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EXECUTIVE SUMMARY 
 
 
Many water authorities own water mains that date to the beginning of the 

last century.  As these assets begin to reach the end of their useful lives, 

failures are becoming increasingly more common.  With only limited 

financial resources available, water authorities are faced with the challenge 

of whether to repair or replace damaged water mains.  A useful decision 

making tool in this area is a water main failure prediction model. 

  

ActewAGL is a water utility operating and maintaining the water supply 

network in the ACT for the asset owner Actew Corporation.  The network 

consists of in excess of 3000 kilometres of water mains and services 

approximately 360,000 customers.  Although not currently considered a 

problem, the water main failure rate in the ACT appears to be on the rise.  

Therefore, Actew recognizes the need to better understand the causes of 

water main failures and to be proactive in developing policies to most 

efficiently deal with the effects of failure. 

 

The objective of this study was to investigate the methods, parameters and 

theory used in existing water main failure models and to use these findings 

to develop a customised water main failure prediction model taking into 

account limitations with the type and quality of water main failure data 

available. 

 

Research showed that the key factors influencing the structural 

performance of buried pipes are the pipe characteristics, soil embedment 

conditions and the internal/external loadings on the buried pipe.  Any 

significant impacts on these factors can lead to failure.  Water main failure 

prediction models endeavour to use this knowledge to predict the likelihood 

of or time until failure. 
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The ultimate in water main failure prediction models was shown to be a 

physically based model that predicts time to failure for an individual water 

main based on the actual pipe condition and local environmental influences.  

However, difficulties and costs associated with obtaining input data for a 

physical model has resulted in the popularity of a more cost effective 

statistical failure prediction model which attempts to identify trends in past 

performance data and assumes that these will continue on into the future. 

 

Analysis of historical water main failure data in the ACT identified a number 

of data limitations including missing or incomplete data and a lack of the 

necessary data to develop a physical model.  Most failures in the ACT were 

shown to occur in small diameter cast iron water mains during the winter 

period or low rainfall periods.  The occurrence of these failures was 

attributed to soil moisture or frost loads and temperature differentials 

caused by low ground temperatures. 

 

Although it was clear that a physical water main failure prediction model 

would be ideal for the ACT, data and resource limitations meant that a 

statistical failure prediction model was considered most appropriate.  Two 

multivariate failure prediction models (see Figures 1 and 2) were proposed 

using multiple regression techniques with the dependent variable being total 

number of failures and the explanatory variables time (month for Model 1 

and year for Model 2) and rainfall (12 month totals - mm).  Ground 

temperatures were also considered for the models. However, analysis 

showed that its inclusion did not significantly improve the models accuracy 

due to its high correlation with rainfall. 

 

Further testing and validation of the models is required.  However, 

preliminary analysis showed promising results with Model 1 and Model 2 

obtaining coefficients of multiple determination of 78% and 76% 

respectively.  Residual analysis identified possible concerns with 

autocorrelation occurring suggesting there is scope for improvement in the 
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model.  This would also include investigating the possibility of adding more 

explanatory variables to the model. 

 

RECOMMENDATIONS 

 

As a result of this study a number of recommendations were made for 

further work in order to improve Actew’s ability to monitor system 

performance and predict water main failures.  These are as follows. 

 

• Compile historical failure records into a central water main failure 

database and add links to the GIS and asset management systems. 

• Incorporate physical parameters into water main failure data collection 

processes. 

• Conduct further testing, validation and improvement of the multivariate 

statistical models developed in this study. 

• Conduct preliminary investigations into the development of a physically 

based water main failure prediction model. 

 

Figure 1 – Equation for Model 1 

 

Total Number of Failures  21 175.00025.033.237997.123 XXe −+=  

where  x1 = time (month) 

  x2 = rainfall (mm) 

 

Figure 2 – Equation for Model 2 

 

Total Number of Failures  21 206.00304.068.241259.145 XXe −+=  

 

where  x1 = time (year) 

  x2 = rainfall (mm) 
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1. Introduction 
 

1.1. Outline of the Study 
 
 
In recent years much has been said about the importance of taking steps to 

ensure water supply sustainability for future generations.  With most 

attention being focussed on securing additional supply options, an important 

aspect often overlooked is the maintenance, replacement and renewal of 

existing water supply networks.  This too is an important consideration in 

ensuring water supply needs remain sustainable.  

 

Water authorities in Australia have made large investments in water 

infrastructure.    According to the report ‘Time Running Out: Shaping 

Regional Australia’s Future’ (2000) the total replacement costs of water 

infrastructure assets in Australia is estimated at being in excess of $90 

billion.  Water supply network assets make up a significant proportion of this 

replacement cost.  

 

Many water supply networks date from early last century and are beginning 

to show signs of deterioration. A major challenge facing the owners of these 

networks is the problem of how best to cope with aging infrastructure.  

Engineers Australia (2005) in the Australian Infrastructure Report Card 

reported that spending on water asset renewals is not enough to keep up 

with the rate of deterioration. As network assets begin to reach the end of 

their useful lives the frequency of network failures appears to be on the 

increase.  This makes it increasingly more difficult to meet legislative 

requirements and customer service standards.   

 

The Water Service Association of Australia (WSAA) identifies water main 

failures as a key indicator of the performance of a water supply network. 

Water main failures result in large financial and social costs to both the 

water authority and the wider community.  Typical financial costs include 
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costs of repairing or replacing damaged assets, restoration of the damaged 

environment and compensation for damaged property.  Social costs include 

increased rates and taxes, environmental damage, loss of reputation, public 

inconvenience and the perceived waste of a precious resource at time of 

drought and water restrictions. 

 

With only limited financial resources available to operate and maintain 

water supply pipe networks, it is critical that these are spent wisely and 

efficiently.  This means it is important to be able to analyse how a network 

is currently performing, identify potential areas of risk and predict likely 

future performance in order to determine when a water main should be 

repaired or when it should be replaced. This will lead to better, more 

informed decisions regarding water main renewal, replacement and 

maintenance strategies.  A useful tool in predicting future performance is a 

water main failure prediction model.   

 

The purpose of this project is to investigate the structural design of buried 

pipes, common water main failure modes and existing water main failure 

prediction models and to develop a customised water main failure 

prediction model based on these findings. 

 

1.2. Background 
 

 

ActewAGL is a multi-utility providing electricity, gas, water and waste-

water services to the Australian Capital Territory (ACT) and surrounding 

areas.  ActewAGL operates and maintains the water supply network for the 

asset owner Actew Corporation. 

 

The ACT water supply network services an estimated 360,000 customers and 

consists of more than 3000 kilometres of water mains.  The first reticulation 

mains in the ACT date back to approximately 1915.  However, the majority 
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of the network has been constructed since the 1960’s when rapid growth 

was experienced in the ACT. 

  

According to the Actew Corporation Asset Management Plan (2007) water 

main failures in the ACT are below the Australian industry average and do 

not currently pose a significant problem.  Analysis, however, has shown that 

the overall rate of water main failures has been increasing gradually and is 

likely to become a problem in the future.  

 

Due to the relatively low water main failure rates, Actew’s current primary 

maintenance strategy is to run water mains to failure.  Water main 

replacement programs have also been implemented to replace asbestos 

cement (AC) mains and other sections of main that experience relatively 

high rates of failure.  

 

Despite the current relatively low overall water main failure rate, it is 

recognised that an aging network, increasing failure rate and more stringent 

service level agreements and environmental requirements will ultimately 

result in maintenance strategies needing to become more proactive in 

identifying mains that pose a potential failure risk and taking steps to 

prevent failure or to replace the mains before they become a significant 

problem. 

 

Actew is looking at taking steps to improve the quality of water main failure 

data recorded in order to carry out further analysis of failure trends.  

Failure analysis conducted so far has been used to develop asset 

management plans and water main replacement programs. 

 

The aim of this project is to build upon existing water main failure analysis 

and to develop a model that can be used to analyse system performance 

trends and assist in the water main replacement decision making process.   
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1.3. Research Objectives 
 
 
The objectives of this research project are to: 

  

1. Investigate the structural design of buried pipes to identify the 

factors that determine how a buried pipe performs in service. 

2. Investigate common water failure modes and their causes. 

3. Critically evaluate existing water main failure prediction models. 

4. Analyse the performance of Actew’s distribution/reticulation system 

in relation to water main failures using findings in Objectives 1 and 2. 

5. Develop a customised water main failure prediction model based on 

the analysis of Actew performance data in Objective 4. 

 

The project specification is included in Appendix A. 

 

In order to reach these objectives the research will be conducted in three 

stages. 

 

The first stage of the project will be carried out in the form of a literature 

review covering the first three objectives.  The purpose of this is to gain an 

understanding of the scope of works already relating to the topic.  

Information sources include textbooks, journal articles, conference 

proceedings, international standards and design manuals.  Findings from the 

literature review will be used in the remainder of the project. 

 

The second stage of the project relates to objective four. This will involve 

firstly compiling and reviewing Actew water main failure data to determine 

data quality and quantity and to identify limitations in the available data.  

Secondly this compiled data set will be analysed using the parameters 

identified in the literature review.  Findings of the review will determine 

model type and parameters to be used in the model. 
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The third stage of the project is the development of a customised water 

main failure model.  The model developed will be the one deemed the most 

appropriate taking into account resource and data limitations. 

 

1.4. Scope of the Project 

 

The scope of this project involves looking at current practice on the topic of 

water main failure prediction and using this knowledge to develop a 

customised failure prediction model.  It is recognised that many years of 

research has gone into developing some of the existing failure prediction 

models and fully developing a customised model is a long term project 

beyond the scope of this study.  It is not the intent to develop a model that 

could be considered best practice in this field, but rather to lay the 

foundations for a customised model taking into account current data and 

resource limitations.  Marked improvements would be required before a best 

practice model could be considered. 

 

1.5. Dissertation Overview 

 

This dissertation has been divided into seven chapters as outlined below. 

 

Chapter 1 – Introduction 

 

Chapter 1 provides an introduction to the research project that has been 

conducted.  Details covered in the chapter include the importance of this 

topic, background into the specific need of this study, research objectives, 

scope of the project and a brief dissertation overview. 
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Chapter 2 – Literature Review 

 

Chapter 2 is a comprehensive review of literature relating to water mains 

and water main failure prediction models.  The review has focussed on three 

main areas – the structural performance of buried pipes, the causes and 

types of water main failures and existing water main failure prediction 

models. 

 

Chapter 3 – Methodology 

 

Chapter 3 outlines the methodology used in the study to develop the 

customised water main failure prediction model.  More specifically it details 

the methods used to analyse existing water main failure data in the ACT and 

provides the background to regression analysis which was used to develop 

the models in Chapter 5. 

 

Chapter 4 – Actew Water Main Failure Data Analysis 

 

Chapter 4 details the data analysis conducted on historical water main 

failure data in the ACT.  The analysis concentrated on identifying general, 

spatial and temporal trends and patterns in the data and findings influenced 

the type of failure prediction model proposed in Chapter 5. 

 

Chapter 5 – Customised Water Main Failure Prediction Model 

 

Chapter 5 details the development of the two customised water main failure 

prediction models.  The chapter also outlines some of the analysis carried 

out to assess the quality of the model and discusses the significance of any 

findings.  
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Chapter 6 – Comparison of Proposed Models with Existing Failure Prediction 

Models 

 

Chapter 6 acknowledges some of the difficulties in comparing different 

types of water main failure prediction models.  It then compares the 

proposed models to existing failure prediction models by looking at the 

different uses of models, model input variables, model output and model 

accuracy. 

 

Chapter 7 – Conclusion and Recommendations 

 

Chapter 7 summarises the outcome of the study and how well the research 

objectives were able to be met.  It describes some of the positives that have 

come out of the project and some of the areas that still need further 

investigation.  The chapter concludes by making some recommendations for 

further works.  

 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2  
 

LITERATURE REVIEW 
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2. Literature Review 
 

2.1. Introduction 
 

A wide variety of literature has been published on the subject of water main 

failures. The aim of the literature review is to analyse this available 

literature with a view to finding information applicable to Actew’s water 

supply network that will be useful in developing a customised water main 

failure prediction model.  

 

Material for the literature review was obtained from a variety of sources 

including textbooks, papers published by researchers and research 

institutions, technical groups, technical libraries, international standards 

and online resources 

 

The scope of the literature review covers three main areas – buried pipe 

design, water main failures and water main failure prediction models. 

 

2.2. Buried Pipe Design 
 

 

An overview of the theory of buried pipe design is included to highlight the 

factors that are critical in the performance of a water main in service and 

thus have a bearing on water main failures. 

2.2.1. Development of Design Procedure 
 

According to Watkins and Anderson (2000) the need for detailed design 

procedures for buried pipes was identified in the 1920’s.  Prior to this, 

design was mostly empirical.  The purpose of detailed design procedures 

was to prevent water main failures that were quite common at the time but 

also to ensure overdesign did not occur.   
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Pioneering work in the development of buried pipe design standards was 

carried out by Marston, Spangler and Watkins. Marston (1929) proposed a 

theory for predicting soil loads on buried rigid pipes.  He reasoned that pipe 

failures could be avoided by ensuring that the soil loads acting on the buried 

pipe were less than the failure strength of the buried pipe allowing for a 

factor of safety. 

 

Spangler (1941) discovered that flexible pipes, new to the market at the 

time, performed differently in situ to rigid pipes and that pipe deflection 

and embedment soil stiffness play an important role in the structural 

performance of buried flexible pipes.  Experimentation showed that 

excessive deflection had an adverse effect on pipe performance, so Spangler 

sought to limit pipe deflection below 5%.  In order to predict the deflection 

of buried flexible pipes Spangler developed the Iowa Formula which is based 

on Marston soil loads, pipe ring stiffness and the stiffness of the embedment 

soil. 

 

The soil parameters in Spangler’s formula were determined empirically and 

did not give reliable results in all cases.  To overcome this problem Watkins 

(1958) modified the Iowa formula introducing a modulus of soil reaction 

which is a function of depth of soil cover and pipe ring stiffness. 

 

The work of Marston, Spangler and Watkins forms the basis of buried pipe 

design today.  Others also have made a contribution to design procedures by 

proposing modifications to existing methods to improve accuracy and 

correct deficiencies.   As the complexity of the structural performance of 

buried pipes has become better understood, additional factors have been 

included in pipe design procedures including hydrostatic loads, 

superimposed surface loads, circumferential wall strain and ring buckling. 

 

Alternative design methods of varying levels of complexity and accuracy 

have been proposed and some of these used in design procedures.  However, 

the level of complexity involved in some methods is questionable due to the 
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intrinsic variability of parameters used in the analysis, for example soil 

parameters.  Also, it is not always easy to validate these designs in the 

field. Despite some of the different methods used to calculate parameters, 

design procedures follow the same basic processes. 

2.2.2. Factors in the Structural Performance of Buried       
Pipes 

 

In order to understand the structural performance of buried pipes it is first 

necessary to distinguish between rigid (cast iron) and flexible (ductile iron 

and PVC) pipes which differ in the way they resist loads.   

 

A technical note by Vinidex (2000) explains the difference between rigid and 

flexible pipe.  Rigid pipes carry loads by transferring the load from the top 

of the pipe, through the pipe wall to the bedding. The imposed load is, 

therefore, concentrated over a small area at the base of the pipe and a high 

wall thickness is required. 

 

On the other hand, flexible pipes resist load by transferring the load from 

the top of the pipe to the bottom and side support of the trench.  The 

mechanism that causes load transfer is vertical deflection of the pipe under 

load which results in horizontal deflection of the pipe into the side support 

of the trench.   

 

Flexible pipes are more efficient than rigid pipes because they can shed load 

over a larger area by deforming without causing structural damage.  This 

means wall thicknesses can be reduced for the same carrying capacity. 

Figure 2.1 illustrates the difference in soil loads acting on rigid and flexible 

pipes.  

 

The improved qualities of flexible pipe have lead to the superseding of cast 

iron as a material in water supply construction.   Despite this, the structural 

performance of cast iron pipes is still relevant as it remains the dominant 

material in most pipe networks. 
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Figure 2.1 Comparison of Soil Pressures against Rigid and Flexible Pipes  

 

 

Rigid Pipes 

 

With the integration of ductile iron and PVC into water supply construction 

practices, the original design methods for cast iron pipe are now obsolete or 

superseded and difficult to obtain. However, Rajani and Makar (2000) and 

Makar et al (2000) outline basic design procedures and discuss relevant 

factors in the structural performance of cast iron pipes that original design 

methods overlook. 

 

According to these two studies, cast iron pipe design methods originally only 

recognised the effects of known earth loads and internal pressures on the 

performance of a cast iron pipe and thus used these to determine the 

required pipe wall thickness.  Subsequent studies have shown other factors 

that affect the structural performance of buried cast iron pipes include 

corrosion pitting which reduces pipe wall thickness and induced loads due to 

differential soil movement, thermal effects and frost load effects. 
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Flexible Pipes 

 

In Australia the standard applicable for the structural design of buried 

flexible pipelines is AS/NZS 2566.1:1998 Buried Flexible Pipelines – Part 1: 

Structural Design. 

 

AS/NZS 2566.1:1998 shows that that the structural performance of a buried 

flexible pipe is dependent on three main factors a) pipe characteristics, b) 

soil embedment characteristics and c) the magnitude of internal and 

external loadings.  If these three factors are kept within acceptable limits 

successful design is possible. 

 

Pipe Characteristics 

 

Pipe characteristics determine how a pipe performs in service when 

subjected to internal operating pressures and imposed loads.  Therefore, 

pipe selection must match the intended function of the pipe without 

reaching its performance limits which are pipe failure (collapse, bursting, 

and fracture) and/or excessive pipe deformation as defined by Watkins and 

Anderson (2000). 

 

Important pipe characteristics for design purposes are pressure rating, pipe 

wall thickness and pipe ring stiffness.  Pressure ratings determine a 

pipeline’s maximum allowable operating pressure, pipe strength is a 

function of the pipe wall thickness and pipe ring stiffness is important in 

resisting deflections.   

 

Other important factors that affect pipe durability and performance include 

the pipe manufacturing process, pipe tolerances and pipe coatings and 

linings.  The pipe manufacturing process can introduce pipe defects due to 

metal inclusions, incorrect rate of cooling or dimensions outside tolerance 

such as minimum wall thickness.  Defects in pipe coatings or linings can lead 
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to an increased risk of corrosion.  Figure 2.2 illustrates important pipe 

characteristics used in design. 

 

 

 

 

 

 

 

 

 

Figure 2.2 Important Characteristics of a

 

Soil Embedment Characteristics 

 

Soil embedment characteristics are important in 

flexible pipes.  Factors that must be controlled in 

embedment geometry, embedment materials, co

Figure 2.3 illustrates key pipe installation termino

 

 

Figure 2.3 Buried Flexible Pipe Installation Terminolo
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Embedment geometry is shown in Figure 2.4 and includes embedment 

width, depths of bedding and overlay and minimum cover.  These need to 

be controlled because they can affect the magnitude of loads imposed on 

the buried pipe. 

 

 
 

Figure 2.4 Embedment Geometry (AS/NZS 2566.1:1998) 

 

Embedment materials must be free of organics and corrosive materials and 

meet strict specifications.  This is to prevent differential soil settlement 

that may impart stresses on the pipe, chemical attack of the pipe coating 

and to promote effective soil compaction. 

 

Careful compaction must be undertaken to achieve optimum soil density and 

uniform compaction.  If this does not occur then it can result in pipe 

damage. 

 

Pipe deflection is a function of the soil moduli or stiffness.  Soil stiffness is 

determined from the modulus of native soil and embedment soil.   If pipe 

must be laid in poor quality soil then it is important to select embedment 

soil to achieve adequate soil stiffness to resist deflection. 
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Internal and External Loadings 

 

The structural performance of buried pipes is influenced by the magnitude 

of internal and external loads imposed on the buried pipe.  To perform 

successfully a buried pipe must be able to safely resist imposed loads with a 

sufficient margin of safety. 

 

Loads taken into account for design include trench or embankment fill, 

external hydrostatic loads, superimposed dead and live loads and the mass 

of the contents of the pipe. Figure 2.5 illustrates the effects of a 

superimposed live surface load due to traffic.  Successful design requires 

that all loads are accurately predicted with a sufficient margin of safety. 

 

The factors discussed above help to understand the structural performance 

of buried pipes and form the basis for design procedures. 

 

 
Figure 2.5 Traffic Load Effects (AS/NZS 2566.1:1998) 
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2.2.3. AS/NZS 2566.1:1998 Design Procedure 
 

The design criteria for AS/NZS 2566 is explained in the commentary to the 

standard published by Standards Australia (1998) and described as the 

adoption of rationally based design equations that are expressed as simply 

as possible while still yielding acceptably accurate predictions.  Some feel 

that the application of the design standard results in a conservative design.  

 

AS/NZS 2566.1:1998 shows that the structural performance of a buried 

flexible pipe depends on the pipe characteristics, soil stiffness and the type 

and magnitude of internal and external loadings.  To achieve a satisfactory 

design a designer may need to vary one or more of these parameters. 

 

A satisfactory design involves selecting a pipe-soil system that will safely 

meet strength and deflection requirements.   To assist in this the design 

standard provides design equations for predicting design loads and the 

critical pipe ring performance criteria of vertical deflection, strength and 

buckling. These equations are based on a design life, or long term basis, of 

50 years.  The actual service life of a buried flexible pipe can be expected 

to exceed 50 years.  

2.2.4. Summary 
 

A review of literature relating to buried pipe design has been conducted to 

highlight the critical factors in buried pipe design.  Generally design 

procedures are in agreement.  Some have proposed more accurate and 

complex design procedures, however the increased complexity is 

questionable due to the inherent variability of some of the design 

parameters. 

 

The three most important considerations in buried pipe design are the pipe, 

the embedment conditions and the pipe loadings.  The job of the designer is 

to select the pipe-soil interaction that can safely resist the design loads.   
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Loads cannot always be accurately predicted and are prone to change over 

time due to changed embedment conditions.  This means that some pipe 

failures are inevitable. 

 

As more research is carried out into how buried pipes perform in service it is 

likely that more accurate design methods will be adopted in the future.  

Until these new methods are validated against actual field data the existing 

simplified design methods will continue to be used. 

 

  

 

 

 

 

 



Chapter 2 – Literature Review 

Developing a Model to Predict Water Main Failures                                                  Page 20 
 

2.3. Water Main Failures 
 

An overview of why and how water mains fail can aid in understanding the 

methods and parameters used in water main failure modelling.  

 

Most of the literature regarding water main failure modes and failure 

mechanisms is relatively recent.  This is because increasing numbers of 

water mains are beginning to reach the end of their useful lives and water 

authorities are looking to understand the complex processes that lead to 

failures so they can learn how to best cope with them.   

2.3.1. What is a Water Main Failure? 
 

The Dictionary of Civil Engineering (2008) defines a failure as ‘a condition at 

which a structure meets a limit state. It may be due to leakage, deflection 

or cracking, but it usually does not involve rupture because most structures 

are considered to be unsafe, therefore unusable, before they collapse.’  

 

Water Services Association of Australia (WSAA) defines a water main break 

or failure as a break, leak or burst in any potable or reuse water main and 

includes failure of fittings such as hydrants, valves, tapping points and pipe 

joints.  This definition was developed to provide an indication of overall 

network performance and frequency of customer disruption.   

 

This research project is focussed primarily on the performance of potable 

water mains in service and thus failures in reuse mains, hydrants and valves 

will be excluded from the study. 
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2.3.2. Why do Water Mains Fail? 
 

The mechanisms that lead to water main failures are complex and have only 

recently begun to be understood. Water main failures can generally be 

attributed to one or more of the following causes. 

 

Manufacturing Defects/Limitations 

 

Makar et al (2001) and Nicholas and Moore (2007) describe typical pipe 

defects or flaws resulting from poor quality control in manufacturing.  These 

include uneven pipe wall thicknesses, porosity and impurities. 

Manufacturing defects are points of weakness that could potentially initiate 

cracks or other problems.   Also pipe characteristics are influenced by the 

method of manufacture.  For example, cast iron pipes manufactured using 

the ‘Super De Levaud’ have reduces corrosion resistance compared to sand 

cast pipes. 

 

Human Error 

 

Water mains are prone to fail because of human influences.  Makar et al 

(2001) lists a number of human errors that could potentially lead to water 

main failures.  These include design errors, poor handling or installation 

techniques, third party damage and poor repair techniques.  Design errors 

can lead to failure due to excess pressures or loads.  Poor handling or 

installation techniques can damage pipe and lead to additional forces being 

induced upon the buried pipe.  Third party damage may be caused by 

excavation without accurate utility clearances, superimposed surface loads 

due to construction equipment or construction directly over a water main.  

Previous repairs may become a weak point in a pipeline which could 

ultimately lead to failure. 

 



Chapter 2 – Literature Review 

Developing a Model to Predict Water Main Failures                                                  Page 22 
 

Corrosion 

 

It was once thought that corrosion was the sole cause of a number of water 

main failures.  Studies have now shown that in many failures corrosion 

weakens the pipe but other mechanisms such as internal pressures can 

actually cause the failure.  Makar (2000), Makar et al (2001) and Nicholas 

and Moore (2007) identify two types of corrosion for iron pipes – pitting that 

reduces the pipe wall thickness and graphitisation where iron is leached 

from the pipe leaving a weaker matrix of graphite flakes.  The overall effect 

is to reduce pipe wall thickness and thus pipe strength.  The CSIRO (2007) 

and Hu and Hubble (2007) show that corrosion can be a problem with PVC 

and asbestos cement water mains also.  Figure 2.6 shows an illustration of 

the conditions leading to corrosion reproduced from the study by Makar et al 

(2001).  These include corrosive soils, differential aeration, dissimilar 

metals and stray currents. 

 

Excess Internal Pressures 

 

Pipeline design typically includes allowances for pressure surges associated 

with normal pipeline operation.  However, pressure transients due to 

malfunctioning equipment or pumping against a closed valve can cause 

water mains to fail due to bursting or blow out.  

 

Changed Soil Embedment Conditions 

 

Soil embedment conditions can change due to a number of causes including 

expansive soils, voids or hard spots in bedding materials due to water leaks 

or differential ground movement, groundwater movement and reduced soil 

cover.  The effect of these changes is increased loading on buried pipes 

which can lead to failure. 
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Thermal Effects 

 

Many studies have acknowledged the effects a change in water and ground 

temperature can have on water main failures. For example, Habibian (1993) 

associated the development of tensile forces on a restrained pipe with the 

contraction of pipe materials from a large drop in water temperature 

flowing through a pipe.  Habibian further discussed the effects of 

differential loading due to temperature differences on the inside and 

outside of a pipe and increased external loading due to frost loads.   McNeill 

and Edwards (2002) also highlighted the increased corrosion rate caused by 

a drop in temperature in winter. 

 

Material Fatigue/Deterioration 

 

All materials are subject to fatigue from prolonged loading as well as 

deterioration over time.  Due to the long service life of a water main, 

fatigue and deterioration can reduce a pipes ability to resist imposed loads 

to a level where they are susceptible to failure. 
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2.3.3. Water Main Failure Modes 

 

Published literature is generally in agreement regarding the typical modes 

of water main failures although some differences exist according to 

different material types.  Rajani and Kleiner (1999) described four main 

failure modes – referring to three failure modes (circumferential, 

longitudinal and split bell) as classified by O’Day et al (1986) and added to 

this pinholes.  An illustration of the failure modes reproduced from this 

study is shown in Figure 2.7.   Makar et al (2000) observed similar failure 

modes in grey cast iron water mains as well as bell shearing and spiral 

cracking.  Hu and Hubble (2007) confirmed similar failure modes for 

asbestos cement water mains.   

 

Recent studies have been conducted by NCRC (1995), the UK Water Industry 

Research (2002) and WSAA (2003) with the aim of analysing regional water 

main failure data to develop a database of common water main failure 

modes.  The findings of these studies show that the failure modes described 

previously accurately reflect actual pipe performance in the field.  The type 

of failure mode is a function of the pipe type (rigid or flexible) and the pipe 

material. 

 

WSAA (2003) published a table defining common failure modes in pressurised 

pipeline systems applicable to Australian pipes, environments and operating 

conditions.  This is reproduced in Figure 2.8.  In addition to the failure 

modes described earlier WSAA also lists perforation, pipe wall rupture/tear, 

tapping failures and third-party damage.  These failure mode descriptions 

have been adopted by Actew. 
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Figure 2.7 – Failure Modes for Buried Pipes (Rajani and Kleiner 1999) 
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2.3.4. Failure Mechanisms 
 
Water mains typically fail according to one of the failure types discussed 

previously.  A number of possible failure mechanisms have been proposed to 

describe why each of these failure types occurs and are outlined below. 

 

Circumferential Breaks 

 

Circumferential breaks are breaks around the circumference of the pipe wall 

and are caused by longitudinal stresses.  Figure 2.9 illustrates a 

circumferential break in a cast iron pipe and Figure 2.7 the mechanisms 

leading to circumferential breaks. 

 

Rajani and Kleiner (1999) attribute the causes of circumferential breaks to 

thermal contraction acting on a restrained pipe, bending stresses due to soil 

differential movement or large voids in the bedding near the pipe, 

inadequate trench and bedding practices and third party interference. 

Rajani and Makar (2000) and Makar et al (2001) also discuss the contribution 

of corrosion to circumferential failures and refer to a spiral cracking type 

failure which starts off as a circumferential failure but then propagates 

down the pipe in a spiral fashion. 

 

 
 

Figure 2.9 Circumferential Break in a Cast Iron Pipe (WSAA 2003) 
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Longitudinal Breaks 

 

Longitudinal breaks are caused by transverse or hoop stresses and occur 

along the pipe wall.  Figure 2.10 shows a longitudinal break on a cast iron 

pipe.  Figure 2.7 illustrates the mechanisms leading to longitudinal breaks. 

 

Rajani and Kleiner (1999) discuss causes of longitudinal breaks including 

hoop stresses due to internal pressure in the pipe or ring stress due to soil 

cover load, imposed live traffic loads or penetrating frost loads. Rajani and 

Makar (2000) and Makar et al (2001) outline similar failure mechanisms for 

longitudinal pipe failures. 

 

 

 
 

Figure 2.10 Longitudinal Split in a Cast Iron Pipe  
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Blowout/Pin Holes 

 

Hole failures in water mains typically consist of a small section being blown 

out of the wall of a pipe as shown in Figure 2.11 or a small pin hole leak 

occurring due to deterioration of the pipe wall shown in Figure 2.12. 

 

Makar (2000) and Makar et al (2001) show that blowout holes may be caused 

by corrosion only or a combination of corrosion and internal pressures.  Hu 

and Hubble (2007) distinguish between failures due to corrosion and internal 

pressure and failures due to corrosion describing the former as blowouts and 

the latter as pinholes. 

 

 
 

Figure 2.11 Blowout in a Ductile Iron Pipe  

 

 
 

Figure 2.12 Pinhole Leak in a Ductile Iron Pipe (WSAA 2003) 
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Joint Failures 

 

Joint failures include leaking joints, split or sheared collars and 

disconnected joints.  Figure 2.13 illustrates a pipe failure caused by a 

perished lead joint. 

 

Makar et al (2001) show that joint failures can be attributed to different 

thermal coefficients of expansion for jointing compounds or the pushing of a 

pipe spigot into the bell of the neighbouring pipe by compressive forces thus 

producing split bells.  

 

 
 

Figure 2.13 Joint Failure Caused by Perished Lead Joint 
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2.3.5. Summary 

 
As the importance of understanding and preventing water main failures 

comes to the fore, the number of studies on water main failures has been 

increasing.  A review of some of these studies has highlighted the 

importance of maintaining complete and accurate water main failure 

records.  It is vital to record as much data as possible at the time of the 

failure. In the past the value of this data wasn’t fully recognised and this is 

reflected in the limited failure data available. As water main failure data 

recording systems improve so too will the understanding of the mechanisms 

that lead to water main failures. 

 

As will be seen in the next section, failure modes and the mechanisms that 

cause these failures play an important role in the development of water 

main failure prediction models. 
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2.4. Water Main Failure Prediction Models 
 

Many sources recognise the benefits of using modelling techniques to predict 

water main failures.  Organisations that have made significant progress in 

this area include the NCRC in Canada and CSIRO in Australia. The purpose of 

this part of the literature review is to investigate some of the techniques 

used in existing water main failure prediction models. 

 

2.4.1. What is a Water Main Failure Prediction Model? 

 

The ultimate aim of a water main failure prediction model is to predict the 

time until failure for individual water mains taking into account the actual 

physical conditions of a water main and its environment.     

 

The cost and complexities of obtaining the necessary data for developing a 

model to predict individual water main failures has meant this is not a 

realistic option for most authorities.  To overcome this, a number of 

different failure prediction models using available data have been 

developed to predict the average rate of water main failures for pipe 

networks or pipe cohorts. 

 

A comprehensive review of existing water main failure prediction models 

was carried out by Rajani and Kleiner (1999) and Kleiner and Rajani (2000).   

These reviews identified two types of failure prediction models – physically 

based and statistically based models.   
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2.4.2. Physically Based Models 

 
Physically based failure prediction models attempt to use physical 

parameters to quantify the mechanisms that lead to pipe failure.  The 

advantage of physically based models is the output of the model reflects the 

actual condition of the pipe and local environmental influences.  The 

harsher the conditions acting on the pipe are, the shorter it’s remaining 

useful life.  A negative to physically based models is that the methods used 

are complex and require data that is difficult, if not impossible, for most 

authorities to obtain. 

 

Rajani and Kleiner (1999) describe physical mechanisms that influence the 

structural performance and likelihood of failure of buried pipes including 

pipe structural properties, internal loads, external loads and material 

deterioration. Some models attempt only to address one or a few of these 

mechanisms, while others attempt to take a more comprehensive approach. 

Rajani and Kleiner’s study reviews research conducted on three physical 

mechanisms frost loads, pipe-soil interaction and corrosion for inclusion in 

failure prediction models. 

 

Frost Loads 

 

A physical mechanism that attempts to explain the high frequency of water 

main failures in winter are frost loads.  Rajani and Zhan (cited in Rajani and 

Kleiner 1999) presented methods to estimate frost loads acting on buried 

pipes in trenches.  Frost loads are calculated using time, frost depth, frost 

heave, trench geometry and the soil characteristics of the backfill and 

trench sidewalls. 

 

According to Rajani and Kleiner, calculated frost loads appear to agree with 

field measurements although further validation is required.   Methods used 

are complex and input parameters may be difficult to obtain.  Despite this, 
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the work by Rajani and Zhan helps to explain the effects of frost loads on 

buried pipes. 

 

Pipe-Soil Interaction 

 

Another physical mechanism that attempts to explain the structural 

performance of buried pipes is the pipe-soil interaction.  Rajani et al (cited 

by Rajani and Kleiner 1999) developed a pipe–soil interaction analysis model 

to determine the in plane and longitudinal stresses acting on a pipe taking 

into account pipe and soil characteristics, temperatures, internal pressures 

and external loads.  The model appears to be successful in explaining the 

high frequency of failures during colder months and in small diameter 

mains. 

 

Rajani and Kleiner noted some limitations with the model including failure 

to take into account soil shrinkage during dry months or existing pipe 

degradation.  Data required for the models is readily available except for 

soil reaction moduli and ground temperatures. 

 

Corrosion 

 

 A major physical mechanism that leads to water mains failures is corrosion.  

Various studies have been conducted looking at explaining how corrosion 

leads to failure including those by Kiefner and Vieth, Rajani et al and Kumar 

et al (all cited by Rajani and Kleiner 1999). 

 

Kiefner and Vieth developed an analytical failure model for steel pipes in 

the gas industry to determine the pressure at which a corrosion pit would 

fail.   Measurements required for the model are expensive to obtain and it is 

not known whether the model is appropriate for cast or ductile iron pipes. 
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Rajani et al conducted an experimental study on cast iron pipe to determine 

the nominal tensile stress at which fracture took place based on material 

and corrosion pit dimensions.  Further validation is required on this study. 

 

Kumar et al proposed modifying for the water industry a corrosion status 

index originally developed for the gas industry.  More research needs to be 

conducted into the validity of these methods. 

 

Rajani and Kleiner further classified physically based models into 

deterministic and probabilistic models.   

 

Deterministic Models 

 

Physical deterministic models attempt to relate corrosion pit depth and age 

to remaining wall thickness.  Various models have been proposed by Doleac, 

Doleac et al, Randall-Smith et al and Rajani and Makar (all cited by Rajani 

and Kleiner 1999).   

 

Doleac et al developed a model based on the power function proposed by 

Rossum (cited by Rajani and Kleiner 1999) to relate corrosion pit depth with 

pipe age to predict the remaining wall thickness of pit cast mains.  The 

average wall thickness was then used to calculate pipe hoop stress.  Pipe 

failure was defined as the point where a pressure surge of 50% of the 

working pressure raised the hoop stress to the material’s elastic limit. 

 

Randall et al proposed a linear model to estimate the remaining service life 

or residual life of water mains.  This model was based on an assumption that 

corrosion pit depth has a constant growth rate.  Rajani and Kleiner question 

the validity of this assumption. 

 

Rajani and Makar described a methodology to estimate the remaining 

service life of grey cast iron mains.  This method was based on studies 

previously mentioned including frost loads, pipe soil interaction and 
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corrosion and employed methods developed by Doleac et al.  The method 

proposed by Rajani and Makar is limited by uncertainties in estimating 

corrosion rates and needs to be validated against field data. 

 

Probabilistic Models 

 

Physical deterministic models attempt to predict the probability of failure 

based on parameters such as residual strength.   Rajani and Kleiner cite a 

number of physical probabilistic models such as those by Ahammed and 

Melchers (1995) and Hong (1997.  Many of these have been developed for 

the oil and gas industry and do not strictly apply to water mains.  Another 

limitation of probabilistic models is the difficulty in predicting the effects of 

corrosion. 

 

In summary, Rajani and Kleiner conclude that physically based modelling is 

more robust than other methods and the ultimate goal in failure prediction 

as it eliminates the need for statistics in identifying breakage patterns.  

However, physically based modelling has a number of limitations including 

complex methods and data that is impossible or expensive to obtain.  

  

2.4.3. Statistical Models 

 
 
The study by Kleiner and Rajani (2000) defines statistical models as those 

that use available historical data on past failures to identify pipe breakage 

patterns.  These patterns are then assumed to continue into the future in 

order to predict the future breakage rate of a water main or its probability 

of breakage.  The life of a buried pipe is described by the bathtub curve 

illustrated in Figure 2.14.  The bathtub curve contains three distinct phases 

including burn in, in usage and wear out.  Most models tend to deal with the 

wear out phase only because failure records are not usually available for the 

whole life cycle of a pipe. 
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Figure 2.14 – Life of a Buried Pipe 

 

Kleiner and Rajani consider two classes of statistical models – deterministic 

and probabilistic. 

 

Deterministic Models 

 

Kleiner and Rajani looked at two types of deterministic models including 

time-exponential and time linear models.   

 

Time exponential models attempt to relate a pipe’s breakage to the 

exponent of its age.  Shamir and Howard (1979) proposed a simple two 

parameter model.  Walski and Pelliccia (1982) sought to enhance this model 

by proposing extra parameter to take into account previous breakages and 

different breakage rates in different size mains.  Clark et al (1982) proposed 

further improvements by transforming it into a two phase model comprising 

of a linear equation describing time until first break and an exponential 

model to describe subsequent failures.  Time linear models assume a linear 

relationship between pipe breaks and age.  Models have been developed by 

Kettler and Goulter (1985), McMullen (1982) and Jacobs and Karney (1994).  

Kleiner and Rajani observed that although simple to apply, deterministic 

models are best applied to homogenous groups of water mains. 
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Probabilistic Models 

 

Kleiner and Rajani  looked at two groups of probabilistic models - Multi-

variate and  Single-variate Group-Processing Models. Limitations of these 

models are that they require significant technical expertise and data to 

apply and hence will not be discussed in detail here. 

 

Multi-variate probabilistic models include proportional hazard, accelerated 

lifetime and time dependent poisson models.  These models can consider 

many covariates influencing breakage patterns which means the need to 

group water mains into homogenous groups is reduced.   

 

Probabilistic single-variate models include cohort survival, bayesian 

diagnostic, break history as a semi-Markov process and break clustering 

models.  These models use probabilistic processes on grouped data to derive 

probabilities of pipe life expectancy, probability of breakages and analysis 

of break clustering phenomenon. 

 

Kleiner and Rajani conclude that despite the limitations of statistical 

methods of failure prediction it remains an economically viable approach for 

analysing failures in smaller diameter mains. 

 

2.4.4. Alternative Models/ Improvements to Existing Models 
 

Along with the models reviewed by Rajani and Kleiner (1999) and Kleiner 

and Rajani (2000) a number of other models have been suggested.  Achim et 

al (2007) proposed the use of neural networks to predict water pipe asset 

life.  Preliminary findings suggest that more accurate results can be 

achieved than those obtained from common statistical models.  Studies are 

continuing.  Dehgan et al (2008) proposed a non-parametric approach for 

the probabilistic failure prediction for deteriorating pipelines.  This is a 
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generic method based on interfailure times that can be used for 

infrastructure systems that deteriorate over time. 

  

Other studies have concentrated on the improvement of existing models.  

Kleiner and Rajani (2000a) suggests modifying existing time exponential 

models to include time-dependent factors such as freezing indexes, rain 

deficit, pipe replacements and pipes retrofitted with cathodic protection.  

Kleiner and Rajani (2002) carried out further studies which also included 

climate forecasting.  Results obtained were more accurate than previous 

modelling without the time-dependent factors.  Davis et al (2003) and Sadiq 

et al (2004) propose techniques for improving the understanding of soil 

effects on water main failures using GIS mapping and fuzzy-based methods.  

Mavin (1996) suggested the need to filter data to remove records pertaining 

to failures imposed by external factors in order to remove bias and get a 

true indication on the deterioration of the system. 

2.4.5. Summary 

 

From this review of existing literature pertaining to water main failures it 

can be seen that the performance of buried pipes and the modes in which 

they fail are generally agreed upon.  The mechanisms that cause failure are 

complex and more understanding is coming to light as data sets grow and 

studies continue to be carried out.  To further this understanding it is 

important that authorities continue to collect water main failure data in a 

consistent format that can be compared with other authorities. 

 

Many water main failure prediction models have been developed to predict 

the future performance of a water supply network.  The two main types of 

models are physically based models and statistical models.  

 

Physically based models are more robust than statistical models and the 

ultimate goal in failure prediction as it eliminates the need to use statistics 

to identify breakage patterns.  However, physically based modelling has a 



Chapter 2 – Literature Review 
 

 
Developing a Model to Predict Water Main Failures                                                  Page 41 
 

number of limitations including complex methods and data that is difficult 

or expensive to obtain.  As data collection systems are improved and non 

destructive water main evaluation techniques are developed physically 

based models will become more readily used. 

 

Despite the limitations of statistical methods of failure prediction it remains 

an economically viable approach for analysing failures in smaller diameter 

mains.  Further enhancements to existing statistical models to include static 

and dynamic factors other than the standard pipe age can only improve the 

effectiveness of these models. 

 

The choice of method used for a water main failure prediction model is 

based on data availability and the complexity of the method.  The biggest 

limitation is data availability both from historical records and in obtaining 

data needed to apply given models. 

 

2.5. Chapter Summary 

 

This chapter provides a comprehensive review and analysis of published 

literature and studies relating to water main failure analysis and failure 

prediction modelling.  The three areas covered in the review include the 

structural design of buried pipes, causes and types of water main failures 

and methods and parameters used in existing water main failure prediction 

models.  Research shows that, although the structural design of buried pipes 

is well accepted, the causes of failure are complex and not fully 

understood.  A number of different failure prediction models of varying 

complexity have been proposed to describe water main failures.  Choice of 

model is limited by the type and quality of water main failure data 

available. 
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3. Methodology 
 

3.1. Introduction 

 

This chapter describes the methods that were used in conducting the study.  

More specifically the literature review, the analysis of Actew water main 

failure data, collation of raw data and the regression analysis used in 

developing the customised water main prediction models. 

 

3.2. Literature Review 

 

The literature review has been previously discussed in Chapter 2.  The 

review was carried out to gain an understanding of the body of knowledge 

that exists relating to water main failures and how this can help in 

developing water main failure prediction models.  The review of buried pipe 

design and the causes of water main failures formed the background for the 

analysis of ACT water main failure records conducted in Chapter 4.  The 

results of this failure analysis along with a consideration of failure 

prediction model types and existing models assisted in the selection of the 

model type developed in Chapter 5. 

 

3.3. ACT Water Main Failure Data Analysis 

 

The purpose of carrying out an analysis of water main failure data in the 

ACT was to 1) identify limitations in the data that could affect the type of 

model developed, 2) determine whether the factors identified in the 

literature review are also influential in failures in the ACT and 3) identify 

factors that could be incorporated into a customised water main failure 

prediction model. 
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The data analysis discussed in Chapter 4 was carried out using the following 

methods. 

 

• Compile historical failure records together and assess the quality and 

limitations of available data. 

• Conduct a general analysis of water main failure data using the 

factors identified in the literature review. 

• Plot water main failures on a map of the ACT and identify and analyse 

any failure trends or patterns. 

• Plot water main failures on a graph at time intervals of one month 

and one year and identify any failure trends or patterns. 

 

3.4. Collation of Data 

 

All data used in the model has been obtained from existing Actew water 

main failure records or online climate data records from the Bureau of 

Meteorology.  Raw data used in the development of the model is included in 

Appendix B. 

 

• Twelve Monthly Water Main Failure Totals 

• Time (month or year) 

• Twelve Monthly Rainfall Totals 

• Twelve Monthly Totals of Days where the minimum ground temperature 

was equal or lower than -1º C 

 

Twelve monthly water main failure totals have been compiled from existing 

Actew water main failure records for the period between July 1978 and June 

2008.  Note some moderation of these totals has taken place to account for 

periods where failure records are missing or incomplete. 
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Rainfall and ground temperature data are available for the Canberra Airport 

weather station from the Bureau of Meteorology website.  The airport is 

located approximately 7 kilometres due east of the city centre.  Although 

the weather conditions vary slightly across the city, the airport location has 

been selected due to its approximate central location.  

 

Rainfall data consists of monthly rainfall totals and ground temperature data 

the number of days in a month where the minimum ground temperature was 

equal or lower than -1º C.  Twelve monthly totals were used in the model.  

 

3.5. Model Development 

 

The two customised water main failure prediction models discussed in 

Chapter 5 were developed using multiple regression techniques.   All 

multiple regression analyses were carried out using data analysis methods in 

the software package Microsoft Excel. 

 

3.5.1. Regression Analysis 

 

The objective of multiple regression analysis is to predict the change in a 

dependent variable in response to the changes in a set of given independent 

variables.  The dependent variable is the parameter to be predicted by the 

model and the independent (or explanatory) variables are the model input 

parameters. 

 

The basic procedure used in developing a multiple regression model is to 

keep adding explanatory variables to the model based on their correlation 

with the dependent variable while analysis shows that their inclusion 

significantly improves the accuracy of the model.  Correlation is determined 

by performing a correlation analysis, while the value of adding variables to 

the model is determined by performing a regression analysis and partial F-

test.  An explanation of some of these processes is provided. 
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Correlation Analysis 

 

Correlation analysis is used to measure the degree of association between 

numerical variables.  A correlation of 1 denotes a perfect positive 

correlation, 0 no correlation and -1 a perfect negative correlation.  

Correlation analysis is performed using the Data Analysis tool in Microsoft 

Excel.  An example of a correlation matrix produced in Excel is shown in 

Table 3.1. 

 

Table 3.1 Example of a Correlation Matrix 

  No Of Failures Time Rain Temp 
No Of Failures 1    
Time 0.862047711 1   
Rain -0.340968677 -0.10655 1  
Temp 0.19501653 0.058149 -0.58751 1 

 

 

The formula used to calculate the correlation coefficient is outlined in 

Figure 3.1 below. 

 

Figure 3.1 Correlation Coefficient Formula 

 

 

 

 

 

 

where   r  = Correlation Coefficient 

   X i = X Value at point i 
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Regression Analysis 

 

A regression analysis is performed using the Data Analysis tool in Microsoft 

Excel.  An example of the output from Excel is shown in Figure 3.2.  The 

three main parts of this output are the regression statistics, analysis of 

variance (ANOVA) and residual outputs.  

 
SUMMARY OUTPUT

Regression Statistics

Multiple R 0.862047711

R Square 0.743126256

Adjusted R Square 0.742408731

Standard Error 61.10799069

Observations 360

ANOVA

df SS MS F Significance F

Regression 1 3867425.213 3867425.213 1035.68078 1.068E-107

Residual 358 1336838.776 3734.186526

Total 359 5204263.989

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 226.369329 6.427951562 35.21640243 2.37E-118 213.7280395 239.0106186 213.7280395 239.0106186

X Variable 1 0.997354403 0.030991069 32.18199465 1.068E-107 0.936406982 1.058301825 0.936406982 1.058301825

Observation Predicted Y Residuals Standard Residuals

1 226.369329 36.63067098 0.600278213

2 227.3666834 37.63331657 0.616708879

3 228.3640378 34.63596217 0.567590299

4 229.3613922 22.63860777 0.370985916

5 230.3587466 5.641253362 0.092444976

6 231.356101 -3.356101042 -0.054997473

7 232.3534554 3.646544555 0.059757061

8 233.3508098 10.64919015 0.174511595

9 234.3481643 7.651835748 0.125393015

10 235.3455187 -2.345518655 -0.038436745

11 236.3428731 -8.342873059 -0.136717259

12 237.3402275 -7.340227462 -0.120286593

RESIDUAL OUTPUT

 

Figure 3.2 Sample Output from Regression Analysis in Excel 

 

The coefficient of determination is equal to the regression sum of squares 

divided by the total sum of squares and measures the proportion of variation 

explained by the independent variable in the regression model.  The closer 

to 1 the coefficient is, the better the independent variables are able to 

explain variation in the dependent variable.   
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The coefficient of multiple determination is calculated using the formula 

shown in Figure 3.3 where SSR is regression sum of squares and SST is the 

total sum of squares.  To account for the number of explanatory variables in 

the model and the sample size the coefficient is adjusted using the formula 

in Figure 3.4. 

 

Figure 3.3 Coefficient of Multiple Determination Formula 

 

SST
SSR

rY =2
12.  

 

Figure 3.4 Adjusted Coefficient of Multiple Determination Formula 
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The ANOVA analysis is used to test the significance of the relationship 

between the dependent variable and the explanatory variables.  This is done 

using the F test to analyse the ratio of the regression mean square to the 

error mean square.  Output of the ANOVA analysis and the relevant 

calculations are shown in Table 3.2.  

 

In the F test the calculated F statistic is compared to a predetermined 

critical F value based on a selected level of significance and the number of 

variables in the model.  For the results to be considered significant the F 

statistic must be greater than the critical value. 
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Table 3.2 ANOVA Table  

Source df Sums of Squares 
Mean Square 

(Variance) 
F 

 

Regression 

 

 

 

 

Error 
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where  df = degrees of freedom 

  P = number of explanatory variables in the model 

  n = sample size  

SSR  = regression sum of squares 

SSE = error sum of squares 

SST  = total sum of squares 

MSR = regression mean square 

MSE  = error mean square 

 

Partial F-Test Criterion 

 

The partial F-test criterion is used to determine the significance of adding 

variables to the model.  This involves determining the contribution to the 

regression sum of squares made by each explanatory variable after all the 

other explanatory variables have been added to the model.   

 

The process used to carry out the partial F test is similar to that for the F 

test except SSR is calculated using the formula expressed in Figure 3.5 and 

hence the partial statistic is calculated using the formula in Figure 3.6.  If 

the partial F value is less than the critical F value then inclusion of the 
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explanatory variable in the model will not significantly improve model 

accuracy and the variable should be omitted from the model. 

 

Figure 3.5 Adjusted Coefficient of Multiple Determination Formula 

 

SSR (Xk | All variables except k) = SSR (All variables including k)-SSR (All variables except k) 

 

Figure 3.6 Partial F Test Criterion Formula 

 

( )
MSE
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=  

 

3.5.2. Testing of the Significance of the Model 

 
Once the models were completed testing was carried out to determine the 

significance of the model by considering the adjusted coefficient of 

determination, residuals analysis and partial regression plot analysis. 

 

As mentioned previously, the closer the coefficient of determination is to 1 

the more accurately the explanatory variables in the model are able to 

account for the variation in the dependent variable.  A low coefficient of 

determination suggests scope for improvement in the model. 

 

Residual analysis is conducted to identify violations of the four assumptions 

of regression analysis which include normality, homoscedasticity (or 

constancy of error), independence of residuals and linearity.  Some of the 

problems that may be identified include an uneven spread in the 

distribution of residuals over the range of the dependent variable indicating 

lack of homoscedasticity and trending in the residuals over time indicating 

autocorrelation. 

 

Partial regression plots illustrate the relationship between the dependent 

variable and individual explanatory variables.  For the regression model to 
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be valid these plots should confirm a linear relationship for all independent 

variables. 

 

3.6. Chapter Summary 

 

This chapter provides details of the methodology used in conducting the 

study.  It highlights the relevance of conducting the literature review and 

the water main failure analysis in order to facilitate the development of a 

customised prediction model and discusses the specific methods of each of 

these tasks including providing a background to regression analysis.
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 DATA ANALYSIS 



Chapter 4 – Actew Water Main Failure Data Analysis 
 

 
Developing a Model to Predict Water Main Failures                                                  Page 53 
 

4. Actew Water Main Failure Data Analysis 
 

As previously discussed in Chapter 3, the purpose of reviewing historical 

failure records is to identify data limitations that will influence the type of 

failure model to be developed, identify factors that can be used to explain 

the type and frequency of failures in the ACT and to identify data 

improvements that will enhance future failure analysis capabilities. 

 

4.1. ACT Water Supply Network 
 

The ACT water supply network (shown in Figure 4.1) is made up of more 

than 3000 kilometres of water mains and continues to increase at a gradual 

rate. Although the first water mains were laid in the ACT approaching 100 

years ago, the majority of the network is less than 50 years old.  Figure 4.2 

shows the growth of the ACT water distribution system over time.  Notable 

features include the rapid growth of the system during the 1960’s and 

1970’s, the superseding of cast iron by ductile iron in 1982 and the 

acceptance of PVC as an alternative to ductile iron in 1994.   

 

Tables 4.1 and Table 4.2, taken from the current Actew Corporation Asset 

Management Plan (2008), show the current pipe size and pipe material 

distributions for the ACT.  From the pipe size distribution it can be seen the 

most common pipe sizes in the ACT are 100mm and 150mm making up 

approximately 70% of the existing network.  The pipe material distribution 

shows that cast iron makes up the biggest proportion of the network, 

followed by ductile iron and then mild steel, asbestos cement and PVC.  

Older pipe materials in the network include cast iron, mild steel and 

asbestos cement, while relatively newer pipe materials include ductile iron 

and PVC. 
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Table 4.1    Pipe Size Distribution 

 
Pipe Sizes % of Existing System 

100 45.5 
150 25.0 
225 9.5 
300 5.0 
>300 14.0 

 
 

 
Table 4.2    Pipe Material Distribution 

 
Pipe Material Period of Use % of Existing System 

Cast Iron 1915 to 1982 63.5 
Ductile Iron 1983 to present 20.0 
Mild Steel 1954 to present 9.0 

Asbestos Cement 1939 to 1961 7.0 
PVC 1994 to present 0.5 

 

4.2. Actew Water Main Failure Records 
 

4.2.1. Overview 
 
Actew has water main failure records dating back to the 1970’s.  These 

records span a number of data collection systems of varying quality and 

format including hard copy and electronic records.  The importance of 

keeping and maintaining comprehensive failure records was not recognised 

until relatively recently and therefore many historical records are 

incomplete or only cover part of the network. 

 

To assist in failure analysis, some ongoing work is being conducted to clean 

up and compile historical records into a more useful format.  This includes 

adding missing details where available, filtering out errors and moderating 

failure rates to account for missing records.   Although this has improved the 

quality of data available more work is still required to increase the 

usefulness of this data. 
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Figure 4.1 – ACT Water Supply Network Layout 
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Confirmed and reliable data covering the entire network is only currently 

available from July 1997.  Typical job details recorded include location, 

pipe size, pipe material, ground cover over main, failure mode, repair type 

and number of customers affected.  

4.2.2. Adequacy of Existing Failure Records 
 

Record keeping practices have gradually been improving as the importance 

of failure analysis has been recognised.  Despite this the current data set 

doesn’t lend itself to easy failure analysis.  The main issues relate to the 

completeness of the data, ease of data manipulation, compatibility with the 

mapping system and the extent of details being recorded for each failure. 

 

The ability to carry out failure analysis is limited by the completeness of 

available data.  Although total number of failures can be determined with 

some certainty back to the 1970’s, other details can not be traced back 

more than 10 years.  This makes it difficult to determine influential factors 

in the failure rates over this period.  Further compilation of data is required 

to fill in missing details where possible.  The more comprehensive the data 

available, the better it will be for failure analysis and future model 

developments. 

 

The format of existing failure records makes it difficult to manipulate data 

in order to carry out failure analysis.  Historical records are stored in a 

number of different spreadsheets and within worksheets in those 

spreadsheets.  The format between spreadsheets also varies slightly.  This 

makes it difficult to compare data across different time periods.  Failure 

analysis can be improved by compiling all spreadsheets and worksheets into 

one central database.  This will make it easier to interrogate data from the 

failure records. 

 

Failure analysis is also limited by the difficulty in linking failure records to 

the mapping system.  The mapping system provides access to pipe asset 

details and also assists in the spatial analysis of failures but must be linked 
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through a unique asset identifier.  Most historical records do not include this 

identifier and must be linked indirectly.   Failure analysis will be greatly 

improved by having a direct link between failure records and the mapping 

system.  Record keeping practices have been changed recently to include 

asset facility codes.  Compilation of historical records should also include 

the addition of a facility code where possible. 

 

The range of failure data currently being recorded has improved but is still 

fairly basic.  Only limited physical data is being recorded which limits the 

amount of physical analysis that can be carried out.  Failure analysis can be 

improved by broadening the scope of physical data being recorded. 

 

4.2.3. Water Works 

 

Water main failure records are currently collected through Water Works 

which is the works management system used by ActewAGL Water Division’s 

Field Services Branch.  Since its inception in 2005 Water Works has improved 

the data collection and analysis capabilities for all jobs including water main 

failures.  

 

Routine information collected in Water Works includes location, pipe size, 

pipe material, ground cover over main, failure mode, repair type and 

number of customers affected.  Recently a facility code, or unique asset 

identifier, was also included for the failed pipe.  This provides a direct link 

between the failed pipe and the mapping system which allows asset details 

to be found later on if they are not collected at the time of the failure.  

 

Figure 4.3 illustrates a typical water main failure record from Water Works.  

Noticeable features displayed in the record include the coded check lists 

outlining the specific details of the job and the facility code which is the 

unique identifier for the failed pipe. 
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Figure 4.4 illustrates the search capabilities of Water Works.  Records can 

be filtered by date or any of the other coded checklists including pipe size, 

pipe material, failure type and repair type.  This allows more thorough 

failure analysis to be carried out on historical data recorded in Water Works. 

 

Although the type of data recorded in Water Works is still very basic, the 

scope exists to expand the range of data collected to include physical 

parameters also. 
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4.3. Previous Data Analysis 
 

Despite limitations in the existing dataset, some statistical analysis has been 

carried on water main failures in the ACT.  For example, a draft report by 

McRae (2007) was carried out to investigate failures and trends in the ACT 

water supply network.  The purpose of this investigation was to supply 

background information for Actew’s asset management plan and regulatory 

licensing conditions. 

 

A summary of the findings show that overall water main failure rates in the 

ACT are relatively low.  Some parts of the network experience a higher 

failure rate with grouping or clustering of failures.  Most failures are 

associated with small diameter cast iron water mains installed in the 1960’s 

and 1970’s.  Ductile iron pipe failures appear to be increasing. 

  

4.4. Data Analysis 
 
 

The literature review highlighted many factors that contribute to and have 

an influence on the likelihood of water main failure.  The following 

discussion will look at some of these factors to see what role they play in 

water main failures in the ACT. 

4.4.1. General Analysis 
 

Pipe Age 

 

As previously discussed, it can be expected that failure rates will increase 

over time as pipes deteriorate and reach the end of their useful lives.  

Analysis shows that this also appears to be the case in the ACT. 

 

Limitations in the existing dataset prevent installation year from being 

easily obtained from the asset data contained in the mapping system. 
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Therefore, suburb age, material type and the overall failure trend (all 

discussed in subsequent sections) have been used as an indicator of the 

effect of pipe age on failure rates. 

 

Spatial analysis shows that the majority of water main failures occur in 

suburbs that were developed prior to 1980 and that failures in suburbs 

developed after this year are rare.  This suggests pipe age has a significant 

effect on the likelihood of pipe failure. 

 

Pipe material reflects the relative age of a pipe.  Up until 1982 cast iron was 

the preferred pipe material.  After 1982 cast iron was no longer allowed and 

ductile iron became the approved material.  In 1994 PVC was also allowed as 

an approved material.  Analysis has shown that the majority of failures 

occur in the older cast iron pipes in the network. 

 

Temporal analysis of water main failures shows that the overall failure rate 

has gradually been increasing over time.  This reflects the relative age of 

the network.  Failure rates are increasing as a greater number of pipes 

reach the end of their useful lives. 

 

Pipe Size 

 

Pipe size has a direct influence on the likelihood of failure.  Pipes with a 

smaller diameter are more prone to failure. As illustrated in Table 4.3, of 

the 4131 water main failures in the ACT between 2001 and 2008, 94% 

occurred in 100mm and 150mm water mains.  This is not unexpected as 

approximately 71% of the ACT water main network is made up of 100 and 

150mm pipes.  Smaller diameter pipes also, having smaller wall thicknesses, 

are more susceptible to corrosion and excess loading.  
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Table 4.3    Pipe Failure by Size 2001 - 2008 

Pipe Sizes % of Failures 
100 75 
150 19 
225 3 
300 1 
>300 2 

  
Total number of failures 4131 

 

Pipe Material 

 

Pipe material appears to have some influence on the likelihood of failure.   

Table 4.4 shows that, of 2318 water main failures between 2004 and 2008, 

90.5% were in cast iron pipe, 7% in ductile iron pipe and 2.5% were in PVC, 

asbestos cement and steel mains.  This seems to suggest that iron pipes, 

particularly cast iron, are more susceptible to failure.  Iron pipes can suffer 

from corrosion when laid in particularly aggressive conditions but on closer 

investigation this is likely to have more to do with the greater proportion of 

iron pipes in the network and the relative age of the pipes.  Cast iron pipes 

make up more than 60% of the ACT water supply network ranging from 

about 26 to 93 years of age.  Although relatively young in age, ductile iron 

pipe failures seem to be increasing.  There does not appear to be a problem 

in other pipe material types. 

 

Table 4.4    Pipe Failure by Material 2004 - 2008 

Pipe Material % of Failures 
Cast Iron 90.5 

Ductile Iron 7 
PVC 1 
Steel 1 

Asbestos Cement 0.5 
  

Total number of failures 2318 
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Failure Type 

 

The type of failure mode helps to explain the mechanisms that have caused 

failure.  ActewAGL uses seven categories to describe failure modes. Table 

4.5 shows the percentage of failures by failure mode for the 1605 failures in 

the ACT between 2005 and 2008. 

 

The high incidence of circumferential breaks suggests that frost loading, 

thermal effects and soil movement have a significant effect on water main 

failure rates. Temporal analysis of failure modes (discussed later) further 

backs this up. Particularly susceptible are small diameter cast iron water 

mains. 

 

A noticeable number of longitudinal water main failures have occurred over 

the period from 2005 to 2008.  This failure type is caused by external 

loading or pressure surges.  A number of significant longitudinal failures 

have occurred in larger diameter mains caused by pressure surges. 

 

Blowout and pinhole failures suggest the influence of corrosion and 

pressure.  Corrosion has the effect of reducing pipe wall thicknesses to a 

point where a hole forms or the ability to resist pressure is reduced and a 

blowout occurs.  Failures also occur at weak spots near where the maincock 

is tapped into the pipe requiring a new section of pipe to be replaced. 

 

Joint failures are typically caused by problems with the lead caulking being 

displaced in older cast mains.  This is usually a problem in larger diameter 

trunk mains. 

 

Water main failures caused by third parties are rare but can cause major 

problems when they do occur.  Typical causes include increased surface 

loading due to heavy vehicular traffic, undermining pipe support structures 

and failure to get proper asset locations. 
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Table 4.5    Pipe Failure Modes 2005 - 2008 

Failure Mode % of Failures 
Circumferential 70 

Blowout 10 
Longitudinal 6 
Joint Failure 4 

Maincock 4 
Pin Hole 4 

Third Party Damage 2 
  

Total number of failures 1605 
 

 

Pressure 

 

Pressure is also thought to have an influence on the likelihood of pipe 

failure.   Some trunk water main failures in the ACT have been directly 

attributed to pressure surges in the system.  Pressure reduction has been 

identified as a possible means of reducing the number of failures.  The idea 

being that higher pressures make a weakened pipe more susceptible to 

failure and lowering the pressure reduces the likelihood of failure. 

 

An investigation was carried out to determine the influence of pressure in 

failures in the suburb of Kaleen which experienced a relatively high failure 

rate.    Results are shown in Figure 4.5.  Of the 58 failures in Kaleen from 

2005 to 2008 only 4 failures occurred in an area with an estimated static 

pressure less than 50 metres of head.  This suggests that weakened pipes 

may be more susceptible to pressure and pressure reduction studies may be 

beneficial. 
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Figure 4.5 – Influence of Pressure on Kaleen Failures 2005 - 2008 

 

4.4.2. Spatial Analysis 
 

Spatial analysis involves plotting failures on a map and trying to determine if 

there are any geographical patterns in the failure distribution.  Once a 

pattern is identified potential causes are then investigated. 

 

Figure 4.6 shows water main failures for the period from 2005 – 2008 plotted 

on a map of the ACT.  To illustrate the effect of pipe age on failure rate 

suburbs have also been colour coded according to the year they were first 

developed.   Looking at the failure distribution it can be seen that a number 

of patterns are evident. 

 

Firstly, there are three distinct failure densities that seem to reinforce what 

has been said earlier about the influence of pipe age and material type on 

failure rates.  Most failures occur in cast iron pipes that were installed up 

until 1982 with a higher density of failures for pipes installed between 1961 

and 1982.  Failures in ductile iron or PVC pipes installed after 1982 are rare. 
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Interestingly, failures are more common in pipes installed in the 1960’s and 

1970’s than pre 1960.  This suggests factors other than age are also involved 

in water main failures.  Some possible explanations for this include rapid 

development in the ACT during this time resulting in poor quality control, 

the change from sand cast to spun cast iron pipes which exhibit inferior 

corrosion resistance qualities or some other unique local influences. 

 

Other grouping or clustering of failures within suburbs or other areas is also 

evident.  This could be due to a number of localised influences or physical 

factors such as previous repairs, pressure, corrosion, embedment soil 

conditions and climatic conditions.  As discussed previously, physical data 

can be difficult or costly to obtain and many of these influences constitute a 

study in themselves.  For example, the effects of pressure reduction or soil 

type on failure rates.  Financial and time constraints prevent studies being 

conducted at the moment but future studies may be beneficial. 

 

Spatial analysis of water main failure distributions in the ACT has shown that 

failure patterns are evident.  Some of these patterns can be explained by 

factors such as pipe age or pipe material.  Other patterns suggest that 

various physical factors or localised conditions could also be relevant.  

Unfortunately, Actew only has limited physical data available and further 

studies would be needed to collect and analyse this data.  

 

As far as developing a model is concerned, continuing investigation of 

physical failure influences would be beneficial in developing a physically 

based prediction model.  This could be used to predict time to failure for 

individual water mains.  However, to do this more physical data is required 

and current failure rates may not justify the collection of the data at this 

time. 
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Figure 4.6 – Spatial Distribution of ACT Water Main Failures 2005 - 2008 
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4.4.3. Temporal Analysis 
 

Temporal analysis involves plotting failures over time to see if any failure 

trends are evident. These trends may be short term, long term, cyclical or 

seasonal. 

 

Figure 4.7 shows rolling twelve month failure totals for the ACT plotted for 

the period between 1978 and 2008.  From the plot it can be seen that, 

despite fluctuations year to year, there is a general upward trend in the 

number of failures.  The upward trend highlights the influence of time or 

age on the number of failures.  Yearly fluctuations also suggest cyclical 

influences.  Some of these cyclical influences may be due to climatic effects 

such as heavy rainfalls associated with La Nina or prolonged dry periods 

associated with drought. 

 

Figure 4.8 shows monthly failure totals for the ACT plotted for the period 

between 1997 and 2008.  Evident from the plot is a distinct seasonal 

influence.  Failures are generally at a low around September/October, begin 

increasing again around April/May and peak at about 100 - 140 during the 

winter months.  Some secondary peaks also occur during the summer 

months.  For example, in January 2003 there were an unusually high number 

of 59 failures.   

 

The peak failures in winter suggest cold temperatures are influential in 

failure rates.  This is in harmony with the findings of the literature review 

which put forward frost loads, temperature induced tensile loadings and 

increased corrosion rates as possible causes for increased failure rates in 

winter. 

 

The secondary peaks in summer seem to coincide with low rainfall periods.  

For example, peak failures in January 1998, 2003, and 2007 seem to 

coincide with dry periods of low rainfall.  Figure 4.8 illustrates this well.  

Failure peaks seem to coincide with rainfall troughs and vice versa.  This 
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implies that perhaps soil moisture could be influential in failure rates.  

Drought results in soil drying and shrinking. This induces loading on a buried 

pipe making it more prone to failure. 

 

Temporal analyses of water main failures in the ACT show strong temporal 

trends are evident relating to age/time, season – winter/summer and 

cyclical influences – drought, La Nina.  Some of these factors could possibly 

be incorporated into a model to help explain the failure rates experienced 

in the ACT. 

 

4.5. Findings 
 

 

A summary of the findings of the Actew failure data analysis are outlined 

below. 

 

• Actew has some water main failure records dating back to the 1970’s. 

• Some moderation of this data has taken place to account for missing or 

incomplete data. 

• Most of the water main failure data collected is basic and lacks the 

physical data required to develop a physically based failure prediction 

model. 

• Existing data is more suited to the development of a statistically based 

failure prediction model. 

• The majority of failures occur in the ACT occur in small diameter 

(100mm and 150mm) cast iron water mains. 

• Failure rates increase in the ACT during winter and also during low 

rainfall periods.  
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4.6. Future Data Improvements 
 

Failure analysis in the ACT can be greatly improved by compiling all failure 

records into a central database and incorporating a link to the GIS system 

and asset databases.  This will assist in interrogating data and reporting on 

water main failures.  Data compilation could also include the addition of 

facility codes for historical records, where available.  This would result in 

existing records becoming more useful. 

 

Another major data improvement that will assist in failure analysis is the 

incorporation of physical data into the data collection process.  This will 

obviously assist in the development of a physically based water main failure 

prediction model.  The type of physical data that could be collected 

includes climate data, corrosion pit measurements, soil characteristics such 

as corrosivity or moisture and pressure readings.  Climate data could be 

collected as a matter of routine, while the other data could be obtained as 

failures occur.  The sooner this physical data starts to be collected, the 

more data will be available when it is time to begin developing a physical 

model.  

 

4.7. Chapter Summary 
 

This chapter details the analysis that was carried out on Actew historical 

water main failure records.  The purpose of the analysis was to review the 

adequacy of existing data, determine factors that explain the type and 

frequency of failures experienced in the ACT and to identify future data 

improvements.  Key findings of the analysis included the lack of physical 

data being recorded favouring the development of a statistical model, the 

influence of climate related factors such as winter and drought on failure 

rates and the need to expand data collection processes to improve water 

main failure analysis. 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 5  
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5. Development of a Customised Water Main Failure 
Prediction Model 

 

5.1. Introduction 
 

The main objective of this study was to develop a model to describe and 

predict water main failure rates in the ACT taking into account resource and 

data limitations. 

 

It is recognised that the development of a failure prediction model is a long 

term goal that can take many years of data collection and 

analysis.  Many potential model input parameters warrant a study on their 

own.  Also, model validation is a process resulting in ongoing changes and 

improvements as additional data becomes available.  The model proposed 

by this research constitutes only the beginning of this process. 

 

As highlighted through the literature review, failure prediction models can 

take many different forms and be of varying levels of complexity.  Model 

type and parameters are usually selected taking into account the purpose of 

the model, local factors influencing failures, data availability and other 

limiting factors. 

 

The proposed customised water main failure prediction model to be 

developed for the ACT must: 

 

• use the most appropriate model type considering available resources 

• reflect the actual failure rate in the ACT as accurately as possible taking 

into account limitations of the study 

• incorporate parameters that influence failures in the ACT 

• use data that is available or that can be readily obtained. 
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It should be noted that the customised model is being developed to reflect 

failure rates in the ACT only.  No efforts have been made at this stage to 

validate the model for other locations.  Care should be exercised in using 

the proposed model for any purposes other than what it was intended for. 

 

5.2. Selection of Model Type and Parameters 
 
 
Considering the large number of failures in smaller diameter, cast iron 

water mains installed from the 1960’s onwards and the increase of failures 

in winter and during drought periods, it is evident that a physical model 

would be of most benefit to Actew.  However, available data and resource 

limitations do not allow for the development of a physical failure prediction 

model at this time and instead a statistical failure prediction model would 

be more feasible. 

 

The current failure rate in the ACT does not justify the expense of 

developing a complex physical model.  A statistical failure prediction model 

is a more cost effective means of analysing and predicting failure trends in 

the ACT.  The statistical model could be used to predict when failures are 

likely to reach a point where it may be worth considering a physical model 

and allow time for the physical data to start being collected. 

 

Generally, time is a dominant factor in most statistical prediction models.  

However, failure analysis shows that time alone is not a good indicator of 

failure trends.  Although failure rates increase over time, cyclical variations 

also occur.  Cyclical variations tend to be caused by climatic influences such 

as droughts or wet seasons.  The large amount of circumferential failures 

seems to suggest that soil movement and temperature are also influential in 

failure rates. 

 

Therefore, along with time it is proposed to incorporate some physical 

parameters into a statistical prediction model to account for cyclical 
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influences caused by frost loads, thermal effects and soil shrink/swell 

effects.  Data and resource limitations prevent the collection of the 

necessary data to carry out this analysis.  However, it may be possible to 

use climate data as an indicator for these physical parameters.  The 

parameters proposed are rainfall as indicator of soil moisture and ground 

temperatures as an indicator of the relative harshness of the winter. 

 

5.3. Development of Model 
 

The model described in the following section has been developed using the 

methods described in Chapter 3.  Analysis has been conducted using 

Microsoft Excel.  Additional analysis outputs are shown in Appendix C. 

 

Model 1 – Multi-Variate Regression Model 

 

The first model proposed is a multivariate regression model using total 

number of failures in a 12 month period as the dependent variable and up to 

three independent variables including time, soil moisture and ground 

temperature.  This is similar to a multivariate regression model proposed by 

Kleiner and Rajani (2000a) which uses rain deficit and frost index as 

explanatory variables. 

 

Available input parameters include time (month), rainfall (rolling 12 month 

totals) and ground temperatures (rolling 12 month total number of days in a 

month where ground temperature was equal to or less than -1°C).  Only 

variables that significantly improve the accuracy of the model will be 

included in the model. 

 

The model will be developed using rolling twelve month failure totals for 

the period from July 1978 to June 2008.  The time step used in the model is 

1 month and therefore the sample size used in developing the model is 360. 
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Correlation 

 

The first step in the development of the model was determining the 

correlation between the dependent and explanatory variables.  Correlation 

analysis was carried out in Microsoft Excel and a copy of the correlation 

matrix for this analysis is shown in Figure 5.1. 

 

Table 5.1 Correlation Matrix for Variables for Model 1 

  No Of Failures Time Rain Temp 
No Of Failures 1    
Time 0.862047711 1   
Rain -0.340968677 -0.10655 1  
Temp 0.19501653 0.058149 -0.58751 1 

 

Looking at the matrix it can be seen that time (0.862) has the strongest 

correlation with the dependent variable followed by rainfall (-0.341) and 

ground temperature (0.1950).  Correlation between the independent 

variables are relatively low except for the correlation between rain and 

temperature (-0.588) which is significant. 

 

Variable 1 

 

The first explanatory variable included in the model was time because of its 

high correlation with the dependent variable.  Previous studies had shown 

time to be a relatively good predictor of water main failures but also 

suggested that failures rates tended to display an exponential relationship 

with time.  Tests were conducted to determine if this was the case in the 

ACT also.  This was done by fitting trends to failure plots over time. 

 

Analysis of the failure plot confirmed that the best fit to the data was an 

exponential trend with equation shown in Figure 5.1.  The fitted exponential 

trend and coefficient of determination are illustrated in Figure 5.2.  The 

exponential trend appears to account for 79.8% of the variation in number 

of failures. 
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Figure 5.1 Exponential Time Relationship with Failures 

XeY 0025.03.247=  

 

Regression analyses of failures vs. time (linear) and failures vs. time 

(exponential) were also conducted in Microsoft Excel to compare the 

results.  Regression statistics showed that linear model was able to account 

for 74.2% of variation in the number of failures as opposed to 73.7% from 

exponential model.  While the linear relationship appeared to give slightly 

better results, residual plots showed that the exponential relationship had 

the better fit. 

 

Due to the slightly better fit, the exponential relationship has been included 

in the model.  For the rest of this study, time will be transformed by the 

equation shown in Figure 5.1 before being applied in subsequent regression 

analyses. 

 

Variable 2 

 

As discussed previously, additional variables were only to be included in the 

model if they resulted in a significant improvement to the model.  This 

meant for another variable to be added to the model the adjusted 

coefficient of determination had to improve significantly from 0.737.  A 

partial F-test with a significance level of 0.05 was to be used to assess the 

significance of any additional variables. 

 

Both remaining explanatory variables had moderate correlation with the 

dependent variable.  Rainfall had the higher correlation and so was the 

obvious choice to be included next in the model.  However, partial F tests 

have been conducted for both variables. 
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Partial F-tests were performed using Microsoft Excel.  The results for rainfall 

are summarised in Table 5.2.  Using a significance level of 5% with 1 and 357 

degrees of freedom the critical F value is 3.84. From Table 5.2 it can be 

seen that the calculated F value of 1105.63 is greater than the critical value 

of 3.84.  Therefore the inclusion of rainfall in the model significantly 

contributes to the improvement of the model.  

 

Table 5.2 Partial F-Test for including Rainfall in a Model already including 

Time 

Source df 
Sums of 
Squares 

Mean 
Square 

(Variance) F 
Regression 2 4081680.392 2040840.196  

X2 1 605045.851 605045.851  

X2/X1 1 3476634.541 3476634.541 1105.627 
Error 357 1122583.597 3144.491869  
Total 359 5204263.989   

where X1=time and X2 = rainfall 

 

 

The results for the partial F-Test for ground temperature are summarised in 

Table 5.3. The F value of 1044.03 is also greater than the critical F value of 

3.84 and it can be concluded that the inclusion of ground temperature will 

also significantly improve the model. 

 

Table 5.3 Partial F-Test for including Ground Temperature in a Model 

already including Time 

Source df 
Sums of 
Squares 

Mean 
Square 

(Variance) F 
Regression 2 3928588.697 1964294.348  

X3 1 197925.6904 197926.6904  

X3/X1 1 3730663.006 3730663.006 1044.033 
Error 357 1275675.292 3573.320146  
Total 359 5204263.989   

where X1 =time and X3 = ground temperature 

 

Although the partial F-tests showed that either variable would improve the 

model, regression analysis showed that including rainfall would improve the 
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accuracy of the model from 73.7% to 78.3% as opposed to 75.4% for a model 

including ground temperature.   Rainfall, therefore, was selected as the 

second explanatory variable in the model. 

 

Variable 3 

 

Similar procedures were used to assess the benefits of adding a third 

variable to the model.  The critical F value for a significance level of 5% 

with 2 and 356 degrees of freedom is 3.00.  The partial F-test for the 

significance of adding ground temperature to a model with time and rainfall 

is shown in Table 5.4.  Clearly the F value of 0.05 is below the critical F 

value and adding ground temperature to the model will not significantly 

improve its accuracy.  Therefore, ground temperature will not be included 

in the model. 

 
 

Table 5.4 Partial F-Test for including Ground Temperature in a Model 

already including Time and Rainfall 

Source df 
Sums of 
Squares 

Mean 
Square 

(Variance) F 
Regression 3 4081841.652 1360613.884  

X3 2 4081680.392 2040840.196  

X3/X12 2 161.2602876 161.2602876 0.051147 
Error 356 1122422.337 3152.871733  
Total 359 5204263.989     

where X12 =time + rainfall and X3 = ground temperature 
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Discussion of Model 

 

The proposed model is a two variable regression model with time and 

rainfall as the explanatory variables. 

 

The model is of the form: 

 

 

Total Number of Failures  21 175.00025.033.237997.123 XXe −+=  

 

where x1 = time (month) 

 x2 = rainfall (mm) 

 

Figure 5.3 shows a comparison between predicted failures using the model 

and actual failures over the period from 1978 to 2008.  The model seems to 

have a fair correlation with the actual failure rate.  Although the model is 

not accurate at predicting the magnitude of cyclical variations, it does seem 

to be able to predict their occurrence. 

 

Regression analysis for the proposed model is shown in Figure 5.4.  From the 

summary output it can be seen that time and rainfall is able to account for 

approximately 78% of the variation in the total number of failures.  This 

result is promising considering that only two variables have been used in the 

model out of the many that influence water main failures.    

 

Residuals plots (shown in Figures 5.5 and 5.6) display an unequal variance in 

the distribution of residuals and a strong cyclical trend.  In Figure 5.5 the 

spread of residuals appears to be increasing as the number of failures 

increases.  Figure 5.6 shows a cyclical trend, or autocorrelation, in the 

distribution of residuals.  These findings violate some of the assumptions of 
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regression analysis in regard to homoscedasticity (or the constancy of 

residuals) and the independence of residuals.  This raises some concerns 

over the validity of the model and suggests that there may be some other 

effects that are not accounted for in the model.  This is quite probable 

considering the number of factors that can influence water main failures.   

 

One possible explanation for the autocorrelation effect may be limitations 

with the data used in the model.  Firstly, some moderation of data was 

required to account for periods where data was incomplete or missing.  

Failures during these periods were moderated to reflect failure rates for 

periods where complete data was available.  This could quite possibly have 

biased the results.  Secondly, because 12 month rolling totals of failures and 

rainfall were taken only one month apart there is always going to be some 

inherent correlation from one data point to the next.  Successive readings 

are not independent of each other. 

 

Partial regression plots for time (Figure 5.7) and rainfall (Figure 5.8) show a 

moderate positive linear relationship between time and failures and a weak 

negative linear relationship between time and rainfall.  This meets the 

assumption of linearity in regression analysis. 

 

Overall the model as it is appears to give creditable results.  However, the 

effect of autocorrelation raises some issues and further investigations will 

need to be carried out.  There is also scope for trying to add other variables 

as more data becomes available.  In hindsight ground temperatures and 

rainfall were too closely correlated to each other to be both included in the 

model.  Independent variables need to independent of each other. 
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Improvements to the Model 

 

While the proposed model appears to provide a fair prediction of the failure 

rate in the ACT for the period from 1978 to 2008, further analysis raises a 

number of issues regarding the validity of the fitted model.  Before the 

model can be accepted for use further investigations are required to 

understand and account for these issues if possible.  Some of the possible 

actions that may be taken are outlined below. 

 

• Use the model as it is recognising that model accuracy could possibly be 

improved. 

• Determine if linearity can be improved by transformation of model 

variables. 

• Determine if additional explanatory variables can be used in the model 

to explain residual trending effects. 

• Determine if autoregressive modelling techniques can be incorporated 

into the model to take advantage of the autocorrelation effects. 

• Determine if the autocorrelation effect can be overcome by increasing 

the time interval between data points from one month to one year. 

 

Time limitations did not allow for all of these options to be investigated as 

part of this study. Therefore, it was decided to concentrate on determining 

if the regression model could be improved by increasing the time step in the 

model from one month to one year. 
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Model 2 – Multi-Variate Regression Model 

 

The second model proposed was of a similar form to the first model and 

used the same procedure to develop.  The major difference between the 

two models is that the time step has been increased to 1 year from 1 month.  

This means the sample size is now 30 and independent twelve monthly 

totals are now being used instead of rolling twelve month totals.  The aim of 

this was to see if this reduced the autocorrelation effect. 

 

Correlation 

 

Table 5.5 shows the correlation matrix for Model 2.  The results are similar 

to Model 1.  Time has a high positive correlation with the dependent 

variable, followed by rain with a moderate negative correlation and ground 

temperature with a weak positive correlation.  Correlation between time 

and the other independent variables is relatively low, while correlation 

between rainfall and ground temperature is moderately high.  Once again 

time is the obvious choice as the first variable to be included in the model. 

 

Table 5.5 Correlation Matrix for Variables for Model 2 

  Failures Time Rain Temp 
Failures 1    
Time 0.850211 1   
Rain -0.38363 -0.12724  
Temp 0.108427 0.061192 -0.49345 1 

 

Variable 1 

The first explanatory variable included in the model was time.  Following a 

similar process as for Model 1 it was determined that an exponential time 

relationship was to be used in the model.  Figure 5.9 shows the fitted 

exponential trend, equation and the coefficient of determination. 
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Variable 2 

 

Once again partial F-tests were conducted to determine if the inclusion of 

rainfall or ground temperature would significantly improve the model.  

Results for the tests are shown in Tales 5.6 and 5.7.  The critical F value for 

a model with 1 and 27 degrees of freedom and significance of 5% is 4.21.  

Inclusion of rainfall in the model will significantly improve the model while 

inclusion of ground temperature will not. 

 

 

Table 5.6 Partial F-Test for including Rainfall in a Model that already 

includes Time  

Source df 
Sums of 
Squares 

Mean 
Square 

(Variance) F 
Regression 2 355398.6073 177699.3037  

X2 1 329425.886 329425.886  

X2/X1 1 25972.72137 25972.72137 6.882773 
Error 27 101886.7593 3773.583679  
Total 29 457285.3667     

where X1 =time and X3 = rainfall 

 

 

Table 5.7 Partial F-Test for including Ground Temperature in a Model 

that already includes Time  

Source df 
Sums of 
Squares 

Mean 
Square 

(Variance) F 
Regression 2 330246.6692 165123.3346  

X3 1 329425.886 329425.886  

X3/X1 1 820.783259 820.783259 0.174444 
Error 27 127038.6974 4705.136942  
Total 29 457285.3667     

where X1 =time and X3 = ground temperature 
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Variable 3 

 

Due to the high correlation between rainfall and ground temperatures, 

inclusion of both ground temperature and rainfall in the model was unlikely 

to significantly improve the model.  This was confirmed by the partial F-test 

shown in Figure 5.8.  The critical F value for a model with 1 and 26 degrees 

of freedom and significance of 0.05 is 4.23. The calculated F value is well 

below the critical value and therefore inclusion of the third variable is not 

significant and will not be included in the model.  

 

Table 5.8 Partial F-Test for including Ground Temperature in a Model 

that already includes Time and Rainfall 

Source df 
Sums of 
Squares 

Mean 
Square 

(Variance) F 
Regression 3 4081841.652 1360613.884  

X3 2 4081680.392 2040840.196  

X3/X12 2 161.2602876 161.2602876 0.051147 
Error 26 1122422.337 3152.871733  
Total 29 5204263.989     

where X12 =time and rainfall and X3 = ground temperature 
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Discussion of Model 2 

 

Model 2 is also a two variable regression model with time and rainfall as the 

explanatory variables. 

 

The model is of the form: 

 

 

Total Number of Failures  21 206.00304.068.241259.145 XXe −+=  

 

where x1 = time (year) 

 x2 = rainfall (mm) 

Figure 5.10 shows a comparison between predicted failures and actual 

failures over the period from 1978 to 2008.  Correlation with the actual 

failure rate is fairly high.  The difference between predicted and actual 

failures appears to be increasing over time as the total number of failures 

increases. 

 

Regression analysis for the proposed model is shown in Figure 4.10.  From 

the summary output of this analysis it can be seen that time and rainfall is 

able to account for approximately 76% of the variation in the total number 

of failures.  This is similar to that for Model 1.  

 

Although not as noticeable, the residual plots for Model 2 (shown in Figures 

5.12 and 5.13) display similar effects to Model 1.  The spread of residuals 

appears to be increasing as the number of failures increases and a cyclical 

trend, or autocorrelation, in the distribution of residuals is evident. 

  

Partial regression plots meet the assumption of linearity.  Figure 5.14 shows 

a strong positive linear relationship between time and failures and Figure 

5.15 a weak negative linear relationship between rainfall and failures. 
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Discussion of Results  

 

Although basic and using only two explanatory variables, the two proposed 

models appear to give fairly accurate results.  Model 1 was able to explain 

approximately 78% of the variation in failure rates, while Model 2 was able 

to explain approximately 76%.   

 

Analysis of the two models identified some issues relating to autocorrelation 

and an increase in residual variance as the number of failures increase.  This 

raises concerns about the validity of the model and suggests further 

investigations may be necessary to determine the cause of these effects.   

 

Data limitations also need to be considered.  Confirmed and reliable data 

covering the entire network is only available from July 1997 with data 

moderation being required to cover other periods where the data was 

missing or incomplete.  This data moderation may have biased the results.  

Variation between predicted failures and actual failures appears to be 

increasing especially for the period since 1997.  Further validation is 

required before an accurate assessment can be made of the model. 

 

The other thing that needs to be considered is that the two models are both 

statistical models and therefore cannot be used for condition based 

predictions.  The cost and time required to improve these models may be 

better spent in the development of a physically based failure prediction 

model. 

 

This being the case it may be possible to accept the models as they are until 

a physical model is developed.  Even if the models were able to achieve 

perfect correlation with past failure history, to make future predictions 

rainfall totals still need to be predicted also.  However, a model of this sort 

would still be useful in predicting failure trends to account for predicted 

droughts or wet seasons. 
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5.4. Chapter Summary 
 
 
This chapter has provided a description of the development of two 

customised multivariate water main failure prediction models taking into 

account limitations in existing Actew water main failure records.  Both 

models use time (Model 1 - month and Model 2 - year) and rainfall (12 month 

totals – mm) to predict total number of failures.  Preliminary results are 

promising but further testing and validation is required. 
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6. Comparison of Proposed Models with Existing Failure 
Prediction Models 

 

The objective of the following chapter is to compare the models proposed in 

the previous chapter to some of the existing failure models discussed in the 

literature review.  Comparison will be made by looking at how well the 

models achieve their objectives, the input variables used in the models, 

different types of model output and model accuracy. 

 

6.1. Purpose 

 
This study has highlighted a number of different types of water main failure 

prediction models of varying levels of complexity.  These range from simple 

univariate statistical prediction models to multivariate physically based 

models.  Most would consider physically based models the ultimate in failure 

prediction and therefore superior to the other model types.  This may be 

the case.  However, a model should be assessed on how well it meets its 

intended function and not on how complex the method it uses. 

 

The two basic prediction models proposed by the study may be limited in 

the information they can provide, but they meet specifications.  That is the 

model type is appropriate for the available resources, reflects the actual 

failure rate in the ACT as accurately as possible taking into account 

limitations of the study, incorporates parameters influencing failures in the 

ACT and uses data that is available or can be readily obtained.  Therefore, it 

can be said that the proposed models are fit for purpose. 

 

6.2. Input Variables 

 

Studies have shown that a number of factors influence water main failures 

and can be used in failure prediction models.  Some of these include time, 
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corrosion pit depths, soil loads, rain deficits and freezing index.  Physical 

models aim to incorporate as many of these factors as possible in order to 

improve model accuracy.  Statistical models on the other hand, seek to 

make the most efficient use of available data and variables will be omitted 

if they don’t significantly add to the model.  The two proposed models use 

only two out of three possible variables.  The inclusion of ground 

temperature did not significantly add to the accuracy of the model in this 

case.  Perhaps as more data becomes available additional explanatory 

variables that do improve the model may be included. 

 

6.3. Model Output 

 
The use of failure prediction models are influenced by the type of output 

produced by the model.  For example, physically based prediction models 

are able to predict time until failure based on actual pipe conditions and 

local environmental influences.   These models are suitable for use in 

decision making processes to determine when individual pipes should be 

replaced instead of just being repaired.  Statistical models identify trends in 

historical data and assume these continue into the future.  Like the two 

models developed in the study, output is usually total number of failures for 

a given time period.  Statistical models are suitable for monitoring system 

performance and assisting in planning processes including resource 

allocation.  

 

6.4. Model Accuracy 

 
Model accuracy is probably the hardest thing to compare between models.  

Most models have been customised to suit a particular location.  Different 

model types have different outputs.  Even if a model uses similar methods 

results are influenced by the quality of the data used in the model. 
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The literature review looked at a number of statistical failure models 

proposed by others including Kleiner and Rajani (2000a and 2002) and Achim 

et al (2007).  These studies mention models achieving coefficients of 

determination ranging from 0.23 to 0.86.  The models in this study achieved 

coefficients of determination of 0.78 for Model 1 and 0.76 for Model 2.  This 

compares well with the results of other studies.  Of course there are a 

number of other factors that need to be taken into account when assessing 

the accuracy of these models and further validation is required. 

 

6.5. Chapter Summary 

 

This chapter outlined some of the difficulties in making comparisons 

between failure prediction models because of the different methods used 

and the development of models to suit specific applications.  The two 

customised models developed in this study, although basic, meet 

specifications and seem to compare well with similar existing models.   

Further testing and validation is required before any results can be 

accepted. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 7 
 

CONCLUSION AND RECOMMENDATIONS 
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7. Conclusions and Recommendations 
 

7.1. Conclusions 
 

The purpose of this study was to investigate water main failures in the ACT 

in order to develop a customised water main failure prediction model that 

could be used to monitor system performance and assist in developing 

replacement and renewal strategies.  The customised model was to 

incorporate findings from the literature review and take into account 

factors that were shown to influence failures in the ACT. 

 

Research showed that a best practice water main failure prediction model is 

a physically based model that predicts time to failure for individual water 

mains based on the physical condition of the pipe and local environment 

influences.  Physical models are time, cost and data intensive.  Data and 

resource limitations meant that development of a physically based model 

was not feasible at this time.  Instead efforts were concentrated on 

developing a statistical water main failure prediction model which is 

considered a simpler, cost effective alternative to a physical model. 

 

The literature review identified pipe characteristics, soil embedment 

conditions and internal/external loading as important factors in the 

structural performance of buried pipes.  Analysis showed that water main 

failures in the ACT are increasing over time and that seasonal influences are 

prominent.  Most failures occur in winter and seem to also increase during 

warmer, dry periods.  Frost loading, pipe and ground temperature 

differences and soil moisture were identified as likely causes. 

 

As a result of this study, two basic multivariate failure prediction models 

were developed.  Both of these models use similar techniques with time and 

rainfall being used as explanatory variables to predict total number of 

failures.  The models differ in the time steps used in the model.  Model 1 



Chapter 7 – Conclusions and Recommendations 

Developing a Model to Predict Water Main Failures                                                 Page 113 

uses a time step of one month while Model 2 uses a time step of one year.  

Both models achieve comparable results. 

 

Although relatively basic, the models both successfully met the criteria set 

out in the model development process.  The models achieved accurate 

results considering the limitations of the study, the explanatory variables 

reflect the incidence of failures in the ACT and the data used in the models 

is readily available from existing failure records and the Bureau of 

Meteorology. 

 

The models appear to compare quite well to other similar existing failure 

prediction models in terms of variables used, model output and prediction 

capabilities.  Further testing and validation is required. There is scope to 

improve the accuracy of the model by identifying additional explanatory 

variables. 

 

The statistical models produced by this study are useful tools that can assist 

in analysing and predicting system performance and some planning 

processes.  However, the models do not have the capacity to predict when a 

pipe should be replaced instead of repaired.  It may be worthwhile 

investigating the feasibility of developing a physically based model to 

perform this function. 

 

7.2. Recommendations 

 
 
While the results achieved in this study were positive, it must be noted that 

there were a number of issues that limited exactly what was able to be 

achieved.  Also, the development of any model is an ongoing process. 
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Therefore, in order to overcome some of these limitations and further 

improve Actew’s water main failure analysis and prediction capabilities the 

following recommendations are made. 

 

• Compile historical failure records into a central water main failure 

database and add links to the GIS and asset management systems. 

• Incorporate physical parameters into water main failure data collection 

processes. 

• Conduct further testing, validation and improvement of the multivariate 

statistical models developed in this study. 

• Conduct preliminary investigations into the development of a physically 

based water main failure prediction model. 
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APPENDIX B  
 

RAW DATA 



 

 

Model 1 Variables 
 

 Failures Month Month^2 Month exp Rain Temp 

Jul-78 263 0 0 247 583 98 

Aug-78 265 1 1 248 575 96 

Sep-78 263 2 4 249 647 87 

Oct-78 252 3 9 249 670 87 

Nov-78 236 4 16 250 716 84 

Dec-78 228 5 25 250 771 84 

Jan-79 236 6 36 251 640 84 

Feb-79 244 7 49 252 637 84 

Mar-79 242 8 64 252 645 84 

Apr-79 233 9 81 253 658 86 

May-79 228 10 100 254 595 93 

Jun-79 230 11 121 254 559 104 

Jul-79 243 12 144 255 514 111 

Aug-79 237 13 169 255 544 111 

Sep-79 243 14 196 256 436 114 

Oct-79 250 15 225 257 446 110 

Nov-79 256 16 256 257 450 111 

Dec-79 283 17 289 258 392 111 

Jan-80 260 18 324 259 463 111 

Feb-80 254 19 361 259 520 111 

Mar-80 271 20 400 260 399 111 

Apr-80 297 21 441 261 345 112 

May-80 312 22 484 261 377 101 

Jun-80 327 23 529 262 404 94 

Jul-80 301 24 576 263 434 87 

Aug-80 305 25 625 263 413 87 

Sep-80 296 26 676 264 398 89 

Oct-80 294 27 729 265 409 89 

Nov-80 292 28 784 265 409 88 

Dec-80 267 29 841 266 477 88 

Jan-81 284 30 900 267 432 88 

Feb-81 286 31 961 267 515 88 

Mar-81 282 32 1024 268 525 88 

Apr-81 269 33 1089 269 537 90 

May-81 267 34 1156 269 539 95 

Jun-81 254 35 1225 270 619 89 

Jul-81 267 36 1296 271 655 88 

Aug-81 259 37 1369 271 691 76 

Sep-81 259 38 1444 272 688 73 

Oct-81 265 39 1521 273 670 73 

Nov-81 271 40 1600 273 684 74 

Dec-81 279 41 1681 274 651 74 

Jan-82 255 42 1764 275 638 74 

Feb-82 251 43 1849 275 516 74 

Mar-82 234 44 1936 276 593 74 

Apr-82 225 45 2025 277 588 67 

May-82 246 46 2116 277 542 75 

Jun-82 253 47 2209 278 446 86 

Jul-82 253 48 2304 279 377 97 

Aug-82 253 49 2401 280 330 113 



 

 

Sep-82 256 50 2500 280 359 117 

Oct-82 250 51 2601 281 340 123 

Nov-82 248 52 2704 282 272 121 

Dec-82 257 53 2809 282 262 121 

Jan-83 270 54 2916 283 272 121 

Feb-83 272 55 3025 284 287 121 

Mar-83 293 56 3136 284 253 121 

Apr-83 295 57 3249 285 293 122 

May-83 270 58 3364 286 389 116 

Jun-83 276 59 3481 287 403 106 

Jul-83 280 60 3600 287 428 99 

Aug-83 286 61 3721 288 468 90 

Sep-83 290 62 3844 289 476 86 

Oct-83 296 63 3969 289 582 78 

Nov-83 296 64 4096 290 693 79 

Dec-83 289 65 4225 291 757 79 

Jan-84 274 66 4356 292 914 79 

Feb-84 272 67 4489 292 940 79 

Mar-84 289 68 4624 293 933 80 

Apr-84 289 69 4761 294 982 80 

May-84 291 70 4900 295 902 81 

Jun-84 285 71 5041 295 882 93 

Jul-84 283 72 5184 296 942 90 

Aug-84 283 73 5329 297 951 86 

Sep-84 270 74 5476 298 951 89 

Oct-84 255 75 5625 298 877 96 

Nov-84 255 76 5776 299 802 96 

Dec-84 272 77 5929 300 740 97 

Jan-85 317 78 6084 301 557 97 

Feb-85 317 79 6241 301 507 97 

Mar-85 298 80 6400 302 517 96 

Apr-85 305 81 6561 303 445 97 

May-85 337 82 6724 304 476 95 

Jun-85 345 83 6889 304 501 91 

Jul-85 360 84 7056 305 436 97 

Aug-85 366 85 7225 306 497 100 

Sep-85 375 86 7396 307 508 104 

Oct-85 379 87 7569 307 528 100 

Nov-85 364 88 7744 308 566 99 

Dec-85 331 89 7921 309 568 98 

Jan-86 314 90 8100 310 614 98 

Feb-86 337 91 8281 310 606 98 

Mar-86 377 92 8464 311 541 98 

Apr-86 383 93 8649 312 574 96 

May-86 340 94 8836 313 573 89 

Jun-86 342 95 9025 314 547 90 

Jul-86 331 96 9216 314 612 84 

Aug-86 323 97 9409 315 545 86 

Sep-86 318 98 9604 316 506 82 

Oct-86 318 99 9801 317 516 85 

Nov-86 322 100 10000 318 538 88 

Dec-86 328 101 10201 318 530 88 

Jan-87 343 102 10404 319 508 88 



 

 

Feb-87 326 103 10609 320 592 88 

Mar-87 277 104 10816 321 620 90 

Apr-87 319 105 11025 322 575 96 

May-87 321 106 11236 322 584 101 

Jun-87 319 107 11449 323 618 98 

Jul-87 317 108 11664 324 567 103 

Aug-87 315 109 11881 325 559 98 

Sep-87 322 110 12100 326 549 99 

Oct-87 329 111 12321 326 534 98 

Nov-87 340 112 12544 327 493 95 

Dec-87 340 113 12769 328 588 96 

Jan-88 316 114 12996 329 572 96 

Feb-88 340 115 13225 330 534 96 

Mar-88 370 116 13456 330 520 94 

Apr-88 315 117 13689 331 609 88 

May-88 322 118 13924 332 625 85 

Jun-88 311 119 14161 333 640 78 

Jul-88 321 120 14400 334 702 71 

Aug-88 331 121 14641 335 707 77 

Sep-88 329 122 14884 335 746 73 

Oct-88 331 123 15129 336 717 73 

Nov-88 328 124 15376 337 760 73 

Dec-88 329 125 15625 338 765 72 

Jan-89 333 126 15876 339 777 72 

Feb-89 312 127 16129 340 735 72 

Mar-89 283 128 16384 341 962 72 

Apr-89 278 129 16641 341 1048 70 

May-89 282 130 16900 342 1023 64 

Jun-89 285 131 17161 343 992 66 

Jul-89 284 132 17424 344 932 67 

Aug-89 276 133 17689 345 907 65 

Sep-89 285 134 17956 346 858 76 

Oct-89 280 135 18225 347 859 81 

Nov-89 283 136 18496 347 898 83 

Dec-89 291 137 18769 348 825 83 

Jan-90 319 138 19044 349 837 83 

Feb-90 300 139 19321 350 913 83 

Mar-90 322 140 19600 351 676 83 

Apr-90 332 141 19881 352 626 85 

May-90 318 142 20164 353 661 89 

Jun-90 323 143 20449 354 654 92 

Jul-90 321 144 20736 354 669 90 

Aug-90 329 145 21025 355 689 85 

Sep-90 316 146 21316 356 707 79 

Oct-90 324 147 21609 357 735 75 

Nov-90 339 148 21904 358 622 74 

Dec-90 354 149 22201 359 617 74 

Jan-91 310 150 22500 360 664 74 

Feb-91 341 151 22801 361 603 74 

Mar-91 371 152 23104 362 613 75 

Apr-91 403 153 23409 363 491 79 

May-91 463 154 23716 363 441 86 

Jun-91 469 155 24025 364 520 77 



 

 

Jul-91 472 156 24336 365 573 77 

Aug-91 466 157 24649 366 599 79 

Sep-91 476 158 24964 367 625 77 

Oct-91 464 159 25281 368 588 74 

Nov-91 452 160 25600 369 586 76 

Dec-91 436 161 25921 370 598 76 

Jan-92 441 162 26244 371 631 76 

Feb-92 423 163 26569 372 685 76 

Mar-92 362 164 26896 373 723 75 

Apr-92 350 165 27225 374 740 73 

May-92 349 166 27556 375 746 69 

Jun-92 359 167 27889 375 672 80 

Jul-92 396 168 28224 376 581 85 

Aug-92 413 169 28561 377 586 92 

Sep-92 402 170 28900 378 595 90 

Oct-92 415 171 29241 379 652 88 

Nov-92 410 172 29584 380 742 88 

Dec-92 402 173 29929 381 770 88 

Jan-93 405 174 30276 382 788 88 

Feb-93 425 175 30625 383 748 88 

Mar-93 425 176 30976 384 794 88 

Apr-93 424 177 31329 385 784 85 

May-93 394 178 31684 386 766 95 

Jun-93 396 179 32041 387 767 97 

Jul-93 364 180 32400 388 872 92 

Aug-93 343 181 32761 389 818 89 

Sep-93 345 182 33124 390 832 89 

Oct-93 343 183 33489 391 809 96 

Nov-93 347 184 33856 392 765 95 

Dec-93 360 185 34225 393 703 95 

Jan-94 386 186 34596 394 579 95 

Feb-94 384 187 34969 395 613 95 

Mar-94 407 188 35344 396 531 95 

Apr-94 388 189 35721 397 579 95 

May-94 411 190 36100 398 564 91 

Jun-94 430 191 36481 399 574 86 

Jul-94 449 192 36864 400 462 95 

Aug-94 487 193 37249 401 442 100 

Sep-94 504 194 37636 402 365 112 

Oct-94 504 195 38025 403 356 111 

Nov-94 521 196 38416 404 335 109 

Dec-94 504 197 38809 405 380 109 

Jan-95 476 198 39204 406 589 109 

Feb-95 455 199 39601 407 526 109 

Mar-95 474 200 40000 408 513 111 

Apr-95 533 201 40401 409 453 121 

May-95 495 202 40804 410 585 111 

Jun-95 476 203 41209 411 589 113 

Jul-95 465 204 41616 412 633 106 

Aug-95 437 205 42025 413 636 101 

Sep-95 420 206 42436 414 676 87 

Oct-95 418 207 42849 415 742 84 

Nov-95 399 208 43264 416 834 85 



 

 

Dec-95 401 209 43681 417 827 85 

Jan-96 399 210 44100 418 694 85 

Feb-96 416 211 44521 419 728 85 

Mar-96 380 212 44944 420 745 84 

Apr-96 365 213 45369 421 752 78 

May-96 367 214 45796 422 673 87 

Jun-96 377 215 46225 423 670 85 

Jul-96 365 216 46656 424 690 85 

Aug-96 359 217 47089 425 730 83 

Sep-96 366 218 47524 426 776 81 

Oct-96 362 219 47961 428 730 79 

Nov-96 354 220 48400 429 671 80 

Dec-96 375 221 48841 430 671 80 

Jan-97 394 222 49284 431 637 80 

Feb-97 394 223 49729 432 628 80 

Mar-97 420 224 50176 433 638 80 

Apr-97 420 225 50625 434 620 84 

May-97 471 226 51076 435 592 81 

Jun-97 514 227 51529 436 675 86 

Jul-97 536 228 51984 437 614 96 

Aug-97 556 229 52441 438 595 103 

Sep-97 564 230 52900 439 590 102 

Oct-97 562 231 53361 441 537 104 

Nov-97 567 232 53824 442 478 103 

Dec-97 581 233 54289 443 427 103 

Jan-98 593 234 54756 444 399 103 

Feb-98 596 235 55225 445 408 103 

Mar-98 623 236 55696 446 381 102 

Apr-98 598 237 56169 447 432 94 

May-98 562 238 56644 448 439 90 

Jun-98 523 239 57121 449 439 82 

Jul-98 510 240 57600 451 497 74 

Aug-98 494 241 58081 452 590 60 

Sep-98 482 242 58564 453 563 59 

Oct-98 485 243 59049 454 611 59 

Nov-98 484 244 59536 455 672 60 

Dec-98 451 245 60025 456 676 60 

Jan-99 428 246 60516 457 751 60 

Feb-99 437 247 61009 459 723 60 

Mar-99 408 248 61504 460 790 60 

Apr-99 395 249 62001 461 792 64 

May-99 392 250 62500 462 777 72 

Jun-99 391 251 63001 463 695 82 

Jul-99 414 252 63504 464 641 84 

Aug-99 425 253 64009 465 567 94 

Sep-99 428 254 64516 467 580 98 

Oct-99 436 255 65025 468 624 95 

Nov-99 443 256 65536 469 585 96 

Dec-99 440 257 66049 470 709 96 

Jan-00 438 258 66564 471 647 97 

Feb-00 426 259 67081 473 651 97 

Mar-00 419 260 67600 474 624 97 

Apr-00 420 261 68121 475 631 97 



 

 

May-00 426 262 68644 476 666 95 

Jun-00 434 263 69169 477 657 93 

Jul-00 417 264 69696 478 671 93 

Aug-00 413 265 70225 480 676 92 

Sep-00 412 266 70756 481 692 93 

Oct-00 413 267 71289 482 642 100 

Nov-00 402 268 71824 483 722 98 

Dec-00 405 269 72361 484 601 100 

Jan-01 410 270 72900 486 605 99 

Feb-01 396 271 73441 487 689 99 

Mar-01 385 272 73984 488 694 100 

Apr-01 414 273 74529 489 643 102 

May-01 459 274 75076 491 588 109 

Jun-01 470 275 75625 492 585 109 

Jul-01 472 276 76176 493 593 110 

Aug-01 478 277 76729 494 604 109 

Sep-01 478 278 77284 496 580 108 

Oct-01 470 279 77841 497 569 109 

Nov-01 486 280 78400 498 491 111 

Dec-01 499 281 78961 499 490 110 

Jan-02 504 282 79524 500 476 110 

Feb-02 514 283 80089 502 589 110 

Mar-02 505 284 80656 503 581 109 

Apr-02 479 285 81225 504 592 104 

May-02 462 286 81796 506 616 100 

Jun-02 459 287 82369 507 632 96 

Jul-02 490 288 82944 508 610 98 

Aug-02 477 289 83521 509 572 105 

Sep-02 483 290 84100 511 568 110 

Oct-02 487 291 84681 512 534 113 

Nov-02 503 292 85264 513 501 114 

Dec-02 525 293 85849 514 504 114 

Jan-03 548 294 86436 516 489 114 

Feb-03 564 295 87025 517 334 114 

Mar-03 562 296 87616 518 351 116 

Apr-03 587 297 88209 520 345 118 

May-03 605 298 88804 521 333 116 

Jun-03 632 299 89401 522 339 112 

Jul-03 615 300 90000 524 360 107 

Aug-03 653 301 90601 525 403 103 

Sep-03 656 302 91204 526 390 104 

Oct-03 654 303 91809 527 438 103 

Nov-03 637 304 92416 529 500 101 

Dec-03 603 305 93025 530 569 100 

Jan-04 567 306 93636 531 607 100 

Feb-04 573 307 94249 533 573 100 

Mar-04 616 308 94864 534 519 98 

Apr-04 640 309 95481 535 506 97 

May-04 679 310 96100 537 498 102 

Jun-04 680 311 96721 538 463 103 

Jul-04 724 312 97344 539 437 105 

Aug-04 717 313 97969 541 403 101 

Sep-04 733 314 98596 542 406 99 



 

 

Oct-04 739 315 99225 544 401 90 

Nov-04 743 316 99856 545 414 88 

Dec-04 740 317 100489 546 399 88 

Jan-05 739 318 101124 548 407 88 

Feb-05 729 319 101761 549 459 88 

Mar-05 695 320 102400 550 495 89 

Apr-05 630 321 103041 552 499 88 

May-05 583 322 103684 553 494 82 

Jun-05 577 323 104329 555 555 81 

Jul-05 561 324 104976 556 630 77 

Aug-05 539 325 105625 557 651 82 

Sep-05 524 326 106276 559 702 80 

Oct-05 518 327 106929 560 726 78 

Nov-05 501 328 107584 561 712 78 

Dec-05 510 329 108241 563 659 78 

Jan-06 513 330 108900 564 687 78 

Feb-06 498 331 109561 566 640 78 

Mar-06 508 332 110224 567 633 77 

Apr-06 565 333 110889 569 642 86 

May-06 589 334 111556 570 652 89 

Jun-06 579 335 112225 571 654 97 

Jul-06 542 336 112896 573 604 96 

Aug-06 544 337 113569 574 562 100 

Sep-06 540 338 114244 576 482 103 

Oct-06 540 339 114921 577 407 112 

Nov-06 545 340 115600 579 376 115 

Dec-06 549 341 116281 580 373 115 

Jan-07 569 342 116964 581 297 115 

Feb-07 572 343 117649 583 364 115 

Mar-07 571 344 118336 584 366 115 

Apr-07 548 345 119025 586 378 104 

May-07 488 346 119716 587 409 95 

Jun-07 512 347 120409 589 427 89 

Jul-07 532 348 121104 590 410 94 

Aug-07 524 349 121801 592 410 81 

Sep-07 516 350 122500 593 407 83 

Oct-07 510 351 123201 595 425 77 

Nov-07 499 352 123904 596 479 74 

Dec-07 491 353 124609 598 563 74 

Jan-08 467 354 125316 599 600 74 

Feb-08 454 355 126025 601 573 74 

Mar-08 448 356 126736 602 569 74 

Apr-08 469 357 127449 604 558 77 

May-08 547 358 128164 605 530 86 

Jun-08 499 359 128881 607 458 82 

 



 

 

Model 2 Variables 
 

  Failures Month Month^2 Month exp Rain Temp 
Oct-78 252 0 0 242 670 87 
Oct-79 250 1 1 249 446 110 
Oct-80 294 2 4 257 409 89 
Oct-81 265 3 9 265 670 73 
Oct-82 250 4 16 273 340 123 
Oct-83 296 5 25 281 582 78 
Oct-84 255 6 36 290 877 96 
Oct-85 379 7 49 299 528 100 
Oct-86 318 8 64 308 516 85 
Oct-87 329 9 81 318 534 98 
Oct-88 331 10 100 328 717 73 
Oct-89 280 11 121 338 859 81 
Oct-90 324 12 144 348 735 75 
Oct-91 464 13 169 359 588 74 
Oct-92 415 14 196 370 652 88 
Oct-93 343 15 225 381 809 96 
Oct-94 504 16 256 393 356 111 
Oct-95 418 17 289 405 742 84 
Oct-96 362 18 324 418 730 79 
Oct-97 562 19 361 431 537 104 
Oct-98 485 20 400 444 611 59 
Oct-99 436 21 441 458 624 95 
Oct-00 413 22 484 472 642 100 
Oct-01 470 23 529 486 569 109 
Oct-02 487 24 576 501 534 113 
Oct-03 654 25 625 517 438 103 
Oct-04 739 26 676 533 401 90 
Oct-05 518 27 729 549 726 78 
Oct-06 540 28 784 566 407 112 
Oct-07 510 29 841 584 425 77 



 

 

 



 

 

 



 

 

 
 

 



 

 

Climate Data Reproduced from Bureau of Meteorology Website 
 

Statistics Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Number of days 

ground min. temp. ≤ -

1 °C for year 1977 

0 0 0 9 8 19 26 24 16 7 4 0 113.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1978 

0 0 0 4 11 14 18 22 7 7 1 0 84.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1979 

0 0 0 6 18 25 26 22 10 3 2 0 112.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1980 

0 0 0 7 7 18 18 22 12 3 1 0 88.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1981 

0 0 0 9 12 12 17 10 9 2 2 0 73.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1982 

0 0 0 2 20 23 28 26 13 9 0 0 121.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1983 

0 0 0 3 4 13 21 17 9 1 1 0 69.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1984 

0 0 1 3 15 25 18 13 12 8 1 1 97.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1985 

0 0 0 4 13 21 24 16 16 4 0 0 98.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1986 

0 0 0 2 6 22 18 18 12 7 3 0 88.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1987 

0 0 2 8 11 19 23 13 13 6 0 1 96.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1988 

0 0 0 2 8 12 16 19 9 6 0 0 72.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1989 

0 0 0 0 2 14 17 17 20 11 2 0 83.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1990 

0 0 0 2 6 17 15 12 14 7 1 0 74.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1991 

0 0 1 6 13 8 15 14 12 4 3 0 76.0 

Number of days 

ground min. temp. ≤ -

1 °C for year 1992 

0 0 0 4 9 19 20 21 10 2 3 0 88.0 

 



 

 

 
 

Statistics Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Number of days 

ground min. temp. ≤ 

-1 °C for year 1993 

0 0 0 1 19 21 15 18 10 9 2 0 95.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 1994 

0 0 0 1 15 16 24 23 22 8 0 0 109.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 1995 

0 0 2 11 5 18 17 18 8 5 1 0 85.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 1996 

0 0 1 5 14 16 17 16 6 3 2 0 80.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 1997 

0 0 1 9 11 21 27 23 5 5 1 0 103.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 1998 

0 0 0 1 7 13 19 9 4 5 2 0 60.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 1999 

0 0 0 5 15 23 21 19 8 2 3 0 96.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2000 

1 0 0 5 13 21 21 18 9 9 1 2 100.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2001 

0 0 1 7 20 21 22 17 8 10 3 1 110.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2002 

0 0 0 2 16 17 24 24 13 13 4 1 114.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2003 

0 0 2 4 14 13 19 20 14 12 2 0 100.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2004 

0 0 0 3 19 14 21 16 12 3 0 0 88.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2005 

0 0 1 2 13 13 17 21 10 1 0 0 78.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2006 

0 0 0 11 16 21 16 25 13 10 3 0 115.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2007 

0 0 0 0 7 15 21 12 15 4 0 0 74.0 

Number of days 

ground min. temp. ≤ 

-1 °C for year 2008 

0 0 0 3 16 11 23 22 12     

 



 

 

 
 
 
 
 
 
 
 
 
 
 

APPENDIX C 
 

PROJECT DATA ANALYSIS 
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