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ABSTRACT 
 

Today’s society demand faster, easier, safer and more accurate spatial information 

than ever before. Over the past 15 years surveyors have seen the introduction of 

reflectorless technology and more recently, laser scanning. Reflectorless technology 

and laser scanning has become a useful tool in many surveying applications. This 

technology has opened the door to the majority of demands that the community and 

other surveyors request. Due to this evolving technology specific laser scanning 

instruments have been developed. These instruments can cost in excess of half a 

million dollars and require specific software. In recent times companies have 

introduced laser scanning capabilities into total stations to reduce costs and integrate 

technology, which has launched the new evolution in total stations with most now 

having reflectorless and scanning capabilities included within the instrument.  

 

This project was undertaken to address surveyor’s uncertainties regarding 

reflectorless technology and laser scanning capabilities within total stations. A 

number of tests were conducted by both the Leica 1205R and the Trimble S6 

instruments to compare both accuracy and performance. The three tests performed 

varied from simple point comparisons to scanning of volumes and the measuring of 

building encroachments. The results found there to be very small errors when 

performing simple point comparisons over a small range. The total stations also 

performed very well in the volume scans as both instruments produced similar results. 

Lastly, some problems were found with the encroachment testing as software 

capabilities limited my outputs. Both reflectorless and the laser scanning capabilities 

performed very well allowing me to test and analyse their full potential.  
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 GLOSSARY OF TERMS 
 

3D - Three Dimensional: A description of the spatial environment in reference to its 

three dimensions. 

 

Total Station: An electronic optical measuring unit used within modern day 

surveying. 

 

EDM - Electronic Distance Measurement: A device that measures the distance 

from an instrument to an object by the use of a prism. 

 

Reflectorless Total Station: A device that measures a distance to an object without 

the need of a prism to reflect. 

 

Accuracy: The degree of closeness of a measurement to the true value. 

 

Precision: The degree of repeatability of measurements under unchanged conditions 

that show the same result (may not be accurate). 

 

Point Cloud: An array of three dimensional points in space. 
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Chapter 1 – Introduction 
 

 

1.1 Outline 
 

This chapter will provide an outline of the project background, research problem, 

objectives and justification for this project. The dissertation will describe some of the 

fundamental characteristics of reflectorless technology, laser scanning and the 

specifications of the chosen robotic total stations. It will also cover in detail the 

comparisons between the robotic total stations in regards to their scanning capabilities 

of volumes and structures. This technology is relativity new to the present time so 

there is a need to increase the awareness of it and perhaps to solve answers and create 

new questions for further developments in this field.  

 

1.2 Project Background 
 

In society today there is a demand for faster, easier and safer technology and methods. 

While fulfilling the role as spatial scientists there is a definite need to gather 

information ‘faster’, understand the operation of a wide range of instruments and 

methods to perform surveying applications ‘easier’ and to allow the collection of data 

where other methods could not vantage ‘safer’. Technology within spatial science has 

evolved rapidly over the past ten years by refining the above needs not only for 

surveyors but general society as well. Changes are evident with the successful 

introduction of technology into the spatial science industry. An example of this is the 

Global Positioning System (GPS) which is now seen as a must have device for many 

surveying applications. GPS introduced methods of measurement from satellites 

without the need of traditional traversing. From the introduction of this new 

technology questions were raised of its capabilities. These questions included the 

following: What range of accuracies does it achieve? Is it affected by obstructions? 

Will this technology be useful to anyone?  
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Chapter 1 – Introduction 

After research was carried out, the spatial science industry saw GPS as a standalone 

application and the next revolution in surveying methods. We are now one step 

further into the future with GPS integrated into total stations and the inclusions of 

robotic and reflectorless technology which exist in standalone systems incorporating 

all functions.  

 

A relatively new development in technology is ground-based laser scanning also 

known as terrestrial laser scanning. Laser scanning has evolved from reflectorless and 

robotic technology. It is the next generation of automated surveying. Laser scanning 

provides faster data capture, easier setup and use of equipment and allows collection 

of data where other methods could not vantage. This means it is also safer for users. 

By meeting the current needs of today’s society, spatial science industries can now 

perform more tasks at a reduced cost and time. 

 

Laser scanning is becoming increasingly popular for many applications including the 

monitoring of features and objects. Scanners are used to monitor high wall 

movements in mine sites as they do not require a surveyor on the high wall. The 

scanner can record thousands of points automatically and the risk of injury to 

operators and assistants is minimised. Consequently, the need is increasing to start 

testing and comparing this new technology so it is guaranteed to meet professional 

and performance standards not only for the surveyors utilising it but also for the 

clients involved in the project.  

 

As the name suggests reflectorless technology does not require the use of a reflector 

or prism to record the distances. Measurements are made by the instrument emitting a 

beam of light towards a feature where it is reflected back to the instrument and a 

distance is then calculated. There are two types of measurement; pulsed time of flight 

(TOF) and phase based. These will be explained in greater detail later. Reflectorless 

technology does have some limitations that need to be researched and these will also 

be explained in greater detail further into this project paper.   

 

Robotic total stations allow the control over an instrument via remote control 

generally from the reflector’s range pole. The operator can control the instrument by 
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the remote control connecting to the instrument wirelessly. This can remove the need 

for an assistant field hand as the operator can complete the task by themselves.  

 

1.3 Statement of Problem 
 

Although reflectorless technology has been around for a number of years, there has 

been limited testing and availability of this technology. Problems encountered with 

reflectorless technology include its effect on different materials, colours and distances 

as well as safety issues and the uses of the technology. Upon investigating these 

problems I hope new techniques will arise for further research and testing for 

continuing projects.   

 

1.4 Project Aim 
 

This project seeks to compare the laser scanning capabilities and reflectorless 

limitation of two robotic total stations for various surveying applications. 

 

1.5 Objectives 
 

The key objectives of this project are: 

 

i. To research the existing laser scanning technology, capabilities and 

specifications of both the Trimble S6 and Leica 1205R.  

ii. Identify a rigorous testing regime (speed, accuracy etc) and range of possible 

testing applications including stock piles, buildings and vegetation.  

iii. Test the scanning capabilities on various features including soil, structural 

features (roof heights, floor heights and window frames) and point 

comparisons under different conditions.  

iv. Analyse the outcomes of the test according to a range of criteria.  

v. Discuss the implications of the results with respect to surveying organizations 

and potential opportunities.  

vi. If time permits extend the range of scanning tests and situations. 
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1.6 Justification 
 

It is important to realise the full capabilities and limitations of laser scanning and 

reflectorless technology. Many people within the surveying industry are not aware of 

errors and the uses these instruments are capable of performing. This project will test 

performance, accuracy, applications, comparisons and modelling. These are the 

necessary tools for laser scanning and reflectorless applications. It is essential to 

provide awareness and real application results to provide information to the user 

which is the intention of this project.       

 

1.7 Summary: Chapter 1 
 

As the project aim states this project will seek to compare the laser scanning 

capabilities and reflectorless limitation of two robotic total stations for various 

surveying applications. This project will review all available literature on the 

technology of both laser scanning robotic total stations and the theory behind how 

they work. It is anticipated that by the end of this dissertation the results will provide 

answers to the objectives listed above and solve the problem encountered. 
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2.1 Introduction 
 

This chapter will outline the relevant literature associated with reflectorless total 

station scanning. It will also examine the technology of how reflectorless and laser 

scanning operates. There is limited research that has been conducted on laser scanning 

with robotic total stations, however there has been a considerable amount of research 

on laser scanning in general. This review will provide the theory behind this 

technology, its history and current uses. 

 

2.2 Principle of Electronic Distance Measurement 
 

Accurate measurements are very important in today’s surveying and engineering 

society where we see countless disputes between where boundaries are located and 

buildings are set out and also the need for accurate measurement of volumes. The 

need for very accurate measurement is important as a base for any surveying 

applications. Besides the plumb bob and tape, there are two basic forms of 

measurement used by a total station. These two measuring types are pulsed time of 

flight (TOF) and phase shift.  Both these methods are used to achieve the same result 

which is to take accurate measurements. They both achieve the same goal however 

they use two different methods to achieve this. Although both methods look to 

achieve the same goal, they both have their advantages and disadvantages in different 

applications. Some instruments now are offering the option of both methods which 

gives the option back to the surveyor to decide. The surveyor is therefore not limited 

or disadvantaged without the other. 

 

2.2.1 Pulsed Time of Flight Measurement  
 

Pulsed time of flight (TOF) measurement is an active mode of measuring where the 

instrument emits its own source of energy. In comparison, a passive mode of 

Comparison of Robotic Total Stations for Scanning of Volumes or Structures  5



Chapter 2 – Literature Review 

measurement relies on an external source of energy e.g. the sun. TOF measurement 

works by emitting a light pulse of energy towards an object or surface that is being 

measured. This pulse is timed from when it leaves the light emitting device to when it 

is reflected back from the object to the instrument. Because the time (t) of the pulse is 

recorded to and from we have to half the time to get the distance to the object. 

Equation 2.1 outlines the calculation method. Distance, ρ, is found by speed of light, 

c, multiplied by time of fight, t, divided by two. 

 

  Ρ = (c * t) / 2     (Equation 2.1) 

 

Pulsed TOF method uses wide cone like laser pulses which is useful for long range 

measuring but not as effective for short range measuring. This can also have an effect 

on the accuracy of the measurement. This type of measurement method is also 

dependant on the accuracy of the speed of light. In general terms, the speed of light is 

measured in a controlled vacuum, whereas real world situations are not in a controlled 

environment. Speed of light when passed through different materials, weather and 

surfaces will change the speed of the light. TOF method is also more tolerant to 

interference of the beam. Due to further refining of this technology the difference in 

accuracy has now become insignificant (Hoglund & Large 2005).  

 

2.2.2 Phased Shift Measurement  
 

Phased shift measurements are calculated in a similar way to an EDM in older total 

stations. Instead of using a laser light pulse like TOF, they transmit a modulated 

optical measuring beam also know as a sine wave type beam (see figure 2.1). This 

beam is emitted from the EDM towards a surface where it is reflected back to the 

EDM. This allows for the comparison between the original sine wave and the 

reflected sine wave producing a horizontal shift between waves called a ‘phase shift’. 

This phase shift can then determine the distance travelled from the length of one cycle 

by the number of cycles shifted. 

 

Comparison of Robotic Total Stations for Scanning of Volumes or Structures  6



Chapter 2 – Literature Review 

 
Figure 2.1: Phase Shift (θ) used to calculate distance travelled. 

Source: (Wikipedia n.d. a) 
 
Phase shift measurement is considered to have a greater accuracy compared to the 

TOF method. This is because the beam has a narrow field of view and it is not 

affected by as many variables. However, the phase shift method is known to have a 

limited range and is affected by interference which therefore makes it less desirable to 

users to perform these measurements (Hoglund & Large 2005).  

 

Reflectorless measurement can be seen as a form of remote sensing application. 

Remote sensing can be defined as the science, art and technology associated with the 

acquisition and analysis of data about an object, area or phenomenon without direct 

contact. This definition has similar characteristics to reflectorless measurement used 

by laser scanning (Mather 2004).    

 

2.3 Characteristics of Electromagnetic Radiation (EMR) 
 

2.3.1 Electromagnetic Wave (EM) 
 

An electromagnetic (EM) wave (see figure 2.2) has two properties, the first being an 

electrical field which varies in magnitude perpendicular to the direction of travel. The 

second component is a magnetic field which varies in magnitude at right angles to the 

electrical field. Both fields travel at the speed of light.    
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Figure 2.2: Electromagnetic Wave 

Source: (National Research Council Canada 2006) 
 
 

2.3.2 Electromagnetic Radiation   
 

Electromagnetic radiation (EMR) is a form of energy that has the properties of a 

wave. Electromagnetic radiation has two components namely wavelength and 

frequency. Wavelength is the length of one cycle and the frequency is the number of 

wave cycles that are repeated per time period. From figure 2.3 below it can be seen 

that the wavelength is the shortest towards the Gamma Ray end of the spectrum 

giving out a higher frequency. Whereas, at the opposite end of the spectrum towards 

the radar and infrared regions the wavelengths are longer and have less frequency. 

 

 
Figure 2.3: Electromagnetic Spectrum, with frequency and wavelength properties. 

Source: (University of Minnesota n.d.) 
 

Different wavelengths play a major role in how features are gathered and represented 

when EMR is used for measurement. If you have ever seen a photograph of 

vegetation studies you will often see that the photo will misrepresent the true colours 

of vegetation. They will be either displayed in fluorescent green or red. This is 
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because different features are detectable by different wavelengths. In this case 

vegetation has high reflectance in the infrared red spectrum allowing us to control 

what colours will be shown for that region. Figure 2.4 represents a spectrum which is 

a region defined by the measurement nanometres or terahertz and this is called the 

electromagnetic spectrum.  Electromagnetic spectrum is a range of all possible 

electromagnetic radiation frequencies.    

 

 
Figure 2.4: Electromagnetic Spectrum. 

Source: (South Carolina Department of Natural Resources 2009) 
 
The visible light region ranges from 380nm to 760nm. This region on the spectrum is 

where the wavelength is the strongest and most sensitive to our eyes. Humans cannot 

see any other part of the spectrum beside the visible light region. 

 

2.3.3 EMR Interactions  
 

Various effects like scattering, transmission, atmospherics and absorption can 

influence the path or return signal of a wavelength. Scattering is the affect that a 

surface has on a wavelength. There are two types of scattering these are specular and 

diffuse. Figure 2.5 represents specular type reflectance which often occurs on smooth 

surfaces. This happens when the signal is reflected back in a mirror like form. Figure 

2.6 shows diffuse reflectance occurring on rough surfaces making the signal reflect in 

different directions.    
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Figure 2.5: Specular Reflection. 

Source: (Wikipedia n.d. b)   
 

 
Figure 2.6: Diffuse Reflection. 

Source: (Wikipedia n.d. c) 
 
Figure 2.7 represents the four different effects of EMR interactions. Transmission 

occurs when the EM radiation passes through the material/object without interaction, 

like glass. The path can either be deflected or refracted as it passes through various 

density materials. This can have an effect on the velocity and wavelength of the EM 

radiation. Absorption occurs when the EM radiation is absorbed into the feature being 

targeted. All surfaces and features absorb some amount of the EM radiation when it is 

scanned. Some features though will absorb more EM radiation than others. The best 

conductor of EM radiation is water. A good example of this conduction is when you 

look down to the ocean from a plane in the air and you can see the dark blue tone in 

the water. This is actually because the water absorbs all the EM radiation from the sun 

giving the impression of dark blue water.  
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Figure 2.7: EMR Interactions 

Source: (Globe GIS n.d.) 
 

2.3.4 Reflectance 
 

Reflectance depends on a number of factors including the material, surface, materials 

constituting the surface (water) and non-reflective surfaces. It is important to know 

what affects these factors can have on EM radiation so proper corrections and 

awareness is understood. Reflectance can be used to tell the user what kind of 

material or surface has been recorded. For example, if you were to measure two 

surfaces of snow and dark soil, the reflected EMR will return different levels of 

energy. The snow surface will reflect a high amount of EMR whereas the dark soil 

will reflect a low amount of EMR in the visible waveband. This can be used by 

analysts to determine what has been recorded and the properties associated to that 

recorded data.   

 

Reflectance is measured by the amount of EMR (otherwise known as incident 

radiation) that is reflected back to the sensors device. Reflectance of EMR is affected 

in three ways. The effects of the emitted radiation, effect of the surface or materials 

constituting the surface and the effects on the reflected radiation. Atmospherics can 

influence the radiation of the incident and reflected radiation, but for terrestrial laser 

scanning the effects are very minor, approximately 1ppm which equates to 1mm over 

1 km/degree (Mather 2004). 
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2.3.5 Surfaces & Material 
 

Most surfaces and materials can be divided into the two common forms of scattering 

being specular and diffuse. Specular surfaces and material will usually occur where 

the EMR is reflected from relativity smooth objects like metal, walls, concrete and 

any polished surfaces or coverings. Whereas, diffuse scattering will occur as EMR 

reflects from rough surfaces and materials like asphalt, rendered bricks, rocks & dirt 

and jagged features.     

 

2.3.6 Colours 
 

Coloured surfaces also absorb and reflect EMR. Colour is used in many ways to 

define features and give objects identification. Reflectance is affected by moisture, 

natural characteristics and different properties of the feature. For example, chlorophyll 

which is a chemical of leaves will absorb the blue and red energy thus reflecting the 

green wavelength. If the plant is stressed or matured, it will contain less chlorophyll, 

resulting in less absorption and more reflection in the red energy waveband. Like all 

other factors colour must be taken into account when analysing EMR (Mather 2004). 

 

2.3.7 Wet Surfaces 
 

One material that is an excellent conductor of EMR is clear water. Figure 2.8 shows 

how water absorbs all EMR in the infrared (IR) band and only reflects a small amount 

of EMR in the visible band. This is due to water being transparent and the absorption 

of EMR. As the EMR reaches the water it absorbs it and transmission scattering 

causes the radiation to scatter in all directions converting it into other forms of energy. 

As mentioned above, clear water is an excellent conductor of EMR. However, 

sometimes there is no need to measure clear water and instead just the things that are 

suspended within it. Turbid water contains materials that are suspended within it 

including dirt, sediments and algae. These suspended materials cause EMR to reflect. 

Although it causes EMR to reflect the reflection is dependent on how turbid the water 

is and what materials are being reflected. As surveyors the need to measure water is 

not a common target except for surfaces that may contain water particles like dew or 
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light rain. These water particles may cause small amounts of refraction from one 

medium to the next altering the path of the radiation. 

 

 
Figure 2.8: Typical Spectral Signatures 

Source: (Google n.d.) 
 

2.3.8 Non-reflective Surfaces  
 

Not all EMR will reflect from every surface. Non-reflective surfaces include plain 

glass, light coverings, windows, mirrors and water. The effects these surfaces have on 

EMR are transmission scattering, where the radiation passes through the surface and 

reflects from the next object it comes into contact with. As explained above, water has 

very little reflection or sometimes none in the visible band. Plain clear glass will not 

reflect any amount of radiation, but will refract the light radiation as it passes through 

the glass. This refraction can cause the light beam to refract so far that it will not 

reflect back to the instrument. In most cases this will be the reason why radiation is 

not recorded by a laser scanning instrument.  

 

2.4 Reflectorless Technology  
 

Technology is continually evolving within the surveying industry with many new 

instruments and methods being developed all the time. The method of measurement 

used within surveying began with the use of the Gunter’s chain until surveyors saw 

the introduction of the flat steel tape. Technology continued to progress with the use 

of electronic distance measurement (EDM). EDM emits a light wave beam from a 

device which then reflects from a prism target back to the EDM device. It then 

Comparison of Robotic Total Stations for Scanning of Volumes or Structures  13



Chapter 2 – Literature Review 

proceeds to calculate the distance acquired by the reflection. Nowadays, due to 21st 

century technology the limitation of the prism has been removed with the introduction 

of direct reflex (DR). This is also known as reflectorless which now sees 

measurement taken directly to features without the use of other tools (Department of 

Environment and Resource Management 2007). 

 

Reflectorless technology has become essential to many surveyors in the industry. It is 

able to provide numerous beneficial factors including the following:  

 

• The ability to record information of features that might not have been 
accessible before due to safety issues. 

• Automated systems and sole operators. 
• Time & costs.  

 

While reflectorless technology is relatively new to surveying, the technology has been 

around for quite some time. The latest trend of reflectorless technology has seen 

almost all instruments now incorporate reflectorless technology as a standard into 

surveying instruments. Reflectorless technology is opening a new door in one-person 

surveying. By having reflectorless capabilities, GPS and robotics all integrated into 

the one system there is no need for a traditional chainman. This increases the speed of 

the work performed and also to some degree it improves accuracy and time efficiency. 

 

2.5  Laser Scanning 
 

Laser scanning can be defined as the scanning of a surface by the means of EM pulses 

of energy that are measured by a laser scanning instrument. This then creates three-

dimensional (3D) points of data. Data is achieved by remotely sensing horizontal & 

vertical angles and reflected distances. The data is in the form of X,Y,Z coordinates 

which are based from the set parameters within the instrument. This data can then be 

used to represent the real world in the form of coordinates for the analysis of 

information and design on a computer display. Unlike most traditional surveying 

instruments and methods, laser scanning can be performed any time of day or night 

and also in varying weather conditions like rain or fog.  
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There are two main forms of platforms that laser scanners use which are terrestrial 

and airborne laser scanners. Airborne laser scanning uses a plane or helicopter as a 

platform and performs scanning from the sky. Terrestrial laser scanning uses 

platforms on the earth’s surface otherwise known as ground based. These platforms 

come in the form of total station scanners and laser scanner units. They are used to 

perform everything that an airborne laser scanner does but for ground features. Some 

uses of terrestrial laser scanning are: 

 

• Scanning cultural heritage features. 
• Archaeology studies and documenting. 
• Modelling building and structures. 
• Volumetric calculations of open and underground mining.  
• Forensic crime scene investigation. 
• Deformation monitoring of surfaces and structures.  
• Engineering and constructed surveys. 
• Monitoring of forestry, glaciers, landslides and dam walls. 
• Virtual reality computer games and animated walkthroughs. 
• Vegetation studies of growing rates and density studies. 

 

These are just some of the uses of laser scanning. As research in this field expands, 

new problems will arise and greater software will become available hopefully at 

cheaper prices. A laser scanner will very soon become an everyday tool in the 

collection of remote data. 

 

The scanning ability in total stations today is becoming more and more automated. 

This means that the operator sets it, defines some required parameters and lets it scan. 

When comparing laser scanning to traditional surveying methods, there is not a great 

deal of difference between the theoretical foundations. They both achieve X, Y, Z 

point data, they both need computer analysis and they both produce the same project 

result. However a laser scanner requires only one field technician, can scan up to 

50,000 points a second, has an automated data system and takes measurements to 

locations not accessible (See figure 2.9).  
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Figure 2.9: Laser Scanning Unit 

Source: (Google 2009) 
 

2.5.1 Object Recognition 
 

Analysis of gathered data can be quite difficult in some situations. Point data is 

displayed as points on a computer screen in relation to the coordinates recorded. So 

how do we know what each point represents? Without any prior knowledge of the 

scanned area this would prove to be difficult. After some lengthy human analysis it 

can be determined that points along common features like the edge of a building for 

example can be defined. Features like window frames and roof guttering can start to 

be distinguishable. This type of recognition can take quite some time and become 

really frustrating. New software technology has recently evolved enabling computer 

software to recognise point features along common lines and distances.  

 

The software analyses and interrogates the data to find the trends and occurrences of 

point data. For example, if a wall was to be scanned and it had a photo frame hanging 

on it, the software could be used to define this feature. The software is capable of 

recognising the straight line edges of the photo frame. This in conjunction with the 

comparison of the vertical plane of the wall to the points on the frame can determine 

that the points are raised away from the plane of the wall. If the software recognises 

the wrong features this can still be undone and the drafter can manually adjust the 

data. This software is not available with all drafting programs and is currently still in 

development stages.  
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2.5.2 Accurate Feature Measurements 
 

Accuracy to measure features will differ depending on the objects shape and location. 

Many surveyors would not think of how the laser has an effect on features around an 

object. Let’s take measuring the corner of a building for example. Line of sight would 

be set to the corner of the building and the measurement is taken. It would be assumed 

that the distance was measured to the corner but this is incorrect. Due to the 

divergence of the laser beam it will spread wider the further it travels from the 

instrument. Therefore, it will in fact reflect from the sides of the wall and not the 

intersection of the two walls. (See figure 2.10). 

 

 
Figure 2.10: DR Corner Measurement Effect 

Source: (Hoglund & Large 2005) 
 

 
Both types of measuring have some ranging error. The phase based method achieves a 

closer measurement to the corner than the Time of Flight method. Measuring accurate 

angles is not affected by the sides of the building. Oblique measurements however 

may affect both angles and distance measurements. When sighting a corner from an 

oblique angle the line of sight may be skewed along the face of the building which 

then affects the judgment of the corner. This will also affect distance measuring as 

seen below on a circular object. Part of the beam may miss the side of the object 

taking the measurement to the next feature behind. This will result in an incorrect 

calculation of the mean distance to the object. (See figure 2.11).  
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Figure 2.11: Eccentric Point Measurement. 

Source: (Hoglund & Large 2005) 
 

 

2.6 Reflectorless Issues & Industry Problems 
 

Surveying industries are faced with many problems every day, whether it is 

instrument problems, project task problems or limitations due to Workplace Health & 

Safety (WH&S). Hence there is the need for researchers and problem solving 

personnel to create new methods or equipment to assist with these troublesome 

applications. Three applications have been identified from general day to day 

surveying tasks.   

 

1. Volume scans: This involves the scanning to features that are restricted by 

WH&S. They may be restricted due to surveyors in high places, physically 

unable to reach the area or limited by equipment eg, cost of a laser scanning 

instruments. The scanning of volumes in mines is very important and requires 

a high level of accuracy. Because the materials they gather are exchanged for 

money. Consequently, there is a need to understand the limitations and 

accuracies of reflectorless scanning. 

2. Building encroachments: This is where a building or feature has extended 

beyond its property boundaries to encroach onto a neighbouring allotment or 

crown land. For example ‘The Gabba’ in Brisbane sees part of the building 

encroached onto the street reserve being crown land. As surveyors we have to 

notify both the crown and the land owner and show the encroachment on a 

plan. Due to the complexity of the encroachment, traditional surveying 
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methods would be expensive and difficult to exercise. This would see the use 

of reflectorless technology to scan the area of the building encroachment in 

relation to the boundaries.       

3. Inaccessible areas: From the above two applications inaccessibility is a major 

factor in some surveying tasks. Measuring points of a high rise building or 

even clearances of power lines from trees are virtually inaccessible by 

traditional survey methods due to high costs.   

 

Reflectorless technology and scanning may be the best options for the above tasks, 

but there are still some imperfections with this technology. Some issues include the 

scanner captures too much data resulting in a long processing time. The ability to 

analyse the data in real time and get results straight from the instrument. Also not all 

materials reflect EMR and if a point does not reflect then the instrument keeps trying 

to scan the point. From these three application problems I have chosen to conduct 

small test designs to highlight the potential problems and methods for overcoming 

them.   

 

2.7 Summary: Chapter 2 
 

In summary, this literature review has explored the technology used in the 

undertaking of this project. This chapter has explored the background technology of 

reflectorless measuring, laser scanning capability and the interaction EMR has with 

various surfaces and materials. Research into this technology has warranted tests of 

how the technology can be used effectively and the capabilities it may offer. The 

information in this review has underlined the proceeding chapters and was used to 

create the tests designs within the methodology.  
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3.1 Introduction 
 

At present the principles, limitations and standards of robotic total station laser 

scanning are limited to the general surveyor. Consequently, the opportunity has arisen 

to research the capabilities, limitations and test this new technology over different 

scenarios and problems. The aim of this chapter is to provide an understanding of how 

this technology works over a number of features and also outline the field and office 

techniques that underpin it. Explanation of the test sites that were used and how the 

instruments went about the process are also discussed. The desired outcome of this 

methodology is to compare both the Leica TCRP 1205 + R1000 & Trimble S6 on the 

same test designs and provide users with performance feedback on the technology.  

 

3.2 Equipment  
 

3.2.1 Trimble S6 DR300+ 
 

The Trimble S6 is one of two total stations used for data acquisition within this 

project. The S6 is a fully robotic instrument which caters for traditional survey 

applications and more. The capabilities of the S6 include reflectorless technology, 

onboard data storage, motorised robotic controlling and many other features. The S6 

comes with a detachable controller screen interface for connection to computers, 

robotic rover and GPS units. The Trimble CU controller comes with up-to-date 

software for easy use between applications. The feature of the Trimble S6 that this 

project is mainly concerned with is the application called “surface scan”. Surface scan 

allows you to define the area that is to be scanned and the instrument will robotically 

scan the area with rapid point capture. It will also store all the data in the onboard 

memory card for easy downloading and analysis. This data can be viewed in notepad, 

Microsoft XL, Terramodel and other drafting software. Angle and distance 

measurement accuracy ranges from 2” – 5” angle measurement and 3mm with prism 
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& 3 mm – 5 mm reflectorless distance measurement. Field techniques have not altered 

a lot which means that many traditional methods are still used today. Many new 

technologies like robotic are utilised where possible. The S6 has many capabilities 

including stakeout & roading, detail pickup, traversing, surface scanning and many 

others. For a full range of specifications, accuracy, capabilities please refer to 

Appendix B: Trimble S6 Datasheet (Hoglund and Large 2005). 

 

 
Figure 3.1: Trimble S6 

Source: (Hoglund & Large 2005) 
 

3.2.2 Magdrive 
 

Trimble’s new magdrive technology is based upon using electromagnets for vehicular 

propulsion (Lemmon & Jung 2005). The concept of magnets controlling the internal 

movements of a total station is relatively new to surveying but the technology has 

been around for centuries. The technology was first introduced in 1934 where 

Hermann Kemper devised the idea of a magnet driven train. From there on the 

technology has developed to the inclusion into total stations. Magdrive technology 

allows for easy rotation of two plates (top and bottom) within a total station. This 

frictionless, high accuracy and high turning speed technology allows quick and easy 

surveying. The system works by two magnets which are fixed horizontally on top of 

each other with an air gap between them. This allows the two magnets to be 

frictionless while still having the affect of movement. The instrument is driven by a 

servo drive which uses electromagnetic force to apply rotation. This method has 

proven to be very accurate in holding a fixed position or as a robotic system. The 

magdrive technology is very quick in turning and tracking. 
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3.2.3 Leica TCRP 1205 + R1000 
 

The Leica TCRP 1205 + R1000 is the second instrument used for comparison within 

this project. The Leica instrument is also fully robotic which includes all the 

necessary features to carry out all surveying applications. Similar to the S6, Leica has 

reflectorless technology, onboard data storage, motorised robotic controlling and 

many other features. The Leica display unit comes with a dual colour screen display 

for easy use and appearance. The instrument can also be used in conjunction with a 

robotic smart pole unit for on-the-fly measurements and an integrated GPS unit. All 

data is viewable on various software applications and Leica also provide an easy 

single package called Leica Geo Office. The scanning program used is called 

“Reference Line”. It works by defining a reference scan line which then allows you to 

define the scanning parameters. Once these parameters have been defined the 

instrument can perform the scan of the area. The instrument’s software allows 

measurement spacing intervals to be set and a real time colour display of points 

recorded. All data is stored in the onboard memory card which can be connected to 

the computer for data transfer. Angle and distance measurement accuracy ranges from 

5” angle measurement and 1 mm – 3 mm with prism & 2 mm – 4 mm reflectorless 

distance measurement. Field techniques are similar to the S6 with the only differences 

in software and procedures. The Leica has many capabilities including stakeout and 

roading, detail pickup, traversing, reference lines and many others. For a full range of 

specifications, accuracy and capabilities please refer to Appendix C: Leica TPS1200+ 

Datasheet (Hoglund & Large 2005). 

 
Figure 3.2: Leica 1205R + R1000 
Source: (Leica Geosystems 2009) 
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3.2.4 Robotic Total Station Comparison  
 

In comparison both instruments have very similar features, capabilities and 

applications. They are so similar that the main differences between them are the 

colour, shape, brand, onboard software and display. Both instruments achieve the 

same accuracy for angle and distance measurement. The Trimble S6 has been 

designed to be more user friendly with easy setup and measuring. Compared to the 

Leica 1205R this instrument is a little hard to control but that is based on the 

individual user.         

 

3.3  Comparison  
 

3.3.1 Reflectorless Distance Measurements  
 
Table 3.1: Comparison between instruments over a range of categories.  

Source: (Leica Geosystems 2009 & Trimble 2009) 
Categories Trimble S6 DR300+ Leica TCRP 1205+ R1000 

Kodak Gray Card, 

90% reflective: 

> 800 m 600 m (Object in strong sunlight, 

severe heat shimmer.) 

800 m (Object in shade or sky 

overcast.) 

 > 1000 m (Underground, night 

and twilight.) 

Kodak Gray Card, 

18% reflective:  

>300 m 300 m (Object in strong sunlight, 

severe heat shimmer.) 

400 m (Object in shade or sky 

overcast.) 

 > 500 m (Underground, night and 

twilight.) 

Concrete  300–400 m N/A 

Wood construction  200–400 m N/A 

Metal construction 200–250 m N/A 

Light rock 200–300 m N/A 
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Dark rock 150–200 m N/A 

Reflective foil 20 

mm  

800 m N/A 

Reflective foil 60 

mm  

1600 m N/A 

Shortest possible 

range 

2 m  1.5 m  

Longest possible 

range 

1600 m 1200 m 

Laser Beam Pulsed laserdiode 870nm, 

laser class 1, Laser pointer 

coaxial (standard) laser 

class 2 

Coaxial, visible red laser, Carrier 

wave: 660 nm. Measuring system 

Pinpoint R400/R1000: basis 100 

MHz – 150 MHz 

Angle accuracy  5” (1.5 mgon) 5” (1.5 mgon) 

Distance accuracy  3 mm + 2 ppm or 5 mm + 

2 ppm, standard 

2 mm + 2 ppm (reflectorless < 500 

m), 4 mm + 2 ppm (reflectorless > 

500m), standard 

Atmospherics 

corrections 

N/A N/A 

Measuring time 1 – 5s / measurement 12s max (Reflectorless) 

Motorized motor 

speed 

115° / s 45° / s 

Weight 5.15kg (instrument)  4.8 – 5.5 kg 

 

3.4 Test Designs  
 

In this chapter I will outline the three test designs completed for the fulfillment of this 

project. Test design one comprised of a relatively simply designed test to assess the 

basic principles, concept and analysis of the instrument for time, accuracy and 

processing. Test design two comprised of scanning a simulated stockpile for the 

analysis and representation of the data. Test design three consisted of a more in depth 

scan of surveying related applications like building encroachments and how 

reflectorless technology can be used to measure and represent encroachments. This 
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chapter will cover all relative information about these designs and also the field and 

office procedures that were used to perform them.  

 

3.5 Controlled Surface Scan 
 

Test design one was a basic replication of a field survey scan of a chosen feature. I 

have chosen to perform a simple test to gain an understanding of the instruments and 

portray simple results and conclusions to my readers. This test was performed under 

controlled conditions, with both instruments scanning over a dry wall surface and then 

a water spray surface. This allowed for easy analysis between the instruments for 

accuracy, time and conditions. It also allowed me to evaluate the user friendliness of 

both instruments. 

 

Test one was carried out within the University of Southern Queensland (USQ) 

grounds in room Z125. The testing surface was marked for permanency in case of 

data failure or further and future testing. The test site was monitored under a room 

temperature of 20 degrees Celsius and controlled conditions. Attention was made to 

the testing wall as not all walls are exactly flat or when pointing the instrument to the 

same location (see figure 3.3). This will cause small insignificant errors (less than 

2mm difference).     

  

 

Scan 

Area 

Figure 3.3: Controlled Surface Scan Area. 
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3.5.1 Data Acquisition  
 

The area scanned for test design one is approximately a 0.500m by 0.500m squared 

surface. This surface was scanned with both instruments at 0.050mm intervals both 

horizontally and vertically. For this exercise there was an arbitrary coordinate system 

set with an arbitrary back sight (BS) set for the purpose of testing.  

 

3.5.2 Field Procedures 
 

Testing procedures will be the same for both instruments where the instruments will 

be similar except for the instruments software and display.  

 

• After gathering all available equipment, one instrument is setup on the pillar 

and an arbitrary BS set and coordinates given. 

• After setup is completed, continue into the scanning software found for the 

Leica instrument (Reference line) and the Trimble S6 (Surface scan).  

• The scanning software will ask for the type of scan, parameters to be set and 

the spacing interval. After all parameters have been entered, the scan will 

initiate.  

• The display screen will show how many points have been recorded and how 

many have not. It also displays an estimated time for the completion of the 

scan. 

• Once the scan is completed all of the data is then stored within the total station 

on a memory card for extraction to a computer.  

• Follow these steps for both instruments and repeat the scan on both a dry wall 

and a water spray surface. These steps may vary a little depending on the 

instrument used as there will be slight differences in display modes and the 

naming of applications.  

 

3.5.3 Office Procedures 
 

Once testing was completed, the data was extracted from both instruments into a 

computer. The data was then imported into Terramodel where a report was conducted 
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on the points measured. From here the points were imported into Microsoft Excel. 

The data was arranged and a visual basic macro was applied to the data. This macro 

works by calculating number of input points N, averages, A matrix, inverse A matrix 

and the minimum and maximum departures from the best fit plane. These minimum 

and maximum departures are the distance from the plane to each point also known as 

the normals. Refer to figure 3.4 and 3.5.  

 

 

Recorded points 

Reference 

Plane 

Figure 3.4: Surface Scan Errors 
 

 
Figure 3.5: Normal’s to Plane, Surface Scan  

Source: (Bourke 1986) 

 

3.6 Volume Scanning 
 

Many issues in the present day are about health and safety as surveyors in mines or 

other volumetric areas are not allowed in high places with loose rocks, materials or 

hazardous situations. From this a potential problem arises, this being the safe 

gathering of points on a stock pile or high wall. The points need to be gathered but a 

person must not vantage onto the potential risk areas. Test design two will provide 

people in this industry the opportunity to acquire some further knowledge and 

limitations that total station laser scanning and reflectorless measurement can have on 

the gathering of volumes of stockpiles.   
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Test site two is situated near the front entrance of the University of Southern 

Queensland grounds. The scan was performed over a section of raised land used as a 

retaining wall for water runoff. This section of land is covered by grass and is half 

situated under tree cover. The site was marked out so repeatability of both instruments 

could be achieved (See Figure 3.6).   

 

 
Figure 3.6: Volumetric Test, Simulated Stockpile. 

 

 

3.6.1 Data Acquisition  
 

Due to software difficulties scanning was not able to be performed with the Leica 

1205R. Instead reflectorless measurements were taken along the mound at my 

discretion over the simulated stockpile for comparisons. The area scanned for test 

design two is approximately one and a half metres high from natural surface, ten 

metres wide and ten metres long. This surface was scanned with the Trimble S6 at 

0.400mm interval both horizontally and vertically. For this exercise there was an 

arbitrary coordinate system set with an arbitrary back sight (BS) set for the purpose of 

testing.  
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3.6.2 Field Procedures 
 

Testing procedures for the Trimble S6 and Leica 1205R differ slightly due to the 

software and display. As I stated the Trimble S6 performed a surface scan while the 

Leica 1205R measured points at my discretion.  

 

• After gathering all available equipment, setup the S6 and then the Leica 

1205R and set an arbitrary BS and coordinates. 

• After setup is completed, continue into the scanning software for the Trimble 

S6 (Surface scan) and for the Leica 1205R (Measure topo).  

• The scanning software will ask for the type of scan, parameters to be set and 

the spacing interval. After all parameters have been entered, the scan will 

initiate. For the Leica 1205R, reflectorless measurements were taken over the 

mound at my discretion. This was conducted in the data pickup application 

(used for detail surveys).  

• The display screen will show how many points have been recorded, how many 

have not and it also displays an estimated time for the completion of the scan 

(Trimble S6 only). 

• Once the scan is completed all data is then stored within the total station on a 

memory card for extraction to a computer.  

• Follow these procedures for both sides of the mound as two setups will be 

needed to acquire all the required information.  

 

3.6.3 Office Procedures 
 

After testing is complete, the data is extracted from the instrument onto a computer 

using Trimble’s data transfer or Leica transfer software. The data was then imported 

into Terramodel where basic analysis is performed. Data is separated between the 

base points and points measured on the mound. A DTM is created over both sets of 

points. A function in Terramodel called earthwork was then used to overlay the DTM 

from the mound onto the base DTM where an area and volume can be calculated. This 

process was completed with 100% of points, 75% of points, 50% of points and 25% 

of points.    
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3.7 Building Encroachment 
 

Test design three involved simulating a building encroachment situation. This would 

test the more advanced effects of the laser on oblique angles, building corners, non-

reflective surfaces, processing of multiple planes and visual representation. With the 

use of three dimensional software I was able to fit planes to the data, therefore 

producing a three dimensional model of the encroachment. The theory was to 

calculate volumes and distances at any location on the model by the use of planes. 

However some problems were encountered. This design tested the more in depth 

measuring of surveying related applications like a building encroachment and how 

reflectorless technology can be used to measure and represent an encroachment. 

 

Test site three is situated on the southern side of Clive Berghofer Recreation Centre, 

south of the University of Southern Queensland grounds. The section of building 

chosen includes guttering & fascias, a rough brick material, oblique corners and 

edging. For the purpose of testing, marks were placed on either side of the building to 

represent the cadastral boundaries of an allotment (See Figure 3.7).   

   

 
Figure 3.7: Volumetric Test, Building Encroachment. 
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3.7.1 Data Acquisition  
 

The building feature measured is approximately three metres high and ten metres 

long. The surface was measured using reflectorless technology with both instruments. 

The measurements were recorded within the instruments for extraction and analysis. 

For this exercise there was an arbitrary coordinate system set with an arbitrary 

backsight (BS) set for the purpose of testing.   

 

3.7.2 Field Procedures 
 

Testing procedures will be the same for both instruments where the instruments will 

be similar except for the instruments software and display.  

 

• After gathering all available equipment, one instrument is setup on the tripod, 

a job file is started and an arbitrary BS set and coordinates given. 

• After setup is completed, continue into the ‘Measure topo’ software for both 

the Leica 1205R and Trimble S6 and choose reflectorless as the mode of 

measurement. 

• Six points were taken on each face of the wall and gutters. Two boundary 

points were also located and a number of natural surface points.  

• Once all features have been recorded and stored, they can be extracted from 

the memory card onto a computer.  

• Follow these procedures for both instruments. These steps may vary a little 

depending on the instrument used as there will be a slight difference in display 

modes and naming of applications.  

 

3.7.3 Office Procedures 
 

After testing is complete, the data is extracted from both instruments onto a computer. 

The data was then imported into Terramodel where it is exported into the Leica 

Cyclone software. From Cyclone some basic interpretation and analysis of the data 

was performed using the basic editing tools. I was then able to fit a plane to the data 

collected by using the points on each face of the wall, natural surface and eaves. 
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Further interrogation of the data was conducted to analyse some results from using the 

planes to measure distances and not discrete points. Further analysis was also 

conducted using Terramodel to see if 2D based software could produce similar 

results. The chainage and offset report was used to analyse the offsets from the 

cadastral boundary to the encroaching building face.       

 

3.8 Summary: Chapter 3 
 

In summary this chapter discussed the testing sites, data acquisition and also the office 

and field procedures for each of my test designs. To achieve an accurate comparison 

between instruments each type of test had to be set on the same coordinate system. It 

also allowed the general surveyor to gain an understanding of what limitations his or 

her equipment may offer. The methodology of these three test designs are a 

replication of my actual procedures and methods used while testing. The following 

chapter will discuss the results gathered from this methodology.   
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Chapter 4 – Results and Analysis 
 

 

4.1 Introduction 
 

The objective of this chapter is to present the results from all test designs undertaken 

in the methodology. The methodology chapter discussed the appropriate procedures 

for all test designs and the comparisons between both instruments. The results from 

the tests include the comparisons between the Trimble S6 and Leica 1205R over 

various test designs. Each test design compared the instruments for both accuracy and 

performance. The results will include the data recorded and a short paragraph 

explaining the results obtained. 

 

4.2 Controlled Surface Scan  
 

The first test was the controlled surface scan which tested the instruments for 

performance and measuring error. The figure below is a mesh model representing the 

best fit plane over the points gathered by the instruments. From this mesh model the 

normal’s for each point were calculated from the best fit plane to each data point. This 

was conducted for both instruments and conditions, producing an error which is the 

measuring error difference from the plane. Refer to table 4.1 for results.  

 
Figure 4.1: Controlled Surface Scan, Best Fit Plane of the data. 
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4.2.1 Results 
Table 4.1: Comparison between instruments.  

Instrument Trimble S6 Leica 1205R 

Surface Dry Wall Wet Wall Dry Wall Wet Wall 

Temperature 20° 20° 20° 20° 

Completion Time 4:42 5:32 5:03 5:30 

Points collected 124 124 109 109 

1 point / second 1/2.1 1/2.6 1/2.7 1/2.9 

Mean (m) 0.00037 0.00035 0.00041 0.00035 

Standard Deviation (m) 0.00027 0.00026 0.00027 0.00025 

% error, (0.250 area) > 1% > 1% > 1% > 1% 

 

4.2.2 Analysis 
 

The results concluded what was expected from the data gathered. The mean deviation 

from the plane averaged 0.38 of a millimetre. As the standard deviation was 0.27 of a 

millimetre difference from the mean. The percentage error calculated to less than a 

percent over the area. These calculations were performed using a least squares macro 

using Microsoft Excel. The macro was checked by using the long hand method of 

least squares which returned the same results. An interesting observation was the 

points collected per second increased as the scanning conditions went from a dry 

surface to a wet surface; however the accuracy remained the same. I found the 

processing time very quick and easy with both instruments.  

 

4.3 Volumetric Scan 
 

4.3.1 Results 
 

Preliminary setup for the volumetric test site established the ground marks and 

coordinate system for each station. Station 1 was given arbitrary coordinates and 

reduced level (RL) while station 2 coordinates were calculated and a level run was 

performed between the two stations.  
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Figure 4.2 represents the raw data taken by the Trimble S6 of the scanned simulated 

stockpile. From this figure we can see the outline of the base which was used for both 

sets of data to accurately compare them. The base points were manually located and 

strung to form our “cookie cutter”. Two DTM’s were performed over the base data 

and the data obtained within the base (stockpile). Then the base DTM was taken away 

from the stockpile DTM to calculate a volume. From this, data was omitted and 

analysis of the results is shown in tables 4.2 to 4.5. 

  

 
Figure 4.2: Volumetric Test, Raw data Trimble S6, Terramodel. 

 

From this raw data I was able to model and represent the simulated stockpile scanned 

by both instruments. The models were obtained from Terramodel using the modelling 

function. Refer to figure 4.3 and 4.4. 
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Figure 4.3: Volumetric Test, volume model Trimble S6 #1, Terramodel. 

 

 
Figure 4.4: Volumetric Test, volume model Trimble S6 #2, Terramodel. 

 
Table 4.2: Comparison between instruments, 100% of data.  

Instrument Leica Trimble S6 

Surface Simulated Stockpile Simulated Stockpile 

Temperature 20° 20° 

Completion Time N/A 3.5 seconds/point 

Points Collected 171 (mound), 29 (base) 171 (mound), 29 (base) 

Area (m²) 83.90 83.90 

Volume (m³) 22.59 22.59 

 

The above table represents the results of the volumetric scan for both instruments. As 

explained above, the base area of 83.90m² will be the same for each instrument 
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because the same base data was used for both. A surprising result found the two 

instruments produced the same volume for the simulated stockpile 22.59m³. For the 

purpose of testing I will assume this volume is correct and use it as my base so other 

calculations can be performed.    

 
Table 4.3: Comparison between instruments, 75% of data.  

Instrument Leica Trimble S6 

Surface Simulated Stockpile Simulated Stockpile 

Temperature 20° 20° 

Completion Time N/A 3.5 seconds/point 

Points Collected 120 (mound), 29 (base) 120 (mound), 29 (base) 

Area (m²) 83.90 83.90 

Volume (m³) 22.35 22.42 

Difference to original (22.59m³) 0.24 0.17 

% error (original) of volume 1.06% 0.75% 

 

Table 4.3 represents 75% of the data for both instruments. 25% of points have been 

removed from both sets to find the optimal scanning interval. For the purposes of 

testing I have assigned an optimal error value of 5%. This value is the maximum error 

for each instrument while removing points from the data sets. The error percentage is 

calculated by the difference between each data set (75%, 50% and 25%) minus the 

original volume (22.59m³) divided by the original volume again. This error 

percentage represents the change in volume as a percentage. Our results show we get 

1.06% error for the Leica and 0.75% error for the Trimble S6. The volume difference 

equalled 0.07 metres between instruments. As our results are still under the 5% error 

we can decrease the amount of point’s captured while increasing the scanning 

interval. Refer below to 50% of data.  
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Table 4.4: Comparison between instruments, 50% of data.  

Instrument Leica Trimble S6 

Surface Simulated Stockpile Simulated Stockpile 

Temperature 20° 20° 

Completion Time N/A 3.5 seconds/point 

Points Collected 86 (mound), 29 (base) 86 (mound), 29 (base) 

Area (m²) 83.90 83.90 

Volume (m³) 22.01 22.33 

Difference to original (22.59m³) 0.58 0.26 

% error (original) of volume 2.57% 1.15% 

 

Table 4.4 represents 50% of the data for both instruments. A further 25% of points 

have been removed from both sets to find the optimal scanning interval. By removing 

half of the original points collected our results show 2.57% error for the Leica and 

1.15% error for the Trimble S6. The volume difference for 50% of data equalled 0.32 

metres between instruments. These results show a steady increase in error but still 

remain under the 5% optimal error. Furthermore, we can decrease the amount of 

points captured while increasing the scanning interval again. Refer below to 25% of 

data.  

 
Table 4.5: Comparison between instruments, 25% of data.  

Instrument Leica Trimble S6 

Surface Simulated Stockpile Simulated Stockpile 

Temperature 20° 20° 

Completion Time N/A 3.5 seconds/point 

Points Collected 52 (mound), 29 (base) 52 (mound), 29 (base) 

Area (m²) 83.90 83.90 

Volume (m³) 20.80 21.46 

Difference to original (22.59m³) 1.79 1.13 

% error (original) of volume 7.92% 5.01% 
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Table 4.5 represents 25% of the data for both instruments. By removing three quarters 

of the original points collected our results show 7.92% error for the Leica and 5.01% 

error for the Trimble S6. With a volume difference equal to 0.66 metres between 

instruments. By reducing the points collected from 171 to 51 we have exceeded our 

optimal error of 5%. In conclusion, this shows our optimal scanning interval lies 

somewhere between 50% and 25% of the data as our evidence shows. 

 

4.3.2 Analysis 
 

 
Figure 4.5: Volumetric Test, error percentage for each data set. 

 

Figure 4.5 collaborates the results from the above tables into a graph for easy visual 

interpretation. As stated above, to find the optimal scanning interval the error 

percentage should not exceed 5%. From the graph it can be seen that as the data is 

removed the error progressively increases until a sharp rise from 50 to 25%. This 

error reaches our optimal error between 50 to 25%. This percentage of the data 

equates to 1.2 metres scanning interval which is three times that of my starting 

interval of 0.400 metres. Even though the optimal scanning interval may be 1.2 

metres, the break lines (top ridge and base) must be located so the shape is defined. 

Although the optimal scanning interval for this particular test is established, there is a 

need for a generic ratio that can be applied to different stockpiles and different 

circumstances. The calculations below are the expected error for each scanning 
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interval based on the assigned errors and area. I have found the expected error 

percentage for both 0.4m and 1.2m scanning intervals.  

 

Calculation 1: Original scanning interval (0.4m HA & VA) 

 

Original scanning interval  

HA = 0.4 

VA = 0.4 

Average HT = 0.6 

 

Assigned error for length, breath and height  

0.020mm L & B & 0.015mm HT 

 

Volume equation 

V = L²/2 * HT 

 

Partial derivative 

dv² = (∂v/∂l)² dl² + (∂v/∂ht)² dht² 

dv² = (l * ht)² 0.02² + (l²/2)² 0.015² 

dv² = (0.4 * 0.6)² 0.02² + (0.4²/2)² 0.015² 

dv² = 0.000025 

dv = 0.0049 

 

Area = 83.90m² 

#Δ’s = 83.90 / (0.4²/2) 

#Δ’s = 1048.75 

 

Propagation of errors 

Total error = √1048.75 * dv 

Total error = √1048.75 * 0.0049 

Total error = 0.1587m³ is the error in the whole volume based on these expected 

errors and a scanning interval of 0.4m 
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Percentage error   

Area = 83.90m³ 

Error = 0.1587 / 83.90 

Error = 0.19%  

 

This is the expected error percentage based on my original scanning interval of 0.4m 

HA and VA. This error is less than one percent, suggesting the scanning interval may 

be too small. By increasing the scanning interval I can reduce a number of factors and 

still produce an accurate error percentage.   

 

Calculation 2: Adjusted scanning interval (1.2m HA & VA) 

 

Optimal scanning interval  

HA = 1.2 

VA = 1.2 

Average HT = 0.6 

 

Assigned error for length, breath and height  

0.020mm L & B & 0.015mm HT 

 

Volume equation 

V = L²/2 * HT 

 

Partial derivative 

dv² = (∂v/∂l)² dl² + (∂v/∂ht)² dht² 

dv² = (l * ht)² 0.02² + (l²/2)² 0.015² 

dv² = (1.2 * 0.6)² 0.02² + (1.2²/2)² 0.015² 

dv² = 0.00032 

dv = 0.018 

 

Area = 83.90m² 

#Δ’s = 83.90 / (1.2²/2) 

Δ’s = 116.53 
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Propagation of errors 

Total error = √116.53 * dv 

Total error = √116.53 * 0.018 

Total error = 1.4483m³ is the error in the whole volume based on these expected 

errors and a scanning interval of 1.2m 

 

Percentage error  

Area = 83.90m³ 

Error = 1.4483 / 83.90 

Error = 1.73% 

 

By increasing the scanning interval to 1.2m HA and VA the error has increased to just 

below 2%. Based on this adjusted scanning interval the error percentage is still small 

but has increased significantly compared to the original of less than 1%.  

 

4.4 Encroachment Testing 
 

The encroachment test was conducted to establish correct measuring procedures, 

reflectorless limitation and if 3D models are better than the 2D plans that are currently 

used to portray encroachments. Once again a preliminary setup of the encroachment 

test site established the ground marks and coordinate system for each station. Station 

1 was given arbitrary coordinates and RL while station 2 coordinates were calculated 

and a level run was performed between the two stations. 

   

4.4.1 Results 
 

Measurements were taken on all faces of the building, natural surface and two marks 

on the ground representing the cadastral boundary. Figure 4.6 represents a 2D model 

of the data. Traditionally this is how the data is represented and displayed. As this 

figure is only 2D there is actually three slightly different points at each section of the 

wall. This is used to represent the vertical orientation of the wall. I have done this 

because the wall might be leaning or bowed and by taking points at the bottom, 

middle and towards the top I can model the true vertical orientation of the wall. 
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Figure 4.6: Encroachment Test, 2D representation of the encroachment test. 

 

4.4.2 Analysis 
 

From this data I was able to create a 3D model using 3D software like Cyclone. To 

make the model I best fitted planes to define the building, natural surface and the 

cadastral boundary producing a 3D model of the encroachment. Figure 4.7 and 4.8 

below represents the raw data used to create a 3D model.  

 

 
Figure 4.7: Encroachment Test, raw data in Cyclone #1. 
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Figure 4.8: Encroachment Test, raw data in Cyclone #2. 

 

Figure 4.9 represents how planes can be used to show the points gathered. The model 

shows the green plane used to represent the cadastral boundary while the other planes 

in grey colour represent the building encroachment. Analysis of the planes proved to 

be difficult as the software would not allow me to perform calculations from plane to 

plane. This software has the potential to analyse any location on the model to find a 

distance, area, volume or even the sinuosity of an object.   

 

Due to the 3D modeling capabilities of Leica Cyclone and my inexperience in the 

software I was unable to gather any measurements. Measuring from point to point is 

relativity simple and does not require a 3D model. However, for this test my objective 

was to measure information from one plane to another.  

 
Figure 4.9: Encroachment Test, 3D representation of the encroachment test. 
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After further discussions with my supervisor we thought it would be good to conduct 

some additional research into the capabilities of Terramodel. After analysing the data 

I was able to produce a report showing the chainage and offset from the cadastral 

boundary to the points on the wall, eaves and natural surface. Below is a section of 

that report, which shows the chainage and offset distance from the alignment of the 

cadastral boundary to each point. For the full report refer to appendix H - chainage 

and offset report. 

   
                                ALIGNMENT REPORT 
Alignment Name: Free Pts 
 
Point Number      Description      Chainage     Easting      Northing 
Elevation  Offset 
---------------------------------------------------------------------
----------- 
     
    1004          WAL                2.658      996.670      1004.249    
101.389           0.009  
    1007          WAL                3.093      996.425      1003.906    
101.391       0.004  
    1008          WAL                7.681      996.422      1003.909    
102.591    4.588  
    1011          WAL                8.009      991.829      1003.973    
100.190  0.322  
    1012          NS                 16.916      992.071     1003.760    
100.101  8.908  

Figure 4.10: Encroachment Test, Chainage and Offset Report Terramodel. 
 

4.4 Summary: Chapter 4 
 

In summary this chapter has collectively included all results from each of the three 

test designs. The controlled surface scan produced as expected results and showed the 

capabilities of the scanning function. The volumetric test also showed how it can 

provide surveyors with a useful tool in real scenario surveying. From the results an 

optimal scanning interval was established for my scan and calculations of the 

expected errors were performed. Lastly, the encroachment test also showed how 

reflectorless technology may be used to remotely sense data that is inaccessible and 

how 3D models may be used to represent spatial information.  
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Chapter 5 – Discussion  
 

 

5.1 Introduction 
 

This chapter will discuss the results found during the test design stage. I will discuss 

some important features found during the designs and the correct methods for 

conducting them. There will also be discussion of some results found by other 

students that performed more in depth testing on some sections of my designs.   

 

5.2 Discussion 
 

At the start of this year I was not aware that total stations had integrated laser 

scanning capabilities into their instruments. I was aware that reflectorless technology 

was relativity new and the limitations of this technology have not been fully 

publicised. Throughout the progression of this project I have realised the full potential 

these instruments have. Their usefulness and applications in the surveying industry is 

advantageous and notable.  

 

5.2.1 Controlled Surface Scan  
 

The controlled surface scan was a basic test to analyse and compare both instruments 

against one another and the manufacturer’s specifications. From my testing the results 

that were found was what was to be expected. The errors were very small and 

insignificant (0.00027m). The manufacturers claim a 2mm + 2ppm error for distances 

measured less than 500 metres. The object I measured to was 5 metres away from the 

instrument, so it was expected that there would be an error in the measuring device 

and that error would be very small over this distance. Further comparison could have 

been done to test the error at different intervals further away from the object. After 

listening to another student’s presentation he concluded that the error did increase and 

that there was beam divergence the further away he got. An issue I had concerns with 

was the laser dot in accordance with the optical cross hairs in the total station. After 
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talking to another student doing a similar project it was realised that he had came to 

the same conclusion which was that they were not in accordance with one another. 

Care must be taken when measuring to features to always try and use the cross hairs 

within the optical devices as this has be calibrated (in most cases).  

 

The next comparison was between both instruments and as expected again there was 

no difference between each instrument where they produced roughly the same error. 

From this I could not distinguish between them as they are in error by roughly the 

same factor. It is important to note that although the instruments are made by different 

manufacturers, they both have similar characteristics. They are both have magnetic 

driven systems, have similar specifications and similar capabilities. However, the 

Trimble S6 uses a pulsed based mode of measurement and the Leica uses a phase 

based mode of measurement. From my results I cannot distinguish between the modes 

of measurement as there are no differences in error. Further testing would be required 

to ascertain this information.     

 

Last was the comparison of both instruments over the different conditions. As 

expected again there was very small error difference from a dry surface to a wet 

surface. However one thing I did find different was the change in recording time. The 

manufacturers specify 3 – 6 seconds a point less than 500 metres. When performing 

my tests I achieved one point every 2.1 seconds on a dry surface and 2.6 seconds on a 

wet surface with the Trimble S6. This increase is consistent with both instruments 

which suggest that water droplets on a walls surface will delay the return signal. 

 

As I was experimenting with the instrument I noticed that they did not reflect from 

certain objects. These features included a glass panel on a door and a light covering 

made of rough plastic. I found that there was no return signal when measuring to the 

light covering which suggests that there was scattering and absorption contributing to 

this. When the instrument measured to the glass on the door it sounded like a faint 

signal was being returned as the instrument would beep once compared to no beep for 

the light covering. The instrument tried to measure this particular point up to 4 times 

before it disregarded it. Measuring to any feature that affects the EMR is difficult to 

rely on the results, care must be taken when recording information to features that 

may alter the signal.    
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While the error at close distances is small, correct measuring producers must still be 

used. As discussed in the literature review section 2.5.2, a laser beam may not 

necessarily be measuring what you are pointing to. The correct procedures for 

measuring building corners are to measure the faces of the building and intersect them 

in the office to get the corner. This will eliminate the errors of measuring to external 

or internal corners. Another important factor to consider when measuring features is 

the angle of incidence from the instrument to the feature being measured.  In my test I 

was not affected by this as I was perpendicular to my testing object. When conversing 

with my peers it became apparent that one student tested the affects of angle 

incidences and found that as the angle became acute there was no reflection from the 

object. This was due to the acute angle deflecting the laser beam in an opposite 

direction rather than reflecting back to the instrument.  

 

5.2.2 Volumetric Scan 
 

Workplace Health and Safety stops surveyors from venturing onto unsafe areas 

whether it be a stockpile, high wall in a mine or high places like a building feature.  

These issues along with accurately taking measurements can cause problems.  

Accurately measuring volumes is difficult; this is mostly due to the varying and 

undulating topology of the surface. This results in an approximated volume based on 

the measurements taken. Due to laser scanning technology, a surface can be scanned 

at less than 50mm intervals, producing a high 3D level of detail. From this model a 

volume can be calculated by taking the scanned surface away from a base level 

(usually natural surface) which leaves the volume.  

 

So the question is, will taking more points at closer scanning intervals produce a 

better estimated value than fewer points at larger intervals? From my test I was able to 

establish this relationship and find the optimal scanning interval that would still 

produce an accurate value. Accuracy raises another question of how accurate does the 

volume need to be? Mines have the perspective that accuracy is not an important trait. 

This is misconceived in some contexts as the monitoring of a wall to find if it will 
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collapse or the volumetric calculation of a material that is exchanged for money is 

very important and must be accurate.  

 

Over the past 15 years the method of measuring volumes has evolved from recording 

points with a prism & pole to reflectorless and now laser scanning. Reflectorless has 

removed the risk of unsafe procedures by remotely sensing points of data from a safe 

position. In the last ten years laser scanning units have been introduced to surveyors. 

The laser scanning unit could only perform scans and was very expensive. This 

system is typically used in the mines as they can afford it and they have the need for 

gathering a lot of point’s inaccessible areas. Technology has now gone one step 

further and incorporated scanning into total stations. This results in the everyday 

surveyor still having the ability to perform general surveying applications, however 

now having the ability to perform scans on a surface.      

 

From the undertaking of the research involved in writing this dissertation I learnt a lot 

about what the software can do and the correct procedures for performing them. As I 

have stated previously total station scanning is relatively new and there has been 

limited testing on this technology. I believe incorporating scanning capabilities into a 

total station is the way to the future in surveying equipment. The introduction of a 

scanning function has not altered the physical instrument or internal components. 

There are no disadvantages by including the scanning function into a total station 

besides the capabilities of the scanner & drafting software, “but something is better 

than nothing”. Below is a list of the advantages and disadvantages of laser scanning. 

 

Advantages of a total station scanning instrument:   

 

• A single total station instrument is cheaper compared to that of a single laser 

scanning unit. 

• A total station instrument has more capabilities than that of a single laser 

scanning unit (can still perform traditional traversing etc). 

• The data captured is compatible with current surveying software (Terramodel, 

AutoCAD etc). 
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• The scanning function is useful for the everyday surveyor that would only 

perform a limited amount of scans a year. 

• Ability to record information that was not accessible before due to safety 

issues.  

• It is a single complete unit, as the external and internal characteristics of the 

instrument have not changed compared to a scanner which needs a laptop, 

external battery, etc).  

• Requires only one field technician.   

• Semi-automated stand alone system (set it up and let it scan). 

 

Disadvantages of a total station scanning instrument: 

 

• The 3D software capabilities are limited.  

• Cannot view in real time. 

• A laser scanning unit can record up to 50,000 points a second, while a total 

station records one point every 3 seconds. 

• The scanning capabilities are only basic compared to that of a laser scanning 

unit. 

 

In my opinion the advantages of including a laser scanning function into a total station 

outweigh the disadvantages. As technology continues to evolve the disadvantages 

listed above will be refined and tuned which will enhance the technology. Like all 

technology it will become quicker, the software capabilities will become better and 

the ability to connect up to a laptop and get real time information will be available 

within the near distant future.  

 

The main purpose of this test was to scan a simulated stockpile with both instruments 

to find the optimal scanning interval. Due to some problems with the Leica’s scanning 

software I was unable to perform a scan but instead recorded reflectorless 

measurements at my discretion. The Trimble S6 performed the scan very well, with 

no problems and all the points captured. The data processing stage was also very 

quick and easy as the data was extracted straight into Terramodel where I could 

investigate it. Besides the fact that I could not perform a scan with the Leica the data 
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processing was straight forward. Once the data was imported into Terramodel I 

calculated a volume for both sets of data. From this I proceeded to remove 25% of the 

data and calculated a volume. I continued this formula to find a result for 50% and 

75% of the data removed to calculate the percentage of change. Removing 25% and 

50% of data only equated to a 1% change with the Trimble and roughly a 3% change 

with the Leica. A noticeable change occurred when 75% of data was removed where 

the Trimble went to 5% and the Leica 8%. After discussion with my supervisor we 

decided that the error would become significant once the data reached 5%. This would 

be our optimal scanning interval. The initial scanning interval was 0.400m 

horizontally and 0.400m vertically. 

 

By adopting only 25% of the original data for this test, the scanning interval was three 

times that of my starting interval. The optimal interval for my particular test was 1.2 

metres. It is important to note the break lines, those being the top ridge and base of the 

feature being scanned. If in my situation I did not gather enough data along these 

break lines then I would not be confident that the shape of my stockpile would be 

truly represented. This would lead to a poorly estimated volume as areas of the 

stockpile would be generalised because of significant data and not the true shape of 

the undulating surface. 

 

When comparing the error percentage between both instruments, the Trimble S6 

shows the least amount of error deviation compared to the Leica at all three changes 

(75%, 50% and 25%). Additional analysis of the instruments led me to investigate the 

apparent variations of points over the simulated stockpile. The Trimble S6 data 

pattern is uniform and evenly spread across most of the stockpile. This is expected as 

the instrument controls the pointing of the instrument after the user has defined the 

parameters as compared to the Leica where reflectorless measurements were taken at 

my discretion over the simulated stockpile. Currently this is standard practice as most 

surveying companies gather points the traditional way by using a pole and prism 

which see’s each point reliant on the technician’s discretion. Figure 4.5 would suggest 

a uniform and machine guided pointing will produce a more accurate measurement. 

However, this may not be the case. When performing a scan the instrument will only 

record points on its grid section. The instrument will not detect sudden variations in 

the surface, whereas by using the traditional method the field technician can locate the 
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sudden variations. This all comes back down to the scanning interval. A larger 

scanning interval will generalise the surface more and miss certain information if the 

interval is too large. Compared to small scanning intervals this will better estimate the 

surface as it will locate more points and produce a more accurate model of the 

surface, essentially producing more accurate results. But will measuring at smaller 

intervals produce a more accurate answer than larger intervals and greater 

generalization of the surface? Figure 4.5 suggests that a smaller scanning interval 

does produce more accurate results. This is because as the data was removed the error 

increased. From this figure it also suggests that the uniform scanning pattern of the 

Trimble S6 also produced more accurate results than randomly locating points with 

the Leica.  Because the S6 scan is uniform, at set gridlines and small scanning 

interval, the level of detail at critical locations is captured. By having a uniform scan 

over the simulated stockpile the error was reduced compared to that of randomly 

locating points at my discretion. This strengthened the idea that scanning will produce 

a more accurate answer.  

 

Manual calculations were carried out to find the expected error for 0.4m and 1.2m 

scanning intervals. These calculations were done by using partial derivative and 

propagation of errors methods. The results found for 0.4m scanning interval the error 

equated to less than 1% for the total area. By increasing the scanning interval to 1.2m 

the error was just under 2% for the total area. These errors are based on the whole 

volume and are influenced by the assigned errors and scanning interval. 

 

As reflectorless does not require anything to reflect, its measurements are taken to the 

first thing that the laser comes in contact with, which in this case is the grass. But 

when recording information, traditionally we use a prism and pole and when placing 

the pole into the ground it would be 30 to 60mm under the surface of the grass. This 

raises another problem of what is the surface we are trying to measure. Is it just below 

the dirt, dirt level or grass level? In most cases this difference will not matter, but 

surveyors need to be mindful of what incident energy is reflecting from. 

 

In summary as the data was extracted the error percentage increased. I established that 

this error percentage should not exceed 5% as the error would then become 

significant. By removing data I could continue to calculate my error percentage until I 
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reached the 5%. This percentage exceeded my optimal error between 50 and 25% of 

the data. This equated to 3 times my starting interval of 0.4m to 1.2m. By using a 

1.2m scanning interval on my initial scan I could have reduced my scanning time, 

data processing, storage and still maintained an accurate volume.   

 

5.2.3 Encroachment Testing  
 

The encroachment testing was conducted to establish correct measuring procedures, 

reflectorless limitations, capabilities of the software and if a 3D model of the 

encroachment is better than a 2D plan which are currently used to portray 

encroachments. The design had to replicate a building encroachment situation. With 

the use of both instruments, reflectorless measurements were taken to the building 

walls, eaves, natural surface and two marks representing the cadastral boundary. The 

aim of this data was to create a 3D model of the encroachment by fitting planes to the 

points captured. From this model I was expecting to obtain measurements from plane 

to plane to calculate distances, volumes and areas etc. The second analysis was to use 

Terramodel to calculate a chainage and offset report from the cadastral boundary to 

each point on the wall.    

 

Due to some software capabilities and my inexperience in the software I was not able 

to record any measurement from plane to plane. The theory behind using a 3D model 

was to use planes instead of discrete points to perform calculations. This would 

provide better analysis of information anywhere on the model thereby achieving 

greater accuracy for calculating volumes and distances at any location on the model. 

After some manipulation with the data structure I was able to import it into the Leica 

Cyclone software. From this I fitted planes between points and produced a 3D model. 

However, my analysis had come to a halt as I could not perform my intended 

calculations. The software would only let me perform measurements from point to 

point which I can do in a normal software package. On a positive note, the 3D 

software did make it easier to visualise the model and select points.    
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Figure 4.9 shows how planes can be used to show the shape of a building and the 

cadastral boundary. This model provides a greater level of detail and information 

compared to traditional 2D plans that are currently used to represent encroachments. 

Referring to Appendix E which shows the right hand side of the survey plan where 

there are two garden sheds encroaching. These are shown as a single black line over 

the boundary with an annotation of 0.9 over. In 4.9 we can see precisely where the 

cadastral boundary slices through the building. With this model the ability to annotate 

these lines and planes to include areas, volumes and distances would be useful. As 

modeling software continues to evolve I expect calculations from plane to plane and 

other functions will become available. 

  

Looking at a more complex encroachment like the Gabba stadium in Brisbane there 

are beams, braces and structural features all throughout the encroachment. Because 

the encroachment is not fully enclosed like my example above, the impression of the 

encroachment may be misunderstood to be that the whole area/volume under this is 

encroaching. But in fact only a small volume of features are encroaching. In this 

situation a single 2D plan does not do justice to fully show the encroachment. Only 

showing the furtherest extended structural edging may be ok to show the extent but 

should provide more information. If there was a 3D scanned drawing of the complex 

encroachment then a whole range of analysis may be performed like calculations of 

clearances, structural design, improvements and from the surveying side the 

encroachment itself represented in 3D. When compared to the 2D representation of 

the encroachment we could not acquire this information. This method of 

representation also raises problems of software capabilities, failure to produce a hard 

copy plan and the amount of detail actually required for the encroachment.      

 

The second method of analysis was producing a report showing the chainages and 

offsets from the cadastral boundary to each feature using Terramodel. The process 

was to assign an alignment to the cadastral boundary. From this alignment a report 

was done which calculated the chainage along the alignment from the start and the 

offset from my alignments to each feature. This method worked well and the report 

was very quick. But in the situation where the building encroachment completely 

obstructs a clear view from one boundary corner to the other, there is a problem of 

knowing if you are on that alignment to measure the offset. When creating this 
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alignment there is no vertical component. I recorded three measurements at different 

heights above each other to show the vertical orientation. This method of interpolating 

the chainage and offset is difficult to measure in the field. This method may be useful 

not to produce a report but to transfer data. Instead of producing a report, the 

information can be exported as a text file. The text file would contain point numbers, 

description, chainage, offsets and elevation. Form this text file the data can imported 

into Terramodel, AutoCAD or a hardcopy plan. This may be an alternative approach 

for lodging encroachment information.           

 

Finally, I would like to mention the electronic lodgment of survey related information. 

Currently, most encroachments are represented on 2D plans refer to appendix I. Most 

encroachments are represented by the most extended feature encroaching on the 

neighbouring land whether it is the crown or private land. In the case that the 

encroachment was quite complex and a greater detail of information is required then 

how is this to be displayed on a 2D plan? At the moment there is no provision for 

lodging electronic plans. Currently in progress is a system of electronic lodgment of 

surveying data (survey plans). Electronic lodgment of survey information may 

enhance the level of information provided to clients, developers and other surveyors. 

In the case mentioned above about the Gabba stadium in Brisbane, an electronic 

lodgment of the survey scan or reflectorless measurements would provide people with 

more information. The plan may be sent electronically at a fee to the person 

requesting the information where they can use a 3D modeling software to interrogate 

and query the information. This would save costs and time because the current 2D 

plan does not show any extra information and a 3D plan can include information 

about the beams, braces, size and shape of features which can be stored on a single 

electronic drawing. 

 

5.3 Summary: Chapter 5 
 

This chapter covered an in-depth discussion of all three test deigns, their results, 

performance and conclusions. Both instruments performed to the manufacturers 

specification over all three tests. This chapter also covered some conclusions sought 

from other peers about what they have found during their testing. The discussions not 
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only spoke about the advantages but more importantly the disadvantages of the 

instruments, software and their abilities. The next chapter will discuss my 

recommendations and a final conclusion about the equipment and objectives for this 

project.    

 



Chapter 6 Recommendations & Conclusion 

Chapter 6 – Recommendations & 

Conclusion 
 

 

6.1 Introduction  
 

This chapter will outline some recommendations that may be of assistance to users in 

regards to total station laser scanning and the establishment of guidelines that industry 

companies can develop. To conclude there will be a summary of the final outcomes of 

this project and a statement of whether I have achieved the objectives set at the 

commencement of this project. 

 

6.2 Recommendations 
 

The Leica 1205R and the Trimble S6 have proven to be very useful tools in surveying 

applications. Both instruments have reflectorless technology and laser scanning 

functions which have satisfied the three tests that were conducted. However, there are 

a number of key features that I would recommend to the manufacturers of these 

instruments and also to users. They are: 

 

Polygon scan feature: Both instruments have a number of scan functions built into 

the instrument that allows the user to choose the type of scan they want. Some include 

rectangle scan and offset scan. The problems with these applications are that they 

mainly cater for scanning surfaces that are parallel and perpendicular because that is 

how the scan area is defined. Most stockpiles or mounds of dirt are in the shape of a 

bell shaped curve or an upside down parabola. So instead of defining a rectangle scan 

area over the stockpile, the user could identify the scan area by locating a number of 

points along the break lines of the feature and the scan would be contained within this 

area. By doing this, a lot of factors may be reduced including the amount of point data 

captured, scan time, storage and processing time. 
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Inefficient measuring of non-reflective points: On average it takes a total station 

3.5 seconds to record a point. When measuring a non-reflective feature the instrument 

will try to record the point up to 4 times before it disregards it and moves to the next 

one. When I compared a total station scanning instrument and a laser scanning unit I 

found that the laser scanning unit will disregard points if they do not reflect the first 

time whereas a total station instrument continues to record the point. This leads to 

inefficient measuring of non-reflective points, resulting in time loss. I recommend 

including a feature that specifies the number a retries a single point may have if the 

point is non-reflective.  

 

Establish guidelines on optimal scanning intervals and expected errors: Most 

surveying applications like detail surveys rely on the user’s discretion on optimal 

contour intervals and the like. I believe that establishing guidelines on optimal 

scanning intervals of different features, shapes and materials would be of great 

benefit. This may be utilised as a guide for users because I found that I chose either a 

higher spacing interval or lower spacing interval than that of the optimal spacing 

interval. This resulted in me recording too much data or not enough data. Guidelines 

also need to be established on expected errors for the scanning of grain, soil, rock and 

coal etc. Additional information about different material densities can also be 

included and applied in the calculation stage to gather a better approximation of 

volume. 

 

Encroachments: Currently in Queensland there is no provision for electronic 

lodgment of surveying information (survey plans, volumetric plans etc). I believe this 

is currently in the process of changing to electronic lodgment of surveying data. By 

introducing this new method of lodgment other related information like a 3D model 

scans of an encroachment may be attached to the survey plan and lodged as one. This 

method would be most beneficial in mining situations where a standard can be 

established and information stored about the workings of mines. I personally believe 

this is the way of the future as technology is continually evolving and an increasing 

amount of information is transferred electronically via computers and the internet.  
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6.2.1 Further Research 
 

This project has covered three areas of testing and analysis involved with reflectorless 

technology and laser scanning capabilities. They are controlled surface scan testing, 

volumetric testing and encroachment testing. Further research can be conducted over 

the three tests designs within this project. 

 

More extensive research may be carried out on my first test, the controlled surface 

scan, by measuring and analysing the effects of a wide range of colours, surfaces 

(rough or smooth), water, range and materials. As I only touched the basis on most of 

these areas, further research would be useful for determining errors in different 

applications.   

 

The calculations of volumes are never 100% correct due to the irregularities within 

materials. Most volumetric surveying scans are approximated based on the area 

between points and not a true model of the varying area. Most of the materials 

scanned will contain air pockets or gaps between the materials which when scanned 

will over estimate the volume. This is due to the amount of spacing or area between 

materials and will also depend on the material measured. For example, a rock may 

have bigger gaps or spacing compared to a grain material. Therefore, there is the need 

for further research into densities of different materials in determining more accurate 

measuring of volumetric features.   

 

My final recommendation is to further the research into the requirements of a 

surveyor in an encroachment situation. Research the requirements of accuracy, 

information required and the representation of encroachments on survey plans. 

Particularly the lodgment of electronic encroachment plans and how they may attach 

to a survey plan and lodged in the titles office. 
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6.3 Conclusion  
 

The reflectorless capabilities of both instruments performed very well with little 

difference between the two. However, the scanning capabilities of the Trimble S6 

proved to be the better instrument due to its user-friendliness, quick & easy setup of 

scans and easy processing of data. The Leica 1205R was still a suitable instrument for 

performing scans but it had a difficult to follow display, naming of applications and 

took a long time to setup scans.  

 

My supervisor and I set out a number of goals to achieve throughout the fulfillment of 

the project. I believe I have covered most of the objectives to a satisfactory standard. 

This dissertation covers the research of existing laser scanning technology, 

capabilities and specification of both the Trimble S6 and Leica 1205R. It also includes 

the three test designs which analysed both instruments for speed, accuracy and 

performance on a range of different applications including a simple point comparison, 

scans over a simulated stockpile and reflectorless measurement of building features 

which were performed under different conditions. These tests were analysed 

according to a range of criteria where the implications and results were discussed with 

respect to surveying organisations and potential opportunities. 

 

In conclusion, this project compared the laser scanning capabilities and reflectorless 

limitation of two robotic total stations for various surveying applications. 

Reflectorless and laser scanning capabilities were tested and the fundamental theory 

behind the technology was discussed in the literature review. The methods, results and 

discussions covered the test designs performed and the outcomes of these tests. This 

conclusion spoke about my recommendations, further research and an overview of my 

dissertation.    
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Appendix B – Trimble S6 Datasheet 
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Appendix C – Leica TPS1200+ Datasheet 
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Appendix D – S6 Dry Conditions.  

 

Point Easting Northing RL Normal ABS Average 
Standard 

Dev 
2000 995.267 5006.196 100.426 0.0007 0.0007 0.00037 0.00027
2001 995.266 5006.197 100.426 -0.0005 0.0005 
2002 995.443 5006.661 100.44 -0.0004 0.0004 
2003 995.269 5006.202 99.926 0.0006 0.0006 
2004 995.284 5006.243 100.427 -0.0001 0.0001 
2005 995.302 5006.29 100.429 0.0000 0.0000 
2006 995.32 5006.336 100.43 0.0004 0.0004 
2007 995.338 5006.383 100.432 0.0005 0.0005 
2008 995.355 5006.43 100.433 -0.0004 0.0004 
2009 995.374 5006.476 100.435 0.0010 0.0010 
2010 995.391 5006.524 100.436 -0.0002 0.0002 
2011 995.409 5006.57 100.438 0.0002 0.0002 
2012 995.427 5006.616 100.439 0.0006 0.0006 
2013 995.443 5006.661 100.44 -0.0004 0.0004 
2014 995.444 5006.662 100.39 0.0002 0.0002 
2015 995.427 5006.619 100.389 -0.0004 0.0004 
2016 995.409 5006.572 100.388 -0.0005 0.0005 
2017 995.391 5006.525 100.386 -0.0006 0.0006 
2018 995.374 5006.478 100.385 0.0003 0.0003 
2019 995.356 5006.431 100.383 0.0002 0.0002 
2020 995.338 5006.385 100.382 -0.0002 0.0002 
2021 995.32 5006.338 100.38 -0.0003 0.0003 
2022 995.303 5006.291 100.379 0.0006 0.0006 
2023 995.285 5006.245 100.377 0.0001 0.0001 
2024 995.267 5006.198 100.376 0.0000 0.0000 
2025 995.267 5006.2 100.326 -0.0006 0.0006 
2026 995.285 5006.246 100.327 -0.0002 0.0002 
2027 995.303 5006.293 100.329 -0.0001 0.0001 
2028 995.321 5006.34 100.33 -0.0001 0.0001 
2029 995.338 5006.387 100.332 -0.0009 0.0009 
2030 995.357 5006.433 100.333 0.0005 0.0005 
2031 995.374 5006.48 100.335 -0.0004 0.0004 
2032 995.392 5006.526 100.336 0.0000 0.0000 
2033 995.41 5006.573 100.338 0.0001 0.0001 
2034 995.428 5006.62 100.339 0.0002 0.0002 
2035 995.444 5006.664 100.34 -0.0005 0.0005 
2036 995.445 5006.665 100.29 0.0001 0.0001 
2037 995.429 5006.62 100.289 0.0011 0.0011 
2038 995.411 5006.574 100.288 0.0007 0.0007 
2039 995.393 5006.528 100.286 0.0003 0.0003 
2040 995.375 5006.481 100.285 0.0002 0.0002 
2041 995.357 5006.434 100.283 0.0001 0.0001 
2042 995.339 5006.388 100.282 -0.0003 0.0003 
2043 995.321 5006.341 100.28 -0.0004 0.0004 
2044 995.303 5006.295 100.279 -0.0008 0.0008 
2045 995.286 5006.248 100.277 0.0000 0.0000 
2046 995.268 5006.201 100.276 -0.0001 0.0001 
2047 995.269 5006.202 100.226 0.0005 0.0005 
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2048 995.286 5006.249 100.227 -0.0003 0.0003 
2049 995.304 5006.295 100.229 0.0001 0.0001 
2050 995.322 5006.342 100.23 0.0002 0.0002 
2051 995.34 5006.389 100.232 0.0003 0.0003 
2052 995.357 5006.436 100.233 -0.0006 0.0006 
2053 995.375 5006.482 100.235 -0.0002 0.0002 
2054 995.393 5006.53 100.236 -0.0004 0.0004 
2055 995.411 5006.576 100.238 0.0000 0.0000 
2056 995.429 5006.623 100.239 0.0001 0.0001 
2057 995.446 5006.666 100.24 0.0006 0.0006 
2058 995.445 5006.669 100.191 -0.0013 0.0013 
2059 995.429 5006.624 100.189 -0.0003 0.0003 
2060 995.412 5006.577 100.188 0.0006 0.0006 
2061 995.394 5006.53 100.186 0.0005 0.0005 
2062 995.376 5006.484 100.185 0.0001 0.0001 
2063 995.358 5006.437 100.183 0.0000 0.0000 
2064 995.34 5006.391 100.182 -0.0004 0.0004 
2065 995.323 5006.344 100.18 0.0004 0.0004 
2066 995.304 5006.298 100.179 -0.0009 0.0009 
2067 995.287 5006.25 100.177 0.0003 0.0003 
2068 995.269 5006.204 100.176 -0.0002 0.0002 
2069 995.269 5006.205 100.126 -0.0005 0.0005 
2070 995.288 5006.251 100.127 0.0009 0.0009 
2071 995.305 5006.299 100.129 -0.0003 0.0003 
2072 995.323 5006.345 100.13 0.0001 0.0001 
2073 995.341 5006.392 100.132 0.0002 0.0002 
2074 995.359 5006.439 100.133 0.0002 0.0002 
2075 995.376 5006.485 100.135 -0.0003 0.0003 
2076 995.394 5006.532 100.136 -0.0002 0.0002 
2077 995.412 5006.578 100.138 0.0003 0.0003 
2078 995.43 5006.625 100.139 0.0003 0.0003 
2079 995.447 5006.669 100.141 0.0005 0.0005 
2080 995.447 5006.671 100.091 -0.0002 0.0002 
2081 995.431 5006.626 100.089 0.0009 0.0009 
2082 995.413 5006.58 100.088 0.0005 0.0005 
2083 995.395 5006.533 100.086 0.0004 0.0004 
2084 995.377 5006.487 100.085 0.0000 0.0000 
2085 995.359 5006.44 100.083 -0.0001 0.0001 
2086 995.341 5006.393 100.082 -0.0002 0.0002 
2087 995.323 5006.347 100.08 -0.0006 0.0006 
2088 995.306 5006.299 100.079 0.0006 0.0006 
2089 995.288 5006.253 100.077 0.0002 0.0002 
2090 995.27 5006.207 100.076 -0.0003 0.0003 
2091 995.271 5006.208 100.026 0.0003 0.0003 
2092 995.289 5006.254 100.027 0.0008 0.0008 
2093 995.306 5006.301 100.029 -0.0001 0.0001 
2094 995.324 5006.348 100.03 0.0000 0.0000 
2095 995.341 5006.395 100.032 -0.0009 0.0009 
2096 995.36 5006.441 100.033 0.0005 0.0005 
2097 995.377 5006.489 100.035 -0.0007 0.0007 
2098 995.395 5006.535 100.036 -0.0003 0.0003 
2099 995.413 5006.582 100.038 -0.0002 0.0002 
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2100 995.431 5006.628 100.039 0.0002 0.0002 
2101 995.447 5006.672 100.041 -0.0005 0.0005 
2102 995.448 5006.673 99.991 0.0001 0.0001 
2103 995.431 5006.63 99.989 -0.0005 0.0005 
2104 995.414 5006.583 99.988 0.0004 0.0004 
2105 995.396 5006.537 99.986 0.0000 0.0000 
2106 995.378 5006.49 99.985 -0.0001 0.0001 
2107 995.36 5006.443 99.983 -0.0002 0.0002 
2108 995.342 5006.396 99.982 -0.0003 0.0003 
2109 995.325 5006.349 99.98 0.0006 0.0006 
2110 995.306 5006.303 99.979 -0.0008 0.0008 
2111 995.289 5006.256 99.977 0.0001 0.0001 
2112 995.272 5006.209 99.976 0.0009 0.0009 
2113 995.272 5006.21 99.927 0.0006 0.0006 
2114 995.289 5006.257 99.928 -0.0003 0.0003 
2115 995.307 5006.304 99.93 -0.0002 0.0002 
2116 995.325 5006.351 99.931 -0.0001 0.0001 
2117 995.342 5006.398 99.933 -0.0010 0.0010 
2118 995.361 5006.444 99.934 0.0004 0.0004 
2119 995.378 5006.491 99.936 -0.0005 0.0005 
2120 995.396 5006.538 99.937 -0.0004 0.0004 
2121 995.414 5006.585 99.939 -0.0003 0.0003 
2122 995.432 5006.631 99.94 0.0001 0.0001 
2123 995.449 5006.675 99.941 0.0003 0.0003 
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Appendix E – S6 Wet Conditions.  

 

Point Easting Northing RL Normal ABS Average 
Standard 

Dev 
5000 995.266 5006.197 100.426 -0.0004 0.0004 0.00035 0.00026 
5001 995.284 5006.243 100.427 0.0000 0.0000 
5002 995.302 5006.29 100.429 0.0002 0.0002 
5003 995.32 5006.337 100.43 0.0003 0.0003 
5004 995.338 5006.383 100.432 0.0007 0.0007 
5005 995.355 5006.43 100.433 -0.0001 0.0001 
5006 995.373 5006.477 100.435 0.0000 0.0000 
5007 995.391 5006.524 100.436 0.0001 0.0001 
5008 995.408 5006.571 100.438 -0.0007 0.0007 
5009 995.426 5006.618 100.439 -0.0006 0.0006 
5010 995.443 5006.661 100.44 0.0000 0.0000 
5011 995.444 5006.662 100.39 0.0006 0.0006 
5012 995.427 5006.618 100.389 0.0003 0.0003 
5013 995.409 5006.572 100.388 -0.0001 0.0001 
5014 995.391 5006.525 100.386 -0.0002 0.0002 
5015 995.373 5006.479 100.385 -0.0007 0.0007 
5016 995.356 5006.432 100.383 0.0001 0.0001 
5017 995.338 5006.385 100.382 0.0000 0.0000 
5018 995.32 5006.339 100.38 -0.0004 0.0004 
5019 995.302 5006.292 100.379 -0.0005 0.0005 
5020 995.285 5006.244 100.377 0.0006 0.0006 
5021 995.267 5006.198 100.376 0.0002 0.0002 
5022 995.267 5006.2 100.326 -0.0005 0.0005 
5023 995.286 5006.246 100.327 0.0009 0.0009 
5024 995.303 5006.293 100.329 0.0001 0.0001 
5025 995.321 5006.34 100.33 0.0002 0.0002 
5026 995.339 5006.386 100.332 0.0006 0.0006 
5027 995.356 5006.434 100.333 -0.0006 0.0006 
5028 995.374 5006.48 100.335 -0.0001 0.0001 
5029 995.392 5006.527 100.336 0.0000 0.0000 
5030 995.409 5006.574 100.338 -0.0008 0.0008 
5031 995.428 5006.62 100.339 0.0006 0.0006 
5032 995.444 5006.663 100.34 0.0003 0.0003 
5033 995.445 5006.665 100.291 0.0005 0.0005 
5034 995.428 5006.621 100.289 0.0002 0.0002 
5035 995.41 5006.575 100.288 -0.0002 0.0002 
5036 995.392 5006.528 100.286 -0.0003 0.0003 
5037 995.374 5006.482 100.285 -0.0008 0.0008 
5038 995.357 5006.435 100.283 0.0000 0.0000 
5039 995.339 5006.388 100.282 -0.0001 0.0001 
5040 995.321 5006.341 100.28 -0.0002 0.0002 
5041 995.303 5006.295 100.279 -0.0006 0.0006 
5042 995.286 5006.248 100.277 0.0002 0.0002 
5043 995.268 5006.201 100.276 0.0001 0.0001 
5044 995.269 5006.202 100.226 0.0007 0.0007 
5045 995.286 5006.249 100.227 -0.0002 0.0002 
5046 995.304 5006.296 100.229 0.0000 0.0000 
5047 995.321 5006.343 100.23 -0.0009 0.0009 

Comparison of Robotic Total Stations for Scanning of Volumes or Structures  72



Appendices 

5048 995.339 5006.389 100.232 -0.0004 0.0004 
5049 995.358 5006.436 100.233 0.0006 0.0006 
5050 995.375 5006.483 100.235 -0.0002 0.0002 
5051 995.393 5006.529 100.236 0.0003 0.0003 
5052 995.411 5006.576 100.238 0.0004 0.0004 
5053 995.429 5006.622 100.239 0.0008 0.0008 
5054 995.445 5006.667 100.241 -0.0002 0.0002 
5055 995.446 5006.668 100.191 0.0004 0.0004 
5056 995.429 5006.624 100.189 0.0001 0.0001 
5057 995.412 5006.577 100.188 0.0010 0.0010 
5058 995.393 5006.531 100.186 -0.0004 0.0004 
5059 995.376 5006.484 100.185 0.0004 0.0004 
5060 995.358 5006.437 100.183 0.0003 0.0003 
5061 995.34 5006.391 100.182 -0.0002 0.0002 
5062 995.322 5006.344 100.18 -0.0003 0.0003 
5063 995.305 5006.297 100.179 0.0005 0.0005 
5064 995.287 5006.251 100.177 0.0001 0.0001 
5065 995.269 5006.204 100.176 0.0000 0.0000 
5066 995.269 5006.206 100.126 -0.0007 0.0007 
5067 995.287 5006.252 100.127 -0.0003 0.0003 
5068 995.306 5006.298 100.129 0.0011 0.0011 
5069 995.323 5006.345 100.13 0.0003 0.0003 
5070 995.34 5006.392 100.132 -0.0005 0.0005 
5071 995.359 5006.439 100.133 0.0005 0.0005 
5072 995.376 5006.485 100.135 0.0001 0.0001 
5073 995.394 5006.532 100.136 0.0002 0.0002 
5074 995.412 5006.579 100.138 0.0003 0.0003 
5075 995.429 5006.626 100.139 -0.0005 0.0005 
5076 995.446 5006.669 100.141 0.0000 0.0000 
5077 995.447 5006.671 100.091 0.0003 0.0003 
5078 995.43 5006.627 100.089 0.0000 0.0000 
5079 995.412 5006.581 100.088 -0.0004 0.0004 
5080 995.394 5006.534 100.086 -0.0005 0.0005 
5081 995.376 5006.487 100.085 -0.0006 0.0006 
5082 995.359 5006.44 100.083 0.0002 0.0002 
5083 995.341 5006.393 100.082 0.0001 0.0001 
5084 995.323 5006.347 100.08 -0.0004 0.0004 
5085 995.306 5006.3 100.079 0.0004 0.0004 
5086 995.288 5006.254 100.077 0.0000 0.0000 
5087 995.27 5006.207 100.076 -0.0001 0.0001 
5088 995.271 5006.208 100.026 0.0005 0.0005 
5089 995.288 5006.255 100.027 -0.0004 0.0004 
5090 995.306 5006.302 100.029 -0.0003 0.0003 
5091 995.324 5006.349 100.03 -0.0001 0.0001 
5092 995.341 5006.395 100.032 -0.0006 0.0006 
5093 995.359 5006.442 100.033 -0.0005 0.0005 
5094 995.377 5006.489 100.035 -0.0004 0.0004 
5095 995.395 5006.535 100.036 0.0001 0.0001 
5096 995.413 5006.582 100.038 0.0002 0.0002 
5097 995.43 5006.629 100.039 -0.0006 0.0006 
5098 995.447 5006.673 100.041 -0.0004 0.0004 
5099 995.448 5006.673 99.991 0.0005 0.0005 
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5100 995.431 5006.63 99.989 -0.0001 0.0001 
5101 995.414 5006.583 99.988 0.0008 0.0008 
5102 995.395 5006.537 99.986 -0.0006 0.0006 
5103 995.378 5006.49 99.985 0.0002 0.0002 
5104 995.36 5006.443 99.983 0.0001 0.0001 
5105 995.342 5006.396 99.982 0.0000 0.0000 
5106 995.324 5006.35 99.98 -0.0005 0.0005 
5107 995.307 5006.303 99.979 0.0003 0.0003 
5108 995.289 5006.256 99.977 0.0002 0.0002 
5109 995.271 5006.209 99.976 0.0001 0.0001 
5110 995.272 5006.21 99.927 0.0007 0.0007 
5111 995.289 5006.258 99.928 -0.0005 0.0005 
5112 995.307 5006.304 99.93 0.0000 0.0000 
5113 995.325 5006.351 99.931 0.0001 0.0001 
5114 995.343 5006.398 99.933 0.0002 0.0002 
5115 995.361 5006.444 99.934 0.0007 0.0007 
5116 995.378 5006.492 99.936 -0.0005 0.0005 
5117 995.396 5006.538 99.937 0.0000 0.0000 
5118 995.414 5006.585 99.939 0.0001 0.0001 
5119 995.432 5006.632 99.94 0.0002 0.0002 
5120 995.448 5006.676 99.941 -0.0005 0.0005 
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Appendix F – Leica Dry Conditions.  

 

Point Easting Northing RL Normal ABS Average 
Standard 

Dev 
2000 995.265 5006.198 101.94 0.0013 0.0013 0.00041 0.00027 
2001 995.282 5006.246 101.94 0.0002 0.0002 
2002 995.3 5006.293 101.94 0.0003 0.0003 
2003 995.317 5006.34 101.94 -0.0005 0.0005 
2004 995.335 5006.386 101.94 0.0000 0.0000 
2005 995.353 5006.433 101.94 0.0002 0.0002 
2006 995.37 5006.481 101.94 -0.0010 0.0010 
2007 995.388 5006.527 101.94 -0.0005 0.0005 
2008 995.406 5006.573 101.94 0.0001 0.0001 
2009 995.424 5006.62 101.94 0.0002 0.0002 
2010 995.424 5006.621 101.89 -0.0001 0.0001 
2011 995.406 5006.573 101.89 0.0001 0.0001 
2012 995.389 5006.526 101.89 0.0009 0.0009 
2013 995.37 5006.48 101.89 -0.0006 0.0006 
2014 995.353 5006.433 101.89 0.0002 0.0002 
2015 995.335 5006.387 101.89 -0.0003 0.0003 
2016 995.317 5006.34 101.89 -0.0004 0.0004 
2017 995.3 5006.292 101.89 0.0007 0.0007 
2018 995.282 5006.246 101.89 0.0002 0.0002 
2019 995.264 5006.2 101.89 -0.0003 0.0003 
2020 995.264 5006.199 101.84 0.0001 0.0001 
2021 995.282 5006.245 101.84 0.0006 0.0006 
2022 995.3 5006.293 101.84 0.0004 0.0004 
2023 995.317 5006.339 101.84 0.0000 0.0000 
2024 995.335 5006.386 101.84 0.0001 0.0001 
2025 995.353 5006.432 101.84 0.0006 0.0006 
2026 995.371 5006.479 101.84 0.0008 0.0008 
2027 995.388 5006.526 101.84 0.0000 0.0000 
2028 995.406 5006.573 101.84 0.0001 0.0001 
2029 995.423 5006.621 101.84 -0.0010 0.0010 
2030 995.424 5006.62 101.79 0.0003 0.0003 
2031 995.406 5006.573 101.79 0.0001 0.0001 
2032 995.388 5006.526 101.79 0.0000 0.0000 
2033 995.371 5006.479 101.79 0.0008 0.0008 
2034 995.353 5006.433 101.79 0.0003 0.0003 
2035 995.335 5006.387 101.79 -0.0002 0.0002 
2036 995.317 5006.34 101.79 -0.0004 0.0004 
2037 995.3 5006.292 101.79 0.0008 0.0008 
2038 995.282 5006.246 101.79 0.0003 0.0003 
2039 995.263 5006.2 101.79 -0.0012 0.0012 
2040 995.264 5006.199 101.74 0.0002 0.0002 
2041 995.281 5006.247 101.74 -0.0010 0.0010 
2042 995.299 5006.293 101.74 -0.0005 0.0005 
2043 995.317 5006.34 101.74 -0.0003 0.0003 
2044 995.335 5006.386 101.74 0.0002 0.0002 
2045 995.353 5006.433 101.74 0.0003 0.0003 
2046 995.37 5006.48 101.74 -0.0005 0.0005 
2047 995.388 5006.527 101.74 -0.0003 0.0003 
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2048 995.406 5006.573 101.74 0.0002 0.0002 
2049 995.424 5006.62 101.74 0.0003 0.0003 
2050 995.424 5006.62 101.69 0.0004 0.0004 
2051 995.406 5006.573 101.69 0.0002 0.0002 
2052 995.388 5006.526 101.69 0.0001 0.0001 
2053 995.37 5006.48 101.69 -0.0004 0.0004 
2054 995.353 5006.433 101.69 0.0003 0.0003 
2055 995.335 5006.387 101.69 -0.0002 0.0002 
2056 995.317 5006.34 101.69 -0.0003 0.0003 
2057 995.299 5006.293 101.69 -0.0005 0.0005 
2058 995.282 5006.246 101.69 0.0003 0.0003 
2059 995.264 5006.199 101.69 0.0002 0.0002 
2060 995.264 5006.199 101.64 0.0002 0.0002 
2061 995.281 5006.246 101.64 -0.0006 0.0006 
2062 995.299 5006.293 101.64 -0.0004 0.0004 
2063 995.317 5006.34 101.64 -0.0003 0.0003 
2064 995.334 5006.386 101.64 -0.0007 0.0007 
2065 995.352 5006.433 101.64 -0.0006 0.0006 
2066 995.37 5006.48 101.64 -0.0004 0.0004 
2067 995.388 5006.526 101.64 0.0001 0.0001 
2068 995.405 5006.573 101.64 -0.0007 0.0007 
2069 995.424 5006.62 101.64 0.0004 0.0004 
2070 995.424 5006.62 101.59 0.0004 0.0004 
2071 995.406 5006.573 101.59 0.0003 0.0003 
2072 995.388 5006.528 101.59 -0.0006 0.0006 
2073 995.37 5006.48 101.59 -0.0004 0.0004 
2074 995.352 5006.433 101.59 -0.0005 0.0005 
2075 995.335 5006.386 101.59 0.0003 0.0003 
2076 995.317 5006.339 101.59 0.0001 0.0001 
2077 995.299 5006.293 101.59 -0.0004 0.0004 
2078 995.282 5006.246 101.59 0.0004 0.0004 
2079 995.263 5006.2 101.59 -0.0010 0.0010 
2080 995.263 5006.199 101.54 -0.0007 0.0007 
2081 995.281 5006.246 101.54 -0.0005 0.0005 
2082 995.299 5006.293 101.54 -0.0004 0.0004 
2083 995.317 5006.339 101.54 0.0001 0.0001 
2084 995.335 5006.386 101.54 0.0003 0.0003 
2085 995.352 5006.433 101.54 -0.0005 0.0005 
2086 995.37 5006.48 101.54 -0.0003 0.0003 
2087 995.388 5006.526 101.54 0.0002 0.0002 
2088 995.405 5006.573 101.54 -0.0006 0.0006 
2089 995.424 5006.619 101.54 0.0008 0.0008 
2090 995.423 5006.62 101.49 -0.0004 0.0004 
2091 995.406 5006.573 101.49 0.0003 0.0003 
2092 995.388 5006.526 101.49 0.0002 0.0002 
2093 995.37 5006.48 101.49 -0.0003 0.0003 
2094 995.352 5006.433 101.49 -0.0005 0.0005 
2095 995.335 5006.385 101.49 0.0007 0.0007 
2096 995.317 5006.34 101.49 -0.0002 0.0002 
2097 995.299 5006.292 101.49 0.0000 0.0000 
2098 995.282 5006.245 101.49 0.0008 0.0008 
2099 995.264 5006.199 101.49 0.0003 0.0003 
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2100 995.264 5006.198 101.44 0.0007 0.0007 
2101 995.282 5006.246 101.44 0.0005 0.0005 
2102 995.299 5006.293 101.44 -0.0003 0.0003 
2103 995.317 5006.339 101.44 0.0002 0.0002 
2104 995.335 5006.385 101.44 0.0007 0.0007 
2105 995.353 5006.432 101.44 0.0009 0.0009 
2106 995.371 5006.479 101.44 0.0010 0.0010 
2107 995.388 5006.526 101.44 0.0002 0.0002 
2108 995.405 5006.573 101.44 -0.0006 0.0006 
2109 995.423 5006.62 101.44 -0.0004 0.0004 
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Appendix G – Leica Wet Conditions.  

 

Point Easting Northing RL Normal ABS Average 
Standard 

Dev 
4000 995.264 5006.199 101.94 0.0005 0.0005 0.00035 0.00025 
4001 995.282 5006.247 101.94 0.0002 0.0002 
4002 995.299 5006.294 101.94 -0.0006 0.0006 
4003 995.317 5006.34 101.94 -0.0001 0.0001 
4004 995.335 5006.386 101.94 0.0003 0.0003 
4005 995.353 5006.433 101.94 0.0004 0.0004 
4006 995.37 5006.481 101.94 -0.0008 0.0008 
4007 995.388 5006.527 101.94 -0.0003 0.0003 
4008 995.406 5006.573 101.94 0.0001 0.0001 
4009 995.424 5006.62 101.94 0.0002 0.0002 
4010 995.424 5006.621 101.89 -0.0001 0.0001 
4011 995.406 5006.574 101.89 -0.0002 0.0002 
4012 995.388 5006.527 101.89 -0.0003 0.0003 
4013 995.37 5006.481 101.89 -0.0008 0.0008 
4014 995.353 5006.433 101.89 0.0004 0.0004 
4015 995.335 5006.387 101.89 0.0000 0.0000 
4016 995.317 5006.34 101.89 -0.0001 0.0001 
4017 995.299 5006.293 101.89 -0.0002 0.0002 
4018 995.282 5006.246 101.89 0.0006 0.0006 
4019 995.264 5006.2 101.89 0.0002 0.0002 
4020 995.264 5006.199 101.84 0.0006 0.0006 
4021 995.281 5006.246 101.84 -0.0003 0.0003 
4022 995.299 5006.293 101.84 -0.0002 0.0002 
4023 995.317 5006.339 101.84 0.0003 0.0003 
4024 995.335 5006.387 101.84 0.0000 0.0000 
4025 995.353 5006.433 101.84 0.0005 0.0005 
4026 995.37 5006.48 101.84 -0.0004 0.0004 
4027 995.388 5006.527 101.84 -0.0003 0.0003 
4028 995.406 5006.574 101.84 -0.0002 0.0002 
4029 995.424 5006.62 101.84 0.0003 0.0003 
4030 995.424 5006.62 101.79 0.0003 0.0003 
4031 995.406 5006.573 101.79 0.0002 0.0002 
4032 995.388 5006.527 101.79 -0.0002 0.0002 
4033 995.371 5006.479 101.79 0.0009 0.0009 
4034 995.353 5006.433 101.79 0.0005 0.0005 
4035 995.335 5006.387 101.79 0.0000 0.0000 
4036 995.318 5006.339 101.79 0.0012 0.0012 
4037 995.299 5006.293 101.79 -0.0002 0.0002 
4038 995.281 5006.247 101.79 -0.0006 0.0006 
4039 995.264 5006.199 101.79 0.0006 0.0006 
4040 995.264 5006.2 101.74 0.0003 0.0003 
4041 995.281 5006.247 101.74 -0.0006 0.0006 
4042 995.299 5006.294 101.74 -0.0005 0.0005 
4043 995.317 5006.341 101.74 -0.0004 0.0004 
4044 995.335 5006.386 101.74 0.0004 0.0004 
4045 995.352 5006.434 101.74 -0.0008 0.0008 
4046 995.37 5006.48 101.74 -0.0003 0.0003 
4047 995.388 5006.527 101.74 -0.0002 0.0002 
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4048 995.406 5006.574 101.74 -0.0001 0.0001 
4049 995.424 5006.62 101.74 0.0003 0.0003 
4050 995.424 5006.62 101.69 0.0004 0.0004 
4051 995.406 5006.574 101.69 -0.0001 0.0001 
4052 995.388 5006.527 101.69 -0.0002 0.0002 
4053 995.37 5006.48 101.69 -0.0003 0.0003 
4054 995.353 5006.433 101.69 0.0005 0.0005 
4055 995.335 5006.386 101.69 0.0004 0.0004 
4056 995.317 5006.34 101.69 0.0000 0.0000 
4057 995.299 5006.293 101.69 -0.0001 0.0001 
4058 995.281 5006.247 101.69 -0.0006 0.0006 
4059 995.263 5006.2 101.69 -0.0007 0.0007 
4060 995.263 5006.2 101.64 -0.0006 0.0006 
4061 995.282 5006.246 101.64 0.0008 0.0008 
4062 995.298 5006.294 101.64 -0.0014 0.0014 
4063 995.317 5006.34 101.64 0.0000 0.0000 
4064 995.335 5006.386 101.64 0.0005 0.0005 
4065 995.353 5006.433 101.64 0.0006 0.0006 
4066 995.37 5006.48 101.64 -0.0003 0.0003 
4067 995.388 5006.527 101.64 -0.0002 0.0002 
4068 995.406 5006.574 101.64 -0.0001 0.0001 
4069 995.423 5006.62 101.64 -0.0005 0.0005 
4070 995.424 5006.62 101.59 0.0004 0.0004 
4071 995.406 5006.573 101.59 0.0003 0.0003 
4072 995.388 5006.527 101.59 -0.0001 0.0001 
4073 995.37 5006.48 101.59 -0.0002 0.0002 
4074 995.352 5006.433 101.59 -0.0003 0.0003 
4075 995.335 5006.386 101.59 0.0005 0.0005 
4076 995.317 5006.34 101.59 0.0000 0.0000 
4077 995.299 5006.294 101.59 -0.0004 0.0004 
4078 995.281 5006.247 101.59 -0.0005 0.0005 
4079 995.264 5006.199 101.59 0.0007 0.0007 
4080 995.263 5006.199 101.54 -0.0002 0.0002 
4081 995.281 5006.246 101.54 -0.0001 0.0001 
4082 995.299 5006.292 101.54 0.0003 0.0003 
4083 995.317 5006.339 101.54 0.0004 0.0004 
4084 995.334 5006.386 101.54 -0.0004 0.0004 
4085 995.352 5006.433 101.54 -0.0003 0.0003 
4086 995.37 5006.48 101.54 -0.0002 0.0002 
4087 995.388 5006.527 101.54 -0.0001 0.0001 
4088 995.406 5006.573 101.54 0.0003 0.0003 
4089 995.424 5006.62 101.54 0.0004 0.0004 
4090 995.423 5006.62 101.49 -0.0005 0.0005 
4091 995.406 5006.573 101.49 0.0004 0.0004 
4092 995.388 5006.527 101.49 -0.0001 0.0001 
4093 995.37 5006.48 101.49 -0.0002 0.0002 
4094 995.352 5006.433 101.49 -0.0003 0.0003 
4095 995.334 5006.387 101.49 -0.0007 0.0007 
4096 995.317 5006.34 101.49 0.0001 0.0001 
4097 995.299 5006.293 101.49 0.0000 0.0000 
4098 995.281 5006.246 101.49 -0.0001 0.0001 
4099 995.264 5006.199 101.49 0.0007 0.0007 
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4100 995.263 5006.199 101.44 -0.0002 0.0002 
4101 995.281 5006.246 101.44 -0.0001 0.0001 
4102 995.299 5006.293 101.44 0.0000 0.0000 
4103 995.317 5006.339 101.44 0.0005 0.0005 
4104 995.335 5006.386 101.44 0.0006 0.0006 
4105 995.352 5006.432 101.44 0.0001 0.0001 
4106 995.37 5006.48 101.44 -0.0002 0.0002 
4107 995.388 5006.526 101.44 0.0003 0.0003 
4108 995.406 5006.573 101.44 0.0004 0.0004 
4109 995.423 5006.62 101.44 -0.0004 0.0004 
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Appendix H – Chainage and Offset Report, Terramodel   

 

SMK Consultants Pty. Ltd. 
PO BOX 422 
GOONDIWINDI,4390 
Tel (07)4671 2445 ; Fax (07)4671 2561 
Tuesday, October 20, 2009 5:47:01 PM 
 
 PROJECT: roject Part 2\Jeff Dissertation\Encroachment\Trimble 
S6\Trimble S6.pro 
---------------------------------------------------------------------
----------- 
                                ALIGNMENT REPORT 
 
Alignment Name: Free Pts 
 
Point Number      Description      Chainage     Easting      Northing  
Elevation 
       Offset 
---------------------------------------------------------------------
----------- 
    1000          WAL                0.003      996.714      1006.897    
102.588 
WAL    0.003  
    1001          WAL                0.005      996.714      1006.894    
101.385 
WAL    0.002  
    1002          WAL                2.646      996.714      1006.892    
100.209 
WAL    2.640  
    1003          WAL                2.649      996.669      1004.252    
102.590 
WAL    0.003  
    1004          WAL                2.658      996.670      1004.249    
101.389 
WAL    0.009  
    1005          WAL                3.083      996.679      1004.250    
100.200 
WAL    0.424  
    1006          WAL                3.088      996.431      1003.906    
100.191 
WAL    0.006  
    1007          WAL                3.093      996.425      1003.906    
101.391 
WAL    0.004  
    1008          WAL                7.681      996.422      1003.909    
102.591 
WAL    4.588  
    1009          WAL                7.684      991.834      1003.970    
102.591 
WAL    0.003  
    1010          WAL                7.686      991.832      1003.972    
101.384 
WAL    0.003  
    1011          WAL                8.009      991.829      1003.973    
100.190 
WAL    0.322  
    1012          NS                16.916      992.071      1003.760    
100.101 
NS    8.908  
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    1017          WAL               16.919      983.174      1004.194    
101.381 
WAL    0.003  
    1018          WAL               16.925      983.177      1004.195    
102.589 
WAL    0.006  
    1019          WAL               30.461      983.172      1004.191    
100.201 
WAL    13.536  
    1020          EVE               33.537      996.696      1003.616    
102.945 
EVE    3.076  
    1021          EVE               39.135      996.754      1006.692    
103.206 
EVE    5.598  
    1022          EVE               48.738      992.036      1003.678    
102.917 
EVE    9.603  
    1025          WAL               48.754      982.572      1005.306    
101.098 
WAL    0.016  
    1026          WAL               48.757      982.577      1005.321     
99.893 
WAL    0.003  
    1027          WAL               49.739      982.578      1005.325     
98.697 
WAL    0.982  
    1028          WAL               49.761      982.562      1004.343    
101.100 
WAL    0.022  
    1029          WAL               49.785      982.563      1004.321     
99.890 
WAL    0.024  
    1030          WAL               50.045      982.564      1004.345     
98.690 
WAL    0.260  
    1031          WAL               50.049      982.613      1004.089     
98.781 
WAL    0.003  
    1032          WAL               50.053      982.612      1004.086     
99.892 
WAL    0.004  
    1033          WAL               50.416      982.614      1004.090    
101.096 
WAL    0.364  
    1034          WAL               50.421      982.977      1004.083    
101.099 
WAL    0.005  
    1035          WAL               50.425      982.973      1004.080     
99.890 
WAL     0.004  
    1036          WAL               53.616      982.975      1004.083     
98.697 
WAL     3.191  
    1037          WAL               53.619      986.166      1004.093     
99.899 
WAL     0.003  
    1038          WAL               53.627      986.168      1004.095     
98.785 
WAL    0.008  
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    1039          WAL               53.696      986.161      1004.090    
101.103 
WAL    0.069  
    1040          WAL               53.702      986.206      1004.037    
101.104 
WAL    0.006  
    1041          WAL               53.712      986.201      1004.033     
99.897 
WAL    0.009  
    1042          WAL               57.416      986.209      1004.039     
98.773 
WAL    3.705  
    1043          EVE               60.866      982.511      1003.802    
101.457 
EVE    3.450  
    1044          EVE               65.122      985.961      1003.748    
101.450 
EVE    4.256  
    1045          EVE               65.473      982.545      1006.286    
101.659 
EVE    0.351  
    1046          NS                72.289      982.300      1006.035     
98.620 
NS    6.816  
    1052          NS                72.289      988.712      1003.725     
98.611 
NS 
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Appendix I – Encroachment Plan 
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