

University of Southern Queensland

Faculty of Engineering and Surveying

ERROR RESILIENT H.264 CODED VIDEO

TRANSMISSION OVER WIRELESS CHANNELS

A dissertation submitted by

Timothy Glen Wise

in fulfilment of the requirements

Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering (Software)

Submitted: October 2009

 i

Abstract

The H.264/AVC recommendation was first published in 2003 and builds on the

concepts of earlier standards such as MPEG-2 and MPEG-4. The H.264

Recommendation represents an evolution of the existing video coding standards and

was developed in response to the growing need for higher compression. Even though

H.264 provides for greater compression, H.264 compressed video streams are very

prone to channel errors in mobile wireless fading channels such as 3G due to high

error rates experienced.

Common video compression techniques include motion compensation, prediction

methods, transformation, quantization and entropy coding, which are the common

elements of a hybrid video codecs. The ITU-T Recommendation H.264 introduces

several new error resilience tools, as well as several new features such as Intra

Prediction and Deblocking Filter.

The channel model used for the testing was the Rayleigh Fading channel with the

noise component simulated as Additive White Gaussian Noise (AWGN) using QPSK

as the modulation technique. The channel was used over several Eb/N0 values to

provide similar bit error rates as those found in literature.

Though further research needs to be conducted, results have shown that when using

the H.264 error resilience tools in protecting encoded bitstreams to minor channel

errors improvement in the decoded video quality can be observed. The tools did not

perform as well with mild and severe channel errors significant as the resultant

bitstream was too corrupted. From this, further research in channel coding techniques

is needed to determine if the bitstream can be protected from these sorts of error rates.

 ii

 iii

Certification

I certify that the ideas, designs and experimental work, results, analysis and

conclusions set out in this dissertation are entirely my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Timothy Glen Wise

Student Number: 0050055729

 Signature

 Date

 iv

Acknowledgments

I would like to thank my supervisor, Dr Wei Xiang for his assistance and guidance

throughout this research project.

I also like to acknowledge my son Thomas for providing the necessary distraction and

amusement that help me though the time consuming and sometime long hours spent

Finally I would like to thank my friend Bernadette for providing the necessary ear for

when I need to talk to someone.

 v

TABLE OF CONTENTS

Abstract i

Certification iii

List of Figures viii

List of Tables ix

Glossary of Terms x

Chapter 1 - Introduction 1

1.1 Outline 1

1.2 Introduction 1

1.3 Research Objectives 2

1.4 Outline of the Dissertation 3

Chapter 2 - H.264 Video Compression 4

2.1 Introduction 4

2.2 Video Compression 4

2.3 H.264 Encoding and Decoding 5

2.4 Profiles 8

2.5 Slices 9

2.6 Flexible Macroblock Ordering 12

2.7 Arbitrary Slice Ordering 14

2.8 Redundant Pictures 14

2.9 Context Adaptive Variable Length Coding (CAVLC) 14

2.10 Context Adaptive Binary Arithmetic Coding (CABAC) 15

2.11 NAL Units and Data Partitioning 15

2.11.1 Network Abstraction Layer (NAL) 15

2.11.2 Data Partitioning 16

2.12 Parameter Sets 16

 vi

Chapter 3 - Scalable Video Coding 18

3.1 Introduction 18

3.2 SVC Overview 19

3.2.1. Single Layer Coding 19

3.2.2. Scalable Coding 20

3.3 Spatial Scalability 20

3.4 Temporal Scalability 21

3.5 Quality Scalability 22

Chapter 4 - Mobile Digital Channel Modelling 23

4.2 Introduction 23

4.3 Mobile Communication Channel 24

4.4 Rayleigh Fading Channels 25

4.4.1 Jake’s Model 26

4.4.2 Dent’s Model 27

4.5 Channel Characteristics 28

4.5.1 Doppler Spread 28

4.5.2 Delay Spread 29

4.5.3 Frequency Selective Fading 29

Chapter 5 - Simulation 31

5.1 Introduction 31

5.2 Channel Capacity 32

5.3 Noise 33

5.3.1 What is Eb/N0 34

5.4 Channel Model 34

5.4.1 Additive White Gaussian Noise (AWGN) 35

5.4.2 Rayleigh Fading Channel 35

5.4.3 Modulation 36

Chapter 6 - Results 37

5.5 Introduction 37

5.6 JM Performance 37

 vii

5.7 JSVM Performance 41

Chapter 7 - Conclusions 48

Bibliography 50

Appendix A – Project Specification 53

Appendix B – Source Code 53

Appendix B – Source Code 54

H.264.cpp 54

ChannelModel.h 56

ChannelModel.cpp 58

ChannelCoder.h 64

ChannelCoder.cpp 66

JakesChannel.h 69

JakesChannel.cpp 71

Appendix C – BER Results JSVM Layers 74

 viii

List of Figures

Figure 1 – H.264 Encoder and Decoder (Richardson, 2004)... 6

Figure 2 – YUV Sampling Patterns (Richardson, 2004) ... 7

Figure 3 – Slice Partitioning .. 10

Figure 4 – FMO Techniques.. 13

Figure 5 – Typical Digital Communication Chanel (Moon, 2005).. 23

Figure 6 – Tapped Delay Line Model (Iskander, 2008) .. 30

Figure 7 – Test Flow Diagram... 31

Figure 8 – Typical Chanel Model .. 34

Figure 9 – Test Results JM Bitstream at Eb/N0 of 3 to 15 dB, Tests 1 through 4 38

Figure 10 – Test Results JM Bitstream at Eb/N0 of 3 to 15 dB, Tests 5 through 8 39

Figure 11 – Akiyo_qcif at Eb/N0 9.55 dB, using CABAC... 40

Figure 12 – Akiyo_qcif at Eb/N0 9.55 dB, using extra MB Intra Updates ... 40

Figure 13 – Akiyo_qcif at Eb/N0 9.55 dB, using Rate Control .. 41

Figure 14 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB, Tests 1 through 6 43

Figure 15 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,4.0) 46

Figure 16 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,2.0) 47

Figure 17 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,3,0) 74

Figure 18 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,2,0) 74

Figure 19 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,1,0) 75

Figure 20 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,0,0) 75

Figure 21 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,3,0) 76

Figure 22 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,1,0) 76

Figure 23 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,0,0) 77

 ix

List of Tables

Table 1 – JSVM Single Layer Mode Coding Sequence .. 42

Table 2 – JSVM Layer Bitrates for Default Coding .. 44

Table 3 – JSVM Layer Bitrates for Multiple Slices .. 44

Table 4 – JSVM Layer Bitrates for Multiple Slices, FMO, & CAVLC .. 45

Table 5 – JSVM Layer Bitrates for Multiple Slices, FMO, & CABAC .. 46

 x

Glossary of Terms

AVC Advanced Video Coding

ASO Arbitrary Slice Ordering

BER Bit Error Rate

dB Decibels

CABAC Context Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

CGS Course Gran Scalability

Chroma Chrominance

CIF Common Intermediate Format

CODEC Encoder/Decoder

DVD Digital Versatile Disk

FGS Fine Grain Scalability

FIR Finite Impulse Response

FMO Flexible Macroblock Ordering

FSK Frequency Shift Keying

GOB Group of Blocks

GOP Group of Pictures

IDR Instantaneous Decoder Refresh

IEC International Electrotechnical Commission

ITU International Telecommunications Union

ISO International Standards Organisation

JVT Joint Video Team

JM Joint Model

JSVM Joint Scalable Video Model

LOS Line-of-Sight

Luma Luminance or Brightness

MPEG Motion Pictures Expert Group

MSE Mean Squared Error

MSK Minimum Shift Keying

NAL Network Abstraction Layer

NALU Network Abstraction Layer Unit

PSK Phase Shift Keying

 xi

PPS Picture Parameter Set

PSNR Peak Signal to Noise Ratio

QCIF Quarter Common Intermediate Format

QPSK Quadrature Phase Shift Keying

RTP Real-time Transport Protocol

SNR Signal-to-Noise Ratio, measured in dB

SoS Sum of Sinusoids

SPS Sequence Parameter Set

TDL Tapped Delay Line

 1

Chapter 1

Introduction

1.1 Outline

The International Telecommunications Union - Telecommunications (ITU-T)

Recommendation H.264 was first published in 2003 and builds on the concepts of

earlier standards such as MPEG-2 and MPEG-4. The H.264 Recommendation

represents an evolution of the existing video coding standards and was developed in

response to the growing need for higher compression.

Even though H.264 provides for greater compression, H.264 compressed video

streams are very prone to channel errors in mobile wireless fading channels such as

3G due to high packet loss rates experienced

From the above statements it can be seen there is need address the error resilience of

H.264 compressed video over wireless channels. The purpose and scope of this study

is detailed in 1.3 Research Objectives.

1.2 Introduction

Video compression based on the hybrid COders and DECoders (CODEC) has

evolved over the last two decades from the initial ITU-T Recommendation H.261

released in 1990 through to the current ITU-T Recommendation H.264/AVC and

H.264/SVC published by the international standards bodies ITU-T (International

Telecommunication Union) and ISO/IEC (International Organisation for

Standardisation / International Electrotechnical Commission) referred to as ISO/IEC

14496–10 (MPEG-4 part 10) Advanced Video Coding (AVC).

 2

This poses a great challenge when H.264 coded video signals that are transmitted

over these noisy channels and a multitude of research papers have been written in

using the imbedded H.264 error resilience tools when transmitting H.264 bitstreams

over wireless fading channels.

Even with these benefits, H.264 compressed video stream is very prone to channel

errors in mobile wireless fading channels such as 3G due to high packet loss rates

experienced (Lin Liu et al. 2005).

1.3 Research Objectives

The aim of this research project is to investigate the error resilient tools of the ITU-T

Recommendation H.264/AVC (2007) and their effect on the error resilience

performance for coded video under minor, mild and severe channel errors as

experienced in mobile communication environments such as 3G wireless networks.

Additional to this the H.264 Recommendation will also be analysed to determine if

possible improvements can be made to increase the error robustness.

This research project used Joint Video Team (2009) Joint Model 15.1 (JM 15.1) and

Joint Scalable Video Model 9.18 (JSVM 9.18) reference software. The reference

software is constantly being updated and therefore the baseline was set at these

versions. The reference software was used in conjunction with the Recommendation

and the channel model developed under IT++, which originates from the former

department of Information Theory at the Chalmers University of Technology,

Gothenburg, Sweden. IT++ is a C++ library of mathematical, signal processing and

communication classes and functions. Its main use is in simulation of communication

systems and for performing research in the area of communications. The library

consists of generic vector and matrix classes, and a set of accompanying routines,

making IT++ similar to MATLAB.

This software platform will be used to evaluate the performance of H.264/AVC video

transmission over wireless channels for sensitivity and quality of service of the coded

video stream.

 3

1.4 Outline of the Dissertation

Chapter 2: H.264 Video Compression. This chapter contains a brief description of the

H.264 Recommendation, which identifies techniques particular to the H.264 standard,

including FMO, ASO, and CAVLC;

Chapter 3: Scalable Video Coding. This chapter gives an overview the Scalable

Video Model extension of the H.264 Recommendation

Chapter 4: Mobil Digital Channel Modelling. This chapter gives an overview of the

techniques and theory behind the modelling of digital communication channels.

Chapter 5: Simulation. This chapter provides an overview of the simulation used and

the process used to perform the simulation.

Chapter 6: Results. This chapter evaluates the performance of the H.264 software

over simulated wireless channel.

Chapter 7: Conclusion. This chapter concludes the dissertation and suggests further

work in the area of the modelling the error resilience of H.264 Recommendation over

wireless fading channels.

 4

Chapter 2

H.264 Video Compression

2.1 Introduction

To represent video scene in digital form, the digital representation of the image seeks

to replicate a natural scene with respect to the colour, shape, brightness and texture of

the real world. Digital images taken at regular intervals and displayed consecutively

produce motion video. This chapter seeks to provide an insight into what is video

compression, and the typical video compression techniques used for encoding and

decoding consecutive digital images.

Each digital image is divided into smaller component parts known as slices and

macroblocks. Smaller sections of the image allow for a more accurate video

compression to be achieved but increase in the compression overhead and bitstream

sizes are a direct consequence. Composition of these blocks is discussed further in

the chapter.

2.2 Video Compression

Richardson (2004) defines video compression as a tool that makes it possible for

products from different manufacturers (e.g. encoders, decoders and storage media) to

inter-operate. An encoder converts video into a compressed format and a decoder

converts a compressed video back into an uncompressed format. ITU-R

Recommendation H.264/AVC and H.264/SVC defines bitstream syntax for

compressed video and a method for decoding this syntax to produce a displayable

video sequence. The recommendation does not actually specify how to encode

 5

(compress) digital video – this is left to the manufacturer of a video encoder – but in

practice the decoder is likely to mirror the steps of the encoding process.

The video compression standard most commonly known is the MPEG-2 video coding

standard based on ITU-T Recommendation H.262 as is widely used for the

transmission of Standard Definition (SD) and High Definition (HD) TV signals over

satellite, cable, and terrestrial channels and the storage of high-quality SD video

signals onto DVDs and more recently in the Digital Video Broadcasting-Handheld

(DVB-H) for mobile devices.

Although MPEG-2 coding standard has been extremely successful it has drawbacks

in the compression performance and bitstream rates that can be achieved (Kumar et

al. 2006). With the emergence of the H.264 standard, superior compression

performance and bitstream rates can be achieved, therefore the H.264 coding standard

is becoming more widely used expressly for HD video compression such Blu-Ray.

The H.264/AVC recommendation was first published in 2003. It builds on the

concepts of earlier standards such as MPEG-2 and MPEG-4 Visual and offers the

potential for better compression efficiency for compressed video and greater

flexibility in compressing, and transmitting and storing video. The H.264

Recommendation represents an evolution of the existing video coding standards and

was developed in response to the growing need for higher compression of video for

various applications such as videoconferencing, digital storage media, television

broadcasting, Internet streaming, and communication.

2.3 H.264 Encoding and Decoding

Common video compression techniques include motion compensation, prediction

methods, transformation, quantisation and entropy coding, which are the common

elements of a hybrid video encoder/decoder as discussed in Richardson (2004). The

ITU-T Recommendation H.264 introduces several new error resilience tools, as well

as several new features as Intra Prediction and Deblocking Filter and enhancements to

the standard hybrid video encoder/decoder as shown in Figure 1.

 6

Figure 1 – H.264 Encoder and Decoder (Richardson, 2004)

A colour image is usually sampled in RGB colour space, where the additive primary

colours of Red, Green, and Blue are combined in various intensities to for the image.

The intensities of the Red, Green, and Blue components are represented individually

as an 8 bit number ranging from 0 (minimum intensity) to 255 (maximum intensity).

Therefore if all three intensities are set to 0 then white is represented, and

consequently if all are set to 255, black is represented. As can be seen the overhead

in amount data bits required to represent the colour space in RGB form for each

image would be extremely large.

As human visual perception is more sensitive to the luminance of the image than the

colour, it is therefore possible to represent the image more efficiently by separating

the luminance and colour information. This is known as the YCbCr or YUV colour

space, where Y represents the luminance and Cb and Cr represents the deference

between the colour intensities.

 7

Figure 2 shows three of the four sampling patterns used by the H.264

recommendation, the forth 4:0:0 or monochrome is only represented by the Y

samples. The main sampling used is 4:2:0 as it is widely used in video conferencing,

digital television, and digital versatile disk (DVD) storage due to it requiring one

quarter the number of colour samples to Y samples compared to 4:4:4 or RGB video.

Figure 2 – YUV Sampling Patterns (Richardson, 2004)

The coding of picture in the spatial domain is performed by partitioning a picture into

slices. A slice is a sequence of macroblocks, or, when macroblock-adaptive

frame/field decoding is in use, a sequence of macroblock pairs. Each macroblock is

comprised of one 16x16 luma array and, when the chroma sampling format is not

equal to 4:0:0 and parameter separate_colour_plane_flag is equal to 0, two

corresponding chroma sample arrays. When separate_colour_plane_flag

is equal to 1, each macroblock is comprised of one 16x16 luma or chroma sample

array.

 8

When macroblock-adaptive frame/field decoding is not in use, each macroblock

represents a spatial rectangular region of the picture

2.4 Profiles

The H.264/AVC and H.264/SVC recommendation defines a series of profiles that

place restrictions on the encoded bitstream. The restrictions placed on the encoded

bitstreams are required so that the capabilities needed to decode these bitstreams shall

be supported by all decoders conforming to that profile. Encoders are not required to

make use of any particular subset of features supported in a profile but are not

allowed to use any features not supported by that profile.

The supported profiles for H.264/AVC are referred to as the Baseline, Main,

Extended, and Fidelity Range Extensions (FRExt). The FRExt consists of total eight

related profiles known as High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10

Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles making a

total of eleven profiles overall. While the supported profiles for H.264/SVC is

referred to as the Scalable Baseline, Scalable High, and Scalable High Intra. The

Scalable Baseline and Scalable High are based on the H.264/AVC Baseline and High

profiles, but with more restrictions on the encoded bitstream.

Even though the constraints imposed by a given profile defines a bitstream syntax it

is still possible to require significant variation in the performance of encoders and

decoders depending upon the other factors such as the specified size of the decoded

pictures. As it is not practical to implement a decoder to handle all possible

variations of features used by an encoder for any given profile, additional constraints

on the bitstream are imposed by the use of “levels” that are specified within each

profile. These levels define constraints such as maximum frame size of a picture, bit

rates, macroblocks allowed. Therefore encoders are required to provide conforming

bitstreams consistent with their implemented profile and level, while decoders

conforming to a specific profile must be able to support all of its features.

 9

The H.264/AVC Main and FRExt profiles and the H.264/SVC High profiles are

mainly used for the compression of HD video for storage and/or transmission over

fixed wire networks and are not suitable for wireless networks.

Therefore the main focus will be on the H.264/AVC Baseline and Extended profiles

and the H.264/SVC Scalable Baseline profile all of which provide the following

video coding tools:

• I, P, B, SP, and SI Slices,

• Flexible Macroblock Ordering (FMO),

• Arbitrary Slice Ordering (ASO),

• Redundant Pictures,

• Context Adaptive Variable Length Coding (CAVLC),

• Context Adaptive Binary Arithmetic Coding (CABAC),

• NAL Units and Data Partitioning, and

• Parameter Sets.

2.5 Slices

A picture may be divided into slices, where a slice consists of given number of

macroblocks or macroblock pairs when using MBAFF that are ordered consecutively

in raster scanned order within a particular slice group. A picture consists of one

(FMO Disabled) up to seven slice groups consisting of a given number of

macroblocks or macroblock pairs that compose the picture scanned in the order

specified by the FMO technique used. A picture divided into three slices is shown in

Figure 3.

 10

Figure 3 – Slice Partitioning

Therefore although a slice contains macroblocks or macroblock pairs that are scanned

consecutively in raster order within a slice group, these macroblocks or macroblock

pairs are not necessary in raster order within the picture. The value of the encoder

parameter slice_mode is used to set the slice coding mode. By default

slice_mode is equal to zero, which specifies that each slice group consists of one

slice. Therefore a picture can be divided into one to seven slices depending if FMO is

being used or not. When slice_mode is equal to one, each slice consists of a fixed

number of macroblocks.

The number of bytes contained in each slice is specified by the encoder parameter

slice_argument. This parameter can be equal to one up to maximum number of

macroblocks contained in the picture. Therefore each slice group can now be divided

into a number of slices, though a slice cannot cross a slice group boundary. When

MABFF is in use, a macroblock pair is also not to cross a slice boundary.

When slice_mode is equal to two, each slice consists of a fixed number of bytes.

The number of bytes contained in each slice is specified by the encoder parameter

slice_argument. Therefore each slice group can now be divided into a number

of slices consisting of set number of bytes, though the bytes that comprise one

macroblock or macroblock pair when MABFF is in use, are not to cross a slice

boundary.

 11

Slices are self-contained in the sense that given the active sequence and picture

parameter sets, their syntax elements can be parsed from the bitstream and the values

of the samples in the area of the picture that the slice represents can be correctly

decoded without use of data from other slices provided that utilised reference pictures

are identical at encoder and decoder. Some information from other slices maybe

needed to apply the deblocking filter across slice boundaries. Slices are encoded as I,

P, B, Switching I (SI), or Switching P (SP) slices.

I Slice

A slice in which all macroblocks contained in the slice are coded using intra

prediction. If a block or macroblock is encoded in intra mode, a prediction block is

formed based on previously encoded and reconstructed macroblocks. Therefore all

prediction is based only on the macroblock within that picture. There is also a special

case of I slice called the Instantaneous Decoder Refresh (IDR) picture which clears

the contents of the reference picture buffer. The first picture in coded video sequence

is always an IDR picture, but the recommendation allows for additional IDR pictures

to be sent a given intervals.

P slice

A slice in which macroblocks contained in the slice can be coded using either intra or

inter prediction. Inter prediction creates a prediction model from one or more

previously encoded video frames. The model is formed by shifting samples in the

reference frame called motion compensated prediction. P slices support one motion

compensated signal per block.

B slice

A slice in which macroblocks contained in the slice can be coded using either intra or

inter prediction. B slices support two motion compensated signals per block.

 12

Additional to the above mentioned slice encoding techniques, H.264/AVC introduced

two additional slice types known as switching I slice (SI) and P slice (SP). The

discussion on these two slice types is beyond the scope of this paper, though further

investigation is warranted on their use for error recovery.

2.6 Flexible Macroblock Ordering

Flexible Macroblock Ordering (FMO) is one of the error resilience schemes used by

H.264 as part of the baseline, extended, and scalable baseline profiles. A picture can

be partitioned into regions known as slice groups which are subset of the macroblocks

within the picture or when Macroblock-Adaptive Frame/Field decoding (MABFF) is

in use, a sequence macroblock pairs. This partitioning of the picture’s macroblocks

into slice groups is specified by the macroblock to slice group map.

The encoder parameter num_slice_groups_minus1 + 1 specifies the number of

slice groups a picture is to be divided into. By default, FMO is turned off by the

parameter num_slice_groups_minus1 being set to zero. When FMO is off, a

picture consists of only one slice group with all macroblocks within the picture

scanned in raster order being part of this slice group.

To enable FMO, the encoder parameter num_slice_groups_minus1 is set to a

value representing the number of slice groups the picture is to be divided into. A

picture can be divided into two up to a maximum of eight slice groups, though there

are some limitations to the number of slice groups allowed depending on the FMO

technique chosen. The FMO technique is selected by the encoder parameter

slice_group_map_type, which specifies how the mapping of slice group map

units to slice groups is coded. The seven available slice group map types (0 through

6) which are shown in Figure 4.

 13

Figure 4 – FMO Techniques

From literature review the use of FMO has been the main focus of providing error

resilient H.264 encoded bitstreams with Ogunfunmi and Huang (2005) proposing a

novel 3D Macroblock to slice group Allocation Map (MBAmap) that uses the

dispersed FMO technique with three slice groups and then spread the macroblocks for

one picture across three frames to distribute burst errors. The drawback for this

technique is that the each picture requires three frames, thereby increasing the

bitstream complexity. Another method proposed by Hoa Chen et al. (2008) is to use

adaptive FMO technique selection to choose the best FMO technique based on the

picture contents and Rate Distortion Optimisation (RDO) to produce a bitstream the

supplies superior error resilience than using one technique alone of wireless networks.

The later technique proposed Hoa Chen et al. (2008) is worthy of further

investigation.

 14

2.7 Arbitrary Slice Ordering

Since each slice of a coded picture can be approximately decoded independently of

other slices of the picture. Depending on the profile in use, arbitrary slice ordering

may or may not be allowed. If arbitrary slice ordering is allowed, the slices and data

partitions of a coded picture may follow any decoding order relative to each other.

Arbitrary slice ordering (ASO) allows slices to be decoded in a different order than

their designated display order. Therefore ASO improves upon loss robustness and

delay reduction which is particularly important for real-time video streaming across

networks that have an out of order delivery of data.

2.8 Redundant Pictures

A redundant picture is an alternative representation of a coded slice, which may use

different quantization parameters, different reference pictures, different mode

decisions, and different motion vectors than those used in the encoding of the primary

slice. If the primary slice is received correctly, the redundant slice is discarded.

However, if the primary slice is received in error, the redundant slice can be decoded

in order to limit the distortion caused by the error in the primary bitstream. The use

of redundant pictures is limited to the baseline profile and the parameter

NumberReferenceFrames has to be equal to the number of pictures used in the

primary Group of Pictures (GOP) specified by the parameter PrimaryGOPLength.

2.9 Context Adaptive Variable Length Coding (CAVLC)

CAVLC is a reversible procedure for entropy coding that assigns shorter bit strings to

symbols expected to be more frequent and longer bit strings to symbols expected to

be less frequent. This is the method used to encode residual, zigzag ordered 4x4 (and

2x2) blocks of transform coefficients. CAVLC is designed to take advantage of

several characteristics of quantized 4x4 blocks.

 15

When the parameter entropy_coding_mode is set to 0, residual block data is

coded using a CAVLC scheme and other variable-length coded units are coded using

Exponential Golomb codes which are variable length codes with a regular

construction.

2.10 Context Adaptive Binary Arithmetic Coding (CABAC)

CABAC uses Binary Arithmetic Coding which means that only binary decisions (1 or

0) are encoded. A non-binary-valued symbol, such as a transform coefficient or

motion vector is converted into a binary code prior to arithmetic coding. This process

is similar to the process of converting a data symbol into a variable length code but

the binary code is further encoded by the arithmetic coder prior to transmission.

When entropy_coding_mode is set to 1, the CABAC arithmetic coding system

is used to encode and decode H.264 syntax elements. CABAC achieves good

compression performance through selecting probability models for each syntax

element according to the element’s context then adapting probability estimates based

on local statistics, and then using arithmetic coding.

2.11 NAL Units and Data Partitioning

2.11.1 Network Abstraction Layer (NAL)

The bitstream can be in one of two formats, either the NAL unit (NALU) stream

format or the byte stream format – as specified in Annex B of the recommendation.

The NAL unit stream consists of a sequence of syntax structures called NAL units

which are sequenced in decoding order with constraints imposed on the decoding

order and contents of the NAL units in the NAL unit stream.

 16

The byte stream format can be constructed from the NALU stream format by ordering

the NAL units in decoding order and prefixing each NAL unit with a start code prefix

and zero or more zero-valued bytes to form a stream of bytes. The NAL unit stream

format can be extracted from the byte stream format by searching for the location of

the unique start code prefix pattern within this stream of bytes.

2.11.2 Data Partitioning

Normally each encoded slice is put into exactly one NAL unit, but when using data

partitioning, the coded data for a single slice is split up into three partitions, and each

partition is put in a separate NAL unit. The first partition A contains the slice header,

macroblock types, quantization parameters, prediction modes, and motion vectors.

The second partition B contains residual information of intra-coded macroblocks and

the final partition C contains residual information of inter-coded macroblocks.

Data partitioning allow the decoder to be able to use information from correctly

received partitions when one of the partitions is lost. Stockhammer and Bystrom (2004)

conducted research in the use of data partitioning in mobile channels which showed

that percentage of lost frames was lowered and probability of decoding poor quality

video is reduced.

2.12 Parameter Sets

In the H.264 recommendation the Video Coding Layer (VCL) was separated from the

NAL. NAL units are classified into VCL and non-VCL NAL units. The VCL NAL

units contain the data that represents the values of the samples in the video pictures,

and the non-VCL NAL units contain any associated additional information such as

parameter sets, which contains important header data which is expected to rarely

change and offers the decoding of a large number of VCL NAL units. There are two

types of parameter sets:

 17

• sequence parameter sets, which apply to a series of consecutive coded

video pictures called a coded video sequence

• picture parameter sets, which apply to the decoding of one or more

individual pictures within a coded video

In previous coding standards, if a few key bits of information such as sequence

header or picture header information were lost due to errors, this caused the entire

bitstream to be corrupted. This loss of data had a severe negative impact on the

decoding process. If the parameter gets corrupted the same effect will be observed,

but because it is separated from the main picture information it can be protected

against errors in a specialised manner.

 18

Chapter 3

Scalable Video Coding

3.1 Introduction

The ITU-T Recommendation H.264/AVC standard is now well established, but some

initiations exist in regards to video streaming. With the emergence of new

technologies in mobile communications, an ever increasing amount of video

streaming content is being used. To support the different screen resolutions and

network bandwidths, the video stream has to be encoded multiple times to provide

different bitstream rates and resolutions for each application.

The current revision 3 of the ITU-T Recommendation H.264 (2007) also contained

extensions to ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC to specify Annex G –

Scalable Video Coding (SVC). The SVC extension introduced three additional

profiles (Scalable Baseline, Scalable High, and Scalable High Intra). The SVC

extension provides scalability at a bitstream level to support functionalities such as bit

rate, format, and power adaptation, graceful degradation in lossy transmission

environments as well as lossless rewriting of quality-scalable SVC bit streams to

single-layer H.264/AVC bit streams.

With a moderate increase in decoder complexity relative to single-layer H.264/AVC,

these functionalities provide enhancements to transmission and storage applications.

SVC has achieved significant improvements in coding efficiency with an increased

degree of supported scalability relative to the scalable profiles of prior video coding

standards

H.264 Scalable Video Coding (H.264/SVC) introduces scalability features that enable

encoders to produce a single bitstream with that provides layers for multiple

 19

temporal, spatial, and SNR scalability, while maintain the high compression

efficiency.

3.2 SVC Overview

Most components of H.264/AVC are re-used in H.264/SVC which includes motion

compensated and intra prediction, transform and entropy coding, deblocking filter,

and NAL (Network Abstraction Layer) unit. The base layer of an SVC bitstream is

generally coded in compliance with H.264/AVC though new tools are added for

supporting temporal, spatial, and quality scalability also known as Signal to Noise

Ratio (SNR) scalability.

The JSCM SVC encoder supports two different coding modes, single-layer coding

mode, and scalable coding mode. Although single-layer bit-stream can also be

generated in the scalable coding mode, the single-layer coding mode provides more

flexibility but lacks the support the generating scalable bit-streams. When the

encoder is in single-layer mode, an AVC compatible bit-stream is generated that can

be decoded using the H.264/AVC decoder.

3.2.1. Single Layer Coding

To provide for single-layer coding mode, the configuration file contains the parameter

AVCMode, when set to 1 will only allow single layer coding, which is also referred to

as Multiview coding mode, since this mode was implemented to support multiview

coding. When the encoder is run in single-layer mode, an AVC compatible bit-

stream is generated that is compatible with the H.264/AVC decoder. The

configuration file parameters for the single-layer coding are subset of the ones

provide for H.264/AVC, but do not provide for the same flexibility. When the

single-layer coding mode used, the scalability tools can not be used, but the coding

structure is not restricted to dyadic prediction structures as used in the H.264/AVC.

To control the picture slice and coding modes, the sequence format string is used,

which is similar to the Hieratical Coding provide by H.264/AVC. The sequence

coding structure together with Memory Management Control Operation (MMCO)

 20

and Reference Picture List Reordering (RPLR) commands are specified in the

SequenceFormatString parameter in encoder configuration file.

3.2.2. Scalable Coding

H.264/SVC provides scalable video bitstreams that contains a non-scalable base layer

and one or more enhancement layers. An enhancement layer may enhance the

temporal resolution, the spatial resolution, or the quality of the video content

represented by the lower layers or part of those layers. Spatial and temporal

scalability describe cases in which layers within the bitstream represent the source

content with a reduced picture size (spatial) or frame rate (temporal) resolution

respectively. In quality scalability, a substream within the bitstream provides the

same spatial and temporal resolution as the global bitstream, but with a lower fidelity

or SNR.

The scalable layers can be aggregated to a single Real-time Transport Protocol (RTP)

stream, or transported independently. The concept of video coding layer (VCL) and

Network Abstraction Layer (NAL) is inherited from H.264/AVC. The VCL contains

the signal processing functionality, such as transform, quantization, motion-

compensated prediction, loop filter, and inter-layer prediction. A coded picture of a

base or enhancement layer consists of one or more slices, where the NAL

encapsulates each slice generated by the VCL into one or more Network Abstraction

Layer Units (NAL units).

3.3 Spatial Scalability

For spatial scalability, each layer within the bitstream represents one of the spatial

resolution formats supported by the scalable encoder. Each layer is identified by a

layer identifier, or dependency identifier. If the identifier is equal to 0, the bitstream

only contains the base H.264/AVC compatible layer and is limited in what is allowed.

If the scalable baseline profile is used, then the ProfileIdc parameter must equal

to 66, 77, or 88 for the base layer to maintain compatibility with the H.264/AVC

 21

bitstreams. Even though, there are limitations on encoder parameters can be

specified, e.g. FMO parameter slice_group_map_type can only be set to 2.

For temporal scalability, Schwatz et al. (2006) describe temporal scalability as being

achieved by an oversampled pyramid approach. The pictures of different spatial

layers are independently coded with layer specific motion parameters. However, in

order to improve the coding efficiency of the enhancement layers, additional inter-

layer prediction mechanisms have been introduced. These prediction mechanisms

have been made switchable so that an encoder can freely choose which base layer

information should be exploited for an efficient enhancement layer coding. Since the

incorporated inter-layer prediction concepts include techniques for motion parameter

and residual prediction, the temporal prediction structures of the spatial layers should

be temporally aligned for an efficient use of the inter-layer prediction. To archive

this all NAL units contain information from a given a time instant form an access unit

and thus have to be follow each other inside an SVC bit-stream.

3.4 Temporal Scalability

A bitstream is said to provide temporal scalability when the set of its access units can

be partitioned into a temporal base layer, and one or more temporal enhancement

layers. A video sequence can be temporal scaled by reducing the number frames

encoded thereby reducing the frame rate. To achieve this, temporal scalable

bitstreams are be generated by using hierarchical prediction structures, without any

changes with respect to H.264/AVC. Any picture can be marked as reference picture

and used for motion-compensated prediction of following pictures independent of the

corresponding slice coding types. These features allow the coding of picture

sequences with arbitrary temporal dependencies.

For temporal scalability, Schwatz et al. (2006) describe that the coding and display

order of pictures is completely decoupled, as in that any picture can be marked as a

reference picture and used for motion-compensated prediction of following pictures,

independent of the corresponding slice coding types. These features allow the coding

of picture sequences with arbitrary temporal dependencies.

 22

Temporal scalable bitstreams can be generated by using hierarchical prediction

structures as in H.264/AVC. These key pictures are coded in regular intervals by

using only previous key pictures as references. The pictures between two key pictures

are hierarchically predicted, so that that the sequence of key pictures represents the

coarsest supported temporal resolution. This can be refined by adding pictures of

following temporal prediction levels. With temporal scalability the hierarchical

prediction structures also provide an improved coding efficiency compared to

classical IBBP coding structure of H.254/AVC.

3.5 Quality Scalability

.

For quality scalability the picture can be encoded using either Course Gran Scalability

(CGS) or Fine Grain Scalability (FGS). CGS achieves scalability based on the spatial

scalability concepts, with the only difference in that up-sampling and scaling

operations typical of inter-layer prediction are avoided. However, CGS is not able to

provide satisfactory performance, especially when the bit rate ratio between

successive quality layers is small.

FGS can be is achieved by the use of progressive refinement slices. Each of these

slices represents a refinement of the residual signal, corresponding to a bisection of

the quantization step size

 23

Chapter 4

Mobile Digital Channel Modelling

4.2 Introduction

A typical digital communication system as shown in Figure 5 is described by Moon

(2005) consisting of a fairly general framework for a single digital communication

link. In this link, digital data from a source such as the H.264 encoder is encoded and

modulated for communication over a channel. At the other end of the channel, the

data is demodulated, decoded and sent to a sink. The elements in this link all have

mathematical descriptions and theorems from information theory which govern their

performance. This chapter will provide overview of channel modelling.

Figure 5 – Typical Digital Communication Chanel (Moon, 2005)

 24

4.3 Mobile Communication Channel

A mobile communication channel is effected by two types of fading, large scale and

small scale. This large scale fading manifests itself in the channel through attenuation

of the signal due to Path Loss and Shadowing. Path Loss is the mean loss of power as

a function of distance of the receiver from the transmitter, while Cavers (2003)

describes shadowing as the variation of the power about the path loss. Shadowing is

attributed to large obstacles such as hills and tall buildings between the transmitter

and receiver.

Sklar (1997) proposed that large scale fading due to path loss and shadowing can be

represented by:

() ()0 10
0

10 logp s
dL d L d n X
d σ

 = + + 
 

where d is the distance from the transmitter, d0 is the reference distance located in the

far field of the antenna, n is the path loss exponent, and Xσ denotes a zero-mean

Gaussian random variable with standard deviation σ. Typically the value of d0 is

taken to be 1 km for large cells, 100 m for microcells, and 1 m for indoor channels.

On the other hand, Sklar (1997) describes small scale fading as manifestations due to

time variance behaviour of the channel and/or time spreading of the signal. For

mobile communications, the channel is time variant because of motion between the

transmitter and receiver results in propagation path changes, with the rate of change

of this propagation accounting for the rate of change of the fading. This results in

either as fast or slow fading of the signal within the time domain.

While time spreading occurs due to individual signals being received spread in time

as the result of being scattered of surrounding objects around the receiver. This

results in either flat or frequency selective fading of the signal within the frequency

domain.

 25

If multiple reflective paths or scatters are large in number and there is no non fading

Line-of-Sight (LOS) component, the envelope of the received signal is statistically

described by a Rayleigh probability distribution function and is termed Rayleigh

fading as used in the Jakes fading channel model. If the received signal contains a

significant non fading LOS component the small scale fading envelope of the

received signal can be described by a Ricean probability distribution function and is

termed Ricean fading as used in the Rice fading channel model.

So the effect on the received signal is due to the:

• Mean path loss as a function of distance from the transmitter.

• Variations about the mean path loss (typically 6–10 dB), or large scale fading

such as shadowing.

• Rayleigh or small scale fading margin (typically 20–30 dB).

As can be seen, Rayleigh small scale fading is the most significant contribution to

loss of signal power. Rayleigh fading models of communication channels assume

that the magnitude of a signal that has passed through the channel will fade according

to a Rayleigh distribution produced by the radial component of the sum of two

uncorrelated random Gaussian variables. Therefore Rayleigh flat fading models have

been shown to be good for simulation on the effect of propagation of a signal through

a communications channel, such as that used by wireless devices.

4.4 Rayleigh Fading Channels

Clarke (1968) cited in Iskander (2008) describes a radio communication model for

flat fading in urban/suburban environments, which assumes a fixed transmitter with a

vertically polarized antenna and a mobile terminal. In Clarke’s model the electric

field incident (E) on the mobile antenna consists of N angular spread horizontal plane

waves which are called scatterers:

 26

() () ()
1 1

cos sin
N N

z n n n n

n n

E t E C E Cθ θ
= =

= −∑ ∑ ,

where 2n n nf tθ π ϕ= + are the phases of the received scatterers and ()cosn nf v λ α=

the Doppler shift of the n
th
 scatterer.

Therefore the maximum Doppler shift experienced can be expressed by nf v λ= .

This model has been shown to be Rayleigh-distributed, with probability density

function:

2

22
2

2
()

2

r

R

r
p r e σ

σ

−

= , r ≥ 0

Gans (1972) developed a power spectral theory for the mobile radio channel based on

Clarke’s model to show that the Doppler shifts of the carrier frequency in the

frequency domain on each scatterer over time is spectrum spread. This effect is

known as Doppler spreading of the signal and is indirectly proportional to the channel

coherence time.

4.4.1 Jake’s Model

To produce fading simulators designed to model both the Rayleigh fading scatterer

distribution and Doppler spreading, most are designed around the Sum-of-Sinusoids

(SoS) or Filtered Gaussian Noise (FGN) methods.

Jakes (1974) popularised a model for Rayleigh fading based on the SoS method. Let

the scatterers be uniformly distributed around a circle at angles αn with N scatterers

arriving at the moving receiver. Therefore the Doppler shift experienced by scatterer

n is:

()cosn m nω ω α=

 27

where the maximum Doppler shift 2m vω π= λ can be found from the carrier

frequency wavelength (λ), and the velocity of motion of the receiver (v). By using

arrival angles Nnn πα 2= there is a quadrennial symmetry in the magnitude of

the Doppler shift which can be modelled with N0 + 1 complex oscillators, where:

0

1
2

2

N

N

 − 
 =

 Thus Jake’s model is represented by:

() [] () [] ()
0

0

1

1
cos sin cos cos sin cos

2

N

M n n n n

n

T t K I t I tα α ω θ β β ω θ
=

 
= + + + + + 

 
∑

4.4.2 Dent’s Model

Dent (1993) showed that certain limitations exist with the deterministic nature of the

Jake’s model and the correlation of the waveforms. To remove these correlations

Dent proposed to remove the correlation between the waveforms by using Walsh-

Hadamard code words to provide quadrennial symmetry for all Doppler shifts. Using

arrival angles ()2 0 .5n n Nα π= − and Jake’s procedure, this leads to the

following model:

() [] ()
0

10

2
cos sin cos

N

n n n n

n

T t I t
N

β β ω θ
=

= + +∑

Iskander (2008) describes s(t) as a low pass input to a TDL channel, then the low pass

output y(t) is obtained as the convolution between s(t) and g(t,τ) so that:

 28

() () ()
1

N

i i

i

y t g t s t τ
=

= −∑ where () ()2 cosD ij f t

i ig t a e
π θ⋅= ⋅

4.5 Channel Characteristics

Radio wave propagation in the mobile environment can be described by multiple

paths which arise due to reflection and scattering in the mobile environment. The

physical model of a mobile channel is based on multiple reflections each with its own

amplitude, phase delay, and Doppler shift which can be summarised by:

() ()2 cos
() D ij f t

i i

i

y t a e s t
π θ τ= ⋅ ⋅ −∑

4.5.1 Doppler Spread

If a mobile receiver moves through a random field, then changes in signal level and

phase, with the rate of the changes proportional to the velocity of the mobile receiver.

This is referred to as flat fading, where the signal bandwidth is narrow so that small

delays in τi do not affect the signal, therefore s(t −τi) ≈ s(t). This represents the most

common mobile channel, the flat fading channel represented by:

() ()2 cos
() D ij f t

i

i

y t s t a e
π θ= ⋅ ⋅∑

 29

4.5.2 Delay Spread

If the Doppler spread is very small or the mobile receiver is stationary, it can be

considered that phases of the scatterers are constant. If the signal is an impulse in

time, the reflections spread the signal on reception causing delay spread. This

represents a mobile channel that has an impulse response that can be represented by a

Finite Impulse Response (FIR) filter:

()() ij

i i

i

y t a e s t
φ τ−= ⋅ ⋅ −∑

where φ is a random phase associated with the signal arrival.

4.5.3 Frequency Selective Fading

Previously it was shown that a mobile channel may experience Doppler spread or

Delay spread. Suppose the mobile receiver is moving, or even the other objects are

moving with respect to the receiver, then the scatterers are therefore constantly

varying in both frequency and power due to the time variance of the channel. This

channel is a time variant linear filter, where the response observed at given time t to

and impulse τ is:

() () ()2 cos

1

D i

N
j f t

i i

i

y t a e s t
π θ τ

=

= ⋅ −∑

This represents the well known tapped-delay line model as shown in Figure 6, where

each fading process gk(t) is complex Gaussian, with a Doppler power spectrum

modelled by Jake’s or Rice Rayleigh fading model and ts is the time delay for that

multipath signal reaching the mobile receiver.

 30

Figure 6 – Tapped Delay Line Model (Iskander, 2008)

 31

 Chapter 5

Simulation

5.1 Introduction

So far the background of H.264 video coding and channel modelling has been

covered in previous chapters, so the task now is to realise this to design a software

platform to perform testing. Once the model is implemented, the testing will mainly

iterative with the process illustrated in Figure 7.

Figure 7 – Test Flow Diagram

This chapter will discuss the modulation technique used as well as the channel model

implemented. As the main goal is creating errors on a channel, an overview of

Additive White Gaussian Noise (AGWN) will be covered. Following

implementation, different encode video sequences will be passed through the model

to test the performance of H.264 encoded bitstream with the variety of the error

resilience tools also tested.

 32

5.2 Channel Capacity

The channel capacity is defined by the maximum rate at which data can be

transmitted over a given communication channel bounded by its constraints.

Stallings (2005) highlighted that there are four concepts that relate to the channel

capacity:

• Data rate in bits per second (bps), at which data can be communicated.

• Bandwidth of the transmitted signal as constrained by the transmitter

and the nature of the transmission medium, expressed in cycles per

second, or Hertz.

• The average level of noise over the communications path, and

• The rate at which errors occur.

If the channel can be considered noise free, the limitation of the data rate is the

bandwidth of the signal. Nyquist states that if the rate of signal transmission is two

times the bandwidth (2B), then a signal with frequencies no greater than B is

sufficient to carry the signal rate. This assumption is based on a signal is represented

by two discrete levels 0 or 1 or one bit, though in reality though different modulation

techniques a signal can be represented by more than one bit. Therefore with multiple

bit signalling, the Nyquist Bandwidth formulation for channel capacity becomes:

MBC 2log2=

where C is the capacity of the channel in bits per second, B is the bandwidth of the

channel in Hertz (Hz), and M is the number of discrete signal elements.

Now considering the presence of noise can corrupt one or more bits, then the given

data rate will have effect on the error rate. As the data rate increases, bits become

shorter in time and more bits will be effected by the given noise pattern, increasing

the error rate.

 33

From this it can be assumed that for a given level of noise and by increasing the

signal strength, it would improve the ability to receive the correct data. The

reasoning for this is the signal to noise ratio (S/N) expressed in decibels as:

Noise
Signal

dB
N

S
10log10=

Therefore the signal-to-noise ratio sets the upper limit on the achievable data rate, and

therefore corresponding channel capacity as expressed by Shannon as:

()
N

SBC += 1log2

The channel capacity referred to by Shannon is for an error free channel. Though

Shannon proved that if the actual information rate on a channel is less than the error-

free capacity, then it is theoretically possible to use a suitable signal code to achieve

error free transmission through the channel.

5.3 Noise

A common impairment to the quality of a received signal is noise. Any received

signal will consist of the transmitted signal modified by various distortions introduced

as unwanted signals between the transmission of the signal and its reception.

Stallings (2005) says that noise can be divided into four categories:

• Thermal noise

• Intermodulation noise

• Crosstalk

• Impulse noise

 34

5.3.1 What is Eb/N0

There is a parameter related to signal-to-noise that is more convenient in determining

data rates and error rates and is the standard quality measure for digital

communication system performance (Stallings, 2005). This parameter is the ratio of

signal error per bit to noise power density per Hz, or Eb/N0. The ratio Eb/N0 is

important because the Bit Error Rate (BER) for digital data is a decreasing function of

this ratio. Therefore the performance in terms of BER versus Eb/No, also depends on

the way in which the data is encoded onto the signal. For a given signal the noise in

the channel is sufficient to alter the value of a bit, then for constant signal and noise

strength, an increase in data rate increases the error rate. The advantage of Eb/No

compared to S/R when determining the BER is that Eb/No does not depend on the

bandwidth of the channel.

5.4 Channel Model

Now that the channel impulse response has been defined as a Rayleigh flat fading

channel, a representation of the channel to be used for testing is shown in Figure 8.

Figure 8 – Typical Chanel Model

 35

5.4.1 Additive White Gaussian Noise (AWGN)

To simulate a mobile channel, the effects of multipath fading and noise on mobile

channel need to be determined. The simplest channel model is the Additive White

Gaussian Noise (AWGN) channel. In this channel, the desired signal is degraded by

thermal noise associated with the physical channel itself, as well as electronics at the

transmitter and receiver.

Also channels experience noise and the component w(t) is the Additive White

Gaussian Noise (AWGN) that is to be added to the transmitted signal to simulate the

addition of noise within the channel.

5.4.2 Rayleigh Fading Channel

As mentioned in chapter 4, a mobile channel can be represented by a variety of

models depending on the characteristics of the channel. Even though the TDL

channel model is the most widely accepted model for a 3G mobile channel, the

complexity of the simulation is beyond the scope of this paper. Thus it will be

considered that the bandwidth of the transmitted signal is narrow enough to consider

that s(t−τi) ≈ s(t) and can therefore be represented by a flat fading channel without a

LOS component.

Thus the Rayleigh flat fading model is considered a good simulation of the wireless

communication channel for the purpose of testing. The channel will be considered to

be in a non LOS urban environment as the purpose is to research the error resilience

of the H.264 encoded bitstream. As there is no LOS component, the Doppler spread

of the scatterers can be represented by the Jakes model.

 36

5.4.3 Modulation

There are several modulation techniques chose from including Frequency Shift

Keying (FSK), Minimum Shift Keying (MSK) and Phase Shift Keying (PSK). The

modulation technique chosen was four level PSK known as Quadrature Phase Shift

Keying (QPSK), which uses phases separated by multiples of π/2(90°). This

produces two bits for every signal element;

 37

Chapter 6

Results

5.5 Introduction

There are no definitive guides regarding the effective use of the error resilience tools

used by the JM and JSVM reference software, so the purpose of the chapter is to see

if these tools have an effect on the performance of the decoder on bitstreams that have

been effect by channel errors.

The use of these tools hand an effect on the encoded file size, in that in some cases

the bitstream would encounter more errors than a bitstream encoded with the default

parameters. Some comparison of the using the JM and JSVM reference software was

performed to make a comparison of their ability to decode bitstreams when

containing errors.

The testing gave some interesting results even though the JM and JSVM reference

decoder software has habit of crashing when encountering a bitstream that had

enough errors to corrupt important sections of the bitstream.

5.6 JM Performance

The JM 15.1 reference software was tested using the extended profile using the RTP

bitstream with one partition. The sequence was coded with only the first picture

encoded as an I slice and the remainder in PBPB slice order with P slices being used

as reference pictures. The akiyo_qcif sequence was used which has a resolution of

177 × 144 pixels that is broken up into 99 macroblocks. To keep coding times to

minimum, the sequence encoded consisted of a 100 frames.

 38

The encoding strategies used were compared against the default configuration which

is one slice per picture and no error resilience. For the remainder of the tests, each

frame was encoded as two slices per picture consisting of a maximum of 50

macroblocks, and then using the dispersed FMO technique over three slice groups

and finally Data Partitioning using three partitions. The results of the first series of

tests are shown in Figure 9.

2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

JM - Default

JM - 2 Slices

JM - 2 Slices, FMO

JM - 2 Slices, FMO, DP

Figure 9 – Test Results JM Bitstream at Eb/N0 of 3 to 15 dB, Tests 1 through 4

As can be seen the default configuration performed the best, achieving a BER of 7.5

× 10−5
 at Eb/N0 of 8.45 dB although the bitstream could not be decoded even with the

small amount of errors present, it was not until the BER reached zero at 9.55 dB that

sequence could be decoded. The use of two slices per picture increased the encoded

bit rate from 26.05 kbit/s to 27.88 kbit/s, thus increasing the bit error probability.

This resulted in a BER of 7.8 × 10−6
 at 9.55 dB, but the sequence was able to be

decoded.

 39

Using FMO increased the BER to 1.9 × 10−5
 at Eb/N0 of 9.55 dB due to the encoded

bit rate jumping to 31.56 kbit/s but the sequence was able to be decoded. The last test

used DP which resulted in the increasing of the bit rate to 32.05 kbit/s, resulting in a

BER of 5.5 × 10−5
 at 9.55 dB. Even with the higher bit rate, the sequence again was

able to be decoded.

The next series of tests performed with the JM Reference software was use two slices

per picture each using dispersed FMO in three slice groups. For the first test the JM

software encoder was modified to allow CABAC in the extended profile to compare

it with the default CAVLC. For the next test macroblock line intra update was used

to perform extra intra macroblock updates for one Group of Blocks (GOB) for every

frame. This was again used the test, but resend picture parameter set flag was set to

resend the PPS before every primary coded picture. The last test was enable rate

control using the default rate control parameters. The results for these series of tests

are shown in Figure 10.

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

JM - 2 Slices, FMO, CABAC

JM - 2 Slices, FMO, Mb Update

JM - 2 Slices, FMO, Mb Update, ResendPPS

JM - 2 Slices, FMO, Mb Update, ResendPPS, RC

Figure 10 – Test Results JM Bitstream at Eb/N0 of 3 to 15 dB, Tests 5 through 8

 40

When CABAC was used the encoded stream had a bit rate of 30.45 kbit/s while

achieving a BER of 2.5 × 10−5
 at Eb/N0 of 9.55 dB. The decoding of this sequence

was possible but there were notable error concealments within the picture compared

to the reference sequence as shown in Figure 11.

Figure 11 – Akiyo_qcif at Eb/N0 9.55 dB, using CABAC

When extra intra macroblock updates was enabled, the encoded sequence bit rate

significantly increased to 71.79 kbit/s, thereby resulting in a BER of 2 × 10−5
 at 9.55

dB. Even with the high BER, the sequence was decoded, but again there were

notable error corrections within the picture compared to the reference sequence as

shown in Figure 12.

Figure 12 – Akiyo_qcif at Eb/N0 9.55 dB, using extra MB Intra Updates

 41

When using the resend PPS option, the bit rate achieved for the encoded bitstream

was 72.74 kbit/s resulting in a BER of 1.6 × 10−5
 at 9.55 dB, though the sequence was

able to be decoded. Finally for JM, the rate control option was used, with the

encoded bitstream having a bit rate of 49.36 kbit/s, which was close to the target bit

rate of 45.02 kbit/s. This resulted in a BER of 8.6 × 10−5
 at 8.45 dB and zero at 9.55

dB. For this test the sequence was decoded and while error concealment was visible

as shown in Figure 13, the decode sequence mirrored the reference sequence with the

errors observed partly due to the rate control employed by the encoder. This by far

produced the best results for the JM codec when used in an error prone environment.

Figure 13 – Akiyo_qcif at Eb/N0 9.55 dB, using Rate Control

5.7 JSVM Performance

To provide for comparative results the JSVM 9.18 reference software was tested.

The JSVM reference software was tested using the extended profile for the base layer

and scalable baseline profile for the scalable layers. The sequence was coded as

specified in Table 1 for the single layer mode.

 42

Reference frames: 4

Format string: A0P4B1B3b2R-0-0-0R-1+0-2

Coding Types: IDR B B B P IDR B B B P …

Stored as reference: 1 1 0 1 1 1 1 0 1 1 …

Coding Order: 0 2 4 3 1 5 7 9 8 6 …

Table 1 – JSVM Single Layer Mode Coding Sequence

For scalable layer mode the, each temporal layer was encoded with the default slice

order. The akiyo_qcif sequence was again used, with a difference in that two

sequences were used. The akiyo_qcif sequence at a frame of 30 Hz was used for the

single layer mode and for all layers L > 0 for the scalable layer mode, while an

akiyo_qcif sequence at a frame of 15 Hz was used for the scalable layer mode for the

base layer. Again to minimize coding times, the sequence encoded consisted of a 100

frames.

For the JSVM the first two tests where performed in single layer mode to produce

AVC compatible bitstreams. The difference between the two was the symbol mode

used being CAVLC for the first test and CABAC for the second. The next four tests

were performed in scalable layer mode, the first using the default SVC coding

parameters. For the remainder of the tests, each frame in scalable layers was encoded

as two slices per picture consisting of a maximum of 50 macroblocks, and then using

the foreground with leftover FMO technique over two slice groups. The FMO test

sequences were encoded using CAVLC and CABAC symbol modes. The base layer

does not support B slices, FMO, and/or CABAC when encoding, therefore these tests

are only evaluating the scalable layers for error resilience. The results of the series of

tests are shown in Figure 14.

 43

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

AVC - CAVLC

AVC - CABAC

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 14 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB, Tests 1 through 6

To perform a comparable comparison the bitstream extracted for the scalable layer

mode test was DTQ(1,4,0) or Layer 8, the highest layer in the bit stream. For the first

two tests the average bit rate was 117.5808 kbit/s and 106.9968 kbit/s achieving a

BER of 2 × 10−5
 and 1.5 × 10−5

 respectably at 9.55 dB. Even though this was the

case, only a few frames could be extracted before the bitstream collapsed. But from

this the CABAC encoded sequence provided an improved bit rate.

The scalable layer mode encoded bitstream using default parameters, with the bit

rates for each layer shown in Table 2. The BER achieved for this test was 2.1 × 10−5

at 9.55 dB, though no sequence could be extracted until the BER reached zero.

 44

Layer Bitrate (kbit/s) Minimum Bitrate (kbit/s)

176x144 @ 1.8750 21.2186 21.2186

176x144 @ 3.7500 23.8108 23.8108

176x144 @ 7.5000 25.8552 25.8552

176x144 @ 15.0000 27.3528 27.3528

176x144 @ 1.8750 82.0586 82.0586

176x144 @ 3.7500 93.4362 93.4362

176x144 @ 7.5000 102.3096 102.3096

176x144 @ 15.0000 109.0368 109.0368

176x144 @ 30.0000 114.4320 114.4320

Table 2 – JSVM Layer Bitrates for Default Coding

The scalable layer mode encoded bitstream using two slices per picture, with the bit

rates for each layer shown in Table 3. The BER achieved for this test was 1.6 × 10−5

at 9.55 dB, though no sequence could be extracted until the BER reached zero.

Layer Bitrate (kbit/s) Minimum Bitrate (kbit/s)

176x144 @ 1.8750 21.8314 21.8314

176x144 @ 3.7500 24.6600 24.6600

176x144 @ 7.5000 27.1176 27.1176

176x144 @ 15.0000 29.3880 29.3880

176x144 @ 1.8750 83.4921 83.4921

176x144 @ 3.7500 95.9862 95.9862

176x144 @ 7.5000 106.6536 106.6536

176x144 @ 15.0000 116.7480 116.7480

176x144 @ 30.0000 126.0144 126.0144

Table 3 – JSVM Layer Bitrates for Multiple Slices

 45

The scalable layer mode encoded bitstream using two slices per picture using FMO

and CAVLC encoding, with the bit rates for each layer shown in Table 4. The BER

achieved for this test was 1.08 × 10−5
 at 9.55 dB, though no sequence could be

extracted until the BER reached zero.

Layer Bitrate (kbit/s) Minimum Bitrate (kbit/s)

176x144 @ 1.8750 21.8314 21.8314

176x144 @ 3.7500 24.6600 24.6600

176x144 @ 7.5000 27.1152 27.1152

176x144 @ 15.0000 29.3712 29.3712

176x144 @ 1.8750 84.1821 84.1821

176x144 @ 3.7500 97.3062 97.3062

176x144 @ 7.5000 109.2288 109.2288

176x144 @ 15.0000 121.8648 121.8648

176x144 @ 30.0000 135.1392 135.1392

Table 4 – JSVM Layer Bitrates for Multiple Slices, FMO, & CAVLC

The scalable layer mode encoded bitstream using two slices per picture using FMO

and CABAC encoding, with the bit rates for each layer shown in Table 5. The BER

achieved for this test was 1.1 × 10−5
 at 9.55 dB, though this time the sequence could

be extracted which no notable difference between the reference sequence and the

extract sequence.

 46

Layer Bitrate (kbit/s) Minimum Bitrate (kbit/s)

176x144 @ 1.8750 21.8314 21.8314

176x144 @ 3.7500 24.6600 24.6600

176x144 @ 7.5000 27.1152 27.1152

176x144 @ 15.0000 29.3784 29.3712

176x144 @ 1.8750 77.7171 84.1821

176x144 @ 3.7500 90.2723 97.3062

176x144 @ 7.5000 102.0144 109.2288

176x144 @ 15.0000 114.9168 121.8648

176x144 @ 30.0000 128.6184 135.1392

Table 5 – JSVM Layer Bitrates for Multiple Slices, FMO, & CABAC

The next series of tests performed was to extract the layers from the bitstream and test

them individually over the error prone channel. From this, the scalable layers that

provided the best results in decoding the sequence was layer DTQ(1,4,0) as shown in

Figure 15 for encoded bitstreams using multiple slices per picture.

2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 15 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,4.0)

 47

For the base layer, the best performer was layer DTQ(0,2,0) as shown in Figure 16,

with all four test bitstreams performing equally well, though the perceived quality of

the picture is reduced due to the spatial and temporal reduction. The remainder of the

layer figures are contained in Appendix C.

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 16 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,2.0)

 48

Chapter 7

Conclusions

This research project investigated the error resilience of the International

Telecommunication Union’s (ITU) H.264/AVC Recommendation and Annex G

Scalable Video Coding (SVC) over error prone communications channels. The aim

was to test the encoded bitstreams by subjecting them to minor, mild, and severe

channel errors.

The minor channel errors where produced by passing the bitstream though AWGN

channel. The resultant Bit Error Rates (BER) of 10
−4
 experienced were consistent

with those shown in Stallings (2005) for an AWGN channel for Eb/N0 value of 8 to 9

dB. Once the errors were introduced, the JM 15.1 and JSVM 9.18 error resilient tools

were employed to determine the error resilience of the encoded to these errors. The

conclusion was that these tools performed well for mid channel errors though more

investigation is required for some of the less known tools for Macroblock protection

and Rate Control.

To determine if channel coding could reduce these errors, a QPSK soft demodulator

was used with Turbo codes. From this the BER was reduced to zero for the AWGN

channel, resulting in complete bitstreams being decoded even after being passed

through a channel with an Eb/N0 value of 3 dB.

The mild and severe channels errors where produced by using Rayleigh flat fading

with the Jakes model. From this the resultant BER experienced was similar to those

again shown in Stallings (2005). From results a bit error probability of approximately

50% was experienced, which could not be handled by the error resilient tools

specified in the H.264 Recommendation.

 49

Again some channel coding was attempted but the results proved inconclusive as the

bitstream still had significantly high BER. This warrants further research in

implementing Forward Error Correcting codes within the encoder and decoder to

protect the vital parts of the bitstream such as the Sequence Parameter Sets, Picture

Parameter Sets, and Slice headers.

A another significant advantage would be to further investigate channel correction

coding such as LPDC and Turbo coding to a greater extent to see if a H.264 encoded

bitstream could be protected and then recovered from a channel that produces severe

channel errors.

Therefore there is a considerable amount of future work that can be conducted. With

the use channel encoders and decoders, the processing speed of the decoding process

becomes an issue. The encoder and decoder speed could be improved by

implementing a multi thread encoder and decoder through the use of dynamic link

libraries instead of the static libraries currently used by the JSVM reference software.

 50

Bibliography

Biglieri, E 2005, Coding for Wireless Channels, Springer Science+Business Media,

Inc.

Cavers, J.K 2002, Mobile Channel Characteristics, Kluwer Academic Publishers

Dent, P Bottomley, G.E Croft, T 1993, Jakes fading model revisited, Electronics

Letters, vol. 29, issue. 24, pp. 1162 – 1163, viewed 26 Apr 09, IEEE Xplore, item

10.1049/el:19930777

Gans, M.J 1972, A power-spectral theory of propagation in the mobile-radio

environment, Vehicular Technology, IEEE Transactions on, vol. , issue 1, pp. 27 –

38, viewed 20 Apr 09

Hao Chen, Zhen Han, Ruimin Hu & Ruolin Ruan 2008, ‘Adaptive FMO selection

strategy for error resilient H.264 coding’, International Conference on Audio,

Language and Image Processing, ICALIP 2008, pp. 868-872, viewed 20 Jan 09,

IEEE Xplore, item 10.1109/ICALIP.2008.4589969

International Telecommunication Union 2007, Advanced video coding for generic

audiovisual services, ITU-T Recommendation H.264, International

Telecommunication Union, Geneva, Switzerland

Iskander, C (Hi-Tek Multisystems) 2008, A MATLAB
®
 based Object-Oriented

Approach to Multipath Fading Channel Simulation, MATLAB
®
 Central, viewed 09

Apr 09 <http://www.mathworks.com/matlabcentral/fileexchange/18869>

Jakes, W.C (ed.) 1974, Microwave Mobile Communications, John Wiley & Sons

Kumar, S, Liyang Xu, Mandal & MK, Panchanathan, S 2006, ‘Error Resiliency

Schemes in H.264/AVC Standard’, Journal of Visual Communication and Image

Representation, vol. 17, issue 2, pp. 425-450

 51

Lin Liu, Sanyuan Zhang, Xiuzi Ye & Yin Zhang 2005, Error Resilience Schemes of

H.264/AVC for 3G Conversational Video Services’, Proceedings of the Fifth

International Conference on Computer and Information Technology 2005 (CIT’05’),

pp. 657-661, viewed 31 Oct 08, IEEE Xplore, item 10.1109/CIT.2005.113

Moon, TK 2005, Error Correction Coding Mathematical Methods and Algorithms,

John Wiley & Sons, New Jersey.

Ogunfunmi, T & Huang, WC 2005, ‘A flexible macroblock ordering with 3D

MBAMAP for H.264/AVC’, IEEE International Symposium on Circuits and Systems,

2005, ISCAS 2005, vol. 4, pp. 3475- 3478, viewed 23 Dec 08, IEEE Xplore, item

10.1109/ISCAS.2005.1465377

Richardson, IEG 2004, H.264 and MPEG-4 Video Compression: Video Coding for

Next-generation Multimedia, John Wiley & Sons.

Schwarz, H, Marpe, D & Wiegand, T 2006, Overview of the Scalable H.264/MPEG4-

AVC Extension, IEEE International Conference on Image Processing, 2006, pp. 161-

164, viewed 18 Mar 09, IEEE Xplore, item 10.1109/ICIP.2006.312374

Spinsante, S, Gambi, E & Falcone, D 2007, Scalable extension of the H.264 video

codec: Overview and performance evaluation, 15th International Conference on

Software, Telecommunications and Computer Networks, 2007. SoftCOM 2007, pp. 1-

5, viewed 18 Mar 09, IEEE Xplore, item 10.1109/SOFTCOM.2007.4446126

Stallings, W 2005, Wireless Communications and Networks, Pearson/Prentice Hall

Stockhammer, T & Bystrom, M 2004, ‘H.264/AVC data partitioning for mobile video

communication’, 2004 International Conference on Image Processing, ICIP ‘04’,

vol. 1, pp. 545-548, viewed 14 Jan 09, IEEE Xplore, item

10.1109/ICIP.2004.1418812

 52

Sklar, B 1997, Rayleigh fading channels in mobile digital communication systems,

Part I Characterization, Communications Magazine, IEEE, Vol. 35, No. 7, pp. 90-

100, viewed 15 Apr 09

Sullivan, G & Wiegand, T 2004, ‘Video Compression - From Concepts to the

H.264/AVC Standard’, Proceedings of the IEEE, vol. 93, no. 1, pp. 18-31, viewed 18

Feb 2009, IEEE Xplore, item ISSN: 0018-9219

Tourapis, AM, Sullivan, G, Sühring, K, Oelbaum, T & Leontaris, A 2009,

H.264/MPEG-4 AVC Reference Software Manual (JVT-AD010), Joint Video Team

(JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T

SG16 Q.6)

Unknown 2008, JSVM Software Manual (JSVM 9.16), Joint Video Team (JVT) of

ISO/IEC MPEG & ITU-T VCEG

Wiegand, T, Sullivan, GJ, Bjøntegaard, G & Luthra, A 2003, ‘Overview of the

H.264/AVC Video Coding Standard’, IEEE Transactions on Circuits and Systems for

Video Technology, vol. 13, no. 7, pp. 560-576, viewed 15 Jan 09, IEEE Xplore, item

ISSN: 1051-8215

 53

Appendix A – Project Specification

 54

Appendix B – Source Code

H.264.cpp

/***
 * H.264.cpp : Defines the entry point for the console application.
 *
 *
 * Author: Timothy Wise (0050055729)
 * Date: 10 Jul 2009
 * ---
 *
 * This application simulates a communication channel
 * A file is read in and converted to binary bits and
 * then sent over the channel.
 *
 * ---
 */

#include "stdafx.h"
#include "ChannelModel.h"

// it++ communication libaray
#include <itpp/itcomm.h>

using namespace itpp;

// These lines are needed for use of stdio
using std::cin;
using std::cout;
using std::endl;
using std::ofstream;

/**********************************
 * The main function entry point *
 **********************************/

int _tmain(int argc, _TCHAR* argv[])
{
 uint8_t data; // A byte
 wchar_t *temp;
 char name[128]; // Name of input file
 int index = 0;
 bvec bvTemp, bvData; // Binary vectors

 // Read in H.264 bitstream file from command line
 if (argc >= 2)
 {
 temp = argv[1];
 }
 else
 {
 cout << "Useage: h.264 <name> " << endl;
 cout << " <name> The input h.264 bitstream file";
 cout << endl;

 55

 exit(0);
 }

 // Convert from a wchar_t pointer to a char array
 size_t origsize = wcslen(temp) + 1;
 size_t convertedChars = 0;
 wcstombs_s(&convertedChars, name, origsize, temp, _TRUNCATE);

 // Open binary input stream
 bifstream inFile(name);

 // Size of the input file in bytes
 int size = inFile.length();

 /***
 * Read in the file byte by byte and convert *
 * to a binary string *
 ***/

 while (index < size)
 {
 inFile >> data; // Read in a byte

 bvTemp = dec2bin(8, data); // Convert to bits

 // Store in binary vector
 bvData = concat(bvData, bvTemp);

 index++;
 }

 // Close the input file
 inFile.close();

 // Create the channel model
 ChannelModel *Channel = new ChannelModel();

 //Channel->InitSpreadingCodes(4,4);

 // Simulate for 12 Eb/N0 values.
 vec EbN0dB = linspace(3, 15, 12);
 Channel->SetChannelNoise(EbN0dB);

 // Transmit the bitstream over the channel
 Channel->Transmit(bvData, AWGNChannel, name);

 // Print out the BER results
 Channel->getResults();

 delete Channel;
 return 0;
}

 56

ChannelModel.h

/***
 * ChannelModel.h
 *
 *
 * Author: Timothy Wise (0050055729)
 * Date: 10 Aug 2009
 * ---
 *
 * The header file for the channel model class. his class
 * implements different channel models
 *
 * ---
 */

#ifndef ChanMod_H
#define ChanMod_H

#pragma once

#include <itpp/itcomm.h>
#include "JakesChannel.h"
#include "ChannelCoder.h"

using namespace itpp;

// These lines are needed for use of:
using std::cout;
using std::endl;
using std::ofstream;

// The channel models to support
enum Channels
{
 FIRChannel, // Finite Impulse Response
 TDLChannel, // Tapped Delay Line
 AWGNChannel, // Adative White Guassian Noise
 RICEChannel, // Rice Fading Channel
 JAKESChannel // Jakes Fading Channel
};

/*
 * The ChannelModel class
 */
class ChannelModel
{
private:
 bool spread; // Specify if spreading is to be used

 vec N0; // The AWGN noise variance
 vec EbN0dB; // The Eb/No values to use

 vec ber; // The Bit-Error-Rate
 vec err; // The number error bits received
 vec good; // The number of good bits received
 vec total; // The total bits recieved

 57

 BERC berc; // The bit error counter

 // The multicode spreading of the signal
 Multicode_Spread_2d mcSpread;

 // The channels
 TDL_Channel tdlChannel; // TDL Channel
 AWGN_Channel awgnChannel; // AWGN Channel
 JakesChannel jakesChannel; // Jakes Fading Channel
 ChannelCoder channelCoder; // The channel coder

public:
 ChannelModel(void); // Default Constructor
 ~ChannelModel(void); // Defaulst Destructor

 void getResults();
 void SetChannelNoise(vec noise);

 void InitJakesChannel(double normDoppler);
 void InitSpreadingCodes(int factor, int numCodes);
 void InitTDLChannel(const CHANNEL_PROFILE profile, double chip,
double normDoppler);

 int Transmit(bvec uncodedBits, const Channels channel, char*
name);
};

#endif // #ifndef ChanMod_H

 58

ChannelModel.cpp

/***
 * ChannelModel.cpp
 *
 *
 * Author: Timothy Wise (0050055729)
 * Date: 05 Aug 2009
 *--
 *
 * This class is used to model the channel
 * Some channels implemented are the AWGN, Jakes, and TDL
 * Expansion is provided to model Rice and FIR channels
 *
 *--
 */

#include "StdAfx.h"
#include "ChannelModel.h"

// Default constructor
ChannelModel::ChannelModel(void)
{
 spread = false; // Don't perform spreading unless init

 vec noise("0");

 SetChannelNoise(noise); // Set defualt AWGN noise to 0.0
}

// Default destructor
ChannelModel::~ChannelModel(void)
{

}

/***
 * ChannelModel::SetChannelNoise(vec noise)
 *
 * This method sets the channel Eb/N0 noise values
 *
 * Input:
 * vec noise - The vector containing the noise values
 *
 */

void ChannelModel::SetChannelNoise(vec noise)
{
 double Ec = 1.0; //The transmitted energy per QPSK symbol is 1.
 double Es = Ec / 2.0; //The transmitted energy per bit is 0.5.
 double k = 1.0/std::log(4.0);

 EbN0dB = noise; //Simulate for 10 Eb/N0 values from 0 to 9 dB.

 vec EbN0 = pow(10, EbN0dB/10); //Calculate Eb/N0 in a linear
scale instead of dB.

 59

 N0 = Es * pow(EbN0, -1.0); //N0 is the variance of the
(complex valued) noise.

 // Set up the bit error counters for the number of
 // noise figures used

 ber.set_size(EbN0dB.size(), false); // Bit error counter
 ber.clear();

 err.set_size(EbN0dB.size(), false); // Number of bits in
error counter
 err.clear();

 good.set_size(EbN0dB.size(), false); // Number of good bits
counter
 good.clear();

 total.set_size(EbN0dB.size(), false); // Total number of bit
counter
 total.clear();
}

/**
 * ChannelModel::InitSpreadingCodes(int factor, int numCodes)
 *
 * This method initialises the CDMA spreading codes
 *
 * Inputs:
 * int factor - The code spreading factor
 * int numCodes - The number of codes to use
 *
 */

void ChannelModel::InitSpreadingCodes(int factor, int numCodes)
{
 spread = true; // Perform spreading

 //Initialize the spreading:
 int SF = factor; // The spreading factor is 4
 int Ncode = numCodes; // Number of codes in the
multi-code spread
 smat spreadCodesI, spreadCodesQ; // The I and Q spreading
codes

 // Set the spreading codes:
 spreadCodesI.set_size(Ncode, SF, false);
 spreadCodesQ.set_size(Ncode, SF, false);

 // Calculate the spreading codes
 smat allCodes = to_smat(hadamard(SF));

 for (int sc = 0; sc < Ncode; sc++)
 {
 spreadCodesI.set_row(sc, allCodes.get_row(sc));
 spreadCodesQ.set_row(sc, allCodes.get_row(sc));
 }
 mcSpread.set_codes(to_mat(spreadCodesI), to_mat(spreadCodesQ));
}

/***
 * ChannelModel::InitJakesChannel(double normDoppler)

 60

 *
 * This method sets the Jakes channel notmalised Doppler
 *
 * Input:
 * double normDoppler - The normalised Doppler fd*T
 *
 */

void ChannelModel::InitJakesChannel(double normDoppler)
{
 jakesChannel.setNormDoppler(normDoppler);
}

/***
 * ChannelModel::InitTDLChannel(const CHANNEL_PROFILE profile,
double chip, double normDoppler)
 *
 * This method initalises the TDL Channel model
 *
 * Input:
 * const CHANNEL_PROFILE profile - The COST259 channel profile
 * double chip - The transmitter chip rate
 * double normDoppler - The normalised Doppler fd*T
 *
 */

void ChannelModel::InitTDLChannel(const CHANNEL_PROFILE profile,
double chip, double normDoppler)
{
 // set sampling time at a half of chip rate (0.5 / chip)
 double Ts = 0.5/chip;

 // select the channel profile model
 Channel_Specification channelSpec(profile);

 // initialize with the defined channel profile
 tdlChannel.set_channel_profile(channelSpec, Ts);

 // set the normalized Doppler; fading type will be set to
Correlated
 // and Rice_MEDS method will be used (default settings)
 tdlChannel.set_norm_doppler(normDoppler);
}

/***
 * ChannelModel::::getResults()
 *
 * This method returns the simulation results
 *
 *
 */

void ChannelModel::getResults()
{
 char out[128];

 //Print results:
 cout << endl;
 cout << " EbN0dB | Total | Correct | Errors | BER " << endl;
 cout << "---" <<
endl;

 61

 for (int i=0; i < EbN0dB.length(); i++)
 {
 sprintf_s(out, " %5.2f | %5.0f | %5.0f | %5.0f | ",
 EbN0dB(i),
 total(i),
 good(i),
 err(i));

 cout << out << ber(i) << endl;
 }
}

/***
 * ChannelModel::Transmit(bvec bitsToSend, const Channels channel,
char* name)
 *
 * This method starts the simulation of the chossen channel
 *
 * Input:
 * bvec bitsToSend - The bits to transmit
 * const Channels channel - The channel model to use
 * char* name - The name of the received file
 *
 */

int ChannelModel::Transmit(bvec bitsToSend, const Channels channel,
char* name)
{
 // Scalars
 int index;
 uint8_t data;

 // Vectors:
 bvec bvTemp(8); // Temporary bin vec of 8 bits
 bvec receivedBits; // Received binary bits from decoder
 cvec receivedAWGN; // Complex AWGN channel received
signal
 cvec receivedSignal; // Complex channel received signal
 cvec receivedSymbols; // Complex received symbols from de-
spreader
 cvec transmittedSignal; // Complex transmitted chips from
spreader
 cvec transmittedSymbols; // Complex transmitted symbols from
encoder

 char filename[28]; // Name for the output file
 bofstream outFile; // Output file stream

 // Channel coefficients are returned in the 'coeff' array of
complex values
 Array<cvec> coeff;

 channelCoder.SetMethod(NONE);

 // Loop through to simulate all noise variance values
specified
 for (int i = 0; i < N0.length(); i++)
 {
 cout << endl << "Simulating point nr " << i + 1 << " with a
variance of ";

 62

 cout << std::sqrt(N0(i)) << endl;

 berc.clear(); // Clear the bit error counter
 awgnChannel.set_noise(N0(i)); // Set the AWGN noise
variance

 channelCoder.Encode(bitsToSend, transmittedSymbols);

 // This is where we do the multi-code spreading
 if (spread == true)
 {
 transmittedSignal = mcSpread.spread(transmittedSymbols);
 } else {
 transmittedSignal = transmittedSymbols;
 }

 // Pass the signal through the selected channel
 switch (channel)
 {
 case FIRChannel:
 receivedSignal = transmittedSignal;
 break;

 case TDLChannel:
 receivedSignal = tdlChannel(transmittedSignal,
coeff);
 break;

 case AWGNChannel:
 receivedSignal = transmittedSignal;
 break;

 case RICEChannel:
 receivedSignal = transmittedSignal;
 break;

 case JAKESChannel:
 receivedSignal =
jakesChannel.Generate(transmittedSignal);
 break;

 default:
 receivedSignal = transmittedSignal;
 break;
 }

 // Simulate noise on the signal
 receivedAWGN = awgnChannel(receivedSignal);

 // This is where we do the multi-code spreading
 if (spread == true)
 {
 //The multi-code despreading:
 //The second argument tells the despreader that the
offset is zero chips.
 //This offset is usefull on channels with delay.
 receivedSymbols = mcSpread.despread(receivedAWGN, 0);
 } else {
 // or just receive the symbols
 receivedSymbols = receivedAWGN;
 }

 channelCoder.Decode(receivedSymbols, receivedBits, N0(i));

 63

 // Count the number of bit errors
 berc.count(bitsToSend, receivedBits);

 ber(i) = berc.get_errorrate(); // Get the error rate
 err(i) = berc.get_errors(); // Get the number bits in
error
 good(i) = berc.get_corrects(); // Get the number of
correct bits
 total(i) = berc.get_total_bits(); // Get the total number
of bits sent

 cout << "Bit Error Rate (BER) = " << berc.get_errorrate() <<
endl;

 sprintf_s(filename, "test%i_%s",i, name);
 outFile.open(filename);

 index = 0;

 // Convert bits back into bytes
 // and writes to the output file
 while (index < receivedBits.length())
 {
 for (int j=0; j < 8; j++)
 {
 bvTemp[j] = receivedBits.get(index);
 data = bin2dec(bvTemp);
 index++;
 }
 outFile << data;
 }
 outFile.close();
 }
 return 0;
}

 64

ChannelCoder.h

/***
 * ChannelCoder.h
 *
 *
 * Author: Timothy Wise (0050055729)
 * Date: 20 Sep 2009
 *
 * ---
 *
 * This the header file for the channel coder class. This class
 * implements different channel coders
 *
 * ---
 */

#ifndef ChanCoder_H
#define ChanCoder_H

#pragma once

#include <itpp/itcomm.h>

using namespace itpp;

// Enummeration of the coders
enum Coders
{
 NONE,
 RS,
 TURBO,
 LPDC
};

/*
 * The ChannelCoder class
 */

class ChannelCoder
{
private:
 Coders codeMethod; // The coding method

 // Classes:
 QPSK qpsk; // The QPSK modulator/demdulator
 Turbo_Codec *Turbo; // The Turbo coder
 Reed_Solomon *ReedSolomon; // The reed-solomon coder

public:
 ChannelCoder(void); // Default Constructor
 ~ChannelCoder(void); // Default Destructor

 65

 // Method to set coding method
 void SetMethod(const Coders method);

 // Method to encode the bits
 void Encode(const bvec &input, cvec &output);

 // Method to decode the recieved signal
 void Decode(const cvec &input, bvec &output, double N0);
};

#endif // #ifndef ChanCoder_H

 66

ChannelCoder.cpp

/***
 * ChannelCoder.cpp
 *
 *
 * Author: Timothy Wise (0050055729)
 * Date: 20 Sep 2009
 *
 * ---
 *
 * This class provides for the channel coder
 * Some hannle codes implement include Reed-Solomon and Turbo codes
 * Further expansion for LPDC is provided
 *
 * ---
 */

#include "StdAfx.h"
#include "ChannelCoder.h"

// Default Constructor
ChannelCoder::ChannelCoder(void)
{
 codeMethod = NONE;

 Turbo = NULL;
 ReedSolomon = NULL;
}

// Default Destructor
ChannelCoder::~ChannelCoder(void)
{
 delete Turbo;
 delete ReedSolomon;
}

/***
 * ChannelCoder::SetMethod(const Coders method)
 *
 * This method sets the encoder and decoder to use
 *
 * Input:
 * const Coders method - The coding method to use
 *
 */

void ChannelCoder::SetMethod(const Coders method)
{
 int m = 4; //Reed-Solomon parameter m
 int t = 2; //Reed-Solomon parameter t

 ivec generator(2); // Turbo coder generator
 int constraintLength; // Turbo coder constraint length
 ivec interleaverSequence; // Turbo interleaver sequence

 67

 // The coding method to use
 codeMethod = method;

 // Initalise the appropiate coder
 switch (codeMethod)
 {
 case NONE:
 default:
 break;

 case RS:
 if (ReedSolomon == NULL)
 {
 ReedSolomon = new Reed_Solomon(m, t);
 }
 break;

 case TURBO:
 generator(0) = 013;
 generator(1) = 015;

 constraintLength = 4;
 interleaverSequence =
wcdma_turbo_interleaver_sequence(320);

 if (Turbo == NULL)
 {
 Turbo = new Turbo_Codec();
 }
 Turbo->set_parameters(generator,
 generator,
 constraintLength,
 interleaverSequence);
 break;

 case LPDC:
 break;
 }
}

/**
 * ChannelCoder::Encode(const bvec &input, cvec &output)
 *
 * This method performs the channel encoding
 *
 * Inputs:
 * const bvec &input - A reference to binary input vector
 * const bvec &output - A reference to binary output vector
 *
 */

void ChannelCoder::Encode(const bvec &input, cvec &output)
{
 bvec codedBits; // A vector of binary coded bits

 switch (codeMethod)
 {
 case NONE:
 default:
 // No encoding performed
 codedBits = input;
 break;

 68

 case RS:
 // Encode the binary signal
 ReedSolomon->encode(input, codedBits);
 break;

 case TURBO:
 // Encode the binary signal
 Turbo->encode(input, codedBits);
 break;
 }
 // Modulate the bits to send
 qpsk.modulate_bits(codedBits, output);
}

/***
 * ChannelCoder::Decode(const bvec &input, cvec &output, double N0)
 *
 * This method performs the channel decoding
 *
 * Inputs:
 * const bvec &input - A reference to binary input vector
 * const bvec &output - A reference to binary output vector
 * double N0 - The noise variance to use in the soft demodulator
 *
 */

void ChannelCoder::Decode(const cvec &input, bvec &output, double
N0)
{
 double Ec = 1.0; // The transmitted energy per QPSK
symbol is 1.
 bvec receivedBits; // Received binary bits from demodulator
 vec receivedSignal; // Complex channel received signal

 switch (codeMethod)
 {
 case NONE:
 default:
 // Demodulate the symbols to bits
 output = qpsk.demodulate_bits(input);
 break;

 case RS:
 // Demodulate the symbols to bits
 receivedBits = qpsk.demodulate_bits(input);

 // Decode the the received signal
 ReedSolomon->decode(receivedBits, output);
 break;

 case TURBO:
 // Demodulate the symbols to soft bits
 receivedSignal = qpsk.demodulate_soft_bits(input, N0);

 // Decode the the received signal
 Turbo->set_awgn_channel_parameters(Ec, N0);
 Turbo->decode(receivedSignal, output);
 break;
 }
}

 69

JakesChannel.h

/***
 * JakesChannel.h
 *
 *
 * Author: Timothy Wise (0050055729)
 * Date: 21 Sep 2009
 * ---
 *
 * The Class header file for the JakesChannel class
 *
 * ---
 */

#ifndef Jakes_H
#define Jakes_H

#pragma once

#include <itpp/itcomm.h>

using namespace itpp;

/*
 * The JakesChannel class
 */

class JakesChannel
{

protected:
 bool initFlag; // Is the generator initialised

 int numFreqs; // Number of Doppler frequecies
 double bFreq; // Doppler frequencies
 double bDoppler; // Normalised maximum Doppler frequency

 vec Amp; // Doppler amplitudes
 vec Theta1; // Doppler real phases
 vec Theta2; // Doppler imaginary phases

public:
 // Default constructor
 JakesChannel();

 // Destructor
 ~JakesChannel(void) {}

 // Initalise the generator
 void Initalise(void);

 // Set number of Doppler frequencies
 void setNoFrequencies(int numFreq);

 // Set the normalised Doppler

 70

 void setNormDoppler(double normDoppler);

 // Get the number of Doppler frequencies
 int getNoFrequencies() const { return numFreqs; }

 // Return the normalised Doppler
 double getNormDoppler() const { return bDoppler; }

 // Generate a no_samples values from the fading process
 cvec Generate(cvec &input);
};

#endif // #ifndef Jakes_H

 71

JakesChannel.cpp

/**
 * JakesChannel.cpp
 *
 *
 * Author: Timothy Wise (0050055729)
 * Date: 21 Sep 2009
 * ---
 *
 * This class implements a Jakes model fading genertor
 *
 * ---
 */

#include "StdAfx.h"
#include "JakesChannel.h"

// Default Construtor
JakesChannel::JakesChannel()
{
 numFreqs = 16; // Number of Doppler Frequencies
 bDoppler = 0.1; // The Doppler Spread
}

/***
 * ChannelCoder::Initalise(void)
 *
 * This method initalises the Jakes model
 *
 *
 */

void JakesChannel::Initalise(void)
{
 // Calculate the Doppler frequencies
 bFreq = 2*pi*bDoppler;

 // Calculate the speading angles
 Theta1 = randu(numFreqs)*2*pi;
 Theta2 = randu(numFreqs)*2*pi;

 // Calculate the doppler amplitudes
 Amp = (2*pi*numFreqs-pi+(randu(numFreqs)*2*pi))/(4*numFreqs);

 initFlag = true; // generator ready to use
}

/***
 * ChannelCoder::setNoFrequencies(int numFreq)
 *
 * This method sets the number Doppler frequencies
 *
 * Input:
 * int numFreq - The number of frequencies
 */

 72

void JakesChannel::setNoFrequencies(int numFreq)
{
 it_assert(numFreq >= 7,
 "Jakes: Too low number of Doppler frequencies");

 numFreqs = numFreq;
 initFlag = false;
}

/***
 * ChannelCoder::setNormDoppler(double normDoppler)
 *
 * This method sets the number normalised Doppler
 *
 * Input:
 * double normDoppler - The normalised Doppler
 */

void JakesChannel::setNormDoppler(double normDoppler)
{
 it_assert((normDoppler > 0) && (normDoppler <= 1.0),
 "Jakes: Normalised Doppler out of range");

 bDoppler = normDoppler;
 initFlag = false;
}

/***
 * ChannelCoder::Generate(cvec &input)
 *
 * This method sets generates the Jakes coeeficants and
 * applies them to the input signal
 *
 * Input:
 * cvec &input - The complex vector input signal
 */

cvec JakesChannel::Generate(cvec &input)
{
 vec x;
 vec y;
 cvec output;

 if (initFlag == false)
 Initalise();

 int noSamples = input.size();

 // Set output vectors sizes
 // and fill with zeros
 x.set_size(noSamples, false);
 y.set_size(noSamples, false);
 output.set_size(noSamples, false);

 double c = 2.0/numFreqs;

 // Caculate the sum of sinusoids
 // using Jakes method
 for (int i = 0; i < noSamples; i++)
 {
 x(i) = sum(std::sqrt(c)*cos(bFreq*i*cos(Amp)+Theta1));

 73

 y(i) = sum(std::sqrt(c)*cos(bFreq*i*cos(Amp)+Theta2));
 }

 x = elem_mult(x,x); // simular to the MATLAB .*
 y = elem_mult(y,y);

 // Calculate correlated fading samples
 for (int i = 0; i < noSamples; i++)
 {
 output(i)= std::sqrt(x(i)+y(i))/std::sqrt(2.0);
 }

 // Apply to the input signal
 return(elem_mult(input, output));
}

 74

Appendix C – BER Results JSVM Layers

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 17 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,3,0)

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 18 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,2,0)

 75

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 19 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,1,0)

2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 20 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(1,0,0)

 76

2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 21 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,3,0)

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 22 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,1,0)

 77

2 4 6 8 10 12 14 16
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No(dB)

B
E
R

SVC - Default

SVC - 2 Slices

SVC - 2 Slices, FMO, CAVLC

SVC - 2 Slices, FMO, CABAC

Figure 23 – Test Results JSVM Bitstream at Eb/N0 of 3 to 15 dB layer DTQ(0,0,0)

