
University of Southern Queensland

Faculty of Engineering & Surveying

Enabling Voice Calls via a Wireless Broadband Router

A dissertation submitted by

Adam Jones

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems)

Submitted: October, 2009

Abstract

Wireless networks are evolving rapidly, enabling services that until recently were al-

most exclusively bound to wired environments. With improvements to link quality,

bandwidth and network management (Wireless Mesh Networks), the rapid growth and

popularity of wireless networks is only going to continue.

With these improvements, opportunities to provide services such as Voice over Internet

Protocol (VoIP) are becoming feasible. The LinkSys WRT54GL wireless broadband

router is a cheap, yet powerful device that is able to run customised software on top of

routing data wirelessly.

Wireless Mesh Networks, VoIP software and the WRT54GL will be combined in this

Thesis to allow for a simple yet robust telephone network to exist in parallel with

traditional data networking.

It is envisioned that the telephone network will be able to create and maintain a tele-

phone network automatically. To enable this, additions to freely available VoIP soft-

ware will be made and a decentralised telephone network will exist entirely on wireless

routers.

A critical analysis will be carried out on all aspects of this Thesis and the feasibility

and practicality of such a system will be investigated and presented.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Adam Jones

q1022786

Signature

Date

Acknowledgments

I would like to thank Dr Alexander Kist for his encouraging words during the course

of the project. Whenever I became overwhelmed with the magnitude of the project, he

was always able to break the problems down into achievable blocks and also explain the

problem to me in a way that I could easily understand. Without his help this project

may not have eventuated.

A special thank-you to all the the administration staff at the University of Southern

Queensland for their prompt and kind responses whenever I contacted them with an

enquiry. Their patience, knowledge and understanding of student matters helped guide

me through university.

Ben and Phil, thank-you for your patience while explaining pointers to me (over and

over) I am sure that I would have ended up with 2000 lines of code that did nothing

without your help.

Finally, I would also like to give a big thank-you to Beth. During the course of this

project, Beth was always on hand to support me and to offer any help that she could.

Without her love, encouragement, support and enthusiasm I believe I would not have

seen the light at the end of the tunnel.

Adam Jones

University of Southern Queensland

October 2009

Contents

Abstract i

Acknowledgments iv

List of Figures xi

List of Tables xiii

Chapter 1 Introduction 1

1.1 Introduction . 2

1.2 Alternative Systems . 4

1.3 Need for System . 7

1.4 Benefits of System . 8

1.5 Work Conducted . 9

1.6 Chapter Summary . 10

Chapter 2 Literature Review 11

2.1 Telephone Systems . 12

CONTENTS vi

2.2 Traditional Telephone Systems . 12

2.2.1 Voice over Internet Protocol . 13

2.2.2 Providers os Systems . 14

2.3 Audio Codecs . 15

2.3.1 G.711 . 16

2.3.2 G.729A . 17

2.4 Wireless Networks . 18

2.4.1 Wireless Data Networks . 18

2.5 Wireless Mesh Networks . 20

2.5.1 Mesh Routers . 21

2.5.2 Mesh Clients . 21

2.6 Wireless Mesh Network Routing Protocol 23

2.6.1 Reactive . 24

2.6.2 Proactive . 24

2.6.3 Hybrid . 25

2.7 Security Issues . 27

2.7.1 Wireless Security . 27

2.7.2 Asterisk Security . 27

2.8 Hardware . 29

2.8.1 LinkSys WRT54GL Wireless Router 29

CONTENTS vii

2.8.2 LinkSys SPA901 IP Phone . 31

2.9 Chapter Summary . 33

Chapter 3 Design of Proposed System 34

3.1 Design Philosophy . 35

3.1.1 Mobility and Reliability of Mesh Routers 35

3.1.2 Portability of IP Phones . 37

3.1.3 Routing of Audio Data . 41

3.2 Firmware . 43

3.2.1 Variations . 43

3.2.2 Selection . 44

3.3 Software . 46

3.3.1 Asterisk . 46

3.3.2 DHCP Server . 47

3.3.3 OLSR Routing Protocol . 48

3.4 Asterisk Client Information Sharing (ACIS) 49

3.4.1 Transport Protocol for Messages 50

3.4.2 Detection of New Phones . 51

3.5 Adding Support for Mobile Radio Devices 52

3.6 Combined System . 54

3.7 Chapter Summary . 55

CONTENTS viii

Chapter 4 Configuration of Proposed System 56

4.1 Open-WRT Settings and Configuration 57

4.1.1 Loading Open-WRT on to the WRT54GL 57

4.1.2 Gaining Access to the Command Line Interface 60

4.1.3 Routing Protocol Implementation 62

4.1.4 Network Configuration . 62

4.2 Configuring Asterisk . 65

4.2.1 SPA901 Configuration . 65

4.3 Configuration of Asterisk Client Information Sharing 66

4.3.1 ACIS Send . 67

4.3.2 ACIS Listen . 68

4.3.3 Preparing the Packages . 69

Chapter 5 Testing of the Proposed System 71

5.1 Testing Environment . 72

5.1.1 Layout of Testing Area . 72

5.1.2 Isolating Routers’ Transmissions 73

5.2 VoIP Testing Metrics . 74

5.2.1 Delay . 74

5.2.2 Jitter . 75

5.2.3 Packet Loss . 75

CONTENTS ix

5.2.4 Resource Use . 75

5.3 Testing Suite . 76

5.3.1 JPerf . 76

5.3.2 TOP . 77

5.4 Results Obtained . 78

5.5 Performance of ACIS Programs . 81

5.5.1 Results of ACIS Tests . 81

5.5.2 Observations and Known Issues 82

5.6 Chapter Summary . 83

Chapter 6 Conclusions and Further Work 84

6.1 Achievement of Project Objectives . 85

6.2 Discussion of Results . 85

6.3 Further Work . 86

6.3.1 Quality of Service . 86

6.3.2 Use of Compressed Header Information 86

6.3.3 Added Functionality . 86

References 88

Appendix A Project Specification 93

Appendix B WMN Muliple Hop Tests 95

CONTENTS x

Appendix C Asterisk Client Information Sharing Source Code 100

C.1 The acislisten.c C Code . 101

C.2 The makefile for Open-WRT SDK . 112

C.3 The makefile for Linux . 113

C.4 The acissend.c C Code . 114

C.5 The makefile for Open-WRT SDK . 125

C.6 The makefile for Linux . 126

List of Figures

2.1 Pulse Coded Modulation . 17

2.2 Code Excited Linear Prediction . 18

2.3 WMN Layout . 20

2.4 LinkSys WRT54GL . 29

2.5 LinkSys SPA901 . 31

3.1 Showing a critical failure of WMN . 36

3.2 IP Phone Registration . 38

3.3 Audio data traversal for different configurations 40

3.4 Options for the routing of VoIP traffic 41

3.5 Traffic route for alternate configurations 42

3.6 Figure showing how the various components combine. 54

4.1 LinkSys Firmware Upgrade Page . 58

4.2 Logging onto the WRT54GL using PuTTY with Telnet protocol 61

4.3 Command Line Interface of Open-WRT 61

LIST OF FIGURES xii

4.4 Example network setup with separate LAN and WIFI 63

4.5 Program flow diagram of ACIS Send . 67

4.6 Program flow diagram of ACIS Listen 68

5.1 Router layout for testing . 72

5.2 Photo showing the inside of the box housing the router 73

5.3 Photo showing the outside of the box housing the routers 74

5.4 Setup of JPerf Testing . 76

5.5 Single Hop Results . 79

List of Tables

2.1 Showing Codec Characteristics . 16

2.2 Hardware specifications for the WRT54GL router 30

2.3 Specifications for 802.11b and 802.11g 30

2.4 Specifications for the SPA901 IP Phone 32

3.1 Comparison of Firmware . 45

3.2 Comparison of Transport Protocols . 50

Chapter 1

Introduction

This chapter highlights the way that the proposed system operates, and give an un-

derstanding of its’ importance in real world applications. The aims of the project are

expressed here as well as the work that was needed to be completed for the project to

operate. A brief insight to existing solutions that are currently in use is also provided,

which reinforces the need for this project.

1.1 Introduction 2

1.1 Introduction

In recent times, two technologies have become the focus of much attention. Telephone

systems and wireless networks. It is the purpose of this Thesis two combine these

two elements in a way that allows for small to medium sizes communities1 to create a

simple yet robust telephone network that is accessible with cheap hardware and freely

available software.

Telephone systems are shifting towards Internet Protocol (IP) based networks over

traditional Public Switched Telephone Networks (PSTN). While it is widely accepted

that problems exist when sending voice conversations over IP networks, much work has

been completed to ensure that an acceptable quality of service is obtained.

Wireless networks are gaining much momentum as a viable option to wired environ-

ments. Early wireless networks were extremely limited by factors such as poor con-

nection and bandwidth issues. As the technology matured, the quality of the wireless

networks also increased. Modern wireless networks are still problematic but advances

in this field are allowing the technology to become a popular networking tool.

While enabling voice transmissions to exist across wireless networks is not a new concept

(mobile phones) the novel aspect to this Thesis is in the way that the network is created

and maintained. This Thesis aims to create telephone network existing entirely on

wireless routers with a management system that allows networks to automatically form

and be destroyed in an ad hoc manner. To allow conversations to take place, specialised

Voice over Internet Protocol (VoIP) software is loaded directly on the wireless router.

In the proposed system, each of the routers acts as a telephone exchange. Each of these

exchanges is configured to share data to surrounding exchanges about phones that are

connected to the local exchange. After client data has been shared between exchanges,

calls are to be made over the wireless network. Based upon this, the hierarchy of the

telephone network can be seen to be a peer to peer arrangement eliminating the need

for a central governing body.

1In this context, communities is meant in the broader sense of the word. For example: an urban

workplace or a remote township.

1.1 Introduction 3

This Thesis enables a very simple telephone network to be created and maintained on

wireless broadband routers. It illustrates that the proposed system is both feasible and

practical using current technology in both hardware and software. Critical evaluation

of the quality and capacity of the telephone system over wireless networks is carried

out in this Thesis and will be further discussed.

1.2 Alternative Systems 4

1.2 Alternative Systems

Systems that are currently in use are based upon proven technologies that are well

established but are all limiting in some way. These limiting factors relate to secu-

rity, flexibility, management as well as installation and operating costs. Examples of

currently used alternatives include traditional telephone systems, hand-held radio de-

vices and Voice over Internet Protocol (VoIP) (both proprietary and freely available

solutions).

Traditional wired telephone systems are extremely widespread and effective solutions

that provide a satisfactory service. After many years and technological advances, the

traditional telephone system is very robust method for enabling users to converse over

great and small distances.

One of the problems of traditional telephone systems is way that they are installed and

managed. Adding extra telephones and is not a simple task and involves specialized

equipment and technical knowledge. This can be a costly exercise and may take some

time for a technician to complete.

Another consideration is the physical layout of the area that is to have a telephone

network. If the environment changes over time2, or is hard to access, installations may

not able to be completed.

The system being proposed in this Thesis is designed to operate over limited distances as

a stand alone network. Compared to traditional telephone networks, the area covered by

the network is very limited. It is envisioned that the concepts presented her will allow

multiple wireless telephone networks to be linked with low latency, high bandwidth

internet connections.

One of the greatest advantages of the proposed system is the ability for phones to be

added to the network with little networking or telephone system knowledge. Manage-

ment of the network is regulated automatically, removing the need for users to rely

on a third party to make alterations to the telephone network. This Thesis also aims

2Open cut mines are a good example of the changes mentioned

1.2 Alternative Systems 5

to allow users in remote and/or difficult to access areas to have a reliable and robust

telephone system.

Systems that are able to operate wirelessly, such as Citizen Band (CB) radio devices,

also allow the creation of a communications systems that are able to operate in difficult

areas. In addition to this, the systems are managed by the users and are free to use. The

disadvantages that are associated with these systems include privacy, limited channels

and range.

Typically CB radios have 40 channels that are available to carry audio, and each of these

channels are open to anyone to listen to. This raises serious privacy issues that make the

systems unsuitable for the broadcast of sensitive information. Another consideration is

that 40 channels are quickly consumed by small numbers of users.

Once the number of users exceeds the available channels, careful channel management

is needed and can become cumbersome. Range of the units is also a concern when using

hand-held devices, without repeater stations to retransmit signals the system becomes

limited.

The proposed system alleviates many of the problems discussed. Privacy is greatly

increased with eavesdroppers made to attack the telephone system rather than passively

listen in to broadcasts. Channel management is eliminated and replaced with telephone

extension management3 with more extensions added easily. Finally, the range of the

network is controlled by the number of wireless routers that are in range of each other.

VoIP networks are a new and rapidly growing technology, many variations exist and

all differ in some way. Many proprietary and freely available systems are available to

be used. Proprietary systems are among some of the best communication devices4 but

require users to have access to the internet.

Many of the freely available versions of VoIP systems provide much the same func-

tionality that is found in traditional systems and existing proprietary VoIP systems.

This thesis uses a freely available telephone networking program, Asterisk, which is

3the number of unique extensions is almost endless
4The quality of Skype conversations often have a higher quality sound than traditional systems

1.2 Alternative Systems 6

one of the premier VoIP solutions available. This software is added to and modified to

create the system being discussed here. A novel approach is being applied to telephone

systems in this thesis and it is envisioned that the best elements of each the alternative

systems presented, is utilised while the lacking areas of each is overcome.

1.3 Need for System 7

1.3 Need for System

In many areas, whether they be remote sites or small areas in an urban environment,

there exists a real lack of low cost, easily installed and maintained telephone systems. It

is the aim of this project to provide a system that is suited to aforementioned situations.

It can be seen in real world applications that implementing telephone systems are costly

and difficult especially in challenging environments. Some examples include:

∙ Remote areas with little traditional network access.

∙ Offshore situations (Oil rigs, fleets).

∙ Temporary sites (Demountable offices).

In situations such as those listed above it can be imagined that a cheap and simple

wireless telephone network could be an essential element.

1.4 Benefits of System 8

1.4 Benefits of System

While the proposed system has obvious advantages over existing solutions including:

∙ Low cost of equipment.

∙ Ease of installation.

∙ Little maintenance of system.

∙ Ease of use (similar to traditional systems).

∙ Ability to form and maintain computer networks.

There are additional benefits to having such a system. These benefits are more to do

with the router and its’ abilities to transmit multiple types of data. As the network of

nodes behave in a similar manner to wired Local Area Networks (LAN) many services

are able to be distributed across the network. Some of the benefits include:

∙ Ability to distribute Internet access.

∙ Ability for the wireless nodes to perform multiple functions (data logging, con-

trolling).

∙ Ability for the telephone to interface with traditional systems (call outside lines).

All of the above abilities are able to be allowed across the wireless connections. These

functions are expected to be implemented when creating an actual system but are

outside the scope of this Thesis.

1.5 Work Conducted 9

1.5 Work Conducted

During the course of this project many obstacles had to be overcome in order to com-

plete a working system. One of the key problems associated with the project was

allowing each of the wireless nodes to be able to identify the telephone network servers

around it. This was a major part of this project and this is covered in great detail in

section 4.3.

Other, less intensive aspects that needed to be dealt with included:

∙ Determining the layout of the network and the devices in the network(Section 3.1).

∙ Installing the new firmware for the router(Section 4.1.1).

∙ Configuring the router to apply desired network configuration(Section 4.1.4).

∙ Installing/Configuring the telephone network software(Section 4.2).

∙ Testing the system suitably(Section 5.3).

At the conclusion of this process, a large discussion area is provided to determine the

effectiveness of the system and this can be seen in chapter 6.

1.6 Chapter Summary 10

1.6 Chapter Summary

This chapter outlines the proposed system, its’ need in the real world and gives a

brief glimpse of how the system will operate. Throughout the following chapters, the

elements discussed here will be explained in great detail and also their integration into

the system will be shown.

Chapter 2

Literature Review

This chapter sets out to give an understanding of some of the key concepts and com-

ponents that the system is built upon. Some of the underlying principles the pertain

to the project are outlined below and are discussed in much detail throughout this

chapter:

∙ Wireless Mesh Networks.

∙ Telephone Systems.

∙ Audio Codecs.

∙ Router Specific Firmware.

Each of the components listed above form the various sections of this chapter and are

the building blocks that the project is formed upon.

2.1 Telephone Systems 12

2.1 Telephone Systems

Telephones have been changed the way that the world communicates. Until recently

traditional telephone systems have enjoyed a monopoly of a very popular market. Since

the introduction high bandwidth data networks, a newer method of sending voice be-

tween endpoints has been rapidly gaining momentum. These data networks are Internet

Protocol based networks and as such this new method is aptly named Voice over Inter-

net Protocol (VoIP).

Both of these technologies use differing methods to create voice links and enable tele-

phone conversations. Traditional telephone systems employ circuit switched networks

for connections to be made. Circuit switched networks can be imagine to have a direct

line from source to destination. VoIP uses packet switched networks to transport the

voice data. Packet switched networks have many, smaller paths to traverse to reach

the destination. Over the next sections, these two systems will be explored.

Because both systems use digital signals to transmit the audio from source to destina-

tion. In order to reduce the amount of data that needs to be sent over the networks

compression of the audio data is completed by applying compression algorithms. These

are explored in Section 2.3.

2.2 Traditional Telephone Systems

Traditional telephone systems have, over time, embedded themselves into almost com-

munity. Initially starting out as totally analog systems, they have since evolved into

a mixture of analog and digital systems1. The move towards digital transmissions has

allowed for a higher volume of information to be transported through the same wired

medium.

These telephone systems use circuit switched networks to enable a direct and exclusive

line of communication between two points effectively linking the two end with a single

1Most long distance transmissions are converted to a digital signal shortly after leaving the source

and are converted to an analog signal once they are close to the endpoint

2.2 Traditional Telephone Systems 13

wire. This allows for uninterrupted communication with constant latency.

2.2.1 Voice over Internet Protocol

As the name suggests, VoIP uses Internet Protocol as the medium to send voice over

data networks. While traditional telephone networks use circuit switched network,

VoIP uses packet switched network to send voice. Because of the design of packet

switch networks, there are inherit problems associated with sending real time data over

these networks.

The reason for this is the queueing and buffering of the data stream along the way to

the destination. This has the following undesirable affects:

∙ The data packets are sent at regular intervals, but because of buffering (at inter-

mediate routers) and queueing delays. The packets are not received at the regular

intervals that there were sent in.2

∙ The delay can become quite large over large distances (buffering, queueing redi-

recting). Larger delays can make conversations unbearable for the end users3.

∙ Lost packets can result in poor quality conversations. Typically this is seen in

stressed networks or networks with unreliable connections.

These issues are currently preventing VoIP solutions from replacing traditional tele-

phone networks. Much research is currently being done to reduce the effects of packet

switched networks on real time data transmissions. It has been said that VoIP is

preparing to revolutionise the way that telephone systems operate (Meggelen, Madsen

& Smith 2007, p. 1-2) and that this conversion is rapidly arriving.

2Packets may even be received out of order.
3Typically over 300ms is unacceptable

2.2 Traditional Telephone Systems 14

2.2.2 Providers os Systems

Traditional telephone systems are generally maintained and owned by one or two com-

panies. These companies own the infrastructure for the telephone network and as such

have alot of control over the pricing access to the services.

VoIP implementations on the other hand do not generally control and any infrastructure

but provide a means by which to enable telephone conversations to take place over data

networks. Many VoIP providers exist with some proprietary solutions such as SkypeTM

and other free distributions such as Asterisk.

2.3 Audio Codecs 15

2.3 Audio Codecs

Audio codecs (COder / DECoder) are used to encode analog signals that are within

the human sonic range (typically 12Hz to 20 000 Hz) into a digitized approximation of

the original signal. In a telephone system, analog signals are captured by a microphone

on the handset then converted to a digital signal. Once this digital signal is received

at the other end it is converted back to an analog signal and sent to a speaker so it

can be heard. This conversion takes place so that the information is able to be sent on

computer networks.

Typically, audio codecs are able to compress the digital signal in order to reduce the

amount of data that needs to be transmitted between endpoints. The amount of com-

pression that each codec is able to complete differs and as such the resulting quality of

the reconstructed signal varies also. The compression of audio for transmission across

a network is an important aspect to consider when designing a VoIP system. If the

compression algorithm is poor, the bandwidth required by one telephone conversation

may use most of the available bandwidth in the network. On the other hand, if the

compression is too great, the quality of the telephone conversion may be degraded to

a point where it is difficult to maintain a conversation.

There are many audio codecs available but only a handful that are supported by Aster-

isk. These codecs that are supported by Asterisk are very common audio codecs and

offer a great choice for the selection of a suitable audio codec for the project. Most

codecs that are integrated into equipment (mobile phones, IP telephones) are supported

by Asterisk and various quality tests will be conducted on the audio quality.

The choice of audio codec is an important aspect of the project as one of the limiting

factors of VoIP is the bandwidth available in the WMN. Although the G.711 is gener-

ally credited a higher quality reproduction of audio, an extensive range of tests were

conducted on various age groups and it was found that the G.729A codec gave a better

Mean Opinion Score (MOS) than the G.711 codec (4.02 versus 3.65 out of a possible

5) when voices were recorded and played back to the listeners (Light 2004).

For this reason, these two codecs are to be considered for the encoding for the telephone

2.3 Audio Codecs 16

network. By using these two codecs it is hoped that a suitable selection can be made

for anyone considering implementing the project being presented in this paper.

Table 2.1 shows the characteristics of the two codecs being considered for this project.

It should be noted that the bit rate of the G.711 is eight(8) times that of the G.729A

codec which further shows the importance of de-jitter, queueing delay and queueing

loss when selecting an audio codec.

Codec Creator Codec Bandwidth Frame Size Number of Frames

(Kilo Bits / Second) (milliseconds) per Second

G.711 ITU-T 64 20 50

G.729A ITU-T 8 20 50

Table 2.1: Showing Codec Characteristics

Another important point to note is that of the ability of sending faxes using the codecs.

While this is outside the scope of the project it may be implemented in a system based

on this project and as such it should be noted that the G.711 codec can handle fax

tones but G.729A will not. If a fax machine were to be connected to this system care

must be taken to ensure that the G.711 codec is used.

2.3.1 G.711

The G.711 audio codec was released in 1972 with the primary focus on encoding speech

for use in telephony applications. The actual process used to encode the analog voice

signal to a digital signal for transmission across a network is called Pulse Coded Modu-

lation (PCM). This technique uses bits to represent the input level of an analog signal

and then preforms an Analog to Digital Conversion (ADC) on that signal to get a

approximation of the original signal. This codec uses 8000 samples per second (8kHz)

with eight(8) bits representing each sample hence using a total of 64kbps.

To aid in understanding this concept figure 2.1 show the way in which the analog signal

(smooth line) is converted to a digital signal (jagged line).

2.3 Audio Codecs 17

Figure 2.1: Pulse Coded Modulation

2.3.2 G.729A

The G.729 Audio codec uses a different encoding algorithm to the G.711 audio codec

and that is Conjugate-Structure Algebraic-Code-Excited Linear Prediction (CS-ACELP).

Code Excited Linear Prediction (CELP) works by using linear predictions on excita-

tions and was developed in 1985. This type of audio compression and the variations of

it are one of the most widely applied speech coding algorithms in use.

A code book of typical input streams is used and when fed into the system can model

many sounds produced by the human voice box. By using previous samples as a

feedback to the system, pitch can be estimated to resemble the pitch of the speaker.

Figure 2.2 shows how the system works when decoding of an audio signal taking place.

Essentially, to encode voice the encoder selects the best match to the sampled data

from the codebook and transmits the reference to that code to the receiver and the

receiver uses those references to reconstruct an approximation to original sample. This

approach is more computationally expensive than the G.711 codec but results in a much

lower transmission rate.

2.4 Wireless Networks 18

Figure 2.2: Code Excited Linear Prediction

2.4 Wireless Networks

Wireless communication as we know it today, had their beginnings when Guglielmo

Marconi transmitted a radio frequency wireless transmission over a distance of 18 miles

in 1895(Nicopolitidis, Obaidat, Papadimitriou & Pomportsis 2003, page 2). The first

wireless data network was created in 1971, when the university of Hawaii shared data

across islands. This network was named ALOHANET(Nicopolitidis et al. 2003, pages

7-8). Wireless data networks have evolved since their introduction and currently the

IEEE 802.11 networks are the most popular standards for the wireless data networking.

2.4.1 Wireless Data Networks

Currently, the most common wireless standard is 802.11 introduced by the Institute of

Electrical and Electronics Engineers (IEEE). Since defining the standard in 1997, the

standard has been amended with with popular variants being 802.11a (1999) 802.11b

(1999) and the 802.11g (2003)(Gast 2005, page 10). These standards have penetrated

many areas and are still growing at a rapid rate. The main reason for the rapid

expansion of wireless networks is primarily the cheap cost to users. Another reason for

the success of the technology is the degree of freedom experienced. With most areas

covered by wireless access, the ability to access network resources quickly and quickly

2.4 Wireless Networks 19

has proved a popular system.

Most wireless networks consist of an access point and clients. These clients all commu-

nicate with the access point and the services are distributed out of the access point.

These are labeled Wireless Local Area Networks4 (WLAN) and are an extremely pop-

ular type of wireless network. Another popular wireless network is the wireless ad hoc

network where temporary networks are formed when wireless devices come into range

of one another. These sort of networks are generally formed with low power devices

such as mobile phones and netbooks but can employ higher powered devices.

Recently, a new concept has been brought forward which is set to change the way that

public networks operate. This network architecture is named Wireless Mesh Networks.

4Because of the similar architecture to wired Local Area Networks

2.5 Wireless Mesh Networks 20

2.5 Wireless Mesh Networks

“Wireless Mesh Networks (WMNs) are dynamically self-organized and self configured,

with the nodes in the network automatically establishing an ad hoc network and main-

taining the mesh connectivity” (Akyildiz & Wang 2005, p. S23).

Wireless Mesh Networks (WMN) are a developing technology that allows delivery of

services to an area. The arrangement of a WMN consists of two categories of partici-

pants, which are mesh clients and mesh routers. The mesh routers form the backbone

of the network and are usually considered to be immobile.

Mesh clients on the other hand are usually mobile radio devices that access resources

that the mesh routers provide. Figure 2.3 shows the arrangement of a WMN with the

dark shaded area representing the mesh routers and the light shaded area representing

the mesh clients.

Figure 2.3: WMN Layout

This network can be seen in a number of applications throughout the world and some

good examples of these are(Bruno, Conti & Gregori 2005, p. 124 - 125):

Intelligent Transportation Systems The Portsmouth Real-Time Travel Informa-

tion System (PORTAL) is a system that relays real time information on public

transport services. This information is able to be accessed by the public in order

2.5 Wireless Mesh Networks 21

to better organise their travel around the city.

Public Safety The San Matteo Police Department in the San Francisco Bay Area

uses a mesh network to co-ordinate the officers around the area in real time. This

is in an effort to better organise assistance and co-operation between officers.

Public Internet Access Cerritos, California has an Internet Service Provider (ISP)

that provides Internet access to paying customers using a WMN that is installed

throughout the city.

WMN are described as communications networks that consist of radio nodes that form

a network in an ad hoc manner. WMN have become the focus of many researchers in

the past 10 - 15 years and much advancement has been made in this time. Although

there have been vast improvements to the bandwidth and quality of signals, many areas

such as packet routing exist where more research is necessary.

WMN are maturing quickly and with the price of hardware that is able to operate

within this area, many projects and consumer products are being created that are

taking advantage of this technology. One of the major aspects of this project is to

correctly configure and maintain a WMN that is capable of more than just routing

data between clients of the WMN but to provide a reliable and robust service that will

run in parallel with data routing.

2.5.1 Mesh Routers

Mesh routers provide a backbone for the WMN and as such, enable the distribution

for data routing and provision of resources. Common resources provided by WMN are

Internet access, Intranet access, file transfers and phones systems. Mesh routers usually

have more resources available to them as compared to mesh clients.

2.5.2 Mesh Clients

Mesh clients can be any radio device that accesses the WMN and uses the resources

provided by the WMN. These devices can range from mobile phones, PDAs (Personal

2.5 Wireless Mesh Networks 22

Digital Assistant) and laptops or netbooks. In order to connect to the WMN these

devices have to operate in the same radio frequency and be able to communicate with

the mesh routers.

2.6 Wireless Mesh Network Routing Protocol 23

2.6 Wireless Mesh Network Routing Protocol

Routing protocols are responsible for the delivery of data across a network. In a wired

environment (for example the Internet) this task is usually fairly straight forward as the

routers are immobile and reachable. Once a route has been found in a wired network it

is extremely unlikely to change. In environments where the topology changes from time

to time (mobile wireless network) the routing protocol needs to be able to determine

new paths to send the data along.

The design of wireless routing protocols has become a very active field of study for many

researchers and this can be seen by the amount of proposals being published over the

last 10 years. Thousands of designs have been designed, simulated and implemented in

this field, each with a specific application catered for. Each of these proposed wireless

routing protocols can be placed into three very broad categories, and they are: Reactive,

Proactive and Hybrids (mixture of reactive and proactive).

The reason for the vast amount of routing protocols for wireless networks is due to the

varying conditions of applications for wireless networks. Some of the aspects that are

used to determine the most suited routing protocol can be seen below:

∙ The expected mobility of the wireless routers.

∙ The number of wireless routers that are part of the network.

∙ The type of data being sent across the network.

∙ The physical layout of the network.

Depending on the situation a certain type of routing protocol should be implemented.

in the next three sections each of the categories will be looked at and an example of an

available routing protocol will be discussed.

2.6 Wireless Mesh Network Routing Protocol 24

2.6.1 Reactive

Reactive routing protocols are named as such due to the way that they react to requests.

When a request is made to send data to a certain destination, the routing protocol

send requests to surrounding nodes on the network. This messages that are sent to

surrounding nodes contain information pertaining to the requested destination, these

broadcasts are passed on until the destination is reached. Once the destination receives

the request the information is passed back along the path it was sent along back to the

original sender. In most applications, multiple paths are received and then a suitable

(usually shortest distance) path is selected and the data is sent along that path.

There are two main disadvantages to using a reactive routing protocol, and they can

be seen below:

∙ The process of determining the routes to various nodes on the network can cause

the network to become overwhelmed with path request packets. While one node

would be unlikely to cause this, when multiple nodes are determining routes across

the network it could be seen.

∙ There is a latency between attempting to send data and the data actually being

sent. This time is due to the time required to determine a path to the destination.

Reactive routing protocols are particularly beneficial in wireless networks that are

highly mobile in nature. One of the most common reactive routing protocols is Ad

hoc On-demand Distance Vector routing protocol(AODV) (Perkins & Royer 1999).

2.6.2 Proactive

Proactive routing protocols determine the path to all nodes in the network (in a similar

way to reactive routing protocols) but keep a table of all the paths to the nodes in a

table. This table is stored locally and when a request is made to send data to a specific

node, the node is looked up in the table and the path found there is used.

2.6 Wireless Mesh Network Routing Protocol 25

By using this method, data is quickly sent on the network. There are two major

disadvantages to using this method and they are:

∙ The size of the tables (that are stored locally) grow with every node on the

network. When many nodes are available in the network these tables can become

very large and may cause problems associated with available memory.

∙ When a node is broken (powered down or moves out of range) this type of routing

protocol may not recognise this fault before sending information along that path.

This would lead to data loss or errors on the network.

Proactive routing protocols are seen to perform better in environments that have lit-

tle to no mobility of nodes and that has nodes that are very reliable. One of the

most common reactive routing protocols is Optimized Linked State Routing proto-

col(OLSR) (Clausen & Jacquet 2003).

2.6.3 Hybrid

Hybrid routing protocols attempt to use the best parts of both the reactive and proac-

tive routing protocols whilst trying to avoid the disadvantages of both. One of the most

common hybrid routing protocols is Hazy Sighted Link State routing protocol(HSLS).

HSLS was developed by BBN technologies (BBN Technologies website 2009) in 2001

and revised in 2003 (Santivanez & Ramanathan 2003). HSLS keeps a table similar to

the one used in proactive routing protocols but also uses the reactive local updates

whenever a link is lost within two(2) hops of the node.

The disadvantages of this type of routing protocol are:

∙ Nodes receive updates from nodes that are further away less frequently and due

to this may not have an up-to-date view of the network. These less frequent

updates on distant nodes serve to reduce network bandwidth.

∙ Security mechanisms that are in-place may fail if key infrastructures are not in

2.6 Wireless Mesh Network Routing Protocol 26

reach of each other. However this is only likely in poorly designed (physical

location) networks.

Hybrid routing protocols perform well in environments that are somewhat in-between

those environments that reactive and proactive routing protocols are most suited to.

2.7 Security Issues 27

2.7 Security Issues

The implementation of security in data networks is an essential element that attempts

to prevent attacks upon equipment and data within the network. Many security mea-

sures are available for networks and these include firewalls, anti-virus protection and

controlling access to certain areas of networks.

Over the next sections, security in regards to wireless networks and Asterisk are eval-

uated.

2.7.1 Wireless Security

With the increasing amount of wireless networks, data security has become harder to

defend against. Much research has been done on this topic and security measures such

as WPA and WEP have been developed specifically aimed an wireless networks. The

devices provide some protection against malicious attackers and should be enabled in

the proposed system. This is especially true if sensitive material will be available on

the network.

Wireless security is outside the scope of this Thesis and will not be implemented.

2.7.2 Asterisk Security

Security within Asterisk is treated very seriously, many features have been added to

the VoIP system due to malicious attacks. One of the key problems is the ability for

an attacker to use the connections available on a system tom make calls through the

Asterisk server. Although the proposed system is not interfaced with an outside line,

future implementations of this system may.

Eavesdropping on a conversation is a real concern for this Thesis. With enough knowl-

edge and access to the wireless network, an attacker could force voice traffic to be

routed through their connection (or recorded) and allow the two way conversation to

be listened to.

2.7 Security Issues 28

Before employing this project in a real world situation, security would need to be

implemented to guard against such attacks. As this Thesis is not being deployed for

public use, this issue will not be further developed upon in the course of this Thesis.

2.8 Hardware 29

2.8 Hardware

There were two main pieces of hardware used when creating and testing the system

being proposed in this Thesis. The wireless routers that are used to perform the main

functions of the system and the IP phones. Although the IP phone is not an essential

part of the system (a software based phone could be used) it is included to give a full

picture of the system.

Over the following two sections, both the wireless router and the IP phone will be

discussed and the specifications and capabilities of each component given.

2.8.1 LinkSys WRT54GL Wireless Router

Figure 2.4: LinkSys WRT54GL

The WRT54G series of wireless router have been a popular line for Linksys mainly due

to the versatility of the units. In particular, the WRT54GL wireless router has been

popular and since its’ introduction in 2005. Two versions exist of the WRT54GL and

they are 1.0 and 1.1 (See table 2.2). The main difference between the two is that in

version 1.0, the maximum size of the firmware image that could be uploaded using the

preloaded firmware was 3MB. Later changed to 4MB when version 1.1 was released.

The WRT54GL supports the use of two wireless transmission standards and they are

IEEE 802.11b and IEEE 802.11g. The characteristics for these two standards can be

2.8 Hardware 30

Version Processor Speed RAM Flash memory Release Date

(in MHz) (in MB) (in MB)

WRT54GL 1.0 200 16 4 2005

WRT54GL 1.1 200 16 4 2008

Table 2.2: Hardware specifications for the WRT54GL router

seen in table 2.3.

Protocol Release Frequency Typical throughput Max net bitrate

Date (GHz) (Mbit/s) (Mbit/s)

802.11b Sept 1999 2.4 4.3 11

802.11g June 2003 2.4 19 54

Table 2.3: Specifications for 802.11b and 802.11g

On of the key selling points of this router is the fact that LinkSys made the firmware

source publicly available. This has allowed community and commercial developers to

revise the firmware image for specific applications. These extensions to the firmware

allows the router to perform many extra functions on top of routing data wirelessly,

some of the popular applications for the router are listed below:

Creation Internet Hotspots Many people have successfully created an Internet hotspot

where wireless users are able to gain access to the internet through the wireless

router. Some providers use an active portal where users are forced to register (or

pay) before accessing the network (Hot Spot PA website 2009).

Controlling Robots There are some good examples that show the router controlling

motion and web cameras (ROBOSTUFF Website 2009). The router controls the

motors and servos as well as providing a way to access the robot wirelessly.

Adding Memory to the Router By modifying the hardware and adding an SD

memory card reader to a spare (unused) communication port on the router an

extra 2 gigabytes can be added to the memory of the router. Many application

for this extra memory can be implemented such as data logging or creating a

wireless file server (Adam Kowalewski website 2009).

2.8 Hardware 31

More information regarding alternative firmware images is available in section 3.2. A

complete listing of all of the technical information pertaining to the WRT54GL can be

found on the LinkSys website (WRT54GL Technical Information 2009).

2.8.2 LinkSys SPA901 IP Phone

Figure 2.5: LinkSys SPA901

The SPA901 IP phone pictured in figure 2.5 is a robust unit that is able to communicate

with the system being developed. The key features can bee seen in table 2.4. The

phones’ settings are able to be modified in two ways. Firstly the configuration is able

to be modified by using a web interface. The alternate configuration is by using the

Interactive Voice Response (IVR) menu where commands are entered by key presses

on the keypad of the phone.

The phone has support for Session Initiation Protocol (SIP) which allows the phone

to register with a service provider. The SPA901 also supports the audio codecs G.711

and G.729 which are being used in this Thesis. Also the ability for the phone to be set

with either a static IP address or use a Dynamic Host Configuration Protocol (DHCP)

client to lease an IP address is supported by the phone. In this paper the DHCP client

will be running on all phones connected to the routers and therefore is a requirement

that this phone is able to complete.

More in-depth technical information for the SPA901 IP Phone can be found on the

2.8 Hardware 32

IP Phone Supported Connection Configuration

Model Audio Codecs Protocol

SPA901 G.711, G.726 Session Initiation web interface

G.729, G.723.1 Protocol (SIP) and key pad

Table 2.4: Specifications for the SPA901 IP Phone

Cisco website (SPA901 Technical Information 2009).

2.9 Chapter Summary 33

2.9 Chapter Summary

Throughout this chapter an attempt is made for the reader to gain an understanding of

the various aspects of the project. It is these fundamental components that the project

is built upon and as such these concepts are needed to be understood in order to gain

an understanding into how the proposed system operates.

For the remainder of this document, these concepts will be integrated into the project

and will combine to allow various aspects of the system. The underlying principles

discussed in this chapter form the basis for which the rest of the project is built upon.

The results found during the process of researching this project, and shown in this

chapter, will be compared to actual results found in section 6.2.

Chapter 3

Design of Proposed System

This chapter covers the decisions and assumptions made about the proposed system

in regard to the network, the devices in the network and how they combine to offer a

robust telephone system. The key components of the system include:

∙ The wireless router.

∙ The IP phone.

∙ The firmware for the wireless router.

∙ The VoIP software (Asterisk).

∙ The various software portions that are responsible for the maintenance of the

system.

∙ The purpose designed programs that allow the automated configuration of the

telephone network.

Each Section of this chapter aims to give a brief insight into the operation of the various

aspects of the system but also defines how that aspect integrates into the system as a

whole.

3.1 Design Philosophy 35

3.1 Design Philosophy

One of the most fundamental aspects of this project is to first develop an idea of

how the system will operate. This process required many considerations about the

possible ramifications of the decisions made about seemingly straight forward aspects

of the system. Of particular interest, the following aspects were first looked at before

attempting any implementation:

∙ The expected mobility of the mesh routers.

∙ The portability of the IP phones and the ability to log onto a phone.

∙ Automatically connecting Asterisk servers.

∙ How the wired and wireless interfaces of the router would be handled.

∙ How the audio data is routed.

After deciding on how the system would operate, each of the key aspects of the system

was looked at to determine the feasibility of the implementation. Over the following

sections, these aspects will be discussed from a design perspective. Chapter 4 will

discuss the implementation of these concepts.

3.1.1 Mobility and Reliability of Mesh Routers

The mobility of the mesh routers goes towards the overall design of the system and the

selection of aspects such as the routing protocols used in the system. It is envisioned

that the mesh routers will mostly remain immobile in the practical application of the

system. The main reasoning for this is listed below:

∙ In order for a specific area of coverage for the WMN, the mesh routers (backbone)

are needed to remain in a set place.

∙ Most phones will remain fixed in place (inside a residence or office) and these

areas should remain relatively immobile.

3.1 Design Philosophy 36

∙ Most (if not all) routers will need to be plugged into a power source which limits

the mobility of the units somewhat. The support for mobile devices to interact

with the system.

Another important aspect to consider is that of reliability of the mesh routers. By

reliability it is meant that there should be little to no time that the mesh router should

be powered down. This is especially true in sparse networks where one node failure

may cause a failure of the network. In figure 3.1 it can be seen that is the node in

the middle in part (a) were to fail, that the entire network would become two separate

WMN (b).

Figure 3.1: Showing a critical failure of WMN

In section 3.3.3 it was discussed that proactive routing protocols are particularly ben-

eficial to relatively immobile wireless networks. From the above described design of

the proposed system, it can be seen that this type of routing protocol would suit this

application well. Section 4.1.3 discusses the actual selection of the routing protocol for

this project.

3.1 Design Philosophy 37

3.1.2 Portability of IP Phones

The ability to move phones between mesh routers (Asterisk servers) is an attractive

idea for two reasons. Firstly, from time to time users may switch areas or sites and

would still like to have calls routed to their phone regardless of their physical location.

Secondly, when creating a telephone network, the ability to plug in a phone and have it

automatically configure itself with a mesh router would save a lot of time in the setup

of the telephone network.

The ability for the user to move within the telephone network and still be able to have

a phone within a close proximity can be completed in two ways. Firstly as described

above, the phone can be physically taken with the user and plugged into a closer mesh

router. Secondly, if the network has additional phones the user could log on to the

phone (change the extension of the phone to be the users’ extension). This ability to

log on may be more commonly used as the physical removal and transport of the phone

is cumbersome.

The ability for the phone to be moved to a different location and automatically re-join

the telephone network has been implemented into the system by running a Dynamic

Host Configuration Protocol (DHCP) server on the wired ports of the mesh router. In

this way, when an IP phone is plugged into a router, it leases an IP address off the router

and uses the default gateway (obtained as part of the DHCP server) to register with

the Session Initiation Protocol (SIP) server that is running concurrently with Asterisk

on the router (see section 4.1.4).

Once the SIP session has been configured and the Asterisk server is aware of the phone

(see section 4.3) calls can be made and received by the phone.

Another major aspect to consider is how the IP phones will be allowed to move around

the network. One potential solution to this is to have the IP phone always register with

the same Asterisk server regardless of where it is on the network while another is to

have it register with the Asterisk server that it is connected to.

In order to get a better understanding of this, consider Figure 3.2. In the figure it can

3.1 Design Philosophy 38

seen that the IP phone is connected to Router 1 and that wireless connections exist

between the routers numbers 1 through 4. It can also assumed that all the routers are

running an Asterisk server. If the phone were always to register to Router 4, network

traffic could be sent from Router 1 to Router 3 and then to the Asterisk server on

Router 4 and a connection made. Additionally, if the IP phone were plugged into

Router 2 the traffic could be directed from Router 2 through to Asterisk on Router 4.

Figure 3.2: IP Phone Registration

In contrast to this, if the IP phone were to register with the router it is plugged into it

would always be able to register without sending traffic across the wireless connections

and if the phone moved to any router it would simply register there.

The implementation of the two different methods described above vary greatly and the

supported method needed to be decided on very early in the project. This process

in making this decision required that many situations are taken into account. Each

method provides an advantage over and for this reason, the process of selecting the

method for the project was complicated even further.

The main differences that presented themselves whilst considering the methods are

listed below:

3.1 Design Philosophy 39

∙ Network traffic caused by each of the methods.

∙ The use of nodes that are not running the Asterisk software.

∙ The configuration of wired and wireless interfaces of the router.

The network traffic generated by the two methods may vary greatly depending on the

layout of the network and the devices that are operating in the WMN. There are two

types of telephone network participants that need to be considered and they are:

∙ Phones that connect to the wireless interface of the WMN.

∙ Phones that are plugged into the wired interface of the mesh router.

Devices that connect to the mesh router via the wired interface can register directly

with the router that they are connected to or register with any other mesh router in

the network. The first method does not transmit data across the wireless network but

communicates with the router (more specifically the Asterisk server) directly. When

the phone registers with a remote server wireless traffic is sent and also the problem of

data backtracking can come into effect (see figure 3.3). As this project has the wired

and wireless interfaces separated there is also problems faced with NAT and firewalls

when attempting to send data to a device that is behind these security devices (see

section 3.1.3). These issues affect the case where a phone is able to register to a remote

Asterisk server.

With these considerations in place, the decision to force the phone to register with

the mesh router it is plugged into will be implemented. It should be noted that this

does not stop a user from connecting to a remote Asterisk server but this would have to

configured manually using the phone settings. By implementing the system in this way,

the automated configuration of the Asterisk servers and phones can be implemented.

Devices that connect to the wireless interface of the router are able to move freely

throughout the WMN and as such may move to a position in the WMN that would

cause the audio to back track through the network in order to reach the destination (this

3.1 Design Philosophy 40

Figure 3.3: Audio data traversal for different configurations

is shown in Figure 3.5). Obviously this is not an acceptable use of network bandwidth

and the system would need to be designed in a way that would not occur.

In order to allow for the data traversal to be minimised, the system should be designed

to allow the mobile device to constantly change the router that it is registered with

whenever the device finds a closer mesh router. This would effectively eliminate the

problem but would require more advanced network management and in turn more pro-

cessing power. As the main consideration is to keep the wireless bandwidth optimised,

allowing the mobile device to change Asterisk servers should be implemented. As this

project does not incorporate the use of wireless participants (due to time limitations)

this consideration will not be included into the system.

3.1 Design Philosophy 41

3.1.3 Routing of Audio Data

Asterisk provides two options for the management of the VoIP conversations. The first

allows the two end users to manage their connection directly (after the connection has

been made by Asterisk) while the second forces the data to be routed through the

Asterisk servers at each end. In order to better understand this, refer to Figure 3.4.

Figure 3.4: Options for the routing of VoIP traffic

It can be seen that when Asterisk is configured to force the audio to be sent through

Asterisk server (Figure 3.4(a)) that the bi-directional data transfer is occurring from

each of the IP phones. Alternatively, when Asterisk allows for the data to be sent

directly between the phones (Figure 3.4(b)) it can be seen that the data bypasses the

Asterisk servers on each of the routers.

While this seems to have little effect in the figure, there are serious ramifications of

selecting between the two options. If the wired and wireless interfaces are not bridged

issues such as Network Address Translation (NAT) and firewalls can hinder the ability

for the phones to connect to each other and in most cases there is no audio received at

each end. Therefore, if the interfaces of the router are to be separated (as is the case

in this project) then the audio traversal must be forced to use the Asterisk server that

3.1 Design Philosophy 42

resides on the router in order to bypass the NAT and firewall issues.

If the system were to incorporate mobile devices that are able to interact with the

Asterisk server wirelessly (see section 3.5) it would be beneficial that these devices were

able to create a direct link to other phones on the network. This is due to the fact that

the mobile devices may actually be closer to the destination than the Asterisk server

that they are registered with and this would lead to unnecessary packet forwarding. To

understand this better refer to figure 3.5.

Figure 3.5: Traffic route for alternate configurations

In the figure it can be seen that the data must traverse a lot further when forced to

go through Asterisk (thin solid lines) servers as opposed to when it does not (thick

segmented lines). It is a major aspect to allow mobile devices to connect directly when

designing this system. To implement this, additional programming would be needed

to be added to the programs that connect Asterisk servers. This will not be included

in this paper but is highlighted to allow for a optimised system to be created in the

future.

3.2 Firmware 43

3.2 Firmware

Institute of Electrical and Electronics Engineers (IEEE) Standard Glossary of Software

Engineering Terminology, Std 610.12-1990, defines firmware as:“The combination of a

hardware device and computer instructions and data that reside as read-only software

on that device”

In the case of this project, it refers to the software that is employed to control the

operation of the router and allow a user to modify and add programmability to the

device. It is essential that a Linux compatible firmware be installed to allow all software

such as Asterisk to run on the router. Many firmware distributions are available for

the WRT54GL and are discussed in the following sections.

3.2.1 Variations

There are multiple firmware images available for the Linksys WRT54GL wireless router.

These firmware images allow one to alter the operation of the router, more specifically,

they allow a small installation of Linux to become the operating system for the router.

The compatible distributions include, but are not limited to:

∙ Open-WRT (Official Open-WRT Website 2009)

∙ DD-WRT (Official DD-WRT Website 2009)

∙ Sveasoft (Official Sveasoft Website 2009)

∙ FreeWRT (Official Free-WRT Website 2009)

∙ Tomato (Official Tomato Website 2009)

These distributions can be loaded onto the router to replace the supplied firmware and

allow a lot of flexibility and configurability. Of the above listed firmwares, Open-WRT

and DD-WRT were the best choices for the specific application that is being proposed

in this paper. The reason for this is that the aforementioned distributions have a good

3.2 Firmware 44

developer base and are free to use. They both also have good community support for

troubleshooting and guides.

Open-WRT

Open-WRT was originally developed for the WRT54G series of routers as a replacement

for the stock firmware for the router. Open-WRT uses a Linux based firmware and has

allowed for the addition of many features that are not available with the stock firmware.

Some of the notable extensions are as follows:

∙ Static Dynamic Host Configuration Protocol (DHCP) server.

∙ Quality of Service (QoS) mechanisms for certain data types.

∙ Highly configurable firewall and other networking tools.

∙ Printer server and sharing abilities (with USB support).

The main reason for the success of the Open-WRT firmware is that it is a community

based project that is freely available for use. Many people have contributed to the

firmware with many other people revising the code constantly leading towards a very

stable base for the router to operate from.

DD-WRT

DD-WRT is also a Linux based firmware that is compatible for the WRT54GL wireless

router. As with Open-WRT, this firmware is a community based project and has

had much success in creating a very flexible firmware. All of the functionality that is

available from Open-WRT is included in the DD-WRT variation.

3.2.2 Selection

The selection of the firmware for the router was achieved by heavily researching available

options. Table 3.1 shows the key points of each of the systems:

3.2 Firmware 45

Firmware Distribution Focus Costs Support

Open-WRT Enthusiasts Free Very good

DD-WRT Enthusiasts Free Very good

Sveasoft Professional Market Costs involved Poor

Free-WRT Professional Market Free Good

Tomato Enthusiasts Free Good

Table 3.1: Comparison of Firmware

Of these Open-WRT and DD-WRT both provide similar services and are quality dis-

tributions. After considering the two firmware distributions’ suitability and also the

feedback from many users of both, the following items were found of Open-WRT:

∙ Large community of contributors.

∙ Regularly updated.

∙ Many guides and “how-to’s” available.

∙ Reported success with Asterisk installations.

Some issues regarding licensing of elements of DD-WRT have also been reported which

are of concern. Additionally, security issues have been identified that allowed the

remote execution of commands on the router (that have since been rectified) were also

of concern. For the above reasons, Open-WRT was chosen as the firmware that will be

used for this project. It provides all of the required functionality as well as little resource

use which allows the elements of the project enough resources to run comfortably.

3.3 Software 46

3.3 Software

Specialized software was needed to get a functioning telephone exchange running on the

wireless routers. This software has very specific jobs to perform within the system and

the design of the system relies heavily on these jobs being completed properly. These

software aspects of the system are:

∙ Asterisk is responsible for the call setup and maintenance of the network.

∙ The DHCP server exist to aid in the ability for devices to automatically join the

network.

∙ The OLSR routing protocol allows the wireless nodes to form a WMN.

∙ The Asterisk Client Information Sharing (ACIS) programs allow the telephone

network to automatically configure itself.

Also, configuration of the DHCP server was required to maintain connections between

the router and the IP phones that are plugged into the router. Service advertisement

methods were also coded and installed in order to implement automated configuration

of the Asterisk servers. The routing protocol that is responsible for the setup and

maintenance of the WMN is discussed in section 4.1.3.

3.3.1 Asterisk

Asterisk is an free and open source project that was created to provide an alternative to

conventional telephony systems. Since its’ inception in 1999 by Mark Spencer, Asterisk

has enjoyed the support of many members of the community. This community support

was available due to the fact that Asterisk has dual licenses including GNU General

Public License (GPL) and a proprietary software license to permit licensees to distribute

proprietary, unpublished system components. With the open source development, many

program bugs and additions were made to Asterisk enabling it to become a very robust

and efficient telephony system.

3.3 Software 47

Although Asterisk incorporates many features such as call conferencing, video calls,

mailbox creation and call forwarding, these features were not implemented in the set

up of the project. During the course of the project, only very basic settings for Asterisk

were used which allow call creation/termination of audio conversations. The main

reasons for the exclusion of the additional features included:

∙ Keeping the file system usage to a minimum.

∙ Reducing the complexity of the file maintenance.

∙ The capacity of a basic telephone system is able to be determined.

Asterisk is an free and open source project that was created to allow the creation of

telephone systems. At the time of writing, the supported Asterisk release is 1.0.10-1

for white Russian distribution of Open-WRT(Official Open-WRT Website 2009). This

version of Asterisk has multiple available versions for Open-WRT and of these, the

asterisk-mini 1.0.10-1 mipsel.ipk package was chosen for the reason that this distribu-

tion has the smallest install size while still providing all of the required functions that

are needed for the project.

Simple Asterisk setups are configured with the modification of two files (in most cases).

These two files control the phone connections (“sip.conf” or “iax.conf”) and what

steps are taken when a phone dials a number (“extensions.conf”). With very little

modification, a very basic VoIP telephone network is obtainable and calls are able to

be made.

3.3.2 DHCP Server

Open-WRT provides an open source DHCP (Dynamic Host Configuration Protocol)

server that can be run on the router to allow clients connected on the ethernet ports of

the router to lease an IP address from the router and connect to the SIP server (which

is part of Asterisk). This is available as a standard component in the firmware but also

is available as a package at http://downloads.openwrt.org/whiterussian/packages/ and

is called dnsmasq.

3.3 Software 48

This package is described as a lightweight, easy to configure DNS forwarder and DHCP

server. Although the DNS forwarder will not be considered for this project it is quite

useful in many networks. To enable the DCHP server to handle any IP phones that are

plugged into the router the configuration files for dnsmasq must be configured correctly.

This configuration will be shown in section 4.1.4.

3.3.3 OLSR Routing Protocol

Optimized Linked State Routing (OLSR) protocol is a proactive routing protocol (see

section 2.6) that allows for the interconnection of multiple nodes in a wired or wireless

network. OLSR attempts to maintain a constantly updated view of the network that is

a part of and does this by sending messages to its’ neighbours. a link state algorithm,

the information reagarding the node’ information (such as link quality) and location is

flooded throughout the network to give a good idea of the nodes in the network, OLSR

optimises the information that is transmitted to ensure that this information does not

cripple the network.

The variation of the OLSR routing protocol that is used in this project is called OLSRd

and was originally written by Andreas Tønnesen. Since the initial protocol was released

the code has been modified and the operation of the routing protocol optimised. Early

on there were issues that limited the number of nodes catered for to around a couple of

hundred but since the optimisation of code, the number of nodes that can be supported

is now within the thousands.

This routing protocol will be used in this project as it has been shown to perform very

efficiently in large networks and allows for the proposed system to remain connected at

a small cost to resources and bandwidth of the router and the network.

3.4 Asterisk Client Information Sharing (ACIS) 49

3.4 Asterisk Client Information Sharing (ACIS)

Because of the way that Asterisk is designed there is no way for it to automatically

discover and connect to other Asterisk servers. It should be noted that this is not a flaw

of Asterisk but has been carefully designed to operate this way. The reason for this is

that Asterisk is typically configured to connect to other services by an administrator

and is modified rarely (if at all) due to the static nature of wired telephones.

The ability for Asterisk to become aware of other Asterisk servers that are running

around them is a fundamental aspect to this project. A major success of the project

hinges on the way that this task is completed. There are two considerations for this

aspect and they are to ensure that the network is up-to-date and that the amount of

data that is being transmitted over the network is kept to a minimum.

In order to successfully implement a system that attempts to optimise these two princi-

ples, many scenarios were considered. The data contained in the messages sent between

Asterisk servers was kept to a minimum by using data contained in the headers for the

sent packets (seders’ IP address). Without carefully planning for when information is

needed to be sent and reducing the size of the packets this aspect of the project has

the ability to cripple the network with bloated information on the status of phones on

the network.

To enable the Asterisk servers to maintain a view of the network, client updates are

sent at regular intervals. The actual time interval used is very subjective and will vary

between applications. A very static phone network would not need to be updated as

often as a network where users are constantly being added and dropped.

The information contained in the data sent was reduced to strings containing the ex-

tensions1. In order to reduce the transmissions to this, the structure of the files “ex-

tensions.conf” and “sip.conf” were hard-coded into the programs that controlled the

transmissions. In this way simple loops were able to be used to rewrite the files in a

suitable format.

1Telephone identification numbers (Telephone Numbers)

3.4 Asterisk Client Information Sharing (ACIS) 50

It was also decided that when a phone disconnects that this information would not be

shared with all of the Asterisk servers in the network but rather that the details about

the phone (extension and location) are removed after not receiving an up date from

the phone after a certain time period. This also helped to reduce network traffic.

3.4.1 Transport Protocol for Messages

There are two protocols that transport data through IP networks. Each have advan-

tages over the other and to ensure that the proper method is chosen both were studied.

The two protocols are: User Datagram Protocol (UDP) and Transmission Control

Protocol (TCP).

Transport Protocol User Datagram Protocol Transmission Control Protocol

Guaranteed delivery No Yes

Bandwidth Used Least Most

Connection One to many / one to one One to one

Table 3.2: Comparison of Transport Protocols

From Table 3.2 it can be seen that TCP ensures that the sent data is received in tact and

in the correct order that is was sent in. UDP makes no guarantees about the delivery

of the packet at all. UDP packets are typically used in real time applications where

it is redundant to have the sender retransmit when a packet is lost. TCP connections

are used where data integrity takes precedence over timeliness. In order to keep the

Asterisk servers up-to-date, time is an important aspect but it is more important that

the information is received correctly.

It is also important that the most efficient method is used in a wireless environment.

TCP data integrity comes at a price of extra overhead. When little data is being sent

between servers, this overhead may actually incur more data than is being sent. In

the case of this project this is especially true, with most transmissions containing four

telephone numbers. This fact makes the UDP transport protocol a more attractive

option.

3.4 Asterisk Client Information Sharing (ACIS) 51

Finally, it can be seen that one to many connections can be made with UDP connections.

This is especially important in the proposed system as it is assumed that multiple

routers will be present in the WMN and being able to send one message to all other

routers will reduce the total bandwidth consumed for this aspect of the system.

For the reasons mentioned UDP broadcast messages are used in the implementation of

the Asterisk Client Information Sharing (ACIS) programs.

3.4.2 Detection of New Phones

From time to time it can be assumed that a new client will want to connect a new phone

into one of the Asterisk servers (Temporarily or permanently). This phone new phone

needs to be recognised and added to the two files “extensions.conf” and “sip.conf”. In

order to complete this, the Asterisk debug information needs to be regularly checked for

phones attempting to connect to the server2. When a phone is found, its’ information

is added to the system and Asterisk is told to reload the configuration files.

This does mean that until the phone attempts to reconnect, it will remain disconnected.

This could not be avoided in this project as developing an interface with the SIP server

would involve vast amounts of time. It may be beneficial to create an interface (or an

entirely new SIP server) that would allow for the automatic addition of phones.

2When a phone attempts to connect and is not in the “sip.conf” file, the connection is refused and

this information is saved to file.

3.5 Adding Support for Mobile Radio Devices 52

3.5 Adding Support for Mobile Radio Devices

In today’s market there exists many powerful mobile radio devices available (with many

in use). One good example is the smart phone or mobile phone. With many mobile

phones being able to participate in wireless networks already, the ability to connect to

a WMN similar to the one described in this paper and use the services available on the

network.

It is possible to incorporate a mobile phone into the proposed system with the addition

of service discovery. Service discovery is a concept whereby a node in a network can

advertise its’ services and resources to other nodes in the network. A service or resource

that can be advertised may include printing services, networked projectors, e-mail

servers and in this case, Asterisk. Many service discovery protocols exist and are

implemented in many situations - these include Service Location Protocol (SLP), Jini

(for Java), Salutation, XMPP, UPnP. All have strengths and weaknesses and are suited

to specific applications.

In addition to this, the phone needs to be capable of participating in the network

(transmitting in IEEE 802.11b/g) and be able to process service advertisements and

use SIP to register on the network. If these requirements are met, the phone would be

able to connect to an Asterisk server in the same way that the SPA901 IP phone does.

This would allow the phone to roam within the WMN and make / receive phone calls

as long as it has registered with an Asterisk server.

To enable this feature the following service discovery aspects would need to be investi-

gated and implemented on the mesh routers:

∙ The selection of a suitable service discovery algorithm (XMPP, SLP).

∙ The supported connection protocols (SIP, IAX or H.323).

∙ What is advertised to be considered enough information (IP address, available

bandwidth, physical location etc).

∙ The supported audio codecs (possibly phone specific).

3.5 Adding Support for Mobile Radio Devices 53

This ability will not be implemented in this paper but is included to show the robustness

of the proposed system. It is envisioned that this feature will be implemented in a

system that would be deployed in a real application. There would be certain design

consideration that may need to be altered to ensure a level of quality if these mobile

devices were to be implemented. These would include:

∙ Changing the routing protocol to another that would better suit highly mobile

devices.

∙ Altering the way the connections are made with Asterisk server (allowing hand-

offs between servers or forwarding packets).

∙ Adding information to Inter Asterisk Client Information Sharing to allow speci-

fying codecs, passwords and message banks.

This also would require much testing of the system under new and varying conditions

in order to gain an understanding of the potential of the system.

3.6 Combined System 54

3.6 Combined System

After combining all of the concepts and components described in this chapter, Figure 3.6

gives a graphical representation of how the system will operate on each of the wireless

routers.

Figure 3.6: Figure showing how the various components combine.

It can be seen that the components combine and allow for telephone network to exist

on the wireless router. Asterisk can be viewed as a gateway that connects the wired

and wireless interfaces of the router and is positioned in the figure overlapping the two.

This concept was discussed in Section 3.1.2.

Also of interest is the close relationship between the Asterisk server and the ACIS

module. In a sense, these two separate entities could be combined as they are both

performing functions essential to the telephone network. They have been left separated

in this figure to illustrate that ACIS concept is novel and is not a standard feature of

Asterisk3.

3The SIP server however is a standard feature and has been included into the Asterisk server for

this figure

3.7 Chapter Summary 55

3.7 Chapter Summary

This chapter has provided information about how the components of the proposed

system will operate as well as some of the future extensions and the considerations

that are required for their implementation. Throughout this chapter, an effort has

been made to emphasise how versatile the system is and also goes towards the various

configurations that are able to be implemented in the system.

The decisions and assumptions contained within this chapter are based upon much

community feedback as well as expert opinion. While the configuration of various

aspects of this system are suited to this application, it should be noted that this may not

be the ideal structure for all applications. Where appropriate, an alternative method

for configuration, suited to differing deployment environments is provided and it is

hoped that this paper provides a good basis for their design and implementation.

Chapter 4

Configuration of Proposed

System

This chapter covers the configuration of the network, the devices in the network and

how they combine to offer a robust telephone system. The key components of the

system include:

∙ The wireless router.

∙ The firmware for the wireless router.

∙ Software aspects that are responsible for the maintenance of the system.

∙ The IP phone.

In order for the proposed system to operate as intended, it is important that the router

is properly configured. Throughout this chapter a Microsoft Windows computer was

used to interact with the router and as such, most of the software programs mentioned

during this section of the paper specific to Microsoft Windows operating systems.

4.1 Open-WRT Settings and Configuration 57

4.1 Open-WRT Settings and Configuration

The correct configuration of the WRT54GL wireless router is fundamental to the overall

success of the proposed system. In order to implement the designs from chapter 3 many

changes to the Open-WRT firmware need to be made.

Before being able to configure the router, the custom firmware must first be loaded onto

the router and this process is described in section 4.1.1. After successfully loading the

new firmware, additional software is to be loaded onto the router and these segments

can be seen in sections 4.1.3 through 4.2.

4.1.1 Loading Open-WRT on to the WRT54GL

Replacing the firmware on the WRT54GL wireless router can be completed in two ways.

The first and easiest is to use the tool provided on the web interface of the firmware

that the router comes with. The alternative method involves sending the firmware

image to the router in the boot process. The second method is commonly used when

changing from a third party firmware to another. Both of these methods are outlined

in the next two sections:

Web Interface

In order to load the custom firmware onto the router using the web interface the router

must be connected to a computer using an RJ-45 cable. Once connected and the router

can be accessed, the following set of steps need to be followed:

1. Navigate to the web interface (usually 192.168.1.1) using an internet browser.

2. Log onto the routers’ web interface with the following default account credentials.

∙ Username: <blank>

∙ Password: root

3. Click on Administration link.

4.1 Open-WRT Settings and Configuration 58

4. Click on Upgrade Firmware link. See figure 4.1.

5. Click Browse and select desired firmware file.

6. Click Upgrade.

Figure 4.1: LinkSys Firmware Upgrade Page

Once the above steps have been completed, the custom firmware should be loaded and

once the router has finished rebooting, Open-WRT should be running.

Direct Transfer

Direct transfer of the firmware image allows the replacement of the firmware on the

router without the use of the web interface. In order to prepare the router for the

transfer, there is a command that needs to be set in order to give a 2 second time

window (during the boot process) for the transfer to occur. The setting that needs to

be set is called boot wait and the value needs to be set to 1. This can be set in two

different ways depending on the firmware that is currently on the router. If the original

firmware is on the router, then the web page can be used to change the value as follows:

1. Navigate to the web interface (usually 192.168.1.1).

2. Log onto the routers’ web interface with the following default account credentials.

∙ Username: <blank>

4.1 Open-WRT Settings and Configuration 59

∙ Password: root

3. Click on Administration link.

4. Click on Diagnostics link.

5. Locate Ping and click on the link once after entering each of the following com-

mands:

∙ ;cp${IFS}*/*/nvram${IFS}/tmp/n

∙ ;*/n${IFS}set${IFS}boot_wait=on

∙ ;*/n${IFS}commit

∙ ;*/n${IFS}show>tmp/ping.log

6. After entering the last command and clicking the Ping button, a list of output

should bee seen with the line “boot wait=on” present.

Alternatively, if there is a custom firmware already loaded onto the router, access to

the command line interface is required (see section 4.1.2). If the firmware that is on

the router is an Open-WRT distribution then the following command is needed to be

entered at the command line:

nvram set boot_wait=1

Both of the above methods set the router to wait during the boot sequence. Once this

has been completed, the actual firmware transfer is able to be completed. In order to

successfully do this, the following instructions need to be followed:

1. Open Microsoft Windows command prompt (open run program and type cmd.exe).

2. type the following command but do not enter the command.

∙ tftp -i 192.168.1.1 PUT openwrt-wrt54gs-squashfs.bin

3. Unplug power to the router.

4.1 Open-WRT Settings and Configuration 60

4. Apply power to the router and enter the command from Windows command

prompt.

5. If the transfer was successful, a similar output to the Windows command prompt

should be seen.

∙ Transfer successful: 154931 bytes in 4 seconds, 38732 bytes/sec

It should be noted that when boot wait is enabled and the router is booting the IP

address is always 192.168.1.1 and that when the process is completed, the IP address

will be 192.168.1.1 as well.

4.1.2 Gaining Access to the Command Line Interface

In order to load software and alter settings on the router, access to the command line

interface must first be established. This requires a connection to the router (preferably

via an RJ-45 connection) and the use of a communication protocol to allow bidirectional

communication between the computer and the router. The software used during the

project is called PuTTY (PuTTY Website 2009) and uses Telnet (Teletype network)

and SSH (Secure SHell) protocols to create connections to the router.

In order to gain access to the command line interface of the router, a connection must

be established using the address 192.168.1.1 and the preferred connection type. The

first time that the connection is made to the router, Telnet is used and a screen similar

to figure 4.2 will be displayed.

It is not necessary, but recommended to create a more secure connection to the router.

In order to do this, the command “passwd” is entered into the command line and a

password is set on the router. This also terminates connections to the router using

Telnet.

Once the password has been entered into the command line, an SSH connection needs

to be made. To configure PuTTY to use a SSH connection and connect to the router

selecting SSH as the connection type is required (refer to figure 4.2). Upon initiating a

4.1 Open-WRT Settings and Configuration 61

Figure 4.2: Logging onto the WRT54GL using PuTTY with Telnet protocol

connection to the router using the SSH protocol, the username and password needs to

be entered (created using passwd command).

A screen similar to the one shown in figure 4.3 will be seen and the configuration of

the router is able to be completed from this command line interface.

Figure 4.3: Command Line Interface of Open-WRT

4.1 Open-WRT Settings and Configuration 62

4.1.3 Routing Protocol Implementation

As discussed in section 3.3.3 OLSR routing protocol is being used in this project. There

is an implementation for this routing protocol available as a package for Open-WRT.

This implementation is named OLSRd and is available as olsrd 0.4.10-1 mipsel.ipk (Official

Open-WRT Website 2009). This routing protocol can be installed onto the router using

the following command (assuming access to the internet is available from the router):

∙ ipkg install olsrd 0.4.10−1 mipsel.ipk

After downloading and installing the package, the routing protocol needs to be con-

figured in order to operate correctly. The following excerpt shows the changes needed

in the file “/tmp/olsrd.conf” (default path) in order to correctly configure the server

(additions include specifying the IP and netmask as well as the LAN interface).

...

11 Hna4 {

12 192.168.1.120 255.255.255.248

13 }

...

33 Interface "eth1"

Once these changes have been made and the router has been rebooted, OLSRd should

be running and if other routers (configured in the same way) are available, they should

automatically connect to one another.

4.1.4 Network Configuration

Network configuration is a key aspect of the overall design of the project. There were

two options that would be available for the WRT54GL and that this would affect the

way in which the system would operate. When dealing with the Open-WRT firmware,

the LAN section (which refers to the physical RJ45 ports on the router) and the WIFI

4.1 Open-WRT Settings and Configuration 63

section (which refers to the wireless interface of the router) can operate in bridged

mode or can be separated. By bridging the interfaces, devices on the LAN interface

interact directly with the WIFI clients. Whereas if the two interfaces remain separated,

packets sent from the LAN interface are routed through to the WIFI interface (If they

are destined for a client on that network).

A key difference here is that when the interfaces are bridged, LAN and WIFI are in the

same subnet . This is not true for the case where the two interfaces are separate, each

interface resides on different subnets. for a graphical representation of the case where

the two interfaces are separated see Figure 4.4.

Figure 4.4: Example network setup with separate LAN and WIFI

It should be noted that when the two interfaces are not bridged, that security and

routing protocols such as firewalls and Network Address Translation (NAT) traversal

can cause issues. Telephone conversations MUST be forced to go through Asterisk

servers. This is completed with the line “canreinvite=no” in sip.conf.

4.1 Open-WRT Settings and Configuration 64

LAN Configuration

The LAN ports on the WRT54GL are important to correctly configure so that the

operation of the WMN operates without issue. The hard and soft phones connected

directly to the router through the LAN interface of the router need to be able to

establish a connection to the Asterisk server that resides on the router itself.

The IP subnet can be in any range other than that of the WIFI subnet. For the

purpose of this project, it will be assumed that the subnet of the LAN interface is

192.168.1.[0-255] With the routers’ IP address being 192.168.1.120.

Effectively the devices are allowed 254 IP addresses and these are managed by a DHCP

server (see section 4.1.4) and assuming that the connected devices are configured to

run a DHCP client running (or have an available IP address in this range), they are

able to automatically lease an IP address from the router.

WIFI Configuration

One of the fundamental issues of the project is the architecture of the network. This

governs the way in which the various software features interact with each other and

also dictates the way that the hardware is to be configured. When determining the

proper structure of the network many considerations need to be taken into account.

Some of these considerations include: the network topology, mobility and

Since this application requires that wireless routers form a network that may be mobile,

it is important that the correct implementation of the routing protocols be achieved.

In order to allow the Wireless Meshed Network (WMN) to operate successfully each

of the wireless nodes need to be transmitting on the same channel and all need to be

implementing the same routing protocol. As discussed in section 3.3.3, the particular

routing protocol selected for this project was an implementation of the popular OLSRd

which is available as the package OLSRd.

4.2 Configuring Asterisk 65

DHCP server on LAN Interface

In order to create a DHCP server to manage the clients on the LAN interface of the

router, the server must be installed and configured on the router. This server is avail-

able as a package on Open-WRT called dnsmasq 2.35-1 mipsel.ipk (Official Open-WRT

Website 2009)

In order to install this package, the following command needs to be issued in the

command line interface of the router:

∙ ipkg install dnsmasq 2.35−1 mipsel.ipk

After downloading the package and installing the package the DHCP server needs to

be configured. The file “/etc/dnsmasq.conf” needs to be altered and the DHCP server

range set.

4.2 Configuring Asterisk

The configuration of the Asterisk server is a straight forward process as the maintenance

files that allow the Asterisk servers to connect to one another is handled by the Asterisk

Client Information Sharing (Section 4.3). In order to load Asterisk onto the router, the

following commands are needed to be issued in the command line interface of the router:

∙ ipkg install asterisk-mini 1.0.10-1 mipsel.ipk

Once the installation of Asterisk is complete, the router should be rebooted and the

Asterisk server should be running after booting has completed.

4.2.1 SPA901 Configuration

To allow the SPA901 IP Phones to connect to the Asterisk server that is residing on

the router that the phones are plugged into, some alterations need to be made. The

4.3 Configuration of Asterisk Client Information Sharing 66

easiest way to configure the phones is by using the web interface of the phones.

As the router should be running a DHCP server, the phone needs to be configured to

connect to this server and lease an IP address from it. There are keypad commands

that allow this to be done and they are as follows:

1. Pick up the handset.

2. Enter “****” into the keypad to enter the voice menu.

3. Enter “101#” into the keypad to enable / disable the DHCP client.

4. Enter “1#” to enable the DHCP client.

5. Enter “1” to confirm the change.

6. Hung up the handset to allow the changes to take effect.

After the above commands have been issued, the IP phone should be able to connect

to the router (or computer that is running a DHCP server) and the web interface is

able to be accessed. In the configuration page of the phone, the following settings need

to be made:

∙ The user ID in the “Subscriber Information” on the “Ext 1” tab of the page is

the phone number (extension) of the phone and a unique number needs to be set

here.

∙ The port used for SIP is set to “5060” (default).

After completing these changes and saving them, the IP phone is ready to be used in

the system.

4.3 Configuration of Asterisk Client Information Sharing

In order to allow for the design discussed in Section 3.4 two programs were written in

the C programming language. Each of the programs look after different aspect of ACIS

4.3 Configuration of Asterisk Client Information Sharing 67

and tasks are discussed in the following sections.

4.3.1 ACIS Send

This program is responsible for three aspects of ACIS. these three functions are:

∙ Checking for phones attempting to connect and reloading Asterisks database when

found.

∙ File maintenance (“sip.conf” and “extensions.conf”).

∙ Sending of data at a predefined time interval (defined in a configuration file).

The Figure 4.5) shows the basic operation and flow of the program. It can be seen that

the program never finishes executing and is constantly checking for new phones and

sending data.

Figure 4.5: Program flow diagram of ACIS Send

4.3 Configuration of Asterisk Client Information Sharing 68

4.3.2 ACIS Listen

This program has two main functions. These functions relate to receiving data and

then performing file manipulation. Figure 4.6 shows the flow of the program and the

functions it performs.

Figure 4.6: Program flow diagram of ACIS Listen

As is the case in ACIS Send, it can be seen that the program never exits but runs

constantly to ensure that the network is always up-to-date

The ACIS part of this system is concerned with the transfer of data between the

Asterisk servers at critical times. These critical times include, when a new server boots

and when a phone is connected to the system. Additionally, data will be transmitted

at timed regular intervals. There are four programs running on each of the routers and

they are:

4.3 Configuration of Asterisk Client Information Sharing 69

This aspect of the system requires more specific instructions as compared to the other

components that are discussed in this chapter. This is due to the fact that this aspect is

not supported or available from Open-WRT repositories but is a custom set of programs.

Each of the parts of this aspect of the system has been coded in the C programming

language and compiled in order to be compatible with the router. The source code for

the two individual programs used to carry out this function are listed in appendix C

4.3.3 Preparing the Packages

In order to enable the programs to execute on the router, a process of building a package

was needed to be completed. Open-WRT povides a Software Development Kit (SDK)

for their firmware. This SDK was placed on a Linux computer and the programs need

to be compiled from within the SDK with specialised make makefiles1.

The steps involved to create these packages included:

∙ “acissend” directory is created in the OpenWrt-SDK-Linux-i686-1/package/ di-

rectory and make file (Appendix C.5) copied here.

∙ “src” directory is created in the OpenWrt-SDK-Linux-i686-1/package/acissend

directory and make file(Appendix C.6) as well as acissend.c(Appendix C.4)copied

here.

Once the files are in the correct folders, the command “make” needs to be issued from

the OpenWrt-SDK-Linux-i686-1/ directory.

Once compiled, the programs need to be transferred to the router and stored on the

local file system. This was achieved using the Unix cutility “scp”

scp acissend_1_mipsel.ipk root@192.168.1.110:

1one to set the rules for compilation in Linux environment and one to create a package suitable for

installation on the WRT54GL

4.3 Configuration of Asterisk Client Information Sharing 70

This process was repeated for ACIS Listen and when both packages were copied to the

router, there were installed onto the router using the inbuilt “ipkg” package manager.

After copying and configuring the programs the system is ready to be tested and this

will be discussed in the next chapter.

Chapter 5

Testing of the Proposed System

This chapter investigates the performance of the system. To evaluate the network

multiple measures are used. These include:

∙ The operation of ACIS.

∙ Call capacity over the wireless links.

∙ Call quality.

∙ Delay between end users.

∙ Jitter.

∙ Packet loss.

To get an accurate idea of how the system performs, the above criteria are to be

measured during a series of different testing conditions. These will be explained and

the results provided in this chapter.

5.1 Testing Environment 72

5.1 Testing Environment

The text environment is especially important for reliable testing of the proposed system.

Unfortunately, the testing environment was poor and this resulted in some aspects of

the system being hard to measure properly. Effort was used to gain results thats were

indicative of a real deployment.

5.1.1 Layout of Testing Area

Four routers were used in the testing of the system. Each was arranged in a way that

forced data to be passed from router to router. Figure 5.1 shows this arrangement and

it can be seen that in order for data to be sent from router1 to router4, the data must

be passed on by router2 and router3.

Figure 5.1: Router layout for testing

Testing conditions were not ideal and certain modifications were required. Testing was

conducted in a confined space where the routers were all within transmission range

of one another. To overcome this situation modifications needed to be made. There

were a number of options that were considered to reproduce the situation displayed in

Figure 5.1.

There were a number of solution which were identified to alleviate the problems being

associated with the close proximity of the routers. Firstly, configuring the firewalls on

each of the routers to only accept traffic from certain routers. Secondly, the trans-

mission power of each router could be altered to reduce the transmission range to a

small distance. Thirdly, the antennas on the routers could be modified so that the

5.1 Testing Environment 73

transmissions are controlled and shielded.

Ideally, configuring the firewall would have been implemented but due to time con-

straints this was not able to be completed. Setting the transmission power to a lower

level also was not able to be completed as the configuration of the transmission power

did not alter the actual transmission power of the routers. By shielding the routers’

antennas, the network could be configured allowing the arrangement discussed.

5.1.2 Isolating Routers’ Transmissions

In order to prevent transmissions from being received by all other routers, a crude

isolation device was designed. This device consisted of a cardboard box wrapped in

aluminium paper and a small wire connecting the antenna to the next. Thus controlling

the distribution of the signal. This can be seen in Figure 5.2 and Figure 5.3.

Figure 5.2: Photo showing the inside of the box housing the router

The actual link tests proved to be good and the output of the “ping” and “traceroute”

commands are displayed in Appendix B. The link quality was excellent and the average

round trip time was 1.7ms, 2.7ms and 3.8 for single, two and three hops respectively.

5.2 VoIP Testing Metrics 74

Figure 5.3: Photo showing the outside of the box housing the routers

5.2 VoIP Testing Metrics

Throughout the testing of the system, many differing methods are used to measure the

performance of the system. These metrics attempt to measure the quality of wireless

links, voice quality and stability. Throughout the following sections these performance

indicators will be described and explained.

5.2.1 Delay

Delay is the time taken for packets to traverse from sender to receiver. For the purpose

of this project, the delay will be the time taken for voice traffic to travel from the source

to the destination.

The delay will be measured for a varying number of wireless hops as well as for varying

traffic conditions. As a combination of hops and traffic will affect the delay, an effort

to identify the limits on the system will be made.

5.2 VoIP Testing Metrics 75

5.2.2 Jitter

Jitter is an undesirable effect of a combination of factors. Jitter, in this application,

refers to the arrival of voice packets outside of an acceptable time period.

In order for the voice to be properly reconstructed at the receiver, the packets need

to arrive at a constant rate. In the case of this project (G.771 and G.729) packets are

expected 50 times a second or every 2 milliseconds. When these packets are sent over

IP networks, there are often variances in the times that the packets arrive.

This may be due to congestion, incorrect clock frequencies and packetisation variances.

As this is a known problem there are mechanisms in place to allow for small variations

and this is called a jitter buffer. This works by delaying the playing of the audio for a

set time (usually 10 milliseconds) to allow for late packets.

When a packet arrives later than is allowed by the buffer, the packet is assumed lost

(discarded when it arrives) and the audio is played without the information. This is

obviously unacceptable as this reduces the quality of the conversation.

5.2.3 Packet Loss

Packet loss on the WMN is able to be measured with JPerf (see section 5.3.1) and

reported on. It is important that packet loss is kept to a minimum for reasons of data

integrity. Packet loss affects the quality of audio as well as the integrity of data sent

across the network.

5.2.4 Resource Use

The resource use for this project is focused on the Central Processing Unit (CPU)

and Random Access Memory (RAM) of the router. These resources are needed to be

monitored in order to make sure that router does not run out of resources and affect

the VoIP services.

5.3 Testing Suite 76

These resources will be monitored for varying conditions of the system and reported on.

To check the status of these resources, the software application TOP (see section 5.3.2)

will be viewed using the command line interface of the router.

5.3 Testing Suite

In the process of testing the system, multiple software analysing tools are used. These

tools and their purpose are explained in the remainder of this section.

5.3.1 JPerf

JPerf is a Graphical User Interface (GUI) for IPerf, giving a user friendly interface.

IPerf is a tool to measure characteristics of network links such as bandwidth, jitter

(latency variation) and packet loss. In order to test a connection, two instances of

JPerf must be running at each end of the link. One of the Jperf instances runs in client

mode and sends data over the network to the other JPerf program which is running in

server mode. The server reports and responds back to the client (to model two way

traffic). Refer to figure 5.4 for a grahpical representation.

Figure 5.4: Setup of JPerf Testing

By altering the characteristics of the data sent across the network typical voice traffic

can be modeled and using the output of the run the results can be interpreted. This

allows for the limits in regard to the number of simultaneous two way conversations

5.3 Testing Suite 77

that can be achieved across the network.

In order to represent the typical traffic that needs to be sent across the network, a

number of calculations need to be determined. For G.711 codec the typical payload for

the packets is 160 bytes and 50 are sent a second, therefore, to determine the bandwidth

for any number of two way conversations is governed by the equation:

Bandwidth = (number of calls) x (packets per second) x (packet payload)

For the G.729 codec, the payload for each of the packets (50 per second) is 20 bytes.

As an example, the settings for 20 calls using the G.711 audio codec over the network

are configured as follows:

∙ UDP Packet Size = 160 bytes

∙ UDP Bandwidth = (20 x 50 x 160) = 160 000 bytes/sec

To determine the capacity of the simulations each of the outputs of the JPerf program

are used. The actual limits of the various outputs are listed below:

∙ Delays over 350 - 400 milliseconds are considered unacceptable.

∙ Packet loss is generally to be kept under 1% of the total packets sent.

∙ Jitter is to be kept within the limits of the jitter buffer.

5.3.2 TOP

TOP is a linux tool that shows the processes running on the system. It reports the

Central Processing Unit (CPU) usage per program as well as the system memory usage.

It is a useful tool to monitor the resource use on the router and allows for the limitations

of the router to be viewed.

The application is run from the command line interface of the router and a typical

output of the program can be seen below:

5.4 Results Obtained 78

Mem: 11448K used, 2860K free, 0K shrd, 784K buff, 4380K cached

Load average: 0.00, 0.00, 0.00 (State: S=sleeping R=running, W=waiting)

PID USER STATUS RSS PPID %CPU %MEM COMMAND

525 root R 400 522 0.7 2.7 top

521 root S 588 368 0.3 4.1 dropbear

402 root S 1420 394 0.0 9.9 asterisk

389 root S 1420 1 0.0 9.9 asterisk

401 root S 1420 394 0.0 9.9 asterisk

394 root S 1420 389 0.0 9.9 asterisk

399 root S 1420 394 0.0 9.9 asterisk

400 root S 1420 394 0.0 9.9 asterisk

450 root S 596 368 0.0 4.1 dropbear

440 root S 532 1 0.0 3.7 olsrd

451 root S 524 450 0.0 3.6 ash

522 root S 440 521 0.0 3.0 ash

420 nobody S 424 1 0.0 2.9 dnsmasq

368 root S 392 1 0.0 2.7 dropbear

315 root S 368 1 0.0 2.5 udhcpc

376 root S 364 1 0.0 2.5 httpd

1 root S 356 0 0.0 2.4 init

97 root S 356 1 0.0 2.4 init

98 root S 348 1 0.0 2.4 syslogd

5.4 Results Obtained

One hop tests were carried out using JPerf and monitoring of the resource use of the

router with TOP. The tests were run multiple times and the averages were taken. Both

the G.711 and G.729 audio codecs were simulated using data contained in Table 2.1

in Section 2.3. These tests were recorded and placed in graph that can be seen in

Figure 5.5.

5.4 Results Obtained 79

As only one hop tests were conducted during the testing phase of this Thesis. This was

due to time constraints. But round trip times were gathered (using “ping”) and can

be seen in Appendix B.

The one hop test provides the best case for the proposed system. While a good idea of

the capacity of the system is gained from these results, much more testing is needed to

be carried out on the call capacity of the system.

Figure 5.5: Single Hop Results

From Figure 5.5 it can be seen that the G.711 audio codec was able at attain a capacity

of 36 simultaneous two way audio calls before packet loss exceeded 1%1 of the total

packets sent. Under these circumstances each of the routers had to transmit 36*64 kilo

bits/s = 2304 kilo bits/s or 288 kilo Bytes/s to the remote router while the remote

router had to transfer the same amount of data back. This resulted in a total transfer

rate of 576 kilo Bytes/s. While this is far from the theoretical transfer rate of an 802.11g

device, the sheer amount of packets transferred across the wireless network equates to

50*36*2 = 3600 packets.

The graph also shows the number of simultaneous calls achieved with the G.729 codec.

This codec was able to achieve 56 simultaneous two way audio calls before the packet

loss exceeded 1%. This resulted in a total transfer rate of 56*8 kilo bits/s = 448 kilo

bits/s or 56 kilo Bytes/s for each way. This equates to a total transfer rate of 112 kilo

11% is generally accepted as the upper limit of acceptable losses

5.4 Results Obtained 80

Bytes/s which is 38% of the total that was obtained with the G.711 codec. Taking into

account the amount of packets sent across the network with the G.711 sending 3600

and the G.729 sending 5600 it can be seen that while 38% less data was sent over the

network 155% more packets were sent.

Jitter is not shown in Figure 5.5 as it remained well within acceptable limits. This was

expected as jitter increases with the addition of more hops. Jitter has the potential

to cripple the proposed system if not carefully planned for. Jitter problems can be

alleviated to a point by increasing the size of the jitter buffer. Although this has the

undesirable effect of delaying the audio playback. When the buffer is increased, the

audio remains in the buffer for a longer period of time.

5.5 Performance of ACIS Programs 81

5.5 Performance of ACIS Programs

In order to evaluate the performance of the ACIS programs, each router was placed at

a distance apart that forced the creation of a chain arrangement2. This arrangement

is illustrated in Figure 5.1.

To ensure that each of the routers were receiving the updates, all routers were simulta-

neously logged into via a computer using “PuTTY”. Once all routers had been accessed,

and were being monitered, a phone was plugged into one of the routers while the ACIS

programs were executing.

Once the phone had been detected (from the Asterisk debugging file), all routers were

checked to see if the appropriate files had been updated as well as the Asterisk server

reloaded. To ensure that the system worked properly, the test was repeated with two

phones plugged into various routers and test calls across the wireless connections were

attempted.

5.5.1 Results of ACIS Tests

As expected, the program correctly added the information to the local files, reloaded

Asterisk with the correct information and distributed these updates to all other routers

across the network. In addition to this, at no time were the routers underload while

these tasks were being completed. While running both programs simultaneously, the

peak cpu usage was never found to be above 5% and the memory usage was very

minimal.

Most importantly, phone calls were able to be made across the network after being

detected by the ACIS system. This is the key performance criteria and it performed

extremely well.

2 the end routers were only able to communicate with one router while the middle routers were able

to communicate with the two routers around them

5.5 Performance of ACIS Programs 82

5.5.2 Observations and Known Issues

The design of the ACIS programs is previously described in Section 3.4. In the previous

section, it is stated that ACIS Send is responsible for the removal of phones that are

unplugged. Due to time constraints this was not implemented into the final program.

While this is unfortunate and needs to be implemented for future applications, this did

not prevent the concept from being proven to work.

During the process of debugging the ACIS Send program, another issue became ap-

parent. This problem presented itself when an Asterisk server failed to register with

a remote Asterisk server. Upon failing to properly register, an entry is put into the

Asterisk log file that is extremely similar to that of a failed phone registration.

To prevent this incorrect entry, a limit of eight digits for the phone extensions were

put in place3. While all extensions used in the testing of this system were under eight

digits long, practical application may need to exceed this length. Therefore, this would

need to be rectified.

3The entry that appears in the Asterisk log when a failed server registration occurs is the IP address

of the server. For example 10.0.0.10

5.6 Chapter Summary 83

5.6 Chapter Summary

This chapter has provided a basis for testing and has shown the results of stressing the

proposed system. It can be seen that the system is able to handle a reasonable amount

of telephone conversations before becoming overwhelmed.

Chapter 6

Conclusions and Further Work

The main aim of this project was to design and implement a self configuring and opti-

mised telephone network that is able to operate over wireless channels. Research into

the underlying principles of the system was conducted and the design and implementa-

tion of these components was carried out. The results obtained as part of the testing of

the system are provided in Chapter 5 are discussed in further detail within this chapter.

Also further work that would only build upon the system created in this paper are

presented towards the end of this chapter. For this system to reach its’ full potential,

the additions mentioned in this chapter need to be implemented in the future work

done in this area.

6.1 Achievement of Project Objectives 85

6.1 Achievement of Project Objectives

The Project Specification (Appendix A) lists the work that was to be completed as

part of this Thesis. With the exception of the non-overlapping numbering system (part

of Point 4 in the list) that the core programme units have been completed. The non-

overlapping number scheme was given a lot of consideration but proved too difficult

without the having a centralised management system for the WMN.

Additionally, some aspects of point 7 5.4 were completed. Point 8 is also mentioned in

Section 3.5 and a good design basis provided.

6.2 Discussion of Results

The results obtained as part of the testing of the system are promising. This Thesis has

provided a good basis for further work to be done in this field. Currently, the hardware

is able to handle creating and maintaining a small to medium sized telephone network

residing entirely on cheap hardware and freely available software components.

The key limitation of the system produced during the course of the project pertain to the

bandwidth available in wireless networks. With the limited testing it is already evident

that with more hops introduced that the number of simultaneous will fall (Possibly

dramatically). With wireless technology constantly improving1 and new methods for

increasing bandwidth constantly being researched, it is envisioned that systems similar

to the system proposed here will be implemented.

The shift towards cheaply available, high bandwidth, low latency wireless networks

are certain to gain momentum in the future. These developments will soon enable

the creation of larger, more reliable telephone networks to provided in Wireless Mesh

Networks.

1The 802.11n draft is currently in use and boast speeds up to twice that of the 802.11g standard

used in this Thesis

6.3 Further Work 86

6.3 Further Work

In order for this project to be deployed in a real situation there is much more work

needed. While the systems is extremely promising it falls short of being a complete

system. Some of the work that needs to be done can be seen in the following sections.

6.3.1 Quality of Service

Quality of Service (QoS) mechanisms would allow for the prioritising of voice data over

the network. While this would not have affected the results obtained in this paper, in

real applications there would be more traffic on the network such as Internet use and

file transfers. If the voice traffic was not allowed priority over data packets, the quality

of the conversations would reduce rapidly.

6.3.2 Use of Compressed Header Information

The use of header compression would be of great importance. This could reduce the

overhead on all voice data on the network from around 58bytes down to 24bytes on

each packet. This has obvious benefits even if only reducing the bandwidth used.

6.3.3 Added Functionality

This project has primarily focused on allowing two way telephone conversations to be

created over the network. This allows a basic telephone network to be established but

lacks some key features. Some of the most popular features are:

∙ Message banks2.

∙ Call conferencing.

∙ Call waiting.

2This has potential to be completed with the addition of an SD memory card. Refer to Section 2.8.1

6.3 Further Work 87

While these features are not included in this project, they would almost certainly be

needed in a real application. All of these features - and more - are able to be provided by

Asterisk, and with some modifications to aspects of this project, could be incorporated

into the system.

References

Adam Kowalewski website (2009). http://www.adamkowalewski.com/linksys-wrt54gl/.

Akyildiz, I. & Wang, X. (2005), ‘A survey on wireless mesh networks’, Communications

Magazine, IEEE 43, S23 – S30.

Armenia, S., Galluccio, L., Leonardi, A. & Palazzo, S. (2005), ‘Transmission of voip

traffic in multihop ad hoc ieee 802.11b networks: experimental results’, Wireless

Internet, 2005. Proceedings. First International Conference on pp. 148–155.

BBN Technologies website (2009). www.bbn.com.

Bruno, R., Conti, M. & Gregori, E. (2005), ‘Mesh networks: commodity multihop ad

hoc networks’, Communications Magazine, IEEE 43, 123–131.

Chaudhry, S., Al-Khwildi, A., Casey, Y., Aldelou, H. & Al-Raweshidy, H. (2006),

‘Wimob proactive and reactive routing protocol simulation comparison’, Informa-

tion and Communication Technologies, 2006. ICTTA ’06. 2nd 2, 2730 – 2735.

Clausen, T. & Jacquet, P. (2003), ‘Optimized link state routing protocol (olsr)’.

http://www.ietf.org/rfc/rfc3626.txt.

Gast, M. (2005), 802.11 wireless networks: the definitive guide, O’Rielly Media.

Goldsmith, A. (2005), Wireless Communications, Stanford University, California.

Google TalkTM (2009). http://www.google.com/talk/.

Hot Spot PA website (2009). http://www.hotspotpa.com/supportrouter.aspx.

REFERENCES 89

Jiang, H., Wang, P., Poor, H. & Zhuang, W. (2007), ‘Voice service support in mobile

ad hoc networks’, Global Telecommunications Conference, 2007. GLOBECOM ’07.

IEEE pp. 966 – 970.

Jun, J. & Sichitiu, M. (2003), ‘The nominal capacity of wireless mesh networks’, Wire-

less Communications, IEEE [see also IEEE Personal Communications] 10, 8–14.

Krag, T. & Bettrich, S. (2004), ‘Wireless mesh networking’.

http://www.oreillynet.com/lpt/a/4535.

Kwong, M., Cherkaoui, S. & Lefebvre, R. (2006), ‘Multiple description and multi-

path routing for robust voice transmission over ad hoc networks’, Wireless and

Mobile Computing, Networking and Communications, 2006. (WiMob’2006). IEEE

International Conference on pp. 262 – 267.

Li, H. & Singhal, M. (2005), ‘A scalable routing protocol for ad hoc networks’, Vehicular

Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st 4, 2498 – 2503.

Light, J.; Bhuvaneshwari, A. (2004), ‘Performance analysis of audio codecs over real-

time transmission protocol (rtp) for voice services over internet protocol’, Com-

munication Networks and Services Research, 2004. Proceedings. Second Annual

Conference on pp. 351 – 356.

Liu, C. & Wu, J. (2008), ‘Adaptive routing in dynamic ad hoc networks’, Wireless

Communications and Networking Conference, 2008. WCNC 2008. IEEE pp. 2603

– 2608.

Loscri, V., De Rango, F. & Marano, S. (2004), ‘Performance evaluation of on-demand

multipath distance vector routing protocol over two mac layers in mobile ad hoc

networks’, Wireless Communication Systems, 2004. 1st International Symposium

on pp. 413 – 417.

Loseri, V., De Rango, F. & Marano, S. (2005), ‘A correction for ad hoc on demand

multipath distance vector routing protocol (aomdv)’, Vehicular Technology Con-

ference, 2005. VTC-2005-Fall. 2005 IEEE 62nd 4, 2775 – 2779.

Lugo-Cordero, H., Lu, K., Rodriguez, D. & Kota, S. (2008), ‘A novel service-oriented

routing algorithm for wireless mesh network’, Military Communications Confer-

ence, 2008. MILCOM 2008. IEEE pp. 1–6.

REFERENCES 90

Meggelen, J., Madsen, L. & Smith, J. (2007), Asterisk: The future of telephony, O’Rielly

Media inc.

Nascimento, A., Queiroz, S., Mota, E., Galvao, L. & Nascimento, E. (2008), ‘Influence

of routing protocol on voip quality performance in wireless mesh backbone’, Next

Generation Mobile Applications, Services and Technologies, 2008. NGMAST ’08.

The Second International Conference on pp. 450 – 455.

Nicopolitidis, P., Obaidat, M., Papadimitriou, G. & Pomportsis, A. (2003), Wireless

Networks, John Wiley and Sons, LTD.

Obeidat, S. & Gupta, S. (2005), ‘Towards voice over ad hoc networks: an adaptive

scheme for packet voice communications over wireless links’, Wireless And Mo-

bile Computing, Networking And Communications, 2005. (WiMob’2005), IEEE

International Conference on 3, 245 – 252.

Official DD-WRT Website (2009). http://www.dd-wrt.com.

Official Free-WRT Website (2009). http://www.freewrt.org.

Official Open-WRT Website (2009). http://www.openwrt.org.

Official Sveasoft Website (2009). http://www.sveasoft.com.

Official Tomato Website (2009). http://www.polarcloud.com/tomato.

Perkins, C. & Royer, E. (1999), ‘Ad-hoc on-demand distance vector routing’, Mobile

Computing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second

IEEE Workshop on pp. 90–100.

Pirzada, A., Wishart, R. & Portmann, M. (2007), ‘Congestion aware routing in hybrid

wireless mesh networks’, Networks, 2007. ICON 2007. 15th IEEE International

Conference on pp. 513–518.

PuTTY Website (2009). http://www.chiark.greenend.org.uk/ sgtatham/putty/.

ROBOSTUFF Website (2009). http://robostuff.com/.

Rong, B. & Qian, Y. (2008), ‘An enhanced sip proxy server for wireless voip in wireless

mesh networks’, Communications Magazine, IEEE 46, 108–113.

REFERENCES 91

Santivanez, C. & Ramanathan, R. (2003), Hazy Sighted Link State (HSLS) Routing: A

Scalable Link State Algorithm, BBN Technologies.

Siddique, M. & Kamruzzaman, J. (2008), ‘Voip call capacity over wireless mesh net-

works’, Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008.

IEEE .

SkypeTM (2009). http://www.skype.com/.

SPA901 Technical Information (2009).

http://www.cisco.com/en/US/products/ps10034/index.html.

Tachtatzis, C. & Harle, D. (2008), ‘Performance evaluation of multi-path and single-

path routing protocols for mobile ad-hoc networks’, Performance Evaluation of

Computer and Telecommunication Systems, 2008. SPECTS 2008. International

Symposium on pp. 173–180.

Vaidya, B., Park, J. & Han, S. (2008), ‘Robust and secure voice transmission over

wireless mobile ad hoc network’, Ubiquitous Multimedia Computing, 2008. UMC

’08. International Symposium on pp. 175–180.

Velloso, P., Rubinstein, M. & Duarte, O. (2003), ‘Analyzing voice transmission capacity

on ad hoc networks’, Communication Technology Proceedings, 2003. ICCT 2003.

International Conference on 2, 1254 – 1257.

Vo, H. Q. & Hong, C. S. (2008), ‘Hop-count based congestion-aware multi-path routing

in wireless mesh network’, Information Networking, 2008. ICOIN 2008. Interna-

tional Conference on pp. 1–5.

VonageTM (2009). http://www.vonage.com/.

Wakamiya, N., Arakawa, S. & Murata, M. (2008), ‘Self-organizing network architecture

for scalable, adaptive, and robust networking’, Applied Sciences on Biomedical and

Communication Technologies, 2008. ISABEL ’08. First International Symposium

on pp. 1–5.

Wen, Y.-F. & Anderson, T. (2008), ‘Distributed resource and routing assignment al-

gorithms for multi-channel wmns’, Wireless and Mobile Communications, 2008.

ICWMC ’08. The Fourth International Conference on pp. 217–222.

REFERENCES 92

WRT54GL Technical Information (2009).

http://www.linksysbycisco.com/ANZ/en/products/WRT54GL.

Yuhong, Y., Ruimin, H., Haojun, A. & Yunfan, L. (2006), ‘A scalable wideband speech

coder for mobile ad hoc networks’, Wireless Communications, Networking and

Mobile Computing, 2006. WiCOM 2006.International Conference on pp. 1–4.

Zakrzewska, A., Koszalka, L. & Pozniak-Koszalka, I. (2008), ‘Performance study of

routing protocols for wireless mesh networks’, Systems Engineering, 2008. IC-

SENG ’08. 19th International Conference on pp. 331–336.

Appendix A

Project Specification

Place your project specification here.

Appendix B

WMN Muliple Hop Tests

96

This is the raw output of the “ping” and “traceroute” commands. The output shows

the round trip time and the hops needed to get to the destination. These tests were

completed from within one of the routers (10.0.0.40) and the results show increasing

lengths of time with the addition of more hops.

Loop back test

root@OpenWrt:˜# ping 10.0.0.40

PING 10.0.0.40 (10.0.0.40): 56 data bytes

64 bytes from 10.0.0.40: icmp_seq=0 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=1 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=2 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=3 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=4 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=5 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=6 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=7 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=8 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=9 ttl=64 time=0.7 ms

64 bytes from 10.0.0.40: icmp_seq=10 ttl=64 time=0.7 ms

--- 10.0.0.40 ping statistics ---

11 packets transmitted, 11 packets received, 0% packet loss

round-trip min/avg/max = 0.7/0.7/0.7 ms

Single hop test

root@OpenWrt:˜# ping 10.0.0.30

PING 10.0.0.30 (10.0.0.30): 56 data bytes

64 bytes from 10.0.0.30: icmp_seq=0 ttl=64 time=3.8 ms

64 bytes from 10.0.0.30: icmp_seq=1 ttl=64 time=1.5 ms

64 bytes from 10.0.0.30: icmp_seq=2 ttl=64 time=1.5 ms

64 bytes from 10.0.0.30: icmp_seq=3 ttl=64 time=1.4 ms

97

64 bytes from 10.0.0.30: icmp_seq=4 ttl=64 time=1.5 ms

64 bytes from 10.0.0.30: icmp_seq=5 ttl=64 time=1.5 ms

64 bytes from 10.0.0.30: icmp_seq=6 ttl=64 time=1.4 ms

64 bytes from 10.0.0.30: icmp_seq=7 ttl=64 time=1.5 ms

64 bytes from 10.0.0.30: icmp_seq=8 ttl=64 time=1.5 ms

64 bytes from 10.0.0.30: icmp_seq=9 ttl=64 time=1.4 ms

64 bytes from 10.0.0.30: icmp_seq=10 ttl=64 time=2.5 ms

--- 10.0.0.30 ping statistics ---

11 packets transmitted, 11 packets received, 0% packet loss

round-trip min/avg/max = 1.4/1.7/3.8 ms

root@OpenWrt:˜# traceroute 10.0.0.30

traceroute to 10.0.0.30 (10.0.0.30), 30 hops max, 40 byte packets

1 10.0.0.30 (10.0.0.30) 4.38 ms 3.352 ms 3.652 ms

Two hop test

root@OpenWrt:˜# ping 10.0.0.20

PING 10.0.0.20 (10.0.0.20): 56 data bytes

64 bytes from 10.0.0.20: icmp_seq=0 ttl=63 time=4.5 ms

64 bytes from 10.0.0.20: icmp_seq=1 ttl=63 time=2.7 ms

64 bytes from 10.0.0.20: icmp_seq=2 ttl=63 time=2.5 ms

64 bytes from 10.0.0.20: icmp_seq=3 ttl=63 time=2.5 ms

64 bytes from 10.0.0.20: icmp_seq=4 ttl=63 time=2.5 ms

64 bytes from 10.0.0.20: icmp_seq=5 ttl=63 time=2.6 ms

64 bytes from 10.0.0.20: icmp_seq=6 ttl=63 time=2.5 ms

64 bytes from 10.0.0.20: icmp_seq=7 ttl=63 time=2.5 ms

64 bytes from 10.0.0.20: icmp_seq=8 ttl=63 time=2.5 ms

64 bytes from 10.0.0.20: icmp_seq=9 ttl=63 time=2.5 ms

64 bytes from 10.0.0.20: icmp_seq=10 ttl=63 time=2.5 ms

98

--- 10.0.0.20 ping statistics ---

11 packets transmitted, 11 packets received, 0% packet loss

round-trip min/avg/max = 2.5/2.7/4.5 ms

root@OpenWrt:˜# traceroute 10.0.0.20

traceroute to 10.0.0.20 (10.0.0.20), 30 hops max, 40 byte packets

1 10.0.0.30 (10.0.0.30) 3.979 ms 4.161 ms 3.572 ms

2 10.0.0.20 (10.0.0.20) 4.791 ms 3.648 ms 2.318 ms

Three hop test

root@OpenWrt:˜# ping 10.0.0.10

PING 10.0.0.10 (10.0.0.10): 56 data bytes

64 bytes from 10.0.0.10: icmp_seq=0 ttl=62 time=3.8 ms

64 bytes from 10.0.0.10: icmp_seq=1 ttl=62 time=3.6 ms

64 bytes from 10.0.0.10: icmp_seq=2 ttl=62 time=3.5 ms

64 bytes from 10.0.0.10: icmp_seq=3 ttl=62 time=3.6 ms

64 bytes from 10.0.0.10: icmp_seq=4 ttl=62 time=3.6 ms

64 bytes from 10.0.0.10: icmp_seq=5 ttl=62 time=3.8 ms

64 bytes from 10.0.0.10: icmp_seq=6 ttl=62 time=3.5 ms

64 bytes from 10.0.0.10: icmp_seq=7 ttl=62 time=5.4 ms

64 bytes from 10.0.0.10: icmp_seq=8 ttl=62 time=4.2 ms

64 bytes from 10.0.0.10: icmp_seq=9 ttl=62 time=3.5 ms

64 bytes from 10.0.0.10: icmp_seq=10 ttl=62 time=4.1 ms

--- 10.0.0.10 ping statistics ---

11 packets transmitted, 11 packets received, 0% packet loss

round-trip min/avg/max = 3.5/3.8/5.4 ms

root@OpenWrt:˜# traceroute 10.0.0.10

traceroute to 10.0.0.10 (10.0.0.10), 30 hops max, 40 byte packets

1 10.0.0.30 (10.0.0.30) 1.734 ms 1.337 ms 1.309 ms

99

2 10.0.0.20 (10.0.0.20) 2.503 ms 3.771 ms 3.494 ms

3 10.0.0.10 (10.0.0.10) 4.018 ms 3.506 ms 3.824 ms

Appendix C

Asterisk Client Information

Sharing Source Code

C.1 The acislisten.c C Code 101

C.1 The acislisten.c C Code

/∗ ∗∗
C CODE f o r a c i s l i s t e n (A s t e r i s k C l i e n t Informat ion
Sharing − l i s t e n)

a c i s l i s t e n i s a program t h a t has been deve loped to wai t
e n d l e s s l y f o r data about remote A s t e r i s k s e r v e r s . Once
data has been rece ived , t h i s data i s processed to
determine i f the in format ion i s new .

I f the data r e c e i v e d cont a in s in format ion about a new
A s t e r i s k server , the data i s added to the l o c a l
A s t e r i s k s e r v e r and the A s t e r i s k s e r v e r i s r e l o a d e d
to en ab l e c a l l s to the remote A s t e r i s k s e r v e r .

This program i s w r i t t e n to s p e c i f i c a l l y f o r the
WRT54GL (ver 1 . 1) w i r e l e s s r o u t e r running Open−WRT
(White Russian v0 . 9) Firmware .

Author : Adam Jones
Date : October 2009
∗∗ ∗/
#include <sys / socket . h>
#include <sys / types . h>
#include <n e t i n e t / in . h>
#include <netdb . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include <s t d l i b . h>
#include <uni s td . h>
#include <errno . h>
#include <arpa / i n e t . h>
#include < l i m i t s . h>
#include <s tdboo l . h>

/∗ ∗∗
This s t r u c t u r e i s to ho ld v i r t u a l f i l e s
in memory as w e l l as the e x t e n s i o n s t h a t
are to be s t o r e d i n t o the f i l e s , ” s i p . conf ”
and ” e x t e n s i o n s . conf ” .
∗∗ ∗/
struct l i s t
{

char s t r [1 2 8] ;
struct l i s t ∗next ;

} ;

typedef struct l i s t LST;
typedef LST ∗LIST ;
/∗ ∗∗ ∗/

// Function Proto types
LIST ReadFileToMem (char ∗) ;
LIST SearchL i s t (LIST , char ∗) ;
void D e l e t e L i s t (LIST) ;
void AddToList (LIST∗ , char ∗) ;
void AddEXTDataLocal (LIST , char ∗ , char ∗) ;
void AddSIPDataLocal (LIST , char ∗ , char ∗) ;
void S e t L o ca l S e t t i ng s () ;
void WaitForInfo () ;

C.1 The acislisten.c C Code 102

void PrintDataToFile (LIST , char ∗) ;
void ProcessData (char ∗ , char ∗) ;

// Globa l V a r i a b l e s
char LOCALIP [1 6] ;
char CODEC[2 0] ;
char EXT[5 0] ;
char MESSAGES[5 0] ;
char SIP [5 0] ;

/∗ ∗∗
The main f u n c t i o n i s r e s p o n s i b l e f o r
r e t r i e v i n g the c o n t e n t s o f the g l o b a l
v a r i a b l e s and a l s o f o r s t a r t i n g the
w a i t i n g pro ces s .
INPUT:

(none)
OUTPUT:

(none)
∗∗ ∗/
int main ()
{

S e t L o ca l S e t t i n g s () ;
WaitForInfo () ;

}
/∗ ∗∗ ∗/

/∗ ∗∗∗
This f u n c t i o n c r e a t e s a s o c k e t f o r
l i s t e n i n g . Upon r e c e i v i n g a data item
the f u n c t i o n ” ProcessData ()” i s c a l l e d
and the data i s processed and added to
the a p p r o p r i a t e f i l e s . This f u n c t i o n
w i l l l oop i n d e f i n a t e l y w a i t i n g f o r
in format ion .
INPUT:

(none)
OUTPUT:

(none)
∗∗ ∗/
void WaitForInfo ()
{

// Local v a r i a b l e d e c l a r a t i o n
char buf [4 0] ;
int sock , length , fromlen , n , r e c e i v e d =0;
struct sockaddr in s e r v e r ;
struct sockaddr in from ;

// Get s o c k e t f o r l i s t e n i n g
sock=socket (AF INET , SOCK DGRAM, 0) ;
i f (sock <0) e r r o r (”Opening socke t ”) ;

l ength = s izeof (s e r v e r) ;
bzero(&server , l ength) ;
f romlen = s izeof (struct sockaddr in) ;

// Set the paramters o f the s o c k e t .
s e r v e r . s i n f a m i l y=AF INET ;
s e r v e r . s i n addr . s addr=INADDR ANY;
s e r v e r . s i n p o r t=htons (321 30) ;

C.1 The acislisten.c C Code 103

// Atempt to bind the s o c k e t to the por t
i f (bind (sock , (struct sockaddr ∗)& server , l ength)<0){
e r r o r (” binding ”) ;
}

// Loop f o r e v e r to r e c e i v e updates
while (1)
{

// Wait f o r incoming packe t
n = recvfrom (sock , buf , s izeof (buf) , 0 ,

(struct sockaddr ∗)&from ,& fromlen) ;
i f (n < 0) e r r o r (” recvfrom ”) ;

// Once a packe t has been rece ived , send the
// in format ion conta ined in the packe t as
// w e l l as the IP address o f the sender o f
// the packe t to f u n c t i o n ” ProcessData () ” .
ProcessData (buf ,

(char ∗) i n e t n t o a (from . s in addr)) ;
}

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n checks t h a t the in format ion
does not a l r e a d y e x i s t in the f i l e s
” e x t e n s i o n s . conf ” and ” s i p . conf ” . I f the
in format ion i s new , i t i s added to the f i l e / s .
INPUT:

bu f − S t r i n g t h a t c ont a ins an e x t e n s i o n f o r
a t e l e p h o n e on the network .

IP − S t r i n g t h a t i s the IP address o f the
sender o f ’ bu f ’ . This i s used to add
the phone to the A s t e r i s k network

OUTPUT:
(none)

∗∗ ∗/
void ProcessData (char ∗buf , char ∗IP)
{

// Local v a r i a b l e d e c l a r a t i o n s
char newstr [4 0] , tempstr [4 0] ;
LIST s i p p t r = mal loc (s izeof (LST)) ;
LIST extpt r = mal loc (s izeof (LST)) ;

// Put the e x t e n s i o n i n t o a format t h a t r e p r e s e n t s
// how i s appears in the f i l e ” s i p . conf ”
s p r i n t f (tempstr , ”[%s] ” , IP) ;

// Read ” s i p . conf i n t o memory
s i p p t r=ReadFileToMem (SIP) ;

// Check to see i f the e x t e n s i o n a l r e a d y e x i s t s
// in ” s i p . conf ”
i f (SearchL i s t (s ippt r , tempstr)==NULL)
{

// I f the e x t e n s i o n doesn ’ t e x i s t
// a lready , add i t

C.1 The acislisten.c C Code 104

AddSIPDataLocal (s ippt r , IP , buf) ;

// Save to updated ” s i p . conf ” back to d i s k
PrintDataToFile (s ippt r , SIP) ;

// system command to t e l l a s t e r i s k
// to r e l o a d ” s i p . conf ”
system (” a s t e r i s k −rx ’ s i p r e l oad ’ ”) ;

}
// Read ” e x t e n s i o n s . conf ” i n t o memory
extpt r=ReadFileToMem (EXT) ;

// Put the e x t e n s i o n i n t o a format t h a t
// r e p r e s e n t s how i s appears in the f i l e
// ” e x t e n s i o n s . conf ”
s p r i n t f (tempstr , ”>%s , ” , buf) ;

// Check to see i f the e x t e n s i o n a l r e a d y
// e x i s t s in ” e x t e n s i o n s . conf ”
i f (SearchL i s t (extptr , tempstr)==NULL)
{

// I f the e x t e n s i o n doesn ’ t e x i s t
// a lready , add i t
AddEXTDataLocal (extptr , IP , buf) ;

// Save to updated ” e x t e n s i o n s . conf ”
// back to d i s k
PrintDataToFile (extptr , EXT) ;

// system command to t e l l a s t e r i s k to
// r e l o a d ” e x t e n s i o n s . conf ”
system (” a s t e r i s k −rx ’ ex t en s i on s r e l oad ’ ”) ;

}
// Free the memory t h a t h o l d s ” e x t e n s i o n s . conf ”
// and ” s i p . conf ”
D e l e t e L i s t (s i p p t r) ;
D e l e t e L i s t (extpt r) ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n read a f i l e and s t o r e s i t
i n t o memory .
INPUT:

S t r i n g − co nta i ns the f i l ename to be
read from .

OUTPUT:
LIST p o i n t e r − co nta i ns the address to the

f i r s t e lement o f the f i l e
(in memory)

∗∗ ∗/
LIST ReadFileToMem (char ∗ fn)
{

// Local v a r i a b l e d e c l a r a t i o n s
FILE ∗ f i l e p t r ;
LIST p = NULL;
char l i n e [LINE MAX] ;
int l ength ;

C.1 The acislisten.c C Code 105

// Open the f i l e f o r reading
f i l e p t r=fopen (fn , ” r ”) ;

i f (! f i l e p t r) { e r r o r (”Opening F i l e ”) ; }

// Loop to g e t the c o n t e n t s o f the f i l e l i n e−by−l i n e
// and s t o r e the c o n t e n t s i n t o a l i s t
while (f g e t s (l i n e , s izeof (l i n e) , f i l e p t r) != NULL)
{

// I f the l i n e ends wi th a new l i n e , change i t
// to a n u l l t erminator
l ength = s t r l e n (l i n e) − 1 ;
i f (l i n e [l ength] == ’ ∖n ’) { l i n e [l ength] = 0 ;}

// Add the l i n e to the l i s t
AddToList(&p , l i n e) ;

}
// Close the f i l e
f c l o s e (f i l e p t r) ;

// Return the p o i n t e r to the s t a r t o f the l i s t .
return p ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n s e a r c h e s f o r a match
between a l i s t and a s t r i n g and r e t u r n s
the matching element .
INPUT:

LIST p o i n t e r − Contains a p o i n t e r to a l i s t
t h a t i s to be searched f o r a
match .

s t r i n g − The s t r i n g t h a t i s to be
searched f o r w i t h i n the l i s t .

OUTPUT:
LIST p o i n t e r − Upon f i n d i n g the s t r i n g w i t h i n

the l i s t , the p o i n t e r to t h a t
e lement i s re turned . I f the
s t r i n g i s not found , NULL i s
re turned by the f u n c t i o n .

∗∗ ∗/
LIST SearchL i s t (LIST ptr , char ∗ s e a r c h s t r)
{

while (ptr !=NULL)
{

i f (s t r s t r (ptr−>s t r , s e a r c h s t r))
return ptr ;

ptr = ptr−>next ;
}
return NULL;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n d e l t e s the c o n t e n t s o f the
l i s t t h a t i s passed to i t from the p o i n t
o f the e lement t h a t i s passed to i t .
INPUT:

LIST p o i n t e r − Contains a p o i n t e r to a l i s t

C.1 The acislisten.c C Code 106

t h a t i s to be d e s t r o y e d .
OUTPUT:

(none)
∗∗ ∗/
void D e l e t e L i s t (LIST ptr)
{

while (ptr !=NULL)
{

LIST next = ptr−>next ;
f r e e (ptr) ;
ptr = next ;

}
}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n adds an entry to the end o f a l i s t .
INPUT:

LIST p o i n t e r − This i s a p o i n t e r to a p o i n t e r
t h a t co nta ins a l i s t .

S t r i n g − This s t r i n g con ta i ns the
in format ion t h a t i s to be added
to the end o f the l i s t .

OUTPUT:
(none)

∗∗ ∗/
void AddToList (LIST∗ pptr , char ∗ s t r)
{

// Create a p o i n t e r t h a t w i l l cont ina the address
// o f the l i s t t h a t i s to be added to .
LIST ptr = ∗pptr ;
LIST p = ptr ;

// I f the l i s t not empty .
i f (p)
{

// Go to the end o f the l i s t .
while (p−>next)
{

p=p−>next ;
}
// Create a new element and move to i t .
p−>next = mal loc (s izeof (LST)) ;
p=p−>next ;

}
// I f the l i s t i s empty .
else
{

// Create the f i r s t e lement .
p = mal loc (s izeof (LST)) ;
∗pptr = p ;

}
// Set the next p o i n t e r to p o i n t nowhere (the end
// o f l i s t)
p−>next = NULL;

// Copy the s t r i n g (passed i n t o f u n c t i o n) to the
// element .
s t r cpy (p−>s t r , s t r) ;

C.1 The acislisten.c C Code 107

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n adds a e x t e n s i o n to the
” e x t e n s i o n s . conf ” f i l e (h e l d in memory) .
INPUT:

LIST p o i n t e r − This p o i n t e r p o i n t s to a l i s t
t h a t co nta ins ” e x t e n s i o n s . conf ”

S t r i n g − This s t r i n g con ta i ns the
e x t e n s i o n t h a t i s to be added
to ” e x t e n s i o n s . conf ”

OUTPUT:
(none)

∗∗ ∗/
void AddEXTDataLocal (LIST ptr , char ∗IP , char ∗ s t r)
{

// Local v a r i a b l e d e c l a r a t i o n s .
LIST pstart , tempptr , newentry=mal loc (s izeof (LST)) ;
char tempstr [6 0] ;

// Find the l i n e t h a t h o l d s ” [remote] ’
ptr=SearchL i s t (ptr , ” [remote] ”) ;

// Record the s t a r t p o s i t i o n o f the new e n t r i e s .
p s t a r t=ptr ;

// Set the p o i n t e r s so t h a t tmpstr i s
// i n s e r t e d ’ here ’ .
newentry−>next = ptr−>next ;
ptr−>next = newentry ;
ptr = ptr−>next ;

// Copy the s t r i n g i n t o the newly a l l o c a t e d space .
s p r i n t f (tempstr , ” exten=>%s , 1 ,NoOp() ” , s t r) ;
s t r cpy (newentry−>s t r , tempstr) ;

// Set the p o i n t e r s so t h a t tmpstr i s
// i n s e r t e d ’ here ’ .
newentry = mal loc (s izeof (LST)) ;
newentry−>next = ptr−>next ;
ptr−>next = newentry ;
ptr = ptr−>next ;

// Copy the s t r i n g i n t o the newly a l l o c a t e d space .
s p r i n t f (tempstr , ” exten=>%s , 2 , Dia l (SIP/%s /${EXTEN}) ” ,

s t r , IP) ;
s t r cpy (newentry−>s t r , tempstr) ;

// Set the p o i n t e r s so t h a t tmpstr i s
// i n s e r t e d ’ here ’ .
newentry = mal loc (s izeof (LST)) ;
newentry−>next = ptr−>next ;
ptr−>next = newentry ;
ptr = ptr−>next ;

// Copy the s t r i n g i n t o the newly a l l o c a t e d space .
s p r i n t f (tempstr , ” exten=>%s , 3 , HangUp()∖n” , s t r) ;
s t r cpy (newentry−>s t r , tempstr) ;

newentry = mal loc (s izeof (LST)) ;

C.1 The acislisten.c C Code 108

// Find the l i n e t h a t h o l d s ” [remote] ’
while (! s t r s t r (ptr−>next−>s t r , ” [phones] ”))
{

ptr=ptr−>next ;
}

// Create a s t r i n g to t e s t f o r the A s t e r i s k
// s e r v e r s presence .
s p r i n t f (tempstr , ”[% s incoming] ” , IP) ;
// I f t h e r e i s not a l r e a d y an entry f o r t h i s
// a s t e r i s k s e r v e r .
i f (SearchL i s t (pstar t , tempstr)==NULL)
{

// Add in format ion ’ here ’ f o r the s e r v e r .
tempptr = mal loc (s izeof (LST)) ;
tempptr−>next = ptr−>next ;
s p r i n t f (tempstr , ”[% s incoming] ” , IP) ;
s t r cpy (tempptr−>s t r , tempstr) ;
ptr−>next = tempptr ;
ptr = ptr−>next ;

tempptr = mal loc (s izeof (LST)) ;
tempptr−>next = ptr−>next ;
s p r i n t f (tempstr , ” i n c lude=>i n t e r n a l ∖n”) ;
s t r cpy (tempptr−>s t r , tempstr) ;
ptr−>next = tempptr ;
ptr = ptr−>next ;

}
}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n adds a e x t e n s i o n to the ” s i p . conf ”
f i l e (h e l d in memory) .

INPUT:
LIST p o i n t e r − This p o i n t e r p o i n t s to a l i s t

t h a t co nta ins ” s i p . conf ”
S t r i n g − This s t r i n g con ta i ns the

e x t e n s i o n t h a t i s to be added
to ” s i p . conf ”

OUTPUT:
(none)

∗∗ ∗/
void AddSIPDataLocal (LIST ptr , char ∗IP , char ∗ s t r)
{

// Local v a r i a b l e d e c l a r a t i o n s .
char tempstr [6 0] ;
LIST newentry , s t a r t p t r=ptr ;
bool a l r e ad yE x i s t s=f a l s e ;

// Find the p o s i t i o n o f r e g i s t e r
while (ptr=SearchL i s t (ptr , ” r e g i s t e r ”))
{

// I f the IP address i s r e g i s t e r e d .
i f (s t r s t r (ptr−>s t r , IP))
{

// Record t h a t the r e g i s t r a t i o n has a l r e a d y
// been entered
a l r e ad yE x i s t s=true ;

C.1 The acislisten.c C Code 109

}
// Move to the next l i s t item .
ptr=ptr−>next ;

}
// I f t h e r e i s no r e g i s t r a t i o n in format ion in
// the f i l e .
i f (! a l r e ad yE x i s t s)
{

// Add r e g i s t r a t i o n d e t a i l s .
newentry = mal loc (s izeof (LST)) ;
s p r i n t f (tempstr , ” r e g i s t e r=>%s : welcome@%s/%s ” ,

LOCALIP, IP , IP) ;

s t r cpy (newentry−>s t r , tempstr) ;
newentry−>next = ptr−>next ;
ptr−>next = newentry ;

}
// Add e n t r i e s to the end o f the f i l e .
s p r i n t f (tempstr , ”∖n[%s] ” , IP) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” type=f r i e n d ”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” s e c r e t=welcome”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” context=%s incoming ” , IP) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” host=dynamic”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” d i s a l l o w=a l l ”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” a l low=%s ” ,CODEC) ;
AddToList(& s t a r t p t r , tempstr) ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n l o a d s g l o b a l v a r i a b l e s
from a c o n f i g u r a t i o n f i l e t h a t i s
s t o r e d in the r o u t e r in the d i r e c t o r y / b in /
INPUT:

(none)
OUTPUT:

(none)
∗∗ ∗/
void S e t L o ca l S e t t i n g s ()
{

// Local v a r i a b l e d e c l a r a t i o n s
FILE ∗ fp ;

// Open the f i l e f o r reading
fp=fopen (”/ bin /LOCALIP.ROUTER” , ” r ”) ;

i f (! fp)
e r r o r (”Opening F i l e ”) ;

// Obtain the IP address o f the w i r e l e s s i n t e r f a c e
// o f the r o u t e r (used f o r unique name f o r
// A s t e r i s k s e r v e r) .
f g e t s (LOCALIP, s izeof (LOCALIP) , fp) ;

C.1 The acislisten.c C Code 110

int l en = s t r l e n (LOCALIP) − 1 ;
i f (LOCALIP[l en] == ’ ∖n ’)

LOCALIP[l en] = 0 ;

// Obtain the codec t h a t i s be ing a l l o w e d to be
// used by the A s t e r i s k s e r v e r (Used in ” s i p . conf ”)
f g e t s (CODEC, s izeof (CODEC) , fp) ;
l en = s t r l e n (CODEC) − 1 ;
i f (CODEC[l en] == ’ ∖n ’)

CODEC[l en] = 0 ;

// Locat ion o f ” s i p . conf ” (f o r fopen () c a l l s)
f g e t s (SIP , s izeof (SIP) , fp) ;
l en = s t r l e n (SIP) − 1 ;
i f (SIP [l en] == ’ ∖n ’)

SIP [l en] = 0 ;

// Locat ion o f ” e x t e n s i o n s . conf ” (f o r fopen () c a l l s)
f g e t s (EXT, s izeof (EXT) , fp) ;
l en = s t r l e n (EXT) − 1 ;
i f (EXT[l en] == ’ ∖n ’)

EXT[l en] = 0 ;

// Locat ion o f A s t e r i s k l o g f i l e (f o r f i n d i n g
// new phones)
f g e t s (MESSAGES, s izeof (MESSAGES) , fp) ;
l en = s t r l e n (MESSAGES) − 1 ;
i f (MESSAGES[l en] == ’ ∖n ’)

MESSAGES[l en] = 0 ;

// Close the f i l e .
f c l o s e (fp) ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n s t o r e s the conents o f the
l i s t s in memory back to f i l e .

INPUT:
l i s t p o i n t e r − L i s t to be saved to f i l e
S t r i n g − Name of the f i l e t h a t the

memory c o n t e n t s are to be
w r i t t e n to .

OUTPUT:
(none)

∗∗ ∗/
void PrintDataToFile (LIST ptr , char ∗ f i l ename)
{

// Local v a r i a b l e d e c l a r a t i o n
FILE ∗ fp ;

// Open the f i l e f o r w r i t i n g
fp=fopen (f i l ename , ”w”) ;

i f (! fp)
e r r o r (”Opening F i l e ”) ;

// Loop through the l i s t , p r i n t i n g each s t r i n g in
// the l i s t as a new l i n e in the f i l e .
while (ptr != NULL) {

C.1 The acislisten.c C Code 111

f p r i n t f (fp , ”%s ∖n” , ptr−>s t r) ;
ptr = ptr−>next ;

}
// Close the f i l e .
f c l o s e (fp) ;

}
/∗ ∗∗ ∗/

C.2 The makefile for Open-WRT SDK 112

C.2 The makefile for Open-WRT SDK

Make file for acislisten.c residing in the OpenWrt-SDK-Linux-i686-1/package/ direc-

tory.

i n c lude $ (TOPDIR)/ r u l e s .mk

PKG NAME:= a c i s l i s t e n
PKG RELEASE:=1

PKG BUILD DIR:=$ (BUILD DIR)/ $ (PKG NAME)

inc lude $ (INCLUDE DIR)/ package .mk

d e f i n e Package/ a c i s l i s t e n
SECTION:= u t i l s
CATEGORY:= U t i l i t i e s
TITLE:= a c i s l i s t e n −−− Rece ives l a r g e update
DESCRIPTION:=∖
Gets a l i s t o f a l l IP a d r e s s e s ∖∖∖
and the ex t en s i on s a s s o c i a t e d ∖∖∖
with them and reco rd s that data .

endef

d e f i n e Build / Prepare
mkdir −p $ (PKG BUILD DIR)
$ (CP) . / s r c /∗ $ (PKG BUILD DIR)/

endef

d e f i n e Package/ a c i s l i s t e n / i n s t a l l
$ (INSTALL DIR) $ (1)/ b in
$ (INSTALL BIN) $ (PKG BUILD DIR)/ a c i s l i s t e n $ (1)/ b in

endef

$ (e v a l $ (c a l l BuildPackage , a c i s l i s t e n))

C.3 The makefile for Linux 113

C.3 The makefile for Linux

Make file for acissend.c residing in the OpenWrt-SDK-Linux-i686-1/package/acislisten

directory.

a c i s l i s t e n : a c i s l i s t e n . o
$ (CC) $ (LDFLAGS) a c i s l i s t e n . o −o a c i s l i s t e n

a c i s l i s t e n . o : a c i s l i s t e n . c
$ (CC) $ (CFLAGS) −c a c i s l i s t e n . c

remove ob j e c t f i l e s and executab l e
c l ean :

rm ∗ . o a c i s l i s t e n

C.4 The acissend.c C Code 114

C.4 The acissend.c C Code

/∗ ∗∗
C CODE f o r a c i s l i s t e n (A s t e r i s k C l i e n t Informat ion
Sharing − l i s t e n)

a c i s l i s t e n i s a program t h a t has been deve loped to wai t
e n d l e s s l y f o r data about remote A s t e r i s k s e r v e r s . Once
data has been rece ived , t h i s data i s processed to
determine i f the in format ion i s new .

I f the data r e c e i v e d cont a in s in format ion about a new
A s t e r i s k server , the data i s added to the l o c a l
A s t e r i s k s e r v e r and the A s t e r i s k s e r v e r i s r e l o a d e d
to en ab l e c a l l s to the remote A s t e r i s k s e r v e r .

This program i s w r i t t e n to s p e c i f i c a l l y f o r the
WRT54GL (ver 1 . 1) w i r e l e s s r o u t e r running Open−WRT
(White Russian v0 . 9) Firmware .

Author : Adam Jones
Date : October 2009
∗∗ ∗/
#include <sys / socket . h>
#include <sys / types . h>
#include <n e t i n e t / in . h>
#include <netdb . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include <s t d l i b . h>
#include <uni s td . h>
#include <errno . h>
#include <arpa / i n e t . h>
#include < l i m i t s . h>
#include <s tdboo l . h>

/∗ ∗∗
This s t r u c t u r e i s to ho ld v i r t u a l f i l e s
in memory as w e l l as the e x t e n s i o n s t h a t
are to be s t o r e d i n t o the f i l e s , ” s i p . conf ”
and ” e x t e n s i o n s . conf ” .
∗∗ ∗/
struct l i s t
{

char s t r [1 2 8] ;
struct l i s t ∗next ;

} ;

typedef struct l i s t LST;
typedef LST ∗LIST ;
/∗ ∗∗ ∗/

// Function Proto types
LIST ReadFileToMem (char ∗) ;
LIST SearchL i s t (LIST , char ∗) ;
void D e l e t e L i s t (LIST) ;
void AddToList (LIST∗ , char ∗) ;
void AddEXTDataLocal (LIST , char ∗ , char ∗) ;
void AddSIPDataLocal (LIST , char ∗ , char ∗) ;
void S e t L o ca l S e t t i ng s () ;
void WaitForInfo () ;

C.4 The acissend.c C Code 115

void PrintDataToFile (LIST , char ∗) ;
void ProcessData (char ∗ , char ∗) ;

// Globa l V a r i a b l e s
char LOCALIP [1 6] ;
char CODEC[2 0] ;
char EXT[5 0] ;
char MESSAGES[5 0] ;
char SIP [5 0] ;

/∗ ∗∗
The main f u n c t i o n i s r e s p o n s i b l e f o r
r e t r i e v i n g the c o n t e n t s o f the g l o b a l
v a r i a b l e s and a l s o f o r s t a r t i n g the
w a i t i n g pro ces s .
INPUT:

(none)
OUTPUT:

(none)
∗∗ ∗/
int main ()
{

S e t L o ca l S e t t i n g s () ;
WaitForInfo () ;

}
/∗ ∗∗ ∗/

/∗ ∗∗∗
This f u n c t i o n c r e a t e s a s o c k e t f o r
l i s t e n i n g . Upon r e c e i v i n g a data item
the f u n c t i o n ” ProcessData ()” i s c a l l e d
and the data i s processed and added to
the a p p r o p r i a t e f i l e s . This f u n c t i o n
w i l l l oop i n d e f i n a t e l y w a i t i n g f o r
in format ion .
INPUT:

(none)
OUTPUT:

(none)
∗∗ ∗/
void WaitForInfo ()
{

// Local v a r i a b l e d e c l a r a t i o n
char buf [4 0] ;
int sock , length , fromlen , n , r e c e i v e d =0;
struct sockaddr in s e r v e r ;
struct sockaddr in from ;

// Get s o c k e t f o r l i s t e n i n g
sock=socket (AF INET , SOCK DGRAM, 0) ;
i f (sock <0) e r r o r (”Opening socke t ”) ;

l ength = s izeof (s e r v e r) ;
bzero(&server , l ength) ;
f romlen = s izeof (struct sockaddr in) ;

// Set the paramters o f the s o c k e t .
s e r v e r . s i n f a m i l y=AF INET ;
s e r v e r . s i n addr . s addr=INADDR ANY;
s e r v e r . s i n p o r t=htons (321 30) ;

C.4 The acissend.c C Code 116

// Atempt to bind the s o c k e t to the por t
i f (bind (sock , (struct sockaddr ∗)& server , l ength)<0){
e r r o r (” binding ”) ;
}

// Loop f o r e v e r to r e c e i v e updates
while (1)
{

// Wait f o r incoming packe t
n = recvfrom (sock , buf , s izeof (buf) , 0 ,

(struct sockaddr ∗)&from ,& fromlen) ;
i f (n < 0) e r r o r (” recvfrom ”) ;

// Once a packe t has been rece ived , send the
// in format ion conta ined in the packe t as
// w e l l as the IP address o f the sender o f
// the packe t to f u n c t i o n ” ProcessData () ” .
ProcessData (buf ,

(char ∗) i n e t n t o a (from . s in addr)) ;
}

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n checks t h a t the in format ion
does not a l r e a d y e x i s t in the f i l e s
” e x t e n s i o n s . conf ” and ” s i p . conf ” . I f the
in format ion i s new , i t i s added to the f i l e / s .
INPUT:

bu f − S t r i n g t h a t c ont a ins an e x t e n s i o n f o r
a t e l e p h o n e on the network .

IP − S t r i n g t h a t i s the IP address o f the
sender o f ’ bu f ’ . This i s used to add
the phone to the A s t e r i s k network

OUTPUT:
(none)

∗∗ ∗/
void ProcessData (char ∗buf , char ∗IP)
{

// Local v a r i a b l e d e c l a r a t i o n s
char newstr [4 0] , tempstr [4 0] ;
LIST s i p p t r = mal loc (s izeof (LST)) ;
LIST extpt r = mal loc (s izeof (LST)) ;

// Put the e x t e n s i o n i n t o a format t h a t r e p r e s e n t s
// how i s appears in the f i l e ” s i p . conf ”
s p r i n t f (tempstr , ”[%s] ” , IP) ;

// Read ” s i p . conf i n t o memory
s i p p t r=ReadFileToMem (SIP) ;

// Check to see i f the e x t e n s i o n a l r e a d y e x i s t s
// in ” s i p . conf ”
i f (SearchL i s t (s ippt r , tempstr)==NULL)
{

// I f the e x t e n s i o n doesn ’ t e x i s t
// a lready , add i t

C.4 The acissend.c C Code 117

AddSIPDataLocal (s ippt r , IP , buf) ;

// Save to updated ” s i p . conf ” back to d i s k
PrintDataToFile (s ippt r , SIP) ;

// system command to t e l l a s t e r i s k
// to r e l o a d ” s i p . conf ”
system (” a s t e r i s k −rx ’ s i p r e l oad ’ ”) ;

}
// Read ” e x t e n s i o n s . conf ” i n t o memory
extpt r=ReadFileToMem (EXT) ;

// Put the e x t e n s i o n i n t o a format t h a t
// r e p r e s e n t s how i s appears in the f i l e
// ” e x t e n s i o n s . conf ”
s p r i n t f (tempstr , ”>%s , ” , buf) ;

// Check to see i f the e x t e n s i o n a l r e a d y
// e x i s t s in ” e x t e n s i o n s . conf ”
i f (SearchL i s t (extptr , tempstr)==NULL)
{

// I f the e x t e n s i o n doesn ’ t e x i s t
// a lready , add i t
AddEXTDataLocal (extptr , IP , buf) ;

// Save to updated ” e x t e n s i o n s . conf ”
// back to d i s k
PrintDataToFile (extptr , EXT) ;

// system command to t e l l a s t e r i s k to
// r e l o a d ” e x t e n s i o n s . conf ”
system (” a s t e r i s k −rx ’ ex t en s i on s r e l oad ’ ”) ;

}
// Free the memory t h a t h o l d s ” e x t e n s i o n s . conf ”
// and ” s i p . conf ”
D e l e t e L i s t (s i p p t r) ;
D e l e t e L i s t (extpt r) ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n read a f i l e and s t o r e s i t
i n t o memory .
INPUT:

S t r i n g − co nta i ns the f i l ename to be
read from .

OUTPUT:
LIST p o i n t e r − co nta i ns the address to the

f i r s t e lement o f the f i l e
(in memory)

∗∗ ∗/
LIST ReadFileToMem (char ∗ fn)
{

// Local v a r i a b l e d e c l a r a t i o n s
FILE ∗ f i l e p t r ;
LIST p = NULL;
char l i n e [LINE MAX] ;
int l ength ;

C.4 The acissend.c C Code 118

// Open the f i l e f o r reading
f i l e p t r=fopen (fn , ” r ”) ;

i f (! f i l e p t r) { e r r o r (”Opening F i l e ”) ; }

// Loop to g e t the c o n t e n t s o f the f i l e l i n e−by−l i n e
// and s t o r e the c o n t e n t s i n t o a l i s t
while (f g e t s (l i n e , s izeof (l i n e) , f i l e p t r) != NULL)
{

// I f the l i n e ends wi th a new l i n e , change i t
// to a n u l l t erminator
l ength = s t r l e n (l i n e) − 1 ;
i f (l i n e [l ength] == ’ ∖n ’) { l i n e [l ength] = 0 ;}

// Add the l i n e to the l i s t
AddToList(&p , l i n e) ;

}
// Close the f i l e
f c l o s e (f i l e p t r) ;

// Return the p o i n t e r to the s t a r t o f the l i s t .
return p ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n s e a r c h e s f o r a match
between a l i s t and a s t r i n g and r e t u r n s
the matching element .
INPUT:

LIST p o i n t e r − Contains a p o i n t e r to a l i s t
t h a t i s to be searched f o r a
match .

s t r i n g − The s t r i n g t h a t i s to be
searched f o r w i t h i n the l i s t .

OUTPUT:
LIST p o i n t e r − Upon f i n d i n g the s t r i n g w i t h i n

the l i s t , the p o i n t e r to t h a t
e lement i s re turned . I f the
s t r i n g i s not found , NULL i s
re turned by the f u n c t i o n .

∗∗ ∗/
LIST SearchL i s t (LIST ptr , char ∗ s e a r c h s t r)
{

while (ptr !=NULL)
{

i f (s t r s t r (ptr−>s t r , s e a r c h s t r))
return ptr ;

ptr = ptr−>next ;
}
return NULL;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n d e l t e s the c o n t e n t s o f the
l i s t t h a t i s passed to i t from the p o i n t
o f the e lement t h a t i s passed to i t .
INPUT:

LIST p o i n t e r − Contains a p o i n t e r to a l i s t

C.4 The acissend.c C Code 119

t h a t i s to be d e s t r o y e d .
OUTPUT:

(none)
∗∗ ∗/
void D e l e t e L i s t (LIST ptr)
{

while (ptr !=NULL)
{

LIST next = ptr−>next ;
f r e e (ptr) ;
ptr = next ;

}
}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n adds an entry to the end o f a l i s t .
INPUT:

LIST p o i n t e r − This i s a p o i n t e r to a p o i n t e r
t h a t co nta ins a l i s t .

S t r i n g − This s t r i n g con ta i ns the
in format ion t h a t i s to be added
to the end o f the l i s t .

OUTPUT:
(none)

∗∗ ∗/
void AddToList (LIST∗ pptr , char ∗ s t r)
{

// Create a p o i n t e r t h a t w i l l cont ina the address
// o f the l i s t t h a t i s to be added to .
LIST ptr = ∗pptr ;
LIST p = ptr ;

// I f the l i s t not empty .
i f (p)
{

// Go to the end o f the l i s t .
while (p−>next)
{

p=p−>next ;
}
// Create a new element and move to i t .
p−>next = mal loc (s izeof (LST)) ;
p=p−>next ;

}
// I f the l i s t i s empty .
else
{

// Create the f i r s t e lement .
p = mal loc (s izeof (LST)) ;
∗pptr = p ;

}
// Set the next p o i n t e r to p o i n t nowhere (the end
// o f l i s t)
p−>next = NULL;

// Copy the s t r i n g (passed i n t o f u n c t i o n) to the
// element .
s t r cpy (p−>s t r , s t r) ;

C.4 The acissend.c C Code 120

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n adds a e x t e n s i o n to the
” e x t e n s i o n s . conf ” f i l e (h e l d in memory) .
INPUT:

LIST p o i n t e r − This p o i n t e r p o i n t s to a l i s t
t h a t co nta ins ” e x t e n s i o n s . conf ”

S t r i n g − This s t r i n g con ta i ns the
e x t e n s i o n t h a t i s to be added
to ” e x t e n s i o n s . conf ”

OUTPUT:
(none)

∗∗ ∗/
void AddEXTDataLocal (LIST ptr , char ∗IP , char ∗ s t r)
{

// Local v a r i a b l e d e c l a r a t i o n s .
LIST pstart , tempptr , newentry=mal loc (s izeof (LST)) ;
char tempstr [6 0] ;

// Find the l i n e t h a t h o l d s ” [remote] ’
ptr=SearchL i s t (ptr , ” [remote] ”) ;

// Record the s t a r t p o s i t i o n o f the new e n t r i e s .
p s t a r t=ptr ;

// Set the p o i n t e r s so t h a t tmpstr i s
// i n s e r t e d ’ here ’ .
newentry−>next = ptr−>next ;
ptr−>next = newentry ;
ptr = ptr−>next ;

// Copy the s t r i n g i n t o the newly a l l o c a t e d space .
s p r i n t f (tempstr , ” exten=>%s , 1 ,NoOp() ” , s t r) ;
s t r cpy (newentry−>s t r , tempstr) ;

// Set the p o i n t e r s so t h a t tmpstr i s
// i n s e r t e d ’ here ’ .
newentry = mal loc (s izeof (LST)) ;
newentry−>next = ptr−>next ;
ptr−>next = newentry ;
ptr = ptr−>next ;

// Copy the s t r i n g i n t o the newly a l l o c a t e d space .
s p r i n t f (tempstr , ” exten=>%s , 2 , Dia l (SIP/%s /${EXTEN}) ” ,

s t r , IP) ;
s t r cpy (newentry−>s t r , tempstr) ;

// Set the p o i n t e r s so t h a t tmpstr i s
// i n s e r t e d ’ here ’ .
newentry = mal loc (s izeof (LST)) ;
newentry−>next = ptr−>next ;
ptr−>next = newentry ;
ptr = ptr−>next ;

// Copy the s t r i n g i n t o the newly a l l o c a t e d space .
s p r i n t f (tempstr , ” exten=>%s , 3 , HangUp()∖n” , s t r) ;
s t r cpy (newentry−>s t r , tempstr) ;

newentry = mal loc (s izeof (LST)) ;

C.4 The acissend.c C Code 121

// Find the l i n e t h a t h o l d s ” [remote] ’
while (! s t r s t r (ptr−>next−>s t r , ” [phones] ”))
{

ptr=ptr−>next ;
}

// Create a s t r i n g to t e s t f o r the A s t e r i s k
// s e r v e r s presence .
s p r i n t f (tempstr , ”[% s incoming] ” , IP) ;
// I f t h e r e i s not a l r e a d y an entry f o r t h i s
// a s t e r i s k s e r v e r .
i f (SearchL i s t (pstar t , tempstr)==NULL)
{

// Add in format ion ’ here ’ f o r the s e r v e r .
tempptr = mal loc (s izeof (LST)) ;
tempptr−>next = ptr−>next ;
s p r i n t f (tempstr , ”[% s incoming] ” , IP) ;
s t r cpy (tempptr−>s t r , tempstr) ;
ptr−>next = tempptr ;
ptr = ptr−>next ;

tempptr = mal loc (s izeof (LST)) ;
tempptr−>next = ptr−>next ;
s p r i n t f (tempstr , ” i n c lude=>i n t e r n a l ∖n”) ;
s t r cpy (tempptr−>s t r , tempstr) ;
ptr−>next = tempptr ;
ptr = ptr−>next ;

}
}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n adds a e x t e n s i o n to the ” s i p . conf ”
f i l e (h e l d in memory) .

INPUT:
LIST p o i n t e r − This p o i n t e r p o i n t s to a l i s t

t h a t co nta ins ” s i p . conf ”
S t r i n g − This s t r i n g con ta i ns the

e x t e n s i o n t h a t i s to be added
to ” s i p . conf ”

OUTPUT:
(none)

∗∗ ∗/
void AddSIPDataLocal (LIST ptr , char ∗IP , char ∗ s t r)
{

// Local v a r i a b l e d e c l a r a t i o n s .
char tempstr [6 0] ;
LIST newentry , s t a r t p t r=ptr ;
bool a l r e ad yE x i s t s=f a l s e ;

// Find the p o s i t i o n o f r e g i s t e r
while (ptr=SearchL i s t (ptr , ” r e g i s t e r ”))
{

// I f the IP address i s r e g i s t e r e d .
i f (s t r s t r (ptr−>s t r , IP))
{

// Record t h a t the r e g i s t r a t i o n has a l r e a d y
// been entered
a l r e ad yE x i s t s=true ;

C.4 The acissend.c C Code 122

}
// Move to the next l i s t item .
ptr=ptr−>next ;

}
// I f t h e r e i s no r e g i s t r a t i o n in format ion in
// the f i l e .
i f (! a l r e ad yE x i s t s)
{

// Add r e g i s t r a t i o n d e t a i l s .
newentry = mal loc (s izeof (LST)) ;
s p r i n t f (tempstr , ” r e g i s t e r=>%s : welcome@%s/%s ” ,

LOCALIP, IP , IP) ;

s t r cpy (newentry−>s t r , tempstr) ;
newentry−>next = ptr−>next ;
ptr−>next = newentry ;

}
// Add e n t r i e s to the end o f the f i l e .
s p r i n t f (tempstr , ”∖n[%s] ” , IP) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” type=f r i e n d ”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” s e c r e t=welcome”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” context=%s incoming ” , IP) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” host=dynamic”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” d i s a l l o w=a l l ”) ;
AddToList(& s t a r t p t r , tempstr) ;
s p r i n t f (tempstr , ” a l low=%s ” ,CODEC) ;
AddToList(& s t a r t p t r , tempstr) ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n l o a d s g l o b a l v a r i a b l e s
from a c o n f i g u r a t i o n f i l e t h a t i s
s t o r e d in the r o u t e r in the d i r e c t o r y / b in /
INPUT:

(none)
OUTPUT:

(none)
∗∗ ∗/
void S e t L o ca l S e t t i n g s ()
{

// Local v a r i a b l e d e c l a r a t i o n s
FILE ∗ fp ;

// Open the f i l e f o r reading
fp=fopen (”/ bin /LOCALIP.ROUTER” , ” r ”) ;

i f (! fp)
e r r o r (”Opening F i l e ”) ;

// Obtain the IP address o f the w i r e l e s s i n t e r f a c e
// o f the r o u t e r (used f o r unique name f o r
// A s t e r i s k s e r v e r) .
f g e t s (LOCALIP, s izeof (LOCALIP) , fp) ;

C.4 The acissend.c C Code 123

int l en = s t r l e n (LOCALIP) − 1 ;
i f (LOCALIP[l en] == ’ ∖n ’)

LOCALIP[l en] = 0 ;

// Obtain the codec t h a t i s be ing a l l o w e d to be
// used by the A s t e r i s k s e r v e r (Used in ” s i p . conf ”)
f g e t s (CODEC, s izeof (CODEC) , fp) ;
l en = s t r l e n (CODEC) − 1 ;
i f (CODEC[l en] == ’ ∖n ’)

CODEC[l en] = 0 ;

// Locat ion o f ” s i p . conf ” (f o r fopen () c a l l s)
f g e t s (SIP , s izeof (SIP) , fp) ;
l en = s t r l e n (SIP) − 1 ;
i f (SIP [l en] == ’ ∖n ’)

SIP [l en] = 0 ;

// Locat ion o f ” e x t e n s i o n s . conf ” (f o r fopen () c a l l s)
f g e t s (EXT, s izeof (EXT) , fp) ;
l en = s t r l e n (EXT) − 1 ;
i f (EXT[l en] == ’ ∖n ’)

EXT[l en] = 0 ;

// Locat ion o f A s t e r i s k l o g f i l e (f o r f i n d i n g
// new phones)
f g e t s (MESSAGES, s izeof (MESSAGES) , fp) ;
l en = s t r l e n (MESSAGES) − 1 ;
i f (MESSAGES[l en] == ’ ∖n ’)

MESSAGES[l en] = 0 ;

// Close the f i l e .
f c l o s e (fp) ;

}
/∗ ∗∗ ∗/

/∗ ∗∗
This f u n c t i o n s t o r e s the conents o f the
l i s t s in memory back to f i l e .

INPUT:
l i s t p o i n t e r − L i s t to be saved to f i l e
S t r i n g − Name of the f i l e t h a t the

memory c o n t e n t s are to be
w r i t t e n to .

OUTPUT:
(none)

∗∗ ∗/
void PrintDataToFile (LIST ptr , char ∗ f i l ename)
{

// Local v a r i a b l e d e c l a r a t i o n
FILE ∗ fp ;

// Open the f i l e f o r w r i t i n g
fp=fopen (f i l ename , ”w”) ;

i f (! fp)
e r r o r (”Opening F i l e ”) ;

// Loop through the l i s t , p r i n t i n g each s t r i n g in
// the l i s t as a new l i n e in the f i l e .
while (ptr != NULL) {

C.4 The acissend.c C Code 124

f p r i n t f (fp , ”%s ∖n” , ptr−>s t r) ;
ptr = ptr−>next ;

}
// Close the f i l e .
f c l o s e (fp) ;

}
/∗ ∗∗ ∗/

C.5 The makefile for Open-WRT SDK 125

C.5 The makefile for Open-WRT SDK

Make file for acissend.c residing in the OpenWrt-SDK-Linux-i686-1/package/ directory.

i n c lude $ (TOPDIR)/ r u l e s .mk

PKG NAME:= ac i s s end
PKG RELEASE:=1

PKG BUILD DIR:=$ (BUILD DIR)/ $ (PKG NAME)

inc lude $ (INCLUDE DIR)/ package .mk

d e f i n e Package/ ac i s s end
SECTION:= u t i l s
CATEGORY:= U t i l i t i e s
TITLE:= ac i s s end −−− Rece ives l a r g e update
DESCRIPTION:=∖
Gets a l i s t o f a l l IP a d r e s s e s ∖∖∖
and the ex t en s i on s a s s o c i a t e d ∖∖∖
with them and reco rd s that data .

endef

d e f i n e Build / Prepare
mkdir −p $ (PKG BUILD DIR)
$ (CP) . / s r c /∗ $ (PKG BUILD DIR)/

endef

d e f i n e Package/ a c i s s e n d / i n s t a l l
$ (INSTALL DIR) $ (1)/ b in
$ (INSTALL BIN) $ (PKG BUILD DIR)/ a c i s s e n d $ (1)/ b in

endef

$ (e v a l $ (c a l l BuildPackage , a c i s s e n d))

C.6 The makefile for Linux 126

C.6 The makefile for Linux

Make file for acissend.c residing in the OpenWrt-SDK-Linux-i686-1/package/acissend

directory.

a c i s s end : a c i s s end . o
$ (CC) $ (LDFLAGS) ac i s s end . o −o ac i s s end

ac i s s end . o : a c i s s end . c
$ (CC) $ (CFLAGS) −c ac i s s end . c

remove ob j e c t f i l e s and executab l e
c l ean :

rm ∗ . o a c i s s end

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter Introduction
	Introduction
	Alternative Systems
	Need for System
	Benefits of System
	Work Conducted
	Chapter Summary

	Chapter Literature Review
	Telephone Systems
	Traditional Telephone Systems
	Voice over Internet Protocol
	Providers os Systems

	Audio Codecs
	G.711
	G.729A

	Wireless Networks
	Wireless Data Networks

	Wireless Mesh Networks
	Mesh Routers
	Mesh Clients

	Wireless Mesh Network Routing Protocol
	Reactive
	Proactive
	Hybrid

	Security Issues
	Wireless Security
	Asterisk Security

	Hardware
	LinkSys WRT54GL Wireless Router
	LinkSys SPA901 IP Phone

	Chapter Summary

	Chapter Design of Proposed System
	Design Philosophy
	Mobility and Reliability of Mesh Routers
	Portability of IP Phones
	Routing of Audio Data

	Firmware
	Variations
	Selection

	Software
	Asterisk
	DHCP Server
	OLSR Routing Protocol

	Asterisk Client Information Sharing (ACIS)
	Transport Protocol for Messages
	Detection of New Phones

	Adding Support for Mobile Radio Devices
	Combined System
	Chapter Summary

	Chapter Configuration of Proposed System
	Open-WRT Settings and Configuration
	Loading Open-WRT on to the WRT54GL
	Gaining Access to the Command Line Interface
	Routing Protocol Implementation
	Network Configuration

	Configuring Asterisk
	SPA901 Configuration

	Configuration of Asterisk Client Information Sharing
	ACIS Send
	ACIS Listen
	Preparing the Packages

	Chapter Testing of the Proposed System
	Testing Environment
	Layout of Testing Area
	Isolating Routers' Transmissions

	VoIP Testing Metrics
	Delay
	Jitter
	Packet Loss
	Resource Use

	Testing Suite
	JPerf
	TOP

	Results Obtained
	Performance of ACIS Programs
	Results of ACIS Tests
	Observations and Known Issues

	Chapter Summary

	Chapter Conclusions and Further Work
	Achievement of Project Objectives
	Discussion of Results
	Further Work
	Quality of Service
	Use of Compressed Header Information
	Added Functionality

	References
	Appendix Project Specification
	Appendix WMN Muliple Hop Tests
	Appendix Asterisk Client Information Sharing Source Code
	The acislisten.c C Code
	The makefile for Open-WRT SDK
	The makefile for Linux
	The acissend.c C Code
	The makefile for Open-WRT SDK
	The makefile for Linux

