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Abstract 

Numerous voice compression methods are available today for communications over 

low bandwidth channels. Worthy of note in particular are Linear Predictive Coding 

(LPC), Mixed Excitation LPC (MELP), and Code Excited LPC (CELP). The channel 

in these coding schemes is typically a digital transmission line or radio link, such as 

in cellular telephone communications, but may be other media such as files on a 

computer hard disk.  

Linear Predictive Coding is explored in some detail as a basis for creating a new 

speech synthesizer that does not convert text to speech (TTS), but rather uses a 

touch-screen Thin Film Transistor (TFT) panel as user input to create and control 

voice-like audio sound synthesis. 

Research has been carried out to conceptually try different methods for mapping TFT 

touch panel input (or any 2-dimensional input) to LPC synthesis coefficient vectors 

for artificial speech reproduction. 

To achieve this, various LPC coefficient quantization algorithms have been explored 

and evaluated using Octave v.3 scripts, resulting in selection and comparison in the 

final hardware and software implementation.   

The hardware and software development platform used for the final implementation 

is the Altium Nanoboard 3000 Xilinx Edition, along with the Altium Designer EDA 

package. The Nanoboard 3000 was chosen as it provided a convenient FPGA 

platform and all the necessary IP, IP Synthesis, and C compilers needed to prototype 

the design and perform further research.   
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Chapter 1.  

 

Introduction 

 

Various speech generation systems are currently available as assistive technology. 

The majority are simply text-to-speech devices or software, such as the JAWS™, or 

simple direct speech graphical tablet style devices, such as the Static Display Speech 

Generators available from LifeTec Queensland. 

A few problems with the current products and the approach they employ are: 

 They are limited to specific language sounds (i.e. for English, French or 

German etc.). 

 Static Display Speech Generators are limited to a pre-defined set of basic 

phrases. 

 They do not allow for individual vocal creativity, emotions, or accents. 

 They cater broadly to visually impaired, and mobility limited users, but are 

not particularly useful for people with a temporary speech loss. 

1.1. Objectives 

The objectives of this research project are to: 
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 Create an assistive device that offers an alternative means of translating the 

user’s motor movement to audible speech. 

 Develop an input method that allows more generic and abstract sound 

generation. 

 Research the feasibility of touch-screens as the input in terms of ease of use, 

and flexibility. 

 Assess the device’s adaptability for multiple languages. 

1.2. Speech Synthesis Concepts 

The advancement of speech synthesis technology has been largely driven by the need 

to store or transmit voice data on noisy or low-bandwidth media. Applications have 

ranged from long range telecommunications to children’s toys and text-to-speech 

devices. On the input to any good speech compression system is the analysis of the 

desired speech. A multitude of methods have been developed and more continue to 

be developed based on demand for higher quality sound intelligibility and 

reproduction, as well as improved human – machine user interfaces. The following 

are perhaps the most pervasively used methods and will be explored in some detail 

within this dissertation. 

 

1.3. Linear Predictive Coding 

Linear Predictive Coding (LPC) and Mixed-Excitation LP Coding (MELP) are well-

known methods of analysing, coding and then decoding of speech signals for highly 

compressed telecommunications. The decoding used in these methods need not be 

fed by a bit stream of encoded speech, but could be fed by commands directly input 

from a user interface. This is the proposed method to be used by this project.  
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An LCD touch-panel and associated drivers will be used with an FPGA-based 

microprocessor SoC (System on Chip). This system will contain user interface 

software as well as the audio synthesis and filtering required for creating the desired 

sounds. User commands interpreted from the touch screen will control pulse and 

noise sources in software, which will be fed in turn through time-varying digital 

filters. This will be output on the system’s built-in speakers. 

 

1.4. FPGA System on Chip Implementation 

The idea for a touch-screen controlled synthesizer initially came about when an 

FPGA development platform, the Altium Nanoboard-2, was being reviewed. This 

thought lead naturally into the concept of the assistive device for this project. Since 

the project commencement, Altium Limited has developed a new FPGA 

development platform called the Nanoboard 3000. Since then, the author has had 

considerable design experience through tutorial, video and reference design 

production to support its release to the electronics design industry. The Nanoboard 

3000 has all the necessary peripherals for the touch screen synthesizer and therefore 

is a natural and sensible choice for prototyping the final design. 

 

1.5. Dissertation Structure 

This dissertation is structured in the following manner: 

Chapter 2 discusses the background information researched in the project, covering 

some historical aspects of speech synthesis as well as the underlying prior art behind 

the speech encoding and decoding mechanisms explored. 
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Chapter 3 discusses the analysis of speech by practical means. The problem of 

modelling transient speech is introduced. 

Chapter 4 covers voice coding mechanisms in more detail. Specifically, it delves 

deeper into the topic of Linear Predictive Coding. This is then extended to discussion 

of how the LPC synthesis filter and source signals can be used as part of an assistive 

device such as the one developed. 

Chapter 5 explores concepts researched for mapping voiced sounds to a touch-

screen (or any 2-dimensional) device, and the problems faced relating to time-

varying the speech filter. 

Chapter 6 illuminates the practical implementation of the speech synthesizer.  

Infinite Impulse Response filter theory is discussed in light of the project regarding 

embedded systems, fixed point arithmetic, and hardware acceleration. 

Chapter 7 introduces the Altium Nanoboard-3000 Xilinx Edition FPGA 

development board, used in the final design. The Altium Designer software used to 

develop the FPGA hardware and embedded firmware for the design is also discussed, 

along with the actual design itself. 

Chapter 8 documents the brief research undertaken into how useable the designed 

speech synthesizer is, and considers the ability of the system to reproduce languages 

other than English.  

Chapter 9 concludes the project with a brief summary of what was discovered, what 

methods were chosen and the final result of the design, including some suggested 

improvements and further research that could be undertaken. 



 

 
 

Chapter 2.  

 

Literature Review 

 

2.1. Introduction 

According to Cole et. al. (1996) there are essentially three classes of speech 

synthesizer: Articulatory, Formant-based, and Concatenative. However, work has 

been done since then to develop Hidden Markov Model (HMM) based synthesis by 

Tokuda et. al. (2000) as well – an adaptation of the concatenative approach. 

 

Articulatory synthesis seeks to mechanically or electronically model the specific 

movements of the speech organs. While this could potentially provide the most 

accurate sounding speech, the complexity of the system is somewhat prohibitive for 

design and use alike.  

 

Formant based modelling attempts to simulate the resonances of the vocal tract and 

nasal cavities, accepting white noise or pulsed signals as an input to the filtering 

system.  
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The third class, concatenative synthesizers, requires a vast library of recorded speech 

segments (phonemes) which are essentially strung together to form words and 

sentences.  

 

Much work has been done in the past to create mechanisms for synthesizing speech, 

yet the majority of effort appears to have been placed on finding appropriate ways to 

encode speech for compact storage or transmission over narrow bandwidth channels, 

or for text-to-speech (TTS) systems for the visually impaired (Breen, 1992) . In terms 

of assistive devices, it is apparent that little effort has been directed towards those 

that purely generate speech from the user’s motion or command input. One very 

early contraption of note however, was the VODER (‘Voice Operating 

DEmonstratoR’) created by Homer Dudley in 1939 (Breen, 1992). The VODER used 

a noise source, pulse relaxation oscillator and 10 band-pass filters (Synthopia, 2009). 

While this was an entirely analogue design, it formed the general structure of 

synthesis used today in many speech coders such as the well-known LPC10 (Linear 

Predictive Coder, 10 Band). 

 

Arguably, the most elegant approach of the three presented above is the formant-

based synthesizer. This is due to the fact that it provides enough flexibility to 

produce many language sounds within reasonable limits of computing power 

available today. 

 

Formant synthesizers typically use a pulse generator and a noise generator, and 

control the pitch and amplitude of these sources, passing the resulting waveform 

through a digital filter with time-varying response. The pulse source models the 

human vocal chords/folds whereas the noise source is used to model sounds of 

sibilants, clicks and pops which would be generated in speech by the constrictions of 

airflow by the tongue and glottis. The digital filter models the resonances (formants) 

of the vocal tract, nasal cavity and mouth of the speaker - the position in the 
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frequency domain of these formants have a profound effect, enabling creation of 

vowels in various languages. See the block diagram in Figure 1. 

 

2.2. Linear Predictive Coding (LPC) 

 

 

 

In the Linear Predictive Coding speech coder, speech is sampled in wavelets and 

analysed for vocal tract resonance (short-term autocorrelation is used for this) and 

pitch (long-term autocorrelation or FFT is used for this). This information is 

packetized and transmitted over the channel to the synthesizer at the receiving end, 

as in Figure 1. Leis (unpub) has highlighted the fact that the binary choice between 

the pulse and noise sources as inputs limits the capability of this synthesis method 

and the languages it can support. For example, the sound /zh/ as in the French bon 

jour is not truly realizable in LPC coding, because you would need both the noise 

and pulse sources mixed together. 

 

Pulse 

Noise 

Vocal Tract 

modeling (formant) 

Gain CoefficientSource Pitch 

Figure 1 Block Diagram of a Formant-based speech synthesizer 
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2.3. Mixed-Excitation LPC (MELP)  

 

 

The MELP vocoder, an extension of the LPC vocoder, uses both noise and pulse 

sources at the same time, mixing them according to the parameters from the analysis 

(transmission). This makes for a more flexible approach that is better for synthesis of 

multiple languages, and provides more natural sounds during transitions in speech 

(ASPi, 1996). While MELP is far more computationally complex on the encoder end, 

it is not very much more complicated that LPC on the decoder end.  

 

2.4. Considerations of Language and Accent 

The desire is to produce a synthesizer that could be extended to be able to facilitate 

any human language. This would possibly imply the use of various code books as in 

CELP (Code Excited Linear Prediction). Codes for source signal generation would 

be assembled into books that are each suitable for a specific language, say, and could 

be interchanged to adapt the synthesizer to different languages. The code book may 

Pulse 

Noise 

Vocal Tract 

modeling (formant) 

Gain 

Coefficient

Source 

Pitch 

Σ 
Gain 

Figure 2 MELP uses formant modeling with mixed sources. 
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also provide a mapping from a 2-dimensional control surface such as the LCD touch 

screen to the generated sounds – time permitting this concept will be explored. 

 

Vaseghi, Yan & Ghorshi (2009) have recently devised methods for analysing speech 

accents (in particular, British, American and Australian English), and morphing 

encoded speech from one accent to another using a Linear Prediction Formant 

Transformation. In this system, accent databases are used to train HMMs of speech 

formants for each accent. The HMMs are then used to determine the matching 

formant set in the target accent, and pitch intonation is also varied. The interesting 

thing about this work is that in analysing the different accents they developed a 

formant space showing another 2-dimensional view of speech parameters, shown in 

Figure 3. This work also highlighted the importance of pitch over time for emphasis 

and intonation – indicating that pitch control is essential for a good speech synthesis 

engine. 

 

Figure 3 Formant Spaces of Australian, British and American Accents. (IEEE Signal Processing 

Magazine, Vol. 26 No. 3 p72, May 2009) 
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2.5. Parameter Quantisation and Interpolation 

Speech Parameters (LPC Coefficients, Gain, Error Residual and Pitch Period) can be 

represented in a number of ways, and various methods seek to quantise them to 

provide good compression without losing intelligibility.  

 

Kabal and Ramachandran (1986) have presented a way of representing LPC 

coefficient vectors as Line Spectrum Frequencies the cosine angle of Line Spectrum 

Pairs (LSFs and LSPs). These can be quantised in terms of their angles and Paliwal 

(1993) has highlighted their power in this regard. 

 

LSPs and LSFs can be utilized also for interpolating between frames of speech where 

a set of coefficients may have been lost due to data corruption.  

 

Other methods of interpolating the filter parameters include interpolation of the 

coefficients directly using Lagrange method as discussed by Hui (1989), morphing 

and audio flow as discussed by Ezzart, et. al. (2005), and pole shifting (Goncharoff 

& Kaine-Krolak, 1995). 



 

 
 

Chapter 3.  

 

Speech Analysis and Modelling 

3.1. Human Speech Organs 

Humans have a unique ability to articulate communication using multiple sound 

sources and a set of resonant chambers – the throat, tongue, nasal cavity, teeth, lips 

and glottis all form a part of this complex system, illustrated in Figure 4.  
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Figure 4 Human Speech Organs (Fu Jen Catholic University Graduate Institute of Linguistics 2007, 

The biological basis of speech production (2): The Vocal Tract and Related Speech Organs, viewed 

22 October 2009, <http://www.ling.fju.edu.tw/phonetic/mouth.gif>). 

 

The main sound source within the system is the vocal cords, which operate much like 

a reed. The muscles surrounding the vocal cords pull them together tightly as the 

lungs blow air through them, causing a vibration. The sound and air pressure 

generated moves through the pharynx, mouth and nasal passage past the lips and 

nostrils respectively. The internal shapes of these cavities form resonant chambers 

that can arbitrarily change frequency response. Vowel sounds are generated in this 

way. 

 

By nature of the way vowels are formed, the vocal cord sound source must have a 

high harmonic content for the frequency shaping of the cavities to have a profound 

effect. 



3.2 Insight Into Speech Analysis  13 

 
 

In addition, air movement through the nose, past the tongue and through teeth and 

lips is used to create fricative or plosive sounds by restricting airflow or obstructing 

and releasing it, respectively, which in turn creates noise. Fricative sounds formed by 

the lips and teeth (such as /f/) relatively white since it occurs towards the outside of 

the cavities whereas those generated at the back of the tongue (such as /k/) shape the 

noise through the mouth cavity.  

 

3.2. Insight Into Speech Analysis 

Normal humans are well known to hear sound pressure waves in the frequency range 

of 20 Hz – 20 KHz, yet our hearing is most sensitive in the midrange frequencies, 

peaking at around 4 KHz (Bauer and Torick 1966). 

 

It is no surprise then to discover that the majority of the power in a speech signal is 

in this range, with lower amplitudes in the most sensitive hearing region of the 

spectrum, and higher amplitudes at the lower end of the spectrum.  

 

A widely used tool for analysis of speech is the spectrogram (Rabiner and Schafer 

1978). A spectrogram of a recording of the vowel transition “iya” (as in cornucopia) 

is shown in Figure 5. The spectutils toolbox for Octave was used to generate a 

spectrogram from the recoding “iya.wav”. Spectutils can be downloaded from the 

University of Helsinki’s Music Research Laboratory (University of Helsinki, 2009). 

 

The Magnitude, Frequency and Time axes of the spectrogram are self-explanatory. 

What is of relevance to this project is the transient nature of the sounds of speech. 

The foreground shows the “iii” sound, with high energy around 400 Hz, and another 

lower peak of energy at around 2.5-3 KHz. These represent the two main formants in 
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English vowels. Their path in the transition to the “ah” sound is clearly visible – they 

move towards each other in the spectrum to straddle 1 KHz. There is still a lower 

frequency energy peak just below 100 Hz – this is indicative of the fundamental 

pitch of the vocal cords which is relatively constant. 

 

 

Figure 5 Spectrogram of the voiced sound “iya”. 

3.3. Synthesis of Speech 

The goal of any speech synthesizer is to be able to reproduce human-like sounds and 

as such must be able to; 

 Generate frequencies over the normal human pitch range,  

 Model the formants of the resonant cavities, and 
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 Be able to change parameters dynamically (i.e. interpolate between speech 

segments). 

 

Each spoken language has its own set of sound combinations with varying degrees of 

uniqueness. In English, the vowel and semivowel sounds are formed using the two 

main resonance cavities, and can be modelled using two resonant filters for 

generating the associated formants. Most speech vowels are better modelled by four 

formants (Rabiner and Schafer, 1978). Each formant is modelled by two poles in the 

synthesis filter as they are typically complex and for a real filter to be realized would 

be conjugate pairs. More formants would be modelled by using more pole pairs in 

the linear prediction. 

 

3.4. Speech Transitions 

Because of the transient nature of speech, the speech synthesis system must be able 

to adapt pitch, source selections, and gains and filter coefficients with each frame. 

Filters that adapt in such a way are generally referred to as Linear Shift-Variant 

(LSV) filters.  Hence, speech is sampled into short buffers and treated as stationary 

for short bursts. 

 

The LSV filters used in speech synthesis are also stationary over each frame of 

speech (i.e. the coefficients only change between frames). Rabiner and Schafer 

(1978) and other authors referenced in this dissertation suggest 20-30ms frames are 

appropriate.  
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3.4.1. Frame Interpolation 

Interpolation between frames is necessary if speech frames are encountered with 

gaps between them (i.e. a frame is lost due to corruption through the transmission 

channel). This interpolation is a big challenge, especially if it needs to be done in 

real-time. 

 

Hui (1989) suggests LSV filters can use the Lagrange linear interpolation of filter 

coefficients, though this method can result in unstable filter kernels.  

 

Goncharoff and Kaine-Krolak (1995) have devised a pole-shifting method whereby 

filter poles of the first frame are paired with poles of the last, and poles of 

interpolated frames in between the first and last are interpolated using a frequency-

linear relationship. The pole pairing procedure is arduously complicated due to the 

ambiguity of the pole-pair relationships, and the problem that sometimes real poles 

must be interpolated with complex conjugate poles. 

 

Ezzat et. al. (2005) present a fairly new method of interpolating frames of speech or 

music they refer to as ‘audio flow’. The principle behind it is to use a 2-dimensional 

morphing algorithm that is usually used in computer graphics, but lends itself to 

morphing the spectral envelope of the audio. It is a complex and computationally 

expensive algorithm, yet it provides exceptionally natural sounding results. 

 

Pailiwal (1993) touts interpolation of Line Spectrum Pairs as the best method for two 

reasons. The first is that it guarantees stable filter kernels, and the second is that it 

has the lowest spectral distortion of all the methods tried, which were: 
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i. Reflection Coefficient Interpolation 

ii. Log Area Ratio interpolation 

iii. Arc-sine Reflection Coefficient Interpolation 

iv. Cepstral Coefficient Interpolation 

v. LSP (LSF) Interpolation 

vi. Autocorrelation Coefficient Interpolation, and 

vii. Impulse Response Interpolation. 

 

The Impulse Response Interpolation is that presented also by Hui (1989), but 

Paliwal’s results showed it to be the worst due to the instances of instability. This 

approach was experimented with at first and the result obtained was unsatisfactory, 

as will be discussed in a later chapter. 



 

 
 

Chapter 4.  

 

Voice Coding 

4.1. Introduction 

As discussed in section 2.2, Linear Predictive Coding forms the backbone of all the 

currently popular speech compression mechanisms, including low-bitrate vocoders 

such as CELP, MELP, G.729 and others. 

4.2. Linear Predictive Coding 

4.2.1. Linear Predictor 

The core of Linear Predictive Coding is, as the name suggests, a Linear Predictor (or, 

FIR filter put to prediction use): 

ሺ݊ሻݏ̃ ൌ ෍ ܽ௞ݏሺ݊ െ ݇ሻ
௉

௞ୀଵ

 ...( 4.1 ) 
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The signal ̃ݏሺ݊ሻ models a prediction based on previous samples, and therefore the 

LPC analysis attempts to find a set of predictor coefficients that minimize the error 

for each sample within the frame: 

 

ሺ݊ሻݏ െ ሺ݊ሻݏ̃ ൌ ݁ሺ݊ሻ ՜ 0 ...( 4.2 ) 

 

Substituting ...( 4.1 ) into ...( 4.2 ) gives: 

 

݁ሺ݊ሻ ൌ ሺ݊ሻݏ  െ ෍ ܽ௞ݏሺ݊ െ ݇ሻ
௉

௞ୀଵ

...( 4.3 ) 

 

This is directly realizable in hardware or software as the FIR filter structure shown in 

Figure 6.  

 

Figure 6 Linear Prediction FIR Filter 
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If the linear prediction filter was of infinite length it would allow the error residual  

݁ሺ݊ሻ ՜ 0 , but since any practical filter will have a finite number of taps (and any 

practical system could not wait forever for the result), we limit the order of 

prediction. The limited prediction order means that the error signal will not be zero, 

but instead resembles a low level noise superimposed with pulses at the fundamental 

frequency of the original speech frame. The limited predictor order also imposes a 

limit on the accuracy of the synthesis filter. 

 

4.2.2. Inverse Predictor 

It is possible to ideally reconstruct the discrete time signal if we have the predictor 

coefficients and the error signal: 

 

ሺ݊ሻݏ ൌ ݁ሺ݊ሻ ൅ ෍ ܽ௞ݏሺ݊ െ ݇ሻ
௉

௞ୀଵ

...( 4.4 ) 

 

This “inverse filter” (Rabiner & Schafer 1978) is directly realizable in hardware or 

software as an all-pole IIR filter, as shown in Figure 7. 
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Figure 7 All-Pole Inverse Prediction Filter 

4.2.3. Calculating Predictor Coefficients 

The computation of predictor coefficients for a speech frame can be done using 

various methods including, but not limited to; 

 the Covariance method, 

 the Autocorrelation method, and 

 the Lattice method  

according to Rabiner & Schafer (1978, p397).  

In all of these methods, the goal is to efficiently compute the set of coefficients that 

minimize the mean-square error over the frame: 

 

ܧ ൌ ෍ ݁ଶሺ݊ሻ ...( 4.5 ) 

 

1-
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Substituting ...( 4.4 ) into ...( 4.5 ) gives: 

௡ܧ ൌ ෍ ൭ݏሺ݊ሻ െ ෍ ܽ௞ݏሺ݊ െ ݇ሻ
௉

௞ୀଵ

൱

ଶ

௡

 …( 4.6 ) 

 

By taking the derivative of …( 4.6 ) and setting it to zero we arrive at: 

෍ ሺ݊ݏ െ ݅ሻ
௡

ൌ ෍ ܽ௞ ෍ ሺ݊ݏ െ ݅ሻݏሺ݊ െ ݇ሻ
௡

௉

௞ୀଵ

  where 1൑ ࢏ ൑  ( 4.7 )… ࡼ

 

This can be solved to find the set of ܽ௞ that minimise the error signal. This forms the 

basis of one of the widely implemented algorithms for LPC coefficient calculation, 

the Autocorrelation Method. It is computationally more efficient than other methods 

that were encountered during the course of this project. 

Equation where 1൑ ࢏ ൑  :can be expressed as the matrix multiplication ( 4.7 )… ࡼ

ܽࡾ ൌ ሺ݊ሻݎ :where ,࢘ ൌ ෍ ݏሺݏሺ݊ሻݏ ൅ ݇ሻ
ܲ

݇ൌ1

 …( 4.8 ) 

 

 ሺ݊ሻ is the autocorrelation of the input speech frame. Equation …( 4.8 ) can beݎ

solved using an efficient algorithm known as the Levinson-Durbin Recursion (Keiler 

& Zölzer (ed.) 2008, p.308). Thus, the top-level algorithm for computing the 

predictor coefficients from a frame of speech is: 

1) Input speech to BUFFER[1..N] 

2) P = Predictor Order 

3) R[1..P] = cross correlate ( BUFFER, P ) 

4) a[1..P] = Levinson-Durbin Recursion ( R, P ) 

5) e[1..N] = s[1..N] – SUM[1..P]( a[1..P]*s[1..N-1..P]) 
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An Octave (MATLAB) program that performs this algorithm has been provided by 

Keiler & Zölzer (ed.) (2008, p.308). The code listing is presented for reference in 

Appendix B.1. 

 

 

Figure 8 LPC Analysis Predictor Error and Log Magnitude Spectrum of predictor polynomial. 

 

4.3. LPC Initial Results 

Figure 8 shows the results of LPC analysis using the above method. This figure was 

generated by the script lpc_gen_figs() listed in appendix B.2. This program 



4.3 LPC Initial Results  24 

(adapted from Keiler in Zölzer (ed.) (2008, p.306) performs LPC analysis on the 

frame taken from the named .wav file, and computes the log-magnitude FFT of the 

speech sample and the LPC filter overlayed. The error residual is shown above.  

 

The lpc_gen_figs() script also generates the waveform displays in Figure 9.  

This provides a visual comparison of the original speech input waveform and that 

which is reconstructed using the error filtered through the LPC Synthesis filter 

(Figure 7). In this scenario the sample rate of the voice is 22.05 KHz and the 

prediction order chosen was 20. 

 

Figure 9 Discrete Time waveforms of input and synthesized speech frame.  
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4.4. LPC Parameter Quantization 

LPC and its variants are used for the most part in lossy communications channels, 

such as the GSM mobile telecommunications system, and in Voice Over IP (VOIP) 

network communications protocols. The underlying motivation for using vocoders 

like LPC is to parameterise speech so that the speech frames being transmitted are 

highly compressed, without perturbing the intelligibility of speech or impairing the 

listener’s ability to identify the speaker. 

 

Once the LPC coefficients are calculated they form a very compact packet that is 

much smaller than uncompressed speech. Several approaches have been developed 

for quantising the speech parameters to reduce the storage or transmission load 

further. Worthy of particular mention in this project is the use of Line Spectrum 

Frequencies as discussed by Kabal & Ramachandran (1986) and Paliwal (1993). 

 

Although the goal of this project is not to transmit compressed speech through a 

channel, the concepts behind LSFs will be engaged to solve the interpolation 

problem discussed in the following chapter. 
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4.5. Conclusion 

This shows that if you re-construct the encoded speech frame using the actual 

residual error you will achieve a close-to-ideal result. In practice the error signal is 

approximated (or quantized) into a pulse or white noise source, or in the case of the 

CELP vocoder, a code book. The code book is an array of quantized error 

approximations that are chosen to reconstruct the speech with minimal error. 

 

In this project, the LPC mechanism of using a pulse source and a noise source has 

been chosen. While this produces more robotic sounds than those of CELP, it works 

well enough and provides an expedient solution. It is recognized that some 

implementations of the LPC vocoder use other waveforms for excitation of the 

synthesis filter, such as triangle or trapezoidal waves (Vocal Technologies Inc. 2009, 

MELP (Mixed Excitation Linear Predictive), viewed 3 March 2009, < 

http://www.vocal.com/speech_coders/melp.html>). 



 

 
 

Chapter 5.  

 

Morphing Formants across the TFT Panel 

 

5.1. Introduction 

The aim of this project was at first somewhat ambiguous in that it sought to map 

voiced and unvoiced speech sounds to a 2-dimensional control surface. The 

ambiguity lies in the following facts: 

 It is difficult to narrow down the fundamental elements of speech to a handful 

of simple movements on a screen. 

 Some languages produce sounds from the back of the throat and tongue that 

LPC does not easily reproduce. 

 Though we are using a 2-dimensional control surface, speech synthesis in a 

generic way has more than two dimensions (i.e. not just pitch and tonality, 

but it also noise and gain). 
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5.2. User Interface research 

As a starting point for pragmatic research the design approach taken here is to map 

specific vowels to the TFT panels X-axis, while the pitch of the synthesizer is 

controlled by the Y-axis. The choice of using a pulsed source, noise source, or a mix 

of both is performed by a separate control – pushbuttons. An example of how this 

implementation will look is illustrated in Figure 10. 

 

Phythian, M. (pers. comm.) has suggested other possibilities involving continuously 

adjusting the screen display to show a series or circles of symbols that depict speech 

sounds or code vectors. The display of these glyphs would dynamically update 

depending on where the pointer to the screen last was. The net result would be that 

the user constructs strings of phonemes and diphthongs by moving a finger or stylus 

around the screen. This approach is similar to a text-to-speech system except would 

be more generic in nature. 

 

Figure 10 Mapping a TFT Panel to Vowels and Pitch (Altium Ltd. 2009, NB2 TFT Panel Port Plug-In 

Library Component).  
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5.3. Morphing Across The TFT 

With the decision made to map formants across the X-axis of the screen, the next 

problems that need solving are: 

1. How to generate the LPC synthesis coefficients, and; 

2. Once they are mapped to the screen, how to smoothly morph between 

them as the stylus moves. 

 

It is also worth mentioning that the choosing and ordering of the vowels at this time 

is arbitrary, but research should be undertaken to gain a better understanding of how 

to make this choice, and would likely involve using LPC sound corpus from many 

languages or accents. 

 

The first problem above is easy to solve – in this project we use recorded segments 

of the author’s speech, and generate the LPC coefficient vectors in non-real-time 

using Octave scripts. 

 

To get an idea of what to expect in terms of Z-plane pole shifts when vowel sounds 

dynamically change with respect to speech frames, the Octave script 

ow_pole_mapping_plot.m was used to generate Figure 11. In this image, the 

simple phrase /œ U/ (as in ‘ouch’) was divided into 1024-sample, 50% overlapping 

frames. The LPC vectors for each were calculated and the roots were plotted on the 

Z-plane. It is evident that even in natural speech poles can jump around quite a lot. 
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Figure 11 Z-plane Poles of a series of LPC frames from /œ/ to /U/. Blue poles mark the LPC 

coefficient poles of the start frame, red poles are from the final frame, and black in-between. 

 

5.4. Interpolation of Coefficients 

The second problem mentioned in section 5.3 is not so easy to solve. Two methods 

were tried and implemented on the Nanoboard. The first of these was the linear 

interpolation of LPC coefficients, treating the filter as a LSV filter as discussed by 

Hui (1989).  The other was interpolation via LSPs. An algorithm for this has been 

presented by Morris & Clements (2002), involving computing the Jacobians of the 

LSPs and using these minima and maxima to detect and modify specific formants of 

choice in frequency and/or bandwidth. While it is a robust and efficient method it is 
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overly complex for the needs of this project. Another method, similar but simpler and 

easier will be used.  

 

5.5. Introducing LSPs 

Line Spectrum Pairs, as the name suggests, are lines, paired along the spectrum (i.e., 

around the unit circle on the Z-plane), that describe the characteristics of the LPC 

filter.  

 

They are computed in the following manner, as shown by many including Kabal and 

Ramachandran (1986), Soong & Juang (1993), Paliwal & Atal (1993), Stein (2002) 

and more. 

5.5.1. Computing the Line Spectrum Pairs 

The LPC coefficient vector has the transfer function: 

ሻݖሺܪ ൌ 1 െ ,ሻݖሺܣ

 

where Aሺzሻ is the polynomial of length (i.e. LPC order) ݌: 

 

ሻݖሺܣ ൌ 1 ൅ ܽଵିݖଵ ൅ ڮ ൅ ܽ௣ିݖ௣ …( 5.1 ) 

 

If we take the coefficients of …( 5.1 ) and add a mirror-image of them to itself, we 

arrive at the symmetric (a.k.a. a Palindromic (Stein, 2002)) polynomial: 
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ܲሺݖሻ ൌ 1 ൅ ൫ܽ௣ ൅ ܽଵ൯ିݖଵ ൅ ൫ܽ௣ିଵ ൅ ܽଶ൯ିݖଵ ൅ ڮ ൅ ൫ܽ௣ ൅ ܽଵ൯ିݖ௣ ൅  ௣ିଵ …( 5.2 )ିݖ1

 

Similarly, an antipalindromic equation can be constructed by subtracting the 

mirrored coefficients: 

 

ܳሺݖሻ ൌ 1 ൅ ൫ܽଵ െ ܽ௣൯ିݖଵ ൅ ൫ܽଶ െ ܽ௣ିଵ൯ିݖଵ ൅ ڮ ൅ ൫ܽ௣ െ ܽଵ൯ିݖ௣ െ  ௣ିଵ …( 5.3 )ିݖ1

 

And, adding …( 5.2 ) and …( 5.3 ),  Pሺzሻ ൅  Qሺzሻ ൌ 2Aሺzሻ, so we sum the elements 

of the palindromic and antipalindromic polynomials and multiply by 0.5 to get back 

to the original LPC coefficient vector. 

 

Figure 12 Roots of the Palindromic and Anti-palindromic Polynomials: LSPs 
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 Pሺzሻ  and Qሺzሻ  are vectors of Line Spectrum Pairs, and have the interesting 

characteristic that their roots are entirely on the unit circle in the Z-plane, and the 

roots of Pሺzሻ are interleaved with those of Qሺzሻ hence the term Line Spectrum Pairs. 

These properties are illustrated in Figure 12.  

 

The other useful property these roots possess is that they are always complex-

conjugated and if you modify their position as a conjugate pair, you will modify the 

formants of the LPC vector while guaranteeing a stable filter. 

 

The Octave function lsplpc(), listed in appendix B.5 obtains the LSPs from an 

LPC input vector. This function first forms the palindromic and antipalindromic 

polynomial vectors, then uses Octave’s built-in roots() function to find their 

roots. The majority of papers found on LSPs are devoted to finding faster ways of 

computing their roots to enable their use in real-time systems. A common way is to 

evaluate the magnitude of the polynomials as excited by cosines of the frequencies 

around the unit circle and find the zero-crossing points (Kabal & Ramachandran, 

1986). There is a speed versus accuracy trade-off in such computations. 

 

Figure 13 shows the roots of Pሺzሻ  and Qሺzሻ  evaluated for the same set of LPC 

coefficient frames as discussed in section 5.3, and generated from the same script. 
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Figure 13 Roots of the Line Spectrum Pairs from /œ/ to /U/. 

5.6. Conclusion 

Although several papers mention the method of interpolation using LSPs, few detail 

anything beyond the computation of the roots of the LSPs – not surprising since the 

majority of the research has been motivated by the desire to compress speech, as 

opposed to morph it. The final approach chosen for this project, based on sage advice 

from Paliwal (1993), Soong & Juang (1993), and others, interpolation of the Line 

Spectrum Pairs has been chosen. 



 

 
 

Chapter 6.  

 

Practical Implementation 

 

6.1. Introduction 

Since the overall idea is to use LPC-style vocal tract modelling for the synthesizer, it 

makes sense to use the now well-researched LPC synthesis mechanism along with 

LPC analysis. 

 

However, since the design is for a synthesizer the LPC analysis phase need not be 

included in the actual final hardware and software. It does provide a convenient 

mechanism for providing the necessary filter coefficients (in non-real-time) for 

synthesis (in real-time). To that end a number of functions have been developed to 

produce the coefficients and gains for synthesis in the Octave environment, and in 

turn these coefficients are written to C code headers for use in the final 

implementation. This chapter discusses the ensuing design process and outcomes. 
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6.2. LPC Analysis Function 

LPC analysis was performed to generate basic vowel coefficients using the Octave 

(or, MATLAB) script function calc_lpc() (Keiler, F & Zölzer, U (ed.) 2008, 

p.308). This follows the traditional method of using the Levinson-Durbin Recursion, 

and fortunately Octave comes equipped with the necessary function making the 

generation of predictor coefficients straightforward. The calc_lpc() function 

returns a vector of coefficients including the 1 in the denominator of the synthesis 

equation, as well as the gain factor for the analysed frame of speech.  

 

Sample .wav files as discussed in Chapter 3 were recorded and clipped for the 

voiced sounds iii, eh, a, ah, o, ue, rr, and uw. The format of these samples was 

mono, 22.05 KHz sample rate and 16-bit quantization. This format provides 

bandwidth of 11.025 KHz (using the Nyquist theorem) and a theoretical dynamic 

range of greater than 90dB, which is more than adequate for speech.  

 

The initial version of the design used a set of eight coefficient vectors (from the 

voice clips mentioned above), which were written out to a C language header file – 

lpc_coeffs.h for use in the test hardware. This was efficiently facilitated 

through another Octave script which in turn calls calc_lpc() for each audio 

sample file presented, and then saves them using a generic data type and scaling 

macro for fixed point implementation in C. This function – generate_coeffs() 
– is detailed in appendix B.3. A sample of the lpc_coeffs.h file generated by it 

is listed in appendix D.3. 
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6.3. LSP Calculation 

As discussed in Chapter 5, LSPs have been chosen as an experimental method of 

interpolating LPC coefficient vectors. To perform the conversion of LPC coefficients 

to LSPs, the function lsplpc() was developed in accordance with the algorithm 

presented in section 5.5.1. While most LPC vocoders would transmit only the angles 

of the LSPs, over one half of the unit circle (as the other is always a mirror image), 

this function keeps all the roots around the circle in the arrays P and Q. The angles of 

the LSP roots are usually referred to as Line Spectrum Frequencies (LSFs) as they 

are represented as angles versus complex numbers. This also reduces frame packet 

size. For this project, the lsplpc() function keeps the LSPs in separate vectors for 

convenience (Ph and Qh) though they are not strictly necessary.  

 

6.3.1. Roots of the Line Spectrum Pairs 

The lsplpc() function also calculates the LSP roots and returns them as a vector 

with complex numbers. Because the LSP roots lie around the unit circle, they can be 

expressed as pure angles (LSFs). LSFs are calculated using: 

 

௉ሺ݇ሻߠ ൌ ଵିݏ݋ܿ ܲሺ݇ሻ …( 6.1 )

 

And conversely, converted back into complex representation with: 

 

ܲሺ݇ሻ ൌ ሺܿݏ݋ ௉ሺ݇ሻߠ ൅ ݅ ݊݅ݏ ௉ሺ݇ሻሻߠ …( 6.2 )
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One important point here is that, because LSFs are mirrored on the bottom-half Z-

plane, when converting from LSFs back to LSPs it is necessary to also subtract the 

imaginary sine term.  

 

In this project the conversion back to LSPs from LSFs is done in the interpolation 

function, described in the next sub-section. 

 

6.3.2. Interpolation Using LSFs 

Interpolation of LSFs is as simple as linear interpolation of angles. Figure 14 

illustrates this process. The two frames to be interpolated and the number of 

interpolation steps are given to calculate angle step size: 

 

ߠ∆ ൌ
หߠ௙ െ ௟หߠ

ܰ
….( 6.3 )

 

The critical step here is that LSFs have to be paired from the first frame to the second 

in the correct (same) order. In this case it is fairly trivial because the LSFs are sorted 

into an ordered list of values from lowest to highest in magnitude, using Octave’s 

sort(). The net result is that the interpolated LSFs do not tend to cross over and 

behave very well, as illustrated in Figure 15. 
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Figure 14 Line Spectrum Frequency Interpolation Using Neighbouring Angles 

 

 

Figure 15 Interpolating Line Spectrum Frequencies over N frames 

The function lsp_interp() listed in appendix B.9 performs the LSP/LSF 

interpolation using this method. Since it takes LSPs as arguments and also returns 

LSPs, it uses the arg() built-in Octave function (equivalent in this case to ...( 6.1 )) 

to get the angle from each root, performs the N interpolation steps on the LSF pairs, 
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simultaneously storing the interpolation results as LSPs (using cos and sin 

functions, as in ...( 6.2 )). 

 

6.3.3. Expanding Roots back to LPC Coefficients 

The roots are necessary for interpolation, but they make it a more complicated 

process getting back to LPC coefficients as they have to be expanded. The process 

one normally undertakes when expanding factored polynomials was examined, and 

laid out as shown in Figure 16. 

 

 

Figure 16 Root Expansion Algorithm 

The example shown is for a polynomial of the form: 

ሻݖሺܣ ൌ ሺݖ ൅ ܽሻሺݖ ൅ ܾሻሺݖ ൅ ܿሻሺݖ ൅ ݀ሻ 

It is easy to see that the process can be broken down into ∑ ݊ே
௡ୀଵ  multiply-add 

operations. This is simply done in a nested loop, and this has been implemented in 

the function expnd(), listed in appendix B.7. 
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6.4. Tying Interpolation Together 

The final step is to write a function that takes two file names of recorded speech 

segments, builds LPC vectors from each, uses the LSP interpolation as discussed and 

finally returns a set of LPC vectors from the interpolation – these to be written to a C 

header file later on for the hardware and firmware design to use. 

 

Figure 17 is a Z-plane plot that shows the result of running the function that does this 

– plot_interp(), listed in appendix B.12. 

 

 

Figure 17 LPC Poles of Interpolation of coefficients using LSPs. 
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plot_interp() is also written to optionally create a surface plot of the log-

magnitude spectrum of the LPC coefficients created by it. Just such a plot is shown 

in Figure 18. 

 

Figure 18 Log Magnitude Spectrum of LSP Interpolated LPC coefficients. 

It is very clear from both of these figures that this method of interpolation is a great 

one. It produces smooth transitions even between very different pole maps.  

 

6.5. Formant Mapping 

The initial design uses the x-axis of the TFT touch screen to control the formant 

characteristics, while the y-axis is used to control the pitch period of the pulsed 

excitation source. The simplest way to map formants to the screen is to divide the 

screen width into regular segments with each invoking a set of LPC coefficients to be 
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used for synthesis. This is facilitated by a timer interrupt service routine which 

regularly checks the status of the pointer driver, and when the user touches the screen 

the x-location is read and used to point to the appropriate set of coefficients using a C 

pointer. 

 

There are eight vocal sounds that were used initially to generate the coefficients as 

pointed out in section 6.2, with interpolation of the coefficient vectors used to fill in 

the extra spaces between in order to smooth the transitions between them.  

 

 

Figure 19 Log Magnitude Spectrum of LSP interpolations across TFT panel width. 

To build an interpolated set of LPC coefficients for every X location on the TFT 

panel, the gen_all_lsp()Octave function was created, and is listed in B.11. The 

output of this function in the Octave environment is a matrix of coefficients of size 

320 by 22. This size reflects the 320 X-resolution of the TFT on the NB3000, and the 
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20th-order LPC coding used (as opposed to the typical 10th-order), and the +1 

coefficient as well as the gain coefficient for each of the 320 frames. This matrix has 

been plotted as well, and the 3D surface plot of its log-magnitude spectrum is shown 

in Figure 19. This image makes obvious the fact that the interpolation of the poles 

was done well, but the gains are just as important. This is a potential topic for future 

work on this project. 

 

Overall, the interpolation result was surprisingly good. The graph of Figure 19 was 

also set to top view in the plot window and a screen-shot of it was taken. The 

resulting background of the NB3000 TFT panel is shown in Figure 20. This text in 

this photo is added to the screen by the software of the design. 

 

 

Figure 20 Spectrogram bitmap of interpolation results used as TFT background. 

 

 



6.6 Embedded System Considerations  45 

 
 

6.6. Embedded System Considerations 

The implementation in the target hardware used 16-bit quantization for the audio 

data path. This was chosen based on the following facts: 

 The .wav files used for coefficient generation were recorded in 16-bit 

quantization. 

 The 32-bit RISC processor used allows scaling operations to be performed 

from 32-bits down to 16 in a single cycle using its barrel shifter. Contrasting 

this, if 32-bit data were used the system would require scaling from 64-bits 

down to 32, which requires at least double the clock cycles. 

 As will be shown below, 16-bits allow fixed-point scaling that still has 

sufficient headroom for the all-pole filtering to work effectively. 

 

Since the system performs LPC synthesis in real-time, there are practical limits 

imposed by the its architecture which in turn limit the allowable bandwidth, the order 

of LPC synthesis filter used, and bandwidth of speech generated.  

 

6.7. Fixed Point Implementation 

Since the target system will be an FPGA System-on-Chip, the design uses fixed-

point arithmetic for the signal path and all filtering. This is because signed integer 

multiplies exist on board the FPGA die which can be used for hardware acceleration 

of the filter kernel if needed, and in addition the CPU core used for running the main 

line of code is a RISC CPU that does not include a floating point unit. Therefore 

implementation in floating point, however convenient from a coding standpoint, 

would be too slow for such a real-time application. 
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6.7.1. Coefficient Scaling 

The synthesis filter kernel will perform N 16-bit multiplies for each sample (N is the 

order of the LPC synthesis), which are in turn accumulated in a 32-bit result. The 

coefficients are generated from Octave in double-precision floating point and are 

written out to the coefficient header file with 20 digits after the decimal point. This is 

done using standard formatting in the well-known fprintf() function.  

 

Since there is no built-in data type in the C code of the target for fixed point the 

coefficients are scaled to a suitable integer type, defined as samp_t (a 16 bit signed 

integer), in the main.c file, shown on page 103 (appendix D.1). 

 

For all coefficient vectors produced by LPC analysis, the maximum absolute value |v| 

encountered is 2 ≤ |v| ≤ 3, therefore 2 bits at least are required to represent this. 

However, to ensure that saturation is not as likely to be encountered an extra bit is 

used. Therefore the scaling of the coefficients has been set to the Q3.13 format (3 

bits of integer including the sign, and 13 bits for fractional data). Truncation of data 

and coefficients was chosen for its ease of implementation and reduced CPU 

overhead, but as seen in 6.7.2 (next) the adverse effects of this quantisation method 

are outweighed by its computational benefits for this design. 

  

6.7.2. Truncation Effects 

With the Q3.13 fixed-point scaling used, it is necessary to take into account the 

truncation of data and coefficients. Two methods (analytical and experimental) were 

used to make sure this format is sufficient.  
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Since we are scaling the coefficients to Q3.13, the resolution is ±2-13 ≈ 122*10-6. 

This is close to 80dB below a considered peak value of ±1 (0dB) for the filtered 

signal, which is well within an acceptable range considering the typical listener is 

less sensitive to dynamic range than this.  

 

The mean square error will be higher in terms of filter coefficient accuracy, because 

the resolution of the coefficient is only ±2-13 and the error is multiplied through each 

stage of filtration, plus back through as a recursive error signal. 

 

As discussed by Schlichthärl (2000, pp.233-238) the mean-square error and variance 

introduced by single truncation step through which the audio stream passes can be 

calculated respectively by: 

 

݁ଶതതത ൌ
Δݔ௤
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൬1 െ

3
2ܰ

൅
1

2ܰଶ൰ ...( 6.1 ) 
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ܰଶ൰ ...( 6.2 ) 

 

Where N is the number of possible error values, and Δxq is the quantization step after 

quantization.  Δxq can be expressed in terms of normalized signal resolution step 

which, for the Q3.13 system design presented is 2-16 - 2-13. To quantify the equivalent 

noise introduced exactly a known set of samples is required. However, it provides 

some insight into the effects of truncation during filter arithmetic operations. For a 

set of samples of a complex signal such as speech, there is almost equal probability 

of the truncation error being any of the values in the range of truncated bits. 
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Therefore the equivalent noise power added to the signal by truncating a 32-bit result 

down to 16 bits (assuming full-scale signal values of ±1) is: 

 

௘ߪ
ଶ ൌ

Δݔ௤
ଶ

12
൬1 െ

1
ܰଶ൰ ൌ

2ିଷଶ

12
൬1 െ

1
65535ଶ൰ ൎ 19.4 ൈ 10ିଵଶ 

 

The noise from each truncation step is added to the total filter noise for each output 

sample. Therefore instead of truncating each filter multiply-add operation, for this 

design it was decided to accumulate all filter multiplications in 32-bit precision and 

truncate the result at the end of the kernel loop back to 16-bits. Having just a single 

truncation in the path keeps the signal to noise ratio fairly high for the filter. If the 

signal is considered to be ±1 full scale then the SNR for the truncation would be: 

 

ܴܵܰ ൌ 10 log
1

19.4 ൈ 10ିଵଶ ൎ  ܤ107݀

 

This is more than sufficient for the design at hand. In essence the SNR is not as good 

as this, because of the truncation of the filter coefficients. The equivalent truncation 

noise for the coefficients is greater due to the rounding to 13 bits of precision. This is 

effectively a reduction in word if 3 bits, giving a SNR of less than 80dB for each 

coefficient. The noise will add up, but considering that the input source to the filter 

and the filter are both deactivated when not in use in this design, it is not considered 

problematic. 
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6.8. C Code Development 

This section points out a few pertinent details about the C code implementation on 

the Nanoboard 3000. The main C code document (main.c) is listed in appendix 

D.1, which will be referred to throughout this session by page number. 

 

6.8.1. Code for generating Coefficients 

As mentioned in section 6.5, the Octave function gen_all_lsp() is used to 

perform the LSP interpolation, but it also then generates a coefficient header file for 

use in the NB3000 embedded project. Appendix D.4 lists the 

lpc_lsp_interpolated_coeffs.h C code header file (truncated as it is too 

large to include in this dissertation). This set of coefficients works well and is used in 

the final design. 

 

Another earlier Octave script, gen_all_lpc() is listed in appendix B.10 for 

completeness, though this one is not used in the final implementation. It generates a 

similar LPC coefficient vector array in a C code header, but the key difference is it 

interpolates the vectors using simple linear interpolation. The results of using these 

coefficients are that: 

1. Many positions across the screen create noises that suggest unstable filter 

kernel at those vector positions, and 

2. The formant changes from one position to the next are unnatural and can 

not work for generating real speech. 

 

Hence, the LSP interpolated version was chosen. 
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6.8.2. Drivers and Initialization 

The advantage of using the Nanoboard 3000 platform for development of this project 

lies in the IDE environment, which includes all the C code driver libraries for the 

peripherals used in the design. 

 

The drivers for each part of the hardware platform, along with their corresponding 

reference documentation, are accessed through a Software Platform Builder file. This 

file (NB2_Voice.SwPlatform) is shown in the Software Platform editor in 

Altium Designer software in Figure 21. 

 

 

Figure 21 The Software Platform Builder 
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In this figure, each hardware peripheral used in the design and its associated C code 

driver are represented by API stacks that provide different levels of functionality: 

 Green blocks represent wrappers that abstract memory maps of peripherals 

into macros for named access. 

 Yellow blocks represent the drivers themselves, with all the necessary 

structures and functions to initialize and access the hardware. 

 Blue blocks represent abstract APIs that add software services to the system, 

such as graphics and GUIs, touch screen pointer and so on. 

The drivers and API stacks included for use in this project are included in the C by 

way of the #includes at the top of the main.c file (see page 103). 

 

6.8.3. IIR Synthesis Filter 

The LPC all-pole synthesis filter is implemented in the function 

allpole_kernel() on page 107 in appendix D.1. This function uses a static 

global samp_t array for the history buffer, and takes as an argument a pointer to the 

beginning of a coefficient array. The coefficient array passed to it depends on the 

position of the pointer on the touch screen. 

 

The input sample to the filter x_0 is multiplied by the coefficients at the beginning 

(equivalent to 1.0) and the end (the gain coefficient for that frame) of the array. 

 

This value then passes into the cumulative summation of all the prior N samples, 

multiplied by their corresponding LPC coefficients, according to equation ...( 4.4 ) 

where ݁ሺ݊ሻ is represented by x_0. 
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The output of the filter is quantized back from a 32-bit sign-extended multiply-add 

result, to type samp_t, with an arithmetic right-shift of 17 bits and a type cast 

(shown in appendix D.1 page 108). The right-shift is sign-extended and 17 bits was 

chosen instead of 16, because it was found that it produced less distortion in the 

output signal. 

 

 

 

 

6.8.4. Pulse Source 

Human speech typically uses fundamental pitch frequencies in the range 100Hz to 

1KHz. Since this design is using a sampling frequency of 22.05 KHz, the period of 

these pitches range from: 

ݏܨ
100

՜
ݏܨ

1000
 

 

Or, approximately 220 samples to 22 samples. It was chosen to enable the pitch to 

range from about 50 Hz to 2 KHz so that the user could reach high singing notes with 

the device, though in a commercial application this makes the range too great to 

easily control on a small touch panel. 

 

The calculation of pitch period (in buffer size), is taken care of by the PITCH() 

macro listed in appendix D.1, page 104. The pulse source is implemented as a pre-
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initialized buffer with a short spike shaped pulse, and is initialized in the main.c 

file (shown on page 105). The buffer length must be longer than PITCHMIN. 

 

6.8.5. Noise Source 

The noise source is created by the initialisation routine, which initializes all the 

driver handles, sets up the TFT display, and runs a TFT calibration procedure (listed 

in appendix D.1, page 109). This routine fills the noise buffer with a random number 

sequence created by the C standard library function rand(). There are probably 

better ways of generating a white noise source, but for the time available this is the 

best at hand.  

6.8.6. User Interface 

The CPU timer interrupt callback function handletimer() (listed in appendix 

D.1 page 112), checks to see if the user is pressing the TFT screen, by calling the 

Touchscreen Pointer API function pointer_update().  

 

If there is activity, the Y axis value, which ranges from [0, 239] is scaled to the range 

[PITCHMIN, PITCHMAX] and this sets the length of buffer (either the pulse or 

noise sources) that will be looped through, thereby changing the pitch. 

 

The X axis value is read also when there is touch activity, and its value is in the 

range [0, 319]. These values correspond directly to the coefficient vector array 

indices included in the header file lpc_lsp_interpolated_coeffs.h. This 

is an array of LPC vectors dimensioned (320, 22), and the X value read from the TFT 
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sets the array vector pointer current_coeffs to &coeffs[X][0]which is 

passed in turn to the filter kernel. 

 

The timer callback routine also reads in the status of 5 pushbutton switches which are 

located under the TFT panel on the Nanoboard. If none are selected, just the pulse 

source is used for synthesis. If the first pushbutton is selected, the noise source is 

used, and if the second pushbutton is selected, both the pulse and noise sources are 

used together. 

 

 

 

6.9. Conclusion 

The theory of LPC and LSP interpolation has been practically applied to generate 

filter coefficient arrays of morphed vowel sounds. The arrays have in turn been used 

in a realisation of an LPC synthesizer in an embedded computer system, with the 

TFT panel touch screen used to control the pitch and of the source, and the vowel 

sound based on the coefficient array selected by it. 



 

 
 

Chapter 7.  

 

Introduction to the Nanoboard 3000 

 

 

Figure 22. The NB3000 running the speech synthesizer. 
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7.1. Introduction 

The Altium Nanoboard 2 was the original choice for the development platform for 

this project. Since then, a smaller and more appropriate development board has been 

released – the Nanoboard 3000 or NB3000. 

 

The NB3000 used is shown running the design in Figure 22. 

 

7.2. NB3000 and the Altium Designer Software Platform 

The NB3000 is primarily design for the design and prototyping of FPGA circuits. 

However its versatility and usefulness does not merely lye in that alone. The Altium 

Designer software that is used with it is very closely coupled to its functionality in 

the following ways: 

1. Each and every hardware peripheral available on the NB3000 has an 

associated driver in the Altium Designer software suite. These drivers make it 

a trivial task to get inputs and outputs working rapidly. 

2. The NB3000 uses a second (non-user) FPGA device for its own internal 

firmware. This firmware gives it some very useful capabilities, including: 

a. JTAG download and debugging over high speed USB. 

b. The ability to auto-load FPGA hardware and firmware on power-up. 

c. In-system firmware updateability. 

d. Electronic identification of the board (i.e. a serial number) which also 

allows FPGA hardware design constraints to be automated (in other 

words, the pin assignments do not have to be manually entered into 

the system as they would be in other environments). 
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3. Altium Designer (summer ’09 version and later) provides a graphical method 

of building software stacks (APIs) to support the design process. 

4. The library of FPGA IP cores that comes with Altium Designer software 

provide a suite of processors and peripherals that can be programmed into the 

FPGA on the board to suit just about any task. No hardware IP needs to be 

created by the user unless it forms a core part of their product. 

In this case, everything needed for this project is provided out of the box. 

 

7.3. Nanoboard Features Utilized 

The NB3000 has many peripherals. A complete list is given in the data sheet, 

provided in appendix for reference. Only the ones used in this project are discussed 

here. 

 

7.3.1. Audio Codec 

The audio codec provided on the NB3000 is a Crystal CS4270. It is a 2-channel 

CODEC (AD/DA converter) that supports I2S audio streaming protocol, and sample 

rates up to 192 KHz, and quantization up to 24-bits. In this project it is configured 

for a relatively low sample rate (22.05 KHz – ample for speech), and quantization of 

16-bits. This is done in the Software Platform Builder which configures the codec 

drivers to initialise this device over the I2C bus. 
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7.3.2. I2S Interface 

The I2S interface and associated IP Core are used to interface to the CS4270 

CODEC. 

 

7.3.3. SPI Interface 

The NB3000 platform uses SPI bus in numerous ways. Two SPI bus interfaces are 

used in this design.  

The first is for the audio CODEC which, in addition to the I2S audio stream interface, 

uses an SPI bus interface for the host which configures it. In this case the host is the 

SPI peripheral core in our embedded FPGA System-on-Chip. 

The second SPI bus connects to the TFT panel touch screen controller chip, a Texas 

Instruments TSC2046. 

 

7.3.4. TFT Interface 

The TFT Touch screen uses SPI as mentioned above. The TFT video output is a 

bidirectional 5-bit per pixel digital interface, and uses the TFT controller IP core 

within the FPGA design. This IP core provides DMA for reading the display buffer 

memory and supports double buffering. 

The buffer is set up using a canvas driver in graphics context within the Software 

Platform Builder for the project. 
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7.3.5. GPIO port, LEDs and Pushbuttons 

The NB3000 has eight RGB LEDs on board. This design makes use of those via the 

configurable IOPORT peripheral outputs. 

The inputs of this peripheral core are used to monitor the user pushbuttons. 

 

7.3.6. SRAM Interface 

Although the NB3000 sports many memory options, the memory requirements of 

this project are light, and so only the external SRAM is used. The memory 

configuration is shown in Figure 23. 

 

Figure 23 Embedded Project Memory Configuration. 
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In this case the external 1MB (configured as 2, 256K by 16-bit chips) of SRAM is 

divided into program memory and data memory. A small amount (4KB) of FPGA 

Block RAM is used within the CPU core as well. 

 

7.4. FPGA Hardware Design 

The FPGA hardware design is fairly simple, using only IP cores from the provided 

libraries. 

The physical connections to the peripheral hardware on the NB3000 are made 

through the top-level FPGA design schematic ports, shown for reference in appendix 

C.1. 

At the core of the system is the TSK3000A 32-bit RISC CPU, connected to the 

peripheral controller cores by the Wishbone interface, represented by the connecting 

arrows in the OpenBus System document. This document is provided in appendix 

C.2. 

 

7.5. Project Links and Hierarchy 

The FPGA design for the NB3000 speech synthesizer forms the embedded system 

hardware, and on top of this platform is built the embedded software design – largely 

the topic of this dissertation. 

The embedded project and FPGA project are linked together, and the hierarchy of 

documentation is shown in appendix C.3 for reference. 
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7.6. Conclusion 

The FPGA Project was synthesized, built and downloaded from the Altium Designer 

Software in the Devices View (shown in Figure 24). 

 

Figure 24 Devices View in Altium Designer Software. This is where the FPGA and Embedded 

projects are downloaded to the target device. 

After some debugging and fixing of filter kernel code, the design operates and 

provides a means of looking into the concept of speech generated by movement 

further. 



 

 
 

Chapter 8.  

 

User Interface Research 

 

8.1. Introduction 

One of the original objectives of the project (see the Project Specification in 

Appendix A) was to research how this system might be used with people whose 

native languages differ. 

Unfortunately, due to project time delays and constraints, it was not possible to 

conduct a thorough research programme in this regard. However, some anecdotes 

have been gleaned by people exposed to the project along the way. 

 

8.2. Robotic Sound 

Although the synthesizer works reasonably well for a first attempt, the first response 

that has been encountered when showing it to colleagues has been one of 

bewilderment followed by comments indicating that it sounds very much like a robot 
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from an old movie. This is probably most due to the pulse source generation and 

could be alleviated with better error residual signals as a source. 

 

8.3. User interface problems 

Problems have been noted with the user interface involved. The most notable are: 

1. The TFT screen is too small to be practical. 

2. The fact that buttons have to be pressed to choose between voiced or 

fricative sounds makes it difficult to use. 

 

 

8.4. Conclusion 

Although the idea is novel, it requires a lot more thought and research before it could 

be turned into a practical commercial product that would be useful to normal users. 

 

However, that is always the case with the first step in exploring a new idea.



 

 
 

Chapter 9.  

 

Conclusion  

 

9.1. Introduction 

Referring again to the project specification (Appendix A) the first aim of the project 

was to research and implement a Linear Predictive Coding based synthesizer that 

was to be controlled by a user touch screen panel. The second aim was to look at the 

feasibility of such a device as a possible means of assisting speech impaired people. 

 

By and large, both of these aims have been achieved, though ideally more work 

should be done on the user interface study in order to get more ideas of how it could 

be made to work. 

 

 

 



9.2 Further work and research  65 

 
 

9.2. Further work and research 

Further research should be undertaken in the following areas: 

9.2.1. Improve LSP interpolation method to include gain 

It was noted that the LPC vectors were interpolated nicely, but the gains between 

each vector interpolated set jumped markedly, and this impaired the performance of 

the design. This would be a good starting point as it most likely has a straightforward 

solution. 

9.2.2. Find better expression methods 

Using the Y-axis to control pitch was primarily motivated by the need to have 

expression. It does however limit the use of the screen. It would be better to find 

other methods of controlling the pitch in order to free up TFT space to make the 

mapping of voiced and affricate sounds easier and better. 

9.2.1. Implement the LPC and LSP operations in Real-Time 

The final and perhaps most useful extension to this project would be to implement 

the LSP interpolation and LPC analysis functions in the embedded system for real-

time functionality. This would allow the system to be completely stand-alone, and 

users could speak corpus directly into the device via a microphone in order to bottle 

their own voice tonality and style within it. 

 

 



9.2.2 Adapt the current design to Music generation  66 

 
 

9.2.2. Adapt the current design to Music generation 

This design certainly forms the basis of what potentially could be a music 

synthesizer. The LPC formant maps do not necessarily have to be models of human 

speech – given that the order of LPC filtering in the system could be quite high. 

Other sounds, such as animals, birds, or even different types of musical instrument 

could be modelled in this system.  

The pulse and noise sources could be replaced by inputs that would come from a 

vocal microphone or instruments such as electric guitars, to extend the usefulness of 

the device into the musical effects arena. 

 

9.3. Conclusion 

The project programme of researching and implementing suitable speech processing 

techniques – namely LPC and LSP – has been explored and implemented.  

 

Voice characteristics were researched and discussed in Chapter 2, along with 

processing techniques that prevail.  

 

Chapter 3 discussed the characteristics of the human speech organs and how these 

are modelled in digital systems and introduced the concept of interpolation of speech 

frames.  
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Chapter 4 covered details of Linear Predictive Coding as used in this design.  

 

Chapter 5 detailed the problem of morphing LPC frames and mapping them to the 

TFT touch screen surface, and covered the theory behind using Line Spectrum Pairs 

as a means of performing the interpolation.  

 

Chapter 6 covered the design and implementation of these methods using Octave 

scripts for the non-real-time part of the design. It went on to discuss the design of the 

embedded system firmware which runs on the Altium Nanoboard 3000.  

 

Chapter 7 Introduces the Nanoboard 3000 FPGA/Embedded design platform, and 

briefly covered the parts that have been put to use in this project.  

 

Chapter 8 briefly discusses the anecdotal research and feedback gleaned from 

colleagues, pointing to some useability issues that could be addressed in future 

projects.  

 

Chapter 9 Concludes this dissertation. 
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B.1 The calc_lpc.m  Octave Function 

 

The following code from (Keiler, F 2002, ‘Source-Filter Processing’, in Zölzer, U 

(ed.) 2008) is provided here for clarity. This function was provided to work with 

other example code in the edited book as the MATLAB lpc() function at the time 

was known to not work correctly all the time. 

 

function [a,g]=calc_lpc(x,p) 

% calculate LPC coeffs via autocorrelation method 

% Similar to MATLAB function "lpc"  

% x: input signal 

% p: prediction order 

% a: LPC coefficients 

% g: gain factor 

% (c) 2002 Florian Keiler 

R=xcorr(x,p); % autocorrelation sequence R(k) with k=-p,..,p 

R(1:p)=[];    % delete entries for k=-p,..,-1 

if norm(R)~=0 

   a=levinson(R,p); % Levinson-Durbin recursion 

% a=[1, -a_1, -a_2,..., -a_p] 

else 

    a=[1, zeros(1,p)]; 

end     

R=R(:)'; a=a(:)';   % row vectors 

g=sqrt(sum(a.*R));  % gain factor 

end     
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B.2 The lpc_gen_figs.m Octave Function 

 

function [a g e] = lpc_gen_figs(fname); 

% 

% LPC calculation of prediction error and spectra 

% adapted from code by Keiler, F (2002) 

% 

% Adapted by: Ben Jordan 

% 

% From Reference: 

% Keiler, F 2002, ‘Source-Filter Processing’, in Zölzer, U (ed.) 

2008,  

% 'DAFX Digital Audio Effects', p.306, Wiley & Sons, Chechister 

% 

n0=5000; %start index 

N=1024; %block length 

Nfft=1024; % FFT length 

p=20; %prediction order 

n1=n0+N-1; %end index 

pre=p; %filter order= no. of samples required before n0 

 

[xin,Fs]=wavread(fname,[n0-pre n1]); 

xin=xin(:,1)'; 

win=hamming(N)'; 

x=xin((1:N)+pre); % block without pre-samples 

 

[a,g]=calc_lpc(x.*win,p); % calculate LPC coeffs and gain 

% a=[1, -a_1, -a_2,..., -a_p] 

g_db=20*log10(g) % gain in dB 

 

ein=filter(a,1,xin); % pred. error 

e=ein((1:N)+pre); % without pre-samples 

Gp=10*log10(sum(x.^2)/sum(e.^2)) % prediction gain 

 

Omega=(0:Nfft-1)/Nfft*Fs/1000; % frequencies in kHz 

offset=20*log10(2/Nfft); % offset of spectrum in dB 

A=20*log10(abs(fft(a,Nfft))); 
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H_g=-A+offset+g_db; % spectral envelope 

X=20*log10(abs(fft(x.*win,Nfft))); 

X=X+offset; 

 

n=0:N-1; 

figure(1) 

clf 

subplot(211) 

plot(n,e)  

title(strcat('Time signal of pred. error e(n) for sample "', fname, 

'"')) 

xlabel('n \rightarrow') 

axis([0 N-1 -inf inf]) 

 

subplot(212) 

plot(Omega,X) 

hold on 

plot(Omega,H_g,'r','Linewidth',1.5) 

hold off 

title(strcat('Magnitude spectra |X(f)| and |G*H(f)| in dB for "', 

fname, '"')) 

xlabel('f/kHz \rightarrow') 

axis([0 8 -inf inf]) 

 

out = filter(1, a, ein); 

out = out'; 

figure(2); 

subplot(211); 

plot(x); 

title(strcat('Input signal from "', fname, '"')); 

xlabel('Sample (n)\rightarrow'); 

 

subplot(212); 

plot(out); 

title('Time signal of LPC synthesized output'); 

xlabel('Sample (n)\rightarrow'); 

g = Gp; 

end 
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B.3 The generate_coeffs.m Octave Function 

 

function [a g] = generate_coeffs(infile, outfile, lpc_order) 

% 

% This function creates a file named '<outfile>.h' - a C  

% language header file for a 16-bit fixed-point constant array 

% of Linear Predictive Coding synthesis filter coefficients 

% of order <lpc_order>. <infile> is the input sound sample file  

% Microsoft .WAV format.  

% 

% The LPC prediction coefficients are returned in [a] along with 

% the gain coefficient g. 

% 

% If <outfile> does not yet exist in the current path it will be 

% created. If it does exist, it will be appended with the new co- 

% efficients. 

% 

% The source file name, lpc_order and other details will be added 

% as comments in the header file before the array declaration. 

% 

% Author: Ben Jordan 

% 

    N = 1024; 

    [xin, fs] = wavread(strcat(infile,'.wav'), [N N+N]); 

    % Set up hamming window      

    win = hamming(N)'; 

    % For each wavelet, get LPC  

    x = xin(1:N).*win'; 

    [a g] = calc_lpc(x, lpc_order); 

    Mxa = max(a); 

    Mna = min(a); 

    if (max(a) >= 3 || min(a) <= -3)  

        fid = 0; 

        error('LPC coeffs outside comfortable range for fixed 

point.'); 

    end 

    [fid msg] = fopen(strcat(outfile, '.h'), 'a+'); 
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    if (fid == -1) 

        error(msg); 

        return; 

    end 

    fprintf(fid, '\n/*\n * LPC Coefficients for sample %s', infile); 

    fprintf(fid, '\n * Date/Time created: '); 

    fprintf(fid, '%d-', localtime(time()).year + 1900); 

    fprintf(fid, '%d-', localtime(time()).mon + 1); 

    fprintf(fid, '%d ', localtime(time()).mday); 

    fprintf(fid, '%d:', localtime(time()).hour); 

    fprintf(fid, '%d:', localtime(time()).min); 

    fprintf(fid, '%d',  localtime(time()).sec); 

    fprintf(fid, '\n * LPC Order: %d', lpc_order); 

    fprintf(fid, '\n * Sampling rate (Fs): %g', fs); 

    fprintf(fid, '\n * Minimum LPC coefficient: %g', Mna); 

    fprintf(fid, '\n * Maximum LPC coefficient: %g', Mxa); 

fprintf(fid, '\n * NOTE: LAST element of array is prediction gain, 

FIRST is first coefficient.'); 

    fprintf(fid, '\n */\n\n#ifndef COEFF_LEN\n#define 

COEFF_LEN\t\t%d\n#endif\n', length(a)); 

 fprintf(fid, '\n#ifndef Q\n#error Q must be defined! It is the 

floating-point to fixed point scaling factor.\n#endif '); 

    fprintf(fid, '\nconst samp_t coeff_%s[COEFF_LEN+1] = \n{\n', 

infile); 

    for IDX = 1:length(a) 

        fprintf(fid, '\t(samp_t)(%1.20f\t* Q),\n', a(IDX)); 

    end 

 fprintf(fid, '\t(samp_t)(%1.20f\t* Q)\t/* <--- Prediction Gain 

*/\n};\n', g); 

    fclose(fid); 

end 
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B.4 The ow_pole_mapping_plot.m Octave Script 

 

% 

% ow_pole_mapping_plot.m 

%  

% Calls calc_lpc to get coefficients of a set of frames of 

transitional 

% speech, then subsequently plots the pole locations of the LPC 

vectors 

% and their corresponding LSP roots - both on unit circles. 

% 

% Author: Ben Jordan 

% 

N = 1024; 

SAMPLES = N*24; 

[xin, fs] = wavread('ow.wav', [0 SAMPLES-1]); 

 

% Set up hamming window and unit circle for z-plane plot 

win = hamming(N)'; 

hold off; 

figure(1); 

 

% Draw a unit circle for clarity 

draw_unit_circle; 

% For each wavelet, get LPC and plot poles of LPC reconstruction 

filter 

for IDX = 1:N/2:SAMPLES-N+1 

 x = xin(IDX:IDX+N-1).*win'; 

 a = calc_lpc(x, 10); 

 

 R_A = roots(a); 

 

 if (IDX == 1) 

  plot(real(R_A), imag(R_A), '*b', 'markersize', 3); 

 else  

        if IDX < (SAMPLES-N+1) 

            plot(real(R_A), imag(R_A), '*k', 'markersize', 1); 
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  else 

            plot(real(R_A), imag(R_A), '*r', 'markersize', 3); 

        end 

 end 

end 

title('Pole paths from "aa" to "uw".'); 

xlabel('Real'); 

ylabel('Imaginary'); 

grid on; 

hold off; 

figure(2); 

% Draw a unit circle for clarity 

draw_unit_circle; 

% For each wavelet, get LSP and plot poles 

for IDX = 1:N:SAMPLES-N+1 

 x = xin(IDX:IDX+N-1).*win'; 

 a = calc_lpc(x, 10); 

    [Ph Qh P Q] = lsplpc(a); 

 if IDX == 1 

  plot(real(P), imag(P), '*b', 'markersize', 3); 

 else if IDX < (SAMPLES-(N+1)) 

    plot(real(P), imag(P), '*k', 'markersize', 1); 

   else 

   plot(real(P), imag(P), '*r', 'markersize', 3); 

         end 

 end 

end 

title('LSP root paths from "aa" to "uw".'); 

xlabel('Real'); 

ylabel('Imaginary'); 

hold off; 
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B.5 The lsplpc.m Octave Function 

 

function [Ph Qh P Q] = lsplpc(LPC) 

% Calculates Line Spectrum Pairs from LPC coefficients of order  

% of LPC. 

% 

% References:  

% Kabal P, and Ramachandran R 1986, "The Computation of Line  

% Spectral Frequencies Using Chebyshev Polynomials", IEEE  

% Transactions on Acoustics, Speech and Signal 

% Processing, Vol. ASSP-34, No. 6, December 1986. 

% 

% Stein, J 2000, "Digital Signal Processing - A Computer  

% Science Perspective", pp.383-385, Wiley & Sons, USA. 

% 

% Author: Ben Jordan 

% 

    if (nargin ~=1) 

        help lsplpc; 

        return; 

    end 

    order = length(LPC)-1; 

    Qh = zeros(1,order+2); 

    Ph = Qh; 

    Ph(1) = LPC(1); 

    Qh(1) = LPC(1); 

    for ix = 1:order 

        Ph(ix+1) = LPC(ix+1) + LPC(order-ix+2); 

        Qh(ix+1) = LPC(ix+1) - LPC(order-ix+2); 

    end 

    Ph(order+2) = 1; 

    Qh(order+2) = -1; 

    % LSPs are defined as the roots of the above equations. 

    P = roots(Ph); 

    Q = roots(Qh); 

end 
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B.6 The lpclsp.m Octave Function 

 

function [a] = lpclsp(P, Q) 

% Calculates LPC Coefficients from Line Spectral Pairs 

% 

% Arguments: Ph, Qh, == Vector arrays of the LSPs in  

%    Coefficient form (not frequencies) 

%     order == the order of the LPC system 

% Returns:  a == Vector of LPC coeffiecients 

% References:  

% Kabal P, and Ramachandran R 1986, "The Computation of Line  

% Spectral Frequencies Using Chebyshev Polynomials", IEEE  

% Transactions on Acoustics, Speech and Signal 

% Processing, Vol. ASSP-34, No. 6, December 1986. 

% 

% Stein, J 2000, "Digital Signal Processing - A Computer  

% Science Perspective", pp.383-385, Wiley & Sons, USA. 

% 

% Author: Ben Jordan 

% 

    if (nargin ~= 2) 

        help lpclsp; 

        return; 

    end 

    if (length(Q) ~= length(P)) 

        help lpclsp; 

        return; 

    end 

    order = length(P) - 2; 

 o2 = order/2; 

 a = zeros(1, order+1); 

 a(o2+1:-1:1)    = 0.5.*(Q(o2+1:-1:1) + P(o2+1:-1:1)); 

 a(o2+2:order+1) = 0.5.*(Q(o2+1:-1:2) - P(o2+1:-1:2)); 

    % compensate for root signs (i.e. every other LSP is in 

    % "negative frequency" 

    a(2:2:order+1) = -a(2:2:order+1);  

end 
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B.7 The expnd.m Octave Function 

 

function P = expnd(A) 

% 

% Assuming A represents roots of a polynomial, expands the 

% roots to get to the polynomial P. A and P are row vectors  

% and P is length(A)+1; 

% 

% It assumes that the roots are fully factored, for example: 

% (x + a)(x + b)(x + c)... 

% but !NOT!: 

% (jx +a)(kx + b)(lx + c)... 

% 

% Author: Ben Jordan 

%  

 if (nargin ~= 1) 

  help expnd; 

  return; 

 end 

 N = length(A); 

 P = zeros(1, N+1); 

 P(1) = 1; 

 %P(2) = A(1); 

 for I=1:N 

  for J=N+1:-1:2 

   P(J) = P(J) + P(J-1)*A(I); 

  end 

 end 

    % just to remove all the residual small imaginary parts... 

    P = real(P); 

end 
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B.8 The lpc_interp.m Octave Function 

 

function [A] = lpc_interp(FA, N) 

% 

% X-dimension LPC Coefficient Interpolator 

%  

% This function uses the linear interpolation provided by 

% the Octave/MATLAB interp1 function. Linear interpolation 

% is used to prevent coefficient values from exceeding  

% existing coefficient values - thereby reducing likelihood 

% of there being an unstable set. 

% 

% Arguments: FA is a m-order by n-vector matrix of LPC vectors.  

%    N is the desired number of output vectors. 

% Returns:   [A] is the resutling m-order by N vectors. 

% 

% Author: Benjamin Jordan 

% 

 if (nargin < 2) 

    help lpc_interp 

    return; 

 end 

 lFA = length(FA(1,:)); % number of input vectors 

 wFA = length(FA(:,1)); % number of coefficients in each vector 

 A = zeros(wFA, N); % new array will be N by w 

 x = 1:lFA; 

 step = (lFA-1)/N; 

 xi = 1:step:lFA-step; 

 for idx=1:wFA 

  y = FA(idx,:); 

% linear interpolation across X direction 

  yi = interp1(x, y, xi);  

  A(idx,:) = yi; 

 end 

end 
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B.9 The lsp_interp.m Octave Function 

 

function [IP IQ] = lsp_interp(P1, Q1, P2, Q2, N) 

% 

% Interpolate between two sets of Line Spectrum Pairs 

% using the nearest angular neighbour. 

% 

% Arguments: P1, Q1 - the first LSP set 

%            P2, Q2 - the last LSP set 

%            N - the number of intermediate sets req'd. 

%  

% Returns:   PI, QI - arrays of interpolated LSP vectors 

% 

% Assumptions: 1. All input LSPs are of equal length. 

%              2. All have complex frequency representation 

%                 (i.e. there are complex conjugates). 

%  

% Author: Ben Jordan 

% 

    if (nargin ~= 5) 

        help lsp_interp; 

        return; 

    end 

    % sort provides crude mechanism for finding nearest  

    % neighbouring LSP. BUT WORKS!! 

    O = length(P1); 

    IP = zeros(O, N+2); 

    IQ = IP; 

    IP(:,1) = P1; 

    IQ(:,1) = Q1; 

    IP(:,N+2) = P2; 

    IQ(:,N+2) = Q2; 

    [P1] = sort(arg(P1)); 

    [Q1] = sort(arg(Q1)); 

    [P2] = sort(arg(P2)); 

    [Q2] = sort(arg(Q2)); 

    for I = 1:O 
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        Pstep = (P1(I)-P2(I))/N; 

        Qstep = (Q1(I)-Q2(I))/N; 

        for J = 2:N+1 

            IP(I,J)=cos(P1(I)-Pstep*J)+i.*sin(P1(I)-Pstep*J); 

            IQ(I,J)=cos(Q1(I)-Qstep*J)+i.*sin(Q1(I)-Qstep*J); 

        end 

    end 

end 
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B.10 The gen_all_lpc.m Octave Function 

 

function [LI] = gen_all_lpc(sOUTFILE, sQ, sT, order, n) 

% 

% This function uses the calc_lpc function and lpc_interp  

% function to generate and save out a C header file  

% containing the interpolated LPC coefficient vectors. 

% 

% Arguments:  

% sOUTFILE = name of the C header file to be written (string) 

% sQ = C macro name used for fixed-point scaling (string) 

% sT = C data type name used for coefficient declaration (string) 

% order = LPC filter order 

% n = number of desired output vectors (used for interpolation) 

% 

% Results:    

% LI = a matrix sized (order+2, n) of LPC coefficient vectors. 

% It is (order+2) rows because a0 coefficient (always 1) for 

% the synthesis filter is added, plus the prediction gain is 

% suffixed at the end of each coefficient vector. 

% 

% This function assumes you have a set of basic vowell sounds  

% recorded in .wav file format - 16-bits, 22.05Ksps, mono.  

% The file names used currently are "uw.wav", "ue.wav", "rr.wav", 

% "o.wav", "e.wav", "ah.wav", "a.wav", and "iii.wav". 

% 

% Author: Ben Jordan. 

% 

if (nargin < 5) 

    usage('[LI] = gen_all_lpc(sOUTFILE, sQ, sT, order, n)'); 

    return; 

end 

N = 1024; 

fst = 1024; % Start a reasonable length into file 

lst = fst+N-1; 

 

% read in eight basic vowel sounds: 
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[xuw Fs] = wavread('uw.wav', [fst lst]); 

[xue]    = wavread('ue.wav', [fst lst]); 

[xrr]    = wavread('rr.wav', [fst lst]); 

[xo ]    = wavread('o.wav',  [fst lst]); 

[xe ]    = wavread('e.wav',  [fst lst]); 

[xah]    = wavread('ah.wav', [fst lst]); 

[xa ]    = wavread('a.wav',  [fst lst]); 

[xii]    = wavread('iii.wav',[fst lst]); 

% transpose to column vectors, combine in to an 8 by N array: 

X = [xuw(:,1)'; xue(:,1)'; xrr(:,1)'; xo(:,1)'; xe(:,1)'; 

xah(:,1)';... 

    xa(:,1)'; xii(:,1)']; 

% apply a hamming window to all the samples and calculate LPC 

vectors: 

LP = zeros(8, order+2); 

GP = zeros(1, 8); % storage for gains for use later on. 

window = hamming(N)'; 

for I=1:8 

    X(I,:) = X(I,:).*window; 

    [LP(I,1:order+1), LP(I,order+2)] = calc_lpc(X(I,:), order); 

end 

% Interpolate using linear interpolation 

LI = lpc_interp(LP', n)'; 

Mxa = max(max(LI)); 

Mna = min(min(LI)); 

% Dump LPC coeff. vectors to a outfile: 

[fid msg] = fopen(sOUTFILE, 'a+'); %open for append 

if (fid == 0) 

    error(msg); 

    return; 

end 

fprintf(fid, '\n/*\n * Interpolated LPC Coefficients for vowels'); 

fprintf(fid, '\n * Date/Time created: '); 

fprintf(fid, '%d-', localtime(time()).year + 1900); 

fprintf(fid, '%d-', localtime(time()).mon + 1); 

fprintf(fid, '%d ', localtime(time()).mday); 

fprintf(fid, '%d:', localtime(time()).hour); 

fprintf(fid, '%d:', localtime(time()).min); 

fprintf(fid, '%d',  localtime(time()).sec); 
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fprintf(fid, '\n * LPC Order: %d', order); 

fprintf(fid, '\n * Sampling rate (Fs): %g', Fs); 

fprintf(fid, '\n * Minimum LPC coefficient: %g', Mna); 

fprintf(fid, '\n * Maximum LPC coefficient: %g', Mxa); 

fprintf(fid, '\n * NOTE: LAST element of each array is prediction 

gain, FIRST is first coefficient.'); 

fprintf(fid, '\n */\n\n#ifndef COEFF_LEN\n#define 

COEFF_LEN\t\t%d\n#endif\n', length(LI(1,:))); 

fprintf(fid, '\n#ifndef %s\n#error %s must be defined! It is the 

floating-point to', sQ, sQ); 

fprintf(fid, ' fixed point scaling factor.\n#endif '); 

fprintf(fid, '\nconst %s coeffs[%d][COEFF_LEN] = \n{\n', sT, n); 

len = length(LI(:,1)); 

wid = length(LI(1,:))-1; 

for JDX = 1:len 

    fprintf(fid, '\t{\n'); 

    for IDX = 1:wid 

        fprintf(fid, '\t\t(%s)(%1.20f  \t* %s),\n', sT, LI(JDX, 

IDX), sQ); 

    end 

    fprintf(fid, '\t\t(%s)(%1.20f  \t* %s)\t/* <--- Prediction Gain 

*/\n', sT, LI(JDX, wid+1), sQ); 

    if (JDX < len) 

        fprintf(fid, '\t},\n'); 

    else 

        fprintf(fid, '\t}\n};\n'); 

    end 

end 

fprintf(fid, '\n/* ------------------ end of coefficients ----------

-------- */\n'); 

fclose(fid);  

end 
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B.11 The gen_all_lsp.m Octave Function 

 

function [C G FS] = gen_all_lsp(sOUTNAME, sQ, sT, order, n) 

% 

% Generates array of LPC coefficients (LPC of order ORDER) 

% Calls lower level functions to interpolate between frames 

% 

% Author: Ben Jordan 

% 

[A gx gz S] = plot_interp("uw.wav", "o.wav",  order, n-2, 0);  

C = A; G = [gx, gz]; FS = S;                        

[A gx gz S] = plot_interp("o.wav",  "ue.wav", order, n-2, 0);  

C = [C;A]; G = [G, gz]; FS = [FS;S];                     

[A gx gz S] = plot_interp("ue.wav", "rr.wav", order, n-2, 0);  

C = [C;A]; G = [G, gz]; FS = [FS;S];                     

[A gx gz S] = plot_interp("rr.wav", "ah.wav", order, n-2, 0);  

C = [C;A]; G = [G, gz]; FS = [FS;S];                     

[A gx gz S] = plot_interp("ah.wav", "a.wav",  order, n-2, 0);  

C = [C;A]; G = [G, gz]; FS = [FS;S];                     

[A gx gz S] = plot_interp("a.wav",  "e.wav",  order, n-2, 0);  

C = [C;A]; G = [G, gz]; FS = [FS;S];                  

[A gx gz S] = plot_interp("e.wav",  "iii.wav",order, n-2, 0);  

C = [C;A]; G = [G, gz]; FS = [FS;S];                   

[A gx gz S] = plot_interp("iii.wav","rr.wav", order, n-2, 0);  

C = [C;A]; G = [G, gz]; FS = [FS;S]; 

 

% Some edification for the user on array sizes: 

disp(size(C)); 

disp(size(G)); 

 

% Find peaks in coefficient values for remarks in header file: 

Mxa = max(max(C)); 

Mna = min(min(C)); 

 

% Dump LPC coeff. vectors to a outfile: 

[fid msg] = fopen(sOUTNAME, 'a+'); %open for append 

if (fid == 0) 
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    error(msg); 

    return; 

end 

fprintf(fid, '\n/*\n * LSP Interpolated LPC Coefficients for 

vowels'); 

fprintf(fid, '\n * Date/Time created: '); 

fprintf(fid, '%d-', localtime(time()).year + 1900); 

fprintf(fid, '%d-', localtime(time()).mon + 1); 

fprintf(fid, '%d ', localtime(time()).mday); 

fprintf(fid, '%d:', localtime(time()).hour); 

fprintf(fid, '%d:', localtime(time()).min); 

fprintf(fid, '%d',  localtime(time()).sec); 

fprintf(fid, '\n * LPC Order: %d', order); 

fprintf(fid, '\n * Sampling rate (Fs): 22.05 KHz'); 

fprintf(fid, '\n * Minimum LPC coefficient: %g', Mna); 

fprintf(fid, '\n * Maximum LPC coefficient: %g', Mxa); 

fprintf(fid, '\n * NOTE: LAST element of each array is prediction 

gain, FIRST is first coefficient.'); 

fprintf(fid, '\n */\n\n#ifndef COEFF_LEN\n#define 

COEFF_LEN\t\t%d\n#endif\n', length(C(1,:))+1); 

fprintf(fid, '\n#ifndef %s\n#error %s must be defined! It is the 

floating-point to', sQ, sQ); 

fprintf(fid, ' fixed point scaling factor.\n#endif '); 

len = length(C(:,1)); 

fprintf(fid, '\nconst %s coeffs[%d][COEFF_LEN] = \n{\n', sT, len); 

for JDX = 1:len 

    fprintf(fid, '\t{\n'); 

    for IDX = 1:order+1 

        fprintf(fid, '\t\t(%s)(%1.20f  \t* %s),\n', sT, C(JDX, IDX), 

sQ); 

    end 

    Gidx = floor((JDX+n)/n); 

    fprintf(fid, '\t\t(%s)(%1.20f  \t* %s)\t/* <--- Prediction Gain 

*/\n', sT, G(Gidx), sQ); 

    if (JDX < len) 

        fprintf(fid, '\t},\n'); 

    else 

        fprintf(fid, '\t}\n};\n'); 

    end 
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end 

fprintf(fid, '\n/* ------------------ end of coefficients ----------

-------- */\n'); 

fclose(fid);  

end 
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B.12 The plot_interp.m Octave Function 

 

function [A gx gz S2] = plot_interp(fname1, fname2, LPC_ORDER, 

STEPS, plt) 

% 

% Interpolate between LPC frames taken from sound files FNAME1  

% and FNAME2. The interpolation direction is FROM FNAME1 TO  

% FNAME2. LPC_ORDER is the linear prediction order used, STEPS is  

% the number of steps (desired frames). 

%  

% If PLT == 1 , the log-magnitude FFT versus frame number  

% will be plotted to a 3D figure using surf(). 

% 

% If PLT == 2 , the z-plane plot of interpolated LPC coefficients 

% is produced. 

% 

% Author: Ben Jordan 

% 

 if (nargin < 4) 

  help plot_interp 

  return; 

 end 

    [A IP IQ ax az gx gz FS] = lpclsplpc(fname1, fname2, LPC_ORDER, 

STEPS); 

    fpts = 256; 

    N = length(A(:,1)); 

    OS= 20*log10(2/fpts); 

    G = 20*log10(gx); 

    S=zeros(N,fpts); 

    for I=1:N 

        FT=fft(A(I,:),fpts); 

        S(I,:)= -20*log10(abs(FT))+OS+G; 

    end 

    S2=S(:,1:fpts/2); 

    w = (0:2:fpts-1)/fpts*2*FS/10000; 

    n = 1:N; 
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    % If user flags plt then plot this transition: 

 if (nargin > 4) 

  if (plt == 1) 

   figure(); 

   surf(w, n, S2); 

   title( 

strcat('LPC Interpolation from "',fname1, 

'" to "', fname2,'"') 

); 

   xlabel("Frequency (KHz)");  

ylabel("Frame(n)");  

zlabel("H(f,n) (dB)"); 

   % Set azimuth and elevation 

   view(-37.5, 30); refresh(); 

  else 

   if (plt == 2) 

   figure(); 

   draw_unit_circle; 

   for I=1:N 

      R = roots(A(I,:)); 

      plot(real(R), imag(R), "*", "markersize", 1); 

   end 

title( 

strcat('LPC Poles Interpolated from "',fname1, 

 '" to "', fname2,'"') 

   ); 

   xlabel("Real"); ylabel("Imaginary"); grid on; 

  end 

 end 

end 



B.13 The lpclsplpc.m Octave Function  95 

 
 

B.13 The lpclsplpc.m Octave Function 

 

function [A IP IQ ax az gx gz FS] = lpclsplpc(fname1, fname2, order, 

interp); 

%  

% Take two sound files, calculate the LPC from a frame in  

% each file, then convert these to LSPs. Interpolate the  

% LSPs using lsp_interp.m, then expand the interpolated roots  

% back into predictor filter coefficients. 

% 

% Arguments: FNAME1, FNAME2 - two input .WAV files of speech 

%            ORDER - LPC Order used 

%            interp - number of intermediate frames needed. 

% 

% Returns: A - a size(interp+2, order) matrix containing the  

%             interpolated coefficient vectors. 

%          IP, IQ - interpolated LSP vectors. 

%          ax, az - original .WAV file LPC coefficient frames 

%          gx, gz - corresponding LPC predictor gains. 

% 

% Author: Ben Jordan 

% 

    % bring in the audio data 

    [X FS] = wavread(fname1); 

    [Z] = wavread(fname2); 

    N = 1024; 

    win = hamming(N)'; 

    x = X(2048:2048+N-1)'.*win; 

    z = Z(2048:2048+N-1)'.*win; 

    % generate LPC vector and gain 

    [ax gx] = calc_lpc(x, order); 

    [az gz] = calc_lpc(z, order); 

    % compute LSPs 

    [Phx Qhx Px Qx] = lsplpc(ax); 

    [Phz Qhz Pz Qz] = lsplpc(az); 

    % Interpolate <interp> inbetween LSPs: 

    [IP IQ] = lsp_interp(Px, Qx, Pz, Qz, interp); 
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    % compute back to LPC vector: 

    A = zeros(interp+2, length(ax)); 

    for I = 1:interp+2 

        A(I,:) = lpclsp(expnd(IP(:,I)), expnd(IQ(:,I))); 

    end 

end 
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% Draw a unit circle for clarity 

% 

% Adapted by: Ben Jordan 

% 

% From Reference: Leis J, "Digital Signal Processing: A MATLAB  

% based tutorial approach", 2002, p108, Research Studies Press,  

% Baldock. 

% 

function draw_unit_circle() 

 theta = 0:pi/100:2*pi; 

 c = 1*exp(j*theta); 

 plot(real(c), imag(c)); 

 hold on; 

end 
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Figure 25 Top Level FPGA Project Schematic 
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C.2 FPGA OpenBus System Block Diagram 

 

Figure 26 FPGA OpenBus Block Diagram 
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Figure 27 Altium Designer Project Hierarchy
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D.1 The main.c File 

 

/* 

 * Copyright (C)2009 Benjamin W. D. Jordan 

 * 

 * All source code in this document is copyrighted material 

 * though the algorithms used may not be. Work copied with 

 * permission (where necessary) or adapted will be cited. 

 * 

 * Copying this code and using it verbatim is not permitted 

 * without prior written consent from the author (consent may 

 * be electronic). 

 * 

 * NB3000 LPC Voice Synthesizer Main Program 

 */ 

#include <timing.h> 

#include <timers.h> 

#include <stdint.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <touchscreen.h> 

#include <pointer.h> 

#include <graphics.h> 

#include <canvas.h> 

#include <drv_cs4270.h> 

#include <drv_i2s.h> 

#include <drv_ioport.h> 

#include "devices.h" 

#include "generic_devices.h" 

 

#define AUDIO_BUF_LEN 160*2 

 

// Sample rate and frequency used: 

#define FS       22050 

#define TS       1/FS 

#define ORDER 20 
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// PITCH period macros 

#define PITCH(h)  (int)((1/h)*TS) 

#define PITCHMIN  PITCH(50) 

#define PITCHMAX  PITCH(2000) 

#define PITCHBLEN 1700 

 

// 0.999999... in int16_t Q3.13 

typedef int16_t samp_t; 

#define PRES      13 

#define ONE       (1<<(PRES-1)) 

#define Q         (1<<PRES) 

 

// Coefficient scaling - puts data into Q3.29 from float 

#ifndef COEFF_SCALE 

#define COEFF_SCALE  Q 

#endif 

#include 

"..\..\audio\voicedsounds\22K05\lpc_lsp_interpolated_coeffs.h" 

 

#include "buttons.h" 

 

/* 

 * Function Prototypes: 

 */ 

// Initialization Functions 

void init(void); 

void make_background(canvas_t * canvas); 

// Timer Interrupt Call-back 

void handletimer(void * params); 

// Touch Screen Calibrate Call-back 

static void touch_callback(int x, int y, int width, int height, void 

* vp); 

// Filter and Fixed Point Prototypes 

samp_t allpole_kernel(samp_t x_n, const samp_t * coeffs); 

samp_t allpole_fl2fix(float); 

float allpole_fix2fl(samp_t); 

 

/* 

 * Software Platform Driver Handles: 
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 */ 

ioport_t * ioprt; 

nb_buttons_t userbtns; 

graphics_t * display; 

canvas_t * canvas; 

pointer_t * pointer; 

touchscreen_t * touch; 

pointer_state_t * pstate; 

i2s_t * austream; 

cs4270_t * aucodec; 

 

/* 

 * Bitmap of interpolated LPC Spectrogram: 

 */ 

extern __no_sdata graphics_bitmap_t _lc_ub_spectrogram_bmp; 

extern __no_sdata graphics_bitmap_t _lc_ue_spectrogram_bmp; 

graphics_bitmap_t * bmp = & _lc_ub_spectrogram_bmp; 

 

/* 

 * Global Variables: 

 */ 

//Pulse source and filter frame counters: 

uint16_t count = 0; 

uint16_t pulse = 0; 

// Output frame buffer: 

volatile samp_t outbuf[AUDIO_BUF_LEN]; 

// Pulse Source frame for Synthesis: 

const samp_t pulse_buf[PITCHBLEN] = 

{ 

    0, ONE / 64, ONE / 32, ONE / 16, ONE / 8, ONE / 4, ONE / 2, ONE, 

    ONE / 2, ONE / 4, ONE / 8, ONE / 16, ONE / 32, ONE / 64, 0 

}; 

// Noise Source buffer for Synthesis: 

volatile samp_t noise[AUDIO_BUF_LEN / 2]; 

// Pointer to current synthesis filter coefficient set: 

static samp_t * current_coeffs = & coeffs[0][0]; 

// Touchscreen calibration callback strings: 

char * cal = "Touch screen at pointer"; 

char * caldone = "Calibration done."; 
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/* 

 * Where it all begins! 

 */ 

void main(void) 

{ 

    char   test_str[80]; 

    int    pulseindex = 0; 

    samp_t audiobuf[AUDIO_BUF_LEN] = {0}; 

    samp_t x_0 = 0; 

 

    init(); 

    sprintf(test_str, "%d ", AUDIO_BUF_LEN); 

    graphics_draw_string(canvas, 22, 22, test_str, NULL, BLUE, 0); 

    graphics_set_visible_canvas(display, canvas); 

 

    // Start getting and putting audio: 

    //i2s_rx_start(austream) - not needed since we are not using 

external src; 

    i2s_tx_start(austream); 

    while (1) 

    { 

        count = pulse; 

        for (int i = 0; (i < count); i++) 

        { 

            // Set up noise, pulse and mixed noise/pulse sources 

            x_0 = 0; 

            if (userbtns.switches & SW1)  // BT1 means noise only 

            { 

                x_0 = noise[count]; 

            } 

            else 

            { 

                if (userbtns.switches & SW2) // BT2 mix noise and 

pulse (crude) 

                { 

                    x_0 += noise[count]; 

                    x_0 += pulse_buf[pulseindex]; 

                } 
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                else 

                { 

                    x_0 = pulse_buf[pulseindex]; // default - pulse 

only 

                } 

            } 

 

            // Execute all-pole filter 

            outbuf[i++] = allpole_kernel(x_0, current_coeffs); 

 

            // Copy sample output to other audio channel: 

            outbuf[i] = outbuf[i - 1]; 

 

            //increment pulse source index, reset dependant on pitch 

period 

            pulseindex = pulseindex >= pulse ? 0: pulseindex + 1; 

        } 

        while (i2s_tx_avail(austream) < count); 

        i2s_write16(austream, outbuf, count); 

    } 

} 

 

/* 

 *   Function allpole_kernel 

 * 

 *   Implementation of the LPC synthesis filter 

 * 

 *   Arguments: x_n - current sample input from source (usually 

pulses) 

 *              *sample - pointer to filter history buffer - the 

buffer must 

 *              have length = order-1 or greater 

 *              *current_coeffs - pointer to coefficient array 

 *              n - index of most recent output in sample[] 

 *              order - order of LPC synthesis filter 

 */ 

static samp_t sample[ORDER] = {0}; 

// LPC Synthesis Filter Buffer 
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samp_t allpole_kernel(samp_t x_n, const samp_t * coeffs) 

{ 

    int32_t cusum; 

    samp_t  output; 

 

    // Filter Kernel *could* be inlined for speed: 

    // Multiply source by prediction gain (stored in a(P+1)). 

    // 

    //                       P 

    // y(n) = gain * x(n) + sum [-a(k)*y(P-k)] 

    //                     k = 1 

    // 

    cusum = x_n * coeffs[0] * coeffs[ORDER + 1]; 

    for (int k = 1; k <= ORDER; k++) 

    { 

        cusum += -coeffs[k] * sample[ORDER - k]; 

    } 

 

    // Truncate and scale output: 

    if (cusum > 2147483647) 

    { 

        cusum = 2147483647; 

    } 

    else 

    { 

        if (cusum < - 2147483648) 

        { 

            cusum = - 2147483648; 

        } 

    } 

    output = (samp_t)(cusum >> 17); 

 

    // Update Sample History Buffer 

    for (int k = ORDER - 1; k > 0; k--) 

    { 

        sample[k] = sample[k - 1]; 

    } 

 

    // Put latest output in top of buffer 
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    sample[0] = output; 

    return output; 

} 

 

/* 

 *  function allpole_fl2fix 

 *  Converts a Single Precision Floating Point to Q1.15 

 */ 

samp_t allpole_fl2fix(float anum) 

{ 

    if (anum >= 1) 

        anum = 1 - 2 / 32768; 

    if (anum <= - 1) 

        anum = - 1; 

    return(samp_t)(anum * 32768); 

} 

 

/* 

 *  function allpole_fix2fl 

 *  Converts a Q1.15 fixed-point to Single Precision Floating Point 

 */ 

float allpole_fix2fl(samp_t anum) 

{ 

    return((float) anum) / 32768; 

} 

 

/* 

 *  functin init 

 * 

 *  Main initialization routine - initializes all drivers from 

SWPLatform 

 *  and sets up TFT panel, audio IO, UI, and bitmap display. 

 */ 

void init(void) 

{ 

    char   mesg[50]; 

    // Little test for truncation of fixed point numbers: 

    float  flt = 1; 

    samp_t fix = allpole_fl2fix(flt); 
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    // Initialize SwPlatform Drivers 

    display = graphics_open(GRAPHICS_1); 

    canvas = graphics_get_visible_canvas(display); 

    touch = touchscreen_open(TOUCHSCREEN_1); 

    pointer = pointer_open(POINTER_1); 

    ioprt = ioport_open(IOPORT); 

 

    // The all importan I2S and SPI drivers for the audio codec: 

    austream = i2s_open(DRV_I2S_1); 

    aucodec = cs4270_open(DRV_CS4270_1); 

 

    // Set up noise and pulse sources 

    for (int i = 0; i < AUDIO_BUF_LEN / 2; i++) 

    { 

        noise[i] = (samp_t)(rand() << 4) / 64; 

    } 

 

    touchscreen_set_callback(touch, touch_callback, canvas); 

    while (!touchscreen_calibrate(touch, 320, 240)); 

 

    make_background(canvas); 

 

    sprintf(mesg, "NB3000 LPC Voice Synthesizer"); 

    graphics_draw_string(canvas, 60, 10, mesg, NULL, RED, 0); 

    sprintf(mesg, "  UW    O    UE    RR    AH    A     E    II  "); 

    graphics_draw_string(canvas, 1, 229, mesg, NULL, WHITE, 0); 

    graphics_set_visible_canvas(display, canvas); 

    timer_register_handler(NULL, 40000L, handletimer); 

} 

 

/* 

 *  function touch_callback 

 * 

 *  Call back routine for touchscreen calibration driver function 

 *  It is called during iterative passes of calibration and used 

 *  to provide instruction to the user. 

 */ 
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static void touch_callback(int x, int y, int width, int height, void 

* vp) 

{ 

    if (width && height) 

    { 

        canvas_t * canvas = (canvas_t *) vp; 

        graphics_fill_canvas(canvas, BLACK); 

        graphics_draw_circle(canvas, x, y, 10, MAGENTA); 

        graphics_draw_line(canvas, x - 15, y, x + 15, y, CYAN); 

        graphics_draw_line(canvas, x, y - 15, x, y + 15, CYAN); 

        graphics_draw_string(canvas, 50, 40, cal, NULL, RED, 0); 

    } 

    else 

    { 

        graphics_draw_string(canvas, 50, 50, caldone, NULL, YELLOW, 

0); 

    } 

    graphics_set_visible_canvas(display, canvas); 

} 

 

/* 

 *  function make_background 

 *  Sets up background image on TFT 

 */ 

// We will use the LPC coefficient spectrogram to colour the screen 

background 

void make_background(canvas_t * canvas) 

{ 

    graphics_draw_bitmap(canvas, bmp, 0, 0, 320, 240, 0); 

} 

 

/* 

 * function handletimer 

 * 

 * Timer interrupts used to provide user foreground interaction with 

TFT 

 * 

 * User can touch the screen and/or puch buttons. 

 * 
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 * Pitch of pulse source is determined from Y-axis, and pointer to 

current set 

 * of LPC coefficients is updated based on X-axis of touch screen 

pressure. 

 * 

 * No pressue == no sound. 

 */ 

// Timer interrupt handles user interface: 

void handletimer(void * params) 

{ 

    static       uint16_t p_l = 0; 

    static       uint16_t p_ll = 0; 

    static int   mintime = 5; 

    int          y; 

    char       * vs; 

    // get pushbuttons 

    userbtns.switches = ioport_get_value(ioprt, 0); 

    ioport_set_value(ioprt, 0, (uint8_t) userbtns.switches); 

 

    // Check TFT touchscreen for pen activity 

    if (pointer_update(pointer, pstate)) 

    { 

        if (pstate->x > 280) 

        { 

            vs = "iii"; 

        } 

        else 

        { 

            if (pstate->x > 240) 

            { 

                vs = "e"; 

            } 

            else 

            { 

                if (pstate->x > 200) 

                { 

                    vs = "a"; 

                } 

                else 
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                { 

                    if (pstate->x > 160) 

                    { 

                        vs = "ah"; 

                    } 

                    else 

                    { 

                        if (pstate->x > 120) 

                        { 

                            vs = "r"; 

                        } 

                        else 

                        { 

                            if (pstate->x > 80) 

                            { 

                                vs = "ue"; 

                            } 

                            else 

                            { 

                                if (pstate->x > 40) 

                                { 

                                    vs = "o"; 

                                } 

                                else 

                                { 

                                    vs = "uw"; 

                                } 

                            } 

                        } 

                    } 

                } 

            } 

        } 

        current_coeffs = & coeffs[pstate->x][0]; 

        pulse = p_l / 2 + p_ll / 2; 

        p_ll = p_l; 

        y = pstate->y; 

        p_l = (y/PITCHMAX)+PITHCMIN;  

// Set the pitch based on Y location 
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        mintime = 5; 

        graphics_fill_rect(canvas, 140, 100, 40, 40, BLACK); 

        graphics_draw_string(canvas, 150, 110, vs, NULL, WHITE, 0); 

        graphics_set_visible_canvas(display, canvas); 

    } 

    else 

    { 

        if (--mintime == 0) 

            pulse = 0; 

    } 

} 
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D.2 The buttons.h Header File 

 

/* 

 * Author: Benjamin Jordan 

 *         bit field struct for holding pushbutton values.  

 */ 

#ifndef __BUTTONS_H 

#define __BUTTONS_H 

 

typedef struct user_btns 

{ 

    uint8_t switches :5; 

    uint8_t :3; 

} nb_buttons_t; 

 

#define SW1 0x01 

#define SW2 0x02 

#define SW3 0x04 

#define SW4 0x08 

#define SW5 0x10 

 

#endif 
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D.3 The lpc_coeffs.h Header File 

This header file sample was generated from an earlier script that did not perform 

interpolation of LPC vectors. This header file was used to test the all-pole filter 

kernel in the NB3000 FPGA design. 

/* 

 * LPC Coefficients for sample a 

 * Date/Time created: 2009-10-10 15:56:46 

 * LPC Order: 20 

 * Sampling rate (Fs): 22050 

 * Minimum LPC coefficient: -1.42714 

 * Maximum LPC coefficient: 1.09322 

 * NOTE: LAST element of array is prediction gain, FIRST is first 

coefficient. 

 */ 

 

#ifndef COEFF_LEN 

#define COEFF_LEN       21 

#endif 

 

#ifndef Q 

#error Q must be defined! It is the floating-point to fixed point 

scaling factor. 

#endif  

const samp_t coeff_a[COEFF_LEN+1] = 

{ 

    (samp_t)(1.00000000000000000000    * Q), 

    (samp_t)(-1.42714376385603336495   * Q), 

    (samp_t)(0.59700166372542673443    * Q), 

    (samp_t)(-0.53103815249363162110   * Q), 

    (samp_t)(1.09321662332023183950    * Q), 

    (samp_t)(-0.82875254751330640346   * Q), 

    (samp_t)(0.22686828175005249730    * Q), 

    (samp_t)(-0.64716245541051964363   * Q), 

    (samp_t)(1.08916034142518536321    * Q), 

    (samp_t)(-0.58000054188920013853   * Q), 

    (samp_t)(0.12958309588605002038    * Q), 
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    (samp_t)(-0.45851913840098296182   * Q), 

    (samp_t)(0.53153710818438681951    * Q), 

    (samp_t)(-0.06503120586575833473   * Q), 

    (samp_t)(0.17394366018636872595    * Q), 

    (samp_t)(-0.48091195912796863565   * Q), 

    (samp_t)(0.22410698122344246963    * Q), 

    (samp_t)(0.17649710289145784103    * Q), 

    (samp_t)(0.03990763735604364176    * Q), 

    (samp_t)(-0.07040305987016133582   * Q), 

    (samp_t)(-0.12177756292082211886   * Q), 

    (samp_t)(0.63606232558458797310    * Q)    /* <--- Prediction 

Gain */ 

}; 
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D.4 The lpc_lsp_interpolated_coeffs.h Header File 

This is the file which is auto-generated by the Octave function gen_all_lsp.m. 

An identically formatted header file is generated from gen_all_lpc.m except that 

the coefficients are not interpolated using the LSP method, and therefore markedly 

different. 

/* 

 * LSP Interpolated LPC Coefficients for vowels 

 * Date/Time created: 2009-10-25 17:37:10 

 * LPC Order: 20 

 * Sampling rate (Fs): 22.05 KHz 

 * Minimum LPC coefficient: -2.1922 

 * Maximum LPC coefficient: 1.79107 

 * NOTE: LAST element of each array is prediction gain, FIRST is 1 

coefficient. 

 */ 

 

#ifndef COEFF_LEN 

#define COEFF_LEN       22 

#endif 

 

#ifndef Q 

#error Q must be defined! It is the floating-point to fixed point 

scaling factor. 

#endif 

const samp_t coeffs[320][COEFF_LEN] = 

{ 

    { 

        (samp_t)(1.00000000000000000000     * Q), 

        (samp_t)(-1.79698140824335061971    * Q), 

        (samp_t)(0.88292388815247579981     * Q), 

        (samp_t)(-0.24923128966218513480    * Q), 

        (samp_t)(0.46411280796424592143     * Q), 

        (samp_t)(-0.60305326959603999804    * Q), 

        (samp_t)(0.42545606596659896192     * Q), 

        (samp_t)(-0.51230879515425509219    * Q), 

        (samp_t)(0.55911821213345724857     * Q), 
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        (samp_t)(-0.16785095595795890278    * Q), 

        (samp_t)(0.37361527593141219405     * Q), 

        (samp_t)(-0.65959996929074682370    * Q), 

        (samp_t)(0.65201411268465325755     * Q), 

        (samp_t)(-0.46573461349699701861    * Q), 

        (samp_t)(0.13835783824904124284     * Q), 

        (samp_t)(-0.05474765866315128848    * Q), 

        (samp_t)(0.08140394595628824836     * Q), 

        (samp_t)(-0.08749443112262278444    * Q), 

        (samp_t)(0.00670160817482776117     * Q), 

        (samp_t)(-0.07936529079207221837    * Q), 

        (samp_t)(0.11610059068015576855     * Q), 

        (samp_t)(0.18333513134382359300     * Q)    /* <--- 

Prediction Gain */ 

    }, 

    { 

        (samp_t)(1.00000000000000000000     * Q), 

        (samp_t)(-1.81777011447755798557    * Q), 

        (samp_t)(0.91918780876025718563     * Q), 

        (samp_t)(-0.23869234917961579256    * Q), 

 

... 

Truncated Here: File is 7703 Lines Long! 

... 

 

        (samp_t)(0.13428512777976292503     * Q), 

        (samp_t)(-0.14521586669568220529    * Q), 

        (samp_t)(-0.30624555284566301605    * Q), 

        (samp_t)(0.08774673208746089359     * Q), 

        (samp_t)(0.18094884844709002714     * Q), 

        (samp_t)(-0.06253544600931593145    * Q), 

        (samp_t)(0.05478937079840458246     * Q)    /* <--- 

Prediction Gain */ 

    } 

}; 

 

/* ------------------ end of coefficients ------------------ */ 
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D.5 The devices.h Auto-Generated Header File 

 

//  Embedded Framework Generated File: 

//  Date:26/10/2009 

//  Time:10:31:57 AM 

// 

 

#ifndef _DEVICES_H 

#define _DEVICES_H 

 

 

 // instance devices ids macro definitions  

#define DRV_AD7843_1            0 

#define DRV_CS4270_1            0 

#define DRV_I2S_1           0 

#define DRV_IOPORT_1            0 

#define DRV_SPI_2           0 

#define DRV_SPI_1           1 

#define DRV_VGA_ILI9320_1           0 

#define WB_I2S_1            0 

#define IOPORT          0 

#define SPI_TOUCH           0 

#define SPI_AUDIO           1 

#define TOUCH           0 

#define TFT         0 

#define AD_VGA_ILI9320_1            0 

#define GRAPHICS_1          0 

#define AD_TOUCHSCREEN_TO_POINTER_1         0 

#define POINTER_1           0 

#define TOUCHSCREEN_1           0 

 

#endif 
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Nanoboard 3000 Data Sheet 
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