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Abstract 

 
 
Low grade pine subject to loading exhibits a poor predictability when used 

in structural applications. Australia produces a large amount of low grade 

timber yearly which is sold at a loss due to its unreliable performance 

characteristics. This dissertation investigates the structural performance of 

slab units manufactured from low grade timber when used to form a floor 

slab. 

 

Physical testing and finite element analysis modelling have been used to 

determine the limitations of low grade timber floor slabs. This study 

involved determining which of the strength and serviceability criteria 

governs design, along with an investigation into the performance of bugle 

head batten screws used to connect low grade slab units to form a floor 

slab. The findings of these investigations are summarised into a chart for 

the deflection based design of low grade timber floor slabs, and graphs 

describing connection performance based on various loading situations. 

 

Investigations have concluded that utilising low grade timber in floor units 

increases the reliability of the product considerably. Connections can also 

be made that have sufficient strength to resist any forces applied between 

slab units. 
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Nomenclature 

a  Length of specimen divided by three (m)  

B  Width of test specimen (m) 

D  Depth of test specimen (m) 

E  Modulus of Elasticity (MOE) parallel to the grain (MPa) 

*E  Characteristic short duration average MOE parallel to the grain (MPa) 

 'bf  Characteristic strength in bending (MPa) 

 'cf  Characteristic strength in compression (MPa) 

 'sf  Characteristic strength in shear (MPa) 

 'tf  Characteristic strength in tension (MPa) 

G  Modulus of Rigidity (MPa) 

I  Second moment of inertia ( 4m ) 

L  Length of test specimen (m) 

maxM  Maximum bending moment (kN.m) 

XP  Load applied to test specimen at point x (kN) 

  Central deflection of a simply supported beam (mm) 

X  Specimen deflection at point x (m) 

  Poisons ratio 

  Material Density (kg/m³) 

max  Maximum allowable stress (MPa) 
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Chapter 1 

 

 

Introduction 

 

1.0   Outline of the study 

 
The study into the viability of using low grade timber floor slabs as a realistic flooring 

alternative in Australia has been initiated as a result of investigations into methods of 

making low grade timber products profitable for timber producers. The aim of this 

project is to investigate the structural performance of above ground low grade timber 

slab flooring systems with the objective of developing methods of design and 

construction for such systems. This will include both stress and deflection based 

performance studies along with slab connection methods. 
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1.1   Background 

 

Hyne and Son is Australia's largest successful privately owned timber company. They 

are responsible for the production of structural pine building products from sustainable 

plantation grown timber. Timber products produced by Hyne include  MGP15, MGP12, 

MGP10, F5 and utility grade. High grade structural timber like MGP15 is readily sold 

and generates higher prices than utility grade, which because of excessive knots and 

other faults is not a viable structural material. Hyne are seeking to develop technologies 

which can better utilize utility grade timber as a structural material in building 

applications. This research project investigates one innovative option for utilizing this 

low grade timber product. 

 

Because of excessive material faults, the low grade timber is labelled as having 

mechanical characteristics less than F5 graded timber. Hyne can not sell this timber at a 

profit, hence the company seeking to develop technologies that can utilise this resource 

and make it profitable and sustainable. 

 

This research on the structural performance of low grade timber slabs is intended to 

utilise the non structural grade product, in a manner that is safe and reliable. Currently 

technology is available to fabricate solid wood panels (slabs), however research is 

needed to investigate issues associated with the development of a timber slab flooring 

system.  Therefore, the scope of this research will mainly focus on the structural 

performance of above ground timber slab flooring systems, supported by the traditional 

column and bearer configuration. 
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1.2   The problem 

 

Australia's leading plantation pine based timber producers are continuously milling 

timber for use in Structural applications throughout Australia. All timber is graded 

according to its mechanical and visual characteristics which dictate the applications it 

can be utilised in and ultimately the profit that can be made from it. Currently timber is 

graded for usage in accordance with Table 1. 

 

Timber that is graded less than F5 cannot be used in structural applications therefore it 

is sold at a loss. The aim of this project is to determine if this timber can be utilised in a 

manner that is practical and profitable. The current proposition for achieving this is to 

laminate individual pieces into a slab to achieve a degree of structural reliability and 

enable it to be marketed with confidence to Australian house builders. 

 

This is a fresh idea with no previous research into the characteristics of the low grade 

timber used as a laminated slab. Some testing and analysis of this emerging technology 

is required as to determine if it is worthwhile pursuing. 
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Table 1 - Structural design properties of graded timber : Standards Australia (AS1720.1 Timber Structures – 

Design Methods) 

 

 

The timber grades used in the slabs are F5 and the Machine Graded Pine grades MGP 

10, MGP 12 and MGP 15. The key difference between the F grading and the MGP 

grading systems is the product which they are intended to resemble. The F grading 

system was created in America and does not accurately describe pine produced in 

Australia, hence the MGP grading system was developed in Australia to ensure that the 

label given to the timber accurately describes the timber specimen.  

 

Pine of all grades which is used in the slabs is deemed to be low grade or Utility Grade 

if it contains excessive defects such as knots, resin shakes and wane. This assessment is 

made visually, with relatively clean timber specimens being deemed structural and 

defect ridden specimens being deemed low grade despite the high machine tested 

Strength grade assigned to the specimen. 
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1.3   Research objectives 

 

The aim of this project is to investigate the structural performance of above ground low 

grade timber slab flooring systems with the intention of developing methods of design 

and construction for such systems. This will include both deflection and limiting stress 

based performance studies and slab connection methods. In order to achieve this, the 

following objectives have been created. 

 

 Review the current use of laminated timber building technologies in other 

countries, to gain an understanding and appreciation of current technologies. 

 Acquire timber material properties data from Hyne with the aim of using a 

statistically representative set of data for the prediction of the slab behaviour 

during testing. 

 Collect structural performance data by testing prefabricated timber slabs.  

 Create mathematical computer models of the above ground flooring system 

using Strand7 to extrapolate data on the structural requirements for this system 

to be viable. 

 Use the results from modelling to create a design aid for the use of low grade 

timber slabs in floor construction. 

 Investigate, create and test methods for panel connection. 

 Submit an academic dissertation on the research undertaken. 
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1.4   Overview of the dissertation 

 

This dissertation consists of seven chapters. Chapter 1 presents an introduction to impart 

an understanding of the underlying reasons for the commencement of this research, 

followed by a definition of the problem that is presented and the objectives of this 

dissertation. Chapter 2 provides an overview on the work already done that is related to 

this research, including past research, current technologies and relevant Australian 

Standards.  

 

The main body of the dissertation starts at Chapter 3 and goes through to Chapter 6. 

Chapter 3 investigates the behaviour of individual low grade pine members subjected to 

a bending force for use in the analysis that follows in proceeding chapters. Chapter 4 

investigates the behaviour of low grade pine members laminated together to form slab 

units. The testing in this chapter is used to get the information required for the finite 

element analysis modelling undertaken in the following chapter. Chapter 5 is associated 

with determining the limiting design criteria for low grade slab floors, comparing low 

grade slab floors to the current method of floor construction, and using the results of 

modelling to create a low grade timber floor slab design chart. Chapter 6 consists of an 

analysis on connection construction methods, testing of connection capacities and 

limitations, followed by the derivation of basic connection design criteria based on 

physical modelling. 

 

Chapter 7 is the final chapter in which conclusions are drawn based on the findings of 

this research. Fulfilment of the set project objectives is also presented along with 

recommendations for future research. 



 
7 

 

 

 

 

 

 

 

 

 

Chapter 2 

 

 

Literature Review 

 

2.0   Introduction 

 

This chapter is aimed at presenting the research that has been done into timber slab / 

panel construction systems. Whilst this technology has had very little investigation in 

Australia, MacKenzie (2009) has found that the majority of the European and 

Scandinavian countries have already completed extensive research in these fields and 

are to the stage of manufacturing pre - assembled house construction components. Most 

of this overseas research has been directed at roofing and wall applications and is 

related to three or more layers of timber glued face to face with the grain running 

perpendicular to that of the previous layer.  
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This timber panel building technology has been well researched and marketed, selling 

with the advantages of being acoustically superior to other materials, superior insulating 

properties, carbon storing capacity and structural performance. However, the single 

grain direction in which this research project is focused on has had no research 

elsewhere. The overseas timber panel manufacturers have produced a reasonable 

amount of company product marketing documentation, design literature, case studies 

and general information on cross laminated timber construction systems. However, 

there is no information available of a research or academic nature related to single 

directional slabs. 

 

2.1   Use of glulam technology 

 

Structural glued-laminated timber is stated as being the oldest engineered wood product 

(Moody and Herandez 1997). It has been stated by Lam (2001) that in Europe, North 

America, and Japan, glued-laminated timber is used in a wide variety of applications 

ranging from headers or supporting beams in residential framing to major structural 

elements in non residential buildings, such as girders, columns and truss members.  As a 

result, extensive research has been conducted on the interaction between laminates and 

low grade timber for use in beams. Falk and Colling (1995) examined the laminating 

effects in beams and suggested that the apparent strength increase due to the lamination 

effect is a summation of separate, though interrelated, physical effects, some of which 

are a result of the testing procedure and others the effect of the bonding process. They 

also observed that un-centred defects (such as edge knots) or areas of unsymmetrical 

density can induce lateral bending stresses that, when combined with applied tensile 

stresses, reduce the measured tensile strength.  
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It has also been found that the lamination of timber also reinforces defects existing in a 

lamination by redistributing the stresses around the defect through the clear wood of 

adjacent laminations, thereby increasing the capacity of the cross section containing the 

defects (Falk and Colling 1995) . Further to this, Soltis and Rammer (1993) in their 

research into the shear strength of unchecked glued laminated beams has concluded that 

the beam shear strength decreases as beam size increases.  

 

A publication on glued-laminated beams by (Moody and Herandez 1997) stated 

“Residual stresses can be locked onto wood adjacent to the glue lines during 

manufacture when laminations of varying moisture content are bonded together”. This 

can result in stresses developing in service as a result of different laminations shrinking 

and swelling by various amounts as their moisture content changes as a result of small 

variations in density, growth ring orientation and grain angle. This extra stress 

developed by varying environments is the cause for splitting, and failure of connections 

and dimensional misfits within their structural application. This provides cause for 

tolerances to be allowed for in the design as a one percent change in dimension can be 

brought about by a 4 - 5 percentage point change in temperature Moody and Herandez 

(1997). Further to this, it has been found by Custodio et al. (2009) that the materials 

involved in a structural joint can also influence bond strength and durability. These 

material factors include the adherents, the adhesive, the design of the joint, freedom 

from surface contamination (including extra active contamination), stability of the 

adherent surface, the ability of the adhesive to wet the surface and entrapment of air / 

volatiles. All of these factors have a significant influence on the long term durability of 

the bond between laminates. 
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2.2   Timber material properties 

 

In their research into the homogenised elastic properties within cross laminated timber 

plates, Gsell et al. (2007) state that: “timber contains a unique microstructure, which 

contains a strong anisotropic mechanical behaviour. Parallel to the grain, elastic 

stiffness parameters and material strengths are significantly higher than perpendicular 

(radial and tangential) to the grain''. They also state that timber is a heterogeneous 

material with many natural defects like knots or sloping grain. Such in-homogeneities 

result in a high local variation of mechanical properties and stress concentrations which 

are taken into account in design codes such as AS1720.1 - 1997 by permitting only low 

admissible stresses.  

 

One of the key features of engineered wood products noted by Lam (2001) within the 

manufacturing process is reconstitution of timber to form smaller pieces. This process 

tends to disperse natural macro defects in the wood resulting in more consistent and 

uniform mechanical properties, compared with those of solid sawn timber. 

 

2.3   Current timber flooring practice 

 

Today in Australia, timber floors comprise of a structured array of timber, including 

columns, bearers, joists and decking boards. Although there are many materials that can 

be used for the flooring surface e.g. particle board, plywood, or decking, the 

arrangement of bearers and joists within the supporting structure remains the same. The 

Australian Standard AS1720.1 (1997) specifies the allowable deflections and stresses 

within a timber structure, as well as formulae to calculate appropriate timber dimensions 

for a specified purpose within a structure. Gsell (2007) used the properties of timber as 

justification for this method of timber structure assembly. One of these properties is the 
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effectiveness of timber in seismic loading, which can be attributed to the high strength 

to weight ratio of timber, system redundancies and the connection ductility. 

 

2.4   Standard floor loading and design 

 

In a study on the current design methods in Australia, Foliente (1998) stated that the 

current approach to timber design is based on prescriptive or deemed to comply 

provisions, simplified guidelines, span tables and charts along with diagrams and 

figures of required construction details for simple building types and shapes. Foliente 

(1998) states that this should not be the case, as analysis based on first principles would 

be most appropriate. This includes using realistic load representations, appropriate 

structure types and analytical computerised models comprising of static, dynamic and 

stochastic analyses.  

 

2.5   Timber element modelling 

 

Extensive research has been done on the modelling of timber as a result of its 

unpredictable nature due to excessive amounts of material faults that can occur such as 

resin shakes, knots and wane. The type of modelling current in the year 1999 was the 

empirical K

G

I

I
 method, as stated by Lee and Kim (1999) in their paper on the estimation 

of the strength properties of structural glued - laminated timber. This method accounts 

for the strength reducing influence of knots as a function of the second moment of area. 

Another approach mentioned by Lee and Kim (1999) was the transformed section 

method. The input value for this method consisted of beam geometry and configuration 

as well as allowable fibre stresses for each lamination. 
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They also state that most current models are based on modulus of elasticity's measured 

in long span tests, which means that they only account for the variability among 

different pieces of timber. This means that the models could not account for the 

variation of material properties within a given piece of timber. This information for 

''within-piece'' variability is critical for the structural analysis techniques that require 

localized properties of individual elements, such as the finite element method. 

 

2.6   Current timber slab construction practice 

 

Multiple methods of timber slab construction are currently underway, including nailing, 

oversized dowel rods in undersized holes and the most common method of glue 

laminating, usually referred to as Glulam MacKenzie (2009). Lam (2001) states that 

“the mechanical and physical properties of these products depend on the interacting 

relationships between the quality of the resource, the manufacturing process, and the 

applications''. According to MacKenzie (2009), Northern hemisphere solid panels are 

currently manufactured from slow grown spruce and pine (very tight growth rings) that 

are recognised as being more consistent in wood quality and stability than the faster 

grown exotic southern hemisphere plantation softwood and plantation hardwood 

resources. 
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2.7   Relevant Australian standards 

 

The current Australian standard for floor design is AS 1648 – Residential timber framed 

construction (1999). This code deems the required self weight and applied load used in 

floor design to be based on the source of the load, the type of load, the component 

description and type of a structure, and the type of structural elements supporting the 

floor. 

 

The code based design of timber structures is set out in AS 1720.1  - Timber structure 

design methods (2002). This code sets out the limit state design methods for the 

structural use of timber and intended use in the design or appraisal of structural 

elements or systems comprised of timber of wood products and of structures comprised 

substantially of timber. 

 

The evaluation of the structural properties of timber is based on the standard AS 4063 

(1993). This standard sets out the procedures for evaluating structural properties of 

graded timber and for verifying the accuracy of specific grading techniques. This 

standard also specifies the requirements for resolving doubts concerning the specified 

design properties of particular populations of graded timber. AS4063 (1993) is also 

suitable for application to both permissible stress and limit states design codes such as 

AS1720.1 (2002). 

 

2.8   Summary 

 

Based on previous research, it can been seen that research is needed to determine the 

way in which glulam pine behaves when subjected to loading as a slab rather than a 

beam. Prior research has investigated the performance of glulam timber orientated in 

three or more layers with the grain direction of each layer running perpendicular to the 
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previous layer in the timber slab wall and roofing applications. Consequently, this 

research will be focussed determining how single layer glue laminated slabs perform in 

a flooring application.  

 

This will entail gathering data to make reliable predictions on the behaviour of slabs, 

inventing methods of individual slab connection to suit the application and making 

comparisons between a low grade timber slab floor and a traditional bearer, joist and 

floor board configuration of flooring. Further to this, the ability of the low grade timber 

floor slab construction to meet the required standards will have to be determined, along 

with methods of approximate analysis for the timber slabs manufactured from low grade 

timber in the slab flooring configuration. 
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Chapter 3 

 

 

Individual member strength testing 

 

3.0   Introduction 

 

Individual low grade timber members exhibit a low level of reliability when subjected 

to loading, which deems them unsuitable for use in structural applications. This chapter 

investigates the variability in characteristics between individual low grade timber 

members, and uses this information as a basis for further detailed investigation on the 

structural performance of individual low grade timber members when used to create a 

laminated timber slab unit.    
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This initial phase of this research was aimed at determining the material characteristics 

of low grade timber as a basis for further analysis and modelling of the low grade 

timber slabs. The deflection response of low grade timber subjected to loading of a 

specific magnitude and distribution is critical to understanding the effectiveness of low 

grade timber slabs as a flooring alternative, due the deflection based criteria used in 

floor design. 

 

This knowledge of the characteristics associated with low grade timber is intended to 

develop a model of the low grade timber slabs prior to testing. This model is required in 

order to approximate the load required for testing a low grade slab to the point of 

failure, and hence the selection of appropriate testing equipment that can handle the 

required forces. 

 

Results obtained from this phase of testing will also be used to compare the 

characteristics of single low grade timber members, and low grade slab units comprised 

of twelve laminated individual low grade members when subjected to loading. This 

comparison will yield the suitability of low grade timber in the form of a laminated slab 

for use in structural flooring applications.  
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3.1   Methodology 

 

The individual timber pieces were tested in a jig as shown in Figure 2. All samples 

tested were subjected to a four point loading. The span was taken from AS 4063 – 

Timber Stress Graded – In grade strength and stiffness evaluation, as 18 times the depth 

of the specimen (D). All specimens tested have a depth of 90 mm therefore the Test 

Span is 18 x 90 mm = 1620 mm. Load points were then applied at L / 3 centres as 

shown in Figure 1.  

 

 

Figure 1 – Loading Setup 

 

The load was applied using a 100 kN capacity beam with two loading points bolted onto 

it. Plates were used below the loading points to ensure that the load was spread 

sufficiently to avoid localised crushing of the timber resulting in the incorrect 

relationship between applied load and deflection being determined as a result of the 

timber crushing rather than deflecting as a result of the applied load. 

 

Applied load and deflection was measured electronically using the System 5000 

connected to a load cell and a deflection recording string port. All deflections were 

measured at central span via a wire connection which was looped around each 
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individual specimen to eliminate the weakness in the timber that would be created by a 

nail in the centre of the specimen being tested as shown in Figure 2.  

 

 

Figure 2 – Testing of an individual low grade timber member. 

 

The supports for the loading were placed relative to the centre line of the loading rig to 

ensure that the jack acts on the loading rig at the centre, resulting in even forces being 

applied through the balanced loading contact points. A jig was then created to align the 

specimen with the centreline of the jack to ensure that eccentric loading was not induced 

during testing. This jig was then used to ensure consistency in the testing procedure.  

 

Movement of the supports relative to the testing rig after loading was monitored via 

marks placed on the cement at the diagonal corners of each support to ensure that the 

span of the test or the alignment of the specimen relevant to the central axis of the jack 

would not vary from sample to sample. 



 
19 

 

 

 

 

Levelling of the supports was also undertaken prior to testing to ensure that the load 

applied would not be favoured to one point as a result of the specimen being slightly 

tilted in the horizontal plane. This was done by slightly elevating the required support 

using the threaded axis built into each support as shown in Figure 2. This was necessary 

in this testing due to the loading bar not being self levelling. Chains were also applied to 

the loading bar to ensure that when failure occurs the heavy loading bar would not fall 

causing injury or damage to nearby people or testing equipment.

 

The analysis of the test data obtained was undertaken by a Matlab code developed to 

read the data produced in the system 5000 format. This code was used to plot the data 

points obtained for each test specimen, and determine the linear portion of the load – 

deflection graph. The data points representing the extents of the linear region of the data 

were then used with equation 1 to determine the modulus of elasticity , E, of a timber 

sample subjected to four point loading.  
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                                                      (1) 

Where 

 B = The width of the test specimen  

1P  = The lowest load applied in the linear portion of the load deflection graph 

2P  = The highest load applied in the linear portion of the load deflection graph 

1  = Deflection corresponding to 1P  

2  = Deflection corresponding to 2P  
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3.2   Results 

 

The individual tests proved a large variation in the force - deflection relationship which 

is shown in Figure 4. Testing proved that low grade pine is not reliable, as the loads and 

deflections for the samples tested varied considerably. Failure was also sudden and 

violent, with failures happening at a point of weakness within the sample such as a knot 

or resin shake. 

 

The deflection at which failure occurred varied significantly due to the various modes of 

failure. Samples that exhibit a low failure deflection have failed in a sudden manner 

through a knot or resin filled shake which extends to the edge of the timber. The 

samples which failed after a large deflection initiated at a fault which did not extend 

past the edge of the timber resulting in an extenuation of the deflection to force the 

failure crack through the tensile edge of the sample resulting in a sudden failure at that 

load. The load required to cause a deflection resulting in failure was also dependent on 

the type of discontinuity in the timber which the failure was initiated at. An example of 

a failure originating from a defect is shown in Figure 3. 

 

 

Figure 3 – A combination of knot and resin shake failure
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Figure 4 – Test results obtained from individual low grade timber members. 
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Figure 5 – Individual low grade timber members after destructive testing. 

 

The data points obtained during the testing of each individual member yielded the 

modulus of elasticity values shown in Table 2.  These results demonstrate the poor 

consistency of individual low grade timber members subjected to loading. The presence 

of defects within the timber is responsible for the non - uniformity in characteristics, 

and the range of modulus of elasticity values obtained. 

 

Table 2 – Modulus of elasticity values obtained for each individual member. 

Sample Number. Modulus of elasticity (MPa) 

1 8084.1 

2 8107.4 

3 12,156 

4 8085.4 

5 8391.9 

6 9442.6 

7 5973.4 

8 7026.2 

9 3182.4 

10 6524.4 

11 7928.8 

Average 7445.69 
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3.3   Discussion 

 
The test results prove that a defect of any size will be a vulnerable point for the 

initiation of failure within a low grade pine specimen. The proximity of other knots or 

resin shakes to a defect also influence the type of failure that occurs. Two knots in close 

proximity on extreme edges of the sample cause a failure line that travels in a vertical 

direction through the sample.  

 

If a knot is positioned in the centre of a length of timber and another knot is located on 

the compressive or tensile edge, the failure will travel in a diagonal path from one knot 

to the other causing sudden failure once the crack reaches the knot on the extreme edge 

as can be seen in Figure 3. 

 

Failures that were initiated in knots in the compressive edge of the sample travelled 

parallel to the clear grain to the tensile edge if no other defect was present for the failure 

path to connect to. A sample of failures obtained based on the location of major defects 

can be seen in Figure 6. 

 

 

Figure 6 – Failure modes based on the location of major defects. 
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3.4   Conclusions 

 

The location of the initiating point of failure is very hard to predict in low grade timber. 

Failure of individual low grade timber members always originates at some form of 

defect within the wood. The abruptness and warning given in a failure is dependent on 

the type of defects present and the path taken by the failure line. The length of path 

taken for failure to occur is dependent on the direction of the grain, the presence of any 

discontinuities in the grain such as resin shakes and the location of knots within the 

timber. 

 

The location, and hence the magnitude of bending stresses resulting from an applied 

force is a critical factor in the magnitude of the load that can be applied before failure. 

This highlights the unpredictability of low grade timber due to the uncertainty about 

which defect will be the first to cause failure. 

 

The orientation of the member under loading also has an influence on the ultimate load 

that can be taken. If the edge of the timber containing the most defects is place on the 

tensile side, the bending strength of the member will be significantly reduced. If these 

defects are placed on the loaded (compressive) edge the overall capacity of the member 

is increased due to the knots resisting compression rather than separating from the 

surrounding grain under tension. 
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Chapter 4 

 

 

Low grade slab strength testing 

 

4.0   Introduction 

 

This chapter will focus on determining the reliability of low grade pine subjected to 

loading when used to form a low grade timber floor slab. This analysis will also be used 

to aid in the development of design criteria for floor construction using a low grade 

timber slab. An investigation into the structural characteristics of the slabs when 

subjected to floor type loading conditions will be undertaken to derive the information 

required for finite element analysis modelling. 
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The information obtained will be used to create valid models of low grade timber floor 

slabs in order to extrapolate the information required to create design aids for use with 

low grade timber slabs used as a method of floor construction. 

 

The samples used for this testing are constructed out of 12 90 x 35 low grade timber 

members face laminated to form a slab unit as shown in Figure 7. The slab unit formed 

is 1.8 m long to allow ample span for consistency with the individual member testing 

and also room for supports during testing. The glue used to join individual members to 

create the slab unit is Purbond HB514.  

 

The active ingredient contained within Purbond HB514 is polymeric diphenylmethane 

discarnate.  This glue is well suited to mass construction due to the six minutes required 

for curing to complete. The catalyst for this glue is the moisture present within the 

atmosphere resulting in the glue curing completely as soon as it is exposed to the 

atmosphere.  

 

 

Figure 7 – Slab unit cross section 

All dimensions in mm. 
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4.1   Methodology 

 

The low grade timber slabs used for testing were manufactured and supplied from the 

Hyne Tuan sawmill. Three slabs of 3.6m length were halved to form six individual slabs 

for testing. E.g. sample 2 became sample 2A and sample 2B once halved. Each slab had 

a varying distribution of visible faults before being halved. As a result of the halving of 

the three samples to comply with the span requirements of AS 4063, the six tested slabs 

only had three variations of individual member strength grade combinations as shown in  

Table 3. 

 

Table 3 – Strength grade of individual members within slab units tested. 

Strength grade distribution within slab test specimens. 

Individual 

member 

Samples 1A 

and 1B 

Samples 2A 

and 2B 

Samples 3A 

and 3B 

1 F 5 F 5 F 5 

2 F 5 MGP 10 F 5 

3 MGP 10 MGP 10 MGP 12 

4 F 5 MGP 12 MGP 12 

5 F 5 MGP 10 MGP 10 

6 MGP 12 F 5 MGP 12 

7 F 5 MGP 10 F 5 

8 MGP 10 MGP 10 MGP 10 

9 F 5 MGP 15 F 5 

10 F 5 MGP 12 MGP 10 

11 MGP 12 F 5 MGP 10 

12 F 5 F 5 F5 

 

Note that the strength grading of individual members is done with a machine that 

determines the strength grade of the timber as it is passing through the mill. A member 

may be of a high strength rating such as MGP 15, but also contain a large stiff defect. A 

visual rating is undertaken which identifies this defect and deems the timber to be of a 

low grade standard due to the issues associated with defects. These defects can be seen 

the samples prior to testing as shown in Figure 8. 
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Figure 8 – Sample specimens prior to testing 

 

All samples were loaded identically to the individual specimens as shown in Figure 1 

page 17 in accordance with AS4063, with the depth of the slab units being equal to     

90 mm. The orientation of supports was again calibrated to ensure that the central axis 

of the jack coincided with the centre of the slab to ensure even distribution of loads 

through both loading points, and eliminate the presence of any eccentric loading. 

 

The loads were applied over the width of the slab at the required intervals through the 

use of C – section steel which had ample stiffness to apply a rigid even line load across 

the width of the slab. The total load applied was taken from a load cell placed directly 

below the axis of the jack, with deflections also being taken at the centre of the slab via 

a string port attached to a nail inserted in the centre of the slab. The load was applied via 

a hand operated jack at a constant rate.  Marks were also placed at relative points to 

ensure the dimensions of the testing setup could be maintained for each slab sample test. 
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Heavy rib reinforced C section steel members were clamped to the stool tops as the 

supports for the slabs during loading as shown in Figure 9. The clamps were placed to 

eliminate the tendency of the support to roll or slide out form underneath the sample 

during loading. Numbers and marks were placed on all relative points of the testing 

setup to ensure that the test could be repeated exactly in the future if that was required. 

The supporting stools were located on the centreline of the testing rig to ensure that 

when the slab was loaded they would not slide or roll out from underneath the sample as 

a result of high loads creating resultant forces great enough to displace the stools from 

the desired location. 

 

All testing of slabs was undertaken until multiple partial failures had occurred (failure 

of individual members within the slab) to get a good description of the patterns of 

loading, failure and the new reduced capacity of the slab after one initial failure. 

 

 

Figure 9 – Slab testing setup. 
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4.2   Results 

 

The Slabs displayed a much more predictable force - deflection characteristic as shown 

in Figure 11. It was noted during strength testing that if one half of the slab had on 

average a lower grade then the other half of the slab, than the first partial failure would 

occur in the weakest half of the slab as shown in Figure 10. The slabs also gave an 

indication of the impending failure via creaking noises leading up to a bang which 

indicated one partial failure within the slab. The slabs also showed elastic properties. 

This became obvious as the load was removed slowly, and the slabs returned to their 

original position. It was also noted that a defect within the timber, would fail before the 

laminating glue would give way as a result of the induced stresses between members of 

different stiffness‟s. 

 

 

Figure 10 – Low grade slab partial failure. 
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The slabs were consistent within their load – deflection patterns despite the three 

variations of member strength grades and the six variations of fault distribution 

encountered within the test. The modulus of elasticity determined for each slab unit 

tested is shown in Table 4. 

 

Table 4 – Modulus of elasticity of each slab sample 

 

Slab unit number Modulus of elasticity (MPa) 

1A 8266.542 

1B 8796.801 

2A 8653.039 

2B 9275.899 

3A 9464.317 

3B 8776.065 

Average 8872.1104 

 

 

The range of modulus of elasticity values obtained for each slab is very tight compared 

to the individual low grade members. The use of individual low grade timber members 

to form a laminated low grade slab unit also increases the average modulus of elasticity 

compared to the average obtained for the individual members as seen in Table 4.  

 

The small variation in modulus of elasticity values obtained for the two samples 

obtained from each combination of individual members demonstrates that the unique 

distribution of faults within a low grade slab does have an effect on the structural 

performance of low grade timber slabs despite the consistency in the strength grades of 

the members used to construct the slab. 
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Figure 11 – Low grade timber slab test results. 
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4.3   Discussion 

 

It can be seen from these results that laminating individual low grade timber lengths 

into a slab increase their strength and predictability as structural members due to the 

load sharing which arises as a result of the glue laminations. Failure during testing 

occurred predominantly on the outside laminates initially with internal laminates failing 

afterwards as the slab was reloaded to its new reduced capacity.  

 

This type of failure is proof that the capacity of the low grade timber is increased when 

used in slab formation due to the defect free timber sections face laminated adjacent to a 

knot which increases the overall resistance to withhold the force applied. An example of 

the random distribution of knots and defect free sections within a slab is shown in 

Figure 12. 

 

 

Figure 12 – Random distribution of knots and defect free sections. 
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If these defect free sections of timber were not laminated either side of the faulty piece 

of timber it would fail at a much lesser load in a sudden manner due to the absence of 

any strong material combined with the defect to increase the overall resistance to 

loading induced stresses. This type of failure within a slab would be very similar to that 

obtained in the individual low grade member testing due to the effective alignment of 

defects as shown in Figure 13. 

 

 

Figure 13 – Alignment of defects within a slab. 

 

The application of the two line loads across the width of the slab has allowed an 

estimation of the range of total load in which the slab is likely to fail; should that value 

be applied in total from a combination of uniformly distributed loads and point loads. 

Analysis based on Strand7 modelling using the material properties determined during 

testing will yield further information in the consistency between the type of load applied 

and the deflection and stresses created as a result. 



 
35 

 

 

 

4.4   Conclusions 

 

The randomly distributed nature of clean wood and defects within a length of timber 

significantly decrease the likely hood of the major defect within a piece of timber being 

at the same position along the length of the slab unit in all 12 individual members. 

Hence the load sharing between individual members is set up due to the face lamination 

acting as an effective strengthening agent for all defects adjacent to clear wood within 

the slab. 

 

The distribution of defects randomly throughout the length of the slab results in the slab 

having resistance to sudden complete failure due to the load sharing setup between 

individual members. The testing confirmed that if one or more members within the slab 

failed, the overall load carrying capacity was reduced and the load was taken up by the 

adjacent member which had not failed. 

 

Further reliability in strength performance would be obtained if the knots which act as 

discontinuities within the timber were located on the compressive edge of the slab, due 

to their dense composition which can resist compression but would fail under tension. 

This is due to the discontinuity between the grain direction of the knot resulting from 

the growth of a branch on the tree and the straight grain of the clear tree trunk. 

 

The load – deflection relationship in slabs is much more predictable than the individual 

pieces. The highest load sustained before initial failure of the strongest slab was 

107.667 kN. This partially proves that deflection limits are going to be the governing 

criteria due to the associated deflection. This will be validated with the use of Strand7 

finite element analysis. 

 

Failure of the low grade timber slab units is a function of the location and distribution of 

defects throughout each individual member. The slab will not take a bending load 
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greater than that of the strongest individual member if they all contain a knot at the 

same position resulting in a sudden line failure as seen in the individual member tests. 

 

The distribution of strength grades within the members of a slab unit can not be used as 

a method of determining the exact maximum load the slab can bear. Likewise, the exact 

modulus of elasticity associated with any combination of strength grades can not be 

determined. This is due to each slab unit having a unique combination of defects which 

in turn affect the capacity of the slab. This must be taken into consideration when 

designing low grade timber slab floors based on strength and serviceability criteria 

through the use of appropriate safety factors. 
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Chapter 5 

 

 

Finite element analysis 

 

 

5.0   Introduction 

 

This chapter will focus on the finite element analysis modelling undertaken using 

Strand7 to model the performance of low grade timber slab floors. From this modelling, 

the limiting criteria for the use of low grade timber slabs as a flooring alternative will be 

established. This will be followed by a parametric study to compare the low grade floor 

slab characteristics to that of the standard flooring system as shown in Figure 14. 
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Figure 14 – Floor construction configurations 

 

 

In order to understand the limitations of using low grade slabs as a flooring alternative, 

modelling will also be done to develop the deflection relationship between applied load 

and clear span. This information is required to create a design chart which defines the 

limitations of loading based on prescribed deflection limitations. 

 

Parameters used in this modelling include timber material properties provided by Hyne 

and Timber Queensland. Pine density values used in the analysis of the low grade 

timber slab floor were based on properties recorded from testing undertaken at the Hyne 

Tuan mill as shown in Table 5. 

 

Table 5 – Hyne Tuan mill product densities. 

Hyne Tuan mill product densities (kg/m³) (untreated) 
 140x35 Dry 70 x 35 Dry 90 x 35 Dry 70 x 45 Dry 90 x 45 Dry Average 

Utility*   590 617   604 

F5  557 553 552  554 

M10 564 576 568 555 557 564 

M12 609 625 617 596 607 611 

M15 661 685 665   670 

 

* Utility is the term used by Hyne to describe its low grade timber product. 
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5.1   Selection and justification of appropriate modelling parameters. 

 

An analysis on the three major types of element which the slabs could be modelled with 

was performed in order to establish which type gave the most accurate depiction of the 

behaviour of the slab samples observed during testing. All models were made to 

represent slab sample 2A with a modulus of elasticity of 8653.0386 MPa. The load and 

deflection summary for this sample are shown in Table 6 . All three of the models were 

assigned the same material properties and supported as simple beams. Analysis of each 

model was then done to how well they replicate the physical test data. 

 

 

Table 6 – Load - deflection summary for sample 2A 

 

Slab 2A recorded test data 

Load (kN) Deflection (mm) 

0 0 

20 7.6 

40 14.5 

60 21.0 

80 28.2 

100 37.6 

 

 

 

The following three sections will go through and make a comparison between each of 

the model dimensions to justify the reasoning in the model type chosen. All models 

have been created with consistency in material properties, load application and restraint 

type in order to justify the comparison between results. 
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5.1.1 One dimensional beam element model 

 

 

Figure 15 – A one dimensional beam element model. 

 

 

The one dimensional beam model is created in Strand7 as a line element subdivided as 

required and supported at the nodes at each end as a simply supported beam. Material 

properties were then assigned in this model such as the modulus of elasticity, and the 

cross sectional area. The loading dimensions applied to this model were identical to that 

of the physical test in order to get every variable in the comparison identical. The 

accuracy of the result is dependent on the degree of subdivision applied, with the 

deflection converging to the real value as the number of subdivisions increases as 

shown in Table 7. The one dimensional elements do not represent an easy method of 

making three dimensional models of the slab in order to compare it to that of other 

flooring methods. This could be overcome by the use of links; however this is not a true 

representation of the real situation. 
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Table 7 – One dimensional Strand7 model convergence and comparison. 

One dimensional element model convergence 

Number of Beam 

elements 

Deflection obtained from model (mm)  

20 kN 

Load 

40 kN 

Load 

60 kN 

Load 

80 kN 

 Load 

100 kN 

Load 

3 6.8 13.6 20.4 27.2 34 

6 6.8 13.7 20.5 27.3 34.2 

12 6.8 13.7 20.5 27.3 34.2 

Physical test values 7.6 14.5 21.0 28.2 37.6 

Difference to 

physical test values 
0.8 0.8 0.5 0.9 3.4 

 

 

This demonstrates that the minimum number of beam elements in a one dimensional 

model has to be greater than or equal to 6 over a 1.62 m span for convergence to occur. 

The difference observed in Figure 16 at loads greater than 80 kN is due to the fact that 

the slabs do not load and deflect in a perfectly linear fashion as seen in Figure 11. This 

means the model is only representative for the linear load – deflection range of the slab. 

 

 

Figure 16 – Comparison between one dimensional model and physical results. 
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5.1.2 Two dimensional plate element model 

 

 

Figure 17 – A two dimensional plate element model. 

 

The use of two dimensional plate elements to represent the beam resulted in identical 

results to that of the one dimensional element for each number of subdivisions. The 

plate was assigned a thickness of 90 mm and subdivided 24 times in the X direction, 18 

times in the Y direction, with the Z direction containing only 1 element due to the two 

dimensional nature of the model resulting in a total of 432 plate elements. This number 

of plates in the model resulted in deflection values which matched the converged one 

dimensional model for each load case applied.  

 

The application of the two dimensional model to  three dimensional comparative 

models is not appropriate due to the issues associated with combining nodes in the 

correct relative positions. This issue arises due to the nodes being at the middle of the 

slab, hence the neutral axis is fixed to the supporting element rather than the tension 

edge. This will yield the correct relationship between the slab and the supporting 
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element under the influence of loading. The use of links to create a three dimensional 

model using two dimensional elements would be sufficient to obtain correctness in the 

dimensions of each element and their location relative to each other. However, the issue 

of incorrect stresses being transferred from the slab to the supporting joist are still 

present due to the link being made at the neutral axis rather than the tensile face of the 

slab. 

 

Minor issues also arise from the loading of the slab at the central axis rather than the top 

edge in the two dimensional models. The central location of the plane of nodes in the 

two dimensional slab models is shown in Figure 18.  

 

 

Figure 18 – Node location within a two dimensional slab model cross section 

 

The two dimensional model lacks accuracy in the prediction of bending stresses on the 

tensile face of the slab. This is due to the single elements in the vertical direction which 

have a single stress assigned to them during analysis rather than a distribution of 

stresses throughout the depth of the slab as occurs in the slab during loading and 

modelling using three dimensional brick elements. The analysis of the slab as a flooring 

material needs accuracy in the modelling of working stresses to ensure that allowable 

stresses are not exceeded. 
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5.1.3 Three dimensional brick element model 

 

 

Figure 19 – A three dimensional brick element model. 

 

The use of three dimensional modelling elements yields slightly different results to that 

of the two dimensional elements and one dimensional element models. It was found that 

a high number of bricks could be used efficiently for both convergence in results and 

accuracy in stress distributions created as a result of various load patterns being placed 

on the slab. A comparison between the three model types is shown in Table 8 to portray 

the difference in results obtained from each model type. 

 

Table 8 – Strand7 model comparison 

 

Model 

type 

Number 

of 

elements 

Deflection obtained from model (mm) 

20 kN 

Load 

40 kN 

Load 

60 kN 

Load 

80 kN 

Load 

100 kN 

Load 

1D Beam 12 6.8 13.7 20.5 27.3 34.2 

2D Plate 432 6.8 13.7 20.5 27.3 34.2 

3D Brick 6480 6.87 13.75 20.62 27.5 34.37 

Physical 

Model 
1 7.6 14.5 21.0 28.2 37.6 
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Modelling with three dimensional elements also results in a more accurate description 

of the distribution of stresses within the slab as a result of loading. This is crucial for the 

accurate modelling of the slabs to predict the load and span relationship which results in 

the allowable stress levels within the slab being exceeded. 

 

The use of three dimensional brick elements in modelling is also preferable for the 

creation of three dimensional models of flooring systems. This is due to the ease at 

which members can be connected in a way which accurately represents the connection 

in the physical model, and the capability to assign unique material properties to 

individual brick elements as appropriate due to the arrangement of nodes as shown in 

Figure 20. 

 

 

Figure 20 – Node location within a three dimensional slab model cross section. 

 

 

5.1.4 Use of isotropic elements 

 

Orthotropic elements should be used to model timber; however sufficient material 

information for timber in the three required directions is not available for low grade 

slabs due to no prior work being done in this area. The properties of pine alone could be 

used but this option was not taken due to the differences induced as a result of the glue 

laminations between pine members of varying strength grades.  
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Therefore the slabs were modelled as three dimensional isotropic elements due to the 

highest level of accuracy which was returned in the results compared to the physical test 

results. The modulus of elasticity used in this model was calculated using Matlab to 

determine the linear proportion of the load – deflection curve and calculate the modulus 

of elasticity based on this interpretation. This is the reason for the slight difference in 

the modelled slab deflection and the physical test deflection as seen in Figure 21. Note 

that all differences in deflection on the linear region of the graph are less than one 

millimetre, with the major differences between the modelled performance and the 

physical performance being at higher loads. This occurs where the load – deflection 

relationship is not linear as can be seen at the 100 kN load data points for each model in 

Figure 21. 

 

 

Figure 21 – Comparison of Strand7 models to physical test results. 
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5.1.5 Application and justification of chosen poisons ratio 

 

The poisons ratio for all Strand7 models had to be chosen and validated due to no 

existing data on the poisons ratio values for low grade timber slabs. This is due to no 

prior investigation into the effects that glue laminations have on the poisons ratio of low 

grade pine. 

 

The investigation was based around using the established three dimensional brick 

element model with various values of poisons ratio to determine the extents of the error 

within the model and design aids as a result of using a poisons ratio value which does 

not represent a proven value. 

 

As the three dimensional brick elements are modelled as isotropic, one poisons ratio 

value was applied in all three axis. This is not a true replication of timber due to its 

unique properties in each of the three axis. Despite this, the results comparison between 

the three dimensional brick element model and the physical results prove that using a 

unique poisons ratio in all three directions is sufficiently accurate. 

 

The result of varying the poisons ratio is shown in Table 9. It can be seen that there is a 

slight increase in the deflection value obtained from the model as the value used for 

poisons ratio increases. Therefore the poisons ratio value of 0.2 was chosen as the 

optimal value to ensure that the model results are as close to the physical test results as 

possible as seen in Figure 22, and design aids based on Strand7 models are an over 

estimate of the slabs characteristics as a slight factor of safety incorporated into the 

design charts.  
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Table 9 – Difference in model outputs for various poisons ratio values. 

 

 

Load Case 

Deflection recorded for a slab 

span of 6.0 m with varying 

values of poisons ratio (ν) (mm) 

Maximum difference 

in deflection for given 

poisons ratio values 
ν = 0 ν = 0.1 ν = 0.2 

Self Weight 15.7 15.8 15.8 .1 

1 kN/m² 29.1 29.3 29.4 .3 

Self weight + 1 kN/m² 44.8 45.1 45.2 .4 

Self weight + 2 kN/m² 73.8 74.4 74.5 .7 

Self weight + 3 kN/m² 102.9 103.7 103.9 1 

Self weight + 4 kN/m² 132.0 133 133.2 1.2 

Self weight + 5 kN/m² 161.1 162.3 162.6 1.5 

Self weight + 7.5 kN/m² 233.8 235.6 236.0 2.2 
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5.2   Methodology 

 

The Strand7 modelling is intended to allow an accurate prediction of the low grade 

slabs response to loadings typically endured by floor structures. Its secondary function 

is to draw comparisons between the structural performances of the typical floor 

consisting of bearer‟s, joists and flooring material, and that of the low grade slab 

flooring system which consists only of bearers and the slab. The Strand7 finite element 

analysis was used to analyse the slabs based on the following two floor design criteria: 

 

 Deflection based assessment.  

 Maximum limiting stress based assessment.  

 

The limiting stress has been determined using the stress distribution in a simple beam 

and the lowest load applied to cause the first partial failure within the slabs. The lowest 

load to cause a partial failure was taken from the test data as 75000 N. This load is 

transferred to its equivalent bending moment via the bending moment diagram shown in 

Figure 22. 

 

 

Figure 22 – Derivation of maximum moment from loading setup. 
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The limiting stress was then derived using beam theory to make the assumption that the 

stress distribution throughout the slab is linear with the positive and negative extremes 

at the top and bottom faces as shown in Figure 23. 

 

 

Figure 23 – Stress distribution within the slab. 

 

Using this stress distribution and the bending moment diagram derived in Figure 22, the 

maximum bending stresses can be determined for the timber slab based on test results. 

This is done by applying the minimum P value to cause a partial failure within the 

weakest slab tested and the application of Equation 2. 

 

max

max 3

2

12

D
M

bD





                                                                        (2)                            

 

Longitudinal stress was created in the slab unit samples during testing; hence it will be 

obtained from the Strand7 models to determine the limits of loading to remain within 

allowable stress levels. This analysis is undertaken to determine if the strength or 

serviceability criteria is the critical design factor. The limiting stress value will be 

calculated using the preceding methodology as shown in Equations 2 – 8. 
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75 P kN                                                                                                                                                (3)          

   

.09 D m                                                                                                                                                 (4) 

 

18 18 .090 1.620 L D D m                                                                                                           (5) 

 

max

75 1.62
20.25 .

6 6

PL
M kN m


                                                                                                (6) 

 

3 3
5 4.420 .09

2.25515 10
12 12

bD
I m
                                                                                         (7) 

 

max

max 5

.09
20.25

2 2 35,714 / ² 35.714 
2.25515 10

D
M

kN m MPa
I




 

   


                                     (8) 

 

Based on these calculations the limiting longitudinal stress value is 35.714 MPa. This 

value will be used with the low grade slab model to determine the maximum load that 

may be applied to a floor slab consisting of numerous connected individual slab units. 

The same models will also be used to measure the floor slab deflection for the same 

load distribution with a varying range of intensities from the slabs response to self 

weight up to self weight plus 7.5 kN/m² of force over a slab of 3.6 m width and spans 

varying from 1.8m in multiples of 600 mm through to 6.0 m. The standard floor 

construction model will be used in the same way with the limiting stress in the 

hardwood joists taken as 80 MPa for F27 grade timber from AS1720.1 – 2002. 

 

The results obtained from this analysis will define stress or deflection as the limiting 

criteria based on which is exceeded first as a result of increased loading on the floor 

slab. 
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5.2.1 Parametric study between slab and standard flooring 

 

The parametric study between the low grade timber slab construction system and the 

standard bearer, joist and flooring material construction method was done in order to 

determine the differences in responses when loads of various magnitudes were applied 

to both models. 

 

Both construction methods were modelled with identical bearers, with the difference 

being the slab model had only the low grade slab on the bearer, and the standard model 

had joists and flooring of the same material as the bearer. This was done so that the 

models could be compared with as few variables as possible, as any difference in 

material or dimensions of the bearer would yield a result of no comparative value. 

 

The standard floor models and the slab floor models were created with a width of 3.6 m 

and varying floor spans for consistency between models. The load was uniformly 

distributed by calculating the load of 1 kN/m² over the area of the slab divided by the 

number of nodes in that floor area. The resulting load was then applied to each node 

within that area. For example the floor model 3.6 m wide and 4.8 m in span with 7408 

nodes, had a total load applied to each node as shown in Equation 9. A complete list of 

models and applied loads used in the parametric study is given in Table 10.  

 

 

 
 1 3.6 4.8 17.28

.0023326134 /
Number of nodes 7408

kN m m kN
kN node

 
                                                       (9) 
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Table 10 – Model dimensions used in study with 1 kN/m² node loading values. 

 

Model dimension 

(Width x Span) 
Model type 

Applied load 

(1 kN/m²) 

Number of 

nodes 

Load / node 

(kN) 

3.6 m x 3.6 m 
slab 

12.96 kN 
22,630 .00057 

standard 5,620 .00230 

3.6 m x 4.2 m 
slab 

15.12 kN 
26,275 .00057 

standard 6514 .00232 

3.6 m x 4.8 m 
slab 

17.28 kN 
29,920 .00057 

standard 7,408 .00233 

3.6 m x 5.4 m 
slab 

19.44 kN 
33,565 .00057 

standard 8,302 .00234 

3.6 m x 6.0 m 
slab 

21.60 kN 
37,210 .00058 

standard 9,196 .00234 

 

 

The various load magnitudes were applied to the model by creating the following two 

load cases within Strand7 and then combining them and multiplying by the appropriate 

factor to achieve the required total load: 

 

 Self weight (gravity) 

 1 kN/m² 

 

This results in linear load case combinations, which are applied to the floor model 

allowing the predicted deflections and stresses to be recorded. Each model was run 

initially to record the stress in supporting members and the deflection of the floor as 

shown in Figure 24. 

 

 



 
54 

 

 

 

 

Figure 24 – Standard floor construction Strand7 model 

 

Each model used in the parametric study was simply supported on each of the four 

corner nodes to allow translation in the two dimensional floor planes without allowing 

any vertical movement within the model as shown in Figure 25. This is realistic for a 

floor area supported by free standing columns as the columns will deflect inwards as a 

result of loads being applied to the flooring area. This restraint system has been chosen 

due to maximum level of deflection which will occur at the centre of the supported floor 

area. Restricting translation in the Z - X plane would result in tension being developed 

in the supporting members. The resulting deflection maximum deflections would 

therefore be reduced. 

 

For the bearer in the standard and slab model, the joist in the standard model and the 

slab in the slab model to be simply supported, no other method of restraint can be used. 

This is due to the fully fixed nature of the connection between the joists / slab to the 

bearer in the standard and slab models respectively. The slab model was made with a 
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full connection between the edge of the bearer and the floor slab for the entire width of 

the model as shown in Figure 26.  

 

 

Figure 25 – Supports used in Strand7 floor models 

 

 

Figure 26 – Low grade timber slab floor Strand7 model 
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The material properties used in both models were derived from data obtained through 

testing, Hyne quality assurance data and spreadsheets containing hardwood tests 

undertaken by Timber Queensland. The material data used in each model can be seen in 

Table 11.  

 

The standard floor model used in the parametric study consists of a bearer, joists and 

flooring material as shown in Figure 24. The low grade slab model consists of an 

identical bearer but the flooring material and joists are replaced by the low grade slab as 

shown in Figure 26. 

 

Table 11 – Material dimensions and properties used in Strand7 models. 

 

Member 
Length 

(mm) 

Width 

(mm) 

Depth 

(mm) 
Material 

Modulus of 

Elasticity 

(MPa) 

Density 

(kg/m³) 

Poisons 

Ratio 

Bearer 3600 50 200 
Grey 

Ironbark 
18702.65 1097.665 0.2 

Joist span 50 100 
Grey 

Ironbark 
18702.65 1097.665 0.2 

Floor span 3600 19 
Grey 

Ironbark 
18702.65 1097.665 0.2 

Slab span 3600 90 

Low 

grade 

pine 

8872.11 604 0.2 

 

 Note that length in this table implies the span referred to in table 10 plus 100mm 

for the member to cover the clear span plus the width of the supporting bearers. 
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5.2.2 Modelling of slab performance to create design chart 

 

To demonstrate the performance of the low grade slabs, their structural performance 

was modelled with Strand7 over eight spans and six separate load cases. To ensure that 

the chart was representative of the slab behaviour only, the bearer was removed to 

eliminate the deflection it adds to the system, and the associated two way bending 

effects. The model was simply supported at its four corners and fully supported against 

deflection in the vertical direction in the place of the bearers to ensure that only one way 

bending could occur within the model. This was done to represent a realistic support, 

loading and deflection situation. 

 

Each model was made 3.605 m wide, due to the width of the members in each slab unit 

of 35 mm which makes it impossible to create a slab of complete individual members 

3.6 m wide exactly. The slab density was taken as 604 kg/m³ as this is the average value 

recorded for the low grade product produced by the Hyne Tuan mill. The following 

models were run to create the design chart with the loads applied for each response by 

the model as shown in Table 12. 

Table 12 – Total load applied for each load case in Strand7 models. 

Clear 

span 

(m) 

Total load applied for each load case (kN).  

Self 

Weight 

1 

kN/m² 

Self 

Weight + 1 

kN/m² 

Self 

Weight + 2 

kN/m² 

Self 

Weight + 3 

kN/m² 

Self 

Weight + 4 

kN/m² 

Self 

Weight + 5 

kN/m² 

1.8 3.46 6.489 9.949 16.438 22.927 29.416 35.905 

2.4 4.61 8.652 13.266 21.918 30.570 39.222 47.874 

3.0 5.77 10.815 16.582 27.397 38.212 49.027 59.842 

3.6 6.92 12.978 19.899 32.877 45.855 58.833 71.811 

4.2 8.07 15.14 23.215 38.356 53.497 68.638 83.779 

4.8 9.23 17.304 26.532 43.836 61.140 78.444 95.748 

5.4 10.381 19.467 29.848 49.315 68.782 88.249 107.716 

6.0 11.535 21.630 33.165 54.795 76.425 98.055 119.685 
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These loads were applied to the slab model by having Strand7 calculate the self weight 

load created by a gravitational force of -9.81 m/s/s as one separate Load case. The 

Uniformly Distributed Loads (UDL) were applied as a separate load case to the nodes 

joining brick elements that make up the slab by dividing the total force created by         

1 kN/m² over the slab area by the number of nodes on the top surface of the slab as 

shown previously in Equation 9.  

 

The load combination cases were applied to the model by creating load cases within 

Strand7 which take the self weight and combine it to the 1 kN/m² UDL multiplied by 

the appropriate factor to create a load case of the desired magnitude as shown in Figure 

27. 1 kN/m² was used as the base value for the ease of load case creation associated 

with a unit value. 

 

 

Figure 27 – Strand7 load case combination screen print. 

   

Each model was than run to analyse the deflection caused by the applied load over the 

given span and width, with the vertical deflection in the centre of the slab recorded. 

Once the load deflection lines were plotted, further lines were created to join the distinct 

load case results on each span. Deflection limit lines were also superimposed on the 

load deflection curves for each span. These lines are curved due to the variation of 

limiting deflection value with change in span for a set deflection limit ratio. This was 

done to allow interpolation of values when used in a design situation. For example 

taking a required load and deflection limit and using those values to solve for the 

maximum clear span which can be used with a low grade timber floor slab. 
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5.3 Results 

 

Using a deflection limit of span / 250 the loads required to exceed the limit on each 

model type are shown in Table 13. This comparison yields results based on the average 

linear section of the load / deflection graphs obtained during the testing of the slabs, and 

hardwood material data obtained from Timber Queensland and AS1720.1 – 2002. The 

relationship between stress and deflection limits based on applied load is shown in 

Figures 28 – 21. 

 

Table 13 – Stress and deflection limit comparison 

 

Model 
Deflection 

limit (mm) 

Deflection 

based load 

limit (kN) 

Stress 

limit # 

(MPa) 

Stress 

based load 

limit (kN) 

Equivalent 

deflection * 

(mm) 

3.6m x 3.6m 

slab 
14.4 42.628 35.714 373.043 126 

3.6m x 3.6m 

standard 
14.4 27.375 80 167.612 88 

6.0m  x 3.6m 

slab 
24 18.068 35.714 253.993 337 

6.0m x 3.6m 

standard 
24 14.851 80 123.887 198 

 

* Proportional linear deflection caused by the load required to meet the stress limit. 

# Hardwood bending stress limit obtained from AS1720.1 for F27 grade timber. 

 

Based on this modelling, the span limitations required for the stress and deflection limit 

to be obtained from the same load are as follows: 

 

 3.6 m x 3.6 m slab – Span / 28.57 

 3.6 m x 3.6 m standard – Span / 40.91  

 6.0 m x 3.6 m slab – Span / 17.80 

 6.0 m x 3.6 m standard – Span / 30.18 
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Figure 28 – 3.6m span deflection limit graph for both floor model types. 

 

 
 

Figure 29 – 3.6m span stress limit graph for both floor model types 
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Figure 30 – 6m span deflection limit graph for both floor types 

 

 

Figure 31 – 6m span stress limit graph for both floor types 
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5.2.3 Parametric study between slab and standard flooring 

 

The comparison between the low grade slab floor system and the standard system yields 

results that show that the slab floor construction method can take a greater load than the 

standard method with a deflection that is significantly less as shown in the following 

graph. The reason for the larger total load is the self weight of the low grade slab due to 

the bulk of low grade timber used, compared to the skeleton structure of the standard 

method of floor construction. 

 

 

Figure 32 – Comparison between a standard and a low grade timber slab floor. 

 

 

The calculation of the self weight included in the total load shows that the relationship 

between span and total load applied for each load case is not linear as assumed prior to 

modelling and analysis. It can also be seen that the deflection increases as a result of 

each load case within the standard model are significantly greater than that of the slab 

model. 
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5.2.4 Low grade timber slab design chart 

 

The analysis of the low grade slab without any supporting bearer returned the deflection 

results shown in Table 14. This information is used with the total load information 

provided in Table 12 to plot the load deflection curves for slabs having a clear span 

range of 1.8 m – 6 m as shown in Figure 33. All deflections recorded are the maximum 

value obtained from the centre of the slab. Due to the deflection limits being the 

governing criteria no evaluation was done on the variation of stress levels within the 

slab as the load increases. 

 

Table 14 – Low grade slab deflections for each load case. 

 

Clear 

span 

(m) 

Maximum deflection for each load case (mm). 

Self 

Weight 

1 

kN/m² 

Self Weight 

+ 1 kN/m² 

Self Weight 

+ 2 kN/m² 

Self Weight 

+ 3 kN/m² 

Self Weight 

+ 4 kN/m² 

Self Weight 

+ 5 kN/m² 

1.8 0.4 0.3 0.7 0.9 1.2 1.5 1.7 

2.4 0.5 0.8 1.3 2.1 2.9 3.8 4.6 

3.0 1.1 2 3.1 5.1 7.2 9.2 11.2 

3.6 2.3 4.2 6.4 10.6 14.8 19 23.2 

4.2 4.2 7.7 11.9 19.6 27.3 35 42.8 

4.8 7.1 13 20.1 33.1 46 59 72 

5.4 11.3 21 32.2 53.2 74.2 95.1 116.1 

6.0 17.1 31.9 49 80.9 112.7 144.6 176.4 
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APPLICABLE TO A SLAB DEPTH OF 90 MM ONLY 

Figure 33 – Low grade timber slab design chart.
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5.3   Discussion 

 

The limiting design criteria analysis undertaken on the low grade slab demonstrates that 

the structural capacity of the slab is limited by the deflections induced as a result of 

loading. The limiting stress value applied to the low grade slabs was determined from 

the lowest load required to cause a partial failure in the six individual slab units tested.  

 

Further testing of a larger sample may yield that the stress value used here is not the 

lowest stress which will result in a partial failure of the slab, hence further testing of the 

slabs should be carried out, and a factor of safety used in all calculations. The analysis 

of the models is linear whereas the physical test results obtained from the testing of low 

grade slab units is only linear in the lower load regions as can be seen in Figure 11. 

Therefore the values are not accurate over all portions of the load – deflection graph, but 

descriptive of the relationship between applied load and corresponding deflection. This 

can not be avoided in the linear analysis due the average modulus of elasticity used. 

This value was derived from the linear portion of the data obtained from the testing of 

individual low grade slab units. 

 

It should also be noted that the maximum stress has been derived based on a four point 

loading setup which is not likely to occur in a typical floor loading situation. Therefore 

further testing should be undertaken which incorporates a series of point loads and 

uniformly distributed loads to obtain a stress limit that is the resultant of a realistic floor 

loading situation. 

 

The analysis also demonstrated that the stress limit is reached in the standard floor 

structure at a significantly lower load than that of the slab structure. This result is valid 

due to the identical bearer used between the two models, and the skeleton structure of 



 

 
66 

 

 

 

the standard construction method, which has a significantly less volume of timber 

resisting applied forces. 

 

5.3.1 Parametric study between slab and standard flooring. 

 

The parametric study between slab and standard flooring analysed the effects of 

different load magnitudes based on models of identical dimensions. The bearer used in 

both model types to support the joists and the low grade timber slab was identical. This 

was done to eliminate one variable in to make results comparable. In reality these 

bearers could be manipulated to make the deflection comparison between the model 

types identical. 

 

The slab model is effectively a standard model with no spacing between the joists, and 

no presence of flooring material. Therefore the weight of the structure is significantly 

greater than that of the standard method of construction. It also results in a larger 

resistance to applied load which is evident in the results obtained from modelling. The 

larger load is partly due to the greater self weight of the structure, but the results from 

both models contain identical applied loads. Therefore the comparison yields that the 

low grade timber slab construction system can take a larger load before exceeding 

deflection limits than the standard method of floor construction. 
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5.3.2 Low grade timber slab design chart. 

 

The low grade timber slab design chart was created using average values for the 

modulus of elasticity and the density of low grade pine. The density value used is the 

average value from a large number of tests and is therefore a representative value. The 

average modulus of elasticity used is the average of six tests only. The tests proved that 

the variance in modulus of elasticity is not large; however further testing would reveal 

trends which can be used to refine the model. For this reason an appropriate factor of 

safety should be included if using the base representative values shown in the design 

chart. 

 

The modelling carried out to develop the design chart was linear. This does not 

represent the true load deflection characteristic of the slab; however it is a close 

approximation to the average deflection that can be expected for an applied load. The 

modelling has also been done based on the 90 mm deep slab units tested, width of   

3.605 m which represents 103 individual low grade timber members within the slab. 

This value was used due to each individual member within the slab being 35 mm wide 

and the need for comparability with the standard 3.6 m wide floor used in the parametric 

study.  

 

Equation 10 represents the deflection of a simply supported beam, subjected to a 

uniformly distributed load which can be used to describe the behaviour of the slab in 

one way bending.  

45

384

wL

EI
                                                                                                                                    (10) 

 

This can be used to justify that as the span increases and the same uniformly distributed 

load is applied, the increase in load as a function of floor area, and the increase in 
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rigidity of the slab as result of the extra width have no effect on the total deflection at 

the centre of the slab. 

 

Using Equation 10 to validate the low grade slab design chart for a load of 1 kN/m² and 

a clear span of 4.8 m, the deflection obtained is as shown in Equation 11. The results 

obtained from the linear Strand7 finite element analysis model indicate that the resultant 

deflection is 13mm as can be seen in Table 14. 

 

  4

3

1 3.605 4.85
12.82 

384 3.605 .09
8872.11

12

mm
 

  
 
 
 

                                                              (11) 

 

Applying this equation for a slab of 20 m width, it can be seen via Equation 12 that the 

difference in central deflection is the same; therefore the design chart can be used for 

any required span subjected to a uniformly distributed load with accuracy. 

 

  4

3

1 20 4.85
12.82 

384 20 .09
8872.11

12

mm
 

  
 
 
 

                                                                   (12) 

 

The difference in deflection between theoretical values and the value obtained from this 

particular model are .18 mm different. This is most likely due to the effect of the 

poisons ratio value of 0.2 used in all models. Convergence within the finite element 

analysis model is present and therefore the model values represent the best 

approximation to the deflection based on the material specific properties used in the 

model.  
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5.4   Conclusions 

 

Comparative models of the standard and the slab flooring system have shown that the 

low grade timber floor slabs can perform better than the standard floor, as equivalent 

loading on top of the self weight causes a considerably greater deflection in the standard 

floor than it does in the slab. The slab has proven to perform better than the standard 

floor construction method in both stress and deflection based analyses. 

 

The results are reliant on a lot of variables which could be manipulated to make the 

standard flooring method perform better than the slab, however this would only happen 

if the joists were spaced more closely than that of standard practice. If a model were 

created like this the results would be effectively converging on that of the slab floor, i.e. 

joists with zero spacing on a bearer are the same as a slab. 

 

The isotropic brick elements used to model the flooring systems has been proven to be 

adequate despite the single direction modulus of elasticity and poisons ratio value that 

do not accurately depict the real structure. Tests models were run between Strand7 and 

the standard single slab units with results within 0.5 mm of the recorded deflections. 

Theoretical results also yield a value which is within 0.5 mm of the model.  

 

The low grade slab design chart accurately describes the structural limitations of using 

low grade timber as a one way floor slab based on the six sample slabs tested. This 

development provides a reasonably safe method of designing a floor that is required to 

exceed the capacity of the standard method of floor construction over set spans. 

 

The design of appropriate bearers to support the weight of the slab and the applied load 

shown in the design chart can also be undertaken based on the total load values 

presented. This implies that two way bending will be present within the slab if the 

deflection within the supporting bearer is significant. Further research into the 
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performance of slabs subjected to two way bending is required to determine the exact 

capabilities of a low grade timber floor slab in this situation.  

 

The elimination of the extra floor depth associated with the joists required to support 

flooring material in standard floor construction is a major advantage of using low grade 

slabs for above ground flooring applications. The extra head room created allows better 

use of space for installation of essential services without compromising structural 

integrity or ceiling height. 
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Chapter 6 

 

Connections 

 

6.0   Introduction 

 

This section is aimed at developing connection methods and investigating the 

performance of connections between low grade timber slab units acting as a floor slab. 

Research of this nature has not been undertaken previously due to the fact that this is the 

first work which investigates the effectiveness of using low grade slab units as a 

flooring alternative. The development of a suitable connection method involves the 

development of multiple conceptual prototypes, with the process of elimination based 

on required characteristics.  



 

 
72 

 

 

 

The major force that will be present in the joint is a shear force due to the differential 

deflection that occurs as a result of differences in the stiffness of each individual slab 

unit, and separation of slab units that could occur if the slab is subjected to a tensile 

force perpendicular to the direction of the laminates. 

 

The aim of the connection strength in all directions is to exceed that of the strength of 

the glue that is laminating the timber pieces together into a slab, and also exceed the 

strength of the timber itself when subjected to any force which the connection is 

expected to withstand.  

 

This presents a challenge as the strength of individual members in bending, shear and 

tension has been proven to be highly variable. Therefore the analysis has to be done 

based on the expected load range that will be applied to the slab which will not cause 

deflections greater than the given design maximums. 

 

Moisture related effects on joint performance have been taken into consideration, 

however a full analysis of the effects of moisture on low grade timber floor slabs is 

outside the scope of this research work. This needs to be given a more detailed analysis 

in future research work related to the appropriateness of low grade timber slab units 

used in floor construction.  
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6.1   Methodology 

 

Initial investigation on slab unit connection required a determination of the most 

appropriate connection method. To do this, a range of ideas were established and 

weighted to show the most appropriate one in terms of: 

 

 Connection suitability to resist shear - A 

 Connection suitability to resist tension perpendicular to the laminates - B 

 Ease of manufacture and construction - C 

 Envisaged cost of materials + manufacture + transport + construction - D 

 Time taken to manufacture, transport and construct - E 

 

6.1.1 Connection methods evaluation 

 

Multiple ideas were created, and investigated on their merit in the factors listed in 

section 6.1. Many methods of forming a connection to resist a single force were thought 

of, however only those that could meet the two criteria in some capacity were used for 

further analysis to pick the most suitable prototype to construct and test. The selected 

ideas included:- 

 

 IDEA 1 - A single high grade timber plank jointed into the face of the 

connecting slabs 

 IDEA 2 - A plank spanning the length of the slab with nails or screws driven 

directly into each member. 

 IDEA 3 - A large dovetail block fixed into a pre-cut joint in the slabs 

 IDEA 4 – 140 mm deep laminates on the outside edges of each slab with bolts 

connecting them together underneath the slab. 
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 IDEA 5 - Bugle Head batten screws skewed into the slabs and counter sunk 

below the surface. 

Reference: See Appendix F for diagrams of each of these ideas. 

 

6.1.2  Selection using weighted decision matrix 

 

The conceptual connection ideas were evaluated to determine which best met all of the 

requirements of a slab unit connection. This was done using a weighted decision matrix 

as shown in Table 15. Each of the ideas was compared with each of the criteria which 

have to be met by a connection in order to be practical and effective. Numbers were 

used as the weighting factor with five representing an excellent fit to the criteria, and 

one representing a very poor fit to the criteria. The score of each idea was than 

determined by summing each of the criteria ratings for each idea to get a total score for 

each idea.  

 

From this evaluation it can be seen that the bugle head batten screw concept made an 

excellent fit to all required criteria, followed by the spanning plank concept which did 

not fit all the criteria to the same extent. Based on this decision making, the bugle head 

batten screw concept been perused. 

 

Table 15 – Connection method evaluation matrix 

IDEA 

Criteria Rating 

A B C D E Total 

1 1 1 5 4 3 9 

2 3 5 5 3 3 19 

3 2 3 1 1 2 9 

4 4 3 1 2 2 12 

5 5 5 5 5 5 25 
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6.1.3 Bugle head batten screw testing methodology 

 

The aim of the connections investigation is to establish a method of joining two 

adjacent slabs that is stronger than the glue itself, and the low grade timber. 

 

The method of constructing the joint involved marking the centre of the second laminate 

in from the edge of the slab unit and drilling a countersinking hole so that the heads of 

the screws were just below the surface of the slab, and would penetrate to the depth 

shown in Figure 34 .  

 

 

Figure 34 – Cross section of chosen connection method 

 

A 4 mm pilot hole was then drilled at 30 degrees to the horizontal into the slab to guide 

the screws in at the correct angle. The pilot hole did not extend through the edge of the 

slab unit. The two main purposes of this starter hole were to ensure the correct angle 

was achieved and a looser level of friction was present in the slab which the screw was 

being driven from to ensure that all screws pulled the slabs together to their greatest 

capacity.  After the pilot holes had been created, 125 mm bugle head batten screws were 

driven into the holes and through into the adjacent slab as shown in Figure 35. Bench 

clamps were applied over the span of the slab to ensure that the screws pulled tight and 

formed a bond between the slabs equal to the screws capacity. 
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Figure 35 – Arrangement of bugle head batten screws. 

 

The method used to ensure that all screws entered at the correct angle was to cut a waste 

piece of pine at 30 degrees, and use this surface to run the drill into the countersinking 

hole at the set angle as shown in Figure 36. This initial hole angle was then used as a 

guide to complete the clearance hole which only ran from the starting slab to the 

interface between slab units. This helped to ensure that the screws embedded in the 

adjacent slab unit to their maximum capacity. 
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Figure 36 – Creating the correct angle for the screw joint. 

 

Screws were driven into at 200 mm centres from both sides of the joint into the 

opposing slab. The joint lines were staggered so that one screw was passing into the 

opposing slab at every 100 mm throughout the length of the slab as shown in Figure 37.  

 

 

Figure 37 – Plan view of chosen connection system 
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6.1.3.1 Two slab bending test 

 

To do this the initial test was two slabs joined together with 14G 125 mm bugle head 

batten screws skewed into the slabs at 200 mm centres from both slabs into the adjacent 

slab as shown in Figure 37. 

 

Once the slabs were connected, they were arranged under the testing rig to meet the 

dimensions of testing as used in previous individual sample and slab tests. Heavy duty 

“I” beams and Square sections were used to get the required heights and spans so that 

the appropriate loading support conditions were met. Figure 38 depicts the testing setup 

applied.  

 

The system 5000 was then connected with two string ports and a load cell, to measure 

the applied load, and the deflections of the slab being loaded, and the slab which was 

connected to the loaded slab with no load applied, to obtain a measurement in the 

difference in deflection, or deflection passed through the connection as load was 

applied. 

 

 

Figure 38 – Loading setup for two slab bending test. 
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6.1.3.2  Three slab shear and bending test 

 

The three slab connection test consisted of three individual slab units joined at the edges 

using the connection method shown in Figure 34 and Figure 37. In order to apply the 

loads at the required intervals over the width of one slab, heavy duty solid steel sections 

were cut to 420 mm lengths to apply a line load over the width of the centre slab only. 

A heavy duty steel section was used to ensure that zero deflection occurred within the 

line load bar resulting in an even distribution of applied force across the distribution of 

the slab. 

 

The supports were setup to provide a vertical restraint at the ends of the outside slabs 

only, with the centre slab being free to push down through between the other two if a 

shear failure happened before the bending failure. To do this heavy C sections were 

placed on a long supporting beam so that the inside ends of the heavy C sections were 

supporting the laminate on the outside slabs that is adjacent to the centre slab. This was 

done to initiate a shear failure along the connection between the centre slab and each of 

the outside slabs, should the shear be the first failure mode to occur. 

 

Bench clamps and G clamps were also provided at appropriate points within the test 

setup to avoid the displacement of any of the supporting structure during loading. 

Specifically, they were aimed at lateral displacement of supports and the inwards rolling 

of the C sections that was likely to occur as the load on the slabs was increased. 

 

The heavy duty yellow stools shown in Figure 39 were used to create a testing surface 

level to the besser bricks used sit the testing supports on the far side of the slab. This 

was done by raising the supporting surface of each stool via its threaded plate 

configuration until the levels of all four supporting members were identical. 
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Deflections were measured at the centre of the middle slab which has the load applied 

and the centre of the outside slab which is situated at the left hand side of the centre slab 

as shown in Figure 39. This was done to record the difference in deflection between the 

loaded central slab and the connected outside slabs. The total load applied was also 

measured via a load cell placed at the connection between the jack and the spreader bar. 

This ensured that a measure of the total load transferred from the spreader bar into the 

two heavy duty steel sections used as loading points was obtained accurately. To ensure 

that the load applied by the two loading points was even, the centre of the slab area was 

placed directly in line with the axis of the jack, and the loading points spaced at 

identical distances from the centre of the slab to match the loading setup used in the 

strength testing of individual low grade slab units. 

 

 

Figure 39 – Loading setup used on three slab test shear and bending test. 
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6.1.3.3  Batten screw shear capacity testing 

 

Due to the batten screws passing though a shear plane in the connection between slab 

units, testing was undertaken on the capacity of screws in shear in order to determine 

the total contribution each screw could have within a joint resisting shear. This test was 

done by creating two pieces of plate steel with a hole drilled through them slightly 

larger than the diameter of the screws to be tested. This was done so that the screws 

could be inserted though the two holes without the creation of excessive heat which 

may change the material properties of the screws. The two plates were used to act as a 

material for the materials testing system machine to grip, and also for the precise shear 

plane created between the plates when a screw was placed through the hole in both 

plates. 

 

Waste materials from previous testing were used to create two blocks of timber which 

could be used to hold the screw in the correct position for shear failure to occur above 

the thread in each test specimen. The secondary purpose of the timber was to create a 

tension within the screw that is identical to that of a screw driven into pine, as the 

combination of tension, compression and shear forces is present within the batten screw 

connections between slab units. This ensures that the result obtained is as realistic as 

possible to that of the expected shear capacity of screws when used in a low grade 

timber connection. 

 

Shear capacity testing of each sample was than measured using the materials testing 

system machine. Each sample was inserted through the two steel plates tightened with 

the timber blocks. An electric drill with a slipping clutch mechanism was used to ensure 

that the each screw was tightened to the same value of torque within low grade timber 

block. The screw inserted into the shear testing rig appeared as shown in Figure 40. 
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Figure 40 – Batten screw shear testing rig 

 

The testing rig was then inserted into the testing machine. This was done by placing the 

steel plates in the grip jaws as shown in Figure 41. The tests were then initiated with a 

data logger recording the axial tension and deflection within the shear plane of each 

screw up to the point of shear failure. This data was then retrieved from the electronic 

data base and analysed for the required information. 

 

 

Figure 41 – MTS machine used for testing the bugle head batten screws 
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6.1.3.4  Individual member shear capacity testing 

 

This experiment was done with the intention of determining the capacity of a single 

member within a slab subjected to a pure shear force. This was done by loading one 

individual member and supporting the members adjacent to it as shown in Figure 42 to 

prevent deflection within the slab and create a shear loading condition along each glue 

lamination joint. 

 

 

Figure 42 – Supports used in the individual member shear tests 

 

 

The load was then applied through a steel section with a width less then 35 mm along 

the individual member to be tested. Supports were placed to ensure that only the 

individual member being loaded could be displaced vertically as shown in Figure 43. 

The heavy duty steel sections used for the three slab tests were also clamped on top of 

the slab unit at each end to ensure that transverse bending could not occur as result of 

the vertical deflection restraint systems placed and the magnitude of the load to be 
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applied. Besser bricks were used to support the two custom made deflection supports 

depicted in Figure 43. These supports were placed at one third intervals under the slab 

to prevent any deflection that is created as a result of the force applied and still allow 

the member being loaded to fail in shear as intended. 

 

 

Figure 43 – Setting up the individual member shear capacity test. 

 

The span used in this test was not relevant due the shear strength over the length of the 

slab being measured rather than the bending strength. The supports restraining the 

members adjacent to the member being loaded from vertical displacement were 

provided at the same distance apart as the bending tests. This was done for consistency 

with previous tests, and a known length over which the shear force was being applied to 

the glue laminations. 
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6.1.3.5 Three slab pure shear test 

 

This test was undertaken to provide information on the capacity of a bugle head batten 

screw joint between two slabs as a function of the number of screws within the joint per 

meter. This test was done using three slabs joined together at adjacent faces as shown in 

Figure 44. 

 

The restraint system applied was devised to allow only shear failure of the centre loaded 

slab along the connection lines to occur. This was done by creating vertical deflection 

restraints at the ends of the slab identical to that used in the three slab shear and bending 

combination test. Additional supports in the centre thirds of the span were also provided 

to prevent bending as a result of the load applied. These were pieces of waste timber cut 

to length and placed on besser bricks on the unloaded side of the joint lines as shown in 

Figure 45. A solid steel member was also placed across the ends of the slab to prevent 

transverse bending moments developing as a result of the vertical deflection as shown in 

Figure 44.   

 

 

Figure 44 – Testing setup used for the three slab pure shear test. 
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Screws were then placed in each slab at even intervals to provide consistency in the 

failure and test results. Initially four screws were placed in each joint connecting 

adjacent faces totalling eight screws resisting the shear force applied. Each joint 

consisted of two screws driven from the centre slab into the outside slab and two screws 

driven from the outside slab into the centre slab. This was done to ensure that there was 

a balance between the number of screws subjected to a combination of tension and shear 

and a combination of compression and shear. Load was the only factor to be recorded 

due to the deflection of the slab being restrained by supports. This was done using a 

load cell in the same manner as the individual member shear capacity test.  

 

This test was then repeated with six screws in each joint connecting adjacent faces. To 

keep the results consistent the centre slab was staggered horizontally to ensure that the 

screws went into fresh timber rather than same hole or areas within the vicinity of the 

screw joint used in the previous test. This was done to develop the required relationship 

between the number of screws used in a joint per meter and the total load capacity of the 

joint per meter. 

 

 

Figure 45 – Supports used in three slab pure shear test. 
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6.2   Results 
 

The results obtained from the various tests undertaken prove that the 125mm bugle head 

batten screw is a very effective means of creating a connection between slab units to 

resist the forces applied in a standard floor loading situations. The two and three slab 

tests undertaken were aimed at determining the effectiveness of the screw connection in 

bending, shear and a combination of bending and shear. The results obtained have 

shown the joint design required to exceed the strength of the slab units, and the spacing 

of screws required per meter to resist a load of given magnitude per metre of slab unit.  

 

The bugle head batten screw connections appeared as shown in Figure 46 prior to 

destructive testing. This consistency in the construction of connections has yielded 

results which correlate well between separate test types. This will be expanded on 

further in the discussion section. 

 

 

Figure 46 – Bugle head batten screw connection prior to testing. 



 

 
88 

 

 

 

6.2.1 Two slab bending test 

 

The results obtained from the two slab bending test indicate that the connection method 

has sufficient performance to prevent differential separation of slabs during a loading 

situation. The results show that the spacing and orientation of batten screws used is 

sufficient to take an applied load greater than that of the capacity within a single slab. 

 

The bending load transferred through the connection into the free slab was not large 

enough to cause any failure within the free slab. The loaded slab did fail in an identical 

manner to the individual low grade sample units testing. All failures within the loaded 

slab were partial and generally occurred at discontinuities within the wood structure 

such as knots and resin shakes as show in Figure 47. 

 

 

Figure 47 – Two slab test samples after failure. 
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The consistency in deflection between the loaded and free slab units demonstrate that 

the connection is capable of transferring the load between slab units without any 

differential deflection occurring at the connection line. At the maximum load taken by 

the loaded slab, the difference in deflection between the connection laminate of the free 

slab and the middle of the loaded slab was 13 mm. 

 

A visual inspection of the deflection difference between slab units during testing 

confirmed that the connection worked perfectly as intended. The two slab test also 

demonstrated the slabs ability to return to a position of zero deflection after the load is 

removed despite the partial failure of members within the loaded slab. From this 

particular test it can be seen that the maximum load taken by two connected slab units 

prior to any partial failures is 95 kN. This is taken from the small discontinuity shown in 

Figure 48.   

 

 

Figure 48 – Load vs deflection curves for the two slab bending test. 
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6.2.2 Three slab shear and bending test 

 

The three slab shear and bending test provided a situation which allowed the middle 

slab to be subjected to a shear force along the join lines and also deflect between the 

supports. No restraint to rotation was provided at the supports so that a central 

deflection which is comparable to previous slab tests could be obtained. As a result of 

this, a bending moment was developed in the transverse direction resulting in the 

sudden bending failure shown in Figure 49. 

 

This failure occurred solely along the glue lamination joint between the loading points, 

and in a combination of the glue lamination joint and a defect within in the timber 

between the loading points and the vertical deflection restraint provided to the two 

outside slabs. The individual member that the failure occurred in came from the central 

axis of the tree as can bee seen in the direction of the end grain which is circular around 

the central pith. 

 

 

Figure 49 – Failure mode for three slab shear and bending test. 
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The load deflection relationship obtained between the central loaded slab and the free 

outside slabs also proves that the connection was ample in preventing differential 

deflection and shear failure along the join line up to a load of 81 kN. Minimal warning 

signs presented themselves prior to the violent bending failure that resulted from a 

bending moment developing along the axis perpendicular to the direction of the 

individual members. 

 

The deflection experienced in the unloaded slabs in the three slab shear and bending test 

was much greater than that of the two slab bending test as seen in Figure 50. This is due 

to the symmetrical nature of the loading in the three slab test compared to that of the 

two slab test. 

 

 

Figure 50 – Load vs deflection curve for three slab shear and bending test. 
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6.2.3 Batten screw shear capacity testing 

 

The shear capacity testing of the screws was used to determine the capacity of a single 

screw in a timber joints subjected to a shear force. All test samples failed above the 

thread as intended so that the shear area could be accurately determined. The shear 

capacity obtained exceeded 1.6 kN in all specimens as shown in Figure 51. The friction 

developed between the two metal plates that form the shear plane contributed to the 

total force required to cause the screws to fail in shear. The test procedure used for each 

specimen was very consistent as a result of the simple testing setup and machinery used 

and the consistency of steel. 

 

 

 

Figure 51 – Batten screw shear test results. 
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6.2.4 Individual member shear capacity testing 

 

The testing of individual members within a low grade slab element was done in order to 

determine the strength of the glue lamination joints. This information is required to 

determine the limiting criteria for the design of connections. A connection with strength 

in shear greater than that of the laminations is greater then the strength required due to 

the slab failing in shear before the connection between slab units. 

 

This test returned range of results which demonstrated that the low grade timber will 

fail due to the crushing force in some cases before the glue lamination will fail in shear. 

This is due to the orientation of the growth rings within the cross section of the timber 

member. The angle of the growth rings within the cross section of the individual 

member is determined by the location within the log from which it has been cut as 

shown in Figure 52.  

 

 

Figure 52 – Cross section growth rings within individual members. 
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Test results revealed that timber samples with growth ring grain in directions other than 

vertical failed at a load much lower than that of the sample containing the growth ring 

that was mostly vertical as can be seen in Figure 53. The only specimen that failed in 

shear along the glue lamination joint as intended was specimen 4 which has a mainly 

vertical growth ring direcion. Hence this test has been used to derive the strength of the 

glue lamination subjected to a shear force. 

  

  

Figure 53 – Shear failure along the glue lamination. 

 

All other members with angled grain failed through crushing of the timber as a result of 

the load applied along the member to create shear failure. All timber crushing failures 

occurred as a result of apparent shear forces developing along the growth rings that have 

a tangential angle within the proximity of 30 to 60 degrees.  This result demonstrates 

that the majority of the low grade timber specimens are weaker than the actual glue 

when subjected to a shear loading situation. The relationship between grain direction 

and failure load cannot be quantified with a strong correlation due to the variability 

induced by the presence of defects throughout the length of the timber. Testing has 

shown that samples with symmetry about the Y axis of an individual member cross 

section are more likely to fail in shear along the glue lamination lines rather than 

crushing or shear within the individual member. 
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The results of the individual member shear testing shown in Figure 54 demonstrate the 

high variability in peak load that can be taken by an individual member subjected to a 

shear force. All forces for this testing were recorded via a load cell connected to the 

System 5000 which was recording the data regular intervals. These intervals represent 

the dimensionless incremental counter values used on the X - axis shown in Figure 54. 

This approach was taken due to the fact that no deflections could be recorded as a result 

of the supports creating the shear loading situation.  

 

The load taken to create a pure shear failure along the glue lamination lines either side 

of the member was recorded as 221.61 kN. The rise and fall within the test plots is due 

to the load decreasing slightly during the elevation of the jack pump handle ready for 

the next stroke. 

 

 

Figure 54 – Individual member shear capacity test results. 
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6.2.5 Three slab pure shear test 

 

This test was undertaken to determine the shear capacity of a loaded slab unit connected 

between two free slab units based on the number of screws in the connection. The 

results obtained from the two tests undertaken reveal a similar loading pattern and two 

separate peak loads which is information required from this experiment.  

 

Testing also revealed that screws will fail in shear sooner then they will pull out of the 

timber they have been inserted into. The shear plane for each failure was at the point 

were the screw passed from the clearance hole into the solid timber when they were 

inserted. This is shown within the inset picture of the screws in Figure 55. The screws 

that have not failed in shear demonstrate a point of contra flexion which indicates the 

position where shear failure is going to occur as a result of the loaded slab deflecting 

downwards between the two outside loaded slabs.   

 

 

Figure 55 – Failure of connection in shear. 
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All connections were made in accordance with the steps set out in the methodology 

section with the number of screws in each joint reduced and kept to an even number. 

The graph shows the results for one connection line either side of the middle loaded slab 

with four screws used in the first test and then six to develop the relationship. 

 

This resulted in a total of 8 screws connecting the loaded slabs to the free slabs taking a 

peak load of 49.722 kN and a total of 12 screws taking 71.556 kN over a loaded length 

of 1.62 m. The symmetry in the placement of screws and the loading of the slab show a 

linear relationship between the number of screws and the maximum shear load which 

can be taken by the slab. This will be further analysed in the discussion section. The 

similarity in loading behaviour based on the number of screws inserted can be seen in 

Figure 56. 

 

 

Figure 56 – Test results from three slab pure shear test. 
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6.3   Discussion 

 

The results obtained from the testing of bugle head batten screws used to connect slab 

units has revealed consistencies in the performance of the connection in a variety of 

loading situations. Within the Two and Three slab testing of the connections 

performance under pure bending and a combination of bending a shear, it was seen that 

the connections created with the batten screws are much stronger than the strength of 

the low grade timber when subjected to the applied forces. 

 

This resulted in a requirement to determine the exact capacity of the batten screw joints 

with a varying number of screws applied in each joint. This is due to the complexity in 

analysing the connection theoretically. Analysis could determine only the force 

component applied to each screw, and the combination of forces carried by a screw in 

the connection depending on its orientation relative to the loaded and free slabs. The 

complexities an analysing this connection arose form the lack of information on the pull 

out capacity of a single screw embedded in low grade pine, and the ability of a single 

screw to resist shear forces. A sample of screws was tested in shear only to determine 

their capacity in shear to quantify the capacity of a joint subjected to pure shear alone 

based on the assumption that shear failure will occur prior to the screw pulling out of 

the adjacent low grade slab. 

 

Consideration given to the combination of forces carried by a screw revealed that the 

screw driven from the free slab into the loaded slab would undergo a combination of 

tension and shear whilst the screw driven from the loaded slab into the free slab would 

undergo a combination compression and shear when forces were applied to the loaded 

slab as shown in Figure 57. Therefore the number of screws driven from the loaded slab 

into the free slab and vice versa had to be even in order for the joint to be balanced. This 
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balance ensures that the number of screws undergoing tension and shear is equal to the 

number of screws experiencing compression and shear.  

 

 

Figure 57 – Forces present within a batten screw connection. 

 

 

If an odd number of screws was used in a connection it would result in more screws 

undertaking one of the combinations of forces than the other combination of forces 

which is dependent on their orientation relative to the loaded and free slabs. The 

simplifying assumptions of shear occurring before pull out capacity was reached, and 

the balance of tension and compression forces within each screw used in a loaded joint 

created from batten screws was then confirmed to be correct in the analysis of 

connection combining three slab units subjected to pure shear. Further analysis on the 

performance of the joint in various situations will be presented in the following 

sections. 
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6.3.1 Combined actions testing. 

 

The combination of results obtained from two slab bending test and the three slab 

combined shear and bending test revealed that the load deflection characteristic for the 

loaded slab in each experiment was identical from a load of 0 kN through to 35 kN 

where the load deflection characteristics of the two tests begin to diverge. This is due to 

the slabs having a slightly different stiffness which resulted in differing deflections in 

the higher load range, and the onset of two way bending in the three slab test. 

 

It can also be sent that the free slab in the combined shear and bending test deflected 

further for an equivalent load than that of the two slab pure bending test. This is not the 

expected outcome due to the combined stiffness of the three slab units being greater 

than the two slab units. This result is most likely due to the fact that the outside edge of 

the loaded slab in the two slab unit test deflected further than the inside edge due to the 

presence of the connected free slab. In the three slab unit test the loaded slab deflected 

by an even amount on both connected edges due to the presence of a connected free slab 

on each side. Hence the overall deflection experienced by the free slabs in the combined 

shear and bending test is greater than the deflection within free slab of the two slab unit 

pure bending test as a result of the balance created by only having a slab unit connected 

either side of the loaded slab unit as shown in Figure 58 . 

 

 

Figure 58 – Mid span deflection cross sections  
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Figure 59 describes the characteristics of each test undertaken to determine the ability of 

the batten screw connection to withstand a variety of applied forces. The three slab 

shear and bending test failed at a lower load than the two slab test due to induced 

bending stresses perpendicular to the direction of the individual members within the 

slab units. This could have been avoided however providing restraints to prevent this 

would also provide restraints to rotation about the supports which would limit the 

central deflection reading and make it non comparable to the two slab pure bending test. 

 

The point of divergence between the two slab test loaded slab and the three slab test 

loaded slab shown in Figure 59 represents the point where two way bending within the 

slab was initiated due to the configuration of the supports which was intended to allow 

both shear and bending to occur within the slab unit connection. 

 

 

Figure 59 – Results comparison between two and three slab test. 
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6.3.2 Batten screw shear capacity testing 

 

The testing of the batten screws used for the connection in shear revealed that they are 

very consistent in resisting shear force. The shear area tested was that perpendicular to 

the screws longitudinal axis which is not the exact shear area present within the low 

grade slab unit connections due to the screws being skewed at 30° to the horizontal 

plane. Each of the four samples tested exceeded a capacity of 16000 N over this shear 

area, resulting in the shear capacity of the screw as shown in equation 13. 

 

2

2 2

Force 16000 16000
Shear Capacity = 815 /

5Area

4 4

N mm
D 

  
 

                                          (13) 

 

The total capacity of an individual screw in a low grade timber slab unit connection can 

be found by multiplying the capacity found in Equation 14 by the shear area of a screw 

skewed at 30° to the horizontal. The shear area is determined in accordance with 

equation 14. 

  2

5

cos 30 5
22.6725

2 2
Area mm                                                                                          (14) 

 

Therefore the shear capacity of a 14G 125 mm bugle head batten screw skewed at 30 

degrees to the horizontal plane is: 

 

 22.6725 x 815 = 18478 N. 

 

 This value is representative of the number of screws that could be used in a slab to 

allow shear failure, and was used to create physical models that would fail at low loads 

to develop relationships between load and failure based on physical testing. 
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6.3.3 Individual member shear capacity testing 

 

The results obtained from the test to determine the capacity of the glue lamination joints 

in shear showed that the member subjected to the shear force required a straight and 

vertical growth ring orientation. Test results varied quite significantly due to the 

different growth ring orientations which appear to determine if the timber will fail as a 

result of the shear force applied before the glue lamination joint will fail. An example of 

an individual member failing prior to the glue lamination joint failing in shear is shown 

in Figure 60. In this example the low grade timber defects have contributed to the 

failure which further reduces the timbers capacity to resist a load intended to create 

shear failure along the glue lamination lines.  

 

 

Figure 60 – Failure due to curved end grain. 

 

Only one single test did create the desired failure due to the selection of the most 

appropriate member to load as the trend became visible throughout the testing process. 

This member failed at a peak load of 221.6 kN. Therefore the shear capacity of a single 

glue lamination line per meter length of slab is given in Equation 15. 



 

 
104 

 

 

 

221611
1.62 68398 /

2
N m

 
  

 
                                                                                                       (15) 

 

It is understood that this value is not representative due to it being obtained from one 

single successful test. It is the value which results in most low grade timber samples 

failing due to crushing prior to a clean shear failure along the glue lamination lines. 

Therefore this result is indicative of the required shear strength to be exceeded by the 

connection if the shear load applied to any portion of the slab is to exceed this value. 

 

6.3.4 Three slab pure shear test. 

 

The three slab pure shear test was used to develop a relationship between the number of 

screws in a connection, and the total shear force that connection can withstand. Based 

on the testing of individual screw specimens, the force required to shear one screw 

inserted in the connection at the set angle is 18.478 kN.  

 

Neglecting any other possible failure modes such as the timber splitting around the joint 

or the screw pulling out of the low grade timber, the initial connection tested in shear 

contained four screws in each joint line to ensure failure happened within the slab at a 

load within the proximity of 18.478 x 4 = 73.912 kN per connection line. This value 

approximates to 73.912 / 1.62 = 45.6 kN per meter length of slab. 

 

All connections had to have an even number of screws inserted from each direction for 

consistency with other test results. Therefore values of four and six screws per 

connection line were chosen as the most appropriate connections to establish the 

relationship between the number of screws and the total applied load. 

 

Testing revealed that the relationship between the number of screws inserted into the 

connection and the total force required for the connection to fail in shear is a linear as 
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shown in Figure 61. The data points in this graph are derived from the maximum force 

values obtained in section 6.2.5. As can be seen in this graph, the abundance of 

variables present within low grade timber appears to have little effect on the consistency 

of results obtained. 

 

The results obtained were converted into units per meter length of slab for ease of 

interpretation and design based on Figure 61. This chart is intended for a slab loaded 

between two free slabs to create a shear loading on the joint. Therefore the total number 

of screws required per connection should be halved to ensure that the distribution of 

screws within the two connection lines is even. 

 

 

Figure 61 – Floor slab connections design chart. 
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A variety of failure modes occurred within the connection under shear, with the shear 

failure of individual screws being the main failure mechanism. The other source of 

weakness in the connection subjected to shear is the timber splitting through the counter 

sunk hole resulting in an effective shear failure. 

 

Inspection of screws that did not fail fully in shear showed signs of a point of contra 

flexion developing at the interface between slab units. This would later be the point 

where shear failure occurred if more of the total load applied was distributed onto that 

screw. The reason for some screws not shearing off completely is the composition of the 

low grade timber surrounding the area where the screw in question is located, which 

allows local crushing around the screw, or splitting of the timber which houses the 

screw in position. 

 

The pull out capacity of the batten screws was not exceeded in any connection test 

undertaken which indicates that shear is the major contributing factor in the strength of 

the joint. The relationship between the screws in a combination of tension and shear, 

and a combination of compression and shear requires a more detailed analysis in order 

to get a complete data set which fully describes the characteristics of a bugle head 

batten screw used as a connection alternative between low grade slab units. 

 

The loading situation on a floor slab is not definite and can arise in a number of 

different manners dependent on the floor usage. The requirement for a floor to reach a 

set un - supported span will result in the bending force always being present within 

connections, and shear forces of considerable magnitude when large point loads such as 

piano legs are supported by low grade timber slabs.  
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6.4   Conclusions 

 

Connections comprised of skewed 14G 125 mm bugle head batten screws can be made 

to exceed the capacity of the slab subjected to bending or shear. The design aid created 

for constructing appropriate connections between slab units presents a method of 

creating a connection with ample capacity to resist any force which is within the 

capacity range of the slab units themselves. 

 

Although this is adequate for construction, it is based only on physical test results which 

show that the screws will fail in shear before the pull out capacity is reached. The shear 

capacity of a skewed bugle head batten screw is a function of the angle that it is inserted 

at, and hence the area of the elliptical shear plane created. The variation of the shear 

capacity within a screw subjected to a combination of shear and tensile / compressive 

forces is not fully understood, however analysis of the joint has revealed that this 

situation is present within a connection between slab units. Further analysis on this type 

of connection needs to be undertaken to develop a suitable theoretical method of 

calculating the required spacing and orientation of screws in order to exceed the 

predicted forces between individual slab units. 

 

Investigation on connections between slab units has also shown that the direction of the 

growth rings in each individual member affect the ability of the slab to take loads in a 

two way bending situation. The direction of growth rings also contributes significantly 

to the capacity of a slab unit subjected to shear forces. The variability of the timber 

properties within a low grade timber slab also effect connection performance and should 

be investigated completely for use with theoretical connection design. 
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Chapter 7 

 

 

Conclusions 

 

7.0   Summary 

 

This research project has investigated the structural performance of low grade timber 

laminated into slab units to be used as a flooring system. A full analysis from the 

behaviour of individual members and slab units through to the performance of slab units 

connected to form a floor slab has been investigated with the intention of determining 

the limitations of using low grade timber slabs in flooring applications. 

 

A combination of analysed test results and modelling revealed that the critical limiting 

factor associated with low grade timber slabs used in a flooring application is 

deflection. A full analysis of various loading situations and clear floor spans has been 
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undertaken to develop a deflection based design chart for low grade timber slabs applied 

to flooring applications.  

 

The testing of connections between individual slab units has proven that a connection 

can be made which exceeds the strength of the slab in any combination of forces 

applied. Further testing and analysis provided a simplified method of joint design based 

on the load applied per meter length of the slab. 

 

7.1   Achievement of project objectives 

 

The following objectives have been addressed: 

 

Reviewing the current use of laminated timber building technologies in other countries, 

to gain an understanding and appreciation of current technologies. 

 

A literature review has been undertaken to examine prior work done on different 

facades of timber floor slabs which are created from individual laminated low grade 

timber members. Due to this paper being the first on the use of low grade timber being 

used in slabs as a flooring alternative, no literature has been found which can be used as 

a comparison to my findings. 

 

Extensive work has been undertaken in the use of timber bulk timber laminated into a 

cross laminated product consisting of three or more layers, and the effects that timber 

quality and using glue lamination has on the over length of a structure comprised of 

such materials. Although it is clear that a sufficient amount of work has been done in 

the use of bulk timber members to act as structural elements based on company product 

marketing literature, research papers are not able to be interpreted due to the abundance 

of Scandinavian and German dialect used to compose these papers. Further information 
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the various aspects of using laminated low grade timber as a floor slab alternative can 

be found in Chapter 2. 

 

Acquisition of timber material properties data from Hyne with the aim of using a 

statistically representative set of data for the prediction of the slab behaviour during 

testing. 

 

The timber material properties that are a valid sample for the source of the low grade 

timber used in the slab was obtained from Hyne for use in modelling the behaviour of 

low grade timber slab floors subjected to loading. Evidence of this can be seen in Table 

5 and Appendix D. Extra information has also been obtained from Timber Queensland 

from a large database on the properties of Australian hardwoods which was used for the 

Grey Ironbark properties in the Strand7 parametric modelling shown in chapter 5. 

 

Collect structural performance data by testing prefabricated timber slabs.  

 

The characteristics of single low grade timber members and laminated low grade timber 

slabs were determined as a result of the testing work shown in Chapters 3 and 4. The 

major difference observed between the low grade timber members and the slab units 

comprising of low grade timber is the increase in consistency of the load deflection 

relationship. 

 

The numerical results obtained and the observations taken from the behaviour of both 

forms of low grade timber display the fact that the glue used in the lamination of 

individual members to form low grade slab units is responsible for creating a load 

sharing system around areas of defects within individual members. This results in a 

significantly decreased variation in the load – deflection characteristics observed in the 

low grade timber slab units compared to that of individual low grade timber members. 
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Create mathematical computer models of the above ground flooring system using 

Strand7 to extrapolate data on the structural requirements for this system to be viable. 

 

Chapter 5 focussed on the selection of appropriate modelling parameters, and the 

creation and use of Strand7 finite element analysis computer models to analyse the 

limitations of using low grade timber slabs as a flooring alternative. Results from this 

modelling highlighted that serviceability is the governing criteria in the design of floor 

slabs constructed out of low grade timber. 

 

Multiple span and load comparisons were also undertaken for a low grade slab model 

and a standard flooring model in order to determine if the performance of the low grade 

slab units used a flooring method are viable compared to that of the current standard 

construction. This analysis was taken from a structural performance view point and 

concluded that the low grade slab has a greater weight than the standard flooring 

system, however the deflection response to all loading and span situations is less than 

that of the standard floor constructed out of bearers, joists and a flooring material. 

 

Use the results from modelling to create a design aid for the use of low grade timber 

slabs in floor construction. 

 

The structural characteristics of low grade timber floor slabs were obtained in Chapter 

4. This information was incorporated in a range of Strand7 models as described in 

Chapter 5. These models were then used to collected load and maximum deflection data 

points over various spans with consistent loads applied. The result is a deflection based 

design chart for 90 mm deep floor slabs subjected to a variety of different load cases. 

Due to deflection being the limiting criteria in the design of low grade timber floor 

slabs, deflections limit lines are superimposed on the chart so that it can be interpreted 

in accordance with the required deflection limit used in design. 
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Investigate, create and test methods for panel connection. 

 

The investigation of connections subjected to the forces which occur between slab units 

is evident in module 6. Investigations revealed that it is possible to create a connection 

that exceeds the strength of both the low grade timber and the glue lamination lines 

between individual slab unit members. Investigations have also determined that there is 

a linear relationship between the number of bugle head batten screws in a joint, and the 

total shear force which the connection can withstand. Simplification of the connection 

and the use of this physical test has resulted in the creation of a connection design chart 

which can be used to determine the minimum number of screws required to resist a total 

shear applied load. 

 

7.2   Major findings 

 

As a result of the research work undertaken, the following major findings have been 

established: 

 

 Low grade timber members subjected to loading are highly unpredictable due to 

the presence of excessive defects within the timber 

 Low grade timber laminated into floor slab units results in a product which is 

very predictable when a load is applied, with a much smaller variation in results 

than that of individual members 
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 Extra head room is created as a result of the joists and flooring material being 

replaced by the slab. 

 Low grade timber slabs are capable of taking loads with reliability that are 

typically endured by flooring systems when the span is within the determined 

limits. 

 Low grade timber slabs compare favourably to the standard floor construction 

method of bearers joists and flooring materials based on the smaller deflection 

obtained from the low grade slab model. The disadvantage is the increased 

weight of the structure due to the bulk of timber used. 

 Connections can be made between slab units which are sufficient to endure the 

loads that low grade timber slabs are capable of carrying. This allows floors of 

any desired width to be created from a group of low grade slab units placed side 

by side which acts as one single slab. 

 

7.3  Future Work 

 

The findings resulting from this research highlight several areas that are crucial to floor 

design and require further investigation. These factors have not been considered in this 

research paper with the exception of connection design which was given some 

simplified investigation to derive a set of proven realistic criterion for the connection of 

low grade slab units. 

 

Further analysis of the connection method is required to fully understand the behaviour 

of low grade slab unit connections which is complex and still not understood in a 

comprehensive manner.  
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It is recommended that the following items be given detailed investigation in order to 

determine the commercial viability of using low grade timber slabs as a flooring 

alternative in Australia.  

 

 Natural frequency 

 Creep effects 

 Moisture related effects on slab performance 

 Further investigation on connection design between slab units 

 Cost comparison 

 Effects of two way bending 
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Hyne Tuan mill material property data. 
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Timber Queensland Grey Ironbark test data. 
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Grey Ironbark Test data from Timber Queensland 

No Species 
Visual 

Grading 
MOE 
(GPa) 

MOR 
(GPa) 

Moisture Content 
(%) 

Density 
(kg/m³) 

0577 GRI R 17.29 91.85 green 1135 

0722 GRI R 19.11 97.62 green 1099 

0573 GRI 27 16.11 85.06 green 1130 

0574 GRI 27 16.23 79.04 green 1136 

0575 GRI 27 17.27 72.44 green 1134 

0576 GRI 27 15.79 83.36 green 1114 

0716 GRI 27 19.94 98.47 green 1130 

0718 GRI 27 18.09 109.75 green 1060 

0719 GRI 27 17.86 102.66 green 1073 

0721 GRI 27 19.86 106.66 green 1121 

1119 GRI 27 19.65 102.61 green 1064 

1120 GRI 27 19.91 104.20 green 1071 

0499 GRI R 19.46 92.77 green 1128 

0497 GRI 27 21.13 94.11 green 1120 

0720 GRI 27 20.71 112.80 green 1092 

0496 GRI 27 - 112.54 green 1143 

0717 GRI 27 - 106.72 green 1105 

1119 GRI 34 14.65 105.77 15 972 

1120 GRI 34 25.00 127.73 14 1072 

0577 GRI 34 17.78 53.42 16 1162 

0722 GRI 34 19.74 135.20 17 1100 

0721 GRI R 19.61 109.54 14 1090 

0573 GRI 34 14.56 75.70 16 1092 

0574 GRI 34 16.54 93.84 16 1098 

0575 GRI 34 15.43 78.92 14 1096 

0716 GRI 34 19.99 131.57 16 1092 

0718 GRI 34 20.23 120.63 16 1074 

0717 GRI 34 16.77 90.71 17 1074 

0719 GRI 34 18.11 71.43 20 1082 

0720 GRI R 15.85 93.36 15 1079 

0497 GRI 34 21.10 103.29 15 1153 

0496 GRI 34 20.46 111.52 15 1177 

0576 GRI 34 14.79 90.60 16 1076 

0414 GRI 27 22.84 117.26 green 1135 

0608 GRI 27 19.39 113.00 green 1124 

0653 GRI 27 19.89 101.46 green 1185 

0660 GRI 27 23.74 113.67 green 1171 

0661 GRI 27 23.33 114.94 green 1164 

0666 GRI 27 22.28 106.90 green 1127 

0860 GRI R 19.55 96.20 green 1204 

0654 GRI 27 21.23 98.04 green 1170 

0856 GRI R 20.35 114.59 green 1133 

0862 GRI 27 17.86 60.80 green 1216 

1093 GRI R 7.06 25.12 green 1194 

1091 GRI 22 12.67 64.52 green 1148 

0412 GRI 27 23.18 118.93 green 1135 

0853 GRI R 17.10 72.94 green 1231 

0655 GRI 27 21.82 105.95 green 1169 

0413 GRI 27 22.54 120.14 green 1110 

0657 GRI 27 21.53 110.04 green 1191 

0662 GRI 27 22.39 114.96 green 1168 
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0667 GRI 27 23.51 108.79 green 1185 

0410 GRI R 21.66 116.82 green 1127 

0411 GRI 27 21.30 118.65 green 1137 

0663 GRI 27 20.06 115.40 green 1150 

0857 GRI 27 19.83 116.65 green 1221 

0418 GRI R 21.86 116.16 green 1120 

0419 GRI R 22.56 110.31 green 1140 

0604 GRI 27 20.61 102.55 green 1147 

0605 GRI 27 19.34 96.52 green 1119 

0606 GRI 27 19.85 100.55 green 1145 

0607 GRI 27 20.78 104.52 green 1125 

0609 GRI 27 17.27 94.33 green 1121 

0656 GRI 27 21.00 115.15 green 1140 

0664 GRI 27 25.07 123.11 green 1141 

0665 GRI 27 22.02 126.51 green 1187 

0849 GRI 27 20.02 118.19 green 1192 

0850 GRI 27 20.10 100.30 green 1210 

0851 GRI 27 15.87 95.62 green 1206 

0859 GRI 27 19.43 114.10 green 1228 

0603 GRI 27 15.45 101.30 green 1170 

0658 GRI 27 17.12 113.05 green 1187 

0659 GRI 27 20.70 115.65 green 1195 

0409 GRI 27 23.06 118.88 green 1131 

0602 GRI 27 21.30 102.97 green 1150 

0852 GRI R 19.77 105.05 green 1204 

1092 GRI R 11.76 32.77 green 1156 

1089 GRI 22 12.97 78.47 green 1212 

1090 GRI 22 13.64 83.81 green 1156 

1096 GRI 27 14.14 81.25 green 1145 

1088 GRI R 14.84 87.91 green 1172 

1094 GRI 27 12.99 77.44 green 1183 

1095 GRI 27 13.99 72.16 green 1189 

1097 GRI 27 12.47 71.91 green 1162 

1098 GRI 27 11.20 67.16 green 1178 

0859 GRI R 20.99 90.70 12 1187 

1089 GRI 43 13.59 57.05 10 1100 

0853 GRI R 21.83 131.25 12 1263 

0418 GRI R 23.15 123.07 11 1131 

1095 GRI 43 4.52 13.18 11 1089 

0656 GRI 43 24.48 100.87 13 1126 

0852 GRI 43 25.64 137.68 12 1212 

0664 GRI 34 21.47 96.99 14 1075 

0411 GRI 34 23.68 106.81 11 1088 

1094 GRI R 13.90 66.87 14 1111 

1090 GRI 34 14.48 62.53 11 1112 

0851 GRI 43 15.55 139.13 13 1213 

0666 GRI R 21.24 80.55 12 1099 

0654 GRI 34 23.69 127.47 12 1107 

0413 GRI 34 21.90 105.59 12 1033 

0412 GRI 43 26.83 155.72 11 1121 

0603 GRI 43 24.26 127.09 13 1138 

0606 GRI 43 26.62 154.21 14 1152 

0659 GRI 43 25.57 155.30 12 1143 

0849 GRI 43 23.33 136.18 13 1186 
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0419 GRI 43 25.54 119.32 12 1118 

0604 GRI 43 24.94 135.75 12 1134 

0605 GRI 43 26.40 143.27 13 1127 

0608 GRI 43 26.21 137.32 12 1142 

0661 GRI 43 23.46 149.96 12 1153 

0665 GRI 43 - 123.60 12 1086 

0667 GRI 43 20.24 116.39 13 889 

0860 GRI 43 24.04 113.93 12 1227 

0862 GRI 43 21.19 90.31 12 1162 

1097 GRI 43 14.16 76.03 10 1078 

0856 GRI 43 20.87 141.39 12 1151 

0857 GRI 43 20.78 95.69 11 1209 

1088 GRI R 16.59 70.20 10 1085 

0410 GRI 34 24.19 65.64 13 1089 

0655 GRI 34 22.95 63.50 15 1139 

0850 GRI R 9.44 18.25 12 1079 

0609 GRI 43 24.27 118.75 15 1149 

0653 GRI 34 25.09 136.56 13 1080 

0663 GRI 27 19.79 61.47 15 1085 

0409 GRI 34 20.76 37.25 13 1103 

0660 GRI 34 24.48 123.49 11 1104 

0607 GRI 27 24.00 137.36 13 1079 

0662 GRI 27 25.85 100.04 12 1109 

1091 GRI 43 12.41 56.27 11 1047 

0414 GRI R 22.65 123.23 13 1033 

0602 GRI 43 22.31 149.60 11 1089 

0657 GRI R 24.02 129.55 12 1114 

0658 GRI 43 25.12 151.03 15 1138 

1098 GRI 43 13.54 60.93 10 1102 

1096 GRI R 16.33 78.57 10 1066 

1093 GRI 43 15.90 63.54 11 1029 

1093 GRI R 9.51 38.66 10 1069 
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Appendix F 

Slab unit connection ideas. 



 

 
133 

 

 

 

 

 

IDEA 1 – Single high grade timber plank face jointed into adjacent slab units 

 

 

 

 

IDEA 2 – A plank spanning the length of the slab with nails or screws driven directly into each 

member 
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IDEA 3 – A large dovetail block fixed into a pre-cut joint in the slabs. 

 

 

 
 
IDEA 4 – 140 mm deep laminates on the outside edges of each slab unit with bolts connecting them 

together underneath the slab 
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IDEA 5 – Bugle head batten screws skewed into the slabs and counter sunk below the surface. 
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Appendix G 

Matlab code used to analyse recorded data 
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G.1 – Matlab code used to plot test results.  
 

clear 
clc 
format short g 

  

% timber sample properties 

  
B = 35*12; 
D = 90; 
L = 1620; 
a = L/3 
n = (((3*a)/(4*L))-((a/L)^3)) 

  
%_____________________________________________________________________ 

  

    
Sample_n = xlsread('CAMERON - S1A') 
N = size(Sample_n(:,3)); 

  
P2 = (Sample_n(floor((N(1,1)-(N(1,1)/2))),5)); 
P1 = (Sample_n(floor((0+(N(1,1)/9))),5)); 

  
P_diff = P2/2-P1/2; 

  
D2 = (Sample_n(floor((N(1,1)-N(1,1)/2)),3)); 
D1 = (Sample_n(floor((0+N(1,1)/9)),3)); 

  

D_diff = D2-D1; 

  
E1 = (((2*n*L.^3)/(B*D.^3))* (P_diff/D_diff)) 

  

  
hold on 
plot(Sample_n(:,3),(Sample_n(:,4)*1000), 'r') 
hold on 

  
%_____________________________________________________________________ 

  
Sample_n = xlsread('CAMERON - S1B') 
N = size(Sample_n(:,3)); 

  
P2 = (Sample_n(floor((N(1,1)-(N(1,1)/2))),5)); 
P1 = (Sample_n(floor((0+(N(1,1)/9))),5)); 

  
P_diff = P2/2-P1/2; 

  
D2 = (Sample_n(floor((N(1,1)-N(1,1)/2)),3)); 
D1 = (Sample_n(floor((0+N(1,1)/9)),3)); 

  

D_diff = D2-D1; 

  
E2 = (((2*n*L.^3)/(B*D.^3))* (P_diff/D_diff)) 

  

  
hold on 
plot(Sample_n(:,3),(Sample_n(:,4)*1000), 'g') 
hold on 
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%_____________________________________________________________________ 

  

    
Sample_n = xlsread('CAMERON - S2A') 
N = size(Sample_n(:,3)); 

  

P2 = (Sample_n(floor((N(1,1)-(N(1,1)/2))),5)); 
P1 = (Sample_n(floor((0+(N(1,1)/9))),5)); 

  
P_diff = P2/2-P1/2; 

  
D2 = (Sample_n(floor((N(1,1)-N(1,1)/2)),3)); 
D1 = (Sample_n(floor((0+N(1,1)/9)),3)); 

  
D_diff = D2-D1; 

  
E3 = (((2*n*L.^3)/(B*D.^3))* (P_diff/D_diff)) 

  

  
hold on 
plot(Sample_n(:,3),(Sample_n(:,4)*1000), 'b') 
hold on 

  
%_____________________________________________________________________ 

  
Sample_n = xlsread('CAMERON - S2B') 
N = size(Sample_n(:,3)); 

  
P2 = (Sample_n(floor((N(1,1)-(N(1,1)/2))),5)); 
P1 = (Sample_n(floor((0+(N(1,1)/9))),5)); 

  
P_diff = P2/2-P1/2; 

  
D2 = (Sample_n(floor((N(1,1)-N(1,1)/2)),3)); 
D1 = (Sample_n(floor((0+N(1,1)/9)),3)); 

  
D_diff = D2-D1; 

  
E4 = (((2*n*L.^3)/(B*D.^3))* (P_diff/D_diff)) 

  
hold on 
plot(Sample_n(:,3),(Sample_n(:,4)*1000), 'm') 
hold on 

  

  
%_____________________________________________________________________ 

 

  

    

Sample_n = xlsread('CAMERON - S3A') 
N = size(Sample_n(:,3)); 

  
P2 = (Sample_n(floor((N(1,1)-(N(1,1)/2))),5)); 
P1 = (Sample_n(floor((0+(N(1,1)/9))),5)); 

  
P_diff = P2/2-P1/2; 

  

D2 = (Sample_n(floor((N(1,1)-N(1,1)/2)),3)); 
D1 = (Sample_n(floor((0+N(1,1)/9)),3)); 
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D_diff = D2-D1; 

  
E5 = (((2*n*L.^3)/(B*D.^3))* (P_diff/D_diff)) 

  

  
hold on 
plot(Sample_n(:,3),(Sample_n(:,4)*1000), 'y') 
hold on 

  
%_____________________________________________________________________ 

  
Sample_n = xlsread('CAMERON - S3B') 
N = size(Sample_n(:,3)); 

  
P2 = (Sample_n(floor((N(1,1)-(N(1,1)/2))),5)); 
P1 = (Sample_n(floor((0+(N(1,1)/9))),5)); 

  
P_diff = P2/2-P1/2; 

  
D2 = (Sample_n(floor((N(1,1)-N(1,1)/2)),3)); 
D1 = (Sample_n(floor((0+N(1,1)/9)),3)); 

  
D_diff = D2-D1; 

  
E6 = (((2*n*L.^3)/(B*D.^3))* (P_diff/D_diff)) 

  

  

hold on 
plot(Sample_n(:,3),(Sample_n(:,4)*1000), 'k') 
hold on 

  
%_____________________________________________________________________

_____ 

  

ylabel('Load (N)','fontsize',14) 
xlabel('Deflection (mm)','fontsize',14) 
title ('Timber Slab Test Results','fontsize',14) 
h = legend('SAMPLE 1A','SAMPLE 1B','SAMPLE 2A','SAMPLE 2B','SAMPLE 

3A','SAMPLE 3B',2); 
grid on 

  
Average = (E1+E2+E3+E4+E5+E6)/6 
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G.2 – Matlab code used to calculate Modulus of Elasticity 
clear 
clc 
format short g 

  
% timber sample properties 

  
B = 35*12; 
D = 90; 
L = 1620; 
a = L/3 
n = (((3*a)/(4*L))-((a/L)^3)) 

  

%_____________________________________________________________________ 

  

  
alpha = 1; 
while alpha <12 

   
document = uigetfile('*.xls','Open data file');      
Sample_n = xlsread(document) 
display(document) 
N = size(Sample_n(:,3)); 

  
P2 = (Sample_n(floor((N(1,1)-(N(1,1)/2))),5)); 
P1 = (Sample_n(floor((0+(N(1,1)/9))),5)); 

  
P_diff = P2/2-P1/2; 

  
D2 = (Sample_n(floor((N(1,1)-N(1,1)/2)),3)); 
D1 = (Sample_n(floor((0+N(1,1)/9)),3)); 

  
D_diff = D2-D1; 

  
E = (((2*n*L.^3)/(B*D.^3))* (P_diff/D_diff)) 

  
LOBF = [P2, P1;D2,D1]; 
figure('Position',get(0,'ScreenSize')) 
plot(LOBF(2,:),LOBF(1,:),'b-*','markersize', 20,'linewidth', 2) 
hold on 
plot(Sample_n(:,3),Sample_n(:,5), 'r') 
hold on 

  
x_coord = Sample_n(N(1,1),3)/2; 
y_coord = Sample_n(N(1,1),5)/2; 

  
text(x_coord,y_coord,num2str(E),'fontsize', 16,'fontweight', 'bold') 

  

  
ylabel('Load (N)','fontsize',14) 
xlabel('Deflection (mm)','fontsize',14) 
title ('Test Results Analysis','fontsize',14) 
h = legend('Modulus of Elasticity (MPa)',document,2); 
grid on 
%print('-djpeg100',document) 
pause 

  
alpha = alpha + 1 
end 

G.3 – Matlab code used to plot design chart 
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clear; 
clc; 
LOAD_DATA = 

[0,3.460399412,6.489,9.949399412,16.43839941,22.92739941,29.41639941,3

5.90539941;%,52.12789941; 
             

0,4.613865883,8.652,13.26586588,21.91786588,30.56986588,39.22186588,47

.87386588;%,69.50386588; 
             

0,5.767332354,10.815,16.58233235,27.39733235,38.21233235,49.02733235,5

9.84233235;%,86.87983235; 
             

0,6.920798825,12.978,19.89879882,32.87679882,45.85479882,58.83279882,7

1.81079882;%,104.2557988; 
             

0,8.074265296,15.141,23.2152653,38.3562653,53.4972653,68.6382653,83.77

92653;%,121.6317653; 
             

0,9.227731766,17.304,26.53173177,43.83573177,61.13973177,78.44373177,9

5.74773177;%,139.0077318; 
             

0,10.38119824,19.467,29.84819824,49.31519824,68.78219824,88.24919824,1

07.7161982;%,156.3836982; 
             

0,11.53466471,21.63,33.16466471,54.79466471,76.42466471,98.05466471,11

9.6846647]%,173.7596647] 

          
DEFLECTION_DATA = [0,0,0,0,0,0,0,0; 
                   0.4,0.5,1.1,2.3,4.2,7.1,11.3,17.1; 
                   0.3,0.8,2,4.2,7.7,13,21,31.9; 
                   0.7,1.3,3.1,6.4,11.9,20.1,32.2,49; 
                   0.9,2.1,5.1,10.6,19.6,33.1,53.2,80.9; 
                   1.2,2.9,7.2,14.8,27.3,46,74.2,112.7; 
                   1.5,3.8,9.2,19,35,59,95.1,144.6; 
                   1.7,4.6,11.2,23.2,42.8,72,116.1,176.4;] 
                   %2.4,6.7,16.3,33.6,62.1,104.5,168.5,256.1] 
for i = 1:8                
plot(DEFLECTION_DATA(:,i),LOAD_DATA(i,:),'-r*') 
hold on 
end 

  
for i = 1:8                
plot(DEFLECTION_DATA(i,:),LOAD_DATA(:,i),'-b') 
hold on 
end 

  
for n = 1:8 
gradient(1,n) = LOAD_DATA(n,8)/DEFLECTION_DATA(8,n); 
hold on 
end 
gradient 

  
Lmark = 1; 
for L = 1800:600:6000 
    %xLon400(1,Lmark)= L/400; 
    xLon360(1,Lmark) = L/360; 
    %xLon300(1,Lmark) = L/300; 
    xLon250(1,Lmark) = L/250; 
    %xLon200(1,Lmark) = L/200; 
    xLon150(1,Lmark) = L/150; 
    xLon100(1,Lmark) = L/100; 
    Lmark = Lmark + 1; 
end 
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%xLon = [xLon400;xLon350;xLon300;xLon250;xLon200;xLon150;xLon100] 
xLon = [xLon360;xLon250;xLon150;xLon100] 

  

  
g_mark = 1;%2; 
for column_mark = 1:8 
for row_mark = 1:4 

     
        yLon(row_mark,column_mark) = xLon(row_mark,column_mark) * 

gradient(1,g_mark); 
end 
g_mark = g_mark + 1; 
end 

  

  

  
yLon 
for xplot = 1:8 
    for yplot = 1:4 

         
        %if yLon(yplot,xplot) < LOAD_DATA(yplot,xplot)+60 
        %xplot(yplot,xplot) = xLon(yplot,xplot) 
        %yplot(yplot,xplot) = yLon(yplot,xplot) 
        %plot(xLon(yplot,xplot),yLon(yplot,xplot),'-g*') 
        plot(xLon(yplot,:),yLon(yplot,:),'-g*') 

         
        hold on 

         

      %  end 
    end 
end 

  

  
ylim([0 120]) 
grid on 
ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Deflection (mm)','fontsize',14) 
title ('Load / Deflection Limit Graphs for LOW GRADE 

SLAB','fontsize',14) 
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G.4 – Matlab code used to plot stress limit graphs 
clear 
clc 
SPAN_1 = 3600; 
SPAN_2 = 6000; 

  

%______________________DEFLECTIONS____________________________________

_____ 
Stress_Lim_SLAB = [35714,35714]; 
Stress_Lim_NORM = [80000,80000] 
%_______________3.6 m x 3.6 m Slab____________________________________ 

  
Load_One_t = 

[0,7.889,12.96,20.849,33.809,46.769,59.729,72.689,105.089];; 
Stress_One_t = 

[0,701.8559,1247.9872,1949.8431,3197.8302,4445.8174,5693.8045,6941.791

7,10061.7596]; 

  
plot(Stress_One_t, Load_One_t,'b--*') 

  
hold on 
%_______________3.6 m x 3.6 m 

Standard____________________________________ 

  
Load_Two_t = 

[0,4.696,12.96,17.656,30.616,43.576,56.536,69.496,101.896]; 
Stress_Two_t = 

[0,1833.6946,6240.0804,8073.77550,14313.8554,20553.9358,26794.0162,330

34.0966,48634.2976]; 

  
Drawing_Limit = [0,max(Load_One_t)]; 

  
plot(Stress_Two_t, Load_Two_t,'m--*'); 
hold on 

  
plot(Stress_Lim_SLAB,Drawing_Limit,'b'); 

  
hold on 

  
plot(Stress_Lim_NORM,Drawing_Limit,'m'); 

  
hold on 

  

ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Stress (kPa)','fontsize',14) 
title ('Timber Flooring Stress Limits 3.6m span','fontsize',14) 
h = legend('3.6m x 3.6m Slab','3.6m x 3.6m Standard','Stress 

Limit',2); 
grid on 

  

  

figure 

  

  

  
%_______________6 m x 3.6 m Slab____________________________________ 

  
Load_One_s = 

[0,12.503,21.6,34.103,55.703,77.303,98.903,120.503,174.503]; 
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Stress_One_s = 

[0,1671.3984,3048.7292,4720.1276,7768.8569,10817.5861,13866.3153,16915

.0445,24536.8676]; 

  
plot(Stress_One_s, Load_One_s,'b--*') 

  
hold on 
%_______________6 m x 3.6 m 

Standard____________________________________ 

  
Load_Two_s = 

[0,7.2387,21.6,28.8387,50.4387,72.0387,93.6387,115.2387,169.2387]; 
Stress_Two_s = 

[0,4102.7515,14024.84,18125.2787,32149.0627,46173.9029,60198.7431,7422

3.5834,109285.6839]; 

  
Drawing_Limit = [0,max(Load_One_s)]; 

  
plot(Stress_Two_s, Load_Two_s,'m--*') 

  
hold on 

  
plot(Stress_Lim_SLAB,Drawing_Limit,'b') 

  
hold on 

  
plot(Stress_Lim_NORM,Drawing_Limit,'m') 

  
hold on 

  
ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Stress (kPa)','fontsize',14) 
title ('Timber Flooring Stress Limits for 6m span','fontsize',14) 
h = legend('6m x 3.6m Slab','6m x 3.6m Standard','Stress Limit',2); 
grid on 

  

  
%_____________COMPARISON OF STRESSES ON STANDARD FLOORING 

SETUP___________% 

  
figure 

  
%Load Case 1 
%STRESS_COMPARISONa = [Stress_Two_s(1),Stress_Two_t(1)] 
%LOAD_COMPARISONa = [Load_Two_s(1),Load_Two_t(1)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--*') 
%hold on 

  
%Load Case 1 
STRESS_COMPARISONa = [Stress_Two_s(2),Stress_Two_t(2)]; 
LOAD_COMPARISONa = [Load_Two_s(2),Load_Two_t(2)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--*') 
if STRESS_COMPARISONa(2) < Stress_Lim_NORM(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_NORM(1) 
        CASE ='Slab Stress Limit' 
          UNKNOWN_SPAN_LC1js = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_NORM(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
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            plot(Stress_Lim_NORM(1),UNKNOWN_SPAN_LC1,'bd') 
            SLAB_LENGTH_LC1 = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC1 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 

  
hold on 

  
%Load Case 2 
STRESS_COMPARISONa = [Stress_Two_s(3),Stress_Two_t(3)]; 
LOAD_COMPARISONa = [Load_Two_s(3),Load_Two_t(3)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--*') 
if STRESS_COMPARISONa(2) < Stress_Lim_NORM(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_NORM(1) 
          UNKNOWN_SPAN_LC2 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_NORM(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_NORM(1),UNKNOWN_SPAN_LC2,'gd') 
            SLAB_LENGTH_LC2js = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC2 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  

  
%Load Case 3 
STRESS_COMPARISONa = [Stress_Two_s(4),Stress_Two_t(4)]; 
LOAD_COMPARISONa = [Load_Two_s(4),Load_Two_t(4)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--*') 
if STRESS_COMPARISONa(2) < Stress_Lim_NORM(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_NORM(1) 
          UNKNOWN_SPAN_LC3 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_NORM(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_NORM(1),UNKNOWN_SPAN_LC3,'cd') 
            SLAB_LENGTH_LC3js = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC3 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 4 
STRESS_COMPARISONa = [Stress_Two_s(5),Stress_Two_t(5)]; 
LOAD_COMPARISONa = [Load_Two_s(5),Load_Two_t(5)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'m--*') 
if STRESS_COMPARISONa(2) < Stress_Lim_NORM(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_NORM(1) 
          UNKNOWN_SPAN_LC4 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_NORM(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_NORM(1),UNKNOWN_SPAN_LC4,'md') 
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            SLAB_LENGTH_LC6js = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC6 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 5 
STRESS_COMPARISONa = [Stress_Two_s(6),Stress_Two_t(6)]; 
LOAD_COMPARISONa = [Load_Two_s(6),Load_Two_t(6)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--o') 
if STRESS_COMPARISONa(2) < Stress_Lim_NORM(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_NORM(1) 
          UNKNOWN_SPAN_LC5 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_NORM(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_NORM(1),UNKNOWN_SPAN_LC5,'rd') 
            SLAB_LENGTH_LC5js = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC5 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  

  
%Load Case 6 
STRESS_COMPARISONa = [Stress_Two_s(7),Stress_Two_t(7)]; 
LOAD_COMPARISONa = [Load_Two_s(7),Load_Two_t(7)]; 

  
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--o') 

  
if STRESS_COMPARISONa(2) < Stress_Lim_NORM(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_NORM(1) 
          UNKNOWN_SPAN_LC6 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_NORM(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_NORM(1),UNKNOWN_SPAN_LC6,'bd') 
            SLAB_LENGTH_LC6js = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC6 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 

  
hold on 

  

  
%Load Case 7 
STRESS_COMPARISONa = [Stress_Two_s(8),Stress_Two_t(8)]; 
LOAD_COMPARISONa = [Load_Two_s(8),Load_Two_t(8)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--o') 

  
if STRESS_COMPARISONa(2) < Stress_Lim_NORM(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_NORM(1) 
          UNKNOWN_SPAN_LC7 = (((LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))/(STRESS_COMPARISONa(1)-STRESS_COMPARISONa(2)))... 
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            *(Stress_Lim_NORM(1) - STRESS_COMPARISONa(2)))+ 

LOAD_COMPARISONa(2); 
        hold on 
         plot(Stress_Lim_NORM(1),UNKNOWN_SPAN_LC7,'gd') 
         SLAB_LENGTH_LC7js = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC7 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 

     

  
        %LOAD_COMPARISONa(2) = SPAN_1; 
        %LOAD_COMPARISONa(1) = SPAN_2; 
end 
hold on 
%Load Case 1 
%STRESS_COMPARISONa = [Stress_Two_s(9),Stress_Two_t(9)] 
%LOAD_COMPARISONa = [Load_Two_s(9),Load_Two_t(9)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--o') 
%hold on 

  
plot(Stress_Lim_SLAB,Drawing_Limit,'r') 
hold on 
plot(Stress_Lim_NORM,Drawing_Limit,'b') 

  
ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Stress (kPa)','fontsize',14) 
title ('Comparison Between Standard 3.6m and 6m span for each Load 

Case','fontsize',14) 
h = legend('Gravity','1kN/m^2','Gravity + 1kN/m^2','Gravity + 

2kN/m^2','Gravity + 3kN/m^2'... 
    ,'Gravity + 4kN/m^2','Gravity + 5kN/m^2','Limiting Stress',2); 
grid on 

  

  
%_____________COMPARISON OF STRESSES ON SLAB FLOORING 

SETUP___________% 

  

figure 

  
%Load Case 1 
%STRESS_COMPARISONa = [Stress_One_s(1),Stress_One_t(1)] 
%LOAD_COMPARISONa = [Load_One_s(1),Load_One_t(1)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--*') 
%hold on 
%Load Case 1 
STRESS_COMPARISONa = [Stress_One_s(2),Stress_One_t(2)]; 
LOAD_COMPARISONa = [Load_One_s(2),Load_One_t(2)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--*') 

  
if STRESS_COMPARISONa(2) < Stress_Lim_SLAB(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_SLAB(1) 
          UNKNOWN_SPAN_LC1 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_SLAB(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_SLAB(1),UNKNOWN_SPAN_LC1,'bd') 
            SLAB_LENGTH_LC1ss = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC1 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
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end 

  
hold on 

  
%Load Case 2 
STRESS_COMPARISONa = [Stress_One_s(3),Stress_One_t(3)]; 
LOAD_COMPARISONa = [Load_One_s(3),Load_One_t(3)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--*') 
if STRESS_COMPARISONa(2) < Stress_Lim_SLAB(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_SLAB(1) 
          UNKNOWN_SPAN_LC2 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_SLAB(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_SLAB(1),UNKNOWN_SPAN_LC2,'gd') 
            SLAB_LENGTH_LC2ss = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC2 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 3 
STRESS_COMPARISONa = [Stress_One_s(4),Stress_One_t(4)]; 
LOAD_COMPARISONa = [Load_One_s(4),Load_One_t(4)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--*') 
if STRESS_COMPARISONa(2) < Stress_Lim_SLAB(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_SLAB(1) 
          UNKNOWN_SPAN_LC3 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_SLAB(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_SLAB(1),UNKNOWN_SPAN_LC3,'cd') 
            SLAB_LENGTH_LC3ss = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC3 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 4 
STRESS_COMPARISONa = [Stress_One_s(5),Stress_One_t(5)]; 
LOAD_COMPARISONa = [Load_One_s(5),Load_One_t(5)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'m--*') 
if STRESS_COMPARISONa(2) < Stress_Lim_SLAB(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_SLAB(1) 
          UNKNOWN_SPAN_LC4 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_SLAB(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_SLAB(1),UNKNOWN_SPAN_LC4,'md') 
            SLAB_LENGTH_LC4ss = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC4 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 
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%Load Case 5 
STRESS_COMPARISONa = [Stress_One_s(6),Stress_One_t(6)]; 
LOAD_COMPARISONa = [Load_One_s(6),Load_One_t(6)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--o') 

  
if STRESS_COMPARISONa(2) < Stress_Lim_SLAB(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_SLAB(1) 
          UNKNOWN_SPAN_LC5 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_SLAB(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_SLAB(1),UNKNOWN_SPAN_LC5,'rd') 
            SLAB_LENGTH_LC5ss = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC5 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  

  
%Load Case 6 
STRESS_COMPARISONa = [Stress_One_s(7),Stress_One_t(7)]; 
LOAD_COMPARISONa = [Load_One_s(7),Load_One_t(7)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--o') 
if STRESS_COMPARISONa(2) < Stress_Lim_SLAB(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_SLAB(1) 
          UNKNOWN_SPAN_LC6 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_SLAB(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_SLAB(1),UNKNOWN_SPAN_LC6,'bd') 
            SLAB_LENGTH_LC6ss = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC6 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 7 
STRESS_COMPARISONa = [Stress_One_s(8),Stress_One_t(8)]; 
LOAD_COMPARISONa = [Load_One_s(8),Load_One_t(8)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--o') 

  
if STRESS_COMPARISONa(2) < Stress_Lim_SLAB(1) 
    if STRESS_COMPARISONa(1) > Stress_Lim_SLAB(1) 
          UNKNOWN_SPAN_LC7 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Stress_Lim_SLAB(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Stress_Lim_SLAB(1),UNKNOWN_SPAN_LC7,'bd') 
            SLAB_LENGTH_LC7ss = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC7 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 
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%Load Case 1 
%STRESS_COMPARISONa = [Stress_Two_s(9),Stress_Two_t(9)] 
%LOAD_COMPARISONa = [Load_Two_s(9),Load_Two_t(9)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--o') 
%hold on 

  
plot(Stress_Lim_NORM,Drawing_Limit,'r') 
hold on 
plot(Stress_Lim_SLAB,Drawing_Limit,'b') 

  
ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Stress (kPa)','fontsize',14) 
title ('Comparison Between Slabs of 3.6m and 6m span for each Load 

Case','fontsize',14) 
h = legend('Gravity','1kN/m^2','Gravity + 1kN/m^2','Gravity + 

2kN/m^2','Gravity + 3kN/m^2'... 
    ,'Gravity + 4kN/m^2','Gravity + 5kN/m^2','Limiting Stress',2); 
grid on 
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G.5 – Matlab code used to plot deflection limit graphs 
clear 
clc 
SPAN_1 = 3600;    
SPAN_2 = 6000; 
%______________________DEFLECTIONS____________________________________

_____ 
Deflection_Lim_3p6 = [12,12]; 
%_______________3.6 m x 3.6 m Slab____________________________________ 

  
Load_One_t = 

[0,7.889,12.96,20.849,33.809,46.769,59.729,72.689,105.089]; 
Deflection_One_t = [0,2.5,4.4,6.9,11.3,15.7,20.1,24.5,35.5]; 

  

plot(Deflection_One_t, Load_One_t,'b--*') 

  
hold on 
%_______________3.6 m x 3.6 m 

Standard____________________________________ 

  
Load_Two_t = 

[0,4.696,12.96,17.656,30.616,43.576,56.536,69.496,101.896]; 
Deflection_Two_t = [0,2.1,6.9,9.0,15.8,22.7,29.5,36.4,53.6]; 

  
Drawing_Limit = [0,max(Load_One_t)]; 

  
plot(Deflection_Two_t, Load_Two_t,'m--*') 
hold on 

  
plot(Deflection_Lim_3p6,Drawing_Limit,'r') 

  
hold on 

  
ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Deflection (mm)','fontsize',14) 
title ('Timber Flooring Deflection Limits 3.6m span','fontsize',14) 
h = legend('3.6m x 3.6m Slab','3.6m x 3.6m Standard','Deflection 

Limit',2); 
grid on 

  

  
figure 

  

  
Deflection_Lim_6 = [15,15]; 

  
%_______________6 m x 3.6 m Slab____________________________________ 

  
Load_One_s = 

[0,12.503,21.6,34.103,55.703,77.303,98.903,120.503,174.503]; 
Deflection_One_s = [0,15.8,28.8,44.6,73.4,102.2,131,159.8,231.8]; 

  
plot(Deflection_One_s, Load_One_s,'b--*') 

  
hold on 
%_______________6 m x 3.6 m 

Standard____________________________________ 

  

Load_Two_s = 

[0,7.2387,21.6,28.8387,50.4387,72.0387,93.6387,115.2387,169.2387]; 
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Deflection_Two_s = [0,10.4,35.1,45.4,80.5,115.6,150.7,185.8,273.5]; 

  
Drawing_Limit = [0,max(Load_One_s)]; 

  
plot(Deflection_Two_s, Load_Two_s,'m--*') 
hold on 

  
plot(Deflection_Lim_6,Drawing_Limit,'r') 

  
hold on 

  
ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Deflection (mm)','fontsize',14) 
title ('Timber Flooring Deflection Limits for 6m span','fontsize',14) 
h = legend('6m x 3.6m Slab','6m x 3.6m Standard','Deflection 

Limit',2); 
grid on 

  
%_____________COMPARISON OF Deflections ON STANDARD FLOORING 

SETUP___________% 

  

figure 

  
%Load Case 1 
%STRESS_COMPARISONa = [Deflection_Two_s(1),Deflection_Two_t(1)] 
%LOAD_COMPARISONa = [Load_Two_s(1),Load_Two_t(1)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--*') 
%hold on 

  
%Load Case 1 
STRESS_COMPARISONa = [Deflection_Two_s(2),Deflection_Two_t(2)]; 
LOAD_COMPARISONa = [Load_Two_s(2),Load_Two_t(2)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC1 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2) 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC1,'bd') 
            SLAB_LENGTH_LC1jd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC1 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 2 
STRESS_COMPARISONa = [Deflection_Two_s(3),Deflection_Two_t(3)]; 
LOAD_COMPARISONa = [Load_Two_s(3),Load_Two_t(3)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC2 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2) 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC2,'gd') 
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            SLAB_LENGTH_LC2jd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC2 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 3 
STRESS_COMPARISONa = [Deflection_Two_s(4),Deflection_Two_t(4)]; 
LOAD_COMPARISONa = [Load_Two_s(4),Load_Two_t(4)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC3 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2) 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC3,'cd') 
            SLAB_LENGTH_LC3jd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC3 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 4 
STRESS_COMPARISONa = [Deflection_Two_s(5),Deflection_Two_t(5)]; 
LOAD_COMPARISONa = [Load_Two_s(5),Load_Two_t(5)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'m--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC4 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2) 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC4,'md') 
            SLAB_LENGTH_LC4jd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC4 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 5 
STRESS_COMPARISONa = [Deflection_Two_s(6),Deflection_Two_t(6)]; 
LOAD_COMPARISONa = [Load_Two_s(6),Load_Two_t(6)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--o') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC5 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2) 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC5,'rd') 
            SLAB_LENGTH_LC5jd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC5 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
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    end 
end 
hold on 

  
%Load Case 6 
STRESS_COMPARISONa = [Deflection_Two_s(7),Deflection_Two_t(7)]; 
LOAD_COMPARISONa = [Load_Two_s(7),Load_Two_t(7)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--o') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC6 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2) 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC6,'bd') 
            SLAB_LENGTH_LC6jd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC6 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 7 
STRESS_COMPARISONa = [Deflection_Two_s(8),Deflection_Two_t(8)]; 
LOAD_COMPARISONa = [Load_Two_s(8),Load_Two_t(8)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--o') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC7 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC7,'gd') 
            SLAB_LENGTH_LC7jd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC7 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 
%Load Case 1 
%STRESS_COMPARISONa = [Deflection_Two_s(9),Deflection_Two_t(9)] 
%LOAD_COMPARISONa = [Load_Two_s(9),Load_Two_t(9)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--o') 
%hold on 

  
plot(Deflection_Lim_6,Drawing_Limit,'r') 
hold on 
plot(Deflection_Lim_3p6,Drawing_Limit,'b') 

  

ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Deflection (mm)','fontsize',14) 
title ('Comparison Between Standard 3.6m and 6m span for each Load 

Case','fontsize',14) 
h = legend('Gravity','1kN/m^2','Gravity + 1kN/m^2','Gravity + 

2kN/m^2','Gravity + 3kN/m^2'... 
    ,'Gravity + 4kN/m^2','Gravity + 5kN/m^2','Limiting Deflection',2); 
grid on 
figure 
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%Limit_Lengths = 

[SLAB_LENGTH_LC1jd,SLAB_LENGTH_LC2jd,SLAB_LENGTH_LC3jd,SLAB_LENGTH_LC4

jd,SLAB_LENGTH_LC5jd,SLAB_LENGTH_LC6jd,SLAB_LENGTH_LC7jd] 
plot([4298.4,3.9956],[Load_Two_s(3),Load_Two_s(4)]) 

  
%_____________COMPARISON OF Deflections ON SLAB FLOORING 

SETUP___________% 

  
figure 

  
%Load Case 1 
%STRESS_COMPARISONa = [Deflection_One_s(1),Deflection_One_t(1)] 
%LOAD_COMPARISONa = [Load_One_s(1),Load_One_t(1)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--*') 
%hold on 

  
%Load Case 1 
STRESS_COMPARISONa = [Deflection_One_s(2),Deflection_One_t(2)]; 
LOAD_COMPARISONa = [Load_One_s(2),Load_One_t(2)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC1 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC1,'bd') 
            SLAB_LENGTH_LC1sd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC1 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 2 
STRESS_COMPARISONa = [Deflection_One_s(3),Deflection_One_t(3)]; 
LOAD_COMPARISONa = [Load_One_s(3),Load_One_t(3)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC2 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC2,'gd') 
            SLAB_LENGTH_LC2sd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC2 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 3 
STRESS_COMPARISONa = [Deflection_One_s(4),Deflection_One_t(4)]; 
LOAD_COMPARISONa = [Load_One_s(4),Load_One_t(4)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
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          UNKNOWN_SPAN_LC3 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC3,'cd') 
            SLAB_LENGTH_LC3sd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC3 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 4 
STRESS_COMPARISONa = [Deflection_One_s(5),Deflection_One_t(5)]; 
LOAD_COMPARISONa = [Load_One_s(5),Load_One_t(5)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'m--*') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC4 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC4,'md') 
            SLAB_LENGTH_LC4sd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC4 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 5 
STRESS_COMPARISONa = [Deflection_One_s(6),Deflection_One_t(6)]; 
LOAD_COMPARISONa = [Load_One_s(6),Load_One_t(6)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'r--o') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC5 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC5,'rd') 
            SLAB_LENGTH_LC5sd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC5 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 6 
STRESS_COMPARISONa = [Deflection_One_s(7),Deflection_One_t(7)]; 
LOAD_COMPARISONa = [Load_One_s(7),Load_One_t(7)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'b--o') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC6 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
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                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC6,'bd') 
            SLAB_LENGTH_LC6sd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC6 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 

  
%Load Case 7 
STRESS_COMPARISONa = [Deflection_One_s(8),Deflection_One_t(8)]; 
LOAD_COMPARISONa = [Load_One_s(8),Load_One_t(8)]; 
plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'g--o') 
if STRESS_COMPARISONa(2) < Deflection_Lim_6(1) 
    if STRESS_COMPARISONa(1) > Deflection_Lim_6(1) 
          UNKNOWN_SPAN_LC7 = ( ( (LOAD_COMPARISONa(1) - 

LOAD_COMPARISONa(2))* (Deflection_Lim_6(1) - 

STRESS_COMPARISONa(2)))/... 
                          (STRESS_COMPARISONa(1)-

STRESS_COMPARISONa(2)) ) + LOAD_COMPARISONa(2); 
        hold on 
            plot(Deflection_Lim_6(1),UNKNOWN_SPAN_LC7,'gd') 
            SLAB_LENGTH_LC7sd = (((SPAN_2-SPAN_1)*(UNKNOWN_SPAN_LC7 - 

LOAD_COMPARISONa(2)))/... 
             (LOAD_COMPARISONa(1) - LOAD_COMPARISONa(2))) + SPAN_1 
    end 
end 
hold on 
%Load Case 1 
%STRESS_COMPARISONa = [Deflection_Two_s(9),Deflection_Two_t(9)] 
%LOAD_COMPARISONa = [Load_Two_s(9),Load_Two_t(9)] 
%plot(STRESS_COMPARISONa, LOAD_COMPARISONa,'c--o') 
%hold on 

  
plot(Deflection_Lim_6,Drawing_Limit,'r') 
hold on 
plot(Deflection_Lim_3p6,Drawing_Limit,'b') 

  
ylabel('Total Load (kN) (Including Self Weight)','fontsize',14) 
xlabel('Deflection (mm)','fontsize',14) 
title ('Comparison Between Slabs of 3.6m and 6m span for each Load 

Case','fontsize',14) 
h = legend('Gravity','1kN/m^2','Gravity + 1kN/m^2','Gravity + 

2kN/m^2','Gravity + 3kN/m^2'... 
    ,'Gravity + 4kN/m^2','Gravity + 5kN/m^2','Limiting Deflection',2); 
grid on 
figure 

  
plot([SLAB_LENGTH_LC1sd,SLAB_LENGTH_LC2sd,SLAB_LENGTH_LC3sd,SLAB_LENGT

H_LC4sd],... 
    [Load_One_s(2),Load_One_s(3),Load_One_s(4),Load_One_s(5)]) 

 


