

University of Southern Queensland

Faculty of Engineering and Surveying

Development of a Tournament Management System

A dissertation submitted by

Benjamin Brett Thomas

In fulfillment of the requirements of

Courses ENG4111 and ENG4112 Research Project

Towards the degrees of

Bachelor of Engineering (Computer Systems)

Bachelor of I.T. (Applied Computer Science)

Submitted: January, 2010

i

ABSTRACT

Online gaming competitions are growing exponentially in popularity as internet infrastructure

improves. Effectively managing the simplest tournament and tournament assets has become a

very time consuming task. This dissertation examines methods for automating some of the most

common tournament management tasks including; scheduling, identity authentication, bracket

building and server management.

This document develops separate models for completing these common tasks and examines tools

already available for tournament management. A number of programming languages and

environments are used throughout in order to effectively create the simplest module model.

Background research in tournament formats, communication protocols and game software form

the basis of module design and development.

This dissertation develops concepts and ideas that form the basis of a programming solution to

tournament management. These ideas are further developed thought the implementation and

testing of automated modules and an insight into future study available in this field.

ii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &
ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Engineering and Surveying
or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course "Project and Dissertation" is to contribute to the
overall education within the student’s chosen degree programme. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the
risk of the user.

Professor Frank Bullen
Dean
Faculty of Engineering and Surveying

ii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &
ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Engineering and Surveying
or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course "Project and Dissertation" is to contribute to the
overall education within the student’s chosen degree programme. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the
risk of the user.

Professor Frank Bullen
Dean
Faculty of Engineering and Surveying

ii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &
ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Engineering and Surveying
or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course "Project and Dissertation" is to contribute to the
overall education within the student’s chosen degree programme. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the
risk of the user.

Professor Frank Bullen
Dean
Faculty of Engineering and Surveying

iii

CANDIDATES CERTIFICATION

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out

in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in

any other course or institution, except where specifically stated.

Benjamin Brett Thomas

Student Number: Q10225151

Signature

Date

iv

ACKNOWLEDGEMENTS

This research project was carried out under the principle supervision of Dr Alexander Kist

Appreciation is also due to:

Brendan Anabel

Alex Mottshaw

Tom Fabian

Joel White

Rob Skillington

v

Contents

ABSTRACT I

LIMITATIONS OF USE II

CANDIDATES CERTIFICATION III

ACKNOWLEDGEMENTS IV

LIST OF FIGURES VIII

LIST OF TABLES IX

ABBREVIATIONS X

CHAPTER 1 1

1.1 Outline of the study 1

1.2 Introduction 2

1.3 The Problem 3

1.4 Scope 4

1.5 Research Objectives 5

1.6 Conclusions 6

CHAPTER 2 7

2.1 Introduction 7

2.2 E-Sports 8
2.2.1 Professional E-Sports 8
2.2.2 GotGames 9
2.2.3 Online Environment 9

2.3 Game and Platform Software 11
2.3.1 Valve 11
2.3.2 Steam Platform 11
2.3.3 Source Engine 12
2.3.4 Dedicated Servers and TV Relays 13
2.3.5 RCON 14

vi

2.4 Tournament Formats 15
2.4.1 Seeding and Draws 15
2.4.2 Single Elimination 15
2.4.3 Double Elimination 16
2.4.4 League 18
2.4.5 Group 18

2.5 Existing Tournament Management Software 19
2.5.1 The CEVO System 19
2.5.2 Bracket Maker 23

2.5 Information Feeds and Protocols 25
2.5.1 JSON 25
2.5.2 XML 26
2.5.3 Direct Database Access 28

2.6 Summary 29

CHAPTER 3 30

3.1 Introduction 30

3.2 System Overview 31
3.2.1 GotGames Resources and Infrastructure 31
3.2.2 Language and Protocol Choices 33

3.3 RCON Interface Module 35
3.3.1 RCON Protocol 35
3.3.2 Sending Packets 35
3.3.3 Receiving Packets 36
3.3.4 RCON Design and Development 37

3.4 Client Software 40
3.4.1 Client Functions 41
3.4.2 Automated Scheduling and Bracket Functions 45

3.5 Summary 50

CHAPTER 4 51

4.1 Introduction 51

4.2 Test Procedures 52
4.2.1 RCON Interface 52
4.2.2 Client and Chat Server 53
4.2.3 Auto-Scheduler 56
4.2.4 Bracket Builder 57

4.3 Summary 58

CHAPTER 5 59

vii

5.1 Introduction 59

5.2 Security 60

5.3 Conclusions 62

5.4 Further Work 63

REFERENCES 64

APPENDICES 66

viii

LIST OF FIGURES

Figure 1 – Manual tournament management. 2

Figure 2 - Simplified system model 4

Figure 3 - Single elimination bracket 16

Figure 4 - Double elimination bracket 17

Figure 5 – CEVO server management 20

Figure 6 – CEVO match listing 21

Figure 7 – CEVO client 22

Figure 8 – Bracket Maker example 24

Figure 9 - Broadcast module 25

Figure 10 – RCON interface 38

Figure 11 – Client/Server module 40

Figure 12 - Scheduling and bracket building 45

Figure 13 – Bracket layout 48

Figure 14 – Client login screen 53

Figure 15 – The first client 54

Figure 16 – The second client 54

Figure 17 - Createserver.php display 56

Figure 18 - Bracket Builder output 57

ix

LIST OF TABLES

Table 1 - JSON Characteristics 26

Table 2 - XML Characteristics 27

Table 3 - Language choices 34

Table 4 - SERVERDATA_AUTH_RESPONSE codes 36

Table 5 - SERVERDATA_RESPONSE_VALUE codes 37

x

ABBREVIATIONS

API Application Programming Interface

CEVO Cyber Evolution

E-sports Electronic Sports

FTP File Transfer Protocol

HTML Hyper Text Markup Language

JSON JavaScript Object Notation

PC Personal Computer

PHP Hypertext Preprocessor

RCON Remote Control Protocol

SQL Structured Query Language

Steam ID Steam Identification Code

STV Source TV

XML Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 Outline of the study

The need for GotGames to derive an automated tournament management system has become

apparent over recent years as tournament sizes have increased at alarming rates. Current manual

techniques are very time consuming and divert staff resources from other high priority tasks. The

purpose and scope of this study is detailed in section 1.4 Research Objectives.

2

1.2 Introduction

GotGames in an Australian based e-sports company focused on delivering high quality gaming

competitions in both an online and offline environment. Although the services offered by

GotGames cover a large number of platforms and game environments, the largest, most lucrative

and popular competitions are PC based and run on Valve’s Source Engine.

Current methods for managing game servers, match scheduling and result reporting all rely on

staff manually manipulating the resources and data, and results in excessive hours wasted on

often tedious and repetitive tasks. Figure 1 illustrates the current situation where all aspects of

tournament management are manual.

Figure 1 – Manual tournament management.

3

1.3 The Problem

Despite the obvious need to automate a complete system as discussed in section 1.2 Introduction

the timeframe allocated for this project required that the scope be reduced to designing,

researching and developing important modules that will eventually become part of an overall

solution. The specific areas of importance that will be addressed through this dissertation are:

 Broadcast methods and formats for sharing competition information.

 Controlling remote game and spectator servers and automation of this control.

 Determining the identity of a player given the ambiguous nature of the online

environment.

 Automating scheduling and the associated tournament resource management.

 Displaying spectator and scheduling information in a bracket format.

Another aspect important to the development of this system is the problem that stems from the

ambiguous nature of online environments. Online e-sports competitions often have sizeable sums

of cash prizes and it is important that the identity of each competitor can be confirmed during all

aspects of the competition.

4

1.4 Scope

As mentioned in section 1.3 The Problem, the scope of this work has been reduced to include the

design and development of important system modules and not an entire system. Research has

also been limited to subjects that directly impact the design and development phases. Although

outside the scope of this work developing a comprehensive system would require the outcome of

this dissertation as integral modules.

The principles and techniques used in this project are intended for use beyond the limitations of

the PC and the Source Engine however this is work for future academics which is addressed in

Section 5.4 Future Work. Figure 2 demonstrates a simplified view of the developed tournament

management system.

Figure 2 - Simplified system model

5

1.5 Research Objectives

This research comprised of identifying problems, evaluating existing solutions and investigating

protocols and interfaces within the field of online tournament management specifically related to

the Source Engine. The aim of this research was to provide:

 Solid understanding and limitation of existing solutions.

 Determine appropriate formats to broadcast tournament data.

 Provide background information and definitions for e-sports, the Steam platform and the

Source Engine.

 Investigate the RCON protocol to facilitate game server control.

 Investigate Steam install environments in order to effectively design a client program.

The research will provide solid background knowledge of all the elements involved in this

project as well as focus on those areas that are important in the design and development of

tournament management modules.

6

1.6 Conclusions

This dissertation aims to identify key aspects of online tournament management and provide a

solid foundation for the design and development of tournament management modules that can be

integrated into existing and future systems. The research is expected to result in evidence that

automation will not only save valuable time but also that existing systems are not adequate for

GotGames use. A review of literature for this research will identify communication protocols,

features and security mechanisms that can be used in the module design and development. The

outcomes of this study will be used for the design and development of server management

modules, client identification software and server based software that will be used in existing

GotGames infrastructure.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will review literature to establish the need for automation of tournament systems as

well as provide background knowledge essential to the design and development phase discussed

in section 3 Module Design and Development. Once the foundations are covered this chapter

will consider current tournament management options and software and take a closer look at

some of the functions and protocols that will be used throughout this work.

8

2.2 E-Sports

E-sports or ‘electronic-sports’ is a term covering all forms of competitive gaming across all

platforms encompassing both offline and online environments. This section will establish the

local e-sports community and infrastructure by examining project sponsor GotGames after

establishing a quick overview of the local e-sports scene.

2.2.1 Professional E-Sports

No matter the activity if it is possible to make it competitive then there is little doubt that

people will. E-sports has long been portrayed as a basement activity for the rare

stereotypical geek community but recent events and innovations have seen e-sports on

major television stations throughout USA, South America, Asia and Europe. Being thrust

into the spotlight and offering prize pools in excess of millions of dollars (CGS 2008) has

seen the popularity of e-sports soar.

One of the most appealing attributes of e-sports is its low entry cost and the ability for

everyday users to compete over the internet in the comfort of their own homes. Online

tournaments and competitions have quickly become the norm and have seen massive

growth over the past 3 years; yearly growth figures in excess of 300% are not uncommon

for many games within Australia (Mottshaw, unpub).

Along with solid positive growth the e-sports scene in Australia and internationally has

seen a huge resurgence in online competitions with improved internet speed and games

equipped with lag compensation. Moving the competitive environment to the player’s

home adds an element of ambiguity and emphasis the need for identity authentication

throughout online competitions.

9

2.2.2 GotGames

GotGames (www.gotgames.com.au) is an Australian company specializing in online e-

sport tournament management. Although in recent years GotGames have branched into

many platforms and game titles the main focus of the company is Source based games

and providing for their huge local following.

In order to effectively deal with large increases in player numbers GotGames has

sponsored this work and will implement parts of this project as discussed in Section 3

Module Design and Development. GotGames has a number of assets available for the

development and testing phases of this work including:

 Access to existing user data stored in SQL databases.

 Dedicated game servers deployed within both Linux and Windows environments.

 Dedicated spectator relays deployed within the Linux environment.

 Access to existing tournament data for testing.

 Access to web server deployed on a Linux machine.

2.2.3 Online Environment

The successful outcome of this work will result in modules designed to be implemented

in an online tournament management system. Although in theory many features and

options within these modules can also be utilized for offline competitions the design and

development will concentrate purely on an online environment. Online tournaments are

managed remotely and can cater for large numbers of teams and players; therefore

automation of these systems offers the greatest gains from a corporate perspective.

In an online environment player authentication becomes a major issue facing tournament

organizers and administrators. Each and every player must be who they claim to be and

not representing a false identity or alternative identity throughout the competition. There

www.gotgames.com.au

10

are many features of the game and platform software that can assist tournament

organizers and administrators in identifying players and these are discussed further in the

next section.

11

2.3 Game and Platform Software

This section will examine the software used by gamers and organizers within GotGames

focusing on the Source Engine and associated servers and deployment platforms. This is the

software that the management modules will manipulate in order to achieve the goals of:

 Manipulate dedicated game servers.

 Authenticate player’s identities.

 Manipulate dedicated spectator relays.

 Gather user information through client software.

2.3.1 Valve

“Valve is an entertainment software and technology company founded in 1996 and based

in Bellevue, Washington. The company’s debut title, Half-Life®, has won over 50 Game

of the Year Awards and was named "Best PC Game Ever" in the November 1999,

October 2001, and April 2005 issues of PC Gamer, the world's best-selling PC games

magazine.” (valve, 2008)

Valve is responsible for all the software covered in this section and is a developer of

leading-edge technologies including the Source game engine and Steam, a leading

platform for digital content with over 10 million registered users.

2.3.2 Steam Platform

Steam is the name of Valve’s digital distribution platform and has a worldwide user base

in excess of 20 million (valve 2010) (internet café accounts included). In order to play

licensed games such as those using the Source Engine each player must have Steam

installed and operating on their PC.

Steam is an account based virtual file system that allows users to access programs

including games only once they have authenticated with a username and password login

12

system. In this way users can have access to programs that have been purchased through

Steam on any PC around the world given that once they login the required data files are

downloaded.

The most useful feature of the Steam platform from this project’s perspective is that

every account is assigned a unique Steam ID. This Steam ID is used to identify the

account and its owner and can be access from within games or directly from the steam

logs. By utilizing this unique Steam ID one can successfully link players to various

accounts thus forming the basis of a user authentication process. Features of the Steam

platform include:

 Integrated friend and user chat system.

 Ability for users to modify games and programs with limited source code

available.

 Steam Cloud stores player’s settings so that no matter where they login from their

game settings are always consistent.

 Accounts are linked to unique Steam IDs.

 Integrated store allowing online shopping and content download.

 Automated updates.

 Online authentication required to run the steam process.

It is important to emphasize that it is necessary to validate every Steam game online

before it can be played, although an offline mode is available. There are no alternate

methods of activation such as via telephone or fax, which causes the system to deny

access to those without Internet connections.

2.3.3 Source Engine

The Source Engine is a 3D game engine developed by valve and is the workhorse behind

a large number of competitive games including Counter-Strike Source and Team Fortress

2. The Engine has been constantly upgraded since its release in June 2004 and licensed to

13

a number of platforms including Microsoft Windows, Xbox, Xbox 360 and Playstation 3.

The Engine itself is not a particularly important part of tournament management and is

concerned with how the game client’s interact with the software interface and the players

overall visual experience. With the focus of this work being on tournament management

it is important that the game clients be touched on briefly, however the following section

2.3.4 Dedicated Servers and Spectator Relays will introduce important resources for

management systems.

2.3.4 Dedicated Servers and TV Relays

As with the large majority of online games, those based on the Source Engine operate in

a client server model. This means that for every match there must be a server that is

capable of accepting the client connections and controlling the game interface, physics

and interaction. For online tournament play these servers are dedicated (server only

software) and can be deployed in either a Microsoft Windows or Linux environment.

Source dedicated servers are command line based and it is not uncommon to see a

number of different servers located on a single machine.

Along with dedicated servers Valve have developed a dedicated spectator service called

Source TV that enables clients to view a match from within the game client without being

able to influence or affect game play. In order to reduce the burden on resources these

Source TV services operate in much the same way as a game server and can operate from

multiple locations while being directed to a single dedicated Source server. The

delocalization of Source TV leads to the term relay being used and in effect Source TV

binaries can be infinitely chained to allow for any spectator numbers.

The tournament management models will need to interface with these Server and Source

TV binaries in order to manipulate the following:

 Restart servers for scheduled matches.

 Set server connection passwords for clients.

14

 Change server maps.

 Point Source TV relays to the appropriate server.

 Set predetermined rule sets through server variables.

Valve has implemented a remote administration service that can be used to manipulate

Source Servers and Source TV Services. This remote administration service is called

RCON and is covered in the next section.

2.3.5 RCON

RCON is a remote administration service that can be used to control all aspects of Source

Servers and Source TVs including setup, game environment, client connection

parameters and blocking client commands. In order to access RCON commands users

must first authenticate themselves using the RCON password. The RCON password is set

during the installation and setup of the Source Server or Source TV Server and can only

be changed by those with FTP access to the server machine.

Once a user authenticates themselves with the RCON password commands can be

wrapped into packets and sent to the required server. The developed tournament

management modules can effectively control any Server or Relay through the use of the

RCON interface module that is discussed in-depth in Section 3.3.

15

2.4 Tournament Formats

Section 2.4 will focus on available tournament formats and examine how brackets are

constructed and seeding is calculated.

2.4.1 Seeding and Draws

All e-sports competition brackets and draws are populated either by seeding or random

drawing. As with all sports seeding is the preferred method giving teams with higher

seeds early match ups against lower seeded teams. However in such a volatile and ever

changing environment it is not always realistic to seed teams and therefore any automated

system will also have to accommodate the option to randomly seed teams.

Scheduling modules will need to take into account options for random seeding and set

seeding in order to fulfill the requirements of GotGames.

2.4.2 Single Elimination

Single elimination is commonly used for tournaments where an aggressive timeline is an

important factor. Teams or players are eliminated after a single loss and the bracket only

guarantees that the winning team is the best. However without seeding single elimination

brackets cannot guarantee that the best teams make it to the final as one of the finalist

may have knocked out a better team earlier in the bracket.

It is important to note that the number of teams in a single elimination bracket must be a

multiple of 2 to avoid byes being recorded. Due to limited resources GotGames

competitions of this type have always been full and therefore a simplistic approach of

avoiding byes can be used in the auto-scheduling module discussed in Section 3.4.2.

16

Figure 3 - Single elimination bracket

The number of matches required for a single elimination bracket can be calculated using

the formula:

− 1 = ℎℎ ℎ .
2.4.3 Double Elimination

Double elimination is the preferred format for tournaments of short length, the bracket

guarantees that the top teams progress to the later matches. The tournament bracket

consists of a winners and a losers section with teams dropping to the lower bracket upon

a single loss and two losses eliminating them from the tournament.

17

Figure 4 - Double elimination bracket

As with the single elimination bracket double elimination brackets require that the total

number of teams be a multiple of 2 in order to avoid byes. The main advantage of a

double elimination bracket over that of a single elimination is that it guarantees that the

best two teams will be competing in the final.

The number of matches required for a single elimination bracket can be calculated using

the formula:

(− 1) 2 + 1 = ℎℎ ℎ .
As demonstrated by the above equation a double elimination bracket requires more than

twice as many matches as the equivalent single elimination bracket.

18

2.4.4 League

League formats pit all the teams into a single group and matches are played in a round

robin format. This format is used for tournaments that take place over an extended period

of time and are restricted to a relatively small numbers of teams. Points are awarded for

win, draw and loss results and like group stage tournaments it is common for the top

teams at the end of the league season to progress to a double or single elimination

bracket.

Because the league format is only suitable for a limited number of teams competing over

an extended timeframe it is not the source of a lot of invested employee time at

GotGames. For this reason and the fact that the initial setup and scheduling is done for a

number of weeks as opposed for a single day, league play will be omitted from this

project and will be a feature that future work could implement.

2.4.5 Group

A favorite of most big tournaments, group stages splits teams up into a number of smaller

pools were round robin games are played. During group stages points are awarded for a

win, draw or loss and the resulting table is used to assess the teams that will advance

from each group. Seeding is used to ensure that the better teams are evenly distributed

between the groups and the top teams from each group are then placed into a single or

double elimination finals bracket.

Like league brackets group stages are relatively easy to manually manage and are seldom

used in GotGames competitions. For this reason group stage formats will be omitted from

the management modules.

19

2.5 Existing Tournament Management Software

This section will examine existing software options for tournament management open to

GotGames. This section will examine the features of each and their suitability for

implementation by GotGames as an overall solution. In particular this section will focus on the

CEVO proprietary system and free options available such as Bracket Maker.

2.5.1 The CEVO System

Comprehensive packages for online tournament management are not widely available

however there are a number of companies that operate their own custom systems. One of

the biggest and most successful of which is the North American based company, CEVO

(Cyber Evolution). Although differing in that the CEVO system is designed specifically

to run internal competitions it has been adapted to allow partnered companies to utilize

some of the tournament management functions.

The CEVO system consists of 2 parts; a frontend that allows competitors to establish

themselves in teams and enter personal information including Steam IDs; and a backend

that allows administrators to control player and tournament information. A similar

frontend already exists with the current GotGames system and therefore will not be

addressed within this work. This project focuses on the backend and the automation of

tasks associated with server management, match scheduling and client authentication.

Like the proposed system the CEVO system allows administrators to control a number of

options within the server management section. However the CEVO system requires that

servers be manually assigned to each match and the system is limited to servers that are

owned and operated by CEVO.

20

Figure 5 – CEVO server management

21

The CEVO system excels when it comes to league style competitions that are held over

an extended time frame as the system allows competitors to schedule their own matches

via the front end. This is a feature that although exists at GotGames will be omitted from

this work in order to concentrate on automating single and double elimination

competitions where an aggressive timeframe is important. Figure 6 demonstrates a listing

of matches on the CEVO system, each match can be edited by an administrator however

they are originally scheduled by competitors themselves.

Figure 6 – CEVO match listing

22

The CEVO client as seen below is considered to be the most reliable identification

verification and anti-cheat tool available today(John Sidey 2007). However once again the

client is linked with the CEVO system and only tournaments run via CEVO can utilize

the client in any form. Figure 7 shows the main display of the CEVO client as scene on

the competitor’s PC.

Figure 7 – CEVO client

23

The CEVO system is a fully function tournament management software solution that

does automate a majority of work involved in scheduling and server management

however it is not suitable for GotGames deployment because:

 The system does not allow for the addition of Servers that are not owned and

operated by CEVO.

 The system is not capable of managing Source TV relays.

 Functionality to display information relating to upcoming matches and spectator

details is lacking.

 The system is implemented as a single entity and as such all the modules and

features are hard coded for CEVO requirements and into existing CEVO

infrastructure.

 The CEVO client requires the operation of a Client Server which is based in the

United States and results in a magnitude of lag issues for Australian competitors.

2.5.2 Bracket Maker

Aside from corporate systems like the CEVO system mentioned above there are a

number of smaller assets available to assist in the management of online tournaments.

Although tools for server management do not exist outside the corporate realm there are

some tools that assist in scheduling and sharing match information in a human readable

format.

One such tool is available online and is called BracketMarker, although BracketMaker

can automate brackets it requires the user to enter all manual data for each and every

bracket created. Another downfall of the Bracket Maker software is that details for every

single match must be manually entered and updated by administrators.

24

Figure 8 – Bracket Maker example

25

2.5 Information Feeds and Protocols

This section examines the options available for feeding tournament data including, match

schedules, results and spectator information to external reporting websites. In particular this

section focuses on three available options for sharing this information; JSON, XML and direct

database access.

Figure 9 - Broadcast module

2.5.1 JSON

JavaScript Object Notation is a lightweight data interchange format that is text based and

human readable and is used for describing simple data structures referred to as objects.

One area where JSON excels is in Ajax-style web applications where web based

26

applications use lightweight out of band calls to the web server instead of full page

refreshes. Since it is primarily a data format, JSON is not limited to just Ajax web

applications, and can be used in virtually any scenario where applications need to

exchange or store structured information as text.

Array Support Native support for arrays.

Size Most of the space is consumed by the represented data because the

syntax is very strict.

Namespaces No support for namespaces, this is overcome by nesting objects.

Object Support Native support for objects.

Data Types Structured data can be represented through arrays and objects

while support for scalar data types is present.

Null Support Native support for the null identifier.

Formatting Concise and simple due to strict syntax requirements.

JavaScript Parsing Can be easily parsed by JavaScript using eval.

Comments Comments are not supported; however the format is extremely

easy to read.
Table 1 - JSON Characteristics

GotGames currently make heavy use of Ajax-style web applications, Java and JavaScript

and for this reason it is important to consider JSON as a viable data format and exchange

protocol.

2.5.2 XML

Extensible Markup Language is a markup language for documents containing structured

information. Structured information contains both content and some indication of what

role that content plays. An example would be content for a title section of a document

would play a different role to content that was designed for a footnote. Almost all

documents have some structure. A markup language is a mechanism to identify structures

27

in a document. The XML specification defines a standard way to add markup to

documents.

XML is a text based format and was designed specifically to carry data and not to display

data. Although similar in structure to HTML, XML does not provide document

formatting but rather only contains document data. Tags in XML are not predefined and

must be defined; these tags are then read and formatted through the use of another

application.

Array Support Arrays support is not native and array must be expressed by

conventions.

Size Documents are often lengthy.

Namespaces Supports namespaces.

Object Support Objects must be expressed through conventions.

Data Types No data type notation.

Null Support No native support for null identifier.

Formatting Can become very complex and requires careful planning.

JavaScript Parsing Requires an XML DOM implementation and additional

application code to map text back into JavaScript objects.

Comments Native support for comments.
Table 2 - XML Characteristics

The above table can be compared to Table 1 on page 26 in order to signify the main

differences between XML and JSON. Both languages offer different features for sharing

formatted data between application and across networks. One major advantage of XML

over JSON is the large number of mature tools available for use with XML as the

protocol is over 10 years old.

28

2.5.3 Direct Database Access

As the name implies this method requires outside applications to have direct access to

data stored in database tables (SQL in the case of GotGames). Although by far the easiest

and fastest method of sharing data, allowing uncontrolled access to a database results in a

number of security and performance concerns. Unregulated database access can result in:

 Theft of sensitive or valuable data.

 Performance losses due to an unknown number of additional queries.

 Intentional disruption of services.

 Daisy-chaining of unregulated access through authentication progression.

Obviously the speed and ease of implementation that are offered by direct database

access cannot account for the obvious security and performance risks associated. Even

allowing limited direct database access can result in massive performance losses that will

affect all processes on that server. For the reasons mentioned above direct database

access will not be considered as a viable option in Section 3.2 where protocol decisions

are discussed.

29

2.6 Summary

Although brief the information provided in Chapter 2 is required in order to set a solid base for

design and implementation decisions. Basic knowledge of the software, systems, protocols and

history provide a solid foundation for informed decision making in later Sections. To summarize:

 E-sports is growing locally especially in an online environment.

 Online e-Sports tournaments require automated management systems to alleviate massive

amounts of manual work handled by GotGames staff.

 User identification and authentication is a major hurdle facing online competitions.

 GotGames has made available a number of assets that will be required in order to

complete this work.

 Valve is responsible for the creation of all game and game platform software and both are

automatically updates frequently.

 Steam is the platform used to launch all Source based games.

 Steam has built in authentication for users and each account is linked to a unique Steam

ID.

 The game engine that this project has selected to concentrate on is the Source Engine.

 Aside from the game client Valve have also developed stand-alone or dedicated Server

and Spectator services for the Source Engine.

 RCON is a remote administration tool that can be used to manipulate Source Servers and

Source TV services.

 Tournament formats that this project is concerned with are single and double elimination.

 There are existing solutions for tournament management but they are not scalable or are

privately owned and customized for specific tasks.

 Sharing tournament data is a feature lacking in all available tools and is essential to boost

interest and spectator numbers.

 There are a number of formats to consider for data sharing including JSON, XML and

direct database access.

30

CHAPTER 3

MODULE DESIGN AND DEVELOPMENT

3.1 Introduction

This chapter contains in-depth discussion regarding module design and development. Each

module is contained in a section as well as a brief overview of the design philosophy and

existing infrastructure that required interfacing. Some modules have been broken into smaller

sections in order to adequately cover the complexity of the system.

31

3.2 System Overview

This section contains information on the overall system and interaction between modules as well

as examining the existing infrastructure at GotGames. Discussion about design choices

including:

 Coding languages;

 Module breakdowns;

 Scripting Options;

 Operating environments;

 Resource requirements;

3.2.1 GotGames Resources and Infrastructure

The existing infrastructure must be carefully considered when interfacing new modules.

GotGames has a number of machines serving as game servers, web servers and database

servers. These servers predominantly operate in the Linux environment however there are

several machines that are still dependant on Microsoft Windows Server including the

machine responsible for web serving.

From a software perspective GotGames has a number of useful modules in operation

including:

 VB Forums that are used to manage user information and details.

 A team system that is used to link users to particular teams.

 A recent server booking application that requires the ability to interface with

Source Servers.

 GotGames Live system that allows users to communicate, advertise and play

games in groups or privately through the use of JAVA applets.

32

All of these software packages interact on some level and rely on heavy custom coding

and scripting. It is important to note that some of these systems rely heavily on Ajax-style

web applications that share information through the use of JSON. Most of the modules

currently in use and development with the GotGames system are PHP, SQL, JAVA or

JavaScript based.

3.2.1.1 GotGames Database Schema

GotGames operate a single database responsible for storing information from a number of

different application and services. Because of the importance of database integrity on

current services it was appropriate that clones of existing tables be created for testing and

data manipulation. A detailed report on the tables used in development can be found in

Appendix I. Tables prefixed TMS are clones of existing GotGames tables while the rest

are actual tables as they exist within the GotGames database.

It is important to note that the additional load created by module queries is negligible

when compared against the daily load place on GotGames servers. Therefore

optimization to reduce query count was not considered in the coding of tournament

management modules.

3.2.1.2 User Interface Requirements

Existing interfaces allow GotGames users to modify and access most of the relevant data

for team and player management. However in order to keep impact on current operations

as low as possible when creating tournament management modules basic interfaces

where created to facilitate the addition and editing of some data. These interfaces are

constructed in PHP and can be located in Appendix E.

33

3.2.2 Language and Protocol Choices

The primary goal of language and protocol selection is to make interfacing and creating

of modules as simple as possible while maintaining a robust function set to achieve the

desired results. It is obvious that selecting languages already in use at GotGames would

make integration a simpler task. Table 3 shows the languages and protocols considered

and why each was chosen or disregarded:

34

Language/

Protocol

Pros Cons Final Decision

Perl Simple

 Powerful

 Not platform specific

 Outdated

 Hard to understand

 Limited toolset

 Limited knowledge

 Hard to integrate

Rejected Perl as a viable

option because PHP

offers a richer

environment with better

future support.

PHP

 Extremely simple

 Well structured

 Abundant support

 Rich feature set

 Large toolset

 Open source

 Poor error handling

PHP was chosen as the

scripting language due it

the available toolsets

and support.

C/C++ Powerful

 Popular

 Numerous libraries

 Compiled language

 Steep learning curve

 Platform specific code

 Networking not

standardized

C++ was rejected

mainly due its poor

handling of network and

socket code from

platform to platform.

JAVA Cross Platform

Support

 Large libraries

 Open source

 Relatively easy

 Requires JVM

 Limited Vision outside

of JVM

Java was chosen simply

because it handles

sockets with ease and is

cross-platform.

JSON Well Structured

 Works well with

JAVA

 Lightweight

 Simple

 Object support

 Datatype support

 No namespace JSON is the obvious

choice for a system

already reliant on JAVA

and JavaScript.

XML Robust

 Mature

 Comments

 Human readable

 No object support

 Size

 No datatype support

XML was rejected

because JSON was the

better option for

integration.

Table 3 - Language choices

35

3.3 RCON Interface Module

This section will examine the interface required for Source Server and Source TV manipulation.

Topics covered include the RCON protocol and a discussion of the final working module.

3.3.1 RCON Protocol

The first step to designing and developing an interface between Source Servers/Source

TV and the management system is a comprehensive understanding of the RCON

protocol. The RCON protocol defines how information is sent to and received from the

servers and limited information is available outside of the Valve offices. The protocol

itself is based around command and response packets that are encapsulated in a TCP/IP

stream.

3.3.2 Sending Packets

In order to authenticate the RCON password the first packet sent to any Source Server

must contain a SERVERDATA_AUTH command. If this is not the case and a command

is sent instead of the auth then the response from the server will indicate a

SERVERDATA_AUTH_RESPONSE where the failure flag is set.

Command packets sent to the server have the following structure:

 packet size (int) - the number of bytes from the start of the requestid to the end of

string2 (including the null byte). It must be at least 10.

 request id (int)

 SERVERDATA_EXECCOMMAND / SERVERDATA_AUTH (int)

SERVERDATA_AUTH is currently 3 SERVERDATA_EXECCOMMAND is

currently 2

 string1 (is the command to run).

 string2 must be null ("");

36

Note that the integer values for the AUTH and EXECCOMMAND bytes are preset and

have been known to change with major updates.

3.3.3 Receiving Packets

Before we look at the structure of the received packet it is important to note that Source

Servers send one junk packet during the authentication step, before they respond with the

correct authentication response.

The response packet is much the same as the command packet:

 packet size (int)

 request id (int)

 command response (int) - valid command responses being:

SERVERDATA_RESPONSE_VALUE = 0

or SERVERDATA_AUTH_RESPONSE = 2

 string1 (null delimited string)

 string2 (null delimited string)

In order to interpret responses from the server the following table may be used:

Sent Command Value Return

SERVERDATA_AUTH Correct Password Mirrored ID

SERVERDATA_AUTH Wrong Password -1

SERVERDATA_EXECCOMMAND Any -1

Table 4 - SERVERDATA_AUTH_RESPONSE codes

37

Sent Command Value Return

SERVERDATA_EXECCOMMAND Command String String

Table 5 - SERVERDATA_RESPONSE_VALUE codes

A single SERVERDATA_EXECCOMMAND command may result in multiple

SERVERDATA_RESPONSE_VALUE response packets due to that fact that the

response string (string1) has a maximum length of 4096 bytes.

3.3.4 RCON Design and Development

As already discussed in Section 3.2 were possible all coding will be completed in JAVA

while were possible all scripting will be completed in PHP. This module is required to

execute RCON commands (see Appendix B) on remote Source Servers and Source TV

Services. For this reason this module will be interfaced directly between the Servers /TVs

and the server management module as shown in figure 10:

38

Figure 10 – RCON interface

From the above Figure it is clear that neither the competitor nor the administrator of the

tournament has any interaction with the RCON Interface and therefore the module will

not require a GUI but rather an API. Therefore the simplest and most robust way to

design the module was a simple executable with a command line capable of taking the

RCON arguments. The arguments required for the RCON interface are:

 Server/TV IP address.

 Server/TV Port.

 RCON Password.

 RCON Command.

An executable can be easily called from the PHP script and values can be passed to the

command line during the same call.

39

To begin with the module requires the ability to construct RCON packets which can be

easily achieved in JAVA using the ByteBuffer object. The source code containing

detailed comments can be found in Appendix F. The code is a simple implementation of

JAVA socket functions and requires no further discussion. It is important to note that

presently there is no error handling for the custom exceptions BadRcon and

ResponseEmpty and on successful execution of the RCON command the executable exits

providing no return data. Finally the format for calling RCON commands from the

command line is:

java –jar rconinter.jar Server_IP_Address Server_Port RCON_Password Command

40

3.4 Client Software

Covered in this section is the design and implementation of the client software and the associated

Chat Server. Segments of the server code are altered from an original JAVA chat server designed

by IBM. The client and server software will be implemented in JAVA as per Section 3.2.2

Language and Protocol Choices.

Figure 11 – Client/Server module

41

3.4.1 Client Functions

Chapter 2 covered the importance of verifying player’s identity throughout the course of

an online tournament and the Client is designed to fulfill those needs. In order to

authenticate players the client software checks:

 Verify username and password with those stored in the GotGames database and used

for the players GotGames account.

 Verify Steam Platform is installed.

 Verify local Steam ID with that saved in the GotGames database.

3.4.1.1 GotGames Authentication and Scheduling Information

The first identity check that the Client software is required to do is to verify that the

player’s login details match those recorded in the GotGames SQL database. In order to

authenticate this information the client is required to access the GotGames database and

retrieve details about the user attempting to login. The SQL schema present at GotGames

was covered in Section 3.2.1.1 and all the relevant user information is stored in the table

vb_user.

Accessing this data is a trivial task of connecting to the SQL database using the mySQL

database driver and retrieving the desired information from vb_user. A separate JAVA

class called TMSLocalUser was created to handle the collection of all relevant

information from the GotGames database, the source for which can be found in Appendix

H. The following segment of code demonstrates execution of a single SQL query in

JAVA:

Statement st = con.createStatement();

ResultSet rs = st.executeQuery("SELECT * FROM vb_user WHERE username =

'"+Username+"';");

rs.first();

42

GGSalt = rs.getString("salt");

The class stores all the gathered details in public variables and uses a simple error toggle

system to indicate that an error has occurred by simply setting the IsError flag. Once the

information is retrieved from the GotGames database the passwords can be compared.

It is important to note that the system used by GotGames encrypts the passwords using

MD5 and a Salt value. The MD5 system is used to hash the original password then the

salt is added and the process is repeated. In order to compare passwords the client

encrypts the password entered by the user in the same method using the salt value

retrieved from the GotGames database. The following segment of code is responsible for

encoding of the entered password:

//lets MD5 has the enter password

try {

MessageDigest md5 = MessageDigest.getInstance("MD5");

md5.update(Password.getBytes());

BigInteger hash = new BigInteger(1, md5.digest());

hashword = hash.toString(16);

StringBuffer buffer = new StringBuffer(hashword);

while (buffer.length() < 32) {

buffer.insert(0, '0');

}

firststage = buffer.toString(); //first stage is complete

} catch (NoSuchAlgorithmException nsae) {

}

hashword = null; //reset hashword

Password = firststage+GGSalt; // add the salt retrieved from the GG database

// MD5 hash the new value so we can compare the outcome.

try {

MessageDigest md5 = MessageDigest.getInstance("MD5");

md5.update(Password.getBytes());

BigInteger hash = new BigInteger(1, md5.digest());

hashword = hash.toString(16);

StringBuffer buffer = new StringBuffer(hashword);

43

while (buffer.length() < 32) {

buffer.insert(0, '0');

}

hashword = buffer.toString();

} catch (NoSuchAlgorithmException nsae) {

}

Encoding the password locally on the users machine means that only the hashed

password sequence is never transmitted over the socket. Once the client has verified a

users login details the scheduling information for the next match is retrieved from the

database and transmitted to the client for display to the user.

3.4.1.2 Verifying Install and Local Data

TMSLocalUser is responsible for gathering all local information from competitors PC.

As with most modern windows application the Steam Platform uses the Windows registry

to store details about installation including the install path. By checking that the install

path exists in the registry key ‘SOFTWARE\\Valve\\Steam\\InstallPath’ it is possible to

verify that Steam is installed and also recovery the location of the steam log. Once the

location of the log is found local data including Steam ID and Steam Account Name can

be read from the log. The function GetLocalInfo in TMSLocalUser (Appendix H) is

responsible for retrieving this information and storing it in class variables.

Once the information from the log is recovered it is simply compared to the Steam ID

already obtained from the GotGames database as explained in Section 3.4.1.1 GotGames

Authentication

3.4.1.3 Client Chat

A very simple global chat system has been added to the client software to enable users

logged into the client to communicate with one another. The chat system required the

creation of a threaded chat server that will be discussed in Section 3.4.1.4 Chat Server.

44

The source code for the chat system can be found as part of the TMSClientFinalMain

class found in Appendix H.

The chat service listens for user input and calls processMessage() when the user input

event is triggered. proccessMessage() is parsed the string the user entered and writes that

data to the server before clearing the text input field. The messages are parsed with the

username of the sender in order to keep track of message origins.

The chat segment of the client software is also listening for data to be sent from the

server. The TMSClientFinalMain constructor creates a thread as its last task; the purpose

of this thread is to read incoming messages from the server. This thread displays each

incoming message to the text are then goes back to waiting for more incoming messages.

3.4.1.4 Chat Server

The chat server is a standalone JAVA application in the form of a single process running

on a server machine. The code for the Chat Server can be found in Appendix G and is

contained with the Server class. The server listens on a port parsed on the command line

and uses sockets to communicate with each client.

The Chat Server is a threaded application in the sense that each new socket connection is

handled by a separate thread. The source code for the thread can be found in Appendix G.

This thread simply listens for incoming data from a client then once data is received

broadcasts that data to every other connected client. It is important to note that server side

time stamps are used for the server status and the log these form can be used to identify

when each user logs in and out of the system. Finally it is the job of ServerThread to

inform the main Server class of closing connections to avoid memory leaks and wasting

time attempting to communicate to closed sockets.

45

3.4.2 Automated Scheduling and Bracket Functions

Taking a closer look at the server management model will allow us to break it into three

distinctive sections:

 Auto-scheduling module.

 Bracket building module.

 Server booking system.

GotGames has recently implemented a SQL based server booking module and coupled

with the RCON interface covered in Section 3.3.4 RCON Design and Development is

capable of booking servers by means of command line parsing to an external process.

This section will therefore focus on the Auto-Scheduling and Bracket Building features

of the tournament management system.

Figure 12 - Scheduling and bracket building

46

Section 3.3 and 3.4.1 covered the modules and services that have been developed in the

JAVA language. As figure 12 indicates the scheduling and bracket building services

communicate directly with the database and therefore are more suited to a scripted

language. The following modules have been developed purely in PHP and are concerned

solely with the manipulation and formatting of database values.

3.4.2.1 Automated Scheduling Module

The auto-scheduler (source code can be found in Appendix D) was designed to automate

the process of setting individual matches for each tournament. The auto-scheduler takes

into account the number of available Source Servers and Source TV Relays and assigns

each match the following:

 Time.

 Date.

 Source Server.

 Source TV if available.

 Server Password.

 Bracket Position.

 Team information is available otherwise information on the parent match.

The auto-scheduler requires a start date and time to be entered along with the timeframe

for each round. It is assumed that only one round of each bracket is to be played per

timeframe and matches are calculated to be completed in the shortest possible timeframe.

This results in the maximum number of matches running concurrently on different Source

Servers.

The auto-scheduler processes each round of the competition and saves the calculated

matches. Scheduling of a single round involves:

1. Calculating total number of matches

47

2. Calculate the total number of matches that can be played at once using the number

of available Source Servers.

3. Retrieving the data pertaining to the Source Servers and Source TV Relays

available.

4. Taking the first seeded team and last seeded team and creating a match

5. Removing these teams from the teams array.

6. Assign a server to this match

7. Removing the assigned Source Server from the server array

8. Assign a server password to this match

9. If available assign a Source TV Relay to this match

10. Removing the assigned Source TV Relays from the stv array

11. Save the match Information

12. Repeat from step 3 until there are no teams left in the teams array.

By assigning the available Source TV Relays in this manner it is effectively guaranteed

that the highest seeded teams will have spectator facilities. All Match information is

saved in the tms_matches table and can be parsed directly to the existing booking system.

For each match the data field position is used to store that matches position on a virtual

bracket to facilitate bracket building as covered in the next section.

3.4.2.2 Bracket Module

The Bracket Module is responsible for formatting and displaying a bracket in human

readable format. The source code for the Bracket Module is located in Appendix C.

Figure 3 on page 16 depicts a simplified version of the common bracket, this module

builds on that bracket by providing the date, time, teams and spectator information for

each match.

In order to display the bracket HTML tables have been used as the layout engine. HTML

is designed to display data from left to right then top to bottom however the brackets have

been constructed from top to bottom then left to right. Using HTML to layout the bracket

48

is comparative to taking a pyramid that was built from the ground up and turning it on its

side.

Figure 13 – Bracket layout

To account for this rotation in construction the Bracket Module first creates an array for

each table entry. This array holds data that in turn is used to decide how to fill each table

cell when it comes to displaying the bracket. Using an array to represent the overall

picture allows data to be filled from top to bottom and the complete array to be drawn

from right to left.

The following code segment is used to create the array representing the complete bracket:

for($i = 1; $i <= $total_rounds; $i++) {

$round_matches = $this->getmatches($i);

$matches = pow(2,$total_rounds-$i); //calc how many matches for this round

$interval = pow(2,$i); // calc the interval for layout spacing

$offset = pow(2,$i-1);

for($c = 1; $c <= ($this->tournament_size*2)+1; $c++) {

if ($c < $offset) { // blank space

$col[$i][$c] = 0;

} elseif ($c > (($this->tournament_size*2)+1)-$offset) {

$col[$i][$c] = 0;

} elseif ($c==$offset) {

49

if ($i==$total_rounds) { //No match but tournament

$col[$i][$c] = "Champion";

}else { //print a team here

$tmp_array=array_shift($round_matches);

$col[$i][$c] = $tmp_array['print_team'];

}

} elseif ((($c-$offset) % $interval) == 0) { //print a team here

$tmp_array=array_shift($round_matches);

$col[$i][$c] = $tmp_array['print_team'];

} elseif ($c==($offset*2)) { //print match here

$col[$i][$c] = "Match".$tmp_array['id'];

} elseif ((($c-$offset*2) % ($interval*2)) == 0) { //print match

$col[$i][$c] = "Match".$tmp_array['id'];

} else {

$col[$i][$c] = 0; // blank space

}

}

print("
");

}

In order to locate the edges of the pyramid and match cells the code users an offset and

interval that are calculated for each column. The offset is used to find the edge of the

pyramid and is defined as: = 2
The interval is used to space out each match between the pyramid edges and is defined

by: = 2
Like the auto-scheduler the bracket maker is coded in PHP and interacts directly with

data stored in the GotGames database.

50

3.5 Summary

The information covered in Chapter 3 provided insight into the design and implementation

decisions made during module construction. The Chapter covers the existing infrastructure and

resources available at GotGames as well as the basic fundamentals behind the operation of each

module. To summarize:

 JAVA and PHP were the main languages used in the construction of modules.

 The broadcast module would benefit from the use of JSON.

 GotGames has existing systems for server booking however implementation of the

RCON module was required to provide support for Source Servers.

 The RCON module is a command line tool that communicates to servers through sockets.

 The Client software authenticates a user by checking the GotGames login and Steam ID

details.

 Local Steam ID details are obtained through the use of the windows registry to locate the

Steam log file where this information is stored.

 Chat functionality has been added to the Client software and is threaded.

 A Chat server was developed and the logs from the Chat server can be used to verify a

users online time.

 The Auto-Scheduler and Bracket modules interact directly with the database and are

written in PHP.

 Simple input scripts have been constructed to allow manipulation of tournament data.

51

CHAPTER 4

MODULE TESTING

4.1 Introduction

This chapter discusses the output obtained from sample executions of each module. Discussion

of current bugs and indentifying limitations of each module will also be covered. The chapter

will be broken into individual sections so that output from all code can be examined.

52

4.2 Test Procedures

Because the work involved in this project is concerned with the development of separate

modules and not a complete tournament management system each module was tested with a

variety of dummy inputs. The following sections supply a sample test output along with brief

discussion of the overall test results for that module.

4.2.1 RCON Interface

To test the RCON Interface a number of RCON commands were issued to the command

line tool and the output read from the server logs. Below is a sample test case:

Input:
I:\Documents and Settings\Racs\My Documents\NetBeansProjects\rconinter\dist>java

-jar rconinter.jar 118.127.16.173 31007 sH!z "say no"

I:\Documents and Settings\Racs\My Documents\NetBeansProjects\rconinter\dist>java

-jar rconinter.jar 118.127.16.173 31007 sH!z "changelevel de_nuke"

Output:
08:06:07 L 01/03/2010 - 09:06:09: rcon from "220.253.166.147:2118": command "say no"

08:06:16 L 01/03/2010 - 09:06:17: rcon from "220.253.166.147:2119": command "changelevel de_nuke"

The command line RCON interface worked as expected in 100% of test cases. Every

RCON command was received and executed by the server and the lack of error handling

meant that invalid commands were not processed.

53

4.2.2 Client and Chat Server

Testing of the Client and Chat Server was done on both a local machine and within the

internet environment. A sample test indicative of those performed follows:

Figure 14 – Client login screen

The client was logged in using valid GotGames account details and the message ‘Hello’
was typed and sent. Another client was then run on the same machine and logged in to
the same GotGames account, however the message ‘Goodbye’ was sent by the second
client.

54

Figure 15 – The first client

Figure 16 – The second client

55

Both clients where then exited and the results from the chat server logs examined:

>java -jar server.jar 10000

Listening on ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,localport=10000]

2010-01-03 08:17:12 Connection from Socket[addr=/127.0.0.1,port=2152,localport=1

0000]

2010-01-03 08:17:18 Sending <Racs> Hello

2010-01-03 08:17:48 Connection from Socket[addr=/127.0.0.1,port=2154,localport=1

0000]

2010-01-03 08:17:54 Sending <racs> Goodbye

java.net.SocketException: Connection reset

at java.net.SocketInputStream.read(Unknown Source)

at java.net.SocketInputStream.read(Unknown Source)

at java.io.DataInputStream.readUnsignedShort(Unknown Source)

at java.io.DataInputStream.readUTF(Unknown Source)

at java.io.DataInputStream.readUTF(Unknown Source)

at ServerThread.run(ServerThread.java:39)

2010-01-03 08:19:13 Removing connection to Socket[addr=/127.0.0.1,port=2152,loca

lport=10000]

java.net.SocketException: Connection reset

at java.net.SocketInputStream.read(Unknown Source)

at java.net.SocketInputStream.read(Unknown Source)

at java.io.DataInputStream.readUnsignedShort(Unknown Source)

at java.io.DataInputStream.readUTF(Unknown Source)

at java.io.DataInputStream.readUTF(Unknown Source)

at ServerThread.run(ServerThread.java:39)

2010-01-03 08:19:20 Removing connection to Socket[addr=/127.0.0.1,port=2154,loca

lport=10000]

As expected both the client and the server operated as per the design goals. It is important

to note that during the tests the client failed to load and displayed the appropriate error

message on occurrences of:

 Steam not being installed.

 Incorrect login details supplied.

56

 Steam ID mismatches.

Testing identified a situation where if the Chat Server was not running the Client failed to

notify the user and did not allow messages to be entered. Possible improvements to the

chat system and the client server model are covered in Section 5.3.

4.2.3 Auto-Scheduler

Tournament data was required to test the Auto-Scheduler and therefore new test

tournament data was added to the database using the basic custom PHP scripts that can be

found in Appendix E. The input screen for create.php is shown below, although the

scripts teamselect.php and addsever.php were also used to create test data they will be

omitted in the interest of brevity:

Create.php

Figure 17 - Createserver.php display

Once all the required test data had been entered the Auto-Scheduler was run. The test

data consisted of a 16 team single elimination competition with 2 Source Servers and 1

Source TV Relay available for use. Rounds were set to take place each night and match

lengths were set to one hour. The resulting information in tms_matches exactly matched

the expected outcome. Figure 18 shows the result of the Bracket Builder on this test data.

57

Extensive testing of the single elimination format yielded perfect results. However the

double elimination format is incomplete at this stage and contains a multitude of bugs

causing incorrect data to be saved.

4.2.4 Bracket Builder

Data from the test case discussed in Section 4.2.3 Auto-Scheduler, was used to construct

a meaningful competition bracket. Brackets can only be constructed once the Auto-

Scheduler has completed calculating match details for every match in the competition.

Using the output from the above Auto-Scheduler test yielded this bracket:

Figure 18 - Bracket Builder output

In all test cases the Bracket Builder performed as expected with no errors for single

elimination tournaments. Due to the fact that the double elimination format was never

completed for the Auto-Scheduler, support for double elimination brackets in the Bracket

Builder was not implemented.

58

4.3 Summary

All the test cases indicate that the modules perform as expected and to design specification.

However there are some features that do contain bugs are were not implemented:

 Support for double elimination tournaments in the Auto-Scheduler is incomplete.

 Support for double elimination tournaments is not implemented in the Bracket Builder.

 The Client Software requires more error handling code to be implemented; in particular

when there is no Chat Server present.

 The RCON interface has been successfully integrated into existing GotGames services.

 All modules are functional.

59

CHAPTER 5

CONCLUSIONS

5.1 Introduction

This chapter examines the results and outcome of this work and explores the avenues open for

future work and research within this field. Security is addressed and possible fixes and exploits

are examined.

60

5.2 Security

As with all online applications security is always a major concern in the design, development and

testing phases. Notably absent from earlier sections of this text it is fitting that security be

addressed within the conclusion.

It must be emphasized that the modules created throughout this project do not form an entire

Tournament Management System but rather perform key applications within a whole system.

There are a number of potential vulnerabilities with the Client Software:

 The windows registry could be altered to point to a fake Steam log file.

 The Steam log file could be edited to contain fake information.

 Multiple users can log onto the software using the same login details.

 Both the hashed password and the salt required to decode it are sent to the client software

and could be intercepted.

There are also some features that prevent exploits in the Client and Server software:

 The use of server timestamps on every message received by the Chat server including

Client connects and disconnects can be used to identify online time for individual users.

 The Server log file contains the IP addresses of each user which in turn can be used to

narrow down their geographical location or compared to GotGames IP address records.

The following security enhancements could be made to the Client Software:

 The location of the steam logs could be verified by forcing users to have Steam running

in order to login. This would allow a match between the Windows registry and steam

process path to be determined.

 The Client could ensure that the desired Source game is open by examining the process

list.

 Access could be limited to deny simultaneous access from the same user.

61

 Steam IDs could be read on connection to the server through the RCON protocol and

compared to those entered on GotGames.

There are a number of potential exploits within the client system, while the other modules are

relatively strong from a security viewpoint. Further discussion regarding possible improvements

and additional source code are covered in Section 4.4 Further Work.

62

5.3 Conclusions

It is possible to automate many of the tedious tasks associated with tournament management.

The ability to automatically schedule a tournament and supply anyone a detailed tournament

bracket is a huge step forward in the automation process. Although not fully functional or a

complete system the modules designed do perform their intended tasks.

Although support for double elimination brackets is lacking due to complexity and time

constraints it is possible to automate a single elimination tournament using the tools created.

Being able to effectively and securely authenticate a player’s identity in an online environment

remains an elusive task. The Client software needs improvement before the authentication

methods could be considered comprehensive and secure enough to guarantee a player identity.

Design and development of online tournament management systems is still application

dependant although through the use of tools explored in this project a more universal approach is

possible. Extension of the PHP scripts to include a universal server booking system was omitted

due to the fact that GotGames implemented a similar application during the writing of this

document.

63

5.4 Further Work

There are a number of areas where improvement could be made to the existing modules.

Implementation of a double elimination Scheduler and Bracket Builder is an obvious omission

from this work.

Extensive improvement could be made to the Client and Server Applications with the potential to

add anti-cheat functionality to the Client and Statistics could be stored for each individual Steam

ID. The user chat functions could be improved to become room based with each match

containing their own players.

A protocol needs to be developed between the Client and Server to allow the dynamic sharing of

data. This would be extremely useful for retrieving scheduling information and would allow the

server to request information from the Client. This two way protocol could allow polling of

clients by the server and form the basis of an anti-cheat system.

Included in APENDIX is some additional Client source code that was developed for this project.

The code allows for the Client to establish if a process is running on the host PC and to gather a

list of running processes. This code is potentially useful in the development of an anti-cheat

Client.

Finally this project is sponsored by a corporate company and it would be useful to explore the

option of adding advertising to the Client Software. The client must be run by every player and it

is therefore an ideal medium for advertising to a target demographic.

64

REFERENCES

McLaughlin, 2001, JAVA and XML, O’Riley, Cambridge.

Farrell, 2003, JAVA Programming, Thomson/Course Technology, Australia.

Galbraith, B & Almaer, D, 2006, Pragmatic Ajax a Web 2.0 primer, Pragmatic Bookshelf. NC

McKinnon, L, 2003, XML, Thomson Course Technology, Boston.

Durkin, K, 1999, Computer games and Australians today, NSW Government, Sydney.

Smed, J, 2006, Algorithms and networking for computer games, Wiley, England.

Source RCON Protocol, accessed 19 Oct 2009, < http://developer.valvesoftware.com>.

Jayson vs XML: The Debate, accessed 15 Aug 2009, < http://ajaxian.com/archives/json-vs-xml-

the-debate>.

Debate: JSON vs. XML as a data interchange format, accessed 23 Dec 2009,

<http://www.infoq.com/news/2006/12/json-vs-xml-debate>.

Paid to Play, accessed 19 Nov 2009, <http://au.gamespot.com/features/6195362/index.html>

JAVA Socket Programming in Client/Server Applications, accessed Jul 23 2009, <

http://www.developer.com/java/article.php/3840466/article.htm>

Source Engine, accessed Sep 11 2009 < http://source.valvesoftware.com/>

http://developer.valvesoftware.com
http://ajaxian.com/archives/json-vs-xml-
http://www.infoq.com/news/2006/12/json-vs-xml-debate
http://au.gamespot.com/features/6195362/index.html
http://www.developer.com/java/article.php/
http://source.valvesoftware.com/

65

Loy, M, 2003, Java Swing, O’Riely, California

CEVO Staff Instructions, accessed Dec 17 2008, <www.cevo.com>

www.cevo.com

66

APPENDICES

APPENDIX A

Project Specification

67

68

APPENDIX B

RCON SERVER COMMANDS

69

RCON Commands
Task Syntax Description

RCON Login rcon_password
yourpassword

Login to rcon with your rcon password to gain access to all the rcon
commands.

Change Level changelevel map_name This command allows you to change the map.

Users list status Lists the current players names with PlayerID, Name, Steamid and ip
address.

Kick Player Name kick name If you need to kick a player replace name with the players name.

Kick Player ID kick
STEAM_0:0:123456 If you need to kick a player replace number with the players number.

Ban Player ID banid time
STEAM_0:0:123456>

If you need to ban a player replace time with the amount of time you
would like to ban them. Enter 0 for a perma-ban.

Server Password sv_password password To password protect the server replace password with the games
password.

Restart Game mp_restartgame time Resart the game, both teams scores are reset as is money. replace
time with a value in seconds up to 10.

Frienly Fire mp_friendlyfire number Replace number with 1 to turn friendly fire on or 0 to turn it off.

Chase Cam mp_forcechasecam
number Replace number with 1 to force chase cam mode or 0 to disable it.

Round Limit mp_roundlimit number Replace number with the amount of rounds before the level changes.

Round Time mp_roundtime number Replace number with a time in minutes - normally 5 (3-15 allowed).

Time Limit mp_timelimit number Replace number with the time in minutes for each map - 0 = no time
limit.

Say something
though server say text Sends a message from the server admin to the screen which all players

can read. replace text with the message.

Color Message cm_say @@r text Sends a color message to the centre of the screen. replace r which is
red with g for green y for yellow etc. replace text with the message.

Restart Server quit Restarts your server

Staring Money mp_startmoney x
This integer value controls the amount that players start with at the
beginning of a new map or when they join a server. 800 is the default
and the minimum value, while 16000 is the maximum.

Deatailed Log mp_logdetail x

Use this bitwise svar to control the depth of your logs. Be warned,
these options can eat away hard drive space and CPU cycles. Use 0,
the default, to log no attacks, 1 to log enemy attacks, 2 to log teammate
attacks, and 3 to log both.

Player ID mp_playerid x

This variable controls what players see when they put their crosshair
over an enemy, a hostage, or a teammate. At 0 (the default), the player
see's all popups with team colors. At 1, the player sees their
teammates and hostages, with team colors. At 2, players see no
popups.

Fading mp_fadetoblack x

This is also to combat ghosting, but is more harsh. 0 will have no affect
on the game, while 1 will disable chasecam and any sort of death cam
at all. The client's screen fades to black instantly after death. One boon
of this setting is that corpses stay around for the entire round. Useful for
clan matches.

Buying Time mp_buytime x

A floating point (decimal) value to determine the buy time in minutes.
E.g., '1.25' equals one minute and fifteen seconds of buy time (this is
not the pause, but the time where it is legal to purchase stuff). The
minimum value is 0.25 and there is no maximum.

Win Limit mp_winlimit x
This, of course, is an integer (whole number). When a team reaches
this amount of wins (before the timelimit or the roundlimit is reached), it
has won the map. 0, or disabled, is the default.

Spectators allow_spectators x Setting to 1 will allow spectators, while 0 will disallow them. These are
non-playing spectators, not dead people.

mailto:@r

70

Team Killer
Banning Team Killer Banning This variable is defaulted to 1. Toggles automatic team-killer banning

and kicking of idle clients - Setting of 1 = 'on', and 0 = 'off'.

Team Balancing mp_autoteambalance x This variable is defaulted to 1. Toggles the forcing of clients to join
teams to make it balanced - Setting of 1 = 'on', and 0 = 'off'.

Bomb Timer mp_c4timer x This variable is defaulted to 45. Sets the amount of time in between C4
placement and its explosion - ranges between 15 and 90 seconds.

Use Flashlights mp_flashlight x This variable is defaulted to 1. Toggles the use of flashlights by clients -
Setting of 1 = 'on', and 0 = 'off'.

Hear Footsteps mp_footsteps x This variable is defaulted to 1. Toggles footstep sounds - Setting of 1 =
'on', and 0 = 'off'.

Freeze Players For
Buying mp_freezetime x

This variable is defaulted to 6. Sets the amount of "freeze" time at the
beginning of each round to buy weapons and equipment - Use a setting
of '0' to disable.

Hostage Kill Kicking mp_hostagepenalty x This variable is defaulted to 0, or disabled. Sets the number of
hostages a player can kill before they are booted from the server.

Number of more
players on team
can have over
another

mp_limitteams x
This variable is defaulted to 2. Sets the maximum number of players
that one team can have more than the other team - Use a setting of '0'
to completely disable the team limiting.

Log Chat Messages mp_logmessages x This variable is defaulted to 1. Toggles logging of chat messages in the
log files - Setting of 1 = 'on', and 0 = 'off'.

Map Vote Ration Map Vote Ration

This variable is defaulted to 0.6. Set the ratio of players required to vote
on the same map before a map will change. The default is 0.6 , which
means that 60% of the players on a server must vote on the same map
in order for the server to change to that map. The range is 0.0-1.0.

Kick Vote Ration mp_kickpercent x

This variable is defaulted to 0.66. Set the ratio of players on someone's
team required to vote to kick the "someone." The default is 0.66, which
means that 66% (2/3rds) of the players on his team must vote him off in
order for him to be kicked. The range is 0.0-1.0.

Team Kill Punishing mp_tkpunish x
This variable is defaulted to 1. Toggles the forcing of a player to sit out
the next round if he has just killed a teammate - Setting of 1 = 'on', and
0 = 'off'.

71

APPENDIX C

Bracket Builder Source Code: bracket.php

72

<?
// PHP Class bracket
// Bracket builder for GotGames
// Author Benjamin Thomas
// October 2009
class bracket {

//Bring In Database Details From Include.PHP
var $username = DB_USER;
var $password = DB_PASS;
var $database = DB_NAME;

//Init Class Variables
var $tournament_name;
var $tournament_size;
var $tournament_format;
var $tournament_id;
var $result_servers;
var $result_stvs;
var $result_matches;
var $result_teams;

//***

// schedule bracket
// Input - The tournament ID used to identify which tournament we are scheduling for
// Operation - This constructor reads the required information from the databas and assigns the following

class values:
// tournament_name;
// tournament_size;
// tournament_format;
// tournament_id;
// result_servers;
// result_stvs;
// result_matches;
// result_teams;
//***

function bracket($tourn_id) {

//Save the Tournament ID
$this->tournament_id = $tourn_id;

//Collect All Required Information To Draw a Bracket
mysql_connect(localhost,$this->username,$this->password);
@mysql_select_db($this->database) or die("Unable to select database");

$query = "SELECT * FROM tms_tournament WHERE id = ".$tourn_id;
$result_tournament = mysql_query($query) or die('Error, query failed');
$row = mysql_fetch_assoc($result_tournament);
$this->tournament_name = $row['name'];
$this->tournament_size = $row['size'];
$this->tournament_format = $row['format'];
mysql_free_result($result_tournament);

mailto:@mysql_select_db

73

//read and save information from database
$query = "SELECT * FROM tms_servers WHERE id_tournament = ".$tourn_id;
$this->result_servers = mysql_query($query) or die('Error, query failed');

$query = "SELECT * FROM tms_stvs WHERE id_tournament = ".$tourn_id;
$this->result_stvs = mysql_query($query) or die('Error, query failed');

$query = "SELECT * FROM tms_matches WHERE id_tournament = ".$tourn_id;
$this->result_matches = mysql_query($query) or die('Error, query failed');

$query = "SELECT * FROM tms_teams_".$tourn_id." WHERE id_tournament = ".$tourn_id;
$this->result_teams = mysql_query($query) or die('Error, query failed');

}

//***

// Function draw
// Operation - Called to display a single elimination bracket
//***

function draw() {

$total_rounds = log($this->tournament_size,2)+1; //total rounds
$row = array();
$col = array($row); //create a data type to hold our bracket information
//Generate a datastructure to hold all the information required to layout the bracket
for($i = 1; $i <= $total_rounds; $i++) {

$round_matches = $this->getmatches($i);
$matches = pow(2,$total_rounds-$i); //calc how many matches for this round
$interval = pow(2,$i); // calc the interval for layout spacing
$offset = pow(2,$i-1); // each round is offset by a differnt amount to form the bracket

pyramid
for($c = 1; $c <= ($this->tournament_size*2)+1; $c++) {

if ($c < $offset) { // blank space
$col[$i][$c] = 0;

} elseif ($c > (($this->tournament_size*2)+1)-$offset) { // blank space
$col[$i][$c] = 0;

} elseif ($c==$offset) {
if ($i==$total_rounds) { //No match but tournament winner
$col[$i][$c] = "Champion";
}else { //print a team here
$tmp_array=array_shift($round_matches);
$col[$i][$c] = $tmp_array['print_team'];
}

} elseif ((($c-$offset) % $interval) == 0) { //print a team here
$tmp_array=array_shift($round_matches);
$col[$i][$c] = $tmp_array['print_team'];

} elseif ($c==($offset*2)) { //print match here
$col[$i][$c] = "Match".$tmp_array['id'];

} elseif ((($c-$offset*2) % ($interval*2)) == 0) { //print match here
$col[$i][$c] = "Match".$tmp_array['id'];

} else {
$col[$i][$c] = 0; // blank space

}
}

74

print("
");
}
// layout the bracket using html tables and the data struct created above: col
print("<table width='100%' border='5'>");
print("<tr>");
for($i = 1; $i <= $total_rounds-1; $i++) {

print("<th>Round ".(string)$i."</th>");
}
print("</tr>");
for($c=1;$c<=($this->tournament_size*2);$c++) {

print("<tr>");
for($i = 1; $i <= $total_rounds+1; $i++) {

if (strcmp(substr($col[$i][$c],0,5),"Match")==0) {
$tmp_array = $this->getmatch(substr($col[$i][$c],5));
$datetime = new DateTime($tmp_array['timestamp']);
print("<td align='center' bgcolor='#FFE4E1'><table><tr><td

align='center'>".$datetime->format("D, jS F Y gA")."</td></tr><tr><td align='center'>stv - ".$this-
>getstvdetails($tmp_array['id_stv'])."</td></tr></table></td>");

} elseif (strcmp(substr($col[$i][$c],0,5),"Teams")==0) {
print("<td align='center' bgcolor='#dddddd'>".$this-

>getteamname(substr($col[$i][$c],5))."</td>");
} elseif ($col[$i][$c]) {

print("<td align='center' bgcolor='#dddddd'>".$col[$i][$c]."</td>");
} else {

print("<td height='40'></td>");
}

}
print("</tr>");

}
print("</table>");

}

//***

// Function getmatch
// Input - match_id
// Operation - Retrives all the information saved for the parsed match_id
//***

function getmatch($match_id) {

$query = "SELECT * FROM tms_matches WHERE id = ".(string)$match_id;
$result = mysql_query($query);
$row = mysql_fetch_assoc($result);
mysql_free_result($result);
return $row;

}

//***

// Function getteamname
// Input - team_id
// Operation - Returns the name of the team with the parsed team ID
//***

function getteamname($team_id) {

75

$query = "SELECT name FROM tms_teams_".(string)$this->tournament_id." WHERE id =
".(string)$team_id;

$result = mysql_query($query) or die('Error, query failed');
return mysql_result($result, 0);

}

//***

// Function getstvdetails
// Input - stv_id
// Operation - Returns the IP Address of the parsed stv id
//***

function getstvdetails($stv_id) {

$query = "SELECT address FROM tms_stvs WHERE id = ".(string)$stv_id;
$result = mysql_query($query);
return mysql_result($result, 0);

}

//***

// Function getmatches
// Input round_no
// Operation - Returns an array of all the matches for the parse round. The array is sorted by the position

field.
//***

function getmatches($round_no) {

$matches_avail = array();
$tmp_row = array();
$query = "SELECT * FROM tms_matches WHERE id_tournament = ".$this->tournament_id."

AND round = ".(string)$round_no." ORDER BY position";
$result = mysql_query($query);
while($row = mysql_fetch_assoc($result))
{

$tmp_row = $row;
if ($row['status'] == 1) {

$row = array_merge($row,array("print_team"=>"Winner of
".$row['id_match_parent_a']));

} else {
$row =

array_merge($row,array("print_team"=>"Teams".$row['id_team_a']));//team A
}
$matches_avail[] = $row;
$row = $tmp_row;
if ($row['status'] == 1) {

$row = array_merge($row,array("print_team"=>"Winner of
".$row['id_match_parent_b']));

} else {
$row =

array_merge($row,array("print_team"=>"Teams".$row['id_team_b']));//team B
}
$matches_avail[] = $row;
unset($tmp_row);

}
return $matches_avail;

76

}

//***

// destructor
// Operation - Frees memory held by SQL result sets
//***

function __destruct() {

mysql_free_result($this->result_servers);
mysql_free_result($this->result_stvs);
mysql_free_result($this->result_matches);
mysql_free_result($this->result_teams);
mysql_close();

}

}
?>

77

APPENDIX D

Auto-Scheduler Source Code: schedule.php

78

<?

// PHP Class schedule

// Tournament auto scheduler for GotGames

// Author Benjamin Thomas

// August 2009

class schedule {

//Bring In Database Details From Include.PHP

var $username = DB_USER;

var $password = DB_PASS;

var $database = DB_NAME;

//Init Class Variables

var $tournament_name;

var $tournament_size;

var $tournament_format;

var $tournament_id;

var $tournament_start;

var $tournament_seed;

var $tournament_freq;

var $server_count;

var $stv_count;

var $week_dates;

var $frequency;

var $nights_per_interval;

var $result_servers;

var $result_stvs;

var $result_matches;

var $result_teams;

//***

// schedule constructor

// Input - The tournament ID used to identify which tournament we are scheduling for

//Operation - This constructor reads the required information from the databas and assigns the following

class values:

79

// tournament_name

// tournament_size

// tournament_format

// tournament_start

// tournament_seed

// tournament_freq

// result_servers

// server_count

// result_stvs

// stv_count

// result_matches

// result_teams

//***

function schedule($tourn_id) {

//Save the Tournament ID

$this->tournament_id = $tourn_id;

$this->week_dates = $start_dates;

$this->frequency = $interval;

$this->nights_per_interval = $games;

//Collect All Required Information

//We are reading all the information from the database

mysql_connect(localhost,$this->username,$this->password);

@mysql_select_db($this->database) or die("Unable to select database");

$query = "SELECT * FROM tms_tournament WHERE id = ".$tourn_id;

$result_tournament = mysql_query($query) or die('Error, query failed');

$row = mysql_fetch_assoc($result_tournament);

$this->tournament_name = $row['name'];

$this->tournament_size = $row['size'];

$this->tournament_format = $row['format'];

$this->tournament_start = $row['starttime'];

$this->tournament_seed = $row['seeded'];

$this->tournament_freq = $row['frequency'];

mysql_free_result($result_tournament);

$query = "SELECT * FROM tms_servers WHERE id_tournament = ".$tourn_id;

$this->result_servers = mysql_query($query) or die('Error, query failed');

$this->server_count = mysql_num_rows($this->result_servers);

mailto:@mysql_select_db

80

$query = "SELECT * FROM tms_stvs WHERE id_tournament = ".$tourn_id;

$this->result_stvs = mysql_query($query) or die('Error, query failed');

$this->stv_count = mysql_num_rows($this->result_stvs);

$query = "SELECT * FROM tms_matches WHERE id_tournament = ".$tourn_id;

$this->result_matches = mysql_query($query) or die('Error, query failed');

$query = "SELECT * FROM tms_teams_".$tourn_id." WHERE id_tournament = ".$tourn_id;

$this->result_teams = mysql_query($query) or die('Error, query failed');

}

//***

// Function automate

// Operation - Used to call the functions responsible for sutomating sheduling

//***

function automate() {

$team_count = mysql_num_rows($this->result_teams) or die("No Teams Added For

Tournamnet");

if ($team_count != $this->tournament_size) {

die("You Must Have The Correct Number of Teams Saved!");

}

switch ($this->tournament_format) {

case "single":

$this->single();

break;

case "double":

echo "double";

break;

}

}

//***

// Function double

// Operation - Called from automate and is responsible for autoscheduling a double elimination bracket.

81

// NB - Incomplete!

//***

function double() {

echo "Automated Double";

echo "
 Stvs:";

echo $this->stv_count;

echo "
 Servers: ";

echo $this->server_count;

$matches = $this->tournament_size / 2;

$matches_min = ceil($matches / $this->server_count);

echo "
 Min Time: ";

echo $matches_min;

echo "
 Start Time:
";

//echo $this->tournament_start;

$datetime = new DateTime($this->tournament_start);

$round_time = new DateTime($datetime->format(DATE_ATOM));

//echo $datetime->format(DATE_ATOM);

switch ($this->tournament_freq) {

case "Day":

$time_gap="+1 day";

break;

case "Week":

$time_gap="+1 week";

break;

}

$available_stvs = $this->getstvs();

$available_servers = $this->getservers();

if (sizeof($available_servers) == 0) {

die ("No Servers For Tournament");

}

$total_rounds = log($this->tournament_size,2);

$seeded_teams = $this->calculateseeds();

//we only know the teams for round one then there are alot of nulls in our database! But we have

enough to manage servers!

82

}

//***

// Function single

// Operation - Called from automate and is responsible for autoscheduling a single elimination tournament.

//***

function single() {

echo "Automated Single";

echo "
 Stvs:";

echo $this->stv_count;

echo "
 Servers: ";

echo $this->server_count;

// matches for 1st round will be

$matches = $this->tournament_size / 2;

// calculate how much time we will need given 1 hr for each match

$matches_min = ceil($matches / $this->server_count);

echo "
 Min Time: ";

echo $matches_min;

echo "
 Start Time:
";

//echo $this->tournament_start;

$datetime = new DateTime($this->tournament_start);

$round_time = new DateTime($datetime->format(DATE_ATOM));

//echo $datetime->format(DATE_ATOM);

// calculate the time difference for each round using the DateTime object

switch ($this->tournament_freq) {

case "Day":

$time_gap="+1 day";

break;

case "Week":

$time_gap="+1 week";

break;

}

// get available STVs

$available_stvs = $this->getstvs();

// get available dervers

83

$available_servers = $this->getservers();

if (sizeof($available_servers) == 0) {

die ("No Servers For Tournament");

}

// calculate the number of rounds required

$total_rounds = log($this->tournament_size,2);

// calcualte seeds

$seeded_teams = $this->calculateseeds();

//we only know the teams for round one then there are alot of nulls in our database! But we have

enough to manage servers!

for($i = 1; $i <= $total_rounds; $i++) {

//lets use our seeded teams array to make this easy! well easier thanks to PHP allowing us

to pop and shift

$matches = pow(2,$total_rounds-$i);

//$tmp_server_count=$this->server_count;

$pos_high = 1;

$pos_low = $matches;

if ($i==1) { //Round 1

$counter = 0;

while (sizeof($seeded_teams) > 0) {

$assigned_server = array_pop($available_servers);

$assigned_stv = array_pop($available_stvs);

if ($assigned_server==NULL) { //grab a server and stv

$available_servers = $this->getservers();

$available_stvs = $this->getstvs();

$round_time->modify("+1 hour");

$assigned_server = array_pop($available_servers);

$assigned_stv = array_pop($available_stvs);

}

$teama=array_shift($seeded_teams);

$teamb=array_pop($seeded_teams);

if (($counter % 2) == 0) {

//high

$position = $pos_high;

$pos_high++;

} else {

//low

84

$position = $pos_low;

$pos_low--;

}

$counter++;

echo "Round:".(string)$i." Match:".(string)$teama."V".(string)$teamb."

Time:".$round_time->format(DATE_ATOM)." Tourn: ".$this->tournament_id." Pass:".(string)$this-

>generatepass()." Server: ".(string)$assigned_server." STV: ".(string)$assigned_stv." Pos: ".$position."
";

//save match

$match_info =

array("round"=>(string)$i,"id_teama"=>(string)$teama,"id_teamb"=>(string)$teamb,"timestamp"=>(string)$round_t

ime->format(DATE_ATOM),"id_tournament"=>(string)$this->tournament_id,"server_pw"=>(string)$this-

>generatepass(),"id_server"=>(string)$assigned_server,"id_stv"=>(string)$assigned_stv,"position"=>(string)$positi

on);

//print_r($match_info);

$this->savematch($match_info,TRUE);

}

} else {

$prev_rnd_matches = $this->getroundmatches($i-1);

print_r($prev_rnd_matches);

$counter=0;

for($c=0;$c<$matches;$c++) { //get a server and stv

$assigned_server = array_pop($available_servers);

$assigned_stv = array_pop($available_stvs);

if ($assigned_server==NULL) {

$available_servers = $this->getservers();

$available_stvs = $this->getstvs();

$round_time->modify("+1 hour");

$assigned_server = array_pop($available_servers);

$assigned_stv = array_pop($available_stvs);

}

$counter++;

$parent_match_a = array_shift($prev_rnd_matches);

$parent_match_b = array_shift($prev_rnd_matches);

//save match

echo "Round:".(string)$i." Match:".(string)$c." Time:".$round_time-

>format(DATE_ATOM)." Tourn: ".$this->tournament_id." Pass:".(string)$this->generatepass()." Server:

85

".(string)$assigned_server." STV: ".(string)$assigned_stv." Pos: ".(string)$counter."ParentA:

".(string)$parent_match_a." ParentB: ".(string)$parent_match_b."
";

$match_info =

array("round"=>(string)$i,"timestamp"=>(string)$round_time-

>format(DATE_ATOM),"id_tournament"=>(string)$this->tournament_id,"server_pw"=>(string)$this-

>generatepass(),"id_server"=>(string)$assigned_server,"id_stv"=>(string)$assigned_stv,"position"=>(string)$count

er,"id_match_parent_a"=>(string)$parent_match_a,"id_match_parent_b"=>(string)$parent_match_b);

$this->savematch($match_info,FALSE);

}

}

$datetime->modify((string)$time_gap);

$round_time = new DateTime($datetime->format(DATE_ATOM));

$available_stvs = $this->getstvs();

$available_servers = $this->getservers();

}

}

//***

// Function savematch

// Inputs:

// match_detials - Multi-demensional array holding all the match information to be saved

// teams_known - Set to true is we know the names of the participating teams otherwise set to false.

// Operation - This functions writes the match information to the database

//***

function savematch($match_details, $teams_known) {

if ($teams_known) { // we know the teams

if ($match_details['id_stv'] == NULL) { //no stv for match

$query = "INSERT INTO

tms_matches(round,id_team_a,id_team_b,timestamp,id_tournament,server_pw,id_server,position)

Values(".(string)$match_details['round'].",".(string)$match_details['id_teama'].",".(string)$match_details['id_teamb']

.",'".(string)$match_details['timestamp']."',".(string)$match_details['id_tournament'].",'".(string)$match_details['serv

er_pw']."',".(string)$match_details['id_server'].",".(string)$match_details['position'].")";

} else {

$query = "INSERT INTO

tms_matches(round,id_team_a,id_team_b,timestamp,id_tournament,server_pw,id_server,id_stv,position)

86

Values(".(string)$match_details['round'].",".(string)$match_details['id_teama'].",".(string)$match_details['id_teamb']

.",'".(string)$match_details['timestamp']."',".(string)$match_details['id_tournament'].",'".(string)$match_details['serv

er_pw']."',".(string)$match_details['id_server'].",".(string)$match_details['id_stv'].",".(string)$match_details['positio

n'].")";

}

echo $query;

echo "
";

mysql_query($query) or die('Error, query failed');

} else {

if ($match_details['id_stv'] == NULL) { //no stv for match

$query = "INSERT INTO

tms_matches(round,timestamp,id_tournament,server_pw,id_server,position,id_match_parent_a,id_match_parent_b,s

tatus)

Values(".(string)$match_details['round'].",'".(string)$match_details['timestamp']."',".(string)$match_details['id_tourn

ament'].",'".(string)$match_details['server_pw']."',".(string)$match_details['id_server'].",".(string)$match_details['po

sition'].",".(string)$match_details['id_match_parent_a'].",".(string)$match_details['id_match_parent_b'].",1)";

} else {

$query = "INSERT INTO

tms_matches(round,timestamp,id_tournament,server_pw,id_server,id_stv,position,id_match_parent_a,id_match_par

ent_b,status)

Values(".(string)$match_details['round'].",'".(string)$match_details['timestamp']."',".(string)$match_details['id_tourn

ament'].",'".(string)$match_details['server_pw']."',".(string)$match_details['id_server'].",".(string)$match_details['id_

stv'].",".(string)$match_details['position'].",".(string)$match_details['id_match_parent_a'].",".(string)$match_details[

'id_match_parent_b'].",1)";

}

echo $query;

echo "
";

mysql_query($query) or die('Error, query failed');

}

}

//***

// Function getservers

// Operation - called to get an array of server ids

//***

87

function getservers() {

$servers_avail = array();

while($row = mysql_fetch_assoc($this->result_servers))

{

$servers_avail[] = $row['id'];

}

mysql_data_seek($this->result_servers,0);

return $servers_avail;

}

//***

// Function getstvs

// Operation - called to get an array of stv ids

//***

function getstvs() {

$stvs_avail = array();

while($row = mysql_fetch_assoc($this->result_stvs))

{

$stvs_avail[] = $row['id'];

}

mysql_data_seek($this->result_stvs,0);

return $stvs_avail;

}

//***

// Function getroundmatches

// Input - rnd_no - the number of the round.

// Operation - called to get the id of round matches

//***

function getroundmatches($rnd_no) {

$rnd_matches = array();

$query = "SELECT id FROM tms_matches WHERE round = ".(string)$rnd_no." AND

id_tournament = ".(string)$this->tournament_id." ORDER BY position ASC";

88

$result = mysql_query($query) or die('Error, query failed');

while($row = mysql_fetch_assoc($result))

{

$rnd_matches[] = $row['id'];

}

return $rnd_matches;

}

//***

// Function caculateseeds

// Operation - called to get an array of seeded teams or if unseeded randomly shuffles the returned team

array

//***

function calculateseeds () {

$seeded_teams = array();

if ($this->tournament_seed) {

while($row = mysql_fetch_assoc($this->result_teams))

{

$seeded_teams[((int)$row['seed'])-1] = $row['id'];

}

//seeded

} else {

$c=1;

while($row = mysql_fetch_assoc($this->result_teams))

{

$seeded_teams[$c] = $row['id'];

$c++;

}

shuffle($seeded_teams);

//unseeded

}

mysql_data_seek($this->result_teams,0);

return $seeded_teams;

}

89

//***

// Function generatepass

// Operation - called to generate a random password used to set server passwords

//***

function generatepass() {

$chars = "abcdefghijkmnopqrstuvwxyz023456789";

srand((double)microtime()*1000000);

$i = 0;

$pass = '' ;

while ($i <= 7) {

$num = rand() % 33;

$tmp = substr($chars, $num, 1);

$pass = $pass . $tmp; $i++;

}

return $pass;

}

//***

// destructor

// Operation - Frees memory held by SQL result sets

//***

function __destruct() {

mysql_free_result($this->result_servers);

mysql_free_result($this->result_stvs);

mysql_free_result($this->result_matches);

mysql_free_result($this->result_teams);

mysql_close();

}

}

?>

90

APPENDIX E

Temporary Interface Scripts for Data Manipulation

Addserver.php

Create.php

Teamselect.php

91

Addserver.php

// PHP script to add a server to the test data
// Author: Benjamin Thomas
<?

if (isset($_POST['submit'])) {
//save a new tournament in the database
include 'include.php';
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

//store tournament
$q = "SELECT id_game FROM tms_tournament WHERE id =".(string)$_POST['tournament'];
$r=mysql_query($q) or die('Error, query failed');
$id_game = mysql_result($r, 0);
if ($_POST['stv'] == 0) {

$query = "INSERT INTO tms_servers(id_game,id_tournament,address,rcon)
Values(".(string)$id_game.",".(string)$_POST['tournament'].",'".(string)$_POST['IP']."','".(string)$_POST['rcon']."')
";

} else {
$query = "INSERT INTO tms_stvs(id_game,id_tournament,address,rcon)

Values(".(string)$id_game.",".(string)$_POST['tournament'].",'".(string)$_POST['IP']."','".(string)$_POST['rcon']."')
";

}
mysql_query($query) or die('Error, query failed');
echo "Server Added...";
mysql_close();
} else {

?>
<html>
<head>
<title>Add Server</title>

</head>
<body>

<?
//grab any database details we will need
include 'include.php';
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

//grab games list
$query = "SELECT * FROM tms_tournament";
$tournamentlist = mysql_query($query) or die('Error, query failed');
mysql_close();

?>
<p>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">
Select a Tournament:
<select name="tournament">

<?
while($row = mysql_fetch_assoc($tournamentlist))

{
print("<option value=\"{$row[id]}\">{$row[name]}</option>");

mailto:@mysql_select_db
mailto:@mysql_select_db

92

}
?>

</select>

<Input type = 'Radio' name ='stv' value= '0' >Server
<Input type = 'Radio' name ='stv' value= '1' >STV

IP:
<input type="text" name="IP" size="25" maxlength="25" />

Rcon Password:
<input type="text" name="rcon" size="64" maxlength="64" />

<input type="submit" value="Add" name="submit"/>
</form>
</p>
</body>
</html>
<?
}
?>

93

Create.php

// PHP script to create a tournament
// Author Benjamin Thomas

<?
if (isset($_POST['submit'])) {
//save a new tournament in the database
include 'include.php';
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");
$stime=$_POST['tournamentdate']." ".$_POST['tournamenttime'].":00:00";
if ($_POST['seed']) {

$seeded = 1;
} else {

$seeded=0;
}
//store tournament
$query = "INSERT INTO tms_tournament(id_game,name,format,size,status,starttime,seeded,frequency)

Values(".(string)$_POST['game'].",'".(string)$_POST['tournamentname']."','".(string)$_POST['tournamenttype']."','".
(string)$_POST['teamnumber']."',1,'".$stime."',".$seeded.",'".(string)$_POST['freq']."')";

mysql_query($query) or die('Error, query failed');
echo $query;
echo "
 Tournament Created...";
mysql_close();
//$timestring =
//$datetime = new DateTime($_POST['tournamentdate']." ".$_POST['tournamenttime'].":00:00");
//echo $datetime->format(DATE_ATOM);

} else {
?>
<html>
<head>
<title>New Tournament</title>

</head>
<body>

<?
//grab any database details we will need
include 'include.php';
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

//grab games list
$query = "SELECT * FROM gg_games";
$gamelist = mysql_query($query) or die('Error, query failed');
mysql_close();

?>
<p>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">
Select a Game:
<select name="game">

<?
while($row = mysql_fetch_assoc($gamelist))

{
print("<option value=\"{$row[id]}\">{$row[name]}</option>");

mailto:@mysql_select_db
mailto:@mysql_select_db

94

}
?>

</select>

How Many Teams:
<select name="teamnumber">

<option value="4">4</option>
<option value="8">8</option>
<option value="16">16</option>
<option value="32">32</option>
<option value="64">64</option>

</select>

Tournament Description:
<input type="text" name="tournamentname" size="128" maxlength="128" />

Tournament Type:
<select name="tournamenttype">

<option value="single">Single Elimination</option>
<option value="double">Double Elimination</option>
<option value="group">Group Stages</option>
<option value="league">League Play</option>

</select>

Start Date YYYY-MM-DD
<input type="text" name="tournamentdate" size="10" maxlength="10" />

Start Time HH (24hr Time)
<input type="text" name="tournamenttime" size="2" maxlength="2" />

<Input type = 'Radio' name ='seed' value= '1' >Seeded

Matches to be played:
<select name="freq">

<option value="Hour">Hourly</option>
<option value="Day">Daily</option>
<option value="Week">Weekly</option>

</select>

<input type="submit" value="Create" name="submit"/>
</form>
</p>
</body>
</html>
<?
}
?>

95

teamselect.php

// PHP Script to add a team to a tournament
// Author Benjamin Thomas
<?

if (isset($_POST['submit'])) {
//save a new tournament in the database
include 'include.php';
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

$query = "SELECT name FROM gg_teams WHERE id = ".$_POST['teams'];
echo $query;
$result = mysql_query($query) or die('Error, query failed');

$team_name = mysql_result($result, 0);
$query = "INSERT INTO tms_teams_".$_POST["t_id"]."(id,seed,id_tournament,name)

Values(".$_POST['teams'].",".(string)$_POST['seed'].",".$_POST["t_id"].",'".(string)$team_name."')";
echo $query;
$result = mysql_query($query) or die('Error, query failed');

mysql_close();
header("Location: teamselect.php");

} else {
?>
<html>
<head>
<title>Add Server</title>

</head>
<body>

<?
//grab any database details we will need
include 'include.php';
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

//grab games list
$query = "SELECT * FROM tms_tournament";
$tournamentlist = mysql_query($query) or die('Error, query failed');
mysql_close();

?>
<p>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">
<? if (!isset($_POST['select'])) {
?>
Select a Tournament:
<select name="tournament">

<?
while($row = mysql_fetch_assoc($tournamentlist))

{
print("<option value=\"{$row[id]}\">{$row[name]}</option>");

mailto:@mysql_select_db
mailto:@mysql_select_db

96

}
?>

</select>

<input type="submit" value="Select" name="select"/>
<?
}
?>
<?

if (isset($_POST['select'])) {
//grab any database details we will need
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

$query = "SELECT id_game FROM tms_tournament WHERE id
=".(string)$_POST['tournament'];

$result=mysql_query($query) or die('Error, query failed');
$id_game = mysql_result($result, 0);

//grab games list
$query = "SELECT * FROM gg_teams WHERE id_game = ".(string)$id_game;
$teamlist = mysql_query($query) or die('Error, query failed');

$query = "SELECT * FROM tms_teams_".(string)$_POST['tournament'];
$teams = mysql_query($query);

if (!$teams) {
$query = "CREATE TABLE `gotgames`.`tms_teams_".(string)$_POST['tournament']."`

(`id` int(11) unsigned NOT NULL,`seed` int(11),`id_tournament` int(11) NOT NULL,`name` varchar(32) NOT
NULL,PRIMARY KEY (`id`))";

mysql_query($query) or die('Error, query failed');

}

mysql_close();
?>

<?

mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

$query = "SELECT * FROM tms_teams_".(string)$_POST['tournament'];
$result = mysql_query($query);
print("<table><tr><td>TEAM</td><td>SEED</td></tr>");
while($row = mysql_fetch_assoc($result))
{

print("<tr><td>".(string)$row['name']."</td><td>".(string)$row['seed']."</td></tr>");
}
mysql_close();
print("</table>");

?>

<select name="teams">

<?
while($row = mysql_fetch_assoc($teamlist))

mailto:@mysql_select_db
mailto:@mysql_select_db

97

{
print("<option value=\"{$row[id]}\">{$row[name]}</option>");

}
?>

</select>
Seed:

<input type="text" name="seed" size="3" maxlength="3" value="0" />

<input type="submit" value="Add" name="submit"/>
<input type="hidden" name="t_id" value="<?echo (string)$_POST['tournament']; ?>">
</form>
</p>
</body>
</html>
<?
}
}
?>

98

APPENDIX F

RCON Interface Source Code

RconSource.java

99

//Authors: Benjamin Thomas and Rob Skillington

package rconinter;

//import expextion handlers for this package
import rconinter.exp.BadRcon;
import rconinter.exp.ResponseEmpty;

//import java libraries
import java.io.*;
import java.net.*;
import java.nio.*;

//***
// Class - RconSource
// Purpose - This class is designed to implement the RCON protocol
//***
public class RconSource {

// define constants and declare vars
final static int RESPONSE_TIMEOUT = 2000;
final static int PACKETS_TIMEOUT = 300;

static Socket rconSocket = null;
static InputStream in = null;
static OutputStream out = null;

final static int EXECCOMMAND = 2;
final static int AUTH = 3;
final static int RESPONSE_VALUE = 0;
final static int AUTH_RESPONSE = 2;

//***
// constructPacket
// Purpose - Constructs an RCON Command ot Auth packer given the parsed data
//***
private static byte[] contructPacket(int id, int cmdtype, String s1) {

ByteBuffer p = ByteBuffer.allocate(s1.length() + 16);
p.order(ByteOrder.LITTLE_ENDIAN);
//length
p.putInt(s1.length() + 12);
//id
p.putInt(id);
//command type
p.putInt(cmdtype);
//command
p.put(s1.getBytes());
// two null bytes at the end
p.put((byte) 0x00);
p.put((byte) 0x00);
// null string2
p.put((byte) 0x00);
p.put((byte) 0x00);
return p.array();

100

}

//***
// send
// Purpose - Sends the command packet to the specified server after Auth'ing
// with the supplied RCON password.
//***
public static String send(String ipAdd, int port, String password, String command, int localPort) throws

SocketTimeoutException, BadRcon, ResponseEmpty {
String response = "";

try {
//open new socket
rconSocket = new Socket();

InetAddress addr = InetAddress.getLocalHost();
byte[] ipAddr = addr.getAddress();
InetAddress inetLocal = InetAddress.getByAddress(ipAddr);
//try connecting
rconSocket.bind(new InetSocketAddress(inetLocal, localPort));
rconSocket.connect(new InetSocketAddress(ipAdd, port), 1000);

out = rconSocket.getOutputStream();
in = rconSocket.getInputStream();

rconSocket.setSoTimeout(RESPONSE_TIMEOUT);

if (rcon_auth(password)) {
// We are now authed
ByteBuffer[] resp = sendCommand(command);
// Close socket handlers, we don't need them more
out.close(); in.close(); rconSocket.close();
if (resp != null) {

response = assemblePackets(resp);
if (response.length() == 0) {

throw new ResponseEmpty();
}

}
}
else {

throw new BadRcon();
}

} catch (SocketTimeoutException timeout) {
throw timeout;

} catch (UnknownHostException e) {
System.err.println("UnknownHostException: " + e.getCause());

} catch (IOException e) {
System.err.println("Couldn't get I/O for the connection: "+ e.getCause());

}

return response;
}

//***
// sendcommand
// Purpose - This class sends a command and recieves the response for the server

101

//***
private static ByteBuffer[] sendCommand(String command) throws SocketTimeoutException {

byte[] request = contructPacket(2, EXECCOMMAND, command);

ByteBuffer[] resp = new ByteBuffer[128];
int i = 0;
try {

out.write(request);
resp[i] = receivePacket(); // First and maybe the unique response packet
try {

// We don't know how many packets will return in response, so we'll
// read() the socket until TimeoutException occurs.
rconSocket.setSoTimeout(PACKETS_TIMEOUT);
while (true) {

resp[++i] = receivePacket();
}

} catch (SocketTimeoutException e) {
// No more packets in the response, go on
return resp;

}

} catch (SocketTimeoutException timeout) {
// Timeout while connecting to the server
throw timeout;

} catch (Exception e2) {
System.err.println("I/O error on socket\n");

}
return null;

}

//***
// recievePacket()
// Purpose - Unpacks the packet once it is recieved
//***
private static ByteBuffer receivePacket() throws Exception {

ByteBuffer p = ByteBuffer.allocate(4120);
p.order(ByteOrder.LITTLE_ENDIAN);

byte[] length = new byte[4];

if (in.read(length, 0, 4) == 4) {
// Now we've the length of the packet, let's go read the bytes
p.put(length);
int i = 0;
while (i < p.getInt(0)) {

p.put((byte) in.read());
i++;

}
return p;

}
else {

return null;
}

}

102

//***
// assemblePackets
// Purpose - Grab the text from the response packets
//***
private static String assemblePackets(ByteBuffer[] packets) {
// Return the text from all the response packets together

String response = "";

for (int i = 0; i < packets.length; i++) {
if (packets[i] != null) {

response = response.concat(new String(packets[i].array(), 12, packets[i].position()-14));
}

}
return response;

}

//***
// rcon_auth
// Purpose - Sends the Auth command so that following commands can be executed
//***
private static boolean rcon_auth(String rcon_password) throws SocketTimeoutException {

byte[] authRequest = contructPacket(1337, AUTH, rcon_password);

ByteBuffer response = ByteBuffer.allocate(64);
try {

out.write(authRequest);
response = receivePacket(); // junk response packet
response = receivePacket();

// Lets see if the received request_id is leet enougth ;)
if ((response.getInt(4) == 1337) && (response.getInt(8) == AUTH_RESPONSE)) {

return true;
}

} catch (SocketTimeoutException timeout) {
throw timeout;

} catch (Exception e) {
System.err.println("I/O error on socket\n");

}

return false;
}
//***
// send
// Purpose - same as the orgiinal send expect the origin port is not defined
//***
public static String send(String ipAdd, int port, String password, String command) throws

SocketTimeoutException, BadRcon, ResponseEmpty {
return send(ipAdd, port, password, command, 0);

}

}

103

APPENDIX G

Chat Server Source Code

Server.java

ServerThread.java

104

Server.java

// Parts implemented by IBM
// Modified by Benjamin Thomas
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Calendar;
import java.text.SimpleDateFormat;

public class Server
{

public static final String DATE_FORMAT_NOW = "yyyy-MM-dd HH:mm:ss";

public static String now() {
Calendar cal = Calendar.getInstance();
SimpleDateFormat sdf = new SimpleDateFormat(DATE_FORMAT_NOW);
return sdf.format(cal.getTime());

}
// The ServerSocket we'll use for accepting new connections
private ServerSocket ss;
// A mapping from sockets to DataOutputStreams. This will
// help us avoid having to create a DataOutputStream each time
// we want to write to a stream.
private Hashtable outputStreams = new Hashtable();
// Constructor and while-accept loop all in one.
public Server(int port) throws IOException {
// All we have to do is listen
listen(port);
}
private void listen(int port) throws IOException {
// Create the ServerSocket
ss = new ServerSocket(port);
// Tell the world we're ready to go
System.out.println("Listening on "+ss);
// Keep accepting connections forever
while (true) {
// Grab the next incoming connection
Socket s = ss.accept();
// Tell the world we've got it
System.out.println(this.now()+" Connection from "+s);
// Create a DataOutputStream for writing data to the
// other side
DataOutputStream dout = new DataOutputStream(s.getOutputStream());
// Save this stream so we don't need to make it again
outputStreams.put(s, dout);
// Create a new thread for this connection, and then forget
// about it
new ServerThread(this, s);
}
}
// Get an enumeration of all the OutputStreams, one for each client
// connected to us

105

Enumeration getOutputStreams() {
return outputStreams.elements();
}
// Send a message to all clients (utility routine)
void sendToAll(String message) {
// We synchronize on this because another thread might be
// calling removeConnection() and this would screw us up
// as we tried to walk through the list
synchronized(outputStreams) {
// For each client ...
for (Enumeration e = getOutputStreams(); e.hasMoreElements();) {

// ... get the output stream ...
DataOutputStream dout = (DataOutputStream)e.nextElement();
// ... and send the message
try {
dout.writeUTF(message);
} catch(IOException ie) { System.out.println(ie); }
}
}
}
// Remove a socket, and it's corresponding output stream, from our
// list. This is usually called by a connection thread that has
// discovered that the connectin to the client is dead.
void removeConnection(Socket s) {
// Synchronize so we don't mess up sendToAll() while it walks
// down the list of all output streamsa
synchronized(outputStreams) {
// Tell the world
System.out.println(this.now()+" Removing connection to "+s);
// Remove it from our hashtable/list
outputStreams.remove(s);
// Make sure it's closed
try {
s.close();
} catch(IOException ie) {
System.out.println("Error closing "+s);
ie.printStackTrace();
}
}
}
// Main routine
// Usage: java Server <port>
static public void main(String args[]) throws Exception {
// Get the port # from the command line
int port = Integer.parseInt(args[0]);

//int port = 10000;
// Create a Server object, which will automatically begin
// accepting connections.
new Server(port);
}
}

106

ServerThread.Java

// Parts implemented by IBM
// Modified by Benjamin Thomas

import java.io.*;
import java.net.*;
import java.util.Calendar;
import java.text.SimpleDateFormat;

public class ServerThread extends Thread
{

public static final String DATE_FORMAT_NOW = "yyyy-MM-dd HH:mm:ss";

public static String now() {
Calendar cal = Calendar.getInstance();
SimpleDateFormat sdf = new SimpleDateFormat(DATE_FORMAT_NOW);
return sdf.format(cal.getTime());

}
// The Server that spawned us
private Server server;
// The Socket connected to our client
private Socket socket;
// Constructor.
public ServerThread(Server server, Socket socket) {
// Save the parameters
this.server = server;
this.socket = socket;
// Start up the thread
start();
}
// This runs in a separate thread when start() is called in the
// constructor.
public void run() {
try {
// Create a DataInputStream for communication; the client
// is using a DataOutputStream to write to us
DataInputStream din = new DataInputStream(socket.getInputStream());
// Over and over, forever ...
while (true) {
// ... read the next message ...
String message = din.readUTF();
// ... tell the world ...
System.out.println(this.now()+" Sending "+message);
// ... and have the server send it to all clients
server.sendToAll(message);
}
} catch(EOFException ie) {
// This doesn't need an error message
} catch(IOException ie) {
// This does; tell the world!

107

ie.printStackTrace();
} finally {
// The connection is closed for one reason or another,
// so have the server dealing with it
server.removeConnection(socket);
}
}
}

108

APPENDIX H

Client Source Code

TMSClientFinalAboutBox.java

TMSClientFinalApp.java

TMSClientFinalMain.java

TMSClientFinalView.java

TMSLocalUser.java

109

TMSClientFinalAboutBox.java

/*
* TMSClientFinalAboutBox.java
*/

package tmsclientfinal;

import org.jdesktop.application.Action;

public class TMSClientFinalAboutBox extends javax.swing.JDialog {

public TMSClientFinalAboutBox(java.awt.Frame parent) {
super(parent);
initComponents();
getRootPane().setDefaultButton(closeButton);

}

@Action public void closeAboutBox() {
dispose();

}

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/

// <editor-fold defaultstate="collapsed" desc="Generated Code">
private void initComponents() {

closeButton = new javax.swing.JButton();
javax.swing.JLabel appTitleLabel = new javax.swing.JLabel();
javax.swing.JLabel versionLabel = new javax.swing.JLabel();
javax.swing.JLabel appVersionLabel = new javax.swing.JLabel();
javax.swing.JLabel vendorLabel = new javax.swing.JLabel();
javax.swing.JLabel appVendorLabel = new javax.swing.JLabel();
javax.swing.JLabel homepageLabel = new javax.swing.JLabel();
javax.swing.JLabel appHomepageLabel = new javax.swing.JLabel();
javax.swing.JLabel appDescLabel = new javax.swing.JLabel();
javax.swing.JLabel imageLabel = new javax.swing.JLabel();

setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE);
org.jdesktop.application.ResourceMap resourceMap =

org.jdesktop.application.Application.getInstance(tmsclientfinal.TMSClientFinalApp.class).getContext().getResourc
eMap(TMSClientFinalAboutBox.class);

setTitle(resourceMap.getString("title")); // NOI18N
setModal(true);
setName("aboutBox"); // NOI18N
setResizable(false);

javax.swing.ActionMap actionMap =
org.jdesktop.application.Application.getInstance(tmsclientfinal.TMSClientFinalApp.class).getContext().getActionM
ap(TMSClientFinalAboutBox.class, this);

closeButton.setAction(actionMap.get("closeAboutBox")); // NOI18N
closeButton.setName("closeButton"); // NOI18N

mailto:@Action

110

appTitleLabel.setFont(appTitleLabel.getFont().deriveFont(appTitleLabel.getFont().getStyle() |
java.awt.Font.BOLD, appTitleLabel.getFont().getSize()+4));

appTitleLabel.setText(resourceMap.getString("Application.title")); // NOI18N
appTitleLabel.setName("appTitleLabel"); // NOI18N

versionLabel.setFont(versionLabel.getFont().deriveFont(versionLabel.getFont().getStyle() |
java.awt.Font.BOLD));

versionLabel.setText(resourceMap.getString("versionLabel.text")); // NOI18N
versionLabel.setName("versionLabel"); // NOI18N

appVersionLabel.setText(resourceMap.getString("Application.version")); // NOI18N
appVersionLabel.setName("appVersionLabel"); // NOI18N

vendorLabel.setFont(vendorLabel.getFont().deriveFont(vendorLabel.getFont().getStyle() |
java.awt.Font.BOLD));

vendorLabel.setText(resourceMap.getString("vendorLabel.text")); // NOI18N
vendorLabel.setName("vendorLabel"); // NOI18N

appVendorLabel.setText(resourceMap.getString("Application.vendor")); // NOI18N
appVendorLabel.setName("appVendorLabel"); // NOI18N

homepageLabel.setFont(homepageLabel.getFont().deriveFont(homepageLabel.getFont().getStyle() |
java.awt.Font.BOLD));

homepageLabel.setText(resourceMap.getString("homepageLabel.text")); // NOI18N
homepageLabel.setName("homepageLabel"); // NOI18N

appHomepageLabel.setText(resourceMap.getString("Application.homepage")); // NOI18N
appHomepageLabel.setName("appHomepageLabel"); // NOI18N

appDescLabel.setText(resourceMap.getString("appDescLabel.text")); // NOI18N
appDescLabel.setName("appDescLabel"); // NOI18N

imageLabel.setIcon(resourceMap.getIcon("imageLabel.icon")); // NOI18N
imageLabel.setName("imageLabel"); // NOI18N

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());
getContentPane().setLayout(layout);
layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(layout.createSequentialGroup()

.addComponent(imageLabel)

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING)
.addGroup(javax.swing.GroupLayout.Alignment.LEADING, layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addComponent(versionLabel)
.addComponent(vendorLabel)
.addComponent(homepageLabel))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addComponent(appVersionLabel)
.addComponent(appVendorLabel)
.addComponent(appHomepageLabel)))

.addComponent(appTitleLabel, javax.swing.GroupLayout.Alignment.LEADING)

111

.addComponent(appDescLabel, javax.swing.GroupLayout.Alignment.LEADING,
javax.swing.GroupLayout.DEFAULT_SIZE, 266, Short.MAX_VALUE)

.addComponent(closeButton))
.addContainerGap())

);
layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addComponent(imageLabel, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
.addGroup(layout.createSequentialGroup()

.addContainerGap()

.addComponent(appTitleLabel)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addComponent(appDescLabel)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
.addComponent(versionLabel)
.addComponent(appVersionLabel))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
.addComponent(vendorLabel)
.addComponent(appVendorLabel))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
.addComponent(homepageLabel)
.addComponent(appHomepageLabel))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 19, Short.MAX_VALUE)

.addComponent(closeButton)

.addContainerGap())
);

pack();
}// </editor-fold>

// Variables declaration - do not modify
private javax.swing.JButton closeButton;
// End of variables declaration

112

TMSClientFinalApp.java

/*
* TMSClientFinalApp.java
*/

package tmsclientfinal;

import org.jdesktop.application.Application;
import org.jdesktop.application.SingleFrameApplication;

/**
* The main class of the application.
*/

public class TMSClientFinalApp extends SingleFrameApplication {

/**
* At startup create and show the main frame of the application.
*/

@Override protected void startup() {
show(new TMSClientFinalView(this));

}

/**
* This method is to initialize the specified window by injecting resources.
* Windows shown in our application come fully initialized from the GUI
* builder, so this additional configuration is not needed.
*/

@Override protected void configureWindow(java.awt.Window root) {
}

/**
* A convenient static getter for the application instance.
* @return the instance of TMSClientFinalApp
*/

public static TMSClientFinalApp getApplication() {
return Application.getInstance(TMSClientFinalApp.class);

}

/**
* Main method launching the application.
*/

public static void main(String[] args) {
launch(TMSClientFinalApp.class, args);

}
}

mailto:@Override
mailto:@Override
mailto:@return

113

TMSClientFinalMain.java

/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/

/*
* TMSClientFinalMain.java
*
* Created on 21/10/2009, 5:34:41 AM
* Benjamin Thomas
*/

package tmsclientfinal;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import TMSLocalUser.*;
/**
*
* @author Racs
*/

public class TMSClientFinalMain extends javax.swing.JFrame implements Runnable {

public String Un = null;
private Socket socket;
private DataOutputStream dout;
private DataInputStream din;
/** Creates new form TMSClientFinalMain */
public TMSClientFinalMain(TMSLocalUser tmslu) {

initComponents();
jTextArea1.append(tmslu.NextMatch+"\n");
Un = tmslu.Username;
jTextField1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
processMessage(e.getActionCommand());
}
});
try {
// Initiate the connection
socket = new Socket("localhost", 10000);
// We got a connection!
System.out.println("connected to "+socket);
// Let's grab the streams and create DataInput/Output streams
// from them
din = new DataInputStream(socket.getInputStream());
dout = new DataOutputStream(socket.getOutputStream());
// Start a background thread for receiving messages
new Thread(this).start();
//dout.writeUTF("");
} catch(IOException ie) { System.out.println(ie); }

mailto:@author

114

//jTextArea1.setText("GG SteamID = "+tmslu.GGSteamID+"\n"+"Local SteamID =
"+tmslu.LocalSteamID+"\n"+"AccountName = "+tmslu.LocalAccountName);

}

private void processMessage(String message) {
try {
// Send it to the server
dout.writeUTF("<"+Un+"> "+message);
// Clear out text input field
jTextField1.setText("");
} catch(IOException ie) { System.out.println(ie); }
}

public void run() {
try {
// Receive messages one-by-one, forever

while (true) {
// Get the next message
String message = din.readUTF();
// Print it to our text window
jTextArea1.append(message+"\n");
}

} catch(IOException ie) { System.out.println(ie); }
}
/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/

@SuppressWarnings("unchecked")
// <editor-fold defaultstate="collapsed" desc="Generated Code">
private void initComponents() {

jScrollPane1 = new javax.swing.JScrollPane();
jTextArea1 = new javax.swing.JTextArea();
jTextField1 = new javax.swing.JTextField();

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
setName("Form"); // NOI18N

jScrollPane1.setName("jScrollPane1"); // NOI18N

org.jdesktop.application.ResourceMap resourceMap =
org.jdesktop.application.Application.getInstance(tmsclientfinal.TMSClientFinalApp.class).getContext().getResourc
eMap(TMSClientFinalMain.class);

jTextArea1.setBackground(resourceMap.getColor("jTextArea1.background")); // NOI18N
jTextArea1.setColumns(20);
jTextArea1.setEditable(false);
jTextArea1.setLineWrap(true);
jTextArea1.setRows(5);
jTextArea1.setName("jTextArea1"); // NOI18N
jScrollPane1.setViewportView(jTextArea1);

jTextField1.setText(resourceMap.getString("jTextField1.text")); // NOI18N
jTextField1.setName("jTextField1"); // NOI18N

mailto:@SuppressWarnings

115

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());
getContentPane().setLayout(layout);
layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup()

.addContainerGap()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent(jScrollPane1, javax.swing.GroupLayout.Alignment.LEADING,

javax.swing.GroupLayout.DEFAULT_SIZE, 670, Short.MAX_VALUE)
.addComponent(jTextField1, javax.swing.GroupLayout.Alignment.LEADING,

javax.swing.GroupLayout.DEFAULT_SIZE, 670, Short.MAX_VALUE))
.addContainerGap())

);
layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup()

.addGap(15, 15, 15)

.addComponent(jScrollPane1, javax.swing.GroupLayout.DEFAULT_SIZE, 366, Short.MAX_VALUE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

.addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap())
);

pack();
}// </editor-fold>

/**
* @param args the command line arguments
*/
public static void main(String args[]) {

java.awt.EventQueue.invokeLater(new Runnable() {
public void run() {

new TMSClientFinalMain(new TMSLocalUser()).setVisible(true);
}

});
}

// Variables declaration - do not modify
private javax.swing.JScrollPane jScrollPane1;
private javax.swing.JTextArea jTextArea1;
private javax.swing.JTextField jTextField1;
// End of variables declaration

}

mailto:@param

116

TMSClientFinalView.java

/*
* TMSClientFinalView.java
* Benjamin Thomas
*/

package tmsclientfinal;

import org.jdesktop.application.Action;
import org.jdesktop.application.ResourceMap;
import org.jdesktop.application.SingleFrameApplication;
import org.jdesktop.application.FrameView;
import org.jdesktop.application.Task;
import org.jdesktop.application.TaskMonitor;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.*;
import TMSLocalUser.*;

/**
* The application's main frame.
*/

public class TMSClientFinalView extends FrameView {

TMSLocalUser tmslu = new TMSLocalUser();

public TMSClientFinalView(SingleFrameApplication app) {
super(app);

initComponents();

// status bar initialization - message timeout, idle icon and busy animation, etc
ResourceMap resourceMap = getResourceMap();
int messageTimeout = resourceMap.getInteger("StatusBar.messageTimeout");
messageTimer = new Timer(messageTimeout, new ActionListener() {

public void actionPerformed(ActionEvent e) {
statusMessageLabel.setText("");

}
});
messageTimer.setRepeats(false);
int busyAnimationRate = resourceMap.getInteger("StatusBar.busyAnimationRate");
for (int i = 0; i < busyIcons.length; i++) {

busyIcons[i] = resourceMap.getIcon("StatusBar.busyIcons[" + i + "]");
}
busyIconTimer = new Timer(busyAnimationRate, new ActionListener() {

public void actionPerformed(ActionEvent e) {
busyIconIndex = (busyIconIndex + 1) % busyIcons.length;
statusAnimationLabel.setIcon(busyIcons[busyIconIndex]);

}
});
idleIcon = resourceMap.getIcon("StatusBar.idleIcon");
statusAnimationLabel.setIcon(idleIcon);

117

progressBar.setVisible(false);

// connecting action tasks to status bar via TaskMonitor
TaskMonitor taskMonitor = new TaskMonitor(getApplication().getContext());
taskMonitor.addPropertyChangeListener(new java.beans.PropertyChangeListener() {

public void propertyChange(java.beans.PropertyChangeEvent evt) {
String propertyName = evt.getPropertyName();
if ("started".equals(propertyName)) {

if (!busyIconTimer.isRunning()) {
statusAnimationLabel.setIcon(busyIcons[0]);
busyIconIndex = 0;
busyIconTimer.start();

}
progressBar.setVisible(true);
progressBar.setIndeterminate(true);

} else if ("done".equals(propertyName)) {
busyIconTimer.stop();
statusAnimationLabel.setIcon(idleIcon);
progressBar.setVisible(false);
progressBar.setValue(0);

} else if ("message".equals(propertyName)) {
String text = (String)(evt.getNewValue());
statusMessageLabel.setText((text == null) ? "" : text);
messageTimer.restart();

} else if ("progress".equals(propertyName)) {
int value = (Integer)(evt.getNewValue());
progressBar.setVisible(true);
progressBar.setIndeterminate(false);
progressBar.setValue(value);

}
}

});
}

@Action
public void showAboutBox() {

if (aboutBox == null) {
JFrame mainFrame = TMSClientFinalApp.getApplication().getMainFrame();
aboutBox = new TMSClientFinalAboutBox(mainFrame);
aboutBox.setLocationRelativeTo(mainFrame);

}

TMSClientFinalApp.getApplication().show(aboutBox);

}

@Action
public void showMainWindow() {
this.getApplication().hide(this);
TMSClientFinalMain tmsfm = new TMSClientFinalMain(tmslu);
tmsfm.setLocationRelativeTo(TMSClientFinalApp.getApplication().getMainFrame());
tmsfm.setVisible(true);
}

/** This method is called from within the constructor to
* initialize the form.

mailto:@Action
mailto:@Action

118

* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/

@SuppressWarnings("unchecked")
// <editor-fold defaultstate="collapsed" desc="Generated Code">
private void initComponents() {

mainPanel = new javax.swing.JPanel();
jTextField1 = new javax.swing.JTextField();
jPasswordField1 = new javax.swing.JPasswordField();
jLabel1 = new javax.swing.JLabel();
jLabel2 = new javax.swing.JLabel();
jButton1 = new javax.swing.JButton();
menuBar = new javax.swing.JMenuBar();
javax.swing.JMenu fileMenu = new javax.swing.JMenu();
javax.swing.JMenuItem exitMenuItem = new javax.swing.JMenuItem();
javax.swing.JMenu helpMenu = new javax.swing.JMenu();
javax.swing.JMenuItem aboutMenuItem = new javax.swing.JMenuItem();
statusPanel = new javax.swing.JPanel();
javax.swing.JSeparator statusPanelSeparator = new javax.swing.JSeparator();
statusMessageLabel = new javax.swing.JLabel();
statusAnimationLabel = new javax.swing.JLabel();
progressBar = new javax.swing.JProgressBar();

mainPanel.setName("mainPanel"); // NOI18N

org.jdesktop.application.ResourceMap resourceMap =
org.jdesktop.application.Application.getInstance(tmsclientfinal.TMSClientFinalApp.class).getContext().getResourc
eMap(TMSClientFinalView.class);

jTextField1.setText(resourceMap.getString("jTextField1.text")); // NOI18N
jTextField1.setName("jTextField1"); // NOI18N

jPasswordField1.setText(resourceMap.getString("jPasswordField1.text")); // NOI18N
jPasswordField1.setName("jPasswordField1"); // NOI18N

jLabel1.setText(resourceMap.getString("jLabel1.text")); // NOI18N
jLabel1.setName("jLabel1"); // NOI18N

jLabel2.setText(resourceMap.getString("jLabel2.text")); // NOI18N
jLabel2.setName("jLabel2"); // NOI18N

javax.swing.ActionMap actionMap =
org.jdesktop.application.Application.getInstance(tmsclientfinal.TMSClientFinalApp.class).getContext().getActionM
ap(TMSClientFinalView.class, this);

jButton1.setAction(actionMap.get("UserLogin")); // NOI18N
jButton1.setText(resourceMap.getString("jButton1.text")); // NOI18N
jButton1.setName("jButton1"); // NOI18N

javax.swing.GroupLayout mainPanelLayout = new javax.swing.GroupLayout(mainPanel);
mainPanel.setLayout(mainPanelLayout);
mainPanelLayout.setHorizontalGroup(

mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, mainPanelLayout.createSequentialGroup()

.addContainerGap(113, Short.MAX_VALUE)

.addGroup(mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent(jButton1)

mailto:@SuppressWarnings

119

.addGroup(mainPanelLayout.createSequentialGroup()
.addGroup(mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jLabel1)

.addComponent(jLabel2))
.addGap(31, 31, 31)
.addGroup(mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING,

false)
.addComponent(jPasswordField1, javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent(jTextField1, javax.swing.GroupLayout.Alignment.TRAILING,

javax.swing.GroupLayout.DEFAULT_SIZE, 149, Short.MAX_VALUE))))
.addGap(59, 59, 59))

);
mainPanelLayout.setVerticalGroup(

mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(mainPanelLayout.createSequentialGroup()

.addGap(69, 69, 69)

.addGroup(mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
.addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)
.addComponent(jLabel1))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
.addComponent(jPasswordField1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)
.addComponent(jLabel2))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

.addComponent(jButton1)

.addContainerGap(100, Short.MAX_VALUE))
);

menuBar.setName("menuBar"); // NOI18N

fileMenu.setText(resourceMap.getString("fileMenu.text")); // NOI18N
fileMenu.setName("fileMenu"); // NOI18N

exitMenuItem.setAction(actionMap.get("quit")); // NOI18N
exitMenuItem.setName("exitMenuItem"); // NOI18N
fileMenu.add(exitMenuItem);

menuBar.add(fileMenu);

helpMenu.setText(resourceMap.getString("helpMenu.text")); // NOI18N
helpMenu.setName("helpMenu"); // NOI18N

aboutMenuItem.setAction(actionMap.get("showAboutBox")); // NOI18N
aboutMenuItem.setName("aboutMenuItem"); // NOI18N
helpMenu.add(aboutMenuItem);

menuBar.add(helpMenu);

statusPanel.setName("statusPanel"); // NOI18N

statusPanelSeparator.setName("statusPanelSeparator"); // NOI18N

statusMessageLabel.setName("statusMessageLabel"); // NOI18N

120

statusAnimationLabel.setHorizontalAlignment(javax.swing.SwingConstants.LEFT);
statusAnimationLabel.setName("statusAnimationLabel"); // NOI18N

progressBar.setName("progressBar"); // NOI18N

javax.swing.GroupLayout statusPanelLayout = new javax.swing.GroupLayout(statusPanel);
statusPanel.setLayout(statusPanelLayout);
statusPanelLayout.setHorizontalGroup(

statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addComponent(statusPanelSeparator, javax.swing.GroupLayout.DEFAULT_SIZE, 400,

Short.MAX_VALUE)
.addGroup(statusPanelLayout.createSequentialGroup()

.addContainerGap()

.addComponent(statusMessageLabel)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 230, Short.MAX_VALUE)

.addComponent(progressBar, javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addComponent(statusAnimationLabel)

.addContainerGap())
);
statusPanelLayout.setVerticalGroup(

statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(statusPanelLayout.createSequentialGroup()

.addComponent(statusPanelSeparator, javax.swing.GroupLayout.PREFERRED_SIZE, 2,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addGroup(statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
.addComponent(statusMessageLabel)
.addComponent(statusAnimationLabel)
.addComponent(progressBar, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
.addGap(3, 3, 3))

);

setComponent(mainPanel);
setMenuBar(menuBar);
setStatusBar(statusPanel);

}// </editor-fold>

private void ShowErrorDialog(String ErrorMsg){
JOptionPane.showMessageDialog(TMSClientFinalApp.getApplication().getMainFrame(), ErrorMsg);

}

@Action(block = Task.BlockingScope.ACTION)
public Task UserLogin() {

return new UserLoginTask(getApplication());
}

private class UserLoginTask extends org.jdesktop.application.Task<Object, Void> {
UserLoginTask(org.jdesktop.application.Application app) {

// Runs on the EDT. Copy GUI state that
// doInBackground() depends on from parameters
// to UserLoginTask fields, here.
super(app);

mailto:@Action

121

}
@Override protected Object doInBackground() {

// Your Task's code here. This method runs
// on a background thread, so don't reference
// the Swing GUI from here.
//System.out.println(jTextField1.getText());
//System.out.println(jPasswordField1.getPassword());

tmslu.Password=new String(jPasswordField1.getPassword());
tmslu.Username=jTextField1.getText();
if (!tmslu.GetGGInfo()) {

ShowErrorDialog(tmslu.ErrorString);
return null;

}
if (!tmslu.GetLocalInfo()) {

ShowErrorDialog(tmslu.ErrorString);
return null;

}
tmslu.AuthTMSLocalUser();

//tmslu.PrintDump();
// System.out.println(tmslu.Password);

return null; // return your result
}
@Override protected void succeeded(Object result) {

// Runs on the EDT. Update the GUI based on
// the result computed by doInBackground().

// showMainWindow();
if (tmslu.IsError) {

ShowErrorDialog(tmslu.ErrorString);
} else {

System.out.println("DONE!");
}
if (tmslu.IsAuth) {

TMSClientFinalApp.getApplication().getMainFrame().setVisible(false);
TMSClientFinalMain tmscfm = new TMSClientFinalMain(tmslu);
tmscfm.setLocationRelativeTo(TMSClientFinalApp.getApplication().getMainFrame());
tmscfm.setVisible(true);

}

}
}

// Variables declaration - do not modify
private javax.swing.JButton jButton1;
private javax.swing.JLabel jLabel1;
private javax.swing.JLabel jLabel2;
private javax.swing.JPasswordField jPasswordField1;
private javax.swing.JTextField jTextField1;
private javax.swing.JPanel mainPanel;
private javax.swing.JMenuBar menuBar;
private javax.swing.JProgressBar progressBar;
private javax.swing.JLabel statusAnimationLabel;

mailto:@Override
mailto:@Override

122

private javax.swing.JLabel statusMessageLabel;
private javax.swing.JPanel statusPanel;
// End of variables declaration

private final Timer messageTimer;
private final Timer busyIconTimer;
private final Icon idleIcon;
private final Icon[] busyIcons = new Icon[15];
private int busyIconIndex = 0;

private JDialog aboutBox;
}

123

TMSLocalUser.java
package TMSLocalUser;
/**
*
* @author Benjamin Thomas
*/

import java.util.*;
import java.io.*;
import java.sql.*;
import Reg.*;
import java.security.*;
import java.math.*;

public class TMSLocalUser {

//Instance Variables
public String GGSteamID = null;
public String Username = null;
public String Password = null;
public String GGUserID = null;
public String GGSalt = null;
public String GGPassword = null;
public String LocalSteamID = null;
public String LocalAccountName = null;
public boolean IsError = false;
public String ErrorString = null;
public boolean IsAuth = false;
public String NextMatch = null;

public TMSLocalUser(String uname, String pword) {
Password = pword;
Username = uname;

}

public TMSLocalUser() {
}

public boolean GetGGInfo() {
Connection con = null;
try {

Class.forName("com.mysql.jdbc.Driver").newInstance();
con = DriverManager.getConnection("jdbc:mysql://www.gotgames.com.au:3306/gotgames","gotgames",

"g0tg4mesn1g");
if(!con.isClosed())

System.out.println("Successfully connected to " + "MySQL server using TCP/IP...");
}
catch(Exception e) {

ErrorString = "Couldn't Connect to Gotgames";
IsError = true;
System.err.println("Exception: " + e.getMessage());
return false;

}
try {

mailto:@author
www.gotgames.com.au:3306/gotgames

124

Statement st = con.createStatement();
ResultSet rs = st.executeQuery("SELECT * FROM vb_user WHERE username = '"+Username+"';");
rs.first();
GGSalt = rs.getString("salt");
rs.first();
GGPassword = rs.getString("password");
rs.first();
GGUserID = rs.getString("userid");
st = con.createStatement();
rs = st.executeQuery("SELECT * FROM gglive_users WHERE id = '"+GGUserID+"';");
rs.first();
GGSteamID = rs.getString("steamId");

} catch(Exception e) {
if (GGUserID == null) {

ErrorString = "Invalid Username";
IsError = true;
return false;

}
ErrorString = "Please check your info on www.gotgames.com.au is correct";
IsError = true;
System.err.println("Exception: " + e.getMessage());
return false;

}
try {

Statement st = con.createStatement();
ResultSet rs = st.executeQuery("SELECT er_teamid FROM ents_roster WHERE erid = '"+GGUserID+"';");
rs.first();
ResultSet rse = st.executeQuery("SELECT * FROM tms_matches WHERE timestamp <

CURRENT_TIMESTAMP AND (id_team_a = '"+rs.getString("er_teamid")+"' OR id_team_b =
'"+rs.getString("er_teamid")+"') ORDER BY timestamp;");

rse.first();
NextMatch = rse.getString("id_team_a")+" VS "+ rse.getString("id_team_b")+" AT

"+rse.getString("timestamp");
} catch(Exception e) {

NextMatch = "No Upcoming Matches";
}

try {
con.close();

} catch(Exception e) {
System.err.println("Exception: " + e.getMessage());

}
PrintDump();
return true;

}

public void ResetError(){
IsError = false;
ErrorString = null;

}

public boolean GetLocalInfo(){

www.gotgames.com.au

125

String fname;
LocalSteamID = null;
LocalAccountName = null;
try { //read the windows registry to locate the steam install path
fname =

WinRegistry.readString(WinRegistry.HKEY_LOCAL_MACHINE,"SOFTWARE\\Valve\\Steam","InstallPath");
}
catch(Exception e) {

ErrorString = "Steam not found, please reinstall a legitamate copy of Steam";
IsError = true;
System.err.println("Exception: " + e.getMessage());
return false;

} //lets get the account details from the steam log. These will be up to date if steam is running!
fname = fname+"\\steam.log";
try {
Scanner scany = new Scanner(new File(fname));
String tokens;
String findAccName;
while (scany.hasNext()) {

tokens = scany.next();

if (LocalSteamID == null){
if (tokens.equals("for")) {
// Check pattern matching for SteamID
//System.out.println(scany.next());
LocalSteamID = "STEAM_"+scany.next();
}

}
if (LocalAccountName == null) {

try {
findAccName = tokens.substring(0, 14);
String loops = tokens.substring(14,15);
int location=14;
if (findAccName.equals("CreateSession(")) {

while (!tokens.substring(location,location+1).equals(",")) { //patternmatching for account name
// System.out.println(tokens.substring(location,location+1));
location++;

}
LocalAccountName = tokens.substring(14,location);

//System.out.println(tokens.substring(14,location));
}

}
// System.out.println(loops);
catch (StringIndexOutOfBoundsException e) {

System.err.println("Exception: " + e.getMessage());
}

}
}
scany.close();
} catch(FileNotFoundException e) {

ErrorString = "Unable to locate Steam Files";
IsError = true;
System.err.println("Exception: " + e.getMessage());
return false;

}

126

return true;
}

public boolean AuthTMSLocalUser() {
String hashword = null;
String firststage = null;
if (GGPassword == null) { // no password saved to compare

GetGGInfo();
}
//lets MD5 has the enter password
try {

MessageDigest md5 = MessageDigest.getInstance("MD5");
md5.update(Password.getBytes());
BigInteger hash = new BigInteger(1, md5.digest());
hashword = hash.toString(16);
StringBuffer buffer = new StringBuffer(hashword);
while (buffer.length() < 32) {

buffer.insert(0, '0');
}
firststage = buffer.toString(); //first stage is complete
} catch (NoSuchAlgorithmException nsae) {
}

hashword = null; //reset hashword
Password = firststage+GGSalt; // add the salt retrieved from the GG database
// MD5 hash the new value so we can compare the outcome.
try {

MessageDigest md5 = MessageDigest.getInstance("MD5");
md5.update(Password.getBytes());
BigInteger hash = new BigInteger(1, md5.digest());
hashword = hash.toString(16);
StringBuffer buffer = new StringBuffer(hashword);
while (buffer.length() < 32) {

buffer.insert(0, '0');
}
hashword = buffer.toString();

} catch (NoSuchAlgorithmException nsae) {
}
//System.out.println("Calc'ed Hash:" +hashword);
//System.out.println("GG Hash: " +GGPassword);
if (hashword.equals(GGPassword)) {

IsAuth = true;
return true;

} else {
IsAuth = false;
IsError = true;
ErrorString = "Invalid Login Details";
return false;

}
}

127

public void PrintDump() {
System.out.println(GGSteamID);
System.out.println(Username);
System.out.println(Password);
System.out.println(GGPassword);
System.out.println(GGUserID);
System.out.println(GGSalt);
System.out.println(LocalSteamID);
System.out.println(IsError);
System.out.println(ErrorString);
System.out.println(IsAuth);
System.out.println(LocalAccountName);
System.out.println(NextMatch);

}

protected void finalize() {
}

}

128

APPENDIX I

GotGames Database Information

 (unregistered

version)

Database documentation
Server name: gotgames.com.auDatabase name: gotgames
Database size: 0Database description:
Documentation date: 3/01/2010

 (unregistered

version)

TABLES
gg_team_players

I F P Column name Data type Nulls Default Descriptionid int NOuser int YESteam int YESjoined int NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `gg_team_players` (`id` int(11) NOT NULL auto_increment, `user` int(11) default NULL,`team` int(11) default NULL,`joined` int(11) NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM AUTO_INCREMENT=10 DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci

Table definition

 (unregistered

version)

gg_teams
I F P Column name Data type Nulls Default Descriptionid int NOgame int YESfounder int YEScaptain int YESactive int NO 1name varchar (32) NOcreated int NOtag varchar (8) NOrecruiting int NO 1image varchar (100) YES noneurl varchar (255) NOirc_server varchar (32) NOirc_channel varchar (24) NOabout text (65535) NOpassword varchar (50) NOvcpt int YESavatar varchar (100) NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `gg_teams` (`id` int(11) NOT NULL auto_increment,`game` int(11) default NULL,`founder` int(11) default NULL,`captain` int(11) default NULL,`active` int(1) NOT NULL default '1',`name` varchar(32) collate latin1_general_ci NOT NULL,`created` int(11) NOT NULL,`tag` varchar(8) collate latin1_general_ci NOT NULL,`recruiting` int(2) NOT NULL default '1', `image` varchar(100) collate latin1_general_ci default 'none',`url` varchar(255) collate latin1_general_ci NOT NULL,`irc_server` varchar(32) collate latin1_general_ci NOT NULL,`irc_channel` varchar(24) collate latin1_general_ci NOT NULL,`about` text collate latin1_general_ci NOT NULL,`password` varchar(50) collate latin1_general_ci NOT NULL,`vcpt` int(11) default NULL,`avatar` varchar(100) collate latin1_general_ci NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM AUTO_INCREMENT=6 DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci

Table definition

 (unregistered

version)

tms_matches
I F P Column name Data type Nulls Default Descriptionid int NOid_server int NOstatus varchar (16) NO 0timestamp varchar (30) NOid_team_a int YESid_team_b int YESscore_a int YESscore_b int YESserver_pw varchar (16) NOround int NOid_stv int YESid_tournament int NOposition int NOhigh int YESid_match_parent_a int YESid_match_parent_b int YEScompleted int NO 0
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `tms_matches` (`id` int(11) NOT NULL auto_increment,`id_server` int(11) NOT NULL,`status` varchar(16) collate latin1_general_ci NOT NULL default '0', `timestamp` varchar(30) collate latin1_general_ci NOT NULL,`id_team_a` int(11) default NULL,`id_team_b` int(11) default NULL,`score_a` int(4) default NULL,`score_b` int(4) default NULL,`server_pw` varchar(16) collate latin1_general_ci NOT NULL, `round` int(11) NOT NULL,`id_stv` int(11) default NULL,`id_tournament` int(11) NOT NULL,`position` int(11) NOT NULL,`high` int(11) default NULL,`id_match_parent_a` int(11) default NULL,`id_match_parent_b` int(11) default NULL,`completed` int(11) NOT NULL default '0',PRIMARY KEY (`id`)) ENGINE=MyISAM AUTO_INCREMENT=1955 DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci

Table definition

 (unregistered

version)

tms_servers
I F P Column name Data type Nulls Default Descriptionid int NOid_game int NOid_tournament int NOaddress varchar (32) NOrcon varchar (32) NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `tms_servers` (`id` int(11) NOT NULL auto_increment,`id_game` int(11) NOT NULL,`id_tournament` int(11) NOT NULL,`address` varchar(32) collate latin1_general_ci NOT NULL,`rcon` varchar(32) collate latin1_general_ci NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM AUTO_INCREMENT=65 DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci

Table definition

 (unregistered

version)

tms_stvs
I F P Column name Data type Nulls Default Descriptionid int NOid_game int NOid_tournament int NOaddress varchar (32) NOrcon varchar (32) NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `tms_stvs` (`id` int(11) NOT NULL auto_increment,`id_game` int(11) NOT NULL,`id_tournament` int(11) NOT NULL,`address` varchar(32) collate latin1_general_ci NOT NULL,`rcon` varchar(32) collate latin1_general_ci NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM AUTO_INCREMENT=60 DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci

Table definition

 (unregistered

version)

tms_teams_1826
I F P Column name Data type Nulls Default Descriptionid int NOseed int YESid_tournament int NOname varchar (32) NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `tms_teams_1826` (`id` int(11) unsigned NOT NULL,`seed` int(11) default NULL,`id_tournament` int(11) NOT NULL,`name` varchar(32) NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM DEFAULT CHARSET=utf8

Table definition

 (unregistered

version)

tms_teams_1827
I F P Column name Data type Nulls Default Descriptionid int NOseed int YESid_tournament int NOname varchar (32) NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `tms_teams_1827` (`id` int(11) unsigned NOT NULL,`seed` int(11) default NULL,`id_tournament` int(11) NOT NULL,`name` varchar(32) NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM DEFAULT CHARSET=utf8

Table definition

 (unregistered

version)

tms_teams_1829
I F P Column name Data type Nulls Default Descriptionid int NOseed int YESid_tournament int NOname varchar (32) NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `tms_teams_1829` (`id` int(11) unsigned NOT NULL,`seed` int(11) default NULL,`id_tournament` int(11) NOT NULL,`name` varchar(32) NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM DEFAULT CHARSET=utf8

Table definition

 (unregistered

version)

tms_tournament
I F P Column name Data type Nulls Default Descriptionid int NOid_game int NOname varchar (128) NOformat varchar (16) NOstarttime varchar (19) NOsize int NOstatus int NOfrequency varchar (16) NOseeded int NO
IndexesIndex name Column name Sort direction Is unique Index typePRIMARY id Ascending Yes BTREE

CREATE TABLE `tms_tournament` (`id` int(11) NOT NULL auto_increment,`id_game` int(11) NOT NULL,`name` varchar(128) collate latin1_general_ci NOT NULL,`format` varchar(16) collate latin1_general_ci NOT NULL,`starttime` varchar(19) collate latin1_general_ci NOT NULL,`size` int(11) NOT NULL,`status` int(11) NOT NULL,`frequency` varchar(16) collate latin1_general_ci NOT NULL,`seeded` int(11) NOT NULL,PRIMARY KEY (`id`)) ENGINE=MyISAM AUTO_INCREMENT=1830 DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci PACK_KEYS=1

Table definition

 (unregistered

version)

vb_user
I F P Column name Data type Nulls Default Descriptionuserid int NOusergroupid smallint (5.0) NO 0membergroupids varchar (250) NOdisplaygroupid smallint (5.0) NO 0username varchar (100) NOpassword varchar (32) NOpassworddate date NO 0000-00-00email varchar (100) NOstyleid smallint (5.0) NO 0parentemail varchar (50) NOhomepage varchar (100) NOicq varchar (20) NOaim varchar (20) NOyahoo varchar (32) NOmsn varchar (100) NOskype varchar (32) NOshowvbcode smallint (5.0) NO 0showbirthday smallint (5.0) NO 2usertitle varchar (250) NOcustomtitle smallint (5.0) NO 0joindate int NO 0daysprune smallint (5.0) NO 0lastvisit int NO 0lastactivity int NO 0lastpost int NO 0posts int NO 0reputation int NO 10reputationlevelid int NO 1timezoneoffset varchar (4) NOpmpopup smallint (5.0) NO 0avatarid smallint (5.0) NO 0avatarrevision int NO 0profilepicrevision int NO 0options int NO 15birthday varchar (10) NObirthday_search date NO 0000-00-00maxposts smallint (5.0) NO -1startofweek smallint (5.0) NO 1ipaddress varchar (15) NOreferrerid int NO 0languageid smallint (5.0) NO 0emailstamp int NO 0threadedmode smallint (5.0) NO 0autosubscribe smallint (5.0) NO -1pmtotal smallint (5.0) NO 0pmunread smallint (5.0) NO 0salt char (3) NOadminoptions int NO 0compadmin int NO

 (unregistered

version)

compladderreferee int NOlastpostid int NO 0sigpicrevision int NO 0ipoints int NO 0infractions int NO 0warnings int NO 0infractiongroupids varchar (255) NOinfractiongroupid smallint (5.0) NO 0profilevisits int NO 0friendcount int NO 0friendreqcount int NO 0vmunreadcount int NO 0vmmoderatedcount int NO 0socgroupinvitecount int NO 0socgroupreqcount int NO 0pcunreadcount int NO 0pcmoderatedcount int NO 0gmmoderatedcount int NO 0ncode_imageresizer_mode enum (10) YESncode_imageresizer_maxwidth smallint (5.0) YESncode_imageresizer_maxheight smallint (5.0) YES
steam varchar (255) NOcis_ignorelist_ignore tinyint (3.0) YEScis_ignoreforum_ignore tinyint (3.0) YEScis_ignoretags_ignore text (65535) YES

IndexesIndex name Column name Sort direction Is unique Index typePRIMARY userid Ascending Yes BTREEusergroupid usergroupid Ascending No BTREEusername username Ascending No BTREEbirthday birthday Ascending No BTREEbirthday showbirthday Ascending No BTREEbirthday_search birthday_search Ascending No BTREEreferrerid referrerid Ascending No BTREE

CREATE TABLE `vb_user` (`userid` int(10) unsigned NOT NULL auto_increment,`usergroupid` smallint(5) unsigned NOT NULL default '0',`membergroupids` varchar(250) NOT NULL default '',`displaygroupid` smallint(5) unsigned NOT NULL default '0',`username` varchar(100) NOT NULL default '',`password` varchar(32) NOT NULL default '',`passworddate` date NOT NULL default '0000-00-00' ,`email` varchar(100) NOT NULL default '',`styleid` smallint(5) unsigned NOT NULL default '0',`parentemail` varchar(50) NOT NULL default '',`homepage` varchar(100) NOT NULL default '',`icq` varchar(20) NOT NULL default '',`aim` varchar(20) NOT NULL default '',`yahoo` varchar(32) NOT NULL default '',`msn` varchar(100) NOT NULL default '',`skype` varchar(32) NOT NULL default '',`showvbcode` smallint(5) unsigned NOT NULL default '0',`showbirthday` smallint(5) unsigned NOT NULL default '2',`usertitle` varchar(250) NOT NULL default '',`customtitle` smallint(6) NOT NULL default '0',`joindate` int(10) unsigned NOT NULL default '0',

Table definition

 (unregistered

version)

`daysprune` smallint(6) NOT NULL default '0',`lastvisit` int(10) unsigned NOT NULL default '0',`lastactivity` int(10) unsigned NOT NULL default '0',`lastpost` int(10) unsigned NOT NULL default '0',`posts` int(10) unsigned NOT NULL default '0',`reputation` int(11) NOT NULL default '10',`reputationlevelid` int(10) unsigned NOT NULL default '1',`timezoneoffset` varchar(4) NOT NULL default '',`pmpopup` smallint(6) NOT NULL default '0',`avatarid` smallint(6) NOT NULL default '0',`avatarrevision` int(10) unsigned NOT NULL default '0',`profilepicrevision` int(10) unsigned NOT NULL default '0',`options` int(10) unsigned NOT NULL default '15',`birthday` varchar(10) NOT NULL default '',`birthday_search` date NOT NULL default '0000-00-00' ,`maxposts` smallint(6) NOT NULL default '-1',`startofweek` smallint(6) NOT NULL default '1',`ipaddress` varchar(15) NOT NULL default '',`referrerid` int(10) unsigned NOT NULL default '0',`languageid` smallint(5) unsigned NOT NULL default '0',`emailstamp` int(10) unsigned NOT NULL default '0',`threadedmode` smallint(5) unsigned NOT NULL default '0',`autosubscribe` smallint(6) NOT NULL default '-1',`pmtotal` smallint(5) unsigned NOT NULL default '0',`pmunread` smallint(5) unsigned NOT NULL default '0',`salt` char(3) NOT NULL default '',`adminoptions` int(10) unsigned NOT NULL default '0',`compadmin` int(1) NOT NULL,`compladderreferee` int(1) NOT NULL,`lastpostid` int(10) unsigned NOT NULL default '0',`sigpicrevision` int(10) unsigned NOT NULL default '0',`ipoints` int(10) unsigned NOT NULL default '0',`infractions` int(10) unsigned NOT NULL default '0',`warnings` int(10) unsigned NOT NULL default '0',`infractiongroupids` varchar(255) NOT NULL default '',`infractiongroupid` smallint(5) unsigned NOT NULL default '0',`profilevisits` int(10) unsigned NOT NULL default '0',`friendcount` int(10) unsigned NOT NULL default '0',`friendreqcount` int(10) unsigned NOT NULL default '0',`vmunreadcount` int(10) unsigned NOT NULL default '0',`vmmoderatedcount` int(10) unsigned NOT NULL default '0',`socgroupinvitecount` int(10) unsigned NOT NULL default '0',`socgroupreqcount` int(10) unsigned NOT NULL default '0',`pcunreadcount` int(10) unsigned NOT NULL default '0',`pcmoderatedcount` int(10) unsigned NOT NULL default '0',`gmmoderatedcount` int(10) unsigned NOT NULL default '0', `ncode_imageresizer_mode` enum('none','enlarge','samewindow' ,'newwindow') default NULL,`ncode_imageresizer_maxwidth` smallint(5) unsigned default NULL,`ncode_imageresizer_maxheight` smallint(5) unsigned default NULL,`steam` varchar(255) NOT NULL,`cis_ignorelist_ignore` tinyint(4) default NULL,`cis_ignoreforum_ignore` tinyint(4) default NULL,`cis_ignoretags_ignore` text,PRIMARY KEY (`userid`),KEY `usergroupid` (`usergroupid`),KEY `username` (`username`),KEY `birthday` (`birthday`,`showbirthday`),KEY `birthday_search` (`birthday_search`),KEY `referrerid` (`referrerid`)) ENGINE=MyISAM AUTO_INCREMENT=25883 DEFAULT CHARSET=latin1

	final.pdf
	gotgames.com.au_gotgames.pdf

