

 end

 78

 domainimage=rangeimage;

end

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

 79

B.5 rgb2yuv.M

function [Y, U, V]= rgb2yuv(R,G,B)

% Syntax: <[Y, U, V]= rgb2yuv(R,G,B)>

% Description: It converts red, green and blue components of the color image

% into Y,U and V components.

% Inputs: R - Red components of the color image.

% G - Green components of the color image.

% B - Blue components of the color image.

% Outputs: Y - Luminance components of the color image.

% U - Hue components of the color image.

% V - Saturation components of the color image.

% Written by: Khalid Kamali

% Date: 11/8/2005

%%%

[m ,n]=size(R);

Y=zeros(m,n);

U=zeros(m,n);

V=zeros(m,n);

C=[0.299 0.587 0.114 ; -0.147 -0.289 0.436 ; 0.615 -0.515 -0.100];

for i=1:m

 for j=1:n

 a=C*[R(i,j) ; G(i,j); B(i,j)];

 Y(i,j)=a(1,1);

 U(i,j)=a(2,1);

 V(i,j)=a(3,1);

 end

end

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

 80

B.6 yuv2rgb.M

function [R, G, B]= yuv2rgb(Y, U, V)

% Syntax: <[R, G, B]= yuv2rgb(Y, U, V)>

% Description: It converts Y,U and V components of the color image

% into red, green and blue components.

% Inputs: Y - Luminance components of the color image.

% U - Hue components of the color image.

% V - Saturation components of the color image.

% Outputs: R - Red components of the color image.

% G - Green components of the color image.

% B - Blue components of the color image.

% Written by: Khalid Kamali

% Date: 11/8/2005

%%%

[m ,n]=size(Y);

R=zeros(m,n);

G=zeros(m,n);

B=zeros(m,n);

C=[0.299 0.587 0.114 ; -0.147 -0.289 0.436 ; 0.615 -0.515 -0.1];

for i=1:m

 for j=1:n

 a=inv(C)*[Y(i,j) ; U(i,j); V(i,j)];

 R(i,j)=a(1,1);

 G(i,j)=a(2,1);

 B(i,j)=a(3,1);

 end

end

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

 81

B.7 rgb2yiq.M

function [Y, I, Q]= rgb2yiq(R,G,B)

% Syntax: <[Y, I, Q]= rgb2yiq(R,G,B)>

% Description: It converts red, green and blue components of the color image

% into Y,I and Q components.

% Inputs: R - Red components of the color image.

% G - Green components of the color image.

% B - Blue components of the color image.

% Outputs: Y - Luminance components of the color image.

% I - Hue components of the color image.

% Q - Saturation components of the color image.

% Written by: Khalid Kamali

% Date: 11/8/2005

%%%

[m ,n]=size(R);

Y=zeros(m,n);

I=zeros(m,n);

Q=zeros(m,n);

C=[0.299 0.587 0.114 ; 0.596 -0.275 -0.321 ; 0.212 -0.528 0.311];

for i=1:m

 for j=1:n

 a=C*[R(i,j) ; G(i,j); B(i,j)];

 Y(i,j)=a(1,1);

 I(i,j)=a(2,1);

 Q(i,j)=a(3,1);

 end

end

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

 82

B.8 yiq2rgb.M

function [R, G, B]= yiq2rgb(Y, I, Q)

% Syntax: <[R, G, B]= yiq2rgb(Y, I, Q)>

% Description: It converts Y,I and Q components of the color image

% into red, green and blue components.

% Inputs: Y - Luminance components of the color image.

% I - Hue components of the color image.

% Q - Saturation components of the color image.

% Outputs: R - Red components of the color image.

% G - Green components of the color image.

% B - Blue components of the color image.

% Written by: Khalid Kamali

% Date: 11/8/2005

%%%

[m ,n]=size(Y);

R=zeros(m,n);

G=zeros(m,n);

B=zeros(m,n);

C=[0.299 0.587 0.114 ; 0.596 -0.275 -0.321 ; 0.212 -0.528 0.311];

for i=1:m

 for j=1:n

 a=inv(C)*[Y(i,j) ; I(i,j); Q(i,j)];

 R(i,j)=a(1,1);

 G(i,j)=a(2,1);

 B(i,j)=a(3,1);

 end

end

%%%%%%%%%%%%%%%%%% End of file %%%%%%%%%%%%%%%%%%

