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Abstract 
 
 
It is known that PID controller is employed in every facet of industrial automation. The 
 
application of PID controller span from small industry to high technology industry. For  
 
those who are in heavy industries such as refineries and ship-buildings, working with PID  
 
controller is like a routine work. Hence how do we optimize the PID controller? Do we  
 
still tune the PID as what we use to for example using the classical technique that have  
 
been taught to us like Ziegler-Nichols method? Or do we make use of the power of  
 
computing world by tuning the PID in a stochastic manner? 
 
 
In this dissertation, it is proposed that the controller be tuned using the Genetic Algorithm  
 
technique. Genetic Algorithms (GAs) are a stochastic global search method that emulates 
 
the process of natural evolution. Genetic Algorithms have been shown to be capable 
 
of locating high performance areas in complex domains without experiencing the 
 
difficulties associated with high dimensionality or false optima as may occur with 
 
gradient decent techniques. Using genetic algorithms to perform the tuning 
 
of the controller will result in the optimum controller being evaluated for the system 
 
every time. 
 
 
For this study, the model selected is of turbine speed control system. The reason for this  
 
is that this model is often encountered in refineries in a form of steam turbine that uses  
 
hydraulic governor to control the speed of the turbine.  
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The PID controller of the model will be designed using the classical method and the  
 
results analyzed. The same model will be redesigned using the GA method. The results of  
 
both designs will be compared, analyzed and conclusion will be drawn out of the  
 
simulation made. 
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 Chapter 1 
 

Introduction 
 

 
 

1.1 Project Aims And Objectives 
 

The aim of this project is to design a plant using Genetic Algorithm. What is  
 
Genetic Algorithm? Genetic Algorithm or in short GA is a stochastic  
 
algorithm based on principles of natural selection and genetics. Genetic  
 
Algorithms (GAs) are a stochastic global search method that mimics the  
 
process of natural evolution. Genetic Algorithms have been shown to be  
 
capable of locating high performance areas in complex domains without  
 
experiencing the difficulties associated with high dimensionality or false  
 
optima as may occur with gradient decent techniques. Using genetic  
 
algorithms to perform the tuning of the controller will result in the optimum  
 
controller being evaluated for the system every time. 
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The objective of this project is to show that by employing the GA method of  

tuning a plant, an optimization can be achieved. This can be seen by  

comparing the result of the GA optimized plant against the classically tuned  

plant. 

 

     1.2      Background 
 

 
In refineries, in chemical plants and other industries the gas turbine  
 
is a well known tool to drive compressors. These compressors are normally of  
 
centrifugal type. They consume much power due to the fact that very large  
 
volume flows are handled. The combination gas turbine-compressor is highly  
 
reliable. Hence the turbine-compressor play significant role in the operation  
 
of the plants. 
 
             
Speed SP 
 
 
HPS                                                         Speed Signal (PV) 
                                     Control                                
                                 Valve 
                                    Opening   (MV)   
                                        
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Typical Turbine Speed Control. 

GT 
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K 
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In the above set up, the high pressure steam (HPS) is usually used to drive the  
 
turbine. The turbine which is coupled to the compressor will then drive the  
 
compressor. The hydraulic governor which, acts as a control valve will be  
 
used to throttle the amount of steam that is going to the turbine section. The  
 
governor opening is being controlled by a PID which is in the electronic  
 
governor control panel. 
 
 
It is a known fact that the PID controller is employed in every facet of  
 
industrial automation. The application of PID controller span from small  
 
industry to high technology industry. For those who are in heavy industries  
 
such as refineries and shipbuildings, working with PID controller is like a  
 
routine work. Hence how do we optimize the PID controller? Do we still tune  
 
the PID as what we use to for example using the classical technique that have  
 
been taught to us like Ziegler-Nichols method? Or do we make use of the  
 
power of computing world by tuning the PID in a stochastic manner? 
 
 
In this project, it is proposed that the controller be tuned using the Genetic  
 
Algorithm technique. Using genetic algorithms to perform the tuning of the  
 
controller will result in the optimum controller being evaluated for the system  
 
every time. 
 
 
For this study, the model selected is of turbine speed control system. The  
 
reason for this is that this model is often encountered in refineries in a form of  
 
steam turbine that uses hydraulic governor to control the speed of the turbine  
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as illustrated  above in figure 1. The complexities of the electronic governor  
 
controller will not be taken into consideration in this dissertation. The  
 
electronic governor controller is a big subject by itself and it is beyond the  
 
scope of this study. 
 
 
Nevertheless this study will focus on the model that makes up the steam  
 
turbine and the hydraulic governor to control the speed of the turbine. 
 
In the context of refineries, you can consider the steam turbine as the heart of  
 
the plant. This is due to the fact that in the refineries, there are lots of high  
 
capacities compressors running on steam turbine. Hence this makes the  
 
control and the tuning optimization of the steam turbine significant. 
 
 
In this project, it will be shown that the GA tuned PID will result in a better  
 
optimization of the process. Here is a brief description of how GA works. A  
 
GA is typically initialized with a random population consisting of between 20- 
 
100 individuals. This population or mating pool is usually represented by a  
 
real-valued number or a binary string called a chromosome. How well an  
 
individual performs a task is measured and assessed by the objective function.  
 
The objective function assigns each individual a corresponding number called  
 
its fitness. The fitness of each chromosome is assessed and a survival of the  
 
fittest strategy is applied. There are three main stages of a genetic algorithm,  
 
these are known as reproduction, crossover and mutation. 
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During the reproduction phase the fitness value of each chromosome is  
 
assessed. This value is used in the selection process to provide bias towards  
 
fitter individuals. Just like in natural evolution, a fit chromosome has a higher 

 
probability of being selected for reproduction. This continues until the  
 
selection criterion has been met. The probability of an individual being  
 
selected is thus related to its fitness, ensuring that fitter individuals are  
 
more likely to leave offspring. Multiple copies of the same string may be  
 
selected for reproduction and the fitter strings should begin to dominate.  
 
 
Once the selection process is complete, the crossover algorithm is initiated.  
 
The crossover operations swaps certain parts of the two selected strings in a  
 
bid to capture the good parts of old chromosomes and create better new ones.  
 
Genetic operators manipulate the characters of a chromosome directly, using  
 
the assumption that certain individual�s gene codes, on average, produce fitter  
 
individuals. The crossover probability indicates how often crossover is  
 
performed. A probability of 0% means that the �offspring� will be exact  
 
replicas of their �parents� and a probability of 100% means that each  
 
generation will be composed of entirely new offspring.  
 
Using selection and crossover on their own will generate a large amount of 
 
different strings. However there are two main problems with this: 
 
1. Depending on the initial population chosen, there may not be enough 
 

diversity in the initial strings to ensure the GA searches the entire problem 
 
space. 
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2. The GA may converge on sub-optimum strings due to a bad choice of  
 

initial population. 
 

These problems may be overcome by the introduction of a mutation operator  
 
into the GA. Mutation is the occasional random alteration of a value of a  
 
string position. It is considered a background operator in the genetic algorithm 
 
The probability of mutation is normally low because a high mutation rate  
 
would destroy fit strings and degenerate the genetic algorithm into a random  
 
search. Mutation probability values of around 0.1% or 0.01% are common,  
 
these values represent the probability that a certain string will be selected for  
 
mutation for an example for a probability of 0.1%; one string in one thousand  
 
will be selected for mutation. Once a string is selected for mutation, a  
 
randomly chosen element of the string is changed or �mutated�. 

 
 

1.3   Literatures Reviews 

The followings are the few books and papers that were referred to, in the 

process of undertaking this project. For the undertaking of his project,  

thorough reading of Genetic Algorithm is required before the project can  

commences.  Hence a comprehensive research for resources are required and  

the following are some of the literatures that has somehow contributed to  

my understanding of the control system and the genetic algorithm in  

specific. 
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Books 

□ David E. Goldberg, Genetic Algorithms in Search, Optimization and 
Machine Learning. The University of Alabama, Addison-Wesley 
Publishing Company Inc, 1989. 

□ John Leis, Digital Signal Processing � A MATLAB-Based Tutorial 
Approach, University Of Southern Queensland, Research Studies Press 
Limited, 2002. 

□ K. Astrom and T Hagglund, PID Controllers: Theory, Design and Tuning, 
Prentice Hall, 1984. 

□ K Ogata, Discrete-Time Control Systems, University of Minnesota, 
Prentice Hall, 1987. 

     Journals 

                  □ T O�Mahony, C J Downing and K Fatla, Genetic Algorithm for PID 
Parameter Optimization: Minimizing Error Criteria, Process Control and 
Instrumentation 2000 26-28 July 2000, University of Stracthclyde, pg 148-
153. 

                   □ Chipperfield, A. J., Fleming, P. J., Pohlheim, H. and Fonseca, C. M., A 
Genetic Algorithm Toolbox for MATLAB, Proc. International Conference 
on Systems Engineering, Coventry, UK, 6-8 September, 1994. 

                      □ Q Wang, P Spronck and R Tracht, An Overview Of Genetic Algorithms 
Applied To Control Engineering Problems, Proceedings of the Second 
International Conference on Machine Learning And Cybernetics, 2003. 

                  □ K. Krishnakumar and D. E. Goldberg, Control System Optimization Using 
Genetic Algorithms, Journal of Guidance, Control and Dynamics, Vol. 15, 
No. 3, pp. 735-740, 1992. 

                  □ A. Varsek, T. Urbacic and B. Filipic, Genetic Algorithms in Controller 
Design and Tuning, IEEE Trans. Sys.Man and Cyber, Vol. 23, No. 5, 
pp1330-1339, 1993. 

From the reading of the above and not inclusive, it as found that GAs are  
 
not guaranteed to find the global optimum solution to a problem, but they  
 
are generally good at finding �acceptably good� solutions to problems in  
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�acceptably quickly�. Where specialised techniques exist for solving 
 
particular problems, they are likely to out-perform GAs in both speed and  
 
accuracy of the final result,  so there is no black magic in evolutionary 
 
computation. Therefore GAs should be used when there is no other known  
 
efficient problem solving strategy. 
 
 
However in this project, GA is still use as the �preferred� optimized  
 
method in optimizing the turbine speed control system. You will see that  
 
some other optimization method can be better in certain areas of  
 
application and GA can be better in another application. Hence there is no 
 
fast and quick rule to which optimization methods to use. It all depends on  
 
application and the complication in the implementation of the optimized  
 
algorithm. 
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Chapter 2 

 
 

Genetic Algorithm 
 
 
2.1 Introduction 

 
 

Genetic Algorithms (GA�s) are a stochastic global search method that mimics 
 
the process of natural evolution. It is one of the methods used for optimization. 
 
John Holland formally introduced this method in the United States in the 1970  
 
at the University of Michigan. The continuing performance improvements of  
 
computational systems has made them attractive for some types of optimization. 
 
 
The genetic algorithm starts with no knowledge of the correct solution and  
 
depends entirely on responses from its environment and evolution operators such  
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as reproduction, crossover and mutation to arrive at the best solution. By starting  
 
at several independent points and searching in parallel, the algorithm avoids local  
 
minima and converging to sub optimal solutions. 
 
 
 
In this way, GAs have been shown to be capable of locating high performance  
 
areas in complex domains without experiencing the difficulties associated with  
 
high dimensionality, as may occur with gradient decent techniques or methods  
 
that rely on derivative information [2].   
 
 
2.2 Characteristics of Genetic Algorithm 
 
 
Genetic Algorithms are search and optimization techniques inspired by two  
 
biological principles namely the process of �natural selection� and the mechanics  
 
of �natural genetics�. GAs manipulate not just one potential solution to a problem  
 
but a collection of potential solutions. This is known as population. The potential  
 
solution in the population is called �chromosomes�. These chromosomes are the  
 
encoded representations of all the parameters of the solution. Each chromosomes  
 
is compared to other chromosomes in the population and awarded fitness rating  
 
that indicates how successful this chromosomes to the latter. 
 
 
To encode better solutions, the GA will use �genetic operators� or �evolution  
 
operators� such as crossover and mutation for the creation of new chromosomes  
 
from the existing ones in the population. This is achieved by either merging the  
 
existing ones in the population or by modifying an existing chromosomes. 
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The selection mechanism for parent chromosomes takes the fitness of the parent  
 
into account. This will ensure that the better solution will have a higher chance to  
 
procreate and donate their beneficial characteristic to their offspring.  
 
 
 
A genetic algorithm is typically initialized with a random population consisting of  
 
between 20-100 individuals. This population or also known as mating pool is  
 
usually represented by a real-valued number or a binary string called a  
 
chromosome. For illustrative purposes, the rest of this section represents each  
 
chromosome as a binary string. How well an individual performs a task is  
 
measured and assessed by the objective function. The objective function assigns  
 
each individual a corresponding number called its fitness. The fitness of each  
 
chromosome is assessed and a survival of the fittest strategy is applied. In this  
 
project, the magnitude of the error will be used to assess the fitness of each  
 
chromosome. 
 
 
There are three main stages of a genetic algorithm, these are known as  
 
reproduction, crossover and mutation. This will be explained in details in the  
 
following section. 
 

 
2.3 Population Size 

 
 
Determining the number of population is the one of the important step in GA.  
 
There are many research papers that dwell in the subject. Many theories have  
 
been documented and experiments recorded [7].  
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However the matter of the fact is that more and more theories and experiments are  
 
conducted and tested and there is no fast and thumb rule with regards to which is  
 
the best method to adopt. For a long time the decision on the population size is  
 
based on trial and error[6].  
 
In this project the approach in determining the population is rather unsciencetific.  
 
From my reading of various papers, it suggested that the safe population size is  
 
from 30 to 100. In this project an initial population of 20 were used and the result  
 
observed. The result was not promising. Hence an initiative of 40, 60, 80 and  
 
90 size of population were experimented. It was observed that the population of  
 
80 seems to be a good guess. Population of 90 and above does not results in any  
 
further optimization.  
 
 
2.4 Reproduction 

  
  

During the reproduction phase the fitness value of each chromosome is 
 
assessed. This value is used in the selection process to provide bias towards fitter 
 
individuals. Just like in natural evolution, a fit chromosome has a higher  
 
probability of being selected for reproduction. An example of a common selection  
 
technique is the �Roulette Wheel� selection method as shown in  Figure 2. Each  
 
individual in the population is allocated a section of a roulette wheel. The size of  
 
the section is proportional to the fitness of the individual.  
 
 
A pointer is spun and the individual to whom it points is selected. This  
 
continues until the selection criterion has been met. The probability of an  
 
individual being selected is thus related to its fitness, ensuring that fitter  
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individuals are more likely to leave offspring. 
 
 
Multiple copies of the same string may be selected for reproduction and the 
 
fitter strings should begin to dominate. However, for the situation illustrated in  
 
Figure 8, it is not implausible for the weakest string (01001) to dominate the  
 
selection process. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2. Depiction of roulette wheel selection 
 

 
There are a number of other selection methods available and it is up to the user 
 
to select the appropriate one for each process. All selection methods are based on  
 
the same principal that is giving fitter chromosomes a larger probability of  
 
selection. 
 
Four common methods for selection are: 
 
1. Roulette Wheel selection 
 
2. Stochastic Universal sampling 
 
3. Normalized geometric selection 
 
4. Tournament selection 

  
 Due to the complexities of the other methods, the Roulette Wheel methods is   

  35%   17% 
01110   01001 
 
   49%  
           10000 
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preferred in this project. 

 
 
 

2.5 Crossover 
 

 
Once the selection process is completed, the crossover algorithm is initiated. The 
 
crossover operations swaps certain parts of the two selected strings in a bid to  
 
capture the good parts of old chromosomes and create better new ones. Genetic  
 
operators manipulate the characters of a chromosome directly, using the  
 
assumption that certain individual�s gene codes, on average, produce fitter  
 
individuals. The crossover probability indicates how often crossover is performed.  
 
A probability of 0% means that the �offspring� will be exact replicas of their  
 
�parents� and a probability of 100% means that each generation will be composed  
 
of entirely new offspring. The simplest crossover technique is the Single Point  
 
Crossover.  
 
There are two stages involved in single point crossover: 
 
1.  Members of the newly reproduced strings in the mating pool are �mated� 

 
(paired) at random. 
 

2.  Each pair of strings undergoes a crossover as follows: An integer k is 
 

randomly selected between one and the length of the string less one,  
 
[1,L-1]. Swapping all the characters between positions k+1 and L  
 
inclusively creates two new strings. 

 
Example: If the strings 10000 and 01110 are selected for crossover and the value  
 
of k is randomly set to 3 then the newly created strings will be 10010 and 01100  
 
as shown in Figure 3. 
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100   00  10010 
011     10  01100    

  
 

Figure 3.  Illustration of Crossover. 
 
 

More complex crossover techniques exist in the form of Multi-point and Uniform 
 
Crossover Algorithms. In Multi-point crossover, it  is an extension of the single  
 
point crossover algorithm and operates on the principle that the parts of a  
 
chromosome that contribute most to its fitness might not be adjacent. There are  
 
three main stages involved in a Multi-point crossover. 
 
1. Members of the newly reproduced strings in the mating pool are �mated� 

 
(paired) at random. 
 

 
2. Multiple positions are selected randomly with no duplicates and sorted  
 

into ascending order. 
 

3. The bits between successive crossover points are exchanged to produce  
 

new offspring. 
 
Example: If the string 11111 and 00000 were selected for crossover and the 
 
multipoint crossover positions were selected to be 2 and 4 then the newly created 
 
strings will be 11001 and 00110 as shown in Figure 4. 
 
 

11   11  1   11001 
00   00  0   00110 

 
                                  Figure 4.  Illustration of Multi-Point Crossover. 
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 In uniform crossover, a random mask of ones and zeros of the same length as the 

 
parent strings is used in a procedure as follows. 

  
1.  Members of the newly reproduced strings in the mating pool are �mated� 

 
(paired) at random. 
 

2. A mask is placed over each string. If the mask bit is a one, the underlying  
 

bit is kept. If the mask bit is a zero then the corresponding bit from the  
 
other string is placed in this position. 

 
Example: If the string 10101 and 01010 were selected for crossover with the mask 
 
10101 then newly created strings would be 11111 and 00000 as shown in  
 
Figure 5. 

 
 
   10101    11111 
 
     10101 
 
   01010    00000 
 

Figure 5. Illustration of a Uniform Crossover. 
 

 
 Uniform crossover is the most disruptive of the crossover algorithms and 

 
has the capability to completely dismantle a fit string, rendering it useless in the  
 
next generation. Because of this Uniform Crossover will not be used in this  
 
project and Multi-Point Crossover is the preferred choice. 

 
 

2.6 Mutation 
 

 
Using selection and crossover on their own will generate a large amount of 
 
different strings. However there are two main problems with this: 
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1.  Depending on the initial population chosen, there may not be enough 

 
diversity in the initial strings to ensure the Genetic Algorithm searches the  
 
entire problem space. 

 
2. The Genetic Algorithm may converge on sub-optimum strings due to a  
 

bad choice of initial population. 
 
These problems may be overcome by the introduction of a mutation operator into 
 
the Genetic Algorithm. Mutation is the occasional random alteration of a value of  
 
a string position. It is considered a background operator in the genetic algorithm 
 
The probability of mutation is normally low because a high mutation rate would 
 
destroy fit strings and degenerate the genetic algorithm into a random search. 
 
Mutation probability values of around 0.1% or 0.01% are common, these values 
 
55represent the probability that a certain string will be selected for mutation i.e. 
for a 
 
probability of 0.1%; one string in one thousand will be selected for mutation. 
 
Once a string is selected for mutation, a randomly chosen element of the string 
 
is changed or �mutated�. For example, if the GA chooses bit position 4 for  
 
mutation in the binary string 10000, the resulting string is 10010 as the fourth bit  
 
in the string is flipped as shown in Figure 6. 
 
 
  10000    10010 
  

Figure 6.  Illustration of Mutation Operation 
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2.7 Summary Of Genetic Algorithm Process 
 

In this section the process of Genetic Algorithm will be summarized in a  
 
flowchart. The summary of the process will be described below. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7. Genetic Algorithm Process Flowchart 
 

 
The steps involved in creating and implementing a genetic algorithm: 
 
1.  Generate an initial, random population of individuals for a fixed size. 
 
2.  Evaluate their fitness. 
 
3.  Select the fittest members of the population. 

Create/Initialize 
Population 

Measure/Evaluate 
Fitness 

Select Fittest

Mutation 

Crossover / Production

Optimum Solution 

Non Optimum 
Solution 
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4.  Reproduce using a probabilistic method (e.g., roulette wheel). 
 
5. Implement crossover operation on the reproduced chromosomes 
      

(choosing probabilistically both the crossover site and the �mates�). 
 
6.  Execute mutation operation with low probability. 
 
7.  Repeat step 2 until a predefined convergence criterion is met. 
 
The convergence criterion of a genetic algorithm is a user-specified condition for  
 
example the maximum number of generations or when the string fitness value  
 
exceeds a certain threshold. 

 
 

2.8 Elitism 
 
 

In the process of the crossover and mutation-taking place, there is high chance  
 
that the optimum solution could be lost. There is no guarantee that these operators  
 
will preserve the fittest string. To avoid this, the elitist models are often used. In  
 
this model, the best individual from a population is saved before any of these  
 
operations take place. When a new population is formed and evaluated, this model  
 
will examine to see if this best structure has been preserved. If not the saved copy  
 
is reinserted into the population. The GA will then continues on as  
 
normal[2].   

 
 

2.9 Objective Function Or Fitness Function 
  
 
 The objective function is used to provide a measure of how individuals have 

 
performed in the problem domain. In the case of a minimization problem, the  
 
most fit individuals will have the lowest numerical value of the associated  
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objective function. This raw measure of fitness is usually only used as an  
 
intermediate stage in determining the relative performance of individuals in a GA.  
 
 
Another function that is the fitness function, is normally used to transform the  
 
objective function value into a measure of relative fitness, thus where f is the  
 
objective function, g transforms the value of the objective function to a non- 
 
negative number and F is the resulting relative fitness. This mapping is always  
 
necessary when the objective function is to be minimized as the lower objective  
 
function values correspond to fitter individuals. In many cases, the fitness  
 
function value corresponds to the number of offspring that an individual can  
 
expect to produce in the next generation. A commonly used transformation is that  
 
of proportional fitness assignment[15].  
 
 
2.10 Application Of Genetic Algorithms In Control Engineering 

 
 

Presently GA has been receiving a lot of attention and more research has been  
 
done to study its applications. Application in the area of Control Engineering has  
 
also developed tremendously. Even though in control system design, issues such  
 
as performance, system stability, static and dynamic index and system robustness  
 
have to be taken into account. However each of these issues strongly depends on  
 
the controller structure and parameters. This dependence usually cannot be  
 
expressed in a mathematical formula but often a trade-off has to be made among  
 
conflicting performance issues [5]. 
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The following are some GA applications in use control engineering. 
 

• Multiobjective Control. 
 
• PID control. 

 
• Optimal Control. 

 
• Robust Control. 

 
• Intelligent Control. 
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Chapter 3 
 

PID Controller 
 
 
 

3.1 Introduction 
 
 

PID controller consists of Proportional Action, Integral Action and Derivative  
 
Action. It is commonly refer to Ziegler-Nichols PID tuning parameters. It is by far  
 
the most common control algorithm [1]. In this chapter, the basic concept of the  
 
PID controls will be explained. 
 
 
PID controllers algorithm are mostly used in feedback loops. PID controllers can  
 
be implemented in many forms. It can be implemented as a stand-alone controller  
 
or as part of Direct Digital Control (DDC) package or even Distributed Control  
 
System (DCS). The latter is a hierarchical distributed process control system  
 
which is widely used in process plants such as pharceumatical or oil refining  
 
industries.  
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It is interesting to note that more than half of the industrial controllers in use  
 
today utilize PID or modified PID control schemes.Below is a simple diagram  
 
illustrating the schematic of the PID controller. Such set up is know as non- 
 
interacting form or parallel form. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Schematic of The PID Controller � Non-Interacting Form 

 
 
 

3.2   PID Controller 
 
 

In proportional control,  
 

   Pterm = KP X Error 
 

It uses proportion of the system error to control the system. In this action an offset  
 
is introduced in the system. 
 
In Integral control, 
 

    
 

It is proportional to the amount of error in the system. In this action, the I-action  
 
will introduce a lag in the system. This will eliminate the offset that was  
 
introduced earlier on by the P-action. 

 
 
 
 
Input                 Error          
                                                                                                                                       Output 
 
 
                                                          
                                    Feedback 

P

I

D

Plant P
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In Derivative control, 
 

    
 

It is proportional to the rate of change of the error. In this action, the D-action will  
 
introduce a lead in the system. This will eliminate the lag in the system that was  
 
introduced by the I-action earlier on. 

 
 
 3.3 Continuous PID 
 

 
The three controllers when combined together can be represented by the  
 
following transfer function. 
 

Gc(s) = K (1 + sTi
1 + sTd)  

 
This can be illustrated below in the following block diagram 

 
  
 
    
 
 
 
 
 
 
 
 
 

Figure 9. Block diagram of Continuous PID Controller. 
 

  
What the PID controller does is basically is to act on the variable to be  

 
manipulated through a proper combination of the three control actions that is the  
 
P control action, I control action and D control action.  
 
 

 
 
R(s)                                                                                                                   C(s)    
             +       
                        _                                                                                                      

   
   
   
  

     

P Plant K(1 + sTi
1 + sTd)
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The P action is the control action that is proportional to the actuating error  
 
signal, which is the difference between the input and the feedback signal. The I  
 
action is the control action which is proportional to the integral of the actuating  
 
error signal. Finally the D action is the control action which is proportional to the  
 
derivative of the actuating error signal. 

 
  

With the integration of all the three actions, the continuous PID can be realized.  
 
This type of controller is widely used in industries all over the world. In fact a lot  
 
of research, studies and application has been discovered in the recent years.   
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Chapter 4 
 

Optimizing Of PID Controller  
 

 
 

4.1 Introduction 
 
 
For the system under study, Zieger-Nichols tuning rule based on critical gain Ker  
 
and critical period Per will be used. In this method, the integral time Ti will be set  
 
to infinity and the derivative time Td to zero. This is used to get the initial PID  
 
setting of the system. This PID setting will then be further optimized using the  
 
�steepest descent gradient method�. 
 
 
In this method, only the proportional control action will be used. The Kp will be  
 
increase to a critical value Ker at which the system output will exhibit sustained  
 
oscillations. In this method, if the system output does not exhibit the sustained  
 
oscillations hence this method does not apply. 
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In this chapter, it will be shown that the inefficiency of designing PID controller  
 
using the classical method. This design will be further improved by the  
 
optimization method such as �steepest descent gradient method� as mentioned  
 
earlier [16].  
 
 

 
4.2      Designing PID Parameters  

 
 

From the response below, the system under study is indeed oscillatory and hence  
 
the Z-N tuning rule based on critical gain Ker and critical period Per can be  
 
applied. 

 
 

 
 

Figure 10. Illustration of Sustained Oscillation with Period Per. 
 

 
 
 

Per
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The transfer function of the PID controller is  
 

   Gc(s) = Kp(1+ TiS
1 + Tds )  

 
The objective is to achieve a unit-step response curve of the designed system that  
 
exhibits a maximum overshoot of 25 %. If the maximum overshoot is excessive  
 
says about greater than 40%, fine tuning should be done to reduce it to less than  
 
25%. 
 
The system under study above has a following block diagram  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Block Diagram Of Controller And Plant. 
 
Since the Ti = ∞ and Td = 0, this can be reduced to the transfer function of 
 

R(s)
C(s) = s(s+ 1)(s+ 5)+ Kp

Kp
 

 
The value of Kp that makes the system marginally stable so that sustained  
 
oscillation occurs can be obtained by using the Routh�s stability citerion. Since  
 
the characteristic equation for the closed-loop system is 
 

s3 + 6s2 + 5s+ Kp = 0 
 

From the Routh�s Stability Criterion, the value of Kp that makes the system  
 
marginally stable can be determined.  
 
 

 
R(s)     +                                                                                                              C(s) 
           
    - 

P

[ s(s+ 1)(s+ 5)]
1Gc(s) 
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The table below illustrates the Routh array. 
 

s³ 1 5 

s² 6 Kp 

s¹ (30-Kp)/6 0 

sº Kp 0 
 

Table 1. Routh Array 
 
By observing the coefficient of the first column, the sustained oscillation will  
 
occur if Kp=30.  
 
Hence the critical gain Ker is 
 
   Ker = 30 
 
Thus with Kp set equal to Ker, the characteristic equation becomes 
 
                                s³ + 6s² + 5s + 30 = 0 
 
The frequency of the sustained oscillation can be determined by substituting the s 
terms with  jω term. Hence the new equation becomes 
 

( jω )³ + 6 ( jω )² + 5 ( jω ) + 30 = 0 
 
This can be simplified to 

 
6 ( 5 � ω )² + jω ( 5 � ω ) = 0 

 
From the above simplification, the sustained oscillation can be reduced to 
 

ω² = 5  
or 

ω = √5 
 

 
The period of the sustained oscillation can be calculated as 

 
Per = 2π/√5 

 
                                                              = 2.8099 
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From Ziegler-Nichols frequency method of the second method [1], the table  
 
suggested tuning rule according to the formula shown. From these we are able to  
 
estimate the parameters of Kp, Ti and Td. 
 
 

Type of 
Controller 

Kp Ti Td 

P 0.5 Ker ∞ 0 
PI 0.45 Ker (1/1.2) Per 0 

PID 0.6 Ker 0.5 Per 0.125 Per 
 

Table 2. Recommended PID Value Setting. 
 
Hence from the above table, the values of the PID parameters Kp, Ti and Td will  
 
be    Kp = 30    

 
Ti = 0.5 X 2.8099 
 
    = 1.405 

 
                                               Td = 0.125 X 2.8099 

 
                                                    = 0.351. 

 
The transfer function of the PID controller with all the parameters is given as 
 

 
 
From the above transfer function, we can see that the PID controller has pole at  
 
the origin and double zero at s = -1.4235. The block diagram of the control system  
 
with PID controller is as follows. 
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Figure 12. Illustrated the Close Loop Transfer Function. 
 
Using the MATLAB function, the following system can be easily calculated. The  
 
above system can be reduced to single block by using the following MATLAB  
 
function. Below is the Matlab codes that will calculate the two blocks in series. 
 
 
% calculation of series system response using matlab 
 
num1=[0 6.3223 17.999 12.8089]; 
den1=[0 0 1 0]; 
 
num2=[0 0 0 1]; 
den2=[1 6 5 0]; 
[num,den]=series(num1,den1,num2,den2); 
printsys(num,den) 
 
This will gives the following answer 
 
num/den =  
  
   6.3223 s^2 + 17.999 s + 12.8089 
   ------------------------------- 
         s^4 + 6 s^3 + 5 s^2 
 
 
 
 
 
 
 
 

R(s)                      C(s) 
 
 
         
                                               PID Controller 
 
 
 
                                          Feedback 

P

[ s(s+1)(s+5)]
1
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Hence the above block diagram is reduced to 
 
 
    R(s)          C(s) 
 
 
 
 
 
 
 
 

Figure 13. Simplified System. 
 
 
Using another MATLAB function, the overall function with its feedback can be  
 
calculated as follow 
 
% calculation of feedback system response using matlab 
 
num1=[0 0 6.3223 17.999 12.8089]; 
den1=[1 6 5 0 0]; 
 
num2=[0 0 0 0 1]; 
den2=[0 0 0 0 1]; 
 
[num,den]=feedback(num1,den1,num2,den2); 
printsys(num,den) 
 
This will result to 
 
num/den =  
  
           6.3223 s^2 + 17.999 s + 12.8089 
   ---------------------------------------------- 
   s^4 + 6 s^3 + 11.3223 s^2 + 17.999 s + 12.8089 
 
Therefore the overall close loop system response of  
 

                       
 
 

∑ 
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The unit step response of this system can be obtained with MATLAB. 

  
 

 
 
 
 
 
 
 
 

 
 

Figure 14. Unit Step Response Of The Designed System. 
 
 

The figure above is the system response of the designed system. From the above  
 
response it is obvious that the system can be further improved. 

 
 
 
 
 

%MATLAB script of the Designed PID Controller System. 
num=[0 0 6.3223 18 12.8]; 
den=[1 6 11.3223 18 12.811]; 
step(num,den); 
grid; 
title('Unit Step Response of The Design System'); 
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4.3 Analysis Of The Classically Designed Controller  
  

 
From the above diagram, we can analyze the response of the system. The zero and  
 
pole of the system can be calculated using the MATLAB function �tf2zp�. We  
 
can analyze them via the following parameters: 
 

• Delay time, td 
 
• Rise time, tr 
 
• Peak time, tp 
 
• Maximum Overshoot, Mp 
 
• Settling time, ts 

 
The delay time, td of the above system which is the time taken to reach 50% of  
 
the final response time is about 0.5 sec. 
 
The rise time, tr is the time taken to reach 5 to 95 % of the final value is about  
 
1.75 sec. 
 
The Peak time, tp is the time taken for the system to reach the first peak of  
 
overshoot is about 2.0 sec. 
 
The Maximum Overshoot, Mp of the system is approximately 60%. 
 
Finally the Settling time, ts is about 10.2 sec. From the analysis above, the system  
 
has not been tuned to its optimum. Here we can improve the system by looking  
 
into the system zero and pole. 
 
 
The system zeros and poles can be calculated using MATLAB function  
 
mentioned below. 
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% calculation of zero and pole of the system response using matlab 
 
num=[0 0 6.3223 17.999 12.8089]; 
den=[1 6 11.3223 17.009 12.8089]; 
[z,p,k]=tf2zp(num,den) 
 
Results: 
z = 
   -1.4387 
   -1.4282 
p = 
  -4.0478           
  -0.3532 + 1.5542i 
  -0.3532 - 1.5542i 
  -1.2457           
k = 
    6.3223 
 
The above result shows that the system is stable since all the poles are located on  
 
the left side of the s-plane. 
 
To optimize the response further, the PID controller transfer function must be  
 
revisited. 
 
The transfer function of  the designed PID controller is 
 

   
 
The PID controller has a double zero of �1.4235. By trial and error, let keeps the  
 
Kp = 18 and change the location of the double zero from �1.4235 to �0.65. 
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The new PID controller will have the following parameters. 
 

    
 
The PID transfer function and plant transfer function in series can be calculated  
 
by Matlab and the result as follow, 
 

                                                 
The total response with a unity feedback can be calculated as follow 

                                   
The response of the above system can be illustrated in the following plot. 
 

 
 

Figure 15. Improved System Response. 
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The new system response has somehow improved. The Maximum Overshoot, Mp  
 
has reduced to approximately 18%.The Settling Time, ts has improved from 14  
 
sec to 6 sec. The Peak Time, tp and Delay Time, td has increased. The final  
 
amplitude has improved at the expense of the system time. The new PID  
 
parameters can be calculated as are Kp = 18, Ti = 3.077 and Td = 0.7692.  
 
 
To improve the system further, lets increase the Kp value to 39.42. The location  
 
of double zero will  be kept the same i.e s = -0.65. The new transfer function of  
 
the PID controller will be 
 

 
                

 
Using the Matlab command, the above function together with the plant transfer  
 
function and the unity feedback can be determined. The result is   
 

    
 
The system response can be shown as follow 
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Figure 16. �Optimized� System Response. 
 
The above response shows that the system has improved. The response is faster  
 
than  the one shown in figure 15. The Maximum Overshoot, Mp has increased to  
 
about 22%. This is still acceptable since the Maximum Overshoot allowable is  
 
less than 25%.The Settling Time, ts remain the same i.e. 6 sec. The Peak Time, tp  
 
and Delay Time, td has improved. The new PID parameters can be calculated as  
 
Kp = 39.42, Ti = 3.077 and Td = 0.7692.  
 
 
In the various plots above, the various responses and its design parameters can be  
 
observed. Hence we can clearly see that the final parameters are more superior  
 
then the earlier two responses. However the setback is the Mp, which is more than  
 
the Mp of the second response. Nevertheless the final response Mp is still within  
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the 25% Maximum Overshoot allowable. The settling time, ts of the second and  
 
the third responses fared much better than the first response. The ts reached its  
 
steady-state in much faster than the original time taken by the original response. 
 
 
It is interesting to observe that these values are approximately twice the values  
 
suggested by the second method of Z-N tuning rule. Hence we can conclude that  
 
Z-N tuning rule has provided us a starting point for a finer tuning. 
 
 
It is observed that for the case where the double zero is located at s = -1.425,  
 
increasing the value of Kp increases the speed of the response. However this does  
 
not improve the percentage maximum overshoot. In fact varying Kp has little  
 
impact on the percentage maximum overshoot. On the other hand, varying the  
 
double zero has significant effect on the maximum overshoot. The zero is shifted  
 
form �1.425 to �0.65 and we observed that the maximum overshoot reduces.  
 
Finally to achieve a better result, we have to have to double the Kp value coupled  
 
with the new zero value and hence the better percentage maximum overshoot can  
 
be achieved. The above can explained through the root-locus analysis. The system  
 
described above can be further improved or optimized. In the following section,  
 
the optimization method used will be discussed. 
 
 
4.4       Optimizing Of The Designed PID Controller. 

 
 
The optimizing method used for the designed PID controller is the �steepest  
 
gradient descent method�. In this method, we will derived the transfer function of  
 
the controller as 
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The minimizing of the error function of the chosen problem can be achieved if the  
 
suitable values of   can be determined. These three combinations of  
 
potential values form a three dimensional space. The error function will form  
 
some contour within the space. This contour has maxima, minima and gradients  
 
which result in a continuous surface. 
 
 
The idea of this optimization method is reach the minima by the shortest path. In  
 
order to achieve this shortest path, moving down the steepest gradient will lead to  
 
reaching the minima the soonest. When the gradient changes from point to point,  
 
to ensure that the steepest path is still being used, it is significant to choose a new  
 
direction and make changes accordingly. Hence the minimization of the error  
 
function is achieved by analyzing the function of the function itself. In the next  
 
paragraph, the derivation of the plant transfer function to the minimizing of error  
 
function will be shown. 
 
 
The following is the Optimization derivation. 
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Let 
 

 
 
 
Lets 
 
B1 = q0 
 
B2 = q1 
 
B3 = q2 
 
B4 = (1 + A)  
 
B5 = (A + B)  
 
B6 = B  
 
Therefore 
 

 
    =  
                        
 
 
 



 42

   
 
Therefore, 
 

      . R(Z) 
        E(Z)  =   

 
       
 

 
 

 
 

            Lets  D = (2 + B1)  
 
 
Therefore the difference equation of the optimized PID controller is, 
 
 

 
 

 
 
 
The above equation can be implemented with MATLAB and the response  
 
observed. The details of the Matlab codes can be seen in the appendix. 
 
 
From the plot below we can see the optimization response. In this plot we can see  
 
how the optimized controller behave. It can be seen that the curve behaves as if it  
 
climbing up the hill. It will improve its performance until there is little error exist  
 
and finally it will reach the final value. 
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Figure 17. Optimization With Steepest Descent Gradient Method  
 
In this method, the system is further optimized using the said method. With the  
 
�steepest descent gradient method�, the response has definitely improved as  
 
compared to the one in Figure 16. The settling time has improved to 2.5 second as  
 
compared to 6.0 seconds previously. The setback is that the rise time and the  
 
maximum overshoot cannot be calculated. This is due to the �hill climbing�  
 
action of the steepest descent gradient method. However this setback was replaced  
 
with the quick settling time achieved. 
 
 
Below is the plot of the error signal of the optimized controller. In the figure  
 
below it is shown that the error was minimized and this correlate with the  
 
response shown in Figure 17.  
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As the error was minimized, the system is reaching its stability.  
 

 
 

Figure 18. Error Signal Of The Optimized System 
  

From the above figure, the initial error of 1 is finally reduced to zero. It took  
 
about 2.5 to 3 seconds for the error to be minimized. 
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Chapter 5 
 

Designing Of PID 
 

Using Genetic Algorithm 
 
 
 
 

5.1 Introduction 
 
 
Before we go into the above subject. It is good to discuss the differences between  
 
Genetics Algorithm against the traditional methods. This will help us understand  
 
why GA is more efficient than the latter. Genetic algorithms are substantially  
 
different to the more traditional search and optimization techniques. The five  
 
main differences are: 
 
1. Genetic algorithms search a population of points in parallel, not from a  
 

single point. 
 

2.  Genetic algorithms do not require derivative information or other auxiliary 
 

knowledge; only the objective function and corresponding fitness levels 
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influence the direction of the search. 
 
3. Genetic algorithms use probabilistic transition rules, not deterministic  
 

rules. 
 
4. Genetic algorithms work on an encoding of a parameter set not the  
 

parameter set itself (except where real-valued individuals are used). 
 
5.  Genetic algorithms may provide a number of potential solutions to a given 
 

problem and the choice of the final is left up to the user. 
 

 
5.2 Initializing the Population of the Genetic Algorithm 

 
 
The Genetic Algorithm has to be initialized before the algorithm can proceed. The  
 
Initialization of the population size, variable bounds and the evaluation function   
 
are required. These are the initial input that are required in order for the Genetic  
 
Algorithm process to start.  
 
 
The following code is based on the Genetic Algorithm Optimization Toolbox  
 
(GAOT) [3]. 
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%Initialising the genetic algorithm 
 
populationSize=80; 
variableBounds=[-100 100;-100 100;-100 100]; 
evalFN='PID_objfun_MSE'; 
 
%Change this to relevant object function 
 
evalOps=[]; 
options=[1e-6 1]; 
initPop=initializega(populationSize,variableBounds,evalFN� 
              evalOps,options) 
 

Figure 19. Initialize The GA.  
 

The following codes are used to initialize the GA. The codes will be explained in  
 
details. 

 
• PopulationSize - The first stage of writing a Genetic Algorithm is to create a 

 
population. This command defines the population size of the GA. Generally the  
 
bigger the population size the better is the final approximation.  

 
• VariableBounds - Since this project is using genetic algorithms to optimize the 

 
gains of a PID controller there are going to be three strings assigned to each 

 
member of the population, these members will be comprised of a P, I and a D 

 
string that will be evaluated throughout the course of the GA processes. The three  
 
terms are entered into the genetic algorithm via the declaration of a three-row 

 
variablebounds matrix. The number of rows in the variablebounds matrix 

 
represents the number of terms in each member of the population. Figure 19 

 
illustrates a population of eighty members being initialized with values 

 
randomly selected between -100 and 100. 
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• EvalFN - The evaluation function is the matlab function used to declare the  
 

objective function. It will fetch the file name of the objective function and execute  
 
the codes and return the values back to the main codes. 

 
• Options - Although the previous examples in this section were all binary 

 
encoded, this was just for illustrative purposes. Binary strings have two main 
 
drawbacks: 
 
1. They take longer to evaluate due to the fact they have to be converted 
     
    to and from binary. 
 
2. Binary strings will lose its precision during the conversion process. 
 
As a result of this and the fact that they use less memory, real (floating point) 
 
numbers will be used to encode the population. This is signified in the options 
 
command in Figure 19, where the �1e-6� term is the floating point precision and  
 
the �1� term indicates that real numbers are being used (0 indicates binary 
 
encoding is being used). 

 
• Initialisega � This command is from the GAOT toolbox. It will combines all the  
 

previously described terms and creates an initial population of 80 real valued  
 
members between �100 and 100 with 6 decimal place precision. 
 
 
 

 
5.3 Setting The GA Parameters 

 
 

The following are codes for setting up the GA. The details of the code used will  
 
be explained below. 
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%Setting the parameters for the genetic algorithm 
 
bounds=[-100 100;-100 100;-100 100]; 
evalFN='PID_objfun_MSE';%change this to relevant object function 
evalOps=[]; 
startPop=initPop; 
opts=[1e-6 1 0]; 
termFN='maxGenTerm'; 
termOps=100; 
selectFN='normGeomSelect'; 
selectOps=0.08; 
xOverFNs='arithXover'; 
xOverOps=4; 
mutFNs='unifMutation'; 
mutOps=8; 

Figure 20. Parameters Setting Of GA. 
 

• Bounds - The variable bound are for the genetic algorithm to search within a  
 

specified area. These bounds may be different from the ones used to initialise 
 
the population and they define the entire search space for the genetic algorithm. 
 

• startPop - The starting population of the GA, �startPop�, is defined as the 
 

population described in the previous section, i.e. �initPop�, see Figure 19. 
 

• opts - The options for the Genetic Algorithm consist of the precision of the 
 

string values i.e. 1e-6, the declaration of real coded values, 1, and a request for 
 

the progress of the GA to be displayed, 1, or suppressed, 0. 
 

• TermFN - This is the declaration of the termination function for the genetic 
 
algorithm. This is used to terminate the genetic algorithm once certain 
 
criterion has been met. In this project, every GA will be terminated when it 
 
reaches a certain number of generations using the �maxGenTerm� function. 
 
This termination method allows for more control over the compile time that is 
 
the amount of time it takes for the genetic algorithm to reach its termination 
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criterion of the genetic algorithm when compared with other termination 
 
criteria e.g. convergence termination criterion. 

 
• TermOps - This command defines the options, if any, for the termination 

 
function. In this example the termination options are set to 100, which means 
 
that the GA will reproduce one hundred generations before terminating. This 
 
number may be altered to best suit the convergence criteria of the genetic 
 
algorithm i.e. if the GA converges quickly then the termination options should 
 
be reduced. 

 
• SelectFN - Normalised geometric selection (�normGeomSelect�) is the primary 

 
selection process to be used in this project. The GAOT toolbox provides two 
 
other selection functions, Tournament selection and Roulette wheel selection. 
 
Tournament selection has a longer compilation time than the rest and as the 
 
overall run time of the genetic algorithm is an issue, tournament selection will 
 
not be used. The roulette wheel option is inappropriate due to the reasons 
 
mentioned in section 2.4. 

 
• SelectOps - When using the �normGeomSelect� option, the only parameter that 

 
has to be declared is the probability of selecting the fittest chromosome of 
 
each generation, in this example this probability is set to 0.08. 

 
• XOverFN - Arithmetic crossover was chosen as the crossover procedure. 

 
Single point crossover is too simplistic to work effectively on a chromosome 
 
with three alleles, a more uniform crossover procedure throughout the 
 
chromosome is required. Heuristic crossover was discarded because it 
 
performs the crossover procedure a number of times and then picks the best 
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one. This increases the compilation time of the program and is undesirable. 
 
The Arithmetic crossover procedure is specifically used for floating point 
 
numbers and is the ideal crossover option for use in this project. 

 
• XOverOptions -This is where the number of crossover points is specified.  

 
• mutFNs - The �multiNonUnifMutation�, or multi non-uniformly distributed 

 
mutation operator, was chosen as the mutation operator as it is considered to 
 
function well with multiple variables. 

 
• MutOps - The mutation operator takes in three options when using the 

 
�multiNonUnifMutation� function. The first is the total number of mutations, 
 
normally set with a probability of around 0.1%. The second parameter is the 
 
maximum number of generations and the third parameter is the shape of the 
 
distribution. This last parameter is set to a value of two, three or four where 
 
the number reflects the variance of the distribution. 
 
 

 
5.4 Performing The Genetic Algorithm 

 
 
The genetic algorithm is compiled using the command shown in Figure . 
 
The function �ga.m� will evaluate and iterate the genetic algorithm until it fulfils  
 
the criteria described by its termination function. 
 
 
%Performing the genetic algorithm 
[x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,... 
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps); 
 

Figure 21.  Performing The GA. 
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Once the genetic algorithm is completed, the above function will return four  
 
variables: 
 
x = The best population found during the GA. 
 
endPop = The GA�s final population. 
 
bestPop = The GA�s best solution tracked over generations. 
 
traceInfo = The best value and average value for each generation. 
 
The best population may be plotted to give an insight into how the genetic  
 
Algorithm converged to its final values as illustrated in Figure 22. 
 

 
 

Figure 22. Illustration Of Genetic Algorithm Converging Through Generations. 
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5.5  The Objective Function Of The Genetic Algorithm 

 
 

This is the most challenging part of creating a genetic algorithm is writing the  
 
the objective function.. In this project, the objective function is required to  
 
evaluate the best PID controller for the system. An objective function could be  
 
created to find a PID controller that gives the smallest overshoot, fastest rise time  
 
or quickest settling time. However in order to combine all of these objectives it  
 
was decided to design an objective function that will minimize the error of the  
 
controlled system instead. Each chromosome in the population is passed into the  
 
objective function one at a time. The chromosome is then evaluated and assigned  
 
a number to represent its fitness, the bigger its number the better its fitness. The  
 
genetic algorithm uses the chromosome�s fitness value to create a new population  
 
consisting of the fittest members. Below are the codes for the Objective Function. 
 
 
 
function [x_pop, fx_val]=PID_objfun_MSE(x_pop,options) 
global sys_controlled 
global time 
global sysrl 
 
% Splitting the chromosones into 3 separate strings. 
Kp=x_pop(2); 
Ki=x_pop(3); 
Kd=x_pop(1); 
 
%creating the PID controller from current values 
pid_den=[1 0]; 
pid_num=[Kd Kp Ki]; 
pid_sys=tf(pid_num,pid_den); %overall PID controller 
 

Figure 23.  Objective Function 
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 Each chromosome consists of three separate strings constituting a P, I and D 

 
term, as defined by the 3-row �bounds� declaration when creating the population. 
 
When the chromosome enters the evaluation function, it is split up into its three  
 
Terms. The P, I and D gains are used to create a PID controller according to the  
 
equation below. 

 

Cpid = s
KDs2 + Kps + KI

 
 
 The newly formed PID controller is placed in a unity feedback loop with the 
 

system transfer function. This will result in a reduce of the compilation time of  
 
the program. The system transfer function is defined in another file and imported  
 
as a global variable. The controlled system is then given a step input and the error  
 
is assessed using an error performance criterion such as Mean Square Error or in  
 
short MSE. The MSE is an accepted measure of control and of quality but its  
 
practical use as a measure of quality is somehow limited [4]. The chromosome is  
 
assigned an overall fitness value according to the magnitude of the error, the  
 
smaller the error the larger the fitness value. Below is the codes used to  
 
implement the MSE performance citeria. 
 
 
%Calculating the error 
for i=1:301 
error(i) = 1-y(i); 
end 
%Calculating the MSE 
error_sq = error*error'; 
MSE=error_sq/max(size(error)); 
 

 Figure 24� Calculating the error of the system using MSE citeria. 
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Additional code was added to ensure that the genetic algorithm converges to a 
 
controller that produces a stable system. The code, shown in Figure 25, assesses  
 
the poles of the controlled system and if they are found to be unstable that is on  
 
the right half of the s-plane, the error is assigned an extremely large value to make  
 
sure that the chromosome is not reselected. 
 
 
%Ensuring controlled system is stable 
 
poles=pole(sys_controlled); 
if poles(1)>0 
MSE=100e300; 
elseif poles(2)>0 
MSE=100e300; 
elseif poles(3)>0 
MSE=100e300; 
elseif poles(4)>0 
MSE=100e300; 
elseif poles(5)>0 
MSE=100e300; 
end 
fx_val=1/MSE; 
 
Figure 25. Stability Of The Controlled System. 
 

 
 

5.6 Results Of The Implemented Genetic Algorithm PID Controller 
  

In the following section, the results of the implemented Genetic Algorithm PID  
 
Controller will be analyzed. The GA designed PID controller is initially initialized  
 
with population size of 20 and the response analyzed. It was then initialized with  
 
population size of 40, 60, 80 and 90. The response of the GA designed PID will  
 
then be analyzed for the smallest overshoot, fastest rise time and the fastest  
 
settling time. The best response will then be selected. 
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From the following responses, the GA designed PID will be compared to the  
 
Steepest Descent Gradient Method. The superiority of GA against the SDG  
 
method will be shown. 
 
 
The following is the plot of the GA designed PID with the population size of 20.  
 
From the figure below, the response of the GA PID will be analyzed.  
 
 

 
Figure 26. PID Response With Population Size Of 20. 

 
From the Figure 26, the response of system looks reasonable stable. However it  
 
can be seen in the above plot that there is an offset in the response. Let observe if  
 
the offset can be removed with a bigger population size. These can be observed in  
 
the future plots. 
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Figure 27. Analysis Of  PID Response With Population Size Of 20. 

 
From the above figure , the details of the system response will be analyzed. The  
 
peak amplitude of the response is 1.11. The overshoot of the response is 10.6%.  
 
The settling time of the response is 6.97 seconds and finally the response of the  
 
rise time is 0.666 seconds. 
 
 
From one look, the above response is definitely much better than the classical PID  
 
tuning method as shown in the chapter 4. However how does it fare against the  
 
one optimized using the Steepest Descent Gradient Method? This will be  
 
answered after we analyzed the following responses. 
 
 
 
 
 
 

Settling Time

Max Overshoot

Rise Time
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The following figure depict the response of GA designed PID with the population  
 
size of 40. 
 
 

 
Figure 28. PID Response With Population Size Of 40. 

 
From the following Figure 28 above, the system response is much better than the  
 
one simulated with the population size of 20. It can be observed that the system  
 
offset has been removed. In the below plot, the detail of the response will be  
 
analyzed. 
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Figure 29. Analysis Of  PID Response With Population Size Of 40. 

 
From the above figure, the details of the response will be analyzed. The peak  
 
amplitude of the response is 1.07. The overshoot of the response is 6.98%. The  
 
settling time of the response is 2.2 seconds and the rise time of 0.64 seconds.  
 
From the following results, it is obvious that the population of size 40 has  
 
returned a better results than the one with the population size of 20. 
 
 
In this response, the overshoot value has improved. The settling time has reduced  
 
from 6.97 seconds to 2.2 seconds. The rise time has improved slightly that is 0.64  
 
seconds as compared to 0.666 seconds. The overall response is that it has  
 
improved as compared to the one in figure 27. 
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Figure 30. Analysis Of  PID Response With Population Size Of 60. 

 
The above figure depict the response of the GA designed PID with population  
 
size of 60. The response has the peak amplitude of 1.06. It has an overshoot of  
 
5.74%, settling time of 1.91 sec and the rise time of 0.618 sec. This further  
 
established that the bigger population size returned the better system response. 
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Figure 31. PID Response With Population Size Of 80. 

 
Finally lets look at the system response of the population size of 80. From  
 
observation, the system returned a much better response. Let analyzed how does  
 
the present response perform against the other GA results and finally the one  
 
optimized with the Steepest Descent Gradient Method.  
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Figure 32. Analysis Of PID Response With Population Size Of 80. 

 
The GA designed PID with population size of 80 has the following response  
 
factors. The Peak Amplitude of 1.05. Overshoot of 4.86%. Rise time of 0.592  
 
seconds. Settling time of 1.66 seconds.  
 
 
The population size of 90 and above were tried and the program has not shown  
 
any sign of improvement in the optimization. Hence a decision was made to stick  
 
to the population size of 80 and analyzed it against the Steepest Descent Gradient  
 
Method  PID optimization. Proceeding with the higher population size will take  
 
up a lot of computer memory space. Since the Genetic Algorithm designed PID  
 
with population size of 80 seems to have the best response as compared to the  
 
others responses. Now how does the GA designed PID stands against the Steepest  
 
Descent Gradient Method PID?  
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The following plot will show that the GA designed PID performed better than the  
 
Steepest Descent Gradient Method (SDGM). 
 

 
Figure 33. Response Of GA Designed PID Versus Steepest Descent Optimization        
                 Method. 
 
The above analysis is summarized in the following table. 
 

Measuring Factors SDGM 
Controller 

GA Controller Percentage 
Improvement 

Rise Time (sec) 1.0 0.592 40.8 % 
Maximum Overshoot (%) NA 4.8  NA 

Settling Time (sec) 2.5  1.66 33.6 % 
Table 3. Results Of SDGM Designed Controller And GA Designed Controller. 

 
From table 3, we can see that the GA designed controller has a significant  
 
improvement over the SDGM designed controller. On average the percentage  
 
improvement of GA controller against SDGM controller range from 30 % to  
 

GA Response

SDGM Response
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40 % with the exception of the measurement on overshoot. In the SDGM  
 
controller, it out performed the GA designed controller. However the setback is  
 
that it is inferior when it is compared to the rise time and the settling time. This is  
 
where GA excel. Finally the improvement has implication on the efficiency of the  
 
system under study. In the area of turbine speed control the faster response to  
 
research stability, the better is the result for the plant. This will be discussed  
 
further in the following chapter. 
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Chapter 6 
 

Further Works And Conclusions 
 
 

6.1       Further Works 
 

It is hope that this project can be improved to include the implementation of  
 
tuning the PID controller via GA in an online environment. This will have much  
 
impact in the optimization of the system under control .  
 
 
As for the subject under study, if the plant or the turbine system can be tuned  
 
using GA in an online environment, there will be minimum losses on the process.  
 
The steam used to drive the turbine will be fully utilized and the energy  
 
transferred maximized. There will be minimum loss since the response shown  
 
above is as close to the unit step. Hence in the refineries, this will translate to  
 
better profit margin. 
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It is also hope that in the future works, the system to be tested with other  
 
Performance Criterion such as IAE, ITAE and ISE. In the current work, due to  
 
time constraint, only MSE as the Performance Citerion was implemented. Hence  
 
it was not known and proven that the MSE will result a better fitness function  
 
measurement. 
 

 
6.2 Conclusions 

 
In conclusion the responses as shown in chapter 5, had showed to us that the  
 
designed PID with GA has much faster response than using the classical method.  
 
The classical method is good for giving us as the starting point of what are the  
 
PID values. However as shown in chapter 4, the approached in deriving the initial  
 
PID values using classical method is rather troublesome. There are many steps  
 
and also by trial and error in getting the PID values before you can narrow down  
 
in getting close to the �optimized� values. 
 
 
An optimized algorithm was implemented in the system to see and study how the  
 
system response is. This was achieved through implementing the steepest descent  
 
gradient method. The results was good but as was shown in Table 3 and  
 
Figure 33. However the GA designed PID is much better in terms of the rise time  
 
and the settling time. The steepest descent gradient method has no overshoot but  
 
due to its nature of �hill climbing�, it suffers in terms of rise time and settling  
 
time. 
 
 
With respect to the computational time, it is noticed that the SDGM optimization  
 
takes a longer time to reach it peak as compare to the one designed with  
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GA. This is not a positive point if you are to implement this method in an online  
 
environment. It only means that the SDGM uses more memory spaces and hence  
 
take up more time to reach the peak. 
 
 
This project has exposed me to various PID control strategies. It has increased my  
 
knowledge in Control Engineering and Genetic Algorithm in specific. It has also  
 
shown me that there are numerous methods of PID tunings available in the  
 
academics and industrial fields. Previously I was comfortable with Z-N classical  
 
methods but now I would like to venture into others methods available [9].  
 
However this depends on the opportunity in my work place.   
 
 
Finally this project has made me more appreciative of the Control Engineering  
 
and its contribution to the improvement of the industrial and society. The fact is,  
 
in every aspect of our life, Control Engineering is always with us. Let it be in our  
 
room, in our car or even in the complex application of the Biomedical field. As  
 
our life improves with more automated system available in our daily life, be  
 
conscious that the background of these happening is the working of control  
 
engineering. 
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Appendix 1 
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Appendix 2 

 
 

Steepest_descent_for_step.m 
 
%------------------------------------------------------------- 
clear 
pack 
clc 
format long e 
M = 1601;         %number of samples taken starting from nT=0 
T = 0.0025;  %in second 
r = ones(1,M); %Unit step signal 
q0 = 0.001; 
q1 = -q0; 
q2 = 0; 
 
initial_q = [q0 q1 q2]; 
s_old = [];         %store the value of s 
delta_q = 0.00009; 
gamma = 0.005;      %step length 
number_of_trial = 51; 
 
for index = 1:1:number_of_trial, 
 
 %Finding S 
 [k,e] = e_function(T,q0,q1,q2,r); 
 s = abs(e)*k'; %absolute value of matrix e multiply 
         %with transpose of matrix k 
 
 %Finding S_q0 
 [k,e] = e_function(T,(q0+delta_q),q1,q2,r); 
 s_q0 = abs(e)*k'; 
 
 %Finding S_q1 
 [k,e] = e_function(T,q0,(q1+delta_q),q2,r); 
 s_q1 = abs(e)*k'; 
 
 %Finding S_q2 
 [k,e] = e_function(T,q0,q1,(q2+delta_q),r); 
 s_q2 = abs(e)*k'; 
 
 grad_of_s_due_to_q0 = (s_q0-s)/delta_q; 
 grad_of_s_due_to_q1 = (s_q1-s)/delta_q; 
 grad_of_s_due_to_q2 = (s_q2-s)/delta_q; 
 
 delta = sqrt(grad_of_s_due_to_q0^2+... 
                grad_of_s_due_to_q1^2+... 
              grad_of_s_due_to_q2^2); 
 
 constant_p = gamma/delta; 
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      q0_old = q0; 
 q1_old = q1; 
 q2_old = q2; 
 if index < number_of_trial, 
  s_old = s; 
 end 
 
 q0 = q0 - constant_p * grad_of_s_due_to_q0; 
 q1 = q1 - constant_p * grad_of_s_due_to_q1; 
 q2 = q2 - constant_p * grad_of_s_due_to_q2; 
 
end 
 
save try_step initial_q q0 q1 q2 T r index delta_q gamma 
save try_step_backcopy initial_q q0_old q1_old q2_old s_old 
save try_step_backcopy q0 q1 q2 s T r index delta_q gamma -append 
 
disp('Previous value q0 q1 q2 s') 
[q0_old,q1_old,q2_old,s_old] 
disp('Latest value q0 q1 q2 s') 
[q0,q1,q2,s] 
 
[k,e] = e_function(T,q0,q1,q2,r); 
c = r - e; 
 
plot(k,e) 
xlabel('time(nT)'),ylabel('e(nT)') 
title('Error signal,e(nT)') 
figure(1); 
 
plot(k,c) 
xlabel('time(nT)'),ylabel('c(nT)') 
title('Output signal,c(nT)') 
figure(2); 

 
%--------------------------------------------------------------------- 
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E_Function.m 
function [k,e]=e_function(T,q0,q1,q2,r) 
%E_FUNCTION  Calculate the error signal, e(nT) in a closed loop system 
%                                               
%            The format is given as [k,e]=e_function(T,q0,q1,q2,r) 
%             
%            r is the input signal which starts from nT = 0. 
%            Since the E_FUNCTION is derived using 'nT', r should be a 
%            function of 'nT'. 
% 
%            T is the sample period. 
%            q0, q1, q2, are the parameters of a digital PID 
%   controller. 
%            E_FUNCTION returns the error ouput, e and matrix k which 
%            contains [0 T 2T 3T ...]. 
 
%Check the number of input arguments 
if nargin < 5, 
   error('The number of input arguments is less than 5.'); 
end 
 
%Check the number of output arguments 
if nargout < 2, 
   error('The number of output arguments is less than 2.'); 
end 
 
A = 2*exp(-5*T)+1+exp(-T); 
B = exp(-5*T)+exp(-6*T); 
 
B1 = q0; 
B2 = q1; 
B3 = q2; 
B4 = (1+A); 
B5 = (A+B); 
B6 = B; 
 
D=2+B1; 
 
[n,M] = size(r); 
 
signal_r = r;  %Make a copy of signal r(nT) 
 
r = [0 0 0 0];  %r(1) point to r(nT); 
         %r(2) point to r(nT-T); 
         %r(3) point to r(nT-2T); 
         %r(4) point to r(nT-3T); 
 
e_temp = [0 0 0 0 ]; %e_temp(1) point to e(nT); 
         %e_temp(2) point to e(nT-T); 
         %e_temp(3) point to e(nT-2T); 
         %e_temp(4) point to e(nT-3T); 
                        
 
 
 
for k = 1:1:M, 
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 r(1) = signal_r(k); 
 e_temp(1) = (2/D)*r(1)+(B4/D)*r(2)+(B5/D)*r(3)+(B6/D)*r(4)-... 
             ((B4+B2)/D)*e_temp(2)-((B5+B3)/D)*e_temp(3)-... 
                  (B6/D)*e_temp(4); 
    
 e(k)=e_temp(1); 
 r(4)=r(3); 
 r(3)=r(2); 
 r(2)=r(1); 
      e_temp(5)=e_temp(4); 
 e_temp(4)=e_temp(3); 
 e_temp(3)=e_temp(2); 
 e_temp(2)=e_temp(1); 
end 
 
k=T*[0:1:M-1];  %The time that a particular sample is taken 
 
 
%---------------------------------------------------------------- 
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Initial_PID_GA.m 
 

%____________________________________________________________________ 
clc 
clear 
close all 
global sys_controlled 
global time 
global sysrl %Plant. 
%____________________________________________________________________ 
%Defining sysrl 
den1=[1 6 5 0]; 
num1=[1]; 
sysrl=tf(num1,den1); 
%____________________________________________________________________ 
%Initialising the genetic algorithm 
populationSize=80; 
variableBounds=[-100 100;-100 100;-100 100]; 
evalFN='PID_objfun_MSE'; 
%Change this to relevant object function 
evalOps=[]; 
options=[1e-6 1]; 
initPop=initializega(populationSize,variableBounds,evalFN,... 
evalOps,options); 
%____________________________________________________________________ 
%Setting the parameters for the genetic algorithm 
bounds=[-100 100;-100 100;-100 100]; 
evalFN='PID_objfun_MSE';%change this to relevant object function 
evalOps=[]; 
startPop=initPop; 
opts=[1e-6 1 0]; 
termFN='maxGenTerm'; 
termOps=100; 
selectFN='normGeomSelect'; 
selectOps=0.08; 
xOverFNs='arithXover'; 
xOverOps=4; 
mutFNs='unifMutation'; 
mutOps=8; 
%____________________________________________________________________ 
%Iterating the genetic algorithm 
[x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,... 
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps); 
%____________________________________________________________________ 
%Plotting Genetic algorithm controller  
den1=[1 6 5 0]; 
num1=[1]; 
sysrl=tf(num1,den1); 
%Creating the optimal PID controller from GA results 
ga_pid=tf([x(1) x(2) x(3)],[1 0]); 
ga_sys=feedback(series(ga_pid,sysrl),1); 
figure(1) 
hold on; 
step(ga_sys,time,'g');%Green-genetic algorithm 
%____________________________________________________________________ 
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%Plotting best population progress 
figure(2) 
subplot(3,1,1),plot(bPop(:,1),bPop(:,3)),... 
title('Kp Value'),, ylabel('Gain'); 
subplot(3,1,2),plot(bPop(:,1),bPop(:,4)),... 
title('Ki Value'),, ylabel('Gain'); 
subplot(3,1,3),plot(bPop(:,1),bPop(:,2)),... 
title('Kd Value'),xlabel('Generations'), ylabel('Gain'); 
%____________________________________________________________________ 
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PID_objfun_mse.m 
 
%____________________________________________________________________ 
function [x_pop, fx_val]=PID_objfun_MSE(x_pop,options) 
global sys_controlled 
global time 
global sysrl 
%____________________________________________________________________ 
Kp=x_pop(2); 
Ki=x_pop(3); 
Kd=x_pop(1); 
%____________________________________________________________________ 
%creating the PID controller from current values 
pid_den=[1 0]; 
pid_num=[Kd Kp Ki]; 
pid_sys=tf(pid_num,pid_den); %overall PID controller 
%Placing PID controller in unity feedback system with 'sysrl' 
sys_series=series(pid_sys,sysrl); 
sys_controlled=feedback(sys_series,1); 
%____________________________________________________________________ 
time =0:0.1:30; 
[y t] = step(sys_controlled,time); % Step response of closed-loop 
system 
%____________________________________________________________________ 
%Calculating the error 
for i=1:301 
error(i) = 1-y(i); 
end 
%Calculating the MSE 
error_sq = error*error'; 
MSE=error_sq/max(size(error)); 
%____________________________________________________________________ 
%Ensuring controlled system is stable 
poles=pole(sys_controlled); 
if poles(1)>0 
MSE=100e300; 
elseif poles(2)>0 
MSE=100e300; 
elseif poles(3)>0 
MSE=100e300; 
elseif poles(4)>0 
MSE=100e300; 
elseif poles(5)>0 
MSE=100e300; 
end 
fx_val=1/MSE; 
%____________________________________________________________________ 
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Matlab Codes From GAOT 
 
Ga.m 
%------------------------------------------------------------------- 
function [x,endPop,bPop,traceInfo] = 
ga(bounds,evalFN,evalOps,startPop,opts,... 
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 
% GA run a genetic algorithm 
% function 
%[x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts, 
%                                       
%termFN,termOps,selectFN,selectOps, 
%                                       
%xOverFNs,xOverOps,mutFNs,mutOps) 
%                                 
% Output Arguments: 
%   x            - the best solution found during the course of the run 
%   endPop       - the final population  
%   bPop         - a trace of the best population 
%   traceInfo    - a matrix of best and means of the ga for each 
%generation 
% 
% Input Arguments: 
%   bounds       - a matrix of upper and lower bounds on the variables 
%   evalFN       - the name of the evaluation .m function 
%   evalOps      - options to pass to the evaluation function ([NULL]) 
%   startPop     - a matrix of solutions that can be initialized 
%                  from initialize.m 
%   opts         - [epsilon prob_ops display] change required to 
%consider two  
%                  solutions different, prob_ops 0 if you want to apply 
%the 
%                  genetic operators probabilisticly to each solution, 
%1 if 
%                  you are supplying a deterministic number of operator 
%                  applications and display is 1 to output progress 0 
%for 
%                  quiet. ([1e-6 1 0]) 
%   termFN       - name of the .m termination function (['maxGenTerm']) 
%   termOps      - options string to be passed to the termination 
%function 
%                  ([100]). 
%   selectFN     - name of the .m selection function 
%(['normGeomSelect']) 
%   selectOpts   - options string to be passed to select after 
%                  select(pop,#,opts) ([0.08]) 
%   xOverFNS     - a string containing blank seperated names of Xover.m 
%                  files (['arithXover heuristicXover simpleXover'])  
%   xOverOps     - A matrix of options to pass to Xover.m files with 
%the 
%                  first column being the number of that xOver to 
%perform 
%                  similiarly for mutation ([2 0;2 3;2 0]) 
%   mutFNs       - a string containing blank seperated names of 
%mutation.m  
%                  files (['boundaryMutation multiNonUnifMutation ... 
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%                           nonUnifMutation unifMutation']) 
%   mutOps       - A matrix of options to pass to Xover.m files with 
%the 
%                  first column being the number of that xOver to 
%perform 
%              similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0]) 
% 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on 
%Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, 
USA. 
 
%%$Log: ga.m,v $ 
%Revision 1.10  1996/02/02  15:03:00  jjoine 
% Fixed the ordering of imput arguments in the comments to match 
% the actual order in the ga function. 
% 
%Revision 1.9  1995/08/28  20:01:07  chouck 
% Updated initialization parameters, updated mutation parameters to 
reflect 
% b being the third option to the nonuniform mutations 
% 
%Revision 1.8  1995/08/10  12:59:49  jjoine 
%Started Logfile to keep track of revisions 
% 
 
 
n=nargin; 
if n<2 | n==6 | n==10 | n==12 
  disp('Insufficient arguements')  
end 
if n<3 %Default evalation opts. 
  evalOps=[]; 
end 
if n<5 
  opts = [1e-6 1 0]; 
end 
if isempty(opts) 
  opts = [1e-6 1 0]; 
end 
 



 80

if any(evalFN<48) %Not using a .m file 
  if opts(2)==1 %Float ga 
    e1str=['x=c1; c1(xZomeLength)=', evalFN ';'];   
    e2str=['x=c2; c2(xZomeLength)=', evalFN ';'];   
  else %Binary ga 
    e1str=['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=',... 
 evalFN ';']; 
  end 
else %Are using a .m file 
  if opts(2)==1 %Float ga 
    e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];   
    e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];   
  else %Binary ga 
    e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN ... 
 '(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];   
  end 
end 
 
 
if n<6 %Default termination information 
  termOps=[100]; 
  termFN='maxGenTerm'; 
end 
if n<12 %Default muatation information 
  if opts(2)==1 %Float GA 
  mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation… 
unifMutation']; 
    mutOps=[4 0 0;6 termOps(1) 3;4 termOps(1) 3;4 0 0]; 
  else %Binary GA 
    mutFNs=['binaryMutation']; 
    mutOps=[0.05]; 
  end 
end 
if n<10 %Default crossover information 
  if opts(2)==1 %Float GA 
    xOverFNs=['arithXover heuristicXover simpleXover']; 
    xOverOps=[2 0;2 3;2 0]; 
  else %Binary GA 
    xOverFNs=['simpleXover']; 
    xOverOps=[0.6]; 
  end 
end 
if n<9 %Default select opts only i.e. roullete wheel. 
  selectOps=[]; 
end 
if n<8 %Default select info 
  selectFN=['normGeomSelect']; 
  selectOps=[0.08]; 
end 
if n<6 %Default termination information 
  termOps=[100]; 
  termFN='maxGenTerm'; 
end 
if n<4 %No starting population passed given 
  startPop=[]; 
end 
if isempty(startPop) %Generate a population at random 
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  %startPop=zeros(80,size(bounds,1)+1); 
  startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2)); 
end 
 
if opts(2)==0 %binary 
  bits=calcbits(bounds,opts(1)); 
end 
 
xOverFNs=parse(xOverFNs); 
mutFNs=parse(mutFNs); 
 
xZomeLength  = size(startPop,2);  %Length of the 
xzome=numVars+fittness 
numVar       = xZomeLength-1;   %Number of variables 
popSize      = size(startPop,1);  %Number of individuals in the pop 
endPop       = zeros(popSize,xZomeLength); %A secondary population 
matrix 
c1           = zeros(1,xZomeLength);  %An individual 
c2           = zeros(1,xZomeLength);  %An individual 
numXOvers    = size(xOverFNs,1);  %Number of Crossover operators 
numMuts      = size(mutFNs,1);   %Number of Mutation operators 
epsilon      = opts(1);          %Threshold for two fittness to differ 
oval         = max(startPop(:,xZomeLength)); %Best value in start pop 
bFoundIn     = 1;    %Number of times best has changed 
done         = 0;                       %Done with simulated evolution 
gen          = 1;    %Current Generation Number 
collectTrace = (nargout>3);   %Should we collect info every gen 
floatGA      = opts(2)==1;              %Probabilistic application of 
ops 
display      = opts(3);                 %Display progress  
 
while(~done) 
%Elitist Model 
[bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop 
best =  startPop(bindx,:); 
if collectTrace 
traceInfo(gen,1)=gen;             %current generation 
traceInfo(gen,2)=startPop(bindx,xZomeLength);       %Best fittness 
traceInfo(gen,3)=mean(startPop(:,xZomeLength));     %Avg fittness 
traceInfo(gen,4)=std(startPop(:,xZomeLength));  
end 
  
if ( (abs(bval - oval)>epsilon) | (gen==1)) %    if display 
fprintf(1,'\n%d %f\n',gen,bval);        %Update the display 
end 
if floatGA 
bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix 
else 
bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)... 
startPop(bindx,xZomeLength)]; 
end 
bFoundIn=bFoundIn+1;          %Update number of changes 
oval=bval;                    %Update the best val 
else 
if display 
fprintf(1,'%d ',gen);     %Otherwise just update num gen  
end 
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end 
   
endPop = feval(selectFN,startPop,[gen selectOps]); %Select 
   
if floatGA %Running with the model where the parameters are numbers of 
%ops 
for i=1:numXOvers, 
for j=1:xOverOps(i,1), 
a = round(rand*(popSize-1)+1); %Pick a parent 
b = round(rand*(popSize-1)+1); %Pick another parent 
xN=deblank(xOverFNs(i,:));  %Get the name of crossover function 
[c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(i,:)]); 
  
if c1(1:numVar)==endPop(a,(1:numVar)) %Make sure we created a new  
c1(xZomeLength)=endPop(a,xZomeLength);  
elseif c1(1:numVar)==endPop(b,(1:numVar)) 
c1(xZomeLength)=endPop(b,xZomeLength); 
else  
%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
eval(e1str); 
end 
if c2(1:numVar)==endPop(a,(1:numVar)) 
c2(xZomeLength)=endPop(a,xZomeLength); 
elseif c2(1:numVar)==endPop(b,(1:numVar)) 
c2(xZomeLength)=endPop(b,xZomeLength); 
else  
%[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]); 
eval(e2str); 
end       
  
endPop(a,:)=c1; 
endPop(b,:)=c2; 
end 
end 
   
for i=1:numMuts, 
for j=1:mutOps(i,1), 
a = round(rand*(popSize-1)+1); 
c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),bounds,[gen mutOps(i,:)]); 
if c1(1:numVar)==endPop(a,(1:numVar))  
c1(xZomeLength)=endPop(a,xZomeLength); 
else 
%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
eval(e1str); 
end 
endPop(a,:)=c1; 
end 
end 
     
else %We are running a probabilistic model of genetic operators 
for i=1:numXOvers, 
xN=deblank(xOverFNs(i,:));  %Get the name of crossover function 
cp=find(rand(popSize,1)<xOverOps(i,1)==1); 
if rem(size(cp,1),2) cp=cp(1:(size(cp,1)-1)); end 
cp=reshape(cp,size(cp,1)/2,2); 
for j=1:size(cp,1) 
a=cp(j,1); b=cp(j,2);  
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[endPop(a,:) endPop(b,:)] = feval(xN,endPop(a,:),endPop(b,:),... 
bounds,[gen xOverOps(i,:)]); 
end 
end 
for i=1:numMuts 
mN=deblank(mutFNs(i,:)); 
for j=1:popSize 
endPop(j,:) = feval(mN,endPop(j,:),bounds,[gen mutOps(i,:)]); 
eval(e1str); 
end 
end 
end 
   
gen=gen+1; 
done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done 
startPop=endPop;    %Swap the populations 
  
[bval,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution 
startPop(bindx,:) = best;   %replace it with the worst 
end 
 
[bval,bindx] = max(startPop(:,xZomeLength)); 
if display  
fprintf(1,'\n%d %f\n',gen,bval);    
end 
 
x=startPop(bindx,:); 
if opts(2)==0 %binary 
  x=b2f(x,bounds,bits); 
  bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)... 
  startPop(bindx,xZomeLength)]; 
else 
  bPop(bFoundIn,:)=[gen startPop(bindx,:)]; 
end 
 
if collectTrace 
  traceInfo(gen,1)=gen;   %current generation 
  traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness 
  traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness 
end 
%----------------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 



 84

MaxGenTerm.m 
%----------------------------------------------------------------- 
function [done] = maxGenTerm(ops,bPop,endPop) 
% function [done] = maxGenTerm(ops,bPop,endPop) 
% 
% Returns 1, i.e. terminates the GA when the maximal_generation is  
%reached. 
% 
% ops    - a vector of options [current_gen maximum_generation] 
% bPop   - a matrix of best solutions [generation_found 
%solution_string] 
% endPop - the current generation of solutions 
 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on 
%Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, 
USA. 
 
currentGen = ops(1); 
maxGen     = ops(2); 
done       = currentGen >= maxGen; 
 
%---------------------------------------------------------------------- 
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NormGeomSelect.m 
%------------------------------------------------------------------- 
function[newPop] = normGeomSelect(oldPop,options) 
% NormGeomSelect is a ranking selection function based on the 
normalized 
% geometric distribution.   
% 
% function[newPop] = normGeomSelect(oldPop,options) 
% newPop  - the new population selected from the oldPop 
% oldPop  - the current population 
% options - options to normGeomSelect [gen 
probability_of_selecting_best] 
 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on 
Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, 
USA. 
 
q=options(2);     % Probability of selecting the best 
e = size(oldPop,2);    % Length of xZome, i.e. numvars+fit 
n = size(oldPop,1);    % Number of individuals in pop 
newPop = zeros(n,e);    % Allocate space for return pop 
fit = zeros(n,1);    % Allocates space for prob of 
select 
x=zeros(n,2);            % Sorted list of rank and id 
x(:,1) =[n:-1:1]';    % To know what element it was 
[y x(:,2)] = sort(oldPop(:,e));  % Get the index after a sort 
r = q/(1-(1-q)^n);    % Normalize the distribution, q 
prime 
fit(x(:,2))=r*(1-q).^(x(:,1)-1);  % Generates Prob of selection  
fit = cumsum(fit);    % Calculate the cumulative prob. 
func 
rNums=sort(rand(n,1));    % Generate n sorted random numbers 
fitIn=1; newIn=1;    % Initialize loop control 
while newIn<=n     % Get n new individuals 
  if(rNums(newIn)<fit(fitIn))    
    newPop(newIn,:) = oldPop(fitIn,:);  % Select the fitIn individual  
    newIn = newIn+1;    % Looking for next new individual 
  else 
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    fitIn = fitIn + 1;    % Looking at next potential 
selection 
  end 
end 
 
%---------------------------------------------------------------------- 
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ArithXover.m 
%---------------------------------------------------------------------- 
function [c1,c2] = arithXover(p1,p2,bounds,Ops) 
% Arith crossover takes two parents P1,P2 and performs an interpolation 
% along the line formed by the two parents. 
% 
% function [c1,c2] = arithXover(p1,p2,bounds,Ops) 
% p1      - the first parent ( [solution string function value] ) 
% p2      - the second parent ( [solution string function value] ) 
% bounds  - the bounds matrix for the solution space 
% Ops     - Options matrix for arith crossover [gen #ArithXovers] 
 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on 
Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, 
USA. 
 
% Pick a random mix amount 
a = rand; 
 
% Create the children 
c1 = p1*a     + p2*(1-a); 
c2 = p1*(1-a) + p2*a; 
%--------------------------------------------------------------------- 
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UniformMutate.m 
%------------------------------------------------------------- 
function [parent] = uniformMutate(parent,bounds,Ops) 
% Uniform mutation changes one of the parameters of the parent 
% based on a uniform probability distribution. 
% 
% function [newSol] = multiNonUnifMutate(parent,bounds,Ops) 
% parent  - the first parent ( [solution string function value] ) 
% bounds  - the bounds matrix for the solution space 
% Ops     - Options for uniformMutation [gen #UnifMutations] 
 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on 
Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, 
USA. 
 
df = bounds(:,2) - bounds(:,1);  % Range of the variables 
numVar = size(parent,2)-1;   % Get the number of variables  
% Pick a variable to mutate randomly from 1-number of vars 
mPoint = round(rand * (numVar-1)) + 1; 
newValue = bounds(mPoint,1)+rand * df(mPoint); % Now mutate that point 
parent(mPoint) = newValue;   % Make the child 
%---------------------------------------------------------------------- 


