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Abstract

The state-controlled road network is Queensland's single largest built community asset 

and the Department of Main Roads is responsible for its operation and the delivery of 

projects for its enhancement and maintenance. The majority of road related asset data is 

stored in linear referenced format, which cannot be represented spatially in a MapInfo 

GIS environment without translation.

Centreline Tools is a MapBasic utility developed by Main Roads to translate between 

linear  and  spatial  forms  of  data.  Centreline  Tools  performs  dynamic  segmentation 

operations not supported by native MapInfo, and enables linear referenced road asset 

data to be viewed and analysed in MapInfo with coordinated-based vector data.

This dissertation describes the development of an upgraded version of the Centreline 

Tools  utility.  A  mixture  of  existing  and  new  ideas  was  incorporated  into  the 

development  process  while  the  original  look  and feel  were  retained  for  operational 

consistency. Several long standing issues with its operation were resolved and reporting 

has  been improved.  Modifications  to  the organisation and structure of the upgraded 

version have resulted in a more maintainable product. Early evidence suggests that the 

majority of the benefits expected from the project have been realised.

An iterative implementation of the System Development Life Cycle methodology was 

adopted  for  the  project  and  proved  to  be  very  effective.  This  strategy  facilitated 

extended testing of the logic and procedures at  the core of the upgrade and allowed 

feedback to be evaluated and integrated into subsequent development releases.
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The Centreline  Tools  upgrade  delivered  by this  project  has  now been released  into 

production.
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CHAPTER 1

INTRODUCTION

1.1  Background

The state-controlled road network consists of approximately 33,500 kilometres of public 

roads  and  2,838  bridges,  and  is  Queensland’s  single  largest  built  community  asset 

(Department of Main Roads 2007). Responsibility for the operation of the road network 

and  the  delivery  of  projects  for  its  enhancement  and  maintenance  lies  with  the 

Department of Main Roads. In order to meet this obligation, Main Roads requires the 

capacity to store and manipulate large volumes of road network related data.

Historically, Main Roads has stored road asset data in departmental databases in linear 

referenced  format,  in  which  the  location  of  an  entity  or  event  is  described  as  a 

measurement along a specified road. However, linear references are textual descriptions 

and cannot generally be represented spatially in a Geographic Information System (GIS) 

without some form of translation. Such translations require a conversion between linear 

reference  descriptions  and  geospatial  coordinates  and  involve  a  process  known  as 

dynamic segmentation.

Geographic  Information  Science  and  Technology  (GIS&T)  is  widely  used  in  Main 

Roads, most commonly in a MapInfo Professional desktop environment. In addition to 

out-of-the-box  MapInfo,  the  department  utilises  a  suite  of  custom-built  tools  and 

utilities developed in-house in MapBasic, MapInfo’s development language. This suite 

of tools,  referred to internally as the Spatial  Application Suite (SAS),  enhances and 

extends the spatial capability of MapInfo in the department and supports a number of 
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business  operations  and processes.  One  important  member  of  this  suite  performs  a 

number of operations based on dynamic segmentation, which are not available in native 

MapInfo Professional. This utility is known as Centreline Tools. 

The dynamic  segmentation  capabilities  of  Centreline  Tools  enable  linear  referenced 

road asset data to be viewed and manipulated in a GIS environment with regular spatial 

data such as the road centreline, cadastre, aerial photography and satellite imagery.

Activity  logging implemented  to monitor  usage  of  the  SAS indicates  that  there  are 

approximately one thousand (1000) users of MapInfo Professional within Main Roads. 

Activity logs also indicate that many of these users load Centreline Tools on a regular 

basis, suggesting that it performs an important role in supporting Main Roads business 

operations.

Centreline Tools was originally released for use in Main Roads circa 1998. Since that 

time  it  has  received  very  little  maintenance,  contributing  to  an  apparent  gradual 

degradation of operational reliability and performance in recent years. In order to ensure 

the  continued availability  of  Centreline  Tools,  the issues  impacting  on its  declining 

reliability needed to be addressed.

1.2  Aims and Objectives

The aim of this project was to upgrade the Centreline Tools utility.

Specifically, the objectives of the project were to upgrade the most regularly used utility 

operations, which involved:

• determining the linear reference of a specified coordinate based location,

• finding the coordinate based location of a specified linear reference,

• creating  coordinate  based  spatial  objects  representing  the  linear  references 

contained in a specified MapInfo input table, and

• determining the linear references representing the point objects contained in a 

specified MapInfo input table.
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Supporting functionality enabling the display and manipulation of data generated by 

these operations was also to be upgraded.

Additional  objectives,  while  desirable,  were  not  initially  considered  to  be  possible 

within the time and resource constraints of this project, but would be considered if time 

permitted. These involved:

• upgrading the remaining operations that generate spatial objects representing 

sections of the road network defined by specified start and end points or linear 

references, and

• improving the reporting capabilities of the utility in relation to the outcome of 

processes performed on MapInfo tables.

1.3  Expected Benefits

It  was  expected  that  an  upgrade  of  Centreline  Tools  would  deliver  a  number  of 

operational and organisational benefits to the department.

In an operational context, benefits might include:

• the correction of some long standing issues with the utility’s operation,

• improved reliability, consistency and dependability,

• simpler to use, less ambiguous user interface dialogs,

• improved reporting capabilities, and

• increased flexibility in linear referenced data format selection.

It was hoped that the delivery of these benefits would enhance useability and improve 

user confidence in the utility. As well as benefiting regular users, flow-on effects might 

include  an  increase  in  the  number  of  district  officers  prepared  to  utilise  dynamic 

segmentation as a means to display and manipulate  linear referenced data in a GIS 

environment.

From an organisational perspective, it was expected that an upgraded Centreline Tools 

would be easier to maintain, saving time and resources for the department. It would also 

make the development of enhancements and extensions a more feasible proposition.
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1.4  Dissertation Overview

Chapter 1, this chapter, provides some background information and introduces the aims 

and objectives of the project, together with a summary of the expected benefits.

Chapter 2 reviews the concepts and technologies that underpin dynamic segmentation. 

The relationship between Centreline Tools and the vector-based representation of the 

state-controlled road network known as 'sc_roads' is described.

Chapter 3 outlines the methodology adopted for the project and describes the design 

strategies employed for the implementation of dynamic segmentation.

Chapter 4 covers the development phase of the project and includes a description of the 

strategies used for testing and significant coding issues encountered.

Chapter 5 presents a detailed description of the operation and behaviour of the upgraded 

version of Centreline Tools.

Chapter 6 offers some concluding remarks together with an assessment of the benefits 

derived from the project and the potential for further work.
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CHAPTER 2

LITERATURE REVIEW

2.1  Introduction

This chapter reviews the concepts and technologies that underpin the project.

Spatial and linear referencing systems are introduced, together with the origin of, and 

continuing requirement for dynamic segmentation.

The chapter goes on to describe the structure of the state-controlled road network and 

how it is represented as a road centreline using the vector data model in MapInfo. The 

specific  characteristics  of  the  road  centreline  that  support  the  implementation  of 

dynamic segmentation in Centreline Tools are discussed.

Finally,  the  terminology  used  throughout  this  dissertation  to  describe  particular 

components  of  vector  structures  is  explained  to  avoid  any confusion  with  common 

usage.

2.2  Spatial Referencing

Geographic  Information  Systems  (GIS)  commonly  use  the  vector  data  model  to 

represent  geographic  features.  In  the  vector  data  model,  two-dimensional  x,  y 

coordinates are used to store the shape of spatial entities (Korte 2001). That is, a point 

feature such as a road sign or light pole is represented by a single x and y coordinate 
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pair. A linear feature such as a road or river is represented by a continuous string of x 

and y pairs (Davis 1996). The vector data model works well for features with static 

boundaries (ESRI 2002).

Using coordinate systems to locate features on the surface of the earth in this way is 

known as spatial referencing (Kothuri, Godfrind & Beinat 2004).

2.3  Linear Referencing

Spatial coordinates are not the only way to locate objects. Data related to linear features 

such as roads are often collected and referred to on the basis of a relative position on the 

road. That is, a location on a linear feature can be described by a measure value such as 

distance, with respect to some known point on the feature such as its start point. This 

type  of location referencing using a measure is  called a Linear  Referencing System 

(Kothuri, Godfrind & Beinat 2004) (LRS). For example, the description ‘55 kilometres 

along road 12A’ uniquely describes a location in space without the use of geographic 

coordinates.  This  is  a  very  efficient  way  of  storing  information  related  to  linear 

structures such as road networks. An interesting aspect of linear referencing is that a 

two-dimensional linear network is reduced to a one-dimensional linear list (Longley et 

al. 2005). Linear referencing therefore underpins an important model for the collection 

and  storage  of  information  by  agencies  responsible  for  the  management  of  linear 

networks.

The  Queensland  Department  of  Main  Roads  employs  a  specific  implementation  of 

linear referencing known as the Road Reference System (RRS) as a basis for the storage 

and management of road asset information (Department of Main Roads, unpub.). In the 

Road Reference System, a system of points of known location called Reference Points 

(RPs)  enable  any  part  of  the  road  network  to  be  described  in  terms  of  a  road, 

carriageway and distance measurement. The majority of road asset data is stored in this 

format in a departmental database known as ARMIS (A Road Management Information 

System).

The use of linear referencing for the collection and storage of information related to the 

road  network  and  road  corridor  is  entirely  appropriate  for  linear  assets.  However, 
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analysing,  visualising,  displaying  and  mapping  these  data  in  association  with  other 

contextual spatially referenced data can be problematic.

2.4  Dynamic Segmentation

Dynamic segmentation was developed out of a need to geographically represent features 

whose locations are recorded as a relative distance along a linear feature (ESRI 2002). 

ESRI (2002) goes on to describe dynamic segmentation as the process of displaying 

linearly  referenced  data  in  a  geographic  environment.  Kothuri,  Godfrind  &  Beinat 

(2004) describe dynamic segmentation as the ability to generate points or line segments 

dynamically from measure information.

Linear referencing in association with dynamic segmentation has some advantages over 

spatial  referencing.  Small  portions  along  a  road  can  have  attributes  attached 

dynamically without impacting on the base feature. That is, portions and attributes can 

be  derived  as  needed  at  run-time  (Wood  2000).  In  addition,  this  method  enables 

multiple sets of attributes to be associated with any portion of an existing linear feature, 

independent of its beginning and end. These attributes can be displayed, queried, edited 

and analysed without affecting the underlying linear feature’s geometry (ESRI 2002).

Some GIS software packages and environments offer dynamic segmentation capabilities 

as a standard feature. For example, GeoMedia (Intergraph Corporation 2001), ArcGIS 

(ESRI  2001,  2002),  and  Oracle  Spatial  (Kothuri,  Godfrind  &  Beinat  2004)  each 

provides an implementation of dynamic segmentation using their own proprietary data 

structures and function sets. However, the MapInfo Professional software used in Main 

Roads  has  no  such  capability  in  its  native  form.  An  implementation  of  dynamic 

segmentation  is  therefore  required to spatially  represent  linear referenced road asset 

information in the MapInfo environment.
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2.5  Dynamic Segmentation in Centreline Tools

In recognition of the importance of spatially representing linear referenced data, Main 

Roads has developed a number of implementations of dynamic segmentation in recent 

years.

Centreline  Tools was one such application,  designed to operate  within the MapInfo 

Professional environment. Centreline Tools, was developed in MapInfo’s development 

language, MapBasic and was released for use within Main Roads circa 1998.

The original version of Centreline Tools performed a number of operations based on 

dynamic  segmentation (Department  of  Main Roads 1999).  Centreline  Tools enabled 

direct translation between spatial coordinates and linear references in a simple to use 

interactive  environment.  Centreline  Tools  also  supported  dynamic  segmentation 

processing of input tables containing linear references, as well as determining the linear 

references for input tables of point objects. Appendix K contains the user guide for the 

operation of the original version of Centre Line Tools.

The implementation of dynamic segmentation in Centreline Tools was built around the 

properties of a specifically structured MapInfo table called sc_roads, which is a vector-

based representation of the state-controlled road network.

The road network is divided into segments based on physical and structural elements 

such as intersections, carriageways, overpasses, underpasses and bridges. The sc_roads 

table  contains  a  vector-based  graphic  object  representing  each  segment  of  the  road 

network.  The graphic  objects  of  sc_roads therefore  collectively  represent  the  entire 

state-controlled road network in its correct geospatial location. Figure 2.1 illustrates the 

sc_roads representation of the state-controlled road network in a MapInfo environment.

Each segment of the road network is  also described by the Road Reference System 

(RRS).  In  the  RRS,  a  road  segment  is  a  section  of  road  occurring  between  two 

Reference  Points  (RPs)  (Department  of  Main  Roads,  unpub.).  The  RRS  therefore 

provides the linear reference at the start and end point of each road segment in the road 

network in the form of road identifier, carriageway type and distance from the start of 

the  road.  By  including  these  linear  reference  elements  in  the  attribute  set  of  the 
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sc_roads table, a direct relationship is created between each vector object, and the RRS. 

The attribute set from the sc_roads table is displayed in Figure 2.2.

Figure 2.1 – Spatial Objects of sc_roads

Figure 2.2 – Attributes of sc_roads
9



It  is this relationship that underpins the implementation of dynamic segmentation in 

Centreline Tools.

A number of the attributes of the sc_roads table contain information necessary for the 

dynamic segmentation process. These attributes are listed in Table 2.1 and their specific 

characteristics are described below.

Attribute Name Attribute Description

STREET Road Identifier for the segment

CARRWAY Carriageway Code (infers segment direction)

REFOFFSET Chainage at the start of the segment in metres

REFLEN Driven length of the segment in metres

CLINELEN Vector object length in metres

SCALEFACTOR Measurement correction factor for the segment

Table 2.1 – Attributes of sc_roads used in Dynamic Segmentation

STREET

In  the  RRS,  an  alphanumeric  code  is  assigned  to  each  individual  road  in  the  road 

network.  This  code  value  is  contained  in  the  STREET  attribute  of  sc_roads and 

identifies the specific road to which the segment object belongs.

CARRWAY

Every  road  has  an  assigned  direction,  which  is  specified  when  the  road  is  legally 

gazetted.  The gazetted direction  of  a  road is  the  direction in  which the RRS linear 

reference  measurement  value,  known as  ‘chainage’  or  ‘through  distance’  increases. 

Gazettal direction is consistent over an entire road.

Because of the complex structure of the road network, some carriageway types have a 

direction that is opposite to, or against gazettal direction. In these carriageway types, the 

direction of the segment object matches the direction of the carriageway. Therefore, the 

RRS chainage increases in a direction opposite to the direction of the segment object. A 

diagrammatic representation of carriageway types and their relationship with gazettal 
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direction is presented in Figure 2.3. The sc_roads table represents the road network to 

the carriageway level only and does not include lanes.

The  sc_roads attribute  CARRWAY  contains  the  code  value  representing  the 

carriageway type of the specific road segment. This attribute therefore also represents 

the direction of the road segment  in relation to the gazettal  direction of the road to 

which the segment belongs.

REFOFFSET

The REFOFFSET attribute of  sc_roads contains the RRS linear measure or chainage 

value at the starting point of the road segment. Since chainage increases with gazettal, 

the start chainage of the segment will occur at the start or end point of the segment 

object, in object direction, depending on the carriageway type of the segment.

REFLEN

The REFLEN attribute contains the actual three-dimensional length of the road segment 

according to the RRS. This value is known as the driven length of the segment.

CLINELEN

The  two-dimensional  length  of  the  vector  object  representing  the  road  segment  is 

contained in the CLINELEN attribute.

SCALEFACTOR

An obvious  disparity  exists  between  the  three-dimensional  driven  length  of  a  road 

segment relative to the RRS (REFLEN), and the two-dimensional length of the MapInfo 

vector object representing it (CLINELEN). The SCALEFACTOR attribute contains a 

correction factor for this disparity. A mathematical relationship therefore exists between 

these three attribute values such that:

SCALEFACTOR = CLINELEN ÷ REFLEN, and

REFLEN = CLINELEN ÷ SCALEFACTOR.
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Figure 2.3 – Road Structure and Direction

Source: Roads Information Branch, Department of Main Roads, 2005.
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 2.6  Terminology

Dynamic  segmentation  necessarily  involves  the  processing  and  manipulation  of  the 

fundamental  graphic objects  that  comprise the  road centreline.  As is  typical  of  GIS 

software  developers,  MapInfo utilises  a  specific  implementation of vector  structures 

with its own terminology to describe graphic objects and their component elements. 

MapInfo  Corporation  (2005b)  provides  the  following  definitions  of  vector  structure 

elements:

• A line is an object with two nodes, one at each end.

• A polyline is a connected sequence of lines that are not closed.

• A node is an end-point of a line object or an end-point of a line segment that is 

part of a polyline.

• A line segment is a portion of a polyline between two nodes.

It should be noted that MapInfo does not use the term ‘vertex’, commonly used in other 

texts such as Davis (1996), to describe the non-end points of a polyline.

MapInfo uses the term ‘line segment’ to describe the straight component of a polyline 

between two nodes. However, the RRS refers to a ‘segment’ as that portion of the road 

network that lies between two Reference Points. In order to avoid confusion, therefore, 

for the purposes of this project the term ‘segment’ is used to describe the spatial object 

representing one record in the road centreline MapInfo table sc_roads. The term ‘link’ 

is  substituted  for  ‘line  segment’  and refers  to  the  straight  component  of  a  polyline 

between two nodes.

Figure 2.4 illustrates the structure of the polyline vector objects used in the MapInfo 

table sc_roads. In this example, sc_roads has been thematically mapped by carriageway 

type  to  enhance  the  illustration.  Nodes  and  object  direction  are  displayed  and 

carriageways are labelled.
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Figure 2.4 – Example sc_roads Polylines
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CHAPTER 3

METHODOLOGY

3.1  Overview

The methodology followed for this project is known as the System Development Life 

Cycle (SDLC). The SDLC is a well-established methodology developed for the analysis 

and design of information systems (Senn 1989; Scott et al. 1996) and involves a set of 

distinct phases (Scott et al. 1996). Figure 3.1 shows the various phases of the System 

Development Life Cycle as described by Scott et al. (1996).

An iterative implementation of the SDLC, as described by Apan (2002, p. 2.5), was 

chosen as the most appropriate methodology for the upgrade of Centreline Tools.

Initially, the interactive operations involving single location translations between spatial 

coordinates and linear references were analysed, designed, developed and distributed to 

selected  officers  for  testing.  While  this  development  version  was  being  tested  and 

evaluated, the remaining operations, which build on these fundamental processes, were 

analysed, designed and developed.

This agile development approach was made possible by the familiarity of the testing 

officers  with  the  existing  utility  and  its  functionality,  and  offered  the  following 

advantages:

• The logic and procedures at the core of Centreline Tools were under test for an 

extended period.

• Comprehensive testing in a true operational environment was enable.
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• Experienced users with extensive local knowledge of the road network were 

likely to recognise erroneous calculations.

• Users had access to the basic operations in the new version soon after they 

were developed.

• Feedback from regular users of the utility would be available for consideration 

at a much earlier stage in the development life cycle.

• The completed upgrade would be available more quickly overall.

Figure 3.1 – System Development Life Cycle

The main disadvantage of this approach was that some procedures might not be as well 

planned  and  functionally  independent  as  possible  in  the  initial  iteration  of  the 
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development cycle. This would result in some rework to maximise their useability and 

flexibility in subsequent iterations of the SDLC.

The following sections describe the steps taken in each phase of the SDLC.

3.2  Preliminary Investigation

As an  active  operational  system,  Centreline  Tools  has  been  the  subject  of  periodic 

reviews to assess its functional suitability and operational effectiveness. As a result of 

these reviews, a number of issues with the existing version have been known to exist for 

some time. The need for maintenance of the utility was therefore recognised and well 

overdue, and led the proposal of this project.

The most obvious problem occurred in determining the linear reference at a specified 

spatial  location,  which  is  the  most  regularly  used  utility  operation.  An  incorrect 

chainage was usually generated on the first occasion the operation was performed. It 

appears that the utility calculated a chainage based on the commencement of a road 

segment, rather than from the start of the road. While regular users of the utility were 

aware of this error and worked around it, the continuation of this behaviour was clearly 

unacceptable.

An operational issue was identified in relation to the input of a linear reference to be 

translated to spatial coordinates (Martin, AM 2008, pers. comm.). A list of all available 

road identifiers was generated every time the operation was performed. This process 

demanded additional interactive selections and slowed the operation unnecessarily for 

regular users familiar with the road network.

Several issues of concern related to the utility’s geocoding process. Firstly, the dialog 

from  which  input  table  column  names  representing  linear  reference  elements  were 

specified was ambiguous and confusing. The layout of the dialog appeared to have been 

modified to provide for different processing options since the original user guide was 

written.  However,  the  user  guide  was  not  updated  and  the  outcomes  from several 

selection  options  were  unclear.  Several  of  the  options  offered  did  not  perform  as 

expected  and  several  tool  buttons  performed  no  function.  In  addition,  the  options 
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offered in relation to the format of linear reference elements were limited (Barney, DK, 

Clague, SJ & Henry, BA 2008, pers. comm.).

The utility  did not provide any form of permanent  feedback or status report  on the 

success or otherwise of processes performed on input tables. This made it very difficult 

to locate and correct invalid data contained in input tables.

Other  anecdotal  operational  problems  with  Centreline  Tools  included  inexplicable 

crashes, the display of copious error messages and occasional lapses into endless loops 

after  completing  a  processing  operation.  In  general  terms,  the  performance  and 

reliability of the utility could be described as inconsistent at best.

3.3  System Analysis

3.3.1  Functional Requirements

The analysis phase of the project involved specifying the functional requirements of the 

Centreline Tools upgrade. Since this project involved an upgrade to an existing system, 

the  requirements  of  the  upgrade were  largely those of  the  existing version.  In  fact, 

retention of the existing functionality and look and feel of the utility were fundamental 

requirements  of  the  project.  To  determine  the  requirements  of  the  new version,  an 

examination of the operations performed by the existing utility was performed.

The  existing  version  of  Centreline  Tools  performs  a  number  of  spatial  operations 

designed  to  provide  information  related  to  the  state-controlled  road  network  in 

Queensland. These operations involve translation between linear referenced data in a 

format based on the Road Reference System (RRS) used in Main Roads, and traditional 

spatial data based on an earth coordinate reference system. The operations performed by 

the original  version of Centreline Tools are detailed in a user guide (Department of 

Main Roads 1999).

System operations are selected from a toolbar created when the utility is launched. The 

toolbar from the original version is shown in Figure 3.2.
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Figure 3.2 – Original Centre Line Tools Toolbar

The operation performed by each tool button is described in detail the original utility 

user guide included in Appendix L. These operations are summarised as follows:

• determining  the  linear  reference  description  at  the  location  specified  by  a 

mouse click on or near the road centreline,

• finding the spatial location on the road network represented by an input linear 

reference,

• creating  spatial  objects  representing sections  of  the  road  network  occurring 

between two points specified by clicking the mouse in the map window,

• creating  spatial  objects  representing sections  of  the  road  network  occurring 

between two specified linear references,

• creating point and polyline  spatial  objects  representing the linear references 

contained in a specified input table,

• generating the linear  references represented by point  objects  contained in a 

specified input table, and

• displaying  and  optionally  saving  spatial  objects  and  information  generated 

during processing.

3.3.2  Additional Requirements

One  aspect  of  the  existing  system  identified  for  improvement  was  the  information 

produced during  file  processing  operations.  The status  of  the  processing  success  or 

otherwise of a particular record is displayed in the message window during processing, 

but  is  not  permanently  saved.  Watching  for  processing  anomalies  in  large  files  is 

virtually impossible as is checking each record afterwards. It was therefore proposed to 

add some form of reporting capability on the status of table processing.

Two options were considered to achieve this outcome:

(a) generating an additional log file, and

(b) adding reporting information to the output file.
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A log file is a permanent record but still requires matching records between the log file 

and the processed output file to derive useful information.

The preferred option was to add a  brief  comment  to  the processed output  file.  The 

comment  would  then permanently  reside  with  each processed  record  and would  be 

instantly available.

3.3.3  Constraints

Centreline Tools is an operational departmental utility. As such, constraints did exist in 

relation to the functional and operational requirements of the upgrade.

MapInfo Professional is the desktop GIS environment currently in use in Main Roads. 

As a result,  the department has made a significant investment over time in software 

licence  fees,  building  staff  capability  and  developing  customised  utilities,  of  which 

Centreline  Tools  is  one  example.  To  change  would  involve  re-training  staff  and 

redeveloping tools and utilities on another platform, incurring significant costs in time 

and resources. 

Centreline  Tools  was  originally  developed  in  MapBasic  to  run  in  the  MapInfo 

environment.  It  is  a  widely  used  utility  and  performs  an  important  function  in  the 

context of Main Roads business.

A number  of  constraints  therefore  applied  to  the  Centreline  Tools  upgrade  project, 

including the following:

• Development in the MapBasic language was mandatory.

• Continued operation with the MapInfo road centreline product  sc_roads was 

mandatory.

• The existing general look and feel of interface dialogs and tool buttons was to 

be maintained for reasons of operational consistency.

• All existing functionality was to be retained.

• Access via the customised Main Roads Menu was to be retained.

• The existing method of distribution as an executable .mbx file was to remain 

the same.
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• Existing  library  procedures  developed  for  other  SAS components  could  be 

used.

• For  strategic  and  budgeting  purposes,  the  project  was  classified  within  the 

department as system maintenance.

3.4  System Design

3.4.1  Introduction

In  the  initial  phase  of  system  design,  the  source  code  of  the  existing  version  of 

Centreline  Tools  was  examined.  The  purpose  of  this  was  twofold.  Firstly,  it  was 

necessary  to  assess  the  feasibility  of  redeveloping  the  utility  based  on  the  existing 

design. Secondly, if this was not the case, to determine if any existing design elements 

could be used in the new version.

This examination revealed that the logic of the program was convoluted and difficult to 

follow. The code appeared overly complex and contained very little useful explanatory 

documentation. A decision was therefore made early in the process that it  would be 

more time-effective to redesign and redevelop the utility than to attempt to re-code the 

existing  design.  A  redesigned  utility  would  also  produce  a  more  reliable  and 

maintainable product into the future.

In  spite  of  the  decision  to  redesign  the  utility,  several  significant  elements  of  the 

existing design were retained in the new version. These design elements are identified in 

the following sections.

3.4.2  Design Specifications

The design of the Centreline Tools upgrade surrounds the structure and properties of the 

MapInfo road centreline  table  ‘sc_roads’.  As discussed in Chapter  2,  a  relationship 

exists between sc_roads and the linear Road Reference System such that values linking 

the vector objects to the RRS are contained in, or can be derived from, the attributes of 

the sc_roads table.
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In order to satisfy the functional requirements of the Centreline Tools upgrade, it was 

necessary to consider several fundamental processes in the system design. These are:

• to determine the spatial location of the point on the road network at which a 

given linear reference occurs,

• to determine the linear reference at the point on the road network represented 

by a given spatial location, and

• to expand these single location based processes for use on sections of the road 

network.

The  remaining  functional  requirements  involving  interactive  program  input  and 

administrative tasks related to generated data had to be developed for the upgrade, but 

did not require any significant redesign.

3.4.3  Determining the Spatial Location of a Given Linear Reference

The  initial  phase  of  the  design  was  concerned  with  identifying  the  specific  road 

centreline segment in the sc_roads table in which a given linear reference occurs.

In order  to describe a unique location on the road network,  a linear reference must 

contain, at a minimum, the identity of the road and a measurement along the road from 

some point of reference, usually the starting point of the road. This measurement is 

known  as  ‘chainage’  or  ‘through  distance’.  Where  the  form  of  the  road  is  more 

complex, a carriageway code is also necessary to describe a unique location.

The attribute values in the sc_roads table therefore provide the key to the identification 

of the required segment, as follows:

• The identity of the road is contained in the STREET attribute.

• The carriageway code is contained in the CARRWAY attribute.

• The chainage at the start of the segment is contained in REFOFFSET.

• The chainage at the end of the segment is equal to the start chainage plus the 

driven length of the segment (REFOFFSET + REFLEN).

In  combination,  these  attribute  values  provide  the identity  of  the specific  centreline 

segment within which the given linear reference occurs.
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Once the required segment  has been identified,  the  next  step in the design strategy 

involves  identifying  the  ‘link’  in  the  segment  object  within  which  the  chainage 

component of the given linear reference occurs. A link is the straight section of the 

vector object between two adjacent nodes (see Chapter 2 for a description of MapInfo 

vector structures).

The methodology involves traversing the segment object programmatically, one link at 

a time from its starting point. Since the chainage at the segment start point is known, an 

accumulating  chainage  can  be  calculated  by  converting  the  length  of  each  link  to 

chainage using the SCALEFACTOR attribute (see Chapter 2 for a description of the 

disparity between driven length and object length). When the accumulating chainage 

value exceeds the given chainage, the given chainage occurs somewhere in the current 

link. The given chainage therefore occurs in the segment at a distance along the link 

equal to the difference between the given chainage and the accumulated chainage at the 

start of the current link. This value is the remaining chainage. 

The location of the given linear reference can be represented by a circular vector object 

centred  at  the  start  node  of  the  current  link,  with  a  radius  equal  to  the  remaining 

chainage. The given linear reference will occur at the intersection point between the 

circular object and the segment object. 

The intersection point is then be used to create a spatial point object to represent the 

location of a linear reference.

One significant issue complicates the design strategy described above. As described in 

Chapter 2, chainage increases in the direction in which roads are gazetted. However, 

some  carriageway  types,  and  hence  the  vector  objects  representing  them,  have  a 

direction that is opposite to, or against road gazettal direction. In these cases, vector 

object nodes increase in number against gazettal. Therefore, to traverse these segment 

objects in the direction of gazettal requires commencing at the last node, and addressing 

the nodes in descending order towards node number one. Object  direction and node 

numbering were therefore important considerations in the development process.
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3.4.4  Determining the Linear Reference of a Given Spatial Location

In Centreline Tools, a given spatial location is represented by a point object. However, 

the point object may or may not be coincident with a road centreline segment, making 

identification of the required segment problematic. 

The design solution used to identify the segment object proximal to the given point was 

retained from the existing version.  An expanding circular  area object,  centred at the 

spatial coordinates of the given point object was utilised. As the area object expands, it 

will  intersect  with  a  road  segment  object,  if  the  given point  at  its  centre  is  in  the 

proximity of the road network.

Once the required segment object has been identified, the location in the segment that is 

closest  to  the  given  point  must  be  found.  At  this  stage  the  design  strategy  for  the 

upgrade diverged significantly from the original version. The new design involves the 

construction of two circular geometric objects of equal radii, centred at the intersection 

points of the expanding area object and the centreline segment object. A line object is 

then created between the intersection points of the two circular objects. This line must 

intersect the segment object. 

It then remains to sequentially traverse the segment object links to identify the link that 

is intersected by the constructed line object. Once this link is identified a new node can 

be placed in the segment object at the intersection point.  The length of the segment 

object  up  to  the  new  node  is  then  measured  and  converted  to  chainage  using  the 

SCALEFACTOR correction value.

The centreline segment attribute values of road identifier (STREET) and carriageway 

type  (CARRWAY) and then  combined  with  the  calculated  chainage  to  provide  the 

linear reference at the given point.

A point object can then be created with the coordinates of the new node to represent the 

precise spatial location of the determined linear reference.
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As  in  the  previous  section,  segment  object  direction  in  relation  to  road  gazettal 

direction,  and  consequential  sequencing  of  nodes  significantly  complicated  the 

development of this design concept.

3.4.5  Constructing Road Sections

The design strategies described above are suitable for translating between individual 

spatial locations and linear references. However, the specifications of Centreline Tools 

require the implementation of true dynamic segmentation. This involves creating spatial 

objects to represent sections of road as well as single locations.

Constructing  road  sections  commences  with  the  identification  of  all  the  centreline 

segment  objects  that  occur  between  the  defined  linear  extents  of  the  section.  The 

required segments can be identified by the attribute values contained in the  sc_roads 

table, as in the previous section.

To support the construction of spatial objects representing sections of road, the concept 

of a ‘portion’ was introduced. For the purposes of this project, a portion is defined as 

that part of an individual centreline segment object that occurs within a defined road 

section. A portion may therefore consist of an entire segment object, or the remains of 

one truncated at the chainage defining the start and or end of the road section.

The  design  strategies  used  to  construct  portion  objects  based  on  linear  references 

representing the extents of a road section are similar to those described previously and 

involve the programmatic traversal of segment objects.

An object  representing  a  road  section  is  constructed  by  combining  all  the  segment 

object portions that occur between the start and end of the defined section.
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3.5  System Development

The system development phase of the Centreline Tools upgrade project is presented in 

detail in Chapter 4, and describes the coding methods used to implement the design 

strategies introduced in the previous section.

3.6  System Implementation

3.6.1  Installation

In the implementation phase of the project,  a completed development version of the 

Centreline Tools upgrade was distributed for installation and operational testing. The 

program executable file CT_Main.MBX was attached to an e-mail,  which contained 

release notes and installation instructions.

Installation  involved  adding  a  new  item  for  the  Centreline  Tools  upgrade  to  the 

MainRoads  MapInfo  Menu  using  the  Menu  Customisation  Dialog.  This  dialog  is 

accessed  from  the  MainRoads  menu  as  shown  in  Figure  3.3.  The  name  of  the 

application, the directory path to the executable file and help string to appear in the 

MapInfo Status Bar were entered into the customisation dialog. The entry for Centreline 

Tools in the customisation dialog is shown in Figure 3.4. This procedure was necessary 

for the initial release only.
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Figure 3.3 – Main Roads MapInfo Menu

The installation process is completed by placing the executable file CT_Main.MBX in 

the network directory reserved for SAS utilities. This operation had to be repeated for 

each subsequent release.

The new release of Centreline Tools could then be launched by a single mouse click 

from the  MainRoads  Menu.  Figure  3.5 shows how Centreline  Tools  appears  in  the 

MainRoads Menu, ready for selection.
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Figure 3.4 – Main Roads Menu Customisation Dialog

Figure 3.5 – Menu Selection of Centreline Tools
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3.6.2  Training

Because  the  Centreline  Tools  upgrade  was  necessarily  very similar  in  function and 

operation to the old version, very little training was required.

However,  some changes  in  the  operation  and behaviour  of  the  upgrade  did require 

explanation. Users were made aware of these changes in release notes that were sent 

with the executable .mbx file, initially to the test group, and finally to the regional GIS 

coordinators when the production release was distributed.

Additional  information  sessions  are  proposed  in  the  future.  A  new  version  of  the 

Centreline Tools user guide is also proposed.

3.7  System Maintenance

As well as testing during the development phase of the project, individuals within the 

department were specifically requested to test development versions of the Centreline 

Tools upgrade in an operational environment in regional offices.

The test group was contacted regularly to assess progress, provide support and gather 

feedback on the operation and reliability of the development versions of the upgrade. 

Feedback was evaluated and subsequently incorporated into the development phase of 

the project.

This process resulted in the identification and correction of several programming errors 

and modifications to the requirements of the utility.
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CHAPTER 4

SYSTEM DEVELOPMENT

4.1  Introduction

In  the  system  development  phase  of  the  project,  several  identifiable  although  not 

necessarily discrete activities were undertaken. These activities consisted of:

• assessing the source code of the existing version to identify elements suitable 

for reuse in the upgraded version,

• writing new MapBasic functions and sub-procedures to implement the design 

concepts introduced in Chapter 3, and

• combining  the  new  material  with  modified  existing  code  to  produce  an 

upgraded version of Centreline Tools.

In  reality,  these  activities  merged  into  one  process.  The  development  phase  of  the 

Centreline Tools upgrade project is presented in the following sections.

4.2  Program Structure

4.2.1 Overview

Centreline Tools is a structured collection of sub-procedures and functions written in 

the MapBasic language, which are loosely grouped into modules on the basis of the 

operation they perform. The source code modules are ‘Included’ into the main module, 

which is compiled directly to an executable file called CT_Main.MBX. All the modules 
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used are specific to Centreline Tools, with the exception of two that contain library files 

used to support other SAS utilities.

Figure 4.1 is an extract from the module CT_Main.MB and shows all of the program 

modules used in the Centreline Tools upgrade.

'-------------------------------------------------------------------------------
' Modules used in the Centreline Tools utility.
' See utility definition file for definitions and declarations.
'-------------------------------------------------------------------------------
INCLUDE "MapBasic.def"                  '- standard MapBasic definitions
INCLUDE "Icons.def"                     '- standard MapBasic definitions
INCLUDE "Menu.def"                      '- standard MapBasic definitions
INCLUDE "CT_Def.DEF"                    '- centreline utility definition file
INCLUDE "..\..\_Common\Lib_ini.MB"      '- SAS ini procedure library
INCLUDE "..\..\_Common\Lib_funct2.MB"   '- SAS procedure library
INCLUDE "CT_CoordsToRef.MB"             '- translates input points to chainages
INCLUDE "CT_Debug.MB"                   '- utility debugging routines
INCLUDE "CT_Dialogs.MB"                 '- dialogs for table/process selection
INCLUDE "CT_DynSeg.MB"                  '- manages dynamic segmentation
INCLUDE "CT_FindNodes.MB"               '- node finding and adding procedures
INCLUDE "CT_RefToCoords.MB"             '- translates input chainages to points
INCLUDE "CT_SectionByCoords.MB"         '- extracts a section by coordinates
INCLUDE "CT_SectionByRefs.MB"           '- extracts a section by linear references
INCLUDE "CT_Select.MB"                  '- contains queries from sc_roads
'-------------------------------------------------------------------------------

Figure 4.1 – Code Modules Used in Centreline Tools

4.2.2  The Definition File

A new  program structure  was  introduced  for  the  Centreline  Tools  upgrade.  In  the 

existing program, procedures were generally declared in the module in which they were 

coded. This arrangement contributed to difficulties in following the program’s logic and 

caused potential compilation problems because of the order in which procedures were 

declared,  and  modules  included  in  the  main  module.  In  addition,  the  MapBasic 

definition files MapBasic.def, Icons.def and Menu.def were included in each module.

In  the  upgrade,  all  procedures  were  declared  in  the  program  definition  file, 

CT_Def.DEF  with  the  global  variable  declarations  and  constant  definitions.  This 

strategy  centralised  information  for  easier  reference  during  development  and 

maintenance.  It  also  avoided  the  refer-before-declare  issues  caused  by  procedure 

declarations  in  individual  modules.  As  the  modules  relate  only  to  this  utility,  a 

requirement for each module to compile independently was considered unnecessary.
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New program constants were introduced for version identifier, release date, and road 

centreline table name. The use of constant values simplifies maintenance since a change 

to any of these values requires one change only in the definition file.

The complete Centreline Tools definition file, CT_Def.DEF is included in Appendix B.

4.2.3  The Main Module

When  Centreline  Tools  is  launched,  program  execution  commences  with  the  sub-

procedure called Main.

Calls to sub-procedures ReadInitSetup and WriteLogEntry are used in the majority of 

SAS utilities,  and were included in the Centreline Tools upgrade. They respectively 

read  MainRoads  Menu  System  directories  from  an  initialisation  file  into  global 

variables for reference purposes, and write an entry to an activity log file.

Because Centreline Tools is dependent on a specific road centreline table, the function 

OpenClTab(),  renamed and slightly modified from the existing version,  was used to 

verify that the table  sc_roads is open, or request it to be opened if it is not. The sub-

procedure DisplayClTab displays sc_roads in a new MapInfo map window, if one is not 

open.

The most significant task to be performed by the Main sub-procedure was to construct 

the Centreline Tools Toolbar, from which all utility operations are launched or selected. 

MapBasic  statements  Create  ButtonPad,  ToolButton  and  PushButton  were  used  to 

construct the toolbar.

Structure charts for procedures developed for the Centreline Tools upgrade, including 

the Main sub-procedure, are included in Appendix C.
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4.3  Selecting and Filtering Road Centreline Segments

4.3.1  Selecting Segments for a Linear Reference

As  described  in  Chapter  3,  identifying  specific  road  centreline  segment  objects 

contained in the  sc_roads table was fundamental  to performing spatial  to linear and 

linear to spatial translations.

Road centreline segments were selected using ‘Select’ statements, which are essentially 

a  MapBasic implementation of SQL queries.  Select  statements  produce a  temporary 

MapInfo table containing the records that match the expression in the ‘Where’ clause of 

the statement.  Where possible,  select  statements  on  sc_roads were grouped into the 

module CT_Select.MB.

The function FindReferenceSegments() was developed to  select the road segments in 

which a single specified linear reference occurs. That is, segments with the specified 

road identifier, and having a start chainage less than or equal to the specified chainage, 

and an end chainage greater than or equal to the specified chainage. The use of a greater 

than operator (>) could not be used here because end segments (ie segments with no 

adjoining segments) would not be selected.  The following extract  from the function 

FindReferenceSegments() shows the MapBasic select statement:

Select * From CT_SC_ROADS
Where STREET = sRoadId AND
      CARRWAY = sCarriageway AND
      REFOFFSET <= fChainage AND
      REFOFFSET + REFLEN >= fChainage
Into tblReferenceSegs Noselect
Order By CARRWAY, REFOFFSET

This statement creates the temporary MapInfo table tblReferenceSegs which contains all 

the road segment records in which the chainage value in the variable fChainage occurs, 

including segments for multiple carriageways, if they exist.

Variations on the value of the carriageway code variable sCarriageway in the function 

enabled the selection of segments for various combinations of carriageway types.
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Selected segments were ordered by carriageway type (CARRWAY) and segment start 

chainage (REFOFFSET) to facilitate processing elsewhere in the program.

The function then assigns the selected segments to a SegmentType array variable (see 

below). Unwanted segments are filtered out during this process. Segment filtering is 

discussed in Section 4.3.3.

The data type ‘SegmentType’ was introduced in the upgrade to contain a road centreline 

segment object and the set of attributes used in format translations. The use of a defined 

date  type  had  several  benefits.  Firstly,  it  made  procedures  involving  road  segment 

manipulations more independent. Selected segments can be stored and passed between 

procedures  as  array  variables  of  type  SegmentType.  This  method  avoids  continual 

reference to selections made in other procedures, which was the method employed in 

the existing version. Continual reference to selection tables disrupts program continuity 

and is similar to the overuse of global variables. Neither strategy was favoured in the 

development of the upgrade.

Secondly, the defined data type can potentially be used for segment selections from any 

road centreline table containing Road Reference System based attributes. In the event of 

the introduction of  another  road centreline product,  only the select  statement  would 

need to be modified, significantly reducing future maintenance requirements. Figure 4.2 

shows the type definition statement used for the SegmentType data type.

TYPE SegmentType
   SegObj      As Object          '- segment object
   SegRoad     As String          '- segment road identifier
   SegCway     As String          '- segment carriageway code
   SegStart    As Float           '- segment start chainage (in m)
   SegLength   As Float           '- segment driven length (in m)
   SegScale    As Float           '- segment scalefactor
END TYPE

Figure 4.2 – Definition Statement for the SegmentType Data Type

Appendix D contains the entire function FindReferenceSegments()  and illustrates the 

use of select statements. The function also demonstrates the use of a variable to control 

the selection of segments representing various combinations of carriageway types.
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4.3.2  Selecting Segments for a Spatial Location

The function FindPointSegments()  was  developed  to select  road  segment  objects  in 

proximity to a specified spatial location. An expanding circular area object, centred at 

the coordinates of the specified location, was used to locate proximal segment objects. 

The area object is expanded in preset increments until it intersects a segment object, or a 

maximum search radius value represented by a system constant is reached. A select 

statement with a spatial condition in the Where clause was used as the following extract 

from the function FindPointSegments() shows:

Select * From CT_SC_ROADS
Where oSearchArea Contains Part Obj
Into tblPointSegs Noselect
Order By STREET, CARRWAY, REFOFFSET

The select statement was placed in a loop based on the incrementing value of the search 

area radius. If a segment is selected, the loop is terminated. After segments are selected, 

the  search  area  is  expanded  by  one  additional  increment  value  to  ensure  that  the 

intersection  is  not  a  tangential  (single  point)  intersection.  Examples  of  search  area 

intersections with road segments are illustrated in Figure 4.3.

Figure 4.3 – Search Area Intersections with Road Segments

In this selection process, the road identifier is not known as it is in the selection for a 

linear reference, so the result table tblPointSegs might contain segments from multiple 

roads.  The  segments  selected  are  therefore  ordered  by  road  identifier  (STREET), 

carriageway type (CARRWAY), and segment start  chainage (REFOFFSET) to assist 

filtering and processing for multiple roads if necessary.
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The selected segments are then filtered and assigned to a SegmentType array variable as 

in the previous section.

4.3.3  Filtering Selected Segments

A linear reference consisting of a road identifier, carriageway code and chainage value 

represents a unique location on the road network (excluding lane structures). However, 

in some circumstances, more that one road segment satisfies the condition clauses used 

in the statements described in pervious sections. It was therefore necessary to filter out 

(remove) redundant segments prior to processing.

This problem arises when a specified chainage occurs at a Reference Point (RP). When 

an RP occurs on a given carriageway, the end point of one segment, and at the start 

point of the adjoining segment are coincidental with the RP, and consequently have the 

same chainage value. The statement therefore selects the segment with a start chainage 

(REFOFFSET)  equal  to  the  specified  chainage as  well  as  the segment  with an  end 

chainage (REFOFFSET + REFLEN) equal to the specified chainage. A RP on a single 

carriageway road is shown in Figure 4.4. In these cases the select statement will select 

the segment on each side of the RP.

Figure 4.4 – Reference Point on a Single Carriageway

Redundant segments are not selected at every RP. Figures 4.5 and 4.6 demonstrate how 

RPs can occur in different circumstances in relation to the road network. In Figure 4.5, 

filtering is required for Road 426. In Figure 4.6 however, no filtering would be required.
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Figure 4.5 – Reference Point at an Intersection

Figure 4.6 – Reference Point on Multiple Roads

The use of a less than operator (<) in selections may have avoided the need for filtering. 

However, the less than or equal to operator (<=) was necessary to ensure that objects 

representing the end segments of roads were included in the selection (ie in situations 

where there is no contiguous segment, as shown in Figure 4.7).

Segment filtering was implemented by assigning the first segment record in the result 

table to the SegmentType array variable, then testing each subsequent record against the 

last  for  road/carriageway  equality,  prior  to  assignment.  Duplicates  are  ignored. 

Appendix  D  illustrates  how  segment  filtering  is  implemented  in  the  function 

FindReferenceSegments().

Applying this filtering strategy ensures that the SegmentType array variable only ever 

contains segments with unique road and carriageway combinations.
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Figure 4.7 – End of Road Segment

4.3.4  Selecting Segments for Road Sections

Selections for road sections are more complex because sections may comprise multiple 

road segments. The selection of road segment objects that make up a specified section 

of road was coded into the function FindSectionSegments(), as shown in the following 

extract:

Select * From CT_SC_ROADS
Where STREET = sRoadId AND
      CARRWAY = sCarriageway AND
      REFOFFSET + REFLEN > fSectionStart AND
      REFOFFSET < fSectionEnd   '- <= includes the next segment
Into tblSectionSegs Noselect
Order By CARRWAY, REFOFFSET

In this statement, the less than or equal to operator (<=) is not used because it includes 

the next contiguous segment in the result table.  The next contiguous segment is not 

wanted in this case.

This  statement  is  similar  to  the  selection  for  a  single  linear  reference.  However,  it 

contains two chainage variables, fSectionStart representing the beginning of the section, 

and  fSectionEnd  representing  the  end  of  the  section.  All  the  segments  occurring 

between the linear references defining the section are therefore selected.

The selected segments are ordered by carriageway (CARRWAY) and increasing start 

chainage (REFOFFSET).
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Segments  representing  various  combinations  of  carriageway types  were  selected  by 

varying the value of the carriageway code variable sCarriageway in the function.

The selected segments are assigned to a SegmentType array variable but filtering was 

not necessary because adjacent segments may be required to construct a road section.

4.3.5  Other Selections

Select  statements  were  also  used  to  validate  input  data  and  extract  additional 

information from the road centreline table sc_roads.

The function RoadExists() was used to verify that  a named road identifier is valid, as 

the following extract shows:

Select STREET From CT_SC_ROADS
Where STREET = sRoadId
Into tblRoadExists Noselect

If the result table tblRoadExists is empty following the selection, the road represented 

by the String variable sRoadId is not valid.

A selection statement was used in the function RoadExtents() to acquire the minimum 

and maximum chainages of a named road identifier, as shown in the following extract:

Select Min(REFOFFSET)          "RoadStart",
       Max(REFOFFSET + REFLEN) "RoadEnd"
From CT_SC_ROADS
Where STREET = sRoadId
Into tblRoadExtents Noselect

The  aggregate  functions  Min()  and  Max()  were  used  to  find  the  minimum  and 

maximum start  and end chainages respectively of the entire road represented by the 

String  variable  sRoadId.  The  aggregate  function  return  values  are  placed  into  the 

columns RoadStart and RoadEnd of the result table tblRoadExtents.
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4.4  Processing Segment Objects

4.4.1  Segment Direction

The direction of road segment objects was a critical consideration in the development of 

the Centreline Tools upgrade. Segment direction is a function of gazettal direction and 

carriageway  code.  To  facilitate  the  use  of  object  direction  in  the  code,  program 

constants representing the direction of specific carriageway types, and the direction of 

segment objects in relation to gazettal direction, were retained from the existing version. 

Figure  4.8 is  an extract  from the  definition  file  CT_Def.DEF showing the  constant 

definitions for carriageway types and relevant object direction.

DEFINE CT_CWAY_BOTH         "1"            '- cway code in both directions
DEFINE CT_CWAY_WITH_GAZ     "24ABCDEKLMXZ" '- cway codes in gazettal direction
DEFINE CT_CWAY_AGAINST_GAZ  "35NOPQRSTUY"  '- cway codes against gazettal
DEFINE CT_DIR_WITH_GAZ       1             '- line direction with gazettal
DEFINE CT_DIR_AGAINST_GAZ    2             '- line direction against gazettal
DEFINE CT_DIR_UNKNOWN        3             '- line direction unspecified

Figure 4.8 – Constant Definitions Representing Direction

The function SegmentDirection() was retained from the existing version. This function, 

compares a given carriageway code with the String constants shown above, and returns 

a  small  integer  value  representing  the  direction  of  the  segment  object  based  on  its 

carriageway type.

4.4.2  Finding the Spatial Location of a Chainage

The function FindNodeAtChainage() finds the number of the node in a selected segment 

object at which a given chainage occurs. The required node may be a new node created 

by the function, or an existing node if one occurs at the chainage.

The given chainage can occur at the start point or end point of the segment, or some 

point in between.  If the given chainage is equal to the attribute value representing the 

chainage at the start of the segment (REFOFFSET), the chainage occurs at the first node 

of the object (node number one), if the object direction is with gazettal. If the direction 

of the object is against gazettal, the chainage occurs at the last node (maximum node 
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number)  of  the  object.  The  number  of  nodes  in  the  object  is  retrieved  using  the 

MapBasic  function  ObjectInfo(SegmentObject,  OBJ_INFO_NPNTS),  where 

SegmentObject represents the segment object and OBJ_INFO_NPNTS is a MapBasic 

constant.

Similarly, if the given chainage is equal to the chainage value at the end of the segment 

(REFOFFSET  +  REFLEN),  the  chainage  occurs  at  the  last  or  first  object  node 

depending on object direction.

If  the  given  chainage  occurs  elsewhere  within  the  segment,  the  function  loops 

sequentially through the segment object link by link (node-node; node-node), searching 

for  the  link  in  which  the  chainage  occurs.  If  the  segment  object  direction  is  with 

gazettal, the loop begins at node number one and progresses in ascending node order. 

Otherwise it begins at the maximum node and descends towards node number one. The 

MapBasic  function  ExtractNodes()  was  used  in  the  function  to  create  an  object  to 

represent a link from two adjacent node numbers. Node number pairs are incremented 

or decremented in the loop to produce a sequential series of link objects.

At  the  beginning  of  each  loop,  the  length  of  the  current  link  is  extracted  by  the 

MapBasic function ObjectLen(), and subtotalled to represent the length of the segment 

object traversed up to the current iteration of the loop. The object length traversed is 

converted  to  chainage  traversed,  by  dividing  the  subtotal  by  the  SCALEFACTOR 

attribute  value.  When the  chainage traversed exceeds  the  given chainage,  the  given 

chainage must occur at some point within the current link of the segment object. This 

point occurs beyond the start of the current link, at a chainage equal to the difference 

between the chainage at the start of the link, and the given chainage.

To determine this point in the link object, the chainage excess beyond the segment start 

point is converted back to distance, this time by multiplying the excess chainage by the 

SCALEFACTOR attribute value. The MapBasic function CreateCircle()  was used to 

create a circular object, centred at the first node of the current link object, with a radius 

equal  to  the  excess  distance.  This  circle  object  must  intersect  with  the  link  object 

because the given chainage falls within the link. An example circle/link intersection is 

demonstrated in Figure 4.9. 
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Figure 4.9 – Circle Intersection with a Link Object

The MapBasic function OverlayNodes() was then used to create another object similar 

to  the link object,  but  with an additional  node at  the intersect  point  with the circle 

object.  A  new  node  is  then  be  added  to  the  segment  object  variable  using  the 

coordinates of the node at  the intersect  point.  This new node in the segment  object 

variable is the point at which the given chainage occurs. The number of the new node is 

the one after, or the one before the segment node used for the start of the current link 

object, depending on the direction of the segment object.

The  loop  is  terminated  when  the  required  link  is  found  and  the  function 

FindNodeAtChainage() returns the number of the new node. The spatial coordinates at 

the specified linear reference are therefore those of the new node in the segment.

4.4.3  Finding the Chainage at a Spatial Location

The  function  FindNodeAtPoint()  returns  the  node  number  of  the  node  within  the 

selected segment object that is as close as possible to the spatial location represented by 

a given point object.

The segment object  closest  to  the point  object  is  selected using the  expanding area 

spatial  selection  process  described  in  Section  4.3.2.  Following  the  selection  of  an 

intersecting segment, the circular object known to intersect the segment is used to locate 

the spatial location in the segment closest to the given point object.
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The  algorithm  used  to  implement  this  process  was  based  on  simple  geometric 

construction, as would be done manually using intersecting arcs to bisect a line, and is 

described in the following five steps.

Step 1.

The location of the search area is tested in relation to the segment object. Point objects 

are created at the coordinates of the start and end nodes of the segment object. A spatial 

select statement determines if one of these points falls within the search area. If so, the 

number of the node concerned is assigned to the function for return. In this way the 

given point object is effectively ‘snapped’ to an end point of the segment, as shown in 

Figure 4.10. Segment object direction is not a concern for this step.

Figure 4.10 – Segment Object End Node Assignment

Step 2.

If neither end of the segment object falls within the search area, an object representing 

the portion of the segment object  that  is  intersected,  is  created using the MapBasic 

function Overlap(). The area/segment object intersection and resulting ‘overlap’ object 

are illustrated in Figures 4.11 and 4.12.

Step 3.

Two circular objects, centred at the coordinates of the end points of the ‘overlap’ object, 

and with radii equal to its length, are created. These circular objects, shown in Figure 

4.13, must intersect because their radii are equal.
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Figure 4.11 – Search Area Intersection with a Segment Object

Figure 4.12 – Overlap Object from Intersection

Figure 4.13 – Intersecting Circle Objects

Step 4.

The MapBasic function IntersectNodes() was used to create a polyline object joining the 

intersection points of the two circles created in the previous step. This polyline object, 

shown in Figure 4.14, must intersect the segment object, and does so at the point on the 
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segment that is closest to the centre of the search area, which in turn represents the 

given spatial location.

Figure 4.14 – Polyline Joining Circle Intersect Points

Step 5.

The intersection point between the polyline object and the segment object is located by 

looping sequentially through the links of the segment object, starting at node number 

one,  searching for the link object  that is intersected by the polyline object (segment 

direction is not relevant here). The intersection point in the segment object is shown in 

Figure 4.15. The method used to loop through segment link objects was described in the 

previous section.

Figure 4.15 – Intersect Point in the Segment Object

The MapBasic function OverlayNodes()  was then used to construct another polyline 

object with a node at the intersection point between the original polyline object and the 

link object. The spatial coordinates of this new node are stored and compared with that 

of each end of the link object. If a match occurs, the node number of the segment object 
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node providing the link is assigned to the function. Otherwise, the intersection point 

occurs elsewhere in the link and a new node is added to the segment object using the 

stored coordinates, and the new node number is assigned to the function.

The  node  number  returned  by  FindNodeAtPoint()  therefore  represents  the  location 

within  the  segment  object  that  is  as  close  as  possible  to  the  actual  location  of  the 

original point object.

The Function ChainageAtNode() determines the chainage at a given node number in a 

segment object. The given node can be the first node of the segment object, the last 

node,  or  any node in between.  If  the given node is  node number one,  the required 

chainage will be the start chainage of the segment (REFOFFSET), provided the segment 

object direction is with gazettal.  If the direction of the object is against gazettal, the 

chainage  at  node  number  one  will  be  the  chainage  at  the  end  of  the  segment 

(REFOFFSET + REFLEN). This scenario is reversed if the given node is the last node 

of the segment.

Where  the  given  node  occurs  elsewhere  in  the  segment,  the  MapBasic  function 

ExtractNodes() was used to extract the portion of the segment for which the chainage 

calculation  is  relevant.  If  the  segment  object  is  in  gazettal  direction,  the  portion 

extracted is between node number one and the given node. Otherwise, the portion is 

between the given node and the last node.

The length of  the  object  extracted  from the  segment  is  measured by the MapBasic 

function  ObjectLen(),  and  then  converted  to  chainage  using  the  SCALEFACTOR 

attribute, as described previously.

The chainage value at the given node is then assigned to the function and returned to the 

calling procedure.
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4.4.4  Constructing Sections

Dynamic segmentation involves the construction of spatial vector objects representing 

defined sections of a road.

An individual road segment object can relate to a defined section of road in a number of 

ways. That is, a segment object can:

• begin before the start of the section and finish after the end of the section.

• begin before the start  of  the section and finish at  or  before the end of  the 

section.

• begin at or after the start of the section and finish after the end of the section.

• begin at or after the start of the section and finish at or before the end of the 

section.

The construction of a defined road section therefore involves identifying the  part  of 

each individual road segment object that occurs within the confines of the section. For 

the  purposes  of  this  project,  this  part  of  a  segment  object  is  called  a  ‘portion’,  as 

discussed  in  Chapter  3.  The  function  ConstructPortion()  was  written  to  construct  a 

portion vector object from a given segment object.

The function ConstructPortion() tests for each possibility of the location of the segment 

in relation to the section. It determines the node numbers at the chainages defining the 

road section using the function FindNodeAtChainage(), described in Section 4.4.2, and 

the  SegmentDirection()  function,  also  described  previously.  Adding  nodes  in  this 

function is more complicated than previously described. If a segment object is cut at 

both ends, a second node must be added to the segment object, necessitating a double 

shift  in  node  numbers.  Node  numbering  is  further  complicated  by  segment  object 

direction.

The portion object is created using the MapBasic function ExtractNodes() with the node 

numbers representing the section start and end points. The constructed portion is then 

assigned to the function ConstructPortion().

A road section is constructed by applying the function ConstructPortion() to each of the 

segment  objects  selected  for  the  defined  road  section,  and  combining  the  resulting 
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portions into a single object. Segment object selections for road sections were discussed 

in Section 4.3.4.

The function ConstructPortion()  is used by the dynamic  segmentation sub-procedure 

ProcessReferenceTable  and  by  the  sub-procedure  ExtractSection  which  constructs 

defined sections.

4.5  Processing Tables

4.5.1  Introduction

The system requirements  of the Centreline Tools upgrade included the capability  to 

perform segmentation operations on entire MapInfo tables. Two types of tables were 

involved.

1  Tables containing linear references

Tables of this type normally contain road asset data extracted from ARMIS, or data 

collected along the road corridor using a vehicle speedometer to obtain chainage 

values.  Processing  these tables  involves  creating vector  objects  to  represent  the 

linear references.

2  Tables containing point objects

Such tables usually contain data collected along the road using a GPS device. In 

these tables, the linear references representing the coordinate-based locations are 

determined.

The following sections describe the development of table processing in the Centreline 

Tools upgrade.

4.5.2  Tables Containing Linear References

The sub-procedure ProcessReferenceTable was developed to manage the processing of 

tables containing linear references.
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Dialogs were used as the means to select an input table and specify a name and path for 

the processed output table. A MapBasic ‘SaveAs’ dialog was used to copy the input 

table to a named output table. The copied table is then processed leaving the original 

input table unmodified.

The table to be processed must be mappable in order to store the objects created. The 

following  MapBasic  statement  extracted  from the  ProcessReferenceTable  procedure 

was used to make the table mappable and sets the table projection to longitude/latitude, 

GDA94:

Create Map For sOutputTable CoordSys Earth Projection 1, 116

If the table is already mappable, this statement destroys any objects it contains.

An additional column is added to the table for a processing status report. The following 

MapBasic statement was used to add a character field of 50 characters to the table:

Alter Table sOutputTable (Add Status Char(50))

Once the output table has been prepared, information about the table must be gathered 

for processing. Firstly, the format of the linear reference in the table must be specified. 

Three linear reference formats were defined as:

• a specific location defined by a road identifier and a single chainage value,

• a  section  of  road  defined  by  a  road  identifier,  and  section  start  and  end 

chainages, and

• a section of road defined by a road identifier, a section start chainage and the 

length of the section.

Secondly, the column of the table containing each of these linear reference elements 

must be identified.

A dialog was designed for the interactive entry of the relevant table information.  A 

mutually  exclusive  RadioGroup  Control  was  used  for  the  selection  of  the  linear 

reference format. 
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A separate section of the dialog was set aside for each linear reference format, to be 

activated when the format is selected. Each section of the dialog has ListBox Controls 

for the table columns containing the values needed for the specific format. The ListBox 

Controls  are  populated  with  the  names  of  the  table  columns  for  selection.  Column 

names are filtered so that only columns containing the required data type are displayed.

RadioGroup Controls were included for the specification of units of measurement for 

distance values.

The Do While NOT EOT() construct was used to loop through the records in the table. 

The  function  EOT()  (End  of  Table)  returns  TRUE  when  the  end  of  the  table  is 

encountered and the loop terminates.

The table is processed on the basis of the linear reference format and measurement units 

specified in the entry dialog. The road identifier and chainage values are assigned to 

local  variables  from  the  specified  columns.  Chainage  values  are  converted  from 

kilometres to metres if necessary.

The road identifier and chainages are tested for validity. A brief message describing any 

anomalies is assigned to the String variable sReport.

If a chainage is beyond the extent of a road, the value is reset to the maximum chainage 

of the road and a report is assigned to the sReport variable.

Likewise, section start and end chainages are tested to verify that they are in gazettal 

direction for processing. The values are swapped if necessary, and a message assigned 

to the sReport variable.

The  procedure  also  tests  for  the  selection  of  a  carriageway  code  column.  If  no 

carriageway column is specified, segmentation is performed on through carriageways 

only  (ie  carriageways  1,  2  and 3).  If  a  carriageway column is  specified,  the  value 

contained in the selected column is used.

Irrespective of the data format selected,  the program algorithm uses a start  and end 

value in each case to construct a section object. If the data format is a single chainage, 
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the  section  has  a  length  of  zero.  Similarly,  a  section  with  the  same  start  and  end 

chainages also has a length of zero.

If the section has a length of zero, a point object is created. Otherwise, a section is 

created using the ConstructPortion() function described previously.  In either case the 

object created is assigned to the object variable oSectionObj.

If no anomalies are encountered during processing, the message ‘OK’ is assigned to the 

sReport variable.

The following MapBasic statements, extracted from ProcessReferenceTable, were used 

to update the row of the table currently being processed with the content of the variables 

oSectionObj and sReport:

Update tblReferences Set Obj = oSectionObj
Where RowID = tblReferences.RowID

Update tblReferences Set Status = sReport
Where RowID = tblReferences.RowID

The procedure then commits the table and continues the loop until the entire table is 

processed.

4.5.3  Tables Containing Point Objects

The sub-procedure ProcessPointTable was developed to manage the processing of tables 

containing point objects.

The dialog described in the previous section was for selecting an input table of point 

objects. A variable in the calling procedure identifies which process has been requested 

and titles the dialog accordingly.

The MapBasic SaveAs dialog was also used to copy the input table to a named output 

table as before, to protect the input table.
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Prior to processing, columns for the attributes road identifier, carriageway, chainage and 

status report are added to the output table. The following MapBasic Statement, extracted 

from ProcessPointTable, was used to add the additional columns to the table:

Alter Table sOutputTable (Add RoadID    Char(6),
                              Cway      Char(1),
                              Chainage  Float,
                              Status    Char(50))

The procedure ProcessPointTable first verifies that the table contains mappable objects. 

If not, the process is terminated.

The Do While NOT EOT() construct  described in the previous section was used to 

process the output able.

The method used to derive the linear referenced location of a point object in a table is 

similar to the interactive process described previously. However, since there is only one 

point object per record in a table, only one linear reference can be assigned. Therefore 

the procedure uses the segment object and hence carriageway type, closest to the point 

object. 

If a point object is not within a tolerated distance of a road segment, a linear reference is 

not produced and an error message is assigned to the String variable sReport. Otherwise 

an ‘OK’ message is assigned.

After a record is processed, the linear reference elements and report string are added to 

the  table.  The  following  MapBasic  statement  was  used  to  update  the  table  for  the 

current record:

Update tblPoints Set RoadId   = sRoadOut,
                     Cway     = sCwayOut,
                     Chainage = Format$(fChainage/1000, "0.###"),
                     Status   = sReport
Where RowID = tblPoints.RowID

The table is then committed and the procedure continues the loop until the entire table is 

processed.
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4.6  Program Input

4.6.1  Introduction

It was necessary for the Centreline Tools upgrade to accept interactive input in both 

textual and spatial formats to satisfy translation requirements.

Data such as road identifiers, chainages and MapInfo table names are presented to 

Centreline Tools in textual format, while spatial coordinates identify locations to be 

translated to linear references.

The following sections discuss the implementation of interactive data input into the 

Centreline Tools program.

4.6.2  Textual Input

Textual input in the Centreline Tools upgrade was enabled through the use of dialog 

boxes.

In general terms, code used in dialog boxes in the existing version was suitable for reuse 

in the upgrade, albeit with varying degrees of modification.

Dialogs boxes were constructed using MapBasic ‘Dialog’ statements into which various 

combinations of ‘Control’ statements were placed. A number of Controls were used for 

a range of purposes, including:

• RadioGroup, to display a set of mutually exclusive radio buttons for selection,

• EditText, to accept input text,

• StaticText, to display textual information,

• OKButton, to accept the input and dismiss the dialog,

• CancelButton, to cancel the operation, and

• Button, for other operations activated by buttons.

Variables were used in ‘Control’ statements to enable the contents of dialog boxes to 

vary at run-time.
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In  the  ‘Select  a  Carriageway’  dialog,  a  RadioGroup  control  was  used  to  present  a 

mutually exclusive list of carriageway options for selection. In this dialog the String 

array variable aCwayList was used in the 'Title' statement to populate the RadioGroup, 

enabling the option list to vary at run-time, based on the carriageway types involved. 

The  following  extract  from  the  function  SelectReferenceCway(),  shows  how  the 

variable was used in the control:

Control RadioGroup
   Title From Variable aCwayList
   Position 20,47
   Value 1
   Into iListOption

Similarly, a dialog was used to display the options available for processing a defined 

section  of  road.  The  String  variable  sCwayString  was  used  in  the  control  'Title' 

statement to enable a list of carriageways to be varied at run-time. The following extract 

from the function SelectSectionProcess() shows how the variable was used to represent 

a varying list of carriageway types:

Control StaticText
   Title sCwayString
   Position 20,20
   Width 170  Height 20

Handler sub-procedures were written to enable and disable dialog buttons based on the 

values entered into other dialog controls. Generally, one handler was written to establish 

the default status of the buttons in a dialog. Another handler, which is called every time 

a control value changes, was used to reset the button status based on input received.

Dialogs  were  also  used  to  provide  information  and  direction  during  interactive 

operations.

The MapBasic function CommandInfo(CMD_INFO_DLG_OK) was used in procedures 

involving dialogs to conditionally process input data. When the ‘OK’ button is pressed, 

the current values in the input controls are accepted, the function returns TRUE and the 

dialog is dismissed.

The appearance and behaviour of the dialogs used in the Centreline Tools upgrade are 

illustrated in Chapter 5, which describes the operation of the utility in some detail.
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4.6.3  Spatial Input

Interactive spatial input into Centreline Tools involves the specification of coordinate-

based  point  locations  by  mouse  click  events.  The  MapBasic  functions 

CommandInfo(CMD_INFO_X) and CommandInfo(CMD_INFO_Y) were used in the 

function CaptureClickPoint() to capture the x and y coordinates of the location of a 

mouse click event in the map window. 

The MapBasic  function  CreatePoint(X,  Y) was  used to  create  a  point  object  at  the 

captured coordinates, which could then be assigned to an object type variable for use 

elsewhere in the program. The following extract from the function CaptureClickPoint() 

demonstrates the use of the MapBasic functions to create a point object:

fClickX = CommandInfo(CMD_INFO_X)
fClickY = CommandInfo(CMD_INFO_Y)

'--- create a point object at the captured coordinates
oMouseClickPoint = CreatePoint(fClickX, fClickY)

The function CaptureClickPoint() was used to capture the spatial locations for which 

linear references were required, and the definition of road sections by beginning and end 

spatial locations.

4.7  System Testing

4.7.1  Introduction

Testing was an important facet of the development of the Centreline Tools upgrade and 

several  strategies  were  employed.  Development  testing  was  carried  out  during  the 

design and coding phases of the project. Operational testing involved the limited release 

of completed development versions to be tested under operational conditions by regular 

users of the system.
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4.7.2  Development Testing

The sub-procedure MakeDebugTable was written to create a MapInfo table in which to 

store debugging information. The structure and behaviour of spatial objects constructed 

by the program could then be examined and manipulated in a MapInfo environment. 

Figure 4.16 shows an example  of  the debugging environment containing the  spatial 

objects used to determine the linear reference at a given spatial location.

Additional  statements  were  written  into  the  source  code  to  display  debugging 

information such as variable values during program execution. These sections of code 

were enclosed by condition statements controlled by the value of the Logical (boolean) 

data type program constant CT_DEBUG_ON, which was defined in the definition file. 

The display of debugging information could then be turned off for development version 

releases simply by setting the value of CT_DEBUG_ON to FALSE in the definition file 

prior to compilation. This strategy also enabled sections of debugging code to be left in 

place for possible use in the future. The following extract from the definition file shows 

the definition statements for the debugging constants:

DEFINE CT_DEBUG_ON        FALSE   'TRUE  '- set T for development
DEFINE CT_DEBUG_TAB       "Debug"        '- debugging table name

Figure 4.17 demonstrates the use of debugging code to display the incrementing value 

of  a  node number  variable,  and chainage  calculation  values  during  a  program loop 

structure.
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Figure 4.16 – Spatial Debugging Environment

Figure 4.17 – Node Number Variable Debugging Output
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Figure 4.18 – Expanding Search Area Debugging Output

Figure 4.19 – Link Intersection Debugging Output

Another example of the use of debugging code is shown in Figure 4.18, which shows 

the increasing value of the radius variable used to incrementally expand a search area in 

search of a road segment.

58



Figure  4.19  illustrates  another  example  of  debugging  code  which  displays  variable 

values  during  a  traverse  through  the  links  of  a  segment  object  in  search  of  an 

intersection condition.

Program  outputs  from  interactive  processes  were  assessed  in  relation  to  expected 

outcomes  and  examined  manually  using  other  MapInfo  tools.  Outputs  were  also 

compared against the results of similar operations performed by the existing version.

In  order  to  accommodate  comparative  testing  between  development  versions  of  the 

upgrade and the existing version, some changes were made to system file names. The 

name of the MapBasic executable file for the upgrade was changed to CT_Main.MBX 

from  CL_Main.MBX,  and  the  name  of  the  temporary  system  data  table  was  also 

changed to CT_Data.TAB from CL_Data.TAB. These changes allowed the  upgrade 

versions  to  run  in  the  same  instance  of  MapInfo  as  the  existing  version  without 

conflicts.

Specifically  designed  input  data  was  also  used  for  development  testing  and  served 

several purposes. Firstly, prepared data was used to ensure that the majority of logical 

branches in the program were executed.

Secondly, data was designed to test the program’s operation with the entire spectrum of 

road network complexity.

Finally,  prepared input data enabled testing of the program’s response to potentially 

problematic scenarios, including:

• incorrect road identifiers,

• chainages known to exceed the extents of a road,

• road/carriageway combinations known not to exist,

• linear references known to occur at RPs,

• section start and end points occurring on different roads,

• section start and end chainages occurring at RPs,

• section start and end chainages both exceeding extents, and

• sections defined against gazettal direction.
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Appendix E illustrates the use of specifically prepared input data for system testing. The 

attributes of the input table contain comments describing known anomalies in the test 

data. The 'Status' column shows the report generated for each record during processing. 

The Centreline Tools environment shows some of the spatial objects produced from the 

input data during segmentation.

4.7.3  Operational Testing

Several versions of the Centreline Tools upgrade were released to the test group for 

operational testing during the project. Details of the releases are listed in Table 4.1.

Centreline Tools Version Release Date

Development Version 5.0.Alpha 6th June 2008

Development Version 5.0.Beta 18th July 2008

Development Version 5.0.Beta.2 19th August 2008

Production Version 5.0 23rd September 2008

Table 4.1 – Versions of Centreline Tools Released

The Alpha version mandated the inclusion of a carriageway code element in the dialog 

used to set the parameters for dynamic segmentation. However, feedback suggested that 

mandating  the  selection  of  a  carriageway  code  element  complicated  the  process 

unnecessarily. It  was rightly pointed out that the majority of the state does not have 

roads made up of multiple carriageways, so in many cases a carriageway code is not 

required (Appleman, A 2008, pers. comm., 20 June). 

As a result of the feedback provided, the dynamic segmentation process in relation to 

carriageway code was  modified.  The mandated  requirement  for  a  carriageway code 

column was removed and is now used only if selected. Otherwise, each linear reference 

is  mapped to a  through carriageway, or  the actual  carriageways on which it  occurs 

(through carriageways are 1, 2 and 3). Removing the necessity for the inclusion of a 

carriageway code also simplified the preparation of an input file to be segmented.

60



The  Version  5.0.Beta  release  of  Centreline  Tools  included  support  for  extracting 

(copying) sections of roads defined by start and end points and linear references. The 

modifications required for the entry of carriageway codes were also incorporated into 

this release.

The additional section definition toolbar used in the existing version was absorbed into 

the Centreline Tools toolbar because of an issue with the focus of windows changing 

away from MapInfo on closing the section toolbar. This behaviour was considered to be 

unacceptable from a user perspective, and as the cause was not immediately apparent in 

the Main Roads environment, a decision was made to avoid the problem by combining 

the section definition buttons into the Centreline Tools toolbar.

Soon after the release of the 5.0.Beta version, it was reported that the 'Process' button 

was not activating correctly in the dialog used to set dynamic segmentation parameters 

(Martin, AL 2008, pers. comm., 12 Aug). This problem was traced to the logic of the 

procedure VerifySelectColumns, which failed to activate the ‘Process’ button if the road 

identifier and carriageway columns were both selected. It appears that this procedure 

was incorrectly modified while removing the mandatory requirement for a carriageway 

code in the previous release. The sub-procedure VerifySelectColumns was rewritten to 

ensure the ‘Process’ button activated correctly.

Following  these  modifications,  Centreline  Tools  was  re-released  on  19th August  as 

Version 5.0.Beta.2.

After  an  additional  period  of  operational  testing,  during  which  no  problems  were 

reported, a final version was released into production on 23rd September as Centreline 

Tools Version 5.0.
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4.8  Conclusions

During  the  system  development  process,  several  methodologies  were  pursued 

unsuccessful for a variety of reasons, principally the unreliability of several MapBasic 

functions in relation to intersecting objects.

Initially,  the  MapBasic  function  ConnectObjects(object1,  object2,  min)  was  used  to 

create a node at the location on a segment object that is closest to a given point. This 

function returns a two-point polyline object representing the shortest distance between 

the two objects, with one end on object1 (the given point) and the other on object2, (the 

centreline segment). The method involved creating and finding a node in the segment 

(object2) at the intersection point with the shortest distance polyline returned by the 

ConnectObjects() function. However, when searching for the intersection point between 

the two objects, run-time errors were often encountered because the polyline and the 

segment did not, according to MapInfo, intersect. Although the use of ConnectObjects() 

was  the  preferred  approach,  it  was  abandoned because  it  was  not  considered to  be 

sufficiently reliable for use in the Centreline Tools upgrade.

Other errors were occasionally encountered with object intersections, possible because 

the  single-precision  nature  of  MapInfo  is  not  sufficiently  accurate  to  place  nodes 

precisely into objects.

A similar issue arose in the function FindPointSegments(), which is used to select the 

road centreline  segments  that  intersect  with an expanding circular  search area.  This 

procedure contains a select statement with a spatial intersection condition clause, which 

when assessed as TRUE, causes the search loop to terminate. However, during further 

processing,  a  run-time error  occasionally  occurred claiming that  the  objects  did not 

intersect. Introducing an additional test to verify that an intersection condition did exist 

solved this problem.

Unexpected  ‘Line’  object  types  in  sc_roads caused  run-time  errors  during  system 

development. Some MapBasic procedures involving polylines fail if applied to a line 

object, including those used to add nodes and return node numbers. Therefore, the sub-

procedure VerifyPolyline was included to test  object  types  prior to the use of these 

functions, and convert lines to polylines if they were encountered.
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CHAPTER 5

RESULTS

5.1  Introduction

When the Centreline Tools program is launched, a toolbar is created and placed into the 

MapInfo environment. This toolbar provides the interface through which the operations 

performed by the utility are accessed. The toolbar from the Centreline Tools upgrade is 

shown in Figure 5.1, together with a brief description of each button.

The remainder of this chapter describes the operation performed by each tool button 

available in the production version of the upgrade, Centreline Tools Version 5.0.

5.2  Linear Reference at a Point

Selecting  the  ‘Linear  reference  at  point’  tool  button  (see  Figure  5.1)  enables  the 

determination and display of linear references at selected spatial locations on the road 

network.

This  button is  a  push-button  and once  selected,  it  remains  active  until  another  tool 

button is selected. When the push-button is depressed, the cursor changes to a crosshair 

when moved into the map window. The spatial location at which a linear reference is 

required, is specified by positioning the cursor at the location, and clicking the mouse 

button.
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Figure 5.1 – Centreline Tools V5.0 Toolbar

When a location is selected, a point object representing the position on the road closest 

to the selected location, and a set of attributes are written to the Centreline Tools data 

table  called  CT_Data.  A  label  expression  is  constructed  from  the  road  identifier, 

carriageway and chainage attributes and is also written to the table CT_Data. The point 

object is displayed in the map window labelled with the constructed expression.

Appendix  F  illustrates  the  Centreline  Tools  environment  following  the  use  of  the 

‘Linear  reference at  point’  tool  button to obtain a number of  linear  references.  The 

attributes of  CT_Data generated during this activity are displayed in Table 5.1. The 

'Item' attribute identifies the operation performed.
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Table 5.1 – CT_Data Attributes for Specified Spatial Locations

5.3  Find a Linear Reference

This operation determines the spatial coordinates of the location at which a specified 

linear reference occurs, and centres the map window at the coordinates.

After selecting the ‘Find a linear reference’ button (see Figure 5.1), the dialog displayed 

in Figure 5.2 is  presented for the entry of the desired linear  reference.  The entered 

chainage can be in metres or kilometres, but the appropriate ‘units’ must be specified.

Figure 5.2 – Entry Dialog for Linear References
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The  ‘Verify  Road’  button  in  the  entry  dialog  provides  the  option  to  display  the 

minimum and maximum chainage of the entered road identifier. Clicking the ‘Verify 

Road’ button displays the road extents, as shown in Figure 5.3.

Figure 5.3 – Verification of Road Extents

Several validations are carried out on an entered linear reference. If the road identifier 

does not represent a valid road, or the chainage is beyond the extents of the road, the 

user is advised and the dialog remains in place. Error messages generated for invalid 

entries are displayed in Figure 5.4.

Figure 5.4 – Linear Reference Entry Error Messages

After a valid linear reference has been entered, clicking the OK button dismisses the 

dialog and Centreline Tools finds the coordinates of the requested location and creates a 

point object. As in the previous operation the point object and relevant attributes are 

added to the table CT_Data. The map window is then centred at the coordinates of the 

linear reference and the point object and a label similar to that in the previous section 

are displayed.
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If the requested linear reference occurs on multiple carriageways, a dialog is presented 

from which  to  select  a  carriageway option for  processing.  Figure  5.5  is  the  dialog 

produced by the linear  reference requested  on road 12A shown in Figure 5.3.  This 

dialog is not presented if the requested linear reference occurs on one carriageway only.

Figure 5.5 – Selection Dialog for Carriageway Options

If the ‘All carriageways’ option is selected, a record for each carriageway is added to 

CT_Data and multiple points and labels are displayed.

Table 5.2 contains the attributes generated after the ‘All carriageways’ option selection 

shown in Figure 5.5. Comparison with the attributes in Table 5.1 shows that the ‘Item’ 

column identifies the operation performed as ‘Specified linear reference’.

Table 5.2 – CT_Data Attributes for Specified Linear References

Appendix G illustrates the Centreline Tools environment after using the ‘Find a linear 

reference’ tool button to locate the linear reference shown in Figure 5.3, with the ‘All 

carriageways’option as shown in Figure 5.5.
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5.4  Process Table of Linear References

Selecting  the  ‘Process  table  of  references’  tool  button  (see  Figure  5.1)  triggers  the 

dynamic segmentation process, which is also referred to within MR as ‘geocoding’.

When the ‘Process table of references’ tool button is selected, a dialog is presented for 

the selection of an input table containing linear references to be dynamically segmented. 

An open table can be selected, or a table can be located and selected in a browser. 

Figure  5.6  shows  the  input  dialog  with  the  table  'Access16A'  selected.  This  table 

contains the locations of accesses to a state-controlled road in linear reference format.

Figure 5.6 – Selection Dialog for an Input Table of Linear References

After the input table is selected, a MapInfo SaveAs Dialog is presented to save a copy 

of the input table as an output table. The spatial objects created during processing are 

added to the output table, leaving the input table unmodified. In the Figure 5.7 example, 

the input table ‘Access16A’ is saved as the output table ‘Access16A_Mapped’. When 

the output table is created an additional column is added for a brief status report on the 

result of the segmentation process for each record.
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Figure 5.7 – Selection Dialog for an Output Linear Reference Table

Once the output table has been created, the dynamic segmentation parameters must be 

specified in the dialog shown in Figure 5.8. Firstly, the format of the linear references is 

selected. Centreline Tools can segment data in the three formats described at the top of 

Figure 5.8. In the Figure 5.8 example, the ‘single chainage value’ format is selected, 

which results in the creation of point objects. Polyline objects can also be created for 

linear sections in the formats of start and end chainages, and start chainage and section 

length.

Next, the table columns containing the values representing the selected linear reference 

elements must be specified. The column known to contain the road identifier is selected 

from the list under ‘Road identifier column’. The column containing the carriageway 

code can also be specified if required.

Following the  specification  of  the  single  chainage  format,  the ‘Select  column for  a 

single chainage value’ section of the dialog is activated for entry, as shown in Figure 

5.8. The name of the column known to contain the single chainage value is selected 

from the drop-down list in this section. Finally, the chainage units are specified.
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The ‘Process’ button on the dialog is activated only after the columns required for the 

specified  linear  reference  format  have  been  selected.  Table  processing  commences 

when the ‘Process’ button is clicked.

Figure 5.8 – Dynamic Segmentation Configuration Dialog

During processing, tests are conducted to validate each linear reference. Road identifier, 

road extents and the order of linear references are verified. Chainages that are beyond 

the road extents are reset to the end of the road and noted in the status report. Records 

containing  invalid  road  identifiers  cannot  be  processed.  The  status  value  is  also 

displayed in the Message window during processing.

Appendix  H.A  illustrates  the  Centreline  Tools  environment  following  dynamic 

segmentation. To better demonstrate the outcome of the process, the point objects of the 
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table  ‘Access16A_Mapped’  created  during  segmentation,  have  been  thematically 

mapped by the attribute 'Access_Type', and labelled with the chainage attribute ‘TDist’.

Appendix H.B compares the attributes of the input table ‘Access16A’ with that of the 

output table ‘Access16A_Mapped’, after processing. It can be seen from the ‘Status’ 

column that all the records in the table were correctly geocoded.

5.5  Process Table of Points

Selection  of  the  ‘Process  table  of  points’  tool  button  (see  Figure  5.1)  enables  the 

processing of a MapInfo input table containing point objects. In this process, a linear 

reference is generated for each point object in the input table. This process is often 

referred to in MR as ‘reverse geocoding’.

After  the  tool  button  is  selected,  the  dialog  shown  in  Figure  5.9  is  presented  for 

selection of a MapInfo input table. An open table can be selected, or a table can be 

located and selected in a browser. The example shown in Figure 5.9 shows the open 

table  'FloraSites'  selected  as  the  input  table.  This  table  contains  point  objects 

representing site data collected in the road corridor using a GPS device.

Figure 5.9 – Selection Dialog for an Input Table of Point Objects

71



Figure 5.10 – Selection Dialog for an Output Points Table

An output table is created in the same way as the previous operation to protect the input 

table. In the Figure 5.10 example, the input table is copied to an output table called 

‘FloraSites_Referenced’. During the creation of the output table, additional columns are 

added for  the linear  reference elements  and a  brief  status  report  on the  referencing 

process.

Centreline Tools then processes the output table, generating a linear reference for each 

point object. The linear reference consists of a road identifier, carriageway code and 

chainage. The status column is populated on the basis of the outcome of the referencing 

process.

Appendix I.A displays the attributes of the input table ‘FloraSites’ and the output table 

‘FloraSites_Referenced’  after  processing,  and  illustrates  the  additional  columns 

populated with the linear reference elements.

It can also be seen in Appendix I.A that a linear reference was not resolved for two 

point records, which have a ‘Status’ value of ‘Point is not near a road segment’. In these 
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cases the point objects were not within a tolerated distance of a road segment object, 

which is currently preset to 50 metres.

Appendix I.B illustrates the Centreline Tools environment after using the ‘Process table 

of points’ button to 'reverse geocode' a table of point objects. As in the previous section, 

the display has been enhanced to better demonstrate the operation. The processed data 

has  been  thematically  mapped  by  ‘Status’  and  labelled  with  the  linear  reference 

generated. The unsuccessfully referenced points are labelled in red.

5.6  Section Between Points

The purpose of the operation enabled by the ‘Section between points’ tool button (see 

Figure 5.1) is to create spatial objects representing sections of road that occur between 

two specified geographic locations.

Defining a road section between coordinates involves specifying start and end points in 

a similar way to requesting a linear reference at a point, described above in Section 5.2.

Selecting the ‘Section between points’ tool button activates the ‘Set start point’ tool 

button (see Figure 5.1). When this button is activated, the cursor becomes a crosshair in 

the map window, enabling a section start point to be created. The start point is displayed 

and labelled with the identifier of the road in which the start point occurs.

Successfully  specifying  the  start  point  enables  the  ‘Set  end  point’  tool  button  (see 

Figure 5.1). The section end point is specified in the same way as the start point, and is 

similarly  displayed.  Figure  5.11  shows  a  map  window extract  containing  a  section 

definition between start and end coordinates.

Centreline Tools validates point selections. Firstly, the end point must be on the same 

road as the start point. Secondly, the section must be defined in gazettal direction (in the 

direction  of  increasing  chainage).  If  either  of  these  conditions  is  not  met,  an  error 

message  is  displayed  and  the  section  ends  must  be  respecified  before  continuing. 

Messages displayed by Centreline Tools for invalid section end point definitions are 

displayed in Figure 5.12.
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Figure 5.11 – Defining a Section Between Coordinates

Figure 5.12 – Error Messages for a Section Defined by Coordinates

Only when the section has been correctly defined, is the ‘Process section’ tool button 

enabled (see Figure 5.1). After activating the ‘Process section’ tool button, the defined 

section elements are displayed in the map window and a dialog such as the example 

shown  in  Figure  5.13  presents  the  available  options  for  preparation  of  the  section 

elements. The section elements referred to in the dialog are the segment objects or parts 
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thereof (portions) that collectively make up the defined section, and can be presented in 

a number of ways. 

Figure 5.13 – Processing Options for a Section on a Single Carriageway

The section elements can be displayed as individual elements, combined into a single 

object for each carriageway, or combined into a single object representing the entire 

section. An option to create a buffer object around the entire section, with a specified 

radius, is also available. The options are not mutually exclusive and any combination of 

the options can be selected.

Once the desired options have been selected, the section objects are created and written 

to  the  table  CT_Data,  together  with  the  relative  attributes.  The  constructed  section 

objects and their labels are then displayed in the map window.

Appendix J  shows the Centreline Tools environment following the definition of the 

section on Road 14A by end point coordinates.  The section objects representing the 

individual elements, combined carriageway and entire section options selected in Figure 

5.13 are displayed. 

Table  5.3  shows the  attributes  written to  the table  CT_Data for  the  section display 

options selected in Figure 5.13.
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Table 5.3 – CT_Data Attributes for a Section Defined by Coordinates

5.7  Section Between Linear References

The operation performed by the ‘Section between references’ tool button (see Figure 

5.1) is similar to that of the ‘Section between points’ button described in the previous 

section. However, the road section is defined by the entry of section start and end linear 

references.

Selecting the ‘Section between references’ tool button immediately opens a dialog in 

which to define a section of road. This dialog, shown in Figure 5.14, is similar to that 

used for finding a linear reference described in Section 5.3, but two chainage values 

must be entered to specify the start and end of the road section.

The ‘Verify Road’ button optionally returns the extents of the entered road identifier as 

previously described. The entered road identifier is validated as previously described in 

Section 5.3. Entered start and end chainage values are verified also. Invalid entries are 

rejected, and error messages shown in Figure 5.15 are displayed.

The road section must be defined in gazettal direction. Should the entered section end 

chainage  be  less  than  the  section  start,  the  message  also  shown  in  Figure  5.15  is 

displayed, and the section must be redefined.
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Figure 5.14 – Entry Dialog for Defining a Section by Linear References

Figure 5.15 – Error Messages for a Section Defined by Linear References
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Once a valid road section has been defined, the process follows that described in the 

previous section. The example processing option selection dialog shown in Figure 5.16 

represents a section defined by linear references on Road 12A, which contains multiple 

carriageways. In this case, elements combined for each carriageway and a section buffer 

set to a radius of 100m have been selected. The objects representing the selected options 

are then created and written to the table CT_Data, together with the relative attributes. 

The constructed section objects and their labels are then displayed in the map window.

Figure 5.16 – Processing Options for a Section on Multiple Carriageways

Appendix K shows the Centreline Tools environment following the definition of the 

section between two linear references on Road 12A. The options selected in Figure 5.16 

are displayed.

The attributes written to the table CT_Data for the Road 12A section options are shown 

in Table 5.4.

Table 5.4 – CT_Data Attributes for a Section Defined by Linear References
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5.8  Save Labels

The table CT_Data is  a  temporary table and is  not saved when Centreline Tools  is 

closed. The ‘Save labels’ tool button (see Figure 5.1) provides the option to save the 

current contents of CT_Data to a permanent table. When the operation is performed, the 

dialog shown in Figure 5.17 is presented in which to enter a name for the saved table. 

The name 'CT_lables' appears initially as a default option. After being copied to the new 

table,  CT_Data is closed, removing the objects and labels currently displayed in the 

map window. The table CT_Data is recreated next time Centreline Tools performs an 

operation.

Figure 5.17 – Selection Dialog to Save the Centreline Tools Table CT_Data
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5.9  Clear/Remove Labels

The operation performed by the ‘Clear/remove labels’ tool button (see Figure 5.1) is 

twofold.  Firstly,  the  table  CT_Data is  closed,  automatically  removing  any  related 

objects and labels currently displayed in the map window.

Secondly,  the  tool  buttons  are  reset  to  their  default  states,  removing  any persisting 

section specification point definitions.

5.10  About Centreline Tools

Information about the program is obtained by selecting the 'About Centreline Tools’ 

tool button (see Figure 5.1). The information provided includes the version number and 

release  date,  which are particularly  important  when providing client  support.  Figure 

5.18 shows the ‘About Centreline Tools’ dialog box produced by the production release 

of the Centreline Tools upgrade developed for this project.

Figure 5.18 – The ‘About Centreline Tools’ Dialog
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5.11  Exit

The  ‘Exit’  tool  button  (see  Figure  5.1)  closes  the  system  data  table  CT_Data and 

terminates  the  program,  removing  the  Centreline  Tools  toolbar  from  the  MapInfo 

environment.
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CHAPTER 6

CONCLUSIONS

6.1  Introduction

This project delivered an upgraded version of Centreline Tools, a utility used by Main 

Roads to translate between linear and spatial forms of data.

A system upgrade,  particularly  one  in  which  the  existing  look and feel  were  to  be 

retained, necessarily involved some degree of code reuse. In this project much of the 

existing code used to manage the toolbar and interface dialogs was reused with varying 

degrees of modification.

The design of the upgrade was an amalgamation of new and existing ideas. Some of the 

design  elements  of  the  existing  version,  including  the  representation  of  segment 

direction and the use of an expanding search area were retained but implemented in a 

different  way.  However,  the  methods  used  to  implement  dynamic  segmentation 

processes were developed from original ideas.

The organisation and structure of the upgrade represented a significant departure from 

the  existing  version  and  contributed  to  an  expected  simplification  in  program 

maintenance. Initially, the expanded definition file centralised program information and 

simplified referencing. Additional advantages ensued.

The module restructure in combination with the introduction of the SegmentType data 

type and segment filtering, ensured that only required segments were processed. The 
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defined  type  also  enabled  selected  segments  to  be  passed  between  procedures, 

significantly reducing the need for the regular selections from the sc_roads table seen 

throughout the existing version.

Expanding the use of procedure parameters in the upgrade also helped to minimise what 

was considered to be an unnecessary dependence on the use of global variables in the 

existing version.

These changes dramatically improved the logic and flow of the program making it much 

easier to follow and hence, maintain.

Anecdotal accounts suggest that the upgrade is a definite improvement over the existing 

version and that it is more intuitive to use. Positive evidentiary reports have also been 

received.

The test group in Cairns advised that the new version was used to geocode their annual 

RIP (Roads Implementation Program) in preparation for mapping. A substantial number 

of tables were processed with no problems (Angus, B 2008, pers. comm., 29 Aug).

A report from Townsville indicated that the Centreline Tools upgrade is working very 

well (Appleman, A 2008, pers. comm., 10 Sept).

Mackay  also  indicated  that  the  upgrade  is  performing  well  (Clague,  S  2008,  pers. 

comm., 17 Sept).

6.2  Benefits

It  is a little too early in the life cycle of the upgrade to claim that all  the expected 

benefits  have  been  realised.  However,  to  date  feedback  has  been  very  positive.  In 

addition, there have been no reports of unexplained program behaviours or crashes.

While  an  exhaustive  assessment  is  not  yet  possible,  the  following  benefits  can 

tentatively be claimed:

• The issue of producing an incorrect chainage at first usage has been resolved.
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• The status reports provided by the table processing operations are useful.

• Selection of linear reference data formats is more flexible.

• The upgraded version will definitely be easier to maintain.

• Early evidence suggests that the upgrade is consistent, stable and reliable.

A more informed assessment of the benefits provided by the Centreline Tools upgrade 

project  will  be  possible  only  after  the  new  version  has  been  in  production  for  a 

reasonable period of time.

6.3  Future Work

A number of improvements could be made to Centreline Tools in the future to provide a 

more functional and complete product. Some of these might include:

• enabling offsetting of points to the left and right of the road centreline by a 

specified distance,

• dynamically displaying labels while geocoding,

• accommodating the use of another road centreline product,

• interactive  setting  of  parameters  such  as  the  proximity  tolerance  for  point 

objects in relation to the road centreline,

• providing a ‘Help’ facility to assist less experienced users, and

• updating the user guide.

In addition, some form of advice is necessary, to point out that results produced by the 

program are entirely dependent on the accuracy of the road centreline representation of 

ARMIS and the Road Reference System.

Future development of Centreline Tools will also inevitably be impacted by other work 

carried out in Main Roads. For example, future projects or processes that modify the 

structure,  content  or  availability  of  sc_roads would  no  doubt  impact  on  Centreline 

Tools.

In addition, a Road Information Integrator (RII) is currently being developed to perform 

translations  between  linear  references  and  spatial  coordinates  at  the  system  level 

between ARMIS sub-systems (Mayocchi, W 2008, pers. comm., 4 Feb). While support 
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for MapInfo is currently not in scope for this project, a service providing spatial/linear 

translations into the desktop MapInfo environment is indeed likely in the longer term. 

How  this  service  might  be  utilised  is  currently  not  know,  but  it  could  impact 

significantly on Centreline Tools in the future. Some form of interface would still be 

necessary, however, through which to request and apply the RII service in a MapInfo 

environment.

Any proposal for further work on Centreline Tools will also be subject  to the usual 

departmental assessment of need and priority to secure funding.

6.4  Conclusions

All  of  the  specific  objectives  outlined for  this  project  were  achieved,  including  the 

additional  functionality  that  was  identified  as  likely  to  be  completed  only  if  time 

permitted.

Some unexpected  problems  were  encountered  during  the  development  phase  of  the 

project.  Several  MapBasic  functions  did  not  perform  as  claimed  in  certain 

circumstances and were not sufficiently reliable to be used. This was disappointing and 

resulted in some compromises in system development.

The use of the iterative approach to the SDLC methodology proved to be very effective 

in the context of this project.  This approach enabled significant periods of operational 

testing of the logic and procedures at the core of the upgrade. It also allowed useful 

feedback to be evaluated and integrated into subsequent development releases.

While it is still very early in the life cycle of the upgrade, the majority of the expected 

benefits from the project have already been realised, and the life of the utility has been 

extended.

The Centreline Tools Upgrade delivered by this project was released into production on 

23rd September 2008.
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'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
'@@@@@                                                                     @@@@@
'@@@@@   @@@@@@@@    @@@@@@@@   @@@@@@@@         @@@@@@@   @@   @@@@@@@    @@@@@
'@@@@@   @@     @@  @@  @@  @@  @@     @@       @@     @@  @@  @@          @@@@@
'@@@@@   @@     @@  @@  @@  @@  @@     @@       @@         @@  @@          @@@@@
'@@@@@   @@     @@  @@  @@  @@  @@@@@@@@        @@         @@   @@@@@@@    @@@@@
'@@@@@   @@     @@  @@  @@  @@  @@   @@         @@    @@@  @@         @@   @@@@@
'@@@@@   @@     @@  @@  @@  @@  @@    @@        @@     @@  @@         @@   @@@@@
'@@@@@   @@@@@@@@   @@  @@  @@  @@     @@        @@@@@@@   @@   @@@@@@@    @@@@@
'@@@@@                                                                     @@@@@
'@@@@@                    MainRoads MapInfo GIS Software                   @@@@@
'@@@@@                                                                     @@@@@
'@@@@@                           Centreline Tools                          @@@@@
'@@@@@                                                                     @@@@@
'@@@@@   Designed and developed by                                         @@@@@
'@@@@@   Geospatial Technologies Branch,                                   @@@@@
'@@@@@   Planning Design & Operations Division,                            @@@@@
'@@@@@   Engineering & Technology Group                                    @@@@@
'@@@@@   Spring Hill Office Complex                                        @@@@@
'@@@@@   Queensland Department of Main Roads.                              @@@@@
'@@@@@                                                                     @@@@@
'@@@@@   Elements of this software have been adapted from code             @@@@@
'@@@@@   originally developed by Patrick McShane and Peter Young,          @@@@@
'@@@@@   South Coast Hinterland District, Nerang.                          @@@@@
'@@@@@                                                                     @@@@@
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
'@@@@@   Notes:                                                            @@@@@
'@@@@@   1. Copyright © The State of Queensland,                           @@@@@
'@@@@@      Queensland Department of Main Roads.                           @@@@@
'@@@@@   2. This software is authorised for internal Main Roads use only.  @@@@@
'@@@@@   3. Unauthorised modifications will void support arrangements.     @@@@@
'@@@@@                                                                     @@@@@
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
'///////////////////////////////////////////////////////////////////////////////
'///////////////////////////////////////////////////////////////////////////////
' Centreline Tools Utility Definition File
' Utility definitions and declarations are all recorded in this definition file
' to centralise system information for easier reference and to simplify
' maintenance.
' This also avoids the use-before-declare issues that can occur because of the
' order of locally declared procedures.
' RWT June 2008.
'///////////////////////////////////////////////////////////////////////////////

'-------------------------------------------------------------------------------
' Data type definition representing a road centreline segment object and the
' attributes necessary to translate between coordinates and linear references.
' This is used to make procedures involving centreline manipulations more
' independent. Selections on the centreline tables for a particular operation
' are then necessary in one procedure only. Selected segments are then carried
' as arrays of the segment type.
' This type can therefore potentially be used to pass segment selections
' from any road centreline table containing Road Reference System attributes.
'-------------------------------------------------------------------------------
TYPE SegmentType
   SegObj        As Object                    '- segment object
   SegRoad       As String                    '- segment road identifier
   SegCway       As String                    '- segment carriageway code
   SegStart      As Float                     '- segment start chainage in m
   SegLength     As Float                     '- segment driven length in m
   SegScale      As Float                     '- segment scalefactor
END TYPE

'-------------------------------------------------------------------------------
' Constant definitions
'-------------------------------------------------------------------------------
DEFINE CT_VERSION              "5.0"          '- version identifier
DEFINE CT_RELEASE_DATE         "23 Sept 2008" '- version release date

DEFINE CT_DEBUG_ON             FALSE  'TRUE   '- set T in development mode for info
DEFINE CT_DEBUG_TAB            "Debug"        '- debugging table name

DEFINE CT_PRECISION            50.0           '- point to road fail distance in m
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DEFINE CT_SC_ROADS             "sc_roads"     '- road centreline table name

DEFINE CT_DATA_TAB             "CT_Data"      '- temp table for objects/labels
DEFINE CT_SECT_DEF             "Section"      '- temp table for section definition
DEFINE CT_SECT_ELEMENTS        "Elements"     '- temp table for section elements

DEFINE CT_DIR_WITH_GAZ         1              '- line direction with gazettal
DEFINE CT_DIR_AGAINST_GAZ      2              '- line direction against gazettal
DEFINE CT_DIR_UNKNOWN          3              '- line direction unspecified

DEFINE CT_CWAY_BOTH            "1"            '- cway code in both directions
DEFINE CT_CWAY_WITH_GAZ        "24ABCDEKLMXZ" '- cway codes in gazettal direction
DEFINE CT_CWAY_AGAINST_GAZ     "35NOPQRSTUY"  '- cway codes against gazettal

DEFINE CT_UNITS_M              1              '- represents unit of measure of metres
DEFINE CT_UNITS_KM             2              '- represents unit of measure of km

'-------------------------------------------------------------------------------
' Global variable declarations
'-------------------------------------------------------------------------------
GLOBAL gSysApplicationDir$     As String      '- SAS system directories
GLOBAL gSysWorkspaceDir$       As String      '-  "
GLOBAL gSysDataDir$            As String      '-  "
GLOBAL gSysReadWrite$          As String      '-  "

'===============================================================================
' CT_Main.MB procedure declarations
'===============================================================================
DECLARE      SUB AboutCT
DECLARE      SUB DisplayClTab(ByVal sInTable As String)

DECLARE      SUB DisplayLabel(ByVal oInputObj As Object,
                              ByVal sClTable  As String,
                              ByVal sInputTable As String,
                              ByVal sRoadId As String,
                              ByVal sCarrWay As String,
                              ByVal sStartChainage As String,
                              ByVal sEndChainage As String,
                              ByVal sLength As String,
                              ByVal sLabelExpr As String)

DECLARE      SUB ExitCT
DECLARE      SUB LoadCTButtonPad
DECLARE      SUB Main
DECLARE FUNCTION OpenClTab(ByVal sInTable As String) As Logical
DECLARE      SUB RemoveCTLabels
DECLARE      SUB SaveCTLabels
DECLARE      SUB SetSectionButtons
DECLARE      SUB ResetToolButtons

'===============================================================================
' CT_CoordsToRef.MB procedure declarations
'===============================================================================
DECLARE FUNCTION CaptureClickPoint(oMouseClickPoint As Object) As Logical

DECLARE FUNCTION ChainageAtNode(ByVal iNodeNumber As Integer,
                                ByVal oSegment As Object,
                                ByVal sCarrway As String,
                                ByVal fStartChainage,
                                ByVal fDrivenLength,
                                ByVal fScalefactor As Float) As Float

DECLARE      SUB PointToReference

'===============================================================================
' CT_Debug.MB procedure declarations
'===============================================================================
DECLARE      SUB MakeDebugTable
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'===============================================================================
' CT_Dialogs.MB procedure declarations
'===============================================================================
DECLARE      SUB BrowseSelectInTable

DECLARE FUNCTION CopyInputTable(ByVal sInputTable As String,
                                sNewTable As String) As Logical

DECLARE      SUB ResetSelectColumns
DECLARE      SUB ResetSelectInTable

DECLARE FUNCTION SelectColumns(ByVal sLinearFile As String,
                               iLinearFormat As SmallInt,
                               asColumnNames(0) As String,
                               iSectionUnits,
                               iLengthUnits As SmallInt) As Logical

DECLARE FUNCTION SelectInputTable(ByVal iDialogType As SmallInt,
                                  sInputFile As String) As Logical

DECLARE      SUB SetSelectColumns
DECLARE      SUB SetSelectInTable
DECLARE      SUB VerifySelectColumns

'===============================================================================
' CT_DynSeg.MB procedure declarations
'===============================================================================
DECLARE      SUB ProcessPointTable
DECLARE      SUB ProcessReferenceTable

'===============================================================================
' CT_FindNodes.MB procedure declarations
'===============================================================================
DECLARE FUNCTION ConstructPortion(ByVal fSectionStart, fSectionEnd As Float,
                                  aSectionSeg As SegmentType,
                                  fSegPortionStart,
                                  fSegPortionEnd As Float) As Object

DECLARE FUNCTION FindNodeAtChainage(ByVal fChainage As Float,
                                    oLinearObj As Object,
                                    ByVal sSegCway As String,
                                    ByVal fSegRefoffset As Float,
                                    ByVal fSegReflen As Float,
                                    ByVal fScalefactor As Float) As Integer

DECLARE FUNCTION FindNodeAtPoint(ByVal oPointArea As Object,
                                 oLinearObj As Object) As Integer

DECLARE FUNCTION SegmentDirection(ByVal sCarrwayCode As String) As SmallInt
DECLARE      SUB VerifyPolyline(oObject As Object)

'===============================================================================
' CT_RefToCoords.MB procedure declarations
'===============================================================================
DECLARE FUNCTION EnterLinearReference(sRoadIn As String,
                                      fChainageIn As Float) As Logical

DECLARE      SUB ReferenceToPoint

DECLARE FUNCTION SelectReferenceCway(aSegmentsFound() As SegmentType,
                                     sSelectOption As String) As Logical

DECLARE      SUB VerifyLinearReference
DECLARE      SUB VerifyRoad

'===============================================================================
' CT_SectionByCoords.MB procedure declarations
'===============================================================================
DECLARE      SUB CaptureSectionCoord
DECLARE      SUB SaveSectionCoords
DECLARE      SUB SectionByCoords
DECLARE FUNCTION VerifyCoordSection() As Logical
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'===============================================================================
' CT_SectionByRefs.MB procedure declarations
'===============================================================================
DECLARE FUNCTION EnterReferenceSection(sSectionRoad As String,
                                       fSectionStart,
                                       fSectionEnd As Float) As Logical

DECLARE      SUB ExtractSection(ByVal sSectionRoad As String,
                                ByVal fSectionStart, fSectionEnd As Float)

DECLARE      SUB MakeElementTable
DECLARE      SUB ProcessSectionElements
DECLARE      SUB ResetBuffer
DECLARE      SUB SectionByReferences

DECLARE FUNCTION SelectSectionProcess(bIndividual,
                                      bGrouped,
                                      bCombined,
                                      bAddBuffer As Logical,
                                      fNewRadius As Float) As Logical

DECLARE      SUB VerifyReferenceSection
DECLARE      SUB WriteCombinedCways
DECLARE      SUB WriteCombinedSection
DECLARE      SUB WriteIndElements
DECLARE      SUB WriteSectionBuffer(ByVal fBufferRadius As Float)

DECLARE      SUB WriteSectionElement(ByVal oElementObj As Object,
                                     ByVal sElementRoad, sElementCway As String,
                                     ByVal fElementStart, fElementEnd As Float)

'===============================================================================
' CT_Select.MB procedure declarations
'===============================================================================
DECLARE FUNCTION FindPointSegments(ByVal oStartPoint As Object,
                                   oSearchArea As Object,
                                   aPointSegs() As SegmentType) As Logical

DECLARE FUNCTION FindReferenceCways(ByVal sRoadId As String,
                                    ByVal fChainage As Float,
                                    aCarriageways() As String) As Logical

DECLARE FUNCTION FindReferenceSegments(ByVal sRoadId As String,
                                       ByVal sCarriageway As String,
                                       ByVal fChainage As Float,
                                       aReferenceSegs() As SegmentType) As Logical

DECLARE FUNCTION FindSectionCways(ByVal sRoadId As String,
                                  ByVal fSectionStart, fSectionEnd As Float,
                                  aCarriageways() As String) As Logical

DECLARE FUNCTION FindSectionSegments(ByVal sRoadId As String,
                                     ByVal sCarriageway As String,
                                     ByVal fSectionStart, fSectionEnd As Float,
                                     aSectionSegs() As SegmentType) As Logical

DECLARE FUNCTION RoadExists(ByVal sRoadId As String) As Logical

DECLARE      SUB RoadExtents(ByVal sRoadId As String,
                             fMinExtent, fMaxExtent As Float)
'-------------------------------------------------------------------------------
' End of definition file
'-------------------------------------------------------------------------------

Appendix B – Centreline Tools Definition File
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Appendix C – Procedure Structure Charts
C.A – Sub-procedure Main Structure Chart

C.B – Sub-procedure PointToReference Structure Chart

C.C – Sub-procedure ReferenceToPoint Structure Chart

C.D – Sub-procedure ProcessReferenceTable Structure Chart

C.E – Sub-procedure ProcessPointTable Structure Chart

C.F – Sub-procedure CaptureSectionCoord Structure Chart

C.G – Sub-procedure SectionByReferences Structure Chart
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Appendix C.A – Sub-procedure Main Structure Chart
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Appendix C.B – Sub-procedure PointToReference Structure Chart
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Appendix C.C – Sub-procedure ReferenceToPoint Structure Chart
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Appendix C.D – Sub-procedure ProcessReferenceTable Structure Chart
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Appendix C.E – Sub-procedure ProcessPointTable Structure Chart
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Appendix C.F – Sub-procedure CaptureSectionCoord Structure Chart
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Appendix C.G – Sub-procedure SectionByReferences Structure Chart
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Appendix D – Function FindReferenceSegments()
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'===============================================================================
' Finds the road centreline segments in which the named linear reference
' description occurs.
' Selects the road centreline segments for the specified road identifier which
' occur at the specified carriageway (may be one carriageway code or "All" or 
' "Through" 1, 2 or 3), have a start chainage <= the specified chainage, and
' an end chainage >= the specified chainage (> does not select end segments).
' Loads the selected segments into a segment type array.
' Loads only one segment for the given road identifier per carriageway
' Returns T if segments are selected, F otherwise.
'===============================================================================
FUNCTION FindReferenceSegments(ByVal sRoadId As String,
                               ByVal sCarriageway As String,
                               ByVal fChainage As Float,
                               aReferenceSegs() As SegmentType) As Logical

   DIM i,
       iSegs  As Integer

   OnError GoTo ErrorHandle

   '--- initialise
   FindReferenceSegments = FALSE

   '--- select the centreline segments in which the named linear reference occurs
   '--- ie the segments of the specified road & carriageway for which the
   '--- specified chainage >= the chainage at the start of the segment, and the
   '--- specified chainage <= the chainage at the end of the segment
   '--- (<= is necessary to include end-of-road segments in the selection)
   '--- order the selected segments by carriageway and start chainage (refoffset)

   If sCarriageway = "All" Then

      Select * From CT_SC_ROADS
      Where STREET = sRoadId AND
            REFOFFSET <= fChainage AND
            REFOFFSET + REFLEN >= fChainage
      Into tblReferenceSegs Noselect
      Order By CARRWAY, REFOFFSET

   ElseIf sCarriageway = "Through" Then

      Select * From CT_SC_ROADS
      Where STREET = sRoadId AND
            (CARRWAY = "1" OR
             CARRWAY = "2" OR
             CARRWAY = "3") AND
            REFOFFSET <= fChainage AND
            REFOFFSET + REFLEN >= fChainage
      Into tblReferenceSegs Noselect
      Order By CARRWAY, REFOFFSET

   Else

      Select * From CT_SC_ROADS
      Where STREET = sRoadId AND
            CARRWAY = sCarriageway AND
            REFOFFSET <= fChainage AND
            REFOFFSET + REFLEN >= fChainage
      Into tblReferenceSegs Noselect
      Order By CARRWAY, REFOFFSET

   End If

   '--- if the specified chainage occurs at a reference point
   '--- ie the common point between two segments
   '--- two segments on the one carriageway will be selected
   '--- so exclude the second segment on the same carriageway
   '--- to avoid creating duplicate points with labels
   '--- load the selected segments into an array
   i = 1
   iSegs = TableInfo(tblReferenceSegs, TAB_INFO_NROWS)

   If iSegs > 0 Then
      '--- centreline segments were selected

      '--- load the first segment into the array
      Fetch First From tblReferenceSegs
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      ReDim aReferenceSegs(i)
      aReferenceSegs(i).SegObj    = tblReferenceSegs.Obj
      aReferenceSegs(i).SegRoad   = tblReferenceSegs.STREET
      aReferenceSegs(i).SegCway   = tblReferenceSegs.CARRWAY
      aReferenceSegs(i).SegStart  = tblReferenceSegs.REFOFFSET
      aReferenceSegs(i).SegLength = tblReferenceSegs.REFLEN
      aReferenceSegs(i).SegScale  = tblReferenceSegs.SCALEFACTOR

      '--- avoid divide by zero errors
      If aReferenceSegs(i).SegScale = 0 Then
         aReferenceSegs(i).SegScale = 1
      End If

      '--- loop through the remaining segments and
      '--- load only unique carriageways

      Fetch Next From tblReferenceSegs

      Do While NOT EOT(tblReferenceSegs)

         If tblReferenceSegs.CARRWAY <> aReferenceSegs(i).SegCway Then
            '--- this carriageway is not the same as the previous one
            '--- store this one

            i = i + 1

            ReDim aReferenceSegs(i)
            aReferenceSegs(i).SegObj    = tblReferenceSegs.Obj
            aReferenceSegs(i).SegRoad   = tblReferenceSegs.STREET
            aReferenceSegs(i).SegCway   = tblReferenceSegs.CARRWAY
            aReferenceSegs(i).SegStart  = tblReferenceSegs.REFOFFSET
            aReferenceSegs(i).SegLength = tblReferenceSegs.REFLEN
            aReferenceSegs(i).SegScale  = tblReferenceSegs.SCALEFACTOR

            '--- avoid divide by zero errors
            If aReferenceSegs(i).SegScale = 0 Then
               aReferenceSegs(i).SegScale = 1
            End If
         End If

         Fetch Next From tblReferenceSegs

      Loop

      '--- set return value
      FindReferenceSegments = TRUE

   End If

   Close Table tblReferenceSegs

   GoTo TheEnd
   ErrorHandle:
      Print Error$()
      Resume Next
   TheEnd:

END FUNCTION

Appendix D – Function FindReferenceSegments()
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Appendix E – Example Test Data
E.A – Test Data Before and After Processing

E.B – Dynamically Segmented Test Data
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Appendix E.A – Test Data Before and After Processing
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Appendix E.B – Dynamically Segmented Test Data
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Appendix F – Linear References at Specified Points
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Appendix F – Linear References at Specified Points
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Appendix G – Linear References Located
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Appendix G – Linear References Located
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Appendix H – Dynamic Segmentation
H.A – Dynamically Segmented Linear References

H.B – Attributes Before and After Segmentation
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Appendix H.A – Dynamically Segmented Linear References
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Appendix H.B – Attributes Before and After Segmentation
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Appendix I – Linear Referencing
I.A – Attributes Before and After Linear Referencing

I.B – Linear Referenced Point Objects
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Appendix I.A – Attributes Before and After Linear Referencing
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Appendix I.B – Linear Referenced Point Objects
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Appendix J – Section Defined by Spatial Coordinates
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Appendix J – Section Defined by Spatial Coordinates
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Appendix K – Section Defined by Linear References
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Appendix K – Section Defined by Linear References
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Appendix L – Original Centre Line Tools User Guide
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5 CENTRE LINE TOOLS

The Road Centre Line Tools is a suite of functions that allow users to perform several GIS 
operations on the state controlled network road centre line data. For example, it is possible for a 
user to view the map at a desired location described by the road number and the through 
distance. Also, by using the centre line tools it is easy to create new map objects of features 
using description information such as the road number, carriageway id, starting through 
distance, length of feature and width.

Note: Centre Line Tools is available to districts with a specially prepared digital road table. This 
table format is specific and further processing is required to produce a suitable input table for 
Centre Line Tools to function.

5.1  The Centre Line Tools Button Pad
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5.1.1  Tdist at Mouse Click   
 

This feature will return the road number, carriageway and through distance at the location where 
you click the mouse on a state controlled centre line, as in the example below.

5.1.2  Find Road and Tdist   
 

This function enables you to find a location described by the road number and through distance. 
On selecting this feature the dialog below appears, requiring you to select the road from a list 
that is presented. After selecting the road enter the through distance. The map view will change 
to show the location you described and a label will appear at that point along the road, similar to 
the example above.
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5.1.3  Extract Road Segment Between Points   
This feature allows the user to interactively extract a road segment identified by the start and 
end points along a road segment. Upon selecting this tool the "Point to Point" tool pad appears, 
as displayed below. 

The "Point to Point" button pad allows you to select the start and end points, choose the road 
and process the query.

 
   Select the start of the segment of interest, and

 
   Select the end.

Example of start and end points selected.

 
   Select the road to process.

 
   Process the road segment.

 
   Cancel the point to point selection process.

When the selected road segment is processed you will be presented with a preview of the new 
road segment and a pick list of the carriageways within the selected road segment.
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You can select all or any of the carriageways from the pick list to determine the desired output. 
As you alter the selection of carriageways the view of the road segment is updated to display 
the selected carriageway types.

After selecting the carriageway type you can select from any of the processing options. These 
enable you to represent the selected carriageway elements as individual polyline segments, as 
polylines grouped by carriageway, as a single combined object, or as a buffered region object.

Below is an example of a 10 metre buffered object for the road carriageways selected on the 
previous page.
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5.1.4  Extract Road Segment Between Tdist    
 

This tool is similar to the previous feature, except in this case you identify the required segment 
by entering the road number, carriageway and start and end through distances. 

The extraction is processed exactly the same as the "Extract Road Segment Between Points" 
described beforehand. A selection list of carriageways will be presented followed by a list of 
processing options. Below is an example of a typical segment extraction.

 

129



5.1.5  Geocode Wizard   
 

The Geocode Wizard is a batch processing geocoder specifically for the State controlled road 
centre line. The system can geocode data (i.e. create map objects) using the ARMIS road 
reference description. The system can also determine the ARMIS road reference attributes for a 
geographic object along the state controlled road centre line.

5.1.5.1  Geocoding using road and tdist
The application can process any MapInfo table containing road number and tdist descriptions. 
For example, a file containing the Road Implementation Program (RIP) data can have map 
objects created for it by using the textual location attributes such as the Road Number, 
Carriageway Identity and Through Distance. The resulting map and data can be viewed 
thematically and interrogated geographically.

Example of some data suitable for geocoding using road reference description.

Below is a map and legend of the Road Implementation Program (RIP) for the South-Coast 
Hinterland District created using the Geocode Wizard.
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5.1.6  Procedure For Batch Geocode using Road ID and Tdist
Step 1. From the Centre Line tools button pad, select the Geocode Wizard. 

Step 2. Select the state controlled roads centre line street table, e.g. "sc_roads".
Step 3. Click on the "Next" button.

Step 4. Select the Input data table, (the table with tdist descriptions) either from the list, or 
choose browse to open the desired file.
Step 5. Click on the "Next" button.

Step 6. Select the radio button option "has a road and thru distance description" 
Step 7. Click on the "Next" button.
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Step 8. From the "Select the ROAD field" group click on the field name that contains the RoadID 
data.

Step 9. From the "Select the CARRIAGEWAY field" group click on the field name that contains 
the CARRIAGEWAY code data.

Step 10. From the "Select the THROUGH DISTANCE field" group click on the field name that 
contains the THROUGH DISTANCE code data, and select the distance units.

Step 11. From the "Select the LENGTH field" group click on the field name that contains the 
LENGTH code data, and select the distance units.

Step 12. From the "Select the WIDTH field" group click on the field name that contains the 
WIDTH data, and select the distance units.

Step 13. Click on the "Next" button.

The system will now process your file and create new map objects for each data record in your 
table. To view the results open the output file into a map window.

5.1.6.1 Determining road reference data for map objects
A table of map objects, such as points along a road, can have their road reference description 
determined using the Geocode Wizard. For example, a global positioning system could be used 
to create points locating road side assets in the field, the Geocode Wizard can be use to 
determine the road referencing information that Main Roads uses to describe those locations 
(Road number, Carriageway, and through distance).
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Example of a mapped table of point objects suitable for determining road reference data.

5.1.7  Procedure for determining road reference data for objects that are 
mapped
Step 1. From Centre Line tools button pad, select the Geocode Wizard.

Step 2. Select the centre line street table, e.g. "sc_roads".
Step 3. Click on the "Next" button.

Step 4. Select the Input data table, either from the list or browse to open the file.
Step 5. Click on the "Next" button.
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Step 6. Select the radio button option "is geocoded with points".
Step 7. Click on the "Next" button.
Step 8. Type, or browse for, an output file name.

The system will now process your table and produce an output table. Overleaf is an example of 
a typical input table and the resulting output table.
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5.1.8  Discard Labels   
Removes all map labels generated by the centre line tools system and clears the CL_DATA 
table.

5.1.9  Exit Centre Line Tools   
Closes Centre Line Tools and all files.
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