

University of Southern Queensland

Faculty of Engineering and Surveying

A touch-screen controlled “Linear
Predictive Synthesizer” for
accessibility applications

A dissertation submitted by

Mr. Benjamin W. D. Jordan

in fulfilment of the requirements of

Courses ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems Engineering)

Submitted: October, 2009

Abstract

Numerous voice compression methods are available today for communications over

low bandwidth channels. Worthy of note in particular are Linear Predictive Coding

(LPC), Mixed Excitation LPC (MELP), and Code Excited LPC (CELP). The channel

in these coding schemes is typically a digital transmission line or radio link, such as

in cellular telephone communications, but may be other media such as files on a

computer hard disk.

Linear Predictive Coding is explored in some detail as a basis for creating a new

speech synthesizer that does not convert text to speech (TTS), but rather uses a

touch-screen Thin Film Transistor (TFT) panel as user input to create and control

voice-like audio sound synthesis.

Research has been carried out to conceptually try different methods for mapping TFT

touch panel input (or any 2-dimensional input) to LPC synthesis coefficient vectors

for artificial speech reproduction.

To achieve this, various LPC coefficient quantization algorithms have been explored

and evaluated using Octave v.3 scripts, resulting in selection and comparison in the

final hardware and software implementation.

The hardware and software development platform used for the final implementation

is the Altium Nanoboard 3000 Xilinx Edition, along with the Altium Designer EDA

package. The Nanoboard 3000 was chosen as it provided a convenient FPGA

platform and all the necessary IP, IP Synthesis, and C compilers needed to prototype

the design and perform further research.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying, and the staff of the University of Southern Queensland, do not accept

any responsibility for the truth, accuracy or completeness of material contained

within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of

Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitled “Research Project”

is to contribute to the overall education within the student's chosen degree program.

This document, the associated hardware, software, drawings, and other material set

out in the associated appendices should not be used for any other purpose: if they are

so used, it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying

Certification

I certify that the ideas, designs and experimental work, results, analyses and

conclusions set out in this dissertation are entirely my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Benjamin W. D. Jordan

Student Number: 0031210722

Signature

Date

Acknowledgments

“The preparations of the heart belong to man, But the answer of the

tongue is from the LORD... Commit your works to the LORD, and your

thoughts will be established.” (Prov. 16:1,3 NKJV)

First and foremost, regardless of the outcomes of any work undertaken I must

express my deepest gratitude to God almighty because in spite of my shortcomings,

bad habits and weaknesses, He has consistently shown his faithfulness in helping me

overcome these barriers.

I would like to extend thanks to all the staff at the University of Southern

Queensland, but in particular my project supervisor Mr. Mark Phythian and Assoc.

Prof. Dr. John Leis for their help and exceptional care of the pedagogy of

Electronics, Computing and Signal Processing.

Due thanks must go to my employer, Altium Limited, for providing me access to

corporate resources (including hardware and software) used to implement the

designs. I would like to specifically thank my manager Matthew Schwaiger for

allowing me to be flexible with work commitments from time to time, and my

colleague Dr. Marty Hauff for his encouragement and prayers.

Finally, it is most important to acknowledge the overwhelming love and support

extended to me by my wife Erin, and our children Delta, Seth and the new addition

Shiloh – born only weeks before submission.

BENJAMIN JORDAN

The University of Southern Queenslan, October 2009

Contents

Abstract .. ii

Limitations of Use ... iii

Certification .. iv

Acknowledgments .. v

Contents .. vi

Table of Figures .. xiii

Acronyms ... xv

Chapter 1. ... 1

Introduction .. 1

1.1. Objectives .. 1

1.2. Speech Synthesis Concepts ... 2

1.3. Linear Predictive Coding ... 2

1.4. FPGA System on Chip Implementation .. 3

1.5. Dissertation Structure .. 3

Chapter 2. ... 5

CONTENTS vii

Literature Review ... 5

2.1. Introduction ... 5

2.2. Linear Predictive Coding (LPC) .. 7

2.3. Mixed-Excitation LPC (MELP) .. 8

2.4. Considerations of Language and Accent ... 8

2.5. Parameter Quantisation and Interpolation ... 10

Chapter 3. ... 11

Speech Analysis and Modelling ... 11

3.1. Human Speech Organs .. 11

3.2. Insight Into Speech Analysis ... 13

3.3. Synthesis of Speech ... 14

3.4. Speech Transitions... 15

3.4.1. Frame Interpolation.. 16

Chapter 4. ... 18

Voice Coding ... 18

4.1. Introduction ... 18

4.2. Linear Predictive Coding ... 18

4.2.1. Linear Predictor ... 18

4.2.2. Inverse Predictor .. 20

4.2.3. Calculating Predictor Coefficients ... 21

4.3. LPC Initial Results .. 23

CONTENTS viii

4.4. LPC Parameter Quantization ... 25

4.5. Conclusion ... 26

Chapter 5. ... 27

Morphing Formants across the TFT Panel ... 27

5.1. Introduction ... 27

5.2. User Interface research .. 28

5.3. Morphing Across The TFT .. 29

5.4. Interpolation of Coefficients.. 30

5.5. Introducing LSPs ... 31

5.5.1. Computing the Line Spectrum Pairs .. 31

5.6. Conclusion ... 34

Chapter 6. ... 35

Practical Implementation ... 35

6.1. Introduction ... 35

6.2. LPC Analysis Function.. 36

6.3. LSP Calculation ... 37

6.3.1. Roots of the Line Spectrum Pairs .. 37

6.3.2. Interpolation Using LSFs ... 38

6.3.3. Expanding Roots back to LPC Coefficients .. 40

6.4. Tying Interpolation Together .. 41

6.5. Formant Mapping .. 42

CONTENTS ix

6.6. Embedded System Considerations .. 45

6.7. Fixed Point Implementation .. 45

6.7.1. Coefficient Scaling .. 46

6.7.2. Truncation Effects.. 46

6.8. C Code Development .. 49

6.8.1. Code for generating Coefficients ... 49

6.8.2. Drivers and Initialization ... 50

6.8.3. IIR Synthesis Filter .. 51

6.8.4. Pulse Source ... 52

6.8.5. Noise Source .. 53

6.8.6. User Interface ... 53

6.9. Conclusion ... 54

Chapter 7. ... 55

Introduction to the Nanoboard 3000 .. 55

7.1. Introduction ... 56

7.2. NB3000 and the Altium Designer Software Platform 56

7.3. Nanoboard Features Utilized ... 57

7.3.1. Audio Codec .. 57

7.3.2. I2S Interface ... 58

7.3.3. SPI Interface .. 58

7.3.4. TFT Interface ... 58

CONTENTS x

7.3.5. GPIO port, LEDs and Pushbuttons .. 59

7.3.6. SRAM Interface ... 59

7.4. FPGA Hardware Design .. 60

7.5. Project Links and Hierarchy .. 60

7.6. Conclusion ... 61

Chapter 8. ... 62

User Interface Research ... 62

8.1. Introduction ... 62

8.2. Robotic Sound ... 62

8.3. User interface problems ... 63

8.4. Conclusion ... 63

Chapter 9. ... 64

Conclusion ... 64

9.1. Introduction ... 64

9.2. Further work and research ... 65

9.2.1. Improve LSP interpolation method to include gain 65

9.2.2. Find better expression methods ... 65

9.2.1. Implement the LPC and LSP operations in Real-Time 65

9.2.2. Adapt the current design to Music generation ... 66

9.3. Conclusion ... 66

References .. 68

CONTENTS xi

Appendix A .. 71

Project Specification .. 71

Appendix B .. 73

Octave Scripts and Functions ... 73

B.1 The calc_lpc.m Octave Function ... 74

B.2 The lpc_gen_figs.m Octave Function .. 75

B.3 The generate_coeffs.m Octave Function ... 77

B.4 The ow_pole_mapping_plot.m Octave Script 79

B.5 The lsplpc.m Octave Function ... 81

B.6 The lpclsp.m Octave Function ... 82

B.7 The expnd.m Octave Function ... 83

B.8 The lpc_interp.m Octave Function ... 84

B.9 The lsp_interp.m Octave Function ... 85

B.10 The gen_all_lpc.m Octave Function ... 87

B.11 The gen_all_lsp.m Octave Function ... 90

B.12 The plot_interp.m Octave Function ... 93

B.13 The lpclsplpc.m Octave Function .. 95

B.14 The draw_unit_circle.m Octave Function ... 97

Appendix C .. 98

Altium Designer FPGA Project Schematic and OpenBus Diagrams......................... 98

CONTENTS xii

C.1 FPGA Top-level Schematic Diagram ... 99

C.2 FPGA OpenBus System Block Diagram .. 100

C.3 Altium Designer FPGA Project Hierarchy ... 101

Appendix D .. 102

Altium Designer Embedded Project C Code Listings.. 102

D.1 The main.c File .. 103

D.2 The buttons.h Header File .. 115

D.3 The lpc_coeffs.h Header File ... 116

D.4 The lpc_lsp_interpolated_coeffs.h Header File 118

D.5 The devices.h Auto-Generated Header File ... 120

Appendix E .. 121

Nanoboard 3000 Data Sheet .. 121

E.1 NB 3000 Data Sheet .. 122

Table of Figures

Figure 1 Block Diagram of a Formant-based speech synthesizer 7

Figure 2 MELP uses formant modeling with mixed sources. 8

Figure 3 Formant Spaces of Australian, British and American Accents. (IEEE

Signal Processing Magazine, Vol. 26 No. 3 p72, May 2009) 9

Figure 4 Human Speech Organs (Fu Jen Catholic University Graduate

Institute of Linguistics 2007, The biological basis of speech production (2):

The Vocal Tract and Related Speech Organs, viewed 22 October 2009,

<http://www.ling.fju.edu.tw/phonetic/mouth.gif>). ... 12

Figure 5 Spectrogram of the voiced sound “iya”. .. 14

Figure 6 Linear Prediction FIR Filter... 19

Figure 7 All-Pole Inverse Prediction Filter .. 21

Figure 8 LPC Analysis Predictor Error and Log Magnitude Spectrum of

predictor polynomial. ... 23

Figure 9 Discrete Time waveforms of input and synthesized speech frame.............. 24

Figure 10 Mapping a TFT Panel to Vowels and Pitch (Altium Ltd. 2009, NB2

TFT Panel Port Plug-In Library Component). ... 28

Figure 11 Z-plane Poles of a series of LPC frames from /œ/ to /U/. Blue poles

mark the LPC coefficient poles of the start frame, red poles are from the final

frame, and black in-between. ... 30

Figure 12 Roots of the Palindromic and Anti-palindromic Polynomials: LSPs 32

TABLE of Figures xiv

Figure 13 Roots of the Line Spectrum Pairs from /œ/ to /U/. 34

Figure 14 Line Spectrum Frequency Interpolation Using Neighbouring

Angles .. 39

Figure 15 Interpolating Line Spectrum Frequencies over N frames 39

Figure 16 Root Expansion Algorithm .. 40

Figure 17 LPC Poles of Interpolation of coefficients using LSPs. 41

Figure 18 Log Magnitude Spectrum of LSP Interpolated LPC coefficients. 42

Figure 19 Log Magnitude Spectrum of LSP interpolations across TFT panel

width. .. 43

Figure 20 Spectrogram bitmap of interpolation results used as TFT

background. .. 44

Figure 21 The Software Platform Builder .. 50

Figure 22. The NB3000 running the speech synthesizer. .. 55

Figure 23 Embedded Project Memory Configuration. ... 59

Figure 24 Devices View in Altium Designer Software. This is where the

FPGA and Embedded projects are downloaded to the target device. 61

Figure 25 Top Level FPGA Project Schematic.. 99

Figure 26 FPGA OpenBus Block Diagram .. 100

Figure 27 Altium Designer Project Hierarchy ... 101

Acronyms

LPC Linear Predictive Coding – a method of analysing speech based on linear

prediction, and then using the parameters obtained to synthesize it again.

CELP Code Excited LPC.

MELP Mixed-Excitation LPC.

LSP Line Spectrum Pairs – a method of representing LPC parameters using

Palindromic and Antipalindromic polynomials

LSF Line Spectrum Frequencies – the angle of the roots of the LSPs

CODEC EnCOder DECoder – an audio Analogue to Digital converter and Digital-

to-Analogue converter in the same package.

I2S Inter-IC Sound bus – a multiplexed serial interface for streaming audio A-to-

D and D-to-A data.

SPI Serial Peripheral Interconnect bus – a serial interface used to connect

peripherals to host microcontrollers.

DMA Direct Memory Acces – used by the TFT panel to gain access to the pixel

display buffer.

TFT Thin-Film-Transistor (display/panel). The display used in this project is a 320

pixel wide by 240 pixel high panel, 2.4” from corner to coner diagonally.

RISC Reduced Instruction Set Computer – the CPU used in this design is a RISC

processor, the Altium TSK3000A.

Chapter 1.

Introduction

Various speech generation systems are currently available as assistive technology.

The majority are simply text-to-speech devices or software, such as the JAWS™, or

simple direct speech graphical tablet style devices, such as the Static Display Speech

Generators available from LifeTec Queensland.

A few problems with the current products and the approach they employ are:

 They are limited to specific language sounds (i.e. for English, French or

German etc.).

 Static Display Speech Generators are limited to a pre-defined set of basic

phrases.

 They do not allow for individual vocal creativity, emotions, or accents.

 They cater broadly to visually impaired, and mobility limited users, but are

not particularly useful for people with a temporary speech loss.

1.1. Objectives

The objectives of this research project are to:

1.2 Speech Synthesis Concepts 2

 Create an assistive device that offers an alternative means of translating the

user’s motor movement to audible speech.

 Develop an input method that allows more generic and abstract sound

generation.

 Research the feasibility of touch-screens as the input in terms of ease of use,

and flexibility.

 Assess the device’s adaptability for multiple languages.

1.2. Speech Synthesis Concepts

The advancement of speech synthesis technology has been largely driven by the need

to store or transmit voice data on noisy or low-bandwidth media. Applications have

ranged from long range telecommunications to children’s toys and text-to-speech

devices. On the input to any good speech compression system is the analysis of the

desired speech. A multitude of methods have been developed and more continue to

be developed based on demand for higher quality sound intelligibility and

reproduction, as well as improved human – machine user interfaces. The following

are perhaps the most pervasively used methods and will be explored in some detail

within this dissertation.

1.3. Linear Predictive Coding

Linear Predictive Coding (LPC) and Mixed-Excitation LP Coding (MELP) are well-

known methods of analysing, coding and then decoding of speech signals for highly

compressed telecommunications. The decoding used in these methods need not be

fed by a bit stream of encoded speech, but could be fed by commands directly input

from a user interface. This is the proposed method to be used by this project.

1.4 FPGA System on Chip Implementation 3

An LCD touch-panel and associated drivers will be used with an FPGA-based

microprocessor SoC (System on Chip). This system will contain user interface

software as well as the audio synthesis and filtering required for creating the desired

sounds. User commands interpreted from the touch screen will control pulse and

noise sources in software, which will be fed in turn through time-varying digital

filters. This will be output on the system’s built-in speakers.

1.4. FPGA System on Chip Implementation

The idea for a touch-screen controlled synthesizer initially came about when an

FPGA development platform, the Altium Nanoboard-2, was being reviewed. This

thought lead naturally into the concept of the assistive device for this project. Since

the project commencement, Altium Limited has developed a new FPGA

development platform called the Nanoboard 3000. Since then, the author has had

considerable design experience through tutorial, video and reference design

production to support its release to the electronics design industry. The Nanoboard

3000 has all the necessary peripherals for the touch screen synthesizer and therefore

is a natural and sensible choice for prototyping the final design.

1.5. Dissertation Structure

This dissertation is structured in the following manner:

Chapter 2 discusses the background information researched in the project, covering

some historical aspects of speech synthesis as well as the underlying prior art behind

the speech encoding and decoding mechanisms explored.

1.5 Dissertation Structure 4

Chapter 3 discusses the analysis of speech by practical means. The problem of

modelling transient speech is introduced.

Chapter 4 covers voice coding mechanisms in more detail. Specifically, it delves

deeper into the topic of Linear Predictive Coding. This is then extended to discussion

of how the LPC synthesis filter and source signals can be used as part of an assistive

device such as the one developed.

Chapter 5 explores concepts researched for mapping voiced sounds to a touch-

screen (or any 2-dimensional) device, and the problems faced relating to time-

varying the speech filter.

Chapter 6 illuminates the practical implementation of the speech synthesizer.

Infinite Impulse Response filter theory is discussed in light of the project regarding

embedded systems, fixed point arithmetic, and hardware acceleration.

Chapter 7 introduces the Altium Nanoboard-3000 Xilinx Edition FPGA

development board, used in the final design. The Altium Designer software used to

develop the FPGA hardware and embedded firmware for the design is also discussed,

along with the actual design itself.

Chapter 8 documents the brief research undertaken into how useable the designed

speech synthesizer is, and considers the ability of the system to reproduce languages

other than English.

Chapter 9 concludes the project with a brief summary of what was discovered, what

methods were chosen and the final result of the design, including some suggested

improvements and further research that could be undertaken.

Chapter 2.

Literature Review

2.1. Introduction

According to Cole et. al. (1996) there are essentially three classes of speech

synthesizer: Articulatory, Formant-based, and Concatenative. However, work has

been done since then to develop Hidden Markov Model (HMM) based synthesis by

Tokuda et. al. (2000) as well – an adaptation of the concatenative approach.

Articulatory synthesis seeks to mechanically or electronically model the specific

movements of the speech organs. While this could potentially provide the most

accurate sounding speech, the complexity of the system is somewhat prohibitive for

design and use alike.

Formant based modelling attempts to simulate the resonances of the vocal tract and

nasal cavities, accepting white noise or pulsed signals as an input to the filtering

system.

2.1 Introduction 6

The third class, concatenative synthesizers, requires a vast library of recorded speech

segments (phonemes) which are essentially strung together to form words and

sentences.

Much work has been done in the past to create mechanisms for synthesizing speech,

yet the majority of effort appears to have been placed on finding appropriate ways to

encode speech for compact storage or transmission over narrow bandwidth channels,

or for text-to-speech (TTS) systems for the visually impaired (Breen, 1992) . In terms

of assistive devices, it is apparent that little effort has been directed towards those

that purely generate speech from the user’s motion or command input. One very

early contraption of note however, was the VODER (‘Voice Operating

DEmonstratoR’) created by Homer Dudley in 1939 (Breen, 1992). The VODER used

a noise source, pulse relaxation oscillator and 10 band-pass filters (Synthopia, 2009).

While this was an entirely analogue design, it formed the general structure of

synthesis used today in many speech coders such as the well-known LPC10 (Linear

Predictive Coder, 10 Band).

Arguably, the most elegant approach of the three presented above is the formant-

based synthesizer. This is due to the fact that it provides enough flexibility to

produce many language sounds within reasonable limits of computing power

available today.

Formant synthesizers typically use a pulse generator and a noise generator, and

control the pitch and amplitude of these sources, passing the resulting waveform

through a digital filter with time-varying response. The pulse source models the

human vocal chords/folds whereas the noise source is used to model sounds of

sibilants, clicks and pops which would be generated in speech by the constrictions of

airflow by the tongue and glottis. The digital filter models the resonances (formants)

of the vocal tract, nasal cavity and mouth of the speaker - the position in the

2.2 Linear Predictive Coding (LPC) 7

frequency domain of these formants have a profound effect, enabling creation of

vowels in various languages. See the block diagram in Figure 1.

2.2. Linear Predictive Coding (LPC)

In the Linear Predictive Coding speech coder, speech is sampled in wavelets and

analysed for vocal tract resonance (short-term autocorrelation is used for this) and

pitch (long-term autocorrelation or FFT is used for this). This information is

packetized and transmitted over the channel to the synthesizer at the receiving end,

as in Figure 1. Leis (unpub) has highlighted the fact that the binary choice between

the pulse and noise sources as inputs limits the capability of this synthesis method

and the languages it can support. For example, the sound /zh/ as in the French bon

jour is not truly realizable in LPC coding, because you would need both the noise

and pulse sources mixed together.

Pulse

Noise

Vocal Tract

modeling (formant)

Gain CoefficientSource Pitch

Figure 1 Block Diagram of a Formant-based speech synthesizer

2.3 Mixed-Excitation LPC (MELP) 8

2.3. Mixed-Excitation LPC (MELP)

The MELP vocoder, an extension of the LPC vocoder, uses both noise and pulse

sources at the same time, mixing them according to the parameters from the analysis

(transmission). This makes for a more flexible approach that is better for synthesis of

multiple languages, and provides more natural sounds during transitions in speech

(ASPi, 1996). While MELP is far more computationally complex on the encoder end,

it is not very much more complicated that LPC on the decoder end.

2.4. Considerations of Language and Accent

The desire is to produce a synthesizer that could be extended to be able to facilitate

any human language. This would possibly imply the use of various code books as in

CELP (Code Excited Linear Prediction). Codes for source signal generation would

be assembled into books that are each suitable for a specific language, say, and could

be interchanged to adapt the synthesizer to different languages. The code book may

Pulse

Noise

Vocal Tract

modeling (formant)

Gain

Coefficient

Source

Pitch

Σ
Gain

Figure 2 MELP uses formant modeling with mixed sources.

2.4 Considerations of Language and Accent 9

also provide a mapping from a 2-dimensional control surface such as the LCD touch

screen to the generated sounds – time permitting this concept will be explored.

Vaseghi, Yan & Ghorshi (2009) have recently devised methods for analysing speech

accents (in particular, British, American and Australian English), and morphing

encoded speech from one accent to another using a Linear Prediction Formant

Transformation. In this system, accent databases are used to train HMMs of speech

formants for each accent. The HMMs are then used to determine the matching

formant set in the target accent, and pitch intonation is also varied. The interesting

thing about this work is that in analysing the different accents they developed a

formant space showing another 2-dimensional view of speech parameters, shown in

Figure 3. This work also highlighted the importance of pitch over time for emphasis

and intonation – indicating that pitch control is essential for a good speech synthesis

engine.

Figure 3 Formant Spaces of Australian, British and American Accents. (IEEE Signal Processing

Magazine, Vol. 26 No. 3 p72, May 2009)

2.5 Parameter Quantisation and Interpolation 10

2.5. Parameter Quantisation and Interpolation

Speech Parameters (LPC Coefficients, Gain, Error Residual and Pitch Period) can be

represented in a number of ways, and various methods seek to quantise them to

provide good compression without losing intelligibility.

Kabal and Ramachandran (1986) have presented a way of representing LPC

coefficient vectors as Line Spectrum Frequencies the cosine angle of Line Spectrum

Pairs (LSFs and LSPs). These can be quantised in terms of their angles and Paliwal

(1993) has highlighted their power in this regard.

LSPs and LSFs can be utilized also for interpolating between frames of speech where

a set of coefficients may have been lost due to data corruption.

Other methods of interpolating the filter parameters include interpolation of the

coefficients directly using Lagrange method as discussed by Hui (1989), morphing

and audio flow as discussed by Ezzart, et. al. (2005), and pole shifting (Goncharoff

& Kaine-Krolak, 1995).

Chapter 3.

Speech Analysis and Modelling

3.1. Human Speech Organs

Humans have a unique ability to articulate communication using multiple sound

sources and a set of resonant chambers – the throat, tongue, nasal cavity, teeth, lips

and glottis all form a part of this complex system, illustrated in Figure 4.

3.1 Human Speech Organs 12

Figure 4 Human Speech Organs (Fu Jen Catholic University Graduate Institute of Linguistics 2007,

The biological basis of speech production (2): The Vocal Tract and Related Speech Organs, viewed

22 October 2009, <http://www.ling.fju.edu.tw/phonetic/mouth.gif>).

The main sound source within the system is the vocal cords, which operate much like

a reed. The muscles surrounding the vocal cords pull them together tightly as the

lungs blow air through them, causing a vibration. The sound and air pressure

generated moves through the pharynx, mouth and nasal passage past the lips and

nostrils respectively. The internal shapes of these cavities form resonant chambers

that can arbitrarily change frequency response. Vowel sounds are generated in this

way.

By nature of the way vowels are formed, the vocal cord sound source must have a

high harmonic content for the frequency shaping of the cavities to have a profound

effect.

3.2 Insight Into Speech Analysis 13

In addition, air movement through the nose, past the tongue and through teeth and

lips is used to create fricative or plosive sounds by restricting airflow or obstructing

and releasing it, respectively, which in turn creates noise. Fricative sounds formed by

the lips and teeth (such as /f/) relatively white since it occurs towards the outside of

the cavities whereas those generated at the back of the tongue (such as /k/) shape the

noise through the mouth cavity.

3.2. Insight Into Speech Analysis

Normal humans are well known to hear sound pressure waves in the frequency range

of 20 Hz – 20 KHz, yet our hearing is most sensitive in the midrange frequencies,

peaking at around 4 KHz (Bauer and Torick 1966).

It is no surprise then to discover that the majority of the power in a speech signal is

in this range, with lower amplitudes in the most sensitive hearing region of the

spectrum, and higher amplitudes at the lower end of the spectrum.

A widely used tool for analysis of speech is the spectrogram (Rabiner and Schafer

1978). A spectrogram of a recording of the vowel transition “iya” (as in cornucopia)

is shown in Figure 5. The spectutils toolbox for Octave was used to generate a

spectrogram from the recoding “iya.wav”. Spectutils can be downloaded from the

University of Helsinki’s Music Research Laboratory (University of Helsinki, 2009).

The Magnitude, Frequency and Time axes of the spectrogram are self-explanatory.

What is of relevance to this project is the transient nature of the sounds of speech.

The foreground shows the “iii” sound, with high energy around 400 Hz, and another

lower peak of energy at around 2.5-3 KHz. These represent the two main formants in

3.3 Synthesis of Speech 14

English vowels. Their path in the transition to the “ah” sound is clearly visible – they

move towards each other in the spectrum to straddle 1 KHz. There is still a lower

frequency energy peak just below 100 Hz – this is indicative of the fundamental

pitch of the vocal cords which is relatively constant.

Figure 5 Spectrogram of the voiced sound “iya”.

3.3. Synthesis of Speech

The goal of any speech synthesizer is to be able to reproduce human-like sounds and

as such must be able to;

 Generate frequencies over the normal human pitch range,

 Model the formants of the resonant cavities, and

3.4 Speech Transitions 15

 Be able to change parameters dynamically (i.e. interpolate between speech

segments).

Each spoken language has its own set of sound combinations with varying degrees of

uniqueness. In English, the vowel and semivowel sounds are formed using the two

main resonance cavities, and can be modelled using two resonant filters for

generating the associated formants. Most speech vowels are better modelled by four

formants (Rabiner and Schafer, 1978). Each formant is modelled by two poles in the

synthesis filter as they are typically complex and for a real filter to be realized would

be conjugate pairs. More formants would be modelled by using more pole pairs in

the linear prediction.

3.4. Speech Transitions

Because of the transient nature of speech, the speech synthesis system must be able

to adapt pitch, source selections, and gains and filter coefficients with each frame.

Filters that adapt in such a way are generally referred to as Linear Shift-Variant

(LSV) filters. Hence, speech is sampled into short buffers and treated as stationary

for short bursts.

The LSV filters used in speech synthesis are also stationary over each frame of

speech (i.e. the coefficients only change between frames). Rabiner and Schafer

(1978) and other authors referenced in this dissertation suggest 20-30ms frames are

appropriate.

3.4.1 Frame Interpolation 16

3.4.1. Frame Interpolation

Interpolation between frames is necessary if speech frames are encountered with

gaps between them (i.e. a frame is lost due to corruption through the transmission

channel). This interpolation is a big challenge, especially if it needs to be done in

real-time.

Hui (1989) suggests LSV filters can use the Lagrange linear interpolation of filter

coefficients, though this method can result in unstable filter kernels.

Goncharoff and Kaine-Krolak (1995) have devised a pole-shifting method whereby

filter poles of the first frame are paired with poles of the last, and poles of

interpolated frames in between the first and last are interpolated using a frequency-

linear relationship. The pole pairing procedure is arduously complicated due to the

ambiguity of the pole-pair relationships, and the problem that sometimes real poles

must be interpolated with complex conjugate poles.

Ezzat et. al. (2005) present a fairly new method of interpolating frames of speech or

music they refer to as ‘audio flow’. The principle behind it is to use a 2-dimensional

morphing algorithm that is usually used in computer graphics, but lends itself to

morphing the spectral envelope of the audio. It is a complex and computationally

expensive algorithm, yet it provides exceptionally natural sounding results.

Pailiwal (1993) touts interpolation of Line Spectrum Pairs as the best method for two

reasons. The first is that it guarantees stable filter kernels, and the second is that it

has the lowest spectral distortion of all the methods tried, which were:

3.4.1 Frame Interpolation 17

i. Reflection Coefficient Interpolation

ii. Log Area Ratio interpolation

iii. Arc-sine Reflection Coefficient Interpolation

iv. Cepstral Coefficient Interpolation

v. LSP (LSF) Interpolation

vi. Autocorrelation Coefficient Interpolation, and

vii. Impulse Response Interpolation.

The Impulse Response Interpolation is that presented also by Hui (1989), but

Paliwal’s results showed it to be the worst due to the instances of instability. This

approach was experimented with at first and the result obtained was unsatisfactory,

as will be discussed in a later chapter.

Chapter 4.

Voice Coding

4.1. Introduction

As discussed in section 2.2, Linear Predictive Coding forms the backbone of all the

currently popular speech compression mechanisms, including low-bitrate vocoders

such as CELP, MELP, G.729 and others.

4.2. Linear Predictive Coding

4.2.1. Linear Predictor

The core of Linear Predictive Coding is, as the name suggests, a Linear Predictor (or,

FIR filter put to prediction use):

̃ ...(4.1)

4.2.1 Linear Predictor 19

The signal ̃ models a prediction based on previous samples, and therefore the

LPC analysis attempts to find a set of predictor coefficients that minimize the error

for each sample within the frame:

̃ 0 ...(4.2)

Substituting ...(4.1) into ...(4.2) gives:

 ...(4.3)

This is directly realizable in hardware or software as the FIR filter structure shown in

Figure 6.

Figure 6 Linear Prediction FIR Filter

1-
Z

a1 a2 a3 a(p-3) a(p-2) a(p-1)

1-
Z

1-
Z

1-
Z

1-
Z

1-
Z

a(p)

 s(n)

s(n) e(n)
++

--

+

-

4.2.2 Inverse Predictor 20

If the linear prediction filter was of infinite length it would allow the error residual

0 , but since any practical filter will have a finite number of taps (and any

practical system could not wait forever for the result), we limit the order of

prediction. The limited prediction order means that the error signal will not be zero,

but instead resembles a low level noise superimposed with pulses at the fundamental

frequency of the original speech frame. The limited predictor order also imposes a

limit on the accuracy of the synthesis filter.

4.2.2. Inverse Predictor

It is possible to ideally reconstruct the discrete time signal if we have the predictor

coefficients and the error signal:

...(4.4)

This “inverse filter” (Rabiner & Schafer 1978) is directly realizable in hardware or

software as an all-pole IIR filter, as shown in Figure 7.

4.2.3 Calculating Predictor Coefficients 21

Figure 7 All-Pole Inverse Prediction Filter

4.2.3. Calculating Predictor Coefficients

The computation of predictor coefficients for a speech frame can be done using

various methods including, but not limited to;

 the Covariance method,

 the Autocorrelation method, and

 the Lattice method

according to Rabiner & Schafer (1978, p397).

In all of these methods, the goal is to efficiently compute the set of coefficients that

minimize the mean-square error over the frame:

...(4.5)

1-
Z

a1

a2 a3 a4 a(p-2) a(p-1)

1-
Z

1-
Z

1-
Z

1-
Z

1-
Z

a(p)

e(n) s(n)

4.2.3 Calculating Predictor Coefficients 22

Substituting ...(4.4) into ...(4.5) gives:

 …(4.6)

By taking the derivative of …(4.6) and setting it to zero we arrive at:

 where 1 …(4.7)

This can be solved to find the set of that minimise the error signal. This forms the

basis of one of the widely implemented algorithms for LPC coefficient calculation,

the Autocorrelation Method. It is computationally more efficient than other methods

that were encountered during the course of this project.

Equation where 1 …(4.7) can be expressed as the matrix multiplication:

, where:
1

 …(4.8)

 is the autocorrelation of the input speech frame. Equation …(4.8) can be

solved using an efficient algorithm known as the Levinson-Durbin Recursion (Keiler

& Zölzer (ed.) 2008, p.308). Thus, the top-level algorithm for computing the

predictor coefficients from a frame of speech is:

1) Input speech to BUFFER[1..N]

2) P = Predictor Order

3) R[1..P] = cross correlate (BUFFER, P)

4) a[1..P] = Levinson-Durbin Recursion (R, P)

5) e[1..N] = s[1..N] – SUM[1..P](a[1..P]*s[1..N-1..P])

4.3 LPC Initial Results 23

An Octave (MATLAB) program that performs this algorithm has been provided by

Keiler & Zölzer (ed.) (2008, p.308). The code listing is presented for reference in

Appendix B.1.

Figure 8 LPC Analysis Predictor Error and Log Magnitude Spectrum of predictor polynomial.

4.3. LPC Initial Results

Figure 8 shows the results of LPC analysis using the above method. This figure was

generated by the script lpc_gen_figs() listed in appendix B.2. This program

4.3 LPC Initial Results 24

(adapted from Keiler in Zölzer (ed.) (2008, p.306) performs LPC analysis on the

frame taken from the named .wav file, and computes the log-magnitude FFT of the

speech sample and the LPC filter overlayed. The error residual is shown above.

The lpc_gen_figs() script also generates the waveform displays in Figure 9.

This provides a visual comparison of the original speech input waveform and that

which is reconstructed using the error filtered through the LPC Synthesis filter

(Figure 7). In this scenario the sample rate of the voice is 22.05 KHz and the

prediction order chosen was 20.

Figure 9 Discrete Time waveforms of input and synthesized speech frame.

4.4 LPC Parameter Quantization 25

4.4. LPC Parameter Quantization

LPC and its variants are used for the most part in lossy communications channels,

such as the GSM mobile telecommunications system, and in Voice Over IP (VOIP)

network communications protocols. The underlying motivation for using vocoders

like LPC is to parameterise speech so that the speech frames being transmitted are

highly compressed, without perturbing the intelligibility of speech or impairing the

listener’s ability to identify the speaker.

Once the LPC coefficients are calculated they form a very compact packet that is

much smaller than uncompressed speech. Several approaches have been developed

for quantising the speech parameters to reduce the storage or transmission load

further. Worthy of particular mention in this project is the use of Line Spectrum

Frequencies as discussed by Kabal & Ramachandran (1986) and Paliwal (1993).

Although the goal of this project is not to transmit compressed speech through a

channel, the concepts behind LSFs will be engaged to solve the interpolation

problem discussed in the following chapter.

4.5 Conclusion 26

4.5. Conclusion

This shows that if you re-construct the encoded speech frame using the actual

residual error you will achieve a close-to-ideal result. In practice the error signal is

approximated (or quantized) into a pulse or white noise source, or in the case of the

CELP vocoder, a code book. The code book is an array of quantized error

approximations that are chosen to reconstruct the speech with minimal error.

In this project, the LPC mechanism of using a pulse source and a noise source has

been chosen. While this produces more robotic sounds than those of CELP, it works

well enough and provides an expedient solution. It is recognized that some

implementations of the LPC vocoder use other waveforms for excitation of the

synthesis filter, such as triangle or trapezoidal waves (Vocal Technologies Inc. 2009,

MELP (Mixed Excitation Linear Predictive), viewed 3 March 2009, <

http://www.vocal.com/speech_coders/melp.html>).

Chapter 5.

Morphing Formants across the TFT Panel

5.1. Introduction

The aim of this project was at first somewhat ambiguous in that it sought to map

voiced and unvoiced speech sounds to a 2-dimensional control surface. The

ambiguity lies in the following facts:

 It is difficult to narrow down the fundamental elements of speech to a handful

of simple movements on a screen.

 Some languages produce sounds from the back of the throat and tongue that

LPC does not easily reproduce.

 Though we are using a 2-dimensional control surface, speech synthesis in a

generic way has more than two dimensions (i.e. not just pitch and tonality,

but it also noise and gain).

5.2 User Interface research 28

5.2. User Interface research

As a starting point for pragmatic research the design approach taken here is to map

specific vowels to the TFT panels X-axis, while the pitch of the synthesizer is

controlled by the Y-axis. The choice of using a pulsed source, noise source, or a mix

of both is performed by a separate control – pushbuttons. An example of how this

implementation will look is illustrated in Figure 10.

Phythian, M. (pers. comm.) has suggested other possibilities involving continuously

adjusting the screen display to show a series or circles of symbols that depict speech

sounds or code vectors. The display of these glyphs would dynamically update

depending on where the pointer to the screen last was. The net result would be that

the user constructs strings of phonemes and diphthongs by moving a finger or stylus

around the screen. This approach is similar to a text-to-speech system except would

be more generic in nature.

Figure 10 Mapping a TFT Panel to Vowels and Pitch (Altium Ltd. 2009, NB2 TFT Panel Port Plug-In

Library Component).

5.3 Morphing Across The TFT 29

5.3. Morphing Across The TFT

With the decision made to map formants across the X-axis of the screen, the next

problems that need solving are:

1. How to generate the LPC synthesis coefficients, and;

2. Once they are mapped to the screen, how to smoothly morph between

them as the stylus moves.

It is also worth mentioning that the choosing and ordering of the vowels at this time

is arbitrary, but research should be undertaken to gain a better understanding of how

to make this choice, and would likely involve using LPC sound corpus from many

languages or accents.

The first problem above is easy to solve – in this project we use recorded segments

of the author’s speech, and generate the LPC coefficient vectors in non-real-time

using Octave scripts.

To get an idea of what to expect in terms of Z-plane pole shifts when vowel sounds

dynamically change with respect to speech frames, the Octave script

ow_pole_mapping_plot.m was used to generate Figure 11. In this image, the

simple phrase /œ U/ (as in ‘ouch’) was divided into 1024-sample, 50% overlapping

frames. The LPC vectors for each were calculated and the roots were plotted on the

Z-plane. It is evident that even in natural speech poles can jump around quite a lot.

5.4 Interpolation of Coefficients 30

Figure 11 Z-plane Poles of a series of LPC frames from /œ/ to /U/. Blue poles mark the LPC

coefficient poles of the start frame, red poles are from the final frame, and black in-between.

5.4. Interpolation of Coefficients

The second problem mentioned in section 5.3 is not so easy to solve. Two methods

were tried and implemented on the Nanoboard. The first of these was the linear

interpolation of LPC coefficients, treating the filter as a LSV filter as discussed by

Hui (1989). The other was interpolation via LSPs. An algorithm for this has been

presented by Morris & Clements (2002), involving computing the Jacobians of the

LSPs and using these minima and maxima to detect and modify specific formants of

choice in frequency and/or bandwidth. While it is a robust and efficient method it is

5.5 Introducing LSPs 31

overly complex for the needs of this project. Another method, similar but simpler and

easier will be used.

5.5. Introducing LSPs

Line Spectrum Pairs, as the name suggests, are lines, paired along the spectrum (i.e.,

around the unit circle on the Z-plane), that describe the characteristics of the LPC

filter.

They are computed in the following manner, as shown by many including Kabal and

Ramachandran (1986), Soong & Juang (1993), Paliwal & Atal (1993), Stein (2002)

and more.

5.5.1. Computing the Line Spectrum Pairs

The LPC coefficient vector has the transfer function:

1 ,

where A z is the polynomial of length (i.e. LPC order) :

1 …(5.1)

If we take the coefficients of …(5.1) and add a mirror-image of them to itself, we

arrive at the symmetric (a.k.a. a Palindromic (Stein, 2002)) polynomial:

5.5.1 Computing the Line Spectrum Pairs 32

1 1 …(5.2)

Similarly, an antipalindromic equation can be constructed by subtracting the

mirrored coefficients:

1 1 …(5.3)

And, adding …(5.2) and …(5.3), P z Q z 2A z , so we sum the elements

of the palindromic and antipalindromic polynomials and multiply by 0.5 to get back

to the original LPC coefficient vector.

Figure 12 Roots of the Palindromic and Anti-palindromic Polynomials: LSPs

Im

Re
1-1

-1

1

5.5.1 Computing the Line Spectrum Pairs 33

 P z and Q z are vectors of Line Spectrum Pairs, and have the interesting

characteristic that their roots are entirely on the unit circle in the Z-plane, and the

roots of P z are interleaved with those of Q z hence the term Line Spectrum Pairs.

These properties are illustrated in Figure 12.

The other useful property these roots possess is that they are always complex-

conjugated and if you modify their position as a conjugate pair, you will modify the

formants of the LPC vector while guaranteeing a stable filter.

The Octave function lsplpc(), listed in appendix B.5 obtains the LSPs from an

LPC input vector. This function first forms the palindromic and antipalindromic

polynomial vectors, then uses Octave’s built-in roots() function to find their

roots. The majority of papers found on LSPs are devoted to finding faster ways of

computing their roots to enable their use in real-time systems. A common way is to

evaluate the magnitude of the polynomials as excited by cosines of the frequencies

around the unit circle and find the zero-crossing points (Kabal & Ramachandran,

1986). There is a speed versus accuracy trade-off in such computations.

Figure 13 shows the roots of P z and Q z evaluated for the same set of LPC

coefficient frames as discussed in section 5.3, and generated from the same script.

5.6 Conclusion 34

Figure 13 Roots of the Line Spectrum Pairs from /œ/ to /U/.

5.6. Conclusion

Although several papers mention the method of interpolation using LSPs, few detail

anything beyond the computation of the roots of the LSPs – not surprising since the

majority of the research has been motivated by the desire to compress speech, as

opposed to morph it. The final approach chosen for this project, based on sage advice

from Paliwal (1993), Soong & Juang (1993), and others, interpolation of the Line

Spectrum Pairs has been chosen.

Chapter 6.

Practical Implementation

6.1. Introduction

Since the overall idea is to use LPC-style vocal tract modelling for the synthesizer, it

makes sense to use the now well-researched LPC synthesis mechanism along with

LPC analysis.

However, since the design is for a synthesizer the LPC analysis phase need not be

included in the actual final hardware and software. It does provide a convenient

mechanism for providing the necessary filter coefficients (in non-real-time) for

synthesis (in real-time). To that end a number of functions have been developed to

produce the coefficients and gains for synthesis in the Octave environment, and in

turn these coefficients are written to C code headers for use in the final

implementation. This chapter discusses the ensuing design process and outcomes.

6.2 LPC Analysis Function 36

6.2. LPC Analysis Function

LPC analysis was performed to generate basic vowel coefficients using the Octave

(or, MATLAB) script function calc_lpc() (Keiler, F & Zölzer, U (ed.) 2008,

p.308). This follows the traditional method of using the Levinson-Durbin Recursion,

and fortunately Octave comes equipped with the necessary function making the

generation of predictor coefficients straightforward. The calc_lpc() function

returns a vector of coefficients including the 1 in the denominator of the synthesis

equation, as well as the gain factor for the analysed frame of speech.

Sample .wav files as discussed in Chapter 3 were recorded and clipped for the

voiced sounds iii, eh, a, ah, o, ue, rr, and uw. The format of these samples was

mono, 22.05 KHz sample rate and 16-bit quantization. This format provides

bandwidth of 11.025 KHz (using the Nyquist theorem) and a theoretical dynamic

range of greater than 90dB, which is more than adequate for speech.

The initial version of the design used a set of eight coefficient vectors (from the

voice clips mentioned above), which were written out to a C language header file –

lpc_coeffs.h for use in the test hardware. This was efficiently facilitated

through another Octave script which in turn calls calc_lpc() for each audio

sample file presented, and then saves them using a generic data type and scaling

macro for fixed point implementation in C. This function – generate_coeffs()
– is detailed in appendix B.3. A sample of the lpc_coeffs.h file generated by it

is listed in appendix D.3.

6.3 LSP Calculation 37

6.3. LSP Calculation

As discussed in Chapter 5, LSPs have been chosen as an experimental method of

interpolating LPC coefficient vectors. To perform the conversion of LPC coefficients

to LSPs, the function lsplpc() was developed in accordance with the algorithm

presented in section 5.5.1. While most LPC vocoders would transmit only the angles

of the LSPs, over one half of the unit circle (as the other is always a mirror image),

this function keeps all the roots around the circle in the arrays P and Q. The angles of

the LSP roots are usually referred to as Line Spectrum Frequencies (LSFs) as they

are represented as angles versus complex numbers. This also reduces frame packet

size. For this project, the lsplpc() function keeps the LSPs in separate vectors for

convenience (Ph and Qh) though they are not strictly necessary.

6.3.1. Roots of the Line Spectrum Pairs

The lsplpc() function also calculates the LSP roots and returns them as a vector

with complex numbers. Because the LSP roots lie around the unit circle, they can be

expressed as pure angles (LSFs). LSFs are calculated using:

…(6.1)

And conversely, converted back into complex representation with:

…(6.2)

6.3.2 Interpolation Using LSFs 38

One important point here is that, because LSFs are mirrored on the bottom-half Z-

plane, when converting from LSFs back to LSPs it is necessary to also subtract the

imaginary sine term.

In this project the conversion back to LSPs from LSFs is done in the interpolation

function, described in the next sub-section.

6.3.2. Interpolation Using LSFs

Interpolation of LSFs is as simple as linear interpolation of angles. Figure 14

illustrates this process. The two frames to be interpolated and the number of

interpolation steps are given to calculate angle step size:

∆ ….(6.3)

The critical step here is that LSFs have to be paired from the first frame to the second

in the correct (same) order. In this case it is fairly trivial because the LSFs are sorted

into an ordered list of values from lowest to highest in magnitude, using Octave’s

sort(). The net result is that the interpolated LSFs do not tend to cross over and

behave very well, as illustrated in Figure 15.

6.3.2 Interpolation Using LSFs 39

Figure 14 Line Spectrum Frequency Interpolation Using Neighbouring Angles

Figure 15 Interpolating Line Spectrum Frequencies over N frames

The function lsp_interp() listed in appendix B.9 performs the LSP/LSF

interpolation using this method. Since it takes LSPs as arguments and also returns

LSPs, it uses the arg() built-in Octave function (equivalent in this case to ...(6.1))

to get the angle from each root, performs the N interpolation steps on the LSF pairs,

6.3.3 Expanding Roots back to LPC Coefficients 40

simultaneously storing the interpolation results as LSPs (using cos and sin

functions, as in ...(6.2)).

6.3.3. Expanding Roots back to LPC Coefficients

The roots are necessary for interpolation, but they make it a more complicated

process getting back to LPC coefficients as they have to be expanded. The process

one normally undertakes when expanding factored polynomials was examined, and

laid out as shown in Figure 16.

Figure 16 Root Expansion Algorithm

The example shown is for a polynomial of the form:

It is easy to see that the process can be broken down into ∑ multiply-add

operations. This is simply done in a nested loop, and this has been implemented in

the function expnd(), listed in appendix B.7.

a a+b

ab

a+b+c

ab+c(a+b)

abc

a+b+c+d

ab+c(a+b)+d(a+b+c)

abc+d(ab+c(a+b))

abcd

x

x

x

x x

x

+ +

+

+

+

+

...

...

...

...

6.4 Tying Interpolation Together 41

6.4. Tying Interpolation Together

The final step is to write a function that takes two file names of recorded speech

segments, builds LPC vectors from each, uses the LSP interpolation as discussed and

finally returns a set of LPC vectors from the interpolation – these to be written to a C

header file later on for the hardware and firmware design to use.

Figure 17 is a Z-plane plot that shows the result of running the function that does this

– plot_interp(), listed in appendix B.12.

Figure 17 LPC Poles of Interpolation of coefficients using LSPs.

6.5 Formant Mapping 42

plot_interp() is also written to optionally create a surface plot of the log-

magnitude spectrum of the LPC coefficients created by it. Just such a plot is shown

in Figure 18.

Figure 18 Log Magnitude Spectrum of LSP Interpolated LPC coefficients.

It is very clear from both of these figures that this method of interpolation is a great

one. It produces smooth transitions even between very different pole maps.

6.5. Formant Mapping

The initial design uses the x-axis of the TFT touch screen to control the formant

characteristics, while the y-axis is used to control the pitch period of the pulsed

excitation source. The simplest way to map formants to the screen is to divide the

screen width into regular segments with each invoking a set of LPC coefficients to be

6.5 Formant Mapping 43

used for synthesis. This is facilitated by a timer interrupt service routine which

regularly checks the status of the pointer driver, and when the user touches the screen

the x-location is read and used to point to the appropriate set of coefficients using a C

pointer.

There are eight vocal sounds that were used initially to generate the coefficients as

pointed out in section 6.2, with interpolation of the coefficient vectors used to fill in

the extra spaces between in order to smooth the transitions between them.

Figure 19 Log Magnitude Spectrum of LSP interpolations across TFT panel width.

To build an interpolated set of LPC coefficients for every X location on the TFT

panel, the gen_all_lsp()Octave function was created, and is listed in B.11. The

output of this function in the Octave environment is a matrix of coefficients of size

320 by 22. This size reflects the 320 X-resolution of the TFT on the NB3000, and the

6.5 Formant Mapping 44

20th-order LPC coding used (as opposed to the typical 10th-order), and the +1

coefficient as well as the gain coefficient for each of the 320 frames. This matrix has

been plotted as well, and the 3D surface plot of its log-magnitude spectrum is shown

in Figure 19. This image makes obvious the fact that the interpolation of the poles

was done well, but the gains are just as important. This is a potential topic for future

work on this project.

Overall, the interpolation result was surprisingly good. The graph of Figure 19 was

also set to top view in the plot window and a screen-shot of it was taken. The

resulting background of the NB3000 TFT panel is shown in Figure 20. This text in

this photo is added to the screen by the software of the design.

Figure 20 Spectrogram bitmap of interpolation results used as TFT background.

6.6 Embedded System Considerations 45

6.6. Embedded System Considerations

The implementation in the target hardware used 16-bit quantization for the audio

data path. This was chosen based on the following facts:

 The .wav files used for coefficient generation were recorded in 16-bit

quantization.

 The 32-bit RISC processor used allows scaling operations to be performed

from 32-bits down to 16 in a single cycle using its barrel shifter. Contrasting

this, if 32-bit data were used the system would require scaling from 64-bits

down to 32, which requires at least double the clock cycles.

 As will be shown below, 16-bits allow fixed-point scaling that still has

sufficient headroom for the all-pole filtering to work effectively.

Since the system performs LPC synthesis in real-time, there are practical limits

imposed by the its architecture which in turn limit the allowable bandwidth, the order

of LPC synthesis filter used, and bandwidth of speech generated.

6.7. Fixed Point Implementation

Since the target system will be an FPGA System-on-Chip, the design uses fixed-

point arithmetic for the signal path and all filtering. This is because signed integer

multiplies exist on board the FPGA die which can be used for hardware acceleration

of the filter kernel if needed, and in addition the CPU core used for running the main

line of code is a RISC CPU that does not include a floating point unit. Therefore

implementation in floating point, however convenient from a coding standpoint,

would be too slow for such a real-time application.

6.7.1 Coefficient Scaling 46

6.7.1. Coefficient Scaling

The synthesis filter kernel will perform N 16-bit multiplies for each sample (N is the

order of the LPC synthesis), which are in turn accumulated in a 32-bit result. The

coefficients are generated from Octave in double-precision floating point and are

written out to the coefficient header file with 20 digits after the decimal point. This is

done using standard formatting in the well-known fprintf() function.

Since there is no built-in data type in the C code of the target for fixed point the

coefficients are scaled to a suitable integer type, defined as samp_t (a 16 bit signed

integer), in the main.c file, shown on page 103 (appendix D.1).

For all coefficient vectors produced by LPC analysis, the maximum absolute value |v|

encountered is 2 ≤ |v| ≤ 3, therefore 2 bits at least are required to represent this.

However, to ensure that saturation is not as likely to be encountered an extra bit is

used. Therefore the scaling of the coefficients has been set to the Q3.13 format (3

bits of integer including the sign, and 13 bits for fractional data). Truncation of data

and coefficients was chosen for its ease of implementation and reduced CPU

overhead, but as seen in 6.7.2 (next) the adverse effects of this quantisation method

are outweighed by its computational benefits for this design.

6.7.2. Truncation Effects

With the Q3.13 fixed-point scaling used, it is necessary to take into account the

truncation of data and coefficients. Two methods (analytical and experimental) were

used to make sure this format is sufficient.

6.7.2 Truncation Effects 47

Since we are scaling the coefficients to Q3.13, the resolution is ±2-13 ≈ 122*10-6.

This is close to 80dB below a considered peak value of ±1 (0dB) for the filtered

signal, which is well within an acceptable range considering the typical listener is

less sensitive to dynamic range than this.

The mean square error will be higher in terms of filter coefficient accuracy, because

the resolution of the coefficient is only ±2-13 and the error is multiplied through each

stage of filtration, plus back through as a recursive error signal.

As discussed by Schlichthärl (2000, pp.233-238) the mean-square error and variance

introduced by single truncation step through which the audio stream passes can be

calculated respectively by:

Δ
3

1
3

2
1

2
 ...(6.1)

Δ
12

1
1

 ...(6.2)

Where N is the number of possible error values, and Δxq is the quantization step after

quantization. Δxq can be expressed in terms of normalized signal resolution step

which, for the Q3.13 system design presented is 2-16 - 2-13. To quantify the equivalent

noise introduced exactly a known set of samples is required. However, it provides

some insight into the effects of truncation during filter arithmetic operations. For a

set of samples of a complex signal such as speech, there is almost equal probability

of the truncation error being any of the values in the range of truncated bits.

6.7.2 Truncation Effects 48

Therefore the equivalent noise power added to the signal by truncating a 32-bit result

down to 16 bits (assuming full-scale signal values of ±1) is:

Δ
12

1
1 2

12
1

1
65535

19.4 10

The noise from each truncation step is added to the total filter noise for each output

sample. Therefore instead of truncating each filter multiply-add operation, for this

design it was decided to accumulate all filter multiplications in 32-bit precision and

truncate the result at the end of the kernel loop back to 16-bits. Having just a single

truncation in the path keeps the signal to noise ratio fairly high for the filter. If the

signal is considered to be ±1 full scale then the SNR for the truncation would be:

10 log
1

19.4 10
107

This is more than sufficient for the design at hand. In essence the SNR is not as good

as this, because of the truncation of the filter coefficients. The equivalent truncation

noise for the coefficients is greater due to the rounding to 13 bits of precision. This is

effectively a reduction in word if 3 bits, giving a SNR of less than 80dB for each

coefficient. The noise will add up, but considering that the input source to the filter

and the filter are both deactivated when not in use in this design, it is not considered

problematic.

6.8 C Code Development 49

6.8. C Code Development

This section points out a few pertinent details about the C code implementation on

the Nanoboard 3000. The main C code document (main.c) is listed in appendix

D.1, which will be referred to throughout this session by page number.

6.8.1. Code for generating Coefficients

As mentioned in section 6.5, the Octave function gen_all_lsp() is used to

perform the LSP interpolation, but it also then generates a coefficient header file for

use in the NB3000 embedded project. Appendix D.4 lists the

lpc_lsp_interpolated_coeffs.h C code header file (truncated as it is too

large to include in this dissertation). This set of coefficients works well and is used in

the final design.

Another earlier Octave script, gen_all_lpc() is listed in appendix B.10 for

completeness, though this one is not used in the final implementation. It generates a

similar LPC coefficient vector array in a C code header, but the key difference is it

interpolates the vectors using simple linear interpolation. The results of using these

coefficients are that:

1. Many positions across the screen create noises that suggest unstable filter

kernel at those vector positions, and

2. The formant changes from one position to the next are unnatural and can

not work for generating real speech.

Hence, the LSP interpolated version was chosen.

6.8.2 Drivers and Initialization 50

6.8.2. Drivers and Initialization

The advantage of using the Nanoboard 3000 platform for development of this project

lies in the IDE environment, which includes all the C code driver libraries for the

peripherals used in the design.

The drivers for each part of the hardware platform, along with their corresponding

reference documentation, are accessed through a Software Platform Builder file. This

file (NB2_Voice.SwPlatform) is shown in the Software Platform editor in

Altium Designer software in Figure 21.

Figure 21 The Software Platform Builder

6.8.3 IIR Synthesis Filter 51

In this figure, each hardware peripheral used in the design and its associated C code

driver are represented by API stacks that provide different levels of functionality:

 Green blocks represent wrappers that abstract memory maps of peripherals

into macros for named access.

 Yellow blocks represent the drivers themselves, with all the necessary

structures and functions to initialize and access the hardware.

 Blue blocks represent abstract APIs that add software services to the system,

such as graphics and GUIs, touch screen pointer and so on.

The drivers and API stacks included for use in this project are included in the C by

way of the #includes at the top of the main.c file (see page 103).

6.8.3. IIR Synthesis Filter

The LPC all-pole synthesis filter is implemented in the function

allpole_kernel() on page 107 in appendix D.1. This function uses a static

global samp_t array for the history buffer, and takes as an argument a pointer to the

beginning of a coefficient array. The coefficient array passed to it depends on the

position of the pointer on the touch screen.

The input sample to the filter x_0 is multiplied by the coefficients at the beginning

(equivalent to 1.0) and the end (the gain coefficient for that frame) of the array.

This value then passes into the cumulative summation of all the prior N samples,

multiplied by their corresponding LPC coefficients, according to equation ...(4.4)

where is represented by x_0.

6.8.4 Pulse Source 52

The output of the filter is quantized back from a 32-bit sign-extended multiply-add

result, to type samp_t, with an arithmetic right-shift of 17 bits and a type cast

(shown in appendix D.1 page 108). The right-shift is sign-extended and 17 bits was

chosen instead of 16, because it was found that it produced less distortion in the

output signal.

6.8.4. Pulse Source

Human speech typically uses fundamental pitch frequencies in the range 100Hz to

1KHz. Since this design is using a sampling frequency of 22.05 KHz, the period of

these pitches range from:

100 1000

Or, approximately 220 samples to 22 samples. It was chosen to enable the pitch to

range from about 50 Hz to 2 KHz so that the user could reach high singing notes with

the device, though in a commercial application this makes the range too great to

easily control on a small touch panel.

The calculation of pitch period (in buffer size), is taken care of by the PITCH()

macro listed in appendix D.1, page 104. The pulse source is implemented as a pre-

6.8.5 Noise Source 53

initialized buffer with a short spike shaped pulse, and is initialized in the main.c

file (shown on page 105). The buffer length must be longer than PITCHMIN.

6.8.5. Noise Source

The noise source is created by the initialisation routine, which initializes all the

driver handles, sets up the TFT display, and runs a TFT calibration procedure (listed

in appendix D.1, page 109). This routine fills the noise buffer with a random number

sequence created by the C standard library function rand(). There are probably

better ways of generating a white noise source, but for the time available this is the

best at hand.

6.8.6. User Interface

The CPU timer interrupt callback function handletimer() (listed in appendix

D.1 page 112), checks to see if the user is pressing the TFT screen, by calling the

Touchscreen Pointer API function pointer_update().

If there is activity, the Y axis value, which ranges from [0, 239] is scaled to the range

[PITCHMIN, PITCHMAX] and this sets the length of buffer (either the pulse or

noise sources) that will be looped through, thereby changing the pitch.

The X axis value is read also when there is touch activity, and its value is in the

range [0, 319]. These values correspond directly to the coefficient vector array

indices included in the header file lpc_lsp_interpolated_coeffs.h. This

is an array of LPC vectors dimensioned (320, 22), and the X value read from the TFT

6.9 Conclusion 54

sets the array vector pointer current_coeffs to &coeffs[X][0]which is

passed in turn to the filter kernel.

The timer callback routine also reads in the status of 5 pushbutton switches which are

located under the TFT panel on the Nanoboard. If none are selected, just the pulse

source is used for synthesis. If the first pushbutton is selected, the noise source is

used, and if the second pushbutton is selected, both the pulse and noise sources are

used together.

6.9. Conclusion

The theory of LPC and LSP interpolation has been practically applied to generate

filter coefficient arrays of morphed vowel sounds. The arrays have in turn been used

in a realisation of an LPC synthesizer in an embedded computer system, with the

TFT panel touch screen used to control the pitch and of the source, and the vowel

sound based on the coefficient array selected by it.

Chapter 7.

Introduction to the Nanoboard 3000

Figure 22. The NB3000 running the speech synthesizer.

7.1 Introduction 56

7.1. Introduction

The Altium Nanoboard 2 was the original choice for the development platform for

this project. Since then, a smaller and more appropriate development board has been

released – the Nanoboard 3000 or NB3000.

The NB3000 used is shown running the design in Figure 22.

7.2. NB3000 and the Altium Designer Software Platform

The NB3000 is primarily design for the design and prototyping of FPGA circuits.

However its versatility and usefulness does not merely lye in that alone. The Altium

Designer software that is used with it is very closely coupled to its functionality in

the following ways:

1. Each and every hardware peripheral available on the NB3000 has an

associated driver in the Altium Designer software suite. These drivers make it

a trivial task to get inputs and outputs working rapidly.

2. The NB3000 uses a second (non-user) FPGA device for its own internal

firmware. This firmware gives it some very useful capabilities, including:

a. JTAG download and debugging over high speed USB.

b. The ability to auto-load FPGA hardware and firmware on power-up.

c. In-system firmware updateability.

d. Electronic identification of the board (i.e. a serial number) which also

allows FPGA hardware design constraints to be automated (in other

words, the pin assignments do not have to be manually entered into

the system as they would be in other environments).

7.3 Nanoboard Features Utilized 57

3. Altium Designer (summer ’09 version and later) provides a graphical method

of building software stacks (APIs) to support the design process.

4. The library of FPGA IP cores that comes with Altium Designer software

provide a suite of processors and peripherals that can be programmed into the

FPGA on the board to suit just about any task. No hardware IP needs to be

created by the user unless it forms a core part of their product.

In this case, everything needed for this project is provided out of the box.

7.3. Nanoboard Features Utilized

The NB3000 has many peripherals. A complete list is given in the data sheet,

provided in appendix for reference. Only the ones used in this project are discussed

here.

7.3.1. Audio Codec

The audio codec provided on the NB3000 is a Crystal CS4270. It is a 2-channel

CODEC (AD/DA converter) that supports I2S audio streaming protocol, and sample

rates up to 192 KHz, and quantization up to 24-bits. In this project it is configured

for a relatively low sample rate (22.05 KHz – ample for speech), and quantization of

16-bits. This is done in the Software Platform Builder which configures the codec

drivers to initialise this device over the I2C bus.

7.3.2 I2S Interface 58

7.3.2. I2S Interface

The I2S interface and associated IP Core are used to interface to the CS4270

CODEC.

7.3.3. SPI Interface

The NB3000 platform uses SPI bus in numerous ways. Two SPI bus interfaces are

used in this design.

The first is for the audio CODEC which, in addition to the I2S audio stream interface,

uses an SPI bus interface for the host which configures it. In this case the host is the

SPI peripheral core in our embedded FPGA System-on-Chip.

The second SPI bus connects to the TFT panel touch screen controller chip, a Texas

Instruments TSC2046.

7.3.4. TFT Interface

The TFT Touch screen uses SPI as mentioned above. The TFT video output is a

bidirectional 5-bit per pixel digital interface, and uses the TFT controller IP core

within the FPGA design. This IP core provides DMA for reading the display buffer

memory and supports double buffering.

The buffer is set up using a canvas driver in graphics context within the Software

Platform Builder for the project.

7.3.5 GPIO port, LEDs and Pushbuttons 59

7.3.5. GPIO port, LEDs and Pushbuttons

The NB3000 has eight RGB LEDs on board. This design makes use of those via the

configurable IOPORT peripheral outputs.

The inputs of this peripheral core are used to monitor the user pushbuttons.

7.3.6. SRAM Interface

Although the NB3000 sports many memory options, the memory requirements of

this project are light, and so only the external SRAM is used. The memory

configuration is shown in Figure 23.

Figure 23 Embedded Project Memory Configuration.

7.4 FPGA Hardware Design 60

In this case the external 1MB (configured as 2, 256K by 16-bit chips) of SRAM is

divided into program memory and data memory. A small amount (4KB) of FPGA

Block RAM is used within the CPU core as well.

7.4. FPGA Hardware Design

The FPGA hardware design is fairly simple, using only IP cores from the provided

libraries.

The physical connections to the peripheral hardware on the NB3000 are made

through the top-level FPGA design schematic ports, shown for reference in appendix

C.1.

At the core of the system is the TSK3000A 32-bit RISC CPU, connected to the

peripheral controller cores by the Wishbone interface, represented by the connecting

arrows in the OpenBus System document. This document is provided in appendix

C.2.

7.5. Project Links and Hierarchy

The FPGA design for the NB3000 speech synthesizer forms the embedded system

hardware, and on top of this platform is built the embedded software design – largely

the topic of this dissertation.

The embedded project and FPGA project are linked together, and the hierarchy of

documentation is shown in appendix C.3 for reference.

7.6 Conclusion 61

7.6. Conclusion

The FPGA Project was synthesized, built and downloaded from the Altium Designer

Software in the Devices View (shown in Figure 24).

Figure 24 Devices View in Altium Designer Software. This is where the FPGA and Embedded

projects are downloaded to the target device.

After some debugging and fixing of filter kernel code, the design operates and

provides a means of looking into the concept of speech generated by movement

further.

Chapter 8.

User Interface Research

8.1. Introduction

One of the original objectives of the project (see the Project Specification in

Appendix A) was to research how this system might be used with people whose

native languages differ.

Unfortunately, due to project time delays and constraints, it was not possible to

conduct a thorough research programme in this regard. However, some anecdotes

have been gleaned by people exposed to the project along the way.

8.2. Robotic Sound

Although the synthesizer works reasonably well for a first attempt, the first response

that has been encountered when showing it to colleagues has been one of

bewilderment followed by comments indicating that it sounds very much like a robot

8.3 User interface problems 63

from an old movie. This is probably most due to the pulse source generation and

could be alleviated with better error residual signals as a source.

8.3. User interface problems

Problems have been noted with the user interface involved. The most notable are:

1. The TFT screen is too small to be practical.

2. The fact that buttons have to be pressed to choose between voiced or

fricative sounds makes it difficult to use.

8.4. Conclusion

Although the idea is novel, it requires a lot more thought and research before it could

be turned into a practical commercial product that would be useful to normal users.

However, that is always the case with the first step in exploring a new idea.

Chapter 9.

Conclusion

9.1. Introduction

Referring again to the project specification (Appendix A) the first aim of the project

was to research and implement a Linear Predictive Coding based synthesizer that

was to be controlled by a user touch screen panel. The second aim was to look at the

feasibility of such a device as a possible means of assisting speech impaired people.

By and large, both of these aims have been achieved, though ideally more work

should be done on the user interface study in order to get more ideas of how it could

be made to work.

9.2 Further work and research 65

9.2. Further work and research

Further research should be undertaken in the following areas:

9.2.1. Improve LSP interpolation method to include gain

It was noted that the LPC vectors were interpolated nicely, but the gains between

each vector interpolated set jumped markedly, and this impaired the performance of

the design. This would be a good starting point as it most likely has a straightforward

solution.

9.2.2. Find better expression methods

Using the Y-axis to control pitch was primarily motivated by the need to have

expression. It does however limit the use of the screen. It would be better to find

other methods of controlling the pitch in order to free up TFT space to make the

mapping of voiced and affricate sounds easier and better.

9.2.1. Implement the LPC and LSP operations in Real-Time

The final and perhaps most useful extension to this project would be to implement

the LSP interpolation and LPC analysis functions in the embedded system for real-

time functionality. This would allow the system to be completely stand-alone, and

users could speak corpus directly into the device via a microphone in order to bottle

their own voice tonality and style within it.

9.2.2 Adapt the current design to Music generation 66

9.2.2. Adapt the current design to Music generation

This design certainly forms the basis of what potentially could be a music

synthesizer. The LPC formant maps do not necessarily have to be models of human

speech – given that the order of LPC filtering in the system could be quite high.

Other sounds, such as animals, birds, or even different types of musical instrument

could be modelled in this system.

The pulse and noise sources could be replaced by inputs that would come from a

vocal microphone or instruments such as electric guitars, to extend the usefulness of

the device into the musical effects arena.

9.3. Conclusion

The project programme of researching and implementing suitable speech processing

techniques – namely LPC and LSP – has been explored and implemented.

Voice characteristics were researched and discussed in Chapter 2, along with

processing techniques that prevail.

Chapter 3 discussed the characteristics of the human speech organs and how these

are modelled in digital systems and introduced the concept of interpolation of speech

frames.

9.3 Conclusion 67

Chapter 4 covered details of Linear Predictive Coding as used in this design.

Chapter 5 detailed the problem of morphing LPC frames and mapping them to the

TFT touch screen surface, and covered the theory behind using Line Spectrum Pairs

as a means of performing the interpolation.

Chapter 6 covered the design and implementation of these methods using Octave

scripts for the non-real-time part of the design. It went on to discuss the design of the

embedded system firmware which runs on the Altium Nanoboard 3000.

Chapter 7 Introduces the Nanoboard 3000 FPGA/Embedded design platform, and

briefly covered the parts that have been put to use in this project.

Chapter 8 briefly discusses the anecdotal research and feedback gleaned from

colleagues, pointing to some useability issues that could be addressed in future

projects.

Chapter 9 Concludes this dissertation.

References

Altium Limited, 2009, Nanoboard 3000 Series English Documentation, viewed 28th

October 2009,

<http://wiki.altium.com/display/ADOH/NanoBoard+3000+Series>

ASPi, 1996, MELP Vocoder Algorithm, Atlanta Signal Processors Inc, Atlanta GA,

USA

Breen, A 1992, ‘Speech synthesis models: a review’, Electronics and

Communication Engineering Journal, February 1992

Bauer, B and Torick, E 1966, ‘Researches in loudness measurement’, IEEE

Transactions on Audio and Electroacoustics, Vol. 14, September, pp.141–151

Cole, RA, Mariani, J, Uszkoreit, H, Zaenen, A and Zue, V 1996, Survey of the State

of the Art in Human Language Technology, National Science Foundation

European Commission, viewed 21st May 2009,

<http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html>

Goncharoff, V and Kaine-Krolak, M 1995, ‘Interpolation of LPC Spectra via Pole

Shifting’, 1995 International Conference on Acoustics, Speech, and Signal

Processing, Vol.1 pp.780-783

Hong, G 2007, The Vocal Tract and Related Speech Organs, Fu Jen Catholic

University Graduate Institute of Linguistics, viewed 22nd October 2009,

<http://www.ling.fju.edu.tw/phonetic/base2.htm>

REFERENCES 69

Kabal, P and Ramachandran, P 1986, ‘The Computation of Line Spectral

Frequencies Using Chebyshev Polynomials’, IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. ASSP-34, No.6, December, pp.1419-1426

Keiler, F Arfib, D and Zölzer, U (ed.) 2008, ‘Source-Filter Processing’, in DAFX

Digital Audio Effects, pp.299-372, Wiley & Sons, Chichester

Leis, J 2008, ELE4607 Advanced Digital Communications: course notes, University

of Southern Queensland, Toowoomba

McLoughlin, I and Chance, R 1997, ‘LSP analysis and processing for speech

coders’, Electronics Letters, Vol.33 No.9, April, pp.743-744

Morris, R and Clements, M 2002, ‘Modification of Formants in the Line Spectrum

Domain’, IEEE Signal Processing Letters, Vol. 9 Issue 1, January, pp.19-21

Oppenheim, A and Schafer, R 1975, Digital Signal Processing, pp.409-438,

Prentice-Hall, USA

Paliwal, K and Atal, B 1991, ‘Efficient vector quantization of LPC parameters at 24

bits/frame’, Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, IEEE, Toronto, Canada, May, pp. 661-664

Paliwal, K 1995, ‘Interpolation properties of linear prediction parametric

representations’, Proceedings of the 4th European Conference on Speech

Communication and Technology, EUROSPEECH-95, Madrid, Spain,

September, pp. 1029-1033

Rabiner, L and Schafer, R 1978, Digital Processing of Speech Signals, pp.396-461,

Prentice-Hall, USA

Tokuda, K, Yoshimura, T, Masuko, T, Kobayashi, T & Kitamura, T 2000, ‘Speech

parameter generation algorithms for hmm-based speech synthesis’, Department

of Computer Science, Nagoya Institute of Techology, Nagoya Japan

The University of Helsinki Music Research Laboratory 2008, Spectutils Home Page,

viewed 2nd June 2009, <http://www.music.helsinki.fi/research/spectutils/>

REFERENCES 70

Schlichthärl, D 2000, Digital Filters Basics and Design, pp.233-238, Springer-

Verlag, Berlin Heidelberg

Stein, J 2000, ‘Digital Signal Processing, A Computer Science Perspective’, pp.383-

385 Wiley & Sons, USA

Synthopia 2009, The Voder, A Speech Synthesizer From 1939, Synthesizer online

encyclopedia article, viewed 22nd May 2009,

<http://www.synthtopia.com/content/2009/02/06/voder-speech-synthesizer/>

Vaseghi, S, Yan, Q and Ghorshi, A 2009, ‘Speech Accent Profiles: Modeling and

Synthesis’, IEEE Signal Processing Magazine, Vol.26 No. 3, May, pp. 69-74

Hui, Z 1989, ‘The design of linear shift-variant filters using the interpolation

technique’, Fourth IEEE Region 10 International Conference, TENCON ’89,

Bombay, India, November, pp.263-265

Appendix A

Project Specification

B.1 The calc_lpc.m Octave Function 72

B.1 The calc_lpc.m Octave Function 73

Appendix B

Octave Scripts and Functions

B.1 The calc_lpc.m Octave Function 74

B.1 The calc_lpc.m Octave Function

The following code from (Keiler, F 2002, ‘Source-Filter Processing’, in Zölzer, U

(ed.) 2008) is provided here for clarity. This function was provided to work with

other example code in the edited book as the MATLAB lpc() function at the time

was known to not work correctly all the time.

function [a,g]=calc_lpc(x,p)

% calculate LPC coeffs via autocorrelation method

% Similar to MATLAB function "lpc"

% x: input signal

% p: prediction order

% a: LPC coefficients

% g: gain factor

% (c) 2002 Florian Keiler

R=xcorr(x,p); % autocorrelation sequence R(k) with k=-p,..,p

R(1:p)=[]; % delete entries for k=-p,..,-1

if norm(R)~=0

 a=levinson(R,p); % Levinson-Durbin recursion

% a=[1, -a_1, -a_2,..., -a_p]

else

 a=[1, zeros(1,p)];

end

R=R(:)'; a=a(:)'; % row vectors

g=sqrt(sum(a.*R)); % gain factor

end

B.2 The lpc_gen_figs.m Octave Function 75

B.2 The lpc_gen_figs.m Octave Function

function [a g e] = lpc_gen_figs(fname);

%

% LPC calculation of prediction error and spectra

% adapted from code by Keiler, F (2002)

%

% Adapted by: Ben Jordan

%

% From Reference:

% Keiler, F 2002, ‘Source-Filter Processing’, in Zölzer, U (ed.)

2008,

% 'DAFX Digital Audio Effects', p.306, Wiley & Sons, Chechister

%

n0=5000; %start index

N=1024; %block length

Nfft=1024; % FFT length

p=20; %prediction order

n1=n0+N-1; %end index

pre=p; %filter order= no. of samples required before n0

[xin,Fs]=wavread(fname,[n0-pre n1]);

xin=xin(:,1)';

win=hamming(N)';

x=xin((1:N)+pre); % block without pre-samples

[a,g]=calc_lpc(x.*win,p); % calculate LPC coeffs and gain

% a=[1, -a_1, -a_2,..., -a_p]

g_db=20*log10(g) % gain in dB

ein=filter(a,1,xin); % pred. error

e=ein((1:N)+pre); % without pre-samples

Gp=10*log10(sum(x.^2)/sum(e.^2)) % prediction gain

Omega=(0:Nfft-1)/Nfft*Fs/1000; % frequencies in kHz

offset=20*log10(2/Nfft); % offset of spectrum in dB

A=20*log10(abs(fft(a,Nfft)));

B.2 The lpc_gen_figs.m Octave Function 76

H_g=-A+offset+g_db; % spectral envelope

X=20*log10(abs(fft(x.*win,Nfft)));

X=X+offset;

n=0:N-1;

figure(1)

clf

subplot(211)

plot(n,e)

title(strcat('Time signal of pred. error e(n) for sample "', fname,

'"'))

xlabel('n \rightarrow')

axis([0 N-1 -inf inf])

subplot(212)

plot(Omega,X)

hold on

plot(Omega,H_g,'r','Linewidth',1.5)

hold off

title(strcat('Magnitude spectra |X(f)| and |G*H(f)| in dB for "',

fname, '"'))

xlabel('f/kHz \rightarrow')

axis([0 8 -inf inf])

out = filter(1, a, ein);

out = out';

figure(2);

subplot(211);

plot(x);

title(strcat('Input signal from "', fname, '"'));

xlabel('Sample (n)\rightarrow');

subplot(212);

plot(out);

title('Time signal of LPC synthesized output');

xlabel('Sample (n)\rightarrow');

g = Gp;

end

B.3 The generate_coeffs.m Octave Function 77

B.3 The generate_coeffs.m Octave Function

function [a g] = generate_coeffs(infile, outfile, lpc_order)

%

% This function creates a file named '<outfile>.h' - a C

% language header file for a 16-bit fixed-point constant array

% of Linear Predictive Coding synthesis filter coefficients

% of order <lpc_order>. <infile> is the input sound sample file

% Microsoft .WAV format.

%

% The LPC prediction coefficients are returned in [a] along with

% the gain coefficient g.

%

% If <outfile> does not yet exist in the current path it will be

% created. If it does exist, it will be appended with the new co-

% efficients.

%

% The source file name, lpc_order and other details will be added

% as comments in the header file before the array declaration.

%

% Author: Ben Jordan

%

 N = 1024;

 [xin, fs] = wavread(strcat(infile,'.wav'), [N N+N]);

 % Set up hamming window

 win = hamming(N)';

 % For each wavelet, get LPC

 x = xin(1:N).*win';

 [a g] = calc_lpc(x, lpc_order);

 Mxa = max(a);

 Mna = min(a);

 if (max(a) >= 3 || min(a) <= -3)

 fid = 0;

 error('LPC coeffs outside comfortable range for fixed

point.');

 end

 [fid msg] = fopen(strcat(outfile, '.h'), 'a+');

B.3 The generate_coeffs.m Octave Function 78

 if (fid == -1)

 error(msg);

 return;

 end

 fprintf(fid, '\n/*\n * LPC Coefficients for sample %s', infile);

 fprintf(fid, '\n * Date/Time created: ');

 fprintf(fid, '%d-', localtime(time()).year + 1900);

 fprintf(fid, '%d-', localtime(time()).mon + 1);

 fprintf(fid, '%d ', localtime(time()).mday);

 fprintf(fid, '%d:', localtime(time()).hour);

 fprintf(fid, '%d:', localtime(time()).min);

 fprintf(fid, '%d', localtime(time()).sec);

 fprintf(fid, '\n * LPC Order: %d', lpc_order);

 fprintf(fid, '\n * Sampling rate (Fs): %g', fs);

 fprintf(fid, '\n * Minimum LPC coefficient: %g', Mna);

 fprintf(fid, '\n * Maximum LPC coefficient: %g', Mxa);

fprintf(fid, '\n * NOTE: LAST element of array is prediction gain,

FIRST is first coefficient.');

 fprintf(fid, '\n */\n\n#ifndef COEFF_LEN\n#define

COEFF_LEN\t\t%d\n#endif\n', length(a));

 fprintf(fid, '\n#ifndef Q\n#error Q must be defined! It is the

floating-point to fixed point scaling factor.\n#endif ');

 fprintf(fid, '\nconst samp_t coeff_%s[COEFF_LEN+1] = \n{\n',

infile);

 for IDX = 1:length(a)

 fprintf(fid, '\t(samp_t)(%1.20f\t* Q),\n', a(IDX));

 end

 fprintf(fid, '\t(samp_t)(%1.20f\t* Q)\t/* <--- Prediction Gain

*/\n};\n', g);

 fclose(fid);

end

B.4 The ow_pole_mapping_plot.m Octave Script 79

B.4 The ow_pole_mapping_plot.m Octave Script

%

% ow_pole_mapping_plot.m

%

% Calls calc_lpc to get coefficients of a set of frames of

transitional

% speech, then subsequently plots the pole locations of the LPC

vectors

% and their corresponding LSP roots - both on unit circles.

%

% Author: Ben Jordan

%

N = 1024;

SAMPLES = N*24;

[xin, fs] = wavread('ow.wav', [0 SAMPLES-1]);

% Set up hamming window and unit circle for z-plane plot

win = hamming(N)';

hold off;

figure(1);

% Draw a unit circle for clarity

draw_unit_circle;

% For each wavelet, get LPC and plot poles of LPC reconstruction

filter

for IDX = 1:N/2:SAMPLES-N+1

 x = xin(IDX:IDX+N-1).*win';

 a = calc_lpc(x, 10);

 R_A = roots(a);

 if (IDX == 1)

 plot(real(R_A), imag(R_A), '*b', 'markersize', 3);

 else

 if IDX < (SAMPLES-N+1)

 plot(real(R_A), imag(R_A), '*k', 'markersize', 1);

B.4 The ow_pole_mapping_plot.m Octave Script 80

 else

 plot(real(R_A), imag(R_A), '*r', 'markersize', 3);

 end

 end

end

title('Pole paths from "aa" to "uw".');

xlabel('Real');

ylabel('Imaginary');

grid on;

hold off;

figure(2);

% Draw a unit circle for clarity

draw_unit_circle;

% For each wavelet, get LSP and plot poles

for IDX = 1:N:SAMPLES-N+1

 x = xin(IDX:IDX+N-1).*win';

 a = calc_lpc(x, 10);

 [Ph Qh P Q] = lsplpc(a);

 if IDX == 1

 plot(real(P), imag(P), '*b', 'markersize', 3);

 else if IDX < (SAMPLES-(N+1))

 plot(real(P), imag(P), '*k', 'markersize', 1);

 else

 plot(real(P), imag(P), '*r', 'markersize', 3);

 end

 end

end

title('LSP root paths from "aa" to "uw".');

xlabel('Real');

ylabel('Imaginary');

hold off;

B.5 The lsplpc.m Octave Function 81

B.5 The lsplpc.m Octave Function

function [Ph Qh P Q] = lsplpc(LPC)

% Calculates Line Spectrum Pairs from LPC coefficients of order

% of LPC.

%

% References:

% Kabal P, and Ramachandran R 1986, "The Computation of Line

% Spectral Frequencies Using Chebyshev Polynomials", IEEE

% Transactions on Acoustics, Speech and Signal

% Processing, Vol. ASSP-34, No. 6, December 1986.

%

% Stein, J 2000, "Digital Signal Processing - A Computer

% Science Perspective", pp.383-385, Wiley & Sons, USA.

%

% Author: Ben Jordan

%

 if (nargin ~=1)

 help lsplpc;

 return;

 end

 order = length(LPC)-1;

 Qh = zeros(1,order+2);

 Ph = Qh;

 Ph(1) = LPC(1);

 Qh(1) = LPC(1);

 for ix = 1:order

 Ph(ix+1) = LPC(ix+1) + LPC(order-ix+2);

 Qh(ix+1) = LPC(ix+1) - LPC(order-ix+2);

 end

 Ph(order+2) = 1;

 Qh(order+2) = -1;

 % LSPs are defined as the roots of the above equations.

 P = roots(Ph);

 Q = roots(Qh);

end

B.6 The lpclsp.m Octave Function 82

B.6 The lpclsp.m Octave Function

function [a] = lpclsp(P, Q)

% Calculates LPC Coefficients from Line Spectral Pairs

%

% Arguments: Ph, Qh, == Vector arrays of the LSPs in

% Coefficient form (not frequencies)

% order == the order of the LPC system

% Returns: a == Vector of LPC coeffiecients

% References:

% Kabal P, and Ramachandran R 1986, "The Computation of Line

% Spectral Frequencies Using Chebyshev Polynomials", IEEE

% Transactions on Acoustics, Speech and Signal

% Processing, Vol. ASSP-34, No. 6, December 1986.

%

% Stein, J 2000, "Digital Signal Processing - A Computer

% Science Perspective", pp.383-385, Wiley & Sons, USA.

%

% Author: Ben Jordan

%

 if (nargin ~= 2)

 help lpclsp;

 return;

 end

 if (length(Q) ~= length(P))

 help lpclsp;

 return;

 end

 order = length(P) - 2;

 o2 = order/2;

 a = zeros(1, order+1);

 a(o2+1:-1:1) = 0.5.*(Q(o2+1:-1:1) + P(o2+1:-1:1));

 a(o2+2:order+1) = 0.5.*(Q(o2+1:-1:2) - P(o2+1:-1:2));

 % compensate for root signs (i.e. every other LSP is in

 % "negative frequency"

 a(2:2:order+1) = -a(2:2:order+1);

end

B.7 The expnd.m Octave Function 83

B.7 The expnd.m Octave Function

function P = expnd(A)

%

% Assuming A represents roots of a polynomial, expands the

% roots to get to the polynomial P. A and P are row vectors

% and P is length(A)+1;

%

% It assumes that the roots are fully factored, for example:

% (x + a)(x + b)(x + c)...

% but !NOT!:

% (jx +a)(kx + b)(lx + c)...

%

% Author: Ben Jordan

%

 if (nargin ~= 1)

 help expnd;

 return;

 end

 N = length(A);

 P = zeros(1, N+1);

 P(1) = 1;

 %P(2) = A(1);

 for I=1:N

 for J=N+1:-1:2

 P(J) = P(J) + P(J-1)*A(I);

 end

 end

 % just to remove all the residual small imaginary parts...

 P = real(P);

end

B.8 The lpc_interp.m Octave Function 84

B.8 The lpc_interp.m Octave Function

function [A] = lpc_interp(FA, N)

%

% X-dimension LPC Coefficient Interpolator

%

% This function uses the linear interpolation provided by

% the Octave/MATLAB interp1 function. Linear interpolation

% is used to prevent coefficient values from exceeding

% existing coefficient values - thereby reducing likelihood

% of there being an unstable set.

%

% Arguments: FA is a m-order by n-vector matrix of LPC vectors.

% N is the desired number of output vectors.

% Returns: [A] is the resutling m-order by N vectors.

%

% Author: Benjamin Jordan

%

 if (nargin < 2)

 help lpc_interp

 return;

 end

 lFA = length(FA(1,:)); % number of input vectors

 wFA = length(FA(:,1)); % number of coefficients in each vector

 A = zeros(wFA, N); % new array will be N by w

 x = 1:lFA;

 step = (lFA-1)/N;

 xi = 1:step:lFA-step;

 for idx=1:wFA

 y = FA(idx,:);

% linear interpolation across X direction

 yi = interp1(x, y, xi);

 A(idx,:) = yi;

 end

end

B.9 The lsp_interp.m Octave Function 85

B.9 The lsp_interp.m Octave Function

function [IP IQ] = lsp_interp(P1, Q1, P2, Q2, N)

%

% Interpolate between two sets of Line Spectrum Pairs

% using the nearest angular neighbour.

%

% Arguments: P1, Q1 - the first LSP set

% P2, Q2 - the last LSP set

% N - the number of intermediate sets req'd.

%

% Returns: PI, QI - arrays of interpolated LSP vectors

%

% Assumptions: 1. All input LSPs are of equal length.

% 2. All have complex frequency representation

% (i.e. there are complex conjugates).

%

% Author: Ben Jordan

%

 if (nargin ~= 5)

 help lsp_interp;

 return;

 end

 % sort provides crude mechanism for finding nearest

 % neighbouring LSP. BUT WORKS!!

 O = length(P1);

 IP = zeros(O, N+2);

 IQ = IP;

 IP(:,1) = P1;

 IQ(:,1) = Q1;

 IP(:,N+2) = P2;

 IQ(:,N+2) = Q2;

 [P1] = sort(arg(P1));

 [Q1] = sort(arg(Q1));

 [P2] = sort(arg(P2));

 [Q2] = sort(arg(Q2));

 for I = 1:O

B.9 The lsp_interp.m Octave Function 86

 Pstep = (P1(I)-P2(I))/N;

 Qstep = (Q1(I)-Q2(I))/N;

 for J = 2:N+1

 IP(I,J)=cos(P1(I)-Pstep*J)+i.*sin(P1(I)-Pstep*J);

 IQ(I,J)=cos(Q1(I)-Qstep*J)+i.*sin(Q1(I)-Qstep*J);

 end

 end

end

B.10 The gen_all_lpc.m Octave Function 87

B.10 The gen_all_lpc.m Octave Function

function [LI] = gen_all_lpc(sOUTFILE, sQ, sT, order, n)

%

% This function uses the calc_lpc function and lpc_interp

% function to generate and save out a C header file

% containing the interpolated LPC coefficient vectors.

%

% Arguments:

% sOUTFILE = name of the C header file to be written (string)

% sQ = C macro name used for fixed-point scaling (string)

% sT = C data type name used for coefficient declaration (string)

% order = LPC filter order

% n = number of desired output vectors (used for interpolation)

%

% Results:

% LI = a matrix sized (order+2, n) of LPC coefficient vectors.

% It is (order+2) rows because a0 coefficient (always 1) for

% the synthesis filter is added, plus the prediction gain is

% suffixed at the end of each coefficient vector.

%

% This function assumes you have a set of basic vowell sounds

% recorded in .wav file format - 16-bits, 22.05Ksps, mono.

% The file names used currently are "uw.wav", "ue.wav", "rr.wav",

% "o.wav", "e.wav", "ah.wav", "a.wav", and "iii.wav".

%

% Author: Ben Jordan.

%

if (nargin < 5)

 usage('[LI] = gen_all_lpc(sOUTFILE, sQ, sT, order, n)');

 return;

end

N = 1024;

fst = 1024; % Start a reasonable length into file

lst = fst+N-1;

% read in eight basic vowel sounds:

B.10 The gen_all_lpc.m Octave Function 88

[xuw Fs] = wavread('uw.wav', [fst lst]);

[xue] = wavread('ue.wav', [fst lst]);

[xrr] = wavread('rr.wav', [fst lst]);

[xo] = wavread('o.wav', [fst lst]);

[xe] = wavread('e.wav', [fst lst]);

[xah] = wavread('ah.wav', [fst lst]);

[xa] = wavread('a.wav', [fst lst]);

[xii] = wavread('iii.wav',[fst lst]);

% transpose to column vectors, combine in to an 8 by N array:

X = [xuw(:,1)'; xue(:,1)'; xrr(:,1)'; xo(:,1)'; xe(:,1)';

xah(:,1)';...

 xa(:,1)'; xii(:,1)'];

% apply a hamming window to all the samples and calculate LPC

vectors:

LP = zeros(8, order+2);

GP = zeros(1, 8); % storage for gains for use later on.

window = hamming(N)';

for I=1:8

 X(I,:) = X(I,:).*window;

 [LP(I,1:order+1), LP(I,order+2)] = calc_lpc(X(I,:), order);

end

% Interpolate using linear interpolation

LI = lpc_interp(LP', n)';

Mxa = max(max(LI));

Mna = min(min(LI));

% Dump LPC coeff. vectors to a outfile:

[fid msg] = fopen(sOUTFILE, 'a+'); %open for append

if (fid == 0)

 error(msg);

 return;

end

fprintf(fid, '\n/*\n * Interpolated LPC Coefficients for vowels');

fprintf(fid, '\n * Date/Time created: ');

fprintf(fid, '%d-', localtime(time()).year + 1900);

fprintf(fid, '%d-', localtime(time()).mon + 1);

fprintf(fid, '%d ', localtime(time()).mday);

fprintf(fid, '%d:', localtime(time()).hour);

fprintf(fid, '%d:', localtime(time()).min);

fprintf(fid, '%d', localtime(time()).sec);

B.10 The gen_all_lpc.m Octave Function 89

fprintf(fid, '\n * LPC Order: %d', order);

fprintf(fid, '\n * Sampling rate (Fs): %g', Fs);

fprintf(fid, '\n * Minimum LPC coefficient: %g', Mna);

fprintf(fid, '\n * Maximum LPC coefficient: %g', Mxa);

fprintf(fid, '\n * NOTE: LAST element of each array is prediction

gain, FIRST is first coefficient.');

fprintf(fid, '\n */\n\n#ifndef COEFF_LEN\n#define

COEFF_LEN\t\t%d\n#endif\n', length(LI(1,:)));

fprintf(fid, '\n#ifndef %s\n#error %s must be defined! It is the

floating-point to', sQ, sQ);

fprintf(fid, ' fixed point scaling factor.\n#endif ');

fprintf(fid, '\nconst %s coeffs[%d][COEFF_LEN] = \n{\n', sT, n);

len = length(LI(:,1));

wid = length(LI(1,:))-1;

for JDX = 1:len

 fprintf(fid, '\t{\n');

 for IDX = 1:wid

 fprintf(fid, '\t\t(%s)(%1.20f \t* %s),\n', sT, LI(JDX,

IDX), sQ);

 end

 fprintf(fid, '\t\t(%s)(%1.20f \t* %s)\t/* <--- Prediction Gain

*/\n', sT, LI(JDX, wid+1), sQ);

 if (JDX < len)

 fprintf(fid, '\t},\n');

 else

 fprintf(fid, '\t}\n};\n');

 end

end

fprintf(fid, '\n/* ------------------ end of coefficients ----------

-------- */\n');

fclose(fid);

end

B.11 The gen_all_lsp.m Octave Function 90

B.11 The gen_all_lsp.m Octave Function

function [C G FS] = gen_all_lsp(sOUTNAME, sQ, sT, order, n)

%

% Generates array of LPC coefficients (LPC of order ORDER)

% Calls lower level functions to interpolate between frames

%

% Author: Ben Jordan

%

[A gx gz S] = plot_interp("uw.wav", "o.wav", order, n-2, 0);

C = A; G = [gx, gz]; FS = S;

[A gx gz S] = plot_interp("o.wav", "ue.wav", order, n-2, 0);

C = [C;A]; G = [G, gz]; FS = [FS;S];

[A gx gz S] = plot_interp("ue.wav", "rr.wav", order, n-2, 0);

C = [C;A]; G = [G, gz]; FS = [FS;S];

[A gx gz S] = plot_interp("rr.wav", "ah.wav", order, n-2, 0);

C = [C;A]; G = [G, gz]; FS = [FS;S];

[A gx gz S] = plot_interp("ah.wav", "a.wav", order, n-2, 0);

C = [C;A]; G = [G, gz]; FS = [FS;S];

[A gx gz S] = plot_interp("a.wav", "e.wav", order, n-2, 0);

C = [C;A]; G = [G, gz]; FS = [FS;S];

[A gx gz S] = plot_interp("e.wav", "iii.wav",order, n-2, 0);

C = [C;A]; G = [G, gz]; FS = [FS;S];

[A gx gz S] = plot_interp("iii.wav","rr.wav", order, n-2, 0);

C = [C;A]; G = [G, gz]; FS = [FS;S];

% Some edification for the user on array sizes:

disp(size(C));

disp(size(G));

% Find peaks in coefficient values for remarks in header file:

Mxa = max(max(C));

Mna = min(min(C));

% Dump LPC coeff. vectors to a outfile:

[fid msg] = fopen(sOUTNAME, 'a+'); %open for append

if (fid == 0)

B.11 The gen_all_lsp.m Octave Function 91

 error(msg);

 return;

end

fprintf(fid, '\n/*\n * LSP Interpolated LPC Coefficients for

vowels');

fprintf(fid, '\n * Date/Time created: ');

fprintf(fid, '%d-', localtime(time()).year + 1900);

fprintf(fid, '%d-', localtime(time()).mon + 1);

fprintf(fid, '%d ', localtime(time()).mday);

fprintf(fid, '%d:', localtime(time()).hour);

fprintf(fid, '%d:', localtime(time()).min);

fprintf(fid, '%d', localtime(time()).sec);

fprintf(fid, '\n * LPC Order: %d', order);

fprintf(fid, '\n * Sampling rate (Fs): 22.05 KHz');

fprintf(fid, '\n * Minimum LPC coefficient: %g', Mna);

fprintf(fid, '\n * Maximum LPC coefficient: %g', Mxa);

fprintf(fid, '\n * NOTE: LAST element of each array is prediction

gain, FIRST is first coefficient.');

fprintf(fid, '\n */\n\n#ifndef COEFF_LEN\n#define

COEFF_LEN\t\t%d\n#endif\n', length(C(1,:))+1);

fprintf(fid, '\n#ifndef %s\n#error %s must be defined! It is the

floating-point to', sQ, sQ);

fprintf(fid, ' fixed point scaling factor.\n#endif ');

len = length(C(:,1));

fprintf(fid, '\nconst %s coeffs[%d][COEFF_LEN] = \n{\n', sT, len);

for JDX = 1:len

 fprintf(fid, '\t{\n');

 for IDX = 1:order+1

 fprintf(fid, '\t\t(%s)(%1.20f \t* %s),\n', sT, C(JDX, IDX),

sQ);

 end

 Gidx = floor((JDX+n)/n);

 fprintf(fid, '\t\t(%s)(%1.20f \t* %s)\t/* <--- Prediction Gain

*/\n', sT, G(Gidx), sQ);

 if (JDX < len)

 fprintf(fid, '\t},\n');

 else

 fprintf(fid, '\t}\n};\n');

 end

B.11 The gen_all_lsp.m Octave Function 92

end

fprintf(fid, '\n/* ------------------ end of coefficients ----------

-------- */\n');

fclose(fid);

end

B.12 The plot_interp.m Octave Function 93

B.12 The plot_interp.m Octave Function

function [A gx gz S2] = plot_interp(fname1, fname2, LPC_ORDER,

STEPS, plt)

%

% Interpolate between LPC frames taken from sound files FNAME1

% and FNAME2. The interpolation direction is FROM FNAME1 TO

% FNAME2. LPC_ORDER is the linear prediction order used, STEPS is

% the number of steps (desired frames).

%

% If PLT == 1 , the log-magnitude FFT versus frame number

% will be plotted to a 3D figure using surf().

%

% If PLT == 2 , the z-plane plot of interpolated LPC coefficients

% is produced.

%

% Author: Ben Jordan

%

 if (nargin < 4)

 help plot_interp

 return;

 end

 [A IP IQ ax az gx gz FS] = lpclsplpc(fname1, fname2, LPC_ORDER,

STEPS);

 fpts = 256;

 N = length(A(:,1));

 OS= 20*log10(2/fpts);

 G = 20*log10(gx);

 S=zeros(N,fpts);

 for I=1:N

 FT=fft(A(I,:),fpts);

 S(I,:)= -20*log10(abs(FT))+OS+G;

 end

 S2=S(:,1:fpts/2);

 w = (0:2:fpts-1)/fpts*2*FS/10000;

 n = 1:N;

B.12 The plot_interp.m Octave Function 94

 % If user flags plt then plot this transition:

 if (nargin > 4)

 if (plt == 1)

 figure();

 surf(w, n, S2);

 title(

strcat('LPC Interpolation from "',fname1,

'" to "', fname2,'"')

);

 xlabel("Frequency (KHz)");

ylabel("Frame(n)");

zlabel("H(f,n) (dB)");

 % Set azimuth and elevation

 view(-37.5, 30); refresh();

 else

 if (plt == 2)

 figure();

 draw_unit_circle;

 for I=1:N

 R = roots(A(I,:));

 plot(real(R), imag(R), "*", "markersize", 1);

 end

title(

strcat('LPC Poles Interpolated from "',fname1,

 '" to "', fname2,'"')

);

 xlabel("Real"); ylabel("Imaginary"); grid on;

 end

 end

end

B.13 The lpclsplpc.m Octave Function 95

B.13 The lpclsplpc.m Octave Function

function [A IP IQ ax az gx gz FS] = lpclsplpc(fname1, fname2, order,

interp);

%

% Take two sound files, calculate the LPC from a frame in

% each file, then convert these to LSPs. Interpolate the

% LSPs using lsp_interp.m, then expand the interpolated roots

% back into predictor filter coefficients.

%

% Arguments: FNAME1, FNAME2 - two input .WAV files of speech

% ORDER - LPC Order used

% interp - number of intermediate frames needed.

%

% Returns: A - a size(interp+2, order) matrix containing the

% interpolated coefficient vectors.

% IP, IQ - interpolated LSP vectors.

% ax, az - original .WAV file LPC coefficient frames

% gx, gz - corresponding LPC predictor gains.

%

% Author: Ben Jordan

%

 % bring in the audio data

 [X FS] = wavread(fname1);

 [Z] = wavread(fname2);

 N = 1024;

 win = hamming(N)';

 x = X(2048:2048+N-1)'.*win;

 z = Z(2048:2048+N-1)'.*win;

 % generate LPC vector and gain

 [ax gx] = calc_lpc(x, order);

 [az gz] = calc_lpc(z, order);

 % compute LSPs

 [Phx Qhx Px Qx] = lsplpc(ax);

 [Phz Qhz Pz Qz] = lsplpc(az);

 % Interpolate <interp> inbetween LSPs:

 [IP IQ] = lsp_interp(Px, Qx, Pz, Qz, interp);

B.13 The lpclsplpc.m Octave Function 96

 % compute back to LPC vector:

 A = zeros(interp+2, length(ax));

 for I = 1:interp+2

 A(I,:) = lpclsp(expnd(IP(:,I)), expnd(IQ(:,I)));

 end

end

B.14 The draw_unit_circle.m Octave Function 97

B.14 The draw_unit_circle.m Octave Function

% Draw a unit circle for clarity

%

% Adapted by: Ben Jordan

%

% From Reference: Leis J, "Digital Signal Processing: A MATLAB

% based tutorial approach", 2002, p108, Research Studies Press,

% Baldock.

%

function draw_unit_circle()

 theta = 0:pi/100:2*pi;

 c = 1*exp(j*theta);

 plot(real(c), imag(c));

 hold on;

end

Appendix C

Altium Designer FPGA Project Schematic

and OpenBus Diagrams

C.1 FPGA Top-level Schematic Diagram 99

C.1 FPGA Top-level Schematic Diagram

Figure 25 Top Level FPGA Project Schematic

C.2 FPGA OpenBus System Block Diagram 100

C.2 FPGA OpenBus System Block Diagram

Figure 26 FPGA OpenBus Block Diagram

C.3 Altium Designer FPGA Project Hierarchy 101

C.3 Altium Designer FPGA Project Hierarchy

Figure 27 Altium Designer Project Hierarchy

Appendix D

Altium Designer Embedded Project C

Code Listings

D.1 The main.c File 103

D.1 The main.c File

/*

 * Copyright (C)2009 Benjamin W. D. Jordan

 *

 * All source code in this document is copyrighted material

 * though the algorithms used may not be. Work copied with

 * permission (where necessary) or adapted will be cited.

 *

 * Copying this code and using it verbatim is not permitted

 * without prior written consent from the author (consent may

 * be electronic).

 *

 * NB3000 LPC Voice Synthesizer Main Program

 */

#include <timing.h>

#include <timers.h>

#include <stdint.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <touchscreen.h>

#include <pointer.h>

#include <graphics.h>

#include <canvas.h>

#include <drv_cs4270.h>

#include <drv_i2s.h>

#include <drv_ioport.h>

#include "devices.h"

#include "generic_devices.h"

#define AUDIO_BUF_LEN 160*2

// Sample rate and frequency used:

#define FS 22050

#define TS 1/FS

#define ORDER 20

D.1 The main.c File 104

// PITCH period macros

#define PITCH(h) (int)((1/h)*TS)

#define PITCHMIN PITCH(50)

#define PITCHMAX PITCH(2000)

#define PITCHBLEN 1700

// 0.999999... in int16_t Q3.13

typedef int16_t samp_t;

#define PRES 13

#define ONE (1<<(PRES-1))

#define Q (1<<PRES)

// Coefficient scaling - puts data into Q3.29 from float

#ifndef COEFF_SCALE

#define COEFF_SCALE Q

#endif

#include

"..\..\audio\voicedsounds\22K05\lpc_lsp_interpolated_coeffs.h"

#include "buttons.h"

/*

 * Function Prototypes:

 */

// Initialization Functions

void init(void);

void make_background(canvas_t * canvas);

// Timer Interrupt Call-back

void handletimer(void * params);

// Touch Screen Calibrate Call-back

static void touch_callback(int x, int y, int width, int height, void

* vp);

// Filter and Fixed Point Prototypes

samp_t allpole_kernel(samp_t x_n, const samp_t * coeffs);

samp_t allpole_fl2fix(float);

float allpole_fix2fl(samp_t);

/*

 * Software Platform Driver Handles:

D.1 The main.c File 105

 */

ioport_t * ioprt;

nb_buttons_t userbtns;

graphics_t * display;

canvas_t * canvas;

pointer_t * pointer;

touchscreen_t * touch;

pointer_state_t * pstate;

i2s_t * austream;

cs4270_t * aucodec;

/*

 * Bitmap of interpolated LPC Spectrogram:

 */

extern __no_sdata graphics_bitmap_t _lc_ub_spectrogram_bmp;

extern __no_sdata graphics_bitmap_t _lc_ue_spectrogram_bmp;

graphics_bitmap_t * bmp = & _lc_ub_spectrogram_bmp;

/*

 * Global Variables:

 */

//Pulse source and filter frame counters:

uint16_t count = 0;

uint16_t pulse = 0;

// Output frame buffer:

volatile samp_t outbuf[AUDIO_BUF_LEN];

// Pulse Source frame for Synthesis:

const samp_t pulse_buf[PITCHBLEN] =

{

 0, ONE / 64, ONE / 32, ONE / 16, ONE / 8, ONE / 4, ONE / 2, ONE,

 ONE / 2, ONE / 4, ONE / 8, ONE / 16, ONE / 32, ONE / 64, 0

};

// Noise Source buffer for Synthesis:

volatile samp_t noise[AUDIO_BUF_LEN / 2];

// Pointer to current synthesis filter coefficient set:

static samp_t * current_coeffs = & coeffs[0][0];

// Touchscreen calibration callback strings:

char * cal = "Touch screen at pointer";

char * caldone = "Calibration done.";

D.1 The main.c File 106

/*

 * Where it all begins!

 */

void main(void)

{

 char test_str[80];

 int pulseindex = 0;

 samp_t audiobuf[AUDIO_BUF_LEN] = {0};

 samp_t x_0 = 0;

 init();

 sprintf(test_str, "%d ", AUDIO_BUF_LEN);

 graphics_draw_string(canvas, 22, 22, test_str, NULL, BLUE, 0);

 graphics_set_visible_canvas(display, canvas);

 // Start getting and putting audio:

 //i2s_rx_start(austream) - not needed since we are not using

external src;

 i2s_tx_start(austream);

 while (1)

 {

 count = pulse;

 for (int i = 0; (i < count); i++)

 {

 // Set up noise, pulse and mixed noise/pulse sources

 x_0 = 0;

 if (userbtns.switches & SW1) // BT1 means noise only

 {

 x_0 = noise[count];

 }

 else

 {

 if (userbtns.switches & SW2) // BT2 mix noise and

pulse (crude)

 {

 x_0 += noise[count];

 x_0 += pulse_buf[pulseindex];

 }

D.1 The main.c File 107

 else

 {

 x_0 = pulse_buf[pulseindex]; // default - pulse

only

 }

 }

 // Execute all-pole filter

 outbuf[i++] = allpole_kernel(x_0, current_coeffs);

 // Copy sample output to other audio channel:

 outbuf[i] = outbuf[i - 1];

 //increment pulse source index, reset dependant on pitch

period

 pulseindex = pulseindex >= pulse ? 0: pulseindex + 1;

 }

 while (i2s_tx_avail(austream) < count);

 i2s_write16(austream, outbuf, count);

 }

}

/*

 * Function allpole_kernel

 *

 * Implementation of the LPC synthesis filter

 *

 * Arguments: x_n - current sample input from source (usually

pulses)

 * *sample - pointer to filter history buffer - the

buffer must

 * have length = order-1 or greater

 * *current_coeffs - pointer to coefficient array

 * n - index of most recent output in sample[]

 * order - order of LPC synthesis filter

 */

static samp_t sample[ORDER] = {0};

// LPC Synthesis Filter Buffer

D.1 The main.c File 108

samp_t allpole_kernel(samp_t x_n, const samp_t * coeffs)

{

 int32_t cusum;

 samp_t output;

 // Filter Kernel *could* be inlined for speed:

 // Multiply source by prediction gain (stored in a(P+1)).

 //

 // P

 // y(n) = gain * x(n) + sum [-a(k)*y(P-k)]

 // k = 1

 //

 cusum = x_n * coeffs[0] * coeffs[ORDER + 1];

 for (int k = 1; k <= ORDER; k++)

 {

 cusum += -coeffs[k] * sample[ORDER - k];

 }

 // Truncate and scale output:

 if (cusum > 2147483647)

 {

 cusum = 2147483647;

 }

 else

 {

 if (cusum < - 2147483648)

 {

 cusum = - 2147483648;

 }

 }

 output = (samp_t)(cusum >> 17);

 // Update Sample History Buffer

 for (int k = ORDER - 1; k > 0; k--)

 {

 sample[k] = sample[k - 1];

 }

 // Put latest output in top of buffer

D.1 The main.c File 109

 sample[0] = output;

 return output;

}

/*

 * function allpole_fl2fix

 * Converts a Single Precision Floating Point to Q1.15

 */

samp_t allpole_fl2fix(float anum)

{

 if (anum >= 1)

 anum = 1 - 2 / 32768;

 if (anum <= - 1)

 anum = - 1;

 return(samp_t)(anum * 32768);

}

/*

 * function allpole_fix2fl

 * Converts a Q1.15 fixed-point to Single Precision Floating Point

 */

float allpole_fix2fl(samp_t anum)

{

 return((float) anum) / 32768;

}

/*

 * functin init

 *

 * Main initialization routine - initializes all drivers from

SWPLatform

 * and sets up TFT panel, audio IO, UI, and bitmap display.

 */

void init(void)

{

 char mesg[50];

 // Little test for truncation of fixed point numbers:

 float flt = 1;

 samp_t fix = allpole_fl2fix(flt);

D.1 The main.c File 110

 // Initialize SwPlatform Drivers

 display = graphics_open(GRAPHICS_1);

 canvas = graphics_get_visible_canvas(display);

 touch = touchscreen_open(TOUCHSCREEN_1);

 pointer = pointer_open(POINTER_1);

 ioprt = ioport_open(IOPORT);

 // The all importan I2S and SPI drivers for the audio codec:

 austream = i2s_open(DRV_I2S_1);

 aucodec = cs4270_open(DRV_CS4270_1);

 // Set up noise and pulse sources

 for (int i = 0; i < AUDIO_BUF_LEN / 2; i++)

 {

 noise[i] = (samp_t)(rand() << 4) / 64;

 }

 touchscreen_set_callback(touch, touch_callback, canvas);

 while (!touchscreen_calibrate(touch, 320, 240));

 make_background(canvas);

 sprintf(mesg, "NB3000 LPC Voice Synthesizer");

 graphics_draw_string(canvas, 60, 10, mesg, NULL, RED, 0);

 sprintf(mesg, " UW O UE RR AH A E II ");

 graphics_draw_string(canvas, 1, 229, mesg, NULL, WHITE, 0);

 graphics_set_visible_canvas(display, canvas);

 timer_register_handler(NULL, 40000L, handletimer);

}

/*

 * function touch_callback

 *

 * Call back routine for touchscreen calibration driver function

 * It is called during iterative passes of calibration and used

 * to provide instruction to the user.

 */

D.1 The main.c File 111

static void touch_callback(int x, int y, int width, int height, void

* vp)

{

 if (width && height)

 {

 canvas_t * canvas = (canvas_t *) vp;

 graphics_fill_canvas(canvas, BLACK);

 graphics_draw_circle(canvas, x, y, 10, MAGENTA);

 graphics_draw_line(canvas, x - 15, y, x + 15, y, CYAN);

 graphics_draw_line(canvas, x, y - 15, x, y + 15, CYAN);

 graphics_draw_string(canvas, 50, 40, cal, NULL, RED, 0);

 }

 else

 {

 graphics_draw_string(canvas, 50, 50, caldone, NULL, YELLOW,

0);

 }

 graphics_set_visible_canvas(display, canvas);

}

/*

 * function make_background

 * Sets up background image on TFT

 */

// We will use the LPC coefficient spectrogram to colour the screen

background

void make_background(canvas_t * canvas)

{

 graphics_draw_bitmap(canvas, bmp, 0, 0, 320, 240, 0);

}

/*

 * function handletimer

 *

 * Timer interrupts used to provide user foreground interaction with

TFT

 *

 * User can touch the screen and/or puch buttons.

 *

D.1 The main.c File 112

 * Pitch of pulse source is determined from Y-axis, and pointer to

current set

 * of LPC coefficients is updated based on X-axis of touch screen

pressure.

 *

 * No pressue == no sound.

 */

// Timer interrupt handles user interface:

void handletimer(void * params)

{

 static uint16_t p_l = 0;

 static uint16_t p_ll = 0;

 static int mintime = 5;

 int y;

 char * vs;

 // get pushbuttons

 userbtns.switches = ioport_get_value(ioprt, 0);

 ioport_set_value(ioprt, 0, (uint8_t) userbtns.switches);

 // Check TFT touchscreen for pen activity

 if (pointer_update(pointer, pstate))

 {

 if (pstate->x > 280)

 {

 vs = "iii";

 }

 else

 {

 if (pstate->x > 240)

 {

 vs = "e";

 }

 else

 {

 if (pstate->x > 200)

 {

 vs = "a";

 }

 else

D.1 The main.c File 113

 {

 if (pstate->x > 160)

 {

 vs = "ah";

 }

 else

 {

 if (pstate->x > 120)

 {

 vs = "r";

 }

 else

 {

 if (pstate->x > 80)

 {

 vs = "ue";

 }

 else

 {

 if (pstate->x > 40)

 {

 vs = "o";

 }

 else

 {

 vs = "uw";

 }

 }

 }

 }

 }

 }

 }

 current_coeffs = & coeffs[pstate->x][0];

 pulse = p_l / 2 + p_ll / 2;

 p_ll = p_l;

 y = pstate->y;

 p_l = (y/PITCHMAX)+PITHCMIN;

// Set the pitch based on Y location

D.1 The main.c File 114

 mintime = 5;

 graphics_fill_rect(canvas, 140, 100, 40, 40, BLACK);

 graphics_draw_string(canvas, 150, 110, vs, NULL, WHITE, 0);

 graphics_set_visible_canvas(display, canvas);

 }

 else

 {

 if (--mintime == 0)

 pulse = 0;

 }

}

D.2 The buttons.h Header File 115

D.2 The buttons.h Header File

/*

 * Author: Benjamin Jordan

 * bit field struct for holding pushbutton values.

 */

#ifndef __BUTTONS_H

#define __BUTTONS_H

typedef struct user_btns

{

 uint8_t switches :5;

 uint8_t :3;

} nb_buttons_t;

#define SW1 0x01

#define SW2 0x02

#define SW3 0x04

#define SW4 0x08

#define SW5 0x10

#endif

D.3 The lpc_coeffs.h Header File 116

D.3 The lpc_coeffs.h Header File

This header file sample was generated from an earlier script that did not perform

interpolation of LPC vectors. This header file was used to test the all-pole filter

kernel in the NB3000 FPGA design.

/*

 * LPC Coefficients for sample a

 * Date/Time created: 2009-10-10 15:56:46

 * LPC Order: 20

 * Sampling rate (Fs): 22050

 * Minimum LPC coefficient: -1.42714

 * Maximum LPC coefficient: 1.09322

 * NOTE: LAST element of array is prediction gain, FIRST is first

coefficient.

 */

#ifndef COEFF_LEN

#define COEFF_LEN 21

#endif

#ifndef Q

#error Q must be defined! It is the floating-point to fixed point

scaling factor.

#endif

const samp_t coeff_a[COEFF_LEN+1] =

{

 (samp_t)(1.00000000000000000000 * Q),

 (samp_t)(-1.42714376385603336495 * Q),

 (samp_t)(0.59700166372542673443 * Q),

 (samp_t)(-0.53103815249363162110 * Q),

 (samp_t)(1.09321662332023183950 * Q),

 (samp_t)(-0.82875254751330640346 * Q),

 (samp_t)(0.22686828175005249730 * Q),

 (samp_t)(-0.64716245541051964363 * Q),

 (samp_t)(1.08916034142518536321 * Q),

 (samp_t)(-0.58000054188920013853 * Q),

 (samp_t)(0.12958309588605002038 * Q),

D.3 The lpc_coeffs.h Header File 117

 (samp_t)(-0.45851913840098296182 * Q),

 (samp_t)(0.53153710818438681951 * Q),

 (samp_t)(-0.06503120586575833473 * Q),

 (samp_t)(0.17394366018636872595 * Q),

 (samp_t)(-0.48091195912796863565 * Q),

 (samp_t)(0.22410698122344246963 * Q),

 (samp_t)(0.17649710289145784103 * Q),

 (samp_t)(0.03990763735604364176 * Q),

 (samp_t)(-0.07040305987016133582 * Q),

 (samp_t)(-0.12177756292082211886 * Q),

 (samp_t)(0.63606232558458797310 * Q) /* <--- Prediction

Gain */

};

D.4 The lpc_lsp_interpolated_coeffs.h Header File 118

D.4 The lpc_lsp_interpolated_coeffs.h Header File

This is the file which is auto-generated by the Octave function gen_all_lsp.m.

An identically formatted header file is generated from gen_all_lpc.m except that

the coefficients are not interpolated using the LSP method, and therefore markedly

different.

/*

 * LSP Interpolated LPC Coefficients for vowels

 * Date/Time created: 2009-10-25 17:37:10

 * LPC Order: 20

 * Sampling rate (Fs): 22.05 KHz

 * Minimum LPC coefficient: -2.1922

 * Maximum LPC coefficient: 1.79107

 * NOTE: LAST element of each array is prediction gain, FIRST is 1

coefficient.

 */

#ifndef COEFF_LEN

#define COEFF_LEN 22

#endif

#ifndef Q

#error Q must be defined! It is the floating-point to fixed point

scaling factor.

#endif

const samp_t coeffs[320][COEFF_LEN] =

{

 {

 (samp_t)(1.00000000000000000000 * Q),

 (samp_t)(-1.79698140824335061971 * Q),

 (samp_t)(0.88292388815247579981 * Q),

 (samp_t)(-0.24923128966218513480 * Q),

 (samp_t)(0.46411280796424592143 * Q),

 (samp_t)(-0.60305326959603999804 * Q),

 (samp_t)(0.42545606596659896192 * Q),

 (samp_t)(-0.51230879515425509219 * Q),

 (samp_t)(0.55911821213345724857 * Q),

D.4 The lpc_lsp_interpolated_coeffs.h Header File 119

 (samp_t)(-0.16785095595795890278 * Q),

 (samp_t)(0.37361527593141219405 * Q),

 (samp_t)(-0.65959996929074682370 * Q),

 (samp_t)(0.65201411268465325755 * Q),

 (samp_t)(-0.46573461349699701861 * Q),

 (samp_t)(0.13835783824904124284 * Q),

 (samp_t)(-0.05474765866315128848 * Q),

 (samp_t)(0.08140394595628824836 * Q),

 (samp_t)(-0.08749443112262278444 * Q),

 (samp_t)(0.00670160817482776117 * Q),

 (samp_t)(-0.07936529079207221837 * Q),

 (samp_t)(0.11610059068015576855 * Q),

 (samp_t)(0.18333513134382359300 * Q) /* <---

Prediction Gain */

 },

 {

 (samp_t)(1.00000000000000000000 * Q),

 (samp_t)(-1.81777011447755798557 * Q),

 (samp_t)(0.91918780876025718563 * Q),

 (samp_t)(-0.23869234917961579256 * Q),

...

Truncated Here: File is 7703 Lines Long!

...

 (samp_t)(0.13428512777976292503 * Q),

 (samp_t)(-0.14521586669568220529 * Q),

 (samp_t)(-0.30624555284566301605 * Q),

 (samp_t)(0.08774673208746089359 * Q),

 (samp_t)(0.18094884844709002714 * Q),

 (samp_t)(-0.06253544600931593145 * Q),

 (samp_t)(0.05478937079840458246 * Q) /* <---

Prediction Gain */

 }

};

/* ------------------ end of coefficients ------------------ */

D.5 The devices.h Auto-Generated Header File 120

D.5 The devices.h Auto-Generated Header File

// Embedded Framework Generated File:

// Date:26/10/2009

// Time:10:31:57 AM

//

#ifndef _DEVICES_H

#define _DEVICES_H

 // instance devices ids macro definitions

#define DRV_AD7843_1 0

#define DRV_CS4270_1 0

#define DRV_I2S_1 0

#define DRV_IOPORT_1 0

#define DRV_SPI_2 0

#define DRV_SPI_1 1

#define DRV_VGA_ILI9320_1 0

#define WB_I2S_1 0

#define IOPORT 0

#define SPI_TOUCH 0

#define SPI_AUDIO 1

#define TOUCH 0

#define TFT 0

#define AD_VGA_ILI9320_1 0

#define GRAPHICS_1 0

#define AD_TOUCHSCREEN_TO_POINTER_1 0

#define POINTER_1 0

#define TOUCHSCREEN_1 0

#endif

Appendix E

Nanoboard 3000 Data Sheet

E.1 NB 3000 Data Sheet 122

E.1 NB 3000 Data Sheet

