Evaluating the differences and accuracies between GNSS applications using PPP

Ismail, Wafeek (2015) Evaluating the differences and accuracies between GNSS applications using PPP. [USQ Project]


Download (5MB) | Preview


Global Navigation Satellite Systems (GNSS) are satellite systems with global coverage. There are currently several GNSS systems in operation today including the United States NAVSTAR Global Positioning System, Russian GLONASS, Chinese Beidou and the European Union’s Galileo system. The Galileo and Beidou systems are currently undergoing upgrading in order to achieve more sustainable and comprehensive worldwide exposure, ultimately providing users with a broader option of systems and wider more reliable coverage.

In recent years, in addition to the GPS constellation, the ability to utilise extra satellites made available through the GLONASS and Beidou systems has enhanced the capabilities and possible applications of the precise point positioning (PPP) method. Precise Point Positioning has been used for the last decade as a cost-effective alternative to conventional DGPS-Differential GPS with an estimated precision adequate for many applications. PPP requires handling different types of errors using proper models. PPP precision varies with the use of observations from different satellite systems (GPS, GLONASS and mixed GPS/GLONASS/Beidou) and the duration of observations. However, the fundamental differences between GPS, GLONASS, Beidou and Galileo and the lack of a fully tested global tracking network of multi-Global Navigation Satellite Systems necessitate the evaluation of their combined use. More studies are required in order to confirm the reliability and accuracy of the results obtained by the various methods of PPP. This is outside the scope of this paper.

This research paper will evaluate and analyse the accuracy and reliability between different GNSS systems using the Precise Point Positioning technique with emphasis on the function and performance of single systems compared with combined GNSS systems. A methodology was designed to ensure accurate and reliable results have been achieved. Solutions generated from identical data will be compared for bias, accuracy and reliability between single standalone GPS and combined GNSS systems. This study focused on the performance of these systems over a twenty four hour observation period, decimated into 1, 2, 6, 12 and 24 hours. The study found that the reliability and performance of GNSS systems over standalone GPS was insignificant over a twenty four hour period. In fact, where satellite availability and constellation are at a premium, standalone GPS systems can produce equivalent quality results compared with combined GNSS. Having said this, the combined GNSS systems achieved quicker convergence times than standalone systems.

With limited access and availability to resources, in particular GNSS receivers, the results can be seen as preliminary testing enhancing the knowledge of GNSS users. Nonetheless, this dissertation covers a wide range of topics and field testing providing relevant reliable data on the accuracy, precision and performance of both standalone and combined Global Navigation Satellite Systems.

Statistics for USQ ePrint 29254
Statistics for this ePrint Item
Item Type: USQ Project
Item Status: Live Archive
Additional Information: Bachelor of Spatial Science (Honours) project
Faculty/School / Institute/Centre: Historic - Faculty of Health, Engineering and Sciences - School of Civil Engineering and Surveying (1 Jul 2013 - 31 Dec 2021)
Supervisors: Zhang, Zhenyu
Date Deposited: 06 Jun 2016 06:31
Last Modified: 06 Jun 2016 06:31
Uncontrolled Keywords: GNSS, PPP, GPS, Beidou, Galileo
Fields of Research (2008): 09 Engineering > 0909 Geomatic Engineering > 090906 Surveying (incl. Hydrographic Surveying)
Fields of Research (2020): 40 ENGINEERING > 4013 Geomatic engineering > 401306 Surveying (incl. hydrographic surveying)
URI: https://sear.unisq.edu.au/id/eprint/29254

Actions (login required)

View Item Archive Repository Staff Only