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Abstract 
 

The use of composites plays an important role in the fields of Mechanical and 

Civil Engineering. The idea of using composite materials in the two afore 

mentioned fields are no longer new. In the Fibre Composite Design and 

Development (FCDD), University of Southern Queensland (USQ) many 

researches and experiments on new lightweight materials and structures have 

been carried out. In the research, FCDD found that the composites made from 

vinylester resins suffer considerable shrinkage during hardening. With this issue 

in mind, research on the methods to decrease the shrinkage of the composites had 

been carried out. Ku (2002) claimed that by having vinyl ester composites cured 

under microwave conditions, such shrinkage can be reduced. The material used 

was thirty three percent by weight flyash particulate reinforced vinyl ester 

composite VE/FLYASH (33%). Unfortunately, the impact strength of the 

composites cured under microwave conditions with power level 540 Watts as 

compared to the composites cured under microwave conditions with power level 

180 Watts and 360 Watts is still in doubt. 

   

With the above doubt in mind, this project was carried out to determine whether 

impact strength of the composites cured under microwave with power level 540 

Watts, 360 Watts and also 180 Watts. Drop weight impact test was used to carry 

out the impact strength test. It was found that having the specimens cured with 

power level of 540 Watt, the impact strength had on these specimens were alike 

the one cured with power level 360 Watts and 180 Watts.  
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Chapter 1 

 
Introduction 

 
1.1 Project Aim 
 
The aim of this project was about the evaluation of impact strength on particulate 

reinforced (25% and 33%) Vinyl Ester composite cured under microwave conditions. 

The shrinkage of the composites will be measured under ambient conditions and 

microwave conditions.  

 

1.1.1 Specific Objectives 

 

This project will be produced specimens of 25% and 33 % VE/FLYASH under 

ambient conditions and microwave conditions. These specimens are to investigate the 

impact strength of 25% and 33% VE/FLYASH cured under ambient condition and 

microwave conditions. By the way, the shrinkage of the specimens also will be 

measured under microwave conditions in various exposure times. 

 

 

1.2 Dissertation Overview 

 
The reader will be introduced in this section to a very brief overview on the material 

presented on each chapter of the dissertation.  
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Chapter Two 
 

Chapter two discusses on the background information of vinyl ester composites. This 

will be followed by introducing to the reader a more detailed overview of the family 

of vinyl ester material. The background overview on the materials used and produced 

will also be introduced to the reader in the later part of this chapter. 

 

Chapter Three 

 

Chapter three discusses on the interaction between microwaves and materials used in 

this project. The ways of microwaves can be used to reduce the shrinkage of the 

composite will then be introduced to the reader. Various risks involved in curing 

using microwave irradiation and the safety measures that needed to be undertaken will 

be discussed in the later part of the chapter.    

 

Chapter Four 

 

Chapter four discusses on the impact test method that are widely used. The impact test 

method used in this research project will then be introduced to reader. Instrumentation 

that incorporated into this test method and test rig setup will be discussed in more 

detail in later part of this chapter.   

 

 

Chapter Five 

 

Chapter five discusses on the experimental work in this research project. Discussion 

on production of specimens will be made first follow by preliminary testing on these 
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specimens. Discussion on data preparation and failure analysis will then be introduced 

to reader.   

 

Chapter Six 

 

Chapter six discusses on the results obtained from the experimental work and testing. 

This will include the impact strength had on every specimens cast. Comparison of the 

results will also be made to determine whether specimens cured with microwave 

tended to have less impact strength or not. The chapter will then be ended with 

discussion on overall results obtained.  

 

Chapter 7 

 

Chapter seven is the conclusions and recommendations for this research project. This 

will include the recommendations given by the author as a guide for further work in 

this project area.  

 

1.3 Publication  

One paper, Impact Strength of Vinyl Ester Composites Cured by Microwave 

Irradiation: Preliminary Results, submitted for publication to the Proceedings of the 

IMechE, Part L, Journal of Materials: Design and Applications.  

 

 



 

 

 
Chapter 2 

 
Composite Material 

 
 

2.1 Introduction 
 
Composites comprise of two or more types of materials those, when combined, lead to 

improved properties over the individual components. In this case, fiber and resin are 

combined to form polymer-based composites, in which the fibers are oriented to carry 

the loads. Composites have lighter, higher strength and stiffer than conventional 

materials. This all was due to aligned fibers carrying the loads; their adaptive nature 

can align fibers in the direction to carry the load.  They can be designed to minimum 

weight without sacrificing strength. In this project, particles will be dispersed in a 

polymer matrix. The background and description of polymer matrix composites 

(PMCs) as well as their classification will be introduced later. In the case of 

thermosets, the reader will be introduced to epoxies, polyesters and vinyl ester.  
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2.2 Types of Composite Materials 

 

Composites are polymer matrix, either thermoset or thermoplastic, reinforced with a 

fiber or other material with a sufficient aspect ratio (length to thickness) to provide a 

discernible reinforcing function in one or more directions. Not all plastics are 

composites. In fact, the majority of plastic materials today are pure plastic and not 

some form of composite. Many products such as toys, decorative products, household 

goods and similar applications require only the strength of the plastic resin to perform 

their functions. “Engineering-grade” thermoplastics can offer improved performance 

characteristics, such as increased heat distortion temperatures, but usually at higher 

cost than general-purpose plastic resins. When additional strength is needed, many 

types of plastics can be reinforced with structural materials- usually reinforcing fibers 

to meet the demands for higher performance. Any thermoplastic or thermoset plastic 

resin that is reinforced is considered as a composite.   Figure 2.1 shows the 

classification of composites. 

 

 

                                                    Figure 2.1: The classification of composites. 
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There are several types of composites. Most composites in industrial use are based on 

polymeric matrices: thermosets and thermoplastics. These are usually reinforced with 

aligned ceramic fibres, such as glass or carbon. Most recently, there has been 

considerable interesting in metal matrix composites (MMCs), such as aluminium 

reinforced with ceramic particles or short fibres, and titanium containing long, large-

diameter fibres. The property enhancements being sought by the introduction of 

reinforcement are often less pronounced than for polymers, with improvements in 

high-temperature performance or tribological properties. While various industrial 

applications have been developed or are being explored for MMCs, their commercial 

usage is still quite limited when compared to that of polymer composite (PMCs). 

Finally, composites based on ceramic materials (CMCs) are also being studied.   

Figure 2.2 illustrates the properties of fiber composites. 

 

 

                                             Figure 2.2: The properties of fiber composites. 

 

The objective is usually to impart toughness to the matrix by the introduction of other 

constituents, since the stiffness and strength are unlikely to be much affected. Such 

materials are still, for the most part, in the early stages of development, partly because 

they are rather difficult to manufacture. Composites have come of age due to the 

widespread recognition and acceptance among engineers, designers, manufacturers 
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and management for their unique combinations of performance benefits which these 

materials offer. Composite features translate into multiple benefits; designers, 

engineers, and others associated with turning design concepts into product realities 

can make their jobs easier and more effective.  

 

In considering the formulation of a composite material for a particular type of 

application, it is important to consider the properties exhibites by the potential 

constituents. The properties of particular interesting are the stiffness (Young’s 

modulus), strength and toughness. Density is of great significance. Thermal properties, 

such ad expansivity and conductivity, must also be taken into account. In particular, 

because composite materials are subject to temperature changes (during manufacture 

and/ or in service), a mismatch between the thermal expansivities of the constituents 

leads to internal residual stresses. These can have a strong effect on the mechanical 

behavior. Some representative property data are shown in the Table 2.1 for various 

types of matrix and reinforcement, as well as for some typical engineering materials 

and a few representative composites. Inspection of these data shows that some 

attractive property combination (for example, high stiffness/strength and low density) 

can be obtained with composites. 
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Table 2.1: Overview of properties exhibited different classes of material 

 

 

 

2.3 Composite Benefits 

In any successful composites application, one or more of the following benefits will 

normally be at work (Figure 2.3 shows the benefits of 3 types of composites): 

 

 

Figure 2.3: Composite Benefits 
 

1. High strength – Composites are among the most effective materials in 

delivering high strength. These materials can be designed to provide a wide 

range of mechanical properties including tensile, flexural, impact compressive 
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strength. Unlike traditional materials, composites can have their strengths 

oriented or tailored to meet specific design requirements of an application. 

 

2. Light weight –Composites deliver more strength per unit of weight than 

unreinforced plastics, as well as most metals. This combination of high 

strength/light weight is powerful incentive for the effective use composites.  

 

3. Design Flexibility -Composites can be formed into virtually any shape a 

designer may have in mind: complex or simple, large or small structural or 

appearance, decorative or functional. With composites, many choices are 

available without having to make costly trade-offs. Addition, composites free 

designers to try new approaches, from prototype to production. From the 

Figure 2.4, it illustrates the particle-reinforced of elastics modulus. 

 

 

Figure 2.4: Particle-reinforced of elastics modulus 

 

4.  Dimensional Stability- Under severe mechanical and environmental stresses, 

thermoset composites maintain their shape and functionality. Typically, 

composites do not exhibit the viscoelastic or “cold-creep” characteristics of 
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unreinforced thermoplastics. The coefficient of thermal expansion is reduced. 

Generally speaking, the yield point of a composite is its break point. 

 

5. High Dielectric Strength – Composites have outstanding electrical insulating 

properties, making them obvious choices for current carrying components. It is 

also possible to impart electrical conductivity to composites through the use of 

appropriate modifiers and additives, this is required by the application. 

 

6. Corrosion Resistance – Composites do not rust or corrode. There are a number 

of resin systems available which provide long-term resistance to nearly every 

chemical and temperature environment. Properly designed composite parts 

have long service life and minimum maintenance as well. 

7.  Parts Consolidation – Composite moldings often replace assemblies of many 

parts and fasteners required for traditional materials such as steel. This can 

reduce manufacturing cost and frequently results in better, more trouble-free 

part. 

 

8. Finishing- In many composites applications color can be molded into the 

product for long lasting, minimum maintenance appearance. Low profile and 

low-shrink resin systems are compatible with most metallic painting 

operations. Proper design molds and choice of materials can reduce trim waste, 

flash, sanding and other post-molding operations. 
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9. Low Tooling Cost – As a general rule, regardless of the processing methods 

selected, tooling costs for composites can be lower than tooling costs and 

materials such as steel, aluminum, alloys and other materials. 

 

10. Proven History of Successful Application – In the last 45 years, over 50,000 

successful composite applications have helped to prove the value these 

materials. Where once the pioneers of the industry struggled to blaze a trail for 

composite materials acceptance, today’s engineers, designers and marketing 

professionals can point with confidence to a growing array of end uses and 

applications testify to the cost and performance benefits of composites. 

 

 

2.4 The Basics of Polymers  
 

The term polymer comes from “poly” meaning many and “mer”, describing a unit. 

Monomers are single building blocks that when joined together form polymers. All 

polymers commonly used in composites are the products of sophisticated chemical 

processing. Before entering the world of polymers, it is helpful to have an 

understanding of the chemistry involved. You don’t have to be a chemist to 

understand these materials. 

 

Chemists use a shorthand notation for various chemical elements. The significant 

elements which make up most of the plastics we will discuss here are: 

C = carbon 

H = hydrogen 
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O = oxygen 

 

For example, using this shorthand, a typical polyester resin might be something like: 

H – (OOC - C6H4 - COO - C2H4)n – OH 

 

In this case the structure inside the brackets repeats itself many times, as designated 

by the number n. For a polymer, this would be a long chain and the value for n could 

be greater than 100.  

 

Using the same shorthand, styrene would be shown as: 

C6H5 – CH = CH2  

 

 

2.5   Thermoset versus Thermoplastic 
 

Resins or plastics are divided into two major groups known as thermoset and 

thermoplastic. Thermoplastic resins become soft when heated, and may be shaped or 

molded while in a heated semifluid state. Thermoset resins, on the other hand, are 

usually liquids or low melting point solids in their initial form. When used to produce 

finished goods, these thermosetting resins are “cured” by the use of a catalyst, heat or 

a combination of the two. One cured solid thermoset resins cannot be converted back 

to their original liquid form. Unlike thermoplastic resins, cured thermosets will not 

melt and flow when heated and once formed they cannot be reshaped. 

 

The composites industry had been divided into thermoset and thermoplastic camps 

primarily because of differing requirements of their fabrication processes. Both types 
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of plastics can benefit from reinforcement. The initial growth of composites was in 

thermosets – primarily glass fiber reinforced unsaturated polyester resins. Recently, 

however, rapid growth has been occurring in the use of reinforced thermoplastics. 

This trend is expected to continue as thermoplastics improve in properties and cost 

effectiveness. Therefore, it is increasingly important that persons contemplating the 

use of the composites be well versed in both thermosetting and thermoplastic 

polymers. 

 

 

2.6   Thermosetting Resins 
 

The most common thermosetting resins used in the composites industry are 

unsaturated polyester, epoxies, vinyl ester, polyurethanes and phenolics. There are 

differences between these groups that must be understood to choose the proper 

material for a specific application. 

 

 

2.7 Polyester Resins 
 

Unsaturated polyester resins are the workhorse of the composites industry and they 

represent approximately 75% of the total resins used. These resins are also available, 

in a different grade, for injection molding of both composite and non-composite parts. 

Polyesters are produced by the condensation polymerization of dicarboxylic acids and 

diayoric alcohols (glycols). In addition, unsaturated polyester polyesters contain an 

unsaturated material, such as maleic anhydride or fumaric acid, as part of the 

dicarboxylic acid component. The finished polymer is dissolved in a reactive 

monomer such as styrene to give a low viscosity liquid. When this resins cured, the 
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monomer reacts with the unsatured sites on the polymer converting it to a solid 

thermoset structure. 

 

There are many different acids and glycols used in polyester resins. Some of the 

common ones and their reasons for use are listed in the following.   

 

 
 

A range of raw materials and processing techniques are available to achieve the 

desired properties in the formulated or processed polyester resins because polyester 

are so versatile and because of their capacity to be modified or tailored during the 

building of the polymer chains, they have been found to have almost unlimited 

usefulness in all segments of the composites industry. 

 

The principal advantage of these resins is a balance of properties (including) 

mechanical, chemical, electrical), dimensional stability, cost and ease of handling or 

processing. 
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Unsaturated polyesters are divided into classes depending upon structures of their 

basic building blocks. Some common examples would be orthophthalic (“ortho”), 

isophthalic (“iso”), dicyclopentadiene (“DCPD”) and bisphenol A fumarate resins. In 

addition, polyester resins are classified according to end use application as either 

general purpose (GP) or specialty polyester. 

 
 
 
 
 
2.8   Specialty Polyesters  
 

Because polyesters can be chemically tailored to meet the requirements of a wide 

range of application, a number of specialty polyesters are available. The specialty 

polyesters include: 

• Flexibilized polyesters 

• Electrical grade polyesters 

• Corrosion-resistant polyesters 

• Heat resistant polyesters 

• Fire retardant polyesters 

• Translucent polyesters 

• Low shrink/low profile polyesters 

 

Specialty polyester typically derives their performance from the chemical makeup of 

the polymer. The proper use of fillers or additives can also enhance properties like fire 

resistance, fatigue performance or chemical resistance. Improvements in one property 

such as chemical resistance, may also improve other properties, such as temperature 

resistance. Bisphenol A fumarate, for example, is used in fabrication because of its 

ability to tolerate a range of chemical exposure and higher on –service temperatures. 
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Liquid styrenated polyester resins can be easily shipped to fabricators who do the final 

shaping and curing into useful products. The mechanism for curing is a reaction 

between the unsaturation in the polyester and the styrene monomer. This results in the 

polyester chains being tied together by the styrene monomer. The curing of polyester 

resins is much different than for epoxies and urethanes or phenolics. Most epoxies and 

urethanes begin to increase in viscosity as soon as they are catalyzed and continue to 

increase until they are cured.  

 

Polyester provide a specific working time (gel time) with very little viscosity increase 

or temperature change. Gelation takes place when less than 5% of the original 

unsaturation has reactioned and full cure occurs very quickly after this.  

 

 

2.9 Epoxy Resin 

Epoxy resins have a well-established record in a wide range of composite parts and 

structures. The structure of the resin can be engineered to yield a number of different 

products with varying levels of performance. Epoxy resins can also be formulated 

with different materials or blended with other epoxy resins to achieve specific 

performance features. Cure rates can be controlled to match process requirements 

through the proper selection of hardeners and/or catalyst systems. Generally, epoxies 

are cures by addition of an anhydride or an amine hardener. Each hardener produces 

different properties to the finished composite.  
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Epoxies are used primarily for fabricating high performance composites with superior 

mechanical properties, resistance to corrosive liquids and environments, superior 

electrical properties, good performance at elevated temperatures or a combination of 

these benefits, Use of epoxies usually requires a critical application that can justify the 

use of superior performing but higher cost, resin systems. Epoxy resins are used in 

marine automotive electrical appliance and other composite parts and structures, 

although they are generally not cost effective in these markets unless special 

performance is required. Because their viscosity is much higher than most polyester 

resins and requires post cure to obtain ultimate mechanical properties, epoxies are 

more difficult to use. 

 

Epoxy resins are used with a number of fibrous reinforcing materials, including glass, 

carbon and aramid. They are also used as a matrix resins for “whiskers” such as boron, 

tungsten, steel, boron carbide, silicon carbide, graphite and quartz. This latter group is 

of small volume, comparatively high cost and is usually used to meet high strength 

and/or high stiffness requirements. Epoxies are readily usable with most composite 

manufacturing processes, particularly vacuum-bag molding, autoclave molding, 

pressure-bag molding, compression molding, filament winding and hand lay-up. 

 

2.10 Vinyl Ester 

Vinyl Ester was developed to combine the advantages of epoxy resins with the better 

handling/faster cure which are typical for unsatured polyester resins. They are 

produced by reacting epoxy resins with acrylic or methacrylic acid. This provides an 

unsatured site, much like that produced in polyester resins when malefic anhydride is 

used. The resulting material is dissolved in styrene to yield a liquid that is similar to 
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polyester resin. Vinyl esters are also cured with the conventional organic peroxides 

used with polyester resins. 

 

Vinyl ester offer mechanical toughness and excellent corrosion resistance. These 

enhanced properties are obtained without complex processing, handling or special 

shop fabricating practices that are typical with epoxy resins. 

 

2.11 Thermoplastic Resins 

 
Thermoplastics resins offer unique and advantageous properties, particularly when 

combined wit reinforcing fibers to make a composite material. Increasingly, designers 

are capitalizing on the properties of thermoplastic composite material. Increasingly, 

designer is capitalizing on the properties of thermoplastic composites to improve 

product performance and reduce manufacturing costs. Whereas thermoset resins are 

typically characterized as hard and somewhat brittle, thermoplastic resins are 

inherently tough and provide superior impact resistance. Also important is the fact 

that thermoplastic resins do not undergo a time-consuming curing process to achieve 

final properties. This quality translates to shorter cycle times, increased productivity 

and lower part costs. Of growing importance, particularly in automotive markets, is 

that composites made from thermoplastic resins can be readily recycled, meeting the 

demands of environmental mandates. In addition, these are naturally impervious to 

attack from harsh chemicals, petroleum products and environment products and 

environmental elements. Finally, since the group of thermoplastics resins is large and 

varied, one can select a resin with specific properties tailored to the end application. 
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2.12 Stiffness of Composites 

The fibers may be oriented randomly within the material, but it is also possible to 

arrange for them to be oriented preferentially in the direction expected to have the 

highest stresses. Such a material is said to be anisotropic (different properties in 

different directions) and control of the anisotropy is an important means of optimizing 

the material for specific applications. At a microscopic level, the properties of these 

composites are determined by the orientation and distribution of the fibers, as well as 

by the properties of the fiber and matrix materials. The topic known as composite 

micromechanics is concerned with developing estimates of the overall material 

properties from these parameters. 

 

 

 

Figure 2.5: Loading parallel to the fibers. 
 

Consider a typical region of material of unit dimensions, containing a volume fraction 

Vf of fibers all oriented in a single direction. The matrix volume fraction is then Vm = 

1−Vf. This region can be idealized as shown in Figure 2.5 by gathering all the fibers 
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together, leaving the matrix to occupy the remaining volume this is sometimes called 

the “slab model”. If a stress σ1 is applied along the fiber direction, the fiber and 

matrix phases act in parallel to support the load. In these parallel connections the 

strains in each phase must be the same, so the strain є1 in the fiber direction can be 

written as: 

                                                         (2.1)  

The forces in each phase must add to balance the total load on the material. Since the 

forces in each phase are the phase stresses times the area (here numerically equal to 

the volume fraction), we have 

  (2.2) 

 

The stiffness in the fiber direction is found by dividing by the strain: 

   (2.3) 

This relation is known as a rule of mixtures prediction of the overall modulus in terms 

of the moduli of the constituent phases and their volume fractions. 

If the stress is applied in the direction transverse to the fibers as depicted in Fig. 2.6, 

the slab model can be applied with the fiber and matrix materials acting in series. In 

this case the stress in the fiber and matrix are equal (an idealization), but the 

deflections add to give the overall transverse deflection.  

    (2.4) 

Figure 4 shows the functional form of the parallel (Eqn. 1) and series (Eqn. 2) 

predictions for the fiber- and transverse-direction moduli. The prediction of transverse 
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modulus given by the series slab model (Eqn. 2) is considered unreliable, in spite of 

its occasional agreement with experiment. Among other decencies the assumption 

 

Figure 2.6: Loading perpendicular to the fibers. 

 

of uniform matrix strain being untenable; both analytical and experimental studies 

have shown substantial nonuniformity in the matrix strain. Figure 2.6 shows the 

photoelastic fringes in the matrix caused by the perturbing effect of the stiffer fibers. 

(A more complete description of this photo elasticity can be found in the Module on 

Experimental Strain Analysis, but this figure can be interpreted simply by noting that 

closely-spaced photoelastic fringes are indicative of large strain gradients. 

 

In more complicated composites, for instance those with fibers in more than one 

direction or those having particulate or other nonfibrous reinforcements, Eqn. 2.1 

provides an upper bound to the composite modulus, while Eqn. 2.2 is a lower bound 

(see Fig. 2.7). Most practical cases will be somewhere between these two values, and 

the search for reasonable models for these intermediate cases has occupied 

considerable attention in the composites research community. Perhaps the most 

popular model is an empirical one known as the Halpin-Tsai equation 2.2, which 
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can be written in the form: 

  (2.5) 

 
Here ξ is an adjustable parameter that results in series coupling for ξ = 0 and parallel 

averaging for very large ξ. 

 

2.11 Strength of Composites 

Rule of mixtures estimates for strength proceed along lines similar to those for 

stiffness. For instance, consider a unidirectional reinforced composite that is strained 

up to the value at which the fibers begin to break. Denoting this value єfb, the stress 

transmitted by the composite is given by multiplying the stiffness (Eqn. 2.1): 

  (2.6) 

The stress σ* is the stress in the matrix, which is given by єfbEm. This relation is 

linear in Vf , rising from σ*  to the fiber breaking strength σ fb = Ef єfb. However, this 

relation is not realistic at low fiber concentration, since the breaking strain of the 

matrix єmb is usually substantially greater than єfb. If the matrix had no fibers in it, it 

would fail at a stress σ mb = Emєmb. If the fibers were considered to carry no load at 

all, having broken at є= єfb and leaving the matrix to carry the remaining load to  
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Figure 2.7: Rule-of-mixtures predictions for longitudinal (E1) and transverse (E2) modulus, for 
glass-polyester composite (Ef = 73:7 MPa, Em = 4 GPa).  
 
 
carry the remaining load, the strength of the composite would fall off with fiber 

fraction according to 

    (2.7) 

Since the breaking strength actually observed in the composite is the greater of these 

two expressions, there will be a range of fiber fraction in which the composite is 

weakened by the addition of fibers. These relations are depicted in Fig. 2.9. 

 

Figure 2.8: Photoelastic (isochromatic) fringes in a composite model subjected to transverse 
tension  
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Figure 2.9: Strength of unidirectional composite in fiber direction. 
 

 



 

 

 
Chapter 3 
 
 
Resins and Their Interactions with Microwaves 
 
 
 
3.1 Introduction 
 
The most common thermosets used as composite matrices are unsaturated polyesters 

(UP), epoxies and vinyl esters. Unsaturated polyesters dominate the market, whereas 

epoxies are preferred in high-performance applications.  Unsaturated polyester offers 

an attractive combination of low price, reasonably good properties, and simple 

processing.   However, basic unsaturated polyester formulations have drawbacks in 

terms of poor temperature and ultra-violet tolerance.   

 

Additives may significantly reduce these advantages to suit most applications. Where 

mechanical properties and temperature tolerance of unsaturated polyesters no longer 

suffice, epoxies (EP) are often used due to their significant superiority in these 

respects.  Of course, these improved properties come at a higher price and epoxies are 

used most commonly in areas where cost tolerance is highest (Astrom, 1997).  When 

epoxy resins are used to make composite structures, there are three main drawbacks 

(Pritchard, 1999):  
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i) Because of their two-step hardening process, they are slow to cure, and 

they require a minimum post cure of 2 to 4 hours at 120 oC to achieve 70-

80% of optimal properties.  

ii) Their viscosity makes it difficult to wet the glass fibres efficiently.  

iii) The use of amine hardeners renders the cured resins susceptible to acid 

attack. 

 

With this issue in mind, the so-called epoxy vinyl ester range of resins (vinyl ester 

resins) was developed in the 1960s (Pritchard, 1999).  Vinyl esters (VE), as they are 

usually called, are chemically closely related to both unsaturated polyesters and 

epoxies and in most respects represent a compromise between the two.  They were 

developed in an attempt to combine the fast and simple cross linking of unsaturated 

polyesters with the mechanical and thermal properties of epoxies (Astrom, 1997). 

 

To achieve the project objectives, i.e. to reduce the shrinkage of vinyl esters, it will be 

necessary to apply microwave energy in a multimode oven cavity to samples of vinyl 

ester resins under controlled conditions.  A commercial 1.8 kW microwave oven will 

be used.  The 1.8 kW power is actually achieved by launching microwaves from two 

0.9 kW magnetrons.  The power inputs can be varied from 10% (180 W) to 100% 

(1800 W) in steps of 180 W.  

 

3.2 Vinyl Ester Resins 
 
 
Unsaturated resins such as polyesters and vinyl esters have ester groups in their 

structures.  Esters are susceptible to hydrolysis and this process is accelerated and 

catalyzed by the presence of acids or bases.  Vinyl esters contain substantially less 
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ester molecules than polyesters.  They contain only one at each end of the resin 

molecule.  This is illustrated by the structure of bishophenol A vinyl ester in Figure 1.   

This means that vinyl esters, just like epoxies, have few possible crosslink sites per 

molecule.  Vinyl esters of high molecular weight will therefore have relatively low 

crosslink density and thus lower modulus than if the starting point is a lower 

molecular-weight polymer.  Vinyl esters crosslink in time frames and under 

conditions similar to those of unsaturated polyesters, i.e. fairly quickly and often at 

room temperature (Astrom, 1997). Methacrylic acid is used to manufacture the vinyl 

esters.  This means that next to each ester linkage is a large methyl group.  This group 

occupies a lot of space and sterically hinders any molecule approaching the ester 

group by impeding their access.  These two aspects of the design of the vinlyester 

molecule combine to make them more chemically resistant than polyesters (Pritchard, 

1999).  There are three families of vinyl esters.  The most commonly used family is 

based on the reaction between methacrylic acid and diglycidylether of bisphenol A 

(DGEBPA) as shown in Figure 3.1 (Astrom, 1997).  This family of vinyl ester is used 

in this research and the weight of materials has show in Table 3.1: 

 

Figure 3.1: The structure of bishophenol A vinyl ester 
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               Table 3.1: Weight of materials required to make 500 ml of VE/FLYASH (33%)          

 

 Materials Resin MEKP Flyash Composite
Parameters      

Relative density  1.1 1.0 0.7 --- 
Percentage by volume  56 --- 44 100 
Percentage by weight  67 --- 33 100 
Weight for 500 ml of 
composite 

 301.8 (g) 5.6 (g) 154 (g) --- 

 
 
3.3 Cross Linking of Vinyl Esters Resin 
 
 
The polymerisation product between methacrylic acid and bisphenol A is vinyl ester, 

which can be a highly viscous liquid at room temperature or a low melting point solid, 

depending on the acid and bisphenol A used.  For further processing, the polymer is 

dissolved in a low molecular monomer, or reactive dilutent, usually styrene, the result 

is a low viscosity liquid referred to as resin.  The resin used in this research has 50% 

by weight of styrene.  With the addition of a small amount of initiator to the resin the 

cross linking reaction, or curing, is initiated.  The initiator used is organic peroxide, 

e.g. methyl ethyl ketone peroxides (MEKP).  The added amount is usually 1 to 2 

percent by weight.  The initiator is a molecule that producers free radicals.  The free 

radicle attacks one of the double bond of the ends of the polymer and bonds to one of 

the carbon atoms, thus producing a new free radical at the other carbon atom, see the 

initiation step of Figure 3.2, which illustrates the whole cross linking process.  This 

newly created free radical is then free to react with another double bond.  Since the 

small monomer molecules, the styrene molecules, move much more freely within the 

resin than the high molecular weight polymer molecules, this double bond very likely 

belongs to a styrene molecule, as illustrated in the bridging step of Figure 3.2.  The 

bridging step creates a new free radical on the styrene, which is then free to react with 
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another double bond and so on.  Obviously the styrene is not only used as solvent, but 

actively takes part in the chemical reaction.  Monomers are consequently called curing 

agents and initiators are called catalysts. As the molecular weight of the cross linking 

polymer increases it gradually starts to impair the diffusion mobility of the growing 

molecules and the reaction rate slows down.  When the prevented from finding new 

double bonds to continue the movement of the free radicals is also impaired they are 

reaction which then stops.   

 

The result of the cross linking reaction is gigantic, 3D molecules that form a 

macroscopic point of view leads to the transformation of the liquid resin into a rigid 

solid.  The cross linking reaction is intimately linked to temperature.  Since the cross 

linked molecular morphology represents a lower energy state than the random 

molecular arrangement in the resin, the reaction is exothermal. Further the free radical 

production is stimulated by an increase in temperature also promotes molecular 

mobility. Until diffusion limitations reduce the reaction rate, the cross linking rate 

therefore increases; heat is released by the formation of new bonds, which promotes 

an increase in rate of bond formation (Astrom, 1997).  

 

Figure 3.2 shows typical temperature time relations for cross linking of a vinyl ester 

following addition of initiator. The three solid curves on the right hand side of the 

figure represent room temperature cross linking of vinyl esters.  
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Figure 3.2: Schematic of addition or free radical cross linking of vinyl ester 
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The different curves illustrate different amount of initiator, inhibitor, accelerator or 

volume of resin. A reduced amount of initiator and accelerator, as well as an increased 

amount of inhibitor, leads to later cross linking at lower temperature, and vice versa.  

The larger the volume of the resin, the faster the reaction will be. The temperature 

does not immediately increase after addition of an initiator despite free radicals being 

produced. The cross linking reaction does not start and the temperature does not 

increase until all inhibitor molecules have reacted with free radicals, which 

corresponds to inhibition time. As cross linking commences, the pot life is over. The 

resin becomes a rubbery solid quickly and the gel time is reached. The cross linking 

activity now accelerates very rapidly until the increasing molecular weight of the 

cross linking polymer starts restricting molecular movement, which occurs around the 

maximum temperature, and the cross linking gradually tapers off.  On the other hand, 

the dashed line curve on the left hand side of the figure illustrates the hypothetical 

cross linking as a result of the application of microwave to the resin.  In this case, the 

inhibition time is short and maximum temperature is reached quickly.  It is anticipated 

that the result of such a curing will reduce the shrinkage of vinyl ester. 

 

                     Figure 3.3: Temperature time relationships for cross linking of vinyl ester 
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3.4 Shrinkage in VE/Fly-ash (33%) 
 
 
In the workshop of the Fibre Composite Design and Development (FCDD) group, 

University of Southern Queensland (USQ), the vinyl ester resin used is Hetron 922 

PAS in summer and Hetron 922 PAW in winter. The vinyl ester is dissolved in 50% 

by weight of styrene. The curing rate for Hetron 922 PAS will be slower in winter and 

hence Hetron 922 PAW has to be used for this study. They are both based on the 

reaction between methacrylic acid and diglycidylether of bisphenol A (DGEBPA).  

Suppliers of the raw vinyl ester resins claim that shrinkage in cured vinyl esters is 

around 5 to 6 %.  However, the engineers in the Fibre Composite Design and 

Development (FCDD) group, University of Southern Queensland (USQ) found that 

the shrinkage varied from 10 to 12 % for their large components.  Lubin (1982) also 

claimed the same amount of shrinkage for the resin with 50% by weight of styrene.  In 

order to estimate the real shrinkage percentage, one experiment was carried out.   Two 

beakers of 50 milliliters (internal diameter is 44.10 mm) and 200 milliliters (internal 

diameter is 74.95 mm) were employed for the experiment.  To start with polyvinyl 

acetate (PVA) release agent has to be smeared on the inner surfaces of the beakers to 

enable the release of the cured vinyl ester at a later stage.  From the Table 3.2 has 

shown the volume of the composites after shrinkage and before shrinkage: 

 

Table 3.2: Comparison of original and final volumes of VE/FLYASH (33%) 

Original volume (ml) 600 400 200 50 
Final volume (ml)  535.8 363.94 187.2 47.44 
Ambient temperature 16 16 20 20 
Relative humidity 52 52 19 19 
Peak temperature (oC) 143 139 106 85 
Gel time (minutes) 60 65 32.5 35 
Percentage of shrinkage 10.7 9.02 6.40 5.13 
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The resin hardener ratio used in the experiment was 98% resin by volume and 2% 

hardener (MEKP) by volume. The reinforce was fly ash (ceramic hollow spheres) 

particulate and was made 33 % by weight in the cured vinyl ester composite.  Thirty 

three percent by weight of fly ash in the composite is considered optimum by FCDD 

group because the composite will have a reasonable fluidity for casting combined 

with a good tensile strength in service.  The curing rate of the mixture of resin, 

hardener and fly ash will be faster with higher percentage by volume of hardener, 

higher humidity and higher temperature.  The ambient temperature when the 

experiment was carried out was 20 oC and the relative humidity was 19%. The resin is 

a colorless liquid and is first mixed with the red hardener.  After that the fly ash is 

added to the mixture and they are then mixed to give the uncured composite.  To 

make a volume of 250 milliliters of uncured composite (of 44% by volume of fly ash 

or of 33% by weight), the total volume of resin plus hardener = 250 milliliters x 0.56 

= 140 milliliters.   For a composite with 98% resin and 2% hardener by volume, the 

volume of resin required = 140 milliliters x 0.98 = 137.2 milliliters and that of 

hardener required is 2.8 milliliters.   It is easier to measure mass rather than volume so 

137.2 milliliters of resin is converted to 137 x 1.1 = 151 g of resin, where 1.1 is the 

relative density of the resin.  Similarly, the mass of hardener required is 2.8 x 1 = 2.8 

g, where 1 is the relative density of the hardener.  Since the relative density of the fly 

ash is 0.7, the mass of the fly ash required = 110 x 0.7 = 77g.  After mixing, 200 

milliliters of the composite was poured into the beaker with a volume of 200 

milliliters and the rest was poured into another beaker.  Data of temperature against 

time for the beakers were collected.  Temperature measurements were carried out 

from the top of the beakers at three points around the centre of the beaker and an 

average value was used. Figure 3.4 shows the relationship between temperatures 
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against time in curing 200 ml of vinyl ester.  The curve is similar to that found in one 

of the three, on the right hand side of Figure 3.3.  The inhibition time was 10 minutes.  

At time equaled to 30 minutes, the temperature was 54 oC and a crest was formed on 

the surface. At time equaled to 40 minutes, the temperature peaked and was 106 oC.  

The temperature then began to drop.  Room temperature was regained at time equaled 

to 115 minutes.   To determine the initial and final volumes of the composite in the 

beaker, the height of the level of VE/FLYASH (33%) was measured by a digital 

height gauge.  The initial height was 48.24 mm, which represents a volume of 200 ml.  

Twenty four hours later, the height was re-measured and was found to be 47.19 mm.  

The linear shrinkage of the composite after curing was: 

0218.0
24.48

05.1
24.48

19.4724.48
==

−
mm

mmmm  

The volumetric shrinkage of the composite can be expressed as (Kalpakjian, 1991):  
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Curing 200 ml of VE/FLYASH (33%)

0
50

100
150

0 20 40 60 80 100 120

Time (minutes)

Te
m

pe
ra

tu
re

 
(o C

)

 
Figure 3.4: Relationship between temperature and time in curing 200 ml of vinyl ester composite, 

VE/FLYASH (33%) under ambient conditions 
 

Figure 3.5 illustrates the relationship between temperatures against time in curing 50 

ml of vinyl ester.   The inhibition time was 10 minutes.  A crest was formed at time 

equaled to 35 minutes.  The temperature peaked at time equaled to 45 minutes and the 

temperature was 85oC. Temperature returned to 20oC at time equaled to 95 minutes. 

The volume was measured by the same method described above after twenty-four 

hours (1440 minutes) and it was found that the volume was 47.36 ml. The shrinkage  

was 5.28%.  From the results of the experiment, it was found that the larger the 

volume of vinyl ester, the larger the shrinkage and the higher the peak temperature 

would be during curing.  This is in line with the historical data kept by the FCDD 

group.  
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Curing 50 ml of VE/FLYASH (33%)
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        Figure 3.5: Relationship between temperature and time in curing 50 ml of vinyl ester 
composite, VE/FLYASH (33%) 

 

3.5 Rheology of curing Vinyl Esters 

 

Figure 3.6 depicts the degree of cure for vinyl ester against time at various isothermal 

cure temperatures (Osswald and Menges, 1995).  It is found that if the cure 

temperature is 60oC, the curing will complete 11 minutes after the inhibition time and 

the degree of cure is 0.69.  Similarly, if the cure temperature is 40oC, the curing will 

complete 13 minutes after the inhibition time and the degree of cure is 0.36.  

Referring to the previous experiment, in the curing of 200 ml of vinyl ester, it was 

found that the curing started 20 minutes after the inhibition time and the peak 

temperature was 106 oC.  It can be argued that the degree of curing in the experiment 

is higher than 0.69 and is possibly approaching 0.85.  In order to prove this, the cured 

composite (200 ml initially) was stripped off the beaker and studied.  It was found that 

the degree of cure was near complete.  The other cured composite (initially 50 ml) 

was found to be fully cured as well. 
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Figure 3.6: Degree of cure of vinyl ester at different curing temperatures 
 

 

 

3.6 Fundamentals of Microwaves 

 

Microwaves form part of a continuous electromagnetic spectrum that extends from 

low-frequency alternating currents to cosmic rays.  In this continuum, the radio-

frequency range is divided into bands as depicted in Table 3.3 and figure 3.7.  Bands 9, 

10 and 11 constitute the microwave range that is limited on the low-frequency side by 

very high-frequency (VHF) and on the high-frequency side by the far infrared 

(Thuery, 1992).  These microwaves propagate through empty space at the velocity of 

light and their frequency range from 300 MHz to 300 GHz.  The HF and ultra high 

frequency bands constitute a natural resource managed by three international 
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organizations.  These organizations delegate their power to national organizations for 

allocating frequencies to different users. Industrial microwaves are generated by a 

variety of devices such as magnetrons, power grid tubes, klystrons, klystrodes, 

crossed-field amplifiers, traveling wave tubes, and gyrotrons (NRC, 1994). 

 
Figure 3.7: Frequency Bands for Radio Frequency Range 

 
Table 3.3: Frequency Bands for Radio Frequency Range 

Band Designation Frequency limits 
4 VLF         very low frequency     3 kHz     -      30  kHz 
5 LF           low frequency   30 kHz     -     300 kHz 
6 MF          medium frequency 300 kHz     -        3 MHz 
7  HF          high frequency     3 MHz    -      30 MHz 
8 VHF        very high frequency   30 MHz    -    300 MHz 
9 UHF        ultra high frequency 300 MHz   -         3 GHz 
10 SHF        super high frequency     3 GHz   -       30 GHz 
11 EHF        extremely high 

frequency 
  30 GHz   -      300 GHz 

 

Frequency bands reserved for industrial applications are 915 MHz, 2.45 GHz, 5.8 

GHz and 24.124 GHz.  At the customary domestic microwave frequency of 2.45 GHz, 

the magnetrons are the workhorse.  Material processing falls into this category (NRC, 

1994). Magnetrons are the tubes used in conventional microwave ovens found almost 

in every kitchen with a power of the order of a kilowatt. Industrial ovens with output 

to a megawatt are not uncommon.  Huge sums of money and effort have been spent in 

developing microwave-processing systems for a wide range of product applications. 

Most applicators are multimode, where different field patterns are excited 

simultaneously. 
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3.7 Microwave and material interactions 
 
 

The material properties of greatest importance in microwave processing of a dielectric 

are the complex relative permittivity ε = ε′ - jε″ and the loss tangent, tan δ = ε″/ ε′ 

(Metaxas and Meredith, 1983).  The real part of the permittivity, ε′, sometimes called 

the dielectric constant, mostly determines how much of the incident energy is 

reflected at the air-sample interface, and how much enters the sample. The most 

important property in microwave processing is the loss tangent, tan δ or dielectric loss, 

which predicts the ability of the material to convert the incoming energy into heat. For 

optimum microwave energy coupling, a moderate value of ε′, to enable adequate 

penetration, should be combined with high values of ε″ and tan δ, to convert 

microwave energy into thermal energy.  Microwaves heat materials internally and the 

depth of penetration of the energy varies in different materials.  The depth is 

controlled by the dielectric properties.  Penetration depth is defined as the depth at 

which approximately 
e
1  (36.79%) of the energy has been absorbed.  It is also 

approximately given by (Bows, 1994): 

ε
ε
′′
′
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⎞
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=

f
Dp

8.4           (3.2)   

Where Dp is in cm f is in GHz and ε′ is the dielectric constant. 

 
Note that ε′ and ε′′ can be dependent on both temperature and frequency, the extent of 

which depends on the materials. The results of microwaves/materials interactions are 

shown in Figure 3.8.  
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Figure 3.8: Interaction of Microwaves with Materials 

 

During microwave processing, microwave energy penetrates through the material.  

Some of the energy is absorbed by the material and converted into heat, which in 

turn raises the temperature of the material such that the interior parts of the 

material are hotter than its surface, since the surface loses more heat to the 

surroundings. This characteristic has the potential to heat large sections of the 

material uniformly.  The reverse thermal effect in microwave heating does provide 

some advantages. These include: 

• Rapid heating of materials without overheating the surface 

• A reduction in surface degradation when drying wet materials because of lower 

surface temperature 

•  Removal of gases from porous materials without cracking 

•  Improvement in product quality and yield 

• Synthesis of new materials and composites 
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3.8 Interaction of Microwaves and VE/Flyash (33%) 
 
 
Whether a material will absorb microwave energy and convert it into heat depends on 

its relative complex permittivity and loss tangent.   Ku et al. (2001) showed that liquid 

rapid Araldite (epoxy resin) has a dielectric constant of 2.81 and a loss tangent of 

0.244 at 2.45 GHz at room temperature.  The loss tangent is quite high and it is 

expected that Araldite will absorb microwaves readily and convert it into heat.  Vinyl 

ester resin is produced from modified epoxy resin and methacrylic acid (Peters, 1998); 

it is therefore expected that it will also absorb microwaves readily.  A possible risk in 

applying microwave energy to the vinyl ester composite is the interaction of styrene in 

the resin with the high voltage (HV) transformer of the oven cavity is spot welded 

together and is not necessarily water/air/steam proof.  Styrene is a flammable vapour 

and will be given off during the curing process of the composite. The gas may spark if 

it is affected by the heat of the HV components.  The oven does not have an exhaust 

fan. A blower motor inside sucks air through the air filter at the front and cools the 

HV transformer as the air passes. The air from the fan is blown into a duct and cools 

the magnetrons. Some air is forced into the cavity at the back and then out of the 

steam exhaust outlet at the back. As a precaution, a beaker of 10 ml of the composite 

was exposed to microwave irradiation for 30 seconds for trial.  The power used was 

180 W. There was no arcing at all. Longer exposures (1 to 2 minutes) of microwaves 

were tried for the same composite, again there was no arching. It seems either the 

forced air can blow out some of the styrene out of the cavity or the cavity is shielded 

from the HV transformer. A beaker of 50 ml vinyl ester composite VE/FLYASH 

(33%) was then located in the cavity of the oven and a power level of 180 W was 

selected to cure the composite.   
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The ambient temperature was 19 oC and relative humidity was 25%. Temperature was 

recorded every 1 minute of microwave irradiation. 

 

After one minute of exposing the composite to microwaves, the beaker was taken out 

and the temperature was measured. The temperature was 33 oC and there was no 

noticeable change in the composite. The composite was then re-located into the oven 

cavity and exposed to microwaves for another minute.  It was found that the volume 

of the composite expanded dramatically (by about 15%) and the temperature was 80 

oC.  A drop (projection on top surface of a casting) with a hard crust floating on the 

uncured composite beneath was found. The surface finish was rough. It appeared that 

the increase in volume had been at the expense of the formation of voids in the 

composite. The crust was forced into the uncured composite, by a piece of small stick, 

which then covered most of it. The composite was then exposed to microwave 

irradiation for another 30 seconds.  Temperature was found to be 119 oC and the 

whole composite was hard. It seemed that curing had completed. The volume 

increased a little bit further to 20% more than the original (50 ml). The surface was 

rough and irregular.  After cutting the composite block through, it was found that 

voids appeared in the middle part of the block. It can be argued that the heat generated 

by microwave sped up the evolution of gases from the cast component and the volume 

increased. 

 

In another occasion, a power level of 180 W and exposure duration of 75 seconds, 

were selected to cure 50 milliliters of VE/FLYASH (33%) in a beaker. The ambient 

temperature was 24 oC and the relative humidity was 26%. The oven cavity 

temperature was 28 oC because the oven has been exposed to open space and under 
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sunshine for 5 minutes. An ambient temperature of 28 oC should be used in carrying 

out analysis. After taking out the composite, its temperature was found to be 90 oC, 

which was 5 oC higher than the maximum temperature reached in curing 50 milliliters 

of the composite under an ambient condition of 19 oC and relative humidity of 25%.   

It was found that a drop with partially cured crust was formed. The volume of the 

drop was about 4 milliliters. The other part of the composites was not cured and was a 

rubbery solid. Forty five seconds later, the temperature was 135 oC and the composite 

became cured. At time equaled to 35 minutes, the temperature dropped back to 24 oC. 

After 24 hours, the height of the level of the composite was measured and was found 

to be 31.22 mm. The original height was 29.09 mm. This results in an increase in 

volume by 10.2ml. Adding the volume of the drop formed during curing, the total 

increase in volume was 14.2 ml. In this case, there was no shrinkage but an expansion 

in volume. The increase in volume was 28.4%. The resulting structure had a lot of 

spores and the strength of the composite was expected to be inferior. From Table 3.4, 

the volume shrinkage will be decrease by following the microwave exposure time 

increase. 

 

Table 3.4: Volume shrinkage and other parameters for 200 ml of VE/FLYASH (33%) exposed to 
180-W microwaves at different duration 
 
Microwave exposure time (seconds) 0 30 35 40 
Oven cavity Temperature (oC) 20 28 25 25 
Temperature after microwave exposure NA 41 45 52 
Original volume (ml) 200 200 200 200 
Final volume (ml) 187.2 202.32 199.36 200.06 
Volume shrinkage (%) 6.4 1.16 0.32 -0.03 
Volume at maximum temperature (ml) 187.22 204.64 201.28 201.00 
Time to reach gel time (minutes) 32.5 3 1 1 
Maximum temperature 117 143 144 145 
Time to reach maximum temperature 
(minutes) 

37.5 9 6 6 
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The decision to microwave the composite for 75 seconds in the second trial has been 

made in accordance with the results obtained in the first trial. In the first trial, the 

temperature was 33 oC after the composite was exposed to microwaves for 60 seconds.  

It seemed that by exposing the composite to an extra 15 seconds to microwaves, the 

temperature would be raised to around 10-20 degrees above the ambient temperature.  

This was wrong, the temperature after exposing the composite to microwaves for 75 

seconds was 90 oC, which was 5 oC above the peak temperature for curing the 

composite in ambient conditions. This is due to the difference in ambient temperature 

and relative humidity in two occasions. They are 9 oC (oven cavity temperature) and 7 

% higher in temperature and relative humidity in the microwave cured conditions than 

in ambient conditions respectively.  With the ambient conditions of the second trial, 

the microwave exposure time should be 40 seconds or less.  This may result in an 

increase in temperature of 10 –20 degrees Celsius.  A drop formation could also be 

avoided. The composite was then cured under ambient conditions.  The final volume 

is expected to increase or decrease slightly in accordance with temperature reached by 

the application of microwave irradiation. 

 

In the third trial, the ambient conditions were the same as in the second trial. After 

taking out the composite, its temperature was found to be 44 oC, which was still far 

away from the maximum temperature in the second case. At time equaled to 9 

minutes, a peak temperature of 137 oC was attained and the volume was 54.74 ml, an 

increase of 2.32 % from 53.5 ml.  The composite was also cured.  At time equaled to 

40 minutes, the temperature returned to 24 oC. After 24 hours, the volume of the 

composite was measured and was 52.27 ml.  The percentage of shrinkage was 2.30 %. 



 

 

 
Chapter 4 
 
 
Impact Strength and Testing  
 
 

4.1 Introduction 

 

Impact tests are performed to measure the response of a material to dynamic 

loading.  There are three impact tests. One is known as the Izod impact test, Charpy 

impact test and Drop-weight test.  Impact testing studies the dependence of notch 

toughness or impact energy on the temperature. The impact strength is one of the most 

commonly tested and reported properties of composites. It means the amount of 

energy consumed to break a test specimen divided by the unit-width of the specimen, 

when the specimen is broken by the stroke with the pendulum-type or drop-type 

hammer having specific energy and linear velocity. For analyzing the impact strength 

of the impact test, a charger amplifier is used.  Most of the test machines can be 

provided with strain gauge instrumentation.  Instrumented test systems enable 

measurement of the force applied to the test specimen during an impact event.  Then, 

the instrumented test data can be used to calculate the energy absorbed by the test 

specimen.  In addition, the crack initiation and arrest loads can be used in fracture 

mechanics models. 
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4.2 Impact Properties 

4.2.1 Impact Testing 

 

Impact testing measures the energy required to break a specimen by dynamically 

applying a load. Impact strength is one of the most commonly tested and reported 

properties of composites. As the composites industry grows so do the number of 

different methods for measuring impact strength.  

4.2.2 Charpy Impact Test 

 (a) Definition 

z This test is actually the modification of the Izod test. Charpy 

modified the test by orientating the specimen in a horizontal 

position instead of the vertical position as in the Izod test.  

              (b) Test method 

z The two tests is worked by the apparatus is illustrated in Figure 4.1. 

The weighted end of the pendulum is raised to a fixed height, h, 

and is then released.  

z The knife-edge mounted on the pendulum will strike and fracture 

the notch.  

z The notch is the stress raiser, where the stress of this high velocity 

impact blow is concentrated.  
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Figure 4.1: Pendulum Machine 
 

z Due to torque, the pendulum arm would continue swinging after 

fracturing the notch, but the amplitude of its swing will not be as 

high as when it was first released from the height, h, due to the lost 

of its energy when fracturing the notch. (The notch would absorb 

some energy before it fractures so the energy is lost here).  

z This maximum displacement is noted down as h2. The difference 

in height (h – h2) is actually the energy absorbed which is also 

known as the impact energy. Figure 4.2 was show a Charpy test 

specimen.   

 

Figure 4.2: A Charpy test specimen 
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z The specimen is broken by the impact of a heavy pendulum 

hammer, falling through a fixed distance (constant potential 

energy) to strike the specimen at a fixed velocity (constant kinetic 

energy).   

z Tough materials absorb a lot of energy when fractured and brittle 

materials absorb very little energy.  

 (c) Note 

z This approach is often still used to specify minimum impact 

energy for material selection, though the criteria are also based on 

correlations with fracture mechanics measurements and 

calculations 

z To understand how the Charpy impact energy is affected by the 

properties of the material, we need to understand the different 

contributions which make up the measured energy. 

 

4.2.3 Izod Impact Test 

 (a) Definition 

z Izod invented this test for determining a suitable metal to be used 

as cutting tools. His test involves a pendulum with a weight that is 

known at the end of its swinging arm.  

z The pendulum would strike the specimen, as it stands clamped in a 

vertical position. The specimen is in the shape of a bar with a 

square cross section. The bar is machined into a V-notched. 
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 (b) Test method 

z The shape and the size of the test specimen follow ASTM D-256. 

z A notch with the angle of incidence of 45 degree and the bottom 

radius of 0.25 with diameter 0.05mm is cut in each of the injection 

molded specimens. 

z After the notches are cut, the specimens are annealed at 23 2  

and 50%RH 5%RH for more than 48hrs before the test.  

z Figure 4.3 shows the measuring method for Izod impact strength. 

 

Figure 4.3: Measuring method for Izod impact strength 

 (c) Note  

z These data are obtained with the simple test specimens. Therefore, 

the properties of practical moldings do not always conform to 

these data. These data should be taken for references.  
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4.2.4 Measuring impact toughness 

The important factors which affect the toughness of a structure include low test 

temperatures, extra loading and high strain rates due to wind or impacts and the effect 

of stress concentrations such as notches and cracks.  These all tend to encourage 

fracture.  To some extent, the complex interaction of these factors can be included in 

the design process by using fracture mechanics theory.  

In circumstances where safety is extremely critical, full scale engineering components 

may be tested in their worst possible service condition.  For example, flasks for the 

transportation of nuclear fuel were tested in a full scale crash with a train to 

demonstrate that they retained their structural integrity (a 140 tonne locomotive and 

three 35 tonne coaches at 100 mph crashed into a spent fuel flask laid across the track 

with its lid facing the train. The train was demolished but the flask remained sealed. 

The peak impact force of the test train was greater than that of an Inter-City 125 

traveling at 125 mph.  Inter-City 125 was a diesel train and it could often significantly 

reduce journey times not only because of its high speed but also because of the much 

more superior acceleration/deceleration than other diesels. A theoretical fracture 

mechanics structural integrity assessment of this situation would have been very 

difficult.  

Such full scale tests are extremely expensive and are very rarely conducted.  Fracture 

mechanics is also a fairly recent development in engineering design, and measurement 

of the fracture toughness parameters that are required to perform a structural integrity 

assessment during the design process (such as K1c) is quite time-consuming and 

expensive. 
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Tests for the impact toughness, such as the Charpy Impact test were developed before 

fracture mechanics theory was available.  The impact test is a method for evaluating 

the relative toughness of engineering materials.  The Charpy impact test continues to 

be used nowadays as an economical quality control method to assess the notch 

sensitivity and impact toughness of engineering materials. It is usually used to test the 

toughness of metals. Similar tests can be used for polymers, ceramics and composites. 

 

4.2.5 The Impact Energy  

The impact energy measured by the Charpy test is the work done to fracture the 

specimen. On impact, the specimen deforms elastically until yielding takes place 

(plastic deformation), and a plastic zone develops at the notch.  As the test specimen 

continues to be deformed by the impact, the plastic zone work hardens.  This 

increases the stress and strain in the plastic zone until the specimen fractures. The 

Charpy impact energy therefore includes the elastic strain energy, the plastic work 

done during yielding and the work done to create the fracture surface.  The elastic 

energy is usually not a significant fraction of the total energy, which is dominated by 

the plastic work.  The total impact energy depends on the size of the test specimen, 

and a standard specimen size is used to allow comparison between different materials.  

The impact energy is affected by a number of factors, such as:  

a) Yield Strength and Ductility 

b) Notches 

c) Temperature and Strain Rate 
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d) Fracture Mechanism 

 

4.2.5.1 Yield Strength and Ductility 

Increasing the yield strength of a metal by processes such as cold working, 

precipitation strengthening and substitution or interstitial solution strengthening 

generally decreases the ductility.  This plastic strain to failure is shown in Figure 

4.4. 

 

Figure 4.4: The yield strength, tensile strength and ductility 

 

Increasing the yield strength by these mechanisms therefore decreases the 

Charpy impact energy since less plastic work can be done before the strain in 

the plastic zone is sufficient to fracture the test specimen. An increase in yield 

strength can also affect the impact energy by causing a change in the Fracture 

Mechanism.  
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4.2.5.2 Notches 

The notch in the test specimen has two effects.  Both can decrease the impact 

energy. First, the stress concentration of the notch causes yielding or plastic 

deformation to occur at the notch.  A plastic hinge can develop at the notch, 

which reduces the total amount of plastic deformation in the test specimen.  This 

reduces the work done by plastic deformation before fracture.  Secondly, the 

constraint of deformation at the notch increases the tensile stress in the plastic 

zone.  The degree of constraint depends on the severity of the notch (depth and 

sharpness).  The increased tensile stress encourages fracture and reduces the 

work done by plastic deformation before fracture occurs.  

 

Some materials are more sensitive to notches than others and a standard notch tip 

radius and notch depth are therefore used to enable comparison between different 

materials.  The Charpy impact test therefore indicates the notch sensitivity of a 

material.  

 

4.2.5.3 Temperature and Strain Rate 

Since the Charpy impact energy comprises mostly of the plastic work of yielding 

of the specimen, it is affected by factors which change the yield behavior of the 

material, such as temperature and strain rate, through their effect on the behavior 

of dislocations.  

Increasing the yield strength by low temperatures or high strain rates decreases 

the ductility, and therefore decreases the Charpy impact energy.  The yield 
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strength of body centred cubic (bcc) metals is more sensitive to strain rate and 

temperature than that of face-centred cubic (fcc) metals.  The Charpy impact 

energy of bcc metals such as ferritic carbon steel therefore has a stronger 

dependance on strain rate and temperature than that of fcc metals such as 

aluminum, copper and austenitic stainless steel.  

4.2.5.4 Fracture Mechanism. 

The Charpy impact energy is affected by changes in the fracture mechanism. For 

metals, there are two types of fracture surfaces. Where the temperature at which 

fracture occurs is high, the surfaces are dull or fibrous and show that shearing has 

occurred. Where the temperature is low, the surfaces have a granular or shiny 

texture, showing that cleavage has occurred. There is a range of temperatures at 

which the surfaces have both characteristics. The rough and fibrous surfaces are 

caused by the ductile fracture mechanism. At high temperatures the Charpy V-

notch impact energy is high and ductile fracture occurs by plastic flow. At the 

point of fracture, the cross-sectional area is reduced. However, the smooth or 

granular surfaces are caused by the brittle fracture mode which occurs by 

cleavage. There is a clean break and not much deformation occurs. There is a 

little reduction in cross sectional area at the point of fracture.  

 

Polymers also exhibit brittle and ductile fracture according to temperature. At 

low temperatures, the surfaces are smooth, glassy and fractured with some 

splintering. The clean fracture break shows that the material is brittle. At high 

temperatures, there is no significant appearance to the fracture. However the 
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cross sectional area is reduced considerably. Ductile fracture occurs and there is 

tearing at the notch.   

z Brittle and Ductile Fractures 

There are two kinds of fractures, which is ductile fracture and brittle fracture. 

With ductile fracture, there is a large plastic region where plastic 

deformation occurs during crack propagation. The fracture process occurs 

slowly as the crack propagates. This crack is considered stable as it resists 

further propagation with an increase in applied stress. Conversely, cracks 

propagate rapidly in brittle fracture with very small plastic region. The crack 

also propagates continuously and spontaneously without an increase in 

applied stress.  

 

4.2.6 Drop Weight Test 

(a) Definition 

z In this research, drop weight test had been used for testing of specimens 

under impact loading. 

z Drop weight test method is a falling drop weight impact test. 

z This drop weight test is better than a number of the conventional tests like 

Charpy and Izod tests in  its ability to produce the conditions under which 

a ‘real life’ component would be when subjected to impact loading. 

z Using the instrumented drop weight test method in impact testing, it can 

provide more information about the impact.  
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z Accelerometer, charge amplifier and data acquisition system will be 

required in this testing. 

 

(c)  Test method and equipments 

z The drop weight test method uses the impact tup (hammer) for dropping 

test.  

z In Figure 4.5, the pointer area is cable protected. This cable protection is 

the way to minimize the cable noise as well as to protect the connector 

between the micro-cable and accelerometer from breaking due to the force 

acting on it were considered seriously.   

 

  Figure 4.5: The protection of micro cable 

 

Cable protection
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z The accelerator was using in this research is “Bruel and Kjaer” 

piezoelectric delta shear type (Type: 4371). 

z The advantages of using piezoelectric accelerometers over other types of 

accelerometers are (Serridge and Licht, 1986) broad frequency range, good 

linearity in dynamic applications and performance in a wider range of 

environmental conditions and the data can be integrated. 

z The accelerometer is connected with micro cable to the amplifier. It place 

on the top of the impact tup. This micro-cable mainly used for sending 

signal from the accelerometer to the charge amplifier. The connection of 

the impact tup has shown in Figure 4.6.     

 

Accelerometer   

Connector 

Figure 4.6: The connection of the impact tup 

z Charger amplifier was used to amplify the signal from the accelerometer to 

an appropriate level so that it can be displayed. The mainly reasons for 

using charger amplifier is that it can provide more accurate result and more 

information in the test like force distribution, peak force, duration, energy 

Micro cable 
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required to initiate the crack and propagating them. Figure 4.7 is showing 

the charger amplifier that was using in this research.  

 

Figure 4.7: Charger Amplifier (Left) and impact tup (Right) 

z The setting of the band pass filter is 1Hz – 10 kHz with an output of is 

3.16 V/ms-2, this is an important signal that produced by accelerometer. 

From the figure 4.8, it is pointing the micro cable is connecting to the 

channel 1. 

 

Channel 1 

Figure 4.8: The setting of the amplifier 
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z Charger amplifier and the PC cable connection have shown in the figure 

4.9. 

 

Link together Link to PC 

Micro-cable 

Figure 4.9: The connection between the amplifier and PC  

z The sampling interval was set to 5 microseconds that gave a total 

recording time of approximately 4 milliseconds. The specimens of 

[VE/FLYASH (33%)] cured under ambient condition were tested first, 

followed by the specimens cured under microwave conditions as well as 

[VE/FLYASH (25%)] cured under ambient condition.  

 

z The data acquisition hardware is used for data processing. It was attached 

to the PCI slot on the motherboard of computer. This can be used to 

acquire signal with a sampling rate of 200k samples/second from the 

charge amplifier. All the setting is shown in the Figure 4.10. 
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Figure 4.10: The setting of sampling rate from charger amplifier 

z The data collected can be directly stored into the computer after data 

processing.  

z The result will be taken by using different height level of impact. Figure 

4.11 shows the height level of the impact test and the position of the 

impact point. All the marking level is in millimeter (mm).   
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Figure 4.11: The height level and the position of impact test  

 

z After data processing, the data collected from the impact testing was 

processed with Microsoft Excel or Matlab. 

(c) Note  

z These data were obtained with the simple test specimens. Therefore, the 

properties of practical moldings do not always conform to these data. 

These data should be taken for references only.  



 

 

 

Chapter 5 

 
 
Experimental Method 

 
 

5.1 Introduction 

 

This chapter will discuss about the experimental design of this research. The first is 

the processes of making the specimens. This section mainly discusses the casting 

moulds and the calculations of material quantity for VE/FLYASH 25% and 33%. 

Safety measures and steps taken in casting specimens will be discussed in the second 

section. The next section is discussing the correct and safety ways for using 

microwaves to cure the specimens. This part mainly discusses the height of the drop 

hammer as well as the setup of the test rig guide tube. Besides that, some of the results 

of the drop weight test will also be discussed in this section. This is to compare 

different conditions of curing the specimens. The final section of this research is 

fracture analysis; it is to investigation the fractured surface on these specimens.   
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5.2 The Specimens 

 

5.2.1 Introduction 

 

In this research, there were two combinations by weight of resins and the fly ash. 

They were 25% and 33% by weight flyash particulate reinforced vinyl esters 

VE/FLYASH (25%) and VE/FLYASH (33%). Both of them will be cured under 

different conditions, including microwave condition.  

 

For ambient condition, it is cured under room temperature without any microwave 

treatment. Microwave conditions have 9 different curing ways; it is curing under 

different power levels of microwaves and in different exposure times as well. The 

suitable power level and time of exposure of microwave will make the specimens 

stronger as well as having low shrinkage.   

 

Figure 5.1 shows the curing conditions employed for the specimens; they were broken 

down into two main conditions, ambient condition and microwave conditions. In the 

group of curing under microwave conditions, it was broken down into three more 

groups by having the specimens cured under three power levels of 180 Watts, 360 

Watts and 540 Watts respectively. For 180W and 360W power levels, the exposure 

times are 30 seconds, 35 seconds and 40 seconds, and for 540W power level, the 

exposure times are 10 seconds, 15 seconds and 20 seconds.   
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Figure 5.1: Grouping of production of specimens 

 

5.2.2 Casting Moulds 

 

The specimens were to be exposed to microwave so the moulds must be non-metallic. 

It was decided to use PVC pipe because it is most appropriate as it can be exposed to 

microwaves. Another reason to use of PVC pipe is that a smaller cast of material with 

a smoother surface finish could be made. Figure 5.2 shows moulds of the specimens. 
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Side cutting

                           Figure 5.2: The casting mould 

 

The specimens is 50mm long and the height of the moulds is therefore 60 mm. Figure 

5.3 shows the dimensions of the PVC pipe, the outer and inner diameters are 25mm 

and 21mm respectively.  Figure 5.2 illustrates that a cut made on the side of PVC 

pipe so that the specimen cast can be easily taken out.  

 

Figure 5.3: The dimension of mould casting 

The inner surface of the mould must be clean-up because it will affect the surface of 

specimen. The bottom section has to be sealed with paper tape to restrict the leaking 

of the uncured composite during the pouring process. Figure 5.4 shows the dirt on the 

inner of the moulds. 
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Figure 5.4: The unclean surface of the specimens 

 

5.2.3 Weights of Materials 

This section will discuss about the mixture and the mass calculations of the materials. 

The materials used were:  

• Vinyl Ester Resin (Hetron 922 PAW) 

• Methyl Ethyl Ketone Peroxide (MEKP) 

• Flyash (Ceramic Hollow Sphere) 

 

5.2.3.1 VE/FLYASH (33%) 

Table 5.1 shows the weight of materials required to make 500ml of VE/FLYASH 

(33%) (Ku, 2003). VE/FLYASH (33%) means resin + MEKP 67% by weight and 

fly ash 33% be weight. 
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Table 5.1: Weight of materials required to make 500 ml of VE/FLYASH (33%) 

 Materials Resin MEKP Flyash Composite

Parameters      

Relative density  1.05 1.18 0.7 --- 

Percentage by volume  56.5 1 42.6 100 

Percentage by weight  67 --- 33 100 

Weight for 600 g of composite  394 (g) 8 (g) or 7 (ml) 198 (g) --- 

 

Other volumes of the composites can be easily calculated by ratio from Table 5.1. For 

small volume of the specimens, 15 to 20 specimens can be cast at the same time. The 

mass calculations required to fracture these specimens are attached as Appendix E.  

. 

 

5.2.3.2 VE/FLYASH 25% 

 

Table 5.2 shows the weight of materials required to make 500ml of VE/FLYASH 

(25%) (Ku, 2003) 

Table 5.2: Weight of materials required to make 500 ml of VE/FLYASH (25%) 

 Materials Resin MEKP Flyash Composite

Parameters      

Relative density  1.1 1.0 0.7 --- 

Percentage by volume  65.4 1.2 33.4 100 

Percentage by weight  75 --- 25 100 

Weight for 600 g of composite  441(g) 9 (g) or 8ml 150(g) --- 
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5.2.4 Safety Measures 

 

The safety measures when processing the specimens included risks of styrene, risks of 

MEKP and risks on microwaves and vinyl ester resins interaction. Due to these high 

risks involved in specimen making, various safety measures must be considered 

seriously.  

 

The testing and specimen making were carried out in the Faculty of Engineering and 

Surveying, USQ.  Before mixing the material, two different kinds of safety gloves 

were required to be worn, one after the other. The 1st layer is mainly for protecting 

skin and it is thicker and less porous than the 2nd layer. The 2nd layer glove is just for 

extra protection.  

 

Goggles were worn for eye protection and it must be worn while mixing the mixture 

because the styrene emitted will be harmful to eyes. Besides that, mask was also used 

to avoid any inhalation of styrene vapour into the body. The exhaust fan must also be 

on during mixing the material.  If not, the styrene will always be in the room. The 

gloves must be thrown away after use and hands have to be washed before leaving the 

room. 

  

While curing the specimens with microwave, the microwave should be located 

outdoor as the styrene go to the open air.  Figure 5.5 shows the microwave oven that 

is used in this research project.  During microwave processing, the door of the 

microwave oven should be facing onto a wall to reduce damage in case of explosion.  



Chapter 5: Experimental Method  70 

 

 

Oven Cavity 

Pipe

Exhaust 

                           Figure 5.5: Microwave Oven 

 

5.2.5 The Processes of Producing Specimens  

 

The processes of producing specimens are listed below: 

 

Step 1:  Clean or remove any particles on the inner surface of the mould. Seal the side 

and bottom part of the casting moulds to stop leaking because when the composite is 

poured into the moulds.    

 

Step 2: Mark the height of specimens on inner surface of the mould with pen. This 

gives the height to which the composite should be poured.  Spray some canola oil on 

the inner surface of the mould for ease of stripping when the composite is cured. 
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Step 3: Prepare the amount of different materials in different containers as tabulated 

in Table 5.1.  All weights were measured using an electronic weight scale as 

illustrated in Figure 5.6 

 

Figure 5.6: The electronic weight scale (right) and Canola Oil (left) 

 

Step 4: Flyash was the first weighed by using an ice-cream plastic box that sat on an 

electronic weight scale. The vinyl ester resin was then poured and weighed with the 

use of another ice-cream plastic box. The volume of hardener required was dispensed 

out from the special chemical dispenser so that it was ready for use (See Figure 5.7). 

The resin was then mixed with the fly ash.  After this, pour the hardener into the 

resin/flyash mixture and mix it together until the harder has been totally mixed in 

resin and flyash. 
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Figure 5.7: MEKP dispenser 

 

Step 5: After mixing these materials, they were poured into the moulds. Use the 

infrared thermometer to measure and record the temperature on each casting.  Figure 

5.8 shows mixtures had been poured into the moulds.  

 

Figure 5.8: The mixture were pour into the mould 
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Step 6: For microwave treated specimens, it will be cured in microwave with 

different power levels and different times of exposures. Figure 5.9 shows the 

microwave menu and the arrows point to power level selection and time entry button. 

 

 

Figure 5.9: microwave menu 

 

Step 7: After microwave treatment, the temperature of the composite was measured 

again.  

 

Step 8: The mixtures will be completely cured after 24 hours and the composite was 

stripped out from the bottom part of the mould.  

 

Step 9: Make sure the surfaces of the specimens are flattened before impact test, 

otherwise the result will be inaccurate.  
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5.3 Preliminary Testing 

 

5.3.1 Introduction 

 

The drop weight impact test was used in this research. It is used to find out which type 

of curing conditions has higher impact strength. Dropper will be dropped at different 

height to find out the potential energy required to initiate crack in the sample. The 

results of impact test are important as it will form a better guide for the composite 

industry in producing their items.    

 

5.3.2 Drop Weight Tower 

 

The drop weight tower is one of the equipment used in the drop weight test.  The 

drop weight tower and its dimension is shown in Figure 5.10. The maximum height of 

this drop weight tower is 1.5 meter but the height used in this research ranges from 

250mm to 500mm. 
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Figure 5.10: Drop Weight Tower 

 

5.3.3 Drop Weight Testing 

 

The specimens used for impact were VE/FLYASH (33%). The dropper will be 

dropped from the range of 250mm to 500mm height; each increment will be 50mm. 

The stair-case method was used to determine the height of the tup for the short rod 

test. After impact, the specimens were analyzed and separated into fractured or 

non-fractured. It has to be ensured that the impact tup must be hitting on the middle of 

the specimen; otherwise the result will be inaccurate. A fractured specimen is shown 

in Figure 5.11.  
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The 
breaking 
surface is 
not flat 

Figure 5.11: Failure impact specimens 

 
Table 5.3 shows the impact test results of VE/FLYASH (33%) cured under 
microwave conditions of 540W and 10 seconds. 
 
 
Table 5.3: Impact test results of VE/FLYASH (33%) cured under microwave conditions of 540W 
and 10 seconds 
 

Specimens VE/FLYASH (33%); 540W, 10 seconds 

Dimensions of Specimens (mm) Diameter: 21mm    Length: 50mm  

Symbol Representation NF = normal fracture 

SF = seriously fracture   

O = non-fracture 

Specimen No. 1 2 3 4 5 6 
Drop Height(mm)       

500      SF 
450     NF  
400    NF   
350   O    
300  O     
250 O      
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Personal computer data acquisition system was used in this research but it can only 

received voltage in the range of -10V to +10V and therefore oscilloscope was 

incorporated to increase the range of signal received. 

 

5.4 Data Preparation 

 

The instrumentation of the drop-weight test gave a lot of convenience to this research. 

It was easy to analyze the graphs of force versus displacement, acceleration versus 

velocity or force versus velocity.  

 

By integrating the acceleration data (Equation 5.1), velocity distribution can be 

obtained. The displacement distribution (Equation 5.2) over time interval of the 

impact can then be obtained simply by integrating the velocity distribution. The t0 and 

t1 represent the times of first and last data points respectively.  

 

∫=
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dttvts       (5.2) 

 

The smoothing of the graph was made possible with the aid of Savitzky-Golay filter 

of the Signal Processing Toolbox in MATLAB ®. After smoothing the graph of 
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acceleration versus time, the smoothed graph can then be converted into graph of 

velocity versus time followed by graph of displacement versus time and force versus 

displacement. Figure 5.12 and 5.13 show before and after using Savitzky-Golay filter 

respectively. 

 

 
Figure 5.12: Noise along with the data acquired of curve force versus displacement  

 

 

Before 
Filter 

After 
Filter 

Figure 5.13: The curve of force versus displacement looks smoothly 
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The potential energy of the tub when the impact occurs can also be calculated by 

using of the formula of potential energy (Equation 5.3).  

 

         PE = mgh        (5.3)  

 

Assuming negligible resistance from the rope as well as the guide tube, the velocity 

can be calculated by using formulae of conservation of energy and kinetic energy 

(Equations 5.4 through 5.6). 

 

          PE = KE        (5.4) 

         mgh = 2

2
1 mv          (5.5) 

           v = gh2                 (5.6) 

 

The proportion of energy absorbed up to the point where complete failure occurs can 

now be estimated by knowing the initial conditions of the impact using the above 

formula. Figure 5.14 shows force versus displacement, the curve after the point where 

peak force occurs is the energy required to propagate the crack.  
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Figure 5.14: The curve of Force versus Displacement 

 

 

5.5 Fracture Analysis 

 

After the impact test, the mostly fractured specimens were taken to Queensland 

University of Technology (QUT) for investigation of the fractured surface using 

Scanning Electron Microscopy (SEM). These two mostly fractured specimens chosen 

were: 

 

z VE/FLYASH (33%) cured under microwave condition with a power level of 180 

Watts and exposure time of 40 seconds. The height of impact was 500mm. 

  

z VE/FLYASH (33%) cured under microwave condition with a power level 540 

Watts and exposure time of 10 seconds. The height of impact was 450mm.  

 

The reason for choosing these two specimens was to compare the difference in 

fractured surfaces. 
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5.5.1 Scanning Electron Microscope (SEM) 

The Scanning Electron Microscope (SEM) is a microscope that uses electrons rather 

than light to form an image. There are many advantages in using the SEM instead of a 

light microscope.  

The SEM has a large depth of field, which allows a large amount of the sample to be 

in focus at one time. The SEM also produces images of high resolution, which means 

that closely spaced features can be examined at a high magnification. SEM requires 

conductive samples and Figure 5.15 shows the Scanning Electron Microscopy (SEM). 

 

Figure 5.15: Scanning Electron Microscopy (SEM) 

The combination of higher magnification, larger depth of focus, greater resolution, 

and ease of sample observation makes the SEM one of the most heavily used 

instruments in research areas today.  
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5.5.2 Mounting the specimen 

Any specimen, whether it has been sputter coating or is naturally conductive, must be 

firmly attached to the specimen support before being viewed in the SEM. Attention to 

detail in the mounting procedure is very important if a researcher desires a quality 

result.  

Make sure the support (specimen stub) is clean before use and also check to make 

sure the stub you are using is compatible with the stage of the SEM you will be using. 

Place the specimen on the stub before the sputter coating procedure. This will increase 

the conductivity and therefore the quality of your results. Figure 5.16 shows the 

sputter coaster used in this research. 

 

 

Figure 5.16: Sputter Coater 

 

For some samples, it will be necessary and perhaps more convenient to place the 

specimen on a substrate that will be mounted on the stub. Substrate materials range 

from glass and plastic cover slips to metal and crystalline disks, plastics, waxes and 

many membrane filters. Since it is frequently necessary to attach the specimen or 
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substrate to the stub, a variety of adhesives is available for this purpose. You should 

make sure to choose an adhesive that will not decrease the quality of your results.  

5.5.3 Sputter coater 

The sputter coater is used to coat non-metallic samples with a thin layer of gold and it 

is shown in the Figure 5.17. The surface will look like Figure 5.18 after coating a thin 

layer of gold. This makes them conductive, and ready to be viewed under the SEM. If 

the samples are metallic, they can simply be mounted and placed in the SEM.  

 

Figure 5.17: The sputter coaster coating a thin layer of gold on the specimen’s surface 

 

 

A thin 
layer of 
gold 

Figure 5.18: The specimens after coating a thin layer of gold look like 
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Make a mark on the bottom of the specimen with a maker pen like that shown in 

Figure 5.19; it is for convenience of searching the specimen in a large group of 

samples, especially after scanning.   

 

 

A marking 
on the 
bottom of 
specimen  

Figure 5.19: A marking on the bottom of specimen 

 

5.5.4 The Setup of SEM 

 

When the electron beam strikes the sample, both proton and electron signals are 

emitted. Figure 5.20 shows the electron and specimens interaction. While all these 

signals are present in the SEM, not all of them are detected and used for information. 

The signals most commonly used are the Secondary Electrons, the Backscattered 

Electrons and X-rays. Figure 5.21 shows the lens and detectors located inside the 

sample chamber. 
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Figure 5.20: Electron and Specimens Interaction 

 

Figure 5.21: The lens and detectors located inside the sample chamber 

 

5.5.5 Methods of using SEM 

When a SEM is used, the column must always be at a vacuum. There are many 

reasons for this. If the sample is in a gas filled environment, an electron beam cannot 

be generated or maintained because of a high instability in the beam. Gases could 

react with the electron source, causing it to burn out, or cause electrons in the beam to 

ionize, which produces random discharges and leads to instability in the beam.  
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The transmission of the beam through the electron optic column would also be 

hindered by the presence of other molecules. Those other molecules, which could 

come from the sample or the microscope itself, could form compounds and condense 

on the sample. This would lower the contrast and obscure detail in the image. A 

vacuum environment is also necessary in part of the sample preparation. One such 

example is the sputter coater. If the chamber is not at vacuum before the sample is 

coated, gas molecules would get in the way of the argon and gold. This could lead to 

uneven coating, or no coating at all. Figure 5.22 shows a prepared sample mounted on 

a specimen stub and placed on the stage. 

    

Specimen stub

Figure 5.22: Specimen stub 

 

In each of the specimen’s investigation, 5 points had been chosen for investigation. 

Figure 5.23 shows the 5 points chosen to be investigated on specimens cured under 

microwave conditions with a power level 180 Watts, 40 seconds exposure time and 

height of impact of 500mm.   
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Figure 5.23: Microwave condition with 180W and 40 sec expose time 

 

Figure 5.24 shows the 5 points chosen to be investigated on specimens cured under 

microwave condition with power level 540 Watts, 10 seconds exposure time and 

height of impact of 450mm. The reason for choosing these 5 points was because these 

points showed the crushed zone and fracture propagation zone of these two 

specimens.   
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Figure 5.24: Microwave condition with 540W and 10 sec expose time 

 

The magnifications used in this investigation were 80X and 300X.  At some point 

the magnifications will be increased to 600X, 1200X and 5000X respectively; this is 

used to investigate some small fracture surface. 

 



 

 

 
Chapter 6 

 
Results and Discussion 

 
 

6.1  Introduction 

 

The results obtained from the test undertaken in this investigation will be discussed 

here. Comparison of results will be made after the discussion on the results from the 

experimental work. The comparisons of results and discussions include comparison of 

specimens cured under microwave conditions with differences power levels and 

exposure times.  

 

6.2  Initial Test  

 

These initial tests were conducted to obtain energy absorption data and investigate the 

failure height of the cylindrical specimens. The impact energy required to fracture 

these specimens are attached as Appendix C.  
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6.2.1 Power Level of 180 Watts 

 

Exposure time of 30 seconds 

 

To determine the height at which failure would begin to occur, a similar method of 

testing to the staircase method was used. The first specimen was initially impacted 

from a height 250mm and this specimen was cured under microwave with a power 

level of 180 Watts and exposed to microwaves for 30 seconds. When failure did not 

occur, the tup was raised another 50mm and it was impacted again. This testing also 

provides information on damage tolerance and variations. The first specimens was 

found that most of the specimens non-fractured at a drop height of 350mm or below. 

The specimens failed while the impact tup raised another 50mm to 400mm and that 

72.8% of the total energy was used to initiate the crack and the remaining 27.2% was 

used to propagate the crack.  

 

Expose time of 35 seconds  

 

The second specimens were tested in the same manner and these specimens were 

cured under microwave with an exposure time of 35 seconds. It was found that the 

drop height used to fracture most of these specimens was 450mm. For each impact 

that did not result in failure a certain amount of the energy was released back into the 

specimen to cause the bounce. Observable damage on the impact surface was visible 
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after 450mm impact test height. The damage consisted of an indentation into the 

material. The indentation at this stage was not dramatic but it became more severe 

after subsequent impacts. The force versus displacement curves show evidence of 

plastic deformation in that the unloading path does not coincide with the loading path 

and they do not start and finish at the same point. However, observations found that 

no cracks were visible until complete failure had occurred. Further investigation into 

the indentation is required to determine the extent of the effect it had on the failure 

energy. 

 

Expose time of 40 seconds 

 

The next impact test was for specimens cured under microwaves with an exposure 

time of 40 seconds. At this initial height (300 mm) the specimen did not fail, so the 

height was increased to 400mm. The force versus displacement curves for these tests 

can be seen in Figure 6.1 and it showed a failure specimen during the test. 

 

The drop-height was again increased and specimen went on to fail at a drop-height 

400mm. This energy was found to vary 73.2% to 86.1% of the energy absorbed by the 

specimen. 
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Material: VE/FLYASH (33%) 

Curing Condition:  
Microwave Condition, 
30 seconds, 180 Watts  
Drop height at 450mm  

Figure 6.1: Plot showing the force versus displacement tested at a drop-height of 500mm 

 

Table 6.1 shows the average energy on the specimens cured with a power level of 180 

Watts tended to fracture at a drop height of 400mm.  

 

Table 6.1: Average energy required to fracture specimens cured with a power level 180 Watts 

Curing Condition Power Level of 180 Watts 

Exposure time  30 seconds 35 seconds 40 seconds 

Energy used to initiate the crack 8.36 joules 10.87 joules 9.42 joules 

Energy used to propagate the crack 2.68 joules -1.46 joules 1.82 joules 

Total Energy Dissipated 11.04 joules 10.87 joules 11.24 joules  

Displacement at Peak Force (m = 
meter) 

0.0017 m  0.0019 m 0.0018 m  
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The drop-height was again increased and specimens went on to fail at a drop-height of 

500mm. The force-displacement curves for these tests can be found in Figure 6.2. 

Figure 6.2 it showed the comparison of three specimens of different exposure times. 

  

 

Material: VE/FLYASH (33%) 

Microwave Condition, 180 Watts 
Curve 1 = 30 seconds  
Curve 2 = 35 seconds 
Curve 3 = 40 seconds  
Drop height at 500mm  

Figure 6.2: Resulting force-displacement curve of tested at a drop-height of 500mm 

Due to the good failure surface for specimen exposed to microwaves for 40 seconds, 

the exact drop height to fracture of these specimens can be a source of investigation. 

 

6.2.2 Power Level of 360 Watts 

 

Expose time of 30 seconds 

The fourth impact testing was the specimens cured under microwave with power level 

360 Watts exposed to 30 seconds. It was found that most of the specimens did not 



Chapter 6: Results and Discussion  94 

fracture at a drop height of 350mm or below. The specimens failed while the impact 

tup was raised to 400mm and that 90.17% of the total energy was used to initiate the 

crack and the remaining 9.83% was used to propagate the crack.  

 

Expose time of 35 seconds 

 

The fifth impact testing was for specimens cured under microwaves with an exposure 

time of 35 seconds. It was found that the drop height used to fracture these specimens 

was 350mm. The investigation found that up to 80.03% of the energy dissipated was 

required to initiate the crack. The remaining energy was used in propagating the crack 

though the specimen.  

 

Expose time of 40 seconds 

 

The sixth impact testing was for specimens cured under microwaves with an exposure 

time of 40 seconds. It was found that the drop height used to fracture some of these 

specimens was 350mm. A total of 88.73% of the average total energy was found to 

contribute to initiate the crack and remaining 11.27% was found used to propagate the 

crack and displacement when peak force was 0.0017 meter. Some of the non-failed 

specimens were found to have a drop height below 350mm.  

Table 6.2 shows the average energy of specimens cured with microwaves with a 

power level of 360 Watts; their fracture happened at a drop height of 400mm.  



Chapter 6: Results and Discussion  95 

Table 6.2: Average energy on specimens cured with power level 360 Watts 

Curing Condition Power Level of 360 Watts 

Exposure time  30 seconds 35 seconds 40 seconds 

Energy used to initiate the crack 9.45 joules 9.02 joules 8.50 joules 
Energy used to propagate the crack 1.03 joules 2.12 joules 2.53 joules 
Total Energy Dissipated 10.48 joules 11.14 joules 11.03 joules 
Displacement at Peak Force (m = 
meter) 

0.0016 m 0.0018 m 0.0018 m  

 

The drop-height was again increased and specimens went on to fail at a drop-height of 

500mm. The force-displacement curves for these tests can be seen in Figure 6.3. It 

was shown that curve 2 was had the highest force for fracture. 

 

Material: VE/FLYASH (33%) 

Microwave Condition, 360 Watts 
Curve 1 = 30 seconds  
Curve 2 = 35 seconds 
Curve 3 = 40 seconds  
Drop height at 500mm  

Figure 6.3: Resulting force-displacement curve of tested at a drop-height of 500mm 

The specimens that were exposed to microwaves for 35 seconds and 40 seconds were 

found to fail and not to fail at the same drop height of 350mm. It was possible the 

impact tup was not running smooth during dropping. 
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6.2.3 Power Level of 540 Watts 

 

Expose time of 10 seconds 

 

The first impact test on these specimens was performed at a drop-height of 250mm. 

Non-failure occurred on the first impact and the resulting force versus displacement 

curve was shown in Figure 6.4. It was found that the specimens failed while the 

impact tup was raised to 400mm; 81.8% of the total energy was used to initiate the 

crack and the remaining 18.2% was used to propagate the crack.  

 

Material: VE/FLYASH (33%) 

Curing Condition:  
Microwave Condition, 
10 seconds, 540 Watts  
Drop height at 250mm  

Figure 6.4: Force-displacement curve of a specimen tested at a drop-height of 250mm 

 

Expose time of 15 seconds 

The next impact testing was for specimens cured under microwaves with exposure 

time of 15 seconds. The results proved that there were no fractured specimens in the 
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group. Non-failure occurred on the fourth impact (drop height 400 mm) and the 

resulting force versus displacement curve was shown in Figure 6.5.  

 

Material: VE/FLYASH (33%) 

Curing Condition:  
Microwave Condition, 
15 seconds, 540 Watts  
Drop height at 400mm  

Figure 6.5: The Force vs. Displacement curve for non-failure specimen (drop height of 400mm) 

 

This is means that an impact from a height of 400mm will not guarantee a failure. In 

this circumstance the total amount of energy released on the specimen is 100% and 

0% of this amount was released back into the tup producing the bounce phenomena. 

 

20 seconds of Expose Time 

 

The last impact testing was the specimens cured under microwave with exposed to 20 

seconds. It was found that the specimens were over curing under microwave and not 

enough harder if compared with previous condition. These specimens failed while the 
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drop height was increasing to 450mm and it was show in figure 6.6. A total of 87.9% 

of the average total energy was found to contribute to initiate the crack and remaining 

12.1% was found used to propagate the crack.  

 

 

Material: VE/FLYASH (33%) 

Curing Condition:  
Microwave Condition, 
20 seconds, 540 Watts  
Drop height at 450mm  

Figure 6.6: The Force vs. Displacement curve for failure from a height of 450mm 
 

Table 6.3 shows the average energy of specimens cured with microwaves with a 

power level of 540 Watts to fracture at a drop height of 450mm. 

 

Table 6.3: Average energy on specimens cured with power level 540 Watts 

Curing Condition Power Level of 540 Watts 

Exposure time  10 seconds 15 seconds 20 seconds 

Energy used to initiate the crack 8.27 joules 7.91 joules 3.71 joules 
Energy used to propagate the crack 1.83 joules -2.77 joules 0.507 joules 
Total Energy Dissipated 10.1 joules 7.91 joules 4.217 joules 
Displacement when Peak Force (m 
= meter) 

0.0018 m 0.0017 m 0.0015 m  
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It was found that most of the specimens were not fractured at a drop height of 400mm 

or below. These specimens failed while the impact tup was raised another 50mm to 

450mm. The force-displacement curves for these tests can be seen in Figure 6.7.  

 

 

Material: VE/FLYASH (33%) 

Microwave Condition, 540 Watts 
Curve 1 = 10 seconds  
Curve 2 = 15 seconds 
Curve 3 = 20 seconds  
Drop height at 400mm  

Figure 6.7: Force-displacement curves of tested specimens at a drop-height of 400mm 

 

 

6.3 Comparisons 

 

The strength of the polymeric material, the main constituent of the tested material, is 

dependent on the rate at which the load is applied (strain rate). One indication of this 

is that the energy released back into the tup was decreased as the drop-height was 

increased from 250mm to 500mm. Overall, the data gained from this experimentation 
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had not shown a significant effect of strain rate. A greater variation in strain rates may 

be required before observable change was observed.  

 

There appear to be two different slopes in regard to specimen failures. Each of the 

slopes showed a certain degree of linearity. From Figure 6.8, the fifth slope 

(approx.17, 000 kNm) occurs in specimens that underwent a previous impact and it 

failed. The fourth slope (approx.16, 000 kNm) was exhibited in the specimens that no 

failure on all impact. This is the strongest evidence to show accumulative damage of 

the material. The slope of this curve is thought to be affected by the stiffness of the 

specimen. 

 

The depth of penetration when failure was complete and approximated to be less than 

2mm. In the repeated impact specimens (From Data 1 and Data 2) it appeared slight 

less than the fifth-impact failure specimens (From Data 5). This is also an indication 

that accumulative damage may exist with this material. 
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Material: VE/FLYASH (33%) 

Microwave Conditions,  
Curve 1 = 180 Watts, 40 seconds 
Curve 2 = 360 Watts, 40 seconds 
Curve 3= 540 Watts, 10 seconds 
Curve 4 = 540 Watts, 15 seconds 
Curve 5 = 540 Watts, 20 seconds  
Drop height at 400mm  

Figure 6.8: A similarity in the slope of the loading curves had been exhibited 

 

The peak force on all failure curves ranged from 12 kN to 17 kN. No significant 

relationship between peak force and drop-height could be attained with the small 

number of specimens tested. From these results one can say that a peak force in this 

range is likely to result in failure. 

 

However when observing Figure 6.8 it can be seen that the irregularity does not 

diminish with subsequent impacts. To determine the cause of the feature of the 

loading curve, the use of more specialized equipment is required (e.g. high speed 

camera) 
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After the impact test, the best fracture specimens were taken to Queensland University 

of Technology (QUT) for investigation for fractured surface using the Scanning 

Electron Microscopy (SEM). One of the specimens was cured with an exposure time 

of 40 seconds and a power level of 180 Watts and the other one was cured under a 

power level 540 Watts and exposed to microwaves for 10 seconds.  

 

The reason of the choice was to compare the difference fractured surface cured under 

different power levels and exposure times. Tables 6.4 showed the results of the 

investigation into these two specimens using magnifications of 80 and 300 times 

respectively. The area named 1, 2, 3, 4 and 5 for investigation had been discussed in 

section §5.5. At some point, the magnifications were increased to 600X, 1200X and 

5000X respectively; this was used to investigate some small fractured surface. The 

pictures taken at these five areas with magnifications of 80 and 300 times can be in 

Appendix E. 
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Table 6.4: Viewing results of magnifications of 80 times to 300 times  

Investigation Fracture Surface of Five Areas 

Microwave Condition 

A
re

a 

Specimens A1 

(180Watts;40seconds;500mm) 

Specimen A2 

 (540Watts;10seconds;450mm) 

1 A big crushed on the top surface (curving 

area) of the specimens was shown in Figure 

6.9. 

Most of the phenomenon was same with 

specimen A1 and nothing special was found in 

this area 1. 

.  

2 Figure 6.10 showed the fracture surface 

started in this area 2. This area 2 showed a 

curving fractured surface. A small empty 

hole was found when the magnification 

increase to 600X.  

Same case with specimen A1 but the fracture 

surface has a little bit longer. 

3 50% of crushed zone was found and 50% of 

fractured propagation zone was found. 

Besides that, a secondary cracking was 

found. The force was pulled to different 

directions from area 3. 

70% of crushed zone was found and 30% of 

fractured propagation zone was found. Some 

small pieces of debris were found on the 

cracked surface when the zooming was 

increased to 2500X. 

4 Another secondary cracking was in this area 

4. 90% of fractured propagation zone was 

found and 10% of crushed zone was found.  

Less debris appeared as compared with 

specimen A1. Brittle fracture was also found 

in this area. Crack was also found propagating 

through fly ash particle. 

5 Figure 6.9 showed some small pieces of 

debris were on the crack surface. A 

secondary crack was found in 600X zooming 

and a direction of crack growth to left hand 

side.  

Figure 6.11 showed much of brittle fracture 

area appeared in the crack propagation zone. 

There was a lot of small bubble in fractured 

propagation zone.  
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First fracture 
surface 

Direction of 
crack growth  

Small pieces of 
debris 

Figure 6.9: Different zooming fracture surface in between 80X to 600X 
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Empty hole

Secondary 
Cracking 

 Figure 6.10: Fracture surface in 300X zoom 
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Appearance 
of brittle 
cracked  

Figure 6.11: Appearance of brittle cracked 

 

In general, the results obtained for the groups of specimens cured under microwave 

conditions with a power level of 180 Watts showed not much difference with the one 

cured under microwave conditions with a power level of 540 Watts. The differences 

in average energy required to complete fracture between these two specimens were 

found to be very small. 

 

6.4  Summary 

 

Important points from this chapter are:- 

1.  The results proved that there were no fractured specimens in the group of 540 

Watts and 15seconds.  
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2. The specimens cured with microwaves using a power level of 540 Watts and 

20 seconds tended to fracture at a drop-height of 450mm. 

3. Peak forces of the failure curves ranged between 12kN to 17kN. 

4. The impact resistance of VE/FLYASH greatly depended on the amounts of fly 

ash used.  

5. An irregularity at the beginning of the loading curve was found to be common 

to all specimens. The displacement range over which the irregularity existed 

was 1.3mm to 1.8mm.  



 

 

 

Chapter 7 

 
Conclusions and Further Work 

 

7.1 Introduction 

 

These research findings can be used as a foundation for those who continue this 

project. The achievements made over the course of this investigation will be 

summarized in this chapter. The problems solving and recommendations will also be 

provided to aid the future workers.  

 

7.2  Achievements  

 

The achievements made over the course of this investigation are summarized in the 

following subsections:  

 

7.2.1  Specimens Production 
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The specimens had been successfully produced under microwave conditions. In the 

group of curing under microwave conditions, it was broken down into two more 

groups by having the specimens cured under microwave conditions with power levels 

of 180 Watts and 360 Watts, each with different exposure time of 30 seconds, 35 

seconds and 40 seconds respectively. Besides that, 540 Watts with exposure time of 

10 seconds, 15 seconds and 20 seconds were the extra group cured under microwave 

conditions this research. 

 

7.2.2 Data Processing 

 

Matlab software makes the data processing more convenient. Once the noise made the 

data obtained difficult to analyze. The Savitzky-Golay filter used the Signal 

Processing Toolbox in MATLAB made the graph looked smooth, more accurate;  It 

also captured the heights and widths of narrow peaks.  

 

7.2.3 Impact Strength 

  

The impact strength on specimens cured with microwaves had been found and 

evaluated. From the results, the specimen cured under microwave with a power level 

of 540 Watts and 15 seconds of exposure time was the strongest specimen. The best 

result was to drop the tub from a height of 500mm. 

 

7.2.4 Fracture Analysis 
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Fracture analysis had been carried out with the use the Scanning Electron Microscopy 

(SEM), the analysis had shown that there was a difference between the specimens 

cured under microwave conditions with power levels of 180 Watts and 540 Watts. In 

180 Watts group, the fracture surface of the specimen is bigger when compared with 

that of the 540 Watts one. This was because the group cured by a power level of 540 

W was stronger. 

 

7.3  Further Work 

 

7.3.1 Mould Casting 

 

The specimens cannot be cast at 100% identical. Some of the specimens cast were 

found to have uneven height and surface flatness as well. This problem arose when 

pouring the mixtures into the moulds.  This problem will affect the final result of the 

impact test. It was suggested the cast the specimens as 55mm height and cut it around 

5mm height after curing. It was recommended to cut them with diamond saw to 

produce a flat and same height on every specimen 

 

 

7.3.2 Drop-weight Tower 
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The drop-weight tower was used in this research had a few problems. The problem 

was the reading had to be increased by a step of 50mm. The impact tup was not 

running smooth during dropping. Some vibration occurred in the drop-weight tower 

because the support it was not stable enough. It was suggested to modify or change a 

new drop-weight tower because this could improve results. 

7.3.3 Matlab Programming 

 

The MATLAB programming used was still in the developing stage. There were some 

inconvenient in running the program such as the data could not be loaded directly 

from MATLAB program. The program had to be restored every single time in every 

testing. 

 

 

7.3.4 Simulation 

 

Nowadays, ANSYS software is popular in the market and user-friendly for simulation. 

ANSYS can be incorporated with other software such as PRO-ENGINEER and so on. 

More information can be obtained if computer software is used to analyze the 

experimental results, such as the area of maximum fracture toughness etc. By using 

this software some process will be simplified. Hence, I suggest this software has to be 

used on next attempt.    
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